clang  10.0.0svn
ASTWriter.cpp
Go to the documentation of this file.
1 //===- ASTWriter.cpp - AST File Writer ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ASTWriter class, which writes AST files.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "ASTCommon.h"
15 #include "ASTReaderInternals.h"
16 #include "MultiOnDiskHashTable.h"
17 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclFriend.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/ExprCXX.h"
33 #include "clang/AST/TemplateName.h"
34 #include "clang/AST/Type.h"
36 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/LLVM.h"
42 #include "clang/Basic/Lambda.h"
44 #include "clang/Basic/Module.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/TargetInfo.h"
53 #include "clang/Basic/Version.h"
54 #include "clang/Lex/HeaderSearch.h"
56 #include "clang/Lex/MacroInfo.h"
57 #include "clang/Lex/ModuleMap.h"
59 #include "clang/Lex/Preprocessor.h"
61 #include "clang/Lex/Token.h"
64 #include "clang/Sema/Sema.h"
65 #include "clang/Sema/Weak.h"
71 #include "llvm/ADT/APFloat.h"
72 #include "llvm/ADT/APInt.h"
73 #include "llvm/ADT/APSInt.h"
74 #include "llvm/ADT/ArrayRef.h"
75 #include "llvm/ADT/DenseMap.h"
76 #include "llvm/ADT/Hashing.h"
77 #include "llvm/ADT/Optional.h"
78 #include "llvm/ADT/PointerIntPair.h"
79 #include "llvm/ADT/STLExtras.h"
80 #include "llvm/ADT/ScopeExit.h"
81 #include "llvm/ADT/SmallSet.h"
82 #include "llvm/ADT/SmallString.h"
83 #include "llvm/ADT/SmallVector.h"
84 #include "llvm/ADT/StringMap.h"
85 #include "llvm/ADT/StringRef.h"
86 #include "llvm/Bitstream/BitCodes.h"
87 #include "llvm/Bitstream/BitstreamWriter.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/Compression.h"
90 #include "llvm/Support/DJB.h"
91 #include "llvm/Support/Endian.h"
92 #include "llvm/Support/EndianStream.h"
93 #include "llvm/Support/Error.h"
94 #include "llvm/Support/ErrorHandling.h"
95 #include "llvm/Support/MemoryBuffer.h"
96 #include "llvm/Support/OnDiskHashTable.h"
97 #include "llvm/Support/Path.h"
98 #include "llvm/Support/SHA1.h"
99 #include "llvm/Support/VersionTuple.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <cstdlib>
105 #include <cstring>
106 #include <ctime>
107 #include <deque>
108 #include <limits>
109 #include <memory>
110 #include <queue>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114 
115 using namespace clang;
116 using namespace clang::serialization;
117 
118 template <typename T, typename Allocator>
119 static StringRef bytes(const std::vector<T, Allocator> &v) {
120  if (v.empty()) return StringRef();
121  return StringRef(reinterpret_cast<const char*>(&v[0]),
122  sizeof(T) * v.size());
123 }
124 
125 template <typename T>
126 static StringRef bytes(const SmallVectorImpl<T> &v) {
127  return StringRef(reinterpret_cast<const char*>(v.data()),
128  sizeof(T) * v.size());
129 }
130 
131 //===----------------------------------------------------------------------===//
132 // Type serialization
133 //===----------------------------------------------------------------------===//
134 
135 namespace clang {
136 
138  ASTWriter &Writer;
139  ASTRecordWriter Record;
140 
141  /// Type code that corresponds to the record generated.
142  TypeCode Code = static_cast<TypeCode>(0);
143 
144  /// Abbreviation to use for the record, if any.
145  unsigned AbbrevToUse = 0;
146 
147  public:
149  : Writer(Writer), Record(Writer, Record) {}
150 
151  uint64_t Emit() {
152  return Record.Emit(Code, AbbrevToUse);
153  }
154 
155  void Visit(QualType T) {
156  if (T.hasLocalNonFastQualifiers()) {
159  Record.push_back(Qs.getAsOpaqueValue());
160  Code = TYPE_EXT_QUAL;
161  AbbrevToUse = Writer.TypeExtQualAbbrev;
162  } else {
163  switch (T->getTypeClass()) {
164  // For all of the concrete, non-dependent types, call the
165  // appropriate visitor function.
166 #define TYPE(Class, Base) \
167  case Type::Class: Visit##Class##Type(cast<Class##Type>(T)); break;
168 #define ABSTRACT_TYPE(Class, Base)
169 #include "clang/AST/TypeNodes.def"
170  }
171  }
172  }
173 
174  void VisitArrayType(const ArrayType *T);
175  void VisitFunctionType(const FunctionType *T);
176  void VisitTagType(const TagType *T);
177 
178 #define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T);
179 #define ABSTRACT_TYPE(Class, Base)
180 #include "clang/AST/TypeNodes.def"
181  };
182 
183 } // namespace clang
184 
185 void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) {
186  llvm_unreachable("Built-in types are never serialized");
187 }
188 
189 void ASTTypeWriter::VisitComplexType(const ComplexType *T) {
190  Record.AddTypeRef(T->getElementType());
191  Code = TYPE_COMPLEX;
192 }
193 
194 void ASTTypeWriter::VisitPointerType(const PointerType *T) {
195  Record.AddTypeRef(T->getPointeeType());
196  Code = TYPE_POINTER;
197 }
198 
199 void ASTTypeWriter::VisitDecayedType(const DecayedType *T) {
200  Record.AddTypeRef(T->getOriginalType());
201  Code = TYPE_DECAYED;
202 }
203 
204 void ASTTypeWriter::VisitAdjustedType(const AdjustedType *T) {
205  Record.AddTypeRef(T->getOriginalType());
206  Record.AddTypeRef(T->getAdjustedType());
207  Code = TYPE_ADJUSTED;
208 }
209 
210 void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) {
211  Record.AddTypeRef(T->getPointeeType());
212  Code = TYPE_BLOCK_POINTER;
213 }
214 
215 void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) {
216  Record.AddTypeRef(T->getPointeeTypeAsWritten());
217  Record.push_back(T->isSpelledAsLValue());
218  Code = TYPE_LVALUE_REFERENCE;
219 }
220 
221 void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) {
222  Record.AddTypeRef(T->getPointeeTypeAsWritten());
223  Code = TYPE_RVALUE_REFERENCE;
224 }
225 
226 void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) {
227  Record.AddTypeRef(T->getPointeeType());
228  Record.AddTypeRef(QualType(T->getClass(), 0));
229  Code = TYPE_MEMBER_POINTER;
230 }
231 
233  Record.AddTypeRef(T->getElementType());
234  Record.push_back(T->getSizeModifier()); // FIXME: stable values
235  Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values
236 }
237 
238 void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) {
239  VisitArrayType(T);
240  Record.AddAPInt(T->getSize());
241  Code = TYPE_CONSTANT_ARRAY;
242 }
243 
244 void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
245  VisitArrayType(T);
246  Code = TYPE_INCOMPLETE_ARRAY;
247 }
248 
249 void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) {
250  VisitArrayType(T);
251  Record.AddSourceLocation(T->getLBracketLoc());
252  Record.AddSourceLocation(T->getRBracketLoc());
253  Record.AddStmt(T->getSizeExpr());
254  Code = TYPE_VARIABLE_ARRAY;
255 }
256 
257 void ASTTypeWriter::VisitVectorType(const VectorType *T) {
258  Record.AddTypeRef(T->getElementType());
259  Record.push_back(T->getNumElements());
260  Record.push_back(T->getVectorKind());
261  Code = TYPE_VECTOR;
262 }
263 
264 void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) {
265  VisitVectorType(T);
266  Code = TYPE_EXT_VECTOR;
267 }
268 
270  Record.AddTypeRef(T->getReturnType());
272  Record.push_back(C.getNoReturn());
273  Record.push_back(C.getHasRegParm());
274  Record.push_back(C.getRegParm());
275  // FIXME: need to stabilize encoding of calling convention...
276  Record.push_back(C.getCC());
277  Record.push_back(C.getProducesResult());
278  Record.push_back(C.getNoCallerSavedRegs());
279  Record.push_back(C.getNoCfCheck());
280 
281  if (C.getHasRegParm() || C.getRegParm() || C.getProducesResult())
282  AbbrevToUse = 0;
283 }
284 
285 void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
286  VisitFunctionType(T);
287  Code = TYPE_FUNCTION_NO_PROTO;
288 }
289 
290 static void addExceptionSpec(const FunctionProtoType *T,
291  ASTRecordWriter &Record) {
292  Record.push_back(T->getExceptionSpecType());
293  if (T->getExceptionSpecType() == EST_Dynamic) {
294  Record.push_back(T->getNumExceptions());
295  for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I)
296  Record.AddTypeRef(T->getExceptionType(I));
297  } else if (isComputedNoexcept(T->getExceptionSpecType())) {
298  Record.AddStmt(T->getNoexceptExpr());
299  } else if (T->getExceptionSpecType() == EST_Uninstantiated) {
300  Record.AddDeclRef(T->getExceptionSpecDecl());
302  } else if (T->getExceptionSpecType() == EST_Unevaluated) {
303  Record.AddDeclRef(T->getExceptionSpecDecl());
304  }
305 }
306 
307 void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) {
308  VisitFunctionType(T);
309 
310  Record.push_back(T->isVariadic());
311  Record.push_back(T->hasTrailingReturn());
312  Record.push_back(T->getMethodQuals().getAsOpaqueValue());
313  Record.push_back(static_cast<unsigned>(T->getRefQualifier()));
314  addExceptionSpec(T, Record);
315 
316  Record.push_back(T->getNumParams());
317  for (unsigned I = 0, N = T->getNumParams(); I != N; ++I)
318  Record.AddTypeRef(T->getParamType(I));
319 
320  if (T->hasExtParameterInfos()) {
321  for (unsigned I = 0, N = T->getNumParams(); I != N; ++I)
322  Record.push_back(T->getExtParameterInfo(I).getOpaqueValue());
323  }
324 
325  if (T->isVariadic() || T->hasTrailingReturn() || T->getMethodQuals() ||
328  AbbrevToUse = 0;
329 
330  Code = TYPE_FUNCTION_PROTO;
331 }
332 
333 void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
334  Record.AddDeclRef(T->getDecl());
335  Code = TYPE_UNRESOLVED_USING;
336 }
337 
338 void ASTTypeWriter::VisitTypedefType(const TypedefType *T) {
339  Record.AddDeclRef(T->getDecl());
340  assert(!T->isCanonicalUnqualified() && "Invalid typedef ?");
341  Record.AddTypeRef(T->getCanonicalTypeInternal());
342  Code = TYPE_TYPEDEF;
343 }
344 
345 void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) {
346  Record.AddStmt(T->getUnderlyingExpr());
347  Code = TYPE_TYPEOF_EXPR;
348 }
349 
350 void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) {
351  Record.AddTypeRef(T->getUnderlyingType());
352  Code = TYPE_TYPEOF;
353 }
354 
355 void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) {
356  Record.AddTypeRef(T->getUnderlyingType());
357  Record.AddStmt(T->getUnderlyingExpr());
358  Code = TYPE_DECLTYPE;
359 }
360 
361 void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) {
362  Record.AddTypeRef(T->getBaseType());
363  Record.AddTypeRef(T->getUnderlyingType());
364  Record.push_back(T->getUTTKind());
365  Code = TYPE_UNARY_TRANSFORM;
366 }
367 
368 void ASTTypeWriter::VisitAutoType(const AutoType *T) {
369  Record.AddTypeRef(T->getDeducedType());
370  Record.push_back((unsigned)T->getKeyword());
371  if (T->getDeducedType().isNull())
372  Record.push_back(T->containsUnexpandedParameterPack() ? 2 :
373  T->isDependentType() ? 1 : 0);
374  Code = TYPE_AUTO;
375 }
376 
377 void ASTTypeWriter::VisitDeducedTemplateSpecializationType(
379  Record.AddTemplateName(T->getTemplateName());
380  Record.AddTypeRef(T->getDeducedType());
381  if (T->getDeducedType().isNull())
382  Record.push_back(T->isDependentType());
384 }
385 
387  Record.push_back(T->isDependentType());
388  Record.AddDeclRef(T->getDecl()->getCanonicalDecl());
389  assert(!T->isBeingDefined() &&
390  "Cannot serialize in the middle of a type definition");
391 }
392 
393 void ASTTypeWriter::VisitRecordType(const RecordType *T) {
394  VisitTagType(T);
395  Code = TYPE_RECORD;
396 }
397 
398 void ASTTypeWriter::VisitEnumType(const EnumType *T) {
399  VisitTagType(T);
400  Code = TYPE_ENUM;
401 }
402 
403 void ASTTypeWriter::VisitAttributedType(const AttributedType *T) {
404  Record.AddTypeRef(T->getModifiedType());
405  Record.AddTypeRef(T->getEquivalentType());
406  Record.push_back(T->getAttrKind());
407  Code = TYPE_ATTRIBUTED;
408 }
409 
410 void
411 ASTTypeWriter::VisitSubstTemplateTypeParmType(
412  const SubstTemplateTypeParmType *T) {
413  Record.AddTypeRef(QualType(T->getReplacedParameter(), 0));
414  Record.AddTypeRef(T->getReplacementType());
416 }
417 
418 void
419 ASTTypeWriter::VisitSubstTemplateTypeParmPackType(
421  Record.AddTypeRef(QualType(T->getReplacedParameter(), 0));
422  Record.AddTemplateArgument(T->getArgumentPack());
424 }
425 
426 void
427 ASTTypeWriter::VisitTemplateSpecializationType(
428  const TemplateSpecializationType *T) {
429  Record.push_back(T->isDependentType());
430  Record.AddTemplateName(T->getTemplateName());
431  Record.push_back(T->getNumArgs());
432  for (const auto &ArgI : *T)
433  Record.AddTemplateArgument(ArgI);
434  Record.AddTypeRef(T->isTypeAlias() ? T->getAliasedType()
435  : T->isCanonicalUnqualified()
436  ? QualType()
437  : T->getCanonicalTypeInternal());
439 }
440 
441 void
442 ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
443  VisitArrayType(T);
444  Record.AddStmt(T->getSizeExpr());
445  Record.AddSourceRange(T->getBracketsRange());
447 }
448 
449 void
450 ASTTypeWriter::VisitDependentSizedExtVectorType(
451  const DependentSizedExtVectorType *T) {
452  Record.AddTypeRef(T->getElementType());
453  Record.AddStmt(T->getSizeExpr());
454  Record.AddSourceLocation(T->getAttributeLoc());
456 }
457 
458 void ASTTypeWriter::VisitDependentVectorType(const DependentVectorType *T) {
459  Record.AddTypeRef(T->getElementType());
460  Record.AddStmt(const_cast<Expr*>(T->getSizeExpr()));
461  Record.AddSourceLocation(T->getAttributeLoc());
462  Record.push_back(T->getVectorKind());
464 }
465 
466 void
467 ASTTypeWriter::VisitDependentAddressSpaceType(
468  const DependentAddressSpaceType *T) {
469  Record.AddTypeRef(T->getPointeeType());
470  Record.AddStmt(T->getAddrSpaceExpr());
471  Record.AddSourceLocation(T->getAttributeLoc());
473 }
474 
475 void
476 ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
477  Record.push_back(T->getDepth());
478  Record.push_back(T->getIndex());
479  Record.push_back(T->isParameterPack());
480  Record.AddDeclRef(T->getDecl());
482 }
483 
484 void
485 ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) {
486  Record.push_back(T->getKeyword());
487  Record.AddNestedNameSpecifier(T->getQualifier());
488  Record.AddIdentifierRef(T->getIdentifier());
489  Record.AddTypeRef(
491  Code = TYPE_DEPENDENT_NAME;
492 }
493 
494 void
495 ASTTypeWriter::VisitDependentTemplateSpecializationType(
497  Record.push_back(T->getKeyword());
498  Record.AddNestedNameSpecifier(T->getQualifier());
499  Record.AddIdentifierRef(T->getIdentifier());
500  Record.push_back(T->getNumArgs());
501  for (const auto &I : *T)
502  Record.AddTemplateArgument(I);
504 }
505 
506 void ASTTypeWriter::VisitPackExpansionType(const PackExpansionType *T) {
507  Record.AddTypeRef(T->getPattern());
508  if (Optional<unsigned> NumExpansions = T->getNumExpansions())
509  Record.push_back(*NumExpansions + 1);
510  else
511  Record.push_back(0);
512  Code = TYPE_PACK_EXPANSION;
513 }
514 
515 void ASTTypeWriter::VisitParenType(const ParenType *T) {
516  Record.AddTypeRef(T->getInnerType());
517  Code = TYPE_PAREN;
518 }
519 
520 void ASTTypeWriter::VisitMacroQualifiedType(const MacroQualifiedType *T) {
521  Record.AddTypeRef(T->getUnderlyingType());
522  Record.AddIdentifierRef(T->getMacroIdentifier());
523  Code = TYPE_MACRO_QUALIFIED;
524 }
525 
526 void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) {
527  Record.push_back(T->getKeyword());
528  Record.AddNestedNameSpecifier(T->getQualifier());
529  Record.AddTypeRef(T->getNamedType());
530  Record.AddDeclRef(T->getOwnedTagDecl());
531  Code = TYPE_ELABORATED;
532 }
533 
534 void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) {
535  Record.AddDeclRef(T->getDecl()->getCanonicalDecl());
536  Record.AddTypeRef(T->getInjectedSpecializationType());
538 }
539 
540 void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
541  Record.AddDeclRef(T->getDecl()->getCanonicalDecl());
542  Code = TYPE_OBJC_INTERFACE;
543 }
544 
545 void ASTTypeWriter::VisitObjCTypeParamType(const ObjCTypeParamType *T) {
546  Record.AddDeclRef(T->getDecl());
547  Record.push_back(T->getNumProtocols());
548  for (const auto *I : T->quals())
549  Record.AddDeclRef(I);
550  Code = TYPE_OBJC_TYPE_PARAM;
551 }
552 
553 void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) {
554  Record.AddTypeRef(T->getBaseType());
555  Record.push_back(T->getTypeArgsAsWritten().size());
556  for (auto TypeArg : T->getTypeArgsAsWritten())
557  Record.AddTypeRef(TypeArg);
558  Record.push_back(T->getNumProtocols());
559  for (const auto *I : T->quals())
560  Record.AddDeclRef(I);
561  Record.push_back(T->isKindOfTypeAsWritten());
562  Code = TYPE_OBJC_OBJECT;
563 }
564 
565 void
566 ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
567  Record.AddTypeRef(T->getPointeeType());
569 }
570 
571 void
572 ASTTypeWriter::VisitAtomicType(const AtomicType *T) {
573  Record.AddTypeRef(T->getValueType());
574  Code = TYPE_ATOMIC;
575 }
576 
577 void
578 ASTTypeWriter::VisitPipeType(const PipeType *T) {
579  Record.AddTypeRef(T->getElementType());
580  Record.push_back(T->isReadOnly());
581  Code = TYPE_PIPE;
582 }
583 
584 namespace {
585 
586 class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> {
587  ASTRecordWriter &Record;
588 
589 public:
590  TypeLocWriter(ASTRecordWriter &Record) : Record(Record) {}
591 
592 #define ABSTRACT_TYPELOC(CLASS, PARENT)
593 #define TYPELOC(CLASS, PARENT) \
594  void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
595 #include "clang/AST/TypeLocNodes.def"
596 
597  void VisitArrayTypeLoc(ArrayTypeLoc TyLoc);
598  void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc);
599 };
600 
601 } // namespace
602 
603 void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
604  // nothing to do
605 }
606 
607 void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
608  Record.AddSourceLocation(TL.getBuiltinLoc());
609  if (TL.needsExtraLocalData()) {
610  Record.push_back(TL.getWrittenTypeSpec());
611  Record.push_back(TL.getWrittenSignSpec());
612  Record.push_back(TL.getWrittenWidthSpec());
613  Record.push_back(TL.hasModeAttr());
614  }
615 }
616 
617 void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) {
618  Record.AddSourceLocation(TL.getNameLoc());
619 }
620 
621 void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) {
622  Record.AddSourceLocation(TL.getStarLoc());
623 }
624 
625 void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
626  // nothing to do
627 }
628 
629 void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
630  // nothing to do
631 }
632 
633 void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
634  Record.AddSourceLocation(TL.getCaretLoc());
635 }
636 
637 void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
638  Record.AddSourceLocation(TL.getAmpLoc());
639 }
640 
641 void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
642  Record.AddSourceLocation(TL.getAmpAmpLoc());
643 }
644 
645 void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
646  Record.AddSourceLocation(TL.getStarLoc());
647  Record.AddTypeSourceInfo(TL.getClassTInfo());
648 }
649 
650 void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) {
651  Record.AddSourceLocation(TL.getLBracketLoc());
652  Record.AddSourceLocation(TL.getRBracketLoc());
653  Record.push_back(TL.getSizeExpr() ? 1 : 0);
654  if (TL.getSizeExpr())
655  Record.AddStmt(TL.getSizeExpr());
656 }
657 
658 void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
659  VisitArrayTypeLoc(TL);
660 }
661 
662 void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
663  VisitArrayTypeLoc(TL);
664 }
665 
666 void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
667  VisitArrayTypeLoc(TL);
668 }
669 
670 void TypeLocWriter::VisitDependentSizedArrayTypeLoc(
672  VisitArrayTypeLoc(TL);
673 }
674 
675 void TypeLocWriter::VisitDependentAddressSpaceTypeLoc(
677  Record.AddSourceLocation(TL.getAttrNameLoc());
679  Record.AddSourceLocation(range.getBegin());
680  Record.AddSourceLocation(range.getEnd());
681  Record.AddStmt(TL.getAttrExprOperand());
682 }
683 
684 void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc(
686  Record.AddSourceLocation(TL.getNameLoc());
687 }
688 
689 void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) {
690  Record.AddSourceLocation(TL.getNameLoc());
691 }
692 
693 void TypeLocWriter::VisitDependentVectorTypeLoc(
695  Record.AddSourceLocation(TL.getNameLoc());
696 }
697 
698 void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
699  Record.AddSourceLocation(TL.getNameLoc());
700 }
701 
702 void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
703  Record.AddSourceLocation(TL.getLocalRangeBegin());
704  Record.AddSourceLocation(TL.getLParenLoc());
705  Record.AddSourceLocation(TL.getRParenLoc());
706  Record.AddSourceRange(TL.getExceptionSpecRange());
707  Record.AddSourceLocation(TL.getLocalRangeEnd());
708  for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i)
709  Record.AddDeclRef(TL.getParam(i));
710 }
711 
712 void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
713  VisitFunctionTypeLoc(TL);
714 }
715 
716 void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
717  VisitFunctionTypeLoc(TL);
718 }
719 
720 void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
721  Record.AddSourceLocation(TL.getNameLoc());
722 }
723 
724 void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
725  Record.AddSourceLocation(TL.getNameLoc());
726 }
727 
728 void TypeLocWriter::VisitObjCTypeParamTypeLoc(ObjCTypeParamTypeLoc TL) {
729  if (TL.getNumProtocols()) {
730  Record.AddSourceLocation(TL.getProtocolLAngleLoc());
731  Record.AddSourceLocation(TL.getProtocolRAngleLoc());
732  }
733  for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
734  Record.AddSourceLocation(TL.getProtocolLoc(i));
735 }
736 
737 void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
738  Record.AddSourceLocation(TL.getTypeofLoc());
739  Record.AddSourceLocation(TL.getLParenLoc());
740  Record.AddSourceLocation(TL.getRParenLoc());
741 }
742 
743 void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
744  Record.AddSourceLocation(TL.getTypeofLoc());
745  Record.AddSourceLocation(TL.getLParenLoc());
746  Record.AddSourceLocation(TL.getRParenLoc());
747  Record.AddTypeSourceInfo(TL.getUnderlyingTInfo());
748 }
749 
750 void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
751  Record.AddSourceLocation(TL.getNameLoc());
752 }
753 
754 void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
755  Record.AddSourceLocation(TL.getKWLoc());
756  Record.AddSourceLocation(TL.getLParenLoc());
757  Record.AddSourceLocation(TL.getRParenLoc());
758  Record.AddTypeSourceInfo(TL.getUnderlyingTInfo());
759 }
760 
761 void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) {
762  Record.AddSourceLocation(TL.getNameLoc());
763 }
764 
765 void TypeLocWriter::VisitDeducedTemplateSpecializationTypeLoc(
767  Record.AddSourceLocation(TL.getTemplateNameLoc());
768 }
769 
770 void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) {
771  Record.AddSourceLocation(TL.getNameLoc());
772 }
773 
774 void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) {
775  Record.AddSourceLocation(TL.getNameLoc());
776 }
777 
778 void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
779  Record.AddAttr(TL.getAttr());
780 }
781 
782 void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
783  Record.AddSourceLocation(TL.getNameLoc());
784 }
785 
786 void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc(
788  Record.AddSourceLocation(TL.getNameLoc());
789 }
790 
791 void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc(
793  Record.AddSourceLocation(TL.getNameLoc());
794 }
795 
796 void TypeLocWriter::VisitTemplateSpecializationTypeLoc(
798  Record.AddSourceLocation(TL.getTemplateKeywordLoc());
799  Record.AddSourceLocation(TL.getTemplateNameLoc());
800  Record.AddSourceLocation(TL.getLAngleLoc());
801  Record.AddSourceLocation(TL.getRAngleLoc());
802  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
803  Record.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(),
804  TL.getArgLoc(i).getLocInfo());
805 }
806 
807 void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) {
808  Record.AddSourceLocation(TL.getLParenLoc());
809  Record.AddSourceLocation(TL.getRParenLoc());
810 }
811 
812 void TypeLocWriter::VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
813  Record.AddSourceLocation(TL.getExpansionLoc());
814 }
815 
816 void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
817  Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
818  Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
819 }
820 
821 void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
822  Record.AddSourceLocation(TL.getNameLoc());
823 }
824 
825 void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
826  Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
827  Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
828  Record.AddSourceLocation(TL.getNameLoc());
829 }
830 
831 void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc(
833  Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
834  Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
835  Record.AddSourceLocation(TL.getTemplateKeywordLoc());
836  Record.AddSourceLocation(TL.getTemplateNameLoc());
837  Record.AddSourceLocation(TL.getLAngleLoc());
838  Record.AddSourceLocation(TL.getRAngleLoc());
839  for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
840  Record.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(),
841  TL.getArgLoc(I).getLocInfo());
842 }
843 
844 void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
845  Record.AddSourceLocation(TL.getEllipsisLoc());
846 }
847 
848 void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
849  Record.AddSourceLocation(TL.getNameLoc());
850 }
851 
852 void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
853  Record.push_back(TL.hasBaseTypeAsWritten());
854  Record.AddSourceLocation(TL.getTypeArgsLAngleLoc());
855  Record.AddSourceLocation(TL.getTypeArgsRAngleLoc());
856  for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i)
857  Record.AddTypeSourceInfo(TL.getTypeArgTInfo(i));
858  Record.AddSourceLocation(TL.getProtocolLAngleLoc());
859  Record.AddSourceLocation(TL.getProtocolRAngleLoc());
860  for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
861  Record.AddSourceLocation(TL.getProtocolLoc(i));
862 }
863 
864 void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
865  Record.AddSourceLocation(TL.getStarLoc());
866 }
867 
868 void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
869  Record.AddSourceLocation(TL.getKWLoc());
870  Record.AddSourceLocation(TL.getLParenLoc());
871  Record.AddSourceLocation(TL.getRParenLoc());
872 }
873 
874 void TypeLocWriter::VisitPipeTypeLoc(PipeTypeLoc TL) {
875  Record.AddSourceLocation(TL.getKWLoc());
876 }
877 
878 void ASTWriter::WriteTypeAbbrevs() {
879  using namespace llvm;
880 
881  std::shared_ptr<BitCodeAbbrev> Abv;
882 
883  // Abbreviation for TYPE_EXT_QUAL
884  Abv = std::make_shared<BitCodeAbbrev>();
885  Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL));
886  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
887  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals
888  TypeExtQualAbbrev = Stream.EmitAbbrev(std::move(Abv));
889 
890  // Abbreviation for TYPE_FUNCTION_PROTO
891  Abv = std::make_shared<BitCodeAbbrev>();
892  Abv->Add(BitCodeAbbrevOp(serialization::TYPE_FUNCTION_PROTO));
893  // FunctionType
894  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ReturnType
895  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NoReturn
896  Abv->Add(BitCodeAbbrevOp(0)); // HasRegParm
897  Abv->Add(BitCodeAbbrevOp(0)); // RegParm
898  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // CC
899  Abv->Add(BitCodeAbbrevOp(0)); // ProducesResult
900  Abv->Add(BitCodeAbbrevOp(0)); // NoCallerSavedRegs
901  Abv->Add(BitCodeAbbrevOp(0)); // NoCfCheck
902  // FunctionProtoType
903  Abv->Add(BitCodeAbbrevOp(0)); // IsVariadic
904  Abv->Add(BitCodeAbbrevOp(0)); // HasTrailingReturn
905  Abv->Add(BitCodeAbbrevOp(0)); // TypeQuals
906  Abv->Add(BitCodeAbbrevOp(0)); // RefQualifier
907  Abv->Add(BitCodeAbbrevOp(EST_None)); // ExceptionSpec
908  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // NumParams
909  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
910  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Params
911  TypeFunctionProtoAbbrev = Stream.EmitAbbrev(std::move(Abv));
912 }
913 
914 //===----------------------------------------------------------------------===//
915 // ASTWriter Implementation
916 //===----------------------------------------------------------------------===//
917 
918 static void EmitBlockID(unsigned ID, const char *Name,
919  llvm::BitstreamWriter &Stream,
920  ASTWriter::RecordDataImpl &Record) {
921  Record.clear();
922  Record.push_back(ID);
923  Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
924 
925  // Emit the block name if present.
926  if (!Name || Name[0] == 0)
927  return;
928  Record.clear();
929  while (*Name)
930  Record.push_back(*Name++);
931  Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
932 }
933 
934 static void EmitRecordID(unsigned ID, const char *Name,
935  llvm::BitstreamWriter &Stream,
936  ASTWriter::RecordDataImpl &Record) {
937  Record.clear();
938  Record.push_back(ID);
939  while (*Name)
940  Record.push_back(*Name++);
941  Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
942 }
943 
944 static void AddStmtsExprs(llvm::BitstreamWriter &Stream,
945  ASTWriter::RecordDataImpl &Record) {
946 #define RECORD(X) EmitRecordID(X, #X, Stream, Record)
947  RECORD(STMT_STOP);
950  RECORD(STMT_NULL);
952  RECORD(STMT_CASE);
956  RECORD(STMT_IF);
959  RECORD(STMT_DO);
960  RECORD(STMT_FOR);
961  RECORD(STMT_GOTO);
966  RECORD(STMT_DECL);
981  RECORD(EXPR_CALL);
997  RECORD(EXPR_STMT);
1001  RECORD(EXPR_BLOCK);
1070 #undef RECORD
1071 }
1072 
1073 void ASTWriter::WriteBlockInfoBlock() {
1074  RecordData Record;
1075  Stream.EnterBlockInfoBlock();
1076 
1077 #define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record)
1078 #define RECORD(X) EmitRecordID(X, #X, Stream, Record)
1079 
1080  // Control Block.
1081  BLOCK(CONTROL_BLOCK);
1082  RECORD(METADATA);
1086  RECORD(IMPORTS);
1091 
1092  BLOCK(OPTIONS_BLOCK);
1098 
1099  BLOCK(INPUT_FILES_BLOCK);
1100  RECORD(INPUT_FILE);
1101 
1102  // AST Top-Level Block.
1103  BLOCK(AST_BLOCK);
1111  RECORD(STATISTICS);
1156 
1157  // SourceManager Block.
1158  BLOCK(SOURCE_MANAGER_BLOCK);
1164 
1165  // Preprocessor Block.
1166  BLOCK(PREPROCESSOR_BLOCK);
1171  RECORD(PP_TOKEN);
1172 
1173  // Submodule Block.
1174  BLOCK(SUBMODULE_BLOCK);
1193 
1194  // Comments Block.
1195  BLOCK(COMMENTS_BLOCK);
1197 
1198  // Decls and Types block.
1199  BLOCK(DECLTYPES_BLOCK);
1218  RECORD(TYPE_ENUM);
1232  RECORD(TYPE_PAREN);
1237  RECORD(TYPE_AUTO);
1246  RECORD(DECL_ENUM);
1261  RECORD(DECL_FIELD);
1263  RECORD(DECL_VAR);
1267  RECORD(DECL_BLOCK);
1272  RECORD(DECL_USING);
1307  RECORD(DECL_EMPTY);
1314 
1315  // Statements and Exprs can occur in the Decls and Types block.
1316  AddStmtsExprs(Stream, Record);
1317 
1318  BLOCK(PREPROCESSOR_DETAIL_BLOCK);
1322 
1323  // Decls and Types block.
1324  BLOCK(EXTENSION_BLOCK);
1326 
1327  BLOCK(UNHASHED_CONTROL_BLOCK);
1328  RECORD(SIGNATURE);
1331 
1332 #undef RECORD
1333 #undef BLOCK
1334  Stream.ExitBlock();
1335 }
1336 
1337 /// Prepares a path for being written to an AST file by converting it
1338 /// to an absolute path and removing nested './'s.
1339 ///
1340 /// \return \c true if the path was changed.
1341 static bool cleanPathForOutput(FileManager &FileMgr,
1342  SmallVectorImpl<char> &Path) {
1343  bool Changed = FileMgr.makeAbsolutePath(Path);
1344  return Changed | llvm::sys::path::remove_dots(Path);
1345 }
1346 
1347 /// Adjusts the given filename to only write out the portion of the
1348 /// filename that is not part of the system root directory.
1349 ///
1350 /// \param Filename the file name to adjust.
1351 ///
1352 /// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and
1353 /// the returned filename will be adjusted by this root directory.
1354 ///
1355 /// \returns either the original filename (if it needs no adjustment) or the
1356 /// adjusted filename (which points into the @p Filename parameter).
1357 static const char *
1358 adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) {
1359  assert(Filename && "No file name to adjust?");
1360 
1361  if (BaseDir.empty())
1362  return Filename;
1363 
1364  // Verify that the filename and the system root have the same prefix.
1365  unsigned Pos = 0;
1366  for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos)
1367  if (Filename[Pos] != BaseDir[Pos])
1368  return Filename; // Prefixes don't match.
1369 
1370  // We hit the end of the filename before we hit the end of the system root.
1371  if (!Filename[Pos])
1372  return Filename;
1373 
1374  // If there's not a path separator at the end of the base directory nor
1375  // immediately after it, then this isn't within the base directory.
1376  if (!llvm::sys::path::is_separator(Filename[Pos])) {
1377  if (!llvm::sys::path::is_separator(BaseDir.back()))
1378  return Filename;
1379  } else {
1380  // If the file name has a '/' at the current position, skip over the '/'.
1381  // We distinguish relative paths from absolute paths by the
1382  // absence of '/' at the beginning of relative paths.
1383  //
1384  // FIXME: This is wrong. We distinguish them by asking if the path is
1385  // absolute, which isn't the same thing. And there might be multiple '/'s
1386  // in a row. Use a better mechanism to indicate whether we have emitted an
1387  // absolute or relative path.
1388  ++Pos;
1389  }
1390 
1391  return Filename + Pos;
1392 }
1393 
1394 ASTFileSignature ASTWriter::createSignature(StringRef Bytes) {
1395  // Calculate the hash till start of UNHASHED_CONTROL_BLOCK.
1396  llvm::SHA1 Hasher;
1397  Hasher.update(ArrayRef<uint8_t>(Bytes.bytes_begin(), Bytes.size()));
1398  auto Hash = Hasher.result();
1399 
1400  // Convert to an array [5*i32].
1401  ASTFileSignature Signature;
1402  auto LShift = [&](unsigned char Val, unsigned Shift) {
1403  return (uint32_t)Val << Shift;
1404  };
1405  for (int I = 0; I != 5; ++I)
1406  Signature[I] = LShift(Hash[I * 4 + 0], 24) | LShift(Hash[I * 4 + 1], 16) |
1407  LShift(Hash[I * 4 + 2], 8) | LShift(Hash[I * 4 + 3], 0);
1408 
1409  return Signature;
1410 }
1411 
1412 ASTFileSignature ASTWriter::writeUnhashedControlBlock(Preprocessor &PP,
1413  ASTContext &Context) {
1414  // Flush first to prepare the PCM hash (signature).
1415  Stream.FlushToWord();
1416  auto StartOfUnhashedControl = Stream.GetCurrentBitNo() >> 3;
1417 
1418  // Enter the block and prepare to write records.
1419  RecordData Record;
1420  Stream.EnterSubblock(UNHASHED_CONTROL_BLOCK_ID, 5);
1421 
1422  // For implicit modules, write the hash of the PCM as its signature.
1423  ASTFileSignature Signature;
1424  if (WritingModule &&
1426  Signature = createSignature(StringRef(Buffer.begin(), StartOfUnhashedControl));
1427  Record.append(Signature.begin(), Signature.end());
1428  Stream.EmitRecord(SIGNATURE, Record);
1429  Record.clear();
1430  }
1431 
1432  // Diagnostic options.
1433  const auto &Diags = Context.getDiagnostics();
1434  const DiagnosticOptions &DiagOpts = Diags.getDiagnosticOptions();
1435 #define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name);
1436 #define ENUM_DIAGOPT(Name, Type, Bits, Default) \
1437  Record.push_back(static_cast<unsigned>(DiagOpts.get##Name()));
1438 #include "clang/Basic/DiagnosticOptions.def"
1439  Record.push_back(DiagOpts.Warnings.size());
1440  for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I)
1441  AddString(DiagOpts.Warnings[I], Record);
1442  Record.push_back(DiagOpts.Remarks.size());
1443  for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I)
1444  AddString(DiagOpts.Remarks[I], Record);
1445  // Note: we don't serialize the log or serialization file names, because they
1446  // are generally transient files and will almost always be overridden.
1447  Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record);
1448 
1449  // Write out the diagnostic/pragma mappings.
1450  WritePragmaDiagnosticMappings(Diags, /* isModule = */ WritingModule);
1451 
1452  // Leave the options block.
1453  Stream.ExitBlock();
1454  return Signature;
1455 }
1456 
1457 /// Write the control block.
1458 void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context,
1459  StringRef isysroot,
1460  const std::string &OutputFile) {
1461  using namespace llvm;
1462 
1463  Stream.EnterSubblock(CONTROL_BLOCK_ID, 5);
1464  RecordData Record;
1465 
1466  // Metadata
1467  auto MetadataAbbrev = std::make_shared<BitCodeAbbrev>();
1468  MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA));
1469  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major
1470  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor
1471  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj.
1472  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min.
1473  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable
1474  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Timestamps
1475  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // PCHHasObjectFile
1476  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors
1477  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag
1478  unsigned MetadataAbbrevCode = Stream.EmitAbbrev(std::move(MetadataAbbrev));
1479  assert((!WritingModule || isysroot.empty()) &&
1480  "writing module as a relocatable PCH?");
1481  {
1482  RecordData::value_type Record[] = {
1483  METADATA,
1484  VERSION_MAJOR,
1485  VERSION_MINOR,
1486  CLANG_VERSION_MAJOR,
1487  CLANG_VERSION_MINOR,
1488  !isysroot.empty(),
1489  IncludeTimestamps,
1490  Context.getLangOpts().BuildingPCHWithObjectFile,
1491  ASTHasCompilerErrors};
1492  Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record,
1494  }
1495 
1496  if (WritingModule) {
1497  // Module name
1498  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1499  Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME));
1500  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
1501  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
1502  RecordData::value_type Record[] = {MODULE_NAME};
1503  Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name);
1504  }
1505 
1506  if (WritingModule && WritingModule->Directory) {
1507  SmallString<128> BaseDir(WritingModule->Directory->getName());
1508  cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir);
1509 
1510  // If the home of the module is the current working directory, then we
1511  // want to pick up the cwd of the build process loading the module, not
1512  // our cwd, when we load this module.
1513  if (!PP.getHeaderSearchInfo()
1516  WritingModule->Directory->getName() != StringRef(".")) {
1517  // Module directory.
1518  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1519  Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY));
1520  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory
1521  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
1522 
1523  RecordData::value_type Record[] = {MODULE_DIRECTORY};
1524  Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir);
1525  }
1526 
1527  // Write out all other paths relative to the base directory if possible.
1528  BaseDirectory.assign(BaseDir.begin(), BaseDir.end());
1529  } else if (!isysroot.empty()) {
1530  // Write out paths relative to the sysroot if possible.
1531  BaseDirectory = isysroot;
1532  }
1533 
1534  // Module map file
1535  if (WritingModule && WritingModule->Kind == Module::ModuleMapModule) {
1536  Record.clear();
1537 
1538  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
1539  AddPath(WritingModule->PresumedModuleMapFile.empty()
1540  ? Map.getModuleMapFileForUniquing(WritingModule)->getName()
1541  : StringRef(WritingModule->PresumedModuleMapFile),
1542  Record);
1543 
1544  // Additional module map files.
1545  if (auto *AdditionalModMaps =
1546  Map.getAdditionalModuleMapFiles(WritingModule)) {
1547  Record.push_back(AdditionalModMaps->size());
1548  for (const FileEntry *F : *AdditionalModMaps)
1549  AddPath(F->getName(), Record);
1550  } else {
1551  Record.push_back(0);
1552  }
1553 
1554  Stream.EmitRecord(MODULE_MAP_FILE, Record);
1555  }
1556 
1557  // Imports
1558  if (Chain) {
1559  serialization::ModuleManager &Mgr = Chain->getModuleManager();
1560  Record.clear();
1561 
1562  for (ModuleFile &M : Mgr) {
1563  // Skip modules that weren't directly imported.
1564  if (!M.isDirectlyImported())
1565  continue;
1566 
1567  Record.push_back((unsigned)M.Kind); // FIXME: Stable encoding
1568  AddSourceLocation(M.ImportLoc, Record);
1569 
1570  // If we have calculated signature, there is no need to store
1571  // the size or timestamp.
1572  Record.push_back(M.Signature ? 0 : M.File->getSize());
1573  Record.push_back(M.Signature ? 0 : getTimestampForOutput(M.File));
1574 
1575  for (auto I : M.Signature)
1576  Record.push_back(I);
1577 
1578  AddString(M.ModuleName, Record);
1579  AddPath(M.FileName, Record);
1580  }
1581  Stream.EmitRecord(IMPORTS, Record);
1582  }
1583 
1584  // Write the options block.
1585  Stream.EnterSubblock(OPTIONS_BLOCK_ID, 4);
1586 
1587  // Language options.
1588  Record.clear();
1589  const LangOptions &LangOpts = Context.getLangOpts();
1590 #define LANGOPT(Name, Bits, Default, Description) \
1591  Record.push_back(LangOpts.Name);
1592 #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
1593  Record.push_back(static_cast<unsigned>(LangOpts.get##Name()));
1594 #include "clang/Basic/LangOptions.def"
1595 #define SANITIZER(NAME, ID) \
1596  Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID));
1597 #include "clang/Basic/Sanitizers.def"
1598 
1599  Record.push_back(LangOpts.ModuleFeatures.size());
1600  for (StringRef Feature : LangOpts.ModuleFeatures)
1601  AddString(Feature, Record);
1602 
1603  Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind());
1604  AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record);
1605 
1606  AddString(LangOpts.CurrentModule, Record);
1607 
1608  // Comment options.
1609  Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size());
1610  for (const auto &I : LangOpts.CommentOpts.BlockCommandNames) {
1611  AddString(I, Record);
1612  }
1613  Record.push_back(LangOpts.CommentOpts.ParseAllComments);
1614 
1615  // OpenMP offloading options.
1616  Record.push_back(LangOpts.OMPTargetTriples.size());
1617  for (auto &T : LangOpts.OMPTargetTriples)
1618  AddString(T.getTriple(), Record);
1619 
1620  AddString(LangOpts.OMPHostIRFile, Record);
1621 
1622  Stream.EmitRecord(LANGUAGE_OPTIONS, Record);
1623 
1624  // Target options.
1625  Record.clear();
1626  const TargetInfo &Target = Context.getTargetInfo();
1627  const TargetOptions &TargetOpts = Target.getTargetOpts();
1628  AddString(TargetOpts.Triple, Record);
1629  AddString(TargetOpts.CPU, Record);
1630  AddString(TargetOpts.ABI, Record);
1631  Record.push_back(TargetOpts.FeaturesAsWritten.size());
1632  for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) {
1633  AddString(TargetOpts.FeaturesAsWritten[I], Record);
1634  }
1635  Record.push_back(TargetOpts.Features.size());
1636  for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) {
1637  AddString(TargetOpts.Features[I], Record);
1638  }
1639  Stream.EmitRecord(TARGET_OPTIONS, Record);
1640 
1641  // File system options.
1642  Record.clear();
1643  const FileSystemOptions &FSOpts =
1645  AddString(FSOpts.WorkingDir, Record);
1646  Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record);
1647 
1648  // Header search options.
1649  Record.clear();
1650  const HeaderSearchOptions &HSOpts
1652  AddString(HSOpts.Sysroot, Record);
1653 
1654  // Include entries.
1655  Record.push_back(HSOpts.UserEntries.size());
1656  for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) {
1657  const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I];
1658  AddString(Entry.Path, Record);
1659  Record.push_back(static_cast<unsigned>(Entry.Group));
1660  Record.push_back(Entry.IsFramework);
1661  Record.push_back(Entry.IgnoreSysRoot);
1662  }
1663 
1664  // System header prefixes.
1665  Record.push_back(HSOpts.SystemHeaderPrefixes.size());
1666  for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) {
1667  AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record);
1668  Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader);
1669  }
1670 
1671  AddString(HSOpts.ResourceDir, Record);
1672  AddString(HSOpts.ModuleCachePath, Record);
1673  AddString(HSOpts.ModuleUserBuildPath, Record);
1674  Record.push_back(HSOpts.DisableModuleHash);
1675  Record.push_back(HSOpts.ImplicitModuleMaps);
1676  Record.push_back(HSOpts.ModuleMapFileHomeIsCwd);
1677  Record.push_back(HSOpts.UseBuiltinIncludes);
1678  Record.push_back(HSOpts.UseStandardSystemIncludes);
1679  Record.push_back(HSOpts.UseStandardCXXIncludes);
1680  Record.push_back(HSOpts.UseLibcxx);
1681  // Write out the specific module cache path that contains the module files.
1682  AddString(PP.getHeaderSearchInfo().getModuleCachePath(), Record);
1683  Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record);
1684 
1685  // Preprocessor options.
1686  Record.clear();
1687  const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts();
1688 
1689  // Macro definitions.
1690  Record.push_back(PPOpts.Macros.size());
1691  for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
1692  AddString(PPOpts.Macros[I].first, Record);
1693  Record.push_back(PPOpts.Macros[I].second);
1694  }
1695 
1696  // Includes
1697  Record.push_back(PPOpts.Includes.size());
1698  for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I)
1699  AddString(PPOpts.Includes[I], Record);
1700 
1701  // Macro includes
1702  Record.push_back(PPOpts.MacroIncludes.size());
1703  for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I)
1704  AddString(PPOpts.MacroIncludes[I], Record);
1705 
1706  Record.push_back(PPOpts.UsePredefines);
1707  // Detailed record is important since it is used for the module cache hash.
1708  Record.push_back(PPOpts.DetailedRecord);
1709  AddString(PPOpts.ImplicitPCHInclude, Record);
1710  Record.push_back(static_cast<unsigned>(PPOpts.ObjCXXARCStandardLibrary));
1711  Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record);
1712 
1713  // Leave the options block.
1714  Stream.ExitBlock();
1715 
1716  // Original file name and file ID
1717  SourceManager &SM = Context.getSourceManager();
1718  if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1719  auto FileAbbrev = std::make_shared<BitCodeAbbrev>();
1720  FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE));
1721  FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID
1722  FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
1723  unsigned FileAbbrevCode = Stream.EmitAbbrev(std::move(FileAbbrev));
1724 
1725  Record.clear();
1726  Record.push_back(ORIGINAL_FILE);
1727  Record.push_back(SM.getMainFileID().getOpaqueValue());
1728  EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName());
1729  }
1730 
1731  Record.clear();
1732  Record.push_back(SM.getMainFileID().getOpaqueValue());
1733  Stream.EmitRecord(ORIGINAL_FILE_ID, Record);
1734 
1735  // Original PCH directory
1736  if (!OutputFile.empty() && OutputFile != "-") {
1737  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1738  Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR));
1739  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
1740  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
1741 
1742  SmallString<128> OutputPath(OutputFile);
1743 
1744  SM.getFileManager().makeAbsolutePath(OutputPath);
1745  StringRef origDir = llvm::sys::path::parent_path(OutputPath);
1746 
1747  RecordData::value_type Record[] = {ORIGINAL_PCH_DIR};
1748  Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir);
1749  }
1750 
1751  WriteInputFiles(Context.SourceMgr,
1753  PP.getLangOpts().Modules);
1754  Stream.ExitBlock();
1755 }
1756 
1757 namespace {
1758 
1759 /// An input file.
1760 struct InputFileEntry {
1761  const FileEntry *File;
1762  bool IsSystemFile;
1763  bool IsTransient;
1764  bool BufferOverridden;
1765  bool IsTopLevelModuleMap;
1766 };
1767 
1768 } // namespace
1769 
1770 void ASTWriter::WriteInputFiles(SourceManager &SourceMgr,
1771  HeaderSearchOptions &HSOpts,
1772  bool Modules) {
1773  using namespace llvm;
1774 
1775  Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4);
1776 
1777  // Create input-file abbreviation.
1778  auto IFAbbrev = std::make_shared<BitCodeAbbrev>();
1779  IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE));
1780  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
1781  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size
1782  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time
1783  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden
1784  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Transient
1785  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Module map
1786  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
1787  unsigned IFAbbrevCode = Stream.EmitAbbrev(std::move(IFAbbrev));
1788 
1789  // Get all ContentCache objects for files, sorted by whether the file is a
1790  // system one or not. System files go at the back, users files at the front.
1791  std::deque<InputFileEntry> SortedFiles;
1792  for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) {
1793  // Get this source location entry.
1794  const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
1795  assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc);
1796 
1797  // We only care about file entries that were not overridden.
1798  if (!SLoc->isFile())
1799  continue;
1800  const SrcMgr::FileInfo &File = SLoc->getFile();
1801  const SrcMgr::ContentCache *Cache = File.getContentCache();
1802  if (!Cache->OrigEntry)
1803  continue;
1804 
1805  InputFileEntry Entry;
1806  Entry.File = Cache->OrigEntry;
1807  Entry.IsSystemFile = isSystem(File.getFileCharacteristic());
1808  Entry.IsTransient = Cache->IsTransient;
1809  Entry.BufferOverridden = Cache->BufferOverridden;
1810  Entry.IsTopLevelModuleMap = isModuleMap(File.getFileCharacteristic()) &&
1811  File.getIncludeLoc().isInvalid();
1812  if (Entry.IsSystemFile)
1813  SortedFiles.push_back(Entry);
1814  else
1815  SortedFiles.push_front(Entry);
1816  }
1817 
1818  unsigned UserFilesNum = 0;
1819  // Write out all of the input files.
1820  std::vector<uint64_t> InputFileOffsets;
1821  for (const auto &Entry : SortedFiles) {
1822  uint32_t &InputFileID = InputFileIDs[Entry.File];
1823  if (InputFileID != 0)
1824  continue; // already recorded this file.
1825 
1826  // Record this entry's offset.
1827  InputFileOffsets.push_back(Stream.GetCurrentBitNo());
1828 
1829  InputFileID = InputFileOffsets.size();
1830 
1831  if (!Entry.IsSystemFile)
1832  ++UserFilesNum;
1833 
1834  // Emit size/modification time for this file.
1835  // And whether this file was overridden.
1836  RecordData::value_type Record[] = {
1837  INPUT_FILE,
1838  InputFileOffsets.size(),
1839  (uint64_t)Entry.File->getSize(),
1840  (uint64_t)getTimestampForOutput(Entry.File),
1841  Entry.BufferOverridden,
1842  Entry.IsTransient,
1843  Entry.IsTopLevelModuleMap};
1844 
1845  // FIXME: The path should be taken from the FileEntryRef.
1846  EmitRecordWithPath(IFAbbrevCode, Record, Entry.File->getName());
1847  }
1848 
1849  Stream.ExitBlock();
1850 
1851  // Create input file offsets abbreviation.
1852  auto OffsetsAbbrev = std::make_shared<BitCodeAbbrev>();
1853  OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS));
1854  OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files
1855  OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system
1856  // input files
1857  OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array
1858  unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(std::move(OffsetsAbbrev));
1859 
1860  // Write input file offsets.
1861  RecordData::value_type Record[] = {INPUT_FILE_OFFSETS,
1862  InputFileOffsets.size(), UserFilesNum};
1863  Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, bytes(InputFileOffsets));
1864 }
1865 
1866 //===----------------------------------------------------------------------===//
1867 // Source Manager Serialization
1868 //===----------------------------------------------------------------------===//
1869 
1870 /// Create an abbreviation for the SLocEntry that refers to a
1871 /// file.
1872 static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) {
1873  using namespace llvm;
1874 
1875  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1876  Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY));
1877  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
1878  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
1879  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic
1880  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
1881  // FileEntry fields.
1882  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID
1883  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs
1884  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex
1885  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls
1886  return Stream.EmitAbbrev(std::move(Abbrev));
1887 }
1888 
1889 /// Create an abbreviation for the SLocEntry that refers to a
1890 /// buffer.
1891 static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) {
1892  using namespace llvm;
1893 
1894  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1895  Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY));
1896  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
1897  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
1898  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic
1899  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
1900  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob
1901  return Stream.EmitAbbrev(std::move(Abbrev));
1902 }
1903 
1904 /// Create an abbreviation for the SLocEntry that refers to a
1905 /// buffer's blob.
1906 static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream,
1907  bool Compressed) {
1908  using namespace llvm;
1909 
1910  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1911  Abbrev->Add(BitCodeAbbrevOp(Compressed ? SM_SLOC_BUFFER_BLOB_COMPRESSED
1912  : SM_SLOC_BUFFER_BLOB));
1913  if (Compressed)
1914  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Uncompressed size
1915  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob
1916  return Stream.EmitAbbrev(std::move(Abbrev));
1917 }
1918 
1919 /// Create an abbreviation for the SLocEntry that refers to a macro
1920 /// expansion.
1921 static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) {
1922  using namespace llvm;
1923 
1924  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1925  Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY));
1926  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
1927  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location
1928  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location
1929  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location
1930  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Is token range
1931  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length
1932  return Stream.EmitAbbrev(std::move(Abbrev));
1933 }
1934 
1935 namespace {
1936 
1937  // Trait used for the on-disk hash table of header search information.
1938  class HeaderFileInfoTrait {
1939  ASTWriter &Writer;
1940 
1941  // Keep track of the framework names we've used during serialization.
1942  SmallVector<char, 128> FrameworkStringData;
1943  llvm::StringMap<unsigned> FrameworkNameOffset;
1944 
1945  public:
1946  HeaderFileInfoTrait(ASTWriter &Writer) : Writer(Writer) {}
1947 
1948  struct key_type {
1949  StringRef Filename;
1950  off_t Size;
1951  time_t ModTime;
1952  };
1953  using key_type_ref = const key_type &;
1954 
1955  using UnresolvedModule =
1956  llvm::PointerIntPair<Module *, 2, ModuleMap::ModuleHeaderRole>;
1957 
1958  struct data_type {
1959  const HeaderFileInfo &HFI;
1960  ArrayRef<ModuleMap::KnownHeader> KnownHeaders;
1961  UnresolvedModule Unresolved;
1962  };
1963  using data_type_ref = const data_type &;
1964 
1965  using hash_value_type = unsigned;
1966  using offset_type = unsigned;
1967 
1968  hash_value_type ComputeHash(key_type_ref key) {
1969  // The hash is based only on size/time of the file, so that the reader can
1970  // match even when symlinking or excess path elements ("foo/../", "../")
1971  // change the form of the name. However, complete path is still the key.
1972  return llvm::hash_combine(key.Size, key.ModTime);
1973  }
1974 
1975  std::pair<unsigned, unsigned>
1976  EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) {
1977  using namespace llvm::support;
1978 
1979  endian::Writer LE(Out, little);
1980  unsigned KeyLen = key.Filename.size() + 1 + 8 + 8;
1981  LE.write<uint16_t>(KeyLen);
1982  unsigned DataLen = 1 + 2 + 4 + 4;
1983  for (auto ModInfo : Data.KnownHeaders)
1984  if (Writer.getLocalOrImportedSubmoduleID(ModInfo.getModule()))
1985  DataLen += 4;
1986  if (Data.Unresolved.getPointer())
1987  DataLen += 4;
1988  LE.write<uint8_t>(DataLen);
1989  return std::make_pair(KeyLen, DataLen);
1990  }
1991 
1992  void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) {
1993  using namespace llvm::support;
1994 
1995  endian::Writer LE(Out, little);
1996  LE.write<uint64_t>(key.Size);
1997  KeyLen -= 8;
1998  LE.write<uint64_t>(key.ModTime);
1999  KeyLen -= 8;
2000  Out.write(key.Filename.data(), KeyLen);
2001  }
2002 
2003  void EmitData(raw_ostream &Out, key_type_ref key,
2004  data_type_ref Data, unsigned DataLen) {
2005  using namespace llvm::support;
2006 
2007  endian::Writer LE(Out, little);
2008  uint64_t Start = Out.tell(); (void)Start;
2009 
2010  unsigned char Flags = (Data.HFI.isImport << 5)
2011  | (Data.HFI.isPragmaOnce << 4)
2012  | (Data.HFI.DirInfo << 1)
2013  | Data.HFI.IndexHeaderMapHeader;
2014  LE.write<uint8_t>(Flags);
2015  LE.write<uint16_t>(Data.HFI.NumIncludes);
2016 
2017  if (!Data.HFI.ControllingMacro)
2018  LE.write<uint32_t>(Data.HFI.ControllingMacroID);
2019  else
2020  LE.write<uint32_t>(Writer.getIdentifierRef(Data.HFI.ControllingMacro));
2021 
2022  unsigned Offset = 0;
2023  if (!Data.HFI.Framework.empty()) {
2024  // If this header refers into a framework, save the framework name.
2025  llvm::StringMap<unsigned>::iterator Pos
2026  = FrameworkNameOffset.find(Data.HFI.Framework);
2027  if (Pos == FrameworkNameOffset.end()) {
2028  Offset = FrameworkStringData.size() + 1;
2029  FrameworkStringData.append(Data.HFI.Framework.begin(),
2030  Data.HFI.Framework.end());
2031  FrameworkStringData.push_back(0);
2032 
2033  FrameworkNameOffset[Data.HFI.Framework] = Offset;
2034  } else
2035  Offset = Pos->second;
2036  }
2037  LE.write<uint32_t>(Offset);
2038 
2039  auto EmitModule = [&](Module *M, ModuleMap::ModuleHeaderRole Role) {
2040  if (uint32_t ModID = Writer.getLocalOrImportedSubmoduleID(M)) {
2041  uint32_t Value = (ModID << 2) | (unsigned)Role;
2042  assert((Value >> 2) == ModID && "overflow in header module info");
2043  LE.write<uint32_t>(Value);
2044  }
2045  };
2046 
2047  // FIXME: If the header is excluded, we should write out some
2048  // record of that fact.
2049  for (auto ModInfo : Data.KnownHeaders)
2050  EmitModule(ModInfo.getModule(), ModInfo.getRole());
2051  if (Data.Unresolved.getPointer())
2052  EmitModule(Data.Unresolved.getPointer(), Data.Unresolved.getInt());
2053 
2054  assert(Out.tell() - Start == DataLen && "Wrong data length");
2055  }
2056 
2057  const char *strings_begin() const { return FrameworkStringData.begin(); }
2058  const char *strings_end() const { return FrameworkStringData.end(); }
2059  };
2060 
2061 } // namespace
2062 
2063 /// Write the header search block for the list of files that
2064 ///
2065 /// \param HS The header search structure to save.
2066 void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) {
2067  HeaderFileInfoTrait GeneratorTrait(*this);
2068  llvm::OnDiskChainedHashTableGenerator<HeaderFileInfoTrait> Generator;
2069  SmallVector<const char *, 4> SavedStrings;
2070  unsigned NumHeaderSearchEntries = 0;
2071 
2072  // Find all unresolved headers for the current module. We generally will
2073  // have resolved them before we get here, but not necessarily: we might be
2074  // compiling a preprocessed module, where there is no requirement for the
2075  // original files to exist any more.
2076  const HeaderFileInfo Empty; // So we can take a reference.
2077  if (WritingModule) {
2078  llvm::SmallVector<Module *, 16> Worklist(1, WritingModule);
2079  while (!Worklist.empty()) {
2080  Module *M = Worklist.pop_back_val();
2081  if (!M->isAvailable())
2082  continue;
2083 
2084  // Map to disk files where possible, to pick up any missing stat
2085  // information. This also means we don't need to check the unresolved
2086  // headers list when emitting resolved headers in the first loop below.
2087  // FIXME: It'd be preferable to avoid doing this if we were given
2088  // sufficient stat information in the module map.
2090 
2091  // If the file didn't exist, we can still create a module if we were given
2092  // enough information in the module map.
2093  for (auto U : M->MissingHeaders) {
2094  // Check that we were given enough information to build a module
2095  // without this file existing on disk.
2096  if (!U.Size || (!U.ModTime && IncludeTimestamps)) {
2097  PP->Diag(U.FileNameLoc, diag::err_module_no_size_mtime_for_header)
2098  << WritingModule->getFullModuleName() << U.Size.hasValue()
2099  << U.FileName;
2100  continue;
2101  }
2102 
2103  // Form the effective relative pathname for the file.
2105  llvm::sys::path::append(Filename, U.FileName);
2106  PreparePathForOutput(Filename);
2107 
2108  StringRef FilenameDup = strdup(Filename.c_str());
2109  SavedStrings.push_back(FilenameDup.data());
2110 
2111  HeaderFileInfoTrait::key_type Key = {
2112  FilenameDup, *U.Size, IncludeTimestamps ? *U.ModTime : 0
2113  };
2114  HeaderFileInfoTrait::data_type Data = {
2115  Empty, {}, {M, ModuleMap::headerKindToRole(U.Kind)}
2116  };
2117  // FIXME: Deal with cases where there are multiple unresolved header
2118  // directives in different submodules for the same header.
2119  Generator.insert(Key, Data, GeneratorTrait);
2120  ++NumHeaderSearchEntries;
2121  }
2122 
2123  Worklist.append(M->submodule_begin(), M->submodule_end());
2124  }
2125  }
2126 
2128  HS.getFileMgr().GetUniqueIDMapping(FilesByUID);
2129 
2130  if (FilesByUID.size() > HS.header_file_size())
2131  FilesByUID.resize(HS.header_file_size());
2132 
2133  for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) {
2134  const FileEntry *File = FilesByUID[UID];
2135  if (!File)
2136  continue;
2137 
2138  // Get the file info. This will load info from the external source if
2139  // necessary. Skip emitting this file if we have no information on it
2140  // as a header file (in which case HFI will be null) or if it hasn't
2141  // changed since it was loaded. Also skip it if it's for a modular header
2142  // from a different module; in that case, we rely on the module(s)
2143  // containing the header to provide this information.
2144  const HeaderFileInfo *HFI =
2145  HS.getExistingFileInfo(File, /*WantExternal*/!Chain);
2146  if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader))
2147  continue;
2148 
2149  // Massage the file path into an appropriate form.
2150  StringRef Filename = File->getName();
2151  SmallString<128> FilenameTmp(Filename);
2152  if (PreparePathForOutput(FilenameTmp)) {
2153  // If we performed any translation on the file name at all, we need to
2154  // save this string, since the generator will refer to it later.
2155  Filename = StringRef(strdup(FilenameTmp.c_str()));
2156  SavedStrings.push_back(Filename.data());
2157  }
2158 
2159  HeaderFileInfoTrait::key_type Key = {
2160  Filename, File->getSize(), getTimestampForOutput(File)
2161  };
2162  HeaderFileInfoTrait::data_type Data = {
2163  *HFI, HS.getModuleMap().findAllModulesForHeader(File), {}
2164  };
2165  Generator.insert(Key, Data, GeneratorTrait);
2166  ++NumHeaderSearchEntries;
2167  }
2168 
2169  // Create the on-disk hash table in a buffer.
2170  SmallString<4096> TableData;
2171  uint32_t BucketOffset;
2172  {
2173  using namespace llvm::support;
2174 
2175  llvm::raw_svector_ostream Out(TableData);
2176  // Make sure that no bucket is at offset 0
2177  endian::write<uint32_t>(Out, 0, little);
2178  BucketOffset = Generator.Emit(Out, GeneratorTrait);
2179  }
2180 
2181  // Create a blob abbreviation
2182  using namespace llvm;
2183 
2184  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2185  Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE));
2186  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2187  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2188  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2189  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2190  unsigned TableAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2191 
2192  // Write the header search table
2193  RecordData::value_type Record[] = {HEADER_SEARCH_TABLE, BucketOffset,
2194  NumHeaderSearchEntries, TableData.size()};
2195  TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end());
2196  Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData);
2197 
2198  // Free all of the strings we had to duplicate.
2199  for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I)
2200  free(const_cast<char *>(SavedStrings[I]));
2201 }
2202 
2203 static void emitBlob(llvm::BitstreamWriter &Stream, StringRef Blob,
2204  unsigned SLocBufferBlobCompressedAbbrv,
2205  unsigned SLocBufferBlobAbbrv) {
2206  using RecordDataType = ASTWriter::RecordData::value_type;
2207 
2208  // Compress the buffer if possible. We expect that almost all PCM
2209  // consumers will not want its contents.
2210  SmallString<0> CompressedBuffer;
2211  if (llvm::zlib::isAvailable()) {
2212  llvm::Error E = llvm::zlib::compress(Blob.drop_back(1), CompressedBuffer);
2213  if (!E) {
2214  RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB_COMPRESSED,
2215  Blob.size() - 1};
2216  Stream.EmitRecordWithBlob(SLocBufferBlobCompressedAbbrv, Record,
2217  CompressedBuffer);
2218  return;
2219  }
2220  llvm::consumeError(std::move(E));
2221  }
2222 
2223  RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB};
2224  Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, Blob);
2225 }
2226 
2227 /// Writes the block containing the serialized form of the
2228 /// source manager.
2229 ///
2230 /// TODO: We should probably use an on-disk hash table (stored in a
2231 /// blob), indexed based on the file name, so that we only create
2232 /// entries for files that we actually need. In the common case (no
2233 /// errors), we probably won't have to create file entries for any of
2234 /// the files in the AST.
2235 void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr,
2236  const Preprocessor &PP) {
2237  RecordData Record;
2238 
2239  // Enter the source manager block.
2240  Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 4);
2241 
2242  // Abbreviations for the various kinds of source-location entries.
2243  unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream);
2244  unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream);
2245  unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream, false);
2246  unsigned SLocBufferBlobCompressedAbbrv =
2247  CreateSLocBufferBlobAbbrev(Stream, true);
2248  unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream);
2249 
2250  // Write out the source location entry table. We skip the first
2251  // entry, which is always the same dummy entry.
2252  std::vector<uint32_t> SLocEntryOffsets;
2253  RecordData PreloadSLocs;
2254  SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1);
2255  for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size();
2256  I != N; ++I) {
2257  // Get this source location entry.
2258  const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
2259  FileID FID = FileID::get(I);
2260  assert(&SourceMgr.getSLocEntry(FID) == SLoc);
2261 
2262  // Record the offset of this source-location entry.
2263  SLocEntryOffsets.push_back(Stream.GetCurrentBitNo());
2264 
2265  // Figure out which record code to use.
2266  unsigned Code;
2267  if (SLoc->isFile()) {
2269  if (Cache->OrigEntry) {
2270  Code = SM_SLOC_FILE_ENTRY;
2271  } else
2272  Code = SM_SLOC_BUFFER_ENTRY;
2273  } else
2274  Code = SM_SLOC_EXPANSION_ENTRY;
2275  Record.clear();
2276  Record.push_back(Code);
2277 
2278  // Starting offset of this entry within this module, so skip the dummy.
2279  Record.push_back(SLoc->getOffset() - 2);
2280  if (SLoc->isFile()) {
2281  const SrcMgr::FileInfo &File = SLoc->getFile();
2282  AddSourceLocation(File.getIncludeLoc(), Record);
2283  Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding
2284  Record.push_back(File.hasLineDirectives());
2285 
2286  const SrcMgr::ContentCache *Content = File.getContentCache();
2287  bool EmitBlob = false;
2288  if (Content->OrigEntry) {
2289  assert(Content->OrigEntry == Content->ContentsEntry &&
2290  "Writing to AST an overridden file is not supported");
2291 
2292  // The source location entry is a file. Emit input file ID.
2293  assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry");
2294  Record.push_back(InputFileIDs[Content->OrigEntry]);
2295 
2296  Record.push_back(File.NumCreatedFIDs);
2297 
2298  FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID);
2299  if (FDI != FileDeclIDs.end()) {
2300  Record.push_back(FDI->second->FirstDeclIndex);
2301  Record.push_back(FDI->second->DeclIDs.size());
2302  } else {
2303  Record.push_back(0);
2304  Record.push_back(0);
2305  }
2306 
2307  Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record);
2308 
2309  if (Content->BufferOverridden || Content->IsTransient)
2310  EmitBlob = true;
2311  } else {
2312  // The source location entry is a buffer. The blob associated
2313  // with this entry contains the contents of the buffer.
2314 
2315  // We add one to the size so that we capture the trailing NULL
2316  // that is required by llvm::MemoryBuffer::getMemBuffer (on
2317  // the reader side).
2318  const llvm::MemoryBuffer *Buffer =
2319  Content->getBuffer(PP.getDiagnostics(), PP.getFileManager());
2320  StringRef Name = Buffer->getBufferIdentifier();
2321  Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record,
2322  StringRef(Name.data(), Name.size() + 1));
2323  EmitBlob = true;
2324 
2325  if (Name == "<built-in>")
2326  PreloadSLocs.push_back(SLocEntryOffsets.size());
2327  }
2328 
2329  if (EmitBlob) {
2330  // Include the implicit terminating null character in the on-disk buffer
2331  // if we're writing it uncompressed.
2332  const llvm::MemoryBuffer *Buffer =
2333  Content->getBuffer(PP.getDiagnostics(), PP.getFileManager());
2334  StringRef Blob(Buffer->getBufferStart(), Buffer->getBufferSize() + 1);
2335  emitBlob(Stream, Blob, SLocBufferBlobCompressedAbbrv,
2336  SLocBufferBlobAbbrv);
2337  }
2338  } else {
2339  // The source location entry is a macro expansion.
2340  const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion();
2341  AddSourceLocation(Expansion.getSpellingLoc(), Record);
2342  AddSourceLocation(Expansion.getExpansionLocStart(), Record);
2343  AddSourceLocation(Expansion.isMacroArgExpansion()
2344  ? SourceLocation()
2345  : Expansion.getExpansionLocEnd(),
2346  Record);
2347  Record.push_back(Expansion.isExpansionTokenRange());
2348 
2349  // Compute the token length for this macro expansion.
2350  unsigned NextOffset = SourceMgr.getNextLocalOffset();
2351  if (I + 1 != N)
2352  NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset();
2353  Record.push_back(NextOffset - SLoc->getOffset() - 1);
2354  Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record);
2355  }
2356  }
2357 
2358  Stream.ExitBlock();
2359 
2360  if (SLocEntryOffsets.empty())
2361  return;
2362 
2363  // Write the source-location offsets table into the AST block. This
2364  // table is used for lazily loading source-location information.
2365  using namespace llvm;
2366 
2367  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2368  Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS));
2369  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs
2370  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size
2371  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets
2372  unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2373  {
2374  RecordData::value_type Record[] = {
2375  SOURCE_LOCATION_OFFSETS, SLocEntryOffsets.size(),
2376  SourceMgr.getNextLocalOffset() - 1 /* skip dummy */};
2377  Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record,
2378  bytes(SLocEntryOffsets));
2379  }
2380  // Write the source location entry preloads array, telling the AST
2381  // reader which source locations entries it should load eagerly.
2382  Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs);
2383 
2384  // Write the line table. It depends on remapping working, so it must come
2385  // after the source location offsets.
2386  if (SourceMgr.hasLineTable()) {
2387  LineTableInfo &LineTable = SourceMgr.getLineTable();
2388 
2389  Record.clear();
2390 
2391  // Emit the needed file names.
2392  llvm::DenseMap<int, int> FilenameMap;
2393  FilenameMap[-1] = -1; // For unspecified filenames.
2394  for (const auto &L : LineTable) {
2395  if (L.first.ID < 0)
2396  continue;
2397  for (auto &LE : L.second) {
2398  if (FilenameMap.insert(std::make_pair(LE.FilenameID,
2399  FilenameMap.size() - 1)).second)
2400  AddPath(LineTable.getFilename(LE.FilenameID), Record);
2401  }
2402  }
2403  Record.push_back(0);
2404 
2405  // Emit the line entries
2406  for (const auto &L : LineTable) {
2407  // Only emit entries for local files.
2408  if (L.first.ID < 0)
2409  continue;
2410 
2411  // Emit the file ID
2412  Record.push_back(L.first.ID);
2413 
2414  // Emit the line entries
2415  Record.push_back(L.second.size());
2416  for (const auto &LE : L.second) {
2417  Record.push_back(LE.FileOffset);
2418  Record.push_back(LE.LineNo);
2419  Record.push_back(FilenameMap[LE.FilenameID]);
2420  Record.push_back((unsigned)LE.FileKind);
2421  Record.push_back(LE.IncludeOffset);
2422  }
2423  }
2424 
2425  Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record);
2426  }
2427 }
2428 
2429 //===----------------------------------------------------------------------===//
2430 // Preprocessor Serialization
2431 //===----------------------------------------------------------------------===//
2432 
2433 static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule,
2434  const Preprocessor &PP) {
2435  if (MacroInfo *MI = MD->getMacroInfo())
2436  if (MI->isBuiltinMacro())
2437  return true;
2438 
2439  if (IsModule) {
2440  SourceLocation Loc = MD->getLocation();
2441  if (Loc.isInvalid())
2442  return true;
2443  if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID())
2444  return true;
2445  }
2446 
2447  return false;
2448 }
2449 
2450 /// Writes the block containing the serialized form of the
2451 /// preprocessor.
2452 void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) {
2454  if (PPRec)
2455  WritePreprocessorDetail(*PPRec);
2456 
2457  RecordData Record;
2458  RecordData ModuleMacroRecord;
2459 
2460  // If the preprocessor __COUNTER__ value has been bumped, remember it.
2461  if (PP.getCounterValue() != 0) {
2462  RecordData::value_type Record[] = {PP.getCounterValue()};
2463  Stream.EmitRecord(PP_COUNTER_VALUE, Record);
2464  }
2465 
2466  if (PP.isRecordingPreamble() && PP.hasRecordedPreamble()) {
2467  assert(!IsModule);
2468  auto SkipInfo = PP.getPreambleSkipInfo();
2469  if (SkipInfo.hasValue()) {
2470  Record.push_back(true);
2471  AddSourceLocation(SkipInfo->HashTokenLoc, Record);
2472  AddSourceLocation(SkipInfo->IfTokenLoc, Record);
2473  Record.push_back(SkipInfo->FoundNonSkipPortion);
2474  Record.push_back(SkipInfo->FoundElse);
2475  AddSourceLocation(SkipInfo->ElseLoc, Record);
2476  } else {
2477  Record.push_back(false);
2478  }
2479  for (const auto &Cond : PP.getPreambleConditionalStack()) {
2480  AddSourceLocation(Cond.IfLoc, Record);
2481  Record.push_back(Cond.WasSkipping);
2482  Record.push_back(Cond.FoundNonSkip);
2483  Record.push_back(Cond.FoundElse);
2484  }
2485  Stream.EmitRecord(PP_CONDITIONAL_STACK, Record);
2486  Record.clear();
2487  }
2488 
2489  // Enter the preprocessor block.
2490  Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3);
2491 
2492  // If the AST file contains __DATE__ or __TIME__ emit a warning about this.
2493  // FIXME: Include a location for the use, and say which one was used.
2494  if (PP.SawDateOrTime())
2495  PP.Diag(SourceLocation(), diag::warn_module_uses_date_time) << IsModule;
2496 
2497  // Loop over all the macro directives that are live at the end of the file,
2498  // emitting each to the PP section.
2499 
2500  // Construct the list of identifiers with macro directives that need to be
2501  // serialized.
2503  for (auto &Id : PP.getIdentifierTable())
2504  if (Id.second->hadMacroDefinition() &&
2505  (!Id.second->isFromAST() ||
2506  Id.second->hasChangedSinceDeserialization()))
2507  MacroIdentifiers.push_back(Id.second);
2508  // Sort the set of macro definitions that need to be serialized by the
2509  // name of the macro, to provide a stable ordering.
2510  llvm::sort(MacroIdentifiers, llvm::deref<std::less<>>());
2511 
2512  // Emit the macro directives as a list and associate the offset with the
2513  // identifier they belong to.
2514  for (const IdentifierInfo *Name : MacroIdentifiers) {
2516  auto StartOffset = Stream.GetCurrentBitNo();
2517 
2518  // Emit the macro directives in reverse source order.
2519  for (; MD; MD = MD->getPrevious()) {
2520  // Once we hit an ignored macro, we're done: the rest of the chain
2521  // will all be ignored macros.
2522  if (shouldIgnoreMacro(MD, IsModule, PP))
2523  break;
2524 
2525  AddSourceLocation(MD->getLocation(), Record);
2526  Record.push_back(MD->getKind());
2527  if (auto *DefMD = dyn_cast<DefMacroDirective>(MD)) {
2528  Record.push_back(getMacroRef(DefMD->getInfo(), Name));
2529  } else if (auto *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) {
2530  Record.push_back(VisMD->isPublic());
2531  }
2532  }
2533 
2534  // Write out any exported module macros.
2535  bool EmittedModuleMacros = false;
2536  // We write out exported module macros for PCH as well.
2537  auto Leafs = PP.getLeafModuleMacros(Name);
2538  SmallVector<ModuleMacro*, 8> Worklist(Leafs.begin(), Leafs.end());
2539  llvm::DenseMap<ModuleMacro*, unsigned> Visits;
2540  while (!Worklist.empty()) {
2541  auto *Macro = Worklist.pop_back_val();
2542 
2543  // Emit a record indicating this submodule exports this macro.
2544  ModuleMacroRecord.push_back(
2545  getSubmoduleID(Macro->getOwningModule()));
2546  ModuleMacroRecord.push_back(getMacroRef(Macro->getMacroInfo(), Name));
2547  for (auto *M : Macro->overrides())
2548  ModuleMacroRecord.push_back(getSubmoduleID(M->getOwningModule()));
2549 
2550  Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord);
2551  ModuleMacroRecord.clear();
2552 
2553  // Enqueue overridden macros once we've visited all their ancestors.
2554  for (auto *M : Macro->overrides())
2555  if (++Visits[M] == M->getNumOverridingMacros())
2556  Worklist.push_back(M);
2557 
2558  EmittedModuleMacros = true;
2559  }
2560 
2561  if (Record.empty() && !EmittedModuleMacros)
2562  continue;
2563 
2564  IdentMacroDirectivesOffsetMap[Name] = StartOffset;
2565  Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record);
2566  Record.clear();
2567  }
2568 
2569  /// Offsets of each of the macros into the bitstream, indexed by
2570  /// the local macro ID
2571  ///
2572  /// For each identifier that is associated with a macro, this map
2573  /// provides the offset into the bitstream where that macro is
2574  /// defined.
2575  std::vector<uint32_t> MacroOffsets;
2576 
2577  for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) {
2578  const IdentifierInfo *Name = MacroInfosToEmit[I].Name;
2579  MacroInfo *MI = MacroInfosToEmit[I].MI;
2580  MacroID ID = MacroInfosToEmit[I].ID;
2581 
2582  if (ID < FirstMacroID) {
2583  assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?");
2584  continue;
2585  }
2586 
2587  // Record the local offset of this macro.
2588  unsigned Index = ID - FirstMacroID;
2589  if (Index == MacroOffsets.size())
2590  MacroOffsets.push_back(Stream.GetCurrentBitNo());
2591  else {
2592  if (Index > MacroOffsets.size())
2593  MacroOffsets.resize(Index + 1);
2594 
2595  MacroOffsets[Index] = Stream.GetCurrentBitNo();
2596  }
2597 
2598  AddIdentifierRef(Name, Record);
2599  AddSourceLocation(MI->getDefinitionLoc(), Record);
2600  AddSourceLocation(MI->getDefinitionEndLoc(), Record);
2601  Record.push_back(MI->isUsed());
2602  Record.push_back(MI->isUsedForHeaderGuard());
2603  unsigned Code;
2604  if (MI->isObjectLike()) {
2605  Code = PP_MACRO_OBJECT_LIKE;
2606  } else {
2607  Code = PP_MACRO_FUNCTION_LIKE;
2608 
2609  Record.push_back(MI->isC99Varargs());
2610  Record.push_back(MI->isGNUVarargs());
2611  Record.push_back(MI->hasCommaPasting());
2612  Record.push_back(MI->getNumParams());
2613  for (const IdentifierInfo *Param : MI->params())
2614  AddIdentifierRef(Param, Record);
2615  }
2616 
2617  // If we have a detailed preprocessing record, record the macro definition
2618  // ID that corresponds to this macro.
2619  if (PPRec)
2620  Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
2621 
2622  Stream.EmitRecord(Code, Record);
2623  Record.clear();
2624 
2625  // Emit the tokens array.
2626  for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
2627  // Note that we know that the preprocessor does not have any annotation
2628  // tokens in it because they are created by the parser, and thus can't
2629  // be in a macro definition.
2630  const Token &Tok = MI->getReplacementToken(TokNo);
2631  AddToken(Tok, Record);
2632  Stream.EmitRecord(PP_TOKEN, Record);
2633  Record.clear();
2634  }
2635  ++NumMacros;
2636  }
2637 
2638  Stream.ExitBlock();
2639 
2640  // Write the offsets table for macro IDs.
2641  using namespace llvm;
2642 
2643  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2644  Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET));
2645  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros
2646  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
2647  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2648 
2649  unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2650  {
2651  RecordData::value_type Record[] = {MACRO_OFFSET, MacroOffsets.size(),
2652  FirstMacroID - NUM_PREDEF_MACRO_IDS};
2653  Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record, bytes(MacroOffsets));
2654  }
2655 }
2656 
2657 void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec) {
2658  if (PPRec.local_begin() == PPRec.local_end())
2659  return;
2660 
2661  SmallVector<PPEntityOffset, 64> PreprocessedEntityOffsets;
2662 
2663  // Enter the preprocessor block.
2664  Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3);
2665 
2666  // If the preprocessor has a preprocessing record, emit it.
2667  unsigned NumPreprocessingRecords = 0;
2668  using namespace llvm;
2669 
2670  // Set up the abbreviation for
2671  unsigned InclusionAbbrev = 0;
2672  {
2673  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2674  Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE));
2675  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length
2676  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes
2677  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind
2678  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module
2679  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2680  InclusionAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2681  }
2682 
2683  unsigned FirstPreprocessorEntityID
2684  = (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0)
2686  unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID;
2687  RecordData Record;
2688  for (PreprocessingRecord::iterator E = PPRec.local_begin(),
2689  EEnd = PPRec.local_end();
2690  E != EEnd;
2691  (void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) {
2692  Record.clear();
2693 
2694  PreprocessedEntityOffsets.push_back(
2695  PPEntityOffset((*E)->getSourceRange(), Stream.GetCurrentBitNo()));
2696 
2697  if (auto *MD = dyn_cast<MacroDefinitionRecord>(*E)) {
2698  // Record this macro definition's ID.
2699  MacroDefinitions[MD] = NextPreprocessorEntityID;
2700 
2701  AddIdentifierRef(MD->getName(), Record);
2702  Stream.EmitRecord(PPD_MACRO_DEFINITION, Record);
2703  continue;
2704  }
2705 
2706  if (auto *ME = dyn_cast<MacroExpansion>(*E)) {
2707  Record.push_back(ME->isBuiltinMacro());
2708  if (ME->isBuiltinMacro())
2709  AddIdentifierRef(ME->getName(), Record);
2710  else
2711  Record.push_back(MacroDefinitions[ME->getDefinition()]);
2712  Stream.EmitRecord(PPD_MACRO_EXPANSION, Record);
2713  continue;
2714  }
2715 
2716  if (auto *ID = dyn_cast<InclusionDirective>(*E)) {
2717  Record.push_back(PPD_INCLUSION_DIRECTIVE);
2718  Record.push_back(ID->getFileName().size());
2719  Record.push_back(ID->wasInQuotes());
2720  Record.push_back(static_cast<unsigned>(ID->getKind()));
2721  Record.push_back(ID->importedModule());
2722  SmallString<64> Buffer;
2723  Buffer += ID->getFileName();
2724  // Check that the FileEntry is not null because it was not resolved and
2725  // we create a PCH even with compiler errors.
2726  if (ID->getFile())
2727  Buffer += ID->getFile()->getName();
2728  Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer);
2729  continue;
2730  }
2731 
2732  llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter");
2733  }
2734  Stream.ExitBlock();
2735 
2736  // Write the offsets table for the preprocessing record.
2737  if (NumPreprocessingRecords > 0) {
2738  assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords);
2739 
2740  // Write the offsets table for identifier IDs.
2741  using namespace llvm;
2742 
2743  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2744  Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS));
2745  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity
2746  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2747  unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2748 
2749  RecordData::value_type Record[] = {PPD_ENTITIES_OFFSETS,
2750  FirstPreprocessorEntityID -
2752  Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record,
2753  bytes(PreprocessedEntityOffsets));
2754  }
2755 
2756  // Write the skipped region table for the preprocessing record.
2757  ArrayRef<SourceRange> SkippedRanges = PPRec.getSkippedRanges();
2758  if (SkippedRanges.size() > 0) {
2759  std::vector<PPSkippedRange> SerializedSkippedRanges;
2760  SerializedSkippedRanges.reserve(SkippedRanges.size());
2761  for (auto const& Range : SkippedRanges)
2762  SerializedSkippedRanges.emplace_back(Range);
2763 
2764  using namespace llvm;
2765  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2766  Abbrev->Add(BitCodeAbbrevOp(PPD_SKIPPED_RANGES));
2767  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2768  unsigned PPESkippedRangeAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2769 
2770  Record.clear();
2771  Record.push_back(PPD_SKIPPED_RANGES);
2772  Stream.EmitRecordWithBlob(PPESkippedRangeAbbrev, Record,
2773  bytes(SerializedSkippedRanges));
2774  }
2775 }
2776 
2778  if (!Mod)
2779  return 0;
2780 
2781  llvm::DenseMap<Module *, unsigned>::iterator Known = SubmoduleIDs.find(Mod);
2782  if (Known != SubmoduleIDs.end())
2783  return Known->second;
2784 
2785  auto *Top = Mod->getTopLevelModule();
2786  if (Top != WritingModule &&
2787  (getLangOpts().CompilingPCH ||
2788  !Top->fullModuleNameIs(StringRef(getLangOpts().CurrentModule))))
2789  return 0;
2790 
2791  return SubmoduleIDs[Mod] = NextSubmoduleID++;
2792 }
2793 
2794 unsigned ASTWriter::getSubmoduleID(Module *Mod) {
2795  // FIXME: This can easily happen, if we have a reference to a submodule that
2796  // did not result in us loading a module file for that submodule. For
2797  // instance, a cross-top-level-module 'conflict' declaration will hit this.
2798  unsigned ID = getLocalOrImportedSubmoduleID(Mod);
2799  assert((ID || !Mod) &&
2800  "asked for module ID for non-local, non-imported module");
2801  return ID;
2802 }
2803 
2804 /// Compute the number of modules within the given tree (including the
2805 /// given module).
2806 static unsigned getNumberOfModules(Module *Mod) {
2807  unsigned ChildModules = 0;
2808  for (auto Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end();
2809  Sub != SubEnd; ++Sub)
2810  ChildModules += getNumberOfModules(*Sub);
2811 
2812  return ChildModules + 1;
2813 }
2814 
2815 void ASTWriter::WriteSubmodules(Module *WritingModule) {
2816  // Enter the submodule description block.
2817  Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5);
2818 
2819  // Write the abbreviations needed for the submodules block.
2820  using namespace llvm;
2821 
2822  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2823  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION));
2824  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
2825  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent
2826  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Kind
2827  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
2828  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit
2829  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem
2830  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC
2831  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules...
2832  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit...
2833  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild...
2834  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh...
2835  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ModuleMapIsPriv...
2836  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2837  unsigned DefinitionAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2838 
2839  Abbrev = std::make_shared<BitCodeAbbrev>();
2840  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER));
2841  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2842  unsigned UmbrellaAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2843 
2844  Abbrev = std::make_shared<BitCodeAbbrev>();
2845  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER));
2846  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2847  unsigned HeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2848 
2849  Abbrev = std::make_shared<BitCodeAbbrev>();
2850  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER));
2851  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2852  unsigned TopHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2853 
2854  Abbrev = std::make_shared<BitCodeAbbrev>();
2855  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR));
2856  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2857  unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2858 
2859  Abbrev = std::make_shared<BitCodeAbbrev>();
2860  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES));
2861  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State
2862  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature
2863  unsigned RequiresAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2864 
2865  Abbrev = std::make_shared<BitCodeAbbrev>();
2866  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER));
2867  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2868  unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2869 
2870  Abbrev = std::make_shared<BitCodeAbbrev>();
2871  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER));
2872  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2873  unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2874 
2875  Abbrev = std::make_shared<BitCodeAbbrev>();
2876  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER));
2877  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2878  unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2879 
2880  Abbrev = std::make_shared<BitCodeAbbrev>();
2881  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER));
2882  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2883  unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2884 
2885  Abbrev = std::make_shared<BitCodeAbbrev>();
2886  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY));
2887  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
2888  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2889  unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2890 
2891  Abbrev = std::make_shared<BitCodeAbbrev>();
2892  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO));
2893  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
2894  unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2895 
2896  Abbrev = std::make_shared<BitCodeAbbrev>();
2897  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT));
2898  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module
2899  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message
2900  unsigned ConflictAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2901 
2902  Abbrev = std::make_shared<BitCodeAbbrev>();
2903  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXPORT_AS));
2904  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
2905  unsigned ExportAsAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2906 
2907  // Write the submodule metadata block.
2908  RecordData::value_type Record[] = {
2909  getNumberOfModules(WritingModule),
2910  FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS};
2911  Stream.EmitRecord(SUBMODULE_METADATA, Record);
2912 
2913  // Write all of the submodules.
2914  std::queue<Module *> Q;
2915  Q.push(WritingModule);
2916  while (!Q.empty()) {
2917  Module *Mod = Q.front();
2918  Q.pop();
2919  unsigned ID = getSubmoduleID(Mod);
2920 
2921  uint64_t ParentID = 0;
2922  if (Mod->Parent) {
2923  assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?");
2924  ParentID = SubmoduleIDs[Mod->Parent];
2925  }
2926 
2927  // Emit the definition of the block.
2928  {
2929  RecordData::value_type Record[] = {SUBMODULE_DEFINITION,
2930  ID,
2931  ParentID,
2932  (RecordData::value_type)Mod->Kind,
2933  Mod->IsFramework,
2934  Mod->IsExplicit,
2935  Mod->IsSystem,
2936  Mod->IsExternC,
2937  Mod->InferSubmodules,
2939  Mod->InferExportWildcard,
2941  Mod->ModuleMapIsPrivate};
2942  Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name);
2943  }
2944 
2945  // Emit the requirements.
2946  for (const auto &R : Mod->Requirements) {
2947  RecordData::value_type Record[] = {SUBMODULE_REQUIRES, R.second};
2948  Stream.EmitRecordWithBlob(RequiresAbbrev, Record, R.first);
2949  }
2950 
2951  // Emit the umbrella header, if there is one.
2952  if (auto UmbrellaHeader = Mod->getUmbrellaHeader()) {
2953  RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_HEADER};
2954  Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record,
2955  UmbrellaHeader.NameAsWritten);
2956  } else if (auto UmbrellaDir = Mod->getUmbrellaDir()) {
2957  RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_DIR};
2958  Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record,
2959  UmbrellaDir.NameAsWritten);
2960  }
2961 
2962  // Emit the headers.
2963  struct {
2964  unsigned RecordKind;
2965  unsigned Abbrev;
2966  Module::HeaderKind HeaderKind;
2967  } HeaderLists[] = {
2968  {SUBMODULE_HEADER, HeaderAbbrev, Module::HK_Normal},
2969  {SUBMODULE_TEXTUAL_HEADER, TextualHeaderAbbrev, Module::HK_Textual},
2970  {SUBMODULE_PRIVATE_HEADER, PrivateHeaderAbbrev, Module::HK_Private},
2971  {SUBMODULE_PRIVATE_TEXTUAL_HEADER, PrivateTextualHeaderAbbrev,
2973  {SUBMODULE_EXCLUDED_HEADER, ExcludedHeaderAbbrev, Module::HK_Excluded}
2974  };
2975  for (auto &HL : HeaderLists) {
2976  RecordData::value_type Record[] = {HL.RecordKind};
2977  for (auto &H : Mod->Headers[HL.HeaderKind])
2978  Stream.EmitRecordWithBlob(HL.Abbrev, Record, H.NameAsWritten);
2979  }
2980 
2981  // Emit the top headers.
2982  {
2983  auto TopHeaders = Mod->getTopHeaders(PP->getFileManager());
2984  RecordData::value_type Record[] = {SUBMODULE_TOPHEADER};
2985  for (auto *H : TopHeaders)
2986  Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, H->getName());
2987  }
2988 
2989  // Emit the imports.
2990  if (!Mod->Imports.empty()) {
2991  RecordData Record;
2992  for (auto *I : Mod->Imports)
2993  Record.push_back(getSubmoduleID(I));
2994  Stream.EmitRecord(SUBMODULE_IMPORTS, Record);
2995  }
2996 
2997  // Emit the exports.
2998  if (!Mod->Exports.empty()) {
2999  RecordData Record;
3000  for (const auto &E : Mod->Exports) {
3001  // FIXME: This may fail; we don't require that all exported modules
3002  // are local or imported.
3003  Record.push_back(getSubmoduleID(E.getPointer()));
3004  Record.push_back(E.getInt());
3005  }
3006  Stream.EmitRecord(SUBMODULE_EXPORTS, Record);
3007  }
3008 
3009  //FIXME: How do we emit the 'use'd modules? They may not be submodules.
3010  // Might be unnecessary as use declarations are only used to build the
3011  // module itself.
3012 
3013  // Emit the link libraries.
3014  for (const auto &LL : Mod->LinkLibraries) {
3015  RecordData::value_type Record[] = {SUBMODULE_LINK_LIBRARY,
3016  LL.IsFramework};
3017  Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record, LL.Library);
3018  }
3019 
3020  // Emit the conflicts.
3021  for (const auto &C : Mod->Conflicts) {
3022  // FIXME: This may fail; we don't require that all conflicting modules
3023  // are local or imported.
3024  RecordData::value_type Record[] = {SUBMODULE_CONFLICT,
3025  getSubmoduleID(C.Other)};
3026  Stream.EmitRecordWithBlob(ConflictAbbrev, Record, C.Message);
3027  }
3028 
3029  // Emit the configuration macros.
3030  for (const auto &CM : Mod->ConfigMacros) {
3031  RecordData::value_type Record[] = {SUBMODULE_CONFIG_MACRO};
3032  Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record, CM);
3033  }
3034 
3035  // Emit the initializers, if any.
3036  RecordData Inits;
3037  for (Decl *D : Context->getModuleInitializers(Mod))
3038  Inits.push_back(GetDeclRef(D));
3039  if (!Inits.empty())
3040  Stream.EmitRecord(SUBMODULE_INITIALIZERS, Inits);
3041 
3042  // Emit the name of the re-exported module, if any.
3043  if (!Mod->ExportAsModule.empty()) {
3044  RecordData::value_type Record[] = {SUBMODULE_EXPORT_AS};
3045  Stream.EmitRecordWithBlob(ExportAsAbbrev, Record, Mod->ExportAsModule);
3046  }
3047 
3048  // Queue up the submodules of this module.
3049  for (auto *M : Mod->submodules())
3050  Q.push(M);
3051  }
3052 
3053  Stream.ExitBlock();
3054 
3055  assert((NextSubmoduleID - FirstSubmoduleID ==
3056  getNumberOfModules(WritingModule)) &&
3057  "Wrong # of submodules; found a reference to a non-local, "
3058  "non-imported submodule?");
3059 }
3060 
3061 void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag,
3062  bool isModule) {
3063  llvm::SmallDenseMap<const DiagnosticsEngine::DiagState *, unsigned, 64>
3064  DiagStateIDMap;
3065  unsigned CurrID = 0;
3066  RecordData Record;
3067 
3068  auto EncodeDiagStateFlags =
3069  [](const DiagnosticsEngine::DiagState *DS) -> unsigned {
3070  unsigned Result = (unsigned)DS->ExtBehavior;
3071  for (unsigned Val :
3072  {(unsigned)DS->IgnoreAllWarnings, (unsigned)DS->EnableAllWarnings,
3073  (unsigned)DS->WarningsAsErrors, (unsigned)DS->ErrorsAsFatal,
3074  (unsigned)DS->SuppressSystemWarnings})
3075  Result = (Result << 1) | Val;
3076  return Result;
3077  };
3078 
3079  unsigned Flags = EncodeDiagStateFlags(Diag.DiagStatesByLoc.FirstDiagState);
3080  Record.push_back(Flags);
3081 
3082  auto AddDiagState = [&](const DiagnosticsEngine::DiagState *State,
3083  bool IncludeNonPragmaStates) {
3084  // Ensure that the diagnostic state wasn't modified since it was created.
3085  // We will not correctly round-trip this information otherwise.
3086  assert(Flags == EncodeDiagStateFlags(State) &&
3087  "diag state flags vary in single AST file");
3088 
3089  unsigned &DiagStateID = DiagStateIDMap[State];
3090  Record.push_back(DiagStateID);
3091 
3092  if (DiagStateID == 0) {
3093  DiagStateID = ++CurrID;
3094 
3095  // Add a placeholder for the number of mappings.
3096  auto SizeIdx = Record.size();
3097  Record.emplace_back();
3098  for (const auto &I : *State) {
3099  if (I.second.isPragma() || IncludeNonPragmaStates) {
3100  Record.push_back(I.first);
3101  Record.push_back(I.second.serialize());
3102  }
3103  }
3104  // Update the placeholder.
3105  Record[SizeIdx] = (Record.size() - SizeIdx) / 2;
3106  }
3107  };
3108 
3109  AddDiagState(Diag.DiagStatesByLoc.FirstDiagState, isModule);
3110 
3111  // Reserve a spot for the number of locations with state transitions.
3112  auto NumLocationsIdx = Record.size();
3113  Record.emplace_back();
3114 
3115  // Emit the state transitions.
3116  unsigned NumLocations = 0;
3117  for (auto &FileIDAndFile : Diag.DiagStatesByLoc.Files) {
3118  if (!FileIDAndFile.first.isValid() ||
3119  !FileIDAndFile.second.HasLocalTransitions)
3120  continue;
3121  ++NumLocations;
3122 
3123  SourceLocation Loc = Diag.SourceMgr->getComposedLoc(FileIDAndFile.first, 0);
3124  assert(!Loc.isInvalid() && "start loc for valid FileID is invalid");
3125  AddSourceLocation(Loc, Record);
3126 
3127  Record.push_back(FileIDAndFile.second.StateTransitions.size());
3128  for (auto &StatePoint : FileIDAndFile.second.StateTransitions) {
3129  Record.push_back(StatePoint.Offset);
3130  AddDiagState(StatePoint.State, false);
3131  }
3132  }
3133 
3134  // Backpatch the number of locations.
3135  Record[NumLocationsIdx] = NumLocations;
3136 
3137  // Emit CurDiagStateLoc. Do it last in order to match source order.
3138  //
3139  // This also protects against a hypothetical corner case with simulating
3140  // -Werror settings for implicit modules in the ASTReader, where reading
3141  // CurDiagState out of context could change whether warning pragmas are
3142  // treated as errors.
3143  AddSourceLocation(Diag.DiagStatesByLoc.CurDiagStateLoc, Record);
3144  AddDiagState(Diag.DiagStatesByLoc.CurDiagState, false);
3145 
3146  Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record);
3147 }
3148 
3149 //===----------------------------------------------------------------------===//
3150 // Type Serialization
3151 //===----------------------------------------------------------------------===//
3152 
3153 /// Write the representation of a type to the AST stream.
3154 void ASTWriter::WriteType(QualType T) {
3155  TypeIdx &IdxRef = TypeIdxs[T];
3156  if (IdxRef.getIndex() == 0) // we haven't seen this type before.
3157  IdxRef = TypeIdx(NextTypeID++);
3158  TypeIdx Idx = IdxRef;
3159 
3160  assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST");
3161 
3162  RecordData Record;
3163 
3164  // Emit the type's representation.
3165  ASTTypeWriter W(*this, Record);
3166  W.Visit(T);
3167  uint64_t Offset = W.Emit();
3168 
3169  // Record the offset for this type.
3170  unsigned Index = Idx.getIndex() - FirstTypeID;
3171  if (TypeOffsets.size() == Index)
3172  TypeOffsets.push_back(Offset);
3173  else if (TypeOffsets.size() < Index) {
3174  TypeOffsets.resize(Index + 1);
3175  TypeOffsets[Index] = Offset;
3176  } else {
3177  llvm_unreachable("Types emitted in wrong order");
3178  }
3179 }
3180 
3181 //===----------------------------------------------------------------------===//
3182 // Declaration Serialization
3183 //===----------------------------------------------------------------------===//
3184 
3185 /// Write the block containing all of the declaration IDs
3186 /// lexically declared within the given DeclContext.
3187 ///
3188 /// \returns the offset of the DECL_CONTEXT_LEXICAL block within the
3189 /// bitstream, or 0 if no block was written.
3190 uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context,
3191  DeclContext *DC) {
3192  if (DC->decls_empty())
3193  return 0;
3194 
3195  uint64_t Offset = Stream.GetCurrentBitNo();
3196  SmallVector<uint32_t, 128> KindDeclPairs;
3197  for (const auto *D : DC->decls()) {
3198  KindDeclPairs.push_back(D->getKind());
3199  KindDeclPairs.push_back(GetDeclRef(D));
3200  }
3201 
3202  ++NumLexicalDeclContexts;
3203  RecordData::value_type Record[] = {DECL_CONTEXT_LEXICAL};
3204  Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record,
3205  bytes(KindDeclPairs));
3206  return Offset;
3207 }
3208 
3209 void ASTWriter::WriteTypeDeclOffsets() {
3210  using namespace llvm;
3211 
3212  // Write the type offsets array
3213  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3214  Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET));
3215  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types
3216  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index
3217  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block
3218  unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3219  {
3220  RecordData::value_type Record[] = {TYPE_OFFSET, TypeOffsets.size(),
3221  FirstTypeID - NUM_PREDEF_TYPE_IDS};
3222  Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, bytes(TypeOffsets));
3223  }
3224 
3225  // Write the declaration offsets array
3226  Abbrev = std::make_shared<BitCodeAbbrev>();
3227  Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET));
3228  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations
3229  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID
3230  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block
3231  unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3232  {
3233  RecordData::value_type Record[] = {DECL_OFFSET, DeclOffsets.size(),
3234  FirstDeclID - NUM_PREDEF_DECL_IDS};
3235  Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, bytes(DeclOffsets));
3236  }
3237 }
3238 
3239 void ASTWriter::WriteFileDeclIDsMap() {
3240  using namespace llvm;
3241 
3243  FileDeclIDs.begin(), FileDeclIDs.end());
3244  llvm::sort(SortedFileDeclIDs, llvm::less_first());
3245 
3246  // Join the vectors of DeclIDs from all files.
3247  SmallVector<DeclID, 256> FileGroupedDeclIDs;
3248  for (auto &FileDeclEntry : SortedFileDeclIDs) {
3249  DeclIDInFileInfo &Info = *FileDeclEntry.second;
3250  Info.FirstDeclIndex = FileGroupedDeclIDs.size();
3251  for (auto &LocDeclEntry : Info.DeclIDs)
3252  FileGroupedDeclIDs.push_back(LocDeclEntry.second);
3253  }
3254 
3255  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3256  Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS));
3257  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3258  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3259  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
3260  RecordData::value_type Record[] = {FILE_SORTED_DECLS,
3261  FileGroupedDeclIDs.size()};
3262  Stream.EmitRecordWithBlob(AbbrevCode, Record, bytes(FileGroupedDeclIDs));
3263 }
3264 
3265 void ASTWriter::WriteComments() {
3266  Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3);
3267  auto _ = llvm::make_scope_exit([this] { Stream.ExitBlock(); });
3269  return;
3270  RecordData Record;
3271  for (const auto &FO : Context->Comments.OrderedComments) {
3272  for (const auto &OC : FO.second) {
3273  const RawComment *I = OC.second;
3274  Record.clear();
3275  AddSourceRange(I->getSourceRange(), Record);
3276  Record.push_back(I->getKind());
3277  Record.push_back(I->isTrailingComment());
3278  Record.push_back(I->isAlmostTrailingComment());
3279  Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record);
3280  }
3281  }
3282 }
3283 
3284 //===----------------------------------------------------------------------===//
3285 // Global Method Pool and Selector Serialization
3286 //===----------------------------------------------------------------------===//
3287 
3288 namespace {
3289 
3290 // Trait used for the on-disk hash table used in the method pool.
3291 class ASTMethodPoolTrait {
3292  ASTWriter &Writer;
3293 
3294 public:
3295  using key_type = Selector;
3296  using key_type_ref = key_type;
3297 
3298  struct data_type {
3299  SelectorID ID;
3300  ObjCMethodList Instance, Factory;
3301  };
3302  using data_type_ref = const data_type &;
3303 
3304  using hash_value_type = unsigned;
3305  using offset_type = unsigned;
3306 
3307  explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) {}
3308 
3309  static hash_value_type ComputeHash(Selector Sel) {
3310  return serialization::ComputeHash(Sel);
3311  }
3312 
3313  std::pair<unsigned, unsigned>
3314  EmitKeyDataLength(raw_ostream& Out, Selector Sel,
3315  data_type_ref Methods) {
3316  using namespace llvm::support;
3317 
3318  endian::Writer LE(Out, little);
3319  unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4);
3320  LE.write<uint16_t>(KeyLen);
3321  unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts
3322  for (const ObjCMethodList *Method = &Methods.Instance; Method;
3323  Method = Method->getNext())
3324  if (Method->getMethod())
3325  DataLen += 4;
3326  for (const ObjCMethodList *Method = &Methods.Factory; Method;
3327  Method = Method->getNext())
3328  if (Method->getMethod())
3329  DataLen += 4;
3330  LE.write<uint16_t>(DataLen);
3331  return std::make_pair(KeyLen, DataLen);
3332  }
3333 
3334  void EmitKey(raw_ostream& Out, Selector Sel, unsigned) {
3335  using namespace llvm::support;
3336 
3337  endian::Writer LE(Out, little);
3338  uint64_t Start = Out.tell();
3339  assert((Start >> 32) == 0 && "Selector key offset too large");
3340  Writer.SetSelectorOffset(Sel, Start);
3341  unsigned N = Sel.getNumArgs();
3342  LE.write<uint16_t>(N);
3343  if (N == 0)
3344  N = 1;
3345  for (unsigned I = 0; I != N; ++I)
3346  LE.write<uint32_t>(
3348  }
3349 
3350  void EmitData(raw_ostream& Out, key_type_ref,
3351  data_type_ref Methods, unsigned DataLen) {
3352  using namespace llvm::support;
3353 
3354  endian::Writer LE(Out, little);
3355  uint64_t Start = Out.tell(); (void)Start;
3356  LE.write<uint32_t>(Methods.ID);
3357  unsigned NumInstanceMethods = 0;
3358  for (const ObjCMethodList *Method = &Methods.Instance; Method;
3359  Method = Method->getNext())
3360  if (Method->getMethod())
3361  ++NumInstanceMethods;
3362 
3363  unsigned NumFactoryMethods = 0;
3364  for (const ObjCMethodList *Method = &Methods.Factory; Method;
3365  Method = Method->getNext())
3366  if (Method->getMethod())
3367  ++NumFactoryMethods;
3368 
3369  unsigned InstanceBits = Methods.Instance.getBits();
3370  assert(InstanceBits < 4);
3371  unsigned InstanceHasMoreThanOneDeclBit =
3372  Methods.Instance.hasMoreThanOneDecl();
3373  unsigned FullInstanceBits = (NumInstanceMethods << 3) |
3374  (InstanceHasMoreThanOneDeclBit << 2) |
3375  InstanceBits;
3376  unsigned FactoryBits = Methods.Factory.getBits();
3377  assert(FactoryBits < 4);
3378  unsigned FactoryHasMoreThanOneDeclBit =
3379  Methods.Factory.hasMoreThanOneDecl();
3380  unsigned FullFactoryBits = (NumFactoryMethods << 3) |
3381  (FactoryHasMoreThanOneDeclBit << 2) |
3382  FactoryBits;
3383  LE.write<uint16_t>(FullInstanceBits);
3384  LE.write<uint16_t>(FullFactoryBits);
3385  for (const ObjCMethodList *Method = &Methods.Instance; Method;
3386  Method = Method->getNext())
3387  if (Method->getMethod())
3388  LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
3389  for (const ObjCMethodList *Method = &Methods.Factory; Method;
3390  Method = Method->getNext())
3391  if (Method->getMethod())
3392  LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
3393 
3394  assert(Out.tell() - Start == DataLen && "Data length is wrong");
3395  }
3396 };
3397 
3398 } // namespace
3399 
3400 /// Write ObjC data: selectors and the method pool.
3401 ///
3402 /// The method pool contains both instance and factory methods, stored
3403 /// in an on-disk hash table indexed by the selector. The hash table also
3404 /// contains an empty entry for every other selector known to Sema.
3405 void ASTWriter::WriteSelectors(Sema &SemaRef) {
3406  using namespace llvm;
3407 
3408  // Do we have to do anything at all?
3409  if (SemaRef.MethodPool.empty() && SelectorIDs.empty())
3410  return;
3411  unsigned NumTableEntries = 0;
3412  // Create and write out the blob that contains selectors and the method pool.
3413  {
3414  llvm::OnDiskChainedHashTableGenerator<ASTMethodPoolTrait> Generator;
3415  ASTMethodPoolTrait Trait(*this);
3416 
3417  // Create the on-disk hash table representation. We walk through every
3418  // selector we've seen and look it up in the method pool.
3419  SelectorOffsets.resize(NextSelectorID - FirstSelectorID);
3420  for (auto &SelectorAndID : SelectorIDs) {
3421  Selector S = SelectorAndID.first;
3422  SelectorID ID = SelectorAndID.second;
3423  Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S);
3424  ASTMethodPoolTrait::data_type Data = {
3425  ID,
3426  ObjCMethodList(),
3427  ObjCMethodList()
3428  };
3429  if (F != SemaRef.MethodPool.end()) {
3430  Data.Instance = F->second.first;
3431  Data.Factory = F->second.second;
3432  }
3433  // Only write this selector if it's not in an existing AST or something
3434  // changed.
3435  if (Chain && ID < FirstSelectorID) {
3436  // Selector already exists. Did it change?
3437  bool changed = false;
3438  for (ObjCMethodList *M = &Data.Instance;
3439  !changed && M && M->getMethod(); M = M->getNext()) {
3440  if (!M->getMethod()->isFromASTFile())
3441  changed = true;
3442  }
3443  for (ObjCMethodList *M = &Data.Factory; !changed && M && M->getMethod();
3444  M = M->getNext()) {
3445  if (!M->getMethod()->isFromASTFile())
3446  changed = true;
3447  }
3448  if (!changed)
3449  continue;
3450  } else if (Data.Instance.getMethod() || Data.Factory.getMethod()) {
3451  // A new method pool entry.
3452  ++NumTableEntries;
3453  }
3454  Generator.insert(S, Data, Trait);
3455  }
3456 
3457  // Create the on-disk hash table in a buffer.
3458  SmallString<4096> MethodPool;
3459  uint32_t BucketOffset;
3460  {
3461  using namespace llvm::support;
3462 
3463  ASTMethodPoolTrait Trait(*this);
3464  llvm::raw_svector_ostream Out(MethodPool);
3465  // Make sure that no bucket is at offset 0
3466  endian::write<uint32_t>(Out, 0, little);
3467  BucketOffset = Generator.Emit(Out, Trait);
3468  }
3469 
3470  // Create a blob abbreviation
3471  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3472  Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL));
3473  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3474  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3475  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3476  unsigned MethodPoolAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3477 
3478  // Write the method pool
3479  {
3480  RecordData::value_type Record[] = {METHOD_POOL, BucketOffset,
3481  NumTableEntries};
3482  Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool);
3483  }
3484 
3485  // Create a blob abbreviation for the selector table offsets.
3486  Abbrev = std::make_shared<BitCodeAbbrev>();
3487  Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS));
3488  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
3489  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
3490  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3491  unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3492 
3493  // Write the selector offsets table.
3494  {
3495  RecordData::value_type Record[] = {
3496  SELECTOR_OFFSETS, SelectorOffsets.size(),
3497  FirstSelectorID - NUM_PREDEF_SELECTOR_IDS};
3498  Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record,
3499  bytes(SelectorOffsets));
3500  }
3501  }
3502 }
3503 
3504 /// Write the selectors referenced in @selector expression into AST file.
3505 void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) {
3506  using namespace llvm;
3507 
3508  if (SemaRef.ReferencedSelectors.empty())
3509  return;
3510 
3511  RecordData Record;
3512  ASTRecordWriter Writer(*this, Record);
3513 
3514  // Note: this writes out all references even for a dependent AST. But it is
3515  // very tricky to fix, and given that @selector shouldn't really appear in
3516  // headers, probably not worth it. It's not a correctness issue.
3517  for (auto &SelectorAndLocation : SemaRef.ReferencedSelectors) {
3518  Selector Sel = SelectorAndLocation.first;
3519  SourceLocation Loc = SelectorAndLocation.second;
3520  Writer.AddSelectorRef(Sel);
3521  Writer.AddSourceLocation(Loc);
3522  }
3524 }
3525 
3526 //===----------------------------------------------------------------------===//
3527 // Identifier Table Serialization
3528 //===----------------------------------------------------------------------===//
3529 
3530 /// Determine the declaration that should be put into the name lookup table to
3531 /// represent the given declaration in this module. This is usually D itself,
3532 /// but if D was imported and merged into a local declaration, we want the most
3533 /// recent local declaration instead. The chosen declaration will be the most
3534 /// recent declaration in any module that imports this one.
3536  NamedDecl *D) {
3537  if (!LangOpts.Modules || !D->isFromASTFile())
3538  return D;
3539 
3540  if (Decl *Redecl = D->getPreviousDecl()) {
3541  // For Redeclarable decls, a prior declaration might be local.
3542  for (; Redecl; Redecl = Redecl->getPreviousDecl()) {
3543  // If we find a local decl, we're done.
3544  if (!Redecl->isFromASTFile()) {
3545  // Exception: in very rare cases (for injected-class-names), not all
3546  // redeclarations are in the same semantic context. Skip ones in a
3547  // different context. They don't go in this lookup table at all.
3548  if (!Redecl->getDeclContext()->getRedeclContext()->Equals(
3550  continue;
3551  return cast<NamedDecl>(Redecl);
3552  }
3553 
3554  // If we find a decl from a (chained-)PCH stop since we won't find a
3555  // local one.
3556  if (Redecl->getOwningModuleID() == 0)
3557  break;
3558  }
3559  } else if (Decl *First = D->getCanonicalDecl()) {
3560  // For Mergeable decls, the first decl might be local.
3561  if (!First->isFromASTFile())
3562  return cast<NamedDecl>(First);
3563  }
3564 
3565  // All declarations are imported. Our most recent declaration will also be
3566  // the most recent one in anyone who imports us.
3567  return D;
3568 }
3569 
3570 namespace {
3571 
3572 class ASTIdentifierTableTrait {
3573  ASTWriter &Writer;
3574  Preprocessor &PP;
3575  IdentifierResolver &IdResolver;
3576  bool IsModule;
3577  bool NeedDecls;
3578  ASTWriter::RecordData *InterestingIdentifierOffsets;
3579 
3580  /// Determines whether this is an "interesting" identifier that needs a
3581  /// full IdentifierInfo structure written into the hash table. Notably, this
3582  /// doesn't check whether the name has macros defined; use PublicMacroIterator
3583  /// to check that.
3584  bool isInterestingIdentifier(const IdentifierInfo *II, uint64_t MacroOffset) {
3585  if (MacroOffset ||
3586  II->isPoisoned() ||
3587  (IsModule ? II->hasRevertedBuiltin() : II->getObjCOrBuiltinID()) ||
3589  (NeedDecls && II->getFETokenInfo()))
3590  return true;
3591 
3592  return false;
3593  }
3594 
3595 public:
3596  using key_type = IdentifierInfo *;
3597  using key_type_ref = key_type;
3598 
3599  using data_type = IdentID;
3600  using data_type_ref = data_type;
3601 
3602  using hash_value_type = unsigned;
3603  using offset_type = unsigned;
3604 
3605  ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP,
3606  IdentifierResolver &IdResolver, bool IsModule,
3607  ASTWriter::RecordData *InterestingIdentifierOffsets)
3608  : Writer(Writer), PP(PP), IdResolver(IdResolver), IsModule(IsModule),
3609  NeedDecls(!IsModule || !Writer.getLangOpts().CPlusPlus),
3610  InterestingIdentifierOffsets(InterestingIdentifierOffsets) {}
3611 
3612  bool needDecls() const { return NeedDecls; }
3613 
3614  static hash_value_type ComputeHash(const IdentifierInfo* II) {
3615  return llvm::djbHash(II->getName());
3616  }
3617 
3618  bool isInterestingIdentifier(const IdentifierInfo *II) {
3619  auto MacroOffset = Writer.getMacroDirectivesOffset(II);
3620  return isInterestingIdentifier(II, MacroOffset);
3621  }
3622 
3623  bool isInterestingNonMacroIdentifier(const IdentifierInfo *II) {
3624  return isInterestingIdentifier(II, 0);
3625  }
3626 
3627  std::pair<unsigned, unsigned>
3628  EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) {
3629  unsigned KeyLen = II->getLength() + 1;
3630  unsigned DataLen = 4; // 4 bytes for the persistent ID << 1
3631  auto MacroOffset = Writer.getMacroDirectivesOffset(II);
3632  if (isInterestingIdentifier(II, MacroOffset)) {
3633  DataLen += 2; // 2 bytes for builtin ID
3634  DataLen += 2; // 2 bytes for flags
3635  if (MacroOffset)
3636  DataLen += 4; // MacroDirectives offset.
3637 
3638  if (NeedDecls) {
3639  for (IdentifierResolver::iterator D = IdResolver.begin(II),
3640  DEnd = IdResolver.end();
3641  D != DEnd; ++D)
3642  DataLen += 4;
3643  }
3644  }
3645 
3646  using namespace llvm::support;
3647 
3648  endian::Writer LE(Out, little);
3649 
3650  assert((uint16_t)DataLen == DataLen && (uint16_t)KeyLen == KeyLen);
3651  LE.write<uint16_t>(DataLen);
3652  // We emit the key length after the data length so that every
3653  // string is preceded by a 16-bit length. This matches the PTH
3654  // format for storing identifiers.
3655  LE.write<uint16_t>(KeyLen);
3656  return std::make_pair(KeyLen, DataLen);
3657  }
3658 
3659  void EmitKey(raw_ostream& Out, const IdentifierInfo* II,
3660  unsigned KeyLen) {
3661  // Record the location of the key data. This is used when generating
3662  // the mapping from persistent IDs to strings.
3663  Writer.SetIdentifierOffset(II, Out.tell());
3664 
3665  // Emit the offset of the key/data length information to the interesting
3666  // identifiers table if necessary.
3667  if (InterestingIdentifierOffsets && isInterestingIdentifier(II))
3668  InterestingIdentifierOffsets->push_back(Out.tell() - 4);
3669 
3670  Out.write(II->getNameStart(), KeyLen);
3671  }
3672 
3673  void EmitData(raw_ostream& Out, IdentifierInfo* II,
3674  IdentID ID, unsigned) {
3675  using namespace llvm::support;
3676 
3677  endian::Writer LE(Out, little);
3678 
3679  auto MacroOffset = Writer.getMacroDirectivesOffset(II);
3680  if (!isInterestingIdentifier(II, MacroOffset)) {
3681  LE.write<uint32_t>(ID << 1);
3682  return;
3683  }
3684 
3685  LE.write<uint32_t>((ID << 1) | 0x01);
3686  uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID();
3687  assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader.");
3688  LE.write<uint16_t>(Bits);
3689  Bits = 0;
3690  bool HadMacroDefinition = MacroOffset != 0;
3691  Bits = (Bits << 1) | unsigned(HadMacroDefinition);
3692  Bits = (Bits << 1) | unsigned(II->isExtensionToken());
3693  Bits = (Bits << 1) | unsigned(II->isPoisoned());
3694  Bits = (Bits << 1) | unsigned(II->hasRevertedBuiltin());
3695  Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier());
3696  Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword());
3697  LE.write<uint16_t>(Bits);
3698 
3699  if (HadMacroDefinition)
3700  LE.write<uint32_t>(MacroOffset);
3701 
3702  if (NeedDecls) {
3703  // Emit the declaration IDs in reverse order, because the
3704  // IdentifierResolver provides the declarations as they would be
3705  // visible (e.g., the function "stat" would come before the struct
3706  // "stat"), but the ASTReader adds declarations to the end of the list
3707  // (so we need to see the struct "stat" before the function "stat").
3708  // Only emit declarations that aren't from a chained PCH, though.
3709  SmallVector<NamedDecl *, 16> Decls(IdResolver.begin(II),
3710  IdResolver.end());
3711  for (SmallVectorImpl<NamedDecl *>::reverse_iterator D = Decls.rbegin(),
3712  DEnd = Decls.rend();
3713  D != DEnd; ++D)
3714  LE.write<uint32_t>(
3715  Writer.getDeclID(getDeclForLocalLookup(PP.getLangOpts(), *D)));
3716  }
3717  }
3718 };
3719 
3720 } // namespace
3721 
3722 /// Write the identifier table into the AST file.
3723 ///
3724 /// The identifier table consists of a blob containing string data
3725 /// (the actual identifiers themselves) and a separate "offsets" index
3726 /// that maps identifier IDs to locations within the blob.
3727 void ASTWriter::WriteIdentifierTable(Preprocessor &PP,
3728  IdentifierResolver &IdResolver,
3729  bool IsModule) {
3730  using namespace llvm;
3731 
3732  RecordData InterestingIdents;
3733 
3734  // Create and write out the blob that contains the identifier
3735  // strings.
3736  {
3737  llvm::OnDiskChainedHashTableGenerator<ASTIdentifierTableTrait> Generator;
3738  ASTIdentifierTableTrait Trait(
3739  *this, PP, IdResolver, IsModule,
3740  (getLangOpts().CPlusPlus && IsModule) ? &InterestingIdents : nullptr);
3741 
3742  // Look for any identifiers that were named while processing the
3743  // headers, but are otherwise not needed. We add these to the hash
3744  // table to enable checking of the predefines buffer in the case
3745  // where the user adds new macro definitions when building the AST
3746  // file.
3748  for (const auto &ID : PP.getIdentifierTable())
3749  IIs.push_back(ID.second);
3750  // Sort the identifiers lexicographically before getting them references so
3751  // that their order is stable.
3752  llvm::sort(IIs, llvm::deref<std::less<>>());
3753  for (const IdentifierInfo *II : IIs)
3754  if (Trait.isInterestingNonMacroIdentifier(II))
3755  getIdentifierRef(II);
3756 
3757  // Create the on-disk hash table representation. We only store offsets
3758  // for identifiers that appear here for the first time.
3759  IdentifierOffsets.resize(NextIdentID - FirstIdentID);
3760  for (auto IdentIDPair : IdentifierIDs) {
3761  auto *II = const_cast<IdentifierInfo *>(IdentIDPair.first);
3762  IdentID ID = IdentIDPair.second;
3763  assert(II && "NULL identifier in identifier table");
3764  // Write out identifiers if either the ID is local or the identifier has
3765  // changed since it was loaded.
3766  if (ID >= FirstIdentID || !Chain || !II->isFromAST()
3767  || II->hasChangedSinceDeserialization() ||
3768  (Trait.needDecls() &&
3769  II->hasFETokenInfoChangedSinceDeserialization()))
3770  Generator.insert(II, ID, Trait);
3771  }
3772 
3773  // Create the on-disk hash table in a buffer.
3775  uint32_t BucketOffset;
3776  {
3777  using namespace llvm::support;
3778 
3779  llvm::raw_svector_ostream Out(IdentifierTable);
3780  // Make sure that no bucket is at offset 0
3781  endian::write<uint32_t>(Out, 0, little);
3782  BucketOffset = Generator.Emit(Out, Trait);
3783  }
3784 
3785  // Create a blob abbreviation
3786  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3787  Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE));
3788  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3789  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3790  unsigned IDTableAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3791 
3792  // Write the identifier table
3793  RecordData::value_type Record[] = {IDENTIFIER_TABLE, BucketOffset};
3794  Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable);
3795  }
3796 
3797  // Write the offsets table for identifier IDs.
3798  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3799  Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET));
3800  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers
3801  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
3802  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3803  unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3804 
3805 #ifndef NDEBUG
3806  for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I)
3807  assert(IdentifierOffsets[I] && "Missing identifier offset?");
3808 #endif
3809 
3810  RecordData::value_type Record[] = {IDENTIFIER_OFFSET,
3811  IdentifierOffsets.size(),
3812  FirstIdentID - NUM_PREDEF_IDENT_IDS};
3813  Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record,
3814  bytes(IdentifierOffsets));
3815 
3816  // In C++, write the list of interesting identifiers (those that are
3817  // defined as macros, poisoned, or similar unusual things).
3818  if (!InterestingIdents.empty())
3819  Stream.EmitRecord(INTERESTING_IDENTIFIERS, InterestingIdents);
3820 }
3821 
3822 //===----------------------------------------------------------------------===//
3823 // DeclContext's Name Lookup Table Serialization
3824 //===----------------------------------------------------------------------===//
3825 
3826 namespace {
3827 
3828 // Trait used for the on-disk hash table used in the method pool.
3829 class ASTDeclContextNameLookupTrait {
3830  ASTWriter &Writer;
3832 
3833 public:
3834  using key_type = DeclarationNameKey;
3835  using key_type_ref = key_type;
3836 
3837  /// A start and end index into DeclIDs, representing a sequence of decls.
3838  using data_type = std::pair<unsigned, unsigned>;
3839  using data_type_ref = const data_type &;
3840 
3841  using hash_value_type = unsigned;
3842  using offset_type = unsigned;
3843 
3844  explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) {}
3845 
3846  template<typename Coll>
3847  data_type getData(const Coll &Decls) {
3848  unsigned Start = DeclIDs.size();
3849  for (NamedDecl *D : Decls) {
3850  DeclIDs.push_back(
3851  Writer.GetDeclRef(getDeclForLocalLookup(Writer.getLangOpts(), D)));
3852  }
3853  return std::make_pair(Start, DeclIDs.size());
3854  }
3855 
3856  data_type ImportData(const reader::ASTDeclContextNameLookupTrait::data_type &FromReader) {
3857  unsigned Start = DeclIDs.size();
3858  for (auto ID : FromReader)
3859  DeclIDs.push_back(ID);
3860  return std::make_pair(Start, DeclIDs.size());
3861  }
3862 
3863  static bool EqualKey(key_type_ref a, key_type_ref b) {
3864  return a == b;
3865  }
3866 
3867  hash_value_type ComputeHash(DeclarationNameKey Name) {
3868  return Name.getHash();
3869  }
3870 
3871  void EmitFileRef(raw_ostream &Out, ModuleFile *F) const {
3872  assert(Writer.hasChain() &&
3873  "have reference to loaded module file but no chain?");
3874 
3875  using namespace llvm::support;
3876 
3877  endian::write<uint32_t>(Out, Writer.getChain()->getModuleFileID(F), little);
3878  }
3879 
3880  std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &Out,
3881  DeclarationNameKey Name,
3882  data_type_ref Lookup) {
3883  using namespace llvm::support;
3884 
3885  endian::Writer LE(Out, little);
3886  unsigned KeyLen = 1;
3887  switch (Name.getKind()) {
3894  KeyLen += 4;
3895  break;
3897  KeyLen += 1;
3898  break;
3903  break;
3904  }
3905  LE.write<uint16_t>(KeyLen);
3906 
3907  // 4 bytes for each DeclID.
3908  unsigned DataLen = 4 * (Lookup.second - Lookup.first);
3909  assert(uint16_t(DataLen) == DataLen &&
3910  "too many decls for serialized lookup result");
3911  LE.write<uint16_t>(DataLen);
3912 
3913  return std::make_pair(KeyLen, DataLen);
3914  }
3915 
3916  void EmitKey(raw_ostream &Out, DeclarationNameKey Name, unsigned) {
3917  using namespace llvm::support;
3918 
3919  endian::Writer LE(Out, little);
3920  LE.write<uint8_t>(Name.getKind());
3921  switch (Name.getKind()) {
3925  LE.write<uint32_t>(Writer.getIdentifierRef(Name.getIdentifier()));
3926  return;
3930  LE.write<uint32_t>(Writer.getSelectorRef(Name.getSelector()));
3931  return;
3933  assert(Name.getOperatorKind() < NUM_OVERLOADED_OPERATORS &&
3934  "Invalid operator?");
3935  LE.write<uint8_t>(Name.getOperatorKind());
3936  return;
3941  return;
3942  }
3943 
3944  llvm_unreachable("Invalid name kind?");
3945  }
3946 
3947  void EmitData(raw_ostream &Out, key_type_ref, data_type Lookup,
3948  unsigned DataLen) {
3949  using namespace llvm::support;
3950 
3951  endian::Writer LE(Out, little);
3952  uint64_t Start = Out.tell(); (void)Start;
3953  for (unsigned I = Lookup.first, N = Lookup.second; I != N; ++I)
3954  LE.write<uint32_t>(DeclIDs[I]);
3955  assert(Out.tell() - Start == DataLen && "Data length is wrong");
3956  }
3957 };
3958 
3959 } // namespace
3960 
3961 bool ASTWriter::isLookupResultExternal(StoredDeclsList &Result,
3962  DeclContext *DC) {
3963  return Result.hasExternalDecls() &&
3964  DC->hasNeedToReconcileExternalVisibleStorage();
3965 }
3966 
3967 bool ASTWriter::isLookupResultEntirelyExternal(StoredDeclsList &Result,
3968  DeclContext *DC) {
3969  for (auto *D : Result.getLookupResult())
3970  if (!getDeclForLocalLookup(getLangOpts(), D)->isFromASTFile())
3971  return false;
3972 
3973  return true;
3974 }
3975 
3976 void
3977 ASTWriter::GenerateNameLookupTable(const DeclContext *ConstDC,
3978  llvm::SmallVectorImpl<char> &LookupTable) {
3979  assert(!ConstDC->hasLazyLocalLexicalLookups() &&
3980  !ConstDC->hasLazyExternalLexicalLookups() &&
3981  "must call buildLookups first");
3982 
3983  // FIXME: We need to build the lookups table, which is logically const.
3984  auto *DC = const_cast<DeclContext*>(ConstDC);
3985  assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table");
3986 
3987  // Create the on-disk hash table representation.
3989  ASTDeclContextNameLookupTrait> Generator;
3990  ASTDeclContextNameLookupTrait Trait(*this);
3991 
3992  // The first step is to collect the declaration names which we need to
3993  // serialize into the name lookup table, and to collect them in a stable
3994  // order.
3996 
3997  // We also build up small sets of the constructor and conversion function
3998  // names which are visible.
3999  llvm::SmallSet<DeclarationName, 8> ConstructorNameSet, ConversionNameSet;
4000 
4001  for (auto &Lookup : *DC->buildLookup()) {
4002  auto &Name = Lookup.first;
4003  auto &Result = Lookup.second;
4004 
4005  // If there are no local declarations in our lookup result, we
4006  // don't need to write an entry for the name at all. If we can't
4007  // write out a lookup set without performing more deserialization,
4008  // just skip this entry.
4009  if (isLookupResultExternal(Result, DC) &&
4010  isLookupResultEntirelyExternal(Result, DC))
4011  continue;
4012 
4013  // We also skip empty results. If any of the results could be external and
4014  // the currently available results are empty, then all of the results are
4015  // external and we skip it above. So the only way we get here with an empty
4016  // results is when no results could have been external *and* we have
4017  // external results.
4018  //
4019  // FIXME: While we might want to start emitting on-disk entries for negative
4020  // lookups into a decl context as an optimization, today we *have* to skip
4021  // them because there are names with empty lookup results in decl contexts
4022  // which we can't emit in any stable ordering: we lookup constructors and
4023  // conversion functions in the enclosing namespace scope creating empty
4024  // results for them. This in almost certainly a bug in Clang's name lookup,
4025  // but that is likely to be hard or impossible to fix and so we tolerate it
4026  // here by omitting lookups with empty results.
4027  if (Lookup.second.getLookupResult().empty())
4028  continue;
4029 
4030  switch (Lookup.first.getNameKind()) {
4031  default:
4032  Names.push_back(Lookup.first);
4033  break;
4034 
4036  assert(isa<CXXRecordDecl>(DC) &&
4037  "Cannot have a constructor name outside of a class!");
4038  ConstructorNameSet.insert(Name);
4039  break;
4040 
4042  assert(isa<CXXRecordDecl>(DC) &&
4043  "Cannot have a conversion function name outside of a class!");
4044  ConversionNameSet.insert(Name);
4045  break;
4046  }
4047  }
4048 
4049  // Sort the names into a stable order.
4050  llvm::sort(Names);
4051 
4052  if (auto *D = dyn_cast<CXXRecordDecl>(DC)) {
4053  // We need to establish an ordering of constructor and conversion function
4054  // names, and they don't have an intrinsic ordering.
4055 
4056  // First we try the easy case by forming the current context's constructor
4057  // name and adding that name first. This is a very useful optimization to
4058  // avoid walking the lexical declarations in many cases, and it also
4059  // handles the only case where a constructor name can come from some other
4060  // lexical context -- when that name is an implicit constructor merged from
4061  // another declaration in the redecl chain. Any non-implicit constructor or
4062  // conversion function which doesn't occur in all the lexical contexts
4063  // would be an ODR violation.
4064  auto ImplicitCtorName = Context->DeclarationNames.getCXXConstructorName(
4065  Context->getCanonicalType(Context->getRecordType(D)));
4066  if (ConstructorNameSet.erase(ImplicitCtorName))
4067  Names.push_back(ImplicitCtorName);
4068 
4069  // If we still have constructors or conversion functions, we walk all the
4070  // names in the decl and add the constructors and conversion functions
4071  // which are visible in the order they lexically occur within the context.
4072  if (!ConstructorNameSet.empty() || !ConversionNameSet.empty())
4073  for (Decl *ChildD : cast<CXXRecordDecl>(DC)->decls())
4074  if (auto *ChildND = dyn_cast<NamedDecl>(ChildD)) {
4075  auto Name = ChildND->getDeclName();
4076  switch (Name.getNameKind()) {
4077  default:
4078  continue;
4079 
4081  if (ConstructorNameSet.erase(Name))
4082  Names.push_back(Name);
4083  break;
4084 
4086  if (ConversionNameSet.erase(Name))
4087  Names.push_back(Name);
4088  break;
4089  }
4090 
4091  if (ConstructorNameSet.empty() && ConversionNameSet.empty())
4092  break;
4093  }
4094 
4095  assert(ConstructorNameSet.empty() && "Failed to find all of the visible "
4096  "constructors by walking all the "
4097  "lexical members of the context.");
4098  assert(ConversionNameSet.empty() && "Failed to find all of the visible "
4099  "conversion functions by walking all "
4100  "the lexical members of the context.");
4101  }
4102 
4103  // Next we need to do a lookup with each name into this decl context to fully
4104  // populate any results from external sources. We don't actually use the
4105  // results of these lookups because we only want to use the results after all
4106  // results have been loaded and the pointers into them will be stable.
4107  for (auto &Name : Names)
4108  DC->lookup(Name);
4109 
4110  // Now we need to insert the results for each name into the hash table. For
4111  // constructor names and conversion function names, we actually need to merge
4112  // all of the results for them into one list of results each and insert
4113  // those.
4114  SmallVector<NamedDecl *, 8> ConstructorDecls;
4115  SmallVector<NamedDecl *, 8> ConversionDecls;
4116 
4117  // Now loop over the names, either inserting them or appending for the two
4118  // special cases.
4119  for (auto &Name : Names) {
4120  DeclContext::lookup_result Result = DC->noload_lookup(Name);
4121 
4122  switch (Name.getNameKind()) {
4123  default:
4124  Generator.insert(Name, Trait.getData(Result), Trait);
4125  break;
4126 
4128  ConstructorDecls.append(Result.begin(), Result.end());
4129  break;
4130 
4132  ConversionDecls.append(Result.begin(), Result.end());
4133  break;
4134  }
4135  }
4136 
4137  // Handle our two special cases if we ended up having any. We arbitrarily use
4138  // the first declaration's name here because the name itself isn't part of
4139  // the key, only the kind of name is used.
4140  if (!ConstructorDecls.empty())
4141  Generator.insert(ConstructorDecls.front()->getDeclName(),
4142  Trait.getData(ConstructorDecls), Trait);
4143  if (!ConversionDecls.empty())
4144  Generator.insert(ConversionDecls.front()->getDeclName(),
4145  Trait.getData(ConversionDecls), Trait);
4146 
4147  // Create the on-disk hash table. Also emit the existing imported and
4148  // merged table if there is one.
4149  auto *Lookups = Chain ? Chain->getLoadedLookupTables(DC) : nullptr;
4150  Generator.emit(LookupTable, Trait, Lookups ? &Lookups->Table : nullptr);
4151 }
4152 
4153 /// Write the block containing all of the declaration IDs
4154 /// visible from the given DeclContext.
4155 ///
4156 /// \returns the offset of the DECL_CONTEXT_VISIBLE block within the
4157 /// bitstream, or 0 if no block was written.
4158 uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context,
4159  DeclContext *DC) {
4160  // If we imported a key declaration of this namespace, write the visible
4161  // lookup results as an update record for it rather than including them
4162  // on this declaration. We will only look at key declarations on reload.
4163  if (isa<NamespaceDecl>(DC) && Chain &&
4164  Chain->getKeyDeclaration(cast<Decl>(DC))->isFromASTFile()) {
4165  // Only do this once, for the first local declaration of the namespace.
4166  for (auto *Prev = cast<NamespaceDecl>(DC)->getPreviousDecl(); Prev;
4167  Prev = Prev->getPreviousDecl())
4168  if (!Prev->isFromASTFile())
4169  return 0;
4170 
4171  // Note that we need to emit an update record for the primary context.
4172  UpdatedDeclContexts.insert(DC->getPrimaryContext());
4173 
4174  // Make sure all visible decls are written. They will be recorded later. We
4175  // do this using a side data structure so we can sort the names into
4176  // a deterministic order.
4179  LookupResults;
4180  if (Map) {
4181  LookupResults.reserve(Map->size());
4182  for (auto &Entry : *Map)
4183  LookupResults.push_back(
4184  std::make_pair(Entry.first, Entry.second.getLookupResult()));
4185  }
4186 
4187  llvm::sort(LookupResults, llvm::less_first());
4188  for (auto &NameAndResult : LookupResults) {
4189  DeclarationName Name = NameAndResult.first;
4190  DeclContext::lookup_result Result = NameAndResult.second;
4193  // We have to work around a name lookup bug here where negative lookup
4194  // results for these names get cached in namespace lookup tables (these
4195  // names should never be looked up in a namespace).
4196  assert(Result.empty() && "Cannot have a constructor or conversion "
4197  "function name in a namespace!");
4198  continue;
4199  }
4200 
4201  for (NamedDecl *ND : Result)
4202  if (!ND->isFromASTFile())
4203  GetDeclRef(ND);
4204  }
4205 
4206  return 0;
4207  }
4208 
4209  if (DC->getPrimaryContext() != DC)
4210  return 0;
4211 
4212  // Skip contexts which don't support name lookup.
4213  if (!DC->isLookupContext())
4214  return 0;
4215 
4216  // If not in C++, we perform name lookup for the translation unit via the
4217  // IdentifierInfo chains, don't bother to build a visible-declarations table.
4218  if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus)
4219  return 0;
4220 
4221  // Serialize the contents of the mapping used for lookup. Note that,
4222  // although we have two very different code paths, the serialized
4223  // representation is the same for both cases: a declaration name,
4224  // followed by a size, followed by references to the visible
4225  // declarations that have that name.
4226  uint64_t Offset = Stream.GetCurrentBitNo();
4227  StoredDeclsMap *Map = DC->buildLookup();
4228  if (!Map || Map->empty())
4229  return 0;
4230 
4231  // Create the on-disk hash table in a buffer.
4232  SmallString<4096> LookupTable;
4233  GenerateNameLookupTable(DC, LookupTable);
4234 
4235  // Write the lookup table
4236  RecordData::value_type Record[] = {DECL_CONTEXT_VISIBLE};
4237  Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record,
4238  LookupTable);
4239  ++NumVisibleDeclContexts;
4240  return Offset;
4241 }
4242 
4243 /// Write an UPDATE_VISIBLE block for the given context.
4244 ///
4245 /// UPDATE_VISIBLE blocks contain the declarations that are added to an existing
4246 /// DeclContext in a dependent AST file. As such, they only exist for the TU
4247 /// (in C++), for namespaces, and for classes with forward-declared unscoped
4248 /// enumeration members (in C++11).
4249 void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) {
4250  StoredDeclsMap *Map = DC->getLookupPtr();
4251  if (!Map || Map->empty())
4252  return;
4253 
4254  // Create the on-disk hash table in a buffer.
4255  SmallString<4096> LookupTable;
4256  GenerateNameLookupTable(DC, LookupTable);
4257 
4258  // If we're updating a namespace, select a key declaration as the key for the
4259  // update record; those are the only ones that will be checked on reload.
4260  if (isa<NamespaceDecl>(DC))
4261  DC = cast<DeclContext>(Chain->getKeyDeclaration(cast<Decl>(DC)));
4262 
4263  // Write the lookup table
4264  RecordData::value_type Record[] = {UPDATE_VISIBLE, getDeclID(cast<Decl>(DC))};
4265  Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable);
4266 }
4267 
4268 /// Write an FP_PRAGMA_OPTIONS block for the given FPOptions.
4269 void ASTWriter::WriteFPPragmaOptions(const FPOptions &Opts) {
4270  RecordData::value_type Record[] = {Opts.getInt()};
4271  Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record);
4272 }
4273 
4274 /// Write an OPENCL_EXTENSIONS block for the given OpenCLOptions.
4275 void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) {
4276  if (!SemaRef.Context.getLangOpts().OpenCL)
4277  return;
4278 
4279  const OpenCLOptions &Opts = SemaRef.getOpenCLOptions();
4280  RecordData Record;
4281  for (const auto &I:Opts.OptMap) {
4282  AddString(I.getKey(), Record);
4283  auto V = I.getValue();
4284  Record.push_back(V.Supported ? 1 : 0);
4285  Record.push_back(V.Enabled ? 1 : 0);
4286  Record.push_back(V.Avail);
4287  Record.push_back(V.Core);
4288  }
4289  Stream.EmitRecord(OPENCL_EXTENSIONS, Record);
4290 }
4291 
4292 void ASTWriter::WriteOpenCLExtensionTypes(Sema &SemaRef) {
4293  if (!SemaRef.Context.getLangOpts().OpenCL)
4294  return;
4295 
4296  // Sort the elements of the map OpenCLTypeExtMap by TypeIDs,
4297  // without copying them.
4298  const llvm::DenseMap<const Type *, std::set<std::string>> &OpenCLTypeExtMap =
4299  SemaRef.OpenCLTypeExtMap;
4300  using ElementTy = std::pair<TypeID, const std::set<std::string> *>;
4301  llvm::SmallVector<ElementTy, 8> StableOpenCLTypeExtMap;
4302  StableOpenCLTypeExtMap.reserve(OpenCLTypeExtMap.size());
4303 
4304  for (const auto &I : OpenCLTypeExtMap)
4305  StableOpenCLTypeExtMap.emplace_back(
4306  getTypeID(I.first->getCanonicalTypeInternal()), &I.second);
4307 
4308  auto CompareByTypeID = [](const ElementTy &E1, const ElementTy &E2) -> bool {
4309  return E1.first < E2.first;
4310  };
4311  llvm::sort(StableOpenCLTypeExtMap, CompareByTypeID);
4312 
4313  RecordData Record;
4314  for (const ElementTy &E : StableOpenCLTypeExtMap) {
4315  Record.push_back(E.first); // TypeID
4316  const std::set<std::string> *ExtSet = E.second;
4317  Record.push_back(static_cast<unsigned>(ExtSet->size()));
4318  for (const std::string &Ext : *ExtSet)
4319  AddString(Ext, Record);
4320  }
4321 
4322  Stream.EmitRecord(OPENCL_EXTENSION_TYPES, Record);
4323 }
4324 
4325 void ASTWriter::WriteOpenCLExtensionDecls(Sema &SemaRef) {
4326  if (!SemaRef.Context.getLangOpts().OpenCL)
4327  return;
4328 
4329  // Sort the elements of the map OpenCLDeclExtMap by DeclIDs,
4330  // without copying them.
4331  const llvm::DenseMap<const Decl *, std::set<std::string>> &OpenCLDeclExtMap =
4332  SemaRef.OpenCLDeclExtMap;
4333  using ElementTy = std::pair<DeclID, const std::set<std::string> *>;
4334  llvm::SmallVector<ElementTy, 8> StableOpenCLDeclExtMap;
4335  StableOpenCLDeclExtMap.reserve(OpenCLDeclExtMap.size());
4336 
4337  for (const auto &I : OpenCLDeclExtMap)
4338  StableOpenCLDeclExtMap.emplace_back(getDeclID(I.first), &I.second);
4339 
4340  auto CompareByDeclID = [](const ElementTy &E1, const ElementTy &E2) -> bool {
4341  return E1.first < E2.first;
4342  };
4343  llvm::sort(StableOpenCLDeclExtMap, CompareByDeclID);
4344 
4345  RecordData Record;
4346  for (const ElementTy &E : StableOpenCLDeclExtMap) {
4347  Record.push_back(E.first); // DeclID
4348  const std::set<std::string> *ExtSet = E.second;
4349  Record.push_back(static_cast<unsigned>(ExtSet->size()));
4350  for (const std::string &Ext : *ExtSet)
4351  AddString(Ext, Record);
4352  }
4353 
4354  Stream.EmitRecord(OPENCL_EXTENSION_DECLS, Record);
4355 }
4356 
4357 void ASTWriter::WriteCUDAPragmas(Sema &SemaRef) {
4358  if (SemaRef.ForceCUDAHostDeviceDepth > 0) {
4359  RecordData::value_type Record[] = {SemaRef.ForceCUDAHostDeviceDepth};
4360  Stream.EmitRecord(CUDA_PRAGMA_FORCE_HOST_DEVICE_DEPTH, Record);
4361  }
4362 }
4363 
4364 void ASTWriter::WriteObjCCategories() {
4365  SmallVector<ObjCCategoriesInfo, 2> CategoriesMap;
4366  RecordData Categories;
4367 
4368  for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) {
4369  unsigned Size = 0;
4370  unsigned StartIndex = Categories.size();
4371 
4372  ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I];
4373 
4374  // Allocate space for the size.
4375  Categories.push_back(0);
4376 
4377  // Add the categories.
4379  Cat = Class->known_categories_begin(),
4380  CatEnd = Class->known_categories_end();
4381  Cat != CatEnd; ++Cat, ++Size) {
4382  assert(getDeclID(*Cat) != 0 && "Bogus category");
4383  AddDeclRef(*Cat, Categories);
4384  }
4385 
4386  // Update the size.
4387  Categories[StartIndex] = Size;
4388 
4389  // Record this interface -> category map.
4390  ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex };
4391  CategoriesMap.push_back(CatInfo);
4392  }
4393 
4394  // Sort the categories map by the definition ID, since the reader will be
4395  // performing binary searches on this information.
4396  llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end());
4397 
4398  // Emit the categories map.
4399  using namespace llvm;
4400 
4401  auto Abbrev = std::make_shared<BitCodeAbbrev>();
4402  Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP));
4403  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries
4404  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4405  unsigned AbbrevID = Stream.EmitAbbrev(std::move(Abbrev));
4406 
4407  RecordData::value_type Record[] = {OBJC_CATEGORIES_MAP, CategoriesMap.size()};
4408  Stream.EmitRecordWithBlob(AbbrevID, Record,
4409  reinterpret_cast<char *>(CategoriesMap.data()),
4410  CategoriesMap.size() * sizeof(ObjCCategoriesInfo));
4411 
4412  // Emit the category lists.
4413  Stream.EmitRecord(OBJC_CATEGORIES, Categories);
4414 }
4415 
4416 void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) {
4418 
4419  if (LPTMap.empty())
4420  return;
4421 
4422  RecordData Record;
4423  for (auto &LPTMapEntry : LPTMap) {
4424  const FunctionDecl *FD = LPTMapEntry.first;
4425  LateParsedTemplate &LPT = *LPTMapEntry.second;
4426  AddDeclRef(FD, Record);
4427  AddDeclRef(LPT.D, Record);
4428  Record.push_back(LPT.Toks.size());
4429 
4430  for (const auto &Tok : LPT.Toks) {
4431  AddToken(Tok, Record);
4432  }
4433  }
4434  Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record);
4435 }
4436 
4437 /// Write the state of 'pragma clang optimize' at the end of the module.
4438 void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) {
4439  RecordData Record;
4440  SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation();
4441  AddSourceLocation(PragmaLoc, Record);
4442  Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record);
4443 }
4444 
4445 /// Write the state of 'pragma ms_struct' at the end of the module.
4446 void ASTWriter::WriteMSStructPragmaOptions(Sema &SemaRef) {
4447  RecordData Record;
4448  Record.push_back(SemaRef.MSStructPragmaOn ? PMSST_ON : PMSST_OFF);
4449  Stream.EmitRecord(MSSTRUCT_PRAGMA_OPTIONS, Record);
4450 }
4451 
4452 /// Write the state of 'pragma pointers_to_members' at the end of the
4453 //module.
4454 void ASTWriter::WriteMSPointersToMembersPragmaOptions(Sema &SemaRef) {
4455  RecordData Record;
4456  Record.push_back(SemaRef.MSPointerToMemberRepresentationMethod);
4457  AddSourceLocation(SemaRef.ImplicitMSInheritanceAttrLoc, Record);
4458  Stream.EmitRecord(POINTERS_TO_MEMBERS_PRAGMA_OPTIONS, Record);
4459 }
4460 
4461 /// Write the state of 'pragma pack' at the end of the module.
4462 void ASTWriter::WritePackPragmaOptions(Sema &SemaRef) {
4463  // Don't serialize pragma pack state for modules, since it should only take
4464  // effect on a per-submodule basis.
4465  if (WritingModule)
4466  return;
4467 
4468  RecordData Record;
4469  Record.push_back(SemaRef.PackStack.CurrentValue);
4470  AddSourceLocation(SemaRef.PackStack.CurrentPragmaLocation, Record);
4471  Record.push_back(SemaRef.PackStack.Stack.size());
4472  for (const auto &StackEntry : SemaRef.PackStack.Stack) {
4473  Record.push_back(StackEntry.Value);
4474  AddSourceLocation(StackEntry.PragmaLocation, Record);
4475  AddSourceLocation(StackEntry.PragmaPushLocation, Record);
4476  AddString(StackEntry.StackSlotLabel, Record);
4477  }
4478  Stream.EmitRecord(PACK_PRAGMA_OPTIONS, Record);
4479 }
4480 
4481 void ASTWriter::WriteModuleFileExtension(Sema &SemaRef,
4482  ModuleFileExtensionWriter &Writer) {
4483  // Enter the extension block.
4484  Stream.EnterSubblock(EXTENSION_BLOCK_ID, 4);
4485 
4486  // Emit the metadata record abbreviation.
4487  auto Abv = std::make_shared<llvm::BitCodeAbbrev>();
4488  Abv->Add(llvm::BitCodeAbbrevOp(EXTENSION_METADATA));
4489  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4490  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4491  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4492  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4493  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
4494  unsigned Abbrev = Stream.EmitAbbrev(std::move(Abv));
4495 
4496  // Emit the metadata record.
4497  RecordData Record;
4498  auto Metadata = Writer.getExtension()->getExtensionMetadata();
4499  Record.push_back(EXTENSION_METADATA);
4500  Record.push_back(Metadata.MajorVersion);
4501  Record.push_back(Metadata.MinorVersion);
4502  Record.push_back(Metadata.BlockName.size());
4503  Record.push_back(Metadata.UserInfo.size());
4504  SmallString<64> Buffer;
4505  Buffer += Metadata.BlockName;
4506  Buffer += Metadata.UserInfo;
4507  Stream.EmitRecordWithBlob(Abbrev, Record, Buffer);
4508 
4509  // Emit the contents of the extension block.
4510  Writer.writeExtensionContents(SemaRef, Stream);
4511 
4512  // Exit the extension block.
4513  Stream.ExitBlock();
4514 }
4515 
4516 //===----------------------------------------------------------------------===//
4517 // General Serialization Routines
4518 //===----------------------------------------------------------------------===//
4519 
4521  auto &Record = *this;
4522  if (!A)
4523  return Record.push_back(0);
4524  Record.push_back(A->getKind() + 1); // FIXME: stable encoding, target attrs
4525 
4526  Record.AddIdentifierRef(A->getAttrName());
4527  Record.AddIdentifierRef(A->getScopeName());
4528  Record.AddSourceRange(A->getRange());
4529  Record.AddSourceLocation(A->getScopeLoc());
4530  Record.push_back(A->getParsedKind());
4531  Record.push_back(A->getSyntax());
4532  Record.push_back(A->getAttributeSpellingListIndexRaw());
4533 
4534 #include "clang/Serialization/AttrPCHWrite.inc"
4535 }
4536 
4537 /// Emit the list of attributes to the specified record.
4539  push_back(Attrs.size());
4540  for (const auto *A : Attrs)
4541  AddAttr(A);
4542 }
4543 
4545  AddSourceLocation(Tok.getLocation(), Record);
4546  Record.push_back(Tok.getLength());
4547 
4548  // FIXME: When reading literal tokens, reconstruct the literal pointer
4549  // if it is needed.
4550  AddIdentifierRef(Tok.getIdentifierInfo(), Record);
4551  // FIXME: Should translate token kind to a stable encoding.
4552  Record.push_back(Tok.getKind());
4553  // FIXME: Should translate token flags to a stable encoding.
4554  Record.push_back(Tok.getFlags());
4555 }
4556 
4557 void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) {
4558  Record.push_back(Str.size());
4559  Record.insert(Record.end(), Str.begin(), Str.end());
4560 }
4561 
4563  assert(Context && "should have context when outputting path");
4564 
4565  bool Changed =
4567 
4568  // Remove a prefix to make the path relative, if relevant.
4569  const char *PathBegin = Path.data();
4570  const char *PathPtr =
4571  adjustFilenameForRelocatableAST(PathBegin, BaseDirectory);
4572  if (PathPtr != PathBegin) {
4573  Path.erase(Path.begin(), Path.begin() + (PathPtr - PathBegin));
4574  Changed = true;
4575  }
4576 
4577  return Changed;
4578 }
4579 
4580 void ASTWriter::AddPath(StringRef Path, RecordDataImpl &Record) {
4581  SmallString<128> FilePath(Path);
4582  PreparePathForOutput(FilePath);
4583  AddString(FilePath, Record);
4584 }
4585 
4586 void ASTWriter::EmitRecordWithPath(unsigned Abbrev, RecordDataRef Record,
4587  StringRef Path) {
4588  SmallString<128> FilePath(Path);
4589  PreparePathForOutput(FilePath);
4590  Stream.EmitRecordWithBlob(Abbrev, Record, FilePath);
4591 }
4592 
4593 void ASTWriter::AddVersionTuple(const VersionTuple &Version,
4594  RecordDataImpl &Record) {
4595  Record.push_back(Version.getMajor());
4596  if (Optional<unsigned> Minor = Version.getMinor())
4597  Record.push_back(*Minor + 1);
4598  else
4599  Record.push_back(0);
4600  if (Optional<unsigned> Subminor = Version.getSubminor())
4601  Record.push_back(*Subminor + 1);
4602  else
4603  Record.push_back(0);
4604 }
4605 
4606 /// Note that the identifier II occurs at the given offset
4607 /// within the identifier table.
4609  IdentID ID = IdentifierIDs[II];
4610  // Only store offsets new to this AST file. Other identifier names are looked
4611  // up earlier in the chain and thus don't need an offset.
4612  if (ID >= FirstIdentID)
4613  IdentifierOffsets[ID - FirstIdentID] = Offset;
4614 }
4615 
4616 /// Note that the selector Sel occurs at the given offset
4617 /// within the method pool/selector table.
4619  unsigned ID = SelectorIDs[Sel];
4620  assert(ID && "Unknown selector");
4621  // Don't record offsets for selectors that are also available in a different
4622  // file.
4623  if (ID < FirstSelectorID)
4624  return;
4625  SelectorOffsets[ID - FirstSelectorID] = Offset;
4626 }
4627 
4628 ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream,
4629  SmallVectorImpl<char> &Buffer,
4630  InMemoryModuleCache &ModuleCache,
4631  ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
4632  bool IncludeTimestamps)
4633  : Stream(Stream), Buffer(Buffer), ModuleCache(ModuleCache),
4634  IncludeTimestamps(IncludeTimestamps) {
4635  for (const auto &Ext : Extensions) {
4636  if (auto Writer = Ext->createExtensionWriter(*this))
4637  ModuleFileExtensionWriters.push_back(std::move(Writer));
4638  }
4639 }
4640 
4642  llvm::DeleteContainerSeconds(FileDeclIDs);
4643 }
4644 
4646  assert(WritingAST && "can't determine lang opts when not writing AST");
4647  return Context->getLangOpts();
4648 }
4649 
4651  return IncludeTimestamps ? E->getModificationTime() : 0;
4652 }
4653 
4655  const std::string &OutputFile,
4656  Module *WritingModule, StringRef isysroot,
4657  bool hasErrors,
4658  bool ShouldCacheASTInMemory) {
4659  WritingAST = true;
4660 
4661  ASTHasCompilerErrors = hasErrors;
4662 
4663  // Emit the file header.
4664  Stream.Emit((unsigned)'C', 8);
4665  Stream.Emit((unsigned)'P', 8);
4666  Stream.Emit((unsigned)'C', 8);
4667  Stream.Emit((unsigned)'H', 8);
4668 
4669  WriteBlockInfoBlock();
4670 
4671  Context = &SemaRef.Context;
4672  PP = &SemaRef.PP;
4673  this->WritingModule = WritingModule;
4674  ASTFileSignature Signature =
4675  WriteASTCore(SemaRef, isysroot, OutputFile, WritingModule);
4676  Context = nullptr;
4677  PP = nullptr;
4678  this->WritingModule = nullptr;
4679  this->BaseDirectory.clear();
4680 
4681  WritingAST = false;
4682  if (ShouldCacheASTInMemory) {
4683  // Construct MemoryBuffer and update buffer manager.
4684  ModuleCache.addBuiltPCM(OutputFile,
4685  llvm::MemoryBuffer::getMemBufferCopy(
4686  StringRef(Buffer.begin(), Buffer.size())));
4687  }
4688  return Signature;
4689 }
4690 
4691 template<typename Vector>
4692 static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec,
4693  ASTWriter::RecordData &Record) {
4694  for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end();
4695  I != E; ++I) {
4696  Writer.AddDeclRef(*I, Record);
4697  }
4698 }
4699 
4700 ASTFileSignature ASTWriter::WriteASTCore(Sema &SemaRef, StringRef isysroot,
4701  const std::string &OutputFile,
4702  Module *WritingModule) {
4703  using namespace llvm;
4704 
4705  bool isModule = WritingModule != nullptr;
4706 
4707  // Make sure that the AST reader knows to finalize itself.
4708  if (Chain)
4709  Chain->finalizeForWriting();
4710 
4711  ASTContext &Context = SemaRef.Context;
4712  Preprocessor &PP = SemaRef.PP;
4713 
4714  // Set up predefined declaration IDs.
4715  auto RegisterPredefDecl = [&] (Decl *D, PredefinedDeclIDs ID) {
4716  if (D) {
4717  assert(D->isCanonicalDecl() && "predefined decl is not canonical");
4718  DeclIDs[D] = ID;
4719  }
4720  };
4721  RegisterPredefDecl(Context.getTranslationUnitDecl(),
4723  RegisterPredefDecl(Context.ObjCIdDecl, PREDEF_DECL_OBJC_ID_ID);
4724  RegisterPredefDecl(Context.ObjCSelDecl, PREDEF_DECL_OBJC_SEL_ID);
4725  RegisterPredefDecl(Context.ObjCClassDecl, PREDEF_DECL_OBJC_CLASS_ID);
4726  RegisterPredefDecl(Context.ObjCProtocolClassDecl,
4728  RegisterPredefDecl(Context.Int128Decl, PREDEF_DECL_INT_128_ID);
4729  RegisterPredefDecl(Context.UInt128Decl, PREDEF_DECL_UNSIGNED_INT_128_ID);
4730  RegisterPredefDecl(Context.ObjCInstanceTypeDecl,
4732  RegisterPredefDecl(Context.BuiltinVaListDecl, PREDEF_DECL_BUILTIN_VA_LIST_ID);
4733  RegisterPredefDecl(Context.VaListTagDecl, PREDEF_DECL_VA_LIST_TAG);
4734  RegisterPredefDecl(Context.BuiltinMSVaListDecl,
4736  RegisterPredefDecl(Context.ExternCContext, PREDEF_DECL_EXTERN_C_CONTEXT_ID);
4737  RegisterPredefDecl(Context.MakeIntegerSeqDecl,
4739  RegisterPredefDecl(Context.CFConstantStringTypeDecl,
4741  RegisterPredefDecl(Context.CFConstantStringTagDecl,
4743  RegisterPredefDecl(Context.TypePackElementDecl,
4745 
4746  // Build a record containing all of the tentative definitions in this file, in
4747  // TentativeDefinitions order. Generally, this record will be empty for
4748  // headers.
4749  RecordData TentativeDefinitions;
4750  AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions);
4751 
4752  // Build a record containing all of the file scoped decls in this file.
4753  RecordData UnusedFileScopedDecls;
4754  if (!isModule)
4756  UnusedFileScopedDecls);
4757 
4758  // Build a record containing all of the delegating constructors we still need
4759  // to resolve.
4760  RecordData DelegatingCtorDecls;
4761  if (!isModule)
4762  AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls);
4763 
4764  // Write the set of weak, undeclared identifiers. We always write the
4765  // entire table, since later PCH files in a PCH chain are only interested in
4766  // the results at the end of the chain.
4767  RecordData WeakUndeclaredIdentifiers;
4768  for (auto &WeakUndeclaredIdentifier : SemaRef.WeakUndeclaredIdentifiers) {
4769  IdentifierInfo *II = WeakUndeclaredIdentifier.first;
4770  WeakInfo &WI = WeakUndeclaredIdentifier.second;
4771  AddIdentifierRef(II, WeakUndeclaredIdentifiers);
4772  AddIdentifierRef(WI.getAlias(), WeakUndeclaredIdentifiers);
4773  AddSourceLocation(WI.getLocation(), WeakUndeclaredIdentifiers);
4774  WeakUndeclaredIdentifiers.push_back(WI.getUsed());
4775  }
4776 
4777  // Build a record containing all of the ext_vector declarations.
4778  RecordData ExtVectorDecls;
4779  AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls);
4780 
4781  // Build a record containing all of the VTable uses information.
4782  RecordData VTableUses;
4783  if (!SemaRef.VTableUses.empty()) {
4784  for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) {
4785  AddDeclRef(SemaRef.VTableUses[I].first, VTableUses);
4786  AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses);
4787  VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]);
4788  }
4789  }
4790 
4791  // Build a record containing all of the UnusedLocalTypedefNameCandidates.
4792  RecordData UnusedLocalTypedefNameCandidates;
4793  for (const TypedefNameDecl *TD : SemaRef.UnusedLocalTypedefNameCandidates)
4794  AddDeclRef(TD, UnusedLocalTypedefNameCandidates);
4795 
4796  // Build a record containing all of pending implicit instantiations.
4797  RecordData PendingInstantiations;
4798  for (const auto &I : SemaRef.PendingInstantiations) {
4799  AddDeclRef(I.first, PendingInstantiations);
4800  AddSourceLocation(I.second, PendingInstantiations);
4801  }
4802  assert(SemaRef.PendingLocalImplicitInstantiations.empty() &&
4803  "There are local ones at end of translation unit!");
4804 
4805  // Build a record containing some declaration references.
4806  RecordData SemaDeclRefs;
4807  if (SemaRef.StdNamespace || SemaRef.StdBadAlloc || SemaRef.StdAlignValT) {
4808  AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs);
4809  AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs);
4810  AddDeclRef(SemaRef.getStdAlignValT(), SemaDeclRefs);
4811  }
4812 
4813  RecordData CUDASpecialDeclRefs;
4814  if (Context.getcudaConfigureCallDecl()) {
4815  AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs);
4816  }
4817 
4818  // Build a record containing all of the known namespaces.
4819  RecordData KnownNamespaces;
4820  for (const auto &I : SemaRef.KnownNamespaces) {
4821  if (!I.second)
4822  AddDeclRef(I.first, KnownNamespaces);
4823  }
4824 
4825  // Build a record of all used, undefined objects that require definitions.
4826  RecordData UndefinedButUsed;
4827 
4829  SemaRef.getUndefinedButUsed(Undefined);
4830  for (const auto &I : Undefined) {
4831  AddDeclRef(I.first, UndefinedButUsed);
4832  AddSourceLocation(I.second, UndefinedButUsed);
4833  }
4834 
4835  // Build a record containing all delete-expressions that we would like to
4836  // analyze later in AST.
4837  RecordData DeleteExprsToAnalyze;
4838 
4839  if (!isModule) {
4840  for (const auto &DeleteExprsInfo :
4841  SemaRef.getMismatchingDeleteExpressions()) {
4842  AddDeclRef(DeleteExprsInfo.first, DeleteExprsToAnalyze);
4843  DeleteExprsToAnalyze.push_back(DeleteExprsInfo.second.size());
4844  for (const auto &DeleteLoc : DeleteExprsInfo.second) {
4845  AddSourceLocation(DeleteLoc.first, DeleteExprsToAnalyze);
4846  DeleteExprsToAnalyze.push_back(DeleteLoc.second);
4847  }
4848  }
4849  }
4850 
4851  // Write the control block
4852  WriteControlBlock(PP, Context, isysroot, OutputFile);
4853 
4854  // Write the remaining AST contents.
4855  Stream.EnterSubblock(AST_BLOCK_ID, 5);
4856 
4857  // This is so that older clang versions, before the introduction
4858  // of the control block, can read and reject the newer PCH format.
4859  {
4860  RecordData Record = {VERSION_MAJOR};
4861  Stream.EmitRecord(METADATA_OLD_FORMAT, Record);
4862  }
4863 
4864  // Create a lexical update block containing all of the declarations in the
4865  // translation unit that do not come from other AST files.
4866  const TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
4867  SmallVector<uint32_t, 128> NewGlobalKindDeclPairs;
4868  for (const auto *D : TU->noload_decls()) {
4869  if (!D->isFromASTFile()) {
4870  NewGlobalKindDeclPairs.push_back(D->getKind());
4871  NewGlobalKindDeclPairs.push_back(GetDeclRef(D));
4872  }
4873  }
4874 
4875  auto Abv = std::make_shared<BitCodeAbbrev>();
4876  Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL));
4877  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
4878  unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(std::move(Abv));
4879  {
4880  RecordData::value_type Record[] = {TU_UPDATE_LEXICAL};
4881  Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record,
4882  bytes(NewGlobalKindDeclPairs));
4883  }
4884 
4885  // And a visible updates block for the translation unit.
4886  Abv = std::make_shared<BitCodeAbbrev>();
4887  Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE));
4888  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4889  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
4890  UpdateVisibleAbbrev = Stream.EmitAbbrev(std::move(Abv));
4891  WriteDeclContextVisibleUpdate(TU);
4892 
4893  // If we have any extern "C" names, write out a visible update for them.
4894  if (Context.ExternCContext)
4895  WriteDeclContextVisibleUpdate(Context.ExternCContext);
4896 
4897  // If the translation unit has an anonymous namespace, and we don't already
4898  // have an update block for it, write it as an update block.
4899  // FIXME: Why do we not do this if there's already an update block?
4900  if (NamespaceDecl *NS = TU->getAnonymousNamespace()) {
4901  ASTWriter::UpdateRecord &Record = DeclUpdates[TU];
4902  if (Record.empty())
4903  Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS));
4904  }
4905 
4906  // Add update records for all mangling numbers and static local numbers.
4907  // These aren't really update records, but this is a convenient way of
4908  // tagging this rare extra data onto the declarations.
4909  for (const auto &Number : Context.MangleNumbers)
4910  if (!Number.first->isFromASTFile())
4911  DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER,
4912  Number.second));
4913  for (const auto &Number : Context.StaticLocalNumbers)
4914  if (!Number.first->isFromASTFile())
4915  DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER,
4916  Number.second));
4917 
4918  // Make sure visible decls, added to DeclContexts previously loaded from
4919  // an AST file, are registered for serialization. Likewise for template
4920  // specializations added to imported templates.
4921  for (const auto *I : DeclsToEmitEvenIfUnreferenced) {
4922  GetDeclRef(I);
4923  }
4924 
4925  // Make sure all decls associated with an identifier are registered for
4926  // serialization, if we're storing decls with identifiers.
4927  if (!WritingModule || !getLangOpts().CPlusPlus) {
4929  for (const auto &ID : PP.getIdentifierTable()) {
4930  const IdentifierInfo *II = ID.second;
4931  if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization())
4932  IIs.push_back(II);
4933  }
4934  // Sort the identifiers to visit based on their name.
4935  llvm::sort(IIs, llvm::deref<std::less<>>());
4936  for (const IdentifierInfo *II : IIs) {
4937  for (IdentifierResolver::iterator D = SemaRef.IdResolver.begin(II),
4938  DEnd = SemaRef.IdResolver.end();
4939  D != DEnd; ++D) {
4940  GetDeclRef(*D);
4941  }
4942  }
4943  }
4944 
4945  // For method pool in the module, if it contains an entry for a selector,
4946  // the entry should be complete, containing everything introduced by that
4947  // module and all modules it imports. It's possible that the entry is out of
4948  // date, so we need to pull in the new content here.
4949 
4950  // It's possible that updateOutOfDateSelector can update SelectorIDs. To be
4951  // safe, we copy all selectors out.
4952  llvm::SmallVector<Selector, 256> AllSelectors;
4953  for (auto &SelectorAndID : SelectorIDs)
4954  AllSelectors.push_back(SelectorAndID.first);
4955  for (auto &Selector : AllSelectors)
4957 
4958  // Form the record of special types.
4959  RecordData SpecialTypes;
4960  AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes);
4961  AddTypeRef(Context.getFILEType(), SpecialTypes);
4962  AddTypeRef(Context.getjmp_bufType(), SpecialTypes);
4963  AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes);
4964  AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes);
4965  AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes);
4966  AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes);
4967  AddTypeRef(Context.getucontext_tType(), SpecialTypes);
4968 
4969  if (Chain) {
4970  // Write the mapping information describing our module dependencies and how
4971  // each of those modules were mapped into our own offset/ID space, so that
4972  // the reader can build the appropriate mapping to its own offset/ID space.
4973  // The map consists solely of a blob with the following format:
4974  // *(module-kind:i8
4975  // module-name-len:i16 module-name:len*i8
4976  // source-location-offset:i32
4977  // identifier-id:i32
4978  // preprocessed-entity-id:i32
4979  // macro-definition-id:i32
4980  // submodule-id:i32
4981  // selector-id:i32
4982  // declaration-id:i32
4983  // c++-base-specifiers-id:i32
4984  // type-id:i32)
4985  //
4986  // module-kind is the ModuleKind enum value. If it is MK_PrebuiltModule or
4987  // MK_ExplicitModule, then the module-name is the module name. Otherwise,
4988  // it is the module file name.
4989  auto Abbrev = std::make_shared<BitCodeAbbrev>();
4990  Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP));
4991  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4992  unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
4993  SmallString<2048> Buffer;
4994  {
4995  llvm::raw_svector_ostream Out(Buffer);
4996  for (ModuleFile &M : Chain->ModuleMgr) {
4997  using namespace llvm::support;
4998 
4999  endian::Writer LE(Out, little);
5000  LE.write<uint8_t>(static_cast<uint8_t>(M.Kind));
5001  StringRef Name =
5003  ? M.ModuleName
5004  : M.FileName;
5005  LE.write<uint16_t>(Name.size());
5006  Out.write(Name.data(), Name.size());
5007 
5008  // Note: if a base ID was uint max, it would not be possible to load
5009  // another module after it or have more than one entity inside it.
5011 
5012  auto writeBaseIDOrNone = [&](uint32_t BaseID, bool ShouldWrite) {
5013  assert(BaseID < std::numeric_limits<uint32_t>::max() && "base id too high");
5014  if (ShouldWrite)
5015  LE.write<uint32_t>(BaseID);
5016  else
5017  LE.write<uint32_t>(None);
5018  };
5019 
5020  // These values should be unique within a chain, since they will be read
5021  // as keys into ContinuousRangeMaps.
5022  writeBaseIDOrNone(M.SLocEntryBaseOffset, M.LocalNumSLocEntries);
5023  writeBaseIDOrNone(M.BaseIdentifierID, M.LocalNumIdentifiers);
5024  writeBaseIDOrNone(M.BaseMacroID, M.LocalNumMacros);
5025  writeBaseIDOrNone(M.BasePreprocessedEntityID,
5027  writeBaseIDOrNone(M.BaseSubmoduleID, M.LocalNumSubmodules);
5028  writeBaseIDOrNone(M.BaseSelectorID, M.LocalNumSelectors);
5029  writeBaseIDOrNone(M.BaseDeclID, M.LocalNumDecls);
5030  writeBaseIDOrNone(M.BaseTypeIndex, M.LocalNumTypes);
5031  }
5032  }
5033  RecordData::value_type Record[] = {MODULE_OFFSET_MAP};
5034  Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record,
5035  Buffer.data(), Buffer.size());
5036  }
5037 
5038  RecordData DeclUpdatesOffsetsRecord;
5039 
5040  // Keep writing types, declarations, and declaration update records
5041  // until we've emitted all of them.
5042  Stream.EnterSubblock(DECLTYPES_BLOCK_ID, /*bits for abbreviations*/5);
5043  WriteTypeAbbrevs();
5044  WriteDeclAbbrevs();
5045  do {
5046  WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord);
5047  while (!DeclTypesToEmit.empty()) {
5048  DeclOrType DOT = DeclTypesToEmit.front();
5049  DeclTypesToEmit.pop();
5050  if (DOT.isType())
5051  WriteType(DOT.getType());
5052  else
5053  WriteDecl(Context, DOT.getDecl());
5054  }
5055  } while (!DeclUpdates.empty());
5056  Stream.ExitBlock();
5057 
5058  DoneWritingDeclsAndTypes = true;
5059 
5060  // These things can only be done once we've written out decls and types.
5061  WriteTypeDeclOffsets();
5062  if (!DeclUpdatesOffsetsRecord.empty())
5063  Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord);
5064  WriteFileDeclIDsMap();
5065  WriteSourceManagerBlock(Context.getSourceManager(), PP);
5066  WriteComments();
5067  WritePreprocessor(PP, isModule);
5068  WriteHeaderSearch(PP.getHeaderSearchInfo());
5069  WriteSelectors(SemaRef);
5070  WriteReferencedSelectorsPool(SemaRef);
5071  WriteLateParsedTemplates(SemaRef);
5072  WriteIdentifierTable(PP, SemaRef.IdResolver, isModule);
5073  WriteFPPragmaOptions(SemaRef.getFPOptions());
5074  WriteOpenCLExtensions(SemaRef);
5075  WriteOpenCLExtensionTypes(SemaRef);
5076  WriteCUDAPragmas(SemaRef);
5077 
5078  // If we're emitting a module, write out the submodule information.
5079  if (WritingModule)
5080  WriteSubmodules(WritingModule);
5081 
5082  // We need to have information about submodules to correctly deserialize
5083  // decls from OpenCLExtensionDecls block
5084  WriteOpenCLExtensionDecls(SemaRef);
5085 
5086  Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes);
5087 
5088  // Write the record containing external, unnamed definitions.
5089  if (!EagerlyDeserializedDecls.empty())
5090  Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls);
5091 
5092  if (!ModularCodegenDecls.empty())
5093  Stream.EmitRecord(MODULAR_CODEGEN_DECLS, ModularCodegenDecls);
5094 
5095  // Write the record containing tentative definitions.
5096  if (!TentativeDefinitions.empty())
5097  Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions);
5098 
5099  // Write the record containing unused file scoped decls.
5100  if (!UnusedFileScopedDecls.empty())
5101  Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls);
5102 
5103  // Write the record containing weak undeclared identifiers.
5104  if (!WeakUndeclaredIdentifiers.empty())
5105  Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS,
5106  WeakUndeclaredIdentifiers);
5107 
5108  // Write the record containing ext_vector type names.
5109  if (!ExtVectorDecls.empty())
5110  Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls);
5111 
5112  // Write the record containing VTable uses information.
5113  if (!VTableUses.empty())
5114  Stream.EmitRecord(VTABLE_USES, VTableUses);
5115 
5116  // Write the record containing potentially unused local typedefs.
5117  if (!UnusedLocalTypedefNameCandidates.empty())
5118  Stream.EmitRecord(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES,
5119  UnusedLocalTypedefNameCandidates);
5120 
5121  // Write the record containing pending implicit instantiations.
5122  if (!PendingInstantiations.empty())
5123  Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations);
5124 
5125  // Write the record containing declaration references of Sema.
5126  if (!SemaDeclRefs.empty())
5127  Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs);
5128 
5129  // Write the record containing CUDA-specific declaration references.
5130  if (!CUDASpecialDeclRefs.empty())
5131  Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs);
5132 
5133  // Write the delegating constructors.
5134  if (!DelegatingCtorDecls.empty())
5135  Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls);
5136 
5137  // Write the known namespaces.
5138  if (!KnownNamespaces.empty())
5139  Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces);
5140 
5141  // Write the undefined internal functions and variables, and inline functions.
5142  if (!UndefinedButUsed.empty())
5143  Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed);
5144 
5145  if (!DeleteExprsToAnalyze.empty())
5146  Stream.EmitRecord(DELETE_EXPRS_TO_ANALYZE, DeleteExprsToAnalyze);
5147 
5148  // Write the visible updates to DeclContexts.
5149  for (auto *DC : UpdatedDeclContexts)
5150  WriteDeclContextVisibleUpdate(DC);
5151 
5152  if (!WritingModule) {
5153  // Write the submodules that were imported, if any.
5154  struct ModuleInfo {
5155  uint64_t ID;
5156  Module *M;
5157  ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {}
5158  };
5160  for (const auto *I : Context.local_imports()) {
5161  assert(SubmoduleIDs.find(I->getImportedModule()) != SubmoduleIDs.end());
5162  Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()],
5163  I->getImportedModule()));
5164  }
5165 
5166  if (!Imports.empty()) {
5167  auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) {
5168  return A.ID < B.ID;
5169  };
5170  auto Eq = [](const ModuleInfo &A, const ModuleInfo &B) {
5171  return A.ID == B.ID;
5172  };
5173 
5174  // Sort and deduplicate module IDs.
5175  llvm::sort(Imports, Cmp);
5176  Imports.erase(std::unique(Imports.begin(), Imports.end(), Eq),
5177  Imports.end());
5178 
5179  RecordData ImportedModules;
5180  for (const auto &Import : Imports) {
5181  ImportedModules.push_back(Import.ID);
5182  // FIXME: If the module has macros imported then later has declarations
5183  // imported, this location won't be the right one as a location for the
5184  // declaration imports.
5185  AddSourceLocation(PP.getModuleImportLoc(Import.M), ImportedModules);
5186  }
5187 
5188  Stream.EmitRecord(IMPORTED_MODULES, ImportedModules);
5189  }
5190  }
5191 
5192  WriteObjCCategories();
5193  if(!WritingModule) {
5194  WriteOptimizePragmaOptions(SemaRef);
5195  WriteMSStructPragmaOptions(SemaRef);
5196  WriteMSPointersToMembersPragmaOptions(SemaRef);
5197  }
5198  WritePackPragmaOptions(SemaRef);
5199 
5200  // Some simple statistics
5201  RecordData::value_type Record[] = {
5202  NumStatements, NumMacros, NumLexicalDeclContexts, NumVisibleDeclContexts};
5203  Stream.EmitRecord(STATISTICS, Record);
5204  Stream.ExitBlock();
5205 
5206  // Write the module file extension blocks.
5207  for (const auto &ExtWriter : ModuleFileExtensionWriters)
5208  WriteModuleFileExtension(SemaRef, *ExtWriter);
5209 
5210  return writeUnhashedControlBlock(PP, Context);
5211 }
5212 
5213 void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) {
5214  if (DeclUpdates.empty())
5215  return;
5216 
5217  DeclUpdateMap LocalUpdates;
5218  LocalUpdates.swap(DeclUpdates);
5219 
5220  for (auto &DeclUpdate : LocalUpdates) {
5221  const Decl *D = DeclUpdate.first;
5222 
5223  bool HasUpdatedBody = false;
5225  ASTRecordWriter Record(*this, RecordData);
5226  for (auto &Update : DeclUpdate.second) {
5228 
5229  // An updated body is emitted last, so that the reader doesn't need
5230  // to skip over the lazy body to reach statements for other records.
5232  HasUpdatedBody = true;
5233  else
5234  Record.push_back(Kind);
5235 
5236  switch (Kind) {
5240  assert(Update.getDecl() && "no decl to add?");
5241  Record.push_back(GetDeclRef(Update.getDecl()));
5242  break;
5243 
5245  break;
5246 
5248  // FIXME: Do we need to also save the template specialization kind here?
5249  Record.AddSourceLocation(Update.getLoc());
5250  break;
5251 
5253  const VarDecl *VD = cast<VarDecl>(D);
5254  Record.push_back(VD->isInline());
5255  Record.push_back(VD->isInlineSpecified());
5256  if (VD->getInit()) {
5257  Record.push_back(!VD->isInitKnownICE() ? 1
5258  : (VD->isInitICE() ? 3 : 2));
5259  Record.AddStmt(const_cast<Expr*>(VD->getInit()));
5260  } else {
5261  Record.push_back(0);
5262  }
5263  break;
5264  }
5265 
5267  Record.AddStmt(const_cast<Expr *>(
5268  cast<ParmVarDecl>(Update.getDecl())->getDefaultArg()));
5269  break;
5270 
5272  Record.AddStmt(
5273  cast<FieldDecl>(Update.getDecl())->getInClassInitializer());
5274  break;
5275 
5277  auto *RD = cast<CXXRecordDecl>(D);
5278  UpdatedDeclContexts.insert(RD->getPrimaryContext());
5279  Record.push_back(RD->isParamDestroyedInCallee());
5280  Record.push_back(RD->getArgPassingRestrictions());
5281  Record.AddCXXDefinitionData(RD);
5282  Record.AddOffset(WriteDeclContextLexicalBlock(
5283  *Context, const_cast<CXXRecordDecl *>(RD)));
5284 
5285  // This state is sometimes updated by template instantiation, when we
5286  // switch from the specialization referring to the template declaration
5287  // to it referring to the template definition.
5288  if (auto *MSInfo = RD->getMemberSpecializationInfo()) {
5289  Record.push_back(MSInfo->getTemplateSpecializationKind());
5290  Record.AddSourceLocation(MSInfo->getPointOfInstantiation());
5291  } else {
5292  auto *Spec = cast<ClassTemplateSpecializationDecl>(RD);
5293  Record.push_back(Spec->getTemplateSpecializationKind());
5294  Record.AddSourceLocation(Spec->getPointOfInstantiation());
5295 
5296  // The instantiation might have been resolved to a partial
5297  // specialization. If so, record which one.
5298  auto From = Spec->getInstantiatedFrom();
5299  if (auto PartialSpec =
5300  From.dyn_cast<ClassTemplatePartialSpecializationDecl*>()) {
5301  Record.push_back(true);
5302  Record.AddDeclRef(PartialSpec);
5303  Record.AddTemplateArgumentList(
5304  &Spec->getTemplateInstantiationArgs());
5305  } else {
5306  Record.push_back(false);
5307  }
5308  }
5309  Record.push_back(RD->getTagKind());
5310  Record.AddSourceLocation(RD->getLocation());
5311  Record.AddSourceLocation(RD->getBeginLoc());
5312  Record.AddSourceRange(RD->getBraceRange());
5313 
5314  // Instantiation may change attributes; write them all out afresh.
5315  Record.push_back(D->hasAttrs());
5316  if (D->hasAttrs())
5317  Record.AddAttributes(D->getAttrs());
5318 
5319  // FIXME: Ensure we don't get here for explicit instantiations.
5320  break;
5321  }
5322 
5324  Record.AddDeclRef(Update.getDecl());
5325  Record.AddStmt(cast<CXXDestructorDecl>(D)->getOperatorDeleteThisArg());
5326  break;
5327 
5330  cast<FunctionDecl>(D)->getType()->castAs<FunctionProtoType>(),
5331  Record);
5332  break;
5333 
5335  Record.push_back(GetOrCreateTypeID(Update.getType()));
5336  break;
5337 
5338  case UPD_DECL_MARKED_USED:
5339  break;
5340 
5341  case UPD_MANGLING_NUMBER:
5343  Record.push_back(Update.getNumber());
5344  break;
5345 
5347  Record.AddSourceRange(
5348  D->getAttr<OMPThreadPrivateDeclAttr>()->getRange());
5349  break;
5350 
5352  auto *A = D->getAttr<OMPAllocateDeclAttr>();
5353  Record.push_back(A->getAllocatorType());
5354  Record.AddStmt(A->getAllocator());
5355  Record.AddSourceRange(A->getRange());
5356  break;
5357  }
5358 
5360  Record.push_back(D->getAttr<OMPDeclareTargetDeclAttr>()->getMapType());
5361  Record.AddSourceRange(
5362  D->getAttr<OMPDeclareTargetDeclAttr>()->getRange());
5363  break;
5364 
5365  case UPD_DECL_EXPORTED:
5366  Record.push_back(getSubmoduleID(Update.getModule()));
5367  break;
5368 
5370  Record.AddAttributes(llvm::makeArrayRef(Update.getAttr()));
5371  break;
5372  }
5373  }
5374 
5375  if (HasUpdatedBody) {
5376  const auto *Def = cast<FunctionDecl>(D);
5378  Record.push_back(Def->isInlined());
5379  Record.AddSourceLocation(Def->getInnerLocStart());
5380  Record.AddFunctionDefinition(Def);
5381  }
5382 
5383  OffsetsRecord.push_back(GetDeclRef(D));
5384  OffsetsRecord.push_back(Record.Emit(DECL_UPDATES));
5385  }
5386 }
5387 
5389  uint32_t Raw = Loc.getRawEncoding();
5390  Record.push_back((Raw << 1) | (Raw >> 31));
5391 }
5392 
5394  AddSourceLocation(Range.getBegin(), Record);
5395  AddSourceLocation(Range.getEnd(), Record);
5396 }
5397 
5399  Record->push_back(Value.getBitWidth());
5400  const uint64_t *Words = Value.getRawData();
5401  Record->append(Words, Words + Value.getNumWords());
5402 }
5403 
5405  Record->push_back(Value.isUnsigned());
5406  AddAPInt(Value);
5407 }
5408 
5409 void ASTRecordWriter::AddAPFloat(const llvm::APFloat &Value) {
5410  AddAPInt(Value.bitcastToAPInt());
5411 }
5412 
5414  FixedPointSemantics FPSema) {
5415  Record.push_back(FPSema.getWidth());
5416  Record.push_back(FPSema.getScale());
5417  Record.push_back(FPSema.isSigned() | FPSema.isSaturated() << 1 |
5418  FPSema.hasUnsignedPadding() << 2);
5419 }
5420 
5422  APValue::ValueKind Kind = Value.getKind();
5423  push_back(static_cast<uint64_t>(Kind));
5424  switch (Kind) {
5425  case APValue::None:
5427  return;
5428  case APValue::Int:
5429  AddAPSInt(Value.getInt());
5430  return;
5431  case APValue::Float:
5432  push_back(static_cast<uint64_t>(
5433  llvm::APFloatBase::SemanticsToEnum(Value.getFloat().getSemantics())));
5434  AddAPFloat(Value.getFloat());
5435  return;
5436  case APValue::FixedPoint: {
5438  AddAPSInt(Value.getFixedPoint().getValue());
5439  return;
5440  }
5441  case APValue::ComplexInt: {
5442  AddAPSInt(Value.getComplexIntReal());
5443  AddAPSInt(Value.getComplexIntImag());
5444  return;
5445  }
5446  case APValue::ComplexFloat: {
5447  push_back(static_cast<uint64_t>(llvm::APFloatBase::SemanticsToEnum(
5448  Value.getComplexFloatReal().getSemantics())));
5449  AddAPFloat(Value.getComplexFloatReal());
5450  push_back(static_cast<uint64_t>(llvm::APFloatBase::SemanticsToEnum(
5451  Value.getComplexFloatImag().getSemantics())));
5452  AddAPFloat(Value.getComplexFloatImag());
5453  return;
5454  }
5455  case APValue::LValue:
5456  case APValue::Vector:
5457  case APValue::Array:
5458  case APValue::Struct:
5459  case APValue::Union:
5462  // TODO : Handle all these APValue::ValueKind.
5463  return;
5464  }
5465  llvm_unreachable("Invalid APValue::ValueKind");
5466 }
5467 
5469  Record.push_back(getIdentifierRef(II));
5470 }
5471 
5473  if (!II)
5474  return 0;
5475 
5476  IdentID &ID = IdentifierIDs[II];
5477  if (ID == 0)
5478  ID = NextIdentID++;
5479  return ID;
5480 }
5481 
5483  // Don't emit builtin macros like __LINE__ to the AST file unless they
5484  // have been redefined by the header (in which case they are not
5485  // isBuiltinMacro).
5486  if (!MI || MI->isBuiltinMacro())
5487  return 0;
5488 
5489  MacroID &ID = MacroIDs[MI];
5490  if (ID == 0) {
5491  ID = NextMacroID++;
5492  MacroInfoToEmitData Info = { Name, MI, ID };
5493  MacroInfosToEmit.push_back(Info);
5494  }
5495  return ID;
5496 }
5497 
5499  if (!MI || MI->isBuiltinMacro())
5500  return 0;
5501 
5502  assert(MacroIDs.find(MI) != MacroIDs.end() && "Macro not emitted!");
5503  return MacroIDs[MI];
5504 }
5505 
5507  return IdentMacroDirectivesOffsetMap.lookup(Name);
5508 }
5509 
5511  Record->push_back(Writer->getSelectorRef(SelRef));
5512 }
5513 
5515  if (Sel.getAsOpaquePtr() == nullptr) {
5516  return 0;
5517  }
5518 
5519  SelectorID SID = SelectorIDs[Sel];
5520  if (SID == 0 && Chain) {
5521  // This might trigger a ReadSelector callback, which will set the ID for
5522  // this selector.
5523  Chain->LoadSelector(Sel);
5524  SID = SelectorIDs[Sel];
5525  }
5526  if (SID == 0) {
5527  SID = NextSelectorID++;
5528  SelectorIDs[Sel] = SID;
5529  }
5530  return SID;
5531 }
5532 
5534  AddDeclRef(Temp->getDestructor());
5535 }
5536 
5539  switch (Kind) {
5541  AddStmt(Arg.getAsExpr());
5542  break;
5544  AddTypeSourceInfo(Arg.getAsTypeSourceInfo());
5545  break;
5547  AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc());
5549  break;
5551  AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc());
5554  break;
5560  // FIXME: Is this right?
5561  break;
5562  }
5563 }
5564 
5566  AddTemplateArgument(Arg.getArgument());
5567 
5569  bool InfoHasSameExpr
5570  = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr();
5571  Record->push_back(InfoHasSameExpr);
5572  if (InfoHasSameExpr)
5573  return; // Avoid storing the same expr twice.
5574  }
5575  AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo());
5576 }
5577 
5579  if (!TInfo) {
5580  AddTypeRef(QualType());
5581  return;
5582  }
5583 
5584  AddTypeRef(TInfo->getType());
5585  AddTypeLoc(TInfo->getTypeLoc());
5586 }
5587 
5589  TypeLocWriter TLW(*this);
5590  for (; !TL.isNull(); TL = TL.getNextTypeLoc())
5591  TLW.Visit(TL);
5592 }
5593 
5595  Record.push_back(GetOrCreateTypeID(T));
5596 }
5597 
5599  assert(Context);
5600  return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx {
5601  if (T.isNull())
5602  return TypeIdx();
5603  assert(!T.getLocalFastQualifiers());
5604 
5605  TypeIdx &Idx = TypeIdxs[T];
5606  if (Idx.getIndex() == 0) {
5607  if (DoneWritingDeclsAndTypes) {
5608  assert(0 && "New type seen after serializing all the types to emit!");
5609  return TypeIdx();
5610  }
5611 
5612  // We haven't seen this type before. Assign it a new ID and put it
5613  // into the queue of types to emit.
5614  Idx = TypeIdx(NextTypeID++);
5615  DeclTypesToEmit.push(T);
5616  }
5617  return Idx;
5618  });
5619 }
5620 
5622  assert(Context);
5623  return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx {
5624  if (T.isNull())
5625  return TypeIdx();
5626  assert(!T.getLocalFastQualifiers());
5627 
5628  TypeIdxMap::const_iterator I = TypeIdxs.find(T);
5629  assert(I != TypeIdxs.end() && "Type not emitted!");
5630  return I->second;
5631  });
5632 }
5633 
5634 void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) {
5635  Record.push_back(GetDeclRef(D));
5636 }
5637 
5639  assert(WritingAST && "Cannot request a declaration ID before AST writing");
5640 
5641  if (!D) {
5642  return 0;
5643  }
5644 
5645  // If D comes from an AST file, its declaration ID is already known and
5646  // fixed.
5647  if (D->isFromASTFile())
5648  return D->getGlobalID();
5649 
5650  assert(!(reinterpret_cast<uintptr_t>(D) & 0x01) && "Invalid decl pointer");
5651  DeclID &ID = DeclIDs[D];
5652  if (ID == 0) {
5653  if (DoneWritingDeclsAndTypes) {
5654  assert(0 && "New decl seen after serializing all the decls to emit!");
5655  return 0;
5656  }
5657 
5658  // We haven't seen this declaration before. Give it a new ID and
5659  // enqueue it in the list of declarations to emit.
5660  ID = NextDeclID++;
5661  DeclTypesToEmit.push(const_cast<Decl *>(D));
5662  }
5663 
5664  return ID;
5665 }
5666 
5668  if (!D)
5669  return 0;
5670 
5671  // If D comes from an AST file, its declaration ID is already known and
5672  // fixed.
5673  if (D->isFromASTFile())
5674  return D->getGlobalID();
5675 
5676  assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!");
5677  return DeclIDs[D];
5678 }
5679 
5680 void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) {
5681  assert(ID);
5682  assert(D);
5683 
5684  SourceLocation Loc = D->getLocation();
5685  if (Loc.isInvalid())
5686  return;
5687 
5688  // We only keep track of the file-level declarations of each file.
5689  if (!D->getLexicalDeclContext()->isFileContext())
5690  return;
5691  // FIXME: ParmVarDecls that are part of a function type of a parameter of
5692  // a function/objc method, should not have TU as lexical context.
5693  // TemplateTemplateParmDecls that are part of an alias template, should not
5694  // have TU as lexical context.
5695  if (isa<ParmVarDecl>(D) || isa<TemplateTemplateParmDecl>(D))
5696  return;
5697 
5698  SourceManager &SM = Context->getSourceManager();
5699  SourceLocation FileLoc = SM.getFileLoc(Loc);
5700  assert(SM.isLocalSourceLocation(FileLoc));
5701  FileID FID;
5702  unsigned Offset;
5703  std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc);
5704  if (FID.isInvalid())
5705  return;
5706  assert(SM.getSLocEntry(FID).isFile());
5707 
5708  DeclIDInFileInfo *&Info = FileDeclIDs[FID];
5709  if (!Info)
5710  Info = new DeclIDInFileInfo();
5711 
5712  std::pair<unsigned, serialization::DeclID> LocDecl(Offset, ID);
5713  LocDeclIDsTy &Decls = Info->DeclIDs;
5714 
5715  if (Decls.empty() || Decls.back().first <= Offset) {
5716  Decls.push_back(LocDecl);
5717  return;
5718  }
5719 
5720  LocDeclIDsTy::iterator I =
5721  llvm::upper_bound(Decls, LocDecl, llvm::less_first());
5722 
5723  Decls.insert(I, LocDecl);
5724 }
5725 
5727  // FIXME: Emit a stable enum for NameKind. 0 = Identifier etc.
5728  Record->push_back(Name.getNameKind());
5729  switch (Name.getNameKind()) {
5732  break;
5733