clang 20.0.0git
SemaDeclObjC.cpp
Go to the documentation of this file.
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprObjC.h"
23#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/Scope.h"
30#include "clang/Sema/SemaObjC.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/DenseSet.h"
33
34using namespace clang;
35
36/// Check whether the given method, which must be in the 'init'
37/// family, is a valid member of that family.
38///
39/// \param receiverTypeIfCall - if null, check this as if declaring it;
40/// if non-null, check this as if making a call to it with the given
41/// receiver type
42///
43/// \return true to indicate that there was an error and appropriate
44/// actions were taken
46 QualType receiverTypeIfCall) {
47 ASTContext &Context = getASTContext();
48 if (method->isInvalidDecl()) return true;
49
50 // This castAs is safe: methods that don't return an object
51 // pointer won't be inferred as inits and will reject an explicit
52 // objc_method_family(init).
53
54 // We ignore protocols here. Should we? What about Class?
55
56 const ObjCObjectType *result =
58
59 if (result->isObjCId()) {
60 return false;
61 } else if (result->isObjCClass()) {
62 // fall through: always an error
63 } else {
64 ObjCInterfaceDecl *resultClass = result->getInterface();
65 assert(resultClass && "unexpected object type!");
66
67 // It's okay for the result type to still be a forward declaration
68 // if we're checking an interface declaration.
69 if (!resultClass->hasDefinition()) {
70 if (receiverTypeIfCall.isNull() &&
71 !isa<ObjCImplementationDecl>(method->getDeclContext()))
72 return false;
73
74 // Otherwise, we try to compare class types.
75 } else {
76 // If this method was declared in a protocol, we can't check
77 // anything unless we have a receiver type that's an interface.
78 const ObjCInterfaceDecl *receiverClass = nullptr;
79 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
80 if (receiverTypeIfCall.isNull())
81 return false;
82
83 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
84 ->getInterfaceDecl();
85
86 // This can be null for calls to e.g. id<Foo>.
87 if (!receiverClass) return false;
88 } else {
89 receiverClass = method->getClassInterface();
90 assert(receiverClass && "method not associated with a class!");
91 }
92
93 // If either class is a subclass of the other, it's fine.
94 if (receiverClass->isSuperClassOf(resultClass) ||
95 resultClass->isSuperClassOf(receiverClass))
96 return false;
97 }
98 }
99
100 SourceLocation loc = method->getLocation();
101
102 // If we're in a system header, and this is not a call, just make
103 // the method unusable.
104 if (receiverTypeIfCall.isNull() &&
106 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
107 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
108 return true;
109 }
110
111 // Otherwise, it's an error.
112 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
113 method->setInvalidDecl();
114 return true;
115}
116
117/// Issue a warning if the parameter of the overridden method is non-escaping
118/// but the parameter of the overriding method is not.
119static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
120 Sema &S) {
121 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
122 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
123 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
124 return false;
125 }
126
127 return true;
128}
129
130/// Produce additional diagnostics if a category conforms to a protocol that
131/// defines a method taking a non-escaping parameter.
132static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
133 const ObjCCategoryDecl *CD,
134 const ObjCProtocolDecl *PD, Sema &S) {
135 if (!diagnoseNoescape(NewD, OldD, S))
136 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
137 << CD->IsClassExtension() << PD
138 << cast<ObjCMethodDecl>(NewD->getDeclContext());
139}
140
142 const ObjCMethodDecl *Overridden) {
143 ASTContext &Context = getASTContext();
144 if (Overridden->hasRelatedResultType() &&
145 !NewMethod->hasRelatedResultType()) {
146 // This can only happen when the method follows a naming convention that
147 // implies a related result type, and the original (overridden) method has
148 // a suitable return type, but the new (overriding) method does not have
149 // a suitable return type.
150 QualType ResultType = NewMethod->getReturnType();
151 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
152
153 // Figure out which class this method is part of, if any.
154 ObjCInterfaceDecl *CurrentClass
155 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
156 if (!CurrentClass) {
157 DeclContext *DC = NewMethod->getDeclContext();
158 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
159 CurrentClass = Cat->getClassInterface();
160 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
161 CurrentClass = Impl->getClassInterface();
162 else if (ObjCCategoryImplDecl *CatImpl
163 = dyn_cast<ObjCCategoryImplDecl>(DC))
164 CurrentClass = CatImpl->getClassInterface();
165 }
166
167 if (CurrentClass) {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_class)
170 << Context.getObjCInterfaceType(CurrentClass)
171 << ResultType
172 << ResultTypeRange;
173 } else {
174 Diag(NewMethod->getLocation(),
175 diag::warn_related_result_type_compatibility_protocol)
176 << ResultType
177 << ResultTypeRange;
178 }
179
180 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
181 Diag(Overridden->getLocation(),
182 diag::note_related_result_type_family)
183 << /*overridden method*/ 0
184 << Family;
185 else
186 Diag(Overridden->getLocation(),
187 diag::note_related_result_type_overridden);
188 }
189
190 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
191 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
192 Diag(NewMethod->getLocation(),
193 getLangOpts().ObjCAutoRefCount
194 ? diag::err_nsreturns_retained_attribute_mismatch
195 : diag::warn_nsreturns_retained_attribute_mismatch)
196 << 1;
197 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
198 }
199 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
200 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
201 Diag(NewMethod->getLocation(),
202 getLangOpts().ObjCAutoRefCount
203 ? diag::err_nsreturns_retained_attribute_mismatch
204 : diag::warn_nsreturns_retained_attribute_mismatch)
205 << 0;
206 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
207 }
208
210 oe = Overridden->param_end();
211 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
212 ne = NewMethod->param_end();
213 ni != ne && oi != oe; ++ni, ++oi) {
214 const ParmVarDecl *oldDecl = (*oi);
215 ParmVarDecl *newDecl = (*ni);
216 if (newDecl->hasAttr<NSConsumedAttr>() !=
217 oldDecl->hasAttr<NSConsumedAttr>()) {
218 Diag(newDecl->getLocation(),
219 getLangOpts().ObjCAutoRefCount
220 ? diag::err_nsconsumed_attribute_mismatch
221 : diag::warn_nsconsumed_attribute_mismatch);
222 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
223 }
224
225 diagnoseNoescape(newDecl, oldDecl, SemaRef);
226 }
227}
228
229/// Check a method declaration for compatibility with the Objective-C
230/// ARC conventions.
232 ASTContext &Context = getASTContext();
233 ObjCMethodFamily family = method->getMethodFamily();
234 switch (family) {
235 case OMF_None:
236 case OMF_finalize:
237 case OMF_retain:
238 case OMF_release:
239 case OMF_autorelease:
240 case OMF_retainCount:
241 case OMF_self:
242 case OMF_initialize:
244 return false;
245
246 case OMF_dealloc:
247 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
248 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
249 if (ResultTypeRange.isInvalid())
250 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
251 << method->getReturnType()
252 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
253 else
254 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
255 << method->getReturnType()
256 << FixItHint::CreateReplacement(ResultTypeRange, "void");
257 return true;
258 }
259 return false;
260
261 case OMF_init:
262 // If the method doesn't obey the init rules, don't bother annotating it.
263 if (checkInitMethod(method, QualType()))
264 return true;
265
266 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
267
268 // Don't add a second copy of this attribute, but otherwise don't
269 // let it be suppressed.
270 if (method->hasAttr<NSReturnsRetainedAttr>())
271 return false;
272 break;
273
274 case OMF_alloc:
275 case OMF_copy:
276 case OMF_mutableCopy:
277 case OMF_new:
278 if (method->hasAttr<NSReturnsRetainedAttr>() ||
279 method->hasAttr<NSReturnsNotRetainedAttr>() ||
280 method->hasAttr<NSReturnsAutoreleasedAttr>())
281 return false;
282 break;
283 }
284
285 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
286 return false;
287}
288
290 SourceLocation ImplLoc) {
291 if (!ND)
292 return;
293 bool IsCategory = false;
294 StringRef RealizedPlatform;
295 AvailabilityResult Availability = ND->getAvailability(
296 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
297 &RealizedPlatform);
298 if (Availability != AR_Deprecated) {
299 if (isa<ObjCMethodDecl>(ND)) {
300 if (Availability != AR_Unavailable)
301 return;
302 if (RealizedPlatform.empty())
303 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
304 // Warn about implementing unavailable methods, unless the unavailable
305 // is for an app extension.
306 if (RealizedPlatform.ends_with("_app_extension"))
307 return;
308 S.Diag(ImplLoc, diag::warn_unavailable_def);
309 S.Diag(ND->getLocation(), diag::note_method_declared_at)
310 << ND->getDeclName();
311 return;
312 }
313 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
314 if (!CD->getClassInterface()->isDeprecated())
315 return;
316 ND = CD->getClassInterface();
317 IsCategory = true;
318 } else
319 return;
320 }
321 S.Diag(ImplLoc, diag::warn_deprecated_def)
322 << (isa<ObjCMethodDecl>(ND)
323 ? /*Method*/ 0
324 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
325 : /*Class*/ 1);
326 if (isa<ObjCMethodDecl>(ND))
327 S.Diag(ND->getLocation(), diag::note_method_declared_at)
328 << ND->getDeclName();
329 else
330 S.Diag(ND->getLocation(), diag::note_previous_decl)
331 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
332}
333
334/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
335/// pool.
337 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
338
339 // If we don't have a valid method decl, simply return.
340 if (!MDecl)
341 return;
342 if (MDecl->isInstanceMethod())
344 else
345 AddFactoryMethodToGlobalPool(MDecl, true);
346}
347
348/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
349/// has explicit ownership attribute; false otherwise.
350static bool
352 QualType T = Param->getType();
353
354 if (const PointerType *PT = T->getAs<PointerType>()) {
355 T = PT->getPointeeType();
356 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
357 T = RT->getPointeeType();
358 } else {
359 return true;
360 }
361
362 // If we have a lifetime qualifier, but it's local, we must have
363 // inferred it. So, it is implicit.
364 return !T.getLocalQualifiers().hasObjCLifetime();
365}
366
367/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
368/// and user declared, in the method definition's AST.
370 ASTContext &Context = getASTContext();
372 assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
373 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
374
376 SemaRef.ExprEvalContexts.back().Context);
377
378 // If we don't have a valid method decl, simply return.
379 if (!MDecl)
380 return;
381
382 QualType ResultType = MDecl->getReturnType();
383 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
384 !MDecl->isInvalidDecl() &&
385 SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType,
386 diag::err_func_def_incomplete_result))
387 MDecl->setInvalidDecl();
388
389 // Allow all of Sema to see that we are entering a method definition.
390 SemaRef.PushDeclContext(FnBodyScope, MDecl);
392
393 // Create Decl objects for each parameter, entrring them in the scope for
394 // binding to their use.
395
396 // Insert the invisible arguments, self and _cmd!
397 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
398
399 SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
400 SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
401
402 // The ObjC parser requires parameter names so there's no need to check.
404 /*CheckParameterNames=*/false);
405
406 // Introduce all of the other parameters into this scope.
407 for (auto *Param : MDecl->parameters()) {
408 if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
410 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
411 Param->getType();
412
413 if (Param->getIdentifier())
414 SemaRef.PushOnScopeChains(Param, FnBodyScope);
415 }
416
417 // In ARC, disallow definition of retain/release/autorelease/retainCount
418 if (getLangOpts().ObjCAutoRefCount) {
419 switch (MDecl->getMethodFamily()) {
420 case OMF_retain:
421 case OMF_retainCount:
422 case OMF_release:
423 case OMF_autorelease:
424 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
425 << 0 << MDecl->getSelector();
426 break;
427
428 case OMF_None:
429 case OMF_dealloc:
430 case OMF_finalize:
431 case OMF_alloc:
432 case OMF_init:
433 case OMF_mutableCopy:
434 case OMF_copy:
435 case OMF_new:
436 case OMF_self:
437 case OMF_initialize:
439 break;
440 }
441 }
442
443 // Warn on deprecated methods under -Wdeprecated-implementations,
444 // and prepare for warning on missing super calls.
445 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
446 ObjCMethodDecl *IMD =
447 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
448
449 if (IMD) {
450 ObjCImplDecl *ImplDeclOfMethodDef =
451 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
452 ObjCContainerDecl *ContDeclOfMethodDecl =
453 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
454 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
455 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
456 ImplDeclOfMethodDecl = OID->getImplementation();
457 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
458 if (CD->IsClassExtension()) {
459 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
460 ImplDeclOfMethodDecl = OID->getImplementation();
461 } else
462 ImplDeclOfMethodDecl = CD->getImplementation();
463 }
464 // No need to issue deprecated warning if deprecated mehod in class/category
465 // is being implemented in its own implementation (no overriding is involved).
466 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
468 }
469
470 if (MDecl->getMethodFamily() == OMF_init) {
474 IC->getSuperClass() != nullptr;
475 } else if (IC->hasDesignatedInitializers()) {
478 }
479 }
480
481 // If this is "dealloc" or "finalize", set some bit here.
482 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
483 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
484 // Only do this if the current class actually has a superclass.
485 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
486 ObjCMethodFamily Family = MDecl->getMethodFamily();
487 if (Family == OMF_dealloc) {
488 if (!(getLangOpts().ObjCAutoRefCount ||
489 getLangOpts().getGC() == LangOptions::GCOnly))
491
492 } else if (Family == OMF_finalize) {
493 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
495
496 } else {
497 const ObjCMethodDecl *SuperMethod =
498 SuperClass->lookupMethod(MDecl->getSelector(),
499 MDecl->isInstanceMethod());
501 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
502 }
503 }
504 }
505
506 // Some function attributes (like OptimizeNoneAttr) need actions before
507 // parsing body started.
509}
510
511namespace {
512
513// Callback to only accept typo corrections that are Objective-C classes.
514// If an ObjCInterfaceDecl* is given to the constructor, then the validation
515// function will reject corrections to that class.
516class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
517 public:
518 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
519 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
520 : CurrentIDecl(IDecl) {}
521
522 bool ValidateCandidate(const TypoCorrection &candidate) override {
524 return ID && !declaresSameEntity(ID, CurrentIDecl);
525 }
526
527 std::unique_ptr<CorrectionCandidateCallback> clone() override {
528 return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
529 }
530
531 private:
532 ObjCInterfaceDecl *CurrentIDecl;
533};
534
535} // end anonymous namespace
536
537static void diagnoseUseOfProtocols(Sema &TheSema,
539 ObjCProtocolDecl *const *ProtoRefs,
540 unsigned NumProtoRefs,
541 const SourceLocation *ProtoLocs) {
542 assert(ProtoRefs);
543 // Diagnose availability in the context of the ObjC container.
544 Sema::ContextRAII SavedContext(TheSema, CD);
545 for (unsigned i = 0; i < NumProtoRefs; ++i) {
546 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
547 /*UnknownObjCClass=*/nullptr,
548 /*ObjCPropertyAccess=*/false,
549 /*AvoidPartialAvailabilityChecks=*/true);
550 }
551}
552
554 Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
555 IdentifierInfo *ClassName, SourceLocation ClassLoc,
556 IdentifierInfo *SuperName, SourceLocation SuperLoc,
557 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
558 ASTContext &Context = getASTContext();
559 // Check if a different kind of symbol declared in this scope.
561 SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
562
563 if (!PrevDecl) {
564 // Try to correct for a typo in the superclass name without correcting
565 // to the class we're defining.
566 ObjCInterfaceValidatorCCC CCC(IDecl);
567 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
568 DeclarationNameInfo(SuperName, SuperLoc), Sema::LookupOrdinaryName,
569 SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
570 SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
571 << SuperName << ClassName);
572 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
573 }
574 }
575
576 if (declaresSameEntity(PrevDecl, IDecl)) {
577 Diag(SuperLoc, diag::err_recursive_superclass)
578 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
579 IDecl->setEndOfDefinitionLoc(ClassLoc);
580 } else {
581 ObjCInterfaceDecl *SuperClassDecl =
582 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
583 QualType SuperClassType;
584
585 // Diagnose classes that inherit from deprecated classes.
586 if (SuperClassDecl) {
587 (void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
588 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
589 }
590
591 if (PrevDecl && !SuperClassDecl) {
592 // The previous declaration was not a class decl. Check if we have a
593 // typedef. If we do, get the underlying class type.
594 if (const TypedefNameDecl *TDecl =
595 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
596 QualType T = TDecl->getUnderlyingType();
597 if (T->isObjCObjectType()) {
598 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
599 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
600 SuperClassType = Context.getTypeDeclType(TDecl);
601
602 // This handles the following case:
603 // @interface NewI @end
604 // typedef NewI DeprI __attribute__((deprecated("blah")))
605 // @interface SI : DeprI /* warn here */ @end
607 const_cast<TypedefNameDecl *>(TDecl), SuperLoc);
608 }
609 }
610 }
611
612 // This handles the following case:
613 //
614 // typedef int SuperClass;
615 // @interface MyClass : SuperClass {} @end
616 //
617 if (!SuperClassDecl) {
618 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
619 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
620 }
621 }
622
623 if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
624 if (!SuperClassDecl)
625 Diag(SuperLoc, diag::err_undef_superclass)
626 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
628 SuperLoc, SuperClassType, diag::err_forward_superclass,
629 SuperClassDecl->getDeclName(), ClassName,
630 SourceRange(AtInterfaceLoc, ClassLoc))) {
631 SuperClassDecl = nullptr;
632 SuperClassType = QualType();
633 }
634 }
635
636 if (SuperClassType.isNull()) {
637 assert(!SuperClassDecl && "Failed to set SuperClassType?");
638 return;
639 }
640
641 // Handle type arguments on the superclass.
642 TypeSourceInfo *SuperClassTInfo = nullptr;
643 if (!SuperTypeArgs.empty()) {
645 S, SuperLoc, SemaRef.CreateParsedType(SuperClassType, nullptr),
646 SuperTypeArgsRange.getBegin(), SuperTypeArgs,
647 SuperTypeArgsRange.getEnd(), SourceLocation(), {}, {},
649 if (!fullSuperClassType.isUsable())
650 return;
651
652 SuperClassType =
653 SemaRef.GetTypeFromParser(fullSuperClassType.get(), &SuperClassTInfo);
654 }
655
656 if (!SuperClassTInfo) {
657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658 SuperLoc);
659 }
660
661 IDecl->setSuperClass(SuperClassTInfo);
662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663 }
664}
665
667 Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
668 unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
669 SourceLocation colonLoc, ParsedType parsedTypeBound) {
670 ASTContext &Context = getASTContext();
671 // If there was an explicitly-provided type bound, check it.
672 TypeSourceInfo *typeBoundInfo = nullptr;
673 if (parsedTypeBound) {
674 // The type bound can be any Objective-C pointer type.
675 QualType typeBound =
676 SemaRef.GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
677 if (typeBound->isObjCObjectPointerType()) {
678 // okay
679 } else if (typeBound->isObjCObjectType()) {
680 // The user forgot the * on an Objective-C pointer type, e.g.,
681 // "T : NSView".
682 SourceLocation starLoc =
684 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
685 diag::err_objc_type_param_bound_missing_pointer)
686 << typeBound << paramName
687 << FixItHint::CreateInsertion(starLoc, " *");
688
689 // Create a new type location builder so we can update the type
690 // location information we have.
691 TypeLocBuilder builder;
692 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
693
694 // Create the Objective-C pointer type.
695 typeBound = Context.getObjCObjectPointerType(typeBound);
697 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
698 newT.setStarLoc(starLoc);
699
700 // Form the new type source information.
701 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
702 } else {
703 // Not a valid type bound.
704 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
705 diag::err_objc_type_param_bound_nonobject)
706 << typeBound << paramName;
707
708 // Forget the bound; we'll default to id later.
709 typeBoundInfo = nullptr;
710 }
711
712 // Type bounds cannot have qualifiers (even indirectly) or explicit
713 // nullability.
714 if (typeBoundInfo) {
715 QualType typeBound = typeBoundInfo->getType();
716 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
717 if (qual || typeBound.hasQualifiers()) {
718 bool diagnosed = false;
719 SourceRange rangeToRemove;
720 if (qual) {
721 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
722 rangeToRemove = attr.getLocalSourceRange();
723 if (attr.getTypePtr()->getImmediateNullability()) {
724 Diag(attr.getBeginLoc(),
725 diag::err_objc_type_param_bound_explicit_nullability)
726 << paramName << typeBound
727 << FixItHint::CreateRemoval(rangeToRemove);
728 diagnosed = true;
729 }
730 }
731 }
732
733 if (!diagnosed) {
734 Diag(qual ? qual.getBeginLoc()
735 : typeBoundInfo->getTypeLoc().getBeginLoc(),
736 diag::err_objc_type_param_bound_qualified)
737 << paramName << typeBound
738 << typeBound.getQualifiers().getAsString()
739 << FixItHint::CreateRemoval(rangeToRemove);
740 }
741
742 // If the type bound has qualifiers other than CVR, we need to strip
743 // them or we'll probably assert later when trying to apply new
744 // qualifiers.
745 Qualifiers quals = typeBound.getQualifiers();
746 quals.removeCVRQualifiers();
747 if (!quals.empty()) {
748 typeBoundInfo =
749 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
750 }
751 }
752 }
753 }
754
755 // If there was no explicit type bound (or we removed it due to an error),
756 // use 'id' instead.
757 if (!typeBoundInfo) {
758 colonLoc = SourceLocation();
759 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
760 }
761
762 // Create the type parameter.
763 return ObjCTypeParamDecl::Create(Context, SemaRef.CurContext, variance,
764 varianceLoc, index, paramLoc, paramName,
765 colonLoc, typeBoundInfo);
766}
767
770 ArrayRef<Decl *> typeParamsIn,
771 SourceLocation rAngleLoc) {
772 ASTContext &Context = getASTContext();
773 // We know that the array only contains Objective-C type parameters.
775 typeParams(
776 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777 typeParamsIn.size());
778
779 // Diagnose redeclarations of type parameters.
780 // We do this now because Objective-C type parameters aren't pushed into
781 // scope until later (after the instance variable block), but we want the
782 // diagnostics to occur right after we parse the type parameter list.
783 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784 for (auto *typeParam : typeParams) {
785 auto known = knownParams.find(typeParam->getIdentifier());
786 if (known != knownParams.end()) {
787 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788 << typeParam->getIdentifier()
789 << SourceRange(known->second->getLocation());
790
791 typeParam->setInvalidDecl();
792 } else {
793 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794
795 // Push the type parameter into scope.
796 SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797 }
798 }
799
800 // Create the parameter list.
801 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802}
803
805 ObjCTypeParamList *typeParamList) {
806 for (auto *typeParam : *typeParamList) {
807 if (!typeParam->isInvalidDecl()) {
808 S->RemoveDecl(typeParam);
809 SemaRef.IdResolver.RemoveDecl(typeParam);
810 }
811 }
812}
813
814namespace {
815 /// The context in which an Objective-C type parameter list occurs, for use
816 /// in diagnostics.
817 enum class TypeParamListContext {
818 ForwardDeclaration,
820 Category,
821 Extension
822 };
823} // end anonymous namespace
824
825/// Check consistency between two Objective-C type parameter lists, e.g.,
826/// between a category/extension and an \@interface or between an \@class and an
827/// \@interface.
829 ObjCTypeParamList *prevTypeParams,
830 ObjCTypeParamList *newTypeParams,
831 TypeParamListContext newContext) {
832 // If the sizes don't match, complain about that.
833 if (prevTypeParams->size() != newTypeParams->size()) {
834 SourceLocation diagLoc;
835 if (newTypeParams->size() > prevTypeParams->size()) {
836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837 } else {
838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839 }
840
841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842 << static_cast<unsigned>(newContext)
843 << (newTypeParams->size() > prevTypeParams->size())
844 << prevTypeParams->size()
845 << newTypeParams->size();
846
847 return true;
848 }
849
850 // Match up the type parameters.
851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855 // Check for consistency of the variance.
856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858 newContext != TypeParamListContext::Definition) {
859 // When the new type parameter is invariant and is not part
860 // of the definition, just propagate the variance.
861 newTypeParam->setVariance(prevTypeParam->getVariance());
862 } else if (prevTypeParam->getVariance()
864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866 ->getDefinition() == prevTypeParam->getDeclContext())) {
867 // When the old parameter is invariant and was not part of the
868 // definition, just ignore the difference because it doesn't
869 // matter.
870 } else {
871 {
872 // Diagnose the conflict and update the second declaration.
873 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874 if (diagLoc.isInvalid())
875 diagLoc = newTypeParam->getBeginLoc();
876
877 auto diag = S.Diag(diagLoc,
878 diag::err_objc_type_param_variance_conflict)
879 << static_cast<unsigned>(newTypeParam->getVariance())
880 << newTypeParam->getDeclName()
881 << static_cast<unsigned>(prevTypeParam->getVariance())
882 << prevTypeParam->getDeclName();
883 switch (prevTypeParam->getVariance()) {
885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886 break;
887
890 StringRef newVarianceStr
892 ? "__covariant"
893 : "__contravariant";
894 if (newTypeParam->getVariance()
896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897 (newVarianceStr + " ").str());
898 } else {
899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900 newVarianceStr);
901 }
902 }
903 }
904 }
905
906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907 << prevTypeParam->getDeclName();
908
909 // Override the variance.
910 newTypeParam->setVariance(prevTypeParam->getVariance());
911 }
912 }
913
914 // If the bound types match, there's nothing to do.
915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916 newTypeParam->getUnderlyingType()))
917 continue;
918
919 // If the new type parameter's bound was explicit, complain about it being
920 // different from the original.
921 if (newTypeParam->hasExplicitBound()) {
922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925 << newTypeParam->getUnderlyingType()
926 << newTypeParam->getDeclName()
927 << prevTypeParam->hasExplicitBound()
928 << prevTypeParam->getUnderlyingType()
929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930 << prevTypeParam->getDeclName()
932 newBoundRange,
933 prevTypeParam->getUnderlyingType().getAsString(
935
936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937 << prevTypeParam->getDeclName();
938
939 // Override the new type parameter's bound type with the previous type,
940 // so that it's consistent.
941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969 }
970
971 return false;
972}
973
975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977 IdentifierInfo *SuperName, SourceLocation SuperLoc,
978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979 Decl *const *ProtoRefs, unsigned NumProtoRefs,
980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982 assert(ClassName && "Missing class identifier");
983
984 ASTContext &Context = getASTContext();
985 // Check for another declaration kind with the same name.
987 SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
989
990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993 }
994
995 // Create a declaration to describe this @interface.
996 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997
998 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999 // A previous decl with a different name is because of
1000 // @compatibility_alias, for example:
1001 // \code
1002 // @class NewImage;
1003 // @compatibility_alias OldImage NewImage;
1004 // \endcode
1005 // A lookup for 'OldImage' will return the 'NewImage' decl.
1006 //
1007 // In such a case use the real declaration name, instead of the alias one,
1008 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010 // has been aliased.
1011 ClassName = PrevIDecl->getIdentifier();
1012 }
1013
1014 // If there was a forward declaration with type parameters, check
1015 // for consistency.
1016 if (PrevIDecl) {
1017 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018 if (typeParamList) {
1019 // Both have type parameter lists; check for consistency.
1020 if (checkTypeParamListConsistency(SemaRef, prevTypeParamList,
1021 typeParamList,
1022 TypeParamListContext::Definition)) {
1023 typeParamList = nullptr;
1024 }
1025 } else {
1026 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027 << ClassName;
1028 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029 << ClassName;
1030
1031 // Clone the type parameter list.
1032 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033 for (auto *typeParam : *prevTypeParamList) {
1034 clonedTypeParams.push_back(ObjCTypeParamDecl::Create(
1035 Context, SemaRef.CurContext, typeParam->getVariance(),
1036 SourceLocation(), typeParam->getIndex(), SourceLocation(),
1037 typeParam->getIdentifier(), SourceLocation(),
1039 typeParam->getUnderlyingType())));
1040 }
1041
1042 typeParamList = ObjCTypeParamList::create(Context,
1044 clonedTypeParams,
1045 SourceLocation());
1046 }
1047 }
1048 }
1049
1050 ObjCInterfaceDecl *IDecl =
1051 ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1052 ClassName, typeParamList, PrevIDecl, ClassLoc);
1053 if (PrevIDecl) {
1054 // Class already seen. Was it a definition?
1055 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1056 if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1057 SkipBody->CheckSameAsPrevious = true;
1058 SkipBody->New = IDecl;
1059 SkipBody->Previous = Def;
1060 } else {
1061 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062 << PrevIDecl->getDeclName();
1063 Diag(Def->getLocation(), diag::note_previous_definition);
1064 IDecl->setInvalidDecl();
1065 }
1066 }
1067 }
1068
1071 SemaRef.ProcessAPINotes(IDecl);
1072
1073 // Merge attributes from previous declarations.
1074 if (PrevIDecl)
1075 SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
1076
1078
1079 // Start the definition of this class. If we're in a redefinition case, there
1080 // may already be a definition, so we'll end up adding to it.
1081 if (SkipBody && SkipBody->CheckSameAsPrevious)
1083 else if (!IDecl->hasDefinition())
1084 IDecl->startDefinition();
1085
1086 if (SuperName) {
1087 // Diagnose availability in the context of the @interface.
1088 Sema::ContextRAII SavedContext(SemaRef, IDecl);
1089
1090 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1091 ClassName, ClassLoc,
1092 SuperName, SuperLoc, SuperTypeArgs,
1093 SuperTypeArgsRange);
1094 } else { // we have a root class.
1095 IDecl->setEndOfDefinitionLoc(ClassLoc);
1096 }
1097
1098 // Check then save referenced protocols.
1099 if (NumProtoRefs) {
1100 diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1101 NumProtoRefs, ProtoLocs);
1102 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1103 ProtoLocs, Context);
1104 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1105 }
1106
1107 CheckObjCDeclScope(IDecl);
1109 return IDecl;
1110}
1111
1112/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1113/// typedef'ed use for a qualified super class and adds them to the list
1114/// of the protocols.
1116 SmallVectorImpl<Decl *> &ProtocolRefs,
1117 SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1118 SourceLocation SuperLoc) {
1119 if (!SuperName)
1120 return;
1122 SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
1123 if (!IDecl)
1124 return;
1125
1126 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1127 QualType T = TDecl->getUnderlyingType();
1128 if (T->isObjCObjectType())
1129 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1130 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1131 // FIXME: Consider whether this should be an invalid loc since the loc
1132 // is not actually pointing to a protocol name reference but to the
1133 // typedef reference. Note that the base class name loc is also pointing
1134 // at the typedef.
1135 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1136 }
1137 }
1138}
1139
1140/// ActOnCompatibilityAlias - this action is called after complete parsing of
1141/// a \@compatibility_alias declaration. It sets up the alias relationships.
1143 IdentifierInfo *AliasName,
1144 SourceLocation AliasLocation,
1145 IdentifierInfo *ClassName,
1146 SourceLocation ClassLocation) {
1147 ASTContext &Context = getASTContext();
1148 // Look for previous declaration of alias name
1150 SemaRef.TUScope, AliasName, AliasLocation, Sema::LookupOrdinaryName,
1152 if (ADecl) {
1153 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1154 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1155 return nullptr;
1156 }
1157 // Check for class declaration
1159 SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1161 if (const TypedefNameDecl *TDecl =
1162 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1163 QualType T = TDecl->getUnderlyingType();
1164 if (T->isObjCObjectType()) {
1165 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1166 ClassName = IDecl->getIdentifier();
1167 CDeclU = SemaRef.LookupSingleName(
1168 SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1170 }
1171 }
1172 }
1173 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1174 if (!CDecl) {
1175 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1176 if (CDeclU)
1177 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1178 return nullptr;
1179 }
1180
1181 // Everything checked out, instantiate a new alias declaration AST.
1183 Context, SemaRef.CurContext, AtLoc, AliasName, CDecl);
1184
1187
1188 return AliasDecl;
1189}
1190
1192 IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1193 const ObjCList<ObjCProtocolDecl> &PList) {
1194
1195 bool res = false;
1197 E = PList.end(); I != E; ++I) {
1198 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), Ploc)) {
1199 if (PDecl->getIdentifier() == PName) {
1200 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1201 Diag(PrevLoc, diag::note_previous_definition);
1202 res = true;
1203 }
1204
1205 if (!PDecl->hasDefinition())
1206 continue;
1207
1209 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1210 res = true;
1211 }
1212 }
1213 return res;
1214}
1215
1217 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1218 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1219 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1220 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1221 ASTContext &Context = getASTContext();
1222 bool err = false;
1223 // FIXME: Deal with AttrList.
1224 assert(ProtocolName && "Missing protocol identifier");
1225 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1226 ProtocolName, ProtocolLoc, SemaRef.forRedeclarationInCurContext());
1227 ObjCProtocolDecl *PDecl = nullptr;
1228 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1229 // Create a new protocol that is completely distinct from previous
1230 // declarations, and do not make this protocol available for name lookup.
1231 // That way, we'll end up completely ignoring the duplicate.
1232 // FIXME: Can we turn this into an error?
1233 PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1234 ProtocolLoc, AtProtoInterfaceLoc,
1235 /*PrevDecl=*/Def);
1236
1237 if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1238 SkipBody->CheckSameAsPrevious = true;
1239 SkipBody->New = PDecl;
1240 SkipBody->Previous = Def;
1241 } else {
1242 // If we already have a definition, complain.
1243 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1244 Diag(Def->getLocation(), diag::note_previous_definition);
1245 }
1246
1247 // If we are using modules, add the decl to the context in order to
1248 // serialize something meaningful.
1249 if (getLangOpts().Modules)
1252 } else {
1253 if (PrevDecl) {
1254 // Check for circular dependencies among protocol declarations. This can
1255 // only happen if this protocol was forward-declared.
1257 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1259 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1260 }
1261
1262 // Create the new declaration.
1263 PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1264 ProtocolLoc, AtProtoInterfaceLoc,
1265 /*PrevDecl=*/PrevDecl);
1266
1268 PDecl->startDefinition();
1269 }
1270
1273 SemaRef.ProcessAPINotes(PDecl);
1274
1275 // Merge attributes from previous declarations.
1276 if (PrevDecl)
1277 SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1278
1279 if (!err && NumProtoRefs ) {
1280 /// Check then save referenced protocols.
1281 diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1282 NumProtoRefs, ProtoLocs);
1283 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1284 ProtoLocs, Context);
1285 }
1286
1287 CheckObjCDeclScope(PDecl);
1289 return PDecl;
1290}
1291
1293 ObjCProtocolDecl *&UndefinedProtocol) {
1294 if (!PDecl->hasDefinition() ||
1296 UndefinedProtocol = PDecl;
1297 return true;
1298 }
1299
1300 for (auto *PI : PDecl->protocols())
1301 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1302 UndefinedProtocol = PI;
1303 return true;
1304 }
1305 return false;
1306}
1307
1308/// FindProtocolDeclaration - This routine looks up protocols and
1309/// issues an error if they are not declared. It returns list of
1310/// protocol declarations in its 'Protocols' argument.
1311void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1312 bool ForObjCContainer,
1313 ArrayRef<IdentifierLocPair> ProtocolId,
1314 SmallVectorImpl<Decl *> &Protocols) {
1315 for (const IdentifierLocPair &Pair : ProtocolId) {
1316 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1317 if (!PDecl) {
1319 TypoCorrection Corrected =
1320 SemaRef.CorrectTypo(DeclarationNameInfo(Pair.first, Pair.second),
1322 nullptr, CCC, Sema::CTK_ErrorRecovery);
1323 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1324 SemaRef.diagnoseTypo(Corrected,
1325 PDiag(diag::err_undeclared_protocol_suggest)
1326 << Pair.first);
1327 }
1328
1329 if (!PDecl) {
1330 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1331 continue;
1332 }
1333 // If this is a forward protocol declaration, get its definition.
1334 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1335 PDecl = PDecl->getDefinition();
1336
1337 // For an objc container, delay protocol reference checking until after we
1338 // can set the objc decl as the availability context, otherwise check now.
1339 if (!ForObjCContainer) {
1340 (void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.second);
1341 }
1342
1343 // If this is a forward declaration and we are supposed to warn in this
1344 // case, do it.
1345 // FIXME: Recover nicely in the hidden case.
1346 ObjCProtocolDecl *UndefinedProtocol;
1347
1348 if (WarnOnDeclarations &&
1349 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1350 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1351 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1352 << UndefinedProtocol;
1353 }
1354 Protocols.push_back(PDecl);
1355 }
1356}
1357
1358namespace {
1359// Callback to only accept typo corrections that are either
1360// Objective-C protocols or valid Objective-C type arguments.
1361class ObjCTypeArgOrProtocolValidatorCCC final
1363 ASTContext &Context;
1364 Sema::LookupNameKind LookupKind;
1365 public:
1366 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1367 Sema::LookupNameKind lookupKind)
1368 : Context(context), LookupKind(lookupKind) { }
1369
1370 bool ValidateCandidate(const TypoCorrection &candidate) override {
1371 // If we're allowed to find protocols and we have a protocol, accept it.
1372 if (LookupKind != Sema::LookupOrdinaryName) {
1373 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1374 return true;
1375 }
1376
1377 // If we're allowed to find type names and we have one, accept it.
1378 if (LookupKind != Sema::LookupObjCProtocolName) {
1379 // If we have a type declaration, we might accept this result.
1380 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1381 // If we found a tag declaration outside of C++, skip it. This
1382 // can happy because we look for any name when there is no
1383 // bias to protocol or type names.
1384 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1385 return false;
1386
1387 // Make sure the type is something we would accept as a type
1388 // argument.
1389 auto type = Context.getTypeDeclType(typeDecl);
1390 if (type->isObjCObjectPointerType() ||
1391 type->isBlockPointerType() ||
1392 type->isDependentType() ||
1393 type->isObjCObjectType())
1394 return true;
1395
1396 return false;
1397 }
1398
1399 // If we have an Objective-C class type, accept it; there will
1400 // be another fix to add the '*'.
1401 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1402 return true;
1403
1404 return false;
1405 }
1406
1407 return false;
1408 }
1409
1410 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1411 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1412 }
1413};
1414} // end anonymous namespace
1415
1417 SourceLocation ProtocolLoc,
1418 IdentifierInfo *TypeArgId,
1419 SourceLocation TypeArgLoc,
1420 bool SelectProtocolFirst) {
1421 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1422 << SelectProtocolFirst << TypeArgId << ProtocolId
1423 << SourceRange(ProtocolLoc);
1424}
1425
1427 Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1428 ArrayRef<IdentifierInfo *> identifiers,
1429 ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1430 SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1431 SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1432 SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1433 bool warnOnIncompleteProtocols) {
1434 ASTContext &Context = getASTContext();
1435 // Local function that updates the declaration specifiers with
1436 // protocol information.
1437 unsigned numProtocolsResolved = 0;
1438 auto resolvedAsProtocols = [&] {
1439 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1440
1441 // Determine whether the base type is a parameterized class, in
1442 // which case we want to warn about typos such as
1443 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1444 ObjCInterfaceDecl *baseClass = nullptr;
1445 QualType base = SemaRef.GetTypeFromParser(baseType, nullptr);
1446 bool allAreTypeNames = false;
1447 SourceLocation firstClassNameLoc;
1448 if (!base.isNull()) {
1449 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1450 baseClass = objcObjectType->getInterface();
1451 if (baseClass) {
1452 if (auto typeParams = baseClass->getTypeParamList()) {
1453 if (typeParams->size() == numProtocolsResolved) {
1454 // Note that we should be looking for type names, too.
1455 allAreTypeNames = true;
1456 }
1457 }
1458 }
1459 }
1460 }
1461
1462 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1463 ObjCProtocolDecl *&proto
1464 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1465 // For an objc container, delay protocol reference checking until after we
1466 // can set the objc decl as the availability context, otherwise check now.
1467 if (!warnOnIncompleteProtocols) {
1468 (void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]);
1469 }
1470
1471 // If this is a forward protocol declaration, get its definition.
1472 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1473 proto = proto->getDefinition();
1474
1475 // If this is a forward declaration and we are supposed to warn in this
1476 // case, do it.
1477 // FIXME: Recover nicely in the hidden case.
1478 ObjCProtocolDecl *forwardDecl = nullptr;
1479 if (warnOnIncompleteProtocols &&
1480 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1481 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1482 << proto->getDeclName();
1483 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1484 << forwardDecl;
1485 }
1486
1487 // If everything this far has been a type name (and we care
1488 // about such things), check whether this name refers to a type
1489 // as well.
1490 if (allAreTypeNames) {
1491 if (auto *decl =
1492 SemaRef.LookupSingleName(S, identifiers[i], identifierLocs[i],
1494 if (isa<ObjCInterfaceDecl>(decl)) {
1495 if (firstClassNameLoc.isInvalid())
1496 firstClassNameLoc = identifierLocs[i];
1497 } else if (!isa<TypeDecl>(decl)) {
1498 // Not a type.
1499 allAreTypeNames = false;
1500 }
1501 } else {
1502 allAreTypeNames = false;
1503 }
1504 }
1505 }
1506
1507 // All of the protocols listed also have type names, and at least
1508 // one is an Objective-C class name. Check whether all of the
1509 // protocol conformances are declared by the base class itself, in
1510 // which case we warn.
1511 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1513 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1514 bool allProtocolsDeclared = true;
1515 for (auto *proto : protocols) {
1516 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1517 allProtocolsDeclared = false;
1518 break;
1519 }
1520 }
1521
1522 if (allProtocolsDeclared) {
1523 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1524 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1526 SemaRef.getLocForEndOfToken(firstClassNameLoc), " *");
1527 }
1528 }
1529
1530 protocolLAngleLoc = lAngleLoc;
1531 protocolRAngleLoc = rAngleLoc;
1532 assert(protocols.size() == identifierLocs.size());
1533 };
1534
1535 // Attempt to resolve all of the identifiers as protocols.
1536 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1537 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1538 protocols.push_back(proto);
1539 if (proto)
1540 ++numProtocolsResolved;
1541 }
1542
1543 // If all of the names were protocols, these were protocol qualifiers.
1544 if (numProtocolsResolved == identifiers.size())
1545 return resolvedAsProtocols();
1546
1547 // Attempt to resolve all of the identifiers as type names or
1548 // Objective-C class names. The latter is technically ill-formed,
1549 // but is probably something like \c NSArray<NSView *> missing the
1550 // \c*.
1551 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1553 unsigned numTypeDeclsResolved = 0;
1554 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1556 S, identifiers[i], identifierLocs[i], Sema::LookupOrdinaryName);
1557 if (!decl) {
1558 typeDecls.push_back(TypeOrClassDecl());
1559 continue;
1560 }
1561
1562 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1563 typeDecls.push_back(typeDecl);
1564 ++numTypeDeclsResolved;
1565 continue;
1566 }
1567
1568 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1569 typeDecls.push_back(objcClass);
1570 ++numTypeDeclsResolved;
1571 continue;
1572 }
1573
1574 typeDecls.push_back(TypeOrClassDecl());
1575 }
1576
1577 AttributeFactory attrFactory;
1578
1579 // Local function that forms a reference to the given type or
1580 // Objective-C class declaration.
1581 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1582 -> TypeResult {
1583 // Form declaration specifiers. They simply refer to the type.
1584 DeclSpec DS(attrFactory);
1585 const char* prevSpec; // unused
1586 unsigned diagID; // unused
1587 QualType type;
1588 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1589 type = Context.getTypeDeclType(actualTypeDecl);
1590 else
1591 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1592 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1593 ParsedType parsedType = SemaRef.CreateParsedType(type, parsedTSInfo);
1594 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1595 parsedType, Context.getPrintingPolicy());
1596 // Use the identifier location for the type source range.
1597 DS.SetRangeStart(loc);
1598 DS.SetRangeEnd(loc);
1599
1600 // Form the declarator.
1602
1603 // If we have a typedef of an Objective-C class type that is missing a '*',
1604 // add the '*'.
1605 if (type->getAs<ObjCInterfaceType>()) {
1607 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1612 SourceLocation()),
1613 starLoc);
1614
1615 // Diagnose the missing '*'.
1616 Diag(loc, diag::err_objc_type_arg_missing_star)
1617 << type
1618 << FixItHint::CreateInsertion(starLoc, " *");
1619 }
1620
1621 // Convert this to a type.
1622 return SemaRef.ActOnTypeName(D);
1623 };
1624
1625 // Local function that updates the declaration specifiers with
1626 // type argument information.
1627 auto resolvedAsTypeDecls = [&] {
1628 // We did not resolve these as protocols.
1629 protocols.clear();
1630
1631 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1632 // Map type declarations to type arguments.
1633 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1634 // Map type reference to a type.
1635 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1636 if (!type.isUsable()) {
1637 typeArgs.clear();
1638 return;
1639 }
1640
1641 typeArgs.push_back(type.get());
1642 }
1643
1644 typeArgsLAngleLoc = lAngleLoc;
1645 typeArgsRAngleLoc = rAngleLoc;
1646 };
1647
1648 // If all of the identifiers can be resolved as type names or
1649 // Objective-C class names, we have type arguments.
1650 if (numTypeDeclsResolved == identifiers.size())
1651 return resolvedAsTypeDecls();
1652
1653 // Error recovery: some names weren't found, or we have a mix of
1654 // type and protocol names. Go resolve all of the unresolved names
1655 // and complain if we can't find a consistent answer.
1657 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1658 // If we already have a protocol or type. Check whether it is the
1659 // right thing.
1660 if (protocols[i] || typeDecls[i]) {
1661 // If we haven't figured out whether we want types or protocols
1662 // yet, try to figure it out from this name.
1663 if (lookupKind == Sema::LookupAnyName) {
1664 // If this name refers to both a protocol and a type (e.g., \c
1665 // NSObject), don't conclude anything yet.
1666 if (protocols[i] && typeDecls[i])
1667 continue;
1668
1669 // Otherwise, let this name decide whether we'll be correcting
1670 // toward types or protocols.
1671 lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1673 continue;
1674 }
1675
1676 // If we want protocols and we have a protocol, there's nothing
1677 // more to do.
1678 if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1679 continue;
1680
1681 // If we want types and we have a type declaration, there's
1682 // nothing more to do.
1683 if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1684 continue;
1685
1686 // We have a conflict: some names refer to protocols and others
1687 // refer to types.
1688 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1689 identifiers[i], identifierLocs[i],
1690 protocols[i] != nullptr);
1691
1692 protocols.clear();
1693 typeArgs.clear();
1694 return;
1695 }
1696
1697 // Perform typo correction on the name.
1698 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1700 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1701 nullptr, CCC, Sema::CTK_ErrorRecovery);
1702 if (corrected) {
1703 // Did we find a protocol?
1704 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1705 SemaRef.diagnoseTypo(corrected,
1706 PDiag(diag::err_undeclared_protocol_suggest)
1707 << identifiers[i]);
1708 lookupKind = Sema::LookupObjCProtocolName;
1709 protocols[i] = proto;
1710 ++numProtocolsResolved;
1711 continue;
1712 }
1713
1714 // Did we find a type?
1715 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1716 SemaRef.diagnoseTypo(corrected,
1717 PDiag(diag::err_unknown_typename_suggest)
1718 << identifiers[i]);
1719 lookupKind = Sema::LookupOrdinaryName;
1720 typeDecls[i] = typeDecl;
1721 ++numTypeDeclsResolved;
1722 continue;
1723 }
1724
1725 // Did we find an Objective-C class?
1726 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1727 SemaRef.diagnoseTypo(corrected,
1728 PDiag(diag::err_unknown_type_or_class_name_suggest)
1729 << identifiers[i] << true);
1730 lookupKind = Sema::LookupOrdinaryName;
1731 typeDecls[i] = objcClass;
1732 ++numTypeDeclsResolved;
1733 continue;
1734 }
1735 }
1736
1737 // We couldn't find anything.
1738 Diag(identifierLocs[i],
1739 (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1740 : lookupKind == Sema::LookupObjCProtocolName
1741 ? diag::err_undeclared_protocol
1742 : diag::err_unknown_typename))
1743 << identifiers[i];
1744 protocols.clear();
1745 typeArgs.clear();
1746 return;
1747 }
1748
1749 // If all of the names were (corrected to) protocols, these were
1750 // protocol qualifiers.
1751 if (numProtocolsResolved == identifiers.size())
1752 return resolvedAsProtocols();
1753
1754 // Otherwise, all of the names were (corrected to) types.
1755 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1756 return resolvedAsTypeDecls();
1757}
1758
1759/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1760/// a class method in its extension.
1761///
1763 ObjCInterfaceDecl *ID) {
1764 if (!ID)
1765 return; // Possibly due to previous error
1766
1767 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1768 for (auto *MD : ID->methods())
1769 MethodMap[MD->getSelector()] = MD;
1770
1771 if (MethodMap.empty())
1772 return;
1773 for (const auto *Method : CAT->methods()) {
1774 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1775 if (PrevMethod &&
1776 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1777 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1778 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1779 << Method->getDeclName();
1780 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1781 }
1782 }
1783}
1784
1785/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1787 SourceLocation AtProtocolLoc, ArrayRef<IdentifierLocPair> IdentList,
1788 const ParsedAttributesView &attrList) {
1789 ASTContext &Context = getASTContext();
1790 SmallVector<Decl *, 8> DeclsInGroup;
1791 for (const IdentifierLocPair &IdentPair : IdentList) {
1792 IdentifierInfo *Ident = IdentPair.first;
1793 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1794 Ident, IdentPair.second, SemaRef.forRedeclarationInCurContext());
1795 ObjCProtocolDecl *PDecl =
1797 IdentPair.second, AtProtocolLoc, PrevDecl);
1798
1800 CheckObjCDeclScope(PDecl);
1801
1804
1805 if (PrevDecl)
1806 SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1807
1808 DeclsInGroup.push_back(PDecl);
1809 }
1810
1811 return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
1812}
1813
1815 SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1816 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1817 const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1818 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1819 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1820 const ParsedAttributesView &AttrList) {
1821 ASTContext &Context = getASTContext();
1822 ObjCCategoryDecl *CDecl;
1823 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1824
1825 /// Check that class of this category is already completely declared.
1826
1827 if (!IDecl ||
1828 SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1829 diag::err_category_forward_interface,
1830 CategoryName == nullptr)) {
1831 // Create an invalid ObjCCategoryDecl to serve as context for
1832 // the enclosing method declarations. We mark the decl invalid
1833 // to make it clear that this isn't a valid AST.
1835 AtInterfaceLoc, ClassLoc, CategoryLoc,
1836 CategoryName, IDecl, typeParamList);
1837 CDecl->setInvalidDecl();
1838 SemaRef.CurContext->addDecl(CDecl);
1839
1840 if (!IDecl)
1841 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1843 return CDecl;
1844 }
1845
1846 if (!CategoryName && IDecl->getImplementation()) {
1847 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1849 diag::note_implementation_declared);
1850 }
1851
1852 if (CategoryName) {
1853 /// Check for duplicate interface declaration for this category
1855 = IDecl->FindCategoryDeclaration(CategoryName)) {
1856 // Class extensions can be declared multiple times, categories cannot.
1857 Diag(CategoryLoc, diag::warn_dup_category_def)
1858 << ClassName << CategoryName;
1859 Diag(Previous->getLocation(), diag::note_previous_definition);
1860 }
1861 }
1862
1863 // If we have a type parameter list, check it.
1864 if (typeParamList) {
1865 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1867 SemaRef, prevTypeParamList, typeParamList,
1868 CategoryName ? TypeParamListContext::Category
1869 : TypeParamListContext::Extension))
1870 typeParamList = nullptr;
1871 } else {
1872 Diag(typeParamList->getLAngleLoc(),
1873 diag::err_objc_parameterized_category_nonclass)
1874 << (CategoryName != nullptr)
1875 << ClassName
1876 << typeParamList->getSourceRange();
1877
1878 typeParamList = nullptr;
1879 }
1880 }
1881
1882 CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1883 ClassLoc, CategoryLoc, CategoryName, IDecl,
1884 typeParamList);
1885 // FIXME: PushOnScopeChains?
1886 SemaRef.CurContext->addDecl(CDecl);
1887
1888 // Process the attributes before looking at protocols to ensure that the
1889 // availability attribute is attached to the category to provide availability
1890 // checking for protocol uses.
1893
1894 if (NumProtoRefs) {
1895 diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1896 NumProtoRefs, ProtoLocs);
1897 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1898 ProtoLocs, Context);
1899 // Protocols in the class extension belong to the class.
1900 if (CDecl->IsClassExtension())
1901 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1902 NumProtoRefs, Context);
1903 }
1904
1905 CheckObjCDeclScope(CDecl);
1907 return CDecl;
1908}
1909
1910/// ActOnStartCategoryImplementation - Perform semantic checks on the
1911/// category implementation declaration and build an ObjCCategoryImplDecl
1912/// object.
1914 SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1915 SourceLocation ClassLoc, const IdentifierInfo *CatName,
1916 SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1917 ASTContext &Context = getASTContext();
1918 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1919 ObjCCategoryDecl *CatIDecl = nullptr;
1920 if (IDecl && IDecl->hasDefinition()) {
1921 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1922 if (!CatIDecl) {
1923 // Category @implementation with no corresponding @interface.
1924 // Create and install one.
1925 CatIDecl =
1926 ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtCatImplLoc,
1927 ClassLoc, CatLoc, CatName, IDecl,
1928 /*typeParamList=*/nullptr);
1929 CatIDecl->setImplicit();
1930 }
1931 }
1932
1933 ObjCCategoryImplDecl *CDecl =
1934 ObjCCategoryImplDecl::Create(Context, SemaRef.CurContext, CatName, IDecl,
1935 ClassLoc, AtCatImplLoc, CatLoc);
1936 /// Check that class of this category is already completely declared.
1937 if (!IDecl) {
1938 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1939 CDecl->setInvalidDecl();
1940 } else if (SemaRef.RequireCompleteType(ClassLoc,
1941 Context.getObjCInterfaceType(IDecl),
1942 diag::err_undef_interface)) {
1943 CDecl->setInvalidDecl();
1944 }
1945
1948
1949 // FIXME: PushOnScopeChains?
1950 SemaRef.CurContext->addDecl(CDecl);
1951
1952 // If the interface has the objc_runtime_visible attribute, we
1953 // cannot implement a category for it.
1954 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1955 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1956 << IDecl->getDeclName();
1957 }
1958
1959 /// Check that CatName, category name, is not used in another implementation.
1960 if (CatIDecl) {
1961 if (CatIDecl->getImplementation()) {
1962 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1963 << CatName;
1964 Diag(CatIDecl->getImplementation()->getLocation(),
1965 diag::note_previous_definition);
1966 CDecl->setInvalidDecl();
1967 } else {
1968 CatIDecl->setImplementation(CDecl);
1969 // Warn on implementating category of deprecated class under
1970 // -Wdeprecated-implementations flag.
1972 CDecl->getLocation());
1973 }
1974 }
1975
1976 CheckObjCDeclScope(CDecl);
1978 return CDecl;
1979}
1980
1982 SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1983 SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1984 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1985 ASTContext &Context = getASTContext();
1986 ObjCInterfaceDecl *IDecl = nullptr;
1987 // Check for another declaration kind with the same name.
1989 SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
1991 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1992 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1993 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1995 // FIXME: This will produce an error if the definition of the interface has
1996 // been imported from a module but is not visible.
1997 SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1998 diag::warn_undef_interface);
1999 } else {
2000 // We did not find anything with the name ClassName; try to correct for
2001 // typos in the class name.
2002 ObjCInterfaceValidatorCCC CCC{};
2004 DeclarationNameInfo(ClassName, ClassLoc), Sema::LookupOrdinaryName,
2005 SemaRef.TUScope, nullptr, CCC, Sema::CTK_NonError);
2006 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2007 // Suggest the (potentially) correct interface name. Don't provide a
2008 // code-modification hint or use the typo name for recovery, because
2009 // this is just a warning. The program may actually be correct.
2011 Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName,
2012 /*ErrorRecovery*/ false);
2013 } else {
2014 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2015 }
2016 }
2017
2018 // Check that super class name is valid class name
2019 ObjCInterfaceDecl *SDecl = nullptr;
2020 if (SuperClassname) {
2021 // Check if a different kind of symbol declared in this scope.
2022 PrevDecl =
2023 SemaRef.LookupSingleName(SemaRef.TUScope, SuperClassname, SuperClassLoc,
2025 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2026 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2027 << SuperClassname;
2028 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2029 } else {
2030 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2031 if (SDecl && !SDecl->hasDefinition())
2032 SDecl = nullptr;
2033 if (!SDecl)
2034 Diag(SuperClassLoc, diag::err_undef_superclass)
2035 << SuperClassname << ClassName;
2036 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2037 // This implementation and its interface do not have the same
2038 // super class.
2039 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2040 << SDecl->getDeclName();
2041 Diag(SDecl->getLocation(), diag::note_previous_definition);
2042 }
2043 }
2044 }
2045
2046 if (!IDecl) {
2047 // Legacy case of @implementation with no corresponding @interface.
2048 // Build, chain & install the interface decl into the identifier.
2049
2050 // FIXME: Do we support attributes on the @implementation? If so we should
2051 // copy them over.
2052 IDecl =
2053 ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtClassImplLoc,
2054 ClassName, /*typeParamList=*/nullptr,
2055 /*PrevDecl=*/nullptr, ClassLoc, true);
2057 IDecl->startDefinition();
2058 if (SDecl) {
2060 Context.getObjCInterfaceType(SDecl),
2061 SuperClassLoc));
2062 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2063 } else {
2064 IDecl->setEndOfDefinitionLoc(ClassLoc);
2065 }
2066
2068 } else {
2069 // Mark the interface as being completed, even if it was just as
2070 // @class ....;
2071 // declaration; the user cannot reopen it.
2072 if (!IDecl->hasDefinition())
2073 IDecl->startDefinition();
2074 }
2075
2076 ObjCImplementationDecl *IMPDecl =
2077 ObjCImplementationDecl::Create(Context, SemaRef.CurContext, IDecl, SDecl,
2078 ClassLoc, AtClassImplLoc, SuperClassLoc);
2079
2082
2083 if (CheckObjCDeclScope(IMPDecl)) {
2085 return IMPDecl;
2086 }
2087
2088 // Check that there is no duplicate implementation of this class.
2089 if (IDecl->getImplementation()) {
2090 // FIXME: Don't leak everything!
2091 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2093 diag::note_previous_definition);
2094 IMPDecl->setInvalidDecl();
2095 } else { // add it to the list.
2096 IDecl->setImplementation(IMPDecl);
2098 // Warn on implementating deprecated class under
2099 // -Wdeprecated-implementations flag.
2101 }
2102
2103 // If the superclass has the objc_runtime_visible attribute, we
2104 // cannot implement a subclass of it.
2105 if (IDecl->getSuperClass() &&
2106 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2107 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2108 << IDecl->getDeclName()
2109 << IDecl->getSuperClass()->getDeclName();
2110 }
2111
2113 return IMPDecl;
2114}
2115
2118 ArrayRef<Decl *> Decls) {
2119 SmallVector<Decl *, 64> DeclsInGroup;
2120 DeclsInGroup.reserve(Decls.size() + 1);
2121
2122 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2123 Decl *Dcl = Decls[i];
2124 if (!Dcl)
2125 continue;
2126 if (Dcl->getDeclContext()->isFileContext())
2128 DeclsInGroup.push_back(Dcl);
2129 }
2130
2131 DeclsInGroup.push_back(ObjCImpDecl);
2132
2133 return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
2134}
2135
2137 ObjCIvarDecl **ivars, unsigned numIvars,
2138 SourceLocation RBrace) {
2139 assert(ImpDecl && "missing implementation decl");
2140 ASTContext &Context = getASTContext();
2141 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2142 if (!IDecl)
2143 return;
2144 /// Check case of non-existing \@interface decl.
2145 /// (legacy objective-c \@implementation decl without an \@interface decl).
2146 /// Add implementations's ivar to the synthesize class's ivar list.
2147 if (IDecl->isImplicitInterfaceDecl()) {
2148 IDecl->setEndOfDefinitionLoc(RBrace);
2149 // Add ivar's to class's DeclContext.
2150 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2151 ivars[i]->setLexicalDeclContext(ImpDecl);
2152 // In a 'fragile' runtime the ivar was added to the implicit
2153 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2154 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2155 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2157 IDecl->makeDeclVisibleInContext(ivars[i]);
2158 ImpDecl->addDecl(ivars[i]);
2159 }
2160
2161 return;
2162 }
2163 // If implementation has empty ivar list, just return.
2164 if (numIvars == 0)
2165 return;
2166
2167 assert(ivars && "missing @implementation ivars");
2169 if (ImpDecl->getSuperClass())
2170 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2171 for (unsigned i = 0; i < numIvars; i++) {
2172 ObjCIvarDecl* ImplIvar = ivars[i];
2173 if (const ObjCIvarDecl *ClsIvar =
2174 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2175 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2176 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2177 continue;
2178 }
2179 // Check class extensions (unnamed categories) for duplicate ivars.
2180 for (const auto *CDecl : IDecl->visible_extensions()) {
2181 if (const ObjCIvarDecl *ClsExtIvar =
2182 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2183 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2184 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2185 continue;
2186 }
2187 }
2188 // Instance ivar to Implementation's DeclContext.
2189 ImplIvar->setLexicalDeclContext(ImpDecl);
2190 IDecl->makeDeclVisibleInContext(ImplIvar);
2191 ImpDecl->addDecl(ImplIvar);
2192 }
2193 return;
2194 }
2195 // Check interface's Ivar list against those in the implementation.
2196 // names and types must match.
2197 //
2198 unsigned j = 0;
2200 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2201 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2202 ObjCIvarDecl* ImplIvar = ivars[j++];
2203 ObjCIvarDecl* ClsIvar = *IVI;
2204 assert (ImplIvar && "missing implementation ivar");
2205 assert (ClsIvar && "missing class ivar");
2206
2207 // First, make sure the types match.
2208 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2209 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2210 << ImplIvar->getIdentifier()
2211 << ImplIvar->getType() << ClsIvar->getType();
2212 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2213 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2214 ImplIvar->getBitWidthValue(Context) !=
2215 ClsIvar->getBitWidthValue(Context)) {
2216 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2217 diag::err_conflicting_ivar_bitwidth)
2218 << ImplIvar->getIdentifier();
2219 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2220 diag::note_previous_definition);
2221 }
2222 // Make sure the names are identical.
2223 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2224 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2225 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2226 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2227 }
2228 --numIvars;
2229 }
2230
2231 if (numIvars > 0)
2232 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2233 else if (IVI != IVE)
2234 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2235}
2236
2238 // No point warning no definition of method which is 'unavailable'.
2239 return M->getAvailability() != AR_Unavailable;
2240}
2241
2243 ObjCMethodDecl *method, bool &IncompleteImpl,
2244 unsigned DiagID,
2245 NamedDecl *NeededFor = nullptr) {
2246 if (!shouldWarnUndefinedMethod(method))
2247 return;
2248
2249 // FIXME: For now ignore 'IncompleteImpl'.
2250 // Previously we grouped all unimplemented methods under a single
2251 // warning, but some users strongly voiced that they would prefer
2252 // separate warnings. We will give that approach a try, as that
2253 // matches what we do with protocols.
2254 {
2256 S.Diag(Impl->getLocation(), DiagID);
2257 B << method;
2258 if (NeededFor)
2259 B << NeededFor;
2260
2261 // Add an empty definition at the end of the @implementation.
2262 std::string FixItStr;
2263 llvm::raw_string_ostream Out(FixItStr);
2264 method->print(Out, Impl->getASTContext().getPrintingPolicy());
2265 Out << " {\n}\n\n";
2266
2268 B << FixItHint::CreateInsertion(Loc, FixItStr);
2269 }
2270
2271 // Issue a note to the original declaration.
2272 SourceLocation MethodLoc = method->getBeginLoc();
2273 if (MethodLoc.isValid())
2274 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2275}
2276
2277/// Determines if type B can be substituted for type A. Returns true if we can
2278/// guarantee that anything that the user will do to an object of type A can
2279/// also be done to an object of type B. This is trivially true if the two
2280/// types are the same, or if B is a subclass of A. It becomes more complex
2281/// in cases where protocols are involved.
2282///
2283/// Object types in Objective-C describe the minimum requirements for an
2284/// object, rather than providing a complete description of a type. For
2285/// example, if A is a subclass of B, then B* may refer to an instance of A.
2286/// The principle of substitutability means that we may use an instance of A
2287/// anywhere that we may use an instance of B - it will implement all of the
2288/// ivars of B and all of the methods of B.
2289///
2290/// This substitutability is important when type checking methods, because
2291/// the implementation may have stricter type definitions than the interface.
2292/// The interface specifies minimum requirements, but the implementation may
2293/// have more accurate ones. For example, a method may privately accept
2294/// instances of B, but only publish that it accepts instances of A. Any
2295/// object passed to it will be type checked against B, and so will implicitly
2296/// by a valid A*. Similarly, a method may return a subclass of the class that
2297/// it is declared as returning.
2298///
2299/// This is most important when considering subclassing. A method in a
2300/// subclass must accept any object as an argument that its superclass's
2301/// implementation accepts. It may, however, accept a more general type
2302/// without breaking substitutability (i.e. you can still use the subclass
2303/// anywhere that you can use the superclass, but not vice versa). The
2304/// converse requirement applies to return types: the return type for a
2305/// subclass method must be a valid object of the kind that the superclass
2306/// advertises, but it may be specified more accurately. This avoids the need
2307/// for explicit down-casting by callers.
2308///
2309/// Note: This is a stricter requirement than for assignment.
2311 const ObjCObjectPointerType *A,
2312 const ObjCObjectPointerType *B,
2313 bool rejectId) {
2314 // Reject a protocol-unqualified id.
2315 if (rejectId && B->isObjCIdType()) return false;
2316
2317 // If B is a qualified id, then A must also be a qualified id and it must
2318 // implement all of the protocols in B. It may not be a qualified class.
2319 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2320 // stricter definition so it is not substitutable for id<A>.
2321 if (B->isObjCQualifiedIdType()) {
2322 return A->isObjCQualifiedIdType() &&
2323 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2324 }
2325
2326 /*
2327 // id is a special type that bypasses type checking completely. We want a
2328 // warning when it is used in one place but not another.
2329 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2330
2331
2332 // If B is a qualified id, then A must also be a qualified id (which it isn't
2333 // if we've got this far)
2334 if (B->isObjCQualifiedIdType()) return false;
2335 */
2336
2337 // Now we know that A and B are (potentially-qualified) class types. The
2338 // normal rules for assignment apply.
2339 return Context.canAssignObjCInterfaces(A, B);
2340}
2341
2343 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2344}
2345
2346/// Determine whether two set of Objective-C declaration qualifiers conflict.
2349 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2350 (y & ~Decl::OBJC_TQ_CSNullability);
2351}
2352
2354 ObjCMethodDecl *MethodImpl,
2355 ObjCMethodDecl *MethodDecl,
2356 bool IsProtocolMethodDecl,
2357 bool IsOverridingMode,
2358 bool Warn) {
2359 if (IsProtocolMethodDecl &&
2361 MethodImpl->getObjCDeclQualifier())) {
2362 if (Warn) {
2363 S.Diag(MethodImpl->getLocation(),
2364 (IsOverridingMode
2365 ? diag::warn_conflicting_overriding_ret_type_modifiers
2366 : diag::warn_conflicting_ret_type_modifiers))
2367 << MethodImpl->getDeclName()
2368 << MethodImpl->getReturnTypeSourceRange();
2369 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2370 << MethodDecl->getReturnTypeSourceRange();
2371 }
2372 else
2373 return false;
2374 }
2375 if (Warn && IsOverridingMode &&
2376 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2378 MethodDecl->getReturnType(),
2379 false)) {
2380 auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2381 auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2382 S.Diag(MethodImpl->getLocation(),
2383 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2384 << DiagNullabilityKind(nullabilityMethodImpl,
2385 ((MethodImpl->getObjCDeclQualifier() &
2387 << DiagNullabilityKind(nullabilityMethodDecl,
2388 ((MethodDecl->getObjCDeclQualifier() &
2390 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2391 }
2392
2393 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2394 MethodDecl->getReturnType()))
2395 return true;
2396 if (!Warn)
2397 return false;
2398
2399 unsigned DiagID =
2400 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2401 : diag::warn_conflicting_ret_types;
2402
2403 // Mismatches between ObjC pointers go into a different warning
2404 // category, and sometimes they're even completely explicitly allowed.
2405 if (const ObjCObjectPointerType *ImplPtrTy =
2406 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2407 if (const ObjCObjectPointerType *IfacePtrTy =
2408 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2409 // Allow non-matching return types as long as they don't violate
2410 // the principle of substitutability. Specifically, we permit
2411 // return types that are subclasses of the declared return type,
2412 // or that are more-qualified versions of the declared type.
2413 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2414 return false;
2415
2416 DiagID =
2417 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2418 : diag::warn_non_covariant_ret_types;
2419 }
2420 }
2421
2422 S.Diag(MethodImpl->getLocation(), DiagID)
2423 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2424 << MethodImpl->getReturnType()
2425 << MethodImpl->getReturnTypeSourceRange();
2426 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2427 ? diag::note_previous_declaration
2428 : diag::note_previous_definition)
2429 << MethodDecl->getReturnTypeSourceRange();
2430 return false;
2431}
2432
2434 ObjCMethodDecl *MethodImpl,
2435 ObjCMethodDecl *MethodDecl,
2436 ParmVarDecl *ImplVar,
2437 ParmVarDecl *IfaceVar,
2438 bool IsProtocolMethodDecl,
2439 bool IsOverridingMode,
2440 bool Warn) {
2441 if (IsProtocolMethodDecl &&
2443 IfaceVar->getObjCDeclQualifier())) {
2444 if (Warn) {
2445 if (IsOverridingMode)
2446 S.Diag(ImplVar->getLocation(),
2447 diag::warn_conflicting_overriding_param_modifiers)
2448 << getTypeRange(ImplVar->getTypeSourceInfo())
2449 << MethodImpl->getDeclName();
2450 else S.Diag(ImplVar->getLocation(),
2451 diag::warn_conflicting_param_modifiers)
2452 << getTypeRange(ImplVar->getTypeSourceInfo())
2453 << MethodImpl->getDeclName();
2454 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2455 << getTypeRange(IfaceVar->getTypeSourceInfo());
2456 }
2457 else
2458 return false;
2459 }
2460
2461 QualType ImplTy = ImplVar->getType();
2462 QualType IfaceTy = IfaceVar->getType();
2463 if (Warn && IsOverridingMode &&
2464 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2465 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2466 S.Diag(ImplVar->getLocation(),
2467 diag::warn_conflicting_nullability_attr_overriding_param_types)
2468 << DiagNullabilityKind(*ImplTy->getNullability(),
2469 ((ImplVar->getObjCDeclQualifier() &
2471 << DiagNullabilityKind(*IfaceTy->getNullability(),
2472 ((IfaceVar->getObjCDeclQualifier() &
2474 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2475 }
2476 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2477 return true;
2478
2479 if (!Warn)
2480 return false;
2481 unsigned DiagID =
2482 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2483 : diag::warn_conflicting_param_types;
2484
2485 // Mismatches between ObjC pointers go into a different warning
2486 // category, and sometimes they're even completely explicitly allowed..
2487 if (const ObjCObjectPointerType *ImplPtrTy =
2488 ImplTy->getAs<ObjCObjectPointerType>()) {
2489 if (const ObjCObjectPointerType *IfacePtrTy =
2490 IfaceTy->getAs<ObjCObjectPointerType>()) {
2491 // Allow non-matching argument types as long as they don't
2492 // violate the principle of substitutability. Specifically, the
2493 // implementation must accept any objects that the superclass
2494 // accepts, however it may also accept others.
2495 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2496 return false;
2497
2498 DiagID =
2499 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2500 : diag::warn_non_contravariant_param_types;
2501 }
2502 }
2503
2504 S.Diag(ImplVar->getLocation(), DiagID)
2505 << getTypeRange(ImplVar->getTypeSourceInfo())
2506 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2507 S.Diag(IfaceVar->getLocation(),
2508 (IsOverridingMode ? diag::note_previous_declaration
2509 : diag::note_previous_definition))
2510 << getTypeRange(IfaceVar->getTypeSourceInfo());
2511 return false;
2512}
2513
2514/// In ARC, check whether the conventional meanings of the two methods
2515/// match. If they don't, it's a hard error.
2518 ObjCMethodFamily implFamily = impl->getMethodFamily();
2519 ObjCMethodFamily declFamily = decl->getMethodFamily();
2520 if (implFamily == declFamily) return false;
2521
2522 // Since conventions are sorted by selector, the only possibility is
2523 // that the types differ enough to cause one selector or the other
2524 // to fall out of the family.
2525 assert(implFamily == OMF_None || declFamily == OMF_None);
2526
2527 // No further diagnostics required on invalid declarations.
2528 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2529
2530 const ObjCMethodDecl *unmatched = impl;
2531 ObjCMethodFamily family = declFamily;
2532 unsigned errorID = diag::err_arc_lost_method_convention;
2533 unsigned noteID = diag::note_arc_lost_method_convention;
2534 if (declFamily == OMF_None) {
2535 unmatched = decl;
2536 family = implFamily;
2537 errorID = diag::err_arc_gained_method_convention;
2538 noteID = diag::note_arc_gained_method_convention;
2539 }
2540
2541 // Indexes into a %select clause in the diagnostic.
2542 enum FamilySelector {
2543 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2544 };
2545 FamilySelector familySelector = FamilySelector();
2546
2547 switch (family) {
2548 case OMF_None: llvm_unreachable("logic error, no method convention");
2549 case OMF_retain:
2550 case OMF_release:
2551 case OMF_autorelease:
2552 case OMF_dealloc:
2553 case OMF_finalize:
2554 case OMF_retainCount:
2555 case OMF_self:
2556 case OMF_initialize:
2558 // Mismatches for these methods don't change ownership
2559 // conventions, so we don't care.
2560 return false;
2561
2562 case OMF_init: familySelector = F_init; break;
2563 case OMF_alloc: familySelector = F_alloc; break;
2564 case OMF_copy: familySelector = F_copy; break;
2565 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2566 case OMF_new: familySelector = F_new; break;
2567 }
2568
2569 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2570 ReasonSelector reasonSelector;
2571
2572 // The only reason these methods don't fall within their families is
2573 // due to unusual result types.
2574 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2575 reasonSelector = R_UnrelatedReturn;
2576 } else {
2577 reasonSelector = R_NonObjectReturn;
2578 }
2579
2580 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2581 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2582
2583 return true;
2584}
2585
2587 ObjCMethodDecl *MethodDecl,
2588 bool IsProtocolMethodDecl) {
2589 if (getLangOpts().ObjCAutoRefCount &&
2590 checkMethodFamilyMismatch(SemaRef, ImpMethodDecl, MethodDecl))
2591 return;
2592
2593 CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2594 IsProtocolMethodDecl, false, true);
2595
2596 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2597 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2598 EF = MethodDecl->param_end();
2599 IM != EM && IF != EF; ++IM, ++IF) {
2600 CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM, *IF,
2601 IsProtocolMethodDecl, false, true);
2602 }
2603
2604 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2605 Diag(ImpMethodDecl->getLocation(),
2606 diag::warn_conflicting_variadic);
2607 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2608 }
2609}
2610
2612 ObjCMethodDecl *Overridden,
2613 bool IsProtocolMethodDecl) {
2614
2615 CheckMethodOverrideReturn(SemaRef, Method, Overridden, IsProtocolMethodDecl,
2616 true, true);
2617
2618 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2619 IF = Overridden->param_begin(), EM = Method->param_end(),
2620 EF = Overridden->param_end();
2621 IM != EM && IF != EF; ++IM, ++IF) {
2622 CheckMethodOverrideParam(SemaRef, Method, Overridden, *IM, *IF,
2623 IsProtocolMethodDecl, true, true);
2624 }
2625
2626 if (Method->isVariadic() != Overridden->isVariadic()) {
2627 Diag(Method->getLocation(),
2628 diag::warn_conflicting_overriding_variadic);
2629 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2630 }
2631}
2632
2633/// WarnExactTypedMethods - This routine issues a warning if method
2634/// implementation declaration matches exactly that of its declaration.
2636 ObjCMethodDecl *MethodDecl,
2637 bool IsProtocolMethodDecl) {
2638 ASTContext &Context = getASTContext();
2639 // don't issue warning when protocol method is optional because primary
2640 // class is not required to implement it and it is safe for protocol
2641 // to implement it.
2642 if (MethodDecl->getImplementationControl() ==
2644 return;
2645 // don't issue warning when primary class's method is
2646 // deprecated/unavailable.
2647 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2648 MethodDecl->hasAttr<DeprecatedAttr>())
2649 return;
2650
2651 bool match = CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2652 IsProtocolMethodDecl, false, false);
2653 if (match)
2654 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2655 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2656 EF = MethodDecl->param_end();
2657 IM != EM && IF != EF; ++IM, ++IF) {
2658 match = CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM,
2659 *IF, IsProtocolMethodDecl, false, false);
2660 if (!match)
2661 break;
2662 }
2663 if (match)
2664 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2665 if (match)
2666 match = !(MethodDecl->isClassMethod() &&
2667 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2668
2669 if (match) {
2670 Diag(ImpMethodDecl->getLocation(),
2671 diag::warn_category_method_impl_match);
2672 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2673 << MethodDecl->getDeclName();
2674 }
2675}
2676
2677/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2678/// improve the efficiency of selector lookups and type checking by associating
2679/// with each protocol / interface / category the flattened instance tables. If
2680/// we used an immutable set to keep the table then it wouldn't add significant
2681/// memory cost and it would be handy for lookups.
2682
2683typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2684typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2685
2687 ProtocolNameSet &PNS) {
2688 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2689 PNS.insert(PDecl->getIdentifier());
2690 for (const auto *PI : PDecl->protocols())
2692}
2693
2694/// Recursively populates a set with all conformed protocols in a class
2695/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2696/// attribute.
2698 ProtocolNameSet &PNS) {
2699 if (!Super)
2700 return;
2701
2702 for (const auto *I : Super->all_referenced_protocols())
2704
2706}
2707
2708/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2709/// Declared in protocol, and those referenced by it.
2711 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2712 const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2713 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2714 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2715 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2716 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2717 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2718
2719 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2720 ObjCInterfaceDecl *NSIDecl = nullptr;
2721
2722 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2723 // then we should check if any class in the super class hierarchy also
2724 // conforms to this protocol, either directly or via protocol inheritance.
2725 // If so, we can skip checking this protocol completely because we
2726 // know that a parent class already satisfies this protocol.
2727 //
2728 // Note: we could generalize this logic for all protocols, and merely
2729 // add the limit on looking at the super class chain for just
2730 // specially marked protocols. This may be a good optimization. This
2731 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2732 // protocols for now for controlled evaluation.
2733 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2734 if (!ProtocolsExplictImpl) {
2735 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2736 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2737 }
2738 if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2739 return;
2740
2741 // If no super class conforms to the protocol, we should not search
2742 // for methods in the super class to implicitly satisfy the protocol.
2743 Super = nullptr;
2744 }
2745
2747 // check to see if class implements forwardInvocation method and objects
2748 // of this class are derived from 'NSProxy' so that to forward requests
2749 // from one object to another.
2750 // Under such conditions, which means that every method possible is
2751 // implemented in the class, we should not issue "Method definition not
2752 // found" warnings.
2753 // FIXME: Use a general GetUnarySelector method for this.
2754 const IdentifierInfo *II = &S.Context.Idents.get("forwardInvocation");
2755 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2756 if (InsMap.count(fISelector))
2757 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2758 // need be implemented in the implementation.
2759 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2760 }
2761
2762 // If this is a forward protocol declaration, get its definition.
2763 if (!PDecl->isThisDeclarationADefinition() &&
2764 PDecl->getDefinition())
2765 PDecl = PDecl->getDefinition();
2766
2767 // If a method lookup fails locally we still need to look and see if
2768 // the method was implemented by a base class or an inherited
2769 // protocol. This lookup is slow, but occurs rarely in correct code
2770 // and otherwise would terminate in a warning.
2771
2772 // check unimplemented instance methods.
2773 if (!NSIDecl)
2774 for (auto *method : PDecl->instance_methods()) {
2775 if (method->getImplementationControl() !=
2777 !method->isPropertyAccessor() &&
2778 !InsMap.count(method->getSelector()) &&
2779 (!Super || !Super->lookupMethod(
2780 method->getSelector(), true /* instance */,
2781 false /* shallowCategory */, true /* followsSuper */,
2782 nullptr /* category */))) {
2783 // If a method is not implemented in the category implementation but
2784 // has been declared in its primary class, superclass,
2785 // or in one of their protocols, no need to issue the warning.
2786 // This is because method will be implemented in the primary class
2787 // or one of its super class implementation.
2788
2789 // Ugly, but necessary. Method declared in protocol might have
2790 // have been synthesized due to a property declared in the class which
2791 // uses the protocol.
2792 if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2793 method->getSelector(), true /* instance */,
2794 true /* shallowCategoryLookup */, false /* followSuper */))
2795 if (C || MethodInClass->isPropertyAccessor())
2796 continue;
2797 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2798 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2799 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2800 }
2801 }
2802 }
2803 // check unimplemented class methods
2804 for (auto *method : PDecl->class_methods()) {
2805 if (method->getImplementationControl() !=
2807 !ClsMap.count(method->getSelector()) &&
2808 (!Super || !Super->lookupMethod(
2809 method->getSelector(), false /* class method */,
2810 false /* shallowCategoryLookup */,
2811 true /* followSuper */, nullptr /* category */))) {
2812 // See above comment for instance method lookups.
2813 if (C && IDecl->lookupMethod(method->getSelector(),
2814 false /* class */,
2815 true /* shallowCategoryLookup */,
2816 false /* followSuper */))
2817 continue;
2818
2819 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2820 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2821 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2822 }
2823 }
2824 }
2825 // Check on this protocols's referenced protocols, recursively.
2826 for (auto *PI : PDecl->protocols())
2827 CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2828 ProtocolsExplictImpl);
2829}
2830
2831/// MatchAllMethodDeclarations - Check methods declared in interface
2832/// or protocol against those declared in their implementations.
2833///
2835 const SelectorSet &InsMap, const SelectorSet &ClsMap,
2836 SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2837 ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2838 bool WarnCategoryMethodImpl) {
2839 // Check and see if instance methods in class interface have been
2840 // implemented in the implementation class. If so, their types match.
2841 for (auto *I : CDecl->instance_methods()) {
2842 if (!InsMapSeen.insert(I->getSelector()).second)
2843 continue;
2844 if (!I->isPropertyAccessor() &&
2845 !InsMap.count(I->getSelector())) {
2846 if (ImmediateClass)
2847 WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2848 diag::warn_undef_method_impl);
2849 continue;
2850 } else {
2851 ObjCMethodDecl *ImpMethodDecl =
2852 IMPDecl->getInstanceMethod(I->getSelector());
2853 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2854 "Expected to find the method through lookup as well");
2855 // ImpMethodDecl may be null as in a @dynamic property.
2856 if (ImpMethodDecl) {
2857 // Skip property accessor function stubs.
2858 if (ImpMethodDecl->isSynthesizedAccessorStub())
2859 continue;
2860 if (!WarnCategoryMethodImpl)
2861 WarnConflictingTypedMethods(ImpMethodDecl, I,
2862 isa<ObjCProtocolDecl>(CDecl));
2863 else if (!I->isPropertyAccessor())
2864 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2865 }
2866 }
2867 }
2868
2869 // Check and see if class methods in class interface have been
2870 // implemented in the implementation class. If so, their types match.
2871 for (auto *I : CDecl->class_methods()) {
2872 if (!ClsMapSeen.insert(I->getSelector()).second)
2873 continue;
2874 if (!I->isPropertyAccessor() &&
2875 !ClsMap.count(I->getSelector())) {
2876 if (ImmediateClass)
2877 WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2878 diag::warn_undef_method_impl);
2879 } else {
2880 ObjCMethodDecl *ImpMethodDecl =
2881 IMPDecl->getClassMethod(I->getSelector());
2882 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2883 "Expected to find the method through lookup as well");
2884 // ImpMethodDecl may be null as in a @dynamic property.
2885 if (ImpMethodDecl) {
2886 // Skip property accessor function stubs.
2887 if (ImpMethodDecl->isSynthesizedAccessorStub())
2888 continue;
2889 if (!WarnCategoryMethodImpl)
2890 WarnConflictingTypedMethods(ImpMethodDecl, I,
2891 isa<ObjCProtocolDecl>(CDecl));
2892 else if (!I->isPropertyAccessor())
2893 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2894 }
2895 }
2896 }
2897
2898 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2899 // Also, check for methods declared in protocols inherited by
2900 // this protocol.
2901 for (auto *PI : PD->protocols())
2902 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2903 IMPDecl, PI, IncompleteImpl, false,
2904 WarnCategoryMethodImpl);
2905 }
2906
2907 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2908 // when checking that methods in implementation match their declaration,
2909 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2910 // extension; as well as those in categories.
2911 if (!WarnCategoryMethodImpl) {
2912 for (auto *Cat : I->visible_categories())
2913 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2914 IMPDecl, Cat, IncompleteImpl,
2915 ImmediateClass && Cat->IsClassExtension(),
2916 WarnCategoryMethodImpl);
2917 } else {
2918 // Also methods in class extensions need be looked at next.
2919 for (auto *Ext : I->visible_extensions())
2920 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2921 IMPDecl, Ext, IncompleteImpl, false,
2922 WarnCategoryMethodImpl);
2923 }
2924
2925 // Check for any implementation of a methods declared in protocol.
2926 for (auto *PI : I->all_referenced_protocols())
2927 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2928 IMPDecl, PI, IncompleteImpl, false,
2929 WarnCategoryMethodImpl);
2930
2931 // FIXME. For now, we are not checking for exact match of methods
2932 // in category implementation and its primary class's super class.
2933 if (!WarnCategoryMethodImpl && I->getSuperClass())
2934 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2935 IMPDecl,
2936 I->getSuperClass(), IncompleteImpl, false);
2937 }
2938}
2939
2940/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2941/// category matches with those implemented in its primary class and
2942/// warns each time an exact match is found.
2944 ObjCCategoryImplDecl *CatIMPDecl) {
2945 // Get category's primary class.
2946 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2947 if (!CatDecl)
2948 return;
2949 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2950 if (!IDecl)
2951 return;
2952 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2953 SelectorSet InsMap, ClsMap;
2954
2955 for (const auto *I : CatIMPDecl->instance_methods()) {
2956 Selector Sel = I->getSelector();
2957 // When checking for methods implemented in the category, skip over
2958 // those declared in category class's super class. This is because
2959 // the super class must implement the method.
2960 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2961 continue;
2962 InsMap.insert(Sel);
2963 }
2964
2965 for (const auto *I : CatIMPDecl->class_methods()) {
2966 Selector Sel = I->getSelector();
2967 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2968 continue;
2969 ClsMap.insert(Sel);
2970 }
2971 if (InsMap.empty() && ClsMap.empty())
2972 return;
2973
2974 SelectorSet InsMapSeen, ClsMapSeen;
2975 bool IncompleteImpl = false;
2976 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2977 CatIMPDecl, IDecl,
2978 IncompleteImpl, false,
2979 true /*WarnCategoryMethodImpl*/);
2980}
2981
2983 ObjCContainerDecl *CDecl,
2984 bool IncompleteImpl) {
2985 SelectorSet InsMap;
2986 // Check and see if instance methods in class interface have been
2987 // implemented in the implementation class.
2988 for (const auto *I : IMPDecl->instance_methods())
2989 InsMap.insert(I->getSelector());
2990
2991 // Add the selectors for getters/setters of @dynamic properties.
2992 for (const auto *PImpl : IMPDecl->property_impls()) {
2993 // We only care about @dynamic implementations.
2994 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2995 continue;
2996
2997 const auto *P = PImpl->getPropertyDecl();
2998 if (!P) continue;
2999
3000 InsMap.insert(P->getGetterName());
3001 if (!P->getSetterName().isNull())
3002 InsMap.insert(P->getSetterName());
3003 }
3004
3005 // Check and see if properties declared in the interface have either 1)
3006 // an implementation or 2) there is a @synthesize/@dynamic implementation
3007 // of the property in the @implementation.
3008 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3009 bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3011 !IDecl->isObjCRequiresPropertyDefs();
3012 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3013 }
3014
3015 // Diagnose null-resettable synthesized setters.
3017
3018 SelectorSet ClsMap;
3019 for (const auto *I : IMPDecl->class_methods())
3020 ClsMap.insert(I->getSelector());
3021
3022 // Check for type conflict of methods declared in a class/protocol and
3023 // its implementation; if any.
3024 SelectorSet InsMapSeen, ClsMapSeen;
3025 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3026 IMPDecl, CDecl,
3027 IncompleteImpl, true);
3028
3029 // check all methods implemented in category against those declared
3030 // in its primary class.
3031 if (ObjCCategoryImplDecl *CatDecl =
3032 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3034
3035 // Check the protocol list for unimplemented methods in the @implementation
3036 // class.
3037 // Check and see if class methods in class interface have been
3038 // implemented in the implementation class.
3039
3040 LazyProtocolNameSet ExplicitImplProtocols;
3041
3042 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3043 for (auto *PI : I->all_referenced_protocols())
3044 CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap,
3045 ClsMap, I, ExplicitImplProtocols);
3046 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3047 // For extended class, unimplemented methods in its protocols will
3048 // be reported in the primary class.
3049 if (!C->IsClassExtension()) {
3050 for (auto *P : C->protocols())
3051 CheckProtocolMethodDefs(SemaRef, IMPDecl, P, IncompleteImpl, InsMap,
3052 ClsMap, CDecl, ExplicitImplProtocols);
3053 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3054 /*SynthesizeProperties=*/false);
3055 }
3056 } else
3057 llvm_unreachable("invalid ObjCContainerDecl type.");
3058}
3059
3061 SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3062 SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3063 unsigned NumElts) {
3064 ASTContext &Context = getASTContext();
3065 SmallVector<Decl *, 8> DeclsInGroup;
3066 for (unsigned i = 0; i != NumElts; ++i) {
3067 // Check for another declaration kind with the same name.
3069 SemaRef.TUScope, IdentList[i], IdentLocs[i], Sema::LookupOrdinaryName,
3071 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3072 // GCC apparently allows the following idiom:
3073 //
3074 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3075 // @class XCElementToggler;
3076 //
3077 // Here we have chosen to ignore the forward class declaration
3078 // with a warning. Since this is the implied behavior.
3079 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3080 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3081 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3082 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3083 } else {
3084 // a forward class declaration matching a typedef name of a class refers
3085 // to the underlying class. Just ignore the forward class with a warning
3086 // as this will force the intended behavior which is to lookup the
3087 // typedef name.
3088 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3089 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3090 << IdentList[i];
3091 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3092 continue;
3093 }
3094 }
3095 }
3096
3097 // Create a declaration to describe this forward declaration.
3098 ObjCInterfaceDecl *PrevIDecl
3099 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3100
3101 IdentifierInfo *ClassName = IdentList[i];
3102 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3103 // A previous decl with a different name is because of
3104 // @compatibility_alias, for example:
3105 // \code
3106 // @class NewImage;
3107 // @compatibility_alias OldImage NewImage;
3108 // \endcode
3109 // A lookup for 'OldImage' will return the 'NewImage' decl.
3110 //
3111 // In such a case use the real declaration name, instead of the alias one,
3112 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3113 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3114 // has been aliased.
3115 ClassName = PrevIDecl->getIdentifier();
3116 }
3117
3118 // If this forward declaration has type parameters, compare them with the
3119 // type parameters of the previous declaration.
3120 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3121 if (PrevIDecl && TypeParams) {
3122 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3123 // Check for consistency with the previous declaration.
3125 SemaRef, PrevTypeParams, TypeParams,
3126 TypeParamListContext::ForwardDeclaration)) {
3127 TypeParams = nullptr;
3128 }
3129 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3130 // The @interface does not have type parameters. Complain.
3131 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3132 << ClassName
3133 << TypeParams->getSourceRange();
3134 Diag(Def->getLocation(), diag::note_defined_here)
3135 << ClassName;
3136
3137 TypeParams = nullptr;
3138 }
3139 }
3140
3142 Context, SemaRef.CurContext, AtClassLoc, ClassName, TypeParams,
3143 PrevIDecl, IdentLocs[i]);
3144 IDecl->setAtEndRange(IdentLocs[i]);
3145
3146 if (PrevIDecl)
3147 SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
3148
3150 CheckObjCDeclScope(IDecl);
3151 DeclsInGroup.push_back(IDecl);
3152 }
3153
3154 return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
3155}
3156
3157static bool tryMatchRecordTypes(ASTContext &Context,
3159 const Type *left, const Type *right);
3160
3161static bool matchTypes(ASTContext &Context,
3162 SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3163 QualType rightQT) {
3164 const Type *left =
3166 const Type *right =
3167 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3168
3169 if (left == right) return true;
3170
3171 // If we're doing a strict match, the types have to match exactly.
3172 if (strategy == SemaObjC::MMS_strict)
3173 return false;
3174
3175 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3176
3177 // Otherwise, use this absurdly complicated algorithm to try to
3178 // validate the basic, low-level compatibility of the two types.
3179
3180 // As a minimum, require the sizes and alignments to match.
3181 TypeInfo LeftTI = Context.getTypeInfo(left);
3182 TypeInfo RightTI = Context.getTypeInfo(right);
3183 if (LeftTI.Width != RightTI.Width)
3184 return false;
3185
3186 if (LeftTI.Align != RightTI.Align)
3187 return false;
3188
3189 // Consider all the kinds of non-dependent canonical types:
3190 // - functions and arrays aren't possible as return and parameter types
3191
3192 // - vector types of equal size can be arbitrarily mixed
3193 if (isa<VectorType>(left)) return isa<VectorType>(right);
3194 if (isa<VectorType>(right)) return false;
3195
3196 // - references should only match references of identical type
3197 // - structs, unions, and Objective-C objects must match more-or-less
3198 // exactly
3199 // - everything else should be a scalar
3200 if (!left->isScalarType() || !right->isScalarType())
3201 return tryMatchRecordTypes(Context, strategy, left, right);
3202
3203 // Make scalars agree in kind, except count bools as chars, and group
3204 // all non-member pointers together.
3205 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3206 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3207 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3208 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3209 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3211 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3213
3214 // Note that data member pointers and function member pointers don't
3215 // intermix because of the size differences.
3216
3217 return (leftSK == rightSK);
3218}
3219
3220static bool tryMatchRecordTypes(ASTContext &Context,
3222 const Type *lt, const Type *rt) {
3223 assert(lt && rt && lt != rt);
3224
3225 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3226 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3227 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3228
3229 // Require union-hood to match.
3230 if (left->isUnion() != right->isUnion()) return false;
3231
3232 // Require an exact match if either is non-POD.
3233 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3234 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3235 return false;
3236
3237 // Require size and alignment to match.
3238 TypeInfo LeftTI = Context.getTypeInfo(lt);
3239 TypeInfo RightTI = Context.getTypeInfo(rt);
3240 if (LeftTI.Width != RightTI.Width)
3241 return false;
3242
3243 if (LeftTI.Align != RightTI.Align)
3244 return false;
3245
3246 // Require fields to match.
3247 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3248 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3249 for (; li != le && ri != re; ++li, ++ri) {
3250 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3251 return false;
3252 }
3253 return (li == le && ri == re);
3254}
3255
3256/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3257/// returns true, or false, accordingly.
3258/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3260 const ObjCMethodDecl *right,
3261 MethodMatchStrategy strategy) {
3262 ASTContext &Context = getASTContext();
3263 if (!matchTypes(Context, strategy, left->getReturnType(),
3264 right->getReturnType()))
3265 return false;
3266
3267 // If either is hidden, it is not considered to match.
3268 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3269 return false;
3270
3271 if (left->isDirectMethod() != right->isDirectMethod())
3272 return false;
3273
3274 if (getLangOpts().ObjCAutoRefCount &&
3275 (left->hasAttr<NSReturnsRetainedAttr>()
3276 != right->hasAttr<NSReturnsRetainedAttr>() ||
3277 left->hasAttr<NSConsumesSelfAttr>()
3278 != right->hasAttr<NSConsumesSelfAttr>()))
3279 return false;
3280
3282 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3283 re = right->param_end();
3284
3285 for (; li != le && ri != re; ++li, ++ri) {
3286 assert(ri != right->param_end() && "Param mismatch");
3287 const ParmVarDecl *lparm = *li, *rparm = *ri;
3288
3289 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3290 return false;
3291
3292 if (getLangOpts().ObjCAutoRefCount &&
3293 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3294 return false;
3295 }
3296 return true;
3297}
3298
3300 ObjCMethodDecl *MethodInList) {
3301 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3302 auto *MethodInListProtocol =
3303 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3304 // If this method belongs to a protocol but the method in list does not, or
3305 // vice versa, we say the context is not the same.
3306 if ((MethodProtocol && !MethodInListProtocol) ||
3307 (!MethodProtocol && MethodInListProtocol))
3308 return false;
3309
3310 if (MethodProtocol && MethodInListProtocol)
3311 return true;
3312
3313 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3314 ObjCInterfaceDecl *MethodInListInterface =
3315 MethodInList->getClassInterface();
3316 return MethodInterface == MethodInListInterface;
3317}
3318
3320 ObjCMethodDecl *Method) {
3321 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3322 // inside categories.
3323 if (ObjCCategoryDecl *CD =
3324 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3325 if (!CD->IsClassExtension() && List->getBits() < 2)
3326 List->setBits(List->getBits() + 1);
3327
3328 // If the list is empty, make it a singleton list.
3329 if (List->getMethod() == nullptr) {
3330 List->setMethod(Method);
3331 List->setNext(nullptr);
3332 return;
3333 }
3334
3335 // We've seen a method with this name, see if we have already seen this type
3336 // signature.
3337 ObjCMethodList *Previous = List;
3338 ObjCMethodList *ListWithSameDeclaration = nullptr;
3339 for (; List; Previous = List, List = List->getNext()) {
3340 // If we are building a module, keep all of the methods.
3341 if (getLangOpts().isCompilingModule())
3342 continue;
3343
3344 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3345 List->getMethod());
3346 // Looking for method with a type bound requires the correct context exists.
3347 // We need to insert a method into the list if the context is different.
3348 // If the method's declaration matches the list
3349 // a> the method belongs to a different context: we need to insert it, in
3350 // order to emit the availability message, we need to prioritize over
3351 // availability among the methods with the same declaration.
3352 // b> the method belongs to the same context: there is no need to insert a
3353 // new entry.
3354 // If the method's declaration does not match the list, we insert it to the
3355 // end.
3356 if (!SameDeclaration ||
3357 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3358 // Even if two method types do not match, we would like to say
3359 // there is more than one declaration so unavailability/deprecated
3360 // warning is not too noisy.
3361 if (!Method->isDefined())
3362 List->setHasMoreThanOneDecl(true);
3363
3364 // For methods with the same declaration, the one that is deprecated
3365 // should be put in the front for better diagnostics.
3366 if (Method->isDeprecated() && SameDeclaration &&
3367 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3368 ListWithSameDeclaration = List;
3369
3370 if (Method->isUnavailable() && SameDeclaration &&
3371 !ListWithSameDeclaration &&
3372 List->getMethod()->getAvailability() < AR_Deprecated)
3373 ListWithSameDeclaration = List;
3374 continue;
3375 }
3376
3377 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3378
3379 // Propagate the 'defined' bit.
3380 if (Method->isDefined())
3381 PrevObjCMethod->setDefined(true);
3382 else {
3383 // Objective-C doesn't allow an @interface for a class after its
3384 // @implementation. So if Method is not defined and there already is
3385 // an entry for this type signature, Method has to be for a different
3386 // class than PrevObjCMethod.
3387 List->setHasMoreThanOneDecl(true);
3388 }
3389
3390 // If a method is deprecated, push it in the global pool.
3391 // This is used for better diagnostics.
3392 if (Method->isDeprecated()) {
3393 if (!PrevObjCMethod->isDeprecated())
3394 List->setMethod(Method);
3395 }
3396 // If the new method is unavailable, push it into global pool
3397 // unless previous one is deprecated.
3398 if (Method->isUnavailable()) {
3399 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3400 List->setMethod(Method);
3401 }
3402
3403 return;
3404 }
3405
3406 // We have a new signature for an existing method - add it.
3407 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3409
3410 // We insert it right before ListWithSameDeclaration.
3411 if (ListWithSameDeclaration) {
3412 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3413 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3414 ListWithSameDeclaration->setMethod(Method);
3415 ListWithSameDeclaration->setNext(List);
3416 return;
3417 }
3418
3419 Previous->setNext(new (Mem) ObjCMethodList(Method));
3420}
3421
3422/// Read the contents of the method pool for a given selector from
3423/// external storage.
3425 assert(SemaRef.ExternalSource && "We need an external AST source");
3426 SemaRef.ExternalSource->ReadMethodPool(Sel);
3427}
3428
3431 return;
3432 SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3433}
3434
3435void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3436 bool instance) {
3437 // Ignore methods of invalid containers.
3438 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3439 return;
3440
3442 ReadMethodPool(Method->getSelector());
3443
3445 if (Pos == MethodPool.end())
3446 Pos = MethodPool
3447 .insert(std::make_pair(Method->getSelector(),
3449 .first;
3450
3451 Method->setDefined(impl);
3452
3453 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3454 addMethodToGlobalList(&Entry, Method);
3455}
3456
3457/// Determines if this is an "acceptable" loose mismatch in the global
3458/// method pool. This exists mostly as a hack to get around certain
3459/// global mismatches which we can't afford to make warnings / errors.
3460/// Really, what we want is a way to take a method out of the global
3461/// method pool.
3463 ObjCMethodDecl *other) {
3464 if (!chosen->isInstanceMethod())
3465 return false;
3466
3467 if (chosen->isDirectMethod() != other->isDirectMethod())
3468 return false;
3469
3470 Selector sel = chosen->getSelector();
3471 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3472 return false;
3473
3474 // Don't complain about mismatches for -length if the method we
3475 // chose has an integral result type.
3476 return (chosen->getReturnType()->isIntegerType());
3477}
3478
3479/// Return true if the given method is wthin the type bound.
3481 const ObjCObjectType *TypeBound) {
3482 if (!TypeBound)
3483 return true;
3484
3485 if (TypeBound->isObjCId())
3486 // FIXME: should we handle the case of bounding to id<A, B> differently?
3487 return true;
3488
3489 auto *BoundInterface = TypeBound->getInterface();
3490 assert(BoundInterface && "unexpected object type!");
3491
3492 // Check if the Method belongs to a protocol. We should allow any method
3493 // defined in any protocol, because any subclass could adopt the protocol.
3494 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3495 if (MethodProtocol) {
3496 return true;
3497 }
3498
3499 // If the Method belongs to a class, check if it belongs to the class
3500 // hierarchy of the class bound.
3501 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3502 // We allow methods declared within classes that are part of the hierarchy
3503 // of the class bound (superclass of, subclass of, or the same as the class
3504 // bound).
3505 return MethodInterface == BoundInterface ||
3506 MethodInterface->isSuperClassOf(BoundInterface) ||
3507 BoundInterface->isSuperClassOf(MethodInterface);
3508 }
3509 llvm_unreachable("unknown method context");
3510}
3511
3512/// We first select the type of the method: Instance or Factory, then collect
3513/// all methods with that type.
3516 bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3518 ReadMethodPool(Sel);
3519
3521 if (Pos == MethodPool.end())
3522 return false;
3523
3524 // Gather the non-hidden methods.
3525 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3526 Pos->second.second;
3527 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3528 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3529 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3530 Methods.push_back(M->getMethod());
3531 }
3532
3533 // Return if we find any method with the desired kind.
3534 if (!Methods.empty())
3535 return Methods.size() > 1;
3536
3537 if (!CheckTheOther)
3538 return false;
3539
3540 // Gather the other kind.
3541 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3542 Pos->second.first;
3543 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3544 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3545 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3546 Methods.push_back(M->getMethod());
3547 }
3548
3549 return Methods.size() > 1;
3550}
3551
3553 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3554 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3555 // Diagnose finding more than one method in global pool.
3556 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3557 FilteredMethods.push_back(BestMethod);
3558
3559 for (auto *M : Methods)
3560 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3561 FilteredMethods.push_back(M);
3562
3563 if (FilteredMethods.size() > 1)
3564 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3565 receiverIdOrClass);
3566
3568 // Test for no method in the pool which should not trigger any warning by
3569 // caller.
3570 if (Pos == MethodPool.end())
3571 return true;
3572 ObjCMethodList &MethList =
3573 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3574 return MethList.hasMoreThanOneDecl();
3575}
3576
3577ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3578 bool receiverIdOrClass,
3579 bool instance) {
3581 ReadMethodPool(Sel);
3582
3584 if (Pos == MethodPool.end())
3585 return nullptr;
3586
3587 // Gather the non-hidden methods.
3588 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3590 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3591 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3592 return M->getMethod();
3593 }
3594 return nullptr;
3595}
3596
3599 bool receiverIdOrClass) {
3600 // We found multiple methods, so we may have to complain.
3601 bool issueDiagnostic = false, issueError = false;
3602
3603 // We support a warning which complains about *any* difference in
3604 // method signature.
3605 bool strictSelectorMatch =
3606 receiverIdOrClass &&
3607 !getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl,
3608 R.getBegin());
3609 if (strictSelectorMatch) {
3610 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3611 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3612 issueDiagnostic = true;
3613 break;
3614 }
3615 }
3616 }
3617
3618 // If we didn't see any strict differences, we won't see any loose
3619 // differences. In ARC, however, we also need to check for loose
3620 // mismatches, because most of them are errors.
3621 if (!strictSelectorMatch ||
3622 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3623 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3624 // This checks if the methods differ in type mismatch.
3625 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3626 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3627 issueDiagnostic = true;
3628 if (getLangOpts().ObjCAutoRefCount)
3629 issueError = true;
3630 break;
3631 }
3632 }
3633
3634 if (issueDiagnostic) {
3635 if (issueError)
3636 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3637 else if (strictSelectorMatch)
3638 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3639 else
3640 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3641
3642 Diag(Methods[0]->getBeginLoc(),
3643 issueError ? diag::note_possibility : diag::note_using)
3644 << Methods[0]->getSourceRange();
3645 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3646 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3647 << Methods[I]->getSourceRange();
3648 }
3649 }
3650}
3651
3654 if (Pos == MethodPool.end())
3655 return nullptr;
3656
3657 GlobalMethodPool::Lists &Methods = Pos->second;
3658 for (const ObjCMethodList *Method = &Methods.first; Method;
3659 Method = Method->getNext())
3660 if (Method->getMethod() &&
3661 (Method->getMethod()->isDefined() ||
3662 Method->getMethod()->isPropertyAccessor()))
3663 return Method->getMethod();
3664
3665 for (const ObjCMethodList *Method = &Methods.second; Method;
3666 Method = Method->getNext())
3667 if (Method->getMethod() &&
3668 (Method->getMethod()->isDefined() ||
3669 Method->getMethod()->isPropertyAccessor()))
3670 return Method->getMethod();
3671 return nullptr;
3672}
3673
3674static void
3677 StringRef Typo, const ObjCMethodDecl * Method) {
3678 const unsigned MaxEditDistance = 1;
3679 unsigned BestEditDistance = MaxEditDistance + 1;
3680 std::string MethodName = Method->getSelector().getAsString();
3681
3682 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3683 if (MinPossibleEditDistance > 0 &&
3684 Typo.size() / MinPossibleEditDistance < 1)
3685 return;
3686 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3687 if (EditDistance > MaxEditDistance)
3688 return;
3689 if (EditDistance == BestEditDistance)
3690 BestMethod.push_back(Method);
3691 else if (EditDistance < BestEditDistance) {
3692 BestMethod.clear();
3693 BestMethod.push_back(Method);
3694 }
3695}
3696
3698 QualType ObjectType) {
3699 if (ObjectType.isNull())
3700 return true;
3701 if (S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3702 true /*Instance method*/))
3703 return true;
3704 return S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3705 false /*Class method*/) != nullptr;
3706}
3707
3708const ObjCMethodDecl *
3710 unsigned NumArgs = Sel.getNumArgs();
3712 bool ObjectIsId = true, ObjectIsClass = true;
3713 if (ObjectType.isNull())
3714 ObjectIsId = ObjectIsClass = false;
3715 else if (!ObjectType->isObjCObjectPointerType())
3716 return nullptr;
3717 else if (const ObjCObjectPointerType *ObjCPtr =
3718 ObjectType->getAsObjCInterfacePointerType()) {
3719 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3720 ObjectIsId = ObjectIsClass = false;
3721 }
3722 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3723 ObjectIsClass = false;
3724 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3725 ObjectIsId = false;
3726 else
3727 return nullptr;
3728
3730 e = MethodPool.end(); b != e; b++) {
3731 // instance methods
3732 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3733 if (M->getMethod() &&
3734 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3735 (M->getMethod()->getSelector() != Sel)) {
3736 if (ObjectIsId)
3737 Methods.push_back(M->getMethod());
3738 else if (!ObjectIsClass &&
3740 SemaRef, M->getMethod()->getSelector(), ObjectType))
3741 Methods.push_back(M->getMethod());
3742 }
3743 // class methods
3744 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3745 if (M->getMethod() &&
3746 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3747 (M->getMethod()->getSelector() != Sel)) {
3748 if (ObjectIsClass)
3749 Methods.push_back(M->getMethod());
3750 else if (!ObjectIsId &&
3752 SemaRef, M->getMethod()->getSelector(), ObjectType))
3753 Methods.push_back(M->getMethod());
3754 }
3755 }
3756
3758 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3759 HelperSelectorsForTypoCorrection(SelectedMethods,
3760 Sel.getAsString(), Methods[i]);
3761 }
3762 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3763}
3764
3765/// DiagnoseDuplicateIvars -
3766/// Check for duplicate ivars in the entire class at the start of
3767/// \@implementation. This becomes necessary because class extension can
3768/// add ivars to a class in random order which will not be known until
3769/// class's \@implementation is seen.
3771 ObjCInterfaceDecl *SID) {
3772 for (auto *Ivar : ID->ivars()) {
3773 if (Ivar->isInvalidDecl())
3774 continue;
3775 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3776 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3777 if (prevIvar) {
3778 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3779 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3780 Ivar->setInvalidDecl();
3781 }
3782 }
3783 }
3784}
3785
3786/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3788 if (S.getLangOpts().ObjCWeak) return;
3789
3790 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3791 ivar; ivar = ivar->getNextIvar()) {
3792 if (ivar->isInvalidDecl()) continue;
3793 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3794 if (S.getLangOpts().ObjCWeakRuntime) {
3795 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3796 } else {
3797 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3798 }
3799 }
3800 }
3801}
3802
3803/// Diagnose attempts to use flexible array member with retainable object type.
3805 ObjCInterfaceDecl *ID) {
3806 if (!S.getLangOpts().ObjCAutoRefCount)
3807 return;
3808
3809 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3810 ivar = ivar->getNextIvar()) {
3811 if (ivar->isInvalidDecl())
3812 continue;
3813 QualType IvarTy = ivar->getType();
3814 if (IvarTy->isIncompleteArrayType() &&
3816 IvarTy->isObjCLifetimeType()) {
3817 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3818 ivar->setInvalidDecl();
3819 }
3820 }
3821}
3822
3824 switch (SemaRef.CurContext->getDeclKind()) {
3825 case Decl::ObjCInterface:
3827 case Decl::ObjCProtocol:
3829 case Decl::ObjCCategory:
3830 if (cast<ObjCCategoryDecl>(SemaRef.CurContext)->IsClassExtension())
3833 case Decl::ObjCImplementation:
3835 case Decl::ObjCCategoryImpl:
3837
3838 default:
3839 return SemaObjC::OCK_None;
3840 }
3841}
3842
3844 if (T->isIncompleteArrayType())
3845 return true;
3846 const auto *RecordTy = T->getAs<RecordType>();
3847 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3848}
3849
3851 ObjCInterfaceDecl *IntfDecl = nullptr;
3852 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3854 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3855 Ivars = IntfDecl->ivars();
3856 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3857 IntfDecl = ImplDecl->getClassInterface();
3858 Ivars = ImplDecl->ivars();
3859 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3860 if (CategoryDecl->IsClassExtension()) {
3861 IntfDecl = CategoryDecl->getClassInterface();
3862 Ivars = CategoryDecl->ivars();
3863 }
3864 }
3865
3866 // Check if variable sized ivar is in interface and visible to subclasses.
3867 if (!isa<ObjCInterfaceDecl>(OCD)) {
3868 for (auto *ivar : Ivars) {
3869 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3870 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3871 << ivar->getDeclName() << ivar->getType();
3872 }
3873 }
3874 }
3875
3876 // Subsequent checks require interface decl.
3877 if (!IntfDecl)
3878 return;
3879
3880 // Check if variable sized ivar is followed by another ivar.
3881 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3882 ivar = ivar->getNextIvar()) {
3883 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3884 continue;
3885 QualType IvarTy = ivar->getType();
3886 bool IsInvalidIvar = false;
3887 if (IvarTy->isIncompleteArrayType()) {
3888 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3889 << ivar->getDeclName() << IvarTy
3890 << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3891 IsInvalidIvar = true;
3892 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3893 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3894 S.Diag(ivar->getLocation(),
3895 diag::err_objc_variable_sized_type_not_at_end)
3896 << ivar->getDeclName() << IvarTy;
3897 IsInvalidIvar = true;
3898 }
3899 }
3900 if (IsInvalidIvar) {
3901 S.Diag(ivar->getNextIvar()->getLocation(),
3902 diag::note_next_ivar_declaration)
3903 << ivar->getNextIvar()->getSynthesize();
3904 ivar->setInvalidDecl();
3905 }
3906 }
3907
3908 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3909 // Perform the check only if OCD is the first container to declare ivars to
3910 // avoid multiple warnings for the same ivar.
3911 ObjCIvarDecl *FirstIvar =
3912 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3913 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3914 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3915 while (SuperClass && SuperClass->ivar_empty())
3916 SuperClass = SuperClass->getSuperClass();
3917 if (SuperClass) {
3918 auto IvarIter = SuperClass->ivar_begin();
3919 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3920 const ObjCIvarDecl *LastIvar = *IvarIter;
3921 if (IsVariableSizedType(LastIvar->getType())) {
3922 S.Diag(FirstIvar->getLocation(),
3923 diag::warn_superclass_variable_sized_type_not_at_end)
3924 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3925 << LastIvar->getType() << SuperClass->getDeclName();
3926 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3927 << LastIvar->getDeclName();
3928 }
3929 }
3930 }
3931}
3932
3934 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3935
3937 Sema &S, ObjCCategoryDecl *CDecl,
3938 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3939 for (auto *PI : Protocols)
3941}
3942
3944 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3945 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3946 PDecl = PDecl->getDefinition();
3947
3949 const auto *IDecl = CDecl->getClassInterface();
3950 for (auto *MD : PDecl->methods()) {
3951 if (!MD->isPropertyAccessor()) {
3952 if (const auto *CMD =
3953 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3954 if (CMD->isDirectMethod())
3955 DirectMembers.push_back(CMD);
3956 }
3957 }
3958 }
3959 for (auto *PD : PDecl->properties()) {
3960 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3961 PD->getIdentifier(),
3962 PD->isClassProperty()
3965 if (CPD->isDirectProperty())
3966 DirectMembers.push_back(CPD);
3967 }
3968 }
3969 if (!DirectMembers.empty()) {
3970 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3971 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3972 for (const auto *MD : DirectMembers)
3973 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3974 return;
3975 }
3976
3977 // Check on this protocols's referenced protocols, recursively.
3979 PDecl->protocols());
3980}
3981
3982// Note: For class/category implementations, allMethods is always null.
3984 ArrayRef<Decl *> allMethods,
3985 ArrayRef<DeclGroupPtrTy> allTUVars) {
3986 ASTContext &Context = getASTContext();
3988 return nullptr;
3989
3990 assert(AtEnd.isValid() && "Invalid location for '@end'");
3991
3992 auto *OCD = cast<ObjCContainerDecl>(SemaRef.CurContext);
3993 Decl *ClassDecl = OCD;
3994
3995 bool isInterfaceDeclKind =
3996 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3997 || isa<ObjCProtocolDecl>(ClassDecl);
3998 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3999
4000 // Make synthesized accessor stub functions visible.
4001 // ActOnPropertyImplDecl() creates them as not visible in case
4002 // they are overridden by an explicit method that is encountered
4003 // later.
4004 if (auto *OID = dyn_cast<ObjCImplementationDecl>(SemaRef.CurContext)) {
4005 for (auto *PropImpl : OID->property_impls()) {
4006 if (auto *Getter = PropImpl->getGetterMethodDecl())
4007 if (Getter->isSynthesizedAccessorStub())
4008 OID->addDecl(Getter);
4009 if (auto *Setter = PropImpl->getSetterMethodDecl())
4010 if (Setter->isSynthesizedAccessorStub())
4011 OID->addDecl(Setter);
4012 }
4013 }
4014
4015 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4016 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4017 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4018
4019 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4020 ObjCMethodDecl *Method =
4021 cast_or_null<ObjCMethodDecl>(allMethods[i]);
4022
4023 if (!Method) continue; // Already issued a diagnostic.
4024 if (Method->isInstanceMethod()) {
4025 /// Check for instance method of the same name with incompatible types
4026 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4027 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4028 : false;
4029 if ((isInterfaceDeclKind && PrevMethod && !match)
4030 || (checkIdenticalMethods && match)) {
4031 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4032 << Method->getDeclName();
4033 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4034 Method->setInvalidDecl();
4035 } else {
4036 if (PrevMethod) {
4037 Method->setAsRedeclaration(PrevMethod);
4038 if (!Context.getSourceManager().isInSystemHeader(
4039 Method->getLocation()))
4040 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4041 << Method->getDeclName();
4042 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4043 }
4044 InsMap[Method->getSelector()] = Method;
4045 /// The following allows us to typecheck messages to "id".
4047 }
4048 } else {
4049 /// Check for class method of the same name with incompatible types
4050 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4051 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4052 : false;
4053 if ((isInterfaceDeclKind && PrevMethod && !match)
4054 || (checkIdenticalMethods && match)) {
4055 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4056 << Method->getDeclName();
4057 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4058 Method->setInvalidDecl();
4059 } else {
4060 if (PrevMethod) {
4061 Method->setAsRedeclaration(PrevMethod);
4062 if (!Context.getSourceManager().isInSystemHeader(
4063 Method->getLocation()))
4064 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4065 << Method->getDeclName();
4066 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4067 }
4068 ClsMap[Method->getSelector()] = Method;
4070 }
4071 }
4072 }
4073 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4074 // Nothing to do here.
4075 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4076 // Categories are used to extend the class by declaring new methods.
4077 // By the same token, they are also used to add new properties. No
4078 // need to compare the added property to those in the class.
4079
4080 if (C->IsClassExtension()) {
4081 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4083 }
4084
4086 C->protocols());
4087 }
4088 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4089 if (CDecl->getIdentifier())
4090 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4091 // user-defined setter/getter. It also synthesizes setter/getter methods
4092 // and adds them to the DeclContext and global method pools.
4093 for (auto *I : CDecl->properties())
4095 CDecl->setAtEndRange(AtEnd);
4096 }
4097 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4098 IC->setAtEndRange(AtEnd);
4099 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4100 // Any property declared in a class extension might have user
4101 // declared setter or getter in current class extension or one
4102 // of the other class extensions. Mark them as synthesized as
4103 // property will be synthesized when property with same name is
4104 // seen in the @implementation.
4105 for (const auto *Ext : IDecl->visible_extensions()) {
4106 for (const auto *Property : Ext->instance_properties()) {
4107 // Skip over properties declared @dynamic
4108 if (const ObjCPropertyImplDecl *PIDecl
4109 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4110 Property->getQueryKind()))
4111 if (PIDecl->getPropertyImplementation()
4113 continue;
4114
4115 for (const auto *Ext : IDecl->visible_extensions()) {
4116 if (ObjCMethodDecl *GetterMethod =
4117 Ext->getInstanceMethod(Property->getGetterName()))
4118 GetterMethod->setPropertyAccessor(true);
4119 if (!Property->isReadOnly())
4120 if (ObjCMethodDecl *SetterMethod
4121 = Ext->getInstanceMethod(Property->getSetterName()))
4122 SetterMethod->setPropertyAccessor(true);
4123 }
4124 }
4125 }
4126 ImplMethodsVsClassMethods(S, IC, IDecl);
4130 if (IDecl->hasDesignatedInitializers())
4134
4135 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4136 if (IDecl->getSuperClass() == nullptr) {
4137 // This class has no superclass, so check that it has been marked with
4138 // __attribute((objc_root_class)).
4139 if (!HasRootClassAttr) {
4140 SourceLocation DeclLoc(IDecl->getLocation());
4141 SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(DeclLoc));
4142 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4143 << IDecl->getIdentifier();
4144 // See if NSObject is in the current scope, and if it is, suggest
4145 // adding " : NSObject " to the class declaration.
4148 DeclLoc, Sema::LookupOrdinaryName);
4149 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4150 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4151 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4152 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4153 } else {
4154 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4155 }
4156 }
4157 } else if (HasRootClassAttr) {
4158 // Complain that only root classes may have this attribute.
4159 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4160 }
4161
4162 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4163 // An interface can subclass another interface with a
4164 // objc_subclassing_restricted attribute when it has that attribute as
4165 // well (because of interfaces imported from Swift). Therefore we have
4166 // to check if we can subclass in the implementation as well.
4167 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4168 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4169 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4170 Diag(Super->getLocation(), diag::note_class_declared);
4171 }
4172 }
4173
4174 if (IDecl->hasAttr<ObjCClassStubAttr>())
4175 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4176
4178 while (IDecl->getSuperClass()) {
4179 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4180 IDecl = IDecl->getSuperClass();
4181 }
4182 }
4183 }
4185 } else if (ObjCCategoryImplDecl* CatImplClass =
4186 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4187 CatImplClass->setAtEndRange(AtEnd);
4188
4189 // Find category interface decl and then check that all methods declared
4190 // in this interface are implemented in the category @implementation.
4191 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4192 if (ObjCCategoryDecl *Cat
4193 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4194 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4195 }
4196 }
4197 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4198 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4199 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4200 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4201 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4202 Diag(Super->getLocation(), diag::note_class_declared);
4203 }
4204 }
4205
4206 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4207 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4208 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4209 }
4211 if (isInterfaceDeclKind) {
4212 // Reject invalid vardecls.
4213 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4214 DeclGroupRef DG = allTUVars[i].get();
4215 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4216 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4217 if (!VDecl->hasExternalStorage())
4218 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4219 }
4220 }
4221 }
4223
4224 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4225 DeclGroupRef DG = allTUVars[i].get();
4226 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4227 (*I)->setTopLevelDeclInObjCContainer();
4229 }
4230
4231 SemaRef.ActOnDocumentableDecl(ClassDecl);
4232 return ClassDecl;
4233}
4234
4235/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4236/// objective-c's type qualifier from the parser version of the same info.
4239 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4240}
4241
4242/// Check whether the declared result type of the given Objective-C
4243/// method declaration is compatible with the method's class.
4244///
4247 ObjCInterfaceDecl *CurrentClass) {
4248 QualType ResultType = Method->getReturnType();
4249
4250 // If an Objective-C method inherits its related result type, then its
4251 // declared result type must be compatible with its own class type. The
4252 // declared result type is compatible if:
4253 if (const ObjCObjectPointerType *ResultObjectType
4254 = ResultType->getAs<ObjCObjectPointerType>()) {
4255 // - it is id or qualified id, or
4256 if (ResultObjectType->isObjCIdType() ||
4257 ResultObjectType->isObjCQualifiedIdType())
4259
4260 if (CurrentClass) {
4261 if (ObjCInterfaceDecl *ResultClass
4262 = ResultObjectType->getInterfaceDecl()) {
4263 // - it is the same as the method's class type, or
4264 if (declaresSameEntity(CurrentClass, ResultClass))
4266
4267 // - it is a superclass of the method's class type
4268 if (ResultClass->isSuperClassOf(CurrentClass))
4270 }
4271 } else {
4272 // Any Objective-C pointer type might be acceptable for a protocol
4273 // method; we just don't know.
4274 return SemaObjC::RTC_Unknown;
4275 }
4276 }
4277
4279}
4280
4281namespace {
4282/// A helper class for searching for methods which a particular method
4283/// overrides.
4284class OverrideSearch {
4285public:
4286 const ObjCMethodDecl *Method;
4288 bool Recursive;
4289
4290public:
4291 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4292 Selector selector = method->getSelector();
4293
4294 // Bypass this search if we've never seen an instance/class method
4295 // with this selector before.
4297 S.ObjC().MethodPool.find(selector);
4298 if (it == S.ObjC().MethodPool.end()) {
4299 if (!S.getExternalSource()) return;
4300 S.ObjC().ReadMethodPool(selector);
4301
4302 it = S.ObjC().MethodPool.find(selector);
4303 if (it == S.ObjC().MethodPool.end())
4304 return;
4305 }
4306 const ObjCMethodList &list =
4307 method->isInstanceMethod() ? it->second.first : it->second.second;
4308 if (!list.getMethod()) return;
4309
4310 const ObjCContainerDecl *container
4311 = cast<ObjCContainerDecl>(method->getDeclContext());
4312
4313 // Prevent the search from reaching this container again. This is
4314 // important with categories, which override methods from the
4315 // interface and each other.
4316 if (const ObjCCategoryDecl *Category =
4317 dyn_cast<ObjCCategoryDecl>(container)) {
4318 searchFromContainer(container);
4319 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4320 searchFromContainer(Interface);
4321 } else {
4322 searchFromContainer(container);
4323 }
4324 }
4325
4326 typedef decltype(Overridden)::iterator iterator;
4327 iterator begin() const { return Overridden.begin(); }
4328 iterator end() const { return Overridden.end(); }
4329
4330private:
4331 void searchFromContainer(const ObjCContainerDecl *container) {
4332 if (container->isInvalidDecl()) return;
4333
4334 switch (container->getDeclKind()) {
4335#define OBJCCONTAINER(type, base) \
4336 case Decl::type: \
4337 searchFrom(cast<type##Decl>(container)); \
4338 break;
4339#define ABSTRACT_DECL(expansion)
4340#define DECL(type, base) \
4341 case Decl::type:
4342#include "clang/AST/DeclNodes.inc"
4343 llvm_unreachable("not an ObjC container!");
4344 }
4345 }
4346
4347 void searchFrom(const ObjCProtocolDecl *protocol) {
4348 if (!protocol->hasDefinition())
4349 return;
4350
4351 // A method in a protocol declaration overrides declarations from
4352 // referenced ("parent") protocols.
4353 search(protocol->getReferencedProtocols());
4354 }
4355
4356 void searchFrom(const ObjCCategoryDecl *category) {
4357 // A method in a category declaration overrides declarations from
4358 // the main class and from protocols the category references.
4359 // The main class is handled in the constructor.
4360 search(category->getReferencedProtocols());
4361 }
4362
4363 void searchFrom(const ObjCCategoryImplDecl *impl) {
4364 // A method in a category definition that has a category
4365 // declaration overrides declarations from the category
4366 // declaration.
4367 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4368 search(category);
4369 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4370 search(Interface);
4371
4372 // Otherwise it overrides declarations from the class.
4373 } else if (const auto *Interface = impl->getClassInterface()) {
4374 search(Interface);
4375 }
4376 }
4377
4378 void searchFrom(const ObjCInterfaceDecl *iface) {
4379 // A method in a class declaration overrides declarations from
4380 if (!iface->hasDefinition())
4381 return;
4382
4383 // - categories,
4384 for (auto *Cat : iface->known_categories())
4385 search(Cat);
4386
4387 // - the super class, and
4388 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4389 search(super);
4390
4391 // - any referenced protocols.
4392 search(iface->getReferencedProtocols());
4393 }
4394
4395 void searchFrom(const ObjCImplementationDecl *impl) {
4396 // A method in a class implementation overrides declarations from
4397 // the class interface.
4398 if (const auto *Interface = impl->getClassInterface())
4399 search(Interface);
4400 }
4401
4402 void search(const ObjCProtocolList &protocols) {
4403 for (const auto *Proto : protocols)
4404 search(Proto);
4405 }
4406
4407 void search(const ObjCContainerDecl *container) {
4408 // Check for a method in this container which matches this selector.
4409 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4410 Method->isInstanceMethod(),
4411 /*AllowHidden=*/true);
4412
4413 // If we find one, record it and bail out.
4414 if (meth) {
4415 Overridden.insert(meth);
4416 return;
4417 }
4418
4419 // Otherwise, search for methods that a hypothetical method here
4420 // would have overridden.
4421
4422 // Note that we're now in a recursive case.
4423 Recursive = true;
4424
4425 searchFromContainer(container);
4426 }
4427};
4428} // end anonymous namespace
4429
4431 ObjCMethodDecl *overridden) {
4432 if (overridden->isDirectMethod()) {
4433 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4434 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4435 Diag(attr->getLocation(), diag::note_previous_declaration);
4436 } else if (method->isDirectMethod()) {
4437 const auto *attr = method->getAttr<ObjCDirectAttr>();
4438 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4439 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4440 Diag(overridden->getLocation(), diag::note_previous_declaration);
4441 }
4442}
4443
4445 ObjCInterfaceDecl *CurrentClass,
4447 ASTContext &Context = getASTContext();
4448 if (!ObjCMethod)
4449 return;
4450 auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4451 // Checking canonical decl works across modules.
4452 return M->getClassInterface()->getCanonicalDecl() ==
4453 CurrentClass->getCanonicalDecl();
4454 };
4455 // Search for overridden methods and merge information down from them.
4456 OverrideSearch overrides(SemaRef, ObjCMethod);
4457 // Keep track if the method overrides any method in the class's base classes,
4458 // its protocols, or its categories' protocols; we will keep that info
4459 // in the ObjCMethodDecl.
4460 // For this info, a method in an implementation is not considered as
4461 // overriding the same method in the interface or its categories.
4462 bool hasOverriddenMethodsInBaseOrProtocol = false;
4463 for (ObjCMethodDecl *overridden : overrides) {
4464 if (!hasOverriddenMethodsInBaseOrProtocol) {
4465 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4466 !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4467 CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4468 hasOverriddenMethodsInBaseOrProtocol = true;
4469 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4470 // OverrideSearch will return as "overridden" the same method in the
4471 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4472 // check whether a category of a base class introduced a method with the
4473 // same selector, after the interface method declaration.
4474 // To avoid unnecessary lookups in the majority of cases, we use the
4475 // extra info bits in GlobalMethodPool to check whether there were any
4476 // category methods with this selector.
4478 MethodPool.find(ObjCMethod->getSelector());
4479 if (It != MethodPool.end()) {
4480 ObjCMethodList &List =
4481 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4482 unsigned CategCount = List.getBits();
4483 if (CategCount > 0) {
4484 // If the method is in a category we'll do lookup if there were at
4485 // least 2 category methods recorded, otherwise only one will do.
4486 if (CategCount > 1 ||
4487 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4488 OverrideSearch overrides(SemaRef, overridden);
4489 for (ObjCMethodDecl *SuperOverridden : overrides) {
4490 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4491 !IsMethodInCurrentClass(SuperOverridden)) {
4492 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4493 hasOverriddenMethodsInBaseOrProtocol = true;
4494 overridden->setOverriding(true);
4495 break;
4496 }
4497 }
4498 }
4499 }
4500 }
4501 }
4502 }
4503
4504 // Propagate down the 'related result type' bit from overridden methods.
4505 if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4506 ObjCMethod->setRelatedResultType();
4507
4508 // Then merge the declarations.
4509 SemaRef.mergeObjCMethodDecls(ObjCMethod, overridden);
4510
4511 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4512 continue; // Conflicting properties are detected elsewhere.
4513
4514 // Check for overriding methods
4515 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4516 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4517 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4518 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4519
4520 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4521 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4522 !overridden->isImplicit() /* not meant for properties */) {
4523 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4524 E = ObjCMethod->param_end();
4525 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4526 PrevE = overridden->param_end();
4527 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4528 assert(PrevI != overridden->param_end() && "Param mismatch");
4529 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4530 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4531 // If type of argument of method in this class does not match its
4532 // respective argument type in the super class method, issue warning;
4533 if (!Context.typesAreCompatible(T1, T2)) {
4534 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4535 << T1 << T2;
4536 Diag(overridden->getLocation(), diag::note_previous_declaration);
4537 break;
4538 }
4539 }
4540 }
4541 }
4542
4543 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4544}
4545
4546/// Merge type nullability from for a redeclaration of the same entity,
4547/// producing the updated type of the redeclared entity.
4549 QualType type,
4550 bool usesCSKeyword,
4551 SourceLocation prevLoc,
4552 QualType prevType,
4553 bool prevUsesCSKeyword) {
4554 // Determine the nullability of both types.
4555 auto nullability = type->getNullability();
4556 auto prevNullability = prevType->getNullability();
4557
4558 // Easy case: both have nullability.
4559 if (nullability.has_value() == prevNullability.has_value()) {
4560 // Neither has nullability; continue.
4561 if (!nullability)
4562 return type;
4563
4564 // The nullabilities are equivalent; do nothing.
4565 if (*nullability == *prevNullability)
4566 return type;
4567
4568 // Complain about mismatched nullability.
4569 S.Diag(loc, diag::err_nullability_conflicting)
4570 << DiagNullabilityKind(*nullability, usesCSKeyword)
4571 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4572 return type;
4573 }
4574
4575 // If it's the redeclaration that has nullability, don't change anything.
4576 if (nullability)
4577 return type;
4578
4579 // Otherwise, provide the result with the same nullability.
4580 return S.Context.getAttributedType(
4582 type, type);
4583}
4584
4585/// Merge information from the declaration of a method in the \@interface
4586/// (or a category/extension) into the corresponding method in the
4587/// @implementation (for a class or category).
4589 ObjCMethodDecl *method,
4590 ObjCMethodDecl *prevMethod) {
4591 // Merge the objc_requires_super attribute.
4592 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4593 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4594 // merge the attribute into implementation.
4595 method->addAttr(
4596 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4597 method->getLocation()));
4598 }
4599
4600 // Merge nullability of the result type.
4601 QualType newReturnType
4603 S, method->getReturnTypeSourceRange().getBegin(),
4604 method->getReturnType(),
4606 prevMethod->getReturnTypeSourceRange().getBegin(),
4607 prevMethod->getReturnType(),
4609 method->setReturnType(newReturnType);
4610
4611 // Handle each of the parameters.
4612 unsigned numParams = method->param_size();
4613 unsigned numPrevParams = prevMethod->param_size();
4614 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4615 ParmVarDecl *param = method->param_begin()[i];
4616 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4617
4618 // Merge nullability.
4619 QualType newParamType
4621 S, param->getLocation(), param->getType(),
4623 prevParam->getLocation(), prevParam->getType(),
4625 param->setType(newParamType);
4626 }
4627}
4628
4629/// Verify that the method parameters/return value have types that are supported
4630/// by the x86 target.
4632 const ObjCMethodDecl *Method) {
4633 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4634 llvm::Triple::x86 &&
4635 "x86-specific check invoked for a different target");
4637 QualType T;
4638 for (const ParmVarDecl *P : Method->parameters()) {
4639 if (P->getType()->isVectorType()) {
4640 Loc = P->getBeginLoc();
4641 T = P->getType();
4642 break;
4643 }
4644 }
4645 if (Loc.isInvalid()) {
4646 if (Method->getReturnType()->isVectorType()) {
4648 T = Method->getReturnType();
4649 } else
4650 return;
4651 }
4652
4653 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4654 // iOS < 9 and macOS < 10.11.
4655 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4656 VersionTuple AcceptedInVersion;
4657 if (Triple.getOS() == llvm::Triple::IOS)
4658 AcceptedInVersion = VersionTuple(/*Major=*/9);
4659 else if (Triple.isMacOSX())
4660 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4661 else
4662 return;
4664 AcceptedInVersion)
4665 return;
4666 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4667 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4668 : /*parameter*/ 0)
4669 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4670}
4671
4672static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4673 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4674 CD->hasAttr<ObjCDirectMembersAttr>()) {
4675 Method->addAttr(
4676 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4677 }
4678}
4679
4681 ObjCMethodDecl *Method,
4682 ObjCImplDecl *ImpDecl = nullptr) {
4683 auto Sel = Method->getSelector();
4684 bool isInstance = Method->isInstanceMethod();
4685 bool diagnosed = false;
4686
4687 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4688 if (diagnosed || IMD->isImplicit())
4689 return;
4690 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4691 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4692 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4693 << Method->getDeclName();
4694 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4695 diagnosed = true;
4696 }
4697 };
4698
4699 // Look for any other declaration of this method anywhere we can see in this
4700 // compilation unit.
4701 //
4702 // We do not use IDecl->lookupMethod() because we have specific needs:
4703 //
4704 // - we absolutely do not need to walk protocols, because
4705 // diag::err_objc_direct_on_protocol has already been emitted
4706 // during parsing if there's a conflict,
4707 //
4708 // - when we do not find a match in a given @interface container,
4709 // we need to attempt looking it up in the @implementation block if the
4710 // translation unit sees it to find more clashes.
4711
4712 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4713 diagClash(IMD);
4714 else if (auto *Impl = IDecl->getImplementation())
4715 if (Impl != ImpDecl)
4716 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4717 diagClash(IMD);
4718
4719 for (const auto *Cat : IDecl->visible_categories())
4720 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4721 diagClash(IMD);
4722 else if (auto CatImpl = Cat->getImplementation())
4723 if (CatImpl != ImpDecl)
4724 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4725 diagClash(IMD);
4726}
4727
4729 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4730 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4731 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4732 // optional arguments. The number of types/arguments is obtained
4733 // from the Sel.getNumArgs().
4734 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4735 unsigned CNumArgs, // c-style args
4736 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4737 bool isVariadic, bool MethodDefinition) {
4738 ASTContext &Context = getASTContext();
4739 // Make sure we can establish a context for the method.
4741 Diag(MethodLoc, diag::err_missing_method_context);
4742 return nullptr;
4743 }
4744
4745 Decl *ClassDecl = cast<ObjCContainerDecl>(SemaRef.CurContext);
4746 QualType resultDeclType;
4747
4748 bool HasRelatedResultType = false;
4749 TypeSourceInfo *ReturnTInfo = nullptr;
4750 if (ReturnType) {
4751 resultDeclType = SemaRef.GetTypeFromParser(ReturnType, &ReturnTInfo);
4752
4753 if (SemaRef.CheckFunctionReturnType(resultDeclType, MethodLoc))
4754 return nullptr;
4755
4756 QualType bareResultType = resultDeclType;
4757 (void)AttributedType::stripOuterNullability(bareResultType);
4758 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4759 } else { // get the type for "id".
4760 resultDeclType = Context.getObjCIdType();
4761 Diag(MethodLoc, diag::warn_missing_method_return_type)
4762 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4763 }
4764
4766 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo,
4767 SemaRef.CurContext, MethodType == tok::minus, isVariadic,
4768 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4769 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4770 MethodDeclKind == tok::objc_optional
4773 HasRelatedResultType);
4774
4776
4777 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4778 QualType ArgType;
4779 TypeSourceInfo *DI;
4780
4781 if (!ArgInfo[i].Type) {
4782 ArgType = Context.getObjCIdType();
4783 DI = nullptr;
4784 } else {
4785 ArgType = SemaRef.GetTypeFromParser(ArgInfo[i].Type, &DI);
4786 }
4787
4788 LookupResult R(SemaRef, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4791 SemaRef.LookupName(R, S);
4792 if (R.isSingleResult()) {
4793 NamedDecl *PrevDecl = R.getFoundDecl();
4794 if (S->isDeclScope(PrevDecl)) {
4795 Diag(ArgInfo[i].NameLoc,
4796 (MethodDefinition ? diag::warn_method_param_redefinition
4797 : diag::warn_method_param_declaration))
4798 << ArgInfo[i].Name;
4799 Diag(PrevDecl->getLocation(),
4800 diag::note_previous_declaration);
4801 }
4802 }
4803
4804 SourceLocation StartLoc = DI
4805 ? DI->getTypeLoc().getBeginLoc()
4806 : ArgInfo[i].NameLoc;
4807
4808 ParmVarDecl *Param =
4809 SemaRef.CheckParameter(ObjCMethod, StartLoc, ArgInfo[i].NameLoc,
4810 ArgInfo[i].Name, ArgType, DI, SC_None);
4811
4812 Param->setObjCMethodScopeInfo(i);
4813
4814 Param->setObjCDeclQualifier(
4815 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4816
4817 // Apply the attributes to the parameter.
4819 ArgInfo[i].ArgAttrs);
4821 SemaRef.ProcessAPINotes(Param);
4822
4823 if (Param->hasAttr<BlocksAttr>()) {
4824 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4825 Param->setInvalidDecl();
4826 }
4827 S->AddDecl(Param);
4828 SemaRef.IdResolver.AddDecl(Param);
4829
4830 Params.push_back(Param);
4831 }
4832
4833 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4834 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4835 QualType ArgType = Param->getType();
4836 if (ArgType.isNull())
4837 ArgType = Context.getObjCIdType();
4838 else
4839 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4840 ArgType = Context.getAdjustedParameterType(ArgType);
4841
4842 Param->setDeclContext(ObjCMethod);
4843 Params.push_back(Param);
4844 }
4845
4846 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4847 ObjCMethod->setObjCDeclQualifier(
4849
4850 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList);
4852 SemaRef.ProcessAPINotes(ObjCMethod);
4853
4854 // Add the method now.
4855 const ObjCMethodDecl *PrevMethod = nullptr;
4856 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4857 if (MethodType == tok::minus) {
4858 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4859 ImpDecl->addInstanceMethod(ObjCMethod);
4860 } else {
4861 PrevMethod = ImpDecl->getClassMethod(Sel);
4862 ImpDecl->addClassMethod(ObjCMethod);
4863 }
4864
4865 // If this method overrides a previous @synthesize declaration,
4866 // register it with the property. Linear search through all
4867 // properties here, because the autosynthesized stub hasn't been
4868 // made visible yet, so it can be overridden by a later
4869 // user-specified implementation.
4870 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4871 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4872 if (Setter->getSelector() == Sel &&
4873 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4874 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4875 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4876 }
4877 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4878 if (Getter->getSelector() == Sel &&
4879 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4880 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4881 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4882 break;
4883 }
4884 }
4885
4886 // A method is either tagged direct explicitly, or inherits it from its
4887 // canonical declaration.
4888 //
4889 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4890 // because IDecl->lookupMethod() returns more possible matches than just
4891 // the canonical declaration.
4892 if (!ObjCMethod->isDirectMethod()) {
4893 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4894 if (CanonicalMD->isDirectMethod()) {
4895 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4896 ObjCMethod->addAttr(
4897 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4898 }
4899 }
4900
4901 // Merge information from the @interface declaration into the
4902 // @implementation.
4903 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4904 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4905 ObjCMethod->isInstanceMethod())) {
4906 mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD);
4907
4908 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4909 // in one of these places:
4910 //
4911 // (1) the canonical declaration in an @interface container paired
4912 // with the ImplDecl,
4913 // (2) non canonical declarations in @interface not paired with the
4914 // ImplDecl for the same Class,
4915 // (3) any superclass container.
4916 //
4917 // Direct methods only allow for canonical declarations in the matching
4918 // container (case 1).
4919 //
4920 // Direct methods overriding a superclass declaration (case 3) is
4921 // handled during overrides checks in CheckObjCMethodOverrides().
4922 //
4923 // We deal with same-class container mismatches (Case 2) here.
4924 if (IDecl == IMD->getClassInterface()) {
4925 auto diagContainerMismatch = [&] {
4926 int decl = 0, impl = 0;
4927
4928 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4929 decl = Cat->IsClassExtension() ? 1 : 2;
4930
4931 if (isa<ObjCCategoryImplDecl>(ImpDecl))
4932 impl = 1 + (decl != 0);
4933
4934 Diag(ObjCMethod->getLocation(),
4935 diag::err_objc_direct_impl_decl_mismatch)
4936 << decl << impl;
4937 Diag(IMD->getLocation(), diag::note_previous_declaration);
4938 };
4939
4940 if (ObjCMethod->isDirectMethod()) {
4941 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4942 if (ObjCMethod->getCanonicalDecl() != IMD) {
4943 diagContainerMismatch();
4944 } else if (!IMD->isDirectMethod()) {
4945 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4946 Diag(IMD->getLocation(), diag::note_previous_declaration);
4947 }
4948 } else if (IMD->isDirectMethod()) {
4949 const auto