clang 19.0.0git
LiteralSupport.cpp
Go to the documentation of this file.
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the NumericLiteralParser, CharLiteralParser, and
10// StringLiteralParser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
20#include "clang/Lex/Lexer.h"
22#include "clang/Lex/Token.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringSwitch.h"
27#include "llvm/Support/ConvertUTF.h"
28#include "llvm/Support/Error.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/Unicode.h"
31#include <algorithm>
32#include <cassert>
33#include <cstddef>
34#include <cstdint>
35#include <cstring>
36#include <string>
37
38using namespace clang;
39
40static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41 switch (kind) {
42 default: llvm_unreachable("Unknown token type!");
43 case tok::char_constant:
44 case tok::string_literal:
45 case tok::utf8_char_constant:
46 case tok::utf8_string_literal:
47 return Target.getCharWidth();
48 case tok::wide_char_constant:
49 case tok::wide_string_literal:
50 return Target.getWCharWidth();
51 case tok::utf16_char_constant:
52 case tok::utf16_string_literal:
53 return Target.getChar16Width();
54 case tok::utf32_char_constant:
55 case tok::utf32_string_literal:
56 return Target.getChar32Width();
57 }
58}
59
60static unsigned getEncodingPrefixLen(tok::TokenKind kind) {
61 switch (kind) {
62 default:
63 llvm_unreachable("Unknown token type!");
64 case tok::char_constant:
65 case tok::string_literal:
66 return 0;
67 case tok::utf8_char_constant:
68 case tok::utf8_string_literal:
69 return 2;
70 case tok::wide_char_constant:
71 case tok::wide_string_literal:
72 case tok::utf16_char_constant:
73 case tok::utf16_string_literal:
74 case tok::utf32_char_constant:
75 case tok::utf32_string_literal:
76 return 1;
77 }
78}
79
81 FullSourceLoc TokLoc,
82 const char *TokBegin,
83 const char *TokRangeBegin,
84 const char *TokRangeEnd) {
86 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
87 TokLoc.getManager(), Features);
88 SourceLocation End =
89 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
90 TokLoc.getManager(), Features);
92}
93
94/// Produce a diagnostic highlighting some portion of a literal.
95///
96/// Emits the diagnostic \p DiagID, highlighting the range of characters from
97/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
98/// a substring of a spelling buffer for the token beginning at \p TokBegin.
100 const LangOptions &Features, FullSourceLoc TokLoc,
101 const char *TokBegin, const char *TokRangeBegin,
102 const char *TokRangeEnd, unsigned DiagID) {
104 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
105 TokLoc.getManager(), Features);
106 return Diags->Report(Begin, DiagID) <<
107 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
108}
109
111 switch (Escape) {
112 case '\'':
113 case '"':
114 case '?':
115 case '\\':
116 case 'a':
117 case 'b':
118 case 'f':
119 case 'n':
120 case 'r':
121 case 't':
122 case 'v':
123 return true;
124 }
125 return false;
126}
127
128/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
129/// either a character or a string literal.
130static unsigned ProcessCharEscape(const char *ThisTokBegin,
131 const char *&ThisTokBuf,
132 const char *ThisTokEnd, bool &HadError,
133 FullSourceLoc Loc, unsigned CharWidth,
134 DiagnosticsEngine *Diags,
135 const LangOptions &Features,
136 StringLiteralEvalMethod EvalMethod) {
137 const char *EscapeBegin = ThisTokBuf;
138 bool Delimited = false;
139 bool EndDelimiterFound = false;
140
141 // Skip the '\' char.
142 ++ThisTokBuf;
143
144 // We know that this character can't be off the end of the buffer, because
145 // that would have been \", which would not have been the end of string.
146 unsigned ResultChar = *ThisTokBuf++;
147 char Escape = ResultChar;
148 switch (ResultChar) {
149 // These map to themselves.
150 case '\\': case '\'': case '"': case '?': break;
151
152 // These have fixed mappings.
153 case 'a':
154 // TODO: K&R: the meaning of '\\a' is different in traditional C
155 ResultChar = 7;
156 break;
157 case 'b':
158 ResultChar = 8;
159 break;
160 case 'e':
161 if (Diags)
162 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
163 diag::ext_nonstandard_escape) << "e";
164 ResultChar = 27;
165 break;
166 case 'E':
167 if (Diags)
168 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
169 diag::ext_nonstandard_escape) << "E";
170 ResultChar = 27;
171 break;
172 case 'f':
173 ResultChar = 12;
174 break;
175 case 'n':
176 ResultChar = 10;
177 break;
178 case 'r':
179 ResultChar = 13;
180 break;
181 case 't':
182 ResultChar = 9;
183 break;
184 case 'v':
185 ResultChar = 11;
186 break;
187 case 'x': { // Hex escape.
188 ResultChar = 0;
189 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
190 Delimited = true;
191 ThisTokBuf++;
192 if (*ThisTokBuf == '}') {
193 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
194 diag::err_delimited_escape_empty);
195 return ResultChar;
196 }
197 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
198 if (Diags)
199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
200 diag::err_hex_escape_no_digits) << "x";
201 return ResultChar;
202 }
203
204 // Hex escapes are a maximal series of hex digits.
205 bool Overflow = false;
206 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
207 if (Delimited && *ThisTokBuf == '}') {
208 ThisTokBuf++;
209 EndDelimiterFound = true;
210 break;
211 }
212 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
213 if (CharVal == -1) {
214 // Non delimited hex escape sequences stop at the first non-hex digit.
215 if (!Delimited)
216 break;
217 HadError = true;
218 if (Diags)
219 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
220 diag::err_delimited_escape_invalid)
221 << StringRef(ThisTokBuf, 1);
222 continue;
223 }
224 // About to shift out a digit?
225 if (ResultChar & 0xF0000000)
226 Overflow = true;
227 ResultChar <<= 4;
228 ResultChar |= CharVal;
229 }
230 // See if any bits will be truncated when evaluated as a character.
231 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
232 Overflow = true;
233 ResultChar &= ~0U >> (32-CharWidth);
234 }
235
236 // Check for overflow.
237 if (!HadError && Overflow) { // Too many digits to fit in
238 HadError = true;
239 if (Diags)
240 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
241 diag::err_escape_too_large)
242 << 0;
243 }
244 break;
245 }
246 case '0': case '1': case '2': case '3':
247 case '4': case '5': case '6': case '7': {
248 // Octal escapes.
249 --ThisTokBuf;
250 ResultChar = 0;
251
252 // Octal escapes are a series of octal digits with maximum length 3.
253 // "\0123" is a two digit sequence equal to "\012" "3".
254 unsigned NumDigits = 0;
255 do {
256 ResultChar <<= 3;
257 ResultChar |= *ThisTokBuf++ - '0';
258 ++NumDigits;
259 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
260 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
261
262 // Check for overflow. Reject '\777', but not L'\777'.
263 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
264 if (Diags)
265 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
266 diag::err_escape_too_large) << 1;
267 ResultChar &= ~0U >> (32-CharWidth);
268 }
269 break;
270 }
271 case 'o': {
272 bool Overflow = false;
273 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
274 HadError = true;
275 if (Diags)
276 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
277 diag::err_delimited_escape_missing_brace)
278 << "o";
279
280 break;
281 }
282 ResultChar = 0;
283 Delimited = true;
284 ++ThisTokBuf;
285 if (*ThisTokBuf == '}') {
286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
287 diag::err_delimited_escape_empty);
288 return ResultChar;
289 }
290
291 while (ThisTokBuf != ThisTokEnd) {
292 if (*ThisTokBuf == '}') {
293 EndDelimiterFound = true;
294 ThisTokBuf++;
295 break;
296 }
297 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
298 HadError = true;
299 if (Diags)
300 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
301 diag::err_delimited_escape_invalid)
302 << StringRef(ThisTokBuf, 1);
303 ThisTokBuf++;
304 continue;
305 }
306 // Check if one of the top three bits is set before shifting them out.
307 if (ResultChar & 0xE0000000)
308 Overflow = true;
309
310 ResultChar <<= 3;
311 ResultChar |= *ThisTokBuf++ - '0';
312 }
313 // Check for overflow. Reject '\777', but not L'\777'.
314 if (!HadError &&
315 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
316 HadError = true;
317 if (Diags)
318 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
319 diag::err_escape_too_large)
320 << 1;
321 ResultChar &= ~0U >> (32 - CharWidth);
322 }
323 break;
324 }
325 // Otherwise, these are not valid escapes.
326 case '(': case '{': case '[': case '%':
327 // GCC accepts these as extensions. We warn about them as such though.
328 if (Diags)
329 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
330 diag::ext_nonstandard_escape)
331 << std::string(1, ResultChar);
332 break;
333 default:
334 if (!Diags)
335 break;
336
337 if (isPrintable(ResultChar))
338 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
339 diag::ext_unknown_escape)
340 << std::string(1, ResultChar);
341 else
342 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
343 diag::ext_unknown_escape)
344 << "x" + llvm::utohexstr(ResultChar);
345 break;
346 }
347
348 if (Delimited && Diags) {
349 if (!EndDelimiterFound)
350 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
351 diag::err_expected)
352 << tok::r_brace;
353 else if (!HadError) {
354 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
355 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
356 : diag::ext_delimited_escape_sequence)
357 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
358 }
359 }
360
361 if (EvalMethod == StringLiteralEvalMethod::Unevaluated &&
363 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
364 diag::err_unevaluated_string_invalid_escape_sequence)
365 << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin);
366 HadError = true;
367 }
368
369 return ResultChar;
370}
371
372static void appendCodePoint(unsigned Codepoint,
374 char ResultBuf[4];
375 char *ResultPtr = ResultBuf;
376 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
377 Str.append(ResultBuf, ResultPtr);
378}
379
380void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
381 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
382 if (*I != '\\') {
383 Buf.push_back(*I);
384 continue;
385 }
386
387 ++I;
388 char Kind = *I;
389 ++I;
390
391 assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
392 uint32_t CodePoint = 0;
393
394 if (Kind == 'u' && *I == '{') {
395 for (++I; *I != '}'; ++I) {
396 unsigned Value = llvm::hexDigitValue(*I);
397 assert(Value != -1U);
398 CodePoint <<= 4;
399 CodePoint += Value;
400 }
401 appendCodePoint(CodePoint, Buf);
402 continue;
403 }
404
405 if (Kind == 'N') {
406 assert(*I == '{');
407 ++I;
408 auto Delim = std::find(I, Input.end(), '}');
409 assert(Delim != Input.end());
410 StringRef Name(I, std::distance(I, Delim));
411 std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
412 llvm::sys::unicode::nameToCodepointLooseMatching(Name);
413 assert(Res && "could not find a codepoint that was previously found");
414 CodePoint = Res->CodePoint;
415 assert(CodePoint != 0xFFFFFFFF);
416 appendCodePoint(CodePoint, Buf);
417 I = Delim;
418 continue;
419 }
420
421 unsigned NumHexDigits;
422 if (Kind == 'u')
423 NumHexDigits = 4;
424 else
425 NumHexDigits = 8;
426
427 assert(I + NumHexDigits <= E);
428
429 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
430 unsigned Value = llvm::hexDigitValue(*I);
431 assert(Value != -1U);
432
433 CodePoint <<= 4;
434 CodePoint += Value;
435 }
436
437 appendCodePoint(CodePoint, Buf);
438 --I;
439 }
440}
441
443 const LangOptions &LO) {
444 return LO.MicrosoftExt &&
445 (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ ||
446 K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ ||
447 K == tok::kw___FUNCDNAME__);
448}
449
451 return tok::isStringLiteral(Tok.getKind()) ||
453}
454
455static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
456 const char *&ThisTokBuf,
457 const char *ThisTokEnd, uint32_t &UcnVal,
458 unsigned short &UcnLen, bool &Delimited,
460 const LangOptions &Features,
461 bool in_char_string_literal = false) {
462 const char *UcnBegin = ThisTokBuf;
463 bool HasError = false;
464 bool EndDelimiterFound = false;
465
466 // Skip the '\u' char's.
467 ThisTokBuf += 2;
468 Delimited = false;
469 if (UcnBegin[1] == 'u' && in_char_string_literal &&
470 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
471 Delimited = true;
472 ThisTokBuf++;
473 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
474 if (Diags)
475 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
476 diag::err_hex_escape_no_digits)
477 << StringRef(&ThisTokBuf[-1], 1);
478 return false;
479 }
480 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
481
482 bool Overflow = false;
483 unsigned short Count = 0;
484 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
485 ++ThisTokBuf) {
486 if (Delimited && *ThisTokBuf == '}') {
487 ++ThisTokBuf;
488 EndDelimiterFound = true;
489 break;
490 }
491 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
492 if (CharVal == -1) {
493 HasError = true;
494 if (!Delimited)
495 break;
496 if (Diags) {
497 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
498 diag::err_delimited_escape_invalid)
499 << StringRef(ThisTokBuf, 1);
500 }
501 Count++;
502 continue;
503 }
504 if (UcnVal & 0xF0000000) {
505 Overflow = true;
506 continue;
507 }
508 UcnVal <<= 4;
509 UcnVal |= CharVal;
510 Count++;
511 }
512
513 if (Overflow) {
514 if (Diags)
515 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
516 diag::err_escape_too_large)
517 << 0;
518 return false;
519 }
520
521 if (Delimited && !EndDelimiterFound) {
522 if (Diags) {
523 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
524 diag::err_expected)
525 << tok::r_brace;
526 }
527 return false;
528 }
529
530 // If we didn't consume the proper number of digits, there is a problem.
531 if (Count == 0 || (!Delimited && Count != UcnLen)) {
532 if (Diags)
533 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
534 Delimited ? diag::err_delimited_escape_empty
535 : diag::err_ucn_escape_incomplete);
536 return false;
537 }
538 return !HasError;
539}
540
542 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
543 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
544 llvm::StringRef Name) {
545
546 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
547 diag::err_invalid_ucn_name)
548 << Name;
549
550 namespace u = llvm::sys::unicode;
551
552 std::optional<u::LooseMatchingResult> Res =
553 u::nameToCodepointLooseMatching(Name);
554 if (Res) {
555 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
556 diag::note_invalid_ucn_name_loose_matching)
558 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
559 TokRangeEnd),
560 Res->Name);
561 return;
562 }
563
564 unsigned Distance = 0;
566 u::nearestMatchesForCodepointName(Name, 5);
567 assert(!Matches.empty() && "No unicode characters found");
568
569 for (const auto &Match : Matches) {
570 if (Distance == 0)
571 Distance = Match.Distance;
572 if (std::max(Distance, Match.Distance) -
573 std::min(Distance, Match.Distance) >
574 3)
575 break;
576 Distance = Match.Distance;
577
578 std::string Str;
579 llvm::UTF32 V = Match.Value;
580 bool Converted =
581 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
582 (void)Converted;
583 assert(Converted && "Found a match wich is not a unicode character");
584
585 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
586 diag::note_invalid_ucn_name_candidate)
587 << Match.Name << llvm::utohexstr(Match.Value)
588 << Str // FIXME: Fix the rendering of non printable characters
590 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
591 TokRangeEnd),
592 Match.Name);
593 }
594}
595
596static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
597 const char *&ThisTokBuf,
598 const char *ThisTokEnd, uint32_t &UcnVal,
599 unsigned short &UcnLen, FullSourceLoc Loc,
600 DiagnosticsEngine *Diags,
601 const LangOptions &Features) {
602 const char *UcnBegin = ThisTokBuf;
603 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
604 ThisTokBuf += 2;
605 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
606 if (Diags) {
607 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
608 diag::err_delimited_escape_missing_brace)
609 << StringRef(&ThisTokBuf[-1], 1);
610 }
611 return false;
612 }
613 ThisTokBuf++;
614 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) {
615 return C == '}' || isVerticalWhitespace(C);
616 });
617 bool Incomplete = ClosingBrace == ThisTokEnd;
618 bool Empty = ClosingBrace == ThisTokBuf;
619 if (Incomplete || Empty) {
620 if (Diags) {
621 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
622 Incomplete ? diag::err_ucn_escape_incomplete
623 : diag::err_delimited_escape_empty)
624 << StringRef(&UcnBegin[1], 1);
625 }
626 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
627 return false;
628 }
629 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
630 ThisTokBuf = ClosingBrace + 1;
631 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
632 if (!Res) {
633 if (Diags)
634 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
635 &UcnBegin[3], ClosingBrace, Name);
636 return false;
637 }
638 UcnVal = *Res;
639 UcnLen = UcnVal > 0xFFFF ? 8 : 4;
640 return true;
641}
642
643/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
644/// return the UTF32.
645static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
646 const char *ThisTokEnd, uint32_t &UcnVal,
647 unsigned short &UcnLen, FullSourceLoc Loc,
648 DiagnosticsEngine *Diags,
649 const LangOptions &Features,
650 bool in_char_string_literal = false) {
651
652 bool HasError;
653 const char *UcnBegin = ThisTokBuf;
654 bool IsDelimitedEscapeSequence = false;
655 bool IsNamedEscapeSequence = false;
656 if (ThisTokBuf[1] == 'N') {
657 IsNamedEscapeSequence = true;
658 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
659 UcnVal, UcnLen, Loc, Diags, Features);
660 } else {
661 HasError =
662 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
663 UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
664 Features, in_char_string_literal);
665 }
666 if (HasError)
667 return false;
668
669 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
670 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
671 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
672 if (Diags)
673 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
674 diag::err_ucn_escape_invalid);
675 return false;
676 }
677
678 // C23 and C++11 allow UCNs that refer to control characters
679 // and basic source characters inside character and string literals
680 if (UcnVal < 0xa0 &&
681 // $, @, ` are allowed in all language modes
682 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {
683 bool IsError =
684 (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal);
685 if (Diags) {
686 char BasicSCSChar = UcnVal;
687 if (UcnVal >= 0x20 && UcnVal < 0x7f)
688 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
689 IsError ? diag::err_ucn_escape_basic_scs
690 : Features.CPlusPlus
691 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs
692 : diag::warn_c23_compat_literal_ucn_escape_basic_scs)
693 << StringRef(&BasicSCSChar, 1);
694 else
695 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
696 IsError ? diag::err_ucn_control_character
697 : Features.CPlusPlus
698 ? diag::warn_cxx98_compat_literal_ucn_control_character
699 : diag::warn_c23_compat_literal_ucn_control_character);
700 }
701 if (IsError)
702 return false;
703 }
704
705 if (!Features.CPlusPlus && !Features.C99 && Diags)
706 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
707 diag::warn_ucn_not_valid_in_c89_literal);
708
709 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
710 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
711 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
712 : diag::ext_delimited_escape_sequence)
713 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
714
715 return true;
716}
717
718/// MeasureUCNEscape - Determine the number of bytes within the resulting string
719/// which this UCN will occupy.
720static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
721 const char *ThisTokEnd, unsigned CharByteWidth,
722 const LangOptions &Features, bool &HadError) {
723 // UTF-32: 4 bytes per escape.
724 if (CharByteWidth == 4)
725 return 4;
726
727 uint32_t UcnVal = 0;
728 unsigned short UcnLen = 0;
730
731 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
732 UcnLen, Loc, nullptr, Features, true)) {
733 HadError = true;
734 return 0;
735 }
736
737 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
738 if (CharByteWidth == 2)
739 return UcnVal <= 0xFFFF ? 2 : 4;
740
741 // UTF-8.
742 if (UcnVal < 0x80)
743 return 1;
744 if (UcnVal < 0x800)
745 return 2;
746 if (UcnVal < 0x10000)
747 return 3;
748 return 4;
749}
750
751/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
752/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
753/// StringLiteralParser. When we decide to implement UCN's for identifiers,
754/// we will likely rework our support for UCN's.
755static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
756 const char *ThisTokEnd,
757 char *&ResultBuf, bool &HadError,
758 FullSourceLoc Loc, unsigned CharByteWidth,
759 DiagnosticsEngine *Diags,
760 const LangOptions &Features) {
761 typedef uint32_t UTF32;
762 UTF32 UcnVal = 0;
763 unsigned short UcnLen = 0;
764 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
765 Loc, Diags, Features, true)) {
766 HadError = true;
767 return;
768 }
769
770 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
771 "only character widths of 1, 2, or 4 bytes supported");
772
773 (void)UcnLen;
774 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
775
776 if (CharByteWidth == 4) {
777 // FIXME: Make the type of the result buffer correct instead of
778 // using reinterpret_cast.
779 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
780 *ResultPtr = UcnVal;
781 ResultBuf += 4;
782 return;
783 }
784
785 if (CharByteWidth == 2) {
786 // FIXME: Make the type of the result buffer correct instead of
787 // using reinterpret_cast.
788 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
789
790 if (UcnVal <= (UTF32)0xFFFF) {
791 *ResultPtr = UcnVal;
792 ResultBuf += 2;
793 return;
794 }
795
796 // Convert to UTF16.
797 UcnVal -= 0x10000;
798 *ResultPtr = 0xD800 + (UcnVal >> 10);
799 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
800 ResultBuf += 4;
801 return;
802 }
803
804 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
805
806 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
807 // The conversion below was inspired by:
808 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
809 // First, we determine how many bytes the result will require.
810 typedef uint8_t UTF8;
811
812 unsigned short bytesToWrite = 0;
813 if (UcnVal < (UTF32)0x80)
814 bytesToWrite = 1;
815 else if (UcnVal < (UTF32)0x800)
816 bytesToWrite = 2;
817 else if (UcnVal < (UTF32)0x10000)
818 bytesToWrite = 3;
819 else
820 bytesToWrite = 4;
821
822 const unsigned byteMask = 0xBF;
823 const unsigned byteMark = 0x80;
824
825 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
826 // into the first byte, depending on how many bytes follow.
827 static const UTF8 firstByteMark[5] = {
828 0x00, 0x00, 0xC0, 0xE0, 0xF0
829 };
830 // Finally, we write the bytes into ResultBuf.
831 ResultBuf += bytesToWrite;
832 switch (bytesToWrite) { // note: everything falls through.
833 case 4:
834 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
835 [[fallthrough]];
836 case 3:
837 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
838 [[fallthrough]];
839 case 2:
840 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
841 [[fallthrough]];
842 case 1:
843 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
844 }
845 // Update the buffer.
846 ResultBuf += bytesToWrite;
847}
848
849/// integer-constant: [C99 6.4.4.1]
850/// decimal-constant integer-suffix
851/// octal-constant integer-suffix
852/// hexadecimal-constant integer-suffix
853/// binary-literal integer-suffix [GNU, C++1y]
854/// user-defined-integer-literal: [C++11 lex.ext]
855/// decimal-literal ud-suffix
856/// octal-literal ud-suffix
857/// hexadecimal-literal ud-suffix
858/// binary-literal ud-suffix [GNU, C++1y]
859/// decimal-constant:
860/// nonzero-digit
861/// decimal-constant digit
862/// octal-constant:
863/// 0
864/// octal-constant octal-digit
865/// hexadecimal-constant:
866/// hexadecimal-prefix hexadecimal-digit
867/// hexadecimal-constant hexadecimal-digit
868/// hexadecimal-prefix: one of
869/// 0x 0X
870/// binary-literal:
871/// 0b binary-digit
872/// 0B binary-digit
873/// binary-literal binary-digit
874/// integer-suffix:
875/// unsigned-suffix [long-suffix]
876/// unsigned-suffix [long-long-suffix]
877/// long-suffix [unsigned-suffix]
878/// long-long-suffix [unsigned-sufix]
879/// nonzero-digit:
880/// 1 2 3 4 5 6 7 8 9
881/// octal-digit:
882/// 0 1 2 3 4 5 6 7
883/// hexadecimal-digit:
884/// 0 1 2 3 4 5 6 7 8 9
885/// a b c d e f
886/// A B C D E F
887/// binary-digit:
888/// 0
889/// 1
890/// unsigned-suffix: one of
891/// u U
892/// long-suffix: one of
893/// l L
894/// long-long-suffix: one of
895/// ll LL
896///
897/// floating-constant: [C99 6.4.4.2]
898/// TODO: add rules...
899///
901 SourceLocation TokLoc,
902 const SourceManager &SM,
903 const LangOptions &LangOpts,
904 const TargetInfo &Target,
905 DiagnosticsEngine &Diags)
906 : SM(SM), LangOpts(LangOpts), Diags(Diags),
907 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
908
909 s = DigitsBegin = ThisTokBegin;
910 saw_exponent = false;
911 saw_period = false;
912 saw_ud_suffix = false;
913 saw_fixed_point_suffix = false;
914 isLong = false;
915 isUnsigned = false;
916 isLongLong = false;
917 isSizeT = false;
918 isHalf = false;
919 isFloat = false;
920 isImaginary = false;
921 isFloat16 = false;
922 isFloat128 = false;
924 isFract = false;
925 isAccum = false;
926 hadError = false;
927 isBitInt = false;
928
929 // This routine assumes that the range begin/end matches the regex for integer
930 // and FP constants (specifically, the 'pp-number' regex), and assumes that
931 // the byte at "*end" is both valid and not part of the regex. Because of
932 // this, it doesn't have to check for 'overscan' in various places.
933 // Note: For HLSL, the end token is allowed to be '.' which would be in the
934 // 'pp-number' regex. This is required to support vector swizzles on numeric
935 // constants (i.e. 1.xx or 1.5f.rrr).
936 if (isPreprocessingNumberBody(*ThisTokEnd) &&
937 !(LangOpts.HLSL && *ThisTokEnd == '.')) {
938 Diags.Report(TokLoc, diag::err_lexing_numeric);
939 hadError = true;
940 return;
941 }
942
943 if (*s == '0') { // parse radix
944 ParseNumberStartingWithZero(TokLoc);
945 if (hadError)
946 return;
947 } else { // the first digit is non-zero
948 radix = 10;
949 s = SkipDigits(s);
950 if (s == ThisTokEnd) {
951 // Done.
952 } else {
953 ParseDecimalOrOctalCommon(TokLoc);
954 if (hadError)
955 return;
956 }
957 }
958
959 SuffixBegin = s;
960 checkSeparator(TokLoc, s, CSK_AfterDigits);
961
962 // Initial scan to lookahead for fixed point suffix.
963 if (LangOpts.FixedPoint) {
964 for (const char *c = s; c != ThisTokEnd; ++c) {
965 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
966 saw_fixed_point_suffix = true;
967 break;
968 }
969 }
970 }
971
972 // Parse the suffix. At this point we can classify whether we have an FP or
973 // integer constant.
974 bool isFixedPointConstant = isFixedPointLiteral();
975 bool isFPConstant = isFloatingLiteral();
976 bool HasSize = false;
977 bool DoubleUnderscore = false;
978
979 // Loop over all of the characters of the suffix. If we see something bad,
980 // we break out of the loop.
981 for (; s != ThisTokEnd; ++s) {
982 switch (*s) {
983 case 'R':
984 case 'r':
985 if (!LangOpts.FixedPoint)
986 break;
987 if (isFract || isAccum) break;
988 if (!(saw_period || saw_exponent)) break;
989 isFract = true;
990 continue;
991 case 'K':
992 case 'k':
993 if (!LangOpts.FixedPoint)
994 break;
995 if (isFract || isAccum) break;
996 if (!(saw_period || saw_exponent)) break;
997 isAccum = true;
998 continue;
999 case 'h': // FP Suffix for "half".
1000 case 'H':
1001 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
1002 if (!(LangOpts.Half || LangOpts.FixedPoint))
1003 break;
1004 if (isIntegerLiteral()) break; // Error for integer constant.
1005 if (HasSize)
1006 break;
1007 HasSize = true;
1008 isHalf = true;
1009 continue; // Success.
1010 case 'f': // FP Suffix for "float"
1011 case 'F':
1012 if (!isFPConstant) break; // Error for integer constant.
1013 if (HasSize)
1014 break;
1015 HasSize = true;
1016
1017 // CUDA host and device may have different _Float16 support, therefore
1018 // allows f16 literals to avoid false alarm.
1019 // When we compile for OpenMP target offloading on NVPTX, f16 suffix
1020 // should also be supported.
1021 // ToDo: more precise check for CUDA.
1022 // TODO: AMDGPU might also support it in the future.
1023 if ((Target.hasFloat16Type() || LangOpts.CUDA ||
1024 (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) &&
1025 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
1026 s += 2; // success, eat up 2 characters.
1027 isFloat16 = true;
1028 continue;
1029 }
1030
1031 isFloat = true;
1032 continue; // Success.
1033 case 'q': // FP Suffix for "__float128"
1034 case 'Q':
1035 if (!isFPConstant) break; // Error for integer constant.
1036 if (HasSize)
1037 break;
1038 HasSize = true;
1039 isFloat128 = true;
1040 continue; // Success.
1041 case 'u':
1042 case 'U':
1043 if (isFPConstant) break; // Error for floating constant.
1044 if (isUnsigned) break; // Cannot be repeated.
1045 isUnsigned = true;
1046 continue; // Success.
1047 case 'l':
1048 case 'L':
1049 if (HasSize)
1050 break;
1051 HasSize = true;
1052
1053 // Check for long long. The L's need to be adjacent and the same case.
1054 if (s[1] == s[0]) {
1055 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
1056 if (isFPConstant) break; // long long invalid for floats.
1057 isLongLong = true;
1058 ++s; // Eat both of them.
1059 } else {
1060 isLong = true;
1061 }
1062 continue; // Success.
1063 case 'z':
1064 case 'Z':
1065 if (isFPConstant)
1066 break; // Invalid for floats.
1067 if (HasSize)
1068 break;
1069 HasSize = true;
1070 isSizeT = true;
1071 continue;
1072 case 'i':
1073 case 'I':
1074 if (LangOpts.MicrosoftExt && !isFPConstant) {
1075 // Allow i8, i16, i32, and i64. First, look ahead and check if
1076 // suffixes are Microsoft integers and not the imaginary unit.
1077 uint8_t Bits = 0;
1078 size_t ToSkip = 0;
1079 switch (s[1]) {
1080 case '8': // i8 suffix
1081 Bits = 8;
1082 ToSkip = 2;
1083 break;
1084 case '1':
1085 if (s[2] == '6') { // i16 suffix
1086 Bits = 16;
1087 ToSkip = 3;
1088 }
1089 break;
1090 case '3':
1091 if (s[2] == '2') { // i32 suffix
1092 Bits = 32;
1093 ToSkip = 3;
1094 }
1095 break;
1096 case '6':
1097 if (s[2] == '4') { // i64 suffix
1098 Bits = 64;
1099 ToSkip = 3;
1100 }
1101 break;
1102 default:
1103 break;
1104 }
1105 if (Bits) {
1106 if (HasSize)
1107 break;
1108 HasSize = true;
1109 MicrosoftInteger = Bits;
1110 s += ToSkip;
1111 assert(s <= ThisTokEnd && "didn't maximally munch?");
1112 break;
1113 }
1114 }
1115 [[fallthrough]];
1116 case 'j':
1117 case 'J':
1118 if (isImaginary) break; // Cannot be repeated.
1119 isImaginary = true;
1120 continue; // Success.
1121 case '_':
1122 if (isFPConstant)
1123 break; // Invalid for floats
1124 if (HasSize)
1125 break;
1126 if (DoubleUnderscore)
1127 break; // Cannot be repeated.
1128 if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd &&
1129 s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists
1130 // after __
1131 DoubleUnderscore = true;
1132 s += 2; // Skip both '_'
1133 if (s + 1 < ThisTokEnd &&
1134 (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U'
1135 isUnsigned = true;
1136 ++s;
1137 }
1138 if (s + 1 < ThisTokEnd &&
1139 ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) {
1140 isBitInt = true;
1141 HasSize = true;
1142 continue;
1143 }
1144 }
1145 break;
1146 case 'w':
1147 case 'W':
1148 if (isFPConstant)
1149 break; // Invalid for floats.
1150 if (HasSize)
1151 break; // Invalid if we already have a size for the literal.
1152
1153 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1154 // explicitly do not support the suffix in C++ as an extension because a
1155 // library-based UDL that resolves to a library type may be more
1156 // appropriate there. The same rules apply for __wb/__WB.
1157 if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd &&
1158 ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) {
1159 isBitInt = true;
1160 HasSize = true;
1161 ++s; // Skip both characters (2nd char skipped on continue).
1162 continue; // Success.
1163 }
1164 }
1165 // If we reached here, there was an error or a ud-suffix.
1166 break;
1167 }
1168
1169 // "i", "if", and "il" are user-defined suffixes in C++1y.
1170 if (s != ThisTokEnd || isImaginary) {
1171 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1172 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1173 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1174 if (!isImaginary) {
1175 // Any suffix pieces we might have parsed are actually part of the
1176 // ud-suffix.
1177 isLong = false;
1178 isUnsigned = false;
1179 isLongLong = false;
1180 isSizeT = false;
1181 isFloat = false;
1182 isFloat16 = false;
1183 isHalf = false;
1184 isImaginary = false;
1185 isBitInt = false;
1186 MicrosoftInteger = 0;
1187 saw_fixed_point_suffix = false;
1188 isFract = false;
1189 isAccum = false;
1190 }
1191
1192 saw_ud_suffix = true;
1193 return;
1194 }
1195
1196 if (s != ThisTokEnd) {
1197 // Report an error if there are any.
1199 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1200 diag::err_invalid_suffix_constant)
1201 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1202 << (isFixedPointConstant ? 2 : isFPConstant);
1203 hadError = true;
1204 }
1205 }
1206
1207 if (!hadError && saw_fixed_point_suffix) {
1208 assert(isFract || isAccum);
1209 }
1210}
1211
1212/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1213/// numbers. It issues an error for illegal digits, and handles floating point
1214/// parsing. If it detects a floating point number, the radix is set to 10.
1215void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1216 assert((radix == 8 || radix == 10) && "Unexpected radix");
1217
1218 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1219 // the code is using an incorrect base.
1220 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1221 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1222 Diags.Report(
1223 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1224 diag::err_invalid_digit)
1225 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1226 hadError = true;
1227 return;
1228 }
1229
1230 if (*s == '.') {
1231 checkSeparator(TokLoc, s, CSK_AfterDigits);
1232 s++;
1233 radix = 10;
1234 saw_period = true;
1235 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1236 s = SkipDigits(s); // Skip suffix.
1237 }
1238 if (*s == 'e' || *s == 'E') { // exponent
1239 checkSeparator(TokLoc, s, CSK_AfterDigits);
1240 const char *Exponent = s;
1241 s++;
1242 radix = 10;
1243 saw_exponent = true;
1244 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1245 const char *first_non_digit = SkipDigits(s);
1246 if (containsDigits(s, first_non_digit)) {
1247 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1248 s = first_non_digit;
1249 } else {
1250 if (!hadError) {
1252 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1253 diag::err_exponent_has_no_digits);
1254 hadError = true;
1255 }
1256 return;
1257 }
1258 }
1259}
1260
1261/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1262/// suffixes as ud-suffixes, because the diagnostic experience is better if we
1263/// treat it as an invalid suffix.
1265 StringRef Suffix) {
1266 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1267 return false;
1268
1269 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1270 // Suffixes starting with '__' (double underscore) are for use by
1271 // the implementation.
1272 if (Suffix.starts_with("_") && !Suffix.starts_with("__"))
1273 return true;
1274
1275 // In C++11, there are no library suffixes.
1276 if (!LangOpts.CPlusPlus14)
1277 return false;
1278
1279 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1280 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1281 // In C++2a "d" and "y" are used in the library.
1282 return llvm::StringSwitch<bool>(Suffix)
1283 .Cases("h", "min", "s", true)
1284 .Cases("ms", "us", "ns", true)
1285 .Cases("il", "i", "if", true)
1286 .Cases("d", "y", LangOpts.CPlusPlus20)
1287 .Default(false);
1288}
1289
1290void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1291 const char *Pos,
1292 CheckSeparatorKind IsAfterDigits) {
1293 if (IsAfterDigits == CSK_AfterDigits) {
1294 if (Pos == ThisTokBegin)
1295 return;
1296 --Pos;
1297 } else if (Pos == ThisTokEnd)
1298 return;
1299
1300 if (isDigitSeparator(*Pos)) {
1301 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1302 LangOpts),
1303 diag::err_digit_separator_not_between_digits)
1304 << IsAfterDigits;
1305 hadError = true;
1306 }
1307}
1308
1309/// ParseNumberStartingWithZero - This method is called when the first character
1310/// of the number is found to be a zero. This means it is either an octal
1311/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1312/// a floating point number (01239.123e4). Eat the prefix, determining the
1313/// radix etc.
1314void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1315 assert(s[0] == '0' && "Invalid method call");
1316 s++;
1317
1318 int c1 = s[0];
1319
1320 // Handle a hex number like 0x1234.
1321 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1322 s++;
1323 assert(s < ThisTokEnd && "didn't maximally munch?");
1324 radix = 16;
1325 DigitsBegin = s;
1326 s = SkipHexDigits(s);
1327 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1328 if (s == ThisTokEnd) {
1329 // Done.
1330 } else if (*s == '.') {
1331 s++;
1332 saw_period = true;
1333 const char *floatDigitsBegin = s;
1334 s = SkipHexDigits(s);
1335 if (containsDigits(floatDigitsBegin, s))
1336 HasSignificandDigits = true;
1337 if (HasSignificandDigits)
1338 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1339 }
1340
1341 if (!HasSignificandDigits) {
1342 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1343 LangOpts),
1344 diag::err_hex_constant_requires)
1345 << LangOpts.CPlusPlus << 1;
1346 hadError = true;
1347 return;
1348 }
1349
1350 // A binary exponent can appear with or with a '.'. If dotted, the
1351 // binary exponent is required.
1352 if (*s == 'p' || *s == 'P') {
1353 checkSeparator(TokLoc, s, CSK_AfterDigits);
1354 const char *Exponent = s;
1355 s++;
1356 saw_exponent = true;
1357 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1358 const char *first_non_digit = SkipDigits(s);
1359 if (!containsDigits(s, first_non_digit)) {
1360 if (!hadError) {
1362 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1363 diag::err_exponent_has_no_digits);
1364 hadError = true;
1365 }
1366 return;
1367 }
1368 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1369 s = first_non_digit;
1370
1371 if (!LangOpts.HexFloats)
1372 Diags.Report(TokLoc, LangOpts.CPlusPlus
1373 ? diag::ext_hex_literal_invalid
1374 : diag::ext_hex_constant_invalid);
1375 else if (LangOpts.CPlusPlus17)
1376 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1377 } else if (saw_period) {
1378 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1379 LangOpts),
1380 diag::err_hex_constant_requires)
1381 << LangOpts.CPlusPlus << 0;
1382 hadError = true;
1383 }
1384 return;
1385 }
1386
1387 // Handle simple binary numbers 0b01010
1388 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1389 // 0b101010 is a C++14 and C23 extension.
1390 unsigned DiagId;
1391 if (LangOpts.CPlusPlus14)
1392 DiagId = diag::warn_cxx11_compat_binary_literal;
1393 else if (LangOpts.C23)
1394 DiagId = diag::warn_c23_compat_binary_literal;
1395 else if (LangOpts.CPlusPlus)
1396 DiagId = diag::ext_binary_literal_cxx14;
1397 else
1398 DiagId = diag::ext_binary_literal;
1399 Diags.Report(TokLoc, DiagId);
1400 ++s;
1401 assert(s < ThisTokEnd && "didn't maximally munch?");
1402 radix = 2;
1403 DigitsBegin = s;
1404 s = SkipBinaryDigits(s);
1405 if (s == ThisTokEnd) {
1406 // Done.
1407 } else if (isHexDigit(*s) &&
1408 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1409 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1410 LangOpts),
1411 diag::err_invalid_digit)
1412 << StringRef(s, 1) << 2;
1413 hadError = true;
1414 }
1415 // Other suffixes will be diagnosed by the caller.
1416 return;
1417 }
1418
1419 // For now, the radix is set to 8. If we discover that we have a
1420 // floating point constant, the radix will change to 10. Octal floating
1421 // point constants are not permitted (only decimal and hexadecimal).
1422 radix = 8;
1423 const char *PossibleNewDigitStart = s;
1424 s = SkipOctalDigits(s);
1425 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1426 // as the start of the digits. So if skipping octal digits does not skip
1427 // anything, we leave the digit start where it was.
1428 if (s != PossibleNewDigitStart)
1429 DigitsBegin = PossibleNewDigitStart;
1430
1431 if (s == ThisTokEnd)
1432 return; // Done, simple octal number like 01234
1433
1434 // If we have some other non-octal digit that *is* a decimal digit, see if
1435 // this is part of a floating point number like 094.123 or 09e1.
1436 if (isDigit(*s)) {
1437 const char *EndDecimal = SkipDigits(s);
1438 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1439 s = EndDecimal;
1440 radix = 10;
1441 }
1442 }
1443
1444 ParseDecimalOrOctalCommon(TokLoc);
1445}
1446
1447static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1448 switch (Radix) {
1449 case 2:
1450 return NumDigits <= 64;
1451 case 8:
1452 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1453 case 10:
1454 return NumDigits <= 19; // floor(log10(2^64))
1455 case 16:
1456 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1457 default:
1458 llvm_unreachable("impossible Radix");
1459 }
1460}
1461
1462/// GetIntegerValue - Convert this numeric literal value to an APInt that
1463/// matches Val's input width. If there is an overflow, set Val to the low bits
1464/// of the result and return true. Otherwise, return false.
1466 // Fast path: Compute a conservative bound on the maximum number of
1467 // bits per digit in this radix. If we can't possibly overflow a
1468 // uint64 based on that bound then do the simple conversion to
1469 // integer. This avoids the expensive overflow checking below, and
1470 // handles the common cases that matter (small decimal integers and
1471 // hex/octal values which don't overflow).
1472 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1473 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1474 uint64_t N = 0;
1475 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1476 if (!isDigitSeparator(*Ptr))
1477 N = N * radix + llvm::hexDigitValue(*Ptr);
1478
1479 // This will truncate the value to Val's input width. Simply check
1480 // for overflow by comparing.
1481 Val = N;
1482 return Val.getZExtValue() != N;
1483 }
1484
1485 Val = 0;
1486 const char *Ptr = DigitsBegin;
1487
1488 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1489 llvm::APInt CharVal(Val.getBitWidth(), 0);
1490 llvm::APInt OldVal = Val;
1491
1492 bool OverflowOccurred = false;
1493 while (Ptr < SuffixBegin) {
1494 if (isDigitSeparator(*Ptr)) {
1495 ++Ptr;
1496 continue;
1497 }
1498
1499 unsigned C = llvm::hexDigitValue(*Ptr++);
1500
1501 // If this letter is out of bound for this radix, reject it.
1502 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1503
1504 CharVal = C;
1505
1506 // Add the digit to the value in the appropriate radix. If adding in digits
1507 // made the value smaller, then this overflowed.
1508 OldVal = Val;
1509
1510 // Multiply by radix, did overflow occur on the multiply?
1511 Val *= RadixVal;
1512 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1513
1514 // Add value, did overflow occur on the value?
1515 // (a + b) ult b <=> overflow
1516 Val += CharVal;
1517 OverflowOccurred |= Val.ult(CharVal);
1518 }
1519 return OverflowOccurred;
1520}
1521
1522llvm::APFloat::opStatus
1524 using llvm::APFloat;
1525
1526 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1527
1528 llvm::SmallString<16> Buffer;
1529 StringRef Str(ThisTokBegin, n);
1530 if (Str.contains('\'')) {
1531 Buffer.reserve(n);
1532 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1533 &isDigitSeparator);
1534 Str = Buffer;
1535 }
1536
1537 auto StatusOrErr =
1538 Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1539 assert(StatusOrErr && "Invalid floating point representation");
1540 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1541 : APFloat::opInvalidOp;
1542}
1543
1544static inline bool IsExponentPart(char c, bool isHex) {
1545 if (isHex)
1546 return c == 'p' || c == 'P';
1547 return c == 'e' || c == 'E';
1548}
1549
1550bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1551 assert(radix == 16 || radix == 10);
1552
1553 // Find how many digits are needed to store the whole literal.
1554 unsigned NumDigits = SuffixBegin - DigitsBegin;
1555 if (saw_period) --NumDigits;
1556
1557 // Initial scan of the exponent if it exists
1558 bool ExpOverflowOccurred = false;
1559 bool NegativeExponent = false;
1560 const char *ExponentBegin;
1561 uint64_t Exponent = 0;
1562 int64_t BaseShift = 0;
1563 if (saw_exponent) {
1564 const char *Ptr = DigitsBegin;
1565
1566 while (!IsExponentPart(*Ptr, radix == 16))
1567 ++Ptr;
1568 ExponentBegin = Ptr;
1569 ++Ptr;
1570 NegativeExponent = *Ptr == '-';
1571 if (NegativeExponent) ++Ptr;
1572
1573 unsigned NumExpDigits = SuffixBegin - Ptr;
1574 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1575 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1576 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1577 Exponent = ExpInt.getZExtValue();
1578 } else {
1579 ExpOverflowOccurred = true;
1580 }
1581
1582 if (NegativeExponent) BaseShift -= Exponent;
1583 else BaseShift += Exponent;
1584 }
1585
1586 // Number of bits needed for decimal literal is
1587 // ceil(NumDigits * log2(10)) Integral part
1588 // + Scale Fractional part
1589 // + ceil(Exponent * log2(10)) Exponent
1590 // --------------------------------------------------
1591 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1592 //
1593 // But for simplicity in handling integers, we can round up log2(10) to 4,
1594 // making:
1595 // 4 * (NumDigits + Exponent) + Scale
1596 //
1597 // Number of digits needed for hexadecimal literal is
1598 // 4 * NumDigits Integral part
1599 // + Scale Fractional part
1600 // + Exponent Exponent
1601 // --------------------------------------------------
1602 // (4 * NumDigits) + Scale + Exponent
1603 uint64_t NumBitsNeeded;
1604 if (radix == 10)
1605 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1606 else
1607 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1608
1609 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1610 ExpOverflowOccurred = true;
1611 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1612
1613 bool FoundDecimal = false;
1614
1615 int64_t FractBaseShift = 0;
1616 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1617 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1618 if (*Ptr == '.') {
1619 FoundDecimal = true;
1620 continue;
1621 }
1622
1623 // Normal reading of an integer
1624 unsigned C = llvm::hexDigitValue(*Ptr);
1625 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1626
1627 Val *= radix;
1628 Val += C;
1629
1630 if (FoundDecimal)
1631 // Keep track of how much we will need to adjust this value by from the
1632 // number of digits past the radix point.
1633 --FractBaseShift;
1634 }
1635
1636 // For a radix of 16, we will be multiplying by 2 instead of 16.
1637 if (radix == 16) FractBaseShift *= 4;
1638 BaseShift += FractBaseShift;
1639
1640 Val <<= Scale;
1641
1642 uint64_t Base = (radix == 16) ? 2 : 10;
1643 if (BaseShift > 0) {
1644 for (int64_t i = 0; i < BaseShift; ++i) {
1645 Val *= Base;
1646 }
1647 } else if (BaseShift < 0) {
1648 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1649 Val = Val.udiv(Base);
1650 }
1651
1652 bool IntOverflowOccurred = false;
1653 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1654 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1655 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1656 StoreVal = Val.trunc(StoreVal.getBitWidth());
1657 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1658 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1659 StoreVal = Val.zext(StoreVal.getBitWidth());
1660 } else {
1661 StoreVal = Val;
1662 }
1663
1664 return IntOverflowOccurred || ExpOverflowOccurred;
1665}
1666
1667/// \verbatim
1668/// user-defined-character-literal: [C++11 lex.ext]
1669/// character-literal ud-suffix
1670/// ud-suffix:
1671/// identifier
1672/// character-literal: [C++11 lex.ccon]
1673/// ' c-char-sequence '
1674/// u' c-char-sequence '
1675/// U' c-char-sequence '
1676/// L' c-char-sequence '
1677/// u8' c-char-sequence ' [C++1z lex.ccon]
1678/// c-char-sequence:
1679/// c-char
1680/// c-char-sequence c-char
1681/// c-char:
1682/// any member of the source character set except the single-quote ',
1683/// backslash \, or new-line character
1684/// escape-sequence
1685/// universal-character-name
1686/// escape-sequence:
1687/// simple-escape-sequence
1688/// octal-escape-sequence
1689/// hexadecimal-escape-sequence
1690/// simple-escape-sequence:
1691/// one of \' \" \? \\ \a \b \f \n \r \t \v
1692/// octal-escape-sequence:
1693/// \ octal-digit
1694/// \ octal-digit octal-digit
1695/// \ octal-digit octal-digit octal-digit
1696/// hexadecimal-escape-sequence:
1697/// \x hexadecimal-digit
1698/// hexadecimal-escape-sequence hexadecimal-digit
1699/// universal-character-name: [C++11 lex.charset]
1700/// \u hex-quad
1701/// \U hex-quad hex-quad
1702/// hex-quad:
1703/// hex-digit hex-digit hex-digit hex-digit
1704/// \endverbatim
1705///
1706CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1708 tok::TokenKind kind) {
1709 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1710 HadError = false;
1711
1712 Kind = kind;
1713
1714 const char *TokBegin = begin;
1715
1716 // Skip over wide character determinant.
1717 if (Kind != tok::char_constant)
1718 ++begin;
1719 if (Kind == tok::utf8_char_constant)
1720 ++begin;
1721
1722 // Skip over the entry quote.
1723 if (begin[0] != '\'') {
1724 PP.Diag(Loc, diag::err_lexing_char);
1725 HadError = true;
1726 return;
1727 }
1728
1729 ++begin;
1730
1731 // Remove an optional ud-suffix.
1732 if (end[-1] != '\'') {
1733 const char *UDSuffixEnd = end;
1734 do {
1735 --end;
1736 } while (end[-1] != '\'');
1737 // FIXME: Don't bother with this if !tok.hasUCN().
1738 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1739 UDSuffixOffset = end - TokBegin;
1740 }
1741
1742 // Trim the ending quote.
1743 assert(end != begin && "Invalid token lexed");
1744 --end;
1745
1746 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1747 // up to 64-bits.
1748 // FIXME: This extensively assumes that 'char' is 8-bits.
1749 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1750 "Assumes char is 8 bits");
1751 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1752 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1753 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1754 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1755 "Assumes sizeof(wchar) on target is <= 64");
1756
1757 SmallVector<uint32_t, 4> codepoint_buffer;
1758 codepoint_buffer.resize(end - begin);
1759 uint32_t *buffer_begin = &codepoint_buffer.front();
1760 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1761
1762 // Unicode escapes representing characters that cannot be correctly
1763 // represented in a single code unit are disallowed in character literals
1764 // by this implementation.
1765 uint32_t largest_character_for_kind;
1766 if (tok::wide_char_constant == Kind) {
1767 largest_character_for_kind =
1768 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1769 } else if (tok::utf8_char_constant == Kind) {
1770 largest_character_for_kind = 0x7F;
1771 } else if (tok::utf16_char_constant == Kind) {
1772 largest_character_for_kind = 0xFFFF;
1773 } else if (tok::utf32_char_constant == Kind) {
1774 largest_character_for_kind = 0x10FFFF;
1775 } else {
1776 largest_character_for_kind = 0x7Fu;
1777 }
1778
1779 while (begin != end) {
1780 // Is this a span of non-escape characters?
1781 if (begin[0] != '\\') {
1782 char const *start = begin;
1783 do {
1784 ++begin;
1785 } while (begin != end && *begin != '\\');
1786
1787 char const *tmp_in_start = start;
1788 uint32_t *tmp_out_start = buffer_begin;
1789 llvm::ConversionResult res =
1790 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1791 reinterpret_cast<llvm::UTF8 const *>(begin),
1792 &buffer_begin, buffer_end, llvm::strictConversion);
1793 if (res != llvm::conversionOK) {
1794 // If we see bad encoding for unprefixed character literals, warn and
1795 // simply copy the byte values, for compatibility with gcc and
1796 // older versions of clang.
1797 bool NoErrorOnBadEncoding = isOrdinary();
1798 unsigned Msg = diag::err_bad_character_encoding;
1799 if (NoErrorOnBadEncoding)
1800 Msg = diag::warn_bad_character_encoding;
1801 PP.Diag(Loc, Msg);
1802 if (NoErrorOnBadEncoding) {
1803 start = tmp_in_start;
1804 buffer_begin = tmp_out_start;
1805 for (; start != begin; ++start, ++buffer_begin)
1806 *buffer_begin = static_cast<uint8_t>(*start);
1807 } else {
1808 HadError = true;
1809 }
1810 } else {
1811 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1812 if (*tmp_out_start > largest_character_for_kind) {
1813 HadError = true;
1814 PP.Diag(Loc, diag::err_character_too_large);
1815 }
1816 }
1817 }
1818
1819 continue;
1820 }
1821 // Is this a Universal Character Name escape?
1822 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1823 unsigned short UcnLen = 0;
1824 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1826 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1827 HadError = true;
1828 } else if (*buffer_begin > largest_character_for_kind) {
1829 HadError = true;
1830 PP.Diag(Loc, diag::err_character_too_large);
1831 }
1832
1833 ++buffer_begin;
1834 continue;
1835 }
1836 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1837 uint64_t result =
1838 ProcessCharEscape(TokBegin, begin, end, HadError,
1839 FullSourceLoc(Loc, PP.getSourceManager()), CharWidth,
1840 &PP.getDiagnostics(), PP.getLangOpts(),
1842 *buffer_begin++ = result;
1843 }
1844
1845 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1846
1847 if (NumCharsSoFar > 1) {
1848 if (isOrdinary() && NumCharsSoFar == 4)
1849 PP.Diag(Loc, diag::warn_four_char_character_literal);
1850 else if (isOrdinary())
1851 PP.Diag(Loc, diag::warn_multichar_character_literal);
1852 else {
1853 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1854 HadError = true;
1855 }
1856 IsMultiChar = true;
1857 } else {
1858 IsMultiChar = false;
1859 }
1860
1861 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1862
1863 // Narrow character literals act as though their value is concatenated
1864 // in this implementation, but warn on overflow.
1865 bool multi_char_too_long = false;
1866 if (isOrdinary() && isMultiChar()) {
1867 LitVal = 0;
1868 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1869 // check for enough leading zeros to shift into
1870 multi_char_too_long |= (LitVal.countl_zero() < 8);
1871 LitVal <<= 8;
1872 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1873 }
1874 } else if (NumCharsSoFar > 0) {
1875 // otherwise just take the last character
1876 LitVal = buffer_begin[-1];
1877 }
1878
1879 if (!HadError && multi_char_too_long) {
1880 PP.Diag(Loc, diag::warn_char_constant_too_large);
1881 }
1882
1883 // Transfer the value from APInt to uint64_t
1884 Value = LitVal.getZExtValue();
1885
1886 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1887 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1888 // character constants are not sign extended in the this implementation:
1889 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1890 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1891 PP.getLangOpts().CharIsSigned)
1892 Value = (signed char)Value;
1893}
1894
1895/// \verbatim
1896/// string-literal: [C++0x lex.string]
1897/// encoding-prefix " [s-char-sequence] "
1898/// encoding-prefix R raw-string
1899/// encoding-prefix:
1900/// u8
1901/// u
1902/// U
1903/// L
1904/// s-char-sequence:
1905/// s-char
1906/// s-char-sequence s-char
1907/// s-char:
1908/// any member of the source character set except the double-quote ",
1909/// backslash \, or new-line character
1910/// escape-sequence
1911/// universal-character-name
1912/// raw-string:
1913/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1914/// r-char-sequence:
1915/// r-char
1916/// r-char-sequence r-char
1917/// r-char:
1918/// any member of the source character set, except a right parenthesis )
1919/// followed by the initial d-char-sequence (which may be empty)
1920/// followed by a double quote ".
1921/// d-char-sequence:
1922/// d-char
1923/// d-char-sequence d-char
1924/// d-char:
1925/// any member of the basic source character set except:
1926/// space, the left parenthesis (, the right parenthesis ),
1927/// the backslash \, and the control characters representing horizontal
1928/// tab, vertical tab, form feed, and newline.
1929/// escape-sequence: [C++0x lex.ccon]
1930/// simple-escape-sequence
1931/// octal-escape-sequence
1932/// hexadecimal-escape-sequence
1933/// simple-escape-sequence:
1934/// one of \' \" \? \\ \a \b \f \n \r \t \v
1935/// octal-escape-sequence:
1936/// \ octal-digit
1937/// \ octal-digit octal-digit
1938/// \ octal-digit octal-digit octal-digit
1939/// hexadecimal-escape-sequence:
1940/// \x hexadecimal-digit
1941/// hexadecimal-escape-sequence hexadecimal-digit
1942/// universal-character-name:
1943/// \u hex-quad
1944/// \U hex-quad hex-quad
1945/// hex-quad:
1946/// hex-digit hex-digit hex-digit hex-digit
1947/// \endverbatim
1948///
1950 Preprocessor &PP,
1951 StringLiteralEvalMethod EvalMethod)
1952 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1953 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1954 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1955 ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false),
1956 Pascal(false) {
1957 init(StringToks);
1958}
1959
1960void StringLiteralParser::init(ArrayRef<Token> StringToks){
1961 // The literal token may have come from an invalid source location (e.g. due
1962 // to a PCH error), in which case the token length will be 0.
1963 if (StringToks.empty() || StringToks[0].getLength() < 2)
1964 return DiagnoseLexingError(SourceLocation());
1965
1966 // Scan all of the string portions, remember the max individual token length,
1967 // computing a bound on the concatenated string length, and see whether any
1968 // piece is a wide-string. If any of the string portions is a wide-string
1969 // literal, the result is a wide-string literal [C99 6.4.5p4].
1970 assert(!StringToks.empty() && "expected at least one token");
1971 MaxTokenLength = StringToks[0].getLength();
1972 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1973 SizeBound = StringToks[0].getLength() - 2; // -2 for "".
1974 hadError = false;
1975
1976 // Determines the kind of string from the prefix
1977 Kind = tok::string_literal;
1978
1979 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1980 for (const Token &Tok : StringToks) {
1981 if (Tok.getLength() < 2)
1982 return DiagnoseLexingError(Tok.getLocation());
1983
1984 // The string could be shorter than this if it needs cleaning, but this is a
1985 // reasonable bound, which is all we need.
1986 assert(Tok.getLength() >= 2 && "literal token is invalid!");
1987 SizeBound += Tok.getLength() - 2; // -2 for "".
1988
1989 // Remember maximum string piece length.
1990 if (Tok.getLength() > MaxTokenLength)
1991 MaxTokenLength = Tok.getLength();
1992
1993 // Remember if we see any wide or utf-8/16/32 strings.
1994 // Also check for illegal concatenations.
1995 if (isUnevaluated() && Tok.getKind() != tok::string_literal) {
1996 if (Diags) {
1998 Tok.getLocation(), getEncodingPrefixLen(Tok.getKind()), SM,
1999 Features);
2001 CharSourceRange::getCharRange({Tok.getLocation(), PrefixEndLoc});
2002 StringRef Prefix(SM.getCharacterData(Tok.getLocation()),
2003 getEncodingPrefixLen(Tok.getKind()));
2004 Diags->Report(Tok.getLocation(),
2005 Features.CPlusPlus26
2006 ? diag::err_unevaluated_string_prefix
2007 : diag::warn_unevaluated_string_prefix)
2008 << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range);
2009 }
2010 if (Features.CPlusPlus26)
2011 hadError = true;
2012 } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) {
2013 if (isOrdinary()) {
2014 Kind = Tok.getKind();
2015 } else {
2016 if (Diags)
2017 Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat);
2018 hadError = true;
2019 }
2020 }
2021 }
2022
2023 // Include space for the null terminator.
2024 ++SizeBound;
2025
2026 // TODO: K&R warning: "traditional C rejects string constant concatenation"
2027
2028 // Get the width in bytes of char/wchar_t/char16_t/char32_t
2029 CharByteWidth = getCharWidth(Kind, Target);
2030 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
2031 CharByteWidth /= 8;
2032
2033 // The output buffer size needs to be large enough to hold wide characters.
2034 // This is a worst-case assumption which basically corresponds to L"" "long".
2035 SizeBound *= CharByteWidth;
2036
2037 // Size the temporary buffer to hold the result string data.
2038 ResultBuf.resize(SizeBound);
2039
2040 // Likewise, but for each string piece.
2041 SmallString<512> TokenBuf;
2042 TokenBuf.resize(MaxTokenLength);
2043
2044 // Loop over all the strings, getting their spelling, and expanding them to
2045 // wide strings as appropriate.
2046 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
2047
2048 Pascal = false;
2049
2050 SourceLocation UDSuffixTokLoc;
2051
2052 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
2053 const char *ThisTokBuf = &TokenBuf[0];
2054 // Get the spelling of the token, which eliminates trigraphs, etc. We know
2055 // that ThisTokBuf points to a buffer that is big enough for the whole token
2056 // and 'spelled' tokens can only shrink.
2057 bool StringInvalid = false;
2058 unsigned ThisTokLen =
2059 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
2060 &StringInvalid);
2061 if (StringInvalid)
2062 return DiagnoseLexingError(StringToks[i].getLocation());
2063
2064 const char *ThisTokBegin = ThisTokBuf;
2065 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
2066
2067 // Remove an optional ud-suffix.
2068 if (ThisTokEnd[-1] != '"') {
2069 const char *UDSuffixEnd = ThisTokEnd;
2070 do {
2071 --ThisTokEnd;
2072 } while (ThisTokEnd[-1] != '"');
2073
2074 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
2075
2076 if (UDSuffixBuf.empty()) {
2077 if (StringToks[i].hasUCN())
2078 expandUCNs(UDSuffixBuf, UDSuffix);
2079 else
2080 UDSuffixBuf.assign(UDSuffix);
2081 UDSuffixToken = i;
2082 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
2083 UDSuffixTokLoc = StringToks[i].getLocation();
2084 } else {
2085 SmallString<32> ExpandedUDSuffix;
2086 if (StringToks[i].hasUCN()) {
2087 expandUCNs(ExpandedUDSuffix, UDSuffix);
2088 UDSuffix = ExpandedUDSuffix;
2089 }
2090
2091 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
2092 // result of a concatenation involving at least one user-defined-string-
2093 // literal, all the participating user-defined-string-literals shall
2094 // have the same ud-suffix.
2095 bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty();
2096 if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) {
2097 if (Diags) {
2098 SourceLocation TokLoc = StringToks[i].getLocation();
2099 if (UnevaluatedStringHasUDL) {
2100 Diags->Report(TokLoc, diag::err_unevaluated_string_udl)
2101 << SourceRange(TokLoc, TokLoc);
2102 } else {
2103 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
2104 << UDSuffixBuf << UDSuffix
2105 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc);
2106 }
2107 }
2108 hadError = true;
2109 }
2110 }
2111 }
2112
2113 // Strip the end quote.
2114 --ThisTokEnd;
2115
2116 // TODO: Input character set mapping support.
2117
2118 // Skip marker for wide or unicode strings.
2119 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
2120 ++ThisTokBuf;
2121 // Skip 8 of u8 marker for utf8 strings.
2122 if (ThisTokBuf[0] == '8')
2123 ++ThisTokBuf;
2124 }
2125
2126 // Check for raw string
2127 if (ThisTokBuf[0] == 'R') {
2128 if (ThisTokBuf[1] != '"') {
2129 // The file may have come from PCH and then changed after loading the
2130 // PCH; Fail gracefully.
2131 return DiagnoseLexingError(StringToks[i].getLocation());
2132 }
2133 ThisTokBuf += 2; // skip R"
2134
2135 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2136 // characters.
2137 constexpr unsigned MaxRawStrDelimLen = 16;
2138
2139 const char *Prefix = ThisTokBuf;
2140 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2141 ThisTokBuf[0] != '(')
2142 ++ThisTokBuf;
2143 if (ThisTokBuf[0] != '(')
2144 return DiagnoseLexingError(StringToks[i].getLocation());
2145 ++ThisTokBuf; // skip '('
2146
2147 // Remove same number of characters from the end
2148 ThisTokEnd -= ThisTokBuf - Prefix;
2149 if (ThisTokEnd < ThisTokBuf)
2150 return DiagnoseLexingError(StringToks[i].getLocation());
2151
2152 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2153 // results in a new-line in the resulting execution string-literal.
2154 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2155 while (!RemainingTokenSpan.empty()) {
2156 // Split the string literal on \r\n boundaries.
2157 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2158 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2159 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2160
2161 // Copy everything before the \r\n sequence into the string literal.
2162 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2163 hadError = true;
2164
2165 // Point into the \n inside the \r\n sequence and operate on the
2166 // remaining portion of the literal.
2167 RemainingTokenSpan = AfterCRLF.substr(1);
2168 }
2169 } else {
2170 if (ThisTokBuf[0] != '"') {
2171 // The file may have come from PCH and then changed after loading the
2172 // PCH; Fail gracefully.
2173 return DiagnoseLexingError(StringToks[i].getLocation());
2174 }
2175 ++ThisTokBuf; // skip "
2176
2177 // Check if this is a pascal string
2178 if (!isUnevaluated() && Features.PascalStrings &&
2179 ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' &&
2180 ThisTokBuf[1] == 'p') {
2181
2182 // If the \p sequence is found in the first token, we have a pascal string
2183 // Otherwise, if we already have a pascal string, ignore the first \p
2184 if (i == 0) {
2185 ++ThisTokBuf;
2186 Pascal = true;
2187 } else if (Pascal)
2188 ThisTokBuf += 2;
2189 }
2190
2191 while (ThisTokBuf != ThisTokEnd) {
2192 // Is this a span of non-escape characters?
2193 if (ThisTokBuf[0] != '\\') {
2194 const char *InStart = ThisTokBuf;
2195 do {
2196 ++ThisTokBuf;
2197 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2198
2199 // Copy the character span over.
2200 if (CopyStringFragment(StringToks[i], ThisTokBegin,
2201 StringRef(InStart, ThisTokBuf - InStart)))
2202 hadError = true;
2203 continue;
2204 }
2205 // Is this a Universal Character Name escape?
2206 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2207 ThisTokBuf[1] == 'N') {
2208 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2209 ResultPtr, hadError,
2210 FullSourceLoc(StringToks[i].getLocation(), SM),
2211 CharByteWidth, Diags, Features);
2212 continue;
2213 }
2214 // Otherwise, this is a non-UCN escape character. Process it.
2215 unsigned ResultChar =
2216 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2217 FullSourceLoc(StringToks[i].getLocation(), SM),
2218 CharByteWidth * 8, Diags, Features, EvalMethod);
2219
2220 if (CharByteWidth == 4) {
2221 // FIXME: Make the type of the result buffer correct instead of
2222 // using reinterpret_cast.
2223 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2224 *ResultWidePtr = ResultChar;
2225 ResultPtr += 4;
2226 } else if (CharByteWidth == 2) {
2227 // FIXME: Make the type of the result buffer correct instead of
2228 // using reinterpret_cast.
2229 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2230 *ResultWidePtr = ResultChar & 0xFFFF;
2231 ResultPtr += 2;
2232 } else {
2233 assert(CharByteWidth == 1 && "Unexpected char width");
2234 *ResultPtr++ = ResultChar & 0xFF;
2235 }
2236 }
2237 }
2238 }
2239
2240 assert((!Pascal || !isUnevaluated()) &&
2241 "Pascal string in unevaluated context");
2242 if (Pascal) {
2243 if (CharByteWidth == 4) {
2244 // FIXME: Make the type of the result buffer correct instead of
2245 // using reinterpret_cast.
2246 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2247 ResultWidePtr[0] = GetNumStringChars() - 1;
2248 } else if (CharByteWidth == 2) {
2249 // FIXME: Make the type of the result buffer correct instead of
2250 // using reinterpret_cast.
2251 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2252 ResultWidePtr[0] = GetNumStringChars() - 1;
2253 } else {
2254 assert(CharByteWidth == 1 && "Unexpected char width");
2255 ResultBuf[0] = GetNumStringChars() - 1;
2256 }
2257
2258 // Verify that pascal strings aren't too large.
2259 if (GetStringLength() > 256) {
2260 if (Diags)
2261 Diags->Report(StringToks.front().getLocation(),
2262 diag::err_pascal_string_too_long)
2263 << SourceRange(StringToks.front().getLocation(),
2264 StringToks.back().getLocation());
2265 hadError = true;
2266 return;
2267 }
2268 } else if (Diags) {
2269 // Complain if this string literal has too many characters.
2270 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2271
2272 if (GetNumStringChars() > MaxChars)
2273 Diags->Report(StringToks.front().getLocation(),
2274 diag::ext_string_too_long)
2275 << GetNumStringChars() << MaxChars
2276 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2277 << SourceRange(StringToks.front().getLocation(),
2278 StringToks.back().getLocation());
2279 }
2280}
2281
2282static const char *resyncUTF8(const char *Err, const char *End) {
2283 if (Err == End)
2284 return End;
2285 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2286 while (++Err != End && (*Err & 0xC0) == 0x80)
2287 ;
2288 return Err;
2289}
2290
2291/// This function copies from Fragment, which is a sequence of bytes
2292/// within Tok's contents (which begin at TokBegin) into ResultPtr.
2293/// Performs widening for multi-byte characters.
2294bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2295 const char *TokBegin,
2296 StringRef Fragment) {
2297 const llvm::UTF8 *ErrorPtrTmp;
2298 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2299 return false;
2300
2301 // If we see bad encoding for unprefixed string literals, warn and
2302 // simply copy the byte values, for compatibility with gcc and older
2303 // versions of clang.
2304 bool NoErrorOnBadEncoding = isOrdinary();
2305 if (NoErrorOnBadEncoding) {
2306 memcpy(ResultPtr, Fragment.data(), Fragment.size());
2307 ResultPtr += Fragment.size();
2308 }
2309
2310 if (Diags) {
2311 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2312
2313 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2314 const DiagnosticBuilder &Builder =
2315 Diag(Diags, Features, SourceLoc, TokBegin,
2316 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2317 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2318 : diag::err_bad_string_encoding);
2319
2320 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2321 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2322
2323 // Decode into a dummy buffer.
2324 SmallString<512> Dummy;
2325 Dummy.reserve(Fragment.size() * CharByteWidth);
2326 char *Ptr = Dummy.data();
2327
2328 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2329 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2330 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2331 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2332 ErrorPtr, NextStart);
2333 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2334 }
2335 }
2336 return !NoErrorOnBadEncoding;
2337}
2338
2339void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2340 hadError = true;
2341 if (Diags)
2342 Diags->Report(Loc, diag::err_lexing_string);
2343}
2344
2345/// getOffsetOfStringByte - This function returns the offset of the
2346/// specified byte of the string data represented by Token. This handles
2347/// advancing over escape sequences in the string.
2349 unsigned ByteNo) const {
2350 // Get the spelling of the token.
2351 SmallString<32> SpellingBuffer;
2352 SpellingBuffer.resize(Tok.getLength());
2353
2354 bool StringInvalid = false;
2355 const char *SpellingPtr = &SpellingBuffer[0];
2356 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2357 &StringInvalid);
2358 if (StringInvalid)
2359 return 0;
2360
2361 const char *SpellingStart = SpellingPtr;
2362 const char *SpellingEnd = SpellingPtr+TokLen;
2363
2364 // Handle UTF-8 strings just like narrow strings.
2365 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2366 SpellingPtr += 2;
2367
2368 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2369 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2370
2371 // For raw string literals, this is easy.
2372 if (SpellingPtr[0] == 'R') {
2373 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2374 // Skip 'R"'.
2375 SpellingPtr += 2;
2376 while (*SpellingPtr != '(') {
2377 ++SpellingPtr;
2378 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2379 }
2380 // Skip '('.
2381 ++SpellingPtr;
2382 return SpellingPtr - SpellingStart + ByteNo;
2383 }
2384
2385 // Skip over the leading quote
2386 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2387 ++SpellingPtr;
2388
2389 // Skip over bytes until we find the offset we're looking for.
2390 while (ByteNo) {
2391 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2392
2393 // Step over non-escapes simply.
2394 if (*SpellingPtr != '\\') {
2395 ++SpellingPtr;
2396 --ByteNo;
2397 continue;
2398 }
2399
2400 // Otherwise, this is an escape character. Advance over it.
2401 bool HadError = false;
2402 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2403 SpellingPtr[1] == 'N') {
2404 const char *EscapePtr = SpellingPtr;
2405 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2406 1, Features, HadError);
2407 if (Len > ByteNo) {
2408 // ByteNo is somewhere within the escape sequence.
2409 SpellingPtr = EscapePtr;
2410 break;
2411 }
2412 ByteNo -= Len;
2413 } else {
2414 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2415 FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8,
2416 Diags, Features, StringLiteralEvalMethod::Evaluated);
2417 --ByteNo;
2418 }
2419 assert(!HadError && "This method isn't valid on erroneous strings");
2420 }
2421
2422 return SpellingPtr-SpellingStart;
2423}
2424
2425/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2426/// suffixes as ud-suffixes, because the diagnostic experience is better if we
2427/// treat it as an invalid suffix.
2429 StringRef Suffix) {
2430 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2431 Suffix == "sv";
2432}
#define V(N, I)
Definition: ASTContext.h:3285
#define SM(sm)
Definition: Cuda.cpp:83
Defines the clang::LangOptions interface.
static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, char *&ResultBuf, bool &HadError, FullSourceLoc Loc, unsigned CharByteWidth, DiagnosticsEngine *Diags, const LangOptions &Features)
EncodeUCNEscape - Read the Universal Character Name, check constraints and convert the UTF32 to UTF8 ...
static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, uint32_t &UcnVal, unsigned short &UcnLen, FullSourceLoc Loc, DiagnosticsEngine *Diags, const LangOptions &Features, bool in_char_string_literal=false)
ProcessUCNEscape - Read the Universal Character Name, check constraints and return the UTF32.
static CharSourceRange MakeCharSourceRange(const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd)
static const char * resyncUTF8(const char *Err, const char *End)
static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, unsigned CharByteWidth, const LangOptions &Features, bool &HadError)
MeasureUCNEscape - Determine the number of bytes within the resulting string which this UCN will occu...
static void appendCodePoint(unsigned Codepoint, llvm::SmallVectorImpl< char > &Str)
static unsigned getEncodingPrefixLen(tok::TokenKind kind)
static void DiagnoseInvalidUnicodeCharacterName(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, llvm::StringRef Name)
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape)
static bool ProcessNumericUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, uint32_t &UcnVal, unsigned short &UcnLen, bool &Delimited, FullSourceLoc Loc, DiagnosticsEngine *Diags, const LangOptions &Features, bool in_char_string_literal=false)
static bool ProcessNamedUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, uint32_t &UcnVal, unsigned short &UcnLen, FullSourceLoc Loc, DiagnosticsEngine *Diags, const LangOptions &Features)
static bool IsExponentPart(char c, bool isHex)
static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits)
static unsigned ProcessCharEscape(const char *ThisTokBegin, const char *&ThisTokBuf, const char *ThisTokEnd, bool &HadError, FullSourceLoc Loc, unsigned CharWidth, DiagnosticsEngine *Diags, const LangOptions &Features, StringLiteralEvalMethod EvalMethod)
ProcessCharEscape - Parse a standard C escape sequence, which can occur in either a character or a st...
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target)
llvm::MachO::Target Target
Definition: MachO.h:50
Defines the clang::Preprocessor interface.
SourceRange Range
Definition: SemaObjC.cpp:754
SourceLocation Loc
Definition: SemaObjC.cpp:755
Defines the clang::SourceLocation class and associated facilities.
SourceLocation Begin
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
__device__ __2f16 float __ockl_bool s
__device__ __2f16 float c
CharLiteralParser(const char *begin, const char *end, SourceLocation Loc, Preprocessor &PP, tok::TokenKind kind)
Represents a character-granular source range.
static CharSourceRange getCharRange(SourceRange R)
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:1271
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:192
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1547
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition: Diagnostic.h:134
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:123
A SourceLocation and its associated SourceManager.
const SourceManager & getManager() const
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:461
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token,...
Definition: Lexer.h:399
static unsigned getSpelling(const Token &Tok, const char *&Buffer, const SourceManager &SourceMgr, const LangOptions &LangOpts, bool *Invalid=nullptr)
getSpelling - This method is used to get the spelling of a token into a preallocated buffer,...
Definition: Lexer.cpp:452
NumericLiteralParser(StringRef TokSpelling, SourceLocation TokLoc, const SourceManager &SM, const LangOptions &LangOpts, const TargetInfo &Target, DiagnosticsEngine &Diags)
integer-constant: [C99 6.4.4.1] decimal-constant integer-suffix octal-constant integer-suffix hexadec...
llvm::APFloat::opStatus GetFloatValue(llvm::APFloat &Result)
GetFloatValue - Convert this numeric literal to a floating value, using the specified APFloat fltSema...
static bool isValidUDSuffix(const LangOptions &LangOpts, StringRef Suffix)
Determine whether a suffix is a valid ud-suffix.
bool GetIntegerValue(llvm::APInt &Val)
GetIntegerValue - Convert this numeric literal value to an APInt that matches Val's input width.
bool GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale)
GetFixedPointValue - Convert this numeric literal value into a scaled integer that represents this va...
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:128
SourceManager & getSourceManager() const
const TargetInfo & getTargetInfo() const
const LangOptions & getLangOpts() const
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const
Forwarding function for diagnostics.
Encodes a location in the source.
This class handles loading and caching of source files into memory.
A trivial tuple used to represent a source range.
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
StringLiteralParser(ArrayRef< Token > StringToks, Preprocessor &PP, StringLiteralEvalMethod StringMethod=StringLiteralEvalMethod::Evaluated)
unsigned GetStringLength() const
static bool isValidUDSuffix(const LangOptions &LangOpts, StringRef Suffix)
Determine whether a suffix is a valid ud-suffix.
unsigned GetNumStringChars() const
Exposes information about the current target.
Definition: TargetInfo.h:218
unsigned getIntWidth() const
getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for this target,...
Definition: TargetInfo.h:509
unsigned getWCharWidth() const
getWCharWidth/Align - Return the size of 'wchar_t' for this target, in bits.
Definition: TargetInfo.h:748
unsigned getCharWidth() const
Definition: TargetInfo.h:496
Token - This structure provides full information about a lexed token.
Definition: Token.h:36
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file.
Definition: Token.h:132
unsigned getLength() const
Definition: Token.h:135
tok::TokenKind getKind() const
Definition: Token.h:94
Defines the clang::TargetInfo interface.
bool isStringLiteral(TokenKind K)
Return true if this is a C or C++ string-literal (or C++11 user-defined-string-literal) token.
Definition: TokenKinds.h:89
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:25
The JSON file list parser is used to communicate input to InstallAPI.
LLVM_READONLY bool isVerticalWhitespace(unsigned char c)
Returns true if this character is vertical ASCII whitespace: '\n', '\r'.
Definition: CharInfo.h:100
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:161
void expandUCNs(SmallVectorImpl< char > &Buf, StringRef Input)
Copy characters from Input to Buf, expanding any UCNs.
bool tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO)
Return true if the token is a string literal, or a function local predefined macro,...
@ Result
The result type of a method or function.
LLVM_READONLY bool isDigit(unsigned char c)
Return true if this character is an ASCII digit: [0-9].
Definition: CharInfo.h:115
bool isFunctionLocalStringLiteralMacro(tok::TokenKind K, const LangOptions &LO)
Return true if the token corresponds to a function local predefined macro, which expands to a string ...
LLVM_READONLY bool isPreprocessingNumberBody(unsigned char c)
Return true if this is the body character of a C preprocessing number, which is [a-zA-Z0-9_.
Definition: CharInfo.h:169
LLVM_READONLY bool isHexDigit(unsigned char c)
Return true if this character is an ASCII hex digit: [0-9a-fA-F].
Definition: CharInfo.h:145
StringLiteralEvalMethod
@ Incomplete
Template argument deduction did not deduce a value for every template parameter.
#define false
Definition: stdbool.h:26