clang  10.0.0svn
Expr.h
Go to the documentation of this file.
1 //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the Expr interface and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_EXPR_H
14 #define LLVM_CLANG_AST_EXPR_H
15 
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTVector.h"
18 #include "clang/AST/Decl.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/TemplateBase.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Basic/CharInfo.h"
25 #include "clang/Basic/FixedPoint.h"
27 #include "clang/Basic/SyncScope.h"
28 #include "clang/Basic/TypeTraits.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APSInt.h"
31 #include "llvm/ADT/iterator.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/AtomicOrdering.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/TrailingObjects.h"
38 
39 namespace clang {
40  class APValue;
41  class ASTContext;
42  class BlockDecl;
43  class CXXBaseSpecifier;
44  class CXXMemberCallExpr;
45  class CXXOperatorCallExpr;
46  class CastExpr;
47  class Decl;
48  class IdentifierInfo;
49  class MaterializeTemporaryExpr;
50  class NamedDecl;
51  class ObjCPropertyRefExpr;
52  class OpaqueValueExpr;
53  class ParmVarDecl;
54  class StringLiteral;
55  class TargetInfo;
56  class ValueDecl;
57 
58 /// A simple array of base specifiers.
60 
61 /// An adjustment to be made to the temporary created when emitting a
62 /// reference binding, which accesses a particular subobject of that temporary.
64  enum {
68  } Kind;
69 
70  struct DTB {
73  };
74 
75  struct P {
78  };
79 
80  union {
83  struct P Ptr;
84  };
85 
88  : Kind(DerivedToBaseAdjustment) {
91  }
92 
94  : Kind(FieldAdjustment) {
95  this->Field = Field;
96  }
97 
99  : Kind(MemberPointerAdjustment) {
100  this->Ptr.MPT = MPT;
101  this->Ptr.RHS = RHS;
102  }
103 };
104 
105 /// This represents one expression. Note that Expr's are subclasses of Stmt.
106 /// This allows an expression to be transparently used any place a Stmt is
107 /// required.
108 class Expr : public ValueStmt {
109  QualType TR;
110 
111 public:
112  Expr() = delete;
113  Expr(const Expr&) = delete;
114  Expr(Expr &&) = delete;
115  Expr &operator=(const Expr&) = delete;
116  Expr &operator=(Expr&&) = delete;
117 
118 protected:
120  bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
121  : ValueStmt(SC)
122  {
123  ExprBits.TypeDependent = TD;
124  ExprBits.ValueDependent = VD;
125  ExprBits.InstantiationDependent = ID;
126  ExprBits.ValueKind = VK;
127  ExprBits.ObjectKind = OK;
128  assert(ExprBits.ObjectKind == OK && "truncated kind");
129  ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
130  setType(T);
131  }
132 
133  /// Construct an empty expression.
134  explicit Expr(StmtClass SC, EmptyShell) : ValueStmt(SC) { }
135 
136 public:
137  QualType getType() const { return TR; }
138  void setType(QualType t) {
139  // In C++, the type of an expression is always adjusted so that it
140  // will not have reference type (C++ [expr]p6). Use
141  // QualType::getNonReferenceType() to retrieve the non-reference
142  // type. Additionally, inspect Expr::isLvalue to determine whether
143  // an expression that is adjusted in this manner should be
144  // considered an lvalue.
145  assert((t.isNull() || !t->isReferenceType()) &&
146  "Expressions can't have reference type");
147 
148  TR = t;
149  }
150 
151  /// isValueDependent - Determines whether this expression is
152  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
153  /// array bound of "Chars" in the following example is
154  /// value-dependent.
155  /// @code
156  /// template<int Size, char (&Chars)[Size]> struct meta_string;
157  /// @endcode
158  bool isValueDependent() const { return ExprBits.ValueDependent; }
159 
160  /// Set whether this expression is value-dependent or not.
161  void setValueDependent(bool VD) {
162  ExprBits.ValueDependent = VD;
163  }
164 
165  /// isTypeDependent - Determines whether this expression is
166  /// type-dependent (C++ [temp.dep.expr]), which means that its type
167  /// could change from one template instantiation to the next. For
168  /// example, the expressions "x" and "x + y" are type-dependent in
169  /// the following code, but "y" is not type-dependent:
170  /// @code
171  /// template<typename T>
172  /// void add(T x, int y) {
173  /// x + y;
174  /// }
175  /// @endcode
176  bool isTypeDependent() const { return ExprBits.TypeDependent; }
177 
178  /// Set whether this expression is type-dependent or not.
179  void setTypeDependent(bool TD) {
180  ExprBits.TypeDependent = TD;
181  }
182 
183  /// Whether this expression is instantiation-dependent, meaning that
184  /// it depends in some way on a template parameter, even if neither its type
185  /// nor (constant) value can change due to the template instantiation.
186  ///
187  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
188  /// instantiation-dependent (since it involves a template parameter \c T), but
189  /// is neither type- nor value-dependent, since the type of the inner
190  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
191  /// \c sizeof is known.
192  ///
193  /// \code
194  /// template<typename T>
195  /// void f(T x, T y) {
196  /// sizeof(sizeof(T() + T());
197  /// }
198  /// \endcode
199  ///
201  return ExprBits.InstantiationDependent;
202  }
203 
204  /// Set whether this expression is instantiation-dependent or not.
206  ExprBits.InstantiationDependent = ID;
207  }
208 
209  /// Whether this expression contains an unexpanded parameter
210  /// pack (for C++11 variadic templates).
211  ///
212  /// Given the following function template:
213  ///
214  /// \code
215  /// template<typename F, typename ...Types>
216  /// void forward(const F &f, Types &&...args) {
217  /// f(static_cast<Types&&>(args)...);
218  /// }
219  /// \endcode
220  ///
221  /// The expressions \c args and \c static_cast<Types&&>(args) both
222  /// contain parameter packs.
224  return ExprBits.ContainsUnexpandedParameterPack;
225  }
226 
227  /// Set the bit that describes whether this expression
228  /// contains an unexpanded parameter pack.
229  void setContainsUnexpandedParameterPack(bool PP = true) {
230  ExprBits.ContainsUnexpandedParameterPack = PP;
231  }
232 
233  /// getExprLoc - Return the preferred location for the arrow when diagnosing
234  /// a problem with a generic expression.
235  SourceLocation getExprLoc() const LLVM_READONLY;
236 
237  /// isUnusedResultAWarning - Return true if this immediate expression should
238  /// be warned about if the result is unused. If so, fill in expr, location,
239  /// and ranges with expr to warn on and source locations/ranges appropriate
240  /// for a warning.
241  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
242  SourceRange &R1, SourceRange &R2,
243  ASTContext &Ctx) const;
244 
245  /// isLValue - True if this expression is an "l-value" according to
246  /// the rules of the current language. C and C++ give somewhat
247  /// different rules for this concept, but in general, the result of
248  /// an l-value expression identifies a specific object whereas the
249  /// result of an r-value expression is a value detached from any
250  /// specific storage.
251  ///
252  /// C++11 divides the concept of "r-value" into pure r-values
253  /// ("pr-values") and so-called expiring values ("x-values"), which
254  /// identify specific objects that can be safely cannibalized for
255  /// their resources. This is an unfortunate abuse of terminology on
256  /// the part of the C++ committee. In Clang, when we say "r-value",
257  /// we generally mean a pr-value.
258  bool isLValue() const { return getValueKind() == VK_LValue; }
259  bool isRValue() const { return getValueKind() == VK_RValue; }
260  bool isXValue() const { return getValueKind() == VK_XValue; }
261  bool isGLValue() const { return getValueKind() != VK_RValue; }
262 
273  LV_ArrayTemporary
274  };
275  /// Reasons why an expression might not be an l-value.
276  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
277 
284  MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
295  MLV_ArrayTemporary
296  };
297  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
298  /// does not have an incomplete type, does not have a const-qualified type,
299  /// and if it is a structure or union, does not have any member (including,
300  /// recursively, any member or element of all contained aggregates or unions)
301  /// with a const-qualified type.
302  ///
303  /// \param Loc [in,out] - A source location which *may* be filled
304  /// in with the location of the expression making this a
305  /// non-modifiable lvalue, if specified.
307  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
308 
309  /// The return type of classify(). Represents the C++11 expression
310  /// taxonomy.
312  public:
313  /// The various classification results. Most of these mean prvalue.
314  enum Kinds {
317  CL_Function, // Functions cannot be lvalues in C.
318  CL_Void, // Void cannot be an lvalue in C.
319  CL_AddressableVoid, // Void expression whose address can be taken in C.
320  CL_DuplicateVectorComponents, // A vector shuffle with dupes.
321  CL_MemberFunction, // An expression referring to a member function
323  CL_ClassTemporary, // A temporary of class type, or subobject thereof.
324  CL_ArrayTemporary, // A temporary of array type.
325  CL_ObjCMessageRValue, // ObjC message is an rvalue
326  CL_PRValue // A prvalue for any other reason, of any other type
327  };
328  /// The results of modification testing.
330  CM_Untested, // testModifiable was false.
332  CM_RValue, // Not modifiable because it's an rvalue
333  CM_Function, // Not modifiable because it's a function; C++ only
334  CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
335  CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
340  CM_IncompleteType
341  };
342 
343  private:
344  friend class Expr;
345 
346  unsigned short Kind;
347  unsigned short Modifiable;
348 
349  explicit Classification(Kinds k, ModifiableType m)
350  : Kind(k), Modifiable(m)
351  {}
352 
353  public:
355 
356  Kinds getKind() const { return static_cast<Kinds>(Kind); }
358  assert(Modifiable != CM_Untested && "Did not test for modifiability.");
359  return static_cast<ModifiableType>(Modifiable);
360  }
361  bool isLValue() const { return Kind == CL_LValue; }
362  bool isXValue() const { return Kind == CL_XValue; }
363  bool isGLValue() const { return Kind <= CL_XValue; }
364  bool isPRValue() const { return Kind >= CL_Function; }
365  bool isRValue() const { return Kind >= CL_XValue; }
366  bool isModifiable() const { return getModifiable() == CM_Modifiable; }
367 
368  /// Create a simple, modifiably lvalue
370  return Classification(CL_LValue, CM_Modifiable);
371  }
372 
373  };
374  /// Classify - Classify this expression according to the C++11
375  /// expression taxonomy.
376  ///
377  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
378  /// old lvalue vs rvalue. This function determines the type of expression this
379  /// is. There are three expression types:
380  /// - lvalues are classical lvalues as in C++03.
381  /// - prvalues are equivalent to rvalues in C++03.
382  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
383  /// function returning an rvalue reference.
384  /// lvalues and xvalues are collectively referred to as glvalues, while
385  /// prvalues and xvalues together form rvalues.
387  return ClassifyImpl(Ctx, nullptr);
388  }
389 
390  /// ClassifyModifiable - Classify this expression according to the
391  /// C++11 expression taxonomy, and see if it is valid on the left side
392  /// of an assignment.
393  ///
394  /// This function extends classify in that it also tests whether the
395  /// expression is modifiable (C99 6.3.2.1p1).
396  /// \param Loc A source location that might be filled with a relevant location
397  /// if the expression is not modifiable.
399  return ClassifyImpl(Ctx, &Loc);
400  }
401 
402  /// getValueKindForType - Given a formal return or parameter type,
403  /// give its value kind.
405  if (const ReferenceType *RT = T->getAs<ReferenceType>())
406  return (isa<LValueReferenceType>(RT)
407  ? VK_LValue
408  : (RT->getPointeeType()->isFunctionType()
409  ? VK_LValue : VK_XValue));
410  return VK_RValue;
411  }
412 
413  /// getValueKind - The value kind that this expression produces.
415  return static_cast<ExprValueKind>(ExprBits.ValueKind);
416  }
417 
418  /// getObjectKind - The object kind that this expression produces.
419  /// Object kinds are meaningful only for expressions that yield an
420  /// l-value or x-value.
422  return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
423  }
424 
426  ExprObjectKind OK = getObjectKind();
427  return (OK == OK_Ordinary || OK == OK_BitField);
428  }
429 
430  /// setValueKind - Set the value kind produced by this expression.
431  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
432 
433  /// setObjectKind - Set the object kind produced by this expression.
434  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
435 
436 private:
437  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
438 
439 public:
440 
441  /// Returns true if this expression is a gl-value that
442  /// potentially refers to a bit-field.
443  ///
444  /// In C++, whether a gl-value refers to a bitfield is essentially
445  /// an aspect of the value-kind type system.
446  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
447 
448  /// If this expression refers to a bit-field, retrieve the
449  /// declaration of that bit-field.
450  ///
451  /// Note that this returns a non-null pointer in subtly different
452  /// places than refersToBitField returns true. In particular, this can
453  /// return a non-null pointer even for r-values loaded from
454  /// bit-fields, but it will return null for a conditional bit-field.
455  FieldDecl *getSourceBitField();
456 
457  const FieldDecl *getSourceBitField() const {
458  return const_cast<Expr*>(this)->getSourceBitField();
459  }
460 
461  Decl *getReferencedDeclOfCallee();
463  return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
464  }
465 
466  /// If this expression is an l-value for an Objective C
467  /// property, find the underlying property reference expression.
468  const ObjCPropertyRefExpr *getObjCProperty() const;
469 
470  /// Check if this expression is the ObjC 'self' implicit parameter.
471  bool isObjCSelfExpr() const;
472 
473  /// Returns whether this expression refers to a vector element.
474  bool refersToVectorElement() const;
475 
476  /// Returns whether this expression refers to a global register
477  /// variable.
478  bool refersToGlobalRegisterVar() const;
479 
480  /// Returns whether this expression has a placeholder type.
481  bool hasPlaceholderType() const {
482  return getType()->isPlaceholderType();
483  }
484 
485  /// Returns whether this expression has a specific placeholder type.
488  if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
489  return BT->getKind() == K;
490  return false;
491  }
492 
493  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
494  /// that is known to return 0 or 1. This happens for _Bool/bool expressions
495  /// but also int expressions which are produced by things like comparisons in
496  /// C.
497  bool isKnownToHaveBooleanValue() const;
498 
499  /// isIntegerConstantExpr - Return true if this expression is a valid integer
500  /// constant expression, and, if so, return its value in Result. If not a
501  /// valid i-c-e, return false and fill in Loc (if specified) with the location
502  /// of the invalid expression.
503  ///
504  /// Note: This does not perform the implicit conversions required by C++11
505  /// [expr.const]p5.
506  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
507  SourceLocation *Loc = nullptr,
508  bool isEvaluated = true) const;
509  bool isIntegerConstantExpr(const ASTContext &Ctx,
510  SourceLocation *Loc = nullptr) const;
511 
512  /// isCXX98IntegralConstantExpr - Return true if this expression is an
513  /// integral constant expression in C++98. Can only be used in C++.
514  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
515 
516  /// isCXX11ConstantExpr - Return true if this expression is a constant
517  /// expression in C++11. Can only be used in C++.
518  ///
519  /// Note: This does not perform the implicit conversions required by C++11
520  /// [expr.const]p5.
521  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
522  SourceLocation *Loc = nullptr) const;
523 
524  /// isPotentialConstantExpr - Return true if this function's definition
525  /// might be usable in a constant expression in C++11, if it were marked
526  /// constexpr. Return false if the function can never produce a constant
527  /// expression, along with diagnostics describing why not.
528  static bool isPotentialConstantExpr(const FunctionDecl *FD,
530  PartialDiagnosticAt> &Diags);
531 
532  /// isPotentialConstantExprUnevaluted - Return true if this expression might
533  /// be usable in a constant expression in C++11 in an unevaluated context, if
534  /// it were in function FD marked constexpr. Return false if the function can
535  /// never produce a constant expression, along with diagnostics describing
536  /// why not.
537  static bool isPotentialConstantExprUnevaluated(Expr *E,
538  const FunctionDecl *FD,
540  PartialDiagnosticAt> &Diags);
541 
542  /// isConstantInitializer - Returns true if this expression can be emitted to
543  /// IR as a constant, and thus can be used as a constant initializer in C.
544  /// If this expression is not constant and Culprit is non-null,
545  /// it is used to store the address of first non constant expr.
546  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
547  const Expr **Culprit = nullptr) const;
548 
549  /// EvalStatus is a struct with detailed info about an evaluation in progress.
550  struct EvalStatus {
551  /// Whether the evaluated expression has side effects.
552  /// For example, (f() && 0) can be folded, but it still has side effects.
554 
555  /// Whether the evaluation hit undefined behavior.
556  /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
557  /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
559 
560  /// Diag - If this is non-null, it will be filled in with a stack of notes
561  /// indicating why evaluation failed (or why it failed to produce a constant
562  /// expression).
563  /// If the expression is unfoldable, the notes will indicate why it's not
564  /// foldable. If the expression is foldable, but not a constant expression,
565  /// the notes will describes why it isn't a constant expression. If the
566  /// expression *is* a constant expression, no notes will be produced.
568 
570  : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
571 
572  // hasSideEffects - Return true if the evaluated expression has
573  // side effects.
574  bool hasSideEffects() const {
575  return HasSideEffects;
576  }
577  };
578 
579  /// EvalResult is a struct with detailed info about an evaluated expression.
581  /// Val - This is the value the expression can be folded to.
583 
584  // isGlobalLValue - Return true if the evaluated lvalue expression
585  // is global.
586  bool isGlobalLValue() const;
587  };
588 
589  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
590  /// an rvalue using any crazy technique (that has nothing to do with language
591  /// standards) that we want to, even if the expression has side-effects. If
592  /// this function returns true, it returns the folded constant in Result. If
593  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
594  /// applied.
595  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
596  bool InConstantContext = false) const;
597 
598  /// EvaluateAsBooleanCondition - Return true if this is a constant
599  /// which we can fold and convert to a boolean condition using
600  /// any crazy technique that we want to, even if the expression has
601  /// side-effects.
602  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
603  bool InConstantContext = false) const;
604 
606  SE_NoSideEffects, ///< Strictly evaluate the expression.
607  SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
608  ///< arbitrary unmodeled side effects.
609  SE_AllowSideEffects ///< Allow any unmodeled side effect.
610  };
611 
612  /// EvaluateAsInt - Return true if this is a constant which we can fold and
613  /// convert to an integer, using any crazy technique that we want to.
614  bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
615  SideEffectsKind AllowSideEffects = SE_NoSideEffects,
616  bool InConstantContext = false) const;
617 
618  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
619  /// convert to a floating point value, using any crazy technique that we
620  /// want to.
621  bool EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
622  SideEffectsKind AllowSideEffects = SE_NoSideEffects,
623  bool InConstantContext = false) const;
624 
625  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
626  /// convert to a fixed point value.
627  bool EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
628  SideEffectsKind AllowSideEffects = SE_NoSideEffects,
629  bool InConstantContext = false) const;
630 
631  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
632  /// constant folded without side-effects, but discard the result.
633  bool isEvaluatable(const ASTContext &Ctx,
634  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
635 
636  /// HasSideEffects - This routine returns true for all those expressions
637  /// which have any effect other than producing a value. Example is a function
638  /// call, volatile variable read, or throwing an exception. If
639  /// IncludePossibleEffects is false, this call treats certain expressions with
640  /// potential side effects (such as function call-like expressions,
641  /// instantiation-dependent expressions, or invocations from a macro) as not
642  /// having side effects.
643  bool HasSideEffects(const ASTContext &Ctx,
644  bool IncludePossibleEffects = true) const;
645 
646  /// Determine whether this expression involves a call to any function
647  /// that is not trivial.
648  bool hasNonTrivialCall(const ASTContext &Ctx) const;
649 
650  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
651  /// integer. This must be called on an expression that constant folds to an
652  /// integer.
653  llvm::APSInt EvaluateKnownConstInt(
654  const ASTContext &Ctx,
655  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
656 
657  llvm::APSInt EvaluateKnownConstIntCheckOverflow(
658  const ASTContext &Ctx,
659  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
660 
661  void EvaluateForOverflow(const ASTContext &Ctx) const;
662 
663  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
664  /// lvalue with link time known address, with no side-effects.
665  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
666  bool InConstantContext = false) const;
667 
668  /// EvaluateAsInitializer - Evaluate an expression as if it were the
669  /// initializer of the given declaration. Returns true if the initializer
670  /// can be folded to a constant, and produces any relevant notes. In C++11,
671  /// notes will be produced if the expression is not a constant expression.
672  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
673  const VarDecl *VD,
675 
676  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
677  /// of a call to the given function with the given arguments, inside an
678  /// unevaluated context. Returns true if the expression could be folded to a
679  /// constant.
680  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
681  const FunctionDecl *Callee,
683  const Expr *This = nullptr) const;
684 
685  /// Indicates how the constant expression will be used.
686  enum ConstExprUsage { EvaluateForCodeGen, EvaluateForMangling };
687 
688  /// Evaluate an expression that is required to be a constant expression.
689  bool EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
690  const ASTContext &Ctx) const;
691 
692  /// If the current Expr is a pointer, this will try to statically
693  /// determine the number of bytes available where the pointer is pointing.
694  /// Returns true if all of the above holds and we were able to figure out the
695  /// size, false otherwise.
696  ///
697  /// \param Type - How to evaluate the size of the Expr, as defined by the
698  /// "type" parameter of __builtin_object_size
699  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
700  unsigned Type) const;
701 
702  /// Enumeration used to describe the kind of Null pointer constant
703  /// returned from \c isNullPointerConstant().
705  /// Expression is not a Null pointer constant.
706  NPCK_NotNull = 0,
707 
708  /// Expression is a Null pointer constant built from a zero integer
709  /// expression that is not a simple, possibly parenthesized, zero literal.
710  /// C++ Core Issue 903 will classify these expressions as "not pointers"
711  /// once it is adopted.
712  /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
714 
715  /// Expression is a Null pointer constant built from a literal zero.
717 
718  /// Expression is a C++11 nullptr.
720 
721  /// Expression is a GNU-style __null constant.
722  NPCK_GNUNull
723  };
724 
725  /// Enumeration used to describe how \c isNullPointerConstant()
726  /// should cope with value-dependent expressions.
728  /// Specifies that the expression should never be value-dependent.
729  NPC_NeverValueDependent = 0,
730 
731  /// Specifies that a value-dependent expression of integral or
732  /// dependent type should be considered a null pointer constant.
734 
735  /// Specifies that a value-dependent expression should be considered
736  /// to never be a null pointer constant.
737  NPC_ValueDependentIsNotNull
738  };
739 
740  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
741  /// a Null pointer constant. The return value can further distinguish the
742  /// kind of NULL pointer constant that was detected.
743  NullPointerConstantKind isNullPointerConstant(
744  ASTContext &Ctx,
746 
747  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
748  /// write barrier.
749  bool isOBJCGCCandidate(ASTContext &Ctx) const;
750 
751  /// Returns true if this expression is a bound member function.
752  bool isBoundMemberFunction(ASTContext &Ctx) const;
753 
754  /// Given an expression of bound-member type, find the type
755  /// of the member. Returns null if this is an *overloaded* bound
756  /// member expression.
757  static QualType findBoundMemberType(const Expr *expr);
758 
759  /// Skip past any implicit casts which might surround this expression until
760  /// reaching a fixed point. Skips:
761  /// * ImplicitCastExpr
762  /// * FullExpr
763  Expr *IgnoreImpCasts() LLVM_READONLY;
764  const Expr *IgnoreImpCasts() const {
765  return const_cast<Expr *>(this)->IgnoreImpCasts();
766  }
767 
768  /// Skip past any casts which might surround this expression until reaching
769  /// a fixed point. Skips:
770  /// * CastExpr
771  /// * FullExpr
772  /// * MaterializeTemporaryExpr
773  /// * SubstNonTypeTemplateParmExpr
774  Expr *IgnoreCasts() LLVM_READONLY;
775  const Expr *IgnoreCasts() const {
776  return const_cast<Expr *>(this)->IgnoreCasts();
777  }
778 
779  /// Skip past any implicit AST nodes which might surround this expression
780  /// until reaching a fixed point. Skips:
781  /// * What IgnoreImpCasts() skips
782  /// * MaterializeTemporaryExpr
783  /// * CXXBindTemporaryExpr
784  Expr *IgnoreImplicit() LLVM_READONLY;
785  const Expr *IgnoreImplicit() const {
786  return const_cast<Expr *>(this)->IgnoreImplicit();
787  }
788 
789  /// Skip past any parentheses which might surround this expression until
790  /// reaching a fixed point. Skips:
791  /// * ParenExpr
792  /// * UnaryOperator if `UO_Extension`
793  /// * GenericSelectionExpr if `!isResultDependent()`
794  /// * ChooseExpr if `!isConditionDependent()`
795  /// * ConstantExpr
796  Expr *IgnoreParens() LLVM_READONLY;
797  const Expr *IgnoreParens() const {
798  return const_cast<Expr *>(this)->IgnoreParens();
799  }
800 
801  /// Skip past any parentheses and implicit casts which might surround this
802  /// expression until reaching a fixed point.
803  /// FIXME: IgnoreParenImpCasts really ought to be equivalent to
804  /// IgnoreParens() + IgnoreImpCasts() until reaching a fixed point. However
805  /// this is currently not the case. Instead IgnoreParenImpCasts() skips:
806  /// * What IgnoreParens() skips
807  /// * What IgnoreImpCasts() skips
808  /// * MaterializeTemporaryExpr
809  /// * SubstNonTypeTemplateParmExpr
810  Expr *IgnoreParenImpCasts() LLVM_READONLY;
811  const Expr *IgnoreParenImpCasts() const {
812  return const_cast<Expr *>(this)->IgnoreParenImpCasts();
813  }
814 
815  /// Skip past any parentheses and casts which might surround this expression
816  /// until reaching a fixed point. Skips:
817  /// * What IgnoreParens() skips
818  /// * What IgnoreCasts() skips
819  Expr *IgnoreParenCasts() LLVM_READONLY;
820  const Expr *IgnoreParenCasts() const {
821  return const_cast<Expr *>(this)->IgnoreParenCasts();
822  }
823 
824  /// Skip conversion operators. If this Expr is a call to a conversion
825  /// operator, return the argument.
826  Expr *IgnoreConversionOperator() LLVM_READONLY;
828  return const_cast<Expr *>(this)->IgnoreConversionOperator();
829  }
830 
831  /// Skip past any parentheses and lvalue casts which might surround this
832  /// expression until reaching a fixed point. Skips:
833  /// * What IgnoreParens() skips
834  /// * What IgnoreCasts() skips, except that only lvalue-to-rvalue
835  /// casts are skipped
836  /// FIXME: This is intended purely as a temporary workaround for code
837  /// that hasn't yet been rewritten to do the right thing about those
838  /// casts, and may disappear along with the last internal use.
839  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
840  const Expr *IgnoreParenLValueCasts() const {
841  return const_cast<Expr *>(this)->IgnoreParenLValueCasts();
842  }
843 
844  /// Skip past any parenthese and casts which do not change the value
845  /// (including ptr->int casts of the same size) until reaching a fixed point.
846  /// Skips:
847  /// * What IgnoreParens() skips
848  /// * CastExpr which do not change the value
849  /// * SubstNonTypeTemplateParmExpr
850  Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY;
851  const Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) const {
852  return const_cast<Expr *>(this)->IgnoreParenNoopCasts(Ctx);
853  }
854 
855  /// Skip past any parentheses and derived-to-base casts until reaching a
856  /// fixed point. Skips:
857  /// * What IgnoreParens() skips
858  /// * CastExpr which represent a derived-to-base cast (CK_DerivedToBase,
859  /// CK_UncheckedDerivedToBase and CK_NoOp)
860  Expr *ignoreParenBaseCasts() LLVM_READONLY;
861  const Expr *ignoreParenBaseCasts() const {
862  return const_cast<Expr *>(this)->ignoreParenBaseCasts();
863  }
864 
865  /// Determine whether this expression is a default function argument.
866  ///
867  /// Default arguments are implicitly generated in the abstract syntax tree
868  /// by semantic analysis for function calls, object constructions, etc. in
869  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
870  /// this routine also looks through any implicit casts to determine whether
871  /// the expression is a default argument.
872  bool isDefaultArgument() const;
873 
874  /// Determine whether the result of this expression is a
875  /// temporary object of the given class type.
876  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
877 
878  /// Whether this expression is an implicit reference to 'this' in C++.
879  bool isImplicitCXXThis() const;
880 
881  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
882 
883  /// For an expression of class type or pointer to class type,
884  /// return the most derived class decl the expression is known to refer to.
885  ///
886  /// If this expression is a cast, this method looks through it to find the
887  /// most derived decl that can be inferred from the expression.
888  /// This is valid because derived-to-base conversions have undefined
889  /// behavior if the object isn't dynamically of the derived type.
890  const CXXRecordDecl *getBestDynamicClassType() const;
891 
892  /// Get the inner expression that determines the best dynamic class.
893  /// If this is a prvalue, we guarantee that it is of the most-derived type
894  /// for the object itself.
895  const Expr *getBestDynamicClassTypeExpr() const;
896 
897  /// Walk outwards from an expression we want to bind a reference to and
898  /// find the expression whose lifetime needs to be extended. Record
899  /// the LHSs of comma expressions and adjustments needed along the path.
900  const Expr *skipRValueSubobjectAdjustments(
902  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
906  return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
907  }
908 
909  /// Checks that the two Expr's will refer to the same value as a comparison
910  /// operand. The caller must ensure that the values referenced by the Expr's
911  /// are not modified between E1 and E2 or the result my be invalid.
912  static bool isSameComparisonOperand(const Expr* E1, const Expr* E2);
913 
914  static bool classof(const Stmt *T) {
915  return T->getStmtClass() >= firstExprConstant &&
916  T->getStmtClass() <= lastExprConstant;
917  }
918 };
919 
920 //===----------------------------------------------------------------------===//
921 // Wrapper Expressions.
922 //===----------------------------------------------------------------------===//
923 
924 /// FullExpr - Represents a "full-expression" node.
925 class FullExpr : public Expr {
926 protected:
928 
929  FullExpr(StmtClass SC, Expr *subexpr)
930  : Expr(SC, subexpr->getType(),
931  subexpr->getValueKind(), subexpr->getObjectKind(),
932  subexpr->isTypeDependent(), subexpr->isValueDependent(),
933  subexpr->isInstantiationDependent(),
934  subexpr->containsUnexpandedParameterPack()), SubExpr(subexpr) {}
936  : Expr(SC, Empty) {}
937 public:
938  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
939  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
940 
941  /// As with any mutator of the AST, be very careful when modifying an
942  /// existing AST to preserve its invariants.
943  void setSubExpr(Expr *E) { SubExpr = E; }
944 
945  static bool classof(const Stmt *T) {
946  return T->getStmtClass() >= firstFullExprConstant &&
947  T->getStmtClass() <= lastFullExprConstant;
948  }
949 };
950 
951 /// ConstantExpr - An expression that occurs in a constant context and
952 /// optionally the result of evaluating the expression.
953 class ConstantExpr final
954  : public FullExpr,
955  private llvm::TrailingObjects<ConstantExpr, APValue, uint64_t> {
956  static_assert(std::is_same<uint64_t, llvm::APInt::WordType>::value,
957  "this class assumes llvm::APInt::WordType is uint64_t for "
958  "trail-allocated storage");
959 
960 public:
961  /// Describes the kind of result that can be trail-allocated.
962  enum ResultStorageKind { RSK_None, RSK_Int64, RSK_APValue };
963 
964 private:
965  size_t numTrailingObjects(OverloadToken<APValue>) const {
966  return ConstantExprBits.ResultKind == ConstantExpr::RSK_APValue;
967  }
968  size_t numTrailingObjects(OverloadToken<uint64_t>) const {
969  return ConstantExprBits.ResultKind == ConstantExpr::RSK_Int64;
970  }
971 
972  void DefaultInit(ResultStorageKind StorageKind);
973  uint64_t &Int64Result() {
974  assert(ConstantExprBits.ResultKind == ConstantExpr::RSK_Int64 &&
975  "invalid accessor");
976  return *getTrailingObjects<uint64_t>();
977  }
978  const uint64_t &Int64Result() const {
979  return const_cast<ConstantExpr *>(this)->Int64Result();
980  }
981  APValue &APValueResult() {
982  assert(ConstantExprBits.ResultKind == ConstantExpr::RSK_APValue &&
983  "invalid accessor");
984  return *getTrailingObjects<APValue>();
985  }
986  const APValue &APValueResult() const {
987  return const_cast<ConstantExpr *>(this)->APValueResult();
988  }
989 
990  ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind);
991  ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty);
992 
993 public:
995  friend class ASTStmtReader;
996  friend class ASTStmtWriter;
997  static ConstantExpr *Create(const ASTContext &Context, Expr *E,
998  const APValue &Result);
999  static ConstantExpr *Create(const ASTContext &Context, Expr *E,
1000  ResultStorageKind Storage = RSK_None);
1001  static ConstantExpr *CreateEmpty(const ASTContext &Context,
1002  ResultStorageKind StorageKind,
1003  EmptyShell Empty);
1004 
1005  static ResultStorageKind getStorageKind(const APValue &Value);
1006  static ResultStorageKind getStorageKind(const Type *T,
1007  const ASTContext &Context);
1008 
1009  SourceLocation getBeginLoc() const LLVM_READONLY {
1010  return SubExpr->getBeginLoc();
1011  }
1012  SourceLocation getEndLoc() const LLVM_READONLY {
1013  return SubExpr->getEndLoc();
1014  }
1015 
1016  static bool classof(const Stmt *T) {
1017  return T->getStmtClass() == ConstantExprClass;
1018  }
1019 
1020  void SetResult(APValue Value, const ASTContext &Context) {
1021  MoveIntoResult(Value, Context);
1022  }
1023  void MoveIntoResult(APValue &Value, const ASTContext &Context);
1024 
1026  return static_cast<APValue::ValueKind>(ConstantExprBits.APValueKind);
1027  }
1029  return static_cast<ResultStorageKind>(ConstantExprBits.ResultKind);
1030  }
1031  APValue getAPValueResult() const;
1032  const APValue &getResultAsAPValue() const { return APValueResult(); }
1033  llvm::APSInt getResultAsAPSInt() const;
1034  // Iterators
1035  child_range children() { return child_range(&SubExpr, &SubExpr+1); }
1037  return const_child_range(&SubExpr, &SubExpr + 1);
1038  }
1039 };
1040 
1041 //===----------------------------------------------------------------------===//
1042 // Primary Expressions.
1043 //===----------------------------------------------------------------------===//
1044 
1045 /// OpaqueValueExpr - An expression referring to an opaque object of a
1046 /// fixed type and value class. These don't correspond to concrete
1047 /// syntax; instead they're used to express operations (usually copy
1048 /// operations) on values whose source is generally obvious from
1049 /// context.
1050 class OpaqueValueExpr : public Expr {
1051  friend class ASTStmtReader;
1052  Expr *SourceExpr;
1053 
1054 public:
1057  Expr *SourceExpr = nullptr)
1058  : Expr(OpaqueValueExprClass, T, VK, OK,
1059  T->isDependentType() ||
1060  (SourceExpr && SourceExpr->isTypeDependent()),
1061  T->isDependentType() ||
1062  (SourceExpr && SourceExpr->isValueDependent()),
1063  T->isInstantiationDependentType() ||
1064  (SourceExpr && SourceExpr->isInstantiationDependent()),
1065  false),
1066  SourceExpr(SourceExpr) {
1067  setIsUnique(false);
1068  OpaqueValueExprBits.Loc = Loc;
1069  }
1070 
1071  /// Given an expression which invokes a copy constructor --- i.e. a
1072  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
1073  /// find the OpaqueValueExpr that's the source of the construction.
1074  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
1075 
1076  explicit OpaqueValueExpr(EmptyShell Empty)
1077  : Expr(OpaqueValueExprClass, Empty) {}
1078 
1079  /// Retrieve the location of this expression.
1080  SourceLocation getLocation() const { return OpaqueValueExprBits.Loc; }
1081 
1082  SourceLocation getBeginLoc() const LLVM_READONLY {
1083  return SourceExpr ? SourceExpr->getBeginLoc() : getLocation();
1084  }
1085  SourceLocation getEndLoc() const LLVM_READONLY {
1086  return SourceExpr ? SourceExpr->getEndLoc() : getLocation();
1087  }
1088  SourceLocation getExprLoc() const LLVM_READONLY {
1089  return SourceExpr ? SourceExpr->getExprLoc() : getLocation();
1090  }
1091 
1094  }
1095 
1098  }
1099 
1100  /// The source expression of an opaque value expression is the
1101  /// expression which originally generated the value. This is
1102  /// provided as a convenience for analyses that don't wish to
1103  /// precisely model the execution behavior of the program.
1104  ///
1105  /// The source expression is typically set when building the
1106  /// expression which binds the opaque value expression in the first
1107  /// place.
1108  Expr *getSourceExpr() const { return SourceExpr; }
1109 
1110  void setIsUnique(bool V) {
1111  assert((!V || SourceExpr) &&
1112  "unique OVEs are expected to have source expressions");
1113  OpaqueValueExprBits.IsUnique = V;
1114  }
1115 
1116  bool isUnique() const { return OpaqueValueExprBits.IsUnique; }
1117 
1118  static bool classof(const Stmt *T) {
1119  return T->getStmtClass() == OpaqueValueExprClass;
1120  }
1121 };
1122 
1123 /// A reference to a declared variable, function, enum, etc.
1124 /// [C99 6.5.1p2]
1125 ///
1126 /// This encodes all the information about how a declaration is referenced
1127 /// within an expression.
1128 ///
1129 /// There are several optional constructs attached to DeclRefExprs only when
1130 /// they apply in order to conserve memory. These are laid out past the end of
1131 /// the object, and flags in the DeclRefExprBitfield track whether they exist:
1132 ///
1133 /// DeclRefExprBits.HasQualifier:
1134 /// Specifies when this declaration reference expression has a C++
1135 /// nested-name-specifier.
1136 /// DeclRefExprBits.HasFoundDecl:
1137 /// Specifies when this declaration reference expression has a record of
1138 /// a NamedDecl (different from the referenced ValueDecl) which was found
1139 /// during name lookup and/or overload resolution.
1140 /// DeclRefExprBits.HasTemplateKWAndArgsInfo:
1141 /// Specifies when this declaration reference expression has an explicit
1142 /// C++ template keyword and/or template argument list.
1143 /// DeclRefExprBits.RefersToEnclosingVariableOrCapture
1144 /// Specifies when this declaration reference expression (validly)
1145 /// refers to an enclosed local or a captured variable.
1146 class DeclRefExpr final
1147  : public Expr,
1148  private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
1149  NamedDecl *, ASTTemplateKWAndArgsInfo,
1150  TemplateArgumentLoc> {
1151  friend class ASTStmtReader;
1152  friend class ASTStmtWriter;
1153  friend TrailingObjects;
1154 
1155  /// The declaration that we are referencing.
1156  ValueDecl *D;
1157 
1158  /// Provides source/type location info for the declaration name
1159  /// embedded in D.
1160  DeclarationNameLoc DNLoc;
1161 
1162  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
1163  return hasQualifier();
1164  }
1165 
1166  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
1167  return hasFoundDecl();
1168  }
1169 
1170  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
1171  return hasTemplateKWAndArgsInfo();
1172  }
1173 
1174  /// Test whether there is a distinct FoundDecl attached to the end of
1175  /// this DRE.
1176  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
1177 
1178  DeclRefExpr(const ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc,
1179  SourceLocation TemplateKWLoc, ValueDecl *D,
1180  bool RefersToEnlosingVariableOrCapture,
1181  const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
1182  const TemplateArgumentListInfo *TemplateArgs, QualType T,
1183  ExprValueKind VK, NonOdrUseReason NOUR);
1184 
1185  /// Construct an empty declaration reference expression.
1186  explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) {}
1187 
1188  /// Computes the type- and value-dependence flags for this
1189  /// declaration reference expression.
1190  void computeDependence(const ASTContext &Ctx);
1191 
1192 public:
1193  DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
1194  bool RefersToEnclosingVariableOrCapture, QualType T,
1196  const DeclarationNameLoc &LocInfo = DeclarationNameLoc(),
1197  NonOdrUseReason NOUR = NOUR_None);
1198 
1199  static DeclRefExpr *
1200  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1201  SourceLocation TemplateKWLoc, ValueDecl *D,
1202  bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
1203  QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1204  const TemplateArgumentListInfo *TemplateArgs = nullptr,
1205  NonOdrUseReason NOUR = NOUR_None);
1206 
1207  static DeclRefExpr *
1208  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1209  SourceLocation TemplateKWLoc, ValueDecl *D,
1210  bool RefersToEnclosingVariableOrCapture,
1211  const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1212  NamedDecl *FoundD = nullptr,
1213  const TemplateArgumentListInfo *TemplateArgs = nullptr,
1214  NonOdrUseReason NOUR = NOUR_None);
1215 
1216  /// Construct an empty declaration reference expression.
1217  static DeclRefExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
1218  bool HasFoundDecl,
1219  bool HasTemplateKWAndArgsInfo,
1220  unsigned NumTemplateArgs);
1221 
1222  ValueDecl *getDecl() { return D; }
1223  const ValueDecl *getDecl() const { return D; }
1224  void setDecl(ValueDecl *NewD) { D = NewD; }
1225 
1227  return DeclarationNameInfo(getDecl()->getDeclName(), getLocation(), DNLoc);
1228  }
1229 
1230  SourceLocation getLocation() const { return DeclRefExprBits.Loc; }
1231  void setLocation(SourceLocation L) { DeclRefExprBits.Loc = L; }
1232  SourceLocation getBeginLoc() const LLVM_READONLY;
1233  SourceLocation getEndLoc() const LLVM_READONLY;
1234 
1235  /// Determine whether this declaration reference was preceded by a
1236  /// C++ nested-name-specifier, e.g., \c N::foo.
1237  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1238 
1239  /// If the name was qualified, retrieves the nested-name-specifier
1240  /// that precedes the name, with source-location information.
1242  if (!hasQualifier())
1243  return NestedNameSpecifierLoc();
1244  return *getTrailingObjects<NestedNameSpecifierLoc>();
1245  }
1246 
1247  /// If the name was qualified, retrieves the nested-name-specifier
1248  /// that precedes the name. Otherwise, returns NULL.
1250  return getQualifierLoc().getNestedNameSpecifier();
1251  }
1252 
1253  /// Get the NamedDecl through which this reference occurred.
1254  ///
1255  /// This Decl may be different from the ValueDecl actually referred to in the
1256  /// presence of using declarations, etc. It always returns non-NULL, and may
1257  /// simple return the ValueDecl when appropriate.
1258 
1260  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1261  }
1262 
1263  /// Get the NamedDecl through which this reference occurred.
1264  /// See non-const variant.
1265  const NamedDecl *getFoundDecl() const {
1266  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1267  }
1268 
1270  return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1271  }
1272 
1273  /// Retrieve the location of the template keyword preceding
1274  /// this name, if any.
1276  if (!hasTemplateKWAndArgsInfo())
1277  return SourceLocation();
1278  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1279  }
1280 
1281  /// Retrieve the location of the left angle bracket starting the
1282  /// explicit template argument list following the name, if any.
1284  if (!hasTemplateKWAndArgsInfo())
1285  return SourceLocation();
1286  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1287  }
1288 
1289  /// Retrieve the location of the right angle bracket ending the
1290  /// explicit template argument list following the name, if any.
1292  if (!hasTemplateKWAndArgsInfo())
1293  return SourceLocation();
1294  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1295  }
1296 
1297  /// Determines whether the name in this declaration reference
1298  /// was preceded by the template keyword.
1299  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1300 
1301  /// Determines whether this declaration reference was followed by an
1302  /// explicit template argument list.
1303  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1304 
1305  /// Copies the template arguments (if present) into the given
1306  /// structure.
1308  if (hasExplicitTemplateArgs())
1309  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1310  getTrailingObjects<TemplateArgumentLoc>(), List);
1311  }
1312 
1313  /// Retrieve the template arguments provided as part of this
1314  /// template-id.
1316  if (!hasExplicitTemplateArgs())
1317  return nullptr;
1318  return getTrailingObjects<TemplateArgumentLoc>();
1319  }
1320 
1321  /// Retrieve the number of template arguments provided as part of this
1322  /// template-id.
1323  unsigned getNumTemplateArgs() const {
1324  if (!hasExplicitTemplateArgs())
1325  return 0;
1326  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1327  }
1328 
1330  return {getTemplateArgs(), getNumTemplateArgs()};
1331  }
1332 
1333  /// Returns true if this expression refers to a function that
1334  /// was resolved from an overloaded set having size greater than 1.
1335  bool hadMultipleCandidates() const {
1336  return DeclRefExprBits.HadMultipleCandidates;
1337  }
1338  /// Sets the flag telling whether this expression refers to
1339  /// a function that was resolved from an overloaded set having size
1340  /// greater than 1.
1341  void setHadMultipleCandidates(bool V = true) {
1342  DeclRefExprBits.HadMultipleCandidates = V;
1343  }
1344 
1345  /// Is this expression a non-odr-use reference, and if so, why?
1347  return static_cast<NonOdrUseReason>(DeclRefExprBits.NonOdrUseReason);
1348  }
1349 
1350  /// Does this DeclRefExpr refer to an enclosing local or a captured
1351  /// variable?
1353  return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1354  }
1355 
1356  static bool classof(const Stmt *T) {
1357  return T->getStmtClass() == DeclRefExprClass;
1358  }
1359 
1360  // Iterators
1363  }
1364 
1367  }
1368 };
1369 
1370 /// Used by IntegerLiteral/FloatingLiteral to store the numeric without
1371 /// leaking memory.
1372 ///
1373 /// For large floats/integers, APFloat/APInt will allocate memory from the heap
1374 /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
1375 /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1376 /// the APFloat/APInt values will never get freed. APNumericStorage uses
1377 /// ASTContext's allocator for memory allocation.
1379  union {
1380  uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1381  uint64_t *pVal; ///< Used to store the >64 bits integer value.
1382  };
1383  unsigned BitWidth;
1384 
1385  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1386 
1387  APNumericStorage(const APNumericStorage &) = delete;
1388  void operator=(const APNumericStorage &) = delete;
1389 
1390 protected:
1391  APNumericStorage() : VAL(0), BitWidth(0) { }
1392 
1394  unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1395  if (NumWords > 1)
1396  return llvm::APInt(BitWidth, NumWords, pVal);
1397  else
1398  return llvm::APInt(BitWidth, VAL);
1399  }
1400  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1401 };
1402 
1404 public:
1405  llvm::APInt getValue() const { return getIntValue(); }
1406  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1407  setIntValue(C, Val);
1408  }
1409 };
1410 
1412 public:
1413  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1414  return llvm::APFloat(Semantics, getIntValue());
1415  }
1416  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1417  setIntValue(C, Val.bitcastToAPInt());
1418  }
1419 };
1420 
1421 class IntegerLiteral : public Expr, public APIntStorage {
1422  SourceLocation Loc;
1423 
1424  /// Construct an empty integer literal.
1425  explicit IntegerLiteral(EmptyShell Empty)
1426  : Expr(IntegerLiteralClass, Empty) { }
1427 
1428 public:
1429  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1430  // or UnsignedLongLongTy
1432  SourceLocation l);
1433 
1434  /// Returns a new integer literal with value 'V' and type 'type'.
1435  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1436  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1437  /// \param V - the value that the returned integer literal contains.
1438  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1439  QualType type, SourceLocation l);
1440  /// Returns a new empty integer literal.
1441  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1442 
1443  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1444  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1445 
1446  /// Retrieve the location of the literal.
1447  SourceLocation getLocation() const { return Loc; }
1448 
1449  void setLocation(SourceLocation Location) { Loc = Location; }
1450 
1451  static bool classof(const Stmt *T) {
1452  return T->getStmtClass() == IntegerLiteralClass;
1453  }
1454 
1455  // Iterators
1458  }
1461  }
1462 };
1463 
1464 class FixedPointLiteral : public Expr, public APIntStorage {
1465  SourceLocation Loc;
1466  unsigned Scale;
1467 
1468  /// \brief Construct an empty integer literal.
1469  explicit FixedPointLiteral(EmptyShell Empty)
1470  : Expr(FixedPointLiteralClass, Empty) {}
1471 
1472  public:
1474  SourceLocation l, unsigned Scale);
1475 
1476  // Store the int as is without any bit shifting.
1477  static FixedPointLiteral *CreateFromRawInt(const ASTContext &C,
1478  const llvm::APInt &V,
1479  QualType type, SourceLocation l,
1480  unsigned Scale);
1481 
1482  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1483  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1484 
1485  /// \brief Retrieve the location of the literal.
1486  SourceLocation getLocation() const { return Loc; }
1487 
1488  void setLocation(SourceLocation Location) { Loc = Location; }
1489 
1490  static bool classof(const Stmt *T) {
1491  return T->getStmtClass() == FixedPointLiteralClass;
1492  }
1493 
1494  std::string getValueAsString(unsigned Radix) const;
1495 
1496  // Iterators
1499  }
1502  }
1503 };
1504 
1505 class CharacterLiteral : public Expr {
1506 public:
1512  UTF32
1513  };
1514 
1515 private:
1516  unsigned Value;
1517  SourceLocation Loc;
1518 public:
1519  // type should be IntTy
1521  SourceLocation l)
1522  : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1523  false, false),
1524  Value(value), Loc(l) {
1525  CharacterLiteralBits.Kind = kind;
1526  }
1527 
1528  /// Construct an empty character literal.
1529  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1530 
1531  SourceLocation getLocation() const { return Loc; }
1533  return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1534  }
1535 
1536  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1537  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1538 
1539  unsigned getValue() const { return Value; }
1540 
1541  void setLocation(SourceLocation Location) { Loc = Location; }
1542  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1543  void setValue(unsigned Val) { Value = Val; }
1544 
1545  static bool classof(const Stmt *T) {
1546  return T->getStmtClass() == CharacterLiteralClass;
1547  }
1548 
1549  // Iterators
1552  }
1555  }
1556 };
1557 
1558 class FloatingLiteral : public Expr, private APFloatStorage {
1559  SourceLocation Loc;
1560 
1561  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1563 
1564  /// Construct an empty floating-point literal.
1565  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1566 
1567 public:
1568  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1569  bool isexact, QualType Type, SourceLocation L);
1570  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1571 
1572  llvm::APFloat getValue() const {
1573  return APFloatStorage::getValue(getSemantics());
1574  }
1575  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1576  assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1577  APFloatStorage::setValue(C, Val);
1578  }
1579 
1580  /// Get a raw enumeration value representing the floating-point semantics of
1581  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1582  llvm::APFloatBase::Semantics getRawSemantics() const {
1583  return static_cast<llvm::APFloatBase::Semantics>(
1584  FloatingLiteralBits.Semantics);
1585  }
1586 
1587  /// Set the raw enumeration value representing the floating-point semantics of
1588  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1589  void setRawSemantics(llvm::APFloatBase::Semantics Sem) {
1590  FloatingLiteralBits.Semantics = Sem;
1591  }
1592 
1593  /// Return the APFloat semantics this literal uses.
1594  const llvm::fltSemantics &getSemantics() const {
1595  return llvm::APFloatBase::EnumToSemantics(
1596  static_cast<llvm::APFloatBase::Semantics>(
1597  FloatingLiteralBits.Semantics));
1598  }
1599 
1600  /// Set the APFloat semantics this literal uses.
1601  void setSemantics(const llvm::fltSemantics &Sem) {
1602  FloatingLiteralBits.Semantics = llvm::APFloatBase::SemanticsToEnum(Sem);
1603  }
1604 
1605  bool isExact() const { return FloatingLiteralBits.IsExact; }
1606  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1607 
1608  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1609  /// double. Note that this may cause loss of precision, but is useful for
1610  /// debugging dumps, etc.
1611  double getValueAsApproximateDouble() const;
1612 
1613  SourceLocation getLocation() const { return Loc; }
1614  void setLocation(SourceLocation L) { Loc = L; }
1615 
1616  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1617  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1618 
1619  static bool classof(const Stmt *T) {
1620  return T->getStmtClass() == FloatingLiteralClass;
1621  }
1622 
1623  // Iterators
1626  }
1629  }
1630 };
1631 
1632 /// ImaginaryLiteral - We support imaginary integer and floating point literals,
1633 /// like "1.0i". We represent these as a wrapper around FloatingLiteral and
1634 /// IntegerLiteral classes. Instances of this class always have a Complex type
1635 /// whose element type matches the subexpression.
1636 ///
1637 class ImaginaryLiteral : public Expr {
1638  Stmt *Val;
1639 public:
1641  : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1642  false, false),
1643  Val(val) {}
1644 
1645  /// Build an empty imaginary literal.
1647  : Expr(ImaginaryLiteralClass, Empty) { }
1648 
1649  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1650  Expr *getSubExpr() { return cast<Expr>(Val); }
1651  void setSubExpr(Expr *E) { Val = E; }
1652 
1653  SourceLocation getBeginLoc() const LLVM_READONLY {
1654  return Val->getBeginLoc();
1655  }
1656  SourceLocation getEndLoc() const LLVM_READONLY { return Val->getEndLoc(); }
1657 
1658  static bool classof(const Stmt *T) {
1659  return T->getStmtClass() == ImaginaryLiteralClass;
1660  }
1661 
1662  // Iterators
1663  child_range children() { return child_range(&Val, &Val+1); }
1665  return const_child_range(&Val, &Val + 1);
1666  }
1667 };
1668 
1669 /// StringLiteral - This represents a string literal expression, e.g. "foo"
1670 /// or L"bar" (wide strings). The actual string data can be obtained with
1671 /// getBytes() and is NOT null-terminated. The length of the string data is
1672 /// determined by calling getByteLength().
1673 ///
1674 /// The C type for a string is always a ConstantArrayType. In C++, the char
1675 /// type is const qualified, in C it is not.
1676 ///
1677 /// Note that strings in C can be formed by concatenation of multiple string
1678 /// literal pptokens in translation phase #6. This keeps track of the locations
1679 /// of each of these pieces.
1680 ///
1681 /// Strings in C can also be truncated and extended by assigning into arrays,
1682 /// e.g. with constructs like:
1683 /// char X[2] = "foobar";
1684 /// In this case, getByteLength() will return 6, but the string literal will
1685 /// have type "char[2]".
1686 class StringLiteral final
1687  : public Expr,
1688  private llvm::TrailingObjects<StringLiteral, unsigned, SourceLocation,
1689  char> {
1690  friend class ASTStmtReader;
1691  friend TrailingObjects;
1692 
1693  /// StringLiteral is followed by several trailing objects. They are in order:
1694  ///
1695  /// * A single unsigned storing the length in characters of this string. The
1696  /// length in bytes is this length times the width of a single character.
1697  /// Always present and stored as a trailing objects because storing it in
1698  /// StringLiteral would increase the size of StringLiteral by sizeof(void *)
1699  /// due to alignment requirements. If you add some data to StringLiteral,
1700  /// consider moving it inside StringLiteral.
1701  ///
1702  /// * An array of getNumConcatenated() SourceLocation, one for each of the
1703  /// token this string is made of.
1704  ///
1705  /// * An array of getByteLength() char used to store the string data.
1706 
1707 public:
1708  enum StringKind { Ascii, Wide, UTF8, UTF16, UTF32 };
1709 
1710 private:
1711  unsigned numTrailingObjects(OverloadToken<unsigned>) const { return 1; }
1712  unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
1713  return getNumConcatenated();
1714  }
1715 
1716  unsigned numTrailingObjects(OverloadToken<char>) const {
1717  return getByteLength();
1718  }
1719 
1720  char *getStrDataAsChar() { return getTrailingObjects<char>(); }
1721  const char *getStrDataAsChar() const { return getTrailingObjects<char>(); }
1722 
1723  const uint16_t *getStrDataAsUInt16() const {
1724  return reinterpret_cast<const uint16_t *>(getTrailingObjects<char>());
1725  }
1726 
1727  const uint32_t *getStrDataAsUInt32() const {
1728  return reinterpret_cast<const uint32_t *>(getTrailingObjects<char>());
1729  }
1730 
1731  /// Build a string literal.
1732  StringLiteral(const ASTContext &Ctx, StringRef Str, StringKind Kind,
1733  bool Pascal, QualType Ty, const SourceLocation *Loc,
1734  unsigned NumConcatenated);
1735 
1736  /// Build an empty string literal.
1737  StringLiteral(EmptyShell Empty, unsigned NumConcatenated, unsigned Length,
1738  unsigned CharByteWidth);
1739 
1740  /// Map a target and string kind to the appropriate character width.
1741  static unsigned mapCharByteWidth(TargetInfo const &Target, StringKind SK);
1742 
1743  /// Set one of the string literal token.
1744  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1745  assert(TokNum < getNumConcatenated() && "Invalid tok number");
1746  getTrailingObjects<SourceLocation>()[TokNum] = L;
1747  }
1748 
1749 public:
1750  /// This is the "fully general" constructor that allows representation of
1751  /// strings formed from multiple concatenated tokens.
1752  static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
1753  StringKind Kind, bool Pascal, QualType Ty,
1754  const SourceLocation *Loc,
1755  unsigned NumConcatenated);
1756 
1757  /// Simple constructor for string literals made from one token.
1758  static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
1759  StringKind Kind, bool Pascal, QualType Ty,
1760  SourceLocation Loc) {
1761  return Create(Ctx, Str, Kind, Pascal, Ty, &Loc, 1);
1762  }
1763 
1764  /// Construct an empty string literal.
1765  static StringLiteral *CreateEmpty(const ASTContext &Ctx,
1766  unsigned NumConcatenated, unsigned Length,
1767  unsigned CharByteWidth);
1768 
1769  StringRef getString() const {
1770  assert(getCharByteWidth() == 1 &&
1771  "This function is used in places that assume strings use char");
1772  return StringRef(getStrDataAsChar(), getByteLength());
1773  }
1774 
1775  /// Allow access to clients that need the byte representation, such as
1776  /// ASTWriterStmt::VisitStringLiteral().
1777  StringRef getBytes() const {
1778  // FIXME: StringRef may not be the right type to use as a result for this.
1779  return StringRef(getStrDataAsChar(), getByteLength());
1780  }
1781 
1782  void outputString(raw_ostream &OS) const;
1783 
1784  uint32_t getCodeUnit(size_t i) const {
1785  assert(i < getLength() && "out of bounds access");
1786  switch (getCharByteWidth()) {
1787  case 1:
1788  return static_cast<unsigned char>(getStrDataAsChar()[i]);
1789  case 2:
1790  return getStrDataAsUInt16()[i];
1791  case 4:
1792  return getStrDataAsUInt32()[i];
1793  }
1794  llvm_unreachable("Unsupported character width!");
1795  }
1796 
1797  unsigned getByteLength() const { return getCharByteWidth() * getLength(); }
1798  unsigned getLength() const { return *getTrailingObjects<unsigned>(); }
1799  unsigned getCharByteWidth() const { return StringLiteralBits.CharByteWidth; }
1800 
1802  return static_cast<StringKind>(StringLiteralBits.Kind);
1803  }
1804 
1805  bool isAscii() const { return getKind() == Ascii; }
1806  bool isWide() const { return getKind() == Wide; }
1807  bool isUTF8() const { return getKind() == UTF8; }
1808  bool isUTF16() const { return getKind() == UTF16; }
1809  bool isUTF32() const { return getKind() == UTF32; }
1810  bool isPascal() const { return StringLiteralBits.IsPascal; }
1811 
1812  bool containsNonAscii() const {
1813  for (auto c : getString())
1814  if (!isASCII(c))
1815  return true;
1816  return false;
1817  }
1818 
1819  bool containsNonAsciiOrNull() const {
1820  for (auto c : getString())
1821  if (!isASCII(c) || !c)
1822  return true;
1823  return false;
1824  }
1825 
1826  /// getNumConcatenated - Get the number of string literal tokens that were
1827  /// concatenated in translation phase #6 to form this string literal.
1828  unsigned getNumConcatenated() const {
1829  return StringLiteralBits.NumConcatenated;
1830  }
1831 
1832  /// Get one of the string literal token.
1833  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1834  assert(TokNum < getNumConcatenated() && "Invalid tok number");
1835  return getTrailingObjects<SourceLocation>()[TokNum];
1836  }
1837 
1838  /// getLocationOfByte - Return a source location that points to the specified
1839  /// byte of this string literal.
1840  ///
1841  /// Strings are amazingly complex. They can be formed from multiple tokens
1842  /// and can have escape sequences in them in addition to the usual trigraph
1843  /// and escaped newline business. This routine handles this complexity.
1844  ///
1846  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1847  const LangOptions &Features, const TargetInfo &Target,
1848  unsigned *StartToken = nullptr,
1849  unsigned *StartTokenByteOffset = nullptr) const;
1850 
1852 
1853  tokloc_iterator tokloc_begin() const {
1854  return getTrailingObjects<SourceLocation>();
1855  }
1856 
1857  tokloc_iterator tokloc_end() const {
1858  return getTrailingObjects<SourceLocation>() + getNumConcatenated();
1859  }
1860 
1861  SourceLocation getBeginLoc() const LLVM_READONLY { return *tokloc_begin(); }
1862  SourceLocation getEndLoc() const LLVM_READONLY { return *(tokloc_end() - 1); }
1863 
1864  static bool classof(const Stmt *T) {
1865  return T->getStmtClass() == StringLiteralClass;
1866  }
1867 
1868  // Iterators
1871  }
1874  }
1875 };
1876 
1877 /// [C99 6.4.2.2] - A predefined identifier such as __func__.
1878 class PredefinedExpr final
1879  : public Expr,
1880  private llvm::TrailingObjects<PredefinedExpr, Stmt *> {
1881  friend class ASTStmtReader;
1882  friend TrailingObjects;
1883 
1884  // PredefinedExpr is optionally followed by a single trailing
1885  // "Stmt *" for the predefined identifier. It is present if and only if
1886  // hasFunctionName() is true and is always a "StringLiteral *".
1887 
1888 public:
1889  enum IdentKind {
1892  LFunction, // Same as Function, but as wide string.
1895  LFuncSig, // Same as FuncSig, but as as wide string
1897  /// The same as PrettyFunction, except that the
1898  /// 'virtual' keyword is omitted for virtual member functions.
1899  PrettyFunctionNoVirtual
1900  };
1901 
1902 private:
1904  StringLiteral *SL);
1905 
1906  explicit PredefinedExpr(EmptyShell Empty, bool HasFunctionName);
1907 
1908  /// True if this PredefinedExpr has storage for a function name.
1909  bool hasFunctionName() const { return PredefinedExprBits.HasFunctionName; }
1910 
1911  void setFunctionName(StringLiteral *SL) {
1912  assert(hasFunctionName() &&
1913  "This PredefinedExpr has no storage for a function name!");
1914  *getTrailingObjects<Stmt *>() = SL;
1915  }
1916 
1917 public:
1918  /// Create a PredefinedExpr.
1919  static PredefinedExpr *Create(const ASTContext &Ctx, SourceLocation L,
1920  QualType FNTy, IdentKind IK, StringLiteral *SL);
1921 
1922  /// Create an empty PredefinedExpr.
1923  static PredefinedExpr *CreateEmpty(const ASTContext &Ctx,
1924  bool HasFunctionName);
1925 
1927  return static_cast<IdentKind>(PredefinedExprBits.Kind);
1928  }
1929 
1930  SourceLocation getLocation() const { return PredefinedExprBits.Loc; }
1931  void setLocation(SourceLocation L) { PredefinedExprBits.Loc = L; }
1932 
1934  return hasFunctionName()
1935  ? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
1936  : nullptr;
1937  }
1938 
1940  return hasFunctionName()
1941  ? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
1942  : nullptr;
1943  }
1944 
1945  static StringRef getIdentKindName(IdentKind IK);
1946  static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl);
1947 
1948  SourceLocation getBeginLoc() const { return getLocation(); }
1949  SourceLocation getEndLoc() const { return getLocation(); }
1950 
1951  static bool classof(const Stmt *T) {
1952  return T->getStmtClass() == PredefinedExprClass;
1953  }
1954 
1955  // Iterators
1957  return child_range(getTrailingObjects<Stmt *>(),
1958  getTrailingObjects<Stmt *>() + hasFunctionName());
1959  }
1960 
1962  return const_child_range(getTrailingObjects<Stmt *>(),
1963  getTrailingObjects<Stmt *>() + hasFunctionName());
1964  }
1965 };
1966 
1967 /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
1968 /// AST node is only formed if full location information is requested.
1969 class ParenExpr : public Expr {
1970  SourceLocation L, R;
1971  Stmt *Val;
1972 public:
1974  : Expr(ParenExprClass, val->getType(),
1975  val->getValueKind(), val->getObjectKind(),
1976  val->isTypeDependent(), val->isValueDependent(),
1977  val->isInstantiationDependent(),
1978  val->containsUnexpandedParameterPack()),
1979  L(l), R(r), Val(val) {}
1980 
1981  /// Construct an empty parenthesized expression.
1982  explicit ParenExpr(EmptyShell Empty)
1983  : Expr(ParenExprClass, Empty) { }
1984 
1985  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1986  Expr *getSubExpr() { return cast<Expr>(Val); }
1987  void setSubExpr(Expr *E) { Val = E; }
1988 
1989  SourceLocation getBeginLoc() const LLVM_READONLY { return L; }
1990  SourceLocation getEndLoc() const LLVM_READONLY { return R; }
1991 
1992  /// Get the location of the left parentheses '('.
1993  SourceLocation getLParen() const { return L; }
1994  void setLParen(SourceLocation Loc) { L = Loc; }
1995 
1996  /// Get the location of the right parentheses ')'.
1997  SourceLocation getRParen() const { return R; }
1998  void setRParen(SourceLocation Loc) { R = Loc; }
1999 
2000  static bool classof(const Stmt *T) {
2001  return T->getStmtClass() == ParenExprClass;
2002  }
2003 
2004  // Iterators
2005  child_range children() { return child_range(&Val, &Val+1); }
2007  return const_child_range(&Val, &Val + 1);
2008  }
2009 };
2010 
2011 /// UnaryOperator - This represents the unary-expression's (except sizeof and
2012 /// alignof), the postinc/postdec operators from postfix-expression, and various
2013 /// extensions.
2014 ///
2015 /// Notes on various nodes:
2016 ///
2017 /// Real/Imag - These return the real/imag part of a complex operand. If
2018 /// applied to a non-complex value, the former returns its operand and the
2019 /// later returns zero in the type of the operand.
2020 ///
2021 class UnaryOperator : public Expr {
2022  Stmt *Val;
2023 
2024 public:
2026 
2027  UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK,
2028  ExprObjectKind OK, SourceLocation l, bool CanOverflow)
2029  : Expr(UnaryOperatorClass, type, VK, OK,
2030  input->isTypeDependent() || type->isDependentType(),
2031  input->isValueDependent(),
2032  (input->isInstantiationDependent() ||
2033  type->isInstantiationDependentType()),
2034  input->containsUnexpandedParameterPack()),
2035  Val(input) {
2036  UnaryOperatorBits.Opc = opc;
2037  UnaryOperatorBits.CanOverflow = CanOverflow;
2038  UnaryOperatorBits.Loc = l;
2039  }
2040 
2041  /// Build an empty unary operator.
2042  explicit UnaryOperator(EmptyShell Empty) : Expr(UnaryOperatorClass, Empty) {
2043  UnaryOperatorBits.Opc = UO_AddrOf;
2044  }
2045 
2046  Opcode getOpcode() const {
2047  return static_cast<Opcode>(UnaryOperatorBits.Opc);
2048  }
2049  void setOpcode(Opcode Opc) { UnaryOperatorBits.Opc = Opc; }
2050 
2051  Expr *getSubExpr() const { return cast<Expr>(Val); }
2052  void setSubExpr(Expr *E) { Val = E; }
2053 
2054  /// getOperatorLoc - Return the location of the operator.
2055  SourceLocation getOperatorLoc() const { return UnaryOperatorBits.Loc; }
2056  void setOperatorLoc(SourceLocation L) { UnaryOperatorBits.Loc = L; }
2057 
2058  /// Returns true if the unary operator can cause an overflow. For instance,
2059  /// signed int i = INT_MAX; i++;
2060  /// signed char c = CHAR_MAX; c++;
2061  /// Due to integer promotions, c++ is promoted to an int before the postfix
2062  /// increment, and the result is an int that cannot overflow. However, i++
2063  /// can overflow.
2064  bool canOverflow() const { return UnaryOperatorBits.CanOverflow; }
2065  void setCanOverflow(bool C) { UnaryOperatorBits.CanOverflow = C; }
2066 
2067  /// isPostfix - Return true if this is a postfix operation, like x++.
2068  static bool isPostfix(Opcode Op) {
2069  return Op == UO_PostInc || Op == UO_PostDec;
2070  }
2071 
2072  /// isPrefix - Return true if this is a prefix operation, like --x.
2073  static bool isPrefix(Opcode Op) {
2074  return Op == UO_PreInc || Op == UO_PreDec;
2075  }
2076 
2077  bool isPrefix() const { return isPrefix(getOpcode()); }
2078  bool isPostfix() const { return isPostfix(getOpcode()); }
2079 
2080  static bool isIncrementOp(Opcode Op) {
2081  return Op == UO_PreInc || Op == UO_PostInc;
2082  }
2083  bool isIncrementOp() const {
2084  return isIncrementOp(getOpcode());
2085  }
2086 
2087  static bool isDecrementOp(Opcode Op) {
2088  return Op == UO_PreDec || Op == UO_PostDec;
2089  }
2090  bool isDecrementOp() const {
2091  return isDecrementOp(getOpcode());
2092  }
2093 
2094  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
2095  bool isIncrementDecrementOp() const {
2096  return isIncrementDecrementOp(getOpcode());
2097  }
2098 
2099  static bool isArithmeticOp(Opcode Op) {
2100  return Op >= UO_Plus && Op <= UO_LNot;
2101  }
2102  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
2103 
2104  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2105  /// corresponds to, e.g. "sizeof" or "[pre]++"
2106  static StringRef getOpcodeStr(Opcode Op);
2107 
2108  /// Retrieve the unary opcode that corresponds to the given
2109  /// overloaded operator.
2110  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
2111 
2112  /// Retrieve the overloaded operator kind that corresponds to
2113  /// the given unary opcode.
2114  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2115 
2116  SourceLocation getBeginLoc() const LLVM_READONLY {
2117  return isPostfix() ? Val->getBeginLoc() : getOperatorLoc();
2118  }
2119  SourceLocation getEndLoc() const LLVM_READONLY {
2120  return isPostfix() ? getOperatorLoc() : Val->getEndLoc();
2121  }
2122  SourceLocation getExprLoc() const { return getOperatorLoc(); }
2123 
2124  static bool classof(const Stmt *T) {
2125  return T->getStmtClass() == UnaryOperatorClass;
2126  }
2127 
2128  // Iterators
2129  child_range children() { return child_range(&Val, &Val+1); }
2131  return const_child_range(&Val, &Val + 1);
2132  }
2133 };
2134 
2135 /// Helper class for OffsetOfExpr.
2136 
2137 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
2139 public:
2140  /// The kind of offsetof node we have.
2141  enum Kind {
2142  /// An index into an array.
2143  Array = 0x00,
2144  /// A field.
2145  Field = 0x01,
2146  /// A field in a dependent type, known only by its name.
2147  Identifier = 0x02,
2148  /// An implicit indirection through a C++ base class, when the
2149  /// field found is in a base class.
2150  Base = 0x03
2151  };
2152 
2153 private:
2154  enum { MaskBits = 2, Mask = 0x03 };
2155 
2156  /// The source range that covers this part of the designator.
2157  SourceRange Range;
2158 
2159  /// The data describing the designator, which comes in three
2160  /// different forms, depending on the lower two bits.
2161  /// - An unsigned index into the array of Expr*'s stored after this node
2162  /// in memory, for [constant-expression] designators.
2163  /// - A FieldDecl*, for references to a known field.
2164  /// - An IdentifierInfo*, for references to a field with a given name
2165  /// when the class type is dependent.
2166  /// - A CXXBaseSpecifier*, for references that look at a field in a
2167  /// base class.
2168  uintptr_t Data;
2169 
2170 public:
2171  /// Create an offsetof node that refers to an array element.
2172  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
2173  SourceLocation RBracketLoc)
2174  : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
2175 
2176  /// Create an offsetof node that refers to a field.
2178  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
2179  Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
2180 
2181  /// Create an offsetof node that refers to an identifier.
2183  SourceLocation NameLoc)
2184  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
2185  Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
2186 
2187  /// Create an offsetof node that refers into a C++ base class.
2189  : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
2190 
2191  /// Determine what kind of offsetof node this is.
2192  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
2193 
2194  /// For an array element node, returns the index into the array
2195  /// of expressions.
2196  unsigned getArrayExprIndex() const {
2197  assert(getKind() == Array);
2198  return Data >> 2;
2199  }
2200 
2201  /// For a field offsetof node, returns the field.
2202  FieldDecl *getField() const {
2203  assert(getKind() == Field);
2204  return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
2205  }
2206 
2207  /// For a field or identifier offsetof node, returns the name of
2208  /// the field.
2209  IdentifierInfo *getFieldName() const;
2210 
2211  /// For a base class node, returns the base specifier.
2213  assert(getKind() == Base);
2214  return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
2215  }
2216 
2217  /// Retrieve the source range that covers this offsetof node.
2218  ///
2219  /// For an array element node, the source range contains the locations of
2220  /// the square brackets. For a field or identifier node, the source range
2221  /// contains the location of the period (if there is one) and the
2222  /// identifier.
2223  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
2224  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
2225  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
2226 };
2227 
2228 /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
2229 /// offsetof(record-type, member-designator). For example, given:
2230 /// @code
2231 /// struct S {
2232 /// float f;
2233 /// double d;
2234 /// };
2235 /// struct T {
2236 /// int i;
2237 /// struct S s[10];
2238 /// };
2239 /// @endcode
2240 /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
2241 
2242 class OffsetOfExpr final
2243  : public Expr,
2244  private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
2245  SourceLocation OperatorLoc, RParenLoc;
2246  // Base type;
2247  TypeSourceInfo *TSInfo;
2248  // Number of sub-components (i.e. instances of OffsetOfNode).
2249  unsigned NumComps;
2250  // Number of sub-expressions (i.e. array subscript expressions).
2251  unsigned NumExprs;
2252 
2253  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
2254  return NumComps;
2255  }
2256 
2258  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
2260  SourceLocation RParenLoc);
2261 
2262  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
2263  : Expr(OffsetOfExprClass, EmptyShell()),
2264  TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
2265 
2266 public:
2267 
2268  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
2269  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
2270  ArrayRef<OffsetOfNode> comps,
2271  ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
2272 
2273  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
2274  unsigned NumComps, unsigned NumExprs);
2275 
2276  /// getOperatorLoc - Return the location of the operator.
2277  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2278  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2279 
2280  /// Return the location of the right parentheses.
2281  SourceLocation getRParenLoc() const { return RParenLoc; }
2282  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
2283 
2285  return TSInfo;
2286  }
2288  TSInfo = tsi;
2289  }
2290 
2291  const OffsetOfNode &getComponent(unsigned Idx) const {
2292  assert(Idx < NumComps && "Subscript out of range");
2293  return getTrailingObjects<OffsetOfNode>()[Idx];
2294  }
2295 
2296  void setComponent(unsigned Idx, OffsetOfNode ON) {
2297  assert(Idx < NumComps && "Subscript out of range");
2298  getTrailingObjects<OffsetOfNode>()[Idx] = ON;
2299  }
2300 
2301  unsigned getNumComponents() const {
2302  return NumComps;
2303  }
2304 
2305  Expr* getIndexExpr(unsigned Idx) {
2306  assert(Idx < NumExprs && "Subscript out of range");
2307  return getTrailingObjects<Expr *>()[Idx];
2308  }
2309 
2310  const Expr *getIndexExpr(unsigned Idx) const {
2311  assert(Idx < NumExprs && "Subscript out of range");
2312  return getTrailingObjects<Expr *>()[Idx];
2313  }
2314 
2315  void setIndexExpr(unsigned Idx, Expr* E) {
2316  assert(Idx < NumComps && "Subscript out of range");
2317  getTrailingObjects<Expr *>()[Idx] = E;
2318  }
2319 
2320  unsigned getNumExpressions() const {
2321  return NumExprs;
2322  }
2323 
2324  SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
2325  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
2326 
2327  static bool classof(const Stmt *T) {
2328  return T->getStmtClass() == OffsetOfExprClass;
2329  }
2330 
2331  // Iterators
2333  Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
2334  return child_range(begin, begin + NumExprs);
2335  }
2337  Stmt *const *begin =
2338  reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
2339  return const_child_range(begin, begin + NumExprs);
2340  }
2342 };
2343 
2344 /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2345 /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
2346 /// vec_step (OpenCL 1.1 6.11.12).
2348  union {
2351  } Argument;
2352  SourceLocation OpLoc, RParenLoc;
2353 
2354 public:
2356  QualType resultType, SourceLocation op,
2357  SourceLocation rp) :
2358  Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2359  false, // Never type-dependent (C++ [temp.dep.expr]p3).
2360  // Value-dependent if the argument is type-dependent.
2361  TInfo->getType()->isDependentType(),
2362  TInfo->getType()->isInstantiationDependentType(),
2363  TInfo->getType()->containsUnexpandedParameterPack()),
2364  OpLoc(op), RParenLoc(rp) {
2365  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2366  UnaryExprOrTypeTraitExprBits.IsType = true;
2367  Argument.Ty = TInfo;
2368  }
2369 
2371  QualType resultType, SourceLocation op,
2372  SourceLocation rp);
2373 
2374  /// Construct an empty sizeof/alignof expression.
2376  : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2377 
2379  return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2380  }
2381  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2382 
2383  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2385  return getArgumentTypeInfo()->getType();
2386  }
2388  assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2389  return Argument.Ty;
2390  }
2392  assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2393  return static_cast<Expr*>(Argument.Ex);
2394  }
2395  const Expr *getArgumentExpr() const {
2396  return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2397  }
2398 
2399  void setArgument(Expr *E) {
2400  Argument.Ex = E;
2401  UnaryExprOrTypeTraitExprBits.IsType = false;
2402  }
2404  Argument.Ty = TInfo;
2405  UnaryExprOrTypeTraitExprBits.IsType = true;
2406  }
2407 
2408  /// Gets the argument type, or the type of the argument expression, whichever
2409  /// is appropriate.
2411  return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2412  }
2413 
2414  SourceLocation getOperatorLoc() const { return OpLoc; }
2415  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2416 
2417  SourceLocation getRParenLoc() const { return RParenLoc; }
2418  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2419 
2420  SourceLocation getBeginLoc() const LLVM_READONLY { return OpLoc; }
2421  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
2422 
2423  static bool classof(const Stmt *T) {
2424  return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2425  }
2426 
2427  // Iterators
2429  const_child_range children() const;
2430 };
2431 
2432 //===----------------------------------------------------------------------===//
2433 // Postfix Operators.
2434 //===----------------------------------------------------------------------===//
2435 
2436 /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2437 class ArraySubscriptExpr : public Expr {
2438  enum { LHS, RHS, END_EXPR };
2439  Stmt *SubExprs[END_EXPR];
2440 
2441  bool lhsIsBase() const { return getRHS()->getType()->isIntegerType(); }
2442 
2443 public:
2446  SourceLocation rbracketloc)
2447  : Expr(ArraySubscriptExprClass, t, VK, OK,
2448  lhs->isTypeDependent() || rhs->isTypeDependent(),
2449  lhs->isValueDependent() || rhs->isValueDependent(),
2450  (lhs->isInstantiationDependent() ||
2451  rhs->isInstantiationDependent()),
2452  (lhs->containsUnexpandedParameterPack() ||
2453  rhs->containsUnexpandedParameterPack())) {
2454  SubExprs[LHS] = lhs;
2455  SubExprs[RHS] = rhs;
2456  ArraySubscriptExprBits.RBracketLoc = rbracketloc;
2457  }
2458 
2459  /// Create an empty array subscript expression.
2461  : Expr(ArraySubscriptExprClass, Shell) { }
2462 
2463  /// An array access can be written A[4] or 4[A] (both are equivalent).
2464  /// - getBase() and getIdx() always present the normalized view: A[4].
2465  /// In this case getBase() returns "A" and getIdx() returns "4".
2466  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2467  /// 4[A] getLHS() returns "4".
2468  /// Note: Because vector element access is also written A[4] we must
2469  /// predicate the format conversion in getBase and getIdx only on the
2470  /// the type of the RHS, as it is possible for the LHS to be a vector of
2471  /// integer type
2472  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2473  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2474  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2475 
2476  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2477  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2478  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2479 
2480  Expr *getBase() { return lhsIsBase() ? getLHS() : getRHS(); }
2481  const Expr *getBase() const { return lhsIsBase() ? getLHS() : getRHS(); }
2482 
2483  Expr *getIdx() { return lhsIsBase() ? getRHS() : getLHS(); }
2484  const Expr *getIdx() const { return lhsIsBase() ? getRHS() : getLHS(); }
2485 
2486  SourceLocation getBeginLoc() const LLVM_READONLY {
2487  return getLHS()->getBeginLoc();
2488  }
2489  SourceLocation getEndLoc() const { return getRBracketLoc(); }
2490 
2492  return ArraySubscriptExprBits.RBracketLoc;
2493  }
2495  ArraySubscriptExprBits.RBracketLoc = L;
2496  }
2497 
2498  SourceLocation getExprLoc() const LLVM_READONLY {
2499  return getBase()->getExprLoc();
2500  }
2501 
2502  static bool classof(const Stmt *T) {
2503  return T->getStmtClass() == ArraySubscriptExprClass;
2504  }
2505 
2506  // Iterators
2508  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2509  }
2511  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
2512  }
2513 };
2514 
2515 /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2516 /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2517 /// while its subclasses may represent alternative syntax that (semantically)
2518 /// results in a function call. For example, CXXOperatorCallExpr is
2519 /// a subclass for overloaded operator calls that use operator syntax, e.g.,
2520 /// "str1 + str2" to resolve to a function call.
2521 class CallExpr : public Expr {
2522  enum { FN = 0, PREARGS_START = 1 };
2523 
2524  /// The number of arguments in the call expression.
2525  unsigned NumArgs;
2526 
2527  /// The location of the right parenthese. This has a different meaning for
2528  /// the derived classes of CallExpr.
2529  SourceLocation RParenLoc;
2530 
2531  void updateDependenciesFromArg(Expr *Arg);
2532 
2533  // CallExpr store some data in trailing objects. However since CallExpr
2534  // is used a base of other expression classes we cannot use
2535  // llvm::TrailingObjects. Instead we manually perform the pointer arithmetic
2536  // and casts.
2537  //
2538  // The trailing objects are in order:
2539  //
2540  // * A single "Stmt *" for the callee expression.
2541  //
2542  // * An array of getNumPreArgs() "Stmt *" for the pre-argument expressions.
2543  //
2544  // * An array of getNumArgs() "Stmt *" for the argument expressions.
2545  //
2546  // Note that we store the offset in bytes from the this pointer to the start
2547  // of the trailing objects. It would be perfectly possible to compute it
2548  // based on the dynamic kind of the CallExpr. However 1.) we have plenty of
2549  // space in the bit-fields of Stmt. 2.) It was benchmarked to be faster to
2550  // compute this once and then load the offset from the bit-fields of Stmt,
2551  // instead of re-computing the offset each time the trailing objects are
2552  // accessed.
2553 
2554  /// Return a pointer to the start of the trailing array of "Stmt *".
2555  Stmt **getTrailingStmts() {
2556  return reinterpret_cast<Stmt **>(reinterpret_cast<char *>(this) +
2557  CallExprBits.OffsetToTrailingObjects);
2558  }
2559  Stmt *const *getTrailingStmts() const {
2560  return const_cast<CallExpr *>(this)->getTrailingStmts();
2561  }
2562 
2563  /// Map a statement class to the appropriate offset in bytes from the
2564  /// this pointer to the trailing objects.
2565  static unsigned offsetToTrailingObjects(StmtClass SC);
2566 
2567 public:
2568  enum class ADLCallKind : bool { NotADL, UsesADL };
2569  static constexpr ADLCallKind NotADL = ADLCallKind::NotADL;
2570  static constexpr ADLCallKind UsesADL = ADLCallKind::UsesADL;
2571 
2572 protected:
2573  /// Build a call expression, assuming that appropriate storage has been
2574  /// allocated for the trailing objects.
2575  CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
2577  SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL);
2578 
2579  /// Build an empty call expression, for deserialization.
2580  CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
2581  EmptyShell Empty);
2582 
2583  /// Return the size in bytes needed for the trailing objects.
2584  /// Used by the derived classes to allocate the right amount of storage.
2585  static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs) {
2586  return (1 + NumPreArgs + NumArgs) * sizeof(Stmt *);
2587  }
2588 
2589  Stmt *getPreArg(unsigned I) {
2590  assert(I < getNumPreArgs() && "Prearg access out of range!");
2591  return getTrailingStmts()[PREARGS_START + I];
2592  }
2593  const Stmt *getPreArg(unsigned I) const {
2594  assert(I < getNumPreArgs() && "Prearg access out of range!");
2595  return getTrailingStmts()[PREARGS_START + I];
2596  }
2597  void setPreArg(unsigned I, Stmt *PreArg) {
2598  assert(I < getNumPreArgs() && "Prearg access out of range!");
2599  getTrailingStmts()[PREARGS_START + I] = PreArg;
2600  }
2601 
2602  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2603 
2604 public:
2605  /// Create a call expression. Fn is the callee expression, Args is the
2606  /// argument array, Ty is the type of the call expression (which is *not*
2607  /// the return type in general), VK is the value kind of the call expression
2608  /// (lvalue, rvalue, ...), and RParenLoc is the location of the right
2609  /// parenthese in the call expression. MinNumArgs specifies the minimum
2610  /// number of arguments. The actual number of arguments will be the greater
2611  /// of Args.size() and MinNumArgs. This is used in a few places to allocate
2612  /// enough storage for the default arguments. UsesADL specifies whether the
2613  /// callee was found through argument-dependent lookup.
2614  ///
2615  /// Note that you can use CreateTemporary if you need a temporary call
2616  /// expression on the stack.
2617  static CallExpr *Create(const ASTContext &Ctx, Expr *Fn,
2619  SourceLocation RParenLoc, unsigned MinNumArgs = 0,
2620  ADLCallKind UsesADL = NotADL);
2621 
2622  /// Create a temporary call expression with no arguments in the memory
2623  /// pointed to by Mem. Mem must points to at least sizeof(CallExpr)
2624  /// + sizeof(Stmt *) bytes of storage, aligned to alignof(CallExpr):
2625  ///
2626  /// \code{.cpp}
2627  /// alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
2628  /// CallExpr *TheCall = CallExpr::CreateTemporary(Buffer, etc);
2629  /// \endcode
2630  static CallExpr *CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
2631  ExprValueKind VK, SourceLocation RParenLoc,
2632  ADLCallKind UsesADL = NotADL);
2633 
2634  /// Create an empty call expression, for deserialization.
2635  static CallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
2636  EmptyShell Empty);
2637 
2638  Expr *getCallee() { return cast<Expr>(getTrailingStmts()[FN]); }
2639  const Expr *getCallee() const { return cast<Expr>(getTrailingStmts()[FN]); }
2640  void setCallee(Expr *F) { getTrailingStmts()[FN] = F; }
2641 
2643  return static_cast<ADLCallKind>(CallExprBits.UsesADL);
2644  }
2645  void setADLCallKind(ADLCallKind V = UsesADL) {
2646  CallExprBits.UsesADL = static_cast<bool>(V);
2647  }
2648  bool usesADL() const { return getADLCallKind() == UsesADL; }
2649 
2650  Decl *getCalleeDecl() { return getCallee()->getReferencedDeclOfCallee(); }
2651  const Decl *getCalleeDecl() const {
2652  return getCallee()->getReferencedDeclOfCallee();
2653  }
2654 
2655  /// If the callee is a FunctionDecl, return it. Otherwise return null.
2657  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
2658  }
2660  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
2661  }
2662 
2663  /// getNumArgs - Return the number of actual arguments to this call.
2664  unsigned getNumArgs() const { return NumArgs; }
2665 
2666  /// Retrieve the call arguments.
2668  return reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START +
2669  getNumPreArgs());
2670  }
2671  const Expr *const *getArgs() const {
2672  return reinterpret_cast<const Expr *const *>(
2673  getTrailingStmts() + PREARGS_START + getNumPreArgs());
2674  }
2675 
2676  /// getArg - Return the specified argument.
2677  Expr *getArg(unsigned Arg) {
2678  assert(Arg < getNumArgs() && "Arg access out of range!");
2679  return getArgs()[Arg];
2680  }
2681  const Expr *getArg(unsigned Arg) const {
2682  assert(Arg < getNumArgs() && "Arg access out of range!");
2683  return getArgs()[Arg];
2684  }
2685 
2686  /// setArg - Set the specified argument.
2687  void setArg(unsigned Arg, Expr *ArgExpr) {
2688  assert(Arg < getNumArgs() && "Arg access out of range!");
2689  getArgs()[Arg] = ArgExpr;
2690  }
2691 
2692  /// Reduce the number of arguments in this call expression. This is used for
2693  /// example during error recovery to drop extra arguments. There is no way
2694  /// to perform the opposite because: 1.) We don't track how much storage
2695  /// we have for the argument array 2.) This would potentially require growing
2696  /// the argument array, something we cannot support since the arguments are
2697  /// stored in a trailing array.
2698  void shrinkNumArgs(unsigned NewNumArgs) {
2699  assert((NewNumArgs <= getNumArgs()) &&
2700  "shrinkNumArgs cannot increase the number of arguments!");
2701  NumArgs = NewNumArgs;
2702  }
2703 
2704  /// Bluntly set a new number of arguments without doing any checks whatsoever.
2705  /// Only used during construction of a CallExpr in a few places in Sema.
2706  /// FIXME: Find a way to remove it.
2707  void setNumArgsUnsafe(unsigned NewNumArgs) { NumArgs = NewNumArgs; }
2708 
2711  typedef llvm::iterator_range<arg_iterator> arg_range;
2712  typedef llvm::iterator_range<const_arg_iterator> const_arg_range;
2713 
2714  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2715  const_arg_range arguments() const {
2716  return const_arg_range(arg_begin(), arg_end());
2717  }
2718 
2719  arg_iterator arg_begin() {
2720  return getTrailingStmts() + PREARGS_START + getNumPreArgs();
2721  }
2722  arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
2723 
2724  const_arg_iterator arg_begin() const {
2725  return getTrailingStmts() + PREARGS_START + getNumPreArgs();
2726  }
2727  const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
2728 
2729  /// This method provides fast access to all the subexpressions of
2730  /// a CallExpr without going through the slower virtual child_iterator
2731  /// interface. This provides efficient reverse iteration of the
2732  /// subexpressions. This is currently used for CFG construction.
2734  return llvm::makeArrayRef(getTrailingStmts(),
2735  PREARGS_START + getNumPreArgs() + getNumArgs());
2736  }
2737 
2738  /// getNumCommas - Return the number of commas that must have been present in
2739  /// this function call.
2740  unsigned getNumCommas() const { return getNumArgs() ? getNumArgs() - 1 : 0; }
2741 
2742  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2743  /// of the callee. If not, return 0.
2744  unsigned getBuiltinCallee() const;
2745 
2746  /// Returns \c true if this is a call to a builtin which does not
2747  /// evaluate side-effects within its arguments.
2748  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2749 
2750  /// getCallReturnType - Get the return type of the call expr. This is not
2751  /// always the type of the expr itself, if the return type is a reference
2752  /// type.
2753  QualType getCallReturnType(const ASTContext &Ctx) const;
2754 
2755  /// Returns the WarnUnusedResultAttr that is either declared on the called
2756  /// function, or its return type declaration.
2757  const Attr *getUnusedResultAttr(const ASTContext &Ctx) const;
2758 
2759  /// Returns true if this call expression should warn on unused results.
2760  bool hasUnusedResultAttr(const ASTContext &Ctx) const {
2761  return getUnusedResultAttr(Ctx) != nullptr;
2762  }
2763 
2764  SourceLocation getRParenLoc() const { return RParenLoc; }
2765  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2766 
2767  SourceLocation getBeginLoc() const LLVM_READONLY;
2768  SourceLocation getEndLoc() const LLVM_READONLY;
2769 
2770  /// Return true if this is a call to __assume() or __builtin_assume() with
2771  /// a non-value-dependent constant parameter evaluating as false.
2772  bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
2773 
2774  bool isCallToStdMove() const {
2775  const FunctionDecl *FD = getDirectCallee();
2776  return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
2777  FD->getIdentifier() && FD->getIdentifier()->isStr("move");
2778  }
2779 
2780  static bool classof(const Stmt *T) {
2781  return T->getStmtClass() >= firstCallExprConstant &&
2782  T->getStmtClass() <= lastCallExprConstant;
2783  }
2784 
2785  // Iterators
2787  return child_range(getTrailingStmts(), getTrailingStmts() + PREARGS_START +
2788  getNumPreArgs() + getNumArgs());
2789  }
2790 
2792  return const_child_range(getTrailingStmts(),
2793  getTrailingStmts() + PREARGS_START +
2794  getNumPreArgs() + getNumArgs());
2795  }
2796 };
2797 
2798 /// Extra data stored in some MemberExpr objects.
2800  /// The nested-name-specifier that qualifies the name, including
2801  /// source-location information.
2803 
2804  /// The DeclAccessPair through which the MemberDecl was found due to
2805  /// name qualifiers.
2807 };
2808 
2809 /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
2810 ///
2811 class MemberExpr final
2812  : public Expr,
2813  private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2814  ASTTemplateKWAndArgsInfo,
2815  TemplateArgumentLoc> {
2816  friend class ASTReader;
2817  friend class ASTStmtReader;
2818  friend class ASTStmtWriter;
2819  friend TrailingObjects;
2820 
2821  /// Base - the expression for the base pointer or structure references. In
2822  /// X.F, this is "X".
2823  Stmt *Base;
2824 
2825  /// MemberDecl - This is the decl being referenced by the field/member name.
2826  /// In X.F, this is the decl referenced by F.
2827  ValueDecl *MemberDecl;
2828 
2829  /// MemberDNLoc - Provides source/type location info for the
2830  /// declaration name embedded in MemberDecl.
2831  DeclarationNameLoc MemberDNLoc;
2832 
2833  /// MemberLoc - This is the location of the member name.
2834  SourceLocation MemberLoc;
2835 
2836  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2837  return hasQualifierOrFoundDecl();
2838  }
2839 
2840  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2841  return hasTemplateKWAndArgsInfo();
2842  }
2843 
2844  bool hasQualifierOrFoundDecl() const {
2845  return MemberExprBits.HasQualifierOrFoundDecl;
2846  }
2847 
2848  bool hasTemplateKWAndArgsInfo() const {
2849  return MemberExprBits.HasTemplateKWAndArgsInfo;
2850  }
2851 
2852  MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
2853  ValueDecl *MemberDecl, const DeclarationNameInfo &NameInfo,
2855  NonOdrUseReason NOUR);
2856  MemberExpr(EmptyShell Empty)
2857  : Expr(MemberExprClass, Empty), Base(), MemberDecl() {}
2858 
2859 public:
2860  static MemberExpr *Create(const ASTContext &C, Expr *Base, bool IsArrow,
2861  SourceLocation OperatorLoc,
2862  NestedNameSpecifierLoc QualifierLoc,
2863  SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
2864  DeclAccessPair FoundDecl,
2865  DeclarationNameInfo MemberNameInfo,
2866  const TemplateArgumentListInfo *TemplateArgs,
2868  NonOdrUseReason NOUR);
2869 
2870  /// Create an implicit MemberExpr, with no location, qualifier, template
2871  /// arguments, and so on. Suitable only for non-static member access.
2872  static MemberExpr *CreateImplicit(const ASTContext &C, Expr *Base,
2873  bool IsArrow, ValueDecl *MemberDecl,
2874  QualType T, ExprValueKind VK,
2875  ExprObjectKind OK) {
2876  return Create(C, Base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(),
2877  SourceLocation(), MemberDecl,
2878  DeclAccessPair::make(MemberDecl, MemberDecl->getAccess()),
2879  DeclarationNameInfo(), nullptr, T, VK, OK, NOUR_None);
2880  }
2881 
2882  static MemberExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
2883  bool HasFoundDecl,
2884  bool HasTemplateKWAndArgsInfo,
2885  unsigned NumTemplateArgs);
2886 
2887  void setBase(Expr *E) { Base = E; }
2888  Expr *getBase() const { return cast<Expr>(Base); }
2889 
2890  /// Retrieve the member declaration to which this expression refers.
2891  ///
2892  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
2893  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
2894  ValueDecl *getMemberDecl() const { return MemberDecl; }
2895  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2896 
2897  /// Retrieves the declaration found by lookup.
2899  if (!hasQualifierOrFoundDecl())
2900  return DeclAccessPair::make(getMemberDecl(),
2901  getMemberDecl()->getAccess());
2902  return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2903  }
2904 
2905  /// Determines whether this member expression actually had
2906  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2907  /// x->Base::foo.
2908  bool hasQualifier() const { return getQualifier() != nullptr; }
2909 
2910  /// If the member name was qualified, retrieves the
2911  /// nested-name-specifier that precedes the member name, with source-location
2912  /// information.
2914  if (!hasQualifierOrFoundDecl())
2915  return NestedNameSpecifierLoc();
2916  return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2917  }
2918 
2919  /// If the member name was qualified, retrieves the
2920  /// nested-name-specifier that precedes the member name. Otherwise, returns
2921  /// NULL.
2923  return getQualifierLoc().getNestedNameSpecifier();
2924  }
2925 
2926  /// Retrieve the location of the template keyword preceding
2927  /// the member name, if any.
2929  if (!hasTemplateKWAndArgsInfo())
2930  return SourceLocation();
2931  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2932  }
2933 
2934  /// Retrieve the location of the left angle bracket starting the
2935  /// explicit template argument list following the member name, if any.
2937  if (!hasTemplateKWAndArgsInfo())
2938  return SourceLocation();
2939  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2940  }
2941 
2942  /// Retrieve the location of the right angle bracket ending the
2943  /// explicit template argument list following the member name, if any.
2945  if (!hasTemplateKWAndArgsInfo())
2946  return SourceLocation();
2947  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2948  }
2949 
2950  /// Determines whether the member name was preceded by the template keyword.
2951  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2952 
2953  /// Determines whether the member name was followed by an
2954  /// explicit template argument list.
2955  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2956 
2957  /// Copies the template arguments (if present) into the given
2958  /// structure.
2960  if (hasExplicitTemplateArgs())
2961  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2962  getTrailingObjects<TemplateArgumentLoc>(), List);
2963  }
2964 
2965  /// Retrieve the template arguments provided as part of this
2966  /// template-id.
2968  if (!hasExplicitTemplateArgs())
2969  return nullptr;
2970 
2971  return getTrailingObjects<TemplateArgumentLoc>();
2972  }
2973 
2974  /// Retrieve the number of template arguments provided as part of this
2975  /// template-id.
2976  unsigned getNumTemplateArgs() const {
2977  if (!hasExplicitTemplateArgs())
2978  return 0;
2979 
2980  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2981  }
2982 
2984  return {getTemplateArgs(), getNumTemplateArgs()};
2985  }
2986 
2987  /// Retrieve the member declaration name info.
2989  return DeclarationNameInfo(MemberDecl->getDeclName(),
2990  MemberLoc, MemberDNLoc);
2991  }
2992 
2993  SourceLocation getOperatorLoc() const { return MemberExprBits.OperatorLoc; }
2994 
2995  bool isArrow() const { return MemberExprBits.IsArrow; }
2996  void setArrow(bool A) { MemberExprBits.IsArrow = A; }
2997 
2998  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2999  /// location of 'F'.
3000  SourceLocation getMemberLoc() const { return MemberLoc; }
3001  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
3002 
3003  SourceLocation getBeginLoc() const LLVM_READONLY;
3004  SourceLocation getEndLoc() const LLVM_READONLY;
3005 
3006  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
3007 
3008  /// Determine whether the base of this explicit is implicit.
3009  bool isImplicitAccess() const {
3010  return getBase() && getBase()->isImplicitCXXThis();
3011  }
3012 
3013  /// Returns true if this member expression refers to a method that
3014  /// was resolved from an overloaded set having size greater than 1.
3015  bool hadMultipleCandidates() const {
3016  return MemberExprBits.HadMultipleCandidates;
3017  }
3018  /// Sets the flag telling whether this expression refers to
3019  /// a method that was resolved from an overloaded set having size
3020  /// greater than 1.
3021  void setHadMultipleCandidates(bool V = true) {
3022  MemberExprBits.HadMultipleCandidates = V;
3023  }
3024 
3025  /// Returns true if virtual dispatch is performed.
3026  /// If the member access is fully qualified, (i.e. X::f()), virtual
3027  /// dispatching is not performed. In -fapple-kext mode qualified
3028  /// calls to virtual method will still go through the vtable.
3029  bool performsVirtualDispatch(const LangOptions &LO) const {
3030  return LO.AppleKext || !hasQualifier();
3031  }
3032 
3033  /// Is this expression a non-odr-use reference, and if so, why?
3034  /// This is only meaningful if the named member is a static member.
3036  return static_cast<NonOdrUseReason>(MemberExprBits.NonOdrUseReason);
3037  }
3038 
3039  static bool classof(const Stmt *T) {
3040  return T->getStmtClass() == MemberExprClass;
3041  }
3042 
3043  // Iterators
3044  child_range children() { return child_range(&Base, &Base+1); }
3046  return const_child_range(&Base, &Base + 1);
3047  }
3048 };
3049 
3050 /// CompoundLiteralExpr - [C99 6.5.2.5]
3051 ///
3052 class CompoundLiteralExpr : public Expr {
3053  /// LParenLoc - If non-null, this is the location of the left paren in a
3054  /// compound literal like "(int){4}". This can be null if this is a
3055  /// synthesized compound expression.
3056  SourceLocation LParenLoc;
3057 
3058  /// The type as written. This can be an incomplete array type, in
3059  /// which case the actual expression type will be different.
3060  /// The int part of the pair stores whether this expr is file scope.
3061  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
3062  Stmt *Init;
3063 public:
3065  QualType T, ExprValueKind VK, Expr *init, bool fileScope)
3066  : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
3067  tinfo->getType()->isDependentType(),
3068  init->isValueDependent(),
3069  (init->isInstantiationDependent() ||
3070  tinfo->getType()->isInstantiationDependentType()),
3071  init->containsUnexpandedParameterPack()),
3072  LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
3073 
3074  /// Construct an empty compound literal.
3076  : Expr(CompoundLiteralExprClass, Empty) { }
3077 
3078  const Expr *getInitializer() const { return cast<Expr>(Init); }
3079  Expr *getInitializer() { return cast<Expr>(Init); }
3080  void setInitializer(Expr *E) { Init = E; }
3081 
3082  bool isFileScope() const { return TInfoAndScope.getInt(); }
3083  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
3084 
3085  SourceLocation getLParenLoc() const { return LParenLoc; }
3086  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3087 
3089  return TInfoAndScope.getPointer();
3090  }
3092  TInfoAndScope.setPointer(tinfo);
3093  }
3094 
3095  SourceLocation getBeginLoc() const LLVM_READONLY {
3096  // FIXME: Init should never be null.
3097  if (!Init)
3098  return SourceLocation();
3099  if (LParenLoc.isInvalid())
3100  return Init->getBeginLoc();
3101  return LParenLoc;
3102  }
3103  SourceLocation getEndLoc() const LLVM_READONLY {
3104  // FIXME: Init should never be null.
3105  if (!Init)
3106  return SourceLocation();
3107  return Init->getEndLoc();
3108  }
3109 
3110  static bool classof(const Stmt *T) {
3111  return T->getStmtClass() == CompoundLiteralExprClass;
3112  }
3113 
3114  // Iterators
3115  child_range children() { return child_range(&Init, &Init+1); }
3117  return const_child_range(&Init, &Init + 1);
3118  }
3119 };
3120 
3121 /// CastExpr - Base class for type casts, including both implicit
3122 /// casts (ImplicitCastExpr) and explicit casts that have some
3123 /// representation in the source code (ExplicitCastExpr's derived
3124 /// classes).
3125 class CastExpr : public Expr {
3126  Stmt *Op;
3127 
3128  bool CastConsistency() const;
3129 
3130  const CXXBaseSpecifier * const *path_buffer() const {
3131  return const_cast<CastExpr*>(this)->path_buffer();
3132  }
3133  CXXBaseSpecifier **path_buffer();
3134 
3135 protected:
3137  Expr *op, unsigned BasePathSize)
3138  : Expr(SC, ty, VK, OK_Ordinary,
3139  // Cast expressions are type-dependent if the type is
3140  // dependent (C++ [temp.dep.expr]p3).
3141  ty->isDependentType(),
3142  // Cast expressions are value-dependent if the type is
3143  // dependent or if the subexpression is value-dependent.
3144  ty->isDependentType() || (op && op->isValueDependent()),
3145  (ty->isInstantiationDependentType() ||
3146  (op && op->isInstantiationDependent())),
3147  // An implicit cast expression doesn't (lexically) contain an
3148  // unexpanded pack, even if its target type does.
3149  ((SC != ImplicitCastExprClass &&
3150  ty->containsUnexpandedParameterPack()) ||
3151  (op && op->containsUnexpandedParameterPack()))),
3152  Op(op) {
3153  CastExprBits.Kind = kind;
3154  CastExprBits.PartOfExplicitCast = false;
3155  CastExprBits.BasePathSize = BasePathSize;
3156  assert((CastExprBits.BasePathSize == BasePathSize) &&
3157  "BasePathSize overflow!");
3158  assert(CastConsistency());
3159  }
3160 
3161  /// Construct an empty cast.
3162  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
3163  : Expr(SC, Empty) {
3164  CastExprBits.PartOfExplicitCast = false;
3165  CastExprBits.BasePathSize = BasePathSize;
3166  assert((CastExprBits.BasePathSize == BasePathSize) &&
3167  "BasePathSize overflow!");
3168  }
3169 
3170 public:
3171  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
3172  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
3173 
3174  static const char *getCastKindName(CastKind CK);
3175  const char *getCastKindName() const { return getCastKindName(getCastKind()); }
3176 
3177  Expr *getSubExpr() { return cast<Expr>(Op); }
3178  const Expr *getSubExpr() const { return cast<Expr>(Op); }
3179  void setSubExpr(Expr *E) { Op = E; }
3180 
3181  /// Retrieve the cast subexpression as it was written in the source
3182  /// code, looking through any implicit casts or other intermediate nodes
3183  /// introduced by semantic analysis.
3184  Expr *getSubExprAsWritten();
3185  const Expr *getSubExprAsWritten() const {
3186  return const_cast<CastExpr *>(this)->getSubExprAsWritten();
3187  }
3188 
3189  /// If this cast applies a user-defined conversion, retrieve the conversion
3190  /// function that it invokes.
3191  NamedDecl *getConversionFunction() const;
3192 
3194  typedef const CXXBaseSpecifier *const *path_const_iterator;
3195  bool path_empty() const { return path_size() == 0; }
3196  unsigned path_size() const { return CastExprBits.BasePathSize; }
3197  path_iterator path_begin() { return path_buffer(); }
3198  path_iterator path_end() { return path_buffer() + path_size(); }
3199  path_const_iterator path_begin() const { return path_buffer(); }
3200  path_const_iterator path_end() const { return path_buffer() + path_size(); }
3201 
3202  llvm::iterator_range<path_iterator> path() {
3203  return llvm::make_range(path_begin(), path_end());
3204  }
3205  llvm::iterator_range<path_const_iterator> path() const {
3206  return llvm::make_range(path_begin(), path_end());
3207  }
3208 
3210  assert(getCastKind() == CK_ToUnion);
3211  return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
3212  }
3213 
3214  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
3215  QualType opType);
3216  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
3217  QualType opType);
3218 
3219  static bool classof(const Stmt *T) {
3220  return T->getStmtClass() >= firstCastExprConstant &&
3221  T->getStmtClass() <= lastCastExprConstant;
3222  }
3223 
3224  // Iterators
3225  child_range children() { return child_range(&Op, &Op+1); }
3226  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
3227 };
3228 
3229 /// ImplicitCastExpr - Allows us to explicitly represent implicit type
3230 /// conversions, which have no direct representation in the original
3231 /// source code. For example: converting T[]->T*, void f()->void
3232 /// (*f)(), float->double, short->int, etc.
3233 ///
3234 /// In C, implicit casts always produce rvalues. However, in C++, an
3235 /// implicit cast whose result is being bound to a reference will be
3236 /// an lvalue or xvalue. For example:
3237 ///
3238 /// @code
3239 /// class Base { };
3240 /// class Derived : public Base { };
3241 /// Derived &&ref();
3242 /// void f(Derived d) {
3243 /// Base& b = d; // initializer is an ImplicitCastExpr
3244 /// // to an lvalue of type Base
3245 /// Base&& r = ref(); // initializer is an ImplicitCastExpr
3246 /// // to an xvalue of type Base
3247 /// }
3248 /// @endcode
3249 class ImplicitCastExpr final
3250  : public CastExpr,
3251  private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
3252 
3254  unsigned BasePathLength, ExprValueKind VK)
3255  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) { }
3256 
3257  /// Construct an empty implicit cast.
3258  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
3259  : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
3260 
3261 public:
3262  enum OnStack_t { OnStack };
3264  ExprValueKind VK)
3265  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
3266  }
3267 
3268  bool isPartOfExplicitCast() const { return CastExprBits.PartOfExplicitCast; }
3269  void setIsPartOfExplicitCast(bool PartOfExplicitCast) {
3270  CastExprBits.PartOfExplicitCast = PartOfExplicitCast;
3271  }
3272 
3273  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
3274  CastKind Kind, Expr *Operand,
3275  const CXXCastPath *BasePath,
3276  ExprValueKind Cat);
3277 
3278  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
3279  unsigned PathSize);
3280 
3281  SourceLocation getBeginLoc() const LLVM_READONLY {
3282  return getSubExpr()->getBeginLoc();
3283  }
3284  SourceLocation getEndLoc() const LLVM_READONLY {
3285  return getSubExpr()->getEndLoc();
3286  }
3287 
3288  static bool classof(const Stmt *T) {
3289  return T->getStmtClass() == ImplicitCastExprClass;
3290  }
3291 
3293  friend class CastExpr;
3294 };
3295 
3296 /// ExplicitCastExpr - An explicit cast written in the source
3297 /// code.
3298 ///
3299 /// This class is effectively an abstract class, because it provides
3300 /// the basic representation of an explicitly-written cast without
3301 /// specifying which kind of cast (C cast, functional cast, static
3302 /// cast, etc.) was written; specific derived classes represent the
3303 /// particular style of cast and its location information.
3304 ///
3305 /// Unlike implicit casts, explicit cast nodes have two different
3306 /// types: the type that was written into the source code, and the
3307 /// actual type of the expression as determined by semantic
3308 /// analysis. These types may differ slightly. For example, in C++ one
3309 /// can cast to a reference type, which indicates that the resulting
3310 /// expression will be an lvalue or xvalue. The reference type, however,
3311 /// will not be used as the type of the expression.
3312 class ExplicitCastExpr : public CastExpr {
3313  /// TInfo - Source type info for the (written) type
3314  /// this expression is casting to.
3315  TypeSourceInfo *TInfo;
3316 
3317 protected:
3319  CastKind kind, Expr *op, unsigned PathSize,
3320  TypeSourceInfo *writtenTy)
3321  : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
3322 
3323  /// Construct an empty explicit cast.
3324  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
3325  : CastExpr(SC, Shell, PathSize) { }
3326 
3327 public:
3328  /// getTypeInfoAsWritten - Returns the type source info for the type
3329  /// that this expression is casting to.
3330  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
3331  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
3332 
3333  /// getTypeAsWritten - Returns the type that this expression is
3334  /// casting to, as written in the source code.
3335  QualType getTypeAsWritten() const { return TInfo->getType(); }
3336 
3337  static bool classof(const Stmt *T) {
3338  return T->getStmtClass() >= firstExplicitCastExprConstant &&
3339  T->getStmtClass() <= lastExplicitCastExprConstant;
3340  }
3341 };
3342 
3343 /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
3344 /// cast in C++ (C++ [expr.cast]), which uses the syntax
3345 /// (Type)expr. For example: @c (int)f.
3346 class CStyleCastExpr final
3347  : public ExplicitCastExpr,
3348  private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
3349  SourceLocation LPLoc; // the location of the left paren
3350  SourceLocation RPLoc; // the location of the right paren
3351 
3353  unsigned PathSize, TypeSourceInfo *writtenTy,
3355  : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
3356  writtenTy), LPLoc(l), RPLoc(r) {}
3357 
3358  /// Construct an empty C-style explicit cast.
3359  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
3360  : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
3361 
3362 public:
3363  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
3364  ExprValueKind VK, CastKind K,
3365  Expr *Op, const CXXCastPath *BasePath,
3366  TypeSourceInfo *WrittenTy, SourceLocation L,
3367  SourceLocation R);
3368 
3369  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
3370  unsigned PathSize);
3371 
3372  SourceLocation getLParenLoc() const { return LPLoc; }
3373  void setLParenLoc(SourceLocation L) { LPLoc = L; }
3374 
3375  SourceLocation getRParenLoc() const { return RPLoc; }
3376  void setRParenLoc(SourceLocation L) { RPLoc = L; }
3377 
3378  SourceLocation getBeginLoc() const LLVM_READONLY { return LPLoc; }
3379  SourceLocation getEndLoc() const LLVM_READONLY {
3380  return getSubExpr()->getEndLoc();
3381  }
3382 
3383  static bool classof(const Stmt *T) {
3384  return T->getStmtClass() == CStyleCastExprClass;
3385  }
3386 
3388  friend class CastExpr;
3389 };
3390 
3391 /// A builtin binary operation expression such as "x + y" or "x <= y".
3392 ///
3393 /// This expression node kind describes a builtin binary operation,
3394 /// such as "x + y" for integer values "x" and "y". The operands will
3395 /// already have been converted to appropriate types (e.g., by
3396 /// performing promotions or conversions).
3397 ///
3398 /// In C++, where operators may be overloaded, a different kind of
3399 /// expression node (CXXOperatorCallExpr) is used to express the
3400 /// invocation of an overloaded operator with operator syntax. Within
3401 /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
3402 /// used to store an expression "x + y" depends on the subexpressions
3403 /// for x and y. If neither x or y is type-dependent, and the "+"
3404 /// operator resolves to a built-in operation, BinaryOperator will be
3405 /// used to express the computation (x and y may still be
3406 /// value-dependent). If either x or y is type-dependent, or if the
3407 /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
3408 /// be used to express the computation.
3409 class BinaryOperator : public Expr {
3410  enum { LHS, RHS, END_EXPR };
3411  Stmt *SubExprs[END_EXPR];
3412 
3413 public:
3415 
3416  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3418  SourceLocation opLoc, FPOptions FPFeatures)
3419  : Expr(BinaryOperatorClass, ResTy, VK, OK,
3420  lhs->isTypeDependent() || rhs->isTypeDependent(),
3421  lhs->isValueDependent() || rhs->isValueDependent(),
3422  (lhs->isInstantiationDependent() ||
3423  rhs->isInstantiationDependent()),
3424  (lhs->containsUnexpandedParameterPack() ||
3425  rhs->containsUnexpandedParameterPack())) {
3426  BinaryOperatorBits.Opc = opc;
3427  BinaryOperatorBits.FPFeatures = FPFeatures.getInt();
3428  BinaryOperatorBits.OpLoc = opLoc;
3429  SubExprs[LHS] = lhs;
3430  SubExprs[RHS] = rhs;
3431  assert(!isCompoundAssignmentOp() &&
3432  "Use CompoundAssignOperator for compound assignments");
3433  }
3434 
3435  /// Construct an empty binary operator.
3436  explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty) {
3437  BinaryOperatorBits.Opc = BO_Comma;
3438  }
3439 
3440  SourceLocation getExprLoc() const { return getOperatorLoc(); }
3441  SourceLocation getOperatorLoc() const { return BinaryOperatorBits.OpLoc; }
3442  void setOperatorLoc(SourceLocation L) { BinaryOperatorBits.OpLoc = L; }
3443 
3444  Opcode getOpcode() const {
3445  return static_cast<Opcode>(BinaryOperatorBits.Opc);
3446  }
3447  void setOpcode(Opcode Opc) { BinaryOperatorBits.Opc = Opc; }
3448 
3449  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3450  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3451  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3452  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3453 
3454  SourceLocation getBeginLoc() const LLVM_READONLY {
3455  return getLHS()->getBeginLoc();
3456  }
3457  SourceLocation getEndLoc() const LLVM_READONLY {
3458  return getRHS()->getEndLoc();
3459  }
3460 
3461  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3462  /// corresponds to, e.g. "<<=".
3463  static StringRef getOpcodeStr(Opcode Op);
3464 
3465  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3466 
3467  /// Retrieve the binary opcode that corresponds to the given
3468  /// overloaded operator.
3469  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3470 
3471  /// Retrieve the overloaded operator kind that corresponds to
3472  /// the given binary opcode.
3473  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3474 
3475  /// predicates to categorize the respective opcodes.
3476  static bool isPtrMemOp(Opcode Opc) {
3477  return Opc == BO_PtrMemD || Opc == BO_PtrMemI;
3478  }
3479  bool isPtrMemOp() const { return isPtrMemOp(getOpcode()); }
3480 
3481  static bool isMultiplicativeOp(Opcode Opc) {
3482  return Opc >= BO_Mul && Opc <= BO_Rem;
3483  }
3484  bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
3485  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3486  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3487  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3488  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3489 
3490  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3491  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3492 
3493  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3494  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3495 
3496  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3497  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3498 
3499  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
3500  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3501 
3502  static bool isCommaOp(Opcode Opc) { return Opc == BO_Comma; }
3503  bool isCommaOp() const { return isCommaOp(getOpcode()); }
3504 
3505  static Opcode negateComparisonOp(Opcode Opc) {
3506  switch (Opc) {
3507  default:
3508  llvm_unreachable("Not a comparison operator.");
3509  case BO_LT: return BO_GE;
3510  case BO_GT: return BO_LE;
3511  case BO_LE: return BO_GT;
3512  case BO_GE: return BO_LT;
3513  case BO_EQ: return BO_NE;
3514  case BO_NE: return BO_EQ;
3515  }
3516  }
3517 
3518  static Opcode reverseComparisonOp(Opcode Opc) {
3519  switch (Opc) {
3520  default:
3521  llvm_unreachable("Not a comparison operator.");
3522  case BO_LT: return BO_GT;
3523  case BO_GT: return BO_LT;
3524  case BO_LE: return BO_GE;
3525  case BO_GE: return BO_LE;
3526  case BO_EQ:
3527  case BO_NE:
3528  return Opc;
3529  }
3530  }
3531 
3532  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3533  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3534 
3535  static bool isAssignmentOp(Opcode Opc) {
3536  return Opc >= BO_Assign && Opc <= BO_OrAssign;
3537  }
3538  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3539 
3540  static bool isCompoundAssignmentOp(Opcode Opc) {
3541  return Opc > BO_Assign && Opc <= BO_OrAssign;
3542  }
3543  bool isCompoundAssignmentOp() const {
3544  return isCompoundAssignmentOp(getOpcode());
3545  }
3546  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3547  assert(isCompoundAssignmentOp(Opc));
3548  if (Opc >= BO_AndAssign)
3549  return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3550  else
3551  return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3552  }
3553 
3554  static bool isShiftAssignOp(Opcode Opc) {
3555  return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3556  }
3557  bool isShiftAssignOp() const {
3558  return isShiftAssignOp(getOpcode());
3559  }
3560 
3561  // Return true if a binary operator using the specified opcode and operands
3562  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
3563  // integer to a pointer.
3564  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
3565  Expr *LHS, Expr *RHS);
3566 
3567  static bool classof(const Stmt *S) {
3568  return S->getStmtClass() >= firstBinaryOperatorConstant &&
3569  S->getStmtClass() <= lastBinaryOperatorConstant;
3570  }
3571 
3572  // Iterators
3574  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3575  }
3577  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3578  }
3579 
3580  // Set the FP contractability status of this operator. Only meaningful for
3581  // operations on floating point types.
3583  BinaryOperatorBits.FPFeatures = F.getInt();
3584  }
3585 
3587  return FPOptions(BinaryOperatorBits.FPFeatures);
3588  }
3589 
3590  // Get the FP contractability status of this operator. Only meaningful for
3591  // operations on floating point types.
3593  return getFPFeatures().allowFPContractWithinStatement();
3594  }
3595 
3596  // Get the FENV_ACCESS status of this operator. Only meaningful for
3597  // operations on floating point types.
3598  bool isFEnvAccessOn() const { return getFPFeatures().allowFEnvAccess(); }
3599 
3600 protected:
3601  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3603  SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
3604  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3605  lhs->isTypeDependent() || rhs->isTypeDependent(),
3606  lhs->isValueDependent() || rhs->isValueDependent(),
3607  (lhs->isInstantiationDependent() ||
3608  rhs->isInstantiationDependent()),
3609  (lhs->containsUnexpandedParameterPack() ||
3610  rhs->containsUnexpandedParameterPack())) {
3611  BinaryOperatorBits.Opc = opc;
3612  BinaryOperatorBits.FPFeatures = FPFeatures.getInt();
3613  BinaryOperatorBits.OpLoc = opLoc;
3614  SubExprs[LHS] = lhs;
3615  SubExprs[RHS] = rhs;
3616  }
3617 
3618  BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
3619  BinaryOperatorBits.Opc = BO_MulAssign;
3620  }
3621 };
3622 
3623 /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3624 /// track of the type the operation is performed in. Due to the semantics of
3625 /// these operators, the operands are promoted, the arithmetic performed, an
3626 /// implicit conversion back to the result type done, then the assignment takes
3627 /// place. This captures the intermediate type which the computation is done
3628 /// in.
3630  QualType ComputationLHSType;
3631  QualType ComputationResultType;
3632 public:
3633  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3635  QualType CompLHSType, QualType CompResultType,
3636  SourceLocation OpLoc, FPOptions FPFeatures)
3637  : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
3638  true),
3639  ComputationLHSType(CompLHSType),
3640  ComputationResultType(CompResultType) {
3641  assert(isCompoundAssignmentOp() &&
3642  "Only should be used for compound assignments");
3643  }
3644 
3645  /// Build an empty compound assignment operator expression.
3647  : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3648 
3649  // The two computation types are the type the LHS is converted
3650  // to for the computation and the type of the result; the two are
3651  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3652  QualType getComputationLHSType() const { return ComputationLHSType; }
3653  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3654 
3655  QualType getComputationResultType() const { return ComputationResultType; }
3656  void setComputationResultType(QualType T) { ComputationResultType = T; }
3657 
3658  static bool classof(const Stmt *S) {
3659  return S->getStmtClass() == CompoundAssignOperatorClass;
3660  }
3661 };
3662 
3663 /// AbstractConditionalOperator - An abstract base class for
3664 /// ConditionalOperator and BinaryConditionalOperator.
3666  SourceLocation QuestionLoc, ColonLoc;
3667  friend class ASTStmtReader;
3668 
3669 protected:
3672  bool TD, bool VD, bool ID,
3673  bool ContainsUnexpandedParameterPack,
3674  SourceLocation qloc,
3675  SourceLocation cloc)
3676  : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3677  QuestionLoc(qloc), ColonLoc(cloc) {}
3678 
3680  : Expr(SC, Empty) { }
3681 
3682 public:
3683  // getCond - Return the expression representing the condition for
3684  // the ?: operator.
3685  Expr *getCond() const;
3686 
3687  // getTrueExpr - Return the subexpression representing the value of
3688  // the expression if the condition evaluates to true.
3689  Expr *getTrueExpr() const;
3690 
3691  // getFalseExpr - Return the subexpression representing the value of
3692  // the expression if the condition evaluates to false. This is
3693  // the same as getRHS.
3694  Expr *getFalseExpr() const;
3695 
3696  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3698 
3699  static bool classof(const Stmt *T) {
3700  return T->getStmtClass() == ConditionalOperatorClass ||
3701  T->getStmtClass() == BinaryConditionalOperatorClass;
3702  }
3703 };
3704 
3705 /// ConditionalOperator - The ?: ternary operator. The GNU "missing
3706 /// middle" extension is a BinaryConditionalOperator.
3708  enum { COND, LHS, RHS, END_EXPR };
3709  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3710 
3711  friend class ASTStmtReader;
3712 public:
3714  SourceLocation CLoc, Expr *rhs,
3716  : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3717  // FIXME: the type of the conditional operator doesn't
3718  // depend on the type of the conditional, but the standard
3719  // seems to imply that it could. File a bug!
3720  (lhs->isTypeDependent() || rhs->isTypeDependent()),
3721  (cond->isValueDependent() || lhs->isValueDependent() ||
3722  rhs->isValueDependent()),
3723  (cond->isInstantiationDependent() ||
3724  lhs->isInstantiationDependent() ||
3725  rhs->isInstantiationDependent()),
3726  (cond->containsUnexpandedParameterPack() ||
3727  lhs->containsUnexpandedParameterPack() ||
3728  rhs->containsUnexpandedParameterPack()),
3729  QLoc, CLoc) {
3730  SubExprs[COND] = cond;
3731  SubExprs[LHS] = lhs;
3732  SubExprs[RHS] = rhs;
3733  }
3734 
3735  /// Build an empty conditional operator.
3737  : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3738 
3739  // getCond - Return the expression representing the condition for
3740  // the ?: operator.
3741  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3742 
3743  // getTrueExpr - Return the subexpression representing the value of
3744  // the expression if the condition evaluates to true.
3745  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3746 
3747  // getFalseExpr - Return the subexpression representing the value of
3748  // the expression if the condition evaluates to false. This is
3749  // the same as getRHS.
3750  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3751 
3752  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3753  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3754 
3755  SourceLocation getBeginLoc() const LLVM_READONLY {
3756  return getCond()->getBeginLoc();
3757  }
3758  SourceLocation getEndLoc() const LLVM_READONLY {
3759  return getRHS()->getEndLoc();
3760  }
3761 
3762  static bool classof(const Stmt *T) {
3763  return T->getStmtClass() == ConditionalOperatorClass;
3764  }
3765 
3766  // Iterators
3768  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3769  }
3771  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3772  }
3773 };
3774 
3775 /// BinaryConditionalOperator - The GNU extension to the conditional
3776 /// operator which allows the middle operand to be omitted.
3777 ///
3778 /// This is a different expression kind on the assumption that almost
3779 /// every client ends up needing to know that these are different.
3781  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3782 
3783  /// - the common condition/left-hand-side expression, which will be
3784  /// evaluated as the opaque value
3785  /// - the condition, expressed in terms of the opaque value
3786  /// - the left-hand-side, expressed in terms of the opaque value
3787  /// - the right-hand-side
3788  Stmt *SubExprs[NUM_SUBEXPRS];
3789  OpaqueValueExpr *OpaqueValue;
3790 
3791  friend class ASTStmtReader;
3792 public:
3794  Expr *cond, Expr *lhs, Expr *rhs,
3795  SourceLocation qloc, SourceLocation cloc,
3797  : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3798  (common->isTypeDependent() || rhs->isTypeDependent()),
3799  (common->isValueDependent() || rhs->isValueDependent()),
3800  (common->isInstantiationDependent() ||
3801  rhs->isInstantiationDependent()),
3802  (common->containsUnexpandedParameterPack() ||
3803  rhs->containsUnexpandedParameterPack()),
3804  qloc, cloc),
3805  OpaqueValue(opaqueValue) {
3806  SubExprs[COMMON] = common;
3807  SubExprs[COND] = cond;
3808  SubExprs[LHS] = lhs;
3809  SubExprs[RHS] = rhs;
3810  assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3811  }
3812 
3813  /// Build an empty conditional operator.
3815  : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3816 
3817  /// getCommon - Return the common expression, written to the
3818  /// left of the condition. The opaque value will be bound to the
3819  /// result of this expression.
3820  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3821 
3822  /// getOpaqueValue - Return the opaque value placeholder.
3823  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3824 
3825  /// getCond - Return the condition expression; this is defined
3826  /// in terms of the opaque value.
3827  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3828 
3829  /// getTrueExpr - Return the subexpression which will be
3830  /// evaluated if the condition evaluates to true; this is defined
3831  /// in terms of the opaque value.
3832  Expr *getTrueExpr() const {
3833  return cast<Expr>(SubExprs[LHS]);
3834  }
3835 
3836  /// getFalseExpr - Return the subexpression which will be
3837  /// evaluated if the condnition evaluates to false; this is
3838  /// defined in terms of the opaque value.
3839  Expr *getFalseExpr() const {
3840  return cast<Expr>(SubExprs[RHS]);
3841  }
3842 
3843  SourceLocation getBeginLoc() const LLVM_READONLY {
3844  return getCommon()->getBeginLoc();
3845  }
3846  SourceLocation getEndLoc() const LLVM_READONLY {
3847  return getFalseExpr()->getEndLoc();
3848  }
3849 
3850  static bool classof(const Stmt *T) {
3851  return T->getStmtClass() == BinaryConditionalOperatorClass;
3852  }
3853 
3854  // Iterators
3856  return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3857  }
3859  return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3860  }
3861 };
3862 
3864  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3865  return co->getCond();
3866  return cast<BinaryConditionalOperator>(this)->getCond();
3867 }
3868 
3870  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3871  return co->getTrueExpr();
3872  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3873 }
3874 
3876  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3877  return co->getFalseExpr();
3878  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3879 }
3880 
3881 /// AddrLabelExpr - The GNU address of label extension, representing &&label.
3882 class AddrLabelExpr : public Expr {
3883  SourceLocation AmpAmpLoc, LabelLoc;
3884  LabelDecl *Label;
3885 public:
3887  QualType t)
3888  : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3889  false),
3890  AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3891 
3892  /// Build an empty address of a label expression.
3893  explicit AddrLabelExpr(EmptyShell Empty)
3894  : Expr(AddrLabelExprClass, Empty) { }
3895 
3896  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3897  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3898  SourceLocation getLabelLoc() const { return LabelLoc; }
3899  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3900 
3901  SourceLocation getBeginLoc() const LLVM_READONLY { return AmpAmpLoc; }
3902  SourceLocation getEndLoc() const LLVM_READONLY { return LabelLoc; }
3903 
3904  LabelDecl *getLabel() const { return Label; }
3905  void setLabel(LabelDecl *L) { Label = L; }
3906 
3907  static bool classof(const Stmt *T) {
3908  return T->getStmtClass() == AddrLabelExprClass;
3909  }
3910 
3911  // Iterators
3914  }
3917  }
3918 };
3919 
3920 /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3921 /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3922 /// takes the value of the last subexpression.
3923 ///
3924 /// A StmtExpr is always an r-value; values "returned" out of a
3925 /// StmtExpr will be copied.
3926 class StmtExpr : public Expr {
3927  Stmt *SubStmt;
3928  SourceLocation LParenLoc, RParenLoc;
3929 public:
3930  // FIXME: Does type-dependence need to be computed differently?
3931  // FIXME: Do we need to compute instantiation instantiation-dependence for
3932  // statements? (ugh!)
3934  SourceLocation lp, SourceLocation rp) :
3935  Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3936  T->isDependentType(), false, false, false),
3937  SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3938 
3939  /// Build an empty statement expression.
3940  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3941 
3942  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3943  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3944  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3945 
3946  SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
3947  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
3948 
3949  SourceLocation getLParenLoc() const { return LParenLoc; }
3950  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3951  SourceLocation getRParenLoc() const { return RParenLoc; }
3952  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3953 
3954  static bool classof(const Stmt *T) {
3955  return T->getStmtClass() == StmtExprClass;
3956  }
3957 
3958  // Iterators
3959  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3961  return const_child_range(&SubStmt, &SubStmt + 1);
3962  }
3963 };
3964 
3965 /// ShuffleVectorExpr - clang-specific builtin-in function
3966 /// __builtin_shufflevector.
3967 /// This AST node represents a operator that does a constant
3968 /// shuffle, similar to LLVM's shufflevector instruction. It takes
3969 /// two vectors and a variable number of constant indices,
3970 /// and returns the appropriately shuffled vector.
3971 class ShuffleVectorExpr : public Expr {
3972  SourceLocation BuiltinLoc, RParenLoc;
3973 
3974  // SubExprs - the list of values passed to the __builtin_shufflevector
3975  // function. The first two are vectors, and the rest are constant
3976  // indices. The number of values in this list is always
3977  // 2+the number of indices in the vector type.
3978  Stmt **SubExprs;
3979  unsigned NumExprs;
3980 
3981 public:
3983  SourceLocation BLoc, SourceLocation RP);
3984 
3985  /// Build an empty vector-shuffle expression.
3987  : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3988 
3989  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3990  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3991 
3992  SourceLocation getRParenLoc() const { return RParenLoc; }
3993  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3994 
3995  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
3996  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
3997 
3998  static bool classof(const Stmt *T) {
3999  return T->getStmtClass() == ShuffleVectorExprClass;
4000  }
4001 
4002  /// getNumSubExprs - Return the size of the SubExprs array. This includes the
4003  /// constant expression, the actual arguments passed in, and the function
4004  /// pointers.
4005  unsigned getNumSubExprs() const { return NumExprs; }
4006 
4007  /// Retrieve the array of expressions.
4008  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4009 
4010  /// getExpr - Return the Expr at the specified index.
4011  Expr *getExpr(unsigned Index) {
4012  assert((Index < NumExprs) && "Arg access out of range!");
4013  return cast<Expr>(SubExprs[Index]);
4014  }
4015  const Expr *getExpr(unsigned Index) const {
4016  assert((Index < NumExprs) && "Arg access out of range!");
4017  return cast<Expr>(SubExprs[Index]);
4018  }
4019 
4020  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
4021 
4022  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
4023  assert((N < NumExprs - 2) && "Shuffle idx out of range!");
4024  return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
4025  }
4026 
4027  // Iterators
4029  return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
4030  }
4032  return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
4033  }
4034 };
4035 
4036 /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
4037 /// This AST node provides support for converting a vector type to another
4038 /// vector type of the same arity.
4039 class ConvertVectorExpr : public Expr {
4040 private:
4041  Stmt *SrcExpr;
4042  TypeSourceInfo *TInfo;
4043  SourceLocation BuiltinLoc, RParenLoc;
4044 
4045  friend class ASTReader;
4046  friend class ASTStmtReader;
4047  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
4048 
4049 public:
4052  SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4053  : Expr(ConvertVectorExprClass, DstType, VK, OK,
4054  DstType->isDependentType(),
4055  DstType->isDependentType() || SrcExpr->isValueDependent(),
4056  (DstType->isInstantiationDependentType() ||
4057  SrcExpr->isInstantiationDependent()),
4058  (DstType->containsUnexpandedParameterPack() ||
4059  SrcExpr->containsUnexpandedParameterPack())),
4060  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4061 
4062  /// getSrcExpr - Return the Expr to be converted.
4063  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4064 
4065  /// getTypeSourceInfo - Return the destination type.
4067  return TInfo;
4068  }
4070  TInfo = ti;
4071  }
4072 
4073  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
4074  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4075 
4076  /// getRParenLoc - Return the location of final right parenthesis.
4077  SourceLocation getRParenLoc() const { return RParenLoc; }
4078 
4079  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
4080  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4081 
4082  static bool classof(const Stmt *T) {
4083  return T->getStmtClass() == ConvertVectorExprClass;
4084  }
4085 
4086  // Iterators
4087  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4089  return const_child_range(&SrcExpr, &SrcExpr + 1);
4090  }
4091 };
4092 
4093 /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
4094 /// This AST node is similar to the conditional operator (?:) in C, with
4095 /// the following exceptions:
4096 /// - the test expression must be a integer constant expression.
4097 /// - the expression returned acts like the chosen subexpression in every
4098 /// visible way: the type is the same as that of the chosen subexpression,
4099 /// and all predicates (whether it's an l-value, whether it's an integer
4100 /// constant expression, etc.) return the same result as for the chosen
4101 /// sub-expression.
4102 class ChooseExpr : public Expr {
4103  enum { COND, LHS, RHS, END_EXPR };
4104  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
4105  SourceLocation BuiltinLoc, RParenLoc;
4106  bool CondIsTrue;
4107 public:
4108  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
4110  SourceLocation RP, bool condIsTrue,
4111  bool TypeDependent, bool ValueDependent)
4112  : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
4113  (cond->isInstantiationDependent() ||
4114  lhs->isInstantiationDependent() ||
4115  rhs->isInstantiationDependent()),
4116  (cond->containsUnexpandedParameterPack() ||
4117  lhs->containsUnexpandedParameterPack() ||
4118  rhs->containsUnexpandedParameterPack())),
4119  BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
4120  SubExprs[COND] = cond;
4121  SubExprs[LHS] = lhs;
4122  SubExprs[RHS] = rhs;
4123  }
4124 
4125  /// Build an empty __builtin_choose_expr.
4126  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
4127 
4128  /// isConditionTrue - Return whether the condition is true (i.e. not
4129  /// equal to zero).
4130  bool isConditionTrue() const {
4131  assert(!isConditionDependent() &&
4132  "Dependent condition isn't true or false");
4133  return CondIsTrue;
4134  }
4135  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
4136 
4137  bool isConditionDependent() const {
4138  return getCond()->isTypeDependent() || getCond()->isValueDependent();
4139  }
4140 
4141  /// getChosenSubExpr - Return the subexpression chosen according to the
4142  /// condition.
4144  return isConditionTrue() ? getLHS() : getRHS();
4145  }
4146 
4147  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
4148  void setCond(Expr *E) { SubExprs[COND] = E; }
4149  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
4150  void setLHS(Expr *E) { SubExprs[LHS] = E; }
4151  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
4152  void setRHS(Expr *E) { SubExprs[RHS] = E; }
4153 
4154  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4155  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4156 
4157  SourceLocation getRParenLoc() const { return RParenLoc; }
4158  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4159 
4160  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
4161  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4162 
4163  static bool classof(const Stmt *T) {
4164  return T->getStmtClass() == ChooseExprClass;
4165  }
4166 
4167  // Iterators
4169  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
4170  }
4172  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
4173  }
4174 };
4175 
4176 /// GNUNullExpr - Implements the GNU __null extension, which is a name
4177 /// for a null pointer constant that has integral type (e.g., int or
4178 /// long) and is the same size and alignment as a pointer. The __null
4179 /// extension is typically only used by system headers, which define
4180 /// NULL as __null in C++ rather than using 0 (which is an integer
4181 /// that may not match the size of a pointer).
4182 class GNUNullExpr : public Expr {
4183  /// TokenLoc - The location of the __null keyword.
4184  SourceLocation TokenLoc;
4185 
4186 public:
4188  : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
4189  false),
4190  TokenLoc(Loc) { }
4191 
4192  /// Build an empty GNU __null expression.
4193  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
4194 
4195  /// getTokenLocation - The location of the __null token.
4196  SourceLocation getTokenLocation() const { return TokenLoc; }
4197  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
4198 
4199  SourceLocation getBeginLoc() const LLVM_READONLY { return TokenLoc; }
4200  SourceLocation getEndLoc() const LLVM_READONLY { return TokenLoc; }
4201 
4202  static bool classof(const Stmt *T) {
4203  return T->getStmtClass() == GNUNullExprClass;
4204  }
4205 
4206  // Iterators
4209  }
4212  }
4213 };
4214 
4215 /// Represents a call to the builtin function \c __builtin_va_arg.
4216 class VAArgExpr : public Expr {
4217  Stmt *Val;
4218  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
4219  SourceLocation BuiltinLoc, RParenLoc;
4220 public:
4222  SourceLocation RPLoc, QualType t, bool IsMS)
4223  : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
4224  false, (TInfo->getType()->isInstantiationDependentType() ||
4225  e->isInstantiationDependent()),
4226  (TInfo->getType()->containsUnexpandedParameterPack() ||
4227  e->containsUnexpandedParameterPack())),
4228  Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
4229 
4230  /// Create an empty __builtin_va_arg expression.
4231  explicit VAArgExpr(EmptyShell Empty)
4232  : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
4233 
4234  const Expr *getSubExpr() const { return cast<Expr>(Val); }
4235  Expr *getSubExpr() { return cast<Expr>(Val); }
4236  void setSubExpr(Expr *E) { Val = E; }
4237 
4238  /// Returns whether this is really a Win64 ABI va_arg expression.
4239  bool isMicrosoftABI() const { return TInfo.getInt(); }
4240  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
4241 
4242  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
4243  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
4244 
4245  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4246  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4247 
4248  SourceLocation getRParenLoc() const { return RParenLoc; }
4249  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4250 
4251  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
4252  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4253 
4254  static bool classof(const Stmt *T) {
4255  return T->getStmtClass() == VAArgExprClass;
4256  }
4257 
4258  // Iterators
4259  child_range children() { return child_range(&Val, &Val+1); }
4261  return const_child_range(&Val, &Val + 1);
4262  }
4263 };
4264 
4265 /// Represents a function call to one of __builtin_LINE(), __builtin_COLUMN(),
4266 /// __builtin_FUNCTION(), or __builtin_FILE().
4267 class SourceLocExpr final : public Expr {
4268  SourceLocation BuiltinLoc, RParenLoc;
4269  DeclContext *ParentContext;
4270 
4271 public:
4272  enum IdentKind { Function, File, Line, Column };
4273 
4275  SourceLocation RParenLoc, DeclContext *Context);
4276 
4277  /// Build an empty call expression.
4278  explicit SourceLocExpr(EmptyShell Empty) : Expr(SourceLocExprClass, Empty) {}
4279 
4280  /// Return the result of evaluating this SourceLocExpr in the specified
4281  /// (and possibly null) default argument or initialization context.
4282  APValue EvaluateInContext(const ASTContext &Ctx,
4283  const Expr *DefaultExpr) const;
4284 
4285  /// Return a string representing the name of the specific builtin function.
4286  StringRef getBuiltinStr() const;
4287 
4289  return static_cast<IdentKind>(SourceLocExprBits.Kind);
4290  }
4291 
4292  bool isStringType() const {
4293  switch (getIdentKind()) {
4294  case File:
4295  case Function:
4296  return true;
4297  case Line:
4298  case Column:
4299  return false;
4300  }
4301  llvm_unreachable("unknown source location expression kind");
4302  }
4303  bool isIntType() const LLVM_READONLY { return !isStringType(); }
4304 
4305  /// If the SourceLocExpr has been resolved return the subexpression
4306  /// representing the resolved value. Otherwise return null.
4307  const DeclContext *getParentContext() const { return ParentContext; }
4308  DeclContext *getParentContext() { return ParentContext; }
4309 
4310  SourceLocation getLocation() const { return BuiltinLoc; }
4311  SourceLocation getBeginLoc() const { return BuiltinLoc; }
4312  SourceLocation getEndLoc() const { return RParenLoc; }
4313 
4316  }
4317 
4320  }
4321 
4322  static bool classof(const Stmt *T) {
4323  return T->getStmtClass() == SourceLocExprClass;
4324  }
4325 
4326 private:
4327  friend class ASTStmtReader;
4328 };
4329 
4330 /// Describes an C or C++ initializer list.
4331 ///
4332 /// InitListExpr describes an initializer list, which can be used to
4333 /// initialize objects of different types, including
4334 /// struct/class/union types, arrays, and vectors. For example:
4335 ///
4336 /// @code
4337 /// struct foo x = { 1, { 2, 3 } };
4338 /// @endcode
4339 ///
4340 /// Prior to semantic analysis, an initializer list will represent the
4341 /// initializer list as written by the user, but will have the
4342 /// placeholder type "void". This initializer list is called the
4343 /// syntactic form of the initializer, and may contain C99 designated
4344 /// initializers (represented as DesignatedInitExprs), initializations
4345 /// of subobject members without explicit braces, and so on. Clients
4346 /// interested in the original syntax of the initializer list should
4347 /// use the syntactic form of the initializer list.
4348 ///
4349 /// After semantic analysis, the initializer list will represent the
4350 /// semantic form of the initializer, where the initializations of all
4351 /// subobjects are made explicit with nested InitListExpr nodes and
4352 /// C99 designators have been eliminated by placing the designated
4353 /// initializations into the subobject they initialize. Additionally,
4354 /// any "holes" in the initialization, where no initializer has been
4355 /// specified for a particular subobject, will be replaced with
4356 /// implicitly-generated ImplicitValueInitExpr expressions that
4357 /// value-initialize the subobjects. Note, however, that the
4358 /// initializer lists may still have fewer initializers than there are
4359 /// elements to initialize within the object.
4360 ///
4361 /// After semantic analysis has completed, given an initializer list,
4362 /// method isSemanticForm() returns true if and only if this is the
4363 /// semantic form of the initializer list (note: the same AST node
4364 /// may at the same time be the syntactic form).
4365 /// Given the semantic form of the initializer list, one can retrieve
4366 /// the syntactic form of that initializer list (when different)
4367 /// using method getSyntacticForm(); the method returns null if applied
4368 /// to a initializer list which is already in syntactic form.
4369 /// Similarly, given the syntactic form (i.e., an initializer list such
4370 /// that isSemanticForm() returns false), one can retrieve the semantic
4371 /// form using method getSemanticForm().
4372 /// Since many initializer lists have the same syntactic and semantic forms,
4373 /// getSyntacticForm() may return NULL, indicating that the current
4374 /// semantic initializer list also serves as its syntactic form.
4375 class InitListExpr : public Expr {
4376  // FIXME: Eliminate this vector in favor of ASTContext allocation
4378  InitExprsTy InitExprs;
4379  SourceLocation LBraceLoc, RBraceLoc;
4380 
4381  /// The alternative form of the initializer list (if it exists).
4382  /// The int part of the pair stores whether this initializer list is
4383  /// in semantic form. If not null, the pointer points to:
4384  /// - the syntactic form, if this is in semantic form;
4385  /// - the semantic form, if this is in syntactic form.
4386  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
4387 
4388  /// Either:
4389  /// If this initializer list initializes an array with more elements than
4390  /// there are initializers in the list, specifies an expression to be used
4391  /// for value initialization of the rest of the elements.
4392  /// Or
4393  /// If this initializer list initializes a union, specifies which
4394  /// field within the union will be initialized.
4395  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
4396 
4397 public:
4398  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
4399  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
4400 
4401  /// Build an empty initializer list.
4402  explicit InitListExpr(EmptyShell Empty)
4403  : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
4404 
4405  unsigned getNumInits() const { return InitExprs.size(); }
4406 
4407  /// Retrieve the set of initializers.
4408  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
4409 
4410  /// Retrieve the set of initializers.
4411  Expr * const *getInits() const {
4412  return reinterpret_cast<Expr * const *>(InitExprs.data());
4413  }
4414 
4416  return llvm::makeArrayRef(getInits(), getNumInits());
4417  }
4418 
4420  return llvm::makeArrayRef(getInits(), getNumInits());
4421  }
4422 
4423  const Expr *getInit(unsigned Init) const {
4424  assert(Init < getNumInits() && "Initializer access out of range!");
4425  return cast_or_null<Expr>(InitExprs[Init]);
4426  }
4427 
4428  Expr *getInit(unsigned Init) {
4429  assert(Init < getNumInits() && "Initializer access out of range!");
4430  return cast_or_null<Expr>(InitExprs[Init]);
4431  }
4432 
4433  void setInit(unsigned Init, Expr *expr) {
4434  assert(Init < getNumInits() && "Initializer access out of range!");
4435  InitExprs[Init] = expr;
4436 
4437  if (expr) {
4438  ExprBits.TypeDependent |= expr->isTypeDependent();
4439  ExprBits.ValueDependent |= expr->isValueDependent();
4440  ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
4441  ExprBits.ContainsUnexpandedParameterPack |=
4443  }
4444  }
4445 
4446  /// Reserve space for some number of initializers.
4447  void reserveInits(const ASTContext &C, unsigned NumInits);
4448 
4449  /// Specify the number of initializers
4450  ///
4451  /// If there are more than @p NumInits initializers, the remaining
4452  /// initializers will be destroyed. If there are fewer than @p
4453  /// NumInits initializers, NULL expressions will be added for the
4454  /// unknown initializers.
4455  void resizeInits(const ASTContext &Context, unsigned NumInits);
4456 
4457  /// Updates the initializer at index @p Init with the new
4458  /// expression @p expr, and returns the old expression at that
4459  /// location.
4460  ///
4461  /// When @p Init is out of range for this initializer list, the
4462  /// initializer list will be extended with NULL expressions to
4463  /// accommodate the new entry.
4464  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
4465 
4466  /// If this initializer list initializes an array with more elements
4467  /// than there are initializers in the list, specifies an expression to be
4468  /// used for value initialization of the rest of the elements.
4470  return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
4471  }
4472  const Expr *getArrayFiller() const {
4473  return const_cast<InitListExpr *>(this)->getArrayFiller();
4474  }
4475  void setArrayFiller(Expr *filler);
4476 
4477  /// Return true if this is an array initializer and its array "filler"
4478  /// has been set.
4479  bool hasArrayFiller() const { return getArrayFiller(); }
4480 
4481  /// If this initializes a union, specifies which field in the
4482  /// union to initialize.
4483  ///
4484  /// Typically, this field is the first named field within the
4485  /// union. However, a designated initializer can specify the
4486  /// initialization of a different field within the union.
4488  return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
4489  }
4491  return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
4492  }
4494  assert((FD == nullptr
4495  || getInitializedFieldInUnion() == nullptr
4496  || getInitializedFieldInUnion() == FD)
4497  && "Only one field of a union may be initialized at a time!");
4498  ArrayFillerOrUnionFieldInit = FD;
4499  }
4500 
4501  // Explicit InitListExpr's originate from source code (and have valid source
4502  // locations). Implicit InitListExpr's are created by the semantic analyzer.
4503  // FIXME: This is wrong; InitListExprs created by semantic analysis have
4504  // valid source locations too!
4505  bool isExplicit() const {
4506  return LBraceLoc.isValid() && RBraceLoc.isValid();
4507  }
4508 
4509  // Is this an initializer for an array of characters, initialized by a string
4510  // literal or an @encode?
4511  bool isStringLiteralInit() const;
4512 
4513  /// Is this a transparent initializer list (that is, an InitListExpr that is
4514  /// purely syntactic, and whose semantics are that of the sole contained
4515  /// initializer)?
4516  bool isTransparent() const;
4517 
4518  /// Is this the zero initializer {0} in a language which considers it
4519  /// idiomatic?
4520  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
4521 
4522  SourceLocation getLBraceLoc() const { return LBraceLoc; }
4523  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
4524  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4525  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
4526 
4527  bool isSemanticForm() const { return AltForm.getInt(); }
4529  return isSemanticForm() ? nullptr : AltForm.getPointer();
4530  }
4531  bool isSyntacticForm() const {
4532  return !AltForm.getInt() || !AltForm.getPointer();
4533  }
4535  return isSemanticForm() ? AltForm.getPointer() : nullptr;
4536  }
4537 
4539  AltForm.setPointer(Init);
4540  AltForm.setInt(true);
4541  Init->AltForm.setPointer(this);
4542  Init->AltForm.setInt(false);
4543  }
4544 
4546  return InitListExprBits.HadArrayRangeDesignator != 0;
4547  }
4548  void sawArrayRangeDesignator(bool ARD = true) {
4549  InitListExprBits.HadArrayRangeDesignator = ARD;
4550  }
4551 
4552  SourceLocation getBeginLoc() const LLVM_READONLY;
4553  SourceLocation getEndLoc() const LLVM_READONLY;
4554 
4555  static bool classof(const Stmt *T) {
4556  return T->getStmtClass() == InitListExprClass;
4557  }
4558 
4559  // Iterators
4561  const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
4562  return child_range(cast_away_const(CCR.begin()),
4563  cast_away_const(CCR.end()));
4564  }
4565 
4567  // FIXME: This does not include the array filler expression.
4568  if (InitExprs.empty())
4570  return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
4571  }
4572 
4577 
4578  iterator begin() { return InitExprs.begin(); }
4579  const_iterator begin() const { return InitExprs.begin(); }
4580  iterator end() { return InitExprs.end(); }
4581  const_iterator end() const { return InitExprs.end(); }
4582  reverse_iterator rbegin() { return InitExprs.rbegin(); }
4583  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
4584  reverse_iterator rend() { return InitExprs.rend(); }
4585  const_reverse_iterator rend() const { return InitExprs.rend(); }
4586 
4587  friend class ASTStmtReader;
4588  friend class ASTStmtWriter;
4589 };
4590 
4591 /// Represents a C99 designated initializer expression.
4592 ///
4593 /// A designated initializer expression (C99 6.7.8) contains one or
4594 /// more designators (which can be field designators, array
4595 /// designators, or GNU array-range designators) followed by an
4596 /// expression that initializes the field or element(s) that the
4597 /// designators refer to. For example, given:
4598 ///
4599 /// @code
4600 /// struct point {
4601 /// double x;
4602 /// double y;
4603 /// };
4604 /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4605 /// @endcode
4606 ///
4607 /// The InitListExpr contains three DesignatedInitExprs, the first of
4608 /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4609 /// designators, one array designator for @c [2] followed by one field
4610 /// designator for @c .y. The initialization expression will be 1.0.
4612  : public Expr,
4613  private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
4614 public:
4615  /// Forward declaration of the Designator class.
4616  class Designator;
4617 
4618 private:
4619  /// The location of the '=' or ':' prior to the actual initializer
4620  /// expression.
4621  SourceLocation EqualOrColonLoc;
4622 
4623  /// Whether this designated initializer used the GNU deprecated
4624  /// syntax rather than the C99 '=' syntax.
4625  unsigned GNUSyntax : 1;
4626 
4627  /// The number of designators in this initializer expression.
4628  unsigned NumDesignators : 15;
4629 
4630  /// The number of subexpressions of this initializer expression,
4631  /// which contains both the initializer and any additional
4632  /// expressions used by array and array-range designators.
4633  unsigned NumSubExprs : 16;
4634 
4635  /// The designators in this designated initialization
4636  /// expression.
4637  Designator *Designators;
4638 
4640  llvm::ArrayRef<Designator> Designators,
4641  SourceLocation EqualOrColonLoc, bool GNUSyntax,
4642  ArrayRef<Expr *> IndexExprs, Expr *Init);
4643 
4644  explicit DesignatedInitExpr(unsigned NumSubExprs)
4645  : Expr(DesignatedInitExprClass, EmptyShell()),
4646  NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4647 
4648 public:
4649  /// A field designator, e.g., ".x".
4651  /// Refers to the field that is being initialized. The low bit
4652  /// of this field determines whether this is actually a pointer
4653  /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4654  /// initially constructed, a field designator will store an
4655  /// IdentifierInfo*. After semantic analysis has resolved that
4656  /// name, the field designator will instead store a FieldDecl*.
4658 
4659  /// The location of the '.' in the designated initializer.
4660  unsigned DotLoc;
4661 
4662  /// The location of the field name in the designated initializer.
4663  unsigned FieldLoc;
4664  };
4665 
4666  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4668  /// Location of the first index expression within the designated
4669  /// initializer expression's list of subexpressions.
4670  unsigned Index;
4671  /// The location of the '[' starting the array range designator.
4672  unsigned LBracketLoc;
4673  /// The location of the ellipsis separating the start and end
4674  /// indices. Only valid for GNU array-range designators.
4675  unsigned EllipsisLoc;
4676  /// The location of the ']' terminating the array range designator.
4677  unsigned RBracketLoc;
4678  };
4679 
4680  /// Represents a single C99 designator.
4681  ///
4682  /// @todo This class is infuriatingly similar to clang::Designator,
4683  /// but minor differences (storing indices vs. storing pointers)
4684  /// keep us from reusing it. Try harder, later, to rectify these
4685  /// differences.
4686  class Designator {
4687  /// The kind of designator this describes.
4688  enum {
4690  ArrayDesignator,
4691  ArrayRangeDesignator
4692  } Kind;
4693 
4694  union {
4695  /// A field designator, e.g., ".x".
4697  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4698  struct ArrayOrRangeDesignator ArrayOrRange;
4699  };
4700  friend class DesignatedInitExpr;
4701 
4702  public:
4704 
4705  /// Initializes a field designator.
4706  Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4707  SourceLocation FieldLoc)
4708  : Kind(FieldDesignator) {
4709  Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4710  Field.DotLoc = DotLoc.getRawEncoding();
4711  Field.FieldLoc = FieldLoc.getRawEncoding();
4712  }
4713 
4714  /// Initializes an array designator.
4715  Designator(unsigned Index, SourceLocation LBracketLoc,
4716  SourceLocation RBracketLoc)
4717  : Kind(ArrayDesignator) {
4718  ArrayOrRange.Index = Index;
4719  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4720  ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4721  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4722  }
4723 
4724  /// Initializes a GNU array-range designator.
4725  Designator(unsigned Index, SourceLocation LBracketLoc,
4726  SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4727  : Kind(ArrayRangeDesignator) {
4728  ArrayOrRange.Index = Index;
4729  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4730  ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4731  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4732  }
4733 
4734  bool isFieldDesignator() const { return Kind == FieldDesignator; }
4735  bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4736  bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4737 
4738  IdentifierInfo *getFieldName() const;
4739 
4740  FieldDecl *getField() const {
4741  assert(Kind == FieldDesignator && "Only valid on a field designator");
4742  if (Field.NameOrField & 0x01)
4743  return nullptr;
4744  else
4745  return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4746  }
4747 
4748  void setField(FieldDecl *FD) {
4749  assert(Kind == FieldDesignator && "Only valid on a field designator");
4750  Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4751  }
4752 
4754  assert(Kind == FieldDesignator && "Only valid on a field designator");
4756  }
4757 
4759  assert(Kind == FieldDesignator && "Only valid on a field designator");
4760  return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4761  }
4762 
4764  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4765  "Only valid on an array or array-range designator");
4766  return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4767  }
4768 
4770  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4771  "Only valid on an array or array-range designator");
4772  return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4773  }
4774 
4776  assert(Kind == ArrayRangeDesignator &&
4777  "Only valid on an array-range designator");
4778  return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4779  }
4780 
4781  unsigned getFirstExprIndex() const {
4782  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4783  "Only valid on an array or array-range designator");
4784  return ArrayOrRange.Index;
4785  }
4786 
4787  SourceLocation getBeginLoc() const LLVM_READONLY {
4788  if (Kind == FieldDesignator)
4789  return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4790  else
4791  return getLBracketLoc();
4792  }
4793  SourceLocation getEndLoc() const LLVM_READONLY {
4794  return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4795  }
4796  SourceRange getSourceRange() const LLVM_READONLY {
4797  return SourceRange(getBeginLoc(), getEndLoc());
4798  }
4799  };
4800 
4801  static DesignatedInitExpr *Create(const ASTContext &C,
4802  llvm::ArrayRef<Designator> Designators,
4803  ArrayRef<Expr*> IndexExprs,
4804  SourceLocation EqualOrColonLoc,
4805  bool GNUSyntax, Expr *Init);
4806 
4807  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4808  unsigned NumIndexExprs);
4809 
4810  /// Returns the number of designators in this initializer.
4811  unsigned size() const { return NumDesignators; }
4812 
4813  // Iterator access to the designators.
4815  return {Designators, NumDesignators};
4816  }
4817 
4819  return {Designators, NumDesignators};
4820  }
4821 
4822  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4823  const Designator *getDesignator(unsigned Idx) const {
4824  return &designators()[Idx];
4825  }
4826 
4827  void setDesignators(const ASTContext &C, const Designator *Desigs,
4828  unsigned NumDesigs);
4829 
4830  Expr *getArrayIndex(const Designator &D) const;
4831  Expr *getArrayRangeStart(const Designator &D) const;
4832  Expr *getArrayRangeEnd(const Designator &D) const;
4833 
4834  /// Retrieve the location of the '=' that precedes the
4835  /// initializer value itself, if present.
4836  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4837  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4838 
4839  /// Whether this designated initializer should result in direct-initialization
4840  /// of the designated subobject (eg, '{.foo{1, 2, 3}}').
4841  bool isDirectInit() const { return EqualOrColonLoc.isInvalid(); }
4842 
4843  /// Determines whether this designated initializer used the
4844  /// deprecated GNU syntax for designated initializers.
4845  bool usesGNUSyntax() const { return GNUSyntax; }
4846  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4847 
4848  /// Retrieve the initializer value.
4849  Expr *getInit() const {
4850  return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4851  }
4852 
4853  void setInit(Expr *init) {</