clang  7.0.0svn
Expr.h
Go to the documentation of this file.
1 //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Expr interface and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_EXPR_H
15 #define LLVM_CLANG_AST_EXPR_H
16 
17 #include "clang/AST/APValue.h"
18 #include "clang/AST/ASTVector.h"
19 #include "clang/AST/Decl.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/TemplateBase.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SyncScope.h"
28 #include "clang/Basic/TypeTraits.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APSInt.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/AtomicOrdering.h"
34 #include "llvm/Support/Compiler.h"
35 
36 namespace clang {
37  class APValue;
38  class ASTContext;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXMemberCallExpr;
42  class CXXOperatorCallExpr;
43  class CastExpr;
44  class Decl;
45  class IdentifierInfo;
46  class MaterializeTemporaryExpr;
47  class NamedDecl;
48  class ObjCPropertyRefExpr;
49  class OpaqueValueExpr;
50  class ParmVarDecl;
51  class StringLiteral;
52  class TargetInfo;
53  class ValueDecl;
54 
55 /// A simple array of base specifiers.
57 
58 /// An adjustment to be made to the temporary created when emitting a
59 /// reference binding, which accesses a particular subobject of that temporary.
61  enum {
65  } Kind;
66 
67  struct DTB {
70  };
71 
72  struct P {
75  };
76 
77  union {
80  struct P Ptr;
81  };
82 
85  : Kind(DerivedToBaseAdjustment) {
88  }
89 
91  : Kind(FieldAdjustment) {
92  this->Field = Field;
93  }
94 
96  : Kind(MemberPointerAdjustment) {
97  this->Ptr.MPT = MPT;
98  this->Ptr.RHS = RHS;
99  }
100 };
101 
102 /// Expr - This represents one expression. Note that Expr's are subclasses of
103 /// Stmt. This allows an expression to be transparently used any place a Stmt
104 /// is required.
105 ///
106 class Expr : public Stmt {
107  QualType TR;
108 
109 protected:
111  bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
112  : Stmt(SC)
113  {
114  ExprBits.TypeDependent = TD;
115  ExprBits.ValueDependent = VD;
116  ExprBits.InstantiationDependent = ID;
117  ExprBits.ValueKind = VK;
118  ExprBits.ObjectKind = OK;
119  assert(ExprBits.ObjectKind == OK && "truncated kind");
120  ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
121  setType(T);
122  }
123 
124  /// Construct an empty expression.
125  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
126 
127 public:
128  QualType getType() const { return TR; }
129  void setType(QualType t) {
130  // In C++, the type of an expression is always adjusted so that it
131  // will not have reference type (C++ [expr]p6). Use
132  // QualType::getNonReferenceType() to retrieve the non-reference
133  // type. Additionally, inspect Expr::isLvalue to determine whether
134  // an expression that is adjusted in this manner should be
135  // considered an lvalue.
136  assert((t.isNull() || !t->isReferenceType()) &&
137  "Expressions can't have reference type");
138 
139  TR = t;
140  }
141 
142  /// isValueDependent - Determines whether this expression is
143  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
144  /// array bound of "Chars" in the following example is
145  /// value-dependent.
146  /// @code
147  /// template<int Size, char (&Chars)[Size]> struct meta_string;
148  /// @endcode
149  bool isValueDependent() const { return ExprBits.ValueDependent; }
150 
151  /// Set whether this expression is value-dependent or not.
152  void setValueDependent(bool VD) {
153  ExprBits.ValueDependent = VD;
154  }
155 
156  /// isTypeDependent - Determines whether this expression is
157  /// type-dependent (C++ [temp.dep.expr]), which means that its type
158  /// could change from one template instantiation to the next. For
159  /// example, the expressions "x" and "x + y" are type-dependent in
160  /// the following code, but "y" is not type-dependent:
161  /// @code
162  /// template<typename T>
163  /// void add(T x, int y) {
164  /// x + y;
165  /// }
166  /// @endcode
167  bool isTypeDependent() const { return ExprBits.TypeDependent; }
168 
169  /// Set whether this expression is type-dependent or not.
170  void setTypeDependent(bool TD) {
171  ExprBits.TypeDependent = TD;
172  }
173 
174  /// Whether this expression is instantiation-dependent, meaning that
175  /// it depends in some way on a template parameter, even if neither its type
176  /// nor (constant) value can change due to the template instantiation.
177  ///
178  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
179  /// instantiation-dependent (since it involves a template parameter \c T), but
180  /// is neither type- nor value-dependent, since the type of the inner
181  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
182  /// \c sizeof is known.
183  ///
184  /// \code
185  /// template<typename T>
186  /// void f(T x, T y) {
187  /// sizeof(sizeof(T() + T());
188  /// }
189  /// \endcode
190  ///
192  return ExprBits.InstantiationDependent;
193  }
194 
195  /// Set whether this expression is instantiation-dependent or not.
197  ExprBits.InstantiationDependent = ID;
198  }
199 
200  /// Whether this expression contains an unexpanded parameter
201  /// pack (for C++11 variadic templates).
202  ///
203  /// Given the following function template:
204  ///
205  /// \code
206  /// template<typename F, typename ...Types>
207  /// void forward(const F &f, Types &&...args) {
208  /// f(static_cast<Types&&>(args)...);
209  /// }
210  /// \endcode
211  ///
212  /// The expressions \c args and \c static_cast<Types&&>(args) both
213  /// contain parameter packs.
215  return ExprBits.ContainsUnexpandedParameterPack;
216  }
217 
218  /// Set the bit that describes whether this expression
219  /// contains an unexpanded parameter pack.
220  void setContainsUnexpandedParameterPack(bool PP = true) {
221  ExprBits.ContainsUnexpandedParameterPack = PP;
222  }
223 
224  /// getExprLoc - Return the preferred location for the arrow when diagnosing
225  /// a problem with a generic expression.
226  SourceLocation getExprLoc() const LLVM_READONLY;
227 
228  /// isUnusedResultAWarning - Return true if this immediate expression should
229  /// be warned about if the result is unused. If so, fill in expr, location,
230  /// and ranges with expr to warn on and source locations/ranges appropriate
231  /// for a warning.
232  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
233  SourceRange &R1, SourceRange &R2,
234  ASTContext &Ctx) const;
235 
236  /// isLValue - True if this expression is an "l-value" according to
237  /// the rules of the current language. C and C++ give somewhat
238  /// different rules for this concept, but in general, the result of
239  /// an l-value expression identifies a specific object whereas the
240  /// result of an r-value expression is a value detached from any
241  /// specific storage.
242  ///
243  /// C++11 divides the concept of "r-value" into pure r-values
244  /// ("pr-values") and so-called expiring values ("x-values"), which
245  /// identify specific objects that can be safely cannibalized for
246  /// their resources. This is an unfortunate abuse of terminology on
247  /// the part of the C++ committee. In Clang, when we say "r-value",
248  /// we generally mean a pr-value.
249  bool isLValue() const { return getValueKind() == VK_LValue; }
250  bool isRValue() const { return getValueKind() == VK_RValue; }
251  bool isXValue() const { return getValueKind() == VK_XValue; }
252  bool isGLValue() const { return getValueKind() != VK_RValue; }
253 
264  LV_ArrayTemporary
265  };
266  /// Reasons why an expression might not be an l-value.
267  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
268 
275  MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
286  MLV_ArrayTemporary
287  };
288  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
289  /// does not have an incomplete type, does not have a const-qualified type,
290  /// and if it is a structure or union, does not have any member (including,
291  /// recursively, any member or element of all contained aggregates or unions)
292  /// with a const-qualified type.
293  ///
294  /// \param Loc [in,out] - A source location which *may* be filled
295  /// in with the location of the expression making this a
296  /// non-modifiable lvalue, if specified.
298  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
299 
300  /// The return type of classify(). Represents the C++11 expression
301  /// taxonomy.
303  public:
304  /// The various classification results. Most of these mean prvalue.
305  enum Kinds {
308  CL_Function, // Functions cannot be lvalues in C.
309  CL_Void, // Void cannot be an lvalue in C.
310  CL_AddressableVoid, // Void expression whose address can be taken in C.
311  CL_DuplicateVectorComponents, // A vector shuffle with dupes.
312  CL_MemberFunction, // An expression referring to a member function
314  CL_ClassTemporary, // A temporary of class type, or subobject thereof.
315  CL_ArrayTemporary, // A temporary of array type.
316  CL_ObjCMessageRValue, // ObjC message is an rvalue
317  CL_PRValue // A prvalue for any other reason, of any other type
318  };
319  /// The results of modification testing.
321  CM_Untested, // testModifiable was false.
323  CM_RValue, // Not modifiable because it's an rvalue
324  CM_Function, // Not modifiable because it's a function; C++ only
325  CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
326  CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
331  CM_IncompleteType
332  };
333 
334  private:
335  friend class Expr;
336 
337  unsigned short Kind;
338  unsigned short Modifiable;
339 
340  explicit Classification(Kinds k, ModifiableType m)
341  : Kind(k), Modifiable(m)
342  {}
343 
344  public:
346 
347  Kinds getKind() const { return static_cast<Kinds>(Kind); }
349  assert(Modifiable != CM_Untested && "Did not test for modifiability.");
350  return static_cast<ModifiableType>(Modifiable);
351  }
352  bool isLValue() const { return Kind == CL_LValue; }
353  bool isXValue() const { return Kind == CL_XValue; }
354  bool isGLValue() const { return Kind <= CL_XValue; }
355  bool isPRValue() const { return Kind >= CL_Function; }
356  bool isRValue() const { return Kind >= CL_XValue; }
357  bool isModifiable() const { return getModifiable() == CM_Modifiable; }
358 
359  /// Create a simple, modifiably lvalue
361  return Classification(CL_LValue, CM_Modifiable);
362  }
363 
364  };
365  /// Classify - Classify this expression according to the C++11
366  /// expression taxonomy.
367  ///
368  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
369  /// old lvalue vs rvalue. This function determines the type of expression this
370  /// is. There are three expression types:
371  /// - lvalues are classical lvalues as in C++03.
372  /// - prvalues are equivalent to rvalues in C++03.
373  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
374  /// function returning an rvalue reference.
375  /// lvalues and xvalues are collectively referred to as glvalues, while
376  /// prvalues and xvalues together form rvalues.
378  return ClassifyImpl(Ctx, nullptr);
379  }
380 
381  /// ClassifyModifiable - Classify this expression according to the
382  /// C++11 expression taxonomy, and see if it is valid on the left side
383  /// of an assignment.
384  ///
385  /// This function extends classify in that it also tests whether the
386  /// expression is modifiable (C99 6.3.2.1p1).
387  /// \param Loc A source location that might be filled with a relevant location
388  /// if the expression is not modifiable.
390  return ClassifyImpl(Ctx, &Loc);
391  }
392 
393  /// getValueKindForType - Given a formal return or parameter type,
394  /// give its value kind.
396  if (const ReferenceType *RT = T->getAs<ReferenceType>())
397  return (isa<LValueReferenceType>(RT)
398  ? VK_LValue
399  : (RT->getPointeeType()->isFunctionType()
400  ? VK_LValue : VK_XValue));
401  return VK_RValue;
402  }
403 
404  /// getValueKind - The value kind that this expression produces.
406  return static_cast<ExprValueKind>(ExprBits.ValueKind);
407  }
408 
409  /// getObjectKind - The object kind that this expression produces.
410  /// Object kinds are meaningful only for expressions that yield an
411  /// l-value or x-value.
413  return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
414  }
415 
417  ExprObjectKind OK = getObjectKind();
418  return (OK == OK_Ordinary || OK == OK_BitField);
419  }
420 
421  /// setValueKind - Set the value kind produced by this expression.
422  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
423 
424  /// setObjectKind - Set the object kind produced by this expression.
425  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
426 
427 private:
428  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
429 
430 public:
431 
432  /// Returns true if this expression is a gl-value that
433  /// potentially refers to a bit-field.
434  ///
435  /// In C++, whether a gl-value refers to a bitfield is essentially
436  /// an aspect of the value-kind type system.
437  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
438 
439  /// If this expression refers to a bit-field, retrieve the
440  /// declaration of that bit-field.
441  ///
442  /// Note that this returns a non-null pointer in subtly different
443  /// places than refersToBitField returns true. In particular, this can
444  /// return a non-null pointer even for r-values loaded from
445  /// bit-fields, but it will return null for a conditional bit-field.
446  FieldDecl *getSourceBitField();
447 
448  const FieldDecl *getSourceBitField() const {
449  return const_cast<Expr*>(this)->getSourceBitField();
450  }
451 
452  Decl *getReferencedDeclOfCallee();
454  return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
455  }
456 
457  /// If this expression is an l-value for an Objective C
458  /// property, find the underlying property reference expression.
459  const ObjCPropertyRefExpr *getObjCProperty() const;
460 
461  /// Check if this expression is the ObjC 'self' implicit parameter.
462  bool isObjCSelfExpr() const;
463 
464  /// Returns whether this expression refers to a vector element.
465  bool refersToVectorElement() const;
466 
467  /// Returns whether this expression refers to a global register
468  /// variable.
469  bool refersToGlobalRegisterVar() const;
470 
471  /// Returns whether this expression has a placeholder type.
472  bool hasPlaceholderType() const {
473  return getType()->isPlaceholderType();
474  }
475 
476  /// Returns whether this expression has a specific placeholder type.
479  if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
480  return BT->getKind() == K;
481  return false;
482  }
483 
484  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
485  /// that is known to return 0 or 1. This happens for _Bool/bool expressions
486  /// but also int expressions which are produced by things like comparisons in
487  /// C.
488  bool isKnownToHaveBooleanValue() const;
489 
490  /// isIntegerConstantExpr - Return true if this expression is a valid integer
491  /// constant expression, and, if so, return its value in Result. If not a
492  /// valid i-c-e, return false and fill in Loc (if specified) with the location
493  /// of the invalid expression.
494  ///
495  /// Note: This does not perform the implicit conversions required by C++11
496  /// [expr.const]p5.
497  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
498  SourceLocation *Loc = nullptr,
499  bool isEvaluated = true) const;
500  bool isIntegerConstantExpr(const ASTContext &Ctx,
501  SourceLocation *Loc = nullptr) const;
502 
503  /// isCXX98IntegralConstantExpr - Return true if this expression is an
504  /// integral constant expression in C++98. Can only be used in C++.
505  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
506 
507  /// isCXX11ConstantExpr - Return true if this expression is a constant
508  /// expression in C++11. Can only be used in C++.
509  ///
510  /// Note: This does not perform the implicit conversions required by C++11
511  /// [expr.const]p5.
512  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
513  SourceLocation *Loc = nullptr) const;
514 
515  /// isPotentialConstantExpr - Return true if this function's definition
516  /// might be usable in a constant expression in C++11, if it were marked
517  /// constexpr. Return false if the function can never produce a constant
518  /// expression, along with diagnostics describing why not.
519  static bool isPotentialConstantExpr(const FunctionDecl *FD,
521  PartialDiagnosticAt> &Diags);
522 
523  /// isPotentialConstantExprUnevaluted - Return true if this expression might
524  /// be usable in a constant expression in C++11 in an unevaluated context, if
525  /// it were in function FD marked constexpr. Return false if the function can
526  /// never produce a constant expression, along with diagnostics describing
527  /// why not.
528  static bool isPotentialConstantExprUnevaluated(Expr *E,
529  const FunctionDecl *FD,
531  PartialDiagnosticAt> &Diags);
532 
533  /// isConstantInitializer - Returns true if this expression can be emitted to
534  /// IR as a constant, and thus can be used as a constant initializer in C.
535  /// If this expression is not constant and Culprit is non-null,
536  /// it is used to store the address of first non constant expr.
537  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
538  const Expr **Culprit = nullptr) const;
539 
540  /// EvalStatus is a struct with detailed info about an evaluation in progress.
541  struct EvalStatus {
542  /// Whether the evaluated expression has side effects.
543  /// For example, (f() && 0) can be folded, but it still has side effects.
545 
546  /// Whether the evaluation hit undefined behavior.
547  /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
548  /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
550 
551  /// Diag - If this is non-null, it will be filled in with a stack of notes
552  /// indicating why evaluation failed (or why it failed to produce a constant
553  /// expression).
554  /// If the expression is unfoldable, the notes will indicate why it's not
555  /// foldable. If the expression is foldable, but not a constant expression,
556  /// the notes will describes why it isn't a constant expression. If the
557  /// expression *is* a constant expression, no notes will be produced.
559 
561  : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
562 
563  // hasSideEffects - Return true if the evaluated expression has
564  // side effects.
565  bool hasSideEffects() const {
566  return HasSideEffects;
567  }
568  };
569 
570  /// EvalResult is a struct with detailed info about an evaluated expression.
572  /// Val - This is the value the expression can be folded to.
574 
575  // isGlobalLValue - Return true if the evaluated lvalue expression
576  // is global.
577  bool isGlobalLValue() const;
578  };
579 
580  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
581  /// an rvalue using any crazy technique (that has nothing to do with language
582  /// standards) that we want to, even if the expression has side-effects. If
583  /// this function returns true, it returns the folded constant in Result. If
584  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
585  /// applied.
586  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
587 
588  /// EvaluateAsBooleanCondition - Return true if this is a constant
589  /// which we can fold and convert to a boolean condition using
590  /// any crazy technique that we want to, even if the expression has
591  /// side-effects.
592  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
593 
595  SE_NoSideEffects, ///< Strictly evaluate the expression.
596  SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
597  ///< arbitrary unmodeled side effects.
598  SE_AllowSideEffects ///< Allow any unmodeled side effect.
599  };
600 
601  /// EvaluateAsInt - Return true if this is a constant which we can fold and
602  /// convert to an integer, using any crazy technique that we want to.
603  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
604  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
605 
606  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
607  /// convert to a floating point value, using any crazy technique that we
608  /// want to.
609  bool
610  EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
611  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
612 
613  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
614  /// constant folded without side-effects, but discard the result.
615  bool isEvaluatable(const ASTContext &Ctx,
616  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
617 
618  /// HasSideEffects - This routine returns true for all those expressions
619  /// which have any effect other than producing a value. Example is a function
620  /// call, volatile variable read, or throwing an exception. If
621  /// IncludePossibleEffects is false, this call treats certain expressions with
622  /// potential side effects (such as function call-like expressions,
623  /// instantiation-dependent expressions, or invocations from a macro) as not
624  /// having side effects.
625  bool HasSideEffects(const ASTContext &Ctx,
626  bool IncludePossibleEffects = true) const;
627 
628  /// Determine whether this expression involves a call to any function
629  /// that is not trivial.
630  bool hasNonTrivialCall(const ASTContext &Ctx) const;
631 
632  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
633  /// integer. This must be called on an expression that constant folds to an
634  /// integer.
635  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
636  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
637 
638  void EvaluateForOverflow(const ASTContext &Ctx) const;
639 
640  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
641  /// lvalue with link time known address, with no side-effects.
642  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
643 
644  /// EvaluateAsInitializer - Evaluate an expression as if it were the
645  /// initializer of the given declaration. Returns true if the initializer
646  /// can be folded to a constant, and produces any relevant notes. In C++11,
647  /// notes will be produced if the expression is not a constant expression.
648  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
649  const VarDecl *VD,
651 
652  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
653  /// of a call to the given function with the given arguments, inside an
654  /// unevaluated context. Returns true if the expression could be folded to a
655  /// constant.
656  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
657  const FunctionDecl *Callee,
659  const Expr *This = nullptr) const;
660 
661  /// Indicates how the constant expression will be used.
662  enum ConstExprUsage { EvaluateForCodeGen, EvaluateForMangling };
663 
664  /// Evaluate an expression that is required to be a constant expression.
665  bool EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
666  const ASTContext &Ctx) const;
667 
668  /// If the current Expr is a pointer, this will try to statically
669  /// determine the number of bytes available where the pointer is pointing.
670  /// Returns true if all of the above holds and we were able to figure out the
671  /// size, false otherwise.
672  ///
673  /// \param Type - How to evaluate the size of the Expr, as defined by the
674  /// "type" parameter of __builtin_object_size
675  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
676  unsigned Type) const;
677 
678  /// Enumeration used to describe the kind of Null pointer constant
679  /// returned from \c isNullPointerConstant().
681  /// Expression is not a Null pointer constant.
682  NPCK_NotNull = 0,
683 
684  /// Expression is a Null pointer constant built from a zero integer
685  /// expression that is not a simple, possibly parenthesized, zero literal.
686  /// C++ Core Issue 903 will classify these expressions as "not pointers"
687  /// once it is adopted.
688  /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
690 
691  /// Expression is a Null pointer constant built from a literal zero.
693 
694  /// Expression is a C++11 nullptr.
696 
697  /// Expression is a GNU-style __null constant.
698  NPCK_GNUNull
699  };
700 
701  /// Enumeration used to describe how \c isNullPointerConstant()
702  /// should cope with value-dependent expressions.
704  /// Specifies that the expression should never be value-dependent.
705  NPC_NeverValueDependent = 0,
706 
707  /// Specifies that a value-dependent expression of integral or
708  /// dependent type should be considered a null pointer constant.
710 
711  /// Specifies that a value-dependent expression should be considered
712  /// to never be a null pointer constant.
713  NPC_ValueDependentIsNotNull
714  };
715 
716  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
717  /// a Null pointer constant. The return value can further distinguish the
718  /// kind of NULL pointer constant that was detected.
719  NullPointerConstantKind isNullPointerConstant(
720  ASTContext &Ctx,
722 
723  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
724  /// write barrier.
725  bool isOBJCGCCandidate(ASTContext &Ctx) const;
726 
727  /// Returns true if this expression is a bound member function.
728  bool isBoundMemberFunction(ASTContext &Ctx) const;
729 
730  /// Given an expression of bound-member type, find the type
731  /// of the member. Returns null if this is an *overloaded* bound
732  /// member expression.
733  static QualType findBoundMemberType(const Expr *expr);
734 
735  /// IgnoreImpCasts - Skip past any implicit casts which might
736  /// surround this expression. Only skips ImplicitCastExprs.
737  Expr *IgnoreImpCasts() LLVM_READONLY;
738 
739  /// IgnoreImplicit - Skip past any implicit AST nodes which might
740  /// surround this expression.
741  Expr *IgnoreImplicit() LLVM_READONLY {
742  return cast<Expr>(Stmt::IgnoreImplicit());
743  }
744 
745  const Expr *IgnoreImplicit() const LLVM_READONLY {
746  return const_cast<Expr*>(this)->IgnoreImplicit();
747  }
748 
749  /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
750  /// its subexpression. If that subexpression is also a ParenExpr,
751  /// then this method recursively returns its subexpression, and so forth.
752  /// Otherwise, the method returns the current Expr.
753  Expr *IgnoreParens() LLVM_READONLY;
754 
755  /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
756  /// or CastExprs, returning their operand.
757  Expr *IgnoreParenCasts() LLVM_READONLY;
758 
759  /// Ignore casts. Strip off any CastExprs, returning their operand.
760  Expr *IgnoreCasts() LLVM_READONLY;
761 
762  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
763  /// any ParenExpr or ImplicitCastExprs, returning their operand.
764  Expr *IgnoreParenImpCasts() LLVM_READONLY;
765 
766  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
767  /// call to a conversion operator, return the argument.
768  Expr *IgnoreConversionOperator() LLVM_READONLY;
769 
770  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
771  return const_cast<Expr*>(this)->IgnoreConversionOperator();
772  }
773 
774  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
775  return const_cast<Expr*>(this)->IgnoreParenImpCasts();
776  }
777 
778  /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
779  /// CastExprs that represent lvalue casts, returning their operand.
780  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
781 
782  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
783  return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
784  }
785 
786  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
787  /// value (including ptr->int casts of the same size). Strip off any
788  /// ParenExpr or CastExprs, returning their operand.
789  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
790 
791  /// Ignore parentheses and derived-to-base casts.
792  Expr *ignoreParenBaseCasts() LLVM_READONLY;
793 
794  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
795  return const_cast<Expr*>(this)->ignoreParenBaseCasts();
796  }
797 
798  /// Determine whether this expression is a default function argument.
799  ///
800  /// Default arguments are implicitly generated in the abstract syntax tree
801  /// by semantic analysis for function calls, object constructions, etc. in
802  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
803  /// this routine also looks through any implicit casts to determine whether
804  /// the expression is a default argument.
805  bool isDefaultArgument() const;
806 
807  /// Determine whether the result of this expression is a
808  /// temporary object of the given class type.
809  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
810 
811  /// Whether this expression is an implicit reference to 'this' in C++.
812  bool isImplicitCXXThis() const;
813 
814  const Expr *IgnoreImpCasts() const LLVM_READONLY {
815  return const_cast<Expr*>(this)->IgnoreImpCasts();
816  }
817  const Expr *IgnoreParens() const LLVM_READONLY {
818  return const_cast<Expr*>(this)->IgnoreParens();
819  }
820  const Expr *IgnoreParenCasts() const LLVM_READONLY {
821  return const_cast<Expr*>(this)->IgnoreParenCasts();
822  }
823  /// Strip off casts, but keep parentheses.
824  const Expr *IgnoreCasts() const LLVM_READONLY {
825  return const_cast<Expr*>(this)->IgnoreCasts();
826  }
827 
828  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
829  return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
830  }
831 
832  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
833 
834  /// For an expression of class type or pointer to class type,
835  /// return the most derived class decl the expression is known to refer to.
836  ///
837  /// If this expression is a cast, this method looks through it to find the
838  /// most derived decl that can be inferred from the expression.
839  /// This is valid because derived-to-base conversions have undefined
840  /// behavior if the object isn't dynamically of the derived type.
841  const CXXRecordDecl *getBestDynamicClassType() const;
842 
843  /// Get the inner expression that determines the best dynamic class.
844  /// If this is a prvalue, we guarantee that it is of the most-derived type
845  /// for the object itself.
846  const Expr *getBestDynamicClassTypeExpr() const;
847 
848  /// Walk outwards from an expression we want to bind a reference to and
849  /// find the expression whose lifetime needs to be extended. Record
850  /// the LHSs of comma expressions and adjustments needed along the path.
851  const Expr *skipRValueSubobjectAdjustments(
853  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
857  return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
858  }
859 
860  static bool classof(const Stmt *T) {
861  return T->getStmtClass() >= firstExprConstant &&
862  T->getStmtClass() <= lastExprConstant;
863  }
864 };
865 
866 //===----------------------------------------------------------------------===//
867 // Primary Expressions.
868 //===----------------------------------------------------------------------===//
869 
870 /// OpaqueValueExpr - An expression referring to an opaque object of a
871 /// fixed type and value class. These don't correspond to concrete
872 /// syntax; instead they're used to express operations (usually copy
873 /// operations) on values whose source is generally obvious from
874 /// context.
875 class OpaqueValueExpr : public Expr {
876  friend class ASTStmtReader;
877  Expr *SourceExpr;
878  SourceLocation Loc;
879 
880 public:
883  Expr *SourceExpr = nullptr)
884  : Expr(OpaqueValueExprClass, T, VK, OK,
885  T->isDependentType() ||
886  (SourceExpr && SourceExpr->isTypeDependent()),
887  T->isDependentType() ||
888  (SourceExpr && SourceExpr->isValueDependent()),
889  T->isInstantiationDependentType() ||
890  (SourceExpr && SourceExpr->isInstantiationDependent()),
891  false),
892  SourceExpr(SourceExpr), Loc(Loc) {
893  setIsUnique(false);
894  }
895 
896  /// Given an expression which invokes a copy constructor --- i.e. a
897  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
898  /// find the OpaqueValueExpr that's the source of the construction.
899  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
900 
901  explicit OpaqueValueExpr(EmptyShell Empty)
902  : Expr(OpaqueValueExprClass, Empty) { }
903 
904  /// Retrieve the location of this expression.
905  SourceLocation getLocation() const { return Loc; }
906 
907  SourceLocation getLocStart() const LLVM_READONLY {
908  return SourceExpr ? SourceExpr->getLocStart() : Loc;
909  }
910  SourceLocation getLocEnd() const LLVM_READONLY {
911  return SourceExpr ? SourceExpr->getLocEnd() : Loc;
912  }
913  SourceLocation getExprLoc() const LLVM_READONLY {
914  if (SourceExpr) return SourceExpr->getExprLoc();
915  return Loc;
916  }
917 
920  }
921 
924  }
925 
926  /// The source expression of an opaque value expression is the
927  /// expression which originally generated the value. This is
928  /// provided as a convenience for analyses that don't wish to
929  /// precisely model the execution behavior of the program.
930  ///
931  /// The source expression is typically set when building the
932  /// expression which binds the opaque value expression in the first
933  /// place.
934  Expr *getSourceExpr() const { return SourceExpr; }
935 
936  void setIsUnique(bool V) {
937  assert((!V || SourceExpr) &&
938  "unique OVEs are expected to have source expressions");
939  OpaqueValueExprBits.IsUnique = V;
940  }
941 
942  bool isUnique() const { return OpaqueValueExprBits.IsUnique; }
943 
944  static bool classof(const Stmt *T) {
945  return T->getStmtClass() == OpaqueValueExprClass;
946  }
947 };
948 
949 /// A reference to a declared variable, function, enum, etc.
950 /// [C99 6.5.1p2]
951 ///
952 /// This encodes all the information about how a declaration is referenced
953 /// within an expression.
954 ///
955 /// There are several optional constructs attached to DeclRefExprs only when
956 /// they apply in order to conserve memory. These are laid out past the end of
957 /// the object, and flags in the DeclRefExprBitfield track whether they exist:
958 ///
959 /// DeclRefExprBits.HasQualifier:
960 /// Specifies when this declaration reference expression has a C++
961 /// nested-name-specifier.
962 /// DeclRefExprBits.HasFoundDecl:
963 /// Specifies when this declaration reference expression has a record of
964 /// a NamedDecl (different from the referenced ValueDecl) which was found
965 /// during name lookup and/or overload resolution.
966 /// DeclRefExprBits.HasTemplateKWAndArgsInfo:
967 /// Specifies when this declaration reference expression has an explicit
968 /// C++ template keyword and/or template argument list.
969 /// DeclRefExprBits.RefersToEnclosingVariableOrCapture
970 /// Specifies when this declaration reference expression (validly)
971 /// refers to an enclosed local or a captured variable.
972 class DeclRefExpr final
973  : public Expr,
974  private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
975  NamedDecl *, ASTTemplateKWAndArgsInfo,
976  TemplateArgumentLoc> {
977  /// The declaration that we are referencing.
978  ValueDecl *D;
979 
980  /// The location of the declaration name itself.
981  SourceLocation Loc;
982 
983  /// Provides source/type location info for the declaration name
984  /// embedded in D.
985  DeclarationNameLoc DNLoc;
986 
987  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
988  return hasQualifier() ? 1 : 0;
989  }
990 
991  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
992  return hasFoundDecl() ? 1 : 0;
993  }
994 
995  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
996  return hasTemplateKWAndArgsInfo() ? 1 : 0;
997  }
998 
999  /// Test whether there is a distinct FoundDecl attached to the end of
1000  /// this DRE.
1001  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
1002 
1003  DeclRefExpr(const ASTContext &Ctx,
1004  NestedNameSpecifierLoc QualifierLoc,
1005  SourceLocation TemplateKWLoc,
1006  ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
1007  const DeclarationNameInfo &NameInfo,
1008  NamedDecl *FoundD,
1009  const TemplateArgumentListInfo *TemplateArgs,
1010  QualType T, ExprValueKind VK);
1011 
1012  /// Construct an empty declaration reference expression.
1013  explicit DeclRefExpr(EmptyShell Empty)
1014  : Expr(DeclRefExprClass, Empty) { }
1015 
1016  /// Computes the type- and value-dependence flags for this
1017  /// declaration reference expression.
1018  void computeDependence(const ASTContext &C);
1019 
1020 public:
1021  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
1023  const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
1024  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
1025  D(D), Loc(L), DNLoc(LocInfo) {
1026  DeclRefExprBits.HasQualifier = 0;
1027  DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
1028  DeclRefExprBits.HasFoundDecl = 0;
1029  DeclRefExprBits.HadMultipleCandidates = 0;
1030  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
1031  RefersToEnclosingVariableOrCapture;
1032  computeDependence(D->getASTContext());
1033  }
1034 
1035  static DeclRefExpr *
1036  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1037  SourceLocation TemplateKWLoc, ValueDecl *D,
1038  bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
1039  QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1040  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1041 
1042  static DeclRefExpr *
1043  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1044  SourceLocation TemplateKWLoc, ValueDecl *D,
1045  bool RefersToEnclosingVariableOrCapture,
1046  const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1047  NamedDecl *FoundD = nullptr,
1048  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1049 
1050  /// Construct an empty declaration reference expression.
1051  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
1052  bool HasQualifier,
1053  bool HasFoundDecl,
1054  bool HasTemplateKWAndArgsInfo,
1055  unsigned NumTemplateArgs);
1056 
1057  ValueDecl *getDecl() { return D; }
1058  const ValueDecl *getDecl() const { return D; }
1059  void setDecl(ValueDecl *NewD) { D = NewD; }
1060 
1062  return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1063  }
1064 
1065  SourceLocation getLocation() const { return Loc; }
1066  void setLocation(SourceLocation L) { Loc = L; }
1067  SourceLocation getLocStart() const LLVM_READONLY;
1068  SourceLocation getLocEnd() const LLVM_READONLY;
1069 
1070  /// Determine whether this declaration reference was preceded by a
1071  /// C++ nested-name-specifier, e.g., \c N::foo.
1072  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1073 
1074  /// If the name was qualified, retrieves the nested-name-specifier
1075  /// that precedes the name, with source-location information.
1077  if (!hasQualifier())
1078  return NestedNameSpecifierLoc();
1079  return *getTrailingObjects<NestedNameSpecifierLoc>();
1080  }
1081 
1082  /// If the name was qualified, retrieves the nested-name-specifier
1083  /// that precedes the name. Otherwise, returns NULL.
1085  return getQualifierLoc().getNestedNameSpecifier();
1086  }
1087 
1088  /// Get the NamedDecl through which this reference occurred.
1089  ///
1090  /// This Decl may be different from the ValueDecl actually referred to in the
1091  /// presence of using declarations, etc. It always returns non-NULL, and may
1092  /// simple return the ValueDecl when appropriate.
1093 
1095  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1096  }
1097 
1098  /// Get the NamedDecl through which this reference occurred.
1099  /// See non-const variant.
1100  const NamedDecl *getFoundDecl() const {
1101  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1102  }
1103 
1105  return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1106  }
1107 
1108  /// Retrieve the location of the template keyword preceding
1109  /// this name, if any.
1111  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1112  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1113  }
1114 
1115  /// Retrieve the location of the left angle bracket starting the
1116  /// explicit template argument list following the name, if any.
1118  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1119  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1120  }
1121 
1122  /// Retrieve the location of the right angle bracket ending the
1123  /// explicit template argument list following the name, if any.
1125  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1126  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1127  }
1128 
1129  /// Determines whether the name in this declaration reference
1130  /// was preceded by the template keyword.
1131  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1132 
1133  /// Determines whether this declaration reference was followed by an
1134  /// explicit template argument list.
1135  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1136 
1137  /// Copies the template arguments (if present) into the given
1138  /// structure.
1140  if (hasExplicitTemplateArgs())
1141  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1142  getTrailingObjects<TemplateArgumentLoc>(), List);
1143  }
1144 
1145  /// Retrieve the template arguments provided as part of this
1146  /// template-id.
1148  if (!hasExplicitTemplateArgs())
1149  return nullptr;
1150 
1151  return getTrailingObjects<TemplateArgumentLoc>();
1152  }
1153 
1154  /// Retrieve the number of template arguments provided as part of this
1155  /// template-id.
1156  unsigned getNumTemplateArgs() const {
1157  if (!hasExplicitTemplateArgs())
1158  return 0;
1159 
1160  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1161  }
1162 
1164  return {getTemplateArgs(), getNumTemplateArgs()};
1165  }
1166 
1167  /// Returns true if this expression refers to a function that
1168  /// was resolved from an overloaded set having size greater than 1.
1169  bool hadMultipleCandidates() const {
1170  return DeclRefExprBits.HadMultipleCandidates;
1171  }
1172  /// Sets the flag telling whether this expression refers to
1173  /// a function that was resolved from an overloaded set having size
1174  /// greater than 1.
1175  void setHadMultipleCandidates(bool V = true) {
1176  DeclRefExprBits.HadMultipleCandidates = V;
1177  }
1178 
1179  /// Does this DeclRefExpr refer to an enclosing local or a captured
1180  /// variable?
1182  return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1183  }
1184 
1185  static bool classof(const Stmt *T) {
1186  return T->getStmtClass() == DeclRefExprClass;
1187  }
1188 
1189  // Iterators
1192  }
1193 
1196  }
1197 
1199  friend class ASTStmtReader;
1200  friend class ASTStmtWriter;
1201 };
1202 
1203 /// [C99 6.4.2.2] - A predefined identifier such as __func__.
1204 class PredefinedExpr : public Expr {
1205 public:
1206  enum IdentType {
1209  LFunction, // Same as Function, but as wide string.
1213  /// The same as PrettyFunction, except that the
1214  /// 'virtual' keyword is omitted for virtual member functions.
1215  PrettyFunctionNoVirtual
1216  };
1217 
1218 private:
1219  SourceLocation Loc;
1220  IdentType Type;
1221  Stmt *FnName;
1222 
1223 public:
1225  StringLiteral *SL);
1226 
1227  /// Construct an empty predefined expression.
1228  explicit PredefinedExpr(EmptyShell Empty)
1229  : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1230 
1231  IdentType getIdentType() const { return Type; }
1232 
1233  SourceLocation getLocation() const { return Loc; }
1234  void setLocation(SourceLocation L) { Loc = L; }
1235 
1236  StringLiteral *getFunctionName();
1238  return const_cast<PredefinedExpr *>(this)->getFunctionName();
1239  }
1240 
1241  static StringRef getIdentTypeName(IdentType IT);
1242  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1243 
1244  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1245  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1246 
1247  static bool classof(const Stmt *T) {
1248  return T->getStmtClass() == PredefinedExprClass;
1249  }
1250 
1251  // Iterators
1252  child_range children() { return child_range(&FnName, &FnName + 1); }
1254  return const_child_range(&FnName, &FnName + 1);
1255  }
1256 
1257  friend class ASTStmtReader;
1258 };
1259 
1260 /// Used by IntegerLiteral/FloatingLiteral to store the numeric without
1261 /// leaking memory.
1262 ///
1263 /// For large floats/integers, APFloat/APInt will allocate memory from the heap
1264 /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
1265 /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1266 /// the APFloat/APInt values will never get freed. APNumericStorage uses
1267 /// ASTContext's allocator for memory allocation.
1269  union {
1270  uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1271  uint64_t *pVal; ///< Used to store the >64 bits integer value.
1272  };
1273  unsigned BitWidth;
1274 
1275  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1276 
1277  APNumericStorage(const APNumericStorage &) = delete;
1278  void operator=(const APNumericStorage &) = delete;
1279 
1280 protected:
1281  APNumericStorage() : VAL(0), BitWidth(0) { }
1282 
1283  llvm::APInt getIntValue() const {
1284  unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1285  if (NumWords > 1)
1286  return llvm::APInt(BitWidth, NumWords, pVal);
1287  else
1288  return llvm::APInt(BitWidth, VAL);
1289  }
1290  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1291 };
1292 
1294 public:
1295  llvm::APInt getValue() const { return getIntValue(); }
1296  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1297  setIntValue(C, Val);
1298  }
1299 };
1300 
1302 public:
1303  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1304  return llvm::APFloat(Semantics, getIntValue());
1305  }
1306  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1307  setIntValue(C, Val.bitcastToAPInt());
1308  }
1309 };
1310 
1311 class IntegerLiteral : public Expr, public APIntStorage {
1312  SourceLocation Loc;
1313 
1314  /// Construct an empty integer literal.
1315  explicit IntegerLiteral(EmptyShell Empty)
1316  : Expr(IntegerLiteralClass, Empty) { }
1317 
1318 public:
1319  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1320  // or UnsignedLongLongTy
1321  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1322  SourceLocation l);
1323 
1324  /// Returns a new integer literal with value 'V' and type 'type'.
1325  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1326  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1327  /// \param V - the value that the returned integer literal contains.
1328  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1329  QualType type, SourceLocation l);
1330  /// Returns a new empty integer literal.
1331  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1332 
1333  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1334  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1335 
1336  /// Retrieve the location of the literal.
1337  SourceLocation getLocation() const { return Loc; }
1338 
1339  void setLocation(SourceLocation Location) { Loc = Location; }
1340 
1341  static bool classof(const Stmt *T) {
1342  return T->getStmtClass() == IntegerLiteralClass;
1343  }
1344 
1345  // Iterators
1348  }
1351  }
1352 };
1353 
1354 class CharacterLiteral : public Expr {
1355 public:
1361  UTF32
1362  };
1363 
1364 private:
1365  unsigned Value;
1366  SourceLocation Loc;
1367 public:
1368  // type should be IntTy
1370  SourceLocation l)
1371  : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1372  false, false),
1373  Value(value), Loc(l) {
1374  CharacterLiteralBits.Kind = kind;
1375  }
1376 
1377  /// Construct an empty character literal.
1378  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1379 
1380  SourceLocation getLocation() const { return Loc; }
1382  return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1383  }
1384 
1385  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1386  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1387 
1388  unsigned getValue() const { return Value; }
1389 
1390  void setLocation(SourceLocation Location) { Loc = Location; }
1391  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1392  void setValue(unsigned Val) { Value = Val; }
1393 
1394  static bool classof(const Stmt *T) {
1395  return T->getStmtClass() == CharacterLiteralClass;
1396  }
1397 
1398  // Iterators
1401  }
1404  }
1405 };
1406 
1407 class FloatingLiteral : public Expr, private APFloatStorage {
1408  SourceLocation Loc;
1409 
1410  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1412 
1413  /// Construct an empty floating-point literal.
1414  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1415 
1416 public:
1417  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1418  bool isexact, QualType Type, SourceLocation L);
1419  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1420 
1421  llvm::APFloat getValue() const {
1422  return APFloatStorage::getValue(getSemantics());
1423  }
1424  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1425  assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1426  APFloatStorage::setValue(C, Val);
1427  }
1428 
1429  /// Get a raw enumeration value representing the floating-point semantics of
1430  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1432  return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1433  }
1434 
1435  /// Set the raw enumeration value representing the floating-point semantics of
1436  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1438  FloatingLiteralBits.Semantics = Sem;
1439  }
1440 
1441  /// Return the APFloat semantics this literal uses.
1442  const llvm::fltSemantics &getSemantics() const;
1443 
1444  /// Set the APFloat semantics this literal uses.
1445  void setSemantics(const llvm::fltSemantics &Sem);
1446 
1447  bool isExact() const { return FloatingLiteralBits.IsExact; }
1448  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1449 
1450  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1451  /// double. Note that this may cause loss of precision, but is useful for
1452  /// debugging dumps, etc.
1453  double getValueAsApproximateDouble() const;
1454 
1455  SourceLocation getLocation() const { return Loc; }
1456  void setLocation(SourceLocation L) { Loc = L; }
1457 
1458  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1459  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1460 
1461  static bool classof(const Stmt *T) {
1462  return T->getStmtClass() == FloatingLiteralClass;
1463  }
1464 
1465  // Iterators
1468  }
1471  }
1472 };
1473 
1474 /// ImaginaryLiteral - We support imaginary integer and floating point literals,
1475 /// like "1.0i". We represent these as a wrapper around FloatingLiteral and
1476 /// IntegerLiteral classes. Instances of this class always have a Complex type
1477 /// whose element type matches the subexpression.
1478 ///
1479 class ImaginaryLiteral : public Expr {
1480  Stmt *Val;
1481 public:
1483  : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1484  false, false),
1485  Val(val) {}
1486 
1487  /// Build an empty imaginary literal.
1489  : Expr(ImaginaryLiteralClass, Empty) { }
1490 
1491  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1492  Expr *getSubExpr() { return cast<Expr>(Val); }
1493  void setSubExpr(Expr *E) { Val = E; }
1494 
1495  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1496  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1497 
1498  static bool classof(const Stmt *T) {
1499  return T->getStmtClass() == ImaginaryLiteralClass;
1500  }
1501 
1502  // Iterators
1503  child_range children() { return child_range(&Val, &Val+1); }
1505  return const_child_range(&Val, &Val + 1);
1506  }
1507 };
1508 
1509 /// StringLiteral - This represents a string literal expression, e.g. "foo"
1510 /// or L"bar" (wide strings). The actual string is returned by getBytes()
1511 /// is NOT null-terminated, and the length of the string is determined by
1512 /// calling getByteLength(). The C type for a string is always a
1513 /// ConstantArrayType. In C++, the char type is const qualified, in C it is
1514 /// not.
1515 ///
1516 /// Note that strings in C can be formed by concatenation of multiple string
1517 /// literal pptokens in translation phase #6. This keeps track of the locations
1518 /// of each of these pieces.
1519 ///
1520 /// Strings in C can also be truncated and extended by assigning into arrays,
1521 /// e.g. with constructs like:
1522 /// char X[2] = "foobar";
1523 /// In this case, getByteLength() will return 6, but the string literal will
1524 /// have type "char[2]".
1525 class StringLiteral : public Expr {
1526 public:
1527  enum StringKind {
1532  UTF32
1533  };
1534 
1535 private:
1536  friend class ASTStmtReader;
1537 
1538  union {
1539  const char *asChar;
1540  const uint16_t *asUInt16;
1541  const uint32_t *asUInt32;
1542  } StrData;
1543  unsigned Length;
1544  unsigned CharByteWidth : 4;
1545  unsigned Kind : 3;
1546  unsigned IsPascal : 1;
1547  unsigned NumConcatenated;
1548  SourceLocation TokLocs[1];
1549 
1550  StringLiteral(QualType Ty) :
1551  Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1552  false) {}
1553 
1554  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1555 
1556 public:
1557  /// This is the "fully general" constructor that allows representation of
1558  /// strings formed from multiple concatenated tokens.
1559  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1560  StringKind Kind, bool Pascal, QualType Ty,
1561  const SourceLocation *Loc, unsigned NumStrs);
1562 
1563  /// Simple constructor for string literals made from one token.
1564  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1565  StringKind Kind, bool Pascal, QualType Ty,
1566  SourceLocation Loc) {
1567  return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1568  }
1569 
1570  /// Construct an empty string literal.
1571  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1572 
1573  StringRef getString() const {
1574  assert(CharByteWidth==1
1575  && "This function is used in places that assume strings use char");
1576  return StringRef(StrData.asChar, getByteLength());
1577  }
1578 
1579  /// Allow access to clients that need the byte representation, such as
1580  /// ASTWriterStmt::VisitStringLiteral().
1581  StringRef getBytes() const {
1582  // FIXME: StringRef may not be the right type to use as a result for this.
1583  if (CharByteWidth == 1)
1584  return StringRef(StrData.asChar, getByteLength());
1585  if (CharByteWidth == 4)
1586  return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1587  getByteLength());
1588  assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1589  return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1590  getByteLength());
1591  }
1592 
1593  void outputString(raw_ostream &OS) const;
1594 
1595  uint32_t getCodeUnit(size_t i) const {
1596  assert(i < Length && "out of bounds access");
1597  if (CharByteWidth == 1)
1598  return static_cast<unsigned char>(StrData.asChar[i]);
1599  if (CharByteWidth == 4)
1600  return StrData.asUInt32[i];
1601  assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1602  return StrData.asUInt16[i];
1603  }
1604 
1605  unsigned getByteLength() const { return CharByteWidth*Length; }
1606  unsigned getLength() const { return Length; }
1607  unsigned getCharByteWidth() const { return CharByteWidth; }
1608 
1609  /// Sets the string data to the given string data.
1610  void setString(const ASTContext &C, StringRef Str,
1611  StringKind Kind, bool IsPascal);
1612 
1613  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1614 
1615 
1616  bool isAscii() const { return Kind == Ascii; }
1617  bool isWide() const { return Kind == Wide; }
1618  bool isUTF8() const { return Kind == UTF8; }
1619  bool isUTF16() const { return Kind == UTF16; }
1620  bool isUTF32() const { return Kind == UTF32; }
1621  bool isPascal() const { return IsPascal; }
1622 
1623  bool containsNonAscii() const {
1624  StringRef Str = getString();
1625  for (unsigned i = 0, e = Str.size(); i != e; ++i)
1626  if (!isASCII(Str[i]))
1627  return true;
1628  return false;
1629  }
1630 
1631  bool containsNonAsciiOrNull() const {
1632  StringRef Str = getString();
1633  for (unsigned i = 0, e = Str.size(); i != e; ++i)
1634  if (!isASCII(Str[i]) || !Str[i])
1635  return true;
1636  return false;
1637  }
1638 
1639  /// getNumConcatenated - Get the number of string literal tokens that were
1640  /// concatenated in translation phase #6 to form this string literal.
1641  unsigned getNumConcatenated() const { return NumConcatenated; }
1642 
1643  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1644  assert(TokNum < NumConcatenated && "Invalid tok number");
1645  return TokLocs[TokNum];
1646  }
1647  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1648  assert(TokNum < NumConcatenated && "Invalid tok number");
1649  TokLocs[TokNum] = L;
1650  }
1651 
1652  /// getLocationOfByte - Return a source location that points to the specified
1653  /// byte of this string literal.
1654  ///
1655  /// Strings are amazingly complex. They can be formed from multiple tokens
1656  /// and can have escape sequences in them in addition to the usual trigraph
1657  /// and escaped newline business. This routine handles this complexity.
1658  ///
1660  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1661  const LangOptions &Features, const TargetInfo &Target,
1662  unsigned *StartToken = nullptr,
1663  unsigned *StartTokenByteOffset = nullptr) const;
1664 
1666  tokloc_iterator tokloc_begin() const { return TokLocs; }
1667  tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
1668 
1669  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1670  SourceLocation getLocEnd() const LLVM_READONLY {
1671  return TokLocs[NumConcatenated - 1];
1672  }
1673 
1674  static bool classof(const Stmt *T) {
1675  return T->getStmtClass() == StringLiteralClass;
1676  }
1677 
1678  // Iterators
1681  }
1684  }
1685 };
1686 
1687 /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
1688 /// AST node is only formed if full location information is requested.
1689 class ParenExpr : public Expr {
1690  SourceLocation L, R;
1691  Stmt *Val;
1692 public:
1694  : Expr(ParenExprClass, val->getType(),
1695  val->getValueKind(), val->getObjectKind(),
1696  val->isTypeDependent(), val->isValueDependent(),
1697  val->isInstantiationDependent(),
1698  val->containsUnexpandedParameterPack()),
1699  L(l), R(r), Val(val) {}
1700 
1701  /// Construct an empty parenthesized expression.
1702  explicit ParenExpr(EmptyShell Empty)
1703  : Expr(ParenExprClass, Empty) { }
1704 
1705  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1706  Expr *getSubExpr() { return cast<Expr>(Val); }
1707  void setSubExpr(Expr *E) { Val = E; }
1708 
1709  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1710  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1711 
1712  /// Get the location of the left parentheses '('.
1713  SourceLocation getLParen() const { return L; }
1714  void setLParen(SourceLocation Loc) { L = Loc; }
1715 
1716  /// Get the location of the right parentheses ')'.
1717  SourceLocation getRParen() const { return R; }
1718  void setRParen(SourceLocation Loc) { R = Loc; }
1719 
1720  static bool classof(const Stmt *T) {
1721  return T->getStmtClass() == ParenExprClass;
1722  }
1723 
1724  // Iterators
1725  child_range children() { return child_range(&Val, &Val+1); }
1727  return const_child_range(&Val, &Val + 1);
1728  }
1729 };
1730 
1731 /// UnaryOperator - This represents the unary-expression's (except sizeof and
1732 /// alignof), the postinc/postdec operators from postfix-expression, and various
1733 /// extensions.
1734 ///
1735 /// Notes on various nodes:
1736 ///
1737 /// Real/Imag - These return the real/imag part of a complex operand. If
1738 /// applied to a non-complex value, the former returns its operand and the
1739 /// later returns zero in the type of the operand.
1740 ///
1741 class UnaryOperator : public Expr {
1742 public:
1744 
1745 private:
1746  unsigned Opc : 5;
1747  unsigned CanOverflow : 1;
1748  SourceLocation Loc;
1749  Stmt *Val;
1750 public:
1751  UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK,
1752  ExprObjectKind OK, SourceLocation l, bool CanOverflow)
1753  : Expr(UnaryOperatorClass, type, VK, OK,
1754  input->isTypeDependent() || type->isDependentType(),
1755  input->isValueDependent(),
1756  (input->isInstantiationDependent() ||
1757  type->isInstantiationDependentType()),
1758  input->containsUnexpandedParameterPack()),
1759  Opc(opc), CanOverflow(CanOverflow), Loc(l), Val(input) {}
1760 
1761  /// Build an empty unary operator.
1762  explicit UnaryOperator(EmptyShell Empty)
1763  : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1764 
1765  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1766  void setOpcode(Opcode O) { Opc = O; }
1767 
1768  Expr *getSubExpr() const { return cast<Expr>(Val); }
1769  void setSubExpr(Expr *E) { Val = E; }
1770 
1771  /// getOperatorLoc - Return the location of the operator.
1772  SourceLocation getOperatorLoc() const { return Loc; }
1773  void setOperatorLoc(SourceLocation L) { Loc = L; }
1774 
1775  /// Returns true if the unary operator can cause an overflow. For instance,
1776  /// signed int i = INT_MAX; i++;
1777  /// signed char c = CHAR_MAX; c++;
1778  /// Due to integer promotions, c++ is promoted to an int before the postfix
1779  /// increment, and the result is an int that cannot overflow. However, i++
1780  /// can overflow.
1781  bool canOverflow() const { return CanOverflow; }
1782  void setCanOverflow(bool C) { CanOverflow = C; }
1783 
1784  /// isPostfix - Return true if this is a postfix operation, like x++.
1785  static bool isPostfix(Opcode Op) {
1786  return Op == UO_PostInc || Op == UO_PostDec;
1787  }
1788 
1789  /// isPrefix - Return true if this is a prefix operation, like --x.
1790  static bool isPrefix(Opcode Op) {
1791  return Op == UO_PreInc || Op == UO_PreDec;
1792  }
1793 
1794  bool isPrefix() const { return isPrefix(getOpcode()); }
1795  bool isPostfix() const { return isPostfix(getOpcode()); }
1796 
1797  static bool isIncrementOp(Opcode Op) {
1798  return Op == UO_PreInc || Op == UO_PostInc;
1799  }
1800  bool isIncrementOp() const {
1801  return isIncrementOp(getOpcode());
1802  }
1803 
1804  static bool isDecrementOp(Opcode Op) {
1805  return Op == UO_PreDec || Op == UO_PostDec;
1806  }
1807  bool isDecrementOp() const {
1808  return isDecrementOp(getOpcode());
1809  }
1810 
1811  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1812  bool isIncrementDecrementOp() const {
1813  return isIncrementDecrementOp(getOpcode());
1814  }
1815 
1816  static bool isArithmeticOp(Opcode Op) {
1817  return Op >= UO_Plus && Op <= UO_LNot;
1818  }
1819  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1820 
1821  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1822  /// corresponds to, e.g. "sizeof" or "[pre]++"
1823  static StringRef getOpcodeStr(Opcode Op);
1824 
1825  /// Retrieve the unary opcode that corresponds to the given
1826  /// overloaded operator.
1827  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1828 
1829  /// Retrieve the overloaded operator kind that corresponds to
1830  /// the given unary opcode.
1831  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1832 
1833  SourceLocation getLocStart() const LLVM_READONLY {
1834  return isPostfix() ? Val->getLocStart() : Loc;
1835  }
1836  SourceLocation getLocEnd() const LLVM_READONLY {
1837  return isPostfix() ? Loc : Val->getLocEnd();
1838  }
1839  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1840 
1841  static bool classof(const Stmt *T) {
1842  return T->getStmtClass() == UnaryOperatorClass;
1843  }
1844 
1845  // Iterators
1846  child_range children() { return child_range(&Val, &Val+1); }
1848  return const_child_range(&Val, &Val + 1);
1849  }
1850 };
1851 
1852 /// Helper class for OffsetOfExpr.
1853 
1854 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1856 public:
1857  /// The kind of offsetof node we have.
1858  enum Kind {
1859  /// An index into an array.
1860  Array = 0x00,
1861  /// A field.
1862  Field = 0x01,
1863  /// A field in a dependent type, known only by its name.
1864  Identifier = 0x02,
1865  /// An implicit indirection through a C++ base class, when the
1866  /// field found is in a base class.
1867  Base = 0x03
1868  };
1869 
1870 private:
1871  enum { MaskBits = 2, Mask = 0x03 };
1872 
1873  /// The source range that covers this part of the designator.
1874  SourceRange Range;
1875 
1876  /// The data describing the designator, which comes in three
1877  /// different forms, depending on the lower two bits.
1878  /// - An unsigned index into the array of Expr*'s stored after this node
1879  /// in memory, for [constant-expression] designators.
1880  /// - A FieldDecl*, for references to a known field.
1881  /// - An IdentifierInfo*, for references to a field with a given name
1882  /// when the class type is dependent.
1883  /// - A CXXBaseSpecifier*, for references that look at a field in a
1884  /// base class.
1885  uintptr_t Data;
1886 
1887 public:
1888  /// Create an offsetof node that refers to an array element.
1889  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1890  SourceLocation RBracketLoc)
1891  : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
1892 
1893  /// Create an offsetof node that refers to a field.
1895  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1896  Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
1897 
1898  /// Create an offsetof node that refers to an identifier.
1900  SourceLocation NameLoc)
1901  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1902  Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
1903 
1904  /// Create an offsetof node that refers into a C++ base class.
1906  : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1907 
1908  /// Determine what kind of offsetof node this is.
1909  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
1910 
1911  /// For an array element node, returns the index into the array
1912  /// of expressions.
1913  unsigned getArrayExprIndex() const {
1914  assert(getKind() == Array);
1915  return Data >> 2;
1916  }
1917 
1918  /// For a field offsetof node, returns the field.
1919  FieldDecl *getField() const {
1920  assert(getKind() == Field);
1921  return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1922  }
1923 
1924  /// For a field or identifier offsetof node, returns the name of
1925  /// the field.
1926  IdentifierInfo *getFieldName() const;
1927 
1928  /// For a base class node, returns the base specifier.
1930  assert(getKind() == Base);
1931  return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1932  }
1933 
1934  /// Retrieve the source range that covers this offsetof node.
1935  ///
1936  /// For an array element node, the source range contains the locations of
1937  /// the square brackets. For a field or identifier node, the source range
1938  /// contains the location of the period (if there is one) and the
1939  /// identifier.
1940  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1941  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1942  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1943 };
1944 
1945 /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1946 /// offsetof(record-type, member-designator). For example, given:
1947 /// @code
1948 /// struct S {
1949 /// float f;
1950 /// double d;
1951 /// };
1952 /// struct T {
1953 /// int i;
1954 /// struct S s[10];
1955 /// };
1956 /// @endcode
1957 /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1958 
1959 class OffsetOfExpr final
1960  : public Expr,
1961  private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
1962  SourceLocation OperatorLoc, RParenLoc;
1963  // Base type;
1964  TypeSourceInfo *TSInfo;
1965  // Number of sub-components (i.e. instances of OffsetOfNode).
1966  unsigned NumComps;
1967  // Number of sub-expressions (i.e. array subscript expressions).
1968  unsigned NumExprs;
1969 
1970  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
1971  return NumComps;
1972  }
1973 
1975  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1977  SourceLocation RParenLoc);
1978 
1979  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1980  : Expr(OffsetOfExprClass, EmptyShell()),
1981  TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1982 
1983 public:
1984 
1985  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1986  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1987  ArrayRef<OffsetOfNode> comps,
1988  ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1989 
1990  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1991  unsigned NumComps, unsigned NumExprs);
1992 
1993  /// getOperatorLoc - Return the location of the operator.
1994  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1995  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1996 
1997  /// Return the location of the right parentheses.
1998  SourceLocation getRParenLoc() const { return RParenLoc; }
1999  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
2000 
2002  return TSInfo;
2003  }
2005  TSInfo = tsi;
2006  }
2007 
2008  const OffsetOfNode &getComponent(unsigned Idx) const {
2009  assert(Idx < NumComps && "Subscript out of range");
2010  return getTrailingObjects<OffsetOfNode>()[Idx];
2011  }
2012 
2013  void setComponent(unsigned Idx, OffsetOfNode ON) {
2014  assert(Idx < NumComps && "Subscript out of range");
2015  getTrailingObjects<OffsetOfNode>()[Idx] = ON;
2016  }
2017 
2018  unsigned getNumComponents() const {
2019  return NumComps;
2020  }
2021 
2022  Expr* getIndexExpr(unsigned Idx) {
2023  assert(Idx < NumExprs && "Subscript out of range");
2024  return getTrailingObjects<Expr *>()[Idx];
2025  }
2026 
2027  const Expr *getIndexExpr(unsigned Idx) const {
2028  assert(Idx < NumExprs && "Subscript out of range");
2029  return getTrailingObjects<Expr *>()[Idx];
2030  }
2031 
2032  void setIndexExpr(unsigned Idx, Expr* E) {
2033  assert(Idx < NumComps && "Subscript out of range");
2034  getTrailingObjects<Expr *>()[Idx] = E;
2035  }
2036 
2037  unsigned getNumExpressions() const {
2038  return NumExprs;
2039  }
2040 
2041  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
2042  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2043 
2044  static bool classof(const Stmt *T) {
2045  return T->getStmtClass() == OffsetOfExprClass;
2046  }
2047 
2048  // Iterators
2050  Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
2051  return child_range(begin, begin + NumExprs);
2052  }
2054  Stmt *const *begin =
2055  reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
2056  return const_child_range(begin, begin + NumExprs);
2057  }
2059 };
2060 
2061 /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2062 /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
2063 /// vec_step (OpenCL 1.1 6.11.12).
2065  union {
2068  } Argument;
2069  SourceLocation OpLoc, RParenLoc;
2070 
2071 public:
2073  QualType resultType, SourceLocation op,
2074  SourceLocation rp) :
2075  Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2076  false, // Never type-dependent (C++ [temp.dep.expr]p3).
2077  // Value-dependent if the argument is type-dependent.
2078  TInfo->getType()->isDependentType(),
2079  TInfo->getType()->isInstantiationDependentType(),
2080  TInfo->getType()->containsUnexpandedParameterPack()),
2081  OpLoc(op), RParenLoc(rp) {
2082  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2083  UnaryExprOrTypeTraitExprBits.IsType = true;
2084  Argument.Ty = TInfo;
2085  }
2086 
2088  QualType resultType, SourceLocation op,
2089  SourceLocation rp);
2090 
2091  /// Construct an empty sizeof/alignof expression.
2093  : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2094 
2096  return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2097  }
2098  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2099 
2100  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2102  return getArgumentTypeInfo()->getType();
2103  }
2105  assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2106  return Argument.Ty;
2107  }
2109  assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2110  return static_cast<Expr*>(Argument.Ex);
2111  }
2112  const Expr *getArgumentExpr() const {
2113  return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2114  }
2115 
2116  void setArgument(Expr *E) {
2117  Argument.Ex = E;
2118  UnaryExprOrTypeTraitExprBits.IsType = false;
2119  }
2121  Argument.Ty = TInfo;
2122  UnaryExprOrTypeTraitExprBits.IsType = true;
2123  }
2124 
2125  /// Gets the argument type, or the type of the argument expression, whichever
2126  /// is appropriate.
2128  return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2129  }
2130 
2131  SourceLocation getOperatorLoc() const { return OpLoc; }
2132  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2133 
2134  SourceLocation getRParenLoc() const { return RParenLoc; }
2135  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2136 
2137  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2138  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2139 
2140  static bool classof(const Stmt *T) {
2141  return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2142  }
2143 
2144  // Iterators
2146  const_child_range children() const;
2147 };
2148 
2149 //===----------------------------------------------------------------------===//
2150 // Postfix Operators.
2151 //===----------------------------------------------------------------------===//
2152 
2153 /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2154 class ArraySubscriptExpr : public Expr {
2155  enum { LHS, RHS, END_EXPR=2 };
2156  Stmt* SubExprs[END_EXPR];
2157  SourceLocation RBracketLoc;
2158 public:
2161  SourceLocation rbracketloc)
2162  : Expr(ArraySubscriptExprClass, t, VK, OK,
2163  lhs->isTypeDependent() || rhs->isTypeDependent(),
2164  lhs->isValueDependent() || rhs->isValueDependent(),
2165  (lhs->isInstantiationDependent() ||
2166  rhs->isInstantiationDependent()),
2167  (lhs->containsUnexpandedParameterPack() ||
2168  rhs->containsUnexpandedParameterPack())),
2169  RBracketLoc(rbracketloc) {
2170  SubExprs[LHS] = lhs;
2171  SubExprs[RHS] = rhs;
2172  }
2173 
2174  /// Create an empty array subscript expression.
2176  : Expr(ArraySubscriptExprClass, Shell) { }
2177 
2178  /// An array access can be written A[4] or 4[A] (both are equivalent).
2179  /// - getBase() and getIdx() always present the normalized view: A[4].
2180  /// In this case getBase() returns "A" and getIdx() returns "4".
2181  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2182  /// 4[A] getLHS() returns "4".
2183  /// Note: Because vector element access is also written A[4] we must
2184  /// predicate the format conversion in getBase and getIdx only on the
2185  /// the type of the RHS, as it is possible for the LHS to be a vector of
2186  /// integer type
2187  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2188  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2189  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2190 
2191  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2192  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2193  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2194 
2196  return getRHS()->getType()->isIntegerType() ? getLHS() : getRHS();
2197  }
2198 
2199  const Expr *getBase() const {
2200  return getRHS()->getType()->isIntegerType() ? getLHS() : getRHS();
2201  }
2202 
2204  return getRHS()->getType()->isIntegerType() ? getRHS() : getLHS();
2205  }
2206 
2207  const Expr *getIdx() const {
2208  return getRHS()->getType()->isIntegerType() ? getRHS() : getLHS();
2209  }
2210 
2211  SourceLocation getLocStart() const LLVM_READONLY {
2212  return getLHS()->getLocStart();
2213  }
2214  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2215 
2216  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2217  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2218 
2219  SourceLocation getExprLoc() const LLVM_READONLY {
2220  return getBase()->getExprLoc();
2221  }
2222 
2223  static bool classof(const Stmt *T) {
2224  return T->getStmtClass() == ArraySubscriptExprClass;
2225  }
2226 
2227  // Iterators
2229  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2230  }
2232  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
2233  }
2234 };
2235 
2236 /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2237 /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2238 /// while its subclasses may represent alternative syntax that (semantically)
2239 /// results in a function call. For example, CXXOperatorCallExpr is
2240 /// a subclass for overloaded operator calls that use operator syntax, e.g.,
2241 /// "str1 + str2" to resolve to a function call.
2242 class CallExpr : public Expr {
2243  enum { FN=0, PREARGS_START=1 };
2244  Stmt **SubExprs;
2245  unsigned NumArgs;
2246  SourceLocation RParenLoc;
2247 
2248  void updateDependenciesFromArg(Expr *Arg);
2249 
2250 protected:
2251  // These versions of the constructor are for derived classes.
2252  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
2253  ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
2254  ExprValueKind VK, SourceLocation rparenloc);
2255  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef<Expr *> args,
2256  QualType t, ExprValueKind VK, SourceLocation rparenloc);
2257  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2258  EmptyShell Empty);
2259 
2260  Stmt *getPreArg(unsigned i) {
2261  assert(i < getNumPreArgs() && "Prearg access out of range!");
2262  return SubExprs[PREARGS_START+i];
2263  }
2264  const Stmt *getPreArg(unsigned i) const {
2265  assert(i < getNumPreArgs() && "Prearg access out of range!");
2266  return SubExprs[PREARGS_START+i];
2267  }
2268  void setPreArg(unsigned i, Stmt *PreArg) {
2269  assert(i < getNumPreArgs() && "Prearg access out of range!");
2270  SubExprs[PREARGS_START+i] = PreArg;
2271  }
2272 
2273  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2274 
2275 public:
2276  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2277  ExprValueKind VK, SourceLocation rparenloc);
2278 
2279  /// Build an empty call expression.
2280  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2281 
2282  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2283  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2284  void setCallee(Expr *F) { SubExprs[FN] = F; }
2285 
2286  Decl *getCalleeDecl();
2287  const Decl *getCalleeDecl() const {
2288  return const_cast<CallExpr*>(this)->getCalleeDecl();
2289  }
2290 
2291  /// If the callee is a FunctionDecl, return it. Otherwise return 0.
2292  FunctionDecl *getDirectCallee();
2294  return const_cast<CallExpr*>(this)->getDirectCallee();
2295  }
2296 
2297  /// getNumArgs - Return the number of actual arguments to this call.
2298  ///
2299  unsigned getNumArgs() const { return NumArgs; }
2300 
2301  /// Retrieve the call arguments.
2303  return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2304  }
2305  const Expr *const *getArgs() const {
2306  return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
2307  PREARGS_START);
2308  }
2309 
2310  /// getArg - Return the specified argument.
2311  Expr *getArg(unsigned Arg) {
2312  assert(Arg < NumArgs && "Arg access out of range!");
2313  return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2314  }
2315  const Expr *getArg(unsigned Arg) const {
2316  assert(Arg < NumArgs && "Arg access out of range!");
2317  return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2318  }
2319 
2320  /// setArg - Set the specified argument.
2321  void setArg(unsigned Arg, Expr *ArgExpr) {
2322  assert(Arg < NumArgs && "Arg access out of range!");
2323  SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2324  }
2325 
2326  /// setNumArgs - This changes the number of arguments present in this call.
2327  /// Any orphaned expressions are deleted by this, and any new operands are set
2328  /// to null.
2329  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2330 
2333  typedef llvm::iterator_range<arg_iterator> arg_range;
2334  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2335 
2336  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2337  arg_const_range arguments() const {
2338  return arg_const_range(arg_begin(), arg_end());
2339  }
2340 
2341  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2342  arg_iterator arg_end() {
2343  return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2344  }
2345  const_arg_iterator arg_begin() const {
2346  return SubExprs+PREARGS_START+getNumPreArgs();
2347  }
2348  const_arg_iterator arg_end() const {
2349  return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2350  }
2351 
2352  /// This method provides fast access to all the subexpressions of
2353  /// a CallExpr without going through the slower virtual child_iterator
2354  /// interface. This provides efficient reverse iteration of the
2355  /// subexpressions. This is currently used for CFG construction.
2357  return llvm::makeArrayRef(SubExprs,
2358  getNumPreArgs() + PREARGS_START + getNumArgs());
2359  }
2360 
2361  /// getNumCommas - Return the number of commas that must have been present in
2362  /// this function call.
2363  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2364 
2365  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2366  /// of the callee. If not, return 0.
2367  unsigned getBuiltinCallee() const;
2368 
2369  /// Returns \c true if this is a call to a builtin which does not
2370  /// evaluate side-effects within its arguments.
2371  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2372 
2373  /// getCallReturnType - Get the return type of the call expr. This is not
2374  /// always the type of the expr itself, if the return type is a reference
2375  /// type.
2376  QualType getCallReturnType(const ASTContext &Ctx) const;
2377 
2378  SourceLocation getRParenLoc() const { return RParenLoc; }
2379  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2380 
2381  SourceLocation getLocStart() const LLVM_READONLY;
2382  SourceLocation getLocEnd() const LLVM_READONLY;
2383 
2384  /// Return true if this is a call to __assume() or __builtin_assume() with
2385  /// a non-value-dependent constant parameter evaluating as false.
2386  bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
2387 
2388  bool isCallToStdMove() const {
2389  const FunctionDecl* FD = getDirectCallee();
2390  return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
2391  FD->getIdentifier() && FD->getIdentifier()->isStr("move");
2392  }
2393 
2394  static bool classof(const Stmt *T) {
2395  return T->getStmtClass() >= firstCallExprConstant &&
2396  T->getStmtClass() <= lastCallExprConstant;
2397  }
2398 
2399  // Iterators
2401  return child_range(&SubExprs[0],
2402  &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2403  }
2404 
2406  return const_child_range(&SubExprs[0], &SubExprs[0] + NumArgs +
2407  getNumPreArgs() + PREARGS_START);
2408  }
2409 };
2410 
2411 /// Extra data stored in some MemberExpr objects.
2413  /// The nested-name-specifier that qualifies the name, including
2414  /// source-location information.
2416 
2417  /// The DeclAccessPair through which the MemberDecl was found due to
2418  /// name qualifiers.
2420 };
2421 
2422 /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
2423 ///
2424 class MemberExpr final
2425  : public Expr,
2426  private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2427  ASTTemplateKWAndArgsInfo,
2428  TemplateArgumentLoc> {
2429  /// Base - the expression for the base pointer or structure references. In
2430  /// X.F, this is "X".
2431  Stmt *Base;
2432 
2433  /// MemberDecl - This is the decl being referenced by the field/member name.
2434  /// In X.F, this is the decl referenced by F.
2435  ValueDecl *MemberDecl;
2436 
2437  /// MemberDNLoc - Provides source/type location info for the
2438  /// declaration name embedded in MemberDecl.
2439  DeclarationNameLoc MemberDNLoc;
2440 
2441  /// MemberLoc - This is the location of the member name.
2442  SourceLocation MemberLoc;
2443 
2444  /// This is the location of the -> or . in the expression.
2445  SourceLocation OperatorLoc;
2446 
2447  /// IsArrow - True if this is "X->F", false if this is "X.F".
2448  bool IsArrow : 1;
2449 
2450  /// True if this member expression used a nested-name-specifier to
2451  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2452  /// declaration. When true, a MemberExprNameQualifier
2453  /// structure is allocated immediately after the MemberExpr.
2454  bool HasQualifierOrFoundDecl : 1;
2455 
2456  /// True if this member expression specified a template keyword
2457  /// and/or a template argument list explicitly, e.g., x->f<int>,
2458  /// x->template f, x->template f<int>.
2459  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2460  /// TemplateArguments (if any) are present.
2461  bool HasTemplateKWAndArgsInfo : 1;
2462 
2463  /// True if this member expression refers to a method that
2464  /// was resolved from an overloaded set having size greater than 1.
2465  bool HadMultipleCandidates : 1;
2466 
2467  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2468  return HasQualifierOrFoundDecl ? 1 : 0;
2469  }
2470 
2471  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2472  return HasTemplateKWAndArgsInfo ? 1 : 0;
2473  }
2474 
2475 public:
2476  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2477  ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2479  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2480  base->isValueDependent(), base->isInstantiationDependent(),
2481  base->containsUnexpandedParameterPack()),
2482  Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2483  MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2484  IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2485  HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2486  assert(memberdecl->getDeclName() == NameInfo.getName());
2487  }
2488 
2489  // NOTE: this constructor should be used only when it is known that
2490  // the member name can not provide additional syntactic info
2491  // (i.e., source locations for C++ operator names or type source info
2492  // for constructors, destructors and conversion operators).
2493  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2494  ValueDecl *memberdecl, SourceLocation l, QualType ty,
2496  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2497  base->isValueDependent(), base->isInstantiationDependent(),
2498  base->containsUnexpandedParameterPack()),
2499  Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2500  OperatorLoc(operatorloc), IsArrow(isarrow),
2501  HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2502  HadMultipleCandidates(false) {}
2503 
2504  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2505  SourceLocation OperatorLoc,
2506  NestedNameSpecifierLoc QualifierLoc,
2507  SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2508  DeclAccessPair founddecl,
2509  DeclarationNameInfo MemberNameInfo,
2510  const TemplateArgumentListInfo *targs, QualType ty,
2511  ExprValueKind VK, ExprObjectKind OK);
2512 
2513  void setBase(Expr *E) { Base = E; }
2514  Expr *getBase() const { return cast<Expr>(Base); }
2515 
2516  /// Retrieve the member declaration to which this expression refers.
2517  ///
2518  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
2519  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
2520  ValueDecl *getMemberDecl() const { return MemberDecl; }
2521  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2522 
2523  /// Retrieves the declaration found by lookup.
2525  if (!HasQualifierOrFoundDecl)
2526  return DeclAccessPair::make(getMemberDecl(),
2527  getMemberDecl()->getAccess());
2528  return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2529  }
2530 
2531  /// Determines whether this member expression actually had
2532  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2533  /// x->Base::foo.
2534  bool hasQualifier() const { return getQualifier() != nullptr; }
2535 
2536  /// If the member name was qualified, retrieves the
2537  /// nested-name-specifier that precedes the member name, with source-location
2538  /// information.
2540  if (!HasQualifierOrFoundDecl)
2541  return NestedNameSpecifierLoc();
2542 
2543  return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2544  }
2545 
2546  /// If the member name was qualified, retrieves the
2547  /// nested-name-specifier that precedes the member name. Otherwise, returns
2548  /// NULL.
2550  return getQualifierLoc().getNestedNameSpecifier();
2551  }
2552 
2553  /// Retrieve the location of the template keyword preceding
2554  /// the member name, if any.
2556  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2557  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2558  }
2559 
2560  /// Retrieve the location of the left angle bracket starting the
2561  /// explicit template argument list following the member name, if any.
2563  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2564  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2565  }
2566 
2567  /// Retrieve the location of the right angle bracket ending the
2568  /// explicit template argument list following the member name, if any.
2570  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2571  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2572  }
2573 
2574  /// Determines whether the member name was preceded by the template keyword.
2575  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2576 
2577  /// Determines whether the member name was followed by an
2578  /// explicit template argument list.
2579  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2580 
2581  /// Copies the template arguments (if present) into the given
2582  /// structure.
2584  if (hasExplicitTemplateArgs())
2585  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2586  getTrailingObjects<TemplateArgumentLoc>(), List);
2587  }
2588 
2589  /// Retrieve the template arguments provided as part of this
2590  /// template-id.
2592  if (!hasExplicitTemplateArgs())
2593  return nullptr;
2594 
2595  return getTrailingObjects<TemplateArgumentLoc>();
2596  }
2597 
2598  /// Retrieve the number of template arguments provided as part of this
2599  /// template-id.
2600  unsigned getNumTemplateArgs() const {
2601  if (!hasExplicitTemplateArgs())
2602  return 0;
2603 
2604  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2605  }
2606 
2608  return {getTemplateArgs(), getNumTemplateArgs()};
2609  }
2610 
2611  /// Retrieve the member declaration name info.
2613  return DeclarationNameInfo(MemberDecl->getDeclName(),
2614  MemberLoc, MemberDNLoc);
2615  }
2616 
2617  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2618 
2619  bool isArrow() const { return IsArrow; }
2620  void setArrow(bool A) { IsArrow = A; }
2621 
2622  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2623  /// location of 'F'.
2624  SourceLocation getMemberLoc() const { return MemberLoc; }
2625  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2626 
2627  SourceLocation getLocStart() const LLVM_READONLY;
2628  SourceLocation getLocEnd() const LLVM_READONLY;
2629 
2630  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2631 
2632  /// Determine whether the base of this explicit is implicit.
2633  bool isImplicitAccess() const {
2634  return getBase() && getBase()->isImplicitCXXThis();
2635  }
2636 
2637  /// Returns true if this member expression refers to a method that
2638  /// was resolved from an overloaded set having size greater than 1.
2639  bool hadMultipleCandidates() const {
2640  return HadMultipleCandidates;
2641  }
2642  /// Sets the flag telling whether this expression refers to
2643  /// a method that was resolved from an overloaded set having size
2644  /// greater than 1.
2645  void setHadMultipleCandidates(bool V = true) {
2646  HadMultipleCandidates = V;
2647  }
2648 
2649  /// Returns true if virtual dispatch is performed.
2650  /// If the member access is fully qualified, (i.e. X::f()), virtual
2651  /// dispatching is not performed. In -fapple-kext mode qualified
2652  /// calls to virtual method will still go through the vtable.
2653  bool performsVirtualDispatch(const LangOptions &LO) const {
2654  return LO.AppleKext || !hasQualifier();
2655  }
2656 
2657  static bool classof(const Stmt *T) {
2658  return T->getStmtClass() == MemberExprClass;
2659  }
2660 
2661  // Iterators
2662  child_range children() { return child_range(&Base, &Base+1); }
2664  return const_child_range(&Base, &Base + 1);
2665  }
2666 
2668  friend class ASTReader;
2669  friend class ASTStmtWriter;
2670 };
2671 
2672 /// CompoundLiteralExpr - [C99 6.5.2.5]
2673 ///
2674 class CompoundLiteralExpr : public Expr {
2675  /// LParenLoc - If non-null, this is the location of the left paren in a
2676  /// compound literal like "(int){4}". This can be null if this is a
2677  /// synthesized compound expression.
2678  SourceLocation LParenLoc;
2679 
2680  /// The type as written. This can be an incomplete array type, in
2681  /// which case the actual expression type will be different.
2682  /// The int part of the pair stores whether this expr is file scope.
2683  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2684  Stmt *Init;
2685 public:
2687  QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2688  : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2689  tinfo->getType()->isDependentType(),
2690  init->isValueDependent(),
2691  (init->isInstantiationDependent() ||
2692  tinfo->getType()->isInstantiationDependentType()),
2693  init->containsUnexpandedParameterPack()),
2694  LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2695 
2696  /// Construct an empty compound literal.
2698  : Expr(CompoundLiteralExprClass, Empty) { }
2699 
2700  const Expr *getInitializer() const { return cast<Expr>(Init); }
2701  Expr *getInitializer() { return cast<Expr>(Init); }
2702  void setInitializer(Expr *E) { Init = E; }
2703 
2704  bool isFileScope() const { return TInfoAndScope.getInt(); }
2705  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2706 
2707  SourceLocation getLParenLoc() const { return LParenLoc; }
2708  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2709 
2711  return TInfoAndScope.getPointer();
2712  }
2714  TInfoAndScope.setPointer(tinfo);
2715  }
2716 
2717  SourceLocation getLocStart() const LLVM_READONLY {
2718  // FIXME: Init should never be null.
2719  if (!Init)
2720  return SourceLocation();
2721  if (LParenLoc.isInvalid())
2722  return Init->getLocStart();
2723  return LParenLoc;
2724  }
2725  SourceLocation getLocEnd() const LLVM_READONLY {
2726  // FIXME: Init should never be null.
2727  if (!Init)
2728  return SourceLocation();
2729  return Init->getLocEnd();
2730  }
2731 
2732  static bool classof(const Stmt *T) {
2733  return T->getStmtClass() == CompoundLiteralExprClass;
2734  }
2735 
2736  // Iterators
2737  child_range children() { return child_range(&Init, &Init+1); }
2739  return const_child_range(&Init, &Init + 1);
2740  }
2741 };
2742 
2743 /// CastExpr - Base class for type casts, including both implicit
2744 /// casts (ImplicitCastExpr) and explicit casts that have some
2745 /// representation in the source code (ExplicitCastExpr's derived
2746 /// classes).
2747 class CastExpr : public Expr {
2748 private:
2749  Stmt *Op;
2750 
2751  bool CastConsistency() const;
2752 
2753  const CXXBaseSpecifier * const *path_buffer() const {
2754  return const_cast<CastExpr*>(this)->path_buffer();
2755  }
2756  CXXBaseSpecifier **path_buffer();
2757 
2758  void setBasePathSize(unsigned basePathSize) {
2759  CastExprBits.BasePathSize = basePathSize;
2760  assert(CastExprBits.BasePathSize == basePathSize &&
2761  "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2762  }
2763 
2764 protected:
2766  Expr *op, unsigned BasePathSize)
2767  : Expr(SC, ty, VK, OK_Ordinary,
2768  // Cast expressions are type-dependent if the type is
2769  // dependent (C++ [temp.dep.expr]p3).
2770  ty->isDependentType(),
2771  // Cast expressions are value-dependent if the type is
2772  // dependent or if the subexpression is value-dependent.
2773  ty->isDependentType() || (op && op->isValueDependent()),
2774  (ty->isInstantiationDependentType() ||
2775  (op && op->isInstantiationDependent())),
2776  // An implicit cast expression doesn't (lexically) contain an
2777  // unexpanded pack, even if its target type does.
2778  ((SC != ImplicitCastExprClass &&
2779  ty->containsUnexpandedParameterPack()) ||
2780  (op && op->containsUnexpandedParameterPack()))),
2781  Op(op) {
2782  CastExprBits.Kind = kind;
2783  setBasePathSize(BasePathSize);
2784  assert(CastConsistency());
2785  }
2786 
2787  /// Construct an empty cast.
2788  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2789  : Expr(SC, Empty) {
2790  setBasePathSize(BasePathSize);
2791  }
2792 
2793 public:
2794  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2795  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2796 
2797  static const char *getCastKindName(CastKind CK);
2798  const char *getCastKindName() const { return getCastKindName(getCastKind()); }
2799 
2800  Expr *getSubExpr() { return cast<Expr>(Op); }
2801  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2802  void setSubExpr(Expr *E) { Op = E; }
2803 
2804  /// Retrieve the cast subexpression as it was written in the source
2805  /// code, looking through any implicit casts or other intermediate nodes
2806  /// introduced by semantic analysis.
2807  Expr *getSubExprAsWritten();
2808  const Expr *getSubExprAsWritten() const {
2809  return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2810  }
2811 
2813  typedef const CXXBaseSpecifier * const *path_const_iterator;
2814  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2815  unsigned path_size() const { return CastExprBits.BasePathSize; }
2816  path_iterator path_begin() { return path_buffer(); }
2817  path_iterator path_end() { return path_buffer() + path_size(); }
2818  path_const_iterator path_begin() const { return path_buffer(); }
2819  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2820 
2822  assert(getCastKind() == CK_ToUnion);
2823  return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
2824  }
2825 
2826  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
2827  QualType opType);
2828  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
2829  QualType opType);
2830 
2831  static bool classof(const Stmt *T) {
2832  return T->getStmtClass() >= firstCastExprConstant &&
2833  T->getStmtClass() <= lastCastExprConstant;
2834  }
2835 
2836  // Iterators
2837  child_range children() { return child_range(&Op, &Op+1); }
2838  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
2839 };
2840 
2841 /// ImplicitCastExpr - Allows us to explicitly represent implicit type
2842 /// conversions, which have no direct representation in the original
2843 /// source code. For example: converting T[]->T*, void f()->void
2844 /// (*f)(), float->double, short->int, etc.
2845 ///
2846 /// In C, implicit casts always produce rvalues. However, in C++, an
2847 /// implicit cast whose result is being bound to a reference will be
2848 /// an lvalue or xvalue. For example:
2849 ///
2850 /// @code
2851 /// class Base { };
2852 /// class Derived : public Base { };
2853 /// Derived &&ref();
2854 /// void f(Derived d) {
2855 /// Base& b = d; // initializer is an ImplicitCastExpr
2856 /// // to an lvalue of type Base
2857 /// Base&& r = ref(); // initializer is an ImplicitCastExpr
2858 /// // to an xvalue of type Base
2859 /// }
2860 /// @endcode
2861 class ImplicitCastExpr final
2862  : public CastExpr,
2863  private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
2864 private:
2866  unsigned BasePathLength, ExprValueKind VK)
2867  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2868  }
2869 
2870  /// Construct an empty implicit cast.
2871  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2872  : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2873 
2874 public:
2875  enum OnStack_t { OnStack };
2877  ExprValueKind VK)
2878  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2879  }
2880 
2881  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2882  CastKind Kind, Expr *Operand,
2883  const CXXCastPath *BasePath,
2884  ExprValueKind Cat);
2885 
2886  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2887  unsigned PathSize);
2888 
2889  SourceLocation getLocStart() const LLVM_READONLY {
2890  return getSubExpr()->getLocStart();
2891  }
2892  SourceLocation getLocEnd() const LLVM_READONLY {
2893  return getSubExpr()->getLocEnd();
2894  }
2895 
2896  static bool classof(const Stmt *T) {
2897  return T->getStmtClass() == ImplicitCastExprClass;
2898  }
2899 
2901  friend class CastExpr;
2902 };
2903 
2905  Expr *e = this;
2906  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2907  e = ice->getSubExpr();
2908  return e;
2909 }
2910 
2911 /// ExplicitCastExpr - An explicit cast written in the source
2912 /// code.
2913 ///
2914 /// This class is effectively an abstract class, because it provides
2915 /// the basic representation of an explicitly-written cast without
2916 /// specifying which kind of cast (C cast, functional cast, static
2917 /// cast, etc.) was written; specific derived classes represent the
2918 /// particular style of cast and its location information.
2919 ///
2920 /// Unlike implicit casts, explicit cast nodes have two different
2921 /// types: the type that was written into the source code, and the
2922 /// actual type of the expression as determined by semantic
2923 /// analysis. These types may differ slightly. For example, in C++ one
2924 /// can cast to a reference type, which indicates that the resulting
2925 /// expression will be an lvalue or xvalue. The reference type, however,
2926 /// will not be used as the type of the expression.
2927 class ExplicitCastExpr : public CastExpr {
2928  /// TInfo - Source type info for the (written) type
2929  /// this expression is casting to.
2930  TypeSourceInfo *TInfo;
2931 
2932 protected:
2934  CastKind kind, Expr *op, unsigned PathSize,
2935  TypeSourceInfo *writtenTy)
2936  : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2937 
2938  /// Construct an empty explicit cast.
2939  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2940  : CastExpr(SC, Shell, PathSize) { }
2941 
2942 public:
2943  /// getTypeInfoAsWritten - Returns the type source info for the type
2944  /// that this expression is casting to.
2945  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2946  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2947 
2948  /// getTypeAsWritten - Returns the type that this expression is
2949  /// casting to, as written in the source code.
2950  QualType getTypeAsWritten() const { return TInfo->getType(); }
2951 
2952  static bool classof(const Stmt *T) {
2953  return T->getStmtClass() >= firstExplicitCastExprConstant &&
2954  T->getStmtClass() <= lastExplicitCastExprConstant;
2955  }
2956 };
2957 
2958 /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2959 /// cast in C++ (C++ [expr.cast]), which uses the syntax
2960 /// (Type)expr. For example: @c (int)f.
2961 class CStyleCastExpr final
2962  : public ExplicitCastExpr,
2963  private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
2964  SourceLocation LPLoc; // the location of the left paren
2965  SourceLocation RPLoc; // the location of the right paren
2966 
2968  unsigned PathSize, TypeSourceInfo *writtenTy,
2970  : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2971  writtenTy), LPLoc(l), RPLoc(r) {}
2972 
2973  /// Construct an empty C-style explicit cast.
2974  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2975  : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2976 
2977 public:
2978  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2979  ExprValueKind VK, CastKind K,
2980  Expr *Op, const CXXCastPath *BasePath,
2981  TypeSourceInfo *WrittenTy, SourceLocation L,
2982  SourceLocation R);
2983 
2984  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2985  unsigned PathSize);
2986 
2987  SourceLocation getLParenLoc() const { return LPLoc; }
2988  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2989 
2990  SourceLocation getRParenLoc() const { return RPLoc; }
2991  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2992 
2993  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2994  SourceLocation getLocEnd() const LLVM_READONLY {
2995  return getSubExpr()->getLocEnd();
2996  }
2997 
2998  static bool classof(const Stmt *T) {
2999  return T->getStmtClass() == CStyleCastExprClass;
3000  }
3001 
3003  friend class CastExpr;
3004 };
3005 
3006 /// A builtin binary operation expression such as "x + y" or "x <= y".
3007 ///
3008 /// This expression node kind describes a builtin binary operation,
3009 /// such as "x + y" for integer values "x" and "y". The operands will
3010 /// already have been converted to appropriate types (e.g., by
3011 /// performing promotions or conversions).
3012 ///
3013 /// In C++, where operators may be overloaded, a different kind of
3014 /// expression node (CXXOperatorCallExpr) is used to express the
3015 /// invocation of an overloaded operator with operator syntax. Within
3016 /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
3017 /// used to store an expression "x + y" depends on the subexpressions
3018 /// for x and y. If neither x or y is type-dependent, and the "+"
3019 /// operator resolves to a built-in operation, BinaryOperator will be
3020 /// used to express the computation (x and y may still be
3021 /// value-dependent). If either x or y is type-dependent, or if the
3022 /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
3023 /// be used to express the computation.
3024 class BinaryOperator : public Expr {
3025 public:
3027 
3028 private:
3029  unsigned Opc : 6;
3030 
3031  // This is only meaningful for operations on floating point types and 0
3032  // otherwise.
3033  unsigned FPFeatures : 2;
3034  SourceLocation OpLoc;
3035 
3036  enum { LHS, RHS, END_EXPR };
3037  Stmt* SubExprs[END_EXPR];
3038 public:
3039 
3040  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3042  SourceLocation opLoc, FPOptions FPFeatures)
3043  : Expr(BinaryOperatorClass, ResTy, VK, OK,
3044  lhs->isTypeDependent() || rhs->isTypeDependent(),
3045  lhs->isValueDependent() || rhs->isValueDependent(),
3046  (lhs->isInstantiationDependent() ||
3047  rhs->isInstantiationDependent()),
3048  (lhs->containsUnexpandedParameterPack() ||
3049  rhs->containsUnexpandedParameterPack())),
3050  Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3051  SubExprs[LHS] = lhs;
3052  SubExprs[RHS] = rhs;
3053  assert(!isCompoundAssignmentOp() &&
3054  "Use CompoundAssignOperator for compound assignments");
3055  }
3056 
3057  /// Construct an empty binary operator.
3058  explicit BinaryOperator(EmptyShell Empty)
3059  : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
3060 
3061  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
3062  SourceLocation getOperatorLoc() const { return OpLoc; }
3063  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
3064 
3065  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
3066  void setOpcode(Opcode O) { Opc = O; }
3067 
3068  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3069  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3070  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3071  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3072 
3073  SourceLocation getLocStart() const LLVM_READONLY {
3074  return getLHS()->getLocStart();
3075  }
3076  SourceLocation getLocEnd() const LLVM_READONLY {
3077  return getRHS()->getLocEnd();
3078  }
3079 
3080  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3081  /// corresponds to, e.g. "<<=".
3082  static StringRef getOpcodeStr(Opcode Op);
3083 
3084  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3085 
3086  /// Retrieve the binary opcode that corresponds to the given
3087  /// overloaded operator.
3088  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3089 
3090  /// Retrieve the overloaded operator kind that corresponds to
3091  /// the given binary opcode.
3092  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3093 
3094  /// predicates to categorize the respective opcodes.
3095  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
3096  static bool isMultiplicativeOp(Opcode Opc) {
3097  return Opc >= BO_Mul && Opc <= BO_Rem;
3098  }
3100  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3101  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3102  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3103  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3104 
3105  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3106  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3107 
3108  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3109  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3110 
3111  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3112  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3113 
3114  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
3115  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3116 
3117  static Opcode negateComparisonOp(Opcode Opc) {
3118  switch (Opc) {
3119  default:
3120  llvm_unreachable("Not a comparison operator.");
3121  case BO_LT: return BO_GE;
3122  case BO_GT: return BO_LE;
3123  case BO_LE: return BO_GT;
3124  case BO_GE: return BO_LT;
3125  case BO_EQ: return BO_NE;
3126  case BO_NE: return BO_EQ;
3127  }
3128  }
3129 
3130  static Opcode reverseComparisonOp(Opcode Opc) {
3131  switch (Opc) {
3132  default:
3133  llvm_unreachable("Not a comparison operator.");
3134  case BO_LT: return BO_GT;
3135  case BO_GT: return BO_LT;
3136  case BO_LE: return BO_GE;
3137  case BO_GE: return BO_LE;
3138  case BO_EQ:
3139  case BO_NE:
3140  return Opc;
3141  }
3142  }
3143 
3144  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3145  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3146 
3147  static bool isAssignmentOp(Opcode Opc) {
3148  return Opc >= BO_Assign && Opc <= BO_OrAssign;
3149  }
3150  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3151 
3152  static bool isCompoundAssignmentOp(Opcode Opc) {
3153  return Opc > BO_Assign && Opc <= BO_OrAssign;
3154  }
3155  bool isCompoundAssignmentOp() const {
3156  return isCompoundAssignmentOp(getOpcode());
3157  }
3158  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3159  assert(isCompoundAssignmentOp(Opc));
3160  if (Opc >= BO_AndAssign)
3161  return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3162  else
3163  return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3164  }
3165 
3166  static bool isShiftAssignOp(Opcode Opc) {
3167  return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3168  }
3169  bool isShiftAssignOp() const {
3170  return isShiftAssignOp(getOpcode());
3171  }
3172 
3173  // Return true if a binary operator using the specified opcode and operands
3174  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
3175  // integer to a pointer.
3176  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
3177  Expr *LHS, Expr *RHS);
3178 
3179  static bool classof(const Stmt *S) {
3180  return S->getStmtClass() >= firstBinaryOperatorConstant &&
3181  S->getStmtClass() <= lastBinaryOperatorConstant;
3182  }
3183 
3184  // Iterators
3186  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3187  }
3189  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3190  }
3191 
3192  // Set the FP contractability status of this operator. Only meaningful for
3193  // operations on floating point types.
3194  void setFPFeatures(FPOptions F) { FPFeatures = F.getInt(); }
3195 
3196  FPOptions getFPFeatures() const { return FPOptions(FPFeatures); }
3197 
3198  // Get the FP contractability status of this operator. Only meaningful for
3199  // operations on floating point types.
3201  return FPOptions(FPFeatures).allowFPContractWithinStatement();
3202  }
3203 
3204 protected:
3205  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3207  SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
3208  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3209  lhs->isTypeDependent() || rhs->isTypeDependent(),
3210  lhs->isValueDependent() || rhs->isValueDependent(),
3211  (lhs->isInstantiationDependent() ||
3212  rhs->isInstantiationDependent()),
3213  (lhs->containsUnexpandedParameterPack() ||
3214  rhs->containsUnexpandedParameterPack())),
3215  Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3216  SubExprs[LHS] = lhs;
3217  SubExprs[RHS] = rhs;
3218  }
3219 
3221  : Expr(SC, Empty), Opc(BO_MulAssign) { }
3222 };
3223 
3224 /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3225 /// track of the type the operation is performed in. Due to the semantics of
3226 /// these operators, the operands are promoted, the arithmetic performed, an
3227 /// implicit conversion back to the result type done, then the assignment takes
3228 /// place. This captures the intermediate type which the computation is done
3229 /// in.
3231  QualType ComputationLHSType;
3232  QualType ComputationResultType;
3233 public:
3234  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3236  QualType CompLHSType, QualType CompResultType,
3237  SourceLocation OpLoc, FPOptions FPFeatures)
3238  : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
3239  true),
3240  ComputationLHSType(CompLHSType),
3241  ComputationResultType(CompResultType) {
3242  assert(isCompoundAssignmentOp() &&
3243  "Only should be used for compound assignments");
3244  }
3245 
3246  /// Build an empty compound assignment operator expression.
3248  : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3249 
3250  // The two computation types are the type the LHS is converted
3251  // to for the computation and the type of the result; the two are
3252  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3253  QualType getComputationLHSType() const { return ComputationLHSType; }
3254  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3255 
3256  QualType getComputationResultType() const { return ComputationResultType; }
3257  void setComputationResultType(QualType T) { ComputationResultType = T; }
3258 
3259  static bool classof(const Stmt *S) {
3260  return S->getStmtClass() == CompoundAssignOperatorClass;
3261  }
3262 };
3263 
3264 /// AbstractConditionalOperator - An abstract base class for
3265 /// ConditionalOperator and BinaryConditionalOperator.
3267  SourceLocation QuestionLoc, ColonLoc;
3268  friend class ASTStmtReader;
3269 
3270 protected:
3273  bool TD, bool VD, bool ID,
3274  bool ContainsUnexpandedParameterPack,
3275  SourceLocation qloc,
3276  SourceLocation cloc)
3277  : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3278  QuestionLoc(qloc), ColonLoc(cloc) {}
3279 
3281  : Expr(SC, Empty) { }
3282 
3283 public:
3284  // getCond - Return the expression representing the condition for
3285  // the ?: operator.
3286  Expr *getCond() const;
3287 
3288  // getTrueExpr - Return the subexpression representing the value of
3289  // the expression if the condition evaluates to true.
3290  Expr *getTrueExpr() const;
3291 
3292  // getFalseExpr - Return the subexpression representing the value of
3293  // the expression if the condition evaluates to false. This is
3294  // the same as getRHS.
3295  Expr *getFalseExpr() const;
3296 
3297  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3299 
3300  static bool classof(const Stmt *T) {
3301  return T->getStmtClass() == ConditionalOperatorClass ||
3302  T->getStmtClass() == BinaryConditionalOperatorClass;
3303  }
3304 };
3305 
3306 /// ConditionalOperator - The ?: ternary operator. The GNU "missing
3307 /// middle" extension is a BinaryConditionalOperator.
3309  enum { COND, LHS, RHS, END_EXPR };
3310  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3311 
3312  friend class ASTStmtReader;
3313 public:
3315  SourceLocation CLoc, Expr *rhs,
3317  : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3318  // FIXME: the type of the conditional operator doesn't
3319  // depend on the type of the conditional, but the standard
3320  // seems to imply that it could. File a bug!
3321  (lhs->isTypeDependent() || rhs->isTypeDependent()),
3322  (cond->isValueDependent() || lhs->isValueDependent() ||
3323  rhs->isValueDependent()),
3324  (cond->isInstantiationDependent() ||
3325  lhs->isInstantiationDependent() ||
3326  rhs->isInstantiationDependent()),
3327  (cond->containsUnexpandedParameterPack() ||
3328  lhs->containsUnexpandedParameterPack() ||
3329  rhs->containsUnexpandedParameterPack()),
3330  QLoc, CLoc) {
3331  SubExprs[COND] = cond;
3332  SubExprs[LHS] = lhs;
3333  SubExprs[RHS] = rhs;
3334  }
3335 
3336  /// Build an empty conditional operator.
3338  : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3339 
3340  // getCond - Return the expression representing the condition for
3341  // the ?: operator.
3342  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3343 
3344  // getTrueExpr - Return the subexpression representing the value of
3345  // the expression if the condition evaluates to true.
3346  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3347 
3348  // getFalseExpr - Return the subexpression representing the value of
3349  // the expression if the condition evaluates to false. This is
3350  // the same as getRHS.
3351  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3352 
3353  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3354  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3355 
3356  SourceLocation getLocStart() const LLVM_READONLY {
3357  return getCond()->getLocStart();
3358  }
3359  SourceLocation getLocEnd() const LLVM_READONLY {
3360  return getRHS()->getLocEnd();
3361  }
3362 
3363  static bool classof(const Stmt *T) {
3364  return T->getStmtClass() == ConditionalOperatorClass;
3365  }
3366 
3367  // Iterators
3369  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3370  }
3372  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3373  }
3374 };
3375 
3376 /// BinaryConditionalOperator - The GNU extension to the conditional
3377 /// operator which allows the middle operand to be omitted.
3378 ///
3379 /// This is a different expression kind on the assumption that almost
3380 /// every client ends up needing to know that these are different.
3382  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3383 
3384  /// - the common condition/left-hand-side expression, which will be
3385  /// evaluated as the opaque value
3386  /// - the condition, expressed in terms of the opaque value
3387  /// - the left-hand-side, expressed in terms of the opaque value
3388  /// - the right-hand-side
3389  Stmt *SubExprs[NUM_SUBEXPRS];
3390  OpaqueValueExpr *OpaqueValue;
3391 
3392  friend class ASTStmtReader;
3393 public:
3395  Expr *cond, Expr *lhs, Expr *rhs,
3396  SourceLocation qloc, SourceLocation cloc,
3398  : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3399  (common->isTypeDependent() || rhs->isTypeDependent()),
3400  (common->isValueDependent() || rhs->isValueDependent()),
3401  (common->isInstantiationDependent() ||
3402  rhs->isInstantiationDependent()),
3403  (common->containsUnexpandedParameterPack() ||
3404  rhs->containsUnexpandedParameterPack()),
3405  qloc, cloc),
3406  OpaqueValue(opaqueValue) {
3407  SubExprs[COMMON] = common;
3408  SubExprs[COND] = cond;
3409  SubExprs[LHS] = lhs;
3410  SubExprs[RHS] = rhs;
3411  assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3412  }
3413 
3414  /// Build an empty conditional operator.
3416  : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3417 
3418  /// getCommon - Return the common expression, written to the
3419  /// left of the condition. The opaque value will be bound to the
3420  /// result of this expression.
3421  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3422 
3423  /// getOpaqueValue - Return the opaque value placeholder.
3424  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3425 
3426  /// getCond - Return the condition expression; this is defined
3427  /// in terms of the opaque value.
3428  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3429 
3430  /// getTrueExpr - Return the subexpression which will be
3431  /// evaluated if the condition evaluates to true; this is defined
3432  /// in terms of the opaque value.
3433  Expr *getTrueExpr() const {
3434  return cast<Expr>(SubExprs[LHS]);
3435  }
3436 
3437  /// getFalseExpr - Return the subexpression which will be
3438  /// evaluated if the condnition evaluates to false; this is
3439  /// defined in terms of the opaque value.
3440  Expr *getFalseExpr() const {
3441  return cast<Expr>(SubExprs[RHS]);
3442  }
3443 
3444  SourceLocation getLocStart() const LLVM_READONLY {
3445  return getCommon()->getLocStart();
3446  }
3447  SourceLocation getLocEnd() const LLVM_READONLY {
3448  return getFalseExpr()->getLocEnd();
3449  }
3450 
3451  static bool classof(const Stmt *T) {
3452  return T->getStmtClass() == BinaryConditionalOperatorClass;
3453  }
3454 
3455  // Iterators
3457  return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3458  }
3460  return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3461  }
3462 };
3463 
3465  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3466  return co->getCond();
3467  return cast<BinaryConditionalOperator>(this)->getCond();
3468 }
3469 
3471  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3472  return co->getTrueExpr();
3473  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3474 }
3475 
3477  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3478  return co->getFalseExpr();
3479  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3480 }
3481 
3482 /// AddrLabelExpr - The GNU address of label extension, representing &&label.
3483 class AddrLabelExpr : public Expr {
3484  SourceLocation AmpAmpLoc, LabelLoc;
3485  LabelDecl *Label;
3486 public:
3488  QualType t)
3489  : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3490  false),
3491  AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3492 
3493  /// Build an empty address of a label expression.
3494  explicit AddrLabelExpr(EmptyShell Empty)
3495  : Expr(AddrLabelExprClass, Empty) { }
3496 
3497  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3498  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3499  SourceLocation getLabelLoc() const { return LabelLoc; }
3500  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3501 
3502  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3503  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3504 
3505  LabelDecl *getLabel() const { return Label; }
3506  void setLabel(LabelDecl *L) { Label = L; }
3507 
3508  static bool classof(const Stmt *T) {
3509  return T->getStmtClass() == AddrLabelExprClass;
3510  }
3511 
3512  // Iterators
3515  }
3518  }
3519 };
3520 
3521 /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3522 /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3523 /// takes the value of the last subexpression.
3524 ///
3525 /// A StmtExpr is always an r-value; values "returned" out of a
3526 /// StmtExpr will be copied.
3527 class StmtExpr : public Expr {
3528  Stmt *SubStmt;
3529  SourceLocation LParenLoc, RParenLoc;
3530 public:
3531  // FIXME: Does type-dependence need to be computed differently?
3532  // FIXME: Do we need to compute instantiation instantiation-dependence for
3533  // statements? (ugh!)
3535  SourceLocation lp, SourceLocation rp) :
3536  Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3537  T->isDependentType(), false, false, false),
3538  SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3539 
3540  /// Build an empty statement expression.
3541  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3542 
3543  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3544  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3545  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3546 
3547  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3548  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3549 
3550  SourceLocation getLParenLoc() const { return LParenLoc; }
3551  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3552  SourceLocation getRParenLoc() const { return RParenLoc; }
3553  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3554 
3555  static bool classof(const Stmt *T) {
3556  return T->getStmtClass() == StmtExprClass;
3557  }
3558 
3559  // Iterators
3560  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3562  return const_child_range(&SubStmt, &SubStmt + 1);
3563  }
3564 };
3565 
3566 /// ShuffleVectorExpr - clang-specific builtin-in function
3567 /// __builtin_shufflevector.
3568 /// This AST node represents a operator that does a constant
3569 /// shuffle, similar to LLVM's shufflevector instruction. It takes
3570 /// two vectors and a variable number of constant indices,
3571 /// and returns the appropriately shuffled vector.
3572 class ShuffleVectorExpr : public Expr {
3573  SourceLocation BuiltinLoc, RParenLoc;
3574 
3575  // SubExprs - the list of values passed to the __builtin_shufflevector
3576  // function. The first two are vectors, and the rest are constant
3577  // indices. The number of values in this list is always
3578  // 2+the number of indices in the vector type.
3579  Stmt **SubExprs;
3580  unsigned NumExprs;
3581 
3582 public:
3584  SourceLocation BLoc, SourceLocation RP);
3585 
3586  /// Build an empty vector-shuffle expression.
3588  : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3589 
3590  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3591  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3592 
3593  SourceLocation getRParenLoc() const { return RParenLoc; }
3594  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3595 
3596  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3597  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3598 
3599  static bool classof(const Stmt *T) {
3600  return T->getStmtClass() == ShuffleVectorExprClass;
3601  }
3602 
3603  /// getNumSubExprs - Return the size of the SubExprs array. This includes the
3604  /// constant expression, the actual arguments passed in, and the function
3605  /// pointers.
3606  unsigned getNumSubExprs() const { return NumExprs; }
3607 
3608  /// Retrieve the array of expressions.
3609  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3610 
3611  /// getExpr - Return the Expr at the specified index.
3612  Expr *getExpr(unsigned Index) {
3613  assert((Index < NumExprs) && "Arg access out of range!");
3614  return cast<Expr>(SubExprs[Index]);
3615  }
3616  const Expr *getExpr(unsigned Index) const {
3617  assert((Index < NumExprs) && "Arg access out of range!");
3618  return cast<Expr>(SubExprs[Index]);
3619  }
3620 
3621  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3622 
3623  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3624  assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3625  return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3626  }
3627 
3628  // Iterators
3630  return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3631  }
3633  return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
3634  }
3635 };
3636 
3637 /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3638 /// This AST node provides support for converting a vector type to another
3639 /// vector type of the same arity.
3640 class ConvertVectorExpr : public Expr {
3641 private:
3642  Stmt *SrcExpr;
3643  TypeSourceInfo *TInfo;
3644  SourceLocation BuiltinLoc, RParenLoc;
3645 
3646  friend class ASTReader;
3647  friend class ASTStmtReader;
3648  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3649 
3650 public:
3653  SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3654  : Expr(ConvertVectorExprClass, DstType, VK, OK,
3655  DstType->isDependentType(),
3656  DstType->isDependentType() || SrcExpr->isValueDependent(),
3657  (DstType->isInstantiationDependentType() ||
3658  SrcExpr->isInstantiationDependent()),
3659  (DstType->containsUnexpandedParameterPack() ||
3660  SrcExpr->containsUnexpandedParameterPack())),
3661  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3662 
3663  /// getSrcExpr - Return the Expr to be converted.
3664  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3665 
3666  /// getTypeSourceInfo - Return the destination type.
3668  return TInfo;
3669  }
3671  TInfo = ti;
3672  }
3673 
3674  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3675  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3676 
3677  /// getRParenLoc - Return the location of final right parenthesis.
3678  SourceLocation getRParenLoc() const { return RParenLoc; }
3679 
3680  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3681  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3682 
3683  static bool classof(const Stmt *T) {
3684  return T->getStmtClass() == ConvertVectorExprClass;
3685  }
3686 
3687  // Iterators
3688  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3690  return const_child_range(&SrcExpr, &SrcExpr + 1);
3691  }
3692 };
3693 
3694 /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3695 /// This AST node is similar to the conditional operator (?:) in C, with
3696 /// the following exceptions:
3697 /// - the test expression must be a integer constant expression.
3698 /// - the expression returned acts like the chosen subexpression in every
3699 /// visible way: the type is the same as that of the chosen subexpression,
3700 /// and all predicates (whether it's an l-value, whether it's an integer
3701 /// constant expression, etc.) return the same result as for the chosen
3702 /// sub-expression.
3703 class ChooseExpr : public Expr {
3704  enum { COND, LHS, RHS, END_EXPR };
3705  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3706  SourceLocation BuiltinLoc, RParenLoc;
3707  bool CondIsTrue;
3708 public:
3709  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3711  SourceLocation RP, bool condIsTrue,
3712  bool TypeDependent, bool ValueDependent)
3713  : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3714  (cond->isInstantiationDependent() ||
3715  lhs->isInstantiationDependent() ||
3716  rhs->isInstantiationDependent()),
3717  (cond->containsUnexpandedParameterPack() ||
3718  lhs->containsUnexpandedParameterPack() ||
3719  rhs->containsUnexpandedParameterPack())),
3720  BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3721  SubExprs[COND] = cond;
3722  SubExprs[LHS] = lhs;
3723  SubExprs[RHS] = rhs;
3724  }
3725 
3726  /// Build an empty __builtin_choose_expr.
3727  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3728 
3729  /// isConditionTrue - Return whether the condition is true (i.e. not
3730  /// equal to zero).
3731  bool isConditionTrue() const {
3732  assert(!isConditionDependent() &&
3733  "Dependent condition isn't true or false");
3734  return CondIsTrue;
3735  }
3736  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3737 
3738  bool isConditionDependent() const {
3739  return getCond()->isTypeDependent() || getCond()->isValueDependent();
3740  }
3741 
3742  /// getChosenSubExpr - Return the subexpression chosen according to the
3743  /// condition.
3745  return isConditionTrue() ? getLHS() : getRHS();
3746  }
3747 
3748  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3749  void setCond(Expr *E) { SubExprs[COND] = E; }
3750  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3751  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3752  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3753  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3754 
3755  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3756  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3757 
3758  SourceLocation getRParenLoc() const { return RParenLoc; }
3759  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3760 
3761  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3762  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3763 
3764  static bool classof(const Stmt *T) {
3765  return T->getStmtClass() == ChooseExprClass;
3766  }
3767 
3768  // Iterators
3770  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3771  }
3773  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3774  }
3775 };
3776 
3777 /// GNUNullExpr - Implements the GNU __null extension, which is a name
3778 /// for a null pointer constant that has integral type (e.g., int or
3779 /// long) and is the same size and alignment as a pointer. The __null
3780 /// extension is typically only used by system headers, which define
3781 /// NULL as __null in C++ rather than using 0 (which is an integer
3782 /// that may not match the size of a pointer).
3783 class GNUNullExpr : public Expr {
3784  /// TokenLoc - The location of the __null keyword.
3785  SourceLocation TokenLoc;
3786 
3787 public:
3789  : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3790  false),
3791  TokenLoc(Loc) { }
3792 
3793  /// Build an empty GNU __null expression.
3794  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3795 
3796  /// getTokenLocation - The location of the __null token.
3797  SourceLocation getTokenLocation() const { return TokenLoc; }
3798  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3799 
3800  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3801  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3802 
3803  static bool classof(const Stmt *T) {
3804  return T->getStmtClass() == GNUNullExprClass;
3805  }
3806 
3807  // Iterators
3810  }
3813  }
3814 };
3815 
3816 /// Represents a call to the builtin function \c __builtin_va_arg.
3817 class VAArgExpr : public Expr {
3818  Stmt *Val;
3819  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
3820  SourceLocation BuiltinLoc, RParenLoc;
3821 public:
3823  SourceLocation RPLoc, QualType t, bool IsMS)
3824  : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
3825  false, (TInfo->getType()->isInstantiationDependentType() ||
3826  e->isInstantiationDependent()),
3827  (TInfo->getType()->containsUnexpandedParameterPack() ||
3828  e->containsUnexpandedParameterPack())),
3829  Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
3830 
3831  /// Create an empty __builtin_va_arg expression.
3832  explicit VAArgExpr(EmptyShell Empty)
3833  : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
3834 
3835  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3836  Expr *getSubExpr() { return cast<Expr>(Val); }
3837  void setSubExpr(Expr *E) { Val = E; }
3838 
3839  /// Returns whether this is really a Win64 ABI va_arg expression.
3840  bool isMicrosoftABI() const { return TInfo.getInt(); }
3841  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
3842 
3843  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
3844  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
3845 
3846  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3847  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3848 
3849  SourceLocation getRParenLoc() const { return RParenLoc; }
3850  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3851 
3852  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3853  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3854 
3855  static bool classof(const Stmt *T) {
3856  return T->getStmtClass() == VAArgExprClass;
3857  }
3858 
3859  // Iterators
3860  child_range children() { return child_range(&Val, &Val+1); }
3862  return const_child_range(&Val, &Val + 1);
3863  }
3864 };
3865 
3866 /// Describes an C or C++ initializer list.
3867 ///
3868 /// InitListExpr describes an initializer list, which can be used to
3869 /// initialize objects of different types, including
3870 /// struct/class/union types, arrays, and vectors. For example:
3871 ///
3872 /// @code
3873 /// struct foo x = { 1, { 2, 3 } };
3874 /// @endcode
3875 ///
3876 /// Prior to semantic analysis, an initializer list will represent the
3877 /// initializer list as written by the user, but will have the
3878 /// placeholder type "void". This initializer list is called the
3879 /// syntactic form of the initializer, and may contain C99 designated
3880 /// initializers (represented as DesignatedInitExprs), initializations
3881 /// of subobject members without explicit braces, and so on. Clients
3882 /// interested in the original syntax of the initializer list should
3883 /// use the syntactic form of the initializer list.
3884 ///
3885 /// After semantic analysis, the initializer list will represent the
3886 /// semantic form of the initializer, where the initializations of all
3887 /// subobjects are made explicit with nested InitListExpr nodes and
3888 /// C99 designators have been eliminated by placing the designated
3889 /// initializations into the subobject they initialize. Additionally,
3890 /// any "holes" in the initialization, where no initializer has been
3891 /// specified for a particular subobject, will be replaced with
3892 /// implicitly-generated ImplicitValueInitExpr expressions that
3893 /// value-initialize the subobjects. Note, however, that the
3894 /// initializer lists may still have fewer initializers than there are
3895 /// elements to initialize within the object.
3896 ///
3897 /// After semantic analysis has completed, given an initializer list,
3898 /// method isSemanticForm() returns true if and only if this is the
3899 /// semantic form of the initializer list (note: the same AST node
3900 /// may at the same time be the syntactic form).
3901 /// Given the semantic form of the initializer list, one can retrieve
3902 /// the syntactic form of that initializer list (when different)
3903 /// using method getSyntacticForm(); the method returns null if applied
3904 /// to a initializer list which is already in syntactic form.
3905 /// Similarly, given the syntactic form (i.e., an initializer list such
3906 /// that isSemanticForm() returns false), one can retrieve the semantic
3907 /// form using method getSemanticForm().
3908 /// Since many initializer lists have the same syntactic and semantic forms,
3909 /// getSyntacticForm() may return NULL, indicating that the current
3910 /// semantic initializer list also serves as its syntactic form.
3911 class InitListExpr : public Expr {
3912  // FIXME: Eliminate this vector in favor of ASTContext allocation
3914  InitExprsTy InitExprs;
3915  SourceLocation LBraceLoc, RBraceLoc;
3916 
3917  /// The alternative form of the initializer list (if it exists).
3918  /// The int part of the pair stores whether this initializer list is
3919  /// in semantic form. If not null, the pointer points to:
3920  /// - the syntactic form, if this is in semantic form;
3921  /// - the semantic form, if this is in syntactic form.
3922  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3923 
3924  /// Either:
3925  /// If this initializer list initializes an array with more elements than
3926  /// there are initializers in the list, specifies an expression to be used
3927  /// for value initialization of the rest of the elements.
3928  /// Or
3929  /// If this initializer list initializes a union, specifies which
3930  /// field within the union will be initialized.
3931  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3932 
3933 public:
3934  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3935  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3936 
3937  /// Build an empty initializer list.
3938  explicit InitListExpr(EmptyShell Empty)
3939  : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
3940 
3941  unsigned getNumInits() const { return InitExprs.size(); }
3942 
3943  /// Retrieve the set of initializers.
3944  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3945 
3946  /// Retrieve the set of initializers.
3947  Expr * const *getInits() const {
3948  return reinterpret_cast<Expr * const *>(InitExprs.data());
3949  }
3950 
3952  return llvm::makeArrayRef(getInits(), getNumInits());
3953  }
3954 
3956  return llvm::makeArrayRef(getInits(), getNumInits());
3957  }
3958 
3959  const Expr *getInit(unsigned Init) const {
3960  assert(Init < getNumInits() && "Initializer access out of range!");
3961  return cast_or_null<Expr>(InitExprs[Init]);
3962  }
3963 
3964  Expr *getInit(unsigned Init) {
3965  assert(Init < getNumInits() && "Initializer access out of range!");
3966  return cast_or_null<Expr>(InitExprs[Init]);
3967  }
3968 
3969  void setInit(unsigned Init, Expr *expr) {
3970  assert(Init < getNumInits() && "Initializer access out of range!");
3971  InitExprs[Init] = expr;
3972 
3973  if (expr) {
3974  ExprBits.TypeDependent |= expr->isTypeDependent();
3975  ExprBits.ValueDependent |= expr->isValueDependent();
3976  ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3977  ExprBits.ContainsUnexpandedParameterPack |=
3979  }
3980  }
3981 
3982  /// Reserve space for some number of initializers.
3983  void reserveInits(const ASTContext &C, unsigned NumInits);
3984 
3985  /// Specify the number of initializers
3986  ///
3987  /// If there are more than @p NumInits initializers, the remaining
3988  /// initializers will be destroyed. If there are fewer than @p
3989  /// NumInits initializers, NULL expressions will be added for the
3990  /// unknown initializers.
3991  void resizeInits(const ASTContext &Context, unsigned NumInits);
3992 
3993  /// Updates the initializer at index @p Init with the new
3994  /// expression @p expr, and returns the old expression at that
3995  /// location.
3996  ///
3997  /// When @p Init is out of range for this initializer list, the
3998  /// initializer list will be extended with NULL expressions to
3999  /// accommodate the new entry.
4000  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
4001 
4002  /// If this initializer list initializes an array with more elements
4003  /// than there are initializers in the list, specifies an expression to be
4004  /// used for value initialization of the rest of the elements.
4006  return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
4007  }
4008  const Expr *getArrayFiller() const {
4009  return const_cast<InitListExpr *>(this)->getArrayFiller();
4010  }
4011  void setArrayFiller(Expr *filler);
4012 
4013  /// Return true if this is an array initializer and its array "filler"
4014  /// has been set.
4015  bool hasArrayFiller() const { return getArrayFiller(); }
4016 
4017  /// If this initializes a union, specifies which field in the
4018  /// union to initialize.
4019  ///
4020  /// Typically, this field is the first named field within the
4021  /// union. However, a designated initializer can specify the
4022  /// initialization of a different field within the union.
4024  return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
4025  }
4027  return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
4028  }
4030  assert((FD == nullptr
4031  || getInitializedFieldInUnion() == nullptr
4032  || getInitializedFieldInUnion() == FD)
4033  && "Only one field of a union may be initialized at a time!");
4034  ArrayFillerOrUnionFieldInit = FD;
4035  }
4036 
4037  // Explicit InitListExpr's originate from source code (and have valid source
4038  // locations). Implicit InitListExpr's are created by the semantic analyzer.
4039  bool isExplicit() const {
4040  return LBraceLoc.isValid() && RBraceLoc.isValid();
4041  }
4042 
4043  // Is this an initializer for an array of characters, initialized by a string
4044  // literal or an @encode?
4045  bool isStringLiteralInit() const;
4046 
4047  /// Is this a transparent initializer list (that is, an InitListExpr that is
4048  /// purely syntactic, and whose semantics are that of the sole contained
4049  /// initializer)?
4050  bool isTransparent() const;
4051 
4052  /// Is this the zero initializer {0} in a language which considers it
4053  /// idiomatic?
4054  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
4055 
4056  SourceLocation getLBraceLoc() const { return LBraceLoc; }
4057  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
4058  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4059  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
4060 
4061  bool isSemanticForm() const { return AltForm.getInt(); }
4063  return isSemanticForm() ? nullptr : AltForm.getPointer();
4064  }
4065  bool isSyntacticForm() const {
4066  return !AltForm.getInt() || !AltForm.getPointer();
4067  }
4069  return isSemanticForm() ? AltForm.getPointer() : nullptr;
4070  }
4071 
4073  AltForm.setPointer(Init);
4074  AltForm.setInt(true);
4075  Init->AltForm.setPointer(this);
4076  Init->AltForm.setInt(false);
4077  }
4078 
4080  return InitListExprBits.HadArrayRangeDesignator != 0;
4081  }
4082  void sawArrayRangeDesignator(bool ARD = true) {
4083  InitListExprBits.HadArrayRangeDesignator = ARD;
4084  }
4085 
4086  SourceLocation getLocStart() const LLVM_READONLY;
4087  SourceLocation getLocEnd() const LLVM_READONLY;
4088 
4089  static bool classof(const Stmt *T) {
4090  return T->getStmtClass() == InitListExprClass;
4091  }
4092 
4093  // Iterators
4095  const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
4096  return child_range(cast_away_const(CCR.begin()),
4097  cast_away_const(CCR.end()));
4098  }
4099 
4101  // FIXME: This does not include the array filler expression.
4102  if (InitExprs.empty())
4104  return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
4105  }
4106 
4111 
4112  iterator begin() { return InitExprs.begin(); }
4113  const_iterator begin() const { return InitExprs.begin(); }
4114  iterator end() { return InitExprs.end(); }
4115  const_iterator end() const { return InitExprs.end(); }
4116  reverse_iterator rbegin() { return InitExprs.rbegin(); }
4117  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
4118  reverse_iterator rend() { return InitExprs.rend(); }
4119  const_reverse_iterator rend() const { return InitExprs.rend(); }
4120 
4121  friend class ASTStmtReader;
4122  friend class ASTStmtWriter;
4123 };
4124 
4125 /// Represents a C99 designated initializer expression.
4126 ///
4127 /// A designated initializer expression (C99 6.7.8) contains one or
4128 /// more designators (which can be field designators, array
4129 /// designators, or GNU array-range designators) followed by an
4130 /// expression that initializes the field or element(s) that the
4131 /// designators refer to. For example, given:
4132 ///
4133 /// @code
4134 /// struct point {
4135 /// double x;
4136 /// double y;
4137 /// };
4138 /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4139 /// @endcode
4140 ///
4141 /// The InitListExpr contains three DesignatedInitExprs, the first of
4142 /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4143 /// designators, one array designator for @c [2] followed by one field
4144 /// designator for @c .y. The initialization expression will be 1.0.
4146  : public Expr,
4147  private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
4148 public:
4149  /// Forward declaration of the Designator class.
4150  class Designator;
4151 
4152 private:
4153  /// The location of the '=' or ':' prior to the actual initializer
4154  /// expression.
4155  SourceLocation EqualOrColonLoc;
4156 
4157  /// Whether this designated initializer used the GNU deprecated
4158  /// syntax rather than the C99 '=' syntax.
4159  unsigned GNUSyntax : 1;
4160 
4161  /// The number of designators in this initializer expression.
4162  unsigned NumDesignators : 15;
4163 
4164  /// The number of subexpressions of this initializer expression,
4165  /// which contains both the initializer and any additional
4166  /// expressions used by array and array-range designators.
4167  unsigned NumSubExprs : 16;
4168 
4169  /// The designators in this designated initialization
4170  /// expression.
4171  Designator *Designators;
4172 
4173  DesignatedInitExpr(const ASTContext &C, QualType Ty,
4174  llvm::ArrayRef<Designator> Designators,
4175  SourceLocation EqualOrColonLoc, bool GNUSyntax,
4176  ArrayRef<Expr *> IndexExprs, Expr *Init);
4177 
4178  explicit DesignatedInitExpr(unsigned NumSubExprs)
4179  : Expr(DesignatedInitExprClass, EmptyShell()),
4180  NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4181 
4182 public:
4183  /// A field designator, e.g., ".x".
4185  /// Refers to the field that is being initialized. The low bit
4186  /// of this field determines whether this is actually a pointer
4187  /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4188  /// initially constructed, a field designator will store an
4189  /// IdentifierInfo*. After semantic analysis has resolved that
4190  /// name, the field designator will instead store a FieldDecl*.
4192 
4193  /// The location of the '.' in the designated initializer.
4194  unsigned DotLoc;
4195 
4196  /// The location of the field name in the designated initializer.
4197  unsigned FieldLoc;
4198  };
4199 
4200  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4202  /// Location of the first index expression within the designated
4203  /// initializer expression's list of subexpressions.
4204  unsigned Index;
4205  /// The location of the '[' starting the array range designator.
4206  unsigned LBracketLoc;
4207  /// The location of the ellipsis separating the start and end
4208  /// indices. Only valid for GNU array-range designators.
4209  unsigned EllipsisLoc;
4210  /// The location of the ']' terminating the array range designator.
4211  unsigned RBracketLoc;
4212  };
4213 
4214  /// Represents a single C99 designator.
4215  ///
4216  /// @todo This class is infuriatingly similar to clang::Designator,
4217  /// but minor differences (storing indices vs. storing pointers)
4218  /// keep us from reusing it. Try harder, later, to rectify these
4219  /// differences.
4220  class Designator {
4221  /// The kind of designator this describes.
4222  enum {
4224  ArrayDesignator,
4225  ArrayRangeDesignator
4226  } Kind;
4227 
4228  union {
4229  /// A field designator, e.g., ".x".
4231  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4232  struct ArrayOrRangeDesignator ArrayOrRange;
4233  };
4234  friend class DesignatedInitExpr;
4235 
4236  public:
4238 
4239  /// Initializes a field designator.
4240  Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4241  SourceLocation FieldLoc)
4242  : Kind(FieldDesignator) {
4243  Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4244  Field.DotLoc = DotLoc.getRawEncoding();
4245  Field.FieldLoc = FieldLoc.getRawEncoding();
4246  }
4247 
4248  /// Initializes an array designator.
4249  Designator(unsigned Index, SourceLocation LBracketLoc,
4250  SourceLocation RBracketLoc)
4251  : Kind(ArrayDesignator) {
4252  ArrayOrRange.Index = Index;
4253  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4254  ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4255  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4256  }
4257 
4258  /// Initializes a GNU array-range designator.
4259  Designator(unsigned Index, SourceLocation LBracketLoc,
4260  SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4261  : Kind(ArrayRangeDesignator) {
4262  ArrayOrRange.Index = Index;
4263  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4264  ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4265  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4266  }
4267 
4268  bool isFieldDesignator() const { return Kind == FieldDesignator; }
4269  bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4270  bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4271 
4272  IdentifierInfo *getFieldName() const;
4273 
4274  FieldDecl *getField() const {
4275  assert(Kind == FieldDesignator && "Only valid on a field designator");
4276  if (Field.NameOrField & 0x01)
4277  return nullptr;
4278  else
4279  return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4280  }
4281 
4282  void setField(FieldDecl *FD) {
4283  assert(Kind == FieldDesignator && "Only valid on a field designator");
4284  Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4285  }
4286 
4288  assert(Kind == FieldDesignator && "Only valid on a field designator");
4290  }
4291 
4293  assert(Kind == FieldDesignator && "Only valid on a field designator");
4294  return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4295  }
4296 
4298  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4299  "Only valid on an array or array-range designator");
4300  return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4301  }
4302 
4304  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4305  "Only valid on an array or array-range designator");
4306  return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4307  }
4308 
4310  assert(Kind == ArrayRangeDesignator &&
4311  "Only valid on an array-range designator");
4312  return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4313  }
4314 
4315  unsigned getFirstExprIndex() const {
4316  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4317  "Only valid on an array or array-range designator");
4318  return ArrayOrRange.Index;
4319  }
4320 
4321  SourceLocation getLocStart() const LLVM_READONLY {
4322  if (Kind == FieldDesignator)
4323  return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4324  else
4325  return getLBracketLoc();
4326  }
4327  SourceLocation getLocEnd() const LLVM_READONLY {
4328  return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4329  }
4330  SourceRange getSourceRange() const LLVM_READONLY {
4331  return SourceRange(getLocStart(), getLocEnd());
4332  }
4333  };
4334 
4335  static DesignatedInitExpr *Create(const ASTContext &C,
4336  llvm::ArrayRef<Designator> Designators,
4337  ArrayRef<Expr*> IndexExprs,
4338  SourceLocation EqualOrColonLoc,
4339  bool GNUSyntax, Expr *Init);
4340 
4341  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4342  unsigned NumIndexExprs);
4343 
4344  /// Returns the number of designators in this initializer.
4345  unsigned size() const { return NumDesignators; }
4346 
4347  // Iterator access to the designators.
4349  return {Designators, NumDesignators};
4350  }
4351 
4353  return {Designators, NumDesignators};
4354  }
4355 
4356  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4357  const Designator *getDesignator(unsigned Idx) const {
4358  return &designators()[Idx];
4359  }
4360 
4361  void setDesignators(const ASTContext &C, const Designator *Desigs,
4362  unsigned NumDesigs);
4363 
4364  Expr *getArrayIndex(const Designator &D) const;
4365  Expr *getArrayRangeStart(const Designator &D) const;
4366  Expr *getArrayRangeEnd(const Designator &D) const;
4367 
4368  /// Retrieve the location of the '=' that precedes the
4369  /// initializer value itself, if present.
4370  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4371  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4372 
4373  /// Determines whether this designated initializer used the
4374  /// deprecated GNU syntax for designated initializers.
4375  bool usesGNUSyntax() const { return GNUSyntax; }
4376  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4377 
4378  /// Retrieve the initializer value.
4379  Expr *getInit() const {
4380  return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4381  }
4382 
4383  void setInit(Expr *init) {
4384  *child_begin() = init;
4385  }
4386 
4387  /// Retrieve the total number of subexpressions in this
4388  /// designated initializer expression, including the actual
4389  /// initialized value and any expressions that occur within array
4390  /// and array-range designators.
4391  unsigned getNumSubExprs() const { return NumSubExprs; }
4392 
4393  Expr *getSubExpr(unsigned Idx) const {
4394  assert(Idx < NumSubExprs && "Subscript out of range");
4395  return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
4396  }
4397 
4398  void setSubExpr(unsigned Idx, Expr *E) {
4399  assert(Idx < NumSubExprs && "Subscript out of range");
4400  getTrailingObjects<Stmt *>()[Idx] = E;
4401  }
4402 
4403  /// Replaces the designator at index @p Idx with the series
4404  /// of designators in [First, Last).
4405  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4406  const Designator *First, const Designator *Last);
4407 
4408  SourceRange getDesignatorsSourceRange() const;
4409 
4410  SourceLocation getLocStart() const LLVM_READONLY;
4411  SourceLocation getLocEnd() const LLVM_READONLY;
4412 
4413  static bool classof(const Stmt *T) {
4414  return T->getStmtClass() == DesignatedInitExprClass;
4415  }
4416 
4417  // Iterators
4419  Stmt **begin = getTrailingObjects<Stmt *>();
4420  return child_range(begin, begin + NumSubExprs);
4421  }
4423  Stmt * const *begin = getTrailingObjects<Stmt *>();
4424  return const_child_range(begin, begin + NumSubExprs);
4425  }
4426 
4428 };
4429 
4430 /// Represents a place-holder for an object not to be initialized by
4431 /// anything.
4432 ///
4433 /// This only makes sense when it appears as part of an updater of a
4434 /// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4435 /// initializes a big object, and the NoInitExpr's mark the spots within the
4436 /// big object not to be overwritten by the updater.
4437 ///
4438 /// \see DesignatedInitUpdateExpr
4439 class NoInitExpr : public Expr {
4440 public:
4441  explicit NoInitExpr(QualType ty)
4442  : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4443  false, false, ty->isInstantiationDependentType(), false) { }
4444 
4445  explicit NoInitExpr(EmptyShell Empty)
4446  : Expr(NoInitExprClass, Empty) { }
4447 
4448  static bool classof(const Stmt *T) {
4449  return T->getStmtClass() == NoInitExprClass;
4450  }
4451 
4452  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4453  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4454 
4455  // Iterators
4458  }
4461  }
4462 };
4463 
4464 // In cases like:
4465 // struct Q { int a, b, c; };
4466 // Q *getQ();
4467 // void foo() {
4468 // struct A { Q q; } a = { *getQ(), .q.b = 3 };
4469 // }
4470 //
4471 // We will have an InitListExpr for a, with type A, and then a
4472 // DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4473 // is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4474 //
4476  // BaseAndUpdaterExprs[0] is the base expression;
4477  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4478  Stmt *BaseAndUpdaterExprs[2];
4479 
4480 public:
4482  Expr *baseExprs, SourceLocation rBraceLoc);
4483 
4485  : Expr(DesignatedInitUpdateExprClass, Empty) { }
4486 
4487  SourceLocation getLocStart() const LLVM_READONLY;
4488  SourceLocation getLocEnd() const LLVM_READONLY;
4489 
4490  static bool classof(const Stmt *T) {
4491  return T->getStmtClass() == DesignatedInitUpdateExprClass;
4492  }
4493 
4494  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4495  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4496 
4498  return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4499  }
4500  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4501 
4502  // Iterators
4503  // children = the base and the updater
4505  return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4506  }
4508  return const_child_range(&BaseAndUpdaterExprs[0],
4509  &BaseAndUpdaterExprs[0] + 2);
4510  }
4511 };
4512 
4513 /// Represents a loop initializing the elements of an array.
4514 ///
4515 /// The need to initialize the elements of an array occurs in a number of
4516 /// contexts:
4517 ///
4518 /// * in the implicit copy/move constructor for a class with an array member
4519 /// * when a lambda-expression captures an array by value
4520 /// * when a decomposition declaration decomposes an array
4521 ///
4522 /// There are two subexpressions: a common expression (the source array)
4523 /// that is evaluated once up-front, and a per-element initializer that
4524 /// runs once for each array element.
4525 ///
4526 /// Within the per-element initializer, the common expression may be referenced
4527 /// via an OpaqueValueExpr, and the current index may be obtained via an
4528 /// ArrayInitIndexExpr.
4529 class ArrayInitLoopExpr : public Expr {
4530  Stmt *SubExprs[2];
4531 
4532  explicit ArrayInitLoopExpr(EmptyShell Empty)
4533  : Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
4534 
4535 public:
4536  explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
4537  : Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
4538  CommonInit->isValueDependent() || ElementInit->isValueDependent(),
4539  T->isInstantiationDependentType(),
4540  CommonInit->containsUnexpandedParameterPack() ||
4541  ElementInit->containsUnexpandedParameterPack()),
4542  SubExprs{CommonInit, ElementInit} {}
4543 
4544  /// Get the common subexpression shared by all initializations (the source
4545  /// array).
4547  return cast<OpaqueValueExpr>(SubExprs[0]);
4548  }
4549 
4550  /// Get the initializer to use for each array element.
4551  Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
4552 
4553  llvm::APInt getArraySize() const {
4554  return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
4555  ->getSize();
4556  }
4557 
4558  static bool classof(const Stmt *S) {
4559  return S->getStmtClass() == ArrayInitLoopExprClass;
4560  }
4561 
4562  SourceLocation getLocStart() const LLVM_READONLY {
4563  return getCommonExpr()->getLocStart();
4564  }
4565  SourceLocation getLocEnd() const LLVM_READONLY {
4566  return getCommonExpr()->getLocEnd();
4567  }
4568 
4570  return child_range(SubExprs, SubExprs + 2);
4571  }
4573  return const_child_range(SubExprs, SubExprs + 2);
4574  }
4575 
4576  friend class ASTReader;
4577  friend class ASTStmtReader;
4578  friend class ASTStmtWriter;
4579 };
4580 
4581 /// Represents the index of the current element of an array being
4582 /// initialized by an ArrayInitLoopExpr. This can only appear within the
4583 /// subexpression of an ArrayInitLoopExpr.
4584 class ArrayInitIndexExpr : public Expr {
4585  explicit ArrayInitIndexExpr(EmptyShell Empty)
4586  : Expr(ArrayInitIndexExprClass, Empty) {}
4587 
4588 public:
4590  : Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
4591  false, false, false, false) {}
4592 
4593  static bool classof(const Stmt *S) {
4594  return S->getStmtClass() == ArrayInitIndexExprClass;
4595  }
4596 
4597  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4598  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4599 
4602  }
4605  }
4606 
4607  friend class ASTReader;
4608  friend class ASTStmtReader;
4609 };
4610 
4611 /// Represents an implicitly-generated value initialization of
4612 /// an object of a given type.
4613 ///
4614 /// Implicit value initializations occur within semantic initializer
4615 /// list expressions (InitListExpr) as placeholders for subobject
4616 /// initializations not explicitly specified by the user.
4617 ///
4618 /// \see InitListExpr
4619 class ImplicitValueInitExpr : public Expr {
4620 public:
4622  : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4623  false, false, ty->isInstantiationDependentType(), false) { }
4624 
4625  /// Construct an empty implicit value initialization.
4627  : Expr(ImplicitValueInitExprClass, Empty) { }
4628 
4629  static bool classof(const Stmt *T) {
4630  return T->getStmtClass() == ImplicitValueInitExprClass;
4631  }
4632 
4633  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4634  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4635 
4636  // Iterators
4639  }
4642  }
4643 };
4644 
4645 class ParenListExpr : public Expr {
4646  Stmt **Exprs;
4647  unsigned NumExprs;
4648  SourceLocation LParenLoc, RParenLoc;
4649 
4650 public:
4651  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4652  ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4653 
4654  /// Build an empty paren list.
4655  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4656 
4657  unsigned getNumExprs() const { return NumExprs; }
4658 
4659  const Expr* getExpr(unsigned Init) const {
4660  assert(Init < getNumExprs() && "Initializer access out of range!");
4661  return cast_or_null<Expr>(Exprs[Init]);
4662  }
4663 
4664  Expr* getExpr(unsigned Init) {
4665  assert(Init < getNumExprs() && "Initializer access out of range!");
4666  return cast_or_null<Expr>(Exprs[Init]);
4667  }
4668 
4669  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4670 
4672  return llvm::makeArrayRef(getExprs(), getNumExprs());
4673  }
4674 
4675  SourceLocation getLParenLoc() const { return LParenLoc; }
4676  SourceLocation getRParenLoc() const { return RParenLoc; }
4677 
4678  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4679  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4680 
4681  static bool classof(const Stmt *T) {
4682  return T->getStmtClass() == ParenListExprClass;
4683  }
4684 
4685  // Iterators
4687  return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4688  }
4690  return const_child_range(&Exprs[0], &Exprs[0] + NumExprs);
4691  }
4692 
4693  friend class ASTStmtReader;
4694  friend class ASTStmtWriter;
4695 };
4696 
4697 /// Represents a C11 generic selection.
4698 ///
4699 /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4700 /// expression, followed by one or more generic associations. Each generic
4701 /// association specifies a type name and an expression, or "default" and an
4702 /// expression (in which case it is known as a default generic association).
4703 /// The type and value of the generic selection are identical to those of its
4704 /// result expression, which is defined as the expression in the generic
4705 /// association with a type name that is compatible with the type of the
4706 /// controlling expression, or the expression in the default generic association
4707 /// if no types are compatible. For example:
4708 ///
4709 /// @code
4710 /// _Generic(X, double: 1, float: 2, default: 3)
4711 /// @endcode
4712 ///
4713 /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4714 /// or 3 if "hello".
4715 ///
4716 /// As an extension, generic selections are allowed in C++, where the following
4717 /// additional semantics apply:
4718 ///
4719 /// Any generic selection whose controlling expression is type-dependent or
4720 /// which names a dependent type in its association list is result-dependent,
4721 /// which means that the choice of result expression is dependent.
4722 /// Result-dependent generic associations are both type- and value-dependent.
4723 class GenericSelectionExpr : public Expr {
4724  enum { CONTROLLING, END_EXPR };
4725  TypeSourceInfo **AssocTypes;
4726  Stmt **SubExprs;
4727  unsigned NumAssocs, ResultIndex;
4728  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4729 
4730 public:
4731  GenericSelectionExpr(const ASTContext &Context,
4732  SourceLocation GenericLoc, Expr *ControllingExpr,
4733  ArrayRef<TypeSourceInfo*> AssocTypes,
4734  ArrayRef<Expr*> AssocExprs,
4735  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4736  bool ContainsUnexpandedParameterPack,
4737  unsigned ResultIndex);
4738 
4739  /// This constructor is used in the result-dependent case.
4740  GenericSelectionExpr(const ASTContext &Context,
4741  SourceLocation GenericLoc, Expr *ControllingExpr,
4742  ArrayRef<TypeSourceInfo*> AssocTypes,
4743  ArrayRef<Expr*> AssocExprs,
4744  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4745  bool ContainsUnexpandedParameterPack);
4746 
4748  : Expr(GenericSelectionExprClass, Empty) { }
4749 
4750  unsigned getNumAssocs() const { return NumAssocs; }
4751 
4752  SourceLocation getGenericLoc() const { return GenericLoc; }
4753  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4754  SourceLocation getRParenLoc() const { return RParenLoc; }
4755 
4756  const Expr *getAssocExpr(unsigned i) const {
4757  return cast<Expr>(SubExprs[END_EXPR+i]);
4758  }
4759  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4761  return NumAssocs
4762  ? llvm::makeArrayRef(
4763  &reinterpret_cast<Expr **>(SubExprs)[END_EXPR], NumAssocs)
4764  : None;
4765  }
4766  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4767  return AssocTypes[i];
4768  }
4769  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4771  return NumAssocs ? llvm::makeArrayRef(&AssocTypes[0], NumAssocs) : None;
4772  }
4773 
4774  QualType getAssocType(unsigned i) const {
4775  if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4776  return TS->getType();
4777  else
4778  return QualType();
4779  }
4780 
4781  const Expr *getControllingExpr() const {
4782  return cast<Expr>(SubExprs[CONTROLLING]);
4783  }
4784  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4785 
4786  /// Whether this generic selection is result-dependent.
4787  bool isResultDependent() const { return ResultIndex == -1U; }
4788 
4789  /// The zero-based index of the result expression's generic association in
4790  /// the generic selection's association list. Defined only if the
4791  /// generic selection is not result-dependent.
4792  unsigned getResultIndex() const {
4793  assert(!isResultDependent() && "Generic selection is result-dependent");
4794  return ResultIndex;
4795  }
4796 
4797  /// The generic selection's result expression. Defined only if the
4798  /// generic selection is not result-dependent.
4799  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4800  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4801 
4802  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4803  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4804 
4805  static bool classof(const Stmt *T) {
4806  return T->getStmtClass() == GenericSelectionExprClass;
4807  }
4808 
4810  return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4811  }
4813  return const_child_range(SubExprs, SubExprs + END_EXPR + NumAssocs);
4814  }
4815  friend class ASTStmtReader;
4816 };
4817 
4818 //===----------------------------------------------------------------------===//
4819 // Clang Extensions
4820 //===----------------------------------------------------------------------===//
4821 
4822 /// ExtVectorElementExpr - This represents access to specific elements of a
4823 /// vector, and may occur on the left hand side or right hand side. For example
4824 /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
4825 ///
4826 /// Note that the base may have either vector or pointer to vector type, just
4827 /// like a struct field reference.
4828 ///
4829 class ExtVectorElementExpr : public Expr {
4830  Stmt *Base;
4831  IdentifierInfo *Accessor;
4832  SourceLocation AccessorLoc;
4833 public:
4835  IdentifierInfo &accessor, SourceLocation loc)
4836  : Expr(ExtVectorElementExprClass, ty, VK,
4838  base->isTypeDependent(), base->isValueDependent(),