clang  9.0.0svn
Type.cpp
Go to the documentation of this file.
1 //===- Type.cpp - Type representation and manipulation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements type-related functionality.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Type.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
27 #include "clang/AST/TemplateBase.h"
28 #include "clang/AST/TemplateName.h"
29 #include "clang/AST/TypeVisitor.h"
33 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/Linkage.h"
36 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Visibility.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/ArrayRef.h"
43 #include "llvm/ADT/FoldingSet.h"
44 #include "llvm/ADT/None.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <cstring>
53 
54 using namespace clang;
55 
57  return (*this != Other) &&
58  // CVR qualifiers superset
59  (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
60  // ObjC GC qualifiers superset
61  ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
62  (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
63  // Address space superset.
64  ((getAddressSpace() == Other.getAddressSpace()) ||
65  (hasAddressSpace()&& !Other.hasAddressSpace())) &&
66  // Lifetime qualifier superset.
67  ((getObjCLifetime() == Other.getObjCLifetime()) ||
68  (hasObjCLifetime() && !Other.hasObjCLifetime()));
69 }
70 
72  const Type* ty = getTypePtr();
73  NamedDecl *ND = nullptr;
74  if (ty->isPointerType() || ty->isReferenceType())
76  else if (ty->isRecordType())
77  ND = ty->getAs<RecordType>()->getDecl();
78  else if (ty->isEnumeralType())
79  ND = ty->getAs<EnumType>()->getDecl();
80  else if (ty->getTypeClass() == Type::Typedef)
81  ND = ty->getAs<TypedefType>()->getDecl();
82  else if (ty->isArrayType())
83  return ty->castAsArrayTypeUnsafe()->
84  getElementType().getBaseTypeIdentifier();
85 
86  if (ND)
87  return ND->getIdentifier();
88  return nullptr;
89 }
90 
92  const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
93  return ClassDecl && ClassDecl->mayBeDynamicClass();
94 }
95 
97  const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
98  return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
99 }
100 
101 bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
102  if (T.isConstQualified())
103  return true;
104 
105  if (const ArrayType *AT = Ctx.getAsArrayType(T))
106  return AT->getElementType().isConstant(Ctx);
107 
109 }
110 
112  QualType ElementType,
113  const llvm::APInt &NumElements) {
114  uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
115 
116  // Fast path the common cases so we can avoid the conservative computation
117  // below, which in common cases allocates "large" APSInt values, which are
118  // slow.
119 
120  // If the element size is a power of 2, we can directly compute the additional
121  // number of addressing bits beyond those required for the element count.
122  if (llvm::isPowerOf2_64(ElementSize)) {
123  return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
124  }
125 
126  // If both the element count and element size fit in 32-bits, we can do the
127  // computation directly in 64-bits.
128  if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
129  (NumElements.getZExtValue() >> 32) == 0) {
130  uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
131  return 64 - llvm::countLeadingZeros(TotalSize);
132  }
133 
134  // Otherwise, use APSInt to handle arbitrary sized values.
135  llvm::APSInt SizeExtended(NumElements, true);
136  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
137  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
138  SizeExtended.getBitWidth()) * 2);
139 
140  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
141  TotalSize *= SizeExtended;
142 
143  return TotalSize.getActiveBits();
144 }
145 
147  unsigned Bits = Context.getTypeSize(Context.getSizeType());
148 
149  // Limit the number of bits in size_t so that maximal bit size fits 64 bit
150  // integer (see PR8256). We can do this as currently there is no hardware
151  // that supports full 64-bit virtual space.
152  if (Bits > 61)
153  Bits = 61;
154 
155  return Bits;
156 }
157 
158 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
159  QualType et, QualType can,
160  Expr *e, ArraySizeModifier sm,
161  unsigned tq,
162  SourceRange brackets)
163  : ArrayType(DependentSizedArray, et, can, sm, tq,
165  (e && e->containsUnexpandedParameterPack()))),
166  Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
167 
168 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
169  const ASTContext &Context,
170  QualType ET,
171  ArraySizeModifier SizeMod,
172  unsigned TypeQuals,
173  Expr *E) {
174  ID.AddPointer(ET.getAsOpaquePtr());
175  ID.AddInteger(SizeMod);
176  ID.AddInteger(TypeQuals);
177  E->Profile(ID, Context, true);
178 }
179 
180 DependentVectorType::DependentVectorType(
181  const ASTContext &Context, QualType ElementType, QualType CanonType,
182  Expr *SizeExpr, SourceLocation Loc, VectorType::VectorKind VecKind)
183  : Type(DependentVector, CanonType, /*Dependent=*/true,
184  /*InstantiationDependent=*/true,
185  ElementType->isVariablyModifiedType(),
186  ElementType->containsUnexpandedParameterPack() ||
187  (SizeExpr && SizeExpr->containsUnexpandedParameterPack())),
188  Context(Context), ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
189  VectorTypeBits.VecKind = VecKind;
190 }
191 
192 void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
193  const ASTContext &Context,
194  QualType ElementType, const Expr *SizeExpr,
195  VectorType::VectorKind VecKind) {
196  ID.AddPointer(ElementType.getAsOpaquePtr());
197  ID.AddInteger(VecKind);
198  SizeExpr->Profile(ID, Context, true);
199 }
200 
201 DependentSizedExtVectorType::DependentSizedExtVectorType(const
202  ASTContext &Context,
203  QualType ElementType,
204  QualType can,
205  Expr *SizeExpr,
206  SourceLocation loc)
207  : Type(DependentSizedExtVector, can, /*Dependent=*/true,
208  /*InstantiationDependent=*/true,
209  ElementType->isVariablyModifiedType(),
210  (ElementType->containsUnexpandedParameterPack() ||
211  (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
212  Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
213  loc(loc) {}
214 
215 void
216 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
217  const ASTContext &Context,
218  QualType ElementType, Expr *SizeExpr) {
219  ID.AddPointer(ElementType.getAsOpaquePtr());
220  SizeExpr->Profile(ID, Context, true);
221 }
222 
223 DependentAddressSpaceType::DependentAddressSpaceType(
224  const ASTContext &Context, QualType PointeeType, QualType can,
225  Expr *AddrSpaceExpr, SourceLocation loc)
226  : Type(DependentAddressSpace, can, /*Dependent=*/true,
227  /*InstantiationDependent=*/true,
228  PointeeType->isVariablyModifiedType(),
229  (PointeeType->containsUnexpandedParameterPack() ||
230  (AddrSpaceExpr &&
231  AddrSpaceExpr->containsUnexpandedParameterPack()))),
232  Context(Context), AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType),
233  loc(loc) {}
234 
235 void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
236  const ASTContext &Context,
237  QualType PointeeType,
238  Expr *AddrSpaceExpr) {
239  ID.AddPointer(PointeeType.getAsOpaquePtr());
240  AddrSpaceExpr->Profile(ID, Context, true);
241 }
242 
243 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
244  VectorKind vecKind)
245  : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
246 
247 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
248  QualType canonType, VectorKind vecKind)
249  : Type(tc, canonType, vecType->isDependentType(),
250  vecType->isInstantiationDependentType(),
251  vecType->isVariablyModifiedType(),
253  ElementType(vecType) {
254  VectorTypeBits.VecKind = vecKind;
255  VectorTypeBits.NumElements = nElements;
256 }
257 
258 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
259 /// element type of the array, potentially with type qualifiers missing.
260 /// This method should never be used when type qualifiers are meaningful.
262  // If this is directly an array type, return it.
263  if (const auto *ATy = dyn_cast<ArrayType>(this))
264  return ATy->getElementType().getTypePtr();
265 
266  // If the canonical form of this type isn't the right kind, reject it.
267  if (!isa<ArrayType>(CanonicalType))
268  return nullptr;
269 
270  // If this is a typedef for an array type, strip the typedef off without
271  // losing all typedef information.
272  return cast<ArrayType>(getUnqualifiedDesugaredType())
274 }
275 
276 /// getDesugaredType - Return the specified type with any "sugar" removed from
277 /// the type. This takes off typedefs, typeof's etc. If the outer level of
278 /// the type is already concrete, it returns it unmodified. This is similar
279 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
280 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
281 /// concrete.
283  SplitQualType split = getSplitDesugaredType(T);
284  return Context.getQualifiedType(split.Ty, split.Quals);
285 }
286 
287 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
288  const ASTContext &Context) {
289  SplitQualType split = type.split();
291  return Context.getQualifiedType(desugar, split.Quals);
292 }
293 
294 // Check that no type class is polymorphic. LLVM style RTTI should be used
295 // instead. If absolutely needed an exception can still be added here by
296 // defining the appropriate macro (but please don't do this).
297 #define TYPE(CLASS, BASE) \
298  static_assert(!std::is_polymorphic<CLASS##Type>::value, \
299  #CLASS "Type should not be polymorphic!");
300 #include "clang/AST/TypeNodes.def"
301 
303  switch (getTypeClass()) {
304 #define ABSTRACT_TYPE(Class, Parent)
305 #define TYPE(Class, Parent) \
306  case Type::Class: { \
307  const auto *ty = cast<Class##Type>(this); \
308  if (!ty->isSugared()) return QualType(ty, 0); \
309  return ty->desugar(); \
310  }
311 #include "clang/AST/TypeNodes.def"
312  }
313  llvm_unreachable("bad type kind!");
314 }
315 
318 
319  QualType Cur = T;
320  while (true) {
321  const Type *CurTy = Qs.strip(Cur);
322  switch (CurTy->getTypeClass()) {
323 #define ABSTRACT_TYPE(Class, Parent)
324 #define TYPE(Class, Parent) \
325  case Type::Class: { \
326  const auto *Ty = cast<Class##Type>(CurTy); \
327  if (!Ty->isSugared()) \
328  return SplitQualType(Ty, Qs); \
329  Cur = Ty->desugar(); \
330  break; \
331  }
332 #include "clang/AST/TypeNodes.def"
333  }
334  }
335 }
336 
337 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
338  SplitQualType split = type.split();
339 
340  // All the qualifiers we've seen so far.
341  Qualifiers quals = split.Quals;
342 
343  // The last type node we saw with any nodes inside it.
344  const Type *lastTypeWithQuals = split.Ty;
345 
346  while (true) {
347  QualType next;
348 
349  // Do a single-step desugar, aborting the loop if the type isn't
350  // sugared.
351  switch (split.Ty->getTypeClass()) {
352 #define ABSTRACT_TYPE(Class, Parent)
353 #define TYPE(Class, Parent) \
354  case Type::Class: { \
355  const auto *ty = cast<Class##Type>(split.Ty); \
356  if (!ty->isSugared()) goto done; \
357  next = ty->desugar(); \
358  break; \
359  }
360 #include "clang/AST/TypeNodes.def"
361  }
362 
363  // Otherwise, split the underlying type. If that yields qualifiers,
364  // update the information.
365  split = next.split();
366  if (!split.Quals.empty()) {
367  lastTypeWithQuals = split.Ty;
368  quals.addConsistentQualifiers(split.Quals);
369  }
370  }
371 
372  done:
373  return SplitQualType(lastTypeWithQuals, quals);
374 }
375 
377  // FIXME: this seems inherently un-qualifiers-safe.
378  while (const auto *PT = T->getAs<ParenType>())
379  T = PT->getInnerType();
380  return T;
381 }
382 
383 /// This will check for a T (which should be a Type which can act as
384 /// sugar, such as a TypedefType) by removing any existing sugar until it
385 /// reaches a T or a non-sugared type.
386 template<typename T> static const T *getAsSugar(const Type *Cur) {
387  while (true) {
388  if (const auto *Sugar = dyn_cast<T>(Cur))
389  return Sugar;
390  switch (Cur->getTypeClass()) {
391 #define ABSTRACT_TYPE(Class, Parent)
392 #define TYPE(Class, Parent) \
393  case Type::Class: { \
394  const auto *Ty = cast<Class##Type>(Cur); \
395  if (!Ty->isSugared()) return 0; \
396  Cur = Ty->desugar().getTypePtr(); \
397  break; \
398  }
399 #include "clang/AST/TypeNodes.def"
400  }
401  }
402 }
403 
404 template <> const TypedefType *Type::getAs() const {
405  return getAsSugar<TypedefType>(this);
406 }
407 
408 template <> const TemplateSpecializationType *Type::getAs() const {
409  return getAsSugar<TemplateSpecializationType>(this);
410 }
411 
412 template <> const AttributedType *Type::getAs() const {
413  return getAsSugar<AttributedType>(this);
414 }
415 
416 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
417 /// sugar off the given type. This should produce an object of the
418 /// same dynamic type as the canonical type.
420  const Type *Cur = this;
421 
422  while (true) {
423  switch (Cur->getTypeClass()) {
424 #define ABSTRACT_TYPE(Class, Parent)
425 #define TYPE(Class, Parent) \
426  case Class: { \
427  const auto *Ty = cast<Class##Type>(Cur); \
428  if (!Ty->isSugared()) return Cur; \
429  Cur = Ty->desugar().getTypePtr(); \
430  break; \
431  }
432 #include "clang/AST/TypeNodes.def"
433  }
434  }
435 }
436 
437 bool Type::isClassType() const {
438  if (const auto *RT = getAs<RecordType>())
439  return RT->getDecl()->isClass();
440  return false;
441 }
442 
443 bool Type::isStructureType() const {
444  if (const auto *RT = getAs<RecordType>())
445  return RT->getDecl()->isStruct();
446  return false;
447 }
448 
450  if (const auto *RT = getAs<RecordType>())
451  return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
452  return false;
453 }
454 
455 bool Type::isInterfaceType() const {
456  if (const auto *RT = getAs<RecordType>())
457  return RT->getDecl()->isInterface();
458  return false;
459 }
460 
462  if (const auto *RT = getAs<RecordType>()) {
463  RecordDecl *RD = RT->getDecl();
464  return RD->isStruct() || RD->isClass() || RD->isInterface();
465  }
466  return false;
467 }
468 
470  if (const auto *PT = getAs<PointerType>())
471  return PT->getPointeeType()->isVoidType();
472  return false;
473 }
474 
475 bool Type::isUnionType() const {
476  if (const auto *RT = getAs<RecordType>())
477  return RT->getDecl()->isUnion();
478  return false;
479 }
480 
481 bool Type::isComplexType() const {
482  if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
483  return CT->getElementType()->isFloatingType();
484  return false;
485 }
486 
488  // Check for GCC complex integer extension.
489  return getAsComplexIntegerType();
490 }
491 
493  if (const auto *ET = getAs<EnumType>())
494  return ET->getDecl()->isScoped();
495  return false;
496 }
497 
499  if (const auto *Complex = getAs<ComplexType>())
500  if (Complex->getElementType()->isIntegerType())
501  return Complex;
502  return nullptr;
503 }
504 
506  if (const auto *PT = getAs<PointerType>())
507  return PT->getPointeeType();
508  if (const auto *OPT = getAs<ObjCObjectPointerType>())
509  return OPT->getPointeeType();
510  if (const auto *BPT = getAs<BlockPointerType>())
511  return BPT->getPointeeType();
512  if (const auto *RT = getAs<ReferenceType>())
513  return RT->getPointeeType();
514  if (const auto *MPT = getAs<MemberPointerType>())
515  return MPT->getPointeeType();
516  if (const auto *DT = getAs<DecayedType>())
517  return DT->getPointeeType();
518  return {};
519 }
520 
522  // If this is directly a structure type, return it.
523  if (const auto *RT = dyn_cast<RecordType>(this)) {
524  if (RT->getDecl()->isStruct())
525  return RT;
526  }
527 
528  // If the canonical form of this type isn't the right kind, reject it.
529  if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
530  if (!RT->getDecl()->isStruct())
531  return nullptr;
532 
533  // If this is a typedef for a structure type, strip the typedef off without
534  // losing all typedef information.
535  return cast<RecordType>(getUnqualifiedDesugaredType());
536  }
537  return nullptr;
538 }
539 
541  // If this is directly a union type, return it.
542  if (const auto *RT = dyn_cast<RecordType>(this)) {
543  if (RT->getDecl()->isUnion())
544  return RT;
545  }
546 
547  // If the canonical form of this type isn't the right kind, reject it.
548  if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
549  if (!RT->getDecl()->isUnion())
550  return nullptr;
551 
552  // If this is a typedef for a union type, strip the typedef off without
553  // losing all typedef information.
554  return cast<RecordType>(getUnqualifiedDesugaredType());
555  }
556 
557  return nullptr;
558 }
559 
561  const ObjCObjectType *&bound) const {
562  bound = nullptr;
563 
564  const auto *OPT = getAs<ObjCObjectPointerType>();
565  if (!OPT)
566  return false;
567 
568  // Easy case: id.
569  if (OPT->isObjCIdType())
570  return true;
571 
572  // If it's not a __kindof type, reject it now.
573  if (!OPT->isKindOfType())
574  return false;
575 
576  // If it's Class or qualified Class, it's not an object type.
577  if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
578  return false;
579 
580  // Figure out the type bound for the __kindof type.
581  bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
582  ->getAs<ObjCObjectType>();
583  return true;
584 }
585 
587  const auto *OPT = getAs<ObjCObjectPointerType>();
588  if (!OPT)
589  return false;
590 
591  // Easy case: Class.
592  if (OPT->isObjCClassType())
593  return true;
594 
595  // If it's not a __kindof type, reject it now.
596  if (!OPT->isKindOfType())
597  return false;
598 
599  // If it's Class or qualified Class, it's a class __kindof type.
600  return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
601 }
602 
603 ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D,
604  QualType can,
606  : Type(ObjCTypeParam, can, can->isDependentType(),
608  can->isVariablyModifiedType(),
609  /*ContainsUnexpandedParameterPack=*/false),
610  OTPDecl(const_cast<ObjCTypeParamDecl*>(D)) {
611  initialize(protocols);
612 }
613 
615  ArrayRef<QualType> typeArgs,
617  bool isKindOf)
618  : Type(ObjCObject, Canonical, Base->isDependentType(),
620  Base->isVariablyModifiedType(),
622  BaseType(Base) {
623  ObjCObjectTypeBits.IsKindOf = isKindOf;
624 
625  ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
626  assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
627  "bitfield overflow in type argument count");
628  if (!typeArgs.empty())
629  memcpy(getTypeArgStorage(), typeArgs.data(),
630  typeArgs.size() * sizeof(QualType));
631 
632  for (auto typeArg : typeArgs) {
633  if (typeArg->isDependentType())
634  setDependent();
635  else if (typeArg->isInstantiationDependentType())
637 
638  if (typeArg->containsUnexpandedParameterPack())
640  }
641  // Initialize the protocol qualifiers. The protocol storage is known
642  // after we set number of type arguments.
643  initialize(protocols);
644 }
645 
647  // If we have type arguments written here, the type is specialized.
648  if (ObjCObjectTypeBits.NumTypeArgs > 0)
649  return true;
650 
651  // Otherwise, check whether the base type is specialized.
652  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
653  // Terminate when we reach an interface type.
654  if (isa<ObjCInterfaceType>(objcObject))
655  return false;
656 
657  return objcObject->isSpecialized();
658  }
659 
660  // Not specialized.
661  return false;
662 }
663 
665  // We have type arguments written on this type.
667  return getTypeArgsAsWritten();
668 
669  // Look at the base type, which might have type arguments.
670  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
671  // Terminate when we reach an interface type.
672  if (isa<ObjCInterfaceType>(objcObject))
673  return {};
674 
675  return objcObject->getTypeArgs();
676  }
677 
678  // No type arguments.
679  return {};
680 }
681 
683  if (isKindOfTypeAsWritten())
684  return true;
685 
686  // Look at the base type, which might have type arguments.
687  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
688  // Terminate when we reach an interface type.
689  if (isa<ObjCInterfaceType>(objcObject))
690  return false;
691 
692  return objcObject->isKindOfType();
693  }
694 
695  // Not a "__kindof" type.
696  return false;
697 }
698 
700  const ASTContext &ctx) const {
701  if (!isKindOfType() && qual_empty())
702  return QualType(this, 0);
703 
704  // Recursively strip __kindof.
705  SplitQualType splitBaseType = getBaseType().split();
706  QualType baseType(splitBaseType.Ty, 0);
707  if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
708  baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
709 
710  return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
711  splitBaseType.Quals),
713  /*protocols=*/{},
714  /*isKindOf=*/false);
715 }
716 
718  const ASTContext &ctx) const {
719  if (!isKindOfType() && qual_empty())
720  return this;
721 
722  QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
724 }
725 
726 namespace {
727 
728 /// Visitor used to perform a simple type transformation that does not change
729 /// the semantics of the type.
730 template <typename Derived>
731 struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
732  ASTContext &Ctx;
733 
734  QualType recurse(QualType type) {
735  // Split out the qualifiers from the type.
736  SplitQualType splitType = type.split();
737 
738  // Visit the type itself.
739  QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
740  if (result.isNull())
741  return result;
742 
743  // Reconstruct the transformed type by applying the local qualifiers
744  // from the split type.
745  return Ctx.getQualifiedType(result, splitType.Quals);
746  }
747 
748 public:
749  explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
750 
751  // None of the clients of this transformation can occur where
752  // there are dependent types, so skip dependent types.
753 #define TYPE(Class, Base)
754 #define DEPENDENT_TYPE(Class, Base) \
755  QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
756 #include "clang/AST/TypeNodes.def"
757 
758 #define TRIVIAL_TYPE_CLASS(Class) \
759  QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
760 #define SUGARED_TYPE_CLASS(Class) \
761  QualType Visit##Class##Type(const Class##Type *T) { \
762  if (!T->isSugared()) \
763  return QualType(T, 0); \
764  QualType desugaredType = recurse(T->desugar()); \
765  if (desugaredType.isNull()) \
766  return {}; \
767  if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
768  return QualType(T, 0); \
769  return desugaredType; \
770  }
771 
772  TRIVIAL_TYPE_CLASS(Builtin)
773 
774  QualType VisitComplexType(const ComplexType *T) {
775  QualType elementType = recurse(T->getElementType());
776  if (elementType.isNull())
777  return {};
778 
779  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
780  return QualType(T, 0);
781 
782  return Ctx.getComplexType(elementType);
783  }
784 
785  QualType VisitPointerType(const PointerType *T) {
786  QualType pointeeType = recurse(T->getPointeeType());
787  if (pointeeType.isNull())
788  return {};
789 
790  if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
791  return QualType(T, 0);
792 
793  return Ctx.getPointerType(pointeeType);
794  }
795 
796  QualType VisitBlockPointerType(const BlockPointerType *T) {
797  QualType pointeeType = recurse(T->getPointeeType());
798  if (pointeeType.isNull())
799  return {};
800 
801  if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
802  return QualType(T, 0);
803 
804  return Ctx.getBlockPointerType(pointeeType);
805  }
806 
807  QualType VisitLValueReferenceType(const LValueReferenceType *T) {
808  QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
809  if (pointeeType.isNull())
810  return {};
811 
812  if (pointeeType.getAsOpaquePtr()
814  return QualType(T, 0);
815 
816  return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
817  }
818 
819  QualType VisitRValueReferenceType(const RValueReferenceType *T) {
820  QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
821  if (pointeeType.isNull())
822  return {};
823 
824  if (pointeeType.getAsOpaquePtr()
826  return QualType(T, 0);
827 
828  return Ctx.getRValueReferenceType(pointeeType);
829  }
830 
831  QualType VisitMemberPointerType(const MemberPointerType *T) {
832  QualType pointeeType = recurse(T->getPointeeType());
833  if (pointeeType.isNull())
834  return {};
835 
836  if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
837  return QualType(T, 0);
838 
839  return Ctx.getMemberPointerType(pointeeType, T->getClass());
840  }
841 
842  QualType VisitConstantArrayType(const ConstantArrayType *T) {
843  QualType elementType = recurse(T->getElementType());
844  if (elementType.isNull())
845  return {};
846 
847  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
848  return QualType(T, 0);
849 
850  return Ctx.getConstantArrayType(elementType, T->getSize(),
851  T->getSizeModifier(),
853  }
854 
855  QualType VisitVariableArrayType(const VariableArrayType *T) {
856  QualType elementType = recurse(T->getElementType());
857  if (elementType.isNull())
858  return {};
859 
860  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
861  return QualType(T, 0);
862 
863  return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
864  T->getSizeModifier(),
866  T->getBracketsRange());
867  }
868 
869  QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
870  QualType elementType = recurse(T->getElementType());
871  if (elementType.isNull())
872  return {};
873 
874  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
875  return QualType(T, 0);
876 
877  return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
879  }
880 
881  QualType VisitVectorType(const VectorType *T) {
882  QualType elementType = recurse(T->getElementType());
883  if (elementType.isNull())
884  return {};
885 
886  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
887  return QualType(T, 0);
888 
889  return Ctx.getVectorType(elementType, T->getNumElements(),
890  T->getVectorKind());
891  }
892 
893  QualType VisitExtVectorType(const ExtVectorType *T) {
894  QualType elementType = recurse(T->getElementType());
895  if (elementType.isNull())
896  return {};
897 
898  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
899  return QualType(T, 0);
900 
901  return Ctx.getExtVectorType(elementType, T->getNumElements());
902  }
903 
904  QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
905  QualType returnType = recurse(T->getReturnType());
906  if (returnType.isNull())
907  return {};
908 
909  if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
910  return QualType(T, 0);
911 
912  return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
913  }
914 
915  QualType VisitFunctionProtoType(const FunctionProtoType *T) {
916  QualType returnType = recurse(T->getReturnType());
917  if (returnType.isNull())
918  return {};
919 
920  // Transform parameter types.
921  SmallVector<QualType, 4> paramTypes;
922  bool paramChanged = false;
923  for (auto paramType : T->getParamTypes()) {
924  QualType newParamType = recurse(paramType);
925  if (newParamType.isNull())
926  return {};
927 
928  if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
929  paramChanged = true;
930 
931  paramTypes.push_back(newParamType);
932  }
933 
934  // Transform extended info.
936  bool exceptionChanged = false;
937  if (info.ExceptionSpec.Type == EST_Dynamic) {
938  SmallVector<QualType, 4> exceptionTypes;
939  for (auto exceptionType : info.ExceptionSpec.Exceptions) {
940  QualType newExceptionType = recurse(exceptionType);
941  if (newExceptionType.isNull())
942  return {};
943 
944  if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
945  exceptionChanged = true;
946 
947  exceptionTypes.push_back(newExceptionType);
948  }
949 
950  if (exceptionChanged) {
952  llvm::makeArrayRef(exceptionTypes).copy(Ctx);
953  }
954  }
955 
956  if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
957  !paramChanged && !exceptionChanged)
958  return QualType(T, 0);
959 
960  return Ctx.getFunctionType(returnType, paramTypes, info);
961  }
962 
963  QualType VisitParenType(const ParenType *T) {
964  QualType innerType = recurse(T->getInnerType());
965  if (innerType.isNull())
966  return {};
967 
968  if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
969  return QualType(T, 0);
970 
971  return Ctx.getParenType(innerType);
972  }
973 
974  SUGARED_TYPE_CLASS(Typedef)
975  SUGARED_TYPE_CLASS(ObjCTypeParam)
976  SUGARED_TYPE_CLASS(MacroQualified)
977 
978  QualType VisitAdjustedType(const AdjustedType *T) {
979  QualType originalType = recurse(T->getOriginalType());
980  if (originalType.isNull())
981  return {};
982 
983  QualType adjustedType = recurse(T->getAdjustedType());
984  if (adjustedType.isNull())
985  return {};
986 
987  if (originalType.getAsOpaquePtr()
988  == T->getOriginalType().getAsOpaquePtr() &&
989  adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
990  return QualType(T, 0);
991 
992  return Ctx.getAdjustedType(originalType, adjustedType);
993  }
994 
995  QualType VisitDecayedType(const DecayedType *T) {
996  QualType originalType = recurse(T->getOriginalType());
997  if (originalType.isNull())
998  return {};
999 
1000  if (originalType.getAsOpaquePtr()
1001  == T->getOriginalType().getAsOpaquePtr())
1002  return QualType(T, 0);
1003 
1004  return Ctx.getDecayedType(originalType);
1005  }
1006 
1007  SUGARED_TYPE_CLASS(TypeOfExpr)
1008  SUGARED_TYPE_CLASS(TypeOf)
1009  SUGARED_TYPE_CLASS(Decltype)
1010  SUGARED_TYPE_CLASS(UnaryTransform)
1011  TRIVIAL_TYPE_CLASS(Record)
1012  TRIVIAL_TYPE_CLASS(Enum)
1013 
1014  // FIXME: Non-trivial to implement, but important for C++
1015  SUGARED_TYPE_CLASS(Elaborated)
1016 
1017  QualType VisitAttributedType(const AttributedType *T) {
1018  QualType modifiedType = recurse(T->getModifiedType());
1019  if (modifiedType.isNull())
1020  return {};
1021 
1022  QualType equivalentType = recurse(T->getEquivalentType());
1023  if (equivalentType.isNull())
1024  return {};
1025 
1026  if (modifiedType.getAsOpaquePtr()
1027  == T->getModifiedType().getAsOpaquePtr() &&
1028  equivalentType.getAsOpaquePtr()
1030  return QualType(T, 0);
1031 
1032  return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
1033  equivalentType);
1034  }
1035 
1036  QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1037  QualType replacementType = recurse(T->getReplacementType());
1038  if (replacementType.isNull())
1039  return {};
1040 
1041  if (replacementType.getAsOpaquePtr()
1043  return QualType(T, 0);
1044 
1045  return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
1046  replacementType);
1047  }
1048 
1049  // FIXME: Non-trivial to implement, but important for C++
1050  SUGARED_TYPE_CLASS(TemplateSpecialization)
1051 
1052  QualType VisitAutoType(const AutoType *T) {
1053  if (!T->isDeduced())
1054  return QualType(T, 0);
1055 
1056  QualType deducedType = recurse(T->getDeducedType());
1057  if (deducedType.isNull())
1058  return {};
1059 
1060  if (deducedType.getAsOpaquePtr()
1061  == T->getDeducedType().getAsOpaquePtr())
1062  return QualType(T, 0);
1063 
1064  return Ctx.getAutoType(deducedType, T->getKeyword(),
1065  T->isDependentType());
1066  }
1067 
1068  // FIXME: Non-trivial to implement, but important for C++
1069  SUGARED_TYPE_CLASS(PackExpansion)
1070 
1071  QualType VisitObjCObjectType(const ObjCObjectType *T) {
1072  QualType baseType = recurse(T->getBaseType());
1073  if (baseType.isNull())
1074  return {};
1075 
1076  // Transform type arguments.
1077  bool typeArgChanged = false;
1078  SmallVector<QualType, 4> typeArgs;
1079  for (auto typeArg : T->getTypeArgsAsWritten()) {
1080  QualType newTypeArg = recurse(typeArg);
1081  if (newTypeArg.isNull())
1082  return {};
1083 
1084  if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1085  typeArgChanged = true;
1086 
1087  typeArgs.push_back(newTypeArg);
1088  }
1089 
1090  if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1091  !typeArgChanged)
1092  return QualType(T, 0);
1093 
1094  return Ctx.getObjCObjectType(baseType, typeArgs,
1095  llvm::makeArrayRef(T->qual_begin(),
1096  T->getNumProtocols()),
1097  T->isKindOfTypeAsWritten());
1098  }
1099 
1100  TRIVIAL_TYPE_CLASS(ObjCInterface)
1101 
1102  QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1103  QualType pointeeType = recurse(T->getPointeeType());
1104  if (pointeeType.isNull())
1105  return {};
1106 
1107  if (pointeeType.getAsOpaquePtr()
1108  == T->getPointeeType().getAsOpaquePtr())
1109  return QualType(T, 0);
1110 
1111  return Ctx.getObjCObjectPointerType(pointeeType);
1112  }
1113 
1114  QualType VisitAtomicType(const AtomicType *T) {
1115  QualType valueType = recurse(T->getValueType());
1116  if (valueType.isNull())
1117  return {};
1118 
1119  if (valueType.getAsOpaquePtr()
1120  == T->getValueType().getAsOpaquePtr())
1121  return QualType(T, 0);
1122 
1123  return Ctx.getAtomicType(valueType);
1124  }
1125 
1126 #undef TRIVIAL_TYPE_CLASS
1127 #undef SUGARED_TYPE_CLASS
1128 };
1129 
1130 struct SubstObjCTypeArgsVisitor
1131  : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1132  using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1133 
1134  ArrayRef<QualType> TypeArgs;
1135  ObjCSubstitutionContext SubstContext;
1136 
1137  SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1138  ObjCSubstitutionContext context)
1139  : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1140 
1141  QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1142  // Replace an Objective-C type parameter reference with the corresponding
1143  // type argument.
1144  ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1145  // If we have type arguments, use them.
1146  if (!TypeArgs.empty()) {
1147  QualType argType = TypeArgs[typeParam->getIndex()];
1148  if (OTPTy->qual_empty())
1149  return argType;
1150 
1151  // Apply protocol lists if exists.
1152  bool hasError;
1154  protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end());
1155  ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1156  return Ctx.applyObjCProtocolQualifiers(
1157  argType, protocolsToApply, hasError, true/*allowOnPointerType*/);
1158  }
1159 
1160  switch (SubstContext) {
1164  // Substitute the bound.
1165  return typeParam->getUnderlyingType();
1166 
1169  // Substitute the __kindof form of the underlying type.
1170  const auto *objPtr =
1172 
1173  // __kindof types, id, and Class don't need an additional
1174  // __kindof.
1175  if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1176  return typeParam->getUnderlyingType();
1177 
1178  // Add __kindof.
1179  const auto *obj = objPtr->getObjectType();
1180  QualType resultTy = Ctx.getObjCObjectType(
1181  obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(),
1182  /*isKindOf=*/true);
1183 
1184  // Rebuild object pointer type.
1185  return Ctx.getObjCObjectPointerType(resultTy);
1186  }
1187  }
1188  llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1189  }
1190 
1191  QualType VisitFunctionType(const FunctionType *funcType) {
1192  // If we have a function type, update the substitution context
1193  // appropriately.
1194 
1195  //Substitute result type.
1196  QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1197  Ctx, TypeArgs, ObjCSubstitutionContext::Result);
1198  if (returnType.isNull())
1199  return {};
1200 
1201  // Handle non-prototyped functions, which only substitute into the result
1202  // type.
1203  if (isa<FunctionNoProtoType>(funcType)) {
1204  // If the return type was unchanged, do nothing.
1205  if (returnType.getAsOpaquePtr() ==
1206  funcType->getReturnType().getAsOpaquePtr())
1207  return BaseType::VisitFunctionType(funcType);
1208 
1209  // Otherwise, build a new type.
1210  return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1211  }
1212 
1213  const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1214 
1215  // Transform parameter types.
1216  SmallVector<QualType, 4> paramTypes;
1217  bool paramChanged = false;
1218  for (auto paramType : funcProtoType->getParamTypes()) {
1219  QualType newParamType = paramType.substObjCTypeArgs(
1220  Ctx, TypeArgs, ObjCSubstitutionContext::Parameter);
1221  if (newParamType.isNull())
1222  return {};
1223 
1224  if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1225  paramChanged = true;
1226 
1227  paramTypes.push_back(newParamType);
1228  }
1229 
1230  // Transform extended info.
1231  FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1232  bool exceptionChanged = false;
1233  if (info.ExceptionSpec.Type == EST_Dynamic) {
1234  SmallVector<QualType, 4> exceptionTypes;
1235  for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1236  QualType newExceptionType = exceptionType.substObjCTypeArgs(
1237  Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1238  if (newExceptionType.isNull())
1239  return {};
1240 
1241  if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1242  exceptionChanged = true;
1243 
1244  exceptionTypes.push_back(newExceptionType);
1245  }
1246 
1247  if (exceptionChanged) {
1248  info.ExceptionSpec.Exceptions =
1249  llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1250  }
1251  }
1252 
1253  if (returnType.getAsOpaquePtr() ==
1254  funcProtoType->getReturnType().getAsOpaquePtr() &&
1255  !paramChanged && !exceptionChanged)
1256  return BaseType::VisitFunctionType(funcType);
1257 
1258  return Ctx.getFunctionType(returnType, paramTypes, info);
1259  }
1260 
1261  QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1262  // Substitute into the type arguments of a specialized Objective-C object
1263  // type.
1264  if (objcObjectType->isSpecializedAsWritten()) {
1265  SmallVector<QualType, 4> newTypeArgs;
1266  bool anyChanged = false;
1267  for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1268  QualType newTypeArg = typeArg.substObjCTypeArgs(
1269  Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1270  if (newTypeArg.isNull())
1271  return {};
1272 
1273  if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1274  // If we're substituting based on an unspecialized context type,
1275  // produce an unspecialized type.
1276  ArrayRef<ObjCProtocolDecl *> protocols(
1277  objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1278  if (TypeArgs.empty() &&
1279  SubstContext != ObjCSubstitutionContext::Superclass) {
1280  return Ctx.getObjCObjectType(
1281  objcObjectType->getBaseType(), {}, protocols,
1282  objcObjectType->isKindOfTypeAsWritten());
1283  }
1284 
1285  anyChanged = true;
1286  }
1287 
1288  newTypeArgs.push_back(newTypeArg);
1289  }
1290 
1291  if (anyChanged) {
1292  ArrayRef<ObjCProtocolDecl *> protocols(
1293  objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1294  return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs,
1295  protocols,
1296  objcObjectType->isKindOfTypeAsWritten());
1297  }
1298  }
1299 
1300  return BaseType::VisitObjCObjectType(objcObjectType);
1301  }
1302 
1303  QualType VisitAttributedType(const AttributedType *attrType) {
1304  QualType newType = BaseType::VisitAttributedType(attrType);
1305  if (newType.isNull())
1306  return {};
1307 
1308  const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr());
1309  if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1310  return newType;
1311 
1312  // Find out if it's an Objective-C object or object pointer type;
1313  QualType newEquivType = newAttrType->getEquivalentType();
1314  const ObjCObjectPointerType *ptrType =
1315  newEquivType->getAs<ObjCObjectPointerType>();
1316  const ObjCObjectType *objType = ptrType
1317  ? ptrType->getObjectType()
1318  : newEquivType->getAs<ObjCObjectType>();
1319  if (!objType)
1320  return newType;
1321 
1322  // Rebuild the "equivalent" type, which pushes __kindof down into
1323  // the object type.
1324  newEquivType = Ctx.getObjCObjectType(
1325  objType->getBaseType(), objType->getTypeArgsAsWritten(),
1326  objType->getProtocols(),
1327  // There is no need to apply kindof on an unqualified id type.
1328  /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1329 
1330  // If we started with an object pointer type, rebuild it.
1331  if (ptrType)
1332  newEquivType = Ctx.getObjCObjectPointerType(newEquivType);
1333 
1334  // Rebuild the attributed type.
1335  return Ctx.getAttributedType(newAttrType->getAttrKind(),
1336  newAttrType->getModifiedType(), newEquivType);
1337  }
1338 };
1339 
1340 struct StripObjCKindOfTypeVisitor
1341  : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1342  using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1343 
1344  explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1345 
1346  QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1347  if (!objType->isKindOfType())
1348  return BaseType::VisitObjCObjectType(objType);
1349 
1350  QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx);
1351  return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(),
1352  objType->getProtocols(),
1353  /*isKindOf=*/false);
1354  }
1355 };
1356 
1357 } // namespace
1358 
1359 /// Substitute the given type arguments for Objective-C type
1360 /// parameters within the given type, recursively.
1362  ArrayRef<QualType> typeArgs,
1363  ObjCSubstitutionContext context) const {
1364  SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1365  return visitor.recurse(*this);
1366 }
1367 
1369  const DeclContext *dc,
1370  ObjCSubstitutionContext context) const {
1371  if (auto subs = objectType->getObjCSubstitutions(dc))
1372  return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1373 
1374  return *this;
1375 }
1376 
1378  // FIXME: Because ASTContext::getAttributedType() is non-const.
1379  auto &ctx = const_cast<ASTContext &>(constCtx);
1380  StripObjCKindOfTypeVisitor visitor(ctx);
1381  return visitor.recurse(*this);
1382 }
1383 
1385  if (const auto AT = getTypePtr()->getAs<AtomicType>())
1386  return AT->getValueType().getUnqualifiedType();
1387  return getUnqualifiedType();
1388 }
1389 
1391  const DeclContext *dc) const {
1392  // Look through method scopes.
1393  if (const auto method = dyn_cast<ObjCMethodDecl>(dc))
1394  dc = method->getDeclContext();
1395 
1396  // Find the class or category in which the type we're substituting
1397  // was declared.
1398  const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1399  const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1400  ObjCTypeParamList *dcTypeParams = nullptr;
1401  if (dcClassDecl) {
1402  // If the class does not have any type parameters, there's no
1403  // substitution to do.
1404  dcTypeParams = dcClassDecl->getTypeParamList();
1405  if (!dcTypeParams)
1406  return None;
1407  } else {
1408  // If we are in neither a class nor a category, there's no
1409  // substitution to perform.
1410  dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1411  if (!dcCategoryDecl)
1412  return None;
1413 
1414  // If the category does not have any type parameters, there's no
1415  // substitution to do.
1416  dcTypeParams = dcCategoryDecl->getTypeParamList();
1417  if (!dcTypeParams)
1418  return None;
1419 
1420  dcClassDecl = dcCategoryDecl->getClassInterface();
1421  if (!dcClassDecl)
1422  return None;
1423  }
1424  assert(dcTypeParams && "No substitutions to perform");
1425  assert(dcClassDecl && "No class context");
1426 
1427  // Find the underlying object type.
1428  const ObjCObjectType *objectType;
1429  if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1430  objectType = objectPointerType->getObjectType();
1431  } else if (getAs<BlockPointerType>()) {
1432  ASTContext &ctx = dc->getParentASTContext();
1433  objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {})
1434  ->castAs<ObjCObjectType>();
1435  } else {
1436  objectType = getAs<ObjCObjectType>();
1437  }
1438 
1439  /// Extract the class from the receiver object type.
1440  ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1441  : nullptr;
1442  if (!curClassDecl) {
1443  // If we don't have a context type (e.g., this is "id" or some
1444  // variant thereof), substitute the bounds.
1445  return llvm::ArrayRef<QualType>();
1446  }
1447 
1448  // Follow the superclass chain until we've mapped the receiver type
1449  // to the same class as the context.
1450  while (curClassDecl != dcClassDecl) {
1451  // Map to the superclass type.
1452  QualType superType = objectType->getSuperClassType();
1453  if (superType.isNull()) {
1454  objectType = nullptr;
1455  break;
1456  }
1457 
1458  objectType = superType->castAs<ObjCObjectType>();
1459  curClassDecl = objectType->getInterface();
1460  }
1461 
1462  // If we don't have a receiver type, or the receiver type does not
1463  // have type arguments, substitute in the defaults.
1464  if (!objectType || objectType->isUnspecialized()) {
1465  return llvm::ArrayRef<QualType>();
1466  }
1467 
1468  // The receiver type has the type arguments we want.
1469  return objectType->getTypeArgs();
1470 }
1471 
1473  if (auto *IfaceT = getAsObjCInterfaceType()) {
1474  if (auto *ID = IfaceT->getInterface()) {
1475  if (ID->getTypeParamList())
1476  return true;
1477  }
1478  }
1479 
1480  return false;
1481 }
1482 
1484  // Retrieve the class declaration for this type. If there isn't one
1485  // (e.g., this is some variant of "id" or "Class"), then there is no
1486  // superclass type.
1487  ObjCInterfaceDecl *classDecl = getInterface();
1488  if (!classDecl) {
1489  CachedSuperClassType.setInt(true);
1490  return;
1491  }
1492 
1493  // Extract the superclass type.
1494  const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1495  if (!superClassObjTy) {
1496  CachedSuperClassType.setInt(true);
1497  return;
1498  }
1499 
1500  ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1501  if (!superClassDecl) {
1502  CachedSuperClassType.setInt(true);
1503  return;
1504  }
1505 
1506  // If the superclass doesn't have type parameters, then there is no
1507  // substitution to perform.
1508  QualType superClassType(superClassObjTy, 0);
1509  ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1510  if (!superClassTypeParams) {
1511  CachedSuperClassType.setPointerAndInt(
1512  superClassType->castAs<ObjCObjectType>(), true);
1513  return;
1514  }
1515 
1516  // If the superclass reference is unspecialized, return it.
1517  if (superClassObjTy->isUnspecialized()) {
1518  CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1519  return;
1520  }
1521 
1522  // If the subclass is not parameterized, there aren't any type
1523  // parameters in the superclass reference to substitute.
1524  ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1525  if (!typeParams) {
1526  CachedSuperClassType.setPointerAndInt(
1527  superClassType->castAs<ObjCObjectType>(), true);
1528  return;
1529  }
1530 
1531  // If the subclass type isn't specialized, return the unspecialized
1532  // superclass.
1533  if (isUnspecialized()) {
1534  QualType unspecializedSuper
1535  = classDecl->getASTContext().getObjCInterfaceType(
1536  superClassObjTy->getInterface());
1537  CachedSuperClassType.setPointerAndInt(
1538  unspecializedSuper->castAs<ObjCObjectType>(),
1539  true);
1540  return;
1541  }
1542 
1543  // Substitute the provided type arguments into the superclass type.
1544  ArrayRef<QualType> typeArgs = getTypeArgs();
1545  assert(typeArgs.size() == typeParams->size());
1546  CachedSuperClassType.setPointerAndInt(
1547  superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1549  ->castAs<ObjCObjectType>(),
1550  true);
1551 }
1552 
1554  if (auto interfaceDecl = getObjectType()->getInterface()) {
1555  return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1557  }
1558 
1559  return nullptr;
1560 }
1561 
1563  QualType superObjectType = getObjectType()->getSuperClassType();
1564  if (superObjectType.isNull())
1565  return superObjectType;
1566 
1567  ASTContext &ctx = getInterfaceDecl()->getASTContext();
1568  return ctx.getObjCObjectPointerType(superObjectType);
1569 }
1570 
1572  // There is no sugar for ObjCObjectType's, just return the canonical
1573  // type pointer if it is the right class. There is no typedef information to
1574  // return and these cannot be Address-space qualified.
1575  if (const auto *T = getAs<ObjCObjectType>())
1576  if (T->getNumProtocols() && T->getInterface())
1577  return T;
1578  return nullptr;
1579 }
1580 
1582  return getAsObjCQualifiedInterfaceType() != nullptr;
1583 }
1584 
1586  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1587  // type pointer if it is the right class.
1588  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1589  if (OPT->isObjCQualifiedIdType())
1590  return OPT;
1591  }
1592  return nullptr;
1593 }
1594 
1596  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1597  // type pointer if it is the right class.
1598  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1599  if (OPT->isObjCQualifiedClassType())
1600  return OPT;
1601  }
1602  return nullptr;
1603 }
1604 
1606  if (const auto *OT = getAs<ObjCObjectType>()) {
1607  if (OT->getInterface())
1608  return OT;
1609  }
1610  return nullptr;
1611 }
1612 
1614  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1615  if (OPT->getInterfaceType())
1616  return OPT;
1617  }
1618  return nullptr;
1619 }
1620 
1622  QualType PointeeType;
1623  if (const auto *PT = getAs<PointerType>())
1624  PointeeType = PT->getPointeeType();
1625  else if (const auto *RT = getAs<ReferenceType>())
1626  PointeeType = RT->getPointeeType();
1627  else
1628  return nullptr;
1629 
1630  if (const auto *RT = PointeeType->getAs<RecordType>())
1631  return dyn_cast<CXXRecordDecl>(RT->getDecl());
1632 
1633  return nullptr;
1634 }
1635 
1637  return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1638 }
1639 
1641  return dyn_cast_or_null<RecordDecl>(getAsTagDecl());
1642 }
1643 
1645  if (const auto *TT = getAs<TagType>())
1646  return TT->getDecl();
1647  if (const auto *Injected = getAs<InjectedClassNameType>())
1648  return Injected->getDecl();
1649 
1650  return nullptr;
1651 }
1652 
1653 bool Type::hasAttr(attr::Kind AK) const {
1654  const Type *Cur = this;
1655  while (const auto *AT = Cur->getAs<AttributedType>()) {
1656  if (AT->getAttrKind() == AK)
1657  return true;
1658  Cur = AT->getEquivalentType().getTypePtr();
1659  }
1660  return false;
1661 }
1662 
1663 namespace {
1664 
1665  class GetContainedDeducedTypeVisitor :
1666  public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1667  bool Syntactic;
1668 
1669  public:
1670  GetContainedDeducedTypeVisitor(bool Syntactic = false)
1671  : Syntactic(Syntactic) {}
1672 
1674 
1675  Type *Visit(QualType T) {
1676  if (T.isNull())
1677  return nullptr;
1678  return Visit(T.getTypePtr());
1679  }
1680 
1681  // The deduced type itself.
1682  Type *VisitDeducedType(const DeducedType *AT) {
1683  return const_cast<DeducedType*>(AT);
1684  }
1685 
1686  // Only these types can contain the desired 'auto' type.
1687 
1688  Type *VisitElaboratedType(const ElaboratedType *T) {
1689  return Visit(T->getNamedType());
1690  }
1691 
1692  Type *VisitPointerType(const PointerType *T) {
1693  return Visit(T->getPointeeType());
1694  }
1695 
1696  Type *VisitBlockPointerType(const BlockPointerType *T) {
1697  return Visit(T->getPointeeType());
1698  }
1699 
1700  Type *VisitReferenceType(const ReferenceType *T) {
1701  return Visit(T->getPointeeTypeAsWritten());
1702  }
1703 
1704  Type *VisitMemberPointerType(const MemberPointerType *T) {
1705  return Visit(T->getPointeeType());
1706  }
1707 
1708  Type *VisitArrayType(const ArrayType *T) {
1709  return Visit(T->getElementType());
1710  }
1711 
1712  Type *VisitDependentSizedExtVectorType(
1713  const DependentSizedExtVectorType *T) {
1714  return Visit(T->getElementType());
1715  }
1716 
1717  Type *VisitVectorType(const VectorType *T) {
1718  return Visit(T->getElementType());
1719  }
1720 
1721  Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1722  if (Syntactic && T->hasTrailingReturn())
1723  return const_cast<FunctionProtoType*>(T);
1724  return VisitFunctionType(T);
1725  }
1726 
1727  Type *VisitFunctionType(const FunctionType *T) {
1728  return Visit(T->getReturnType());
1729  }
1730 
1731  Type *VisitParenType(const ParenType *T) {
1732  return Visit(T->getInnerType());
1733  }
1734 
1735  Type *VisitAttributedType(const AttributedType *T) {
1736  return Visit(T->getModifiedType());
1737  }
1738 
1739  Type *VisitMacroQualifiedType(const MacroQualifiedType *T) {
1740  return Visit(T->getUnderlyingType());
1741  }
1742 
1743  Type *VisitAdjustedType(const AdjustedType *T) {
1744  return Visit(T->getOriginalType());
1745  }
1746  };
1747 
1748 } // namespace
1749 
1751  return cast_or_null<DeducedType>(
1752  GetContainedDeducedTypeVisitor().Visit(this));
1753 }
1754 
1756  return dyn_cast_or_null<FunctionType>(
1757  GetContainedDeducedTypeVisitor(true).Visit(this));
1758 }
1759 
1761  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1762  return VT->getElementType()->isIntegerType();
1763  else
1764  return isIntegerType();
1765 }
1766 
1767 /// Determine whether this type is an integral type.
1768 ///
1769 /// This routine determines whether the given type is an integral type per
1770 /// C++ [basic.fundamental]p7. Although the C standard does not define the
1771 /// term "integral type", it has a similar term "integer type", and in C++
1772 /// the two terms are equivalent. However, C's "integer type" includes
1773 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1774 /// parameter is used to determine whether we should be following the C or
1775 /// C++ rules when determining whether this type is an integral/integer type.
1776 ///
1777 /// For cases where C permits "an integer type" and C++ permits "an integral
1778 /// type", use this routine.
1779 ///
1780 /// For cases where C permits "an integer type" and C++ permits "an integral
1781 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1782 ///
1783 /// \param Ctx The context in which this type occurs.
1784 ///
1785 /// \returns true if the type is considered an integral type, false otherwise.
1786 bool Type::isIntegralType(const ASTContext &Ctx) const {
1787  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1788  return BT->getKind() >= BuiltinType::Bool &&
1789  BT->getKind() <= BuiltinType::Int128;
1790 
1791  // Complete enum types are integral in C.
1792  if (!Ctx.getLangOpts().CPlusPlus)
1793  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1794  return ET->getDecl()->isComplete();
1795 
1796  return false;
1797 }
1798 
1800  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1801  return BT->getKind() >= BuiltinType::Bool &&
1802  BT->getKind() <= BuiltinType::Int128;
1803 
1804  // Check for a complete enum type; incomplete enum types are not properly an
1805  // enumeration type in the sense required here.
1806  // C++0x: However, if the underlying type of the enum is fixed, it is
1807  // considered complete.
1808  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1809  return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
1810 
1811  return false;
1812 }
1813 
1814 bool Type::isCharType() const {
1815  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1816  return BT->getKind() == BuiltinType::Char_U ||
1817  BT->getKind() == BuiltinType::UChar ||
1818  BT->getKind() == BuiltinType::Char_S ||
1819  BT->getKind() == BuiltinType::SChar;
1820  return false;
1821 }
1822 
1823 bool Type::isWideCharType() const {
1824  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1825  return BT->getKind() == BuiltinType::WChar_S ||
1826  BT->getKind() == BuiltinType::WChar_U;
1827  return false;
1828 }
1829 
1830 bool Type::isChar8Type() const {
1831  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1832  return BT->getKind() == BuiltinType::Char8;
1833  return false;
1834 }
1835 
1836 bool Type::isChar16Type() const {
1837  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1838  return BT->getKind() == BuiltinType::Char16;
1839  return false;
1840 }
1841 
1842 bool Type::isChar32Type() const {
1843  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1844  return BT->getKind() == BuiltinType::Char32;
1845  return false;
1846 }
1847 
1848 /// Determine whether this type is any of the built-in character
1849 /// types.
1851  const auto *BT = dyn_cast<BuiltinType>(CanonicalType);
1852  if (!BT) return false;
1853  switch (BT->getKind()) {
1854  default: return false;
1855  case BuiltinType::Char_U:
1856  case BuiltinType::UChar:
1857  case BuiltinType::WChar_U:
1858  case BuiltinType::Char8:
1859  case BuiltinType::Char16:
1860  case BuiltinType::Char32:
1861  case BuiltinType::Char_S:
1862  case BuiltinType::SChar:
1863  case BuiltinType::WChar_S:
1864  return true;
1865  }
1866 }
1867 
1868 /// isSignedIntegerType - Return true if this is an integer type that is
1869 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1870 /// an enum decl which has a signed representation
1872  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1873  return BT->getKind() >= BuiltinType::Char_S &&
1874  BT->getKind() <= BuiltinType::Int128;
1875  }
1876 
1877  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1878  // Incomplete enum types are not treated as integer types.
1879  // FIXME: In C++, enum types are never integer types.
1880  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1881  return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1882  }
1883 
1884  return false;
1885 }
1886 
1888  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1889  return BT->getKind() >= BuiltinType::Char_S &&
1890  BT->getKind() <= BuiltinType::Int128;
1891  }
1892 
1893  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1894  if (ET->getDecl()->isComplete())
1895  return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1896  }
1897 
1898  return false;
1899 }
1900 
1902  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1903  return VT->getElementType()->isSignedIntegerOrEnumerationType();
1904  else
1906 }
1907 
1908 /// isUnsignedIntegerType - Return true if this is an integer type that is
1909 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1910 /// decl which has an unsigned representation
1912  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1913  return BT->getKind() >= BuiltinType::Bool &&
1914  BT->getKind() <= BuiltinType::UInt128;
1915  }
1916 
1917  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1918  // Incomplete enum types are not treated as integer types.
1919  // FIXME: In C++, enum types are never integer types.
1920  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1921  return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1922  }
1923 
1924  return false;
1925 }
1926 
1928  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1929  return BT->getKind() >= BuiltinType::Bool &&
1930  BT->getKind() <= BuiltinType::UInt128;
1931  }
1932 
1933  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1934  if (ET->getDecl()->isComplete())
1935  return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1936  }
1937 
1938  return false;
1939 }
1940 
1942  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1943  return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
1944  else
1946 }
1947 
1948 bool Type::isFloatingType() const {
1949  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1950  return BT->getKind() >= BuiltinType::Half &&
1951  BT->getKind() <= BuiltinType::Float128;
1952  if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
1953  return CT->getElementType()->isFloatingType();
1954  return false;
1955 }
1956 
1958  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1959  return VT->getElementType()->isFloatingType();
1960  else
1961  return isFloatingType();
1962 }
1963 
1965  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1966  return BT->isFloatingPoint();
1967  return false;
1968 }
1969 
1970 bool Type::isRealType() const {
1971  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1972  return BT->getKind() >= BuiltinType::Bool &&
1973  BT->getKind() <= BuiltinType::Float128;
1974  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1975  return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
1976  return false;
1977 }
1978 
1980  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1981  return BT->getKind() >= BuiltinType::Bool &&
1982  BT->getKind() <= BuiltinType::Float128;
1983  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1984  // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
1985  // If a body isn't seen by the time we get here, return false.
1986  //
1987  // C++0x: Enumerations are not arithmetic types. For now, just return
1988  // false for scoped enumerations since that will disable any
1989  // unwanted implicit conversions.
1990  return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
1991  return isa<ComplexType>(CanonicalType);
1992 }
1993 
1995  assert(isScalarType());
1996 
1997  const Type *T = CanonicalType.getTypePtr();
1998  if (const auto *BT = dyn_cast<BuiltinType>(T)) {
1999  if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
2000  if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
2001  if (BT->isInteger()) return STK_Integral;
2002  if (BT->isFloatingPoint()) return STK_Floating;
2003  if (BT->isFixedPointType()) return STK_FixedPoint;
2004  llvm_unreachable("unknown scalar builtin type");
2005  } else if (isa<PointerType>(T)) {
2006  return STK_CPointer;
2007  } else if (isa<BlockPointerType>(T)) {
2008  return STK_BlockPointer;
2009  } else if (isa<ObjCObjectPointerType>(T)) {
2010  return STK_ObjCObjectPointer;
2011  } else if (isa<MemberPointerType>(T)) {
2012  return STK_MemberPointer;
2013  } else if (isa<EnumType>(T)) {
2014  assert(cast<EnumType>(T)->getDecl()->isComplete());
2015  return STK_Integral;
2016  } else if (const auto *CT = dyn_cast<ComplexType>(T)) {
2017  if (CT->getElementType()->isRealFloatingType())
2018  return STK_FloatingComplex;
2019  return STK_IntegralComplex;
2020  }
2021 
2022  llvm_unreachable("unknown scalar type");
2023 }
2024 
2025 /// Determines whether the type is a C++ aggregate type or C
2026 /// aggregate or union type.
2027 ///
2028 /// An aggregate type is an array or a class type (struct, union, or
2029 /// class) that has no user-declared constructors, no private or
2030 /// protected non-static data members, no base classes, and no virtual
2031 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2032 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2033 /// includes union types.
2035  if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) {
2036  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
2037  return ClassDecl->isAggregate();
2038 
2039  return true;
2040  }
2041 
2042  return isa<ArrayType>(CanonicalType);
2043 }
2044 
2045 /// isConstantSizeType - Return true if this is not a variable sized type,
2046 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2047 /// incomplete types or dependent types.
2049  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2050  assert(!isDependentType() && "This doesn't make sense for dependent types");
2051  // The VAT must have a size, as it is known to be complete.
2052  return !isa<VariableArrayType>(CanonicalType);
2053 }
2054 
2055 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2056 /// - a type that can describe objects, but which lacks information needed to
2057 /// determine its size.
2059  if (Def)
2060  *Def = nullptr;
2061 
2062  switch (CanonicalType->getTypeClass()) {
2063  default: return false;
2064  case Builtin:
2065  // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
2066  // be completed.
2067  return isVoidType();
2068  case Enum: {
2069  EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
2070  if (Def)
2071  *Def = EnumD;
2072  return !EnumD->isComplete();
2073  }
2074  case Record: {
2075  // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2076  // forward declaration, but not a full definition (C99 6.2.5p22).
2077  RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
2078  if (Def)
2079  *Def = Rec;
2080  return !Rec->isCompleteDefinition();
2081  }
2082  case ConstantArray:
2083  // An array is incomplete if its element type is incomplete
2084  // (C++ [dcl.array]p1).
2085  // We don't handle variable arrays (they're not allowed in C++) or
2086  // dependent-sized arrays (dependent types are never treated as incomplete).
2087  return cast<ArrayType>(CanonicalType)->getElementType()
2088  ->isIncompleteType(Def);
2089  case IncompleteArray:
2090  // An array of unknown size is an incomplete type (C99 6.2.5p22).
2091  return true;
2092  case MemberPointer: {
2093  // Member pointers in the MS ABI have special behavior in
2094  // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2095  // to indicate which inheritance model to use.
2096  auto *MPTy = cast<MemberPointerType>(CanonicalType);
2097  const Type *ClassTy = MPTy->getClass();
2098  // Member pointers with dependent class types don't get special treatment.
2099  if (ClassTy->isDependentType())
2100  return false;
2101  const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2102  ASTContext &Context = RD->getASTContext();
2103  // Member pointers not in the MS ABI don't get special treatment.
2104  if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2105  return false;
2106  // The inheritance attribute might only be present on the most recent
2107  // CXXRecordDecl, use that one.
2108  RD = RD->getMostRecentNonInjectedDecl();
2109  // Nothing interesting to do if the inheritance attribute is already set.
2110  if (RD->hasAttr<MSInheritanceAttr>())
2111  return false;
2112  return true;
2113  }
2114  case ObjCObject:
2115  return cast<ObjCObjectType>(CanonicalType)->getBaseType()
2116  ->isIncompleteType(Def);
2117  case ObjCInterface: {
2118  // ObjC interfaces are incomplete if they are @class, not @interface.
2119  ObjCInterfaceDecl *Interface
2120  = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
2121  if (Def)
2122  *Def = Interface;
2123  return !Interface->hasDefinition();
2124  }
2125  }
2126 }
2127 
2128 bool QualType::isPODType(const ASTContext &Context) const {
2129  // C++11 has a more relaxed definition of POD.
2130  if (Context.getLangOpts().CPlusPlus11)
2131  return isCXX11PODType(Context);
2132 
2133  return isCXX98PODType(Context);
2134 }
2135 
2136 bool QualType::isCXX98PODType(const ASTContext &Context) const {
2137  // The compiler shouldn't query this for incomplete types, but the user might.
2138  // We return false for that case. Except for incomplete arrays of PODs, which
2139  // are PODs according to the standard.
2140  if (isNull())
2141  return false;
2142 
2143  if ((*this)->isIncompleteArrayType())
2144  return Context.getBaseElementType(*this).isCXX98PODType(Context);
2145 
2146  if ((*this)->isIncompleteType())
2147  return false;
2148 
2149  if (hasNonTrivialObjCLifetime())
2150  return false;
2151 
2152  QualType CanonicalType = getTypePtr()->CanonicalType;
2153  switch (CanonicalType->getTypeClass()) {
2154  // Everything not explicitly mentioned is not POD.
2155  default: return false;
2156  case Type::VariableArray:
2157  case Type::ConstantArray:
2158  // IncompleteArray is handled above.
2159  return Context.getBaseElementType(*this).isCXX98PODType(Context);
2160 
2161  case Type::ObjCObjectPointer:
2162  case Type::BlockPointer:
2163  case Type::Builtin:
2164  case Type::Complex:
2165  case Type::Pointer:
2166  case Type::MemberPointer:
2167  case Type::Vector:
2168  case Type::ExtVector:
2169  return true;
2170 
2171  case Type::Enum:
2172  return true;
2173 
2174  case Type::Record:
2175  if (const auto *ClassDecl =
2176  dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2177  return ClassDecl->isPOD();
2178 
2179  // C struct/union is POD.
2180  return true;
2181  }
2182 }
2183 
2184 bool QualType::isTrivialType(const ASTContext &Context) const {
2185  // The compiler shouldn't query this for incomplete types, but the user might.
2186  // We return false for that case. Except for incomplete arrays of PODs, which
2187  // are PODs according to the standard.
2188  if (isNull())
2189  return false;
2190 
2191  if ((*this)->isArrayType())
2192  return Context.getBaseElementType(*this).isTrivialType(Context);
2193 
2194  // Return false for incomplete types after skipping any incomplete array
2195  // types which are expressly allowed by the standard and thus our API.
2196  if ((*this)->isIncompleteType())
2197  return false;
2198 
2199  if (hasNonTrivialObjCLifetime())
2200  return false;
2201 
2202  QualType CanonicalType = getTypePtr()->CanonicalType;
2203  if (CanonicalType->isDependentType())
2204  return false;
2205 
2206  // C++0x [basic.types]p9:
2207  // Scalar types, trivial class types, arrays of such types, and
2208  // cv-qualified versions of these types are collectively called trivial
2209  // types.
2210 
2211  // As an extension, Clang treats vector types as Scalar types.
2212  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2213  return true;
2214  if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2215  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2216  // C++11 [class]p6:
2217  // A trivial class is a class that has a default constructor,
2218  // has no non-trivial default constructors, and is trivially
2219  // copyable.
2220  return ClassDecl->hasDefaultConstructor() &&
2221  !ClassDecl->hasNonTrivialDefaultConstructor() &&
2222  ClassDecl->isTriviallyCopyable();
2223  }
2224 
2225  return true;
2226  }
2227 
2228  // No other types can match.
2229  return false;
2230 }
2231 
2232 bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2233  if ((*this)->isArrayType())
2234  return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2235 
2236  if (hasNonTrivialObjCLifetime())
2237  return false;
2238 
2239  // C++11 [basic.types]p9 - See Core 2094
2240  // Scalar types, trivially copyable class types, arrays of such types, and
2241  // cv-qualified versions of these types are collectively
2242  // called trivially copyable types.
2243 
2244  QualType CanonicalType = getCanonicalType();
2245  if (CanonicalType->isDependentType())
2246  return false;
2247 
2248  // Return false for incomplete types after skipping any incomplete array types
2249  // which are expressly allowed by the standard and thus our API.
2250  if (CanonicalType->isIncompleteType())
2251  return false;
2252 
2253  // As an extension, Clang treats vector types as Scalar types.
2254  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2255  return true;
2256 
2257  if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2258  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2259  if (!ClassDecl->isTriviallyCopyable()) return false;
2260  }
2261 
2262  return true;
2263  }
2264 
2265  // No other types can match.
2266  return false;
2267 }
2268 
2270  return !Context.getLangOpts().ObjCAutoRefCount &&
2271  Context.getLangOpts().ObjCWeak &&
2272  getObjCLifetime() != Qualifiers::OCL_Weak;
2273 }
2274 
2275 namespace {
2276 // Helper class that determines whether this is a type that is non-trivial to
2277 // primitive copy or move, or is a struct type that has a field of such type.
2278 template <bool IsMove>
2279 struct IsNonTrivialCopyMoveVisitor
2280  : CopiedTypeVisitor<IsNonTrivialCopyMoveVisitor<IsMove>, IsMove, bool> {
2281  using Super =
2283  IsNonTrivialCopyMoveVisitor(const ASTContext &C) : Ctx(C) {}
2284  void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT) {}
2285 
2286  bool visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT) {
2287  if (const auto *AT = this->Ctx.getAsArrayType(QT))
2288  return this->asDerived().visit(Ctx.getBaseElementType(AT));
2289  return Super::visitWithKind(PCK, QT);
2290  }
2291 
2292  bool visitARCStrong(QualType QT) { return true; }
2293  bool visitARCWeak(QualType QT) { return true; }
2294  bool visitTrivial(QualType QT) { return false; }
2295  // Volatile fields are considered trivial.
2296  bool visitVolatileTrivial(QualType QT) { return false; }
2297 
2298  bool visitStruct(QualType QT) {
2299  const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
2300  // We don't want to apply the C restriction in C++ because C++
2301  // (1) can apply the restriction at a finer grain by banning copying or
2302  // destroying the union, and
2303  // (2) allows users to override these restrictions by declaring explicit
2304  // constructors/etc, which we're not proposing to add to C.
2305  if (isa<CXXRecordDecl>(RD))
2306  return false;
2307  for (const FieldDecl *FD : RD->fields())
2308  if (this->asDerived().visit(FD->getType()))
2309  return true;
2310  return false;
2311  }
2312 
2313  const ASTContext &Ctx;
2314 };
2315 
2316 } // namespace
2317 
2319  if (isNonTrivialToPrimitiveDefaultInitialize())
2320  return true;
2321  DestructionKind DK = isDestructedType();
2322  if (DK != DK_none && DK != DK_cxx_destructor)
2323  return true;
2324  if (IsNonTrivialCopyMoveVisitor<false>(Ctx).visit(*this))
2325  return true;
2326  if (IsNonTrivialCopyMoveVisitor<true>(Ctx).visit(*this))
2327  return true;
2328  return false;
2329 }
2330 
2333  if (const auto *RT =
2334  getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2335  if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2336  return PDIK_Struct;
2337 
2338  switch (getQualifiers().getObjCLifetime()) {
2340  return PDIK_ARCStrong;
2341  case Qualifiers::OCL_Weak:
2342  return PDIK_ARCWeak;
2343  default:
2344  return PDIK_Trivial;
2345  }
2346 }
2347 
2349  if (const auto *RT =
2350  getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2351  if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2352  return PCK_Struct;
2353 
2354  Qualifiers Qs = getQualifiers();
2355  switch (Qs.getObjCLifetime()) {
2357  return PCK_ARCStrong;
2358  case Qualifiers::OCL_Weak:
2359  return PCK_ARCWeak;
2360  default:
2361  return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2362  }
2363 }
2364 
2367  return isNonTrivialToPrimitiveCopy();
2368 }
2369 
2370 bool Type::isLiteralType(const ASTContext &Ctx) const {
2371  if (isDependentType())
2372  return false;
2373 
2374  // C++1y [basic.types]p10:
2375  // A type is a literal type if it is:
2376  // -- cv void; or
2377  if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2378  return true;
2379 
2380  // C++11 [basic.types]p10:
2381  // A type is a literal type if it is:
2382  // [...]
2383  // -- an array of literal type other than an array of runtime bound; or
2384  if (isVariableArrayType())
2385  return false;
2386  const Type *BaseTy = getBaseElementTypeUnsafe();
2387  assert(BaseTy && "NULL element type");
2388 
2389  // Return false for incomplete types after skipping any incomplete array
2390  // types; those are expressly allowed by the standard and thus our API.
2391  if (BaseTy->isIncompleteType())
2392  return false;
2393 
2394  // C++11 [basic.types]p10:
2395  // A type is a literal type if it is:
2396  // -- a scalar type; or
2397  // As an extension, Clang treats vector types and complex types as
2398  // literal types.
2399  if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2400  BaseTy->isAnyComplexType())
2401  return true;
2402  // -- a reference type; or
2403  if (BaseTy->isReferenceType())
2404  return true;
2405  // -- a class type that has all of the following properties:
2406  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2407  // -- a trivial destructor,
2408  // -- every constructor call and full-expression in the
2409  // brace-or-equal-initializers for non-static data members (if any)
2410  // is a constant expression,
2411  // -- it is an aggregate type or has at least one constexpr
2412  // constructor or constructor template that is not a copy or move
2413  // constructor, and
2414  // -- all non-static data members and base classes of literal types
2415  //
2416  // We resolve DR1361 by ignoring the second bullet.
2417  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2418  return ClassDecl->isLiteral();
2419 
2420  return true;
2421  }
2422 
2423  // We treat _Atomic T as a literal type if T is a literal type.
2424  if (const auto *AT = BaseTy->getAs<AtomicType>())
2425  return AT->getValueType()->isLiteralType(Ctx);
2426 
2427  // If this type hasn't been deduced yet, then conservatively assume that
2428  // it'll work out to be a literal type.
2429  if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2430  return true;
2431 
2432  return false;
2433 }
2434 
2436  if (isDependentType())
2437  return false;
2438 
2439  // C++0x [basic.types]p9:
2440  // Scalar types, standard-layout class types, arrays of such types, and
2441  // cv-qualified versions of these types are collectively called
2442  // standard-layout types.
2443  const Type *BaseTy = getBaseElementTypeUnsafe();
2444  assert(BaseTy && "NULL element type");
2445 
2446  // Return false for incomplete types after skipping any incomplete array
2447  // types which are expressly allowed by the standard and thus our API.
2448  if (BaseTy->isIncompleteType())
2449  return false;
2450 
2451  // As an extension, Clang treats vector types as Scalar types.
2452  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2453  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2454  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2455  if (!ClassDecl->isStandardLayout())
2456  return false;
2457 
2458  // Default to 'true' for non-C++ class types.
2459  // FIXME: This is a bit dubious, but plain C structs should trivially meet
2460  // all the requirements of standard layout classes.
2461  return true;
2462  }
2463 
2464  // No other types can match.
2465  return false;
2466 }
2467 
2468 // This is effectively the intersection of isTrivialType and
2469 // isStandardLayoutType. We implement it directly to avoid redundant
2470 // conversions from a type to a CXXRecordDecl.
2471 bool QualType::isCXX11PODType(const ASTContext &Context) const {
2472  const Type *ty = getTypePtr();
2473  if (ty->isDependentType())
2474  return false;
2475 
2476  if (hasNonTrivialObjCLifetime())
2477  return false;
2478 
2479  // C++11 [basic.types]p9:
2480  // Scalar types, POD classes, arrays of such types, and cv-qualified
2481  // versions of these types are collectively called trivial types.
2482  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2483  assert(BaseTy && "NULL element type");
2484 
2485  // Return false for incomplete types after skipping any incomplete array
2486  // types which are expressly allowed by the standard and thus our API.
2487  if (BaseTy->isIncompleteType())
2488  return false;
2489 
2490  // As an extension, Clang treats vector types as Scalar types.
2491  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2492  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2493  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2494  // C++11 [class]p10:
2495  // A POD struct is a non-union class that is both a trivial class [...]
2496  if (!ClassDecl->isTrivial()) return false;
2497 
2498  // C++11 [class]p10:
2499  // A POD struct is a non-union class that is both a trivial class and
2500  // a standard-layout class [...]
2501  if (!ClassDecl->isStandardLayout()) return false;
2502 
2503  // C++11 [class]p10:
2504  // A POD struct is a non-union class that is both a trivial class and
2505  // a standard-layout class, and has no non-static data members of type
2506  // non-POD struct, non-POD union (or array of such types). [...]
2507  //
2508  // We don't directly query the recursive aspect as the requirements for
2509  // both standard-layout classes and trivial classes apply recursively
2510  // already.
2511  }
2512 
2513  return true;
2514  }
2515 
2516  // No other types can match.
2517  return false;
2518 }
2519 
2520 bool Type::isAlignValT() const {
2521  if (const auto *ET = getAs<EnumType>()) {
2522  IdentifierInfo *II = ET->getDecl()->getIdentifier();
2523  if (II && II->isStr("align_val_t") && ET->getDecl()->isInStdNamespace())
2524  return true;
2525  }
2526  return false;
2527 }
2528 
2529 bool Type::isStdByteType() const {
2530  if (const auto *ET = getAs<EnumType>()) {
2531  IdentifierInfo *II = ET->getDecl()->getIdentifier();
2532  if (II && II->isStr("byte") && ET->getDecl()->isInStdNamespace())
2533  return true;
2534  }
2535  return false;
2536 }
2537 
2539  if (const auto *BT = getAs<BuiltinType>())
2540  switch (BT->getKind()) {
2541  case BuiltinType::Bool:
2542  case BuiltinType::Char_S:
2543  case BuiltinType::Char_U:
2544  case BuiltinType::SChar:
2545  case BuiltinType::UChar:
2546  case BuiltinType::Short:
2547  case BuiltinType::UShort:
2548  case BuiltinType::WChar_S:
2549  case BuiltinType::WChar_U:
2550  case BuiltinType::Char8:
2551  case BuiltinType::Char16:
2552  case BuiltinType::Char32:
2553  return true;
2554  default:
2555  return false;
2556  }
2557 
2558  // Enumerated types are promotable to their compatible integer types
2559  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2560  if (const auto *ET = getAs<EnumType>()){
2561  if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2562  || ET->getDecl()->isScoped())
2563  return false;
2564 
2565  return true;
2566  }
2567 
2568  return false;
2569 }
2570 
2572  // Note that this intentionally does not use the canonical type.
2573  switch (getTypeClass()) {
2574  case Builtin:
2575  case Record:
2576  case Enum:
2577  case Typedef:
2578  case Complex:
2579  case TypeOfExpr:
2580  case TypeOf:
2581  case TemplateTypeParm:
2582  case SubstTemplateTypeParm:
2583  case TemplateSpecialization:
2584  case Elaborated:
2585  case DependentName:
2586  case DependentTemplateSpecialization:
2587  case ObjCInterface:
2588  case ObjCObject:
2589  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
2590  return true;
2591  default:
2592  return false;
2593  }
2594 }
2595 
2598  switch (TypeSpec) {
2599  default: return ETK_None;
2600  case TST_typename: return ETK_Typename;
2601  case TST_class: return ETK_Class;
2602  case TST_struct: return ETK_Struct;
2603  case TST_interface: return ETK_Interface;
2604  case TST_union: return ETK_Union;
2605  case TST_enum: return ETK_Enum;
2606  }
2607 }
2608 
2611  switch(TypeSpec) {
2612  case TST_class: return TTK_Class;
2613  case TST_struct: return TTK_Struct;
2614  case TST_interface: return TTK_Interface;
2615  case TST_union: return TTK_Union;
2616  case TST_enum: return TTK_Enum;
2617  }
2618 
2619  llvm_unreachable("Type specifier is not a tag type kind.");
2620 }
2621 
2624  switch (Kind) {
2625  case TTK_Class: return ETK_Class;
2626  case TTK_Struct: return ETK_Struct;
2627  case TTK_Interface: return ETK_Interface;
2628  case TTK_Union: return ETK_Union;
2629  case TTK_Enum: return ETK_Enum;
2630  }
2631  llvm_unreachable("Unknown tag type kind.");
2632 }
2633 
2636  switch (Keyword) {
2637  case ETK_Class: return TTK_Class;
2638  case ETK_Struct: return TTK_Struct;
2639  case ETK_Interface: return TTK_Interface;
2640  case ETK_Union: return TTK_Union;
2641  case ETK_Enum: return TTK_Enum;
2642  case ETK_None: // Fall through.
2643  case ETK_Typename:
2644  llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2645  }
2646  llvm_unreachable("Unknown elaborated type keyword.");
2647 }
2648 
2649 bool
2651  switch (Keyword) {
2652  case ETK_None:
2653  case ETK_Typename:
2654  return false;
2655  case ETK_Class:
2656  case ETK_Struct:
2657  case ETK_Interface:
2658  case ETK_Union:
2659  case ETK_Enum:
2660  return true;
2661  }
2662  llvm_unreachable("Unknown elaborated type keyword.");
2663 }
2664 
2666  switch (Keyword) {
2667  case ETK_None: return {};
2668  case ETK_Typename: return "typename";
2669  case ETK_Class: return "class";
2670  case ETK_Struct: return "struct";
2671  case ETK_Interface: return "__interface";
2672  case ETK_Union: return "union";
2673  case ETK_Enum: return "enum";
2674  }
2675 
2676  llvm_unreachable("Unknown elaborated type keyword.");
2677 }
2678 
2679 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2680  ElaboratedTypeKeyword Keyword,
2681  NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2683  QualType Canon)
2684  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
2685  /*VariablyModified=*/false,
2686  NNS && NNS->containsUnexpandedParameterPack()),
2687  NNS(NNS), Name(Name) {
2688  DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
2689  assert((!NNS || NNS->isDependent()) &&
2690  "DependentTemplateSpecializatonType requires dependent qualifier");
2691  TemplateArgument *ArgBuffer = getArgBuffer();
2692  for (const TemplateArgument &Arg : Args) {
2693  if (Arg.containsUnexpandedParameterPack())
2695 
2696  new (ArgBuffer++) TemplateArgument(Arg);
2697  }
2698 }
2699 
2700 void
2702  const ASTContext &Context,
2703  ElaboratedTypeKeyword Keyword,
2704  NestedNameSpecifier *Qualifier,
2705  const IdentifierInfo *Name,
2707  ID.AddInteger(Keyword);
2708  ID.AddPointer(Qualifier);
2709  ID.AddPointer(Name);
2710  for (const TemplateArgument &Arg : Args)
2711  Arg.Profile(ID, Context);
2712 }
2713 
2715  ElaboratedTypeKeyword Keyword;
2716  if (const auto *Elab = dyn_cast<ElaboratedType>(this))
2717  Keyword = Elab->getKeyword();
2718  else if (const auto *DepName = dyn_cast<DependentNameType>(this))
2719  Keyword = DepName->getKeyword();
2720  else if (const auto *DepTST =
2721  dyn_cast<DependentTemplateSpecializationType>(this))
2722  Keyword = DepTST->getKeyword();
2723  else
2724  return false;
2725 
2726  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2727 }
2728 
2729 const char *Type::getTypeClassName() const {
2730  switch (TypeBits.TC) {
2731 #define ABSTRACT_TYPE(Derived, Base)
2732 #define TYPE(Derived, Base) case Derived: return #Derived;
2733 #include "clang/AST/TypeNodes.def"
2734  }
2735 
2736  llvm_unreachable("Invalid type class.");
2737 }
2738 
2739 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2740  switch (getKind()) {
2741  case Void:
2742  return "void";
2743  case Bool:
2744  return Policy.Bool ? "bool" : "_Bool";
2745  case Char_S:
2746  return "char";
2747  case Char_U:
2748  return "char";
2749  case SChar:
2750  return "signed char";
2751  case Short:
2752  return "short";
2753  case Int:
2754  return "int";
2755  case Long:
2756  return "long";
2757  case LongLong:
2758  return "long long";
2759  case Int128:
2760  return "__int128";
2761  case UChar:
2762  return "unsigned char";
2763  case UShort:
2764  return "unsigned short";
2765  case UInt:
2766  return "unsigned int";
2767  case ULong:
2768  return "unsigned long";
2769  case ULongLong:
2770  return "unsigned long long";
2771  case UInt128:
2772  return "unsigned __int128";
2773  case Half:
2774  return Policy.Half ? "half" : "__fp16";
2775  case Float:
2776  return "float";
2777  case Double:
2778  return "double";
2779  case LongDouble:
2780  return "long double";
2781  case ShortAccum:
2782  return "short _Accum";
2783  case Accum:
2784  return "_Accum";
2785  case LongAccum:
2786  return "long _Accum";
2787  case UShortAccum:
2788  return "unsigned short _Accum";
2789  case UAccum:
2790  return "unsigned _Accum";
2791  case ULongAccum:
2792  return "unsigned long _Accum";
2793  case BuiltinType::ShortFract:
2794  return "short _Fract";
2795  case BuiltinType::Fract:
2796  return "_Fract";
2797  case BuiltinType::LongFract:
2798  return "long _Fract";
2799  case BuiltinType::UShortFract:
2800  return "unsigned short _Fract";
2801  case BuiltinType::UFract:
2802  return "unsigned _Fract";
2803  case BuiltinType::ULongFract:
2804  return "unsigned long _Fract";
2805  case BuiltinType::SatShortAccum:
2806  return "_Sat short _Accum";
2807  case BuiltinType::SatAccum:
2808  return "_Sat _Accum";
2809  case BuiltinType::SatLongAccum:
2810  return "_Sat long _Accum";
2811  case BuiltinType::SatUShortAccum:
2812  return "_Sat unsigned short _Accum";
2813  case BuiltinType::SatUAccum:
2814  return "_Sat unsigned _Accum";
2815  case BuiltinType::SatULongAccum:
2816  return "_Sat unsigned long _Accum";
2817  case BuiltinType::SatShortFract:
2818  return "_Sat short _Fract";
2819  case BuiltinType::SatFract:
2820  return "_Sat _Fract";
2821  case BuiltinType::SatLongFract:
2822  return "_Sat long _Fract";
2823  case BuiltinType::SatUShortFract:
2824  return "_Sat unsigned short _Fract";
2825  case BuiltinType::SatUFract:
2826  return "_Sat unsigned _Fract";
2827  case BuiltinType::SatULongFract:
2828  return "_Sat unsigned long _Fract";
2829  case Float16:
2830  return "_Float16";
2831  case Float128:
2832  return "__float128";
2833  case WChar_S:
2834  case WChar_U:
2835  return Policy.MSWChar ? "__wchar_t" : "wchar_t";
2836  case Char8:
2837  return "char8_t";
2838  case Char16:
2839  return "char16_t";
2840  case Char32:
2841  return "char32_t";
2842  case NullPtr:
2843  return "nullptr_t";
2844  case Overload:
2845  return "<overloaded function type>";
2846  case BoundMember:
2847  return "<bound member function type>";
2848  case PseudoObject:
2849  return "<pseudo-object type>";
2850  case Dependent:
2851  return "<dependent type>";
2852  case UnknownAny:
2853  return "<unknown type>";
2854  case ARCUnbridgedCast:
2855  return "<ARC unbridged cast type>";
2856  case BuiltinFn:
2857  return "<builtin fn type>";
2858  case ObjCId:
2859  return "id";
2860  case ObjCClass:
2861  return "Class";
2862  case ObjCSel:
2863  return "SEL";
2864 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2865  case Id: \
2866  return "__" #Access " " #ImgType "_t";
2867 #include "clang/Basic/OpenCLImageTypes.def"
2868  case OCLSampler:
2869  return "sampler_t";
2870  case OCLEvent:
2871  return "event_t";
2872  case OCLClkEvent:
2873  return "clk_event_t";
2874  case OCLQueue:
2875  return "queue_t";
2876  case OCLReserveID:
2877  return "reserve_id_t";
2878  case OMPArraySection:
2879  return "<OpenMP array section type>";
2880 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2881  case Id: \
2882  return #ExtType;
2883 #include "clang/Basic/OpenCLExtensionTypes.def"
2884  }
2885 
2886  llvm_unreachable("Invalid builtin type.");
2887 }
2888 
2890  if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
2891  return RefType->getPointeeType();
2892 
2893  // C++0x [basic.lval]:
2894  // Class prvalues can have cv-qualified types; non-class prvalues always
2895  // have cv-unqualified types.
2896  //
2897  // See also C99 6.3.2.1p2.
2898  if (!Context.getLangOpts().CPlusPlus ||
2899  (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
2900  return getUnqualifiedType();
2901 
2902  return *this;
2903 }
2904 
2906  switch (CC) {
2907  case CC_C: return "cdecl";
2908  case CC_X86StdCall: return "stdcall";
2909  case CC_X86FastCall: return "fastcall";
2910  case CC_X86ThisCall: return "thiscall";
2911  case CC_X86Pascal: return "pascal";
2912  case CC_X86VectorCall: return "vectorcall";
2913  case CC_Win64: return "ms_abi";
2914  case CC_X86_64SysV: return "sysv_abi";
2915  case CC_X86RegCall : return "regcall";
2916  case CC_AAPCS: return "aapcs";
2917  case CC_AAPCS_VFP: return "aapcs-vfp";
2918  case CC_AArch64VectorCall: return "aarch64_vector_pcs";
2919  case CC_IntelOclBicc: return "intel_ocl_bicc";
2920  case CC_SpirFunction: return "spir_function";
2921  case CC_OpenCLKernel: return "opencl_kernel";
2922  case CC_Swift: return "swiftcall";
2923  case CC_PreserveMost: return "preserve_most";
2924  case CC_PreserveAll: return "preserve_all";
2925  }
2926 
2927  llvm_unreachable("Invalid calling convention.");
2928 }
2929 
2930 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
2931  QualType canonical,
2932  const ExtProtoInfo &epi)
2933  : FunctionType(FunctionProto, result, canonical, result->isDependentType(),
2934  result->isInstantiationDependentType(),
2935  result->isVariablyModifiedType(),
2936  result->containsUnexpandedParameterPack(), epi.ExtInfo) {
2937  FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
2938  FunctionTypeBits.RefQualifier = epi.RefQualifier;
2939  FunctionTypeBits.NumParams = params.size();
2940  assert(getNumParams() == params.size() && "NumParams overflow!");
2941  FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
2942  FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
2943  FunctionTypeBits.Variadic = epi.Variadic;
2944  FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
2945 
2946  // Fill in the extra trailing bitfields if present.
2947  if (hasExtraBitfields(epi.ExceptionSpec.Type)) {
2948  auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
2949  ExtraBits.NumExceptionType = epi.ExceptionSpec.Exceptions.size();
2950  }
2951 
2952  // Fill in the trailing argument array.
2953  auto *argSlot = getTrailingObjects<QualType>();
2954  for (unsigned i = 0; i != getNumParams(); ++i) {
2955  if (params[i]->isDependentType())
2956  setDependent();
2957  else if (params[i]->isInstantiationDependentType())
2959 
2960  if (params[i]->containsUnexpandedParameterPack())
2962 
2963  argSlot[i] = params[i];
2964  }
2965 
2966  // Fill in the exception type array if present.
2967  if (getExceptionSpecType() == EST_Dynamic) {
2968  assert(hasExtraBitfields() && "missing trailing extra bitfields!");
2969  auto *exnSlot =
2970  reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
2971  unsigned I = 0;
2972  for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
2973  // Note that, before C++17, a dependent exception specification does
2974  // *not* make a type dependent; it's not even part of the C++ type
2975  // system.
2976  if (ExceptionType->isInstantiationDependentType())
2978 
2979  if (ExceptionType->containsUnexpandedParameterPack())
2981 
2982  exnSlot[I++] = ExceptionType;
2983  }
2984  }
2985  // Fill in the Expr * in the exception specification if present.
2986  else if (isComputedNoexcept(getExceptionSpecType())) {
2987  assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
2988  assert((getExceptionSpecType() == EST_DependentNoexcept) ==
2989  epi.ExceptionSpec.NoexceptExpr->isValueDependent());
2990 
2991  // Store the noexcept expression and context.
2992  *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
2993 
2994  if (epi.ExceptionSpec.NoexceptExpr->isValueDependent() ||
2995  epi.ExceptionSpec.NoexceptExpr->isInstantiationDependent())
2997 
2998  if (epi.ExceptionSpec.NoexceptExpr->containsUnexpandedParameterPack())
3000  }
3001  // Fill in the FunctionDecl * in the exception specification if present.
3002  else if (getExceptionSpecType() == EST_Uninstantiated) {
3003  // Store the function decl from which we will resolve our
3004  // exception specification.
3005  auto **slot = getTrailingObjects<FunctionDecl *>();
3006  slot[0] = epi.ExceptionSpec.SourceDecl;
3007  slot[1] = epi.ExceptionSpec.SourceTemplate;
3008  // This exception specification doesn't make the type dependent, because
3009  // it's not instantiated as part of instantiating the type.
3010  } else if (getExceptionSpecType() == EST_Unevaluated) {
3011  // Store the function decl from which we will resolve our
3012  // exception specification.
3013  auto **slot = getTrailingObjects<FunctionDecl *>();
3014  slot[0] = epi.ExceptionSpec.SourceDecl;
3015  }
3016 
3017  // If this is a canonical type, and its exception specification is dependent,
3018  // then it's a dependent type. This only happens in C++17 onwards.
3019  if (isCanonicalUnqualified()) {
3020  if (getExceptionSpecType() == EST_Dynamic ||
3021  getExceptionSpecType() == EST_DependentNoexcept) {
3022  assert(hasDependentExceptionSpec() && "type should not be canonical");
3023  setDependent();
3024  }
3025  } else if (getCanonicalTypeInternal()->isDependentType()) {
3026  // Ask our canonical type whether our exception specification was dependent.
3027  setDependent();
3028  }
3029 
3030  // Fill in the extra parameter info if present.
3031  if (epi.ExtParameterInfos) {
3032  auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3033  for (unsigned i = 0; i != getNumParams(); ++i)
3034  extParamInfos[i] = epi.ExtParameterInfos[i];
3035  }
3036 
3037  if (epi.TypeQuals.hasNonFastQualifiers()) {
3038  FunctionTypeBits.HasExtQuals = 1;
3039  *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3040  } else {
3041  FunctionTypeBits.HasExtQuals = 0;
3042  }
3043 }
3044 
3046  if (Expr *NE = getNoexceptExpr())
3047  return NE->isValueDependent();
3048  for (QualType ET : exceptions())
3049  // A pack expansion with a non-dependent pattern is still dependent,
3050  // because we don't know whether the pattern is in the exception spec
3051  // or not (that depends on whether the pack has 0 expansions).
3052  if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3053  return true;
3054  return false;
3055 }
3056 
3058  if (Expr *NE = getNoexceptExpr())
3059  return NE->isInstantiationDependent();
3060  for (QualType ET : exceptions())
3061  if (ET->isInstantiationDependentType())
3062  return true;
3063  return false;
3064 }
3065 
3067  switch (getExceptionSpecType()) {
3068  case EST_Unparsed:
3069  case EST_Unevaluated:
3070  case EST_Uninstantiated:
3071  llvm_unreachable("should not call this with unresolved exception specs");
3072 
3073  case EST_DynamicNone:
3074  case EST_BasicNoexcept:
3075  case EST_NoexceptTrue:
3076  return CT_Cannot;
3077 
3078  case EST_None:
3079  case EST_MSAny:
3080  case EST_NoexceptFalse:
3081  return CT_Can;
3082 
3083  case EST_Dynamic:
3084  // A dynamic exception specification is throwing unless every exception
3085  // type is an (unexpanded) pack expansion type.
3086  for (unsigned I = 0; I != getNumExceptions(); ++I)
3087  if (!getExceptionType(I)->getAs<PackExpansionType>())
3088  return CT_Can;
3089  return CT_Dependent;
3090 
3091  case EST_DependentNoexcept:
3092  return CT_Dependent;
3093  }
3094 
3095  llvm_unreachable("unexpected exception specification kind");
3096 }
3097 
3099  for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3100  if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
3101  return true;
3102 
3103  return false;
3104 }
3105 
3106 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3107  const QualType *ArgTys, unsigned NumParams,
3108  const ExtProtoInfo &epi,
3109  const ASTContext &Context, bool Canonical) {
3110  // We have to be careful not to get ambiguous profile encodings.
3111  // Note that valid type pointers are never ambiguous with anything else.
3112  //
3113  // The encoding grammar begins:
3114  // type type* bool int bool
3115  // If that final bool is true, then there is a section for the EH spec:
3116  // bool type*
3117  // This is followed by an optional "consumed argument" section of the
3118  // same length as the first type sequence:
3119  // bool*
3120  // Finally, we have the ext info and trailing return type flag:
3121  // int bool
3122  //
3123  // There is no ambiguity between the consumed arguments and an empty EH
3124  // spec because of the leading 'bool' which unambiguously indicates
3125  // whether the following bool is the EH spec or part of the arguments.
3126 
3127  ID.AddPointer(Result.getAsOpaquePtr());
3128  for (unsigned i = 0; i != NumParams; ++i)
3129  ID.AddPointer(ArgTys[i].getAsOpaquePtr());
3130  // This method is relatively performance sensitive, so as a performance
3131  // shortcut, use one AddInteger call instead of four for the next four
3132  // fields.
3133  assert(!(unsigned(epi.Variadic) & ~1) &&
3134  !(unsigned(epi.RefQualifier) & ~3) &&
3135  !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3136  "Values larger than expected.");
3137  ID.AddInteger(unsigned(epi.Variadic) +
3138  (epi.RefQualifier << 1) +
3139  (epi.ExceptionSpec.Type << 3));
3140  ID.Add(epi.TypeQuals);
3141  if (epi.ExceptionSpec.Type == EST_Dynamic) {
3142  for (QualType Ex : epi.ExceptionSpec.Exceptions)
3143  ID.AddPointer(Ex.getAsOpaquePtr());
3144  } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) {
3145  epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3146  } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3148  ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3149  }
3150  if (epi.ExtParameterInfos) {
3151  for (unsigned i = 0; i != NumParams; ++i)
3152  ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
3153  }
3154  epi.ExtInfo.Profile(ID);
3155  ID.AddBoolean(epi.HasTrailingReturn);
3156 }
3157 
3158 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3159  const ASTContext &Ctx) {
3160  Profile(ID, getReturnType(), param_type_begin(), getNumParams(),
3161  getExtProtoInfo(), Ctx, isCanonicalUnqualified());
3162 }
3163 
3165  return getDecl()->getUnderlyingType();
3166 }
3167 
3169 
3171  // Step over MacroQualifiedTypes from the same macro to find the type
3172  // ultimately qualified by the macro qualifier.
3173  QualType Inner = cast<AttributedType>(getUnderlyingType())->getModifiedType();
3174  while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Inner)) {
3175  if (InnerMQT->getMacroIdentifier() != getMacroIdentifier())
3176  break;
3177  Inner = InnerMQT->getModifiedType();
3178  }
3179  return Inner;
3180 }
3181 
3183  : Type(TypeOfExpr, can, E->isTypeDependent(),
3184  E->isInstantiationDependent(),
3185  E->getType()->isVariablyModifiedType(),
3187  TOExpr(E) {}
3188 
3190  return !TOExpr->isTypeDependent();
3191 }
3192 
3194  if (isSugared())
3195  return getUnderlyingExpr()->getType();
3196 
3197  return QualType(this, 0);
3198 }
3199 
3200 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3201  const ASTContext &Context, Expr *E) {
3202  E->Profile(ID, Context, true);
3203 }
3204 
3206  // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3207  // decltype(e) denotes a unique dependent type." Hence a decltype type is
3208  // type-dependent even if its expression is only instantiation-dependent.
3209  : Type(Decltype, can, E->isInstantiationDependent(),
3210  E->isInstantiationDependent(),
3211  E->getType()->isVariablyModifiedType(),
3213  E(E), UnderlyingType(underlyingType) {}
3214 
3216 
3218  if (isSugared())
3219  return getUnderlyingType();
3220 
3221  return QualType(this, 0);
3222 }
3223 
3225  : DecltypeType(E, Context.DependentTy), Context(Context) {}
3226 
3227 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3228  const ASTContext &Context, Expr *E) {
3229  E->Profile(ID, Context, true);
3230 }
3231 
3233  QualType UnderlyingType,
3234  UTTKind UKind,
3235  QualType CanonicalType)
3236  : Type(UnaryTransform, CanonicalType, BaseType->isDependentType(),
3237  BaseType->isInstantiationDependentType(),
3238  BaseType->isVariablyModifiedType(),
3239  BaseType->containsUnexpandedParameterPack()),
3240  BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
3241 
3243  QualType BaseType,
3244  UTTKind UKind)
3245  : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
3246 
3248  : Type(TC, can, D->isDependentType(),
3249  /*InstantiationDependent=*/D->isDependentType(),
3250  /*VariablyModified=*/false,
3251  /*ContainsUnexpandedParameterPack=*/false),
3252  decl(const_cast<TagDecl*>(D)) {}
3253 
3255  for (auto I : decl->redecls()) {
3256  if (I->isCompleteDefinition() || I->isBeingDefined())
3257  return I;
3258  }
3259  // If there's no definition (not even in progress), return what we have.
3260  return decl;
3261 }
3262 
3264  return getInterestingTagDecl(decl);
3265 }
3266 
3268  return getDecl()->isBeingDefined();
3269 }
3270 
3272  std::vector<const RecordType*> RecordTypeList;
3273  RecordTypeList.push_back(this);
3274  unsigned NextToCheckIndex = 0;
3275 
3276  while (RecordTypeList.size() > NextToCheckIndex) {
3277  for (FieldDecl *FD :
3278  RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
3279  QualType FieldTy = FD->getType();
3280  if (FieldTy.isConstQualified())
3281  return true;
3282  FieldTy = FieldTy.getCanonicalType();
3283  if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
3284  if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
3285  RecordTypeList.push_back(FieldRecTy);
3286  }
3287  }
3288  ++NextToCheckIndex;
3289  }
3290  return false;
3291 }
3292 
3294  // FIXME: Generate this with TableGen.
3295  switch (getAttrKind()) {
3296  // These are type qualifiers in the traditional C sense: they annotate
3297  // something about a specific value/variable of a type. (They aren't
3298  // always part of the canonical type, though.)
3299  case attr::ObjCGC:
3300  case attr::ObjCOwnership:
3301  case attr::ObjCInertUnsafeUnretained:
3302  case attr::TypeNonNull:
3303  case attr::TypeNullable:
3304  case attr::TypeNullUnspecified:
3305  case attr::LifetimeBound:
3306  case attr::AddressSpace:
3307  return true;
3308 
3309  // All other type attributes aren't qualifiers; they rewrite the modified
3310  // type to be a semantically different type.
3311  default:
3312  return false;
3313  }
3314 }
3315 
3317  // FIXME: Generate this with TableGen?
3318  switch (getAttrKind()) {
3319  default: return false;
3320  case attr::Ptr32:
3321  case attr::Ptr64:
3322  case attr::SPtr:
3323  case attr::UPtr:
3324  return true;
3325  }
3326  llvm_unreachable("invalid attr kind");
3327 }
3328 
3330  // FIXME: Generate this with TableGen.
3331  switch (getAttrKind()) {
3332  default: return false;
3333  case attr::Pcs:
3334  case attr::CDecl:
3335  case attr::FastCall:
3336  case attr::StdCall:
3337  case attr::ThisCall:
3338  case attr::RegCall:
3339  case attr::SwiftCall:
3340  case attr::VectorCall:
3341  case attr::AArch64VectorPcs:
3342  case attr::Pascal:
3343  case attr::MSABI:
3344  case attr::SysVABI:
3345  case attr::IntelOclBicc:
3346  case attr::PreserveMost:
3347  case attr::PreserveAll:
3348  return true;
3349  }
3350  llvm_unreachable("invalid attr kind");
3351 }
3352 
3354  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3355 }
3356 
3358  return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3359 }
3360 
3361 SubstTemplateTypeParmPackType::
3362 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3363  QualType Canon,
3364  const TemplateArgument &ArgPack)
3365  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
3366  Replaced(Param), Arguments(ArgPack.pack_begin()) {
3367  SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
3368 }
3369 
3371  return TemplateArgument(llvm::makeArrayRef(Arguments, getNumArgs()));
3372 }
3373 
3374 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3375  Profile(ID, getReplacedParameter(), getArgumentPack());
3376 }
3377 
3378 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3379  const TemplateTypeParmType *Replaced,
3380  const TemplateArgument &ArgPack) {
3381  ID.AddPointer(Replaced);
3382  ID.AddInteger(ArgPack.pack_size());
3383  for (const auto &P : ArgPack.pack_elements())
3384  ID.AddPointer(P.getAsType().getAsOpaquePtr());
3385 }
3386 
3389  bool &InstantiationDependent) {
3390  return anyDependentTemplateArguments(Args.arguments(),
3391  InstantiationDependent);
3392 }
3393 
3396  bool &InstantiationDependent) {
3397  for (const TemplateArgumentLoc &ArgLoc : Args) {
3398  if (ArgLoc.getArgument().isDependent()) {
3399  InstantiationDependent = true;
3400  return true;
3401  }
3402 
3403  if (ArgLoc.getArgument().isInstantiationDependent())
3404  InstantiationDependent = true;
3405  }
3406  return false;
3407 }
3408 
3409 TemplateSpecializationType::
3410 TemplateSpecializationType(TemplateName T,
3412  QualType Canon, QualType AliasedType)
3413  : Type(TemplateSpecialization,
3414  Canon.isNull()? QualType(this, 0) : Canon,
3415  Canon.isNull()? true : Canon->isDependentType(),
3416  Canon.isNull()? true : Canon->isInstantiationDependentType(),
3417  false,
3418  T.containsUnexpandedParameterPack()), Template(T) {
3419  TemplateSpecializationTypeBits.NumArgs = Args.size();
3420  TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
3421 
3422  assert(!T.getAsDependentTemplateName() &&
3423  "Use DependentTemplateSpecializationType for dependent template-name");
3424  assert((T.getKind() == TemplateName::Template ||
3427  "Unexpected template name for TemplateSpecializationType");
3428 
3429  auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
3430  for (const TemplateArgument &Arg : Args) {
3431  // Update instantiation-dependent and variably-modified bits.
3432  // If the canonical type exists and is non-dependent, the template
3433  // specialization type can be non-dependent even if one of the type
3434  // arguments is. Given:
3435  // template<typename T> using U = int;
3436  // U<T> is always non-dependent, irrespective of the type T.
3437  // However, U<Ts> contains an unexpanded parameter pack, even though
3438  // its expansion (and thus its desugared type) doesn't.
3439  if (Arg.isInstantiationDependent())
3441  if (Arg.getKind() == TemplateArgument::Type &&
3442  Arg.getAsType()->isVariablyModifiedType())
3444  if (Arg.containsUnexpandedParameterPack())
3446  new (TemplateArgs++) TemplateArgument(Arg);
3447  }
3448 
3449  // Store the aliased type if this is a type alias template specialization.
3450  if (isTypeAlias()) {
3451  auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3452  *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3453  }
3454 }
3455 
3456 void
3457 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3458  TemplateName T,
3460  const ASTContext &Context) {
3461  T.Profile(ID);
3462  for (const TemplateArgument &Arg : Args)
3463  Arg.Profile(ID, Context);
3464 }
3465 
3466 QualType
3467 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3468  if (!hasNonFastQualifiers())
3469  return QT.withFastQualifiers(getFastQualifiers());
3470 
3471  return Context.getQualifiedType(QT, *this);
3472 }
3473 
3474 QualType
3475 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3476  if (!hasNonFastQualifiers())
3477  return QualType(T, getFastQualifiers());
3478 
3479  return Context.getQualifiedType(T, *this);
3480 }
3481 
3482 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3483  QualType BaseType,
3484  ArrayRef<QualType> typeArgs,
3485  ArrayRef<ObjCProtocolDecl *> protocols,
3486  bool isKindOf) {
3487  ID.AddPointer(BaseType.getAsOpaquePtr());
3488  ID.AddInteger(typeArgs.size());
3489  for (auto typeArg : typeArgs)
3490  ID.AddPointer(typeArg.getAsOpaquePtr());
3491  ID.AddInteger(protocols.size());
3492  for (auto proto : protocols)
3493  ID.AddPointer(proto);
3494  ID.AddBoolean(isKindOf);
3495 }
3496 
3497 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3498  Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3499  llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3500  isKindOfTypeAsWritten());
3501 }
3502 
3503 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
3504  const ObjCTypeParamDecl *OTPDecl,
3505  ArrayRef<ObjCProtocolDecl *> protocols) {
3506  ID.AddPointer(OTPDecl);
3507  ID.AddInteger(protocols.size());
3508  for (auto proto : protocols)
3509  ID.AddPointer(proto);
3510 }
3511 
3512 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
3513  Profile(ID, getDecl(),
3514  llvm::makeArrayRef(qual_begin(), getNumProtocols()));
3515 }
3516 
3517 namespace {
3518 
3519 /// The cached properties of a type.
3520 class CachedProperties {
3521  Linkage L;
3522  bool local;
3523 
3524 public:
3525  CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3526 
3527  Linkage getLinkage() const { return L; }
3528  bool hasLocalOrUnnamedType() const { return local; }
3529 
3530  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3531  Linkage MergedLinkage = minLinkage(L.L, R.L);
3532  return CachedProperties(MergedLinkage,
3533  L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
3534  }
3535 };
3536 
3537 } // namespace
3538 
3539 static CachedProperties computeCachedProperties(const Type *T);
3540 
3541 namespace clang {
3542 
3543 /// The type-property cache. This is templated so as to be
3544 /// instantiated at an internal type to prevent unnecessary symbol
3545 /// leakage.
3546 template <class Private> class TypePropertyCache {
3547 public:
3548  static CachedProperties get(QualType T) {
3549  return get(T.getTypePtr());
3550  }
3551 
3552  static CachedProperties get(const Type *T) {
3553  ensure(T);
3554  return CachedProperties(T->TypeBits.getLinkage(),
3555  T->TypeBits.hasLocalOrUnnamedType());
3556  }
3557 
3558  static void ensure(const Type *T) {
3559  // If the cache is valid, we're okay.
3560  if (T->TypeBits.isCacheValid()) return;
3561 
3562  // If this type is non-canonical, ask its canonical type for the
3563  // relevant information.
3564  if (!T->isCanonicalUnqualified()) {
3565  const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3566  ensure(CT);
3567  T->TypeBits.CacheValid = true;
3568  T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3569  T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3570  return;
3571  }
3572 
3573  // Compute the cached properties and then set the cache.
3574  CachedProperties Result = computeCachedProperties(T);
3575  T->TypeBits.CacheValid = true;
3576  T->TypeBits.CachedLinkage = Result.getLinkage();
3577  T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3578  }
3579 };
3580 
3581 } // namespace clang
3582 
3583 // Instantiate the friend template at a private class. In a
3584 // reasonable implementation, these symbols will be internal.
3585 // It is terrible that this is the best way to accomplish this.
3586 namespace {
3587 
3588 class Private {};
3589 
3590 } // namespace
3591 
3593 
3594 static CachedProperties computeCachedProperties(const Type *T) {
3595  switch (T->getTypeClass()) {
3596 #define TYPE(Class,Base)
3597 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3598 #include "clang/AST/TypeNodes.def"
3599  llvm_unreachable("didn't expect a non-canonical type here");
3600 
3601 #define TYPE(Class,Base)
3602 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3603 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3604 #include "clang/AST/TypeNodes.def"
3605  // Treat instantiation-dependent types as external.
3606  assert(T->isInstantiationDependentType());
3607  return CachedProperties(ExternalLinkage, false);
3608 
3609  case Type::Auto:
3610  case Type::DeducedTemplateSpecialization:
3611  // Give non-deduced 'auto' types external linkage. We should only see them
3612  // here in error recovery.
3613  return CachedProperties(ExternalLinkage, false);
3614 
3615  case Type::Builtin:
3616  // C++ [basic.link]p8:
3617  // A type is said to have linkage if and only if:
3618  // - it is a fundamental type (3.9.1); or
3619  return CachedProperties(ExternalLinkage, false);
3620 
3621  case Type::Record:
3622  case Type::Enum: {
3623  const TagDecl *Tag = cast<TagType>(T)->getDecl();
3624 
3625  // C++ [basic.link]p8:
3626  // - it is a class or enumeration type that is named (or has a name
3627  // for linkage purposes (7.1.3)) and the name has linkage; or
3628  // - it is a specialization of a class template (14); or
3629  Linkage L = Tag->getLinkageInternal();
3630  bool IsLocalOrUnnamed =
3631  Tag->getDeclContext()->isFunctionOrMethod() ||
3632  !Tag->hasNameForLinkage();
3633  return CachedProperties(L, IsLocalOrUnnamed);
3634  }
3635 
3636  // C++ [basic.link]p8:
3637  // - it is a compound type (3.9.2) other than a class or enumeration,
3638  // compounded exclusively from types that have linkage; or
3639  case Type::Complex:
3640  return Cache::get(cast<ComplexType>(T)->getElementType());
3641  case Type::Pointer:
3642  return Cache::get(cast<PointerType>(T)->getPointeeType());
3643  case Type::BlockPointer:
3644  return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3645  case Type::LValueReference:
3646  case Type::RValueReference:
3647  return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3648  case Type::MemberPointer: {
3649  const auto *MPT = cast<MemberPointerType>(T);
3650  return merge(Cache::get(MPT->getClass()),
3651  Cache::get(MPT->getPointeeType()));
3652  }
3653  case Type::ConstantArray:
3654  case Type::IncompleteArray:
3655  case Type::VariableArray:
3656  return Cache::get(cast<ArrayType>(T)->getElementType());
3657  case Type::Vector:
3658  case Type::ExtVector:
3659  return Cache::get(cast<VectorType>(T)->getElementType());
3660  case Type::FunctionNoProto:
3661  return Cache::get(cast<FunctionType>(T)->getReturnType());
3662  case Type::FunctionProto: {
3663  const auto *FPT = cast<FunctionProtoType>(T);
3664  CachedProperties result = Cache::get(FPT->getReturnType());
3665  for (const auto &ai : FPT->param_types())
3666  result = merge(result, Cache::get(ai));
3667  return result;
3668  }
3669  case Type::ObjCInterface: {
3670  Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3671  return CachedProperties(L, false);
3672  }
3673  case Type::ObjCObject:
3674  return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3675  case Type::ObjCObjectPointer:
3676  return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3677  case Type::Atomic:
3678  return Cache::get(cast<AtomicType>(T)->getValueType());
3679  case Type::Pipe:
3680  return Cache::get(cast<PipeType>(T)->getElementType());
3681  }
3682 
3683  llvm_unreachable("unhandled type class");
3684 }
3685 
3686 /// Determine the linkage of this type.
3688  Cache::ensure(this);
3689  return TypeBits.getLinkage();
3690 }
3691 
3693  Cache::ensure(this);
3694  return TypeBits.hasLocalOrUnnamedType();
3695 }
3696 
3698  switch (T->getTypeClass()) {
3699 #define TYPE(Class,Base)
3700 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3701 #include "clang/AST/TypeNodes.def"
3702  llvm_unreachable("didn't expect a non-canonical type here");
3703 
3704 #define TYPE(Class,Base)
3705 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3706 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3707 #include "clang/AST/TypeNodes.def"
3708  // Treat instantiation-dependent types as external.
3709  assert(T->isInstantiationDependentType());
3710  return LinkageInfo::external();
3711 
3712  case Type::Builtin:
3713  return LinkageInfo::external();
3714 
3715  case Type::Auto:
3716  case Type::DeducedTemplateSpecialization:
3717  return LinkageInfo::external();
3718 
3719  case Type::Record:
3720  case Type::Enum:
3721  return getDeclLinkageAndVisibility(cast<TagType>(T)->getDecl());
3722 
3723  case Type::Complex:
3724  return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType());
3725  case Type::Pointer:
3726  return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3727  case Type::BlockPointer:
3728  return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3729  case Type::LValueReference:
3730  case Type::RValueReference:
3731  return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3732  case Type::MemberPointer: {
3733  const auto *MPT = cast<MemberPointerType>(T);
3734  LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass());
3735  LV.merge(computeTypeLinkageInfo(MPT->getPointeeType()));
3736  return LV;
3737  }
3738  case Type::ConstantArray:
3739  case Type::IncompleteArray:
3740  case Type::VariableArray:
3741  return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType());
3742  case Type::Vector:
3743  case Type::ExtVector:
3744  return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType());
3745  case Type::FunctionNoProto:
3746  return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3747  case Type::FunctionProto: {
3748  const auto *FPT = cast<FunctionProtoType>(T);
3749  LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType());
3750  for (const auto &ai : FPT->param_types())
3751  LV.merge(computeTypeLinkageInfo(ai));
3752  return LV;
3753  }
3754  case Type::ObjCInterface:
3755  return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl());
3756  case Type::ObjCObject:
3757  return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
3758  case Type::ObjCObjectPointer:
3759  return computeTypeLinkageInfo(
3760  cast<ObjCObjectPointerType>(T)->getPointeeType());
3761  case Type::Atomic:
3762  return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType());
3763  case Type::Pipe:
3764  return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType());
3765  }
3766 
3767  llvm_unreachable("unhandled type class");
3768 }
3769 
3770 bool Type::isLinkageValid() const {
3771  if (!TypeBits.isCacheValid())
3772  return true;
3773 
3774  Linkage L = LinkageComputer{}
3776  .getLinkage();
3777  return L == TypeBits.getLinkage();
3778 }
3779 
3781  if (!T->isCanonicalUnqualified())
3782  return computeTypeLinkageInfo(T->getCanonicalTypeInternal());
3783 
3784  LinkageInfo LV = computeTypeLinkageInfo(T);
3785  assert(LV.getLinkage() == T->getLinkage());
3786  return LV;
3787 }
3788 
3791 }
3792 
3794 Type::getNullability(const ASTContext &Context) const {
3795  QualType Type(this, 0);
3796  while (const auto *AT = Type->getAs<AttributedType>()) {
3797  // Check whether this is an attributed type with nullability
3798  // information.
3799  if (auto Nullability = AT->getImmediateNullability())
3800  return Nullability;
3801 
3802  Type = AT->getEquivalentType();
3803  }
3804  return None;
3805 }
3806 
3807 bool Type::canHaveNullability(bool ResultIfUnknown) const {
3809 
3810  switch (type->getTypeClass()) {
3811  // We'll only see canonical types here.
3812 #define NON_CANONICAL_TYPE(Class, Parent) \
3813  case Type::Class: \
3814  llvm_unreachable("non-canonical type");
3815 #define TYPE(Class, Parent)
3816 #include "clang/AST/TypeNodes.def"
3817 
3818  // Pointer types.
3819  case Type::Pointer:
3820  case Type::BlockPointer:
3821  case Type::MemberPointer:
3822  case Type::ObjCObjectPointer:
3823  return true;
3824 
3825  // Dependent types that could instantiate to pointer types.
3826  case Type::UnresolvedUsing:
3827  case Type::TypeOfExpr:
3828  case Type::TypeOf:
3829  case Type::Decltype:
3830  case Type::UnaryTransform:
3831  case Type::TemplateTypeParm:
3832  case Type::SubstTemplateTypeParmPack:
3833  case Type::DependentName:
3834  case Type::DependentTemplateSpecialization:
3835  case Type::Auto:
3836  return ResultIfUnknown;
3837 
3838  // Dependent template specializations can instantiate to pointer
3839  // types unless they're known to be specializations of a class
3840  // template.
3841  case Type::TemplateSpecialization:
3842  if (TemplateDecl *templateDecl
3843  = cast<TemplateSpecializationType>(type.getTypePtr())
3844  ->getTemplateName().getAsTemplateDecl()) {
3845  if (isa<ClassTemplateDecl>(templateDecl))
3846  return false;
3847  }
3848  return ResultIfUnknown;
3849 
3850  case Type::Builtin:
3851  switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
3852  // Signed, unsigned, and floating-point types cannot have nullability.
3853 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3854 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3855 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
3856 #define BUILTIN_TYPE(Id, SingletonId)
3857 #include "clang/AST/BuiltinTypes.def"
3858  return false;
3859 
3860  // Dependent types that could instantiate to a pointer type.
3861  case BuiltinType::Dependent:
3862  case BuiltinType::Overload:
3863  case BuiltinType::BoundMember:
3864  case BuiltinType::PseudoObject:
3865  case BuiltinType::UnknownAny:
3866  case BuiltinType::ARCUnbridgedCast:
3867  return ResultIfUnknown;
3868 
3869  case BuiltinType::Void:
3870  case BuiltinType::ObjCId:
3871  case BuiltinType::ObjCClass:
3872  case BuiltinType::ObjCSel:
3873 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3874  case BuiltinType::Id:
3875 #include "clang/Basic/OpenCLImageTypes.def"
3876 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3877  case BuiltinType::Id:
3878 #include "clang/Basic/OpenCLExtensionTypes.def"
3879  case BuiltinType::OCLSampler:
3880  case BuiltinType::OCLEvent:
3881  case BuiltinType::OCLClkEvent:
3882  case BuiltinType::OCLQueue:
3883  case BuiltinType::OCLReserveID:
3884  case BuiltinType::BuiltinFn:
3885  case BuiltinType::NullPtr:
3886  case BuiltinType::OMPArraySection:
3887  return false;
3888  }
3889  llvm_unreachable("unknown builtin type");
3890 
3891  // Non-pointer types.
3892  case Type::Complex:
3893  case Type::LValueReference:
3894  case Type::RValueReference:
3895  case Type::ConstantArray:
3896  case Type::IncompleteArray:
3897  case Type::VariableArray:
3898  case Type::DependentSizedArray:
3899  case Type::DependentVector:
3900  case Type::DependentSizedExtVector:
3901  case Type::Vector:
3902  case Type::ExtVector:
3903  case Type::DependentAddressSpace:
3904  case Type::FunctionProto:
3905  case Type::FunctionNoProto:
3906  case Type::Record:
3907  case Type::DeducedTemplateSpecialization:
3908  case Type::Enum:
3909  case Type::InjectedClassName:
3910  case Type::PackExpansion:
3911  case Type::ObjCObject:
3912  case Type::ObjCInterface:
3913  case Type::Atomic:
3914  case Type::Pipe:
3915  return false;
3916  }
3917  llvm_unreachable("bad type kind!");
3918 }
3919 
3922  if (getAttrKind() == attr::TypeNonNull)
3923  return NullabilityKind::NonNull;
3924  if (getAttrKind() == attr::TypeNullable)
3926  if (getAttrKind() == attr::TypeNullUnspecified)
3928  return None;
3929 }
3930 
3932  if (auto attributed = dyn_cast<AttributedType>(T.getTypePtr())) {
3933  if (auto nullability = attributed->getImmediateNullability()) {
3934  T = attributed->getModifiedType();
3935  return nullability;
3936  }
3937  }
3938 
3939  return None;
3940 }
3941 
3943  const auto *objcPtr = getAs<ObjCObjectPointerType>();
3944  if (!objcPtr)
3945  return false;
3946 
3947  if (objcPtr->isObjCIdType()) {
3948  // id is always okay.
3949  return true;
3950  }
3951 
3952  // Blocks are NSObjects.
3953  if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
3954  if (iface->getIdentifier() != ctx.getNSObjectName())
3955  return false;
3956 
3957  // Continue to check qualifiers, below.
3958  } else if (objcPtr->isObjCQualifiedIdType()) {
3959  // Continue to check qualifiers, below.
3960  } else {
3961  return false;
3962  }
3963 
3964  // Check protocol qualifiers.
3965  for (ObjCProtocolDecl *proto : objcPtr->quals()) {
3966  // Blocks conform to NSObject and NSCopying.
3967  if (proto->getIdentifier() != ctx.getNSObjectName() &&
3968  proto->getIdentifier() != ctx.getNSCopyingName())
3969  return false;
3970  }
3971 
3972  return true;
3973 }
3974 
3978  return Qualifiers::OCL_Strong;
3979 }
3980 
3982  assert(isObjCLifetimeType() &&
3983  "cannot query implicit lifetime for non-inferrable type");
3984 
3985  const Type *canon = getCanonicalTypeInternal().getTypePtr();
3986 
3987  // Walk down to the base type. We don't care about qualifiers for this.
3988  while (const auto *array = dyn_cast<ArrayType>(canon))
3989  canon = array->getElementType().getTypePtr();
3990 
3991  if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) {
3992  // Class and Class<Protocol> don't require retention.
3993  if (opt->getObjectType()->isObjCClass())
3994  return true;
3995  }
3996 
3997  return false;
3998 }
3999 
4001  const Type *cur = this;
4002  while (true) {
4003  if (const auto *typedefType = dyn_cast<TypedefType>(cur))
4004  return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
4005 
4006  // Single-step desugar until we run out of sugar.
4008  if (next.getTypePtr() == cur) return false;
4009  cur = next.getTypePtr();
4010  }
4011 }
4012 
4014  if (const auto *typedefType = dyn_cast<TypedefType>(this))
4015  return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
4016  return false;
4017 }
4018 
4020  return isObjCObjectPointerType() ||
4021  isBlockPointerType() ||
4023 }
4024 
4026  if (isObjCLifetimeType())
4027  return true;
4028  if (const auto *OPT = getAs<PointerType>())
4029  return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4030  if (const auto *Ref = getAs<ReferenceType>())
4031  return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4032  if (const auto *MemPtr = getAs<MemberPointerType>())
4033  return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4034  return false;
4035 }
4036 
4037 /// Returns true if objects of this type have lifetime semantics under
4038 /// ARC.
4040  const Type *type = this;
4041  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4042  type = array->getElementType().getTypePtr();
4043  return type->isObjCRetainableType();
4044 }
4045 
4046 /// Determine whether the given type T is a "bridgable" Objective-C type,
4047 /// which is either an Objective-C object pointer type or an
4050 }
4051 
4052 /// Determine whether the given type T is a "bridgeable" C type.
4054  const auto *Pointer = getAs<PointerType>();
4055  if (!Pointer)
4056  return false;
4057 
4058  QualType Pointee = Pointer->getPointeeType();
4059  return Pointee->isVoidType() || Pointee->isRecordType();
4060 }
4061 
4063  if (!isVariablyModifiedType()) return false;
4064 
4065  if (const auto *ptr = getAs<PointerType>())
4066  return ptr->getPointeeType()->hasSizedVLAType();
4067  if (const auto *ref = getAs<ReferenceType>())
4068  return ref->getPointeeType()->hasSizedVLAType();
4069  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
4070  if (isa<VariableArrayType>(arr) &&
4071  cast<VariableArrayType>(arr)->getSizeExpr())
4072  return true;
4073 
4074  return arr->getElementType()->hasSizedVLAType();
4075  }
4076 
4077  return false;
4078 }
4079 
4080 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
4081  switch (type.getObjCLifetime()) {
4082  case Qualifiers::OCL_None:
4085  break;
4086 
4088  return DK_objc_strong_lifetime;
4089  case Qualifiers::OCL_Weak:
4090  return DK_objc_weak_lifetime;
4091  }
4092 
4093  if (const auto *RT =
4095  const RecordDecl *RD = RT->getDecl();
4096  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4097  /// Check if this is a C++ object with a non-trivial destructor.
4098  if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
4099  return DK_cxx_destructor;
4100  } else {
4101  /// Check if this is a C struct that is non-trivial to destroy or an array
4102  /// that contains such a struct.
4104  return DK_nontrivial_c_struct;
4105  }
4106  }
4107 
4108  return DK_none;
4109 }
4110 
4112  return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
4113 }
4114 
4116  llvm::APSInt Val, unsigned Scale) {
4117  FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
4118  /*isSaturated=*/false,
4119  /*hasUnsignedPadding=*/false);
4120  APFixedPoint(Val, FXSema).toString(Str);
4121 }
DecltypeType(Expr *E, QualType underlyingType, QualType can=QualType())
Definition: Type.cpp:3205
static StringRef getKeywordName(ElaboratedTypeKeyword Keyword)
Definition: Type.cpp:2665
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1553
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1534
bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const
Definition: Type.cpp:2269
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4782
Represents a type that was referred to using an elaborated type keyword, e.g., struct S...
Definition: Type.h:5176
const Type * Ty
The locally-unqualified type.
Definition: Type.h:580
bool isStruct() const
Definition: Decl.h:3254
QualType getObjCObjectType(QualType Base, ObjCProtocolDecl *const *Protocols, unsigned NumProtocols) const
Legacy interface: cannot provide type arguments or __kindof.
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx)
Definition: Type.h:4979
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1653
bool isKindOfTypeAsWritten() const
Whether this is a "__kindof" type as written.
Definition: Type.h:5702
External linkage, which indicates that the entity can be referred to from other translation units...
Definition: Linkage.h:59
bool isStrictSupersetOf(Qualifiers Other) const
Determine whether this set of qualifiers is a strict superset of another set of qualifiers, not considering qualifier compatibility.
Definition: Type.cpp:56
The "enum" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5111
DependentUnaryTransformType(const ASTContext &C, QualType BaseType, UTTKind UKind)
Definition: Type.cpp:3242
void setDependent(bool D=true)
Definition: Type.h:1796
no exception specification
bool isTemplateVariadic() const
Determines whether this function prototype contains a parameter pack at the end.
Definition: Type.cpp:3098
StringRef getName(const PrintingPolicy &Policy) const
Definition: Type.cpp:2739
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2549
ArrayRef< QualType > getTypeArgsAsWritten() const
Retrieve the type arguments of this object type as they were written.
Definition: Type.h:5696
QualType getPointeeType() const
Definition: Type.h:2562
A (possibly-)qualified type.
Definition: Type.h:639
bool isBlockPointerType() const
Definition: Type.h:6351
QualType substObjCTypeArgs(ASTContext &ctx, ArrayRef< QualType > typeArgs, ObjCSubstitutionContext context) const
Substitute type arguments for the Objective-C type parameters used in the subject type...
Definition: Type.cpp:1361
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2128
bool isArrayType() const
Definition: Type.h:6392
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1927
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
QualType getDesugaredType(const ASTContext &Context) const
Return the specified type with any "sugar" removed from the type.
Definition: Type.h:939
PrimitiveDefaultInitializeKind isNonTrivialToPrimitiveDefaultInitialize() const
Functions to query basic properties of non-trivial C struct types.
Definition: Type.cpp:2332
void Profile(llvm::FoldingSetNodeID &ID) const
Definition: Type.h:3587
bool isArithmeticType() const
Definition: Type.cpp:1979
void setInstantiationDependent(bool D=true)
Definition: Type.h:1802
Stmt - This represents one statement.
Definition: Stmt.h:65
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3367
bool isObjCClassOrClassKindOfType() const
Whether the type is Objective-C &#39;Class&#39; or a __kindof type of an Class type, e.g., __kindof Class <NSCopying>.
Definition: Type.cpp:586
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool isElaboratedTypeSpecifier() const
Determine wither this type is a C++ elaborated-type-specifier.
Definition: Type.cpp:2714
unsigned MSWChar
When true, print the built-in wchar_t type as __wchar_t.
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1964
The fixed point semantics work similarly to llvm::fltSemantics.
Definition: FixedPoint.h:33
C Language Family Type Representation.
bool isObjCARCBridgableType() const
Determine whether the given type T is a "bridgable" Objective-C type, which is either an Objective-C ...
Definition: Type.cpp:4048
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.cpp:3374
bool isRecordType() const
Definition: Type.h:6416
QualType getUnderlyingType() const
Definition: Type.h:4208
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:1935
const ObjCObjectType * getAsObjCInterfaceType() const
Definition: Type.cpp:1605
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
TagDecl * getDecl() const
Definition: Type.cpp:3263
ObjCObjectTypeBitfields ObjCObjectTypeBits
Definition: Type.h:1720
const RecordType * getAsStructureType() const
Definition: Type.cpp:521
SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits
Definition: Type.h:1725
Defines the C++ template declaration subclasses.
StringRef P
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4796
QualType desugar() const
Remove a single level of sugar.
Definition: Type.cpp:3217
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx)
Definition: Type.cpp:3158
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:307
static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag)
Converts a TagTypeKind into an elaborated type keyword.
Definition: Type.cpp:2623
The base class of the type hierarchy.
Definition: Type.h:1414
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2824
bool isObjCBoxableRecordType() const
Definition: Type.cpp:449
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1613
DependentDecltypeType(const ASTContext &Context, Expr *E)
Definition: Type.cpp:3224
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:690
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:6030
bool isCARCBridgableType() const
Determine whether the given type T is a "bridgeable" C type.
Definition: Type.cpp:4053
bool isUnspecialized() const
Determine whether this object type is "unspecialized", meaning that it has no type arguments...
Definition: Type.h:5685
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3687
A template template parameter that has been substituted for some other template name.
Definition: TemplateName.h:219
QualType getElementType() const
Definition: Type.h:2859
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3174
const RecordType * getAsUnionType() const
NOTE: getAs*ArrayType are methods on ASTContext.
Definition: Type.cpp:540
QualType withFastQualifiers(unsigned TQs) const
Definition: Type.h:854
static CachedProperties computeCachedProperties(const Type *T)
Definition: Type.cpp:3594
bool isTrivialType(const ASTContext &Context) const
Return true if this is a trivial type per (C++0x [basic.types]p9)
Definition: Type.cpp:2184
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1911
bool isInterface() const
Definition: Decl.h:3255
bool isStructureType() const
Definition: Type.cpp:443
ArrayRef< ObjCProtocolDecl * > getProtocols() const
Retrieve all of the protocol qualifiers.
Definition: Type.h:5504
bool isEnumeralType() const
Definition: Type.h:6420
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6803
The "union" keyword.
Definition: Type.h:5086
Extra information about a function prototype.
Definition: Type.h:3779
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6877
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, bool Canonical) const
Produce a unique representation of the given statement.
The "__interface" keyword.
Definition: Type.h:5083
bool isChar32Type() const
Definition: Type.cpp:1842
bool isCallingConv() const
Definition: Type.cpp:3329
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
LinkageInfo computeTypeLinkageInfo(const Type *T)
Definition: Type.cpp:3697
Represents the result of substituting a type for a template type parameter.
Definition: Type.h:4650
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
noexcept(expression), value-dependent
bool isStandardLayoutType() const
Test if this type is a standard-layout type.
Definition: Type.cpp:2435
The collection of all-type qualifiers we support.
Definition: Type.h:137
bool isVariableArrayType() const
Definition: Type.h:6404
bool isSugared() const
Returns whether this type directly provides sugar.
Definition: Type.cpp:3215
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g., it is a floating-point type or a vector thereof.
Definition: Type.cpp:1957
bool isClass() const
Definition: Decl.h:3256
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3077
bool canHaveNullability(bool ResultIfUnknown=true) const
Determine whether the given type can have a nullability specifier applied to it, i.e., if it is any kind of pointer type.
Definition: Type.cpp:3807
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Represents a struct/union/class.
Definition: Decl.h:3598
QualType getOriginalType() const
Definition: Type.h:2613
bool isWideCharType() const
Definition: Type.cpp:1823
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3780
bool isComplete() const
Returns true if this can be considered a complete type.
Definition: Decl.h:3539
One of these records is kept for each identifier that is lexed.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1052
bool isObjCIdOrObjectKindOfType(const ASTContext &ctx, const ObjCObjectType *&bound) const
Whether the type is Objective-C &#39;id&#39; or a __kindof type of an object type, e.g., __kindof NSView * or...
Definition: Type.cpp:560
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
QualType IgnoreParens() const
Returns the specified type after dropping any outer-level parentheses.
Definition: Type.h:958
Represents a class type in Objective C.
Definition: Type.h:5585
bool isObjCIndependentClassType() const
Definition: Type.cpp:4013
QualType getPointeeType() const
Definition: Type.h:2666
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool isStdByteType() const
Definition: Type.cpp:2529
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3907
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:4039
static bool anyDependentTemplateArguments(ArrayRef< TemplateArgumentLoc > Args, bool &InstantiationDependent)
Determine whether any of the given template arguments are dependent.
Definition: Type.cpp:3395
bool isCharType() const
Definition: Type.cpp:1814
bool isSpelledAsLValue() const
Definition: Type.h:2701
field_range fields() const
Definition: Decl.h:3789
Represents a member of a struct/union/class.
Definition: Decl.h:2584
bool isCanonicalUnqualified() const
Determines if this type would be canonical if it had no further qualification.
Definition: Type.h:1846
Defines the ExceptionSpecificationType enumeration and various utility functions. ...
An operation on a type.
Definition: TypeVisitor.h:64
const ObjCObjectPointerType * getAsObjCQualifiedIdType() const
Definition: Type.cpp:1585
bool isReferenceType() const
Definition: Type.h:6355
qual_iterator qual_begin() const
Definition: Type.h:5486
unsigned char getOpaqueValue() const
Definition: Type.h:3442
const AstTypeMatcher< TypedefType > typedefType
Matches typedef types.
unsigned getIndex() const
Retrieve the index into its type parameter list.
Definition: DeclObjC.h:614
QualType getModifiedType() const
Return this attributed type&#39;s modified type with no qualifiers attached to it.
Definition: Type.cpp:3170
const ObjCObjectPointerType * stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const
Strip off the Objective-C "kindof" type and (with it) any protocol qualifiers.
Definition: Type.cpp:717
Values of this type can be null.
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3122
Type(TypeClass tc, QualType canon, bool Dependent, bool InstantiationDependent, bool VariablyModified, bool ContainsUnexpandedParameterPack)
Definition: Type.h:1777
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2750
bool isMSTypeSpec() const
Definition: Type.cpp:3316
const ObjCObjectType * getAsObjCQualifiedInterfaceType() const
Definition: Type.cpp:1571
qual_iterator qual_end() const
Definition: Type.h:5487
QualType desugar() const
Definition: Type.cpp:3168
bool isCXX11PODType(const ASTContext &Context) const
Return true if this is a POD type according to the more relaxed rules of the C++11 standard...
Definition: Type.cpp:2471
Microsoft throw(...) extension.
A convenient class for passing around template argument information.
Definition: TemplateBase.h:554
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:664
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2232
bool hasAddressSpace() const
Definition: Type.h:352
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6854
The "struct" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5099
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
Definition: Type.cpp:2597
Whether values of this type can be null is (explicitly) unspecified.
Sugar type that represents a type that was qualified by a qualifier written as a macro invocation...
Definition: Type.h:4189
const ObjCObjectPointerType * getAsObjCQualifiedClassType() const
Definition: Type.cpp:1595
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1840
LangAS getAddressSpace() const
Definition: Type.h:353
const Type * getClass() const
Definition: Type.h:2802
CXXRecordDecl * getDecl() const
Definition: Type.cpp:3353
Values of this type can never be null.
Expr * getSizeExpr() const
Definition: Type.h:3003
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6119
LinkageInfo getTypeLinkageAndVisibility(const Type *T)
Definition: Type.cpp:3780
static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements)
Determine the number of bits required to address a member of.
Definition: Type.cpp:111
Defines the Linkage enumeration and various utility functions.
static TagDecl * getInterestingTagDecl(TagDecl *decl)
Definition: Type.cpp:3254
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:3275
unsigned Half
When true, print the half-precision floating-point type as &#39;half&#39; instead of &#39;__fp16&#39;.
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2063
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const
Definition: Type.cpp:3942
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:169
bool isScalarType() const
Definition: Type.h:6684
void * getAsOpaquePtr() const
Definition: Type.h:684
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs, typeofs, etc., as well as any qualifiers.
Definition: Type.cpp:419
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5820
PrimitiveDefaultInitializeKind
Definition: Type.h:1074
FunctionDecl * SourceDecl
The function whose exception specification this is, for EST_Unevaluated and EST_Uninstantiated.
Definition: Type.h:3765
SplitQualType getSplitDesugaredType() const
Definition: Type.h:943
QualType getPointeeTypeAsWritten() const
Definition: Type.h:2704
TagType(TypeClass TC, const TagDecl *D, QualType can)
Definition: Type.cpp:3247
unsigned getNumProtocols() const
Return the number of qualifying protocols in this type, or 0 if there are none.
Definition: Type.h:5493
QualType getElementType() const
Definition: Type.h:3156
bool hasUnsignedIntegerRepresentation() const
Determine whether this type has an unsigned integer representation of some sort, e.g., it is an unsigned integer type or a vector.
Definition: Type.cpp:1941
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:3140
This object can be modified without requiring retains or releases.
Definition: Type.h:158
CXXRecordDecl * getMostRecentNonInjectedDecl()
Definition: DeclCXX.h:753
Defines the clang::Visibility enumeration and various utility functions.
The APFixedPoint class works similarly to APInt/APSInt in that it is a functional replacement for a s...
Definition: FixedPoint.h:95
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1799
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3662
Provides definitions for the various language-specific address spaces.
bool isSpecializedAsWritten() const
Determine whether this object type was written with type arguments.
Definition: Type.h:5679
bool isNonTrivialPrimitiveCType(const ASTContext &Ctx) const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2318
bool hasAttr() const
Definition: DeclBase.h:535
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5648
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1640
static void ensure(const Type *T)
Definition: Type.cpp:3558
bool acceptsObjCTypeParams() const
Determines if this is an ObjC interface type that may accept type parameters.
Definition: Type.cpp:1472
bool containsUnexpandedParameterPack() const
Determines whether this template name contains an unexpanded parameter pack (for C++0x variadic templ...
bool isPromotableIntegerType() const
More type predicates useful for type checking/promotion.
Definition: Type.cpp:2538
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3699
const ObjCObjectType * getSuperClassType() const
Retrieve the superclass type.
Definition: DeclObjC.h:1564
static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword)
Definition: Type.cpp:2650
QualType applyObjCProtocolQualifiers(QualType type, ArrayRef< ObjCProtocolDecl *> protocols, bool &hasError, bool allowOnPointerType=false) const
Apply Objective-C protocol qualifiers to the given type.
bool isComplexType() const
isComplexType() does not include complex integers (a GCC extension).
Definition: Type.cpp:481
IdentifierInfo * getNSObjectName() const
Retrieve the identifier &#39;NSObject&#39;.
Definition: ASTContext.h:1676
ArraySizeModifier
Capture whether this is a normal array (e.g.
Definition: Type.h:2830
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
ObjCTypeParamDecl * getDecl() const
Definition: Type.h:5554
DependentTemplateSpecializationTypeBitfields DependentTemplateSpecializationTypeBits
Definition: Type.h:1728
Defines the TargetCXXABI class, which abstracts details of the C++ ABI that we&#39;re targeting...
PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2366
QualType getElementType() const
Definition: Type.h:2502
IdentifierInfo * getIdentifier() const
Definition: Type.cpp:3357
This represents one expression.
Definition: Expr.h:108
Defines the clang::LangOptions interface.
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:5115
bool isObjCARCImplicitlyUnretainedType() const
Determines if this type, which must satisfy isObjCLifetimeType(), is implicitly __unsafe_unretained r...
Definition: Type.cpp:3981
QualType desugar() const
Definition: Type.h:3223
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to...
Definition: Type.cpp:1621
const IdentifierInfo * getBaseTypeIdentifier() const
Retrieves a pointer to the name of the base type.
Definition: Type.cpp:71
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6868
ElaboratedTypeKeyword
The elaboration keyword that precedes a qualified type name or introduces an elaborated-type-specifie...
Definition: Type.h:5097
bool isObjCRetainableType() const
Definition: Type.cpp:4019
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
ObjCSubstitutionContext
The kind of type we are substituting Objective-C type arguments into.
Definition: Type.h:608
bool isChar16Type() const
Definition: Type.cpp:1836
const char * getTypeClassName() const
Definition: Type.cpp:2729
Linkage getLinkage() const
Definition: Visibility.h:83
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
DeclContext * getDeclContext()
Definition: DeclBase.h:431
bool isAnyComplexType() const
Definition: Type.h:6424
SourceLocation Begin
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:4327
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into a tag type kind.
Definition: Type.cpp:2610
ObjCObjectType(QualType Canonical, QualType Base, ArrayRef< QualType > typeArgs, ArrayRef< ObjCProtocolDecl *> protocols, bool isKindOf)
Definition: Type.cpp:614
ScalarTypeKind getScalarTypeKind() const
Given that this is a scalar type, classify it.
Definition: Type.cpp:1994
Represents a C++ template name within the type system.
Definition: TemplateName.h:187
Represents the type decltype(expr) (C++11).
Definition: Type.h:4293
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:578
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], or an enum decl which has a signed representation.
Definition: Type.cpp:1871
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3284
QualType desugar() const
Remove a single level of sugar.
Definition: Type.cpp:3193
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
QualType getType() const
Definition: Expr.h:130
bool isFunctionOrMethod() const
Definition: DeclBase.h:1815
static Optional< NullabilityKind > stripOuterNullability(QualType &T)
Strip off the top-level nullability annotation on the given type, if it&#39;s there.
Definition: Type.cpp:3931
TagDecl * getAsTagDecl() const
Retrieves the TagDecl that this type refers to, either because the type is a TagType or because it is...
Definition: Type.cpp:1644
A unary type transform, which is a type constructed from another.
Definition: Type.h:4336
Qualifiers Quals
The local qualifiers.
Definition: Type.h:583
bool isSpecifierType() const
Returns true if this type can be represented by some set of type specifiers.
Definition: Type.cpp:2571
QualType substObjCMemberType(QualType objectType, const DeclContext *dc, ObjCSubstitutionContext context) const
Substitute type arguments from an object type for the Objective-C type parameters used in the subject...
Definition: Type.cpp:1368
#define TRIVIAL_TYPE_CLASS(Class)
Definition: Type.cpp:758
ScalarTypeKind
Definition: Type.h:2070
bool hasInstantiationDependentExceptionSpec() const
Return whether this function has an instantiation-dependent exception spec.
Definition: Type.cpp:3057
A helper class for Type nodes having an ElaboratedTypeKeyword.
Definition: Type.h:5125
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1379
Represents a GCC generic vector type.
Definition: Type.h:3180
ArraySizeModifier getSizeModifier() const
Definition: Type.h:2861
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2732
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4756
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:6743
The result type of a method or function.
bool isUnionType() const
Definition: Type.cpp:475
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:704
bool hasAutoForTrailingReturnType() const
Determine whether this type was written with a leading &#39;auto&#39; corresponding to a trailing return type...
Definition: Type.cpp:1755
bool isChar8Type() const
Definition: Type.cpp:1830
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:243
static LinkageInfo external()
Definition: Visibility.h:67
Expr * getUnderlyingExpr() const
Definition: Type.h:4232
bool isNonTrivialToPrimitiveDestroy() const
Definition: Decl.h:3713
QualType getAttributedType(attr::Kind attrKind, QualType modifiedType, QualType equivalentType)
bool isVoidPointerType() const
Definition: Type.cpp:469
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6178
IdentifierInfo * getNSCopyingName()
Retrieve the identifier &#39;NSCopying&#39;.
Definition: ASTContext.h:1685
bool hasTrailingReturn() const
Whether this function prototype has a trailing return type.
Definition: Type.h:4025
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:6127
RecordDecl * getDecl() const
Definition: Type.h:4427
void toString(llvm::SmallVectorImpl< char > &Str) const
Definition: FixedPoint.cpp:176
noexcept(expression), evals to &#39;false&#39;
bool isAlignValT() const
Definition: Type.cpp:2520
LinkageInfo getLinkageAndVisibility() const
Determine the linkage and visibility of this type.
Definition: Type.cpp:3789
unsigned Bool
Whether we can use &#39;bool&#39; rather than &#39;_Bool&#39; (even if the language doesn&#39;t actually have &#39;bool&#39;...
bool isStructureOrClassType() const
Definition: Type.cpp:461
A template template parameter pack that has been substituted for a template template argument pack...
Definition: TemplateName.h:224
CanThrowResult
Possible results from evaluation of a noexcept expression.
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
There is no lifetime qualification on this type.
Definition: Type.h:154
bool containsUnexpandedParameterPack() const
Whether this nested-name-specifier contains an unexpanded parameter pack (for C++11 variadic template...
#define false
Definition: stdbool.h:17
The "struct" keyword.
Definition: Type.h:5080
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
QualType getCanonicalType() const
Definition: Type.h:6158
ExceptionSpecificationType Type
The kind of exception specification this is.
Definition: Type.h:3755
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:193
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:646
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3911
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: Redeclarable.h:294
const ExtParameterInfo * ExtParameterInfos
Definition: Type.h:3786
Encodes a location in the source.
Sugar for parentheses used when specifying types.
Definition: Type.h:2519
QualType getAdjustedType() const
Definition: Type.h:2614
QualType getReturnType() const
Definition: Type.h:3625
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Type.cpp:3770
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4443
bool mayBeNotDynamicClass() const
Returns true if it is not a class or if the class might not be dynamic.
Definition: Type.cpp:96
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6235
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5785
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2104
const ComplexType * getAsComplexIntegerType() const
Definition: Type.cpp:498
bool isLiteralType(const ASTContext &Ctx) const
Return true if this is a literal type (C++11 [basic.types]p10)
Definition: Type.cpp:2370
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3069
TemplateArgument getArgumentPack() const
Definition: Type.cpp:3370
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
QualType getElementType() const
Definition: Type.h:3215
static QualType getUnderlyingType(const SubRegion *R)
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:4115
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1786
QualType getLocallyUnqualifiedSingleStepDesugaredType() const
Pull a single level of sugar off of this locally-unqualified type.
Definition: Type.cpp:302
void initialize(ArrayRef< ObjCProtocolDecl * > protocols)
Definition: Type.h:5472
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2279
unsigned pack_size() const
The number of template arguments in the given template argument pack.
Definition: TemplateBase.h:359
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1887
QualType getEquivalentType() const
Definition: Type.h:4498
void Profile(llvm::FoldingSetNodeID &ID)
Definition: TemplateName.h:323
QualType getInnerType() const
Definition: Type.h:2532
bool isObjCObjectPointerType() const
Definition: Type.h:6440
AutoTypeKeyword getKeyword() const
Definition: Type.h:4811
TypeClass getTypeClass() const
Definition: Type.h:1820
bool isAnyCharacterType() const
Determine whether this type is any of the built-in character types.
Definition: Type.cpp:1850
PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2348
QualType getSuperClassType() const
Retrieve the type of the superclass of this object type.
Definition: Type.h:5713
EnumDecl * getDecl() const
Definition: Type.h:4450
bool isVectorType() const
Definition: Type.h:6428
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
bool hasConstFields() const
Recursively check all fields in the record for const-ness.
Definition: Type.cpp:3271
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits
Definition: Type.h:1726
static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword)
Converts an elaborated type keyword into a TagTypeKind.
Definition: Type.cpp:2635
void setVariablyModified(bool VM=true)
Definition: Type.h:1805
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
TypeOfExprType(Expr *E, QualType can=QualType())
Definition: Type.cpp:3182
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2094
Linkage getLinkageInternal() const
Determine what kind of linkage this entity has.
Definition: Decl.cpp:1085
Represents a pointer type decayed from an array or function type.
Definition: Type.h:2634
Represents a pack expansion of types.
Definition: Type.h:5402
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:353
#define SUGARED_TYPE_CLASS(Class)
Definition: Type.cpp:760
Defines various enumerations that describe declaration and type specifiers.
bool isRealType() const
Definition: Type.cpp:1970
static unsigned getMaxSizeBits(const ASTContext &Context)
Determine the maximum number of active bits that an array&#39;s size can require, which limits the maximu...
Definition: Type.cpp:146
Linkage minLinkage(Linkage L1, Linkage L2)
Compute the minimum linkage given two linkages.
Definition: Linkage.h:114
CXXRecordDecl * getMostRecentCXXRecordDecl() const
Definition: Type.cpp:4111
Represents a template argument.
Definition: TemplateBase.h:50
bool isDeduced() const
Definition: Type.h:4785
bool isScopedEnumeralType() const
Determine whether this type is a scoped enumeration type.
Definition: Type.cpp:492
Represents a type which was implicitly adjusted by the semantic engine for arbitrary reasons...
Definition: Type.h:2597
TagTypeKind
The kind of a tag type.
Definition: Type.h:5078
Optional< types::ID > Type
CanQualType ObjCBuiltinIdTy
Definition: ASTContext.h:1043
GC getObjCGCAttr() const
Definition: Type.h:301
Dataflow Directional Tag Classes.
bool isObjCQualifiedInterfaceType() const
Definition: Type.cpp:1581
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1750
ExtInfo getExtInfo() const
Definition: Type.h:3636
not evaluated yet, for special member function
A qualifier set is used to build a set of qualifiers.
Definition: Type.h:6086
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1264
void setContainsUnexpandedParameterPack(bool PP=true)
Definition: Type.h:1807
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:403
bool hasUnnamedOrLocalType() const
Whether this type is or contains a local or unnamed type.
Definition: Type.cpp:3692
static CachedProperties get(QualType T)
Definition: Type.cpp:3548
bool hasDependentExceptionSpec() const
Return whether this function has a dependent exception spec.
Definition: Type.cpp:3045
bool isCXX98PODType(const ASTContext &Context) const
Return true if this is a POD type according to the rules of the C++98 standard, regardless of the cur...
Definition: Type.cpp:2136
QualType getUnderlyingType() const
Definition: Decl.h:2976
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
QualType stripObjCKindOfType(const ASTContext &ctx) const
Strip Objective-C "__kindof" types from the given type.
Definition: Type.cpp:1377
QualType getUnderlyingType() const
Definition: Type.h:4304
const Type * getArrayElementTypeNoTypeQual() const
If this is an array type, return the element type of the array, potentially with type qualifiers miss...
Definition: Type.cpp:261
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.cpp:3497
VectorKind getVectorKind() const
Definition: Type.h:3225
Represents the declaration of an Objective-C type parameter.
Definition: DeclObjC.h:558
The "union" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5105
const Type * strip(QualType type)
Collect any qualifiers on the given type and return an unqualified type.
Definition: Type.h:6093
QualType getFunctionNoProtoType(QualType ResultTy, const FunctionType::ExtInfo &Info) const
Return a K&R style C function type like &#39;int()&#39;.
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3166
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.cpp:3512
bool isObjCIndirectLifetimeType() const
Definition: Type.cpp:4025
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5882
The "class" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5108
bool isKindOfType() const
Whether this ia a "__kindof" type (semantically).
Definition: Type.cpp:682
static const T * getAsSugar(const Type *Cur)
This will check for a T (which should be a Type which can act as sugar, such as a TypedefType) by rem...
Definition: Type.cpp:386
Represents an enum.
Definition: Decl.h:3331
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2768
bool hasObjCLifetime() const
Definition: Type.h:326
bool isAggregateType() const
Determines whether the type is a C++ aggregate type or C aggregate or union type. ...
Definition: Type.cpp:2034
bool isQualifier() const
Does this attribute behave like a type qualifier?
Definition: Type.cpp:3293
llvm::ArrayRef< TemplateArgumentLoc > arguments() const
Definition: TemplateBase.h:582
QualType apply(const ASTContext &Context, QualType QT) const
Apply the collected qualifiers to the given type.
Definition: Type.cpp:3467
UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind, QualType CanonicalTy)
Definition: Type.cpp:3232
pack_iterator pack_begin() const
Iterator referencing the first argument of a template argument pack.
Definition: TemplateBase.h:339
const TemplateTypeParmType * getReplacedParameter() const
Gets the template parameter that was substituted for.
Definition: Type.h:4665
void addConsistentQualifiers(Qualifiers qs)
Add the qualifiers from the given set to this set, given that they don&#39;t conflict.
Definition: Type.h:453
QualType getModifiedType() const
Definition: Type.h:4497
Represents a pointer to an Objective C object.
Definition: Type.h:5841
Pointer to a block type.
Definition: Type.h:2651
bool isSugared() const
Returns whether this type directly provides sugar.
Definition: Type.cpp:3189
FunctionTypeBitfields FunctionTypeBits
Definition: Type.h:1719
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4417
Complex values, per C99 6.2.5p11.
Definition: Type.h:2489
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:449
unsigned getIndexTypeCVRQualifiers() const
Definition: Type.h:2869
bool empty() const
Definition: Type.h:415
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6.7.5p3.
Definition: Type.cpp:2048
QualType getCanonicalTypeInternal() const
Definition: Type.h:2367
QualType getAtomicUnqualifiedType() const
Remove all qualifiers including _Atomic.
Definition: Type.cpp:1384
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6629
CanThrowResult canThrow() const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.cpp:3066
const llvm::APInt & getSize() const
Definition: Type.h:2902
Kind getAttrKind() const
Definition: Type.h:4493
VectorTypeBitfields VectorTypeBits
Definition: Type.h:1724
ExtVectorType - Extended vector type.
Definition: Type.h:3299
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2685
SourceRange getBracketsRange() const
Definition: Type.h:3009
The template argument is a type.
Definition: TemplateBase.h:59
Optional< ArrayRef< QualType > > getObjCSubstitutions(const DeclContext *dc) const
Retrieve the set of substitutions required when accessing a member of the Objective-C receiver type t...
Definition: Type.cpp:1390
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3794
The "class" keyword.
Definition: Type.h:5089
QualType getNonLValueExprType(const ASTContext &Context) const
Determine the type of a (typically non-lvalue) expression with the specified result type...
Definition: Type.cpp:2889
bool isBeingDefined() const
Determines whether this type is in the process of being defined.
Definition: Type.cpp:3267
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2076
ArrayRef< QualType > Exceptions
Explicitly-specified list of exception types.
Definition: Type.h:3758
void merge(LinkageInfo other)
Merge both linkage and visibility.
Definition: Visibility.h:132
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2058
bool hasObjCGCAttr() const
Definition: Type.h:300
The type-property cache.
Definition: Type.cpp:3546
bool isClassType() const
Definition: Type.cpp:437
TypedefNameDecl * getDecl() const
Definition: Type.h:4179
TypeBitfields TypeBits
Definition: Type.h:1714
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
Expr * NoexceptExpr
Noexcept expression, if this is a computed noexcept specification.
Definition: Type.h:3761
An attributed type is a type to which a type attribute has been applied.
Definition: Type.h:4472
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
Represents a type parameter type in Objective C.
Definition: Type.h:5511
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g., it is an signed integer type or a vector.
Definition: Type.cpp:1901
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
bool isVoidType() const
Definition: Type.h:6595
Represents a C array with an unspecified size.
Definition: Type.h:2938
QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const
Strip off the Objective-C "kindof" type and (with it) any protocol qualifiers.
Definition: Type.cpp:699
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition: Type.cpp:1760
The parameter type of a method or function.
QualType getNamedType() const
Retrieve the type named by the qualified-id.
Definition: Type.h:5216
QualType getReplacementType() const
Gets the type that was substituted for the template parameter.
Definition: Type.h:4671
The "enum" keyword.
Definition: Type.h:5092
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:216
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:4257
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const
Return the implicit lifetime for this type, which must not be dependent.
Definition: Type.cpp:3975
Stores a list of Objective-C type parameters for a parameterized class or a category/extension thereo...
Definition: DeclObjC.h:636
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2403
Defines the clang::TargetInfo interface.
bool isComplexIntegerType() const
Definition: Type.cpp:487
ASTContext & getParentASTContext() const
Definition: DeclBase.h:1792
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:153
bool hasVolatile() const
Definition: Type.h:259
__DEVICE__ int max(int __a, int __b)
NameKind getKind() const
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:942
unsigned getNumElements() const
Definition: Type.h:3216
QualType getSuperClassType() const
Retrieve the type of the superclass of this object pointer type.
Definition: Type.cpp:1562
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2088
bool mayBeDynamicClass() const
Returns true if it is a class and it might be dynamic.
Definition: Type.cpp:91
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4888
bool isPointerType() const
Definition: Type.h:6343
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static StringRef getNameForCallConv(CallingConv CC)
Definition: Type.cpp:2905
#define true
Definition: stdbool.h:16
bool isFloatingType() const
Definition: Type.cpp:1948
A trivial tuple used to represent a source range.
VectorType(QualType vecType, unsigned nElements, QualType canonType, VectorKind vecKind)
Definition: Type.cpp:243
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:3041
void computeSuperClassTypeSlow() const
Definition: Type.cpp:1483
This represents a decl that may have a name.
Definition: Decl.h:248
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
A simple holder for a QualType representing a type in an exception specification. ...
Definition: Type.h:3595
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2983
No keyword precedes the qualified type name.
Definition: Type.h:5118
bool isConstant(const ASTContext &Ctx) const
Definition: Type.h:774
bool isInterfaceType() const
Definition: Type.cpp:455
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context)
Definition: Type.h:5364
QualType desugar() const
Definition: Type.cpp:3164
const LangOptions & getLangOpts() const
Definition: ASTContext.h:707
unsigned size() const
Determine the number of type parameters in this list.
Definition: DeclObjC.h:676
llvm::Optional< NullabilityKind > getImmediateNullability() const
Definition: Type.cpp:3921
The "__interface" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5102
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2884
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3785
bool isObjCNSObjectType() const
Definition: Type.cpp:4000
bool hasSizedVLAType() const
Whether this type involves a variable-length array type with a definite size.
Definition: Type.cpp:4062
QualType getPointeeType() const
Definition: Type.h:2788
A single template declaration.
Definition: TemplateName.h:200
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition: Decl.h:3194
static QualType getParamType(Sema &SemaRef, ArrayRef< ResultCandidate > Candidates, unsigned N)
Get the type of the Nth parameter from a given set of overload candidates.
noexcept(expression), evals to &#39;true&#39;
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1059
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5857