clang  8.0.0svn
ASTWriter.cpp
Go to the documentation of this file.
1 //===- ASTWriter.cpp - AST File Writer ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ASTWriter class, which writes AST files.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "ASTCommon.h"
16 #include "ASTReaderInternals.h"
17 #include "MultiOnDiskHashTable.h"
18 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclBase.h"
23 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclFriend.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/ExprCXX.h"
34 #include "clang/AST/TemplateName.h"
35 #include "clang/AST/Type.h"
37 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/Lambda.h"
46 #include "clang/Basic/Module.h"
52 #include "clang/Basic/Specifiers.h"
53 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/Version.h"
56 #include "clang/Lex/HeaderSearch.h"
58 #include "clang/Lex/MacroInfo.h"
59 #include "clang/Lex/ModuleMap.h"
61 #include "clang/Lex/Preprocessor.h"
63 #include "clang/Lex/Token.h"
66 #include "clang/Sema/Sema.h"
67 #include "clang/Sema/Weak.h"
72 #include "llvm/ADT/APFloat.h"
73 #include "llvm/ADT/APInt.h"
74 #include "llvm/ADT/APSInt.h"
75 #include "llvm/ADT/ArrayRef.h"
76 #include "llvm/ADT/DenseMap.h"
77 #include "llvm/ADT/Hashing.h"
78 #include "llvm/ADT/Optional.h"
79 #include "llvm/ADT/PointerIntPair.h"
80 #include "llvm/ADT/STLExtras.h"
81 #include "llvm/ADT/ScopeExit.h"
82 #include "llvm/ADT/SmallSet.h"
83 #include "llvm/ADT/SmallString.h"
84 #include "llvm/ADT/SmallVector.h"
85 #include "llvm/ADT/StringMap.h"
86 #include "llvm/ADT/StringRef.h"
87 #include "llvm/Bitcode/BitCodes.h"
88 #include "llvm/Bitcode/BitstreamWriter.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/Compression.h"
91 #include "llvm/Support/DJB.h"
92 #include "llvm/Support/Endian.h"
93 #include "llvm/Support/EndianStream.h"
94 #include "llvm/Support/Error.h"
95 #include "llvm/Support/ErrorHandling.h"
96 #include "llvm/Support/MemoryBuffer.h"
97 #include "llvm/Support/OnDiskHashTable.h"
98 #include "llvm/Support/Path.h"
99 #include "llvm/Support/SHA1.h"
100 #include "llvm/Support/VersionTuple.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include <algorithm>
103 #include <cassert>
104 #include <cstdint>
105 #include <cstdlib>
106 #include <cstring>
107 #include <ctime>
108 #include <deque>
109 #include <limits>
110 #include <memory>
111 #include <queue>
112 #include <tuple>
113 #include <utility>
114 #include <vector>
115 
116 using namespace clang;
117 using namespace clang::serialization;
118 
119 template <typename T, typename Allocator>
120 static StringRef bytes(const std::vector<T, Allocator> &v) {
121  if (v.empty()) return StringRef();
122  return StringRef(reinterpret_cast<const char*>(&v[0]),
123  sizeof(T) * v.size());
124 }
125 
126 template <typename T>
127 static StringRef bytes(const SmallVectorImpl<T> &v) {
128  return StringRef(reinterpret_cast<const char*>(v.data()),
129  sizeof(T) * v.size());
130 }
131 
132 //===----------------------------------------------------------------------===//
133 // Type serialization
134 //===----------------------------------------------------------------------===//
135 
136 namespace clang {
137 
139  ASTWriter &Writer;
140  ASTRecordWriter Record;
141 
142  /// Type code that corresponds to the record generated.
143  TypeCode Code = static_cast<TypeCode>(0);
144 
145  /// Abbreviation to use for the record, if any.
146  unsigned AbbrevToUse = 0;
147 
148  public:
150  : Writer(Writer), Record(Writer, Record) {}
151 
152  uint64_t Emit() {
153  return Record.Emit(Code, AbbrevToUse);
154  }
155 
156  void Visit(QualType T) {
157  if (T.hasLocalNonFastQualifiers()) {
160  Record.push_back(Qs.getAsOpaqueValue());
161  Code = TYPE_EXT_QUAL;
162  AbbrevToUse = Writer.TypeExtQualAbbrev;
163  } else {
164  switch (T->getTypeClass()) {
165  // For all of the concrete, non-dependent types, call the
166  // appropriate visitor function.
167 #define TYPE(Class, Base) \
168  case Type::Class: Visit##Class##Type(cast<Class##Type>(T)); break;
169 #define ABSTRACT_TYPE(Class, Base)
170 #include "clang/AST/TypeNodes.def"
171  }
172  }
173  }
174 
175  void VisitArrayType(const ArrayType *T);
176  void VisitFunctionType(const FunctionType *T);
177  void VisitTagType(const TagType *T);
178 
179 #define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T);
180 #define ABSTRACT_TYPE(Class, Base)
181 #include "clang/AST/TypeNodes.def"
182  };
183 
184 } // namespace clang
185 
186 void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) {
187  llvm_unreachable("Built-in types are never serialized");
188 }
189 
190 void ASTTypeWriter::VisitComplexType(const ComplexType *T) {
191  Record.AddTypeRef(T->getElementType());
192  Code = TYPE_COMPLEX;
193 }
194 
195 void ASTTypeWriter::VisitPointerType(const PointerType *T) {
196  Record.AddTypeRef(T->getPointeeType());
197  Code = TYPE_POINTER;
198 }
199 
200 void ASTTypeWriter::VisitDecayedType(const DecayedType *T) {
201  Record.AddTypeRef(T->getOriginalType());
202  Code = TYPE_DECAYED;
203 }
204 
205 void ASTTypeWriter::VisitAdjustedType(const AdjustedType *T) {
206  Record.AddTypeRef(T->getOriginalType());
207  Record.AddTypeRef(T->getAdjustedType());
208  Code = TYPE_ADJUSTED;
209 }
210 
211 void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) {
212  Record.AddTypeRef(T->getPointeeType());
213  Code = TYPE_BLOCK_POINTER;
214 }
215 
216 void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) {
217  Record.AddTypeRef(T->getPointeeTypeAsWritten());
218  Record.push_back(T->isSpelledAsLValue());
219  Code = TYPE_LVALUE_REFERENCE;
220 }
221 
222 void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) {
223  Record.AddTypeRef(T->getPointeeTypeAsWritten());
224  Code = TYPE_RVALUE_REFERENCE;
225 }
226 
227 void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) {
228  Record.AddTypeRef(T->getPointeeType());
229  Record.AddTypeRef(QualType(T->getClass(), 0));
230  Code = TYPE_MEMBER_POINTER;
231 }
232 
234  Record.AddTypeRef(T->getElementType());
235  Record.push_back(T->getSizeModifier()); // FIXME: stable values
236  Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values
237 }
238 
239 void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) {
240  VisitArrayType(T);
241  Record.AddAPInt(T->getSize());
242  Code = TYPE_CONSTANT_ARRAY;
243 }
244 
245 void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
246  VisitArrayType(T);
247  Code = TYPE_INCOMPLETE_ARRAY;
248 }
249 
250 void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) {
251  VisitArrayType(T);
252  Record.AddSourceLocation(T->getLBracketLoc());
253  Record.AddSourceLocation(T->getRBracketLoc());
254  Record.AddStmt(T->getSizeExpr());
255  Code = TYPE_VARIABLE_ARRAY;
256 }
257 
258 void ASTTypeWriter::VisitVectorType(const VectorType *T) {
259  Record.AddTypeRef(T->getElementType());
260  Record.push_back(T->getNumElements());
261  Record.push_back(T->getVectorKind());
262  Code = TYPE_VECTOR;
263 }
264 
265 void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) {
266  VisitVectorType(T);
267  Code = TYPE_EXT_VECTOR;
268 }
269 
271  Record.AddTypeRef(T->getReturnType());
273  Record.push_back(C.getNoReturn());
274  Record.push_back(C.getHasRegParm());
275  Record.push_back(C.getRegParm());
276  // FIXME: need to stabilize encoding of calling convention...
277  Record.push_back(C.getCC());
278  Record.push_back(C.getProducesResult());
279  Record.push_back(C.getNoCallerSavedRegs());
280  Record.push_back(C.getNoCfCheck());
281 
282  if (C.getHasRegParm() || C.getRegParm() || C.getProducesResult())
283  AbbrevToUse = 0;
284 }
285 
286 void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
287  VisitFunctionType(T);
288  Code = TYPE_FUNCTION_NO_PROTO;
289 }
290 
291 static void addExceptionSpec(const FunctionProtoType *T,
292  ASTRecordWriter &Record) {
293  Record.push_back(T->getExceptionSpecType());
294  if (T->getExceptionSpecType() == EST_Dynamic) {
295  Record.push_back(T->getNumExceptions());
296  for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I)
297  Record.AddTypeRef(T->getExceptionType(I));
298  } else if (isComputedNoexcept(T->getExceptionSpecType())) {
299  Record.AddStmt(T->getNoexceptExpr());
300  } else if (T->getExceptionSpecType() == EST_Uninstantiated) {
301  Record.AddDeclRef(T->getExceptionSpecDecl());
303  } else if (T->getExceptionSpecType() == EST_Unevaluated) {
304  Record.AddDeclRef(T->getExceptionSpecDecl());
305  }
306 }
307 
308 void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) {
309  VisitFunctionType(T);
310 
311  Record.push_back(T->isVariadic());
312  Record.push_back(T->hasTrailingReturn());
313  Record.push_back(T->getTypeQuals());
314  Record.push_back(static_cast<unsigned>(T->getRefQualifier()));
315  addExceptionSpec(T, Record);
316 
317  Record.push_back(T->getNumParams());
318  for (unsigned I = 0, N = T->getNumParams(); I != N; ++I)
319  Record.AddTypeRef(T->getParamType(I));
320 
321  if (T->hasExtParameterInfos()) {
322  for (unsigned I = 0, N = T->getNumParams(); I != N; ++I)
323  Record.push_back(T->getExtParameterInfo(I).getOpaqueValue());
324  }
325 
326  if (T->isVariadic() || T->hasTrailingReturn() || T->getTypeQuals() ||
329  AbbrevToUse = 0;
330 
331  Code = TYPE_FUNCTION_PROTO;
332 }
333 
334 void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
335  Record.AddDeclRef(T->getDecl());
336  Code = TYPE_UNRESOLVED_USING;
337 }
338 
339 void ASTTypeWriter::VisitTypedefType(const TypedefType *T) {
340  Record.AddDeclRef(T->getDecl());
341  assert(!T->isCanonicalUnqualified() && "Invalid typedef ?");
342  Record.AddTypeRef(T->getCanonicalTypeInternal());
343  Code = TYPE_TYPEDEF;
344 }
345 
346 void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) {
347  Record.AddStmt(T->getUnderlyingExpr());
348  Code = TYPE_TYPEOF_EXPR;
349 }
350 
351 void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) {
352  Record.AddTypeRef(T->getUnderlyingType());
353  Code = TYPE_TYPEOF;
354 }
355 
356 void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) {
357  Record.AddTypeRef(T->getUnderlyingType());
358  Record.AddStmt(T->getUnderlyingExpr());
359  Code = TYPE_DECLTYPE;
360 }
361 
362 void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) {
363  Record.AddTypeRef(T->getBaseType());
364  Record.AddTypeRef(T->getUnderlyingType());
365  Record.push_back(T->getUTTKind());
366  Code = TYPE_UNARY_TRANSFORM;
367 }
368 
369 void ASTTypeWriter::VisitAutoType(const AutoType *T) {
370  Record.AddTypeRef(T->getDeducedType());
371  Record.push_back((unsigned)T->getKeyword());
372  if (T->getDeducedType().isNull())
373  Record.push_back(T->isDependentType());
374  Code = TYPE_AUTO;
375 }
376 
377 void ASTTypeWriter::VisitDeducedTemplateSpecializationType(
379  Record.AddTemplateName(T->getTemplateName());
380  Record.AddTypeRef(T->getDeducedType());
381  if (T->getDeducedType().isNull())
382  Record.push_back(T->isDependentType());
384 }
385 
387  Record.push_back(T->isDependentType());
388  Record.AddDeclRef(T->getDecl()->getCanonicalDecl());
389  assert(!T->isBeingDefined() &&
390  "Cannot serialize in the middle of a type definition");
391 }
392 
393 void ASTTypeWriter::VisitRecordType(const RecordType *T) {
394  VisitTagType(T);
395  Code = TYPE_RECORD;
396 }
397 
398 void ASTTypeWriter::VisitEnumType(const EnumType *T) {
399  VisitTagType(T);
400  Code = TYPE_ENUM;
401 }
402 
403 void ASTTypeWriter::VisitAttributedType(const AttributedType *T) {
404  Record.AddTypeRef(T->getModifiedType());
405  Record.AddTypeRef(T->getEquivalentType());
406  Record.push_back(T->getAttrKind());
407  Code = TYPE_ATTRIBUTED;
408 }
409 
410 void
411 ASTTypeWriter::VisitSubstTemplateTypeParmType(
412  const SubstTemplateTypeParmType *T) {
413  Record.AddTypeRef(QualType(T->getReplacedParameter(), 0));
414  Record.AddTypeRef(T->getReplacementType());
416 }
417 
418 void
419 ASTTypeWriter::VisitSubstTemplateTypeParmPackType(
421  Record.AddTypeRef(QualType(T->getReplacedParameter(), 0));
422  Record.AddTemplateArgument(T->getArgumentPack());
424 }
425 
426 void
427 ASTTypeWriter::VisitTemplateSpecializationType(
428  const TemplateSpecializationType *T) {
429  Record.push_back(T->isDependentType());
430  Record.AddTemplateName(T->getTemplateName());
431  Record.push_back(T->getNumArgs());
432  for (const auto &ArgI : *T)
433  Record.AddTemplateArgument(ArgI);
434  Record.AddTypeRef(T->isTypeAlias() ? T->getAliasedType()
435  : T->isCanonicalUnqualified()
436  ? QualType()
437  : T->getCanonicalTypeInternal());
439 }
440 
441 void
442 ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
443  VisitArrayType(T);
444  Record.AddStmt(T->getSizeExpr());
445  Record.AddSourceRange(T->getBracketsRange());
447 }
448 
449 void
450 ASTTypeWriter::VisitDependentSizedExtVectorType(
451  const DependentSizedExtVectorType *T) {
452  Record.AddTypeRef(T->getElementType());
453  Record.AddStmt(T->getSizeExpr());
454  Record.AddSourceLocation(T->getAttributeLoc());
456 }
457 
458 void ASTTypeWriter::VisitDependentVectorType(const DependentVectorType *T) {
459  Record.AddTypeRef(T->getElementType());
460  Record.AddStmt(const_cast<Expr*>(T->getSizeExpr()));
461  Record.AddSourceLocation(T->getAttributeLoc());
462  Record.push_back(T->getVectorKind());
464 }
465 
466 void
467 ASTTypeWriter::VisitDependentAddressSpaceType(
468  const DependentAddressSpaceType *T) {
469  Record.AddTypeRef(T->getPointeeType());
470  Record.AddStmt(T->getAddrSpaceExpr());
471  Record.AddSourceLocation(T->getAttributeLoc());
473 }
474 
475 void
476 ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
477  Record.push_back(T->getDepth());
478  Record.push_back(T->getIndex());
479  Record.push_back(T->isParameterPack());
480  Record.AddDeclRef(T->getDecl());
482 }
483 
484 void
485 ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) {
486  Record.push_back(T->getKeyword());
487  Record.AddNestedNameSpecifier(T->getQualifier());
488  Record.AddIdentifierRef(T->getIdentifier());
489  Record.AddTypeRef(
491  Code = TYPE_DEPENDENT_NAME;
492 }
493 
494 void
495 ASTTypeWriter::VisitDependentTemplateSpecializationType(
497  Record.push_back(T->getKeyword());
498  Record.AddNestedNameSpecifier(T->getQualifier());
499  Record.AddIdentifierRef(T->getIdentifier());
500  Record.push_back(T->getNumArgs());
501  for (const auto &I : *T)
502  Record.AddTemplateArgument(I);
504 }
505 
506 void ASTTypeWriter::VisitPackExpansionType(const PackExpansionType *T) {
507  Record.AddTypeRef(T->getPattern());
508  if (Optional<unsigned> NumExpansions = T->getNumExpansions())
509  Record.push_back(*NumExpansions + 1);
510  else
511  Record.push_back(0);
512  Code = TYPE_PACK_EXPANSION;
513 }
514 
515 void ASTTypeWriter::VisitParenType(const ParenType *T) {
516  Record.AddTypeRef(T->getInnerType());
517  Code = TYPE_PAREN;
518 }
519 
520 void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) {
521  Record.push_back(T->getKeyword());
522  Record.AddNestedNameSpecifier(T->getQualifier());
523  Record.AddTypeRef(T->getNamedType());
524  Record.AddDeclRef(T->getOwnedTagDecl());
525  Code = TYPE_ELABORATED;
526 }
527 
528 void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) {
529  Record.AddDeclRef(T->getDecl()->getCanonicalDecl());
530  Record.AddTypeRef(T->getInjectedSpecializationType());
532 }
533 
534 void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
535  Record.AddDeclRef(T->getDecl()->getCanonicalDecl());
536  Code = TYPE_OBJC_INTERFACE;
537 }
538 
539 void ASTTypeWriter::VisitObjCTypeParamType(const ObjCTypeParamType *T) {
540  Record.AddDeclRef(T->getDecl());
541  Record.push_back(T->getNumProtocols());
542  for (const auto *I : T->quals())
543  Record.AddDeclRef(I);
544  Code = TYPE_OBJC_TYPE_PARAM;
545 }
546 
547 void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) {
548  Record.AddTypeRef(T->getBaseType());
549  Record.push_back(T->getTypeArgsAsWritten().size());
550  for (auto TypeArg : T->getTypeArgsAsWritten())
551  Record.AddTypeRef(TypeArg);
552  Record.push_back(T->getNumProtocols());
553  for (const auto *I : T->quals())
554  Record.AddDeclRef(I);
555  Record.push_back(T->isKindOfTypeAsWritten());
556  Code = TYPE_OBJC_OBJECT;
557 }
558 
559 void
560 ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
561  Record.AddTypeRef(T->getPointeeType());
563 }
564 
565 void
566 ASTTypeWriter::VisitAtomicType(const AtomicType *T) {
567  Record.AddTypeRef(T->getValueType());
568  Code = TYPE_ATOMIC;
569 }
570 
571 void
572 ASTTypeWriter::VisitPipeType(const PipeType *T) {
573  Record.AddTypeRef(T->getElementType());
574  Record.push_back(T->isReadOnly());
575  Code = TYPE_PIPE;
576 }
577 
578 namespace {
579 
580 class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> {
581  ASTRecordWriter &Record;
582 
583 public:
584  TypeLocWriter(ASTRecordWriter &Record) : Record(Record) {}
585 
586 #define ABSTRACT_TYPELOC(CLASS, PARENT)
587 #define TYPELOC(CLASS, PARENT) \
588  void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
589 #include "clang/AST/TypeLocNodes.def"
590 
591  void VisitArrayTypeLoc(ArrayTypeLoc TyLoc);
592  void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc);
593 };
594 
595 } // namespace
596 
597 void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
598  // nothing to do
599 }
600 
601 void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
602  Record.AddSourceLocation(TL.getBuiltinLoc());
603  if (TL.needsExtraLocalData()) {
604  Record.push_back(TL.getWrittenTypeSpec());
605  Record.push_back(TL.getWrittenSignSpec());
606  Record.push_back(TL.getWrittenWidthSpec());
607  Record.push_back(TL.hasModeAttr());
608  }
609 }
610 
611 void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) {
612  Record.AddSourceLocation(TL.getNameLoc());
613 }
614 
615 void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) {
616  Record.AddSourceLocation(TL.getStarLoc());
617 }
618 
619 void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
620  // nothing to do
621 }
622 
623 void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
624  // nothing to do
625 }
626 
627 void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
628  Record.AddSourceLocation(TL.getCaretLoc());
629 }
630 
631 void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
632  Record.AddSourceLocation(TL.getAmpLoc());
633 }
634 
635 void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
636  Record.AddSourceLocation(TL.getAmpAmpLoc());
637 }
638 
639 void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
640  Record.AddSourceLocation(TL.getStarLoc());
641  Record.AddTypeSourceInfo(TL.getClassTInfo());
642 }
643 
644 void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) {
645  Record.AddSourceLocation(TL.getLBracketLoc());
646  Record.AddSourceLocation(TL.getRBracketLoc());
647  Record.push_back(TL.getSizeExpr() ? 1 : 0);
648  if (TL.getSizeExpr())
649  Record.AddStmt(TL.getSizeExpr());
650 }
651 
652 void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
653  VisitArrayTypeLoc(TL);
654 }
655 
656 void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
657  VisitArrayTypeLoc(TL);
658 }
659 
660 void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
661  VisitArrayTypeLoc(TL);
662 }
663 
664 void TypeLocWriter::VisitDependentSizedArrayTypeLoc(
666  VisitArrayTypeLoc(TL);
667 }
668 
669 void TypeLocWriter::VisitDependentAddressSpaceTypeLoc(
671  Record.AddSourceLocation(TL.getAttrNameLoc());
673  Record.AddSourceLocation(range.getBegin());
674  Record.AddSourceLocation(range.getEnd());
675  Record.AddStmt(TL.getAttrExprOperand());
676 }
677 
678 void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc(
680  Record.AddSourceLocation(TL.getNameLoc());
681 }
682 
683 void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) {
684  Record.AddSourceLocation(TL.getNameLoc());
685 }
686 
687 void TypeLocWriter::VisitDependentVectorTypeLoc(
689  Record.AddSourceLocation(TL.getNameLoc());
690 }
691 
692 void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
693  Record.AddSourceLocation(TL.getNameLoc());
694 }
695 
696 void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
697  Record.AddSourceLocation(TL.getLocalRangeBegin());
698  Record.AddSourceLocation(TL.getLParenLoc());
699  Record.AddSourceLocation(TL.getRParenLoc());
700  Record.AddSourceRange(TL.getExceptionSpecRange());
701  Record.AddSourceLocation(TL.getLocalRangeEnd());
702  for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i)
703  Record.AddDeclRef(TL.getParam(i));
704 }
705 
706 void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
707  VisitFunctionTypeLoc(TL);
708 }
709 
710 void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
711  VisitFunctionTypeLoc(TL);
712 }
713 
714 void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
715  Record.AddSourceLocation(TL.getNameLoc());
716 }
717 
718 void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
719  Record.AddSourceLocation(TL.getNameLoc());
720 }
721 
722 void TypeLocWriter::VisitObjCTypeParamTypeLoc(ObjCTypeParamTypeLoc TL) {
723  if (TL.getNumProtocols()) {
724  Record.AddSourceLocation(TL.getProtocolLAngleLoc());
725  Record.AddSourceLocation(TL.getProtocolRAngleLoc());
726  }
727  for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
728  Record.AddSourceLocation(TL.getProtocolLoc(i));
729 }
730 
731 void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
732  Record.AddSourceLocation(TL.getTypeofLoc());
733  Record.AddSourceLocation(TL.getLParenLoc());
734  Record.AddSourceLocation(TL.getRParenLoc());
735 }
736 
737 void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
738  Record.AddSourceLocation(TL.getTypeofLoc());
739  Record.AddSourceLocation(TL.getLParenLoc());
740  Record.AddSourceLocation(TL.getRParenLoc());
741  Record.AddTypeSourceInfo(TL.getUnderlyingTInfo());
742 }
743 
744 void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
745  Record.AddSourceLocation(TL.getNameLoc());
746 }
747 
748 void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
749  Record.AddSourceLocation(TL.getKWLoc());
750  Record.AddSourceLocation(TL.getLParenLoc());
751  Record.AddSourceLocation(TL.getRParenLoc());
752  Record.AddTypeSourceInfo(TL.getUnderlyingTInfo());
753 }
754 
755 void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) {
756  Record.AddSourceLocation(TL.getNameLoc());
757 }
758 
759 void TypeLocWriter::VisitDeducedTemplateSpecializationTypeLoc(
761  Record.AddSourceLocation(TL.getTemplateNameLoc());
762 }
763 
764 void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) {
765  Record.AddSourceLocation(TL.getNameLoc());
766 }
767 
768 void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) {
769  Record.AddSourceLocation(TL.getNameLoc());
770 }
771 
772 void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
773  Record.AddAttr(TL.getAttr());
774 }
775 
776 void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
777  Record.AddSourceLocation(TL.getNameLoc());
778 }
779 
780 void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc(
782  Record.AddSourceLocation(TL.getNameLoc());
783 }
784 
785 void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc(
787  Record.AddSourceLocation(TL.getNameLoc());
788 }
789 
790 void TypeLocWriter::VisitTemplateSpecializationTypeLoc(
792  Record.AddSourceLocation(TL.getTemplateKeywordLoc());
793  Record.AddSourceLocation(TL.getTemplateNameLoc());
794  Record.AddSourceLocation(TL.getLAngleLoc());
795  Record.AddSourceLocation(TL.getRAngleLoc());
796  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
797  Record.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(),
798  TL.getArgLoc(i).getLocInfo());
799 }
800 
801 void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) {
802  Record.AddSourceLocation(TL.getLParenLoc());
803  Record.AddSourceLocation(TL.getRParenLoc());
804 }
805 
806 void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
807  Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
808  Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
809 }
810 
811 void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
812  Record.AddSourceLocation(TL.getNameLoc());
813 }
814 
815 void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
816  Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
817  Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
818  Record.AddSourceLocation(TL.getNameLoc());
819 }
820 
821 void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc(
823  Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
824  Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
825  Record.AddSourceLocation(TL.getTemplateKeywordLoc());
826  Record.AddSourceLocation(TL.getTemplateNameLoc());
827  Record.AddSourceLocation(TL.getLAngleLoc());
828  Record.AddSourceLocation(TL.getRAngleLoc());
829  for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
830  Record.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(),
831  TL.getArgLoc(I).getLocInfo());
832 }
833 
834 void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
835  Record.AddSourceLocation(TL.getEllipsisLoc());
836 }
837 
838 void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
839  Record.AddSourceLocation(TL.getNameLoc());
840 }
841 
842 void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
843  Record.push_back(TL.hasBaseTypeAsWritten());
844  Record.AddSourceLocation(TL.getTypeArgsLAngleLoc());
845  Record.AddSourceLocation(TL.getTypeArgsRAngleLoc());
846  for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i)
847  Record.AddTypeSourceInfo(TL.getTypeArgTInfo(i));
848  Record.AddSourceLocation(TL.getProtocolLAngleLoc());
849  Record.AddSourceLocation(TL.getProtocolRAngleLoc());
850  for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
851  Record.AddSourceLocation(TL.getProtocolLoc(i));
852 }
853 
854 void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
855  Record.AddSourceLocation(TL.getStarLoc());
856 }
857 
858 void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
859  Record.AddSourceLocation(TL.getKWLoc());
860  Record.AddSourceLocation(TL.getLParenLoc());
861  Record.AddSourceLocation(TL.getRParenLoc());
862 }
863 
864 void TypeLocWriter::VisitPipeTypeLoc(PipeTypeLoc TL) {
865  Record.AddSourceLocation(TL.getKWLoc());
866 }
867 
868 void ASTWriter::WriteTypeAbbrevs() {
869  using namespace llvm;
870 
871  std::shared_ptr<BitCodeAbbrev> Abv;
872 
873  // Abbreviation for TYPE_EXT_QUAL
874  Abv = std::make_shared<BitCodeAbbrev>();
875  Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL));
876  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
877  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals
878  TypeExtQualAbbrev = Stream.EmitAbbrev(std::move(Abv));
879 
880  // Abbreviation for TYPE_FUNCTION_PROTO
881  Abv = std::make_shared<BitCodeAbbrev>();
882  Abv->Add(BitCodeAbbrevOp(serialization::TYPE_FUNCTION_PROTO));
883  // FunctionType
884  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ReturnType
885  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NoReturn
886  Abv->Add(BitCodeAbbrevOp(0)); // HasRegParm
887  Abv->Add(BitCodeAbbrevOp(0)); // RegParm
888  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // CC
889  Abv->Add(BitCodeAbbrevOp(0)); // ProducesResult
890  Abv->Add(BitCodeAbbrevOp(0)); // NoCallerSavedRegs
891  Abv->Add(BitCodeAbbrevOp(0)); // NoCfCheck
892  // FunctionProtoType
893  Abv->Add(BitCodeAbbrevOp(0)); // IsVariadic
894  Abv->Add(BitCodeAbbrevOp(0)); // HasTrailingReturn
895  Abv->Add(BitCodeAbbrevOp(0)); // TypeQuals
896  Abv->Add(BitCodeAbbrevOp(0)); // RefQualifier
897  Abv->Add(BitCodeAbbrevOp(EST_None)); // ExceptionSpec
898  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // NumParams
899  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
900  Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Params
901  TypeFunctionProtoAbbrev = Stream.EmitAbbrev(std::move(Abv));
902 }
903 
904 //===----------------------------------------------------------------------===//
905 // ASTWriter Implementation
906 //===----------------------------------------------------------------------===//
907 
908 static void EmitBlockID(unsigned ID, const char *Name,
909  llvm::BitstreamWriter &Stream,
910  ASTWriter::RecordDataImpl &Record) {
911  Record.clear();
912  Record.push_back(ID);
913  Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
914 
915  // Emit the block name if present.
916  if (!Name || Name[0] == 0)
917  return;
918  Record.clear();
919  while (*Name)
920  Record.push_back(*Name++);
921  Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
922 }
923 
924 static void EmitRecordID(unsigned ID, const char *Name,
925  llvm::BitstreamWriter &Stream,
926  ASTWriter::RecordDataImpl &Record) {
927  Record.clear();
928  Record.push_back(ID);
929  while (*Name)
930  Record.push_back(*Name++);
931  Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
932 }
933 
934 static void AddStmtsExprs(llvm::BitstreamWriter &Stream,
935  ASTWriter::RecordDataImpl &Record) {
936 #define RECORD(X) EmitRecordID(X, #X, Stream, Record)
937  RECORD(STMT_STOP);
940  RECORD(STMT_NULL);
942  RECORD(STMT_CASE);
946  RECORD(STMT_IF);
949  RECORD(STMT_DO);
950  RECORD(STMT_FOR);
951  RECORD(STMT_GOTO);
956  RECORD(STMT_DECL);
971  RECORD(EXPR_CALL);
987  RECORD(EXPR_STMT);
1060 #undef RECORD
1061 }
1062 
1063 void ASTWriter::WriteBlockInfoBlock() {
1064  RecordData Record;
1065  Stream.EnterBlockInfoBlock();
1066 
1067 #define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record)
1068 #define RECORD(X) EmitRecordID(X, #X, Stream, Record)
1069 
1070  // Control Block.
1071  BLOCK(CONTROL_BLOCK);
1072  RECORD(METADATA);
1076  RECORD(IMPORTS);
1081 
1082  BLOCK(OPTIONS_BLOCK);
1088 
1089  BLOCK(INPUT_FILES_BLOCK);
1090  RECORD(INPUT_FILE);
1091 
1092  // AST Top-Level Block.
1093  BLOCK(AST_BLOCK);
1101  RECORD(STATISTICS);
1146 
1147  // SourceManager Block.
1148  BLOCK(SOURCE_MANAGER_BLOCK);
1154 
1155  // Preprocessor Block.
1156  BLOCK(PREPROCESSOR_BLOCK);
1161  RECORD(PP_TOKEN);
1162 
1163  // Submodule Block.
1164  BLOCK(SUBMODULE_BLOCK);
1183 
1184  // Comments Block.
1185  BLOCK(COMMENTS_BLOCK);
1187 
1188  // Decls and Types block.
1189  BLOCK(DECLTYPES_BLOCK);
1208  RECORD(TYPE_ENUM);
1222  RECORD(TYPE_PAREN);
1226  RECORD(TYPE_AUTO);
1235  RECORD(DECL_ENUM);
1250  RECORD(DECL_FIELD);
1252  RECORD(DECL_VAR);
1256  RECORD(DECL_BLOCK);
1261  RECORD(DECL_USING);
1296  RECORD(DECL_EMPTY);
1302 
1303  // Statements and Exprs can occur in the Decls and Types block.
1304  AddStmtsExprs(Stream, Record);
1305 
1306  BLOCK(PREPROCESSOR_DETAIL_BLOCK);
1310 
1311  // Decls and Types block.
1312  BLOCK(EXTENSION_BLOCK);
1314 
1315  BLOCK(UNHASHED_CONTROL_BLOCK);
1316  RECORD(SIGNATURE);
1319 
1320 #undef RECORD
1321 #undef BLOCK
1322  Stream.ExitBlock();
1323 }
1324 
1325 /// Prepares a path for being written to an AST file by converting it
1326 /// to an absolute path and removing nested './'s.
1327 ///
1328 /// \return \c true if the path was changed.
1329 static bool cleanPathForOutput(FileManager &FileMgr,
1330  SmallVectorImpl<char> &Path) {
1331  bool Changed = FileMgr.makeAbsolutePath(Path);
1332  return Changed | llvm::sys::path::remove_dots(Path);
1333 }
1334 
1335 /// Adjusts the given filename to only write out the portion of the
1336 /// filename that is not part of the system root directory.
1337 ///
1338 /// \param Filename the file name to adjust.
1339 ///
1340 /// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and
1341 /// the returned filename will be adjusted by this root directory.
1342 ///
1343 /// \returns either the original filename (if it needs no adjustment) or the
1344 /// adjusted filename (which points into the @p Filename parameter).
1345 static const char *
1346 adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) {
1347  assert(Filename && "No file name to adjust?");
1348 
1349  if (BaseDir.empty())
1350  return Filename;
1351 
1352  // Verify that the filename and the system root have the same prefix.
1353  unsigned Pos = 0;
1354  for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos)
1355  if (Filename[Pos] != BaseDir[Pos])
1356  return Filename; // Prefixes don't match.
1357 
1358  // We hit the end of the filename before we hit the end of the system root.
1359  if (!Filename[Pos])
1360  return Filename;
1361 
1362  // If there's not a path separator at the end of the base directory nor
1363  // immediately after it, then this isn't within the base directory.
1364  if (!llvm::sys::path::is_separator(Filename[Pos])) {
1365  if (!llvm::sys::path::is_separator(BaseDir.back()))
1366  return Filename;
1367  } else {
1368  // If the file name has a '/' at the current position, skip over the '/'.
1369  // We distinguish relative paths from absolute paths by the
1370  // absence of '/' at the beginning of relative paths.
1371  //
1372  // FIXME: This is wrong. We distinguish them by asking if the path is
1373  // absolute, which isn't the same thing. And there might be multiple '/'s
1374  // in a row. Use a better mechanism to indicate whether we have emitted an
1375  // absolute or relative path.
1376  ++Pos;
1377  }
1378 
1379  return Filename + Pos;
1380 }
1381 
1382 ASTFileSignature ASTWriter::createSignature(StringRef Bytes) {
1383  // Calculate the hash till start of UNHASHED_CONTROL_BLOCK.
1384  llvm::SHA1 Hasher;
1385  Hasher.update(ArrayRef<uint8_t>(Bytes.bytes_begin(), Bytes.size()));
1386  auto Hash = Hasher.result();
1387 
1388  // Convert to an array [5*i32].
1389  ASTFileSignature Signature;
1390  auto LShift = [&](unsigned char Val, unsigned Shift) {
1391  return (uint32_t)Val << Shift;
1392  };
1393  for (int I = 0; I != 5; ++I)
1394  Signature[I] = LShift(Hash[I * 4 + 0], 24) | LShift(Hash[I * 4 + 1], 16) |
1395  LShift(Hash[I * 4 + 2], 8) | LShift(Hash[I * 4 + 3], 0);
1396 
1397  return Signature;
1398 }
1399 
1400 ASTFileSignature ASTWriter::writeUnhashedControlBlock(Preprocessor &PP,
1401  ASTContext &Context) {
1402  // Flush first to prepare the PCM hash (signature).
1403  Stream.FlushToWord();
1404  auto StartOfUnhashedControl = Stream.GetCurrentBitNo() >> 3;
1405 
1406  // Enter the block and prepare to write records.
1407  RecordData Record;
1408  Stream.EnterSubblock(UNHASHED_CONTROL_BLOCK_ID, 5);
1409 
1410  // For implicit modules, write the hash of the PCM as its signature.
1411  ASTFileSignature Signature;
1412  if (WritingModule &&
1414  Signature = createSignature(StringRef(Buffer.begin(), StartOfUnhashedControl));
1415  Record.append(Signature.begin(), Signature.end());
1416  Stream.EmitRecord(SIGNATURE, Record);
1417  Record.clear();
1418  }
1419 
1420  // Diagnostic options.
1421  const auto &Diags = Context.getDiagnostics();
1422  const DiagnosticOptions &DiagOpts = Diags.getDiagnosticOptions();
1423 #define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name);
1424 #define ENUM_DIAGOPT(Name, Type, Bits, Default) \
1425  Record.push_back(static_cast<unsigned>(DiagOpts.get##Name()));
1426 #include "clang/Basic/DiagnosticOptions.def"
1427  Record.push_back(DiagOpts.Warnings.size());
1428  for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I)
1429  AddString(DiagOpts.Warnings[I], Record);
1430  Record.push_back(DiagOpts.Remarks.size());
1431  for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I)
1432  AddString(DiagOpts.Remarks[I], Record);
1433  // Note: we don't serialize the log or serialization file names, because they
1434  // are generally transient files and will almost always be overridden.
1435  Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record);
1436 
1437  // Write out the diagnostic/pragma mappings.
1438  WritePragmaDiagnosticMappings(Diags, /* IsModule = */ WritingModule);
1439 
1440  // Leave the options block.
1441  Stream.ExitBlock();
1442  return Signature;
1443 }
1444 
1445 /// Write the control block.
1446 void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context,
1447  StringRef isysroot,
1448  const std::string &OutputFile) {
1449  using namespace llvm;
1450 
1451  Stream.EnterSubblock(CONTROL_BLOCK_ID, 5);
1452  RecordData Record;
1453 
1454  // Metadata
1455  auto MetadataAbbrev = std::make_shared<BitCodeAbbrev>();
1456  MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA));
1457  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major
1458  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor
1459  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj.
1460  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min.
1461  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable
1462  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Timestamps
1463  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // PCHHasObjectFile
1464  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors
1465  MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag
1466  unsigned MetadataAbbrevCode = Stream.EmitAbbrev(std::move(MetadataAbbrev));
1467  assert((!WritingModule || isysroot.empty()) &&
1468  "writing module as a relocatable PCH?");
1469  {
1470  RecordData::value_type Record[] = {
1471  METADATA,
1472  VERSION_MAJOR,
1473  VERSION_MINOR,
1474  CLANG_VERSION_MAJOR,
1475  CLANG_VERSION_MINOR,
1476  !isysroot.empty(),
1477  IncludeTimestamps,
1478  Context.getLangOpts().BuildingPCHWithObjectFile,
1479  ASTHasCompilerErrors};
1480  Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record,
1482  }
1483 
1484  if (WritingModule) {
1485  // Module name
1486  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1487  Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME));
1488  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
1489  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
1490  RecordData::value_type Record[] = {MODULE_NAME};
1491  Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name);
1492  }
1493 
1494  if (WritingModule && WritingModule->Directory) {
1495  SmallString<128> BaseDir(WritingModule->Directory->getName());
1496  cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir);
1497 
1498  // If the home of the module is the current working directory, then we
1499  // want to pick up the cwd of the build process loading the module, not
1500  // our cwd, when we load this module.
1501  if (!PP.getHeaderSearchInfo()
1504  WritingModule->Directory->getName() != StringRef(".")) {
1505  // Module directory.
1506  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1507  Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY));
1508  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory
1509  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
1510 
1511  RecordData::value_type Record[] = {MODULE_DIRECTORY};
1512  Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir);
1513  }
1514 
1515  // Write out all other paths relative to the base directory if possible.
1516  BaseDirectory.assign(BaseDir.begin(), BaseDir.end());
1517  } else if (!isysroot.empty()) {
1518  // Write out paths relative to the sysroot if possible.
1519  BaseDirectory = isysroot;
1520  }
1521 
1522  // Module map file
1523  if (WritingModule && WritingModule->Kind == Module::ModuleMapModule) {
1524  Record.clear();
1525 
1526  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
1527  AddPath(WritingModule->PresumedModuleMapFile.empty()
1528  ? Map.getModuleMapFileForUniquing(WritingModule)->getName()
1529  : StringRef(WritingModule->PresumedModuleMapFile),
1530  Record);
1531 
1532  // Additional module map files.
1533  if (auto *AdditionalModMaps =
1534  Map.getAdditionalModuleMapFiles(WritingModule)) {
1535  Record.push_back(AdditionalModMaps->size());
1536  for (const FileEntry *F : *AdditionalModMaps)
1537  AddPath(F->getName(), Record);
1538  } else {
1539  Record.push_back(0);
1540  }
1541 
1542  Stream.EmitRecord(MODULE_MAP_FILE, Record);
1543  }
1544 
1545  // Imports
1546  if (Chain) {
1547  serialization::ModuleManager &Mgr = Chain->getModuleManager();
1548  Record.clear();
1549 
1550  for (ModuleFile &M : Mgr) {
1551  // Skip modules that weren't directly imported.
1552  if (!M.isDirectlyImported())
1553  continue;
1554 
1555  Record.push_back((unsigned)M.Kind); // FIXME: Stable encoding
1556  AddSourceLocation(M.ImportLoc, Record);
1557 
1558  // If we have calculated signature, there is no need to store
1559  // the size or timestamp.
1560  Record.push_back(M.Signature ? 0 : M.File->getSize());
1561  Record.push_back(M.Signature ? 0 : getTimestampForOutput(M.File));
1562 
1563  for (auto I : M.Signature)
1564  Record.push_back(I);
1565 
1566  AddString(M.ModuleName, Record);
1567  AddPath(M.FileName, Record);
1568  }
1569  Stream.EmitRecord(IMPORTS, Record);
1570  }
1571 
1572  // Write the options block.
1573  Stream.EnterSubblock(OPTIONS_BLOCK_ID, 4);
1574 
1575  // Language options.
1576  Record.clear();
1577  const LangOptions &LangOpts = Context.getLangOpts();
1578 #define LANGOPT(Name, Bits, Default, Description) \
1579  Record.push_back(LangOpts.Name);
1580 #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
1581  Record.push_back(static_cast<unsigned>(LangOpts.get##Name()));
1582 #include "clang/Basic/LangOptions.def"
1583 #define SANITIZER(NAME, ID) \
1584  Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID));
1585 #include "clang/Basic/Sanitizers.def"
1586 
1587  Record.push_back(LangOpts.ModuleFeatures.size());
1588  for (StringRef Feature : LangOpts.ModuleFeatures)
1589  AddString(Feature, Record);
1590 
1591  Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind());
1592  AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record);
1593 
1594  AddString(LangOpts.CurrentModule, Record);
1595 
1596  // Comment options.
1597  Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size());
1598  for (const auto &I : LangOpts.CommentOpts.BlockCommandNames) {
1599  AddString(I, Record);
1600  }
1601  Record.push_back(LangOpts.CommentOpts.ParseAllComments);
1602 
1603  // OpenMP offloading options.
1604  Record.push_back(LangOpts.OMPTargetTriples.size());
1605  for (auto &T : LangOpts.OMPTargetTriples)
1606  AddString(T.getTriple(), Record);
1607 
1608  AddString(LangOpts.OMPHostIRFile, Record);
1609 
1610  Stream.EmitRecord(LANGUAGE_OPTIONS, Record);
1611 
1612  // Target options.
1613  Record.clear();
1614  const TargetInfo &Target = Context.getTargetInfo();
1615  const TargetOptions &TargetOpts = Target.getTargetOpts();
1616  AddString(TargetOpts.Triple, Record);
1617  AddString(TargetOpts.CPU, Record);
1618  AddString(TargetOpts.ABI, Record);
1619  Record.push_back(TargetOpts.FeaturesAsWritten.size());
1620  for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) {
1621  AddString(TargetOpts.FeaturesAsWritten[I], Record);
1622  }
1623  Record.push_back(TargetOpts.Features.size());
1624  for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) {
1625  AddString(TargetOpts.Features[I], Record);
1626  }
1627  Stream.EmitRecord(TARGET_OPTIONS, Record);
1628 
1629  // File system options.
1630  Record.clear();
1631  const FileSystemOptions &FSOpts =
1633  AddString(FSOpts.WorkingDir, Record);
1634  Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record);
1635 
1636  // Header search options.
1637  Record.clear();
1638  const HeaderSearchOptions &HSOpts
1640  AddString(HSOpts.Sysroot, Record);
1641 
1642  // Include entries.
1643  Record.push_back(HSOpts.UserEntries.size());
1644  for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) {
1645  const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I];
1646  AddString(Entry.Path, Record);
1647  Record.push_back(static_cast<unsigned>(Entry.Group));
1648  Record.push_back(Entry.IsFramework);
1649  Record.push_back(Entry.IgnoreSysRoot);
1650  }
1651 
1652  // System header prefixes.
1653  Record.push_back(HSOpts.SystemHeaderPrefixes.size());
1654  for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) {
1655  AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record);
1656  Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader);
1657  }
1658 
1659  AddString(HSOpts.ResourceDir, Record);
1660  AddString(HSOpts.ModuleCachePath, Record);
1661  AddString(HSOpts.ModuleUserBuildPath, Record);
1662  Record.push_back(HSOpts.DisableModuleHash);
1663  Record.push_back(HSOpts.ImplicitModuleMaps);
1664  Record.push_back(HSOpts.ModuleMapFileHomeIsCwd);
1665  Record.push_back(HSOpts.UseBuiltinIncludes);
1666  Record.push_back(HSOpts.UseStandardSystemIncludes);
1667  Record.push_back(HSOpts.UseStandardCXXIncludes);
1668  Record.push_back(HSOpts.UseLibcxx);
1669  // Write out the specific module cache path that contains the module files.
1670  AddString(PP.getHeaderSearchInfo().getModuleCachePath(), Record);
1671  Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record);
1672 
1673  // Preprocessor options.
1674  Record.clear();
1675  const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts();
1676 
1677  // Macro definitions.
1678  Record.push_back(PPOpts.Macros.size());
1679  for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
1680  AddString(PPOpts.Macros[I].first, Record);
1681  Record.push_back(PPOpts.Macros[I].second);
1682  }
1683 
1684  // Includes
1685  Record.push_back(PPOpts.Includes.size());
1686  for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I)
1687  AddString(PPOpts.Includes[I], Record);
1688 
1689  // Macro includes
1690  Record.push_back(PPOpts.MacroIncludes.size());
1691  for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I)
1692  AddString(PPOpts.MacroIncludes[I], Record);
1693 
1694  Record.push_back(PPOpts.UsePredefines);
1695  // Detailed record is important since it is used for the module cache hash.
1696  Record.push_back(PPOpts.DetailedRecord);
1697  AddString(PPOpts.ImplicitPCHInclude, Record);
1698  AddString(PPOpts.ImplicitPTHInclude, Record);
1699  Record.push_back(static_cast<unsigned>(PPOpts.ObjCXXARCStandardLibrary));
1700  Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record);
1701 
1702  // Leave the options block.
1703  Stream.ExitBlock();
1704 
1705  // Original file name and file ID
1706  SourceManager &SM = Context.getSourceManager();
1707  if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1708  auto FileAbbrev = std::make_shared<BitCodeAbbrev>();
1709  FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE));
1710  FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID
1711  FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
1712  unsigned FileAbbrevCode = Stream.EmitAbbrev(std::move(FileAbbrev));
1713 
1714  Record.clear();
1715  Record.push_back(ORIGINAL_FILE);
1716  Record.push_back(SM.getMainFileID().getOpaqueValue());
1717  EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName());
1718  }
1719 
1720  Record.clear();
1721  Record.push_back(SM.getMainFileID().getOpaqueValue());
1722  Stream.EmitRecord(ORIGINAL_FILE_ID, Record);
1723 
1724  // Original PCH directory
1725  if (!OutputFile.empty() && OutputFile != "-") {
1726  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1727  Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR));
1728  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
1729  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
1730 
1731  SmallString<128> OutputPath(OutputFile);
1732 
1733  SM.getFileManager().makeAbsolutePath(OutputPath);
1734  StringRef origDir = llvm::sys::path::parent_path(OutputPath);
1735 
1736  RecordData::value_type Record[] = {ORIGINAL_PCH_DIR};
1737  Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir);
1738  }
1739 
1740  WriteInputFiles(Context.SourceMgr,
1742  PP.getLangOpts().Modules);
1743  Stream.ExitBlock();
1744 }
1745 
1746 namespace {
1747 
1748 /// An input file.
1749 struct InputFileEntry {
1750  const FileEntry *File;
1751  bool IsSystemFile;
1752  bool IsTransient;
1753  bool BufferOverridden;
1754  bool IsTopLevelModuleMap;
1755 };
1756 
1757 } // namespace
1758 
1759 void ASTWriter::WriteInputFiles(SourceManager &SourceMgr,
1760  HeaderSearchOptions &HSOpts,
1761  bool Modules) {
1762  using namespace llvm;
1763 
1764  Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4);
1765 
1766  // Create input-file abbreviation.
1767  auto IFAbbrev = std::make_shared<BitCodeAbbrev>();
1768  IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE));
1769  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
1770  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size
1771  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time
1772  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden
1773  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Transient
1774  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Module map
1775  IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
1776  unsigned IFAbbrevCode = Stream.EmitAbbrev(std::move(IFAbbrev));
1777 
1778  // Get all ContentCache objects for files, sorted by whether the file is a
1779  // system one or not. System files go at the back, users files at the front.
1780  std::deque<InputFileEntry> SortedFiles;
1781  for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) {
1782  // Get this source location entry.
1783  const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
1784  assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc);
1785 
1786  // We only care about file entries that were not overridden.
1787  if (!SLoc->isFile())
1788  continue;
1789  const SrcMgr::FileInfo &File = SLoc->getFile();
1790  const SrcMgr::ContentCache *Cache = File.getContentCache();
1791  if (!Cache->OrigEntry)
1792  continue;
1793 
1794  InputFileEntry Entry;
1795  Entry.File = Cache->OrigEntry;
1796  Entry.IsSystemFile = Cache->IsSystemFile;
1797  Entry.IsTransient = Cache->IsTransient;
1798  Entry.BufferOverridden = Cache->BufferOverridden;
1799  Entry.IsTopLevelModuleMap = isModuleMap(File.getFileCharacteristic()) &&
1800  File.getIncludeLoc().isInvalid();
1801  if (Cache->IsSystemFile)
1802  SortedFiles.push_back(Entry);
1803  else
1804  SortedFiles.push_front(Entry);
1805  }
1806 
1807  unsigned UserFilesNum = 0;
1808  // Write out all of the input files.
1809  std::vector<uint64_t> InputFileOffsets;
1810  for (const auto &Entry : SortedFiles) {
1811  uint32_t &InputFileID = InputFileIDs[Entry.File];
1812  if (InputFileID != 0)
1813  continue; // already recorded this file.
1814 
1815  // Record this entry's offset.
1816  InputFileOffsets.push_back(Stream.GetCurrentBitNo());
1817 
1818  InputFileID = InputFileOffsets.size();
1819 
1820  if (!Entry.IsSystemFile)
1821  ++UserFilesNum;
1822 
1823  // Emit size/modification time for this file.
1824  // And whether this file was overridden.
1825  RecordData::value_type Record[] = {
1826  INPUT_FILE,
1827  InputFileOffsets.size(),
1828  (uint64_t)Entry.File->getSize(),
1829  (uint64_t)getTimestampForOutput(Entry.File),
1830  Entry.BufferOverridden,
1831  Entry.IsTransient,
1832  Entry.IsTopLevelModuleMap};
1833 
1834  EmitRecordWithPath(IFAbbrevCode, Record, Entry.File->getName());
1835  }
1836 
1837  Stream.ExitBlock();
1838 
1839  // Create input file offsets abbreviation.
1840  auto OffsetsAbbrev = std::make_shared<BitCodeAbbrev>();
1841  OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS));
1842  OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files
1843  OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system
1844  // input files
1845  OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array
1846  unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(std::move(OffsetsAbbrev));
1847 
1848  // Write input file offsets.
1849  RecordData::value_type Record[] = {INPUT_FILE_OFFSETS,
1850  InputFileOffsets.size(), UserFilesNum};
1851  Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, bytes(InputFileOffsets));
1852 }
1853 
1854 //===----------------------------------------------------------------------===//
1855 // Source Manager Serialization
1856 //===----------------------------------------------------------------------===//
1857 
1858 /// Create an abbreviation for the SLocEntry that refers to a
1859 /// file.
1860 static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) {
1861  using namespace llvm;
1862 
1863  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1864  Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY));
1865  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
1866  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
1867  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic
1868  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
1869  // FileEntry fields.
1870  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID
1871  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs
1872  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex
1873  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls
1874  return Stream.EmitAbbrev(std::move(Abbrev));
1875 }
1876 
1877 /// Create an abbreviation for the SLocEntry that refers to a
1878 /// buffer.
1879 static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) {
1880  using namespace llvm;
1881 
1882  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1883  Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY));
1884  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
1885  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
1886  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic
1887  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
1888  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob
1889  return Stream.EmitAbbrev(std::move(Abbrev));
1890 }
1891 
1892 /// Create an abbreviation for the SLocEntry that refers to a
1893 /// buffer's blob.
1894 static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream,
1895  bool Compressed) {
1896  using namespace llvm;
1897 
1898  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1899  Abbrev->Add(BitCodeAbbrevOp(Compressed ? SM_SLOC_BUFFER_BLOB_COMPRESSED
1900  : SM_SLOC_BUFFER_BLOB));
1901  if (Compressed)
1902  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Uncompressed size
1903  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob
1904  return Stream.EmitAbbrev(std::move(Abbrev));
1905 }
1906 
1907 /// Create an abbreviation for the SLocEntry that refers to a macro
1908 /// expansion.
1909 static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) {
1910  using namespace llvm;
1911 
1912  auto Abbrev = std::make_shared<BitCodeAbbrev>();
1913  Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY));
1914  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
1915  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location
1916  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location
1917  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location
1918  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Is token range
1919  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length
1920  return Stream.EmitAbbrev(std::move(Abbrev));
1921 }
1922 
1923 namespace {
1924 
1925  // Trait used for the on-disk hash table of header search information.
1926  class HeaderFileInfoTrait {
1927  ASTWriter &Writer;
1928 
1929  // Keep track of the framework names we've used during serialization.
1930  SmallVector<char, 128> FrameworkStringData;
1931  llvm::StringMap<unsigned> FrameworkNameOffset;
1932 
1933  public:
1934  HeaderFileInfoTrait(ASTWriter &Writer) : Writer(Writer) {}
1935 
1936  struct key_type {
1937  StringRef Filename;
1938  off_t Size;
1939  time_t ModTime;
1940  };
1941  using key_type_ref = const key_type &;
1942 
1943  using UnresolvedModule =
1944  llvm::PointerIntPair<Module *, 2, ModuleMap::ModuleHeaderRole>;
1945 
1946  struct data_type {
1947  const HeaderFileInfo &HFI;
1948  ArrayRef<ModuleMap::KnownHeader> KnownHeaders;
1949  UnresolvedModule Unresolved;
1950  };
1951  using data_type_ref = const data_type &;
1952 
1953  using hash_value_type = unsigned;
1954  using offset_type = unsigned;
1955 
1956  hash_value_type ComputeHash(key_type_ref key) {
1957  // The hash is based only on size/time of the file, so that the reader can
1958  // match even when symlinking or excess path elements ("foo/../", "../")
1959  // change the form of the name. However, complete path is still the key.
1960  return llvm::hash_combine(key.Size, key.ModTime);
1961  }
1962 
1963  std::pair<unsigned, unsigned>
1964  EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) {
1965  using namespace llvm::support;
1966 
1967  endian::Writer LE(Out, little);
1968  unsigned KeyLen = key.Filename.size() + 1 + 8 + 8;
1969  LE.write<uint16_t>(KeyLen);
1970  unsigned DataLen = 1 + 2 + 4 + 4;
1971  for (auto ModInfo : Data.KnownHeaders)
1972  if (Writer.getLocalOrImportedSubmoduleID(ModInfo.getModule()))
1973  DataLen += 4;
1974  if (Data.Unresolved.getPointer())
1975  DataLen += 4;
1976  LE.write<uint8_t>(DataLen);
1977  return std::make_pair(KeyLen, DataLen);
1978  }
1979 
1980  void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) {
1981  using namespace llvm::support;
1982 
1983  endian::Writer LE(Out, little);
1984  LE.write<uint64_t>(key.Size);
1985  KeyLen -= 8;
1986  LE.write<uint64_t>(key.ModTime);
1987  KeyLen -= 8;
1988  Out.write(key.Filename.data(), KeyLen);
1989  }
1990 
1991  void EmitData(raw_ostream &Out, key_type_ref key,
1992  data_type_ref Data, unsigned DataLen) {
1993  using namespace llvm::support;
1994 
1995  endian::Writer LE(Out, little);
1996  uint64_t Start = Out.tell(); (void)Start;
1997 
1998  unsigned char Flags = (Data.HFI.isImport << 5)
1999  | (Data.HFI.isPragmaOnce << 4)
2000  | (Data.HFI.DirInfo << 1)
2001  | Data.HFI.IndexHeaderMapHeader;
2002  LE.write<uint8_t>(Flags);
2003  LE.write<uint16_t>(Data.HFI.NumIncludes);
2004 
2005  if (!Data.HFI.ControllingMacro)
2006  LE.write<uint32_t>(Data.HFI.ControllingMacroID);
2007  else
2008  LE.write<uint32_t>(Writer.getIdentifierRef(Data.HFI.ControllingMacro));
2009 
2010  unsigned Offset = 0;
2011  if (!Data.HFI.Framework.empty()) {
2012  // If this header refers into a framework, save the framework name.
2013  llvm::StringMap<unsigned>::iterator Pos
2014  = FrameworkNameOffset.find(Data.HFI.Framework);
2015  if (Pos == FrameworkNameOffset.end()) {
2016  Offset = FrameworkStringData.size() + 1;
2017  FrameworkStringData.append(Data.HFI.Framework.begin(),
2018  Data.HFI.Framework.end());
2019  FrameworkStringData.push_back(0);
2020 
2021  FrameworkNameOffset[Data.HFI.Framework] = Offset;
2022  } else
2023  Offset = Pos->second;
2024  }
2025  LE.write<uint32_t>(Offset);
2026 
2027  auto EmitModule = [&](Module *M, ModuleMap::ModuleHeaderRole Role) {
2028  if (uint32_t ModID = Writer.getLocalOrImportedSubmoduleID(M)) {
2029  uint32_t Value = (ModID << 2) | (unsigned)Role;
2030  assert((Value >> 2) == ModID && "overflow in header module info");
2031  LE.write<uint32_t>(Value);
2032  }
2033  };
2034 
2035  // FIXME: If the header is excluded, we should write out some
2036  // record of that fact.
2037  for (auto ModInfo : Data.KnownHeaders)
2038  EmitModule(ModInfo.getModule(), ModInfo.getRole());
2039  if (Data.Unresolved.getPointer())
2040  EmitModule(Data.Unresolved.getPointer(), Data.Unresolved.getInt());
2041 
2042  assert(Out.tell() - Start == DataLen && "Wrong data length");
2043  }
2044 
2045  const char *strings_begin() const { return FrameworkStringData.begin(); }
2046  const char *strings_end() const { return FrameworkStringData.end(); }
2047  };
2048 
2049 } // namespace
2050 
2051 /// Write the header search block for the list of files that
2052 ///
2053 /// \param HS The header search structure to save.
2054 void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) {
2055  HeaderFileInfoTrait GeneratorTrait(*this);
2056  llvm::OnDiskChainedHashTableGenerator<HeaderFileInfoTrait> Generator;
2057  SmallVector<const char *, 4> SavedStrings;
2058  unsigned NumHeaderSearchEntries = 0;
2059 
2060  // Find all unresolved headers for the current module. We generally will
2061  // have resolved them before we get here, but not necessarily: we might be
2062  // compiling a preprocessed module, where there is no requirement for the
2063  // original files to exist any more.
2064  const HeaderFileInfo Empty; // So we can take a reference.
2065  if (WritingModule) {
2066  llvm::SmallVector<Module *, 16> Worklist(1, WritingModule);
2067  while (!Worklist.empty()) {
2068  Module *M = Worklist.pop_back_val();
2069  if (!M->isAvailable())
2070  continue;
2071 
2072  // Map to disk files where possible, to pick up any missing stat
2073  // information. This also means we don't need to check the unresolved
2074  // headers list when emitting resolved headers in the first loop below.
2075  // FIXME: It'd be preferable to avoid doing this if we were given
2076  // sufficient stat information in the module map.
2078 
2079  // If the file didn't exist, we can still create a module if we were given
2080  // enough information in the module map.
2081  for (auto U : M->MissingHeaders) {
2082  // Check that we were given enough information to build a module
2083  // without this file existing on disk.
2084  if (!U.Size || (!U.ModTime && IncludeTimestamps)) {
2085  PP->Diag(U.FileNameLoc, diag::err_module_no_size_mtime_for_header)
2086  << WritingModule->getFullModuleName() << U.Size.hasValue()
2087  << U.FileName;
2088  continue;
2089  }
2090 
2091  // Form the effective relative pathname for the file.
2093  llvm::sys::path::append(Filename, U.FileName);
2094  PreparePathForOutput(Filename);
2095 
2096  StringRef FilenameDup = strdup(Filename.c_str());
2097  SavedStrings.push_back(FilenameDup.data());
2098 
2099  HeaderFileInfoTrait::key_type Key = {
2100  FilenameDup, *U.Size, IncludeTimestamps ? *U.ModTime : 0
2101  };
2102  HeaderFileInfoTrait::data_type Data = {
2103  Empty, {}, {M, ModuleMap::headerKindToRole(U.Kind)}
2104  };
2105  // FIXME: Deal with cases where there are multiple unresolved header
2106  // directives in different submodules for the same header.
2107  Generator.insert(Key, Data, GeneratorTrait);
2108  ++NumHeaderSearchEntries;
2109  }
2110 
2111  Worklist.append(M->submodule_begin(), M->submodule_end());
2112  }
2113  }
2114 
2116  HS.getFileMgr().GetUniqueIDMapping(FilesByUID);
2117 
2118  if (FilesByUID.size() > HS.header_file_size())
2119  FilesByUID.resize(HS.header_file_size());
2120 
2121  for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) {
2122  const FileEntry *File = FilesByUID[UID];
2123  if (!File)
2124  continue;
2125 
2126  // Get the file info. This will load info from the external source if
2127  // necessary. Skip emitting this file if we have no information on it
2128  // as a header file (in which case HFI will be null) or if it hasn't
2129  // changed since it was loaded. Also skip it if it's for a modular header
2130  // from a different module; in that case, we rely on the module(s)
2131  // containing the header to provide this information.
2132  const HeaderFileInfo *HFI =
2133  HS.getExistingFileInfo(File, /*WantExternal*/!Chain);
2134  if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader))
2135  continue;
2136 
2137  // Massage the file path into an appropriate form.
2138  StringRef Filename = File->getName();
2139  SmallString<128> FilenameTmp(Filename);
2140  if (PreparePathForOutput(FilenameTmp)) {
2141  // If we performed any translation on the file name at all, we need to
2142  // save this string, since the generator will refer to it later.
2143  Filename = StringRef(strdup(FilenameTmp.c_str()));
2144  SavedStrings.push_back(Filename.data());
2145  }
2146 
2147  HeaderFileInfoTrait::key_type Key = {
2148  Filename, File->getSize(), getTimestampForOutput(File)
2149  };
2150  HeaderFileInfoTrait::data_type Data = {
2151  *HFI, HS.getModuleMap().findAllModulesForHeader(File), {}
2152  };
2153  Generator.insert(Key, Data, GeneratorTrait);
2154  ++NumHeaderSearchEntries;
2155  }
2156 
2157  // Create the on-disk hash table in a buffer.
2158  SmallString<4096> TableData;
2159  uint32_t BucketOffset;
2160  {
2161  using namespace llvm::support;
2162 
2163  llvm::raw_svector_ostream Out(TableData);
2164  // Make sure that no bucket is at offset 0
2165  endian::write<uint32_t>(Out, 0, little);
2166  BucketOffset = Generator.Emit(Out, GeneratorTrait);
2167  }
2168 
2169  // Create a blob abbreviation
2170  using namespace llvm;
2171 
2172  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2173  Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE));
2174  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2175  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2176  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2177  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2178  unsigned TableAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2179 
2180  // Write the header search table
2181  RecordData::value_type Record[] = {HEADER_SEARCH_TABLE, BucketOffset,
2182  NumHeaderSearchEntries, TableData.size()};
2183  TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end());
2184  Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData);
2185 
2186  // Free all of the strings we had to duplicate.
2187  for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I)
2188  free(const_cast<char *>(SavedStrings[I]));
2189 }
2190 
2191 static void emitBlob(llvm::BitstreamWriter &Stream, StringRef Blob,
2192  unsigned SLocBufferBlobCompressedAbbrv,
2193  unsigned SLocBufferBlobAbbrv) {
2194  using RecordDataType = ASTWriter::RecordData::value_type;
2195 
2196  // Compress the buffer if possible. We expect that almost all PCM
2197  // consumers will not want its contents.
2198  SmallString<0> CompressedBuffer;
2199  if (llvm::zlib::isAvailable()) {
2200  llvm::Error E = llvm::zlib::compress(Blob.drop_back(1), CompressedBuffer);
2201  if (!E) {
2202  RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB_COMPRESSED,
2203  Blob.size() - 1};
2204  Stream.EmitRecordWithBlob(SLocBufferBlobCompressedAbbrv, Record,
2205  CompressedBuffer);
2206  return;
2207  }
2208  llvm::consumeError(std::move(E));
2209  }
2210 
2211  RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB};
2212  Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, Blob);
2213 }
2214 
2215 /// Writes the block containing the serialized form of the
2216 /// source manager.
2217 ///
2218 /// TODO: We should probably use an on-disk hash table (stored in a
2219 /// blob), indexed based on the file name, so that we only create
2220 /// entries for files that we actually need. In the common case (no
2221 /// errors), we probably won't have to create file entries for any of
2222 /// the files in the AST.
2223 void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr,
2224  const Preprocessor &PP) {
2225  RecordData Record;
2226 
2227  // Enter the source manager block.
2228  Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 4);
2229 
2230  // Abbreviations for the various kinds of source-location entries.
2231  unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream);
2232  unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream);
2233  unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream, false);
2234  unsigned SLocBufferBlobCompressedAbbrv =
2235  CreateSLocBufferBlobAbbrev(Stream, true);
2236  unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream);
2237 
2238  // Write out the source location entry table. We skip the first
2239  // entry, which is always the same dummy entry.
2240  std::vector<uint32_t> SLocEntryOffsets;
2241  RecordData PreloadSLocs;
2242  SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1);
2243  for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size();
2244  I != N; ++I) {
2245  // Get this source location entry.
2246  const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
2247  FileID FID = FileID::get(I);
2248  assert(&SourceMgr.getSLocEntry(FID) == SLoc);
2249 
2250  // Record the offset of this source-location entry.
2251  SLocEntryOffsets.push_back(Stream.GetCurrentBitNo());
2252 
2253  // Figure out which record code to use.
2254  unsigned Code;
2255  if (SLoc->isFile()) {
2257  if (Cache->OrigEntry) {
2258  Code = SM_SLOC_FILE_ENTRY;
2259  } else
2260  Code = SM_SLOC_BUFFER_ENTRY;
2261  } else
2262  Code = SM_SLOC_EXPANSION_ENTRY;
2263  Record.clear();
2264  Record.push_back(Code);
2265 
2266  // Starting offset of this entry within this module, so skip the dummy.
2267  Record.push_back(SLoc->getOffset() - 2);
2268  if (SLoc->isFile()) {
2269  const SrcMgr::FileInfo &File = SLoc->getFile();
2270  AddSourceLocation(File.getIncludeLoc(), Record);
2271  Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding
2272  Record.push_back(File.hasLineDirectives());
2273 
2274  const SrcMgr::ContentCache *Content = File.getContentCache();
2275  bool EmitBlob = false;
2276  if (Content->OrigEntry) {
2277  assert(Content->OrigEntry == Content->ContentsEntry &&
2278  "Writing to AST an overridden file is not supported");
2279 
2280  // The source location entry is a file. Emit input file ID.
2281  assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry");
2282  Record.push_back(InputFileIDs[Content->OrigEntry]);
2283 
2284  Record.push_back(File.NumCreatedFIDs);
2285 
2286  FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID);
2287  if (FDI != FileDeclIDs.end()) {
2288  Record.push_back(FDI->second->FirstDeclIndex);
2289  Record.push_back(FDI->second->DeclIDs.size());
2290  } else {
2291  Record.push_back(0);
2292  Record.push_back(0);
2293  }
2294 
2295  Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record);
2296 
2297  if (Content->BufferOverridden || Content->IsTransient)
2298  EmitBlob = true;
2299  } else {
2300  // The source location entry is a buffer. The blob associated
2301  // with this entry contains the contents of the buffer.
2302 
2303  // We add one to the size so that we capture the trailing NULL
2304  // that is required by llvm::MemoryBuffer::getMemBuffer (on
2305  // the reader side).
2306  const llvm::MemoryBuffer *Buffer
2307  = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
2308  StringRef Name = Buffer->getBufferIdentifier();
2309  Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record,
2310  StringRef(Name.data(), Name.size() + 1));
2311  EmitBlob = true;
2312 
2313  if (Name == "<built-in>")
2314  PreloadSLocs.push_back(SLocEntryOffsets.size());
2315  }
2316 
2317  if (EmitBlob) {
2318  // Include the implicit terminating null character in the on-disk buffer
2319  // if we're writing it uncompressed.
2320  const llvm::MemoryBuffer *Buffer =
2321  Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
2322  StringRef Blob(Buffer->getBufferStart(), Buffer->getBufferSize() + 1);
2323  emitBlob(Stream, Blob, SLocBufferBlobCompressedAbbrv,
2324  SLocBufferBlobAbbrv);
2325  }
2326  } else {
2327  // The source location entry is a macro expansion.
2328  const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion();
2329  AddSourceLocation(Expansion.getSpellingLoc(), Record);
2330  AddSourceLocation(Expansion.getExpansionLocStart(), Record);
2331  AddSourceLocation(Expansion.isMacroArgExpansion()
2332  ? SourceLocation()
2333  : Expansion.getExpansionLocEnd(),
2334  Record);
2335  Record.push_back(Expansion.isExpansionTokenRange());
2336 
2337  // Compute the token length for this macro expansion.
2338  unsigned NextOffset = SourceMgr.getNextLocalOffset();
2339  if (I + 1 != N)
2340  NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset();
2341  Record.push_back(NextOffset - SLoc->getOffset() - 1);
2342  Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record);
2343  }
2344  }
2345 
2346  Stream.ExitBlock();
2347 
2348  if (SLocEntryOffsets.empty())
2349  return;
2350 
2351  // Write the source-location offsets table into the AST block. This
2352  // table is used for lazily loading source-location information.
2353  using namespace llvm;
2354 
2355  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2356  Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS));
2357  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs
2358  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size
2359  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets
2360  unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2361  {
2362  RecordData::value_type Record[] = {
2363  SOURCE_LOCATION_OFFSETS, SLocEntryOffsets.size(),
2364  SourceMgr.getNextLocalOffset() - 1 /* skip dummy */};
2365  Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record,
2366  bytes(SLocEntryOffsets));
2367  }
2368  // Write the source location entry preloads array, telling the AST
2369  // reader which source locations entries it should load eagerly.
2370  Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs);
2371 
2372  // Write the line table. It depends on remapping working, so it must come
2373  // after the source location offsets.
2374  if (SourceMgr.hasLineTable()) {
2375  LineTableInfo &LineTable = SourceMgr.getLineTable();
2376 
2377  Record.clear();
2378 
2379  // Emit the needed file names.
2380  llvm::DenseMap<int, int> FilenameMap;
2381  FilenameMap[-1] = -1; // For unspecified filenames.
2382  for (const auto &L : LineTable) {
2383  if (L.first.ID < 0)
2384  continue;
2385  for (auto &LE : L.second) {
2386  if (FilenameMap.insert(std::make_pair(LE.FilenameID,
2387  FilenameMap.size() - 1)).second)
2388  AddPath(LineTable.getFilename(LE.FilenameID), Record);
2389  }
2390  }
2391  Record.push_back(0);
2392 
2393  // Emit the line entries
2394  for (const auto &L : LineTable) {
2395  // Only emit entries for local files.
2396  if (L.first.ID < 0)
2397  continue;
2398 
2399  // Emit the file ID
2400  Record.push_back(L.first.ID);
2401 
2402  // Emit the line entries
2403  Record.push_back(L.second.size());
2404  for (const auto &LE : L.second) {
2405  Record.push_back(LE.FileOffset);
2406  Record.push_back(LE.LineNo);
2407  Record.push_back(FilenameMap[LE.FilenameID]);
2408  Record.push_back((unsigned)LE.FileKind);
2409  Record.push_back(LE.IncludeOffset);
2410  }
2411  }
2412 
2413  Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record);
2414  }
2415 }
2416 
2417 //===----------------------------------------------------------------------===//
2418 // Preprocessor Serialization
2419 //===----------------------------------------------------------------------===//
2420 
2421 static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule,
2422  const Preprocessor &PP) {
2423  if (MacroInfo *MI = MD->getMacroInfo())
2424  if (MI->isBuiltinMacro())
2425  return true;
2426 
2427  if (IsModule) {
2428  SourceLocation Loc = MD->getLocation();
2429  if (Loc.isInvalid())
2430  return true;
2431  if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID())
2432  return true;
2433  }
2434 
2435  return false;
2436 }
2437 
2438 /// Writes the block containing the serialized form of the
2439 /// preprocessor.
2440 void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) {
2442  if (PPRec)
2443  WritePreprocessorDetail(*PPRec);
2444 
2445  RecordData Record;
2446  RecordData ModuleMacroRecord;
2447 
2448  // If the preprocessor __COUNTER__ value has been bumped, remember it.
2449  if (PP.getCounterValue() != 0) {
2450  RecordData::value_type Record[] = {PP.getCounterValue()};
2451  Stream.EmitRecord(PP_COUNTER_VALUE, Record);
2452  }
2453 
2454  if (PP.isRecordingPreamble() && PP.hasRecordedPreamble()) {
2455  assert(!IsModule);
2456  auto SkipInfo = PP.getPreambleSkipInfo();
2457  if (SkipInfo.hasValue()) {
2458  Record.push_back(true);
2459  AddSourceLocation(SkipInfo->HashTokenLoc, Record);
2460  AddSourceLocation(SkipInfo->IfTokenLoc, Record);
2461  Record.push_back(SkipInfo->FoundNonSkipPortion);
2462  Record.push_back(SkipInfo->FoundElse);
2463  AddSourceLocation(SkipInfo->ElseLoc, Record);
2464  } else {
2465  Record.push_back(false);
2466  }
2467  for (const auto &Cond : PP.getPreambleConditionalStack()) {
2468  AddSourceLocation(Cond.IfLoc, Record);
2469  Record.push_back(Cond.WasSkipping);
2470  Record.push_back(Cond.FoundNonSkip);
2471  Record.push_back(Cond.FoundElse);
2472  }
2473  Stream.EmitRecord(PP_CONDITIONAL_STACK, Record);
2474  Record.clear();
2475  }
2476 
2477  // Enter the preprocessor block.
2478  Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3);
2479 
2480  // If the AST file contains __DATE__ or __TIME__ emit a warning about this.
2481  // FIXME: Include a location for the use, and say which one was used.
2482  if (PP.SawDateOrTime())
2483  PP.Diag(SourceLocation(), diag::warn_module_uses_date_time) << IsModule;
2484 
2485  // Loop over all the macro directives that are live at the end of the file,
2486  // emitting each to the PP section.
2487 
2488  // Construct the list of identifiers with macro directives that need to be
2489  // serialized.
2491  for (auto &Id : PP.getIdentifierTable())
2492  if (Id.second->hadMacroDefinition() &&
2493  (!Id.second->isFromAST() ||
2494  Id.second->hasChangedSinceDeserialization()))
2495  MacroIdentifiers.push_back(Id.second);
2496  // Sort the set of macro definitions that need to be serialized by the
2497  // name of the macro, to provide a stable ordering.
2498  llvm::sort(MacroIdentifiers, llvm::less_ptr<IdentifierInfo>());
2499 
2500  // Emit the macro directives as a list and associate the offset with the
2501  // identifier they belong to.
2502  for (const IdentifierInfo *Name : MacroIdentifiers) {
2504  auto StartOffset = Stream.GetCurrentBitNo();
2505 
2506  // Emit the macro directives in reverse source order.
2507  for (; MD; MD = MD->getPrevious()) {
2508  // Once we hit an ignored macro, we're done: the rest of the chain
2509  // will all be ignored macros.
2510  if (shouldIgnoreMacro(MD, IsModule, PP))
2511  break;
2512 
2513  AddSourceLocation(MD->getLocation(), Record);
2514  Record.push_back(MD->getKind());
2515  if (auto *DefMD = dyn_cast<DefMacroDirective>(MD)) {
2516  Record.push_back(getMacroRef(DefMD->getInfo(), Name));
2517  } else if (auto *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) {
2518  Record.push_back(VisMD->isPublic());
2519  }
2520  }
2521 
2522  // Write out any exported module macros.
2523  bool EmittedModuleMacros = false;
2524  // We write out exported module macros for PCH as well.
2525  auto Leafs = PP.getLeafModuleMacros(Name);
2526  SmallVector<ModuleMacro*, 8> Worklist(Leafs.begin(), Leafs.end());
2527  llvm::DenseMap<ModuleMacro*, unsigned> Visits;
2528  while (!Worklist.empty()) {
2529  auto *Macro = Worklist.pop_back_val();
2530 
2531  // Emit a record indicating this submodule exports this macro.
2532  ModuleMacroRecord.push_back(
2533  getSubmoduleID(Macro->getOwningModule()));
2534  ModuleMacroRecord.push_back(getMacroRef(Macro->getMacroInfo(), Name));
2535  for (auto *M : Macro->overrides())
2536  ModuleMacroRecord.push_back(getSubmoduleID(M->getOwningModule()));
2537 
2538  Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord);
2539  ModuleMacroRecord.clear();
2540 
2541  // Enqueue overridden macros once we've visited all their ancestors.
2542  for (auto *M : Macro->overrides())
2543  if (++Visits[M] == M->getNumOverridingMacros())
2544  Worklist.push_back(M);
2545 
2546  EmittedModuleMacros = true;
2547  }
2548 
2549  if (Record.empty() && !EmittedModuleMacros)
2550  continue;
2551 
2552  IdentMacroDirectivesOffsetMap[Name] = StartOffset;
2553  Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record);
2554  Record.clear();
2555  }
2556 
2557  /// Offsets of each of the macros into the bitstream, indexed by
2558  /// the local macro ID
2559  ///
2560  /// For each identifier that is associated with a macro, this map
2561  /// provides the offset into the bitstream where that macro is
2562  /// defined.
2563  std::vector<uint32_t> MacroOffsets;
2564 
2565  for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) {
2566  const IdentifierInfo *Name = MacroInfosToEmit[I].Name;
2567  MacroInfo *MI = MacroInfosToEmit[I].MI;
2568  MacroID ID = MacroInfosToEmit[I].ID;
2569 
2570  if (ID < FirstMacroID) {
2571  assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?");
2572  continue;
2573  }
2574 
2575  // Record the local offset of this macro.
2576  unsigned Index = ID - FirstMacroID;
2577  if (Index == MacroOffsets.size())
2578  MacroOffsets.push_back(Stream.GetCurrentBitNo());
2579  else {
2580  if (Index > MacroOffsets.size())
2581  MacroOffsets.resize(Index + 1);
2582 
2583  MacroOffsets[Index] = Stream.GetCurrentBitNo();
2584  }
2585 
2586  AddIdentifierRef(Name, Record);
2587  AddSourceLocation(MI->getDefinitionLoc(), Record);
2588  AddSourceLocation(MI->getDefinitionEndLoc(), Record);
2589  Record.push_back(MI->isUsed());
2590  Record.push_back(MI->isUsedForHeaderGuard());
2591  unsigned Code;
2592  if (MI->isObjectLike()) {
2593  Code = PP_MACRO_OBJECT_LIKE;
2594  } else {
2595  Code = PP_MACRO_FUNCTION_LIKE;
2596 
2597  Record.push_back(MI->isC99Varargs());
2598  Record.push_back(MI->isGNUVarargs());
2599  Record.push_back(MI->hasCommaPasting());
2600  Record.push_back(MI->getNumParams());
2601  for (const IdentifierInfo *Param : MI->params())
2602  AddIdentifierRef(Param, Record);
2603  }
2604 
2605  // If we have a detailed preprocessing record, record the macro definition
2606  // ID that corresponds to this macro.
2607  if (PPRec)
2608  Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
2609 
2610  Stream.EmitRecord(Code, Record);
2611  Record.clear();
2612 
2613  // Emit the tokens array.
2614  for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
2615  // Note that we know that the preprocessor does not have any annotation
2616  // tokens in it because they are created by the parser, and thus can't
2617  // be in a macro definition.
2618  const Token &Tok = MI->getReplacementToken(TokNo);
2619  AddToken(Tok, Record);
2620  Stream.EmitRecord(PP_TOKEN, Record);
2621  Record.clear();
2622  }
2623  ++NumMacros;
2624  }
2625 
2626  Stream.ExitBlock();
2627 
2628  // Write the offsets table for macro IDs.
2629  using namespace llvm;
2630 
2631  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2632  Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET));
2633  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros
2634  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
2635  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2636 
2637  unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2638  {
2639  RecordData::value_type Record[] = {MACRO_OFFSET, MacroOffsets.size(),
2640  FirstMacroID - NUM_PREDEF_MACRO_IDS};
2641  Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record, bytes(MacroOffsets));
2642  }
2643 }
2644 
2645 void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec) {
2646  if (PPRec.local_begin() == PPRec.local_end())
2647  return;
2648 
2649  SmallVector<PPEntityOffset, 64> PreprocessedEntityOffsets;
2650 
2651  // Enter the preprocessor block.
2652  Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3);
2653 
2654  // If the preprocessor has a preprocessing record, emit it.
2655  unsigned NumPreprocessingRecords = 0;
2656  using namespace llvm;
2657 
2658  // Set up the abbreviation for
2659  unsigned InclusionAbbrev = 0;
2660  {
2661  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2662  Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE));
2663  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length
2664  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes
2665  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind
2666  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module
2667  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2668  InclusionAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2669  }
2670 
2671  unsigned FirstPreprocessorEntityID
2672  = (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0)
2674  unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID;
2675  RecordData Record;
2676  for (PreprocessingRecord::iterator E = PPRec.local_begin(),
2677  EEnd = PPRec.local_end();
2678  E != EEnd;
2679  (void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) {
2680  Record.clear();
2681 
2682  PreprocessedEntityOffsets.push_back(
2683  PPEntityOffset((*E)->getSourceRange(), Stream.GetCurrentBitNo()));
2684 
2685  if (auto *MD = dyn_cast<MacroDefinitionRecord>(*E)) {
2686  // Record this macro definition's ID.
2687  MacroDefinitions[MD] = NextPreprocessorEntityID;
2688 
2689  AddIdentifierRef(MD->getName(), Record);
2690  Stream.EmitRecord(PPD_MACRO_DEFINITION, Record);
2691  continue;
2692  }
2693 
2694  if (auto *ME = dyn_cast<MacroExpansion>(*E)) {
2695  Record.push_back(ME->isBuiltinMacro());
2696  if (ME->isBuiltinMacro())
2697  AddIdentifierRef(ME->getName(), Record);
2698  else
2699  Record.push_back(MacroDefinitions[ME->getDefinition()]);
2700  Stream.EmitRecord(PPD_MACRO_EXPANSION, Record);
2701  continue;
2702  }
2703 
2704  if (auto *ID = dyn_cast<InclusionDirective>(*E)) {
2705  Record.push_back(PPD_INCLUSION_DIRECTIVE);
2706  Record.push_back(ID->getFileName().size());
2707  Record.push_back(ID->wasInQuotes());
2708  Record.push_back(static_cast<unsigned>(ID->getKind()));
2709  Record.push_back(ID->importedModule());
2710  SmallString<64> Buffer;
2711  Buffer += ID->getFileName();
2712  // Check that the FileEntry is not null because it was not resolved and
2713  // we create a PCH even with compiler errors.
2714  if (ID->getFile())
2715  Buffer += ID->getFile()->getName();
2716  Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer);
2717  continue;
2718  }
2719 
2720  llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter");
2721  }
2722  Stream.ExitBlock();
2723 
2724  // Write the offsets table for the preprocessing record.
2725  if (NumPreprocessingRecords > 0) {
2726  assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords);
2727 
2728  // Write the offsets table for identifier IDs.
2729  using namespace llvm;
2730 
2731  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2732  Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS));
2733  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity
2734  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2735  unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2736 
2737  RecordData::value_type Record[] = {PPD_ENTITIES_OFFSETS,
2738  FirstPreprocessorEntityID -
2740  Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record,
2741  bytes(PreprocessedEntityOffsets));
2742  }
2743 
2744  // Write the skipped region table for the preprocessing record.
2745  ArrayRef<SourceRange> SkippedRanges = PPRec.getSkippedRanges();
2746  if (SkippedRanges.size() > 0) {
2747  std::vector<PPSkippedRange> SerializedSkippedRanges;
2748  SerializedSkippedRanges.reserve(SkippedRanges.size());
2749  for (auto const& Range : SkippedRanges)
2750  SerializedSkippedRanges.emplace_back(Range);
2751 
2752  using namespace llvm;
2753  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2754  Abbrev->Add(BitCodeAbbrevOp(PPD_SKIPPED_RANGES));
2755  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2756  unsigned PPESkippedRangeAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2757 
2758  Record.clear();
2759  Record.push_back(PPD_SKIPPED_RANGES);
2760  Stream.EmitRecordWithBlob(PPESkippedRangeAbbrev, Record,
2761  bytes(SerializedSkippedRanges));
2762  }
2763 }
2764 
2766  if (!Mod)
2767  return 0;
2768 
2769  llvm::DenseMap<Module *, unsigned>::iterator Known = SubmoduleIDs.find(Mod);
2770  if (Known != SubmoduleIDs.end())
2771  return Known->second;
2772 
2773  auto *Top = Mod->getTopLevelModule();
2774  if (Top != WritingModule &&
2775  (getLangOpts().CompilingPCH ||
2776  !Top->fullModuleNameIs(StringRef(getLangOpts().CurrentModule))))
2777  return 0;
2778 
2779  return SubmoduleIDs[Mod] = NextSubmoduleID++;
2780 }
2781 
2782 unsigned ASTWriter::getSubmoduleID(Module *Mod) {
2783  // FIXME: This can easily happen, if we have a reference to a submodule that
2784  // did not result in us loading a module file for that submodule. For
2785  // instance, a cross-top-level-module 'conflict' declaration will hit this.
2786  unsigned ID = getLocalOrImportedSubmoduleID(Mod);
2787  assert((ID || !Mod) &&
2788  "asked for module ID for non-local, non-imported module");
2789  return ID;
2790 }
2791 
2792 /// Compute the number of modules within the given tree (including the
2793 /// given module).
2794 static unsigned getNumberOfModules(Module *Mod) {
2795  unsigned ChildModules = 0;
2796  for (auto Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end();
2797  Sub != SubEnd; ++Sub)
2798  ChildModules += getNumberOfModules(*Sub);
2799 
2800  return ChildModules + 1;
2801 }
2802 
2803 void ASTWriter::WriteSubmodules(Module *WritingModule) {
2804  // Enter the submodule description block.
2805  Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5);
2806 
2807  // Write the abbreviations needed for the submodules block.
2808  using namespace llvm;
2809 
2810  auto Abbrev = std::make_shared<BitCodeAbbrev>();
2811  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION));
2812  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
2813  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent
2814  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Kind
2815  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
2816  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit
2817  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem
2818  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC
2819  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules...
2820  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit...
2821  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild...
2822  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh...
2823  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ModuleMapIsPriv...
2824  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2825  unsigned DefinitionAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2826 
2827  Abbrev = std::make_shared<BitCodeAbbrev>();
2828  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER));
2829  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2830  unsigned UmbrellaAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2831 
2832  Abbrev = std::make_shared<BitCodeAbbrev>();
2833  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER));
2834  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2835  unsigned HeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2836 
2837  Abbrev = std::make_shared<BitCodeAbbrev>();
2838  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER));
2839  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2840  unsigned TopHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2841 
2842  Abbrev = std::make_shared<BitCodeAbbrev>();
2843  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR));
2844  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2845  unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2846 
2847  Abbrev = std::make_shared<BitCodeAbbrev>();
2848  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES));
2849  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State
2850  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature
2851  unsigned RequiresAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2852 
2853  Abbrev = std::make_shared<BitCodeAbbrev>();
2854  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER));
2855  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2856  unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2857 
2858  Abbrev = std::make_shared<BitCodeAbbrev>();
2859  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER));
2860  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2861  unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2862 
2863  Abbrev = std::make_shared<BitCodeAbbrev>();
2864  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER));
2865  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2866  unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2867 
2868  Abbrev = std::make_shared<BitCodeAbbrev>();
2869  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER));
2870  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2871  unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2872 
2873  Abbrev = std::make_shared<BitCodeAbbrev>();
2874  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY));
2875  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
2876  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
2877  unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2878 
2879  Abbrev = std::make_shared<BitCodeAbbrev>();
2880  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO));
2881  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
2882  unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2883 
2884  Abbrev = std::make_shared<BitCodeAbbrev>();
2885  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT));
2886  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module
2887  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message
2888  unsigned ConflictAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2889 
2890  Abbrev = std::make_shared<BitCodeAbbrev>();
2891  Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXPORT_AS));
2892  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
2893  unsigned ExportAsAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
2894 
2895  // Write the submodule metadata block.
2896  RecordData::value_type Record[] = {
2897  getNumberOfModules(WritingModule),
2898  FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS};
2899  Stream.EmitRecord(SUBMODULE_METADATA, Record);
2900 
2901  // Write all of the submodules.
2902  std::queue<Module *> Q;
2903  Q.push(WritingModule);
2904  while (!Q.empty()) {
2905  Module *Mod = Q.front();
2906  Q.pop();
2907  unsigned ID = getSubmoduleID(Mod);
2908 
2909  uint64_t ParentID = 0;
2910  if (Mod->Parent) {
2911  assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?");
2912  ParentID = SubmoduleIDs[Mod->Parent];
2913  }
2914 
2915  // Emit the definition of the block.
2916  {
2917  RecordData::value_type Record[] = {SUBMODULE_DEFINITION,
2918  ID,
2919  ParentID,
2920  (RecordData::value_type)Mod->Kind,
2921  Mod->IsFramework,
2922  Mod->IsExplicit,
2923  Mod->IsSystem,
2924  Mod->IsExternC,
2925  Mod->InferSubmodules,
2927  Mod->InferExportWildcard,
2929  Mod->ModuleMapIsPrivate};
2930  Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name);
2931  }
2932 
2933  // Emit the requirements.
2934  for (const auto &R : Mod->Requirements) {
2935  RecordData::value_type Record[] = {SUBMODULE_REQUIRES, R.second};
2936  Stream.EmitRecordWithBlob(RequiresAbbrev, Record, R.first);
2937  }
2938 
2939  // Emit the umbrella header, if there is one.
2940  if (auto UmbrellaHeader = Mod->getUmbrellaHeader()) {
2941  RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_HEADER};
2942  Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record,
2943  UmbrellaHeader.NameAsWritten);
2944  } else if (auto UmbrellaDir = Mod->getUmbrellaDir()) {
2945  RecordData::value_type Record[] = {SUBMODULE_UMBRELLA_DIR};
2946  Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record,
2947  UmbrellaDir.NameAsWritten);
2948  }
2949 
2950  // Emit the headers.
2951  struct {
2952  unsigned RecordKind;
2953  unsigned Abbrev;
2954  Module::HeaderKind HeaderKind;
2955  } HeaderLists[] = {
2956  {SUBMODULE_HEADER, HeaderAbbrev, Module::HK_Normal},
2957  {SUBMODULE_TEXTUAL_HEADER, TextualHeaderAbbrev, Module::HK_Textual},
2958  {SUBMODULE_PRIVATE_HEADER, PrivateHeaderAbbrev, Module::HK_Private},
2959  {SUBMODULE_PRIVATE_TEXTUAL_HEADER, PrivateTextualHeaderAbbrev,
2961  {SUBMODULE_EXCLUDED_HEADER, ExcludedHeaderAbbrev, Module::HK_Excluded}
2962  };
2963  for (auto &HL : HeaderLists) {
2964  RecordData::value_type Record[] = {HL.RecordKind};
2965  for (auto &H : Mod->Headers[HL.HeaderKind])
2966  Stream.EmitRecordWithBlob(HL.Abbrev, Record, H.NameAsWritten);
2967  }
2968 
2969  // Emit the top headers.
2970  {
2971  auto TopHeaders = Mod->getTopHeaders(PP->getFileManager());
2972  RecordData::value_type Record[] = {SUBMODULE_TOPHEADER};
2973  for (auto *H : TopHeaders)
2974  Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, H->getName());
2975  }
2976 
2977  // Emit the imports.
2978  if (!Mod->Imports.empty()) {
2979  RecordData Record;
2980  for (auto *I : Mod->Imports)
2981  Record.push_back(getSubmoduleID(I));
2982  Stream.EmitRecord(SUBMODULE_IMPORTS, Record);
2983  }
2984 
2985  // Emit the exports.
2986  if (!Mod->Exports.empty()) {
2987  RecordData Record;
2988  for (const auto &E : Mod->Exports) {
2989  // FIXME: This may fail; we don't require that all exported modules
2990  // are local or imported.
2991  Record.push_back(getSubmoduleID(E.getPointer()));
2992  Record.push_back(E.getInt());
2993  }
2994  Stream.EmitRecord(SUBMODULE_EXPORTS, Record);
2995  }
2996 
2997  //FIXME: How do we emit the 'use'd modules? They may not be submodules.
2998  // Might be unnecessary as use declarations are only used to build the
2999  // module itself.
3000 
3001  // Emit the link libraries.
3002  for (const auto &LL : Mod->LinkLibraries) {
3003  RecordData::value_type Record[] = {SUBMODULE_LINK_LIBRARY,
3004  LL.IsFramework};
3005  Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record, LL.Library);
3006  }
3007 
3008  // Emit the conflicts.
3009  for (const auto &C : Mod->Conflicts) {
3010  // FIXME: This may fail; we don't require that all conflicting modules
3011  // are local or imported.
3012  RecordData::value_type Record[] = {SUBMODULE_CONFLICT,
3013  getSubmoduleID(C.Other)};
3014  Stream.EmitRecordWithBlob(ConflictAbbrev, Record, C.Message);
3015  }
3016 
3017  // Emit the configuration macros.
3018  for (const auto &CM : Mod->ConfigMacros) {
3019  RecordData::value_type Record[] = {SUBMODULE_CONFIG_MACRO};
3020  Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record, CM);
3021  }
3022 
3023  // Emit the initializers, if any.
3024  RecordData Inits;
3025  for (Decl *D : Context->getModuleInitializers(Mod))
3026  Inits.push_back(GetDeclRef(D));
3027  if (!Inits.empty())
3028  Stream.EmitRecord(SUBMODULE_INITIALIZERS, Inits);
3029 
3030  // Emit the name of the re-exported module, if any.
3031  if (!Mod->ExportAsModule.empty()) {
3032  RecordData::value_type Record[] = {SUBMODULE_EXPORT_AS};
3033  Stream.EmitRecordWithBlob(ExportAsAbbrev, Record, Mod->ExportAsModule);
3034  }
3035 
3036  // Queue up the submodules of this module.
3037  for (auto *M : Mod->submodules())
3038  Q.push(M);
3039  }
3040 
3041  Stream.ExitBlock();
3042 
3043  assert((NextSubmoduleID - FirstSubmoduleID ==
3044  getNumberOfModules(WritingModule)) &&
3045  "Wrong # of submodules; found a reference to a non-local, "
3046  "non-imported submodule?");
3047 }
3048 
3049 void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag,
3050  bool isModule) {
3051  llvm::SmallDenseMap<const DiagnosticsEngine::DiagState *, unsigned, 64>
3052  DiagStateIDMap;
3053  unsigned CurrID = 0;
3054  RecordData Record;
3055 
3056  auto EncodeDiagStateFlags =
3057  [](const DiagnosticsEngine::DiagState *DS) -> unsigned {
3058  unsigned Result = (unsigned)DS->ExtBehavior;
3059  for (unsigned Val :
3060  {(unsigned)DS->IgnoreAllWarnings, (unsigned)DS->EnableAllWarnings,
3061  (unsigned)DS->WarningsAsErrors, (unsigned)DS->ErrorsAsFatal,
3062  (unsigned)DS->SuppressSystemWarnings})
3063  Result = (Result << 1) | Val;
3064  return Result;
3065  };
3066 
3067  unsigned Flags = EncodeDiagStateFlags(Diag.DiagStatesByLoc.FirstDiagState);
3068  Record.push_back(Flags);
3069 
3070  auto AddDiagState = [&](const DiagnosticsEngine::DiagState *State,
3071  bool IncludeNonPragmaStates) {
3072  // Ensure that the diagnostic state wasn't modified since it was created.
3073  // We will not correctly round-trip this information otherwise.
3074  assert(Flags == EncodeDiagStateFlags(State) &&
3075  "diag state flags vary in single AST file");
3076 
3077  unsigned &DiagStateID = DiagStateIDMap[State];
3078  Record.push_back(DiagStateID);
3079 
3080  if (DiagStateID == 0) {
3081  DiagStateID = ++CurrID;
3082 
3083  // Add a placeholder for the number of mappings.
3084  auto SizeIdx = Record.size();
3085  Record.emplace_back();
3086  for (const auto &I : *State) {
3087  if (I.second.isPragma() || IncludeNonPragmaStates) {
3088  Record.push_back(I.first);
3089  Record.push_back(I.second.serialize());
3090  }
3091  }
3092  // Update the placeholder.
3093  Record[SizeIdx] = (Record.size() - SizeIdx) / 2;
3094  }
3095  };
3096 
3097  AddDiagState(Diag.DiagStatesByLoc.FirstDiagState, isModule);
3098 
3099  // Reserve a spot for the number of locations with state transitions.
3100  auto NumLocationsIdx = Record.size();
3101  Record.emplace_back();
3102 
3103  // Emit the state transitions.
3104  unsigned NumLocations = 0;
3105  for (auto &FileIDAndFile : Diag.DiagStatesByLoc.Files) {
3106  if (!FileIDAndFile.first.isValid() ||
3107  !FileIDAndFile.second.HasLocalTransitions)
3108  continue;
3109  ++NumLocations;
3110 
3111  SourceLocation Loc = Diag.SourceMgr->getComposedLoc(FileIDAndFile.first, 0);
3112  assert(!Loc.isInvalid() && "start loc for valid FileID is invalid");
3113  AddSourceLocation(Loc, Record);
3114 
3115  Record.push_back(FileIDAndFile.second.StateTransitions.size());
3116  for (auto &StatePoint : FileIDAndFile.second.StateTransitions) {
3117  Record.push_back(StatePoint.Offset);
3118  AddDiagState(StatePoint.State, false);
3119  }
3120  }
3121 
3122  // Backpatch the number of locations.
3123  Record[NumLocationsIdx] = NumLocations;
3124 
3125  // Emit CurDiagStateLoc. Do it last in order to match source order.
3126  //
3127  // This also protects against a hypothetical corner case with simulating
3128  // -Werror settings for implicit modules in the ASTReader, where reading
3129  // CurDiagState out of context could change whether warning pragmas are
3130  // treated as errors.
3131  AddSourceLocation(Diag.DiagStatesByLoc.CurDiagStateLoc, Record);
3132  AddDiagState(Diag.DiagStatesByLoc.CurDiagState, false);
3133 
3134  Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record);
3135 }
3136 
3137 //===----------------------------------------------------------------------===//
3138 // Type Serialization
3139 //===----------------------------------------------------------------------===//
3140 
3141 /// Write the representation of a type to the AST stream.
3142 void ASTWriter::WriteType(QualType T) {
3143  TypeIdx &IdxRef = TypeIdxs[T];
3144  if (IdxRef.getIndex() == 0) // we haven't seen this type before.
3145  IdxRef = TypeIdx(NextTypeID++);
3146  TypeIdx Idx = IdxRef;
3147 
3148  assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST");
3149 
3150  RecordData Record;
3151 
3152  // Emit the type's representation.
3153  ASTTypeWriter W(*this, Record);
3154  W.Visit(T);
3155  uint64_t Offset = W.Emit();
3156 
3157  // Record the offset for this type.
3158  unsigned Index = Idx.getIndex() - FirstTypeID;
3159  if (TypeOffsets.size() == Index)
3160  TypeOffsets.push_back(Offset);
3161  else if (TypeOffsets.size() < Index) {
3162  TypeOffsets.resize(Index + 1);
3163  TypeOffsets[Index] = Offset;
3164  } else {
3165  llvm_unreachable("Types emitted in wrong order");
3166  }
3167 }
3168 
3169 //===----------------------------------------------------------------------===//
3170 // Declaration Serialization
3171 //===----------------------------------------------------------------------===//
3172 
3173 /// Write the block containing all of the declaration IDs
3174 /// lexically declared within the given DeclContext.
3175 ///
3176 /// \returns the offset of the DECL_CONTEXT_LEXICAL block within the
3177 /// bitstream, or 0 if no block was written.
3178 uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context,
3179  DeclContext *DC) {
3180  if (DC->decls_empty())
3181  return 0;
3182 
3183  uint64_t Offset = Stream.GetCurrentBitNo();
3184  SmallVector<uint32_t, 128> KindDeclPairs;
3185  for (const auto *D : DC->decls()) {
3186  KindDeclPairs.push_back(D->getKind());
3187  KindDeclPairs.push_back(GetDeclRef(D));
3188  }
3189 
3190  ++NumLexicalDeclContexts;
3191  RecordData::value_type Record[] = {DECL_CONTEXT_LEXICAL};
3192  Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record,
3193  bytes(KindDeclPairs));
3194  return Offset;
3195 }
3196 
3197 void ASTWriter::WriteTypeDeclOffsets() {
3198  using namespace llvm;
3199 
3200  // Write the type offsets array
3201  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3202  Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET));
3203  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types
3204  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index
3205  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block
3206  unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3207  {
3208  RecordData::value_type Record[] = {TYPE_OFFSET, TypeOffsets.size(),
3209  FirstTypeID - NUM_PREDEF_TYPE_IDS};
3210  Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, bytes(TypeOffsets));
3211  }
3212 
3213  // Write the declaration offsets array
3214  Abbrev = std::make_shared<BitCodeAbbrev>();
3215  Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET));
3216  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations
3217  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID
3218  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block
3219  unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3220  {
3221  RecordData::value_type Record[] = {DECL_OFFSET, DeclOffsets.size(),
3222  FirstDeclID - NUM_PREDEF_DECL_IDS};
3223  Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, bytes(DeclOffsets));
3224  }
3225 }
3226 
3227 void ASTWriter::WriteFileDeclIDsMap() {
3228  using namespace llvm;
3229 
3231  FileDeclIDs.begin(), FileDeclIDs.end());
3232  llvm::sort(SortedFileDeclIDs, llvm::less_first());
3233 
3234  // Join the vectors of DeclIDs from all files.
3235  SmallVector<DeclID, 256> FileGroupedDeclIDs;
3236  for (auto &FileDeclEntry : SortedFileDeclIDs) {
3237  DeclIDInFileInfo &Info = *FileDeclEntry.second;
3238  Info.FirstDeclIndex = FileGroupedDeclIDs.size();
3239  for (auto &LocDeclEntry : Info.DeclIDs)
3240  FileGroupedDeclIDs.push_back(LocDeclEntry.second);
3241  }
3242 
3243  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3244  Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS));
3245  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3246  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3247  unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
3248  RecordData::value_type Record[] = {FILE_SORTED_DECLS,
3249  FileGroupedDeclIDs.size()};
3250  Stream.EmitRecordWithBlob(AbbrevCode, Record, bytes(FileGroupedDeclIDs));
3251 }
3252 
3253 void ASTWriter::WriteComments() {
3254  Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3);
3255  auto _ = llvm::make_scope_exit([this] { Stream.ExitBlock(); });
3257  return;
3258  ArrayRef<RawComment *> RawComments = Context->Comments.getComments();
3259  RecordData Record;
3260  for (const auto *I : RawComments) {
3261  Record.clear();
3262  AddSourceRange(I->getSourceRange(), Record);
3263  Record.push_back(I->getKind());
3264  Record.push_back(I->isTrailingComment());
3265  Record.push_back(I->isAlmostTrailingComment());
3266  Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record);
3267  }
3268 }
3269 
3270 //===----------------------------------------------------------------------===//
3271 // Global Method Pool and Selector Serialization
3272 //===----------------------------------------------------------------------===//
3273 
3274 namespace {
3275 
3276 // Trait used for the on-disk hash table used in the method pool.
3277 class ASTMethodPoolTrait {
3278  ASTWriter &Writer;
3279 
3280 public:
3281  using key_type = Selector;
3282  using key_type_ref = key_type;
3283 
3284  struct data_type {
3285  SelectorID ID;
3286  ObjCMethodList Instance, Factory;
3287  };
3288  using data_type_ref = const data_type &;
3289 
3290  using hash_value_type = unsigned;
3291  using offset_type = unsigned;
3292 
3293  explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) {}
3294 
3295  static hash_value_type ComputeHash(Selector Sel) {
3296  return serialization::ComputeHash(Sel);
3297  }
3298 
3299  std::pair<unsigned, unsigned>
3300  EmitKeyDataLength(raw_ostream& Out, Selector Sel,
3301  data_type_ref Methods) {
3302  using namespace llvm::support;
3303 
3304  endian::Writer LE(Out, little);
3305  unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4);
3306  LE.write<uint16_t>(KeyLen);
3307  unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts
3308  for (const ObjCMethodList *Method = &Methods.Instance; Method;
3309  Method = Method->getNext())
3310  if (Method->getMethod())
3311  DataLen += 4;
3312  for (const ObjCMethodList *Method = &Methods.Factory; Method;
3313  Method = Method->getNext())
3314  if (Method->getMethod())
3315  DataLen += 4;
3316  LE.write<uint16_t>(DataLen);
3317  return std::make_pair(KeyLen, DataLen);
3318  }
3319 
3320  void EmitKey(raw_ostream& Out, Selector Sel, unsigned) {
3321  using namespace llvm::support;
3322 
3323  endian::Writer LE(Out, little);
3324  uint64_t Start = Out.tell();
3325  assert((Start >> 32) == 0 && "Selector key offset too large");
3326  Writer.SetSelectorOffset(Sel, Start);
3327  unsigned N = Sel.getNumArgs();
3328  LE.write<uint16_t>(N);
3329  if (N == 0)
3330  N = 1;
3331  for (unsigned I = 0; I != N; ++I)
3332  LE.write<uint32_t>(
3334  }
3335 
3336  void EmitData(raw_ostream& Out, key_type_ref,
3337  data_type_ref Methods, unsigned DataLen) {
3338  using namespace llvm::support;
3339 
3340  endian::Writer LE(Out, little);
3341  uint64_t Start = Out.tell(); (void)Start;
3342  LE.write<uint32_t>(Methods.ID);
3343  unsigned NumInstanceMethods = 0;
3344  for (const ObjCMethodList *Method = &Methods.Instance; Method;
3345  Method = Method->getNext())
3346  if (Method->getMethod())
3347  ++NumInstanceMethods;
3348 
3349  unsigned NumFactoryMethods = 0;
3350  for (const ObjCMethodList *Method = &Methods.Factory; Method;
3351  Method = Method->getNext())
3352  if (Method->getMethod())
3353  ++NumFactoryMethods;
3354 
3355  unsigned InstanceBits = Methods.Instance.getBits();
3356  assert(InstanceBits < 4);
3357  unsigned InstanceHasMoreThanOneDeclBit =
3358  Methods.Instance.hasMoreThanOneDecl();
3359  unsigned FullInstanceBits = (NumInstanceMethods << 3) |
3360  (InstanceHasMoreThanOneDeclBit << 2) |
3361  InstanceBits;
3362  unsigned FactoryBits = Methods.Factory.getBits();
3363  assert(FactoryBits < 4);
3364  unsigned FactoryHasMoreThanOneDeclBit =
3365  Methods.Factory.hasMoreThanOneDecl();
3366  unsigned FullFactoryBits = (NumFactoryMethods << 3) |
3367  (FactoryHasMoreThanOneDeclBit << 2) |
3368  FactoryBits;
3369  LE.write<uint16_t>(FullInstanceBits);
3370  LE.write<uint16_t>(FullFactoryBits);
3371  for (const ObjCMethodList *Method = &Methods.Instance; Method;
3372  Method = Method->getNext())
3373  if (Method->getMethod())
3374  LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
3375  for (const ObjCMethodList *Method = &Methods.Factory; Method;
3376  Method = Method->getNext())
3377  if (Method->getMethod())
3378  LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
3379 
3380  assert(Out.tell() - Start == DataLen && "Data length is wrong");
3381  }
3382 };
3383 
3384 } // namespace
3385 
3386 /// Write ObjC data: selectors and the method pool.
3387 ///
3388 /// The method pool contains both instance and factory methods, stored
3389 /// in an on-disk hash table indexed by the selector. The hash table also
3390 /// contains an empty entry for every other selector known to Sema.
3391 void ASTWriter::WriteSelectors(Sema &SemaRef) {
3392  using namespace llvm;
3393 
3394  // Do we have to do anything at all?
3395  if (SemaRef.MethodPool.empty() && SelectorIDs.empty())
3396  return;
3397  unsigned NumTableEntries = 0;
3398  // Create and write out the blob that contains selectors and the method pool.
3399  {
3400  llvm::OnDiskChainedHashTableGenerator<ASTMethodPoolTrait> Generator;
3401  ASTMethodPoolTrait Trait(*this);
3402 
3403  // Create the on-disk hash table representation. We walk through every
3404  // selector we've seen and look it up in the method pool.
3405  SelectorOffsets.resize(NextSelectorID - FirstSelectorID);
3406  for (auto &SelectorAndID : SelectorIDs) {
3407  Selector S = SelectorAndID.first;
3408  SelectorID ID = SelectorAndID.second;
3409  Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S);
3410  ASTMethodPoolTrait::data_type Data = {
3411  ID,
3412  ObjCMethodList(),
3413  ObjCMethodList()
3414  };
3415  if (F != SemaRef.MethodPool.end()) {
3416  Data.Instance = F->second.first;
3417  Data.Factory = F->second.second;
3418  }
3419  // Only write this selector if it's not in an existing AST or something
3420  // changed.
3421  if (Chain && ID < FirstSelectorID) {
3422  // Selector already exists. Did it change?
3423  bool changed = false;
3424  for (ObjCMethodList *M = &Data.Instance;
3425  !changed && M && M->getMethod(); M = M->getNext()) {
3426  if (!M->getMethod()->isFromASTFile())
3427  changed = true;
3428  }
3429  for (ObjCMethodList *M = &Data.Factory; !changed && M && M->getMethod();
3430  M = M->getNext()) {
3431  if (!M->getMethod()->isFromASTFile())
3432  changed = true;
3433  }
3434  if (!changed)
3435  continue;
3436  } else if (Data.Instance.getMethod() || Data.Factory.getMethod()) {
3437  // A new method pool entry.
3438  ++NumTableEntries;
3439  }
3440  Generator.insert(S, Data, Trait);
3441  }
3442 
3443  // Create the on-disk hash table in a buffer.
3444  SmallString<4096> MethodPool;
3445  uint32_t BucketOffset;
3446  {
3447  using namespace llvm::support;
3448 
3449  ASTMethodPoolTrait Trait(*this);
3450  llvm::raw_svector_ostream Out(MethodPool);
3451  // Make sure that no bucket is at offset 0
3452  endian::write<uint32_t>(Out, 0, little);
3453  BucketOffset = Generator.Emit(Out, Trait);
3454  }
3455 
3456  // Create a blob abbreviation
3457  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3458  Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL));
3459  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3460  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3461  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3462  unsigned MethodPoolAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3463 
3464  // Write the method pool
3465  {
3466  RecordData::value_type Record[] = {METHOD_POOL, BucketOffset,
3467  NumTableEntries};
3468  Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool);
3469  }
3470 
3471  // Create a blob abbreviation for the selector table offsets.
3472  Abbrev = std::make_shared<BitCodeAbbrev>();
3473  Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS));
3474  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
3475  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
3476  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3477  unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3478 
3479  // Write the selector offsets table.
3480  {
3481  RecordData::value_type Record[] = {
3482  SELECTOR_OFFSETS, SelectorOffsets.size(),
3483  FirstSelectorID - NUM_PREDEF_SELECTOR_IDS};
3484  Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record,
3485  bytes(SelectorOffsets));
3486  }
3487  }
3488 }
3489 
3490 /// Write the selectors referenced in @selector expression into AST file.
3491 void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) {
3492  using namespace llvm;
3493 
3494  if (SemaRef.ReferencedSelectors.empty())
3495  return;
3496 
3497  RecordData Record;
3498  ASTRecordWriter Writer(*this, Record);
3499 
3500  // Note: this writes out all references even for a dependent AST. But it is
3501  // very tricky to fix, and given that @selector shouldn't really appear in
3502  // headers, probably not worth it. It's not a correctness issue.
3503  for (auto &SelectorAndLocation : SemaRef.ReferencedSelectors) {
3504  Selector Sel = SelectorAndLocation.first;
3505  SourceLocation Loc = SelectorAndLocation.second;
3506  Writer.AddSelectorRef(Sel);
3507  Writer.AddSourceLocation(Loc);
3508  }
3510 }
3511 
3512 //===----------------------------------------------------------------------===//
3513 // Identifier Table Serialization
3514 //===----------------------------------------------------------------------===//
3515 
3516 /// Determine the declaration that should be put into the name lookup table to
3517 /// represent the given declaration in this module. This is usually D itself,
3518 /// but if D was imported and merged into a local declaration, we want the most
3519 /// recent local declaration instead. The chosen declaration will be the most
3520 /// recent declaration in any module that imports this one.
3522  NamedDecl *D) {
3523  if (!LangOpts.Modules || !D->isFromASTFile())
3524  return D;
3525 
3526  if (Decl *Redecl = D->getPreviousDecl()) {
3527  // For Redeclarable decls, a prior declaration might be local.
3528  for (; Redecl; Redecl = Redecl->getPreviousDecl()) {
3529  // If we find a local decl, we're done.
3530  if (!Redecl->isFromASTFile()) {
3531  // Exception: in very rare cases (for injected-class-names), not all
3532  // redeclarations are in the same semantic context. Skip ones in a
3533  // different context. They don't go in this lookup table at all.
3534  if (!Redecl->getDeclContext()->getRedeclContext()->Equals(
3536  continue;
3537  return cast<NamedDecl>(Redecl);
3538  }
3539 
3540  // If we find a decl from a (chained-)PCH stop since we won't find a
3541  // local one.
3542  if (Redecl->getOwningModuleID() == 0)
3543  break;
3544  }
3545  } else if (Decl *First = D->getCanonicalDecl()) {
3546  // For Mergeable decls, the first decl might be local.
3547  if (!First->isFromASTFile())
3548  return cast<NamedDecl>(First);
3549  }
3550 
3551  // All declarations are imported. Our most recent declaration will also be
3552  // the most recent one in anyone who imports us.
3553  return D;
3554 }
3555 
3556 namespace {
3557 
3558 class ASTIdentifierTableTrait {
3559  ASTWriter &Writer;
3560  Preprocessor &PP;
3561  IdentifierResolver &IdResolver;
3562  bool IsModule;
3563  bool NeedDecls;
3564  ASTWriter::RecordData *InterestingIdentifierOffsets;
3565 
3566  /// Determines whether this is an "interesting" identifier that needs a
3567  /// full IdentifierInfo structure written into the hash table. Notably, this
3568  /// doesn't check whether the name has macros defined; use PublicMacroIterator
3569  /// to check that.
3570  bool isInterestingIdentifier(const IdentifierInfo *II, uint64_t MacroOffset) {
3571  if (MacroOffset ||
3572  II->isPoisoned() ||
3573  (IsModule ? II->hasRevertedBuiltin() : II->getObjCOrBuiltinID()) ||
3575  (NeedDecls && II->getFETokenInfo()))
3576  return true;
3577 
3578  return false;
3579  }
3580 
3581 public:
3582  using key_type = IdentifierInfo *;
3583  using key_type_ref = key_type;
3584 
3585  using data_type = IdentID;
3586  using data_type_ref = data_type;
3587 
3588  using hash_value_type = unsigned;
3589  using offset_type = unsigned;
3590 
3591  ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP,
3592  IdentifierResolver &IdResolver, bool IsModule,
3593  ASTWriter::RecordData *InterestingIdentifierOffsets)
3594  : Writer(Writer), PP(PP), IdResolver(IdResolver), IsModule(IsModule),
3595  NeedDecls(!IsModule || !Writer.getLangOpts().CPlusPlus),
3596  InterestingIdentifierOffsets(InterestingIdentifierOffsets) {}
3597 
3598  bool needDecls() const { return NeedDecls; }
3599 
3600  static hash_value_type ComputeHash(const IdentifierInfo* II) {
3601  return llvm::djbHash(II->getName());
3602  }
3603 
3604  bool isInterestingIdentifier(const IdentifierInfo *II) {
3605  auto MacroOffset = Writer.getMacroDirectivesOffset(II);
3606  return isInterestingIdentifier(II, MacroOffset);
3607  }
3608 
3609  bool isInterestingNonMacroIdentifier(const IdentifierInfo *II) {
3610  return isInterestingIdentifier(II, 0);
3611  }
3612 
3613  std::pair<unsigned, unsigned>
3614  EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) {
3615  unsigned KeyLen = II->getLength() + 1;
3616  unsigned DataLen = 4; // 4 bytes for the persistent ID << 1
3617  auto MacroOffset = Writer.getMacroDirectivesOffset(II);
3618  if (isInterestingIdentifier(II, MacroOffset)) {
3619  DataLen += 2; // 2 bytes for builtin ID
3620  DataLen += 2; // 2 bytes for flags
3621  if (MacroOffset)
3622  DataLen += 4; // MacroDirectives offset.
3623 
3624  if (NeedDecls) {
3625  for (IdentifierResolver::iterator D = IdResolver.begin(II),
3626  DEnd = IdResolver.end();
3627  D != DEnd; ++D)
3628  DataLen += 4;
3629  }
3630  }
3631 
3632  using namespace llvm::support;
3633 
3634  endian::Writer LE(Out, little);
3635 
3636  assert((uint16_t)DataLen == DataLen && (uint16_t)KeyLen == KeyLen);
3637  LE.write<uint16_t>(DataLen);
3638  // We emit the key length after the data length so that every
3639  // string is preceded by a 16-bit length. This matches the PTH
3640  // format for storing identifiers.
3641  LE.write<uint16_t>(KeyLen);
3642  return std::make_pair(KeyLen, DataLen);
3643  }
3644 
3645  void EmitKey(raw_ostream& Out, const IdentifierInfo* II,
3646  unsigned KeyLen) {
3647  // Record the location of the key data. This is used when generating
3648  // the mapping from persistent IDs to strings.
3649  Writer.SetIdentifierOffset(II, Out.tell());
3650 
3651  // Emit the offset of the key/data length information to the interesting
3652  // identifiers table if necessary.
3653  if (InterestingIdentifierOffsets && isInterestingIdentifier(II))
3654  InterestingIdentifierOffsets->push_back(Out.tell() - 4);
3655 
3656  Out.write(II->getNameStart(), KeyLen);
3657  }
3658 
3659  void EmitData(raw_ostream& Out, IdentifierInfo* II,
3660  IdentID ID, unsigned) {
3661  using namespace llvm::support;
3662 
3663  endian::Writer LE(Out, little);
3664 
3665  auto MacroOffset = Writer.getMacroDirectivesOffset(II);
3666  if (!isInterestingIdentifier(II, MacroOffset)) {
3667  LE.write<uint32_t>(ID << 1);
3668  return;
3669  }
3670 
3671  LE.write<uint32_t>((ID << 1) | 0x01);
3672  uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID();
3673  assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader.");
3674  LE.write<uint16_t>(Bits);
3675  Bits = 0;
3676  bool HadMacroDefinition = MacroOffset != 0;
3677  Bits = (Bits << 1) | unsigned(HadMacroDefinition);
3678  Bits = (Bits << 1) | unsigned(II->isExtensionToken());
3679  Bits = (Bits << 1) | unsigned(II->isPoisoned());
3680  Bits = (Bits << 1) | unsigned(II->hasRevertedBuiltin());
3681  Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier());
3682  Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword());
3683  LE.write<uint16_t>(Bits);
3684 
3685  if (HadMacroDefinition)
3686  LE.write<uint32_t>(MacroOffset);
3687 
3688  if (NeedDecls) {
3689  // Emit the declaration IDs in reverse order, because the
3690  // IdentifierResolver provides the declarations as they would be
3691  // visible (e.g., the function "stat" would come before the struct
3692  // "stat"), but the ASTReader adds declarations to the end of the list
3693  // (so we need to see the struct "stat" before the function "stat").
3694  // Only emit declarations that aren't from a chained PCH, though.
3695  SmallVector<NamedDecl *, 16> Decls(IdResolver.begin(II),
3696  IdResolver.end());
3697  for (SmallVectorImpl<NamedDecl *>::reverse_iterator D = Decls.rbegin(),
3698  DEnd = Decls.rend();
3699  D != DEnd; ++D)
3700  LE.write<uint32_t>(
3701  Writer.getDeclID(getDeclForLocalLookup(PP.getLangOpts(), *D)));
3702  }
3703  }
3704 };
3705 
3706 } // namespace
3707 
3708 /// Write the identifier table into the AST file.
3709 ///
3710 /// The identifier table consists of a blob containing string data
3711 /// (the actual identifiers themselves) and a separate "offsets" index
3712 /// that maps identifier IDs to locations within the blob.
3713 void ASTWriter::WriteIdentifierTable(Preprocessor &PP,
3714  IdentifierResolver &IdResolver,
3715  bool IsModule) {
3716  using namespace llvm;
3717 
3718  RecordData InterestingIdents;
3719 
3720  // Create and write out the blob that contains the identifier
3721  // strings.
3722  {
3723  llvm::OnDiskChainedHashTableGenerator<ASTIdentifierTableTrait> Generator;
3724  ASTIdentifierTableTrait Trait(
3725  *this, PP, IdResolver, IsModule,
3726  (getLangOpts().CPlusPlus && IsModule) ? &InterestingIdents : nullptr);
3727 
3728  // Look for any identifiers that were named while processing the
3729  // headers, but are otherwise not needed. We add these to the hash
3730  // table to enable checking of the predefines buffer in the case
3731  // where the user adds new macro definitions when building the AST
3732  // file.
3734  for (const auto &ID : PP.getIdentifierTable())
3735  IIs.push_back(ID.second);
3736  // Sort the identifiers lexicographically before getting them references so
3737  // that their order is stable.
3738  llvm::sort(IIs, llvm::less_ptr<IdentifierInfo>());
3739  for (const IdentifierInfo *II : IIs)
3740  if (Trait.isInterestingNonMacroIdentifier(II))
3741  getIdentifierRef(II);
3742 
3743  // Create the on-disk hash table representation. We only store offsets
3744  // for identifiers that appear here for the first time.
3745  IdentifierOffsets.resize(NextIdentID - FirstIdentID);
3746  for (auto IdentIDPair : IdentifierIDs) {
3747  auto *II = const_cast<IdentifierInfo *>(IdentIDPair.first);
3748  IdentID ID = IdentIDPair.second;
3749  assert(II && "NULL identifier in identifier table");
3750  // Write out identifiers if either the ID is local or the identifier has
3751  // changed since it was loaded.
3752  if (ID >= FirstIdentID || !Chain || !II->isFromAST()
3753  || II->hasChangedSinceDeserialization() ||
3754  (Trait.needDecls() &&
3755  II->hasFETokenInfoChangedSinceDeserialization()))
3756  Generator.insert(II, ID, Trait);
3757  }
3758 
3759  // Create the on-disk hash table in a buffer.
3761  uint32_t BucketOffset;
3762  {
3763  using namespace llvm::support;
3764 
3765  llvm::raw_svector_ostream Out(IdentifierTable);
3766  // Make sure that no bucket is at offset 0
3767  endian::write<uint32_t>(Out, 0, little);
3768  BucketOffset = Generator.Emit(Out, Trait);
3769  }
3770 
3771  // Create a blob abbreviation
3772  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3773  Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE));
3774  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3775  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3776  unsigned IDTableAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3777 
3778  // Write the identifier table
3779  RecordData::value_type Record[] = {IDENTIFIER_TABLE, BucketOffset};
3780  Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable);
3781  }
3782 
3783  // Write the offsets table for identifier IDs.
3784  auto Abbrev = std::make_shared<BitCodeAbbrev>();
3785  Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET));
3786  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers
3787  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
3788  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3789  unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
3790 
3791 #ifndef NDEBUG
3792  for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I)
3793  assert(IdentifierOffsets[I] && "Missing identifier offset?");
3794 #endif
3795 
3796  RecordData::value_type Record[] = {IDENTIFIER_OFFSET,
3797  IdentifierOffsets.size(),
3798  FirstIdentID - NUM_PREDEF_IDENT_IDS};
3799  Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record,
3800  bytes(IdentifierOffsets));
3801 
3802  // In C++, write the list of interesting identifiers (those that are
3803  // defined as macros, poisoned, or similar unusual things).
3804  if (!InterestingIdents.empty())
3805  Stream.EmitRecord(INTERESTING_IDENTIFIERS, InterestingIdents);
3806 }
3807 
3808 //===----------------------------------------------------------------------===//
3809 // DeclContext's Name Lookup Table Serialization
3810 //===----------------------------------------------------------------------===//
3811 
3812 namespace {
3813 
3814 // Trait used for the on-disk hash table used in the method pool.
3815 class ASTDeclContextNameLookupTrait {
3816  ASTWriter &Writer;
3818 
3819 public:
3820  using key_type = DeclarationNameKey;
3821  using key_type_ref = key_type;
3822 
3823  /// A start and end index into DeclIDs, representing a sequence of decls.
3824  using data_type = std::pair<unsigned, unsigned>;
3825  using data_type_ref = const data_type &;
3826 
3827  using hash_value_type = unsigned;
3828  using offset_type = unsigned;
3829 
3830  explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) {}
3831 
3832  template<typename Coll>
3833  data_type getData(const Coll &Decls) {
3834  unsigned Start = DeclIDs.size();
3835  for (NamedDecl *D : Decls) {
3836  DeclIDs.push_back(
3837  Writer.GetDeclRef(getDeclForLocalLookup(Writer.getLangOpts(), D)));
3838  }
3839  return std::make_pair(Start, DeclIDs.size());
3840  }
3841 
3842  data_type ImportData(const reader::ASTDeclContextNameLookupTrait::data_type &FromReader) {
3843  unsigned Start = DeclIDs.size();
3844  for (auto ID : FromReader)
3845  DeclIDs.push_back(ID);
3846  return std::make_pair(Start, DeclIDs.size());
3847  }
3848 
3849  static bool EqualKey(key_type_ref a, key_type_ref b) {
3850  return a == b;
3851  }
3852 
3853  hash_value_type ComputeHash(DeclarationNameKey Name) {
3854  return Name.getHash();
3855  }
3856 
3857  void EmitFileRef(raw_ostream &Out, ModuleFile *F) const {
3858  assert(Writer.hasChain() &&
3859  "have reference to loaded module file but no chain?");
3860 
3861  using namespace llvm::support;
3862 
3863  endian::write<uint32_t>(Out, Writer.getChain()->getModuleFileID(F), little);
3864  }
3865 
3866  std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &Out,
3867  DeclarationNameKey Name,
3868  data_type_ref Lookup) {
3869  using namespace llvm::support;
3870 
3871  endian::Writer LE(Out, little);
3872  unsigned KeyLen = 1;
3873  switch (Name.getKind()) {
3880  KeyLen += 4;
3881  break;
3883  KeyLen += 1;
3884  break;
3889  break;
3890  }
3891  LE.write<uint16_t>(KeyLen);
3892 
3893  // 4 bytes for each DeclID.
3894  unsigned DataLen = 4 * (Lookup.second - Lookup.first);
3895  assert(uint16_t(DataLen) == DataLen &&
3896  "too many decls for serialized lookup result");
3897  LE.write<uint16_t>(DataLen);
3898 
3899  return std::make_pair(KeyLen, DataLen);
3900  }
3901 
3902  void EmitKey(raw_ostream &Out, DeclarationNameKey Name, unsigned) {
3903  using namespace llvm::support;
3904 
3905  endian::Writer LE(Out, little);
3906  LE.write<uint8_t>(Name.getKind());
3907  switch (Name.getKind()) {
3911  LE.write<uint32_t>(Writer.getIdentifierRef(Name.getIdentifier()));
3912  return;
3916  LE.write<uint32_t>(Writer.getSelectorRef(Name.getSelector()));
3917  return;
3919  assert(Name.getOperatorKind() < NUM_OVERLOADED_OPERATORS &&
3920  "Invalid operator?");
3921  LE.write<uint8_t>(Name.getOperatorKind());
3922  return;
3927  return;
3928  }
3929 
3930  llvm_unreachable("Invalid name kind?");
3931  }
3932 
3933  void EmitData(raw_ostream &Out, key_type_ref, data_type Lookup,
3934  unsigned DataLen) {
3935  using namespace llvm::support;
3936 
3937  endian::Writer LE(Out, little);
3938  uint64_t Start = Out.tell(); (void)Start;
3939  for (unsigned I = Lookup.first, N = Lookup.second; I != N; ++I)
3940  LE.write<uint32_t>(DeclIDs[I]);
3941  assert(Out.tell() - Start == DataLen && "Data length is wrong");
3942  }
3943 };
3944 
3945 } // namespace
3946 
3947 bool ASTWriter::isLookupResultExternal(StoredDeclsList &Result,
3948  DeclContext *DC) {
3949  return Result.hasExternalDecls() &&
3950  DC->hasNeedToReconcileExternalVisibleStorage();
3951 }
3952 
3953 bool ASTWriter::isLookupResultEntirelyExternal(StoredDeclsList &Result,
3954  DeclContext *DC) {
3955  for (auto *D : Result.getLookupResult())
3956  if (!getDeclForLocalLookup(getLangOpts(), D)->isFromASTFile())
3957  return false;
3958 
3959  return true;
3960 }
3961 
3962 void
3963 ASTWriter::GenerateNameLookupTable(const DeclContext *ConstDC,
3964  llvm::SmallVectorImpl<char> &LookupTable) {
3965  assert(!ConstDC->hasLazyLocalLexicalLookups() &&
3966  !ConstDC->hasLazyExternalLexicalLookups() &&
3967  "must call buildLookups first");
3968 
3969  // FIXME: We need to build the lookups table, which is logically const.
3970  auto *DC = const_cast<DeclContext*>(ConstDC);
3971  assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table");
3972 
3973  // Create the on-disk hash table representation.
3975  ASTDeclContextNameLookupTrait> Generator;
3976  ASTDeclContextNameLookupTrait Trait(*this);
3977 
3978  // The first step is to collect the declaration names which we need to
3979  // serialize into the name lookup table, and to collect them in a stable
3980  // order.
3982 
3983  // We also build up small sets of the constructor and conversion function
3984  // names which are visible.
3985  llvm::SmallSet<DeclarationName, 8> ConstructorNameSet, ConversionNameSet;
3986 
3987  for (auto &Lookup : *DC->buildLookup()) {
3988  auto &Name = Lookup.first;
3989  auto &Result = Lookup.second;
3990 
3991  // If there are no local declarations in our lookup result, we
3992  // don't need to write an entry for the name at all. If we can't
3993  // write out a lookup set without performing more deserialization,
3994  // just skip this entry.
3995  if (isLookupResultExternal(Result, DC) &&
3996  isLookupResultEntirelyExternal(Result, DC))
3997  continue;
3998 
3999  // We also skip empty results. If any of the results could be external and
4000  // the currently available results are empty, then all of the results are
4001  // external and we skip it above. So the only way we get here with an empty
4002  // results is when no results could have been external *and* we have
4003  // external results.
4004  //
4005  // FIXME: While we might want to start emitting on-disk entries for negative
4006  // lookups into a decl context as an optimization, today we *have* to skip
4007  // them because there are names with empty lookup results in decl contexts
4008  // which we can't emit in any stable ordering: we lookup constructors and
4009  // conversion functions in the enclosing namespace scope creating empty
4010  // results for them. This in almost certainly a bug in Clang's name lookup,
4011  // but that is likely to be hard or impossible to fix and so we tolerate it
4012  // here by omitting lookups with empty results.
4013  if (Lookup.second.getLookupResult().empty())
4014  continue;
4015 
4016  switch (Lookup.first.getNameKind()) {
4017  default:
4018  Names.push_back(Lookup.first);
4019  break;
4020 
4022  assert(isa<CXXRecordDecl>(DC) &&
4023  "Cannot have a constructor name outside of a class!");
4024  ConstructorNameSet.insert(Name);
4025  break;
4026 
4028  assert(isa<CXXRecordDecl>(DC) &&
4029  "Cannot have a conversion function name outside of a class!");
4030  ConversionNameSet.insert(Name);
4031  break;
4032  }
4033  }
4034 
4035  // Sort the names into a stable order.
4036  llvm::sort(Names);
4037 
4038  if (auto *D = dyn_cast<CXXRecordDecl>(DC)) {
4039  // We need to establish an ordering of constructor and conversion function
4040  // names, and they don't have an intrinsic ordering.
4041 
4042  // First we try the easy case by forming the current context's constructor
4043  // name and adding that name first. This is a very useful optimization to
4044  // avoid walking the lexical declarations in many cases, and it also
4045  // handles the only case where a constructor name can come from some other
4046  // lexical context -- when that name is an implicit constructor merged from
4047  // another declaration in the redecl chain. Any non-implicit constructor or
4048  // conversion function which doesn't occur in all the lexical contexts
4049  // would be an ODR violation.
4050  auto ImplicitCtorName = Context->DeclarationNames.getCXXConstructorName(
4051  Context->getCanonicalType(Context->getRecordType(D)));
4052  if (ConstructorNameSet.erase(ImplicitCtorName))
4053  Names.push_back(ImplicitCtorName);
4054 
4055  // If we still have constructors or conversion functions, we walk all the
4056  // names in the decl and add the constructors and conversion functions
4057  // which are visible in the order they lexically occur within the context.
4058  if (!ConstructorNameSet.empty() || !ConversionNameSet.empty())
4059  for (Decl *ChildD : cast<CXXRecordDecl>(DC)->decls())
4060  if (auto *ChildND = dyn_cast<NamedDecl>(ChildD)) {
4061  auto Name = ChildND->getDeclName();
4062  switch (Name.getNameKind()) {
4063  default:
4064  continue;
4065 
4067  if (ConstructorNameSet.erase(Name))
4068  Names.push_back(Name);
4069  break;
4070 
4072  if (ConversionNameSet.erase(Name))
4073  Names.push_back(Name);
4074  break;
4075  }
4076 
4077  if (ConstructorNameSet.empty() && ConversionNameSet.empty())
4078  break;
4079  }
4080 
4081  assert(ConstructorNameSet.empty() && "Failed to find all of the visible "
4082  "constructors by walking all the "
4083  "lexical members of the context.");
4084  assert(ConversionNameSet.empty() && "Failed to find all of the visible "
4085  "conversion functions by walking all "
4086  "the lexical members of the context.");
4087  }
4088 
4089  // Next we need to do a lookup with each name into this decl context to fully
4090  // populate any results from external sources. We don't actually use the
4091  // results of these lookups because we only want to use the results after all
4092  // results have been loaded and the pointers into them will be stable.
4093  for (auto &Name : Names)
4094  DC->lookup(Name);
4095 
4096  // Now we need to insert the results for each name into the hash table. For
4097  // constructor names and conversion function names, we actually need to merge
4098  // all of the results for them into one list of results each and insert
4099  // those.
4100  SmallVector<NamedDecl *, 8> ConstructorDecls;
4101  SmallVector<NamedDecl *, 8> ConversionDecls;
4102 
4103  // Now loop over the names, either inserting them or appending for the two
4104  // special cases.
4105  for (auto &Name : Names) {
4106  DeclContext::lookup_result Result = DC->noload_lookup(Name);
4107 
4108  switch (Name.getNameKind()) {
4109  default:
4110  Generator.insert(Name, Trait.getData(Result), Trait);
4111  break;
4112 
4114  ConstructorDecls.append(Result.begin(), Result.end());
4115  break;
4116 
4118  ConversionDecls.append(Result.begin(), Result.end());
4119  break;
4120  }
4121  }
4122 
4123  // Handle our two special cases if we ended up having any. We arbitrarily use
4124  // the first declaration's name here because the name itself isn't part of
4125  // the key, only the kind of name is used.
4126  if (!ConstructorDecls.empty())
4127  Generator.insert(ConstructorDecls.front()->getDeclName(),
4128  Trait.getData(ConstructorDecls), Trait);
4129  if (!ConversionDecls.empty())
4130  Generator.insert(ConversionDecls.front()->getDeclName(),
4131  Trait.getData(ConversionDecls), Trait);
4132 
4133  // Create the on-disk hash table. Also emit the existing imported and
4134  // merged table if there is one.
4135  auto *Lookups = Chain ? Chain->getLoadedLookupTables(DC) : nullptr;
4136  Generator.emit(LookupTable, Trait, Lookups ? &Lookups->Table : nullptr);
4137 }
4138 
4139 /// Write the block containing all of the declaration IDs
4140 /// visible from the given DeclContext.
4141 ///
4142 /// \returns the offset of the DECL_CONTEXT_VISIBLE block within the
4143 /// bitstream, or 0 if no block was written.
4144 uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context,
4145  DeclContext *DC) {
4146  // If we imported a key declaration of this namespace, write the visible
4147  // lookup results as an update record for it rather than including them
4148  // on this declaration. We will only look at key declarations on reload.
4149  if (isa<NamespaceDecl>(DC) && Chain &&
4150  Chain->getKeyDeclaration(cast<Decl>(DC))->isFromASTFile()) {
4151  // Only do this once, for the first local declaration of the namespace.
4152  for (auto *Prev = cast<NamespaceDecl>(DC)->getPreviousDecl(); Prev;
4153  Prev = Prev->getPreviousDecl())
4154  if (!Prev->isFromASTFile())
4155  return 0;
4156 
4157  // Note that we need to emit an update record for the primary context.
4158  UpdatedDeclContexts.insert(DC->getPrimaryContext());
4159 
4160  // Make sure all visible decls are written. They will be recorded later. We
4161  // do this using a side data structure so we can sort the names into
4162  // a deterministic order.
4165  LookupResults;
4166  if (Map) {
4167  LookupResults.reserve(Map->size());
4168  for (auto &Entry : *Map)
4169  LookupResults.push_back(
4170  std::make_pair(Entry.first, Entry.second.getLookupResult()));
4171  }
4172 
4173  llvm::sort(LookupResults, llvm::less_first());
4174  for (auto &NameAndResult : LookupResults) {
4175  DeclarationName Name = NameAndResult.first;
4176  DeclContext::lookup_result Result = NameAndResult.second;
4179  // We have to work around a name lookup bug here where negative lookup
4180  // results for these names get cached in namespace lookup tables (these
4181  // names should never be looked up in a namespace).
4182  assert(Result.empty() && "Cannot have a constructor or conversion "
4183  "function name in a namespace!");
4184  continue;
4185  }
4186 
4187  for (NamedDecl *ND : Result)
4188  if (!ND->isFromASTFile())
4189  GetDeclRef(ND);
4190  }
4191 
4192  return 0;
4193  }
4194 
4195  if (DC->getPrimaryContext() != DC)
4196  return 0;
4197 
4198  // Skip contexts which don't support name lookup.
4199  if (!DC->isLookupContext())
4200  return 0;
4201 
4202  // If not in C++, we perform name lookup for the translation unit via the
4203  // IdentifierInfo chains, don't bother to build a visible-declarations table.
4204  if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus)
4205  return 0;
4206 
4207  // Serialize the contents of the mapping used for lookup. Note that,
4208  // although we have two very different code paths, the serialized
4209  // representation is the same for both cases: a declaration name,
4210  // followed by a size, followed by references to the visible
4211  // declarations that have that name.
4212  uint64_t Offset = Stream.GetCurrentBitNo();
4213  StoredDeclsMap *Map = DC->buildLookup();
4214  if (!Map || Map->empty())
4215  return 0;
4216 
4217  // Create the on-disk hash table in a buffer.
4218  SmallString<4096> LookupTable;
4219  GenerateNameLookupTable(DC, LookupTable);
4220 
4221  // Write the lookup table
4222  RecordData::value_type Record[] = {DECL_CONTEXT_VISIBLE};
4223  Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record,
4224  LookupTable);
4225  ++NumVisibleDeclContexts;
4226  return Offset;
4227 }
4228 
4229 /// Write an UPDATE_VISIBLE block for the given context.
4230 ///
4231 /// UPDATE_VISIBLE blocks contain the declarations that are added to an existing
4232 /// DeclContext in a dependent AST file. As such, they only exist for the TU
4233 /// (in C++), for namespaces, and for classes with forward-declared unscoped
4234 /// enumeration members (in C++11).
4235 void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) {
4236  StoredDeclsMap *Map = DC->getLookupPtr();
4237  if (!Map || Map->empty())
4238  return;
4239 
4240  // Create the on-disk hash table in a buffer.
4241  SmallString<4096> LookupTable;
4242  GenerateNameLookupTable(DC, LookupTable);
4243 
4244  // If we're updating a namespace, select a key declaration as the key for the
4245  // update record; those are the only ones that will be checked on reload.
4246  if (isa<NamespaceDecl>(DC))
4247  DC = cast<DeclContext>(Chain->getKeyDeclaration(cast<Decl>(DC)));
4248 
4249  // Write the lookup table
4250  RecordData::value_type Record[] = {UPDATE_VISIBLE, getDeclID(cast<Decl>(DC))};
4251  Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable);
4252 }
4253 
4254 /// Write an FP_PRAGMA_OPTIONS block for the given FPOptions.
4255 void ASTWriter::WriteFPPragmaOptions(const FPOptions &Opts) {
4256  RecordData::value_type Record[] = {Opts.getInt()};
4257  Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record);
4258 }
4259 
4260 /// Write an OPENCL_EXTENSIONS block for the given OpenCLOptions.
4261 void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) {
4262  if (!SemaRef.Context.getLangOpts().OpenCL)
4263  return;
4264 
4265  const OpenCLOptions &Opts = SemaRef.getOpenCLOptions();
4266  RecordData Record;
4267  for (const auto &I:Opts.OptMap) {
4268  AddString(I.getKey(), Record);
4269  auto V = I.getValue();
4270  Record.push_back(V.Supported ? 1 : 0);
4271  Record.push_back(V.Enabled ? 1 : 0);
4272  Record.push_back(V.Avail);
4273  Record.push_back(V.Core);
4274  }
4275  Stream.EmitRecord(OPENCL_EXTENSIONS, Record);
4276 }
4277 
4278 void ASTWriter::WriteOpenCLExtensionTypes(Sema &SemaRef) {
4279  if (!SemaRef.Context.getLangOpts().OpenCL)
4280  return;
4281 
4282  RecordData Record;
4283  for (const auto &I : SemaRef.OpenCLTypeExtMap) {
4284  Record.push_back(
4285  static_cast<unsigned>(getTypeID(I.first->getCanonicalTypeInternal())));
4286  Record.push_back(I.second.size());
4287  for (auto Ext : I.second)
4288  AddString(Ext, Record);
4289  }
4290  Stream.EmitRecord(OPENCL_EXTENSION_TYPES, Record);
4291 }
4292 
4293 void ASTWriter::WriteOpenCLExtensionDecls(Sema &SemaRef) {
4294  if (!SemaRef.Context.getLangOpts().OpenCL)
4295  return;
4296 
4297  RecordData Record;
4298  for (const auto &I : SemaRef.OpenCLDeclExtMap) {
4299  Record.push_back(getDeclID(I.first));
4300  Record.push_back(static_cast<unsigned>(I.second.size()));
4301  for (auto Ext : I.second)
4302  AddString(Ext, Record);
4303  }
4304  Stream.EmitRecord(OPENCL_EXTENSION_DECLS, Record);
4305 }
4306 
4307 void ASTWriter::WriteCUDAPragmas(Sema &SemaRef) {
4308  if (SemaRef.ForceCUDAHostDeviceDepth > 0) {
4309  RecordData::value_type Record[] = {SemaRef.ForceCUDAHostDeviceDepth};
4310  Stream.EmitRecord(CUDA_PRAGMA_FORCE_HOST_DEVICE_DEPTH, Record);
4311  }
4312 }
4313 
4314 void ASTWriter::WriteObjCCategories() {
4315  SmallVector<ObjCCategoriesInfo, 2> CategoriesMap;
4316  RecordData Categories;
4317 
4318  for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) {
4319  unsigned Size = 0;
4320  unsigned StartIndex = Categories.size();
4321 
4322  ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I];
4323 
4324  // Allocate space for the size.
4325  Categories.push_back(0);
4326 
4327  // Add the categories.
4329  Cat = Class->known_categories_begin(),
4330  CatEnd = Class->known_categories_end();
4331  Cat != CatEnd; ++Cat, ++Size) {
4332  assert(getDeclID(*Cat) != 0 && "Bogus category");
4333  AddDeclRef(*Cat, Categories);
4334  }
4335 
4336  // Update the size.
4337  Categories[StartIndex] = Size;
4338 
4339  // Record this interface -> category map.
4340  ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex };
4341  CategoriesMap.push_back(CatInfo);
4342  }
4343 
4344  // Sort the categories map by the definition ID, since the reader will be
4345  // performing binary searches on this information.
4346  llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end());
4347 
4348  // Emit the categories map.
4349  using namespace llvm;
4350 
4351  auto Abbrev = std::make_shared<BitCodeAbbrev>();
4352  Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP));
4353  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries
4354  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4355  unsigned AbbrevID = Stream.EmitAbbrev(std::move(Abbrev));
4356 
4357  RecordData::value_type Record[] = {OBJC_CATEGORIES_MAP, CategoriesMap.size()};
4358  Stream.EmitRecordWithBlob(AbbrevID, Record,
4359  reinterpret_cast<char *>(CategoriesMap.data()),
4360  CategoriesMap.size() * sizeof(ObjCCategoriesInfo));
4361 
4362  // Emit the category lists.
4363  Stream.EmitRecord(OBJC_CATEGORIES, Categories);
4364 }
4365 
4366 void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) {
4368 
4369  if (LPTMap.empty())
4370  return;
4371 
4372  RecordData Record;
4373  for (auto &LPTMapEntry : LPTMap) {
4374  const FunctionDecl *FD = LPTMapEntry.first;
4375  LateParsedTemplate &LPT = *LPTMapEntry.second;
4376  AddDeclRef(FD, Record);
4377  AddDeclRef(LPT.D, Record);
4378  Record.push_back(LPT.Toks.size());
4379 
4380  for (const auto &Tok : LPT.Toks) {
4381  AddToken(Tok, Record);
4382  }
4383  }
4384  Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record);
4385 }
4386 
4387 /// Write the state of 'pragma clang optimize' at the end of the module.
4388 void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) {
4389  RecordData Record;
4390  SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation();
4391  AddSourceLocation(PragmaLoc, Record);
4392  Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record);
4393 }
4394 
4395 /// Write the state of 'pragma ms_struct' at the end of the module.
4396 void ASTWriter::WriteMSStructPragmaOptions(Sema &SemaRef) {
4397  RecordData Record;
4398  Record.push_back(SemaRef.MSStructPragmaOn ? PMSST_ON : PMSST_OFF);
4399  Stream.EmitRecord(MSSTRUCT_PRAGMA_OPTIONS, Record);
4400 }
4401 
4402 /// Write the state of 'pragma pointers_to_members' at the end of the
4403 //module.
4404 void ASTWriter::WriteMSPointersToMembersPragmaOptions(Sema &SemaRef) {
4405  RecordData Record;
4406  Record.push_back(SemaRef.MSPointerToMemberRepresentationMethod);
4407  AddSourceLocation(SemaRef.ImplicitMSInheritanceAttrLoc, Record);
4408  Stream.EmitRecord(POINTERS_TO_MEMBERS_PRAGMA_OPTIONS, Record);
4409 }
4410 
4411 /// Write the state of 'pragma pack' at the end of the module.
4412 void ASTWriter::WritePackPragmaOptions(Sema &SemaRef) {
4413  // Don't serialize pragma pack state for modules, since it should only take
4414  // effect on a per-submodule basis.
4415  if (WritingModule)
4416  return;
4417 
4418  RecordData Record;
4419  Record.push_back(SemaRef.PackStack.CurrentValue);
4420  AddSourceLocation(SemaRef.PackStack.CurrentPragmaLocation, Record);
4421  Record.push_back(SemaRef.PackStack.Stack.size());
4422  for (const auto &StackEntry : SemaRef.PackStack.Stack) {
4423  Record.push_back(StackEntry.Value);
4424  AddSourceLocation(StackEntry.PragmaLocation, Record);
4425  AddSourceLocation(StackEntry.PragmaPushLocation, Record);
4426  AddString(StackEntry.StackSlotLabel, Record);
4427  }
4428  Stream.EmitRecord(PACK_PRAGMA_OPTIONS, Record);
4429 }
4430 
4431 void ASTWriter::WriteModuleFileExtension(Sema &SemaRef,
4432  ModuleFileExtensionWriter &Writer) {
4433  // Enter the extension block.
4434  Stream.EnterSubblock(EXTENSION_BLOCK_ID, 4);
4435 
4436  // Emit the metadata record abbreviation.
4437  auto Abv = std::make_shared<llvm::BitCodeAbbrev>();
4438  Abv->Add(llvm::BitCodeAbbrevOp(EXTENSION_METADATA));
4439  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4440  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4441  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4442  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4443  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
4444  unsigned Abbrev = Stream.EmitAbbrev(std::move(Abv));
4445 
4446  // Emit the metadata record.
4447  RecordData Record;
4448  auto Metadata = Writer.getExtension()->getExtensionMetadata();
4449  Record.push_back(EXTENSION_METADATA);
4450  Record.push_back(Metadata.MajorVersion);
4451  Record.push_back(Metadata.MinorVersion);
4452  Record.push_back(Metadata.BlockName.size());
4453  Record.push_back(Metadata.UserInfo.size());
4454  SmallString<64> Buffer;
4455  Buffer += Metadata.BlockName;
4456  Buffer += Metadata.UserInfo;
4457  Stream.EmitRecordWithBlob(Abbrev, Record, Buffer);
4458 
4459  // Emit the contents of the extension block.
4460  Writer.writeExtensionContents(SemaRef, Stream);
4461 
4462  // Exit the extension block.
4463  Stream.ExitBlock();
4464 }
4465 
4466 //===----------------------------------------------------------------------===//
4467 // General Serialization Routines
4468 //===----------------------------------------------------------------------===//
4469 
4471  auto &Record = *this;
4472  if (!A)
4473  return Record.push_back(0);
4474  Record.push_back(A->getKind() + 1); // FIXME: stable encoding, target attrs
4475  Record.AddSourceRange(A->getRange());
4476 
4477 #include "clang/Serialization/AttrPCHWrite.inc"
4478 }
4479 
4480 /// Emit the list of attributes to the specified record.
4482  push_back(Attrs.size());
4483  for (const auto *A : Attrs)
4484  AddAttr(A);
4485 }
4486 
4488  AddSourceLocation(Tok.getLocation(), Record);
4489  Record.push_back(Tok.getLength());
4490 
4491  // FIXME: When reading literal tokens, reconstruct the literal pointer
4492  // if it is needed.
4493  AddIdentifierRef(Tok.getIdentifierInfo(), Record);
4494  // FIXME: Should translate token kind to a stable encoding.
4495  Record.push_back(Tok.getKind());
4496  // FIXME: Should translate token flags to a stable encoding.
4497  Record.push_back(Tok.getFlags());
4498 }
4499 
4500 void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) {
4501  Record.push_back(Str.size());
4502  Record.insert(Record.end(), Str.begin(), Str.end());
4503 }
4504 
4506  assert(Context && "should have context when outputting path");
4507 
4508  bool Changed =
4510 
4511  // Remove a prefix to make the path relative, if relevant.
4512  const char *PathBegin = Path.data();
4513  const char *PathPtr =
4514  adjustFilenameForRelocatableAST(PathBegin, BaseDirectory);
4515  if (PathPtr != PathBegin) {
4516  Path.erase(Path.begin(), Path.begin() + (PathPtr - PathBegin));
4517  Changed = true;
4518  }
4519 
4520  return Changed;
4521 }
4522 
4523 void ASTWriter::AddPath(StringRef Path, RecordDataImpl &Record) {
4524  SmallString<128> FilePath(Path);
4525  PreparePathForOutput(FilePath);
4526  AddString(FilePath, Record);
4527 }
4528 
4529 void ASTWriter::EmitRecordWithPath(unsigned Abbrev, RecordDataRef Record,
4530  StringRef Path) {
4531  SmallString<128> FilePath(Path);
4532  PreparePathForOutput(FilePath);
4533  Stream.EmitRecordWithBlob(Abbrev, Record, FilePath);
4534 }
4535 
4536 void ASTWriter::AddVersionTuple(const VersionTuple &Version,
4537  RecordDataImpl &Record) {
4538  Record.push_back(Version.getMajor());
4539  if (Optional<unsigned> Minor = Version.getMinor())
4540  Record.push_back(*Minor + 1);
4541  else
4542  Record.push_back(0);
4543  if (Optional<unsigned> Subminor = Version.getSubminor())
4544  Record.push_back(*Subminor + 1);
4545  else
4546  Record.push_back(0);
4547 }
4548 
4549 /// Note that the identifier II occurs at the given offset
4550 /// within the identifier table.
4552  IdentID ID = IdentifierIDs[II];
4553  // Only store offsets new to this AST file. Other identifier names are looked
4554  // up earlier in the chain and thus don't need an offset.
4555  if (ID >= FirstIdentID)
4556  IdentifierOffsets[ID - FirstIdentID] = Offset;
4557 }
4558 
4559 /// Note that the selector Sel occurs at the given offset
4560 /// within the method pool/selector table.
4562  unsigned ID = SelectorIDs[Sel];
4563  assert(ID && "Unknown selector");
4564  // Don't record offsets for selectors that are also available in a different
4565  // file.
4566  if (ID < FirstSelectorID)
4567  return;
4568  SelectorOffsets[ID - FirstSelectorID] = Offset;
4569 }
4570 
4571 ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream,
4572  SmallVectorImpl<char> &Buffer, MemoryBufferCache &PCMCache,
4573  ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
4574  bool IncludeTimestamps)
4575  : Stream(Stream), Buffer(Buffer), PCMCache(PCMCache),
4576  IncludeTimestamps(IncludeTimestamps) {
4577  for (const auto &Ext : Extensions) {
4578  if (auto Writer = Ext->createExtensionWriter(*this))
4579  ModuleFileExtensionWriters.push_back(std::move(Writer));
4580  }
4581 }
4582 
4584  llvm::DeleteContainerSeconds(FileDeclIDs);
4585 }
4586 
4588  assert(WritingAST && "can't determine lang opts when not writing AST");
4589  return Context->getLangOpts();
4590 }
4591 
4593  return IncludeTimestamps ? E->getModificationTime() : 0;
4594 }
4595 
4597  const std::string &OutputFile,
4598  Module *WritingModule, StringRef isysroot,
4599  bool hasErrors) {
4600  WritingAST = true;
4601 
4602  ASTHasCompilerErrors = hasErrors;
4603 
4604  // Emit the file header.
4605  Stream.Emit((unsigned)'C', 8);
4606  Stream.Emit((unsigned)'P', 8);
4607  Stream.Emit((unsigned)'C', 8);
4608  Stream.Emit((unsigned)'H', 8);
4609 
4610  WriteBlockInfoBlock();
4611 
4612  Context = &SemaRef.Context;
4613  PP = &SemaRef.PP;
4614  this->WritingModule = WritingModule;
4615  ASTFileSignature Signature =
4616  WriteASTCore(SemaRef, isysroot, OutputFile, WritingModule);
4617  Context = nullptr;
4618  PP = nullptr;
4619  this->WritingModule = nullptr;
4620  this->BaseDirectory.clear();
4621 
4622  WritingAST = false;
4623  if (SemaRef.Context.getLangOpts().ImplicitModules && WritingModule) {
4624  // Construct MemoryBuffer and update buffer manager.
4625  PCMCache.addBuffer(OutputFile,
4626  llvm::MemoryBuffer::getMemBufferCopy(
4627  StringRef(Buffer.begin(), Buffer.size())));
4628  }
4629  return Signature;
4630 }
4631 
4632 template<typename Vector>
4633 static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec,
4634  ASTWriter::RecordData &Record) {
4635  for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end();
4636  I != E; ++I) {
4637  Writer.AddDeclRef(*I, Record);
4638  }
4639 }
4640 
4641 ASTFileSignature ASTWriter::WriteASTCore(Sema &SemaRef, StringRef isysroot,
4642  const std::string &OutputFile,
4643  Module *WritingModule) {
4644  using namespace llvm;
4645 
4646  bool isModule = WritingModule != nullptr;
4647 
4648  // Make sure that the AST reader knows to finalize itself.
4649  if (Chain)
4650  Chain->finalizeForWriting();
4651 
4652  ASTContext &Context = SemaRef.Context;
4653  Preprocessor &PP = SemaRef.PP;
4654 
4655  // Set up predefined declaration IDs.
4656  auto RegisterPredefDecl = [&] (Decl *D, PredefinedDeclIDs ID) {
4657  if (D) {
4658  assert(D->isCanonicalDecl() && "predefined decl is not canonical");
4659  DeclIDs[D] = ID;
4660  }
4661  };
4662  RegisterPredefDecl(Context.getTranslationUnitDecl(),
4664  RegisterPredefDecl(Context.ObjCIdDecl, PREDEF_DECL_OBJC_ID_ID);
4665  RegisterPredefDecl(Context.ObjCSelDecl, PREDEF_DECL_OBJC_SEL_ID);
4666  RegisterPredefDecl(Context.ObjCClassDecl, PREDEF_DECL_OBJC_CLASS_ID);
4667  RegisterPredefDecl(Context.ObjCProtocolClassDecl,
4669  RegisterPredefDecl(Context.Int128Decl, PREDEF_DECL_INT_128_ID);
4670  RegisterPredefDecl(Context.UInt128Decl, PREDEF_DECL_UNSIGNED_INT_128_ID);
4671  RegisterPredefDecl(Context.ObjCInstanceTypeDecl,
4673  RegisterPredefDecl(Context.BuiltinVaListDecl, PREDEF_DECL_BUILTIN_VA_LIST_ID);
4674  RegisterPredefDecl(Context.VaListTagDecl, PREDEF_DECL_VA_LIST_TAG);
4675  RegisterPredefDecl(Context.BuiltinMSVaListDecl,
4677  RegisterPredefDecl(Context.ExternCContext, PREDEF_DECL_EXTERN_C_CONTEXT_ID);
4678  RegisterPredefDecl(Context.MakeIntegerSeqDecl,
4680  RegisterPredefDecl(Context.CFConstantStringTypeDecl,
4682  RegisterPredefDecl(Context.CFConstantStringTagDecl,
4684  RegisterPredefDecl(Context.TypePackElementDecl,
4686 
4687  // Build a record containing all of the tentative definitions in this file, in
4688  // TentativeDefinitions order. Generally, this record will be empty for
4689  // headers.
4690  RecordData TentativeDefinitions;
4691  AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions);
4692 
4693  // Build a record containing all of the file scoped decls in this file.
4694  RecordData UnusedFileScopedDecls;
4695  if (!isModule)
4697  UnusedFileScopedDecls);
4698 
4699  // Build a record containing all of the delegating constructors we still need
4700  // to resolve.
4701  RecordData DelegatingCtorDecls;
4702  if (!isModule)
4703  AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls);
4704 
4705  // Write the set of weak, undeclared identifiers. We always write the
4706  // entire table, since later PCH files in a PCH chain are only interested in
4707  // the results at the end of the chain.
4708  RecordData WeakUndeclaredIdentifiers;
4709  for (auto &WeakUndeclaredIdentifier : SemaRef.WeakUndeclaredIdentifiers) {
4710  IdentifierInfo *II = WeakUndeclaredIdentifier.first;
4711  WeakInfo &WI = WeakUndeclaredIdentifier.second;
4712  AddIdentifierRef(II, WeakUndeclaredIdentifiers);
4713  AddIdentifierRef(WI.getAlias(), WeakUndeclaredIdentifiers);
4714  AddSourceLocation(WI.getLocation(), WeakUndeclaredIdentifiers);
4715  WeakUndeclaredIdentifiers.push_back(WI.getUsed());
4716  }
4717 
4718  // Build a record containing all of the ext_vector declarations.
4719  RecordData ExtVectorDecls;
4720  AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls);
4721 
4722  // Build a record containing all of the VTable uses information.
4723  RecordData VTableUses;
4724  if (!SemaRef.VTableUses.empty()) {
4725  for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) {
4726  AddDeclRef(SemaRef.VTableUses[I].first, VTableUses);
4727  AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses);
4728  VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]);
4729  }
4730  }
4731 
4732  // Build a record containing all of the UnusedLocalTypedefNameCandidates.
4733  RecordData UnusedLocalTypedefNameCandidates;
4734  for (const TypedefNameDecl *TD : SemaRef.UnusedLocalTypedefNameCandidates)
4735  AddDeclRef(TD, UnusedLocalTypedefNameCandidates);
4736 
4737  // Build a record containing all of pending implicit instantiations.
4738  RecordData PendingInstantiations;
4739  for (const auto &I : SemaRef.PendingInstantiations) {
4740  AddDeclRef(I.first, PendingInstantiations);
4741  AddSourceLocation(I.second, PendingInstantiations);
4742  }
4743  assert(SemaRef.PendingLocalImplicitInstantiations.empty() &&
4744  "There are local ones at end of translation unit!");
4745 
4746  // Build a record containing some declaration references.
4747  RecordData SemaDeclRefs;
4748  if (SemaRef.StdNamespace || SemaRef.StdBadAlloc || SemaRef.StdAlignValT) {
4749  AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs);
4750  AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs);
4751  AddDeclRef(SemaRef.getStdAlignValT(), SemaDeclRefs);
4752  }
4753 
4754  RecordData CUDASpecialDeclRefs;
4755  if (Context.getcudaConfigureCallDecl()) {
4756  AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs);
4757  }
4758 
4759  // Build a record containing all of the known namespaces.
4760  RecordData KnownNamespaces;
4761  for (const auto &I : SemaRef.KnownNamespaces) {
4762  if (!I.second)
4763  AddDeclRef(I.first, KnownNamespaces);
4764  }
4765 
4766  // Build a record of all used, undefined objects that require definitions.
4767  RecordData UndefinedButUsed;
4768 
4770  SemaRef.getUndefinedButUsed(Undefined);
4771  for (const auto &I : Undefined) {
4772  AddDeclRef(I.first, UndefinedButUsed);
4773  AddSourceLocation(I.second, UndefinedButUsed);
4774  }
4775 
4776  // Build a record containing all delete-expressions that we would like to
4777  // analyze later in AST.
4778  RecordData DeleteExprsToAnalyze;
4779 
4780  if (!isModule) {
4781  for (const auto &DeleteExprsInfo :
4782  SemaRef.getMismatchingDeleteExpressions()) {
4783  AddDeclRef(DeleteExprsInfo.first, DeleteExprsToAnalyze);
4784  DeleteExprsToAnalyze.push_back(DeleteExprsInfo.second.size());
4785  for (const auto &DeleteLoc : DeleteExprsInfo.second) {
4786  AddSourceLocation(DeleteLoc.first, DeleteExprsToAnalyze);
4787  DeleteExprsToAnalyze.push_back(DeleteLoc.second);
4788  }
4789  }
4790  }
4791 
4792  // Write the control block
4793  WriteControlBlock(PP, Context, isysroot, OutputFile);
4794 
4795  // Write the remaining AST contents.
4796  Stream.EnterSubblock(AST_BLOCK_ID, 5);
4797 
4798  // This is so that older clang versions, before the introduction
4799  // of the control block, can read and reject the newer PCH format.
4800  {
4801  RecordData Record = {VERSION_MAJOR};
4802  Stream.EmitRecord(METADATA_OLD_FORMAT, Record);
4803  }
4804 
4805  // Create a lexical update block containing all of the declarations in the
4806  // translation unit that do not come from other AST files.
4807  const TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
4808  SmallVector<uint32_t, 128> NewGlobalKindDeclPairs;
4809  for (const auto *D : TU->noload_decls()) {
4810  if (!D->isFromASTFile()) {
4811  NewGlobalKindDeclPairs.push_back(D->getKind());
4812  NewGlobalKindDeclPairs.push_back(GetDeclRef(D));
4813  }
4814  }
4815 
4816  auto Abv = std::make_shared<BitCodeAbbrev>();
4817  Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL));
4818  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
4819  unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(std::move(Abv));
4820  {
4821  RecordData::value_type Record[] = {TU_UPDATE_LEXICAL};
4822  Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record,
4823  bytes(NewGlobalKindDeclPairs));
4824  }
4825 
4826  // And a visible updates block for the translation unit.
4827  Abv = std::make_shared<BitCodeAbbrev>();
4828  Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE));
4829  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
4830  Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
4831  UpdateVisibleAbbrev = Stream.EmitAbbrev(std::move(Abv));
4832  WriteDeclContextVisibleUpdate(TU);
4833 
4834  // If we have any extern "C" names, write out a visible update for them.
4835  if (Context.ExternCContext)
4836  WriteDeclContextVisibleUpdate(Context.ExternCContext);
4837 
4838  // If the translation unit has an anonymous namespace, and we don't already
4839  // have an update block for it, write it as an update block.
4840  // FIXME: Why do we not do this if there's already an update block?
4841  if (NamespaceDecl *NS = TU->getAnonymousNamespace()) {
4842  ASTWriter::UpdateRecord &Record = DeclUpdates[TU];
4843  if (Record.empty())
4844  Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS));
4845  }
4846 
4847  // Add update records for all mangling numbers and static local numbers.
4848  // These aren't really update records, but this is a convenient way of
4849  // tagging this rare extra data onto the declarations.
4850  for (const auto &Number : Context.MangleNumbers)
4851  if (!Number.first->isFromASTFile())
4852  DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER,
4853  Number.second));
4854  for (const auto &Number : Context.StaticLocalNumbers)
4855  if (!Number.first->isFromASTFile())
4856  DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER,
4857  Number.second));
4858 
4859  // Make sure visible decls, added to DeclContexts previously loaded from
4860  // an AST file, are registered for serialization. Likewise for template
4861  // specializations added to imported templates.
4862  for (const auto *I : DeclsToEmitEvenIfUnreferenced) {
4863  GetDeclRef(I);
4864  }
4865 
4866  // Make sure all decls associated with an identifier are registered for
4867  // serialization, if we're storing decls with identifiers.
4868  if (!WritingModule || !getLangOpts().CPlusPlus) {
4870  for (const auto &ID : PP.getIdentifierTable()) {
4871  const IdentifierInfo *II = ID.second;
4872  if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization())
4873  IIs.push_back(II);
4874  }
4875  // Sort the identifiers to visit based on their name.
4876  llvm::sort(IIs, llvm::less_ptr<IdentifierInfo>());
4877  for (const IdentifierInfo *II : IIs) {
4878  for (IdentifierResolver::iterator D = SemaRef.IdResolver.begin(II),
4879  DEnd = SemaRef.IdResolver.end();
4880  D != DEnd; ++D) {
4881  GetDeclRef(*D);
4882  }
4883  }
4884  }
4885 
4886  // For method pool in the module, if it contains an entry for a selector,
4887  // the entry should be complete, containing everything introduced by that
4888  // module and all modules it imports. It's possible that the entry is out of
4889  // date, so we need to pull in the new content here.
4890 
4891  // It's possible that updateOutOfDateSelector can update SelectorIDs. To be
4892  // safe, we copy all selectors out.
4893  llvm::SmallVector<Selector, 256> AllSelectors;
4894  for (auto &SelectorAndID : SelectorIDs)
4895  AllSelectors.push_back(SelectorAndID.first);
4896  for (auto &Selector : AllSelectors)
4898 
4899  // Form the record of special types.
4900  RecordData SpecialTypes;
4901  AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes);
4902  AddTypeRef(Context.getFILEType(), SpecialTypes);
4903  AddTypeRef(Context.getjmp_bufType(), SpecialTypes);
4904  AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes);
4905  AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes);
4906  AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes);
4907  AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes);
4908  AddTypeRef(Context.getucontext_tType(), SpecialTypes);
4909 
4910  if (Chain) {
4911  // Write the mapping information describing our module dependencies and how
4912  // each of those modules were mapped into our own offset/ID space, so that
4913  // the reader can build the appropriate mapping to its own offset/ID space.
4914  // The map consists solely of a blob with the following format:
4915  // *(module-kind:i8
4916  // module-name-len:i16 module-name:len*i8
4917  // source-location-offset:i32
4918  // identifier-id:i32
4919  // preprocessed-entity-id:i32
4920  // macro-definition-id:i32
4921  // submodule-id:i32
4922  // selector-id:i32
4923  // declaration-id:i32
4924  // c++-base-specifiers-id:i32
4925  // type-id:i32)
4926  //
4927  // module-kind is the ModuleKind enum value. If it is MK_PrebuiltModule or
4928  // MK_ExplicitModule, then the module-name is the module name. Otherwise,
4929  // it is the module file name.
4930  auto Abbrev = std::make_shared<BitCodeAbbrev>();
4931  Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP));
4932  Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4933  unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
4934  SmallString<2048> Buffer;
4935  {
4936  llvm::raw_svector_ostream Out(Buffer);
4937  for (ModuleFile &M : Chain->ModuleMgr) {
4938  using namespace llvm::support;
4939 
4940  endian::Writer LE(Out, little);
4941  LE.write<uint8_t>(static_cast<uint8_t>(M.Kind));
4942  StringRef Name =
4944  ? M.ModuleName
4945  : M.FileName;
4946  LE.write<uint16_t>(Name.size());
4947  Out.write(Name.data(), Name.size());
4948 
4949  // Note: if a base ID was uint max, it would not be possible to load
4950  // another module after it or have more than one entity inside it.
4952 
4953  auto writeBaseIDOrNone = [&](uint32_t BaseID, bool ShouldWrite) {
4954  assert(BaseID < std::numeric_limits<uint32_t>::max() && "base id too high");
4955  if (ShouldWrite)
4956  LE.write<uint32_t>(BaseID);
4957  else
4958  LE.write<uint32_t>(None);
4959  };
4960 
4961  // These values should be unique within a chain, since they will be read
4962  // as keys into ContinuousRangeMaps.
4963  writeBaseIDOrNone(M.SLocEntryBaseOffset, M.LocalNumSLocEntries);
4964  writeBaseIDOrNone(M.BaseIdentifierID, M.LocalNumIdentifiers);
4965  writeBaseIDOrNone(M.BaseMacroID, M.LocalNumMacros);
4966  writeBaseIDOrNone(M.BasePreprocessedEntityID,
4968  writeBaseIDOrNone(M.BaseSubmoduleID, M.LocalNumSubmodules);
4969  writeBaseIDOrNone(M.BaseSelectorID, M.LocalNumSelectors);
4970  writeBaseIDOrNone(M.BaseDeclID, M.LocalNumDecls);
4971  writeBaseIDOrNone(M.BaseTypeIndex, M.LocalNumTypes);
4972  }
4973  }
4974  RecordData::value_type Record[] = {MODULE_OFFSET_MAP};
4975  Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record,
4976  Buffer.data(), Buffer.size());
4977  }
4978 
4979  RecordData DeclUpdatesOffsetsRecord;
4980 
4981  // Keep writing types, declarations, and declaration update records
4982  // until we've emitted all of them.
4983  Stream.EnterSubblock(DECLTYPES_BLOCK_ID, /*bits for abbreviations*/5);
4984  WriteTypeAbbrevs();
4985  WriteDeclAbbrevs();
4986  do {
4987  WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord);
4988  while (!DeclTypesToEmit.empty()) {
4989  DeclOrType DOT = DeclTypesToEmit.front();
4990  DeclTypesToEmit.pop();
4991  if (DOT.isType())
4992  WriteType(DOT.getType());
4993  else
4994  WriteDecl(Context, DOT.getDecl());
4995  }
4996  } while (!DeclUpdates.empty());
4997  Stream.ExitBlock();
4998 
4999  DoneWritingDeclsAndTypes = true;
5000 
5001  // These things can only be done once we've written out decls and types.
5002  WriteTypeDeclOffsets();
5003  if (!DeclUpdatesOffsetsRecord.empty())
5004  Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord);
5005  WriteFileDeclIDsMap();
5006  WriteSourceManagerBlock(Context.getSourceManager(), PP);
5007  WriteComments();
5008  WritePreprocessor(PP, isModule);
5009  WriteHeaderSearch(PP.getHeaderSearchInfo());
5010  WriteSelectors(SemaRef);
5011  WriteReferencedSelectorsPool(SemaRef);
5012  WriteLateParsedTemplates(SemaRef);
5013  WriteIdentifierTable(PP, SemaRef.IdResolver, isModule);
5014  WriteFPPragmaOptions(SemaRef.getFPOptions());
5015  WriteOpenCLExtensions(SemaRef);
5016  WriteOpenCLExtensionTypes(SemaRef);
5017  WriteCUDAPragmas(SemaRef);
5018 
5019  // If we're emitting a module, write out the submodule information.
5020  if (WritingModule)
5021  WriteSubmodules(WritingModule);
5022 
5023  // We need to have information about submodules to correctly deserialize
5024  // decls from OpenCLExtensionDecls block
5025  WriteOpenCLExtensionDecls(SemaRef);
5026 
5027  Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes);
5028 
5029  // Write the record containing external, unnamed definitions.
5030  if (!EagerlyDeserializedDecls.empty())
5031  Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls);
5032 
5033  if (!ModularCodegenDecls.empty())
5034  Stream.EmitRecord(MODULAR_CODEGEN_DECLS, ModularCodegenDecls);
5035 
5036  // Write the record containing tentative definitions.
5037  if (!TentativeDefinitions.empty())
5038  Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions);
5039 
5040  // Write the record containing unused file scoped decls.
5041  if (!UnusedFileScopedDecls.empty())
5042  Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls);
5043 
5044  // Write the record containing weak undeclared identifiers.
5045  if (!WeakUndeclaredIdentifiers.empty())
5046  Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS,
5047  WeakUndeclaredIdentifiers);
5048 
5049  // Write the record containing ext_vector type names.
5050  if (!ExtVectorDecls.empty())
5051  Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls);
5052 
5053  // Write the record containing VTable uses information.
5054  if (!VTableUses.empty())
5055  Stream.EmitRecord(VTABLE_USES, VTableUses);
5056 
5057  // Write the record containing potentially unused local typedefs.
5058  if (!UnusedLocalTypedefNameCandidates.empty())
5059  Stream.EmitRecord(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES,
5060  UnusedLocalTypedefNameCandidates);
5061 
5062  // Write the record containing pending implicit instantiations.
5063  if (!PendingInstantiations.empty())
5064  Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations);
5065 
5066  // Write the record containing declaration references of Sema.
5067  if (!SemaDeclRefs.empty())
5068  Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs);
5069 
5070  // Write the record containing CUDA-specific declaration references.
5071  if (!CUDASpecialDeclRefs.empty())
5072  Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs);
5073 
5074  // Write the delegating constructors.
5075  if (!DelegatingCtorDecls.empty())
5076  Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls);
5077 
5078  // Write the known namespaces.
5079  if (!KnownNamespaces.empty())
5080  Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces);
5081 
5082  // Write the undefined internal functions and variables, and inline functions.
5083  if (!UndefinedButUsed.empty())
5084  Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed);
5085 
5086  if (!DeleteExprsToAnalyze.empty())
5087  Stream.EmitRecord(DELETE_EXPRS_TO_ANALYZE, DeleteExprsToAnalyze);
5088 
5089  // Write the visible updates to DeclContexts.
5090  for (auto *DC : UpdatedDeclContexts)
5091  WriteDeclContextVisibleUpdate(DC);
5092 
5093  if (!WritingModule) {
5094  // Write the submodules that were imported, if any.
5095  struct ModuleInfo {
5096  uint64_t ID;
5097  Module *M;
5098  ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {}
5099  };
5101  for (const auto *I : Context.local_imports()) {
5102  assert(SubmoduleIDs.find(I->getImportedModule()) != SubmoduleIDs.end());
5103  Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()],
5104  I->getImportedModule()));
5105  }
5106 
5107  if (!Imports.empty()) {
5108  auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) {
5109  return A.ID < B.ID;
5110  };
5111  auto Eq = [](const ModuleInfo &A, const ModuleInfo &B) {
5112  return A.ID == B.ID;
5113  };
5114 
5115  // Sort and deduplicate module IDs.
5116  llvm::sort(Imports, Cmp);
5117  Imports.erase(std::unique(Imports.begin(), Imports.end(), Eq),
5118  Imports.end());
5119 
5120  RecordData ImportedModules;
5121  for (const auto &Import : Imports) {
5122  ImportedModules.push_back(Import.ID);
5123  // FIXME: If the module has macros imported then later has declarations
5124  // imported, this location won't be the right one as a location for the
5125  // declaration imports.
5126  AddSourceLocation(PP.getModuleImportLoc(Import.M), ImportedModules);
5127  }
5128 
5129  Stream.EmitRecord(IMPORTED_MODULES, ImportedModules);
5130  }
5131  }
5132 
5133  WriteObjCCategories();
5134  if(!WritingModule) {
5135  WriteOptimizePragmaOptions(SemaRef);
5136  WriteMSStructPragmaOptions(SemaRef);
5137  WriteMSPointersToMembersPragmaOptions(SemaRef);
5138  }
5139  WritePackPragmaOptions(SemaRef);
5140 
5141  // Some simple statistics
5142  RecordData::value_type Record[] = {
5143  NumStatements, NumMacros, NumLexicalDeclContexts, NumVisibleDeclContexts};
5144  Stream.EmitRecord(STATISTICS, Record);
5145  Stream.ExitBlock();
5146 
5147  // Write the module file extension blocks.
5148  for (const auto &ExtWriter : ModuleFileExtensionWriters)
5149  WriteModuleFileExtension(SemaRef, *ExtWriter);
5150 
5151  return writeUnhashedControlBlock(PP, Context);
5152 }
5153 
5154 void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) {
5155  if (DeclUpdates.empty())
5156  return;
5157 
5158  DeclUpdateMap LocalUpdates;
5159  LocalUpdates.swap(DeclUpdates);
5160 
5161  for (auto &DeclUpdate : LocalUpdates) {
5162  const Decl *D = DeclUpdate.first;
5163 
5164  bool HasUpdatedBody = false;
5166  ASTRecordWriter Record(*this, RecordData);
5167  for (auto &Update : DeclUpdate.second) {
5169 
5170  // An updated body is emitted last, so that the reader doesn't need
5171  // to skip over the lazy body to reach statements for other records.
5173  HasUpdatedBody = true;
5174  else
5175  Record.push_back(Kind);
5176 
5177  switch (Kind) {
5181  assert(Update.getDecl() && "no decl to add?");
5182  Record.push_back(GetDeclRef(Update.getDecl()));
5183  break;
5184 
5186  break;
5187 
5189  // FIXME: Do we need to also save the template specialization kind here?
5190  Record.AddSourceLocation(Update.getLoc());
5191  break;
5192 
5194  const VarDecl *VD = cast<VarDecl>(D);
5195  Record.push_back(VD->isInline());
5196  Record.push_back(VD->isInlineSpecified());
5197  if (VD->getInit()) {
5198  Record.push_back(!VD->isInitKnownICE() ? 1
5199  : (VD->isInitICE() ? 3 : 2));
5200  Record.AddStmt(const_cast<Expr*>(VD->getInit()));
5201  } else {
5202  Record.push_back(0);
5203  }
5204  break;
5205  }
5206 
5208  Record.AddStmt(const_cast<Expr *>(
5209  cast<ParmVarDecl>(Update.getDecl())->getDefaultArg()));
5210  break;
5211 
5213  Record.AddStmt(
5214  cast<FieldDecl>(Update.getDecl())->getInClassInitializer());
5215  break;
5216 
5218  auto *RD = cast<CXXRecordDecl>(D);
5219  UpdatedDeclContexts.insert(RD->getPrimaryContext());
5220  Record.push_back(RD->isParamDestroyedInCallee());
5221  Record.push_back(RD->getArgPassingRestrictions());
5222  Record.AddCXXDefinitionData(RD);
5223  Record.AddOffset(WriteDeclContextLexicalBlock(
5224  *Context, const_cast<CXXRecordDecl *>(RD)));
5225 
5226  // This state is sometimes updated by template instantiation, when we
5227  // switch from the specialization referring to the template declaration
5228  // to it referring to the template definition.
5229  if (auto *MSInfo = RD->getMemberSpecializationInfo()) {
5230  Record.push_back(MSInfo->getTemplateSpecializationKind());
5231  Record.AddSourceLocation(MSInfo->getPointOfInstantiation());
5232  } else {
5233  auto *Spec = cast<ClassTemplateSpecializationDecl>(RD);
5234  Record.push_back(Spec->getTemplateSpecializationKind());
5235  Record.AddSourceLocation(Spec->getPointOfInstantiation());
5236 
5237  // The instantiation might have been resolved to a partial
5238  // specialization. If so, record which one.
5239  auto From = Spec->getInstantiatedFrom();
5240  if (auto PartialSpec =
5241  From.dyn_cast<ClassTemplatePartialSpecializationDecl*>()) {
5242  Record.push_back(true);
5243  Record.AddDeclRef(PartialSpec);
5244  Record.AddTemplateArgumentList(
5245  &Spec->getTemplateInstantiationArgs());
5246  } else {
5247  Record.push_back(false);
5248  }
5249  }
5250  Record.push_back(RD->getTagKind());
5251  Record.AddSourceLocation(RD->getLocation());
5252  Record.AddSourceLocation(RD->getBeginLoc());
5253  Record.AddSourceRange(RD->getBraceRange());
5254 
5255  // Instantiation may change attributes; write them all out afresh.
5256  Record.push_back(D->hasAttrs());
5257  if (D->hasAttrs())
5258  Record.AddAttributes(D->getAttrs());
5259 
5260  // FIXME: Ensure we don't get here for explicit instantiations.
5261  break;
5262  }
5263 
5265  Record.AddDeclRef(Update.getDecl());
5266  Record.AddStmt(cast<CXXDestructorDecl>(D)->getOperatorDeleteThisArg());
5267  break;
5268 
5271  cast<FunctionDecl>(D)->getType()->castAs<FunctionProtoType>(),
5272  Record);
5273  break;
5274 
5276  Record.push_back(GetOrCreateTypeID(Update.getType()));
5277  break;
5278 
5279  case UPD_DECL_MARKED_USED:
5280  break;
5281 
5282  case UPD_MANGLING_NUMBER:
5284  Record.push_back(Update.getNumber());
5285  break;
5286 
5288  Record.AddSourceRange(
5289  D->getAttr<OMPThreadPrivateDeclAttr>()->getRange());
5290  break;
5291 
5293  Record.push_back(D->getAttr<OMPDeclareTargetDeclAttr>()->getMapType());
5294  Record.AddSourceRange(
5295  D->getAttr<OMPDeclareTargetDeclAttr>()->getRange());
5296  break;
5297 
5298  case UPD_DECL_EXPORTED:
5299  Record.push_back(getSubmoduleID(Update.getModule()));
5300  break;
5301 
5303  Record.AddAttributes(llvm::makeArrayRef(Update.getAttr()));
5304  break;
5305  }
5306  }
5307 
5308  if (HasUpdatedBody) {
5309  const auto *Def = cast<FunctionDecl>(D);
5311  Record.push_back(Def->isInlined());
5312  Record.AddSourceLocation(Def->getInnerLocStart());
5313  Record.AddFunctionDefinition(Def);
5314  }
5315 
5316  OffsetsRecord.push_back(GetDeclRef(D));
5317  OffsetsRecord.push_back(Record.Emit(DECL_UPDATES));
5318  }
5319 }
5320 
5322  uint32_t Raw = Loc.getRawEncoding();
5323  Record.push_back((Raw << 1) | (Raw >> 31));
5324 }
5325 
5327  AddSourceLocation(Range.getBegin(), Record);
5328  AddSourceLocation(Range.getEnd(), Record);
5329 }
5330 
5331 void ASTRecordWriter::AddAPInt(const llvm::APInt &Value) {
5332  Record->push_back(Value.getBitWidth());
5333  const uint64_t *Words = Value.getRawData();
5334  Record->append(Words, Words + Value.getNumWords());
5335 }
5336 
5337 void ASTRecordWriter::AddAPSInt(const llvm::APSInt &Value) {
5338  Record->push_back(Value.isUnsigned());
5339  AddAPInt(Value);
5340 }
5341 
5342 void ASTRecordWriter::AddAPFloat(const llvm::APFloat &Value) {
5343  AddAPInt(Value.bitcastToAPInt());
5344 }
5345 
5347  Record.push_back(getIdentifierRef(II));
5348 }
5349 
5351  if (!II)
5352  return 0;
5353 
5354  IdentID &ID = IdentifierIDs[II];
5355  if (ID == 0)
5356  ID = NextIdentID++;
5357  return ID;
5358 }
5359 
5361  // Don't emit builtin macros like __LINE__ to the AST file unless they
5362  // have been redefined by the header (in which case they are not
5363  // isBuiltinMacro).
5364  if (!MI || MI->isBuiltinMacro())
5365  return 0;
5366 
5367  MacroID &ID = MacroIDs[MI];
5368  if (ID == 0) {
5369  ID = NextMacroID++;
5370  MacroInfoToEmitData Info = { Name, MI, ID };
5371  MacroInfosToEmit.push_back(Info);
5372  }
5373  return ID;
5374 }
5375 
5377  if (!MI || MI->isBuiltinMacro())
5378  return 0;
5379 
5380  assert(MacroIDs.find(MI) != MacroIDs.end() && "Macro not emitted!");
5381  return MacroIDs[MI];
5382 }
5383 
5385  return IdentMacroDirectivesOffsetMap.lookup(Name);
5386 }
5387 
5389  Record->push_back(Writer->getSelectorRef(SelRef));
5390 }
5391 
5393  if (Sel.getAsOpaquePtr() == nullptr) {
5394  return 0;
5395  }
5396 
5397  SelectorID SID = SelectorIDs[Sel];
5398  if (SID == 0 && Chain) {
5399  // This might trigger a ReadSelector callback, which will set the ID for
5400  // this selector.
5401  Chain->LoadSelector(Sel);
5402  SID = SelectorIDs[Sel];
5403  }
5404  if (SID == 0) {
5405  SID = NextSelectorID++;
5406  SelectorIDs[Sel] = SID;
5407  }
5408  return SID;
5409 }
5410 
5412  AddDeclRef(Temp->getDestructor());
5413 }
5414 
5417  switch (Kind) {
5419  AddStmt(Arg.getAsExpr());
5420  break;
5422  AddTypeSourceInfo(Arg.getAsTypeSourceInfo());
5423  break;
5425  AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc());
5427  break;
5429  AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc());
5432  break;
5438  // FIXME: Is this right?
5439  break;
5440  }
5441 }
5442 
5444  AddTemplateArgument(Arg.getArgument());
5445 
5447  bool InfoHasSameExpr
5448  = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr();
5449  Record->push_back(InfoHasSameExpr);
5450  if (InfoHasSameExpr)
5451  return; // Avoid storing the same expr twice.
5452  }
5453  AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo());
5454 }
5455 
5457  if (!TInfo) {
5458  AddTypeRef(QualType());
5459  return;
5460  }
5461 
5462  AddTypeRef(TInfo->getType());
5463  AddTypeLoc(TInfo->getTypeLoc());
5464 }
5465 
5467  TypeLocWriter TLW(*this);
5468  for (; !TL.isNull(); TL = TL.getNextTypeLoc())
5469  TLW.Visit(TL);
5470 }
5471 
5473  Record.push_back(GetOrCreateTypeID(T));
5474 }
5475 
5477  assert(Context);
5478  return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx {
5479  if (T.isNull())
5480  return TypeIdx();
5481  assert(!T.getLocalFastQualifiers());
5482 
5483  TypeIdx &Idx = TypeIdxs[T];
5484  if (Idx.getIndex() == 0) {
5485  if (DoneWritingDeclsAndTypes) {
5486  assert(0 && "New type seen after serializing all the types to emit!");
5487  return TypeIdx();
5488  }
5489 
5490  // We haven't seen this type before. Assign it a new ID and put it
5491  // into the queue of types to emit.
5492  Idx = TypeIdx(NextTypeID++);
5493  DeclTypesToEmit.push(T);
5494  }
5495  return Idx;
5496  });
5497 }
5498 
5500  assert(Context);
5501  return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx {
5502  if (T.isNull())
5503  return TypeIdx();
5504  assert(!T.getLocalFastQualifiers());
5505 
5506  TypeIdxMap::const_iterator I = TypeIdxs.find(T);
5507  assert(I != TypeIdxs.end() && "Type not emitted!");
5508  return I->second;
5509  });
5510 }
5511 
5512 void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) {
5513  Record.push_back(GetDeclRef(D));
5514 }
5515 
5517  assert(WritingAST && "Cannot request a declaration ID before AST writing");
5518 
5519  if (!D) {
5520  return 0;
5521  }
5522 
5523  // If D comes from an AST file, its declaration ID is already known and
5524  // fixed.
5525  if (D->isFromASTFile())
5526  return D->getGlobalID();
5527 
5528  assert(!(reinterpret_cast<uintptr_t>(D) & 0x01) && "Invalid decl pointer");
5529  DeclID &ID = DeclIDs[D];
5530  if (ID == 0) {
5531  if (DoneWritingDeclsAndTypes) {
5532  assert(0 && "New decl seen after serializing all the decls to emit!");
5533  return 0;
5534  }
5535 
5536  // We haven't seen this declaration before. Give it a new ID and
5537  // enqueue it in the list of declarations to emit.
5538  ID = NextDeclID++;
5539  DeclTypesToEmit.push(const_cast<Decl *>(D));
5540  }
5541 
5542  return ID;
5543 }
5544 
5546  if (!D)
5547  return 0;
5548 
5549  // If D comes from an AST file, its declaration ID is already known and
5550  // fixed.
5551  if (D->isFromASTFile())
5552  return D->getGlobalID();
5553 
5554  assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!");
5555  return DeclIDs[D];
5556 }
5557 
5558 void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) {
5559  assert(ID);
5560  assert(D);
5561 
5562  SourceLocation Loc = D->getLocation();
5563  if (Loc.isInvalid())
5564  return;
5565 
5566  // We only keep track of the file-level declarations of each file.
5567  if (!D->getLexicalDeclContext()->isFileContext())
5568  return;
5569  // FIXME: ParmVarDecls that are part of a function type of a parameter of
5570  // a function/objc method, should not have TU as lexical context.
5571  // TemplateTemplateParmDecls that are part of an alias template, should not
5572  // have TU as lexical context.
5573  if (isa<ParmVarDecl>(D) || isa<TemplateTemplateParmDecl>(D))
5574  return;
5575 
5576  SourceManager &SM = Context->getSourceManager();
5577  SourceLocation FileLoc = SM.getFileLoc(Loc);
5578  assert(SM.isLocalSourceLocation(FileLoc));
5579  FileID FID;
5580  unsigned Offset;
5581  std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc);
5582  if (FID.isInvalid())
5583  return;
5584  assert(SM.getSLocEntry(FID).isFile());
5585 
5586  DeclIDInFileInfo *&Info = FileDeclIDs[FID];
5587  if (!Info)
5588  Info = new DeclIDInFileInfo();
5589 
5590  std::pair<unsigned, serialization::DeclID> LocDecl(Offset, ID);
5591  LocDeclIDsTy &Decls = Info->DeclIDs;
5592 
5593  if (Decls.empty() || Decls.back().first <= Offset) {
5594  Decls.push_back(LocDecl);
5595  return;
5596  }
5597 
5598  LocDeclIDsTy::iterator I =
5599  std::upper_bound(Decls.begin(), Decls.end(), LocDecl, llvm::less_first());
5600 
5601  Decls.insert(I, LocDecl);
5602 }
5603 
5605  // FIXME: Emit a stable enum for NameKind. 0 = Identifier etc.
5606  Record->push_back(Name.getNameKind());
5607  switch (Name.getNameKind()) {
5610  break;
5611 
5615  AddSelectorRef(Name.getObjCSelector());
5616  break;
5617 
5621  AddTypeRef(Name.getCXXNameType());
5622  break;
5623 
5626  break;
5627 
5629  Record->push_back(Name.getCXXOverloadedOperator());
5630  break;
5631 
5634  break;
5635 
5637  // No extra data to emit
5638  break;
5639  }
5640 }
5641 
5643  assert(needsAnonymousDeclarationNumber(D) &&
5644  "expected an anonymous declaration");
5645 
5646  // Number the anonymous declarations within this context, if we've not
5647  // already done so.
5648  auto It = AnonymousDeclarationNumbers.find(D);
5649  if (It == AnonymousDeclarationNumbers.end()) {
5650  auto *DC = D->getLexicalDeclContext();
5651  numberAnonymousDeclsWithin(DC, [&](const NamedDecl *ND, unsigned Number) {
5652  AnonymousDeclarationNumbers[ND] = Number;
5653  });
5654 
5655  It = AnonymousDeclarationNumbers.find(D);
5656  assert(It != AnonymousDeclarationNumbers.end() &&
5657  "declaration not found within its lexical context");
5658  }
5659 
5660  return It->second;
5661 }
5662 
5664  DeclarationName Name) {
5665  switch (Name.getNameKind()) {
5669  AddTypeSourceInfo(DNLoc.NamedType.TInfo);
5670  break;
5671 
5677  break;
5678 
5682  break;
5683 
5690  break;
5691  }
5692 }
5693 
5695  const DeclarationNameInfo &NameInfo) {
5696  AddDeclarationName(NameInfo.getName());
5697  AddSourceLocation(NameInfo.getLoc());
5698  AddDeclarationNameLoc(NameInfo.getInfo(), NameInfo.getName());
5699 }
5700 
5702  AddNestedNameSpecifierLoc(Info.QualifierLoc);
5703  Record->push_back(Info.NumTemplParamLists);
5704  for (unsigned i = 0, e = Info.NumTemplParamLists; i != e; ++i)
5705  AddTemplateParameterList(Info.TemplParamLists[i]);
5706 }
5707 
5709  // Nested name specifiers usually aren't too long. I think that 8 would
5710  // typically accommodate the vast majority.
5712 
5713  // Push each of the NNS's onto a stack for serialization in reverse order.
5714  while (NNS) {
5715  NestedNames.push_back(NNS);
5716  NNS = NNS->getPrefix();
5717  }
5718 
5719  Record->push_back(NestedNames.size());
5720  while(!NestedNames.empty()) {
5721  NNS = NestedNames.pop_back_val();
5723  Record->push_back(Kind);
5724  switch (Kind) {
5727  break;
5728 
5730  AddDeclRef(NNS->getAsNamespace());
5731  break;
5732 
5735  break;
5736 
5739  AddTypeRef(QualType(NNS->getAsType(), 0));
5740  Record->push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate);
5741  break;
5742