clang  14.0.0git
Decl.h
Go to the documentation of this file.
1 //===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_DECL_H
14 #define LLVM_CLANG_AST_DECL_H
15 
16 #include "clang/AST/APValue.h"
19 #include "clang/AST/DeclBase.h"
23 #include "clang/AST/Redeclarable.h"
24 #include "clang/AST/Type.h"
26 #include "clang/Basic/Diagnostic.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/Linkage.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "clang/Basic/Visibility.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/Optional.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/TrailingObjects.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <string>
50 #include <utility>
51 
52 namespace clang {
53 
54 class ASTContext;
55 struct ASTTemplateArgumentListInfo;
56 class Attr;
57 class CompoundStmt;
58 class DependentFunctionTemplateSpecializationInfo;
59 class EnumDecl;
60 class Expr;
61 class FunctionTemplateDecl;
62 class FunctionTemplateSpecializationInfo;
63 class FunctionTypeLoc;
64 class LabelStmt;
65 class MemberSpecializationInfo;
66 class Module;
67 class NamespaceDecl;
68 class ParmVarDecl;
69 class RecordDecl;
70 class Stmt;
71 class StringLiteral;
72 class TagDecl;
73 class TemplateArgumentList;
74 class TemplateArgumentListInfo;
75 class TemplateParameterList;
76 class TypeAliasTemplateDecl;
77 class TypeLoc;
78 class UnresolvedSetImpl;
79 class VarTemplateDecl;
80 
81 /// The top declaration context.
82 class TranslationUnitDecl : public Decl,
83  public DeclContext,
84  public Redeclarable<TranslationUnitDecl> {
86 
87  TranslationUnitDecl *getNextRedeclarationImpl() override {
88  return getNextRedeclaration();
89  }
90 
91  TranslationUnitDecl *getPreviousDeclImpl() override {
92  return getPreviousDecl();
93  }
94 
95  TranslationUnitDecl *getMostRecentDeclImpl() override {
96  return getMostRecentDecl();
97  }
98 
99  ASTContext &Ctx;
100 
101  /// The (most recently entered) anonymous namespace for this
102  /// translation unit, if one has been created.
103  NamespaceDecl *AnonymousNamespace = nullptr;
104 
105  explicit TranslationUnitDecl(ASTContext &ctx);
106 
107  virtual void anchor();
108 
109 public:
111  using redecl_iterator = redeclarable_base::redecl_iterator;
112 
119 
120  ASTContext &getASTContext() const { return Ctx; }
121 
122  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
123  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
124 
126 
127  // Implement isa/cast/dyncast/etc.
128  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
129  static bool classofKind(Kind K) { return K == TranslationUnit; }
131  return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
132  }
134  return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
135  }
136 };
137 
138 /// Represents a `#pragma comment` line. Always a child of
139 /// TranslationUnitDecl.
140 class PragmaCommentDecl final
141  : public Decl,
142  private llvm::TrailingObjects<PragmaCommentDecl, char> {
143  friend class ASTDeclReader;
144  friend class ASTDeclWriter;
145  friend TrailingObjects;
146 
147  PragmaMSCommentKind CommentKind;
148 
150  PragmaMSCommentKind CommentKind)
151  : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
152 
153  virtual void anchor();
154 
155 public:
157  SourceLocation CommentLoc,
158  PragmaMSCommentKind CommentKind,
159  StringRef Arg);
161  unsigned ArgSize);
162 
163  PragmaMSCommentKind getCommentKind() const { return CommentKind; }
164 
165  StringRef getArg() const { return getTrailingObjects<char>(); }
166 
167  // Implement isa/cast/dyncast/etc.
168  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
169  static bool classofKind(Kind K) { return K == PragmaComment; }
170 };
171 
172 /// Represents a `#pragma detect_mismatch` line. Always a child of
173 /// TranslationUnitDecl.
175  : public Decl,
176  private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
177  friend class ASTDeclReader;
178  friend class ASTDeclWriter;
179  friend TrailingObjects;
180 
181  size_t ValueStart;
182 
184  size_t ValueStart)
185  : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
186 
187  virtual void anchor();
188 
189 public:
192  SourceLocation Loc, StringRef Name,
193  StringRef Value);
194  static PragmaDetectMismatchDecl *
195  CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
196 
197  StringRef getName() const { return getTrailingObjects<char>(); }
198  StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
199 
200  // Implement isa/cast/dyncast/etc.
201  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
202  static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
203 };
204 
205 /// Declaration context for names declared as extern "C" in C++. This
206 /// is neither the semantic nor lexical context for such declarations, but is
207 /// used to check for conflicts with other extern "C" declarations. Example:
208 ///
209 /// \code
210 /// namespace N { extern "C" void f(); } // #1
211 /// void N::f() {} // #2
212 /// namespace M { extern "C" void f(); } // #3
213 /// \endcode
214 ///
215 /// The semantic context of #1 is namespace N and its lexical context is the
216 /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
217 /// context is the TU. However, both declarations are also visible in the
218 /// extern "C" context.
219 ///
220 /// The declaration at #3 finds it is a redeclaration of \c N::f through
221 /// lookup in the extern "C" context.
222 class ExternCContextDecl : public Decl, public DeclContext {
224  : Decl(ExternCContext, TU, SourceLocation()),
225  DeclContext(ExternCContext) {}
226 
227  virtual void anchor();
228 
229 public:
230  static ExternCContextDecl *Create(const ASTContext &C,
231  TranslationUnitDecl *TU);
232 
233  // Implement isa/cast/dyncast/etc.
234  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
235  static bool classofKind(Kind K) { return K == ExternCContext; }
237  return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
238  }
240  return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
241  }
242 };
243 
244 /// This represents a decl that may have a name. Many decls have names such
245 /// as ObjCMethodDecl, but not \@class, etc.
246 ///
247 /// Note that not every NamedDecl is actually named (e.g., a struct might
248 /// be anonymous), and not every name is an identifier.
249 class NamedDecl : public Decl {
250  /// The name of this declaration, which is typically a normal
251  /// identifier but may also be a special kind of name (C++
252  /// constructor, Objective-C selector, etc.)
253  DeclarationName Name;
254 
255  virtual void anchor();
256 
257 private:
258  NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
259 
260 protected:
262  : Decl(DK, DC, L), Name(N) {}
263 
264 public:
265  /// Get the identifier that names this declaration, if there is one.
266  ///
267  /// This will return NULL if this declaration has no name (e.g., for
268  /// an unnamed class) or if the name is a special name (C++ constructor,
269  /// Objective-C selector, etc.).
270  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
271 
272  /// Get the name of identifier for this declaration as a StringRef.
273  ///
274  /// This requires that the declaration have a name and that it be a simple
275  /// identifier.
276  StringRef getName() const {
277  assert(Name.isIdentifier() && "Name is not a simple identifier");
278  return getIdentifier() ? getIdentifier()->getName() : "";
279  }
280 
281  /// Get a human-readable name for the declaration, even if it is one of the
282  /// special kinds of names (C++ constructor, Objective-C selector, etc).
283  ///
284  /// Creating this name requires expensive string manipulation, so it should
285  /// be called only when performance doesn't matter. For simple declarations,
286  /// getNameAsCString() should suffice.
287  //
288  // FIXME: This function should be renamed to indicate that it is not just an
289  // alternate form of getName(), and clients should move as appropriate.
290  //
291  // FIXME: Deprecated, move clients to getName().
292  std::string getNameAsString() const { return Name.getAsString(); }
293 
294  /// Pretty-print the unqualified name of this declaration. Can be overloaded
295  /// by derived classes to provide a more user-friendly name when appropriate.
296  virtual void printName(raw_ostream &os) const;
297 
298  /// Get the actual, stored name of the declaration, which may be a special
299  /// name.
300  ///
301  /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
302  /// should be sent into the diagnostic instead of using the result of
303  /// \p getDeclName().
304  ///
305  /// A \p DeclarationName in a diagnostic will just be streamed to the output,
306  /// which will directly result in a call to \p DeclarationName::print.
307  ///
308  /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
309  /// \p DeclarationName::print, but with two customisation points along the
310  /// way (\p getNameForDiagnostic and \p printName). These are used to print
311  /// the template arguments if any, and to provide a user-friendly name for
312  /// some entities (such as unnamed variables and anonymous records).
313  DeclarationName getDeclName() const { return Name; }
314 
315  /// Set the name of this declaration.
316  void setDeclName(DeclarationName N) { Name = N; }
317 
318  /// Returns a human-readable qualified name for this declaration, like
319  /// A::B::i, for i being member of namespace A::B.
320  ///
321  /// If the declaration is not a member of context which can be named (record,
322  /// namespace), it will return the same result as printName().
323  ///
324  /// Creating this name is expensive, so it should be called only when
325  /// performance doesn't matter.
326  void printQualifiedName(raw_ostream &OS) const;
327  void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
328 
329  /// Print only the nested name specifier part of a fully-qualified name,
330  /// including the '::' at the end. E.g.
331  /// when `printQualifiedName(D)` prints "A::B::i",
332  /// this function prints "A::B::".
333  void printNestedNameSpecifier(raw_ostream &OS) const;
334  void printNestedNameSpecifier(raw_ostream &OS,
335  const PrintingPolicy &Policy) const;
336 
337  // FIXME: Remove string version.
339 
340  /// Appends a human-readable name for this declaration into the given stream.
341  ///
342  /// This is the method invoked by Sema when displaying a NamedDecl
343  /// in a diagnostic. It does not necessarily produce the same
344  /// result as printName(); for example, class template
345  /// specializations are printed with their template arguments.
346  virtual void getNameForDiagnostic(raw_ostream &OS,
347  const PrintingPolicy &Policy,
348  bool Qualified) const;
349 
350  /// Determine whether this declaration, if known to be well-formed within
351  /// its context, will replace the declaration OldD if introduced into scope.
352  ///
353  /// A declaration will replace another declaration if, for example, it is
354  /// a redeclaration of the same variable or function, but not if it is a
355  /// declaration of a different kind (function vs. class) or an overloaded
356  /// function.
357  ///
358  /// \param IsKnownNewer \c true if this declaration is known to be newer
359  /// than \p OldD (for instance, if this declaration is newly-created).
360  bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
361 
362  /// Determine whether this declaration has linkage.
363  bool hasLinkage() const;
364 
365  using Decl::isModulePrivate;
367 
368  /// Determine whether this declaration is a C++ class member.
369  bool isCXXClassMember() const {
370  const DeclContext *DC = getDeclContext();
371 
372  // C++0x [class.mem]p1:
373  // The enumerators of an unscoped enumeration defined in
374  // the class are members of the class.
375  if (isa<EnumDecl>(DC))
376  DC = DC->getRedeclContext();
377 
378  return DC->isRecord();
379  }
380 
381  /// Determine whether the given declaration is an instance member of
382  /// a C++ class.
383  bool isCXXInstanceMember() const;
384 
385  /// Determine if the declaration obeys the reserved identifier rules of the
386  /// given language.
387  ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
388 
389  /// Determine what kind of linkage this entity has.
390  ///
391  /// This is not the linkage as defined by the standard or the codegen notion
392  /// of linkage. It is just an implementation detail that is used to compute
393  /// those.
394  Linkage getLinkageInternal() const;
395 
396  /// Get the linkage from a semantic point of view. Entities in
397  /// anonymous namespaces are external (in c++98).
400  }
401 
402  /// True if this decl has external linkage.
405  }
406 
407  bool isExternallyVisible() const {
409  }
410 
411  /// Determine whether this declaration can be redeclared in a
412  /// different translation unit.
413  bool isExternallyDeclarable() const {
415  }
416 
417  /// Determines the visibility of this entity.
420  }
421 
422  /// Determines the linkage and visibility of this entity.
424 
425  /// Kinds of explicit visibility.
427  /// Do an LV computation for, ultimately, a type.
428  /// Visibility may be restricted by type visibility settings and
429  /// the visibility of template arguments.
431 
432  /// Do an LV computation for, ultimately, a non-type declaration.
433  /// Visibility may be restricted by value visibility settings and
434  /// the visibility of template arguments.
436  };
437 
438  /// If visibility was explicitly specified for this
439  /// declaration, return that visibility.
442 
443  /// True if the computed linkage is valid. Used for consistency
444  /// checking. Should always return true.
445  bool isLinkageValid() const;
446 
447  /// True if something has required us to compute the linkage
448  /// of this declaration.
449  ///
450  /// Language features which can retroactively change linkage (like a
451  /// typedef name for linkage purposes) may need to consider this,
452  /// but hopefully only in transitory ways during parsing.
453  bool hasLinkageBeenComputed() const {
454  return hasCachedLinkage();
455  }
456 
457  /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
458  /// the underlying named decl.
460  // Fast-path the common case.
461  if (this->getKind() != UsingShadow &&
462  this->getKind() != ConstructorUsingShadow &&
463  this->getKind() != ObjCCompatibleAlias &&
464  this->getKind() != NamespaceAlias)
465  return this;
466 
467  return getUnderlyingDeclImpl();
468  }
469  const NamedDecl *getUnderlyingDecl() const {
470  return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
471  }
472 
474  return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
475  }
476  const NamedDecl *getMostRecentDecl() const {
477  return const_cast<NamedDecl*>(this)->getMostRecentDecl();
478  }
479 
481 
482  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
483  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
484 };
485 
486 inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
487  ND.printName(OS);
488  return OS;
489 }
490 
491 /// Represents the declaration of a label. Labels also have a
492 /// corresponding LabelStmt, which indicates the position that the label was
493 /// defined at. For normal labels, the location of the decl is the same as the
494 /// location of the statement. For GNU local labels (__label__), the decl
495 /// location is where the __label__ is.
496 class LabelDecl : public NamedDecl {
497  LabelStmt *TheStmt;
498  StringRef MSAsmName;
499  bool MSAsmNameResolved = false;
500 
501  /// For normal labels, this is the same as the main declaration
502  /// label, i.e., the location of the identifier; for GNU local labels,
503  /// this is the location of the __label__ keyword.
504  SourceLocation LocStart;
505 
507  LabelStmt *S, SourceLocation StartL)
508  : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
509 
510  void anchor() override;
511 
512 public:
513  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
514  SourceLocation IdentL, IdentifierInfo *II);
515  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
516  SourceLocation IdentL, IdentifierInfo *II,
517  SourceLocation GnuLabelL);
518  static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
519 
520  LabelStmt *getStmt() const { return TheStmt; }
521  void setStmt(LabelStmt *T) { TheStmt = T; }
522 
523  bool isGnuLocal() const { return LocStart != getLocation(); }
524  void setLocStart(SourceLocation L) { LocStart = L; }
525 
526  SourceRange getSourceRange() const override LLVM_READONLY {
527  return SourceRange(LocStart, getLocation());
528  }
529 
530  bool isMSAsmLabel() const { return !MSAsmName.empty(); }
531  bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
532  void setMSAsmLabel(StringRef Name);
533  StringRef getMSAsmLabel() const { return MSAsmName; }
534  void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
535 
536  // Implement isa/cast/dyncast/etc.
537  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
538  static bool classofKind(Kind K) { return K == Label; }
539 };
540 
541 /// Represent a C++ namespace.
542 class NamespaceDecl : public NamedDecl, public DeclContext,
543  public Redeclarable<NamespaceDecl>
544 {
545  /// The starting location of the source range, pointing
546  /// to either the namespace or the inline keyword.
547  SourceLocation LocStart;
548 
549  /// The ending location of the source range.
550  SourceLocation RBraceLoc;
551 
552  /// A pointer to either the anonymous namespace that lives just inside
553  /// this namespace or to the first namespace in the chain (the latter case
554  /// only when this is not the first in the chain), along with a
555  /// boolean value indicating whether this is an inline namespace.
556  llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
557 
558  NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
559  SourceLocation StartLoc, SourceLocation IdLoc,
560  IdentifierInfo *Id, NamespaceDecl *PrevDecl);
561 
563 
564  NamespaceDecl *getNextRedeclarationImpl() override;
565  NamespaceDecl *getPreviousDeclImpl() override;
566  NamespaceDecl *getMostRecentDeclImpl() override;
567 
568 public:
569  friend class ASTDeclReader;
570  friend class ASTDeclWriter;
571 
573  bool Inline, SourceLocation StartLoc,
575  NamespaceDecl *PrevDecl);
576 
577  static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
578 
580  using redecl_iterator = redeclarable_base::redecl_iterator;
581 
588 
589  /// Returns true if this is an anonymous namespace declaration.
590  ///
591  /// For example:
592  /// \code
593  /// namespace {
594  /// ...
595  /// };
596  /// \endcode
597  /// q.v. C++ [namespace.unnamed]
598  bool isAnonymousNamespace() const {
599  return !getIdentifier();
600  }
601 
602  /// Returns true if this is an inline namespace declaration.
603  bool isInline() const {
604  return AnonOrFirstNamespaceAndInline.getInt();
605  }
606 
607  /// Set whether this is an inline namespace declaration.
608  void setInline(bool Inline) {
609  AnonOrFirstNamespaceAndInline.setInt(Inline);
610  }
611 
612  /// Returns true if the inline qualifier for \c Name is redundant.
614  if (!isInline())
615  return false;
616  auto X = lookup(Name);
617  // We should not perform a lookup within a transparent context, so find a
618  // non-transparent parent context.
619  auto Y = getParent()->getNonTransparentContext()->lookup(Name);
620  return std::distance(X.begin(), X.end()) ==
621  std::distance(Y.begin(), Y.end());
622  }
623 
624  /// Get the original (first) namespace declaration.
626 
627  /// Get the original (first) namespace declaration.
628  const NamespaceDecl *getOriginalNamespace() const;
629 
630  /// Return true if this declaration is an original (first) declaration
631  /// of the namespace. This is false for non-original (subsequent) namespace
632  /// declarations and anonymous namespaces.
633  bool isOriginalNamespace() const;
634 
635  /// Retrieve the anonymous namespace nested inside this namespace,
636  /// if any.
638  return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
639  }
640 
642  getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
643  }
644 
645  /// Retrieves the canonical declaration of this namespace.
647  return getOriginalNamespace();
648  }
650  return getOriginalNamespace();
651  }
652 
653  SourceRange getSourceRange() const override LLVM_READONLY {
654  return SourceRange(LocStart, RBraceLoc);
655  }
656 
657  SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
658  SourceLocation getRBraceLoc() const { return RBraceLoc; }
659  void setLocStart(SourceLocation L) { LocStart = L; }
660  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
661 
662  // Implement isa/cast/dyncast/etc.
663  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
664  static bool classofKind(Kind K) { return K == Namespace; }
666  return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
667  }
669  return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
670  }
671 };
672 
673 /// Represent the declaration of a variable (in which case it is
674 /// an lvalue) a function (in which case it is a function designator) or
675 /// an enum constant.
676 class ValueDecl : public NamedDecl {
677  QualType DeclType;
678 
679  void anchor() override;
680 
681 protected:
684  : NamedDecl(DK, DC, L, N), DeclType(T) {}
685 
686 public:
687  QualType getType() const { return DeclType; }
688  void setType(QualType newType) { DeclType = newType; }
689 
690  /// Determine whether this symbol is weakly-imported,
691  /// or declared with the weak or weak-ref attr.
692  bool isWeak() const;
693 
694  // Implement isa/cast/dyncast/etc.
695  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
696  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
697 };
698 
699 /// A struct with extended info about a syntactic
700 /// name qualifier, to be used for the case of out-of-line declarations.
703 
704  /// The number of "outer" template parameter lists.
705  /// The count includes all of the template parameter lists that were matched
706  /// against the template-ids occurring into the NNS and possibly (in the
707  /// case of an explicit specialization) a final "template <>".
708  unsigned NumTemplParamLists = 0;
709 
710  /// A new-allocated array of size NumTemplParamLists,
711  /// containing pointers to the "outer" template parameter lists.
712  /// It includes all of the template parameter lists that were matched
713  /// against the template-ids occurring into the NNS and possibly (in the
714  /// case of an explicit specialization) a final "template <>".
716 
717  QualifierInfo() = default;
718  QualifierInfo(const QualifierInfo &) = delete;
719  QualifierInfo& operator=(const QualifierInfo &) = delete;
720 
721  /// Sets info about "outer" template parameter lists.
724 };
725 
726 /// Represents a ValueDecl that came out of a declarator.
727 /// Contains type source information through TypeSourceInfo.
728 class DeclaratorDecl : public ValueDecl {
729  // A struct representing a TInfo, a trailing requires-clause and a syntactic
730  // qualifier, to be used for the (uncommon) case of out-of-line declarations
731  // and constrained function decls.
732  struct ExtInfo : public QualifierInfo {
733  TypeSourceInfo *TInfo;
734  Expr *TrailingRequiresClause = nullptr;
735  };
736 
737  llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
738 
739  /// The start of the source range for this declaration,
740  /// ignoring outer template declarations.
741  SourceLocation InnerLocStart;
742 
743  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
744  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
745  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
746 
747 protected:
750  SourceLocation StartL)
751  : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
752 
753 public:
754  friend class ASTDeclReader;
755  friend class ASTDeclWriter;
756 
758  return hasExtInfo()
759  ? getExtInfo()->TInfo
760  : DeclInfo.get<TypeSourceInfo*>();
761  }
762 
764  if (hasExtInfo())
765  getExtInfo()->TInfo = TI;
766  else
767  DeclInfo = TI;
768  }
769 
770  /// Return start of source range ignoring outer template declarations.
771  SourceLocation getInnerLocStart() const { return InnerLocStart; }
772  void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
773 
774  /// Return start of source range taking into account any outer template
775  /// declarations.
777 
778  SourceRange getSourceRange() const override LLVM_READONLY;
779 
780  SourceLocation getBeginLoc() const LLVM_READONLY {
781  return getOuterLocStart();
782  }
783 
784  /// Retrieve the nested-name-specifier that qualifies the name of this
785  /// declaration, if it was present in the source.
787  return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
788  : nullptr;
789  }
790 
791  /// Retrieve the nested-name-specifier (with source-location
792  /// information) that qualifies the name of this declaration, if it was
793  /// present in the source.
795  return hasExtInfo() ? getExtInfo()->QualifierLoc
797  }
798 
799  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
800 
801  /// \brief Get the constraint-expression introduced by the trailing
802  /// requires-clause in the function/member declaration, or null if no
803  /// requires-clause was provided.
805  return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
806  : nullptr;
807  }
808 
810  return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
811  : nullptr;
812  }
813 
814  void setTrailingRequiresClause(Expr *TrailingRequiresClause);
815 
816  unsigned getNumTemplateParameterLists() const {
817  return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
818  }
819 
821  assert(index < getNumTemplateParameterLists());
822  return getExtInfo()->TemplParamLists[index];
823  }
824 
827 
830 
831  // Implement isa/cast/dyncast/etc.
832  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
833  static bool classofKind(Kind K) {
834  return K >= firstDeclarator && K <= lastDeclarator;
835  }
836 };
837 
838 /// Structure used to store a statement, the constant value to
839 /// which it was evaluated (if any), and whether or not the statement
840 /// is an integral constant expression (if known).
842  /// Whether this statement was already evaluated.
843  bool WasEvaluated : 1;
844 
845  /// Whether this statement is being evaluated.
846  bool IsEvaluating : 1;
847 
848  /// Whether this variable is known to have constant initialization. This is
849  /// currently only computed in C++, for static / thread storage duration
850  /// variables that might have constant initialization and for variables that
851  /// are usable in constant expressions.
853 
854  /// Whether this variable is known to have constant destruction. That is,
855  /// whether running the destructor on the initial value is a side-effect
856  /// (and doesn't inspect any state that might have changed during program
857  /// execution). This is currently only computed if the destructor is
858  /// non-trivial.
860 
861  /// In C++98, whether the initializer is an ICE. This affects whether the
862  /// variable is usable in constant expressions.
863  bool HasICEInit : 1;
865 
868 
873 };
874 
875 /// Represents a variable declaration or definition.
876 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
877 public:
878  /// Initialization styles.
880  /// C-style initialization with assignment
882 
883  /// Call-style initialization (C++98)
885 
886  /// Direct list-initialization (C++11)
888  };
889 
890  /// Kinds of thread-local storage.
891  enum TLSKind {
892  /// Not a TLS variable.
894 
895  /// TLS with a known-constant initializer.
897 
898  /// TLS with a dynamic initializer.
900  };
901 
902  /// Return the string used to specify the storage class \p SC.
903  ///
904  /// It is illegal to call this function with SC == None.
905  static const char *getStorageClassSpecifierString(StorageClass SC);
906 
907 protected:
908  // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
909  // have allocated the auxiliary struct of information there.
910  //
911  // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
912  // this as *many* VarDecls are ParmVarDecls that don't have default
913  // arguments. We could save some space by moving this pointer union to be
914  // allocated in trailing space when necessary.
915  using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
916 
917  /// The initializer for this variable or, for a ParmVarDecl, the
918  /// C++ default argument.
919  mutable InitType Init;
920 
921 private:
922  friend class ASTDeclReader;
923  friend class ASTNodeImporter;
924  friend class StmtIteratorBase;
925 
926  class VarDeclBitfields {
927  friend class ASTDeclReader;
928  friend class VarDecl;
929 
930  unsigned SClass : 3;
931  unsigned TSCSpec : 2;
932  unsigned InitStyle : 2;
933 
934  /// Whether this variable is an ARC pseudo-__strong variable; see
935  /// isARCPseudoStrong() for details.
936  unsigned ARCPseudoStrong : 1;
937  };
938  enum { NumVarDeclBits = 8 };
939 
940 protected:
941  enum { NumParameterIndexBits = 8 };
942 
948  };
949 
951 
953  friend class ASTDeclReader;
954  friend class ParmVarDecl;
955 
956  unsigned : NumVarDeclBits;
957 
958  /// Whether this parameter inherits a default argument from a
959  /// prior declaration.
960  unsigned HasInheritedDefaultArg : 1;
961 
962  /// Describes the kind of default argument for this parameter. By default
963  /// this is none. If this is normal, then the default argument is stored in
964  /// the \c VarDecl initializer expression unless we were unable to parse
965  /// (even an invalid) expression for the default argument.
966  unsigned DefaultArgKind : 2;
967 
968  /// Whether this parameter undergoes K&R argument promotion.
969  unsigned IsKNRPromoted : 1;
970 
971  /// Whether this parameter is an ObjC method parameter or not.
972  unsigned IsObjCMethodParam : 1;
973 
974  /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
975  /// Otherwise, the number of function parameter scopes enclosing
976  /// the function parameter scope in which this parameter was
977  /// declared.
978  unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
979 
980  /// The number of parameters preceding this parameter in the
981  /// function parameter scope in which it was declared.
982  unsigned ParameterIndex : NumParameterIndexBits;
983  };
984 
986  friend class ASTDeclReader;
987  friend class ImplicitParamDecl;
988  friend class VarDecl;
989 
990  unsigned : NumVarDeclBits;
991 
992  // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
993  /// Whether this variable is a definition which was demoted due to
994  /// module merge.
995  unsigned IsThisDeclarationADemotedDefinition : 1;
996 
997  /// Whether this variable is the exception variable in a C++ catch
998  /// or an Objective-C @catch statement.
999  unsigned ExceptionVar : 1;
1000 
1001  /// Whether this local variable could be allocated in the return
1002  /// slot of its function, enabling the named return value optimization
1003  /// (NRVO).
1004  unsigned NRVOVariable : 1;
1005 
1006  /// Whether this variable is the for-range-declaration in a C++0x
1007  /// for-range statement.
1008  unsigned CXXForRangeDecl : 1;
1009 
1010  /// Whether this variable is the for-in loop declaration in Objective-C.
1011  unsigned ObjCForDecl : 1;
1012 
1013  /// Whether this variable is (C++1z) inline.
1014  unsigned IsInline : 1;
1015 
1016  /// Whether this variable has (C++1z) inline explicitly specified.
1017  unsigned IsInlineSpecified : 1;
1018 
1019  /// Whether this variable is (C++0x) constexpr.
1020  unsigned IsConstexpr : 1;
1021 
1022  /// Whether this variable is the implicit variable for a lambda
1023  /// init-capture.
1024  unsigned IsInitCapture : 1;
1025 
1026  /// Whether this local extern variable's previous declaration was
1027  /// declared in the same block scope. This controls whether we should merge
1028  /// the type of this declaration with its previous declaration.
1029  unsigned PreviousDeclInSameBlockScope : 1;
1030 
1031  /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1032  /// something else.
1033  unsigned ImplicitParamKind : 3;
1034 
1035  unsigned EscapingByref : 1;
1036  };
1037 
1038  union {
1039  unsigned AllBits;
1040  VarDeclBitfields VarDeclBits;
1043  };
1044 
1045  VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1047  TypeSourceInfo *TInfo, StorageClass SC);
1048 
1050 
1052  return getNextRedeclaration();
1053  }
1054 
1056  return getPreviousDecl();
1057  }
1058 
1060  return getMostRecentDecl();
1061  }
1062 
1063 public:
1065  using redecl_iterator = redeclarable_base::redecl_iterator;
1066 
1073 
1074  static VarDecl *Create(ASTContext &C, DeclContext *DC,
1075  SourceLocation StartLoc, SourceLocation IdLoc,
1077  StorageClass S);
1078 
1079  static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1080 
1081  SourceRange getSourceRange() const override LLVM_READONLY;
1082 
1083  /// Returns the storage class as written in the source. For the
1084  /// computed linkage of symbol, see getLinkage.
1086  return (StorageClass) VarDeclBits.SClass;
1087  }
1088  void setStorageClass(StorageClass SC);
1089 
1091  VarDeclBits.TSCSpec = TSC;
1092  assert(VarDeclBits.TSCSpec == TSC && "truncation");
1093  }
1095  return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1096  }
1097  TLSKind getTLSKind() const;
1098 
1099  /// Returns true if a variable with function scope is a non-static local
1100  /// variable.
1101  bool hasLocalStorage() const {
1102  if (getStorageClass() == SC_None) {
1103  // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1104  // used to describe variables allocated in global memory and which are
1105  // accessed inside a kernel(s) as read-only variables. As such, variables
1106  // in constant address space cannot have local storage.
1107  if (getType().getAddressSpace() == LangAS::opencl_constant)
1108  return false;
1109  // Second check is for C++11 [dcl.stc]p4.
1110  return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1111  }
1112 
1113  // Global Named Register (GNU extension)
1115  return false;
1116 
1117  // Return true for: Auto, Register.
1118  // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1119 
1120  return getStorageClass() >= SC_Auto;
1121  }
1122 
1123  /// Returns true if a variable with function scope is a static local
1124  /// variable.
1125  bool isStaticLocal() const {
1126  return (getStorageClass() == SC_Static ||
1127  // C++11 [dcl.stc]p4
1129  && !isFileVarDecl();
1130  }
1131 
1132  /// Returns true if a variable has extern or __private_extern__
1133  /// storage.
1134  bool hasExternalStorage() const {
1135  return getStorageClass() == SC_Extern ||
1137  }
1138 
1139  /// Returns true for all variables that do not have local storage.
1140  ///
1141  /// This includes all global variables as well as static variables declared
1142  /// within a function.
1143  bool hasGlobalStorage() const { return !hasLocalStorage(); }
1144 
1145  /// Get the storage duration of this variable, per C++ [basic.stc].
1147  return hasLocalStorage() ? SD_Automatic :
1149  }
1150 
1151  /// Compute the language linkage.
1153 
1154  /// Determines whether this variable is a variable with external, C linkage.
1155  bool isExternC() const;
1156 
1157  /// Determines whether this variable's context is, or is nested within,
1158  /// a C++ extern "C" linkage spec.
1159  bool isInExternCContext() const;
1160 
1161  /// Determines whether this variable's context is, or is nested within,
1162  /// a C++ extern "C++" linkage spec.
1163  bool isInExternCXXContext() const;
1164 
1165  /// Returns true for local variable declarations other than parameters.
1166  /// Note that this includes static variables inside of functions. It also
1167  /// includes variables inside blocks.
1168  ///
1169  /// void foo() { int x; static int y; extern int z; }
1170  bool isLocalVarDecl() const {
1171  if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1172  return false;
1173  if (const DeclContext *DC = getLexicalDeclContext())
1174  return DC->getRedeclContext()->isFunctionOrMethod();
1175  return false;
1176  }
1177 
1178  /// Similar to isLocalVarDecl but also includes parameters.
1179  bool isLocalVarDeclOrParm() const {
1180  return isLocalVarDecl() || getKind() == Decl::ParmVar;
1181  }
1182 
1183  /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1185  if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1186  return false;
1188  return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1189  }
1190 
1191  /// Determines whether this is a static data member.
1192  ///
1193  /// This will only be true in C++, and applies to, e.g., the
1194  /// variable 'x' in:
1195  /// \code
1196  /// struct S {
1197  /// static int x;
1198  /// };
1199  /// \endcode
1200  bool isStaticDataMember() const {
1201  // If it wasn't static, it would be a FieldDecl.
1202  return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1203  }
1204 
1205  VarDecl *getCanonicalDecl() override;
1206  const VarDecl *getCanonicalDecl() const {
1207  return const_cast<VarDecl*>(this)->getCanonicalDecl();
1208  }
1209 
1211  /// This declaration is only a declaration.
1213 
1214  /// This declaration is a tentative definition.
1216 
1217  /// This declaration is definitely a definition.
1219  };
1220 
1221  /// Check whether this declaration is a definition. If this could be
1222  /// a tentative definition (in C), don't check whether there's an overriding
1223  /// definition.
1227  }
1228 
1229  /// Check whether this variable is defined in this translation unit.
1232  return hasDefinition(getASTContext());
1233  }
1234 
1235  /// Get the tentative definition that acts as the real definition in a TU.
1236  /// Returns null if there is a proper definition available.
1238  const VarDecl *getActingDefinition() const {
1239  return const_cast<VarDecl*>(this)->getActingDefinition();
1240  }
1241 
1242  /// Get the real (not just tentative) definition for this declaration.
1244  const VarDecl *getDefinition(ASTContext &C) const {
1245  return const_cast<VarDecl*>(this)->getDefinition(C);
1246  }
1248  return getDefinition(getASTContext());
1249  }
1250  const VarDecl *getDefinition() const {
1251  return const_cast<VarDecl*>(this)->getDefinition();
1252  }
1253 
1254  /// Determine whether this is or was instantiated from an out-of-line
1255  /// definition of a static data member.
1256  bool isOutOfLine() const override;
1257 
1258  /// Returns true for file scoped variable declaration.
1259  bool isFileVarDecl() const {
1260  Kind K = getKind();
1261  if (K == ParmVar || K == ImplicitParam)
1262  return false;
1263 
1264  if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1265  return true;
1266 
1267  if (isStaticDataMember())
1268  return true;
1269 
1270  return false;
1271  }
1272 
1273  /// Get the initializer for this variable, no matter which
1274  /// declaration it is attached to.
1275  const Expr *getAnyInitializer() const {
1276  const VarDecl *D;
1277  return getAnyInitializer(D);
1278  }
1279 
1280  /// Get the initializer for this variable, no matter which
1281  /// declaration it is attached to. Also get that declaration.
1282  const Expr *getAnyInitializer(const VarDecl *&D) const;
1283 
1284  bool hasInit() const;
1285  const Expr *getInit() const {
1286  return const_cast<VarDecl *>(this)->getInit();
1287  }
1288  Expr *getInit();
1289 
1290  /// Retrieve the address of the initializer expression.
1291  Stmt **getInitAddress();
1292 
1293  void setInit(Expr *I);
1294 
1295  /// Get the initializing declaration of this variable, if any. This is
1296  /// usually the definition, except that for a static data member it can be
1297  /// the in-class declaration.
1300  return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1301  }
1302 
1303  /// Determine whether this variable's value might be usable in a
1304  /// constant expression, according to the relevant language standard.
1305  /// This only checks properties of the declaration, and does not check
1306  /// whether the initializer is in fact a constant expression.
1307  ///
1308  /// This corresponds to C++20 [expr.const]p3's notion of a
1309  /// "potentially-constant" variable.
1310  bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1311 
1312  /// Determine whether this variable's value can be used in a
1313  /// constant expression, according to the relevant language standard,
1314  /// including checking whether it was initialized by a constant expression.
1315  bool isUsableInConstantExpressions(const ASTContext &C) const;
1316 
1319 
1320  /// Attempt to evaluate the value of the initializer attached to this
1321  /// declaration, and produce notes explaining why it cannot be evaluated.
1322  /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1323  APValue *evaluateValue() const;
1324 
1325 private:
1326  APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1327  bool IsConstantInitialization) const;
1328 
1329 public:
1330  /// Return the already-evaluated value of this variable's
1331  /// initializer, or NULL if the value is not yet known. Returns pointer
1332  /// to untyped APValue if the value could not be evaluated.
1333  APValue *getEvaluatedValue() const;
1334 
1335  /// Evaluate the destruction of this variable to determine if it constitutes
1336  /// constant destruction.
1337  ///
1338  /// \pre hasConstantInitialization()
1339  /// \return \c true if this variable has constant destruction, \c false if
1340  /// not.
1342 
1343  /// Determine whether this variable has constant initialization.
1344  ///
1345  /// This is only set in two cases: when the language semantics require
1346  /// constant initialization (globals in C and some globals in C++), and when
1347  /// the variable is usable in constant expressions (constexpr, const int, and
1348  /// reference variables in C++).
1349  bool hasConstantInitialization() const;
1350 
1351  /// Determine whether the initializer of this variable is an integer constant
1352  /// expression. For use in C++98, where this affects whether the variable is
1353  /// usable in constant expressions.
1354  bool hasICEInitializer(const ASTContext &Context) const;
1355 
1356  /// Evaluate the initializer of this variable to determine whether it's a
1357  /// constant initializer. Should only be called once, after completing the
1358  /// definition of the variable.
1361 
1363  VarDeclBits.InitStyle = Style;
1364  }
1365 
1366  /// The style of initialization for this declaration.
1367  ///
1368  /// C-style initialization is "int x = 1;". Call-style initialization is
1369  /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1370  /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1371  /// expression for class types. List-style initialization is C++11 syntax,
1372  /// e.g. "int x{1};". Clients can distinguish between different forms of
1373  /// initialization by checking this value. In particular, "int x = {1};" is
1374  /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1375  /// Init expression in all three cases is an InitListExpr.
1377  return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1378  }
1379 
1380  /// Whether the initializer is a direct-initializer (list or call).
1381  bool isDirectInit() const {
1382  return getInitStyle() != CInit;
1383  }
1384 
1385  /// If this definition should pretend to be a declaration.
1387  return isa<ParmVarDecl>(this) ? false :
1388  NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1389  }
1390 
1391  /// This is a definition which should be demoted to a declaration.
1392  ///
1393  /// In some cases (mostly module merging) we can end up with two visible
1394  /// definitions one of which needs to be demoted to a declaration to keep
1395  /// the AST invariants.
1397  assert(isThisDeclarationADefinition() && "Not a definition!");
1398  assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1399  NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1400  }
1401 
1402  /// Determine whether this variable is the exception variable in a
1403  /// C++ catch statememt or an Objective-C \@catch statement.
1404  bool isExceptionVariable() const {
1405  return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1406  }
1407  void setExceptionVariable(bool EV) {
1408  assert(!isa<ParmVarDecl>(this));
1409  NonParmVarDeclBits.ExceptionVar = EV;
1410  }
1411 
1412  /// Determine whether this local variable can be used with the named
1413  /// return value optimization (NRVO).
1414  ///
1415  /// The named return value optimization (NRVO) works by marking certain
1416  /// non-volatile local variables of class type as NRVO objects. These
1417  /// locals can be allocated within the return slot of their containing
1418  /// function, in which case there is no need to copy the object to the
1419  /// return slot when returning from the function. Within the function body,
1420  /// each return that returns the NRVO object will have this variable as its
1421  /// NRVO candidate.
1422  bool isNRVOVariable() const {
1423  return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1424  }
1425  void setNRVOVariable(bool NRVO) {
1426  assert(!isa<ParmVarDecl>(this));
1427  NonParmVarDeclBits.NRVOVariable = NRVO;
1428  }
1429 
1430  /// Determine whether this variable is the for-range-declaration in
1431  /// a C++0x for-range statement.
1432  bool isCXXForRangeDecl() const {
1433  return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1434  }
1435  void setCXXForRangeDecl(bool FRD) {
1436  assert(!isa<ParmVarDecl>(this));
1437  NonParmVarDeclBits.CXXForRangeDecl = FRD;
1438  }
1439 
1440  /// Determine whether this variable is a for-loop declaration for a
1441  /// for-in statement in Objective-C.
1442  bool isObjCForDecl() const {
1443  return NonParmVarDeclBits.ObjCForDecl;
1444  }
1445 
1446  void setObjCForDecl(bool FRD) {
1447  NonParmVarDeclBits.ObjCForDecl = FRD;
1448  }
1449 
1450  /// Determine whether this variable is an ARC pseudo-__strong variable. A
1451  /// pseudo-__strong variable has a __strong-qualified type but does not
1452  /// actually retain the object written into it. Generally such variables are
1453  /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1454  /// the variable is annotated with the objc_externally_retained attribute, 2)
1455  /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1456  /// loop.
1457  bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1458  void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1459 
1460  /// Whether this variable is (C++1z) inline.
1461  bool isInline() const {
1462  return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1463  }
1464  bool isInlineSpecified() const {
1465  return isa<ParmVarDecl>(this) ? false
1466  : NonParmVarDeclBits.IsInlineSpecified;
1467  }
1469  assert(!isa<ParmVarDecl>(this));
1470  NonParmVarDeclBits.IsInline = true;
1471  NonParmVarDeclBits.IsInlineSpecified = true;
1472  }
1474  assert(!isa<ParmVarDecl>(this));
1475  NonParmVarDeclBits.IsInline = true;
1476  }
1477 
1478  /// Whether this variable is (C++11) constexpr.
1479  bool isConstexpr() const {
1480  return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1481  }
1482  void setConstexpr(bool IC) {
1483  assert(!isa<ParmVarDecl>(this));
1484  NonParmVarDeclBits.IsConstexpr = IC;
1485  }
1486 
1487  /// Whether this variable is the implicit variable for a lambda init-capture.
1488  bool isInitCapture() const {
1489  return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1490  }
1491  void setInitCapture(bool IC) {
1492  assert(!isa<ParmVarDecl>(this));
1493  NonParmVarDeclBits.IsInitCapture = IC;
1494  }
1495 
1496  /// Determine whether this variable is actually a function parameter pack or
1497  /// init-capture pack.
1498  bool isParameterPack() const;
1499 
1500  /// Whether this local extern variable declaration's previous declaration
1501  /// was declared in the same block scope. Only correct in C++.
1503  return isa<ParmVarDecl>(this)
1504  ? false
1505  : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1506  }
1508  assert(!isa<ParmVarDecl>(this));
1509  NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1510  }
1511 
1512  /// Indicates the capture is a __block variable that is captured by a block
1513  /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1514  /// returns false).
1515  bool isEscapingByref() const;
1516 
1517  /// Indicates the capture is a __block variable that is never captured by an
1518  /// escaping block.
1519  bool isNonEscapingByref() const;
1520 
1522  NonParmVarDeclBits.EscapingByref = true;
1523  }
1524 
1525  /// Determines if this variable's alignment is dependent.
1526  bool hasDependentAlignment() const;
1527 
1528  /// Retrieve the variable declaration from which this variable could
1529  /// be instantiated, if it is an instantiation (rather than a non-template).
1531 
1532  /// If this variable is an instantiated static data member of a
1533  /// class template specialization, returns the templated static data member
1534  /// from which it was instantiated.
1536 
1537  /// If this variable is an instantiation of a variable template or a
1538  /// static data member of a class template, determine what kind of
1539  /// template specialization or instantiation this is.
1541 
1542  /// Get the template specialization kind of this variable for the purposes of
1543  /// template instantiation. This differs from getTemplateSpecializationKind()
1544  /// for an instantiation of a class-scope explicit specialization.
1547 
1548  /// If this variable is an instantiation of a variable template or a
1549  /// static data member of a class template, determine its point of
1550  /// instantiation.
1552 
1553  /// If this variable is an instantiation of a static data member of a
1554  /// class template specialization, retrieves the member specialization
1555  /// information.
1557 
1558  /// For a static data member that was instantiated from a static
1559  /// data member of a class template, set the template specialiation kind.
1561  SourceLocation PointOfInstantiation = SourceLocation());
1562 
1563  /// Specify that this variable is an instantiation of the
1564  /// static data member VD.
1567 
1568  /// Retrieves the variable template that is described by this
1569  /// variable declaration.
1570  ///
1571  /// Every variable template is represented as a VarTemplateDecl and a
1572  /// VarDecl. The former contains template properties (such as
1573  /// the template parameter lists) while the latter contains the
1574  /// actual description of the template's
1575  /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1576  /// VarDecl that from a VarTemplateDecl, while
1577  /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1578  /// a VarDecl.
1580 
1581  void setDescribedVarTemplate(VarTemplateDecl *Template);
1582 
1583  // Is this variable known to have a definition somewhere in the complete
1584  // program? This may be true even if the declaration has internal linkage and
1585  // has no definition within this source file.
1586  bool isKnownToBeDefined() const;
1587 
1588  /// Is destruction of this variable entirely suppressed? If so, the variable
1589  /// need not have a usable destructor at all.
1590  bool isNoDestroy(const ASTContext &) const;
1591 
1592  /// Would the destruction of this variable have any effect, and if so, what
1593  /// kind?
1595 
1596  // Implement isa/cast/dyncast/etc.
1597  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1598  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1599 };
1600 
1601 class ImplicitParamDecl : public VarDecl {
1602  void anchor() override;
1603 
1604 public:
1605  /// Defines the kind of the implicit parameter: is this an implicit parameter
1606  /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1607  /// context or something else.
1608  enum ImplicitParamKind : unsigned {
1609  /// Parameter for Objective-C 'self' argument
1611 
1612  /// Parameter for Objective-C '_cmd' argument
1614 
1615  /// Parameter for C++ 'this' argument
1617 
1618  /// Parameter for C++ virtual table pointers
1620 
1621  /// Parameter for captured context
1623 
1624  /// Other implicit parameter
1626  };
1627 
1628  /// Create implicit parameter.
1631  QualType T, ImplicitParamKind ParamKind);
1633  ImplicitParamKind ParamKind);
1634 
1635  static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1636 
1639  ImplicitParamKind ParamKind)
1640  : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1641  /*TInfo=*/nullptr, SC_None) {
1642  NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1643  setImplicit();
1644  }
1645 
1647  : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1648  SourceLocation(), /*Id=*/nullptr, Type,
1649  /*TInfo=*/nullptr, SC_None) {
1650  NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1651  setImplicit();
1652  }
1653 
1654  /// Returns the implicit parameter kind.
1656  return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1657  }
1658 
1659  // Implement isa/cast/dyncast/etc.
1660  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1661  static bool classofKind(Kind K) { return K == ImplicitParam; }
1662 };
1663 
1664 /// Represents a parameter to a function.
1665 class ParmVarDecl : public VarDecl {
1666 public:
1667  enum { MaxFunctionScopeDepth = 255 };
1668  enum { MaxFunctionScopeIndex = 255 };
1669 
1670 protected:
1673  TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1674  : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1675  assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1676  assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1677  assert(ParmVarDeclBits.IsKNRPromoted == false);
1678  assert(ParmVarDeclBits.IsObjCMethodParam == false);
1679  setDefaultArg(DefArg);
1680  }
1681 
1682 public:
1683  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1684  SourceLocation StartLoc,
1686  QualType T, TypeSourceInfo *TInfo,
1687  StorageClass S, Expr *DefArg);
1688 
1689  static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1690 
1691  SourceRange getSourceRange() const override LLVM_READONLY;
1692 
1693  void setObjCMethodScopeInfo(unsigned parameterIndex) {
1694  ParmVarDeclBits.IsObjCMethodParam = true;
1695  setParameterIndex(parameterIndex);
1696  }
1697 
1698  void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1699  assert(!ParmVarDeclBits.IsObjCMethodParam);
1700 
1701  ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1702  assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1703  && "truncation!");
1704 
1705  setParameterIndex(parameterIndex);
1706  }
1707 
1708  bool isObjCMethodParameter() const {
1709  return ParmVarDeclBits.IsObjCMethodParam;
1710  }
1711 
1712  /// Determines whether this parameter is destroyed in the callee function.
1713  bool isDestroyedInCallee() const;
1714 
1715  unsigned getFunctionScopeDepth() const {
1716  if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1717  return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1718  }
1719 
1720  static constexpr unsigned getMaxFunctionScopeDepth() {
1721  return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1722  }
1723 
1724  /// Returns the index of this parameter in its prototype or method scope.
1725  unsigned getFunctionScopeIndex() const {
1726  return getParameterIndex();
1727  }
1728 
1730  if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1731  return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1732  }
1734  assert(ParmVarDeclBits.IsObjCMethodParam);
1735  ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1736  }
1737 
1738  /// True if the value passed to this parameter must undergo
1739  /// K&R-style default argument promotion:
1740  ///
1741  /// C99 6.5.2.2.
1742  /// If the expression that denotes the called function has a type
1743  /// that does not include a prototype, the integer promotions are
1744  /// performed on each argument, and arguments that have type float
1745  /// are promoted to double.
1746  bool isKNRPromoted() const {
1747  return ParmVarDeclBits.IsKNRPromoted;
1748  }
1749  void setKNRPromoted(bool promoted) {
1750  ParmVarDeclBits.IsKNRPromoted = promoted;
1751  }
1752 
1753  Expr *getDefaultArg();
1754  const Expr *getDefaultArg() const {
1755  return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1756  }
1757 
1758  void setDefaultArg(Expr *defarg);
1759 
1760  /// Retrieve the source range that covers the entire default
1761  /// argument.
1766  return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1767  }
1768 
1769  /// Determines whether this parameter has a default argument,
1770  /// either parsed or not.
1771  bool hasDefaultArg() const;
1772 
1773  /// Determines whether this parameter has a default argument that has not
1774  /// yet been parsed. This will occur during the processing of a C++ class
1775  /// whose member functions have default arguments, e.g.,
1776  /// @code
1777  /// class X {
1778  /// public:
1779  /// void f(int x = 17); // x has an unparsed default argument now
1780  /// }; // x has a regular default argument now
1781  /// @endcode
1782  bool hasUnparsedDefaultArg() const {
1783  return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1784  }
1785 
1787  return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1788  }
1789 
1790  /// Specify that this parameter has an unparsed default argument.
1791  /// The argument will be replaced with a real default argument via
1792  /// setDefaultArg when the class definition enclosing the function
1793  /// declaration that owns this default argument is completed.
1795  ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1796  }
1797 
1798  bool hasInheritedDefaultArg() const {
1799  return ParmVarDeclBits.HasInheritedDefaultArg;
1800  }
1801 
1802  void setHasInheritedDefaultArg(bool I = true) {
1803  ParmVarDeclBits.HasInheritedDefaultArg = I;
1804  }
1805 
1806  QualType getOriginalType() const;
1807 
1808  /// Sets the function declaration that owns this
1809  /// ParmVarDecl. Since ParmVarDecls are often created before the
1810  /// FunctionDecls that own them, this routine is required to update
1811  /// the DeclContext appropriately.
1813 
1814  // Implement isa/cast/dyncast/etc.
1815  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1816  static bool classofKind(Kind K) { return K == ParmVar; }
1817 
1818 private:
1819  enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1820 
1821  void setParameterIndex(unsigned parameterIndex) {
1822  if (parameterIndex >= ParameterIndexSentinel) {
1823  setParameterIndexLarge(parameterIndex);
1824  return;
1825  }
1826 
1827  ParmVarDeclBits.ParameterIndex = parameterIndex;
1828  assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1829  }
1830  unsigned getParameterIndex() const {
1831  unsigned d = ParmVarDeclBits.ParameterIndex;
1832  return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1833  }
1834 
1835  void setParameterIndexLarge(unsigned parameterIndex);
1836  unsigned getParameterIndexLarge() const;
1837 };
1838 
1839 enum class MultiVersionKind {
1840  None,
1841  Target,
1842  CPUSpecific,
1843  CPUDispatch
1844 };
1845 
1846 /// Represents a function declaration or definition.
1847 ///
1848 /// Since a given function can be declared several times in a program,
1849 /// there may be several FunctionDecls that correspond to that
1850 /// function. Only one of those FunctionDecls will be found when
1851 /// traversing the list of declarations in the context of the
1852 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1853 /// contains all of the information known about the function. Other,
1854 /// previous declarations of the function are available via the
1855 /// getPreviousDecl() chain.
1857  public DeclContext,
1858  public Redeclarable<FunctionDecl> {
1859  // This class stores some data in DeclContext::FunctionDeclBits
1860  // to save some space. Use the provided accessors to access it.
1861 public:
1862  /// The kind of templated function a FunctionDecl can be.
1864  // Not templated.
1866  // The pattern in a function template declaration.
1868  // A non-template function that is an instantiation or explicit
1869  // specialization of a member of a templated class.
1871  // An instantiation or explicit specialization of a function template.
1872  // Note: this might have been instantiated from a templated class if it
1873  // is a class-scope explicit specialization.
1875  // A function template specialization that hasn't yet been resolved to a
1876  // particular specialized function template.
1878  };
1879 
1880  /// Stashed information about a defaulted function definition whose body has
1881  /// not yet been lazily generated.
1883  : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1884  friend TrailingObjects;
1885  unsigned NumLookups;
1886 
1887  public:
1888  static DefaultedFunctionInfo *Create(ASTContext &Context,
1889  ArrayRef<DeclAccessPair> Lookups);
1890  /// Get the unqualified lookup results that should be used in this
1891  /// defaulted function definition.
1893  return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1894  }
1895  };
1896 
1897 private:
1898  /// A new[]'d array of pointers to VarDecls for the formal
1899  /// parameters of this function. This is null if a prototype or if there are
1900  /// no formals.
1901  ParmVarDecl **ParamInfo = nullptr;
1902 
1903  /// The active member of this union is determined by
1904  /// FunctionDeclBits.HasDefaultedFunctionInfo.
1905  union {
1906  /// The body of the function.
1908  /// Information about a future defaulted function definition.
1910  };
1911 
1912  unsigned ODRHash;
1913 
1914  /// End part of this FunctionDecl's source range.
1915  ///
1916  /// We could compute the full range in getSourceRange(). However, when we're
1917  /// dealing with a function definition deserialized from a PCH/AST file,
1918  /// we can only compute the full range once the function body has been
1919  /// de-serialized, so it's far better to have the (sometimes-redundant)
1920  /// EndRangeLoc.
1921  SourceLocation EndRangeLoc;
1922 
1923  /// The template or declaration that this declaration
1924  /// describes or was instantiated from, respectively.
1925  ///
1926  /// For non-templates, this value will be NULL. For function
1927  /// declarations that describe a function template, this will be a
1928  /// pointer to a FunctionTemplateDecl. For member functions
1929  /// of class template specializations, this will be a MemberSpecializationInfo
1930  /// pointer containing information about the specialization.
1931  /// For function template specializations, this will be a
1932  /// FunctionTemplateSpecializationInfo, which contains information about
1933  /// the template being specialized and the template arguments involved in
1934  /// that specialization.
1935  llvm::PointerUnion<FunctionTemplateDecl *,
1939  TemplateOrSpecialization;
1940 
1941  /// Provides source/type location info for the declaration name embedded in
1942  /// the DeclaratorDecl base class.
1943  DeclarationNameLoc DNLoc;
1944 
1945  /// Specify that this function declaration is actually a function
1946  /// template specialization.
1947  ///
1948  /// \param C the ASTContext.
1949  ///
1950  /// \param Template the function template that this function template
1951  /// specialization specializes.
1952  ///
1953  /// \param TemplateArgs the template arguments that produced this
1954  /// function template specialization from the template.
1955  ///
1956  /// \param InsertPos If non-NULL, the position in the function template
1957  /// specialization set where the function template specialization data will
1958  /// be inserted.
1959  ///
1960  /// \param TSK the kind of template specialization this is.
1961  ///
1962  /// \param TemplateArgsAsWritten location info of template arguments.
1963  ///
1964  /// \param PointOfInstantiation point at which the function template
1965  /// specialization was first instantiated.
1966  void setFunctionTemplateSpecialization(ASTContext &C,
1967  FunctionTemplateDecl *Template,
1968  const TemplateArgumentList *TemplateArgs,
1969  void *InsertPos,
1971  const TemplateArgumentListInfo *TemplateArgsAsWritten,
1972  SourceLocation PointOfInstantiation);
1973 
1974  /// Specify that this record is an instantiation of the
1975  /// member function FD.
1976  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1978 
1979  void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1980 
1981  // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1982  // need to access this bit but we want to avoid making ASTDeclWriter
1983  // a friend of FunctionDeclBitfields just for this.
1984  bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1985 
1986  /// Whether an ODRHash has been stored.
1987  bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1988 
1989  /// State that an ODRHash has been stored.
1990  void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1991 
1992 protected:
1993  FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1994  const DeclarationNameInfo &NameInfo, QualType T,
1995  TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
1996  bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
1997  Expr *TrailingRequiresClause = nullptr);
1998 
2000 
2002  return getNextRedeclaration();
2003  }
2004 
2006  return getPreviousDecl();
2007  }
2008 
2010  return getMostRecentDecl();
2011  }
2012 
2013 public:
2014  friend class ASTDeclReader;
2015  friend class ASTDeclWriter;
2016 
2018  using redecl_iterator = redeclarable_base::redecl_iterator;
2019 
2026 
2027  static FunctionDecl *
2030  TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
2031  bool isInlineSpecified = false, bool hasWrittenPrototype = true,
2033  Expr *TrailingRequiresClause = nullptr) {
2034  DeclarationNameInfo NameInfo(N, NLoc);
2035  return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2037  hasWrittenPrototype, ConstexprKind,
2038  TrailingRequiresClause);
2039  }
2040 
2041  static FunctionDecl *
2042  Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2043  const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2045  bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
2046  Expr *TrailingRequiresClause);
2047 
2048  static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2049 
2051  return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2052  }
2053 
2054  void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2055  bool Qualified) const override;
2056 
2057  void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2058 
2059  /// Returns the location of the ellipsis of a variadic function.
2061  const auto *FPT = getType()->getAs<FunctionProtoType>();
2062  if (FPT && FPT->isVariadic())
2063  return FPT->getEllipsisLoc();
2064  return SourceLocation();
2065  }
2066 
2067  SourceRange getSourceRange() const override LLVM_READONLY;
2068 
2069  // Function definitions.
2070  //
2071  // A function declaration may be:
2072  // - a non defining declaration,
2073  // - a definition. A function may be defined because:
2074  // - it has a body, or will have it in the case of late parsing.
2075  // - it has an uninstantiated body. The body does not exist because the
2076  // function is not used yet, but the declaration is considered a
2077  // definition and does not allow other definition of this function.
2078  // - it does not have a user specified body, but it does not allow
2079  // redefinition, because it is deleted/defaulted or is defined through
2080  // some other mechanism (alias, ifunc).
2081 
2082  /// Returns true if the function has a body.
2083  ///
2084  /// The function body might be in any of the (re-)declarations of this
2085  /// function. The variant that accepts a FunctionDecl pointer will set that
2086  /// function declaration to the actual declaration containing the body (if
2087  /// there is one).
2088  bool hasBody(const FunctionDecl *&Definition) const;
2089 
2090  bool hasBody() const override {
2091  const FunctionDecl* Definition;
2092  return hasBody(Definition);
2093  }
2094 
2095  /// Returns whether the function has a trivial body that does not require any
2096  /// specific codegen.
2097  bool hasTrivialBody() const;
2098 
2099  /// Returns true if the function has a definition that does not need to be
2100  /// instantiated.
2101  ///
2102  /// The variant that accepts a FunctionDecl pointer will set that function
2103  /// declaration to the declaration that is a definition (if there is one).
2104  ///
2105  /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2106  /// declarations that were instantiataed from function definitions.
2107  /// Such a declaration behaves as if it is a definition for the
2108  /// purpose of redefinition checking, but isn't actually a "real"
2109  /// definition until its body is instantiated.
2110  bool isDefined(const FunctionDecl *&Definition,
2111  bool CheckForPendingFriendDefinition = false) const;
2112 
2113  bool isDefined() const {
2114  const FunctionDecl* Definition;
2115  return isDefined(Definition);
2116  }
2117 
2118  /// Get the definition for this declaration.
2120  const FunctionDecl *Definition;
2121  if (isDefined(Definition))
2122  return const_cast<FunctionDecl *>(Definition);
2123  return nullptr;
2124  }
2125  const FunctionDecl *getDefinition() const {
2126  return const_cast<FunctionDecl *>(this)->getDefinition();
2127  }
2128 
2129  /// Retrieve the body (definition) of the function. The function body might be
2130  /// in any of the (re-)declarations of this function. The variant that accepts
2131  /// a FunctionDecl pointer will set that function declaration to the actual
2132  /// declaration containing the body (if there is one).
2133  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2134  /// unnecessary AST de-serialization of the body.
2135  Stmt *getBody(const FunctionDecl *&Definition) const;
2136 
2137  Stmt *getBody() const override {
2138  const FunctionDecl* Definition;
2139  return getBody(Definition);
2140  }
2141 
2142  /// Returns whether this specific declaration of the function is also a
2143  /// definition that does not contain uninstantiated body.
2144  ///
2145  /// This does not determine whether the function has been defined (e.g., in a
2146  /// previous definition); for that information, use isDefined.
2147  ///
2148  /// Note: the function declaration does not become a definition until the
2149  /// parser reaches the definition, if called before, this function will return
2150  /// `false`.
2152  return isDeletedAsWritten() || isDefaulted() ||
2155  }
2156 
2157  /// Determine whether this specific declaration of the function is a friend
2158  /// declaration that was instantiated from a function definition. Such
2159  /// declarations behave like definitions in some contexts.
2161 
2162  /// Returns whether this specific declaration of the function has a body.
2164  return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2166  }
2167 
2168  void setBody(Stmt *B);
2169  void setLazyBody(uint64_t Offset) {
2170  FunctionDeclBits.HasDefaultedFunctionInfo = false;
2172  }
2173 
2174  void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2175  DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2176 
2177  /// Whether this function is variadic.
2178  bool isVariadic() const;
2179 
2180  /// Whether this function is marked as virtual explicitly.
2181  bool isVirtualAsWritten() const {
2182  return FunctionDeclBits.IsVirtualAsWritten;
2183  }
2184 
2185  /// State that this function is marked as virtual explicitly.
2186  void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2187 
2188  /// Whether this virtual function is pure, i.e. makes the containing class
2189  /// abstract.
2190  bool isPure() const { return FunctionDeclBits.IsPure; }
2191  void setPure(bool P = true);
2192 
2193  /// Whether this templated function will be late parsed.
2194  bool isLateTemplateParsed() const {
2195  return FunctionDeclBits.IsLateTemplateParsed;
2196  }
2197 
2198  /// State that this templated function will be late parsed.
2199  void setLateTemplateParsed(bool ILT = true) {
2200  FunctionDeclBits.IsLateTemplateParsed = ILT;
2201  }
2202 
2203  /// Whether this function is "trivial" in some specialized C++ senses.
2204  /// Can only be true for default constructors, copy constructors,
2205  /// copy assignment operators, and destructors. Not meaningful until
2206  /// the class has been fully built by Sema.
2207  bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2208  void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2209 
2210  bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2211  void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2212 
2213  /// Whether this function is defaulted. Valid for e.g.
2214  /// special member functions, defaulted comparisions (not methods!).
2215  bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2216  void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2217 
2218  /// Whether this function is explicitly defaulted.
2219  bool isExplicitlyDefaulted() const {
2220  return FunctionDeclBits.IsExplicitlyDefaulted;
2221  }
2222 
2223  /// State that this function is explicitly defaulted.
2224  void setExplicitlyDefaulted(bool ED = true) {
2225  FunctionDeclBits.IsExplicitlyDefaulted = ED;
2226  }
2227 
2228  /// True if this method is user-declared and was not
2229  /// deleted or defaulted on its first declaration.
2230  bool isUserProvided() const {
2231  auto *DeclAsWritten = this;
2233  DeclAsWritten = Pattern;
2234  return !(DeclAsWritten->isDeleted() ||
2235  DeclAsWritten->getCanonicalDecl()->isDefaulted());
2236  }
2237 
2238  /// Whether falling off this function implicitly returns null/zero.
2239  /// If a more specific implicit return value is required, front-ends
2240  /// should synthesize the appropriate return statements.
2241  bool hasImplicitReturnZero() const {
2242  return FunctionDeclBits.HasImplicitReturnZero;
2243  }
2244 
2245  /// State that falling off this function implicitly returns null/zero.
2246  /// If a more specific implicit return value is required, front-ends
2247  /// should synthesize the appropriate return statements.
2248  void setHasImplicitReturnZero(bool IRZ) {
2249  FunctionDeclBits.HasImplicitReturnZero = IRZ;
2250  }
2251 
2252  /// Whether this function has a prototype, either because one
2253  /// was explicitly written or because it was "inherited" by merging
2254  /// a declaration without a prototype with a declaration that has a
2255  /// prototype.
2256  bool hasPrototype() const {
2258  }
2259 
2260  /// Whether this function has a written prototype.
2261  bool hasWrittenPrototype() const {
2262  return FunctionDeclBits.HasWrittenPrototype;
2263  }
2264 
2265  /// State that this function has a written prototype.
2266  void setHasWrittenPrototype(bool P = true) {
2267  FunctionDeclBits.HasWrittenPrototype = P;
2268  }
2269 
2270  /// Whether this function inherited its prototype from a
2271  /// previous declaration.
2272  bool hasInheritedPrototype() const {
2273  return FunctionDeclBits.HasInheritedPrototype;
2274  }
2275 
2276  /// State that this function inherited its prototype from a
2277  /// previous declaration.
2278  void setHasInheritedPrototype(bool P = true) {
2279  FunctionDeclBits.HasInheritedPrototype = P;
2280  }
2281 
2282  /// Whether this is a (C++11) constexpr function or constexpr constructor.
2283  bool isConstexpr() const {
2285  }
2287  FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2288  }
2290  return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2291  }
2292  bool isConstexprSpecified() const {
2294  }
2295  bool isConsteval() const {
2297  }
2298 
2299  /// Whether the instantiation of this function is pending.
2300  /// This bit is set when the decision to instantiate this function is made
2301  /// and unset if and when the function body is created. That leaves out
2302  /// cases where instantiation did not happen because the template definition
2303  /// was not seen in this TU. This bit remains set in those cases, under the
2304  /// assumption that the instantiation will happen in some other TU.
2305  bool instantiationIsPending() const {
2306  return FunctionDeclBits.InstantiationIsPending;
2307  }
2308 
2309  /// State that the instantiation of this function is pending.
2310  /// (see instantiationIsPending)
2312  FunctionDeclBits.InstantiationIsPending = IC;
2313  }
2314 
2315  /// Indicates the function uses __try.
2316  bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2317  void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2318 
2319  /// Whether this function has been deleted.
2320  ///
2321  /// A function that is "deleted" (via the C++0x "= delete" syntax)
2322  /// acts like a normal function, except that it cannot actually be
2323  /// called or have its address taken. Deleted functions are
2324  /// typically used in C++ overload resolution to attract arguments
2325  /// whose type or lvalue/rvalue-ness would permit the use of a
2326  /// different overload that would behave incorrectly. For example,
2327  /// one might use deleted functions to ban implicit conversion from
2328  /// a floating-point number to an Integer type:
2329  ///
2330  /// @code
2331  /// struct Integer {
2332  /// Integer(long); // construct from a long
2333  /// Integer(double) = delete; // no construction from float or double
2334  /// Integer(long double) = delete; // no construction from long double
2335  /// };
2336  /// @endcode
2337  // If a function is deleted, its first declaration must be.
2338  bool isDeleted() const {
2339  return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2340  }
2341 
2342  bool isDeletedAsWritten() const {
2343  return FunctionDeclBits.IsDeleted && !isDefaulted();
2344  }
2345 
2346  void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2347 
2348  /// Determines whether this function is "main", which is the
2349  /// entry point into an executable program.
2350  bool isMain() const;
2351 
2352  /// Determines whether this function is a MSVCRT user defined entry
2353  /// point.
2354  bool isMSVCRTEntryPoint() const;
2355 
2356  /// Determines whether this operator new or delete is one
2357  /// of the reserved global placement operators:
2358  /// void *operator new(size_t, void *);
2359  /// void *operator new[](size_t, void *);
2360  /// void operator delete(void *, void *);
2361  /// void operator delete[](void *, void *);
2362  /// These functions have special behavior under [new.delete.placement]:
2363  /// These functions are reserved, a C++ program may not define
2364  /// functions that displace the versions in the Standard C++ library.
2365  /// The provisions of [basic.stc.dynamic] do not apply to these
2366  /// reserved placement forms of operator new and operator delete.
2367  ///
2368  /// This function must be an allocation or deallocation function.
2369  bool isReservedGlobalPlacementOperator() const;
2370 
2371  /// Determines whether this function is one of the replaceable
2372  /// global allocation functions:
2373  /// void *operator new(size_t);
2374  /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2375  /// void *operator new[](size_t);
2376  /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2377  /// void operator delete(void *) noexcept;
2378  /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2379  /// void operator delete(void *, const std::nothrow_t &) noexcept;
2380  /// void operator delete[](void *) noexcept;
2381  /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2382  /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2383  /// These functions have special behavior under C++1y [expr.new]:
2384  /// An implementation is allowed to omit a call to a replaceable global
2385  /// allocation function. [...]
2386  ///
2387  /// If this function is an aligned allocation/deallocation function, return
2388  /// the parameter number of the requested alignment through AlignmentParam.
2389  ///
2390  /// If this function is an allocation/deallocation function that takes
2391  /// the `std::nothrow_t` tag, return true through IsNothrow,
2393  Optional<unsigned> *AlignmentParam = nullptr,
2394  bool *IsNothrow = nullptr) const;
2395 
2396  /// Determine if this function provides an inline implementation of a builtin.
2397  bool isInlineBuiltinDeclaration() const;
2398 
2399  /// Determine whether this is a destroying operator delete.
2400  bool isDestroyingOperatorDelete() const;
2401 
2402  /// Compute the language linkage.
2404 
2405  /// Determines whether this function is a function with
2406  /// external, C linkage.
2407  bool isExternC() const;
2408 
2409  /// Determines whether this function's context is, or is nested within,
2410  /// a C++ extern "C" linkage spec.
2411  bool isInExternCContext() const;
2412 
2413  /// Determines whether this function's context is, or is nested within,
2414  /// a C++ extern "C++" linkage spec.
2415  bool isInExternCXXContext() const;
2416 
2417  /// Determines whether this is a global function.
2418  bool isGlobal() const;
2419 
2420  /// Determines whether this function is known to be 'noreturn', through
2421  /// an attribute on its declaration or its type.
2422  bool isNoReturn() const;
2423 
2424  /// True if the function was a definition but its body was skipped.
2425  bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2426  void setHasSkippedBody(bool Skipped = true) {
2427  FunctionDeclBits.HasSkippedBody = Skipped;
2428  }
2429 
2430  /// True if this function will eventually have a body, once it's fully parsed.
2431  bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2432  void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2433 
2434  /// True if this function is considered a multiversioned function.
2435  bool isMultiVersion() const {
2436  return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2437  }
2438 
2439  /// Sets the multiversion state for this declaration and all of its
2440  /// redeclarations.
2441  void setIsMultiVersion(bool V = true) {
2442  getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2443  }
2444 
2445  /// Gets the kind of multiversioning attribute this declaration has. Note that
2446  /// this can return a value even if the function is not multiversion, such as
2447  /// the case of 'target'.
2449 
2450 
2451  /// True if this function is a multiversioned dispatch function as a part of
2452  /// the cpu_specific/cpu_dispatch functionality.
2453  bool isCPUDispatchMultiVersion() const;
2454  /// True if this function is a multiversioned processor specific function as a
2455  /// part of the cpu_specific/cpu_dispatch functionality.
2456  bool isCPUSpecificMultiVersion() const;
2457 
2458  /// True if this function is a multiversioned dispatch function as a part of
2459  /// the target functionality.
2460  bool isTargetMultiVersion() const;
2461 
2462  /// \brief Get the associated-constraints of this function declaration.
2463  /// Currently, this will either be a vector of size 1 containing the
2464  /// trailing-requires-clause or an empty vector.
2465  ///
2466  /// Use this instead of getTrailingRequiresClause for concepts APIs that
2467  /// accept an ArrayRef of constraint expressions.
2469  if (auto *TRC = getTrailingRequiresClause())
2470  AC.push_back(TRC);
2471  }
2472 
2473  void setPreviousDeclaration(FunctionDecl * PrevDecl);
2474 
2475  FunctionDecl *getCanonicalDecl() override;
2477  return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2478  }
2479 
2480  unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2481 
2482  // ArrayRef interface to parameters.
2484  return {ParamInfo, getNumParams()};
2485  }
2487  return {ParamInfo, getNumParams()};
2488  }
2489 
2490  // Iterator access to formal parameters.
2493 
2494  bool param_empty() const { return parameters().empty(); }
2495  param_iterator param_begin() { return parameters().begin(); }
2496  param_iterator param_end() { return parameters().end(); }
2497  param_const_iterator param_begin() const { return parameters().begin(); }
2498  param_const_iterator param_end() const { return parameters().end(); }
2499  size_t param_size() const { return parameters().size(); }
2500 
2501  /// Return the number of parameters this function must have based on its
2502  /// FunctionType. This is the length of the ParamInfo array after it has been
2503  /// created.
2504  unsigned getNumParams() const;
2505 
2506  const ParmVarDecl *getParamDecl(unsigned i) const {
2507  assert(i < getNumParams() && "Illegal param #");
2508  return ParamInfo[i];
2509  }
2510  ParmVarDecl *getParamDecl(unsigned i) {
2511  assert(i < getNumParams() && "Illegal param #");
2512  return ParamInfo[i];
2513  }
2514  void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2515  setParams(getASTContext(), NewParamInfo);
2516  }
2517 
2518  /// Returns the minimum number of arguments needed to call this function. This
2519  /// may be fewer than the number of function parameters, if some of the
2520  /// parameters have default arguments (in C++).
2521  unsigned getMinRequiredArguments() const;
2522 
2523  /// Determine whether this function has a single parameter, or multiple
2524  /// parameters where all but the first have default arguments.
2525  ///
2526  /// This notion is used in the definition of copy/move constructors and
2527  /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2528  /// parameter packs are not treated specially here.
2529  bool hasOneParamOrDefaultArgs() const;
2530 
2531  /// Find the source location information for how the type of this function
2532  /// was written. May be absent (for example if the function was declared via
2533  /// a typedef) and may contain a different type from that of the function
2534  /// (for example if the function type was adjusted by an attribute).
2536 
2538  return getType()->castAs<FunctionType>()->getReturnType();
2539  }
2540 
2541  /// Attempt to compute an informative source range covering the
2542  /// function return type. This may omit qualifiers and other information with
2543  /// limited representation in the AST.
2545 
2546  /// Attempt to compute an informative source range covering the
2547  /// function parameters, including the ellipsis of a variadic function.
2548  /// The source range excludes the parentheses, and is invalid if there are
2549  /// no parameters and no ellipsis.
2551 
2552  /// Get the declared return type, which may differ from the actual return
2553  /// type if the return type is deduced.
2555  auto *TSI = getTypeSourceInfo();
2556  QualType T = TSI ? TSI->getType() : getType();
2557  return T->castAs<FunctionType>()->getReturnType();
2558  }
2559 
2560  /// Gets the ExceptionSpecificationType as declared.
2562  auto *TSI = getTypeSourceInfo();
2563  QualType T = TSI ? TSI->getType() : getType();
2564  const auto *FPT = T->getAs<FunctionProtoType>();
2565  return FPT ? FPT->getExceptionSpecType() : EST_None;
2566  }
2567 
2568  /// Attempt to compute an informative source range covering the
2569  /// function exception specification, if any.
2571 
2572  /// Determine the type of an expression that calls this function.
2575  getASTContext());
2576  }
2577 
2578  /// Returns the storage class as written in the source. For the
2579  /// computed linkage of symbol, see getLinkage.
2581  return static_cast<StorageClass>(FunctionDeclBits.SClass);
2582  }
2583 
2584  /// Sets the storage class as written in the source.
2586  FunctionDeclBits.SClass = SClass;
2587  }
2588 
2589  /// Determine whether the "inline" keyword was specified for this
2590  /// function.
2591  bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2592 
2593  /// Set whether the "inline" keyword was specified for this function.
2594  void setInlineSpecified(bool I) {
2595  FunctionDeclBits.IsInlineSpecified = I;
2596  FunctionDeclBits.IsInline = I;
2597  }
2598 
2599  /// Determine whether the function was declared in source context
2600  /// that requires constrained FP intrinsics
2601  bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2602 
2603  /// Set whether the function was declared in source context
2604  /// that requires constrained FP intrinsics
2605  void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
2606 
2607  /// Flag that this function is implicitly inline.
2608  void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2609 
2610  /// Determine whether this function should be inlined, because it is
2611  /// either marked "inline" or "constexpr" or is a member function of a class
2612  /// that was defined in the class body.
2613  bool isInlined() const { return FunctionDeclBits.IsInline; }
2614 
2616 
2617  bool isMSExternInline() const;
2618 
2620 
2621  bool isStatic() const { return getStorageClass() == SC_Static; }
2622 
2623  /// Whether this function declaration represents an C++ overloaded
2624  /// operator, e.g., "operator+".
2625  bool isOverloadedOperator() const {
2626  return getOverloadedOperator() != OO_None;
2627  }
2628 
2630 
2631  const IdentifierInfo *getLiteralIdentifier() const;
2632 
2633  /// If this function is an instantiation of a member function
2634  /// of a class template specialization, retrieves the function from
2635  /// which it was instantiated.
2636  ///
2637  /// This routine will return non-NULL for (non-templated) member
2638  /// functions of class templates and for instantiations of function
2639  /// templates. For example, given:
2640  ///
2641  /// \code
2642  /// template<typename T>
2643  /// struct X {
2644  /// void f(T);
2645  /// };
2646  /// \endcode
2647  ///
2648  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2649  /// whose parent is the class template specialization X<int>. For
2650  /// this declaration, getInstantiatedFromFunction() will return
2651  /// the FunctionDecl X<T>::A. When a complete definition of
2652  /// X<int>::A is required, it will be instantiated from the
2653  /// declaration returned by getInstantiatedFromMemberFunction().
2655 
2656  /// What kind of templated function this is.
2658 
2659  /// If this function is an instantiation of a member function of a
2660  /// class template specialization, retrieves the member specialization
2661  /// information.
2663 
2664  /// Specify that this record is an instantiation of the
2665  /// member function FD.
2668  setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2669  }
2670 
2671  /// Retrieves the function template that is described by this
2672  /// function declaration.
2673  ///
2674  /// Every function template is represented as a FunctionTemplateDecl
2675  /// and a FunctionDecl (or something derived from FunctionDecl). The
2676  /// former contains template properties (such as the template
2677  /// parameter lists) while the latter contains the actual
2678  /// description of the template's
2679  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2680  /// FunctionDecl that describes the function template,
2681  /// getDescribedFunctionTemplate() retrieves the
2682  /// FunctionTemplateDecl from a FunctionDecl.
2684 
2686 
2687  /// Determine whether this function is a function template
2688  /// specialization.
2690  return getPrimaryTemplate() != nullptr;
2691  }
2692 
2693  /// If this function is actually a function template specialization,
2694  /// retrieve information about this function template specialization.
2695  /// Otherwise, returns NULL.
2697 
2698  /// Determines whether this function is a function template
2699  /// specialization or a member of a class template specialization that can
2700  /// be implicitly instantiated.
2701  bool isImplicitlyInstantiable() const;
2702 
2703  /// Determines if the given function was instantiated from a
2704  /// function template.
2705  bool isTemplateInstantiation() const;
2706 
2707  /// Retrieve the function declaration from which this function could
2708  /// be instantiated, if it is an instantiation (rather than a non-template
2709  /// or a specialization, for example).
2710  ///
2711  /// If \p ForDefinition is \c false, explicit specializations will be treated
2712  /// as if they were implicit instantiations. This will then find the pattern
2713  /// corresponding to non-definition portions of the declaration, such as
2714  /// default arguments and the exception specification.
2715  FunctionDecl *
2717 
2718  /// Retrieve the primary template that this function template
2719  /// specialization either specializes or was instantiated from.
2720  ///
2721  /// If this function declaration is not a function template specialization,
2722  /// returns NULL.
2724 
2725  /// Retrieve the template arguments used to produce this function
2726  /// template specialization from the primary template.
2727  ///
2728  /// If this function declaration is not a function template specialization,
2729  /// returns NULL.
2731 
2732  /// Retrieve the template argument list as written in the sources,
2733  /// if any.
2734  ///
2735  /// If this function declaration is not a function template specialization
2736  /// or if it had no explicit template argument list, returns NULL.
2737  /// Note that it an explicit template argument list may be written empty,
2738  /// e.g., template<> void foo<>(char* s);
2741 
2742  /// Specify that this function declaration is actually a function
2743  /// template specialization.
2744  ///
2745  /// \param Template the function template that this function template
2746  /// specialization specializes.
2747  ///
2748  /// \param TemplateArgs the template arguments that produced this
2749  /// function template specialization from the template.
2750  ///
2751  /// \param InsertPos If non-NULL, the position in the function template
2752  /// specialization set where the function template specialization data will
2753  /// be inserted.
2754  ///
2755  /// \param TSK the kind of template specialization this is.
2756  ///
2757  /// \param TemplateArgsAsWritten location info of template arguments.
2758  ///
2759  /// \param PointOfInstantiation point at which the function template
2760  /// specialization was first instantiated.
2762  const TemplateArgumentList *TemplateArgs,
2763  void *InsertPos,
2765  const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2766  SourceLocation PointOfInstantiation = SourceLocation()) {
2767  setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2768  InsertPos, TSK, TemplateArgsAsWritten,
2769  PointOfInstantiation);
2770  }
2771 
2772  /// Specifies that this function declaration is actually a
2773  /// dependent function template specialization.
2775  const UnresolvedSetImpl &Templates,
2776  const TemplateArgumentListInfo &TemplateArgs);
2777 
2780 
2781  /// Determine what kind of template instantiation this function
2782  /// represents.
2784 
2785  /// Determine the kind of template specialization this function represents
2786  /// for the purpose of template instantiation.
2789 
2790  /// Determine what kind of template instantiation this function
2791  /// represents.
2793  SourceLocation PointOfInstantiation = SourceLocation());
2794 
2795  /// Retrieve the (first) point of instantiation of a function template
2796  /// specialization or a member of a class template specialization.
2797  ///
2798  /// \returns the first point of instantiation, if this function was
2799  /// instantiated from a template; otherwise, returns an invalid source
2800  /// location.
2802 
2803  /// Determine whether this is or was instantiated from an out-of-line
2804  /// definition of a member function.
2805  bool isOutOfLine() const override;
2806 
2807  /// Identify a memory copying or setting function.
2808  /// If the given function is a memory copy or setting function, returns
2809  /// the corresponding Builtin ID. If the function is not a memory function,
2810  /// returns 0.
2811  unsigned getMemoryFunctionKind() const;
2812 
2813  /// Returns ODRHash of the function. This value is calculated and
2814  /// stored on first call, then the stored value returned on the other calls.
2815  unsigned getODRHash();
2816 
2817  /// Returns cached ODRHash of the function. This must have been previously
2818  /// computed and stored.
2819  unsigned getODRHash() const;
2820 
2821  // Implement isa/cast/dyncast/etc.
2822  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2823  static bool classofKind(Kind K) {
2824  return K >= firstFunction && K <= lastFunction;
2825  }
2827  return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2828  }
2830  return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2831  }
2832 };
2833 
2834 /// Represents a member of a struct/union/class.
2835 class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2836  unsigned BitField : 1;
2837  unsigned Mutable : 1;
2838  mutable unsigned CachedFieldIndex : 30;
2839 
2840  /// The kinds of value we can store in InitializerOrBitWidth.
2841  ///
2842  /// Note that this is compatible with InClassInitStyle except for
2843  /// ISK_CapturedVLAType.
2844  enum InitStorageKind {
2845  /// If the pointer is null, there's nothing special. Otherwise,
2846  /// this is a bitfield and the pointer is the Expr* storing the
2847  /// bit-width.
2848  ISK_NoInit = (unsigned) ICIS_NoInit,
2849 
2850  /// The pointer is an (optional due to delayed parsing) Expr*
2851  /// holding the copy-initializer.
2852  ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2853 
2854  /// The pointer is an (optional due to delayed parsing) Expr*
2855  /// holding the list-initializer.
2856  ISK_InClassListInit = (unsigned) ICIS_ListInit,
2857 
2858  /// The pointer is a VariableArrayType* that's been captured;
2859  /// the enclosing context is a lambda or captured statement.
2860  ISK_CapturedVLAType,
2861  };
2862 
2863  /// If this is a bitfield with a default member initializer, this
2864  /// structure is used to represent the two expressions.
2865  struct InitAndBitWidth {
2866  Expr *Init;
2867  Expr *BitWidth;
2868  };
2869 
2870  /// Storage for either the bit-width, the in-class initializer, or
2871  /// both (via InitAndBitWidth), or the captured variable length array bound.
2872  ///
2873  /// If the storage kind is ISK_InClassCopyInit or
2874  /// ISK_InClassListInit, but the initializer is null, then this
2875  /// field has an in-class initializer that has not yet been parsed
2876  /// and attached.
2877  // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2878  // overwhelmingly common case that we have none of these things.
2879  llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2880 
2881 protected:
2884  QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2885  InClassInitStyle InitStyle)
2886  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2887  BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2888  InitStorage(nullptr, (InitStorageKind) InitStyle) {
2889  if (BW)
2890  setBitWidth(BW);
2891  }
2892 
2893 public:
2894  friend class ASTDeclReader;
2895  friend class ASTDeclWriter;
2896 
2897  static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2898  SourceLocation StartLoc, SourceLocation IdLoc,
2900  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2901  InClassInitStyle InitStyle);
2902 
2903  static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2904 
2905  /// Returns the index of this field within its record,
2906  /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2907  unsigned getFieldIndex() const;
2908 
2909  /// Determines whether this field is mutable (C++ only).
2910  bool isMutable() const { return Mutable; }
2911 
2912  /// Determines whether this field is a bitfield.
2913  bool isBitField() const { return BitField; }
2914 
2915  /// Determines whether this is an unnamed bitfield.
2916  bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2917 
2918  /// Determines whether this field is a
2919  /// representative for an anonymous struct or union. Such fields are
2920  /// unnamed and are implicitly generated by the implementation to
2921  /// store the data for the anonymous union or struct.
2922  bool isAnonymousStructOrUnion() const;
2923 
2924  Expr *getBitWidth() const {
2925  if (!BitField)
2926  return nullptr;
2927  void *Ptr = InitStorage.getPointer();
2928  if (getInClassInitStyle())
2929  return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2930  return static_cast<Expr*>(Ptr);
2931  }
2932 
2933  unsigned getBitWidthValue(const ASTContext &Ctx) const;
2934 
2935  /// Set the bit-field width for this member.
2936  // Note: used by some clients (i.e., do not remove it).
2937  void setBitWidth(Expr *Width) {
2938  assert(!hasCapturedVLAType() && !BitField &&
2939  "bit width or captured type already set");
2940  assert(Width && "no bit width specified");
2941  InitStorage.setPointer(
2942  InitStorage.getInt()
2943  ? new (getASTContext())
2944  InitAndBitWidth{getInClassInitializer(), Width}
2945  : static_cast<void*>(Width));
2946  BitField = true;
2947  }
2948 
2949  /// Remove the bit-field width from this member.
2950  // Note: used by some clients (i.e., do not remove it).
2952  assert(isBitField() && "no bitfield width to remove");
2953  InitStorage.setPointer(getInClassInitializer());
2954  BitField = false;
2955  }
2956 
2957  /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2958  /// at all and instead act as a separator between contiguous runs of other
2959  /// bit-fields.
2960  bool isZeroLengthBitField(const ASTContext &Ctx) const;
2961 
2962  /// Determine if this field is a subobject of zero size, that is, either a
2963  /// zero-length bit-field or a field of empty class type with the
2964  /// [[no_unique_address]] attribute.
2965  bool isZeroSize(const ASTContext &Ctx) const;
2966 
2967  /// Get the kind of (C++11) default member initializer that this field has.
2969  InitStorageKind storageKind = InitStorage.getInt();
2970  return (storageKind == ISK_CapturedVLAType
2971  ? ICIS_NoInit : (InClassInitStyle) storageKind);
2972  }
2973 
2974  /// Determine whether this member has a C++11 default member initializer.
2975  bool hasInClassInitializer() const {
2976  return getInClassInitStyle() != ICIS_NoInit;
2977  }
2978 
2979  /// Get the C++11 default member initializer for this member, or null if one
2980  /// has not been set. If a valid declaration has a default member initializer,
2981  /// but this returns null, then we have not parsed and attached it yet.
2983  if (!hasInClassInitializer())
2984  return nullptr;
2985  void *Ptr = InitStorage.getPointer();
2986  if (BitField)
2987  return static_cast<InitAndBitWidth*>(Ptr)->Init;
2988  return static_cast<Expr*>(Ptr);
2989  }
2990 
2991  /// Set the C++11 in-class initializer for this member.
2994  if (BitField)
2995  static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2996  else
2997  InitStorage.setPointer(Init);
2998  }
2999 
3000  /// Remove the C++11 in-class initializer from this member.
3002  assert(hasInClassInitializer() && "no initializer to remove");
3003  InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
3004  }
3005 
3006  /// Determine whether this member captures the variable length array
3007  /// type.
3008  bool hasCapturedVLAType() const {
3009  return InitStorage.getInt() == ISK_CapturedVLAType;
3010  }
3011 
3012  /// Get the captured variable length array type.
3014  return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
3015  InitStorage.getPointer())
3016  : nullptr;
3017  }
3018 
3019  /// Set the captured variable length array type for this field.
3020  void setCapturedVLAType(const VariableArrayType *VLAType);
3021 
3022  /// Returns the parent of this field declaration, which
3023  /// is the struct in which this field is defined.
3024  ///
3025  /// Returns null if this is not a normal class/struct field declaration, e.g.
3026  /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
3027  const RecordDecl *getParent() const {
3028  return dyn_cast<RecordDecl>(getDeclContext());
3029  }
3030 
3032  return dyn_cast<RecordDecl>(getDeclContext());
3033  }
3034 
3035  SourceRange getSourceRange() const override LLVM_READONLY;
3036 
3037  /// Retrieves the canonical declaration of this field.
3038  FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3039  const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3040 
3041  // Implement isa/cast/dyncast/etc.
3042  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3043  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3044 };
3045 
3046 /// An instance of this object exists for each enum constant
3047 /// that is defined. For example, in "enum X {a,b}", each of a/b are
3048 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3049 /// TagType for the X EnumDecl.
3050 class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3051  Stmt *Init; // an integer constant expression
3052  llvm::APSInt Val; // The value.
3053 
3054 protected:
3056  IdentifierInfo *Id, QualType T, Expr *E,
3057  const llvm::APSInt &V)
3058  : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3059 
3060 public:
3061  friend class StmtIteratorBase;
3062 
3065  QualType T, Expr *E,
3066  const llvm::APSInt &V);
3067  static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3068 
3069  const Expr *getInitExpr() const { return (const Expr*) Init; }
3070  Expr *getInitExpr() { return (Expr*) Init; }
3071  const llvm::APSInt &getInitVal() const { return Val; }
3072 
3073  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
3074  void setInitVal(const llvm::APSInt &V) { Val = V; }
3075 
3076  SourceRange getSourceRange() const override LLVM_READONLY;
3077 
3078  /// Retrieves the canonical declaration of this enumerator.
3080  const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3081 
3082  // Implement isa/cast/dyncast/etc.
3083  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3084  static bool classofKind(Kind K) { return K == EnumConstant; }
3085 };
3086 
3087 /// Represents a field injected from an anonymous union/struct into the parent
3088 /// scope. These are always implicit.
3090  public Mergeable<IndirectFieldDecl> {
3091  NamedDecl **Chaining;
3092  unsigned ChainingSize;
3093 
3097 
3098  void anchor() override;
3099 
3100 public:
3101  friend class ASTDeclReader;
3102 
3106 
3107  static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3108 
3110 
3112  return llvm::makeArrayRef(Chaining, ChainingSize);
3113  }
3114  chain_iterator chain_begin() const { return chain().begin(); }
3115  chain_iterator chain_end() const { return chain().end(); }
3116 
3117  unsigned getChainingSize() const { return ChainingSize; }
3118 
3120  assert(chain().size() >= 2);
3121  return cast<FieldDecl>(chain().back());
3122  }
3123 
3124  VarDecl *getVarDecl() const {
3125  assert(chain().size() >= 2);
3126  return dyn_cast<VarDecl>(chain().front());
3127  }
3128 
3130  const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3131 
3132  // Implement isa/cast/dyncast/etc.
3133  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3134  static bool classofKind(Kind K) { return K == IndirectField; }
3135 };
3136 
3137 /// Represents a declaration of a type.
3138 class TypeDecl : public NamedDecl {
3139  friend class ASTContext;
3140 
3141  /// This indicates the Type object that represents
3142  /// this TypeDecl. It is a cache maintained by
3143  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3144  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3145  mutable const Type *TypeForDecl = nullptr;
3146 
3147  /// The start of the source range for this declaration.
3148  SourceLocation LocStart;
3149 
3150  void anchor() override;
3151 
3152 protected:
3154  SourceLocation StartL = SourceLocation())
3155  : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3156 
3157 public:
3158  // Low-level accessor. If you just want the type defined by this node,
3159  // check out ASTContext::getTypeDeclType or one of
3160  // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3161  // already know the specific kind of node this is.
3162  const Type *getTypeForDecl() const { return TypeForDecl; }
3163  void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3164 
3165  SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
3166  void setLocStart(SourceLocation L) { LocStart = L; }
3167  SourceRange getSourceRange() const override LLVM_READONLY {
3168  if (LocStart.isValid())
3169  return SourceRange(LocStart, getLocation());
3170  else
3171  return SourceRange(getLocation());
3172  }
3173 
3174  // Implement isa/cast/dyncast/etc.
3175  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3176  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3177 };
3178 
3179 /// Base class for declarations which introduce a typedef-name.
3180 class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3181  struct alignas(8) ModedTInfo {
3182  TypeSourceInfo *first;
3183  QualType second;
3184  };
3185 
3186  /// If int part is 0, we have not computed IsTransparentTag.
3187  /// Otherwise, IsTransparentTag is (getInt() >> 1).
3188  mutable llvm::PointerIntPair<
3189  llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3190  MaybeModedTInfo;
3191 
3192  void anchor() override;
3193 
3194 protected:
3196  SourceLocation StartLoc, SourceLocation IdLoc,
3197  IdentifierInfo *Id, TypeSourceInfo *TInfo)
3198  : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3199  MaybeModedTInfo(TInfo, 0) {}
3200 
3202 
3204  return getNextRedeclaration();
3205  }
3206 
3208  return getPreviousDecl();
3209  }
3210 
3212  return getMostRecentDecl();
3213  }
3214 
3215 public:
3217  using redecl_iterator = redeclarable_base::redecl_iterator;
3218 
3225 
3226  bool isModed() const {
3227  return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3228  }
3229 
3231  return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3232  : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3233  }
3234 
3236  return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3237  : MaybeModedTInfo.getPointer()
3238  .get<TypeSourceInfo *>()
3239  ->getType();
3240  }
3241 
3243  MaybeModedTInfo.setPointer(newType);
3244  }
3245 
3246  void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3247  MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3248  ModedTInfo({unmodedTSI, modedTy}));
3249  }
3250 
3251  /// Retrieves the canonical declaration of this typedef-name.
3253  const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3254 
3255  /// Retrieves the tag declaration for which this is the typedef name for
3256  /// linkage purposes, if any.
3257  ///
3258  /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3259  /// this typedef declaration.
3260  TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3261 
3262  /// Determines if this typedef shares a name and spelling location with its
3263  /// underlying tag type, as is the case with the NS_ENUM macro.
3264  bool isTransparentTag() const {
3265  if (MaybeModedTInfo.getInt())
3266  return MaybeModedTInfo.getInt() & 0x2;
3267  return isTransparentTagSlow();
3268  }
3269 
3270  // Implement isa/cast/dyncast/etc.
3271  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3272  static bool classofKind(Kind K) {
3273  return K >= firstTypedefName && K <= lastTypedefName;
3274  }
3275 
3276 private:
3277  bool isTransparentTagSlow() const;
3278 };
3279 
3280 /// Represents the declaration of a typedef-name via the 'typedef'
3281 /// type specifier.
3285  : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3286 
3287 public:
3288  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3289  SourceLocation StartLoc, SourceLocation IdLoc,
3290  IdentifierInfo *Id, TypeSourceInfo *TInfo);
3291  static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3292 
3293  SourceRange getSourceRange() const override LLVM_READONLY;
3294 
3295  // Implement isa/cast/dyncast/etc.
3296  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3297  static bool classofKind(Kind K) { return K == Typedef; }
3298 };
3299 
3300 /// Represents the declaration of a typedef-name via a C++11
3301 /// alias-declaration.
3303  /// The template for which this is the pattern, if any.
3304  TypeAliasTemplateDecl *Template;
3305 
3308  : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3309  Template(nullptr) {}
3310 
3311 public:
3312  static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3313  SourceLocation StartLoc, SourceLocation IdLoc,
3314  IdentifierInfo *Id, TypeSourceInfo *TInfo);
3315  static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3316 
3317  SourceRange getSourceRange() const override LLVM_READONLY;
3318 
3319  TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3320  void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3321 
3322  // Implement isa/cast/dyncast/etc.
3323  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3324  static bool classofKind(Kind K) { return K == TypeAlias; }
3325 };
3326 
3327 /// Represents the declaration of a struct/union/class/enum.
3328 class TagDecl : public TypeDecl,
3329  public DeclContext,
3330  public Redeclarable<TagDecl> {
3331  // This class stores some data in DeclContext::TagDeclBits
3332  // to save some space. Use the provided accessors to access it.
3333 public:
3334  // This is really ugly.
3336 
3337 private:
3338  SourceRange BraceRange;
3339 
3340  // A struct representing syntactic qualifier info,
3341  // to be used for the (uncommon) case of out-of-line declarations.
3342  using ExtInfo = QualifierInfo;
3343 
3344  /// If the (out-of-line) tag declaration name
3345  /// is qualified, it points to the qualifier info (nns and range);
3346  /// otherwise, if the tag declaration is anonymous and it is part of
3347  /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3348  /// otherwise, if the tag declaration is anonymous and it is used as a
3349  /// declaration specifier for variables, it points to the first VarDecl (used
3350  /// for mangling);
3351  /// otherwise, it is a null (TypedefNameDecl) pointer.
3352  llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3353 
3354  bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3355  ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3356  const ExtInfo *getExtInfo() const {
3357  return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3358  }
3359 
3360 protected:
3361  TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3362  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3363  SourceLocation StartL);
3364 
3366 
3368  return getNextRedeclaration();
3369  }
3370 
3372  return getPreviousDecl();
3373  }
3374 
3376  return getMostRecentDecl();
3377  }
3378 
3379  /// Completes the definition of this tag declaration.
3380  ///
3381  /// This is a helper function for derived classes.
3382  void completeDefinition();
3383 
3384  /// True if this decl is currently being defined.
3385  void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3386 
3387  /// Indicates whether it is possible for declarations of this kind
3388  /// to have an out-of-date definition.
3389  ///
3390  /// This option is only enabled when modules are enabled.
3391  void setMayHaveOutOfDateDef(bool V = true) {
3392  TagDeclBits.MayHaveOutOfDateDef = V;
3393  }
3394 
3395 public:
3396  friend class ASTDeclReader;
3397  friend class ASTDeclWriter;
3398 
3400  using redecl_iterator = redeclarable_base::redecl_iterator;
3401 
3408 
3409  SourceRange getBraceRange() const { return BraceRange; }
3410  void setBraceRange(SourceRange R) { BraceRange = R; }
3411 
3412  /// Return SourceLocation representing start of source
3413  /// range ignoring outer template declarations.
3415 
3416  /// Return SourceLocation representing start of source
3417  /// range taking into account any outer template declarations.
3419  SourceRange getSourceRange() const override LLVM_READONLY;
3420 
3421  TagDecl *getCanonicalDecl() override;
3422  const TagDecl *getCanonicalDecl() const {
3423  return const_cast<TagDecl*>(this)->getCanonicalDecl();
3424  }
3425 
3426  /// Return true if this declaration is a completion definition of the type.
3427  /// Provided for consistency.
3429  return isCompleteDefinition();
3430  }
3431 
3432  /// Return true if this decl has its body fully specified.
3433  bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3434 
3435  /// True if this decl has its body fully specified.
3436  void setCompleteDefinition(bool V = true) {
3437  TagDeclBits.IsCompleteDefinition = V;
3438  }
3439 
3440  /// Return true if this complete decl is
3441  /// required to be complete for some existing use.
3443  return TagDeclBits.IsCompleteDefinitionRequired;
3444  }
3445 
3446  /// True if this complete decl is
3447  /// required to be complete for some existing use.
3448  void setCompleteDefinitionRequired(bool V = true) {
3449  TagDeclBits.IsCompleteDefinitionRequired = V;
3450  }
3451 
3452  /// Return true if this decl is currently being defined.
3453  bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3454 
3455  /// True if this tag declaration is "embedded" (i.e., defined or declared
3456  /// for the very first time) in the syntax of a declarator.
3457  bool isEmbeddedInDeclarator() const {
3458  return TagDeclBits.IsEmbeddedInDeclarator;
3459  }
3460 
3461  /// True if this tag declaration is "embedded" (i.e., defined or declared
3462  /// for the very first time) in the syntax of a declarator.
3463  void setEmbeddedInDeclarator(bool isInDeclarator) {
3464  TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3465  }
3466 
3467  /// True if this tag is free standing, e.g. "struct foo;".
3468  bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3469 
3470  /// True if this tag is free standing, e.g. "struct foo;".
3471  void setFreeStanding(bool isFreeStanding = true) {
3472  TagDeclBits.IsFreeStanding = isFreeStanding;
3473  }
3474 
3475  /// Indicates whether it is possible for declarations of this kind
3476  /// to have an out-of-date definition.
3477  ///
3478  /// This option is only enabled when modules are enabled.
3479  bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3480 
3481  /// Whether this declaration declares a type that is
3482  /// dependent, i.e., a type that somehow depends on template
3483  /// parameters.
3484  bool isDependentType() const { return isDependentContext(); }
3485 
3486  /// Starts the definition of this tag declaration.
3487  ///
3488  /// This method should be invoked at the beginning of the definition
3489  /// of this tag declaration. It will set the tag type into a state
3490  /// where it is in the process of being defined.
3491  void startDefinition();
3492 
3493  /// Returns the TagDecl that actually defines this
3494  /// struct/union/class/enum. When determining whether or not a
3495  /// struct/union/class/enum has a definition, one should use this
3496  /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3497  /// whether or not a specific TagDecl is defining declaration, not
3498  /// whether or not the struct/union/class/enum type is defined.
3499  /// This method returns NULL if there is no TagDecl that defines
3500  /// the struct/union/class/enum.
3501  TagDecl *getDefinition() const;
3502 
3503  StringRef getKindName() const {
3505  }
3506 
3508  return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3509  }
3510 
3511  void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3512 
3513  bool isStruct() const { return getTagKind() == TTK_Struct; }
3514  bool isInterface() const { return getTagKind() == TTK_Interface; }
3515  bool isClass() const { return getTagKind() == TTK_Class; }
3516  bool isUnion() const { return getTagKind() == TTK_Union; }
3517  bool isEnum() const { return getTagKind() == TTK_Enum; }
3518 
3519  /// Is this tag type named, either directly or via being defined in
3520  /// a typedef of this type?
3521  ///
3522  /// C++11 [basic.link]p8:
3523  /// A type is said to have linkage if and only if:
3524  /// - it is a class or enumeration type that is named (or has a
3525  /// name for linkage purposes) and the name has linkage; ...
3526  /// C++11 [dcl.typedef]p9:
3527  /// If the typedef declaration defines an unnamed class (or enum),
3528  /// the first typedef-name declared by the declaration to be that
3529  /// class type (or enum type) is used to denote the class type (or
3530  /// enum type) for linkage purposes only.
3531  ///
3532  /// C does not have an analogous rule, but the same concept is
3533  /// nonetheless useful in some places.
3534  bool hasNameForLinkage() const {
3535  return (getDeclName() || getTypedefNameForAnonDecl());
3536  }
3537 
3539  return hasExtInfo() ? nullptr
3540  : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3541  }
3542 
3544 
3545  /// Retrieve the nested-name-specifier that qualifies the name of this
3546  /// declaration, if it was present in the source.
3548  return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3549  : nullptr;
3550  }
3551 
3552  /// Retrieve the nested-name-specifier (with source-location
3553  /// information) that qualifies the name of this declaration, if it was
3554  /// present in the source.
3556  return hasExtInfo() ? getExtInfo()->QualifierLoc
3558  }
3559 
3560  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3561 
3562  unsigned getNumTemplateParameterLists() const {
3563  return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3564  }
3565 
3567  assert(i < getNumTemplateParameterLists());
3568  return getExtInfo()->TemplParamLists[i];
3569  }
3570 
3573 
3574  // Implement isa/cast/dyncast/etc.
3575  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3576  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3577 
3579  return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3580  }
3581 
3583  return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3584  }
3585 };
3586 
3587 /// Represents an enum. In C++11, enums can be forward-declared
3588 /// with a fixed underlying type, and in C we allow them to be forward-declared
3589 /// with no underlying type as an extension.
3590 class EnumDecl : public TagDecl {
3591  // This class stores some data in DeclContext::EnumDeclBits
3592  // to save some space. Use the provided accessors to access it.
3593 
3594  /// This represent the integer type that the enum corresponds
3595  /// to for code generation purposes. Note that the enumerator constants may
3596  /// have a different type than this does.
3597  ///
3598  /// If the underlying integer type was explicitly stated in the source
3599  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3600  /// was automatically deduced somehow, and this is a Type*.
3601  ///
3602  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3603  /// some cases it won't.
3604  ///
3605  /// The underlying type of an enumeration never has any qualifiers, so
3606  /// we can get away with just storing a raw Type*, and thus save an
3607  /// extra pointer when TypeSourceInfo is needed.
3608  llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3609 
3610  /// The integer type that values of this type should
3611  /// promote to. In C, enumerators are generally of an integer type
3612  /// directly, but gcc-style large enumerators (and all enumerators
3613  /// in C++) are of the enum type instead.
3614  QualType PromotionType;
3615 
3616  /// If this enumeration is an instantiation of a member enumeration
3617  /// of a class template specialization, this is the member specialization
3618  /// information.
3619  MemberSpecializationInfo *SpecializationInfo = nullptr;
3620 
3621  /// Store the ODRHash after first calculation.
3622  /// The corresponding flag HasODRHash is in EnumDeclBits
3623  /// and can be accessed with the provided accessors.
3624  unsigned ODRHash;
3625 
3626  EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3627  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3628  bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3629 
3630  void anchor() override;
3631 
3632  void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3634 
3635  /// Sets the width in bits required to store all the
3636  /// non-negative enumerators of this enum.
3637  void setNumPositiveBits(unsigned Num) {
3638  EnumDeclBits.NumPositiveBits = Num;
3639  assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3640  }
3641 
3642  /// Returns the width in bits required to store all the
3643  /// negative enumerators of this enum. (see getNumNegativeBits)
3644  void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3645 
3646 public:
3647  /// True if this tag declaration is a scoped enumeration. Only
3648  /// possible in C++11 mode.
3649  void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3650 
3651  /// If this tag declaration is a scoped enum,
3652  /// then this is true if the scoped enum was declared using the class
3653  /// tag, false if it was declared with the struct tag. No meaning is
3654  /// associated if this tag declaration is not a scoped enum.
3655  void setScopedUsingClassTag(bool ScopedUCT = true) {
3656  EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3657  }
3658 
3659  /// True if this is an Objective-C, C++11, or
3660  /// Microsoft-style enumeration with a fixed underlying type.
3661  void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3662 
3663 private:
3664  /// True if a valid hash is stored in ODRHash.
3665  bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3666  void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3667 
3668 public:
3669  friend class ASTDeclReader;
3670 
3672  return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3673  }
3674  const EnumDecl *getCanonicalDecl() const {
3675  return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3676  }
3677 
3679  return cast_or_null<EnumDecl>(
3680  static_cast<TagDecl *>(this)->getPreviousDecl());
3681  }
3682  const EnumDecl *getPreviousDecl() const {
3683  return const_cast<EnumDecl*>(this)->getPreviousDecl();
3684  }
3685 
3687  return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3688  }
3689  const EnumDecl *getMostRecentDecl() const {
3690  return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3691  }
3692 
3694  return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3695  }
3696 
3697  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3698  SourceLocation StartLoc, SourceLocation IdLoc,
3699  IdentifierInfo *Id, EnumDecl *PrevDecl,
3700  bool IsScoped, bool IsScopedUsingClassTag,
3701  bool IsFixed);
3702  static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3703 
3704  /// When created, the EnumDecl corresponds to a
3705  /// forward-declared enum. This method is used to mark the
3706  /// declaration as being defined; its enumerators have already been
3707  /// added (via DeclContext::addDecl). NewType is the new underlying
3708  /// type of the enumeration type.
3709  void completeDefinition(QualType NewType,
3710  QualType PromotionType,
3711  unsigned NumPositiveBits,
3712  unsigned NumNegativeBits);
3713 
3714  // Iterates through the enumerators of this enumeration.
3716  using enumerator_range =
3717  llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3718 
3721  }
3722 
3724  const EnumDecl *E = getDefinition();
3725  if (!E)
3726  E = this;
3727  return enumerator_iterator(E->decls_begin());
3728  }
3729 
3731  const EnumDecl *E = getDefinition();
3732  if (!E)
3733  E = this;
3734  return enumerator_iterator(E->decls_end());
3735  }
3736 
3737  /// Return the integer type that enumerators should promote to.
3738  QualType getPromotionType() const { return PromotionType; }
3739 
3740  /// Set the promotion type.
3741  void setPromotionType(QualType T) { PromotionType = T; }
3742 
3743  /// Return the integer type this enum decl corresponds to.
3744  /// This returns a null QualType for an enum forward definition with no fixed
3745  /// underlying type.
3747  if (!IntegerType)
3748  return QualType();
3749  if (const Type *T = IntegerType.dyn_cast<const Type*>())
3750  return QualType(T, 0);
3751  return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3752  }
3753 
3754  /// Set the underlying integer type.
3755  void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3756 
3757  /// Set the underlying integer type source info.
3758  void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3759 
3760  /// Return the type source info for the underlying integer type,
3761  /// if no type source info exists, return 0.
3763  return IntegerType.dyn_cast<TypeSourceInfo*>();
3764  }
3765 
3766  /// Retrieve the source range that covers the underlying type if
3767  /// specified.
3768  SourceRange getIntegerTypeRange() const LLVM_READONLY;
3769 
3770  /// Returns the width in bits required to store all the
3771  /// non-negative enumerators of this enum.
3772  unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3773 
3774  /// Returns the width in bits required to store all the
3775  /// negative enumerators of this enum. These widths include
3776  /// the rightmost leading 1; that is:
3777  ///
3778  /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
3779  /// ------------------------ ------- -----------------
3780  /// -1 1111111 1
3781  /// -10 1110110 5
3782  /// -101 1001011 8
3783  unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3784 
3785  /// Returns true if this is a C++11 scoped enumeration.
3786  bool isScoped() const { return EnumDeclBits.IsScoped; }
3787 
3788  /// Returns true if this is a C++11 scoped enumeration.
3789  bool isScopedUsingClassTag() const {
3790  return EnumDeclBits.IsScopedUsingClassTag;
3791  }
3792 
3793  /// Returns true if this is an Objective-C, C++11, or
3794  /// Microsoft-style enumeration with a fixed underlying type.
3795  bool isFixed() const { return EnumDeclBits.IsFixed; }
3796 
3797  unsigned getODRHash();
3798 
3799  /// Returns true if this can be considered a complete type.
3800  bool isComplete() const {
3801  // IntegerType is set for fixed type enums and non-fixed but implicitly
3802  // int-sized Microsoft enums.
3803  return isCompleteDefinition() || IntegerType;
3804  }
3805 
3806  /// Returns true if this enum is either annotated with
3807  /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3808  bool isClosed() const;
3809 
3810  /// Returns true if this enum is annotated with flag_enum and isn't annotated
3811  /// with enum_extensibility(open).
3812  bool isClosedFlag() const;
3813 
3814  /// Returns true if this enum is annotated with neither flag_enum nor
3815  /// enum_extensibility(open).
3816  bool isClosedNonFlag() const;
3817 
3818  /// Retrieve the enum definition from which this enumeration could
3819  /// be instantiated, if it is an instantiation (rather than a non-template).
3821 
3822  /// Returns the enumeration (declared within the template)
3823  /// from which this enumeration type was instantiated, or NULL if
3824  /// this enumeration was not instantiated from any template.
3826 
3827  /// If this enumeration is a member of a specialization of a
3828  /// templated class, determine what kind of template specialization
3829  /// or instantiation this is.
3831 
3832  /// For an enumeration member that was instantiated from a member
3833  /// enumeration of a templated class, set the template specialiation kind.
3835  SourceLocation PointOfInstantiation = SourceLocation());
3836 
3837  /// If this enumeration is an instantiation of a member enumeration of
3838  /// a class template specialization, retrieves the member specialization
3839  /// information.
3841  return SpecializationInfo;
3842  }
3843 
3844  /// Specify that this enumeration is an instantiation of the
3845  /// member enumeration ED.
3848  setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3849  }
3850 
3851  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3852  static bool classofKind(Kind K) { return K == Enum; }
3853 };
3854 
3855 /// Represents a struct/union/class. For example:
3856 /// struct X; // Forward declaration, no "body".
3857 /// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
3858 /// This decl will be marked invalid if *any* members are invalid.
3859 class RecordDecl : public TagDecl {
3860  // This class stores some data in DeclContext::RecordDeclBits
3861  // to save some space. Use the provided accessors to access it.
3862 public:
3863  friend class DeclContext;
3864  /// Enum that represents the different ways arguments are passed to and
3865  /// returned from function calls. This takes into account the target-specific
3866  /// and version-specific rules along with the rules determined by the
3867  /// language.
3868  enum ArgPassingKind : unsigned {
3869  /// The argument of this type can be passed directly in registers.
3871 
3872  /// The argument of this type cannot be passed directly in registers.
3873  /// Records containing this type as a subobject are not forced to be passed
3874  /// indirectly. This value is used only in C++. This value is required by
3875  /// C++ because, in uncommon situations, it is possible for a class to have
3876  /// only trivial copy/move constructors even when one of its subobjects has
3877  /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3878  /// constructor in the derived class is deleted).
3880 
3881  /// The argument of this type cannot be passed directly in registers.
3882  /// Records containing this type as a subobject are forced to be passed
3883  /// indirectly.
3885  };
3886 
3887 protected:
3888  RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3889  SourceLocation StartLoc, SourceLocation IdLoc,
3890  IdentifierInfo *Id, RecordDecl *PrevDecl);
3891 
3892 public:
3893  static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3894  SourceLocation StartLoc, SourceLocation IdLoc,
3895  IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3896  static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3897 
3899  return cast_or_null<RecordDecl>(
3900  static_cast<TagDecl *>(this)->getPreviousDecl());
3901  }
3902  const RecordDecl *getPreviousDecl() const {
3903  return const_cast<RecordDecl*>(this)->getPreviousDecl();
3904  }
3905 
3907  return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3908  }
3910  return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3911  }
3912 
3913  bool hasFlexibleArrayMember() const {
3914  return RecordDeclBits.HasFlexibleArrayMember;
3915  }
3916 
3918  RecordDeclBits.HasFlexibleArrayMember = V;
3919  }
3920 
3921  /// Whether this is an anonymous struct or union. To be an anonymous
3922  /// struct or union, it must have been declared without a name and
3923  /// there must be no objects of this type declared, e.g.,
3924  /// @code
3925  /// union { int i; float f; };
3926  /// @endcode
3927  /// is an anonymous union but neither of the following are:
3928  /// @code
3929  /// union X { int i; float f; };
3930  /// union { int i; float f; } obj;
3931  /// @endcode
3933  return RecordDeclBits.AnonymousStructOrUnion;
3934  }
3935 
3936  void setAnonymousStructOrUnion(bool Anon) {
3937  RecordDeclBits.AnonymousStructOrUnion = Anon;
3938  }
3939 
3940  bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
3941  void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3942 
3943  bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3944 
3945  void setHasVolatileMember(bool val) {
3946  RecordDeclBits.HasVolatileMember = val;
3947  }
3948 
3950  return RecordDeclBits.LoadedFieldsFromExternalStorage;
3951  }
3952 
3954  RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3955  }
3956 
3957  /// Functions to query basic properties of non-trivial C structs.
3959  return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3960  }
3961 
3963  RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3964  }
3965 
3967  return RecordDeclBits.NonTrivialToPrimitiveCopy;
3968  }
3969 
3971  RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3972  }
3973 
3975  return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3976  }
3977 
3979  RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3980  }
3981 
3983  return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
3984  }
3985 
3987  RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
3988  }
3989 
3991  return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
3992  }
3993 
3995  RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
3996  }
3997 
3999  return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
4000  }
4001 
4003  RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
4004  }
4005 
4006  /// Determine whether this class can be passed in registers. In C++ mode,
4007  /// it must have at least one trivial, non-deleted copy or move constructor.
4008  /// FIXME: This should be set as part of completeDefinition.
4009  bool canPassInRegisters() const {
4011  }
4012 
4014  return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
4015  }
4016 
4018  RecordDeclBits.ArgPassingRestrictions = Kind;
4019  }
4020 
4022  return RecordDeclBits.ParamDestroyedInCallee;
4023  }
4024 
4026  RecordDeclBits.ParamDestroyedInCallee = V;
4027  }
4028 
4029  /// Determines whether this declaration represents the
4030  /// injected class name.
4031  ///
4032  /// The injected class name in C++ is the name of the class that
4033  /// appears inside the class itself. For example:
4034  ///
4035  /// \code
4036  /// struct C {
4037  /// // C is implicitly declared here as a synonym for the class name.
4038  /// };
4039  ///
4040  /// C::C c; // same as "C c;"
4041  /// \endcode
4042  bool isInjectedClassName() const;
4043 
4044  /// Determine whether this record is a class describing a lambda
4045  /// function object.
4046  bool isLambda() const;
4047 
4048  /// Determine whether this record is a record for captured variables in
4049  /// CapturedStmt construct.
4050  bool isCapturedRecord() const;
4051 
4052  /// Mark the record as a record for captured variables in CapturedStmt
4053  /// construct.
4054  void setCapturedRecord();
4055 
4056  /// Returns the RecordDecl that actually defines
4057  /// this struct/union/class. When determining whether or not a
4058  /// struct/union/class is completely defined, one should use this
4059  /// method as opposed to 'isCompleteDefinition'.
4060  /// 'isCompleteDefinition' indicates whether or not a specific
4061  /// RecordDecl is a completed definition, not whether or not the
4062  /// record type is defined. This method returns NULL if there is
4063  /// no RecordDecl that defines the struct/union/tag.
4065  return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4066  }
4067 
4068  /// Returns whether this record is a union, or contains (at any nesting level)
4069  /// a union member. This is used by CMSE to warn about possible information
4070  /// leaks.
4071  bool isOrContainsUnion() const;
4072 
4073  // Iterator access to field members. The field iterator only visits
4074  // the non-static data members of this class, ignoring any static
4075  // data members, functions, constructors, destructors, etc.
4077  using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4078 
4080  field_iterator field_begin() const;
4081 
4083  return field_iterator(decl_iterator());
4084  }
4085 
4086  // Whether there are any fields (non-static data members) in this record.
4087  bool field_empty() const {
4088  return field_begin() == field_end();
4089  }
4090 
4091  /// Note that the definition of this type is now complete.
4092  virtual void completeDefinition();
4093 
4094  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4095  static bool classofKind(Kind K) {
4096  return K >= firstRecord && K <= lastRecord;
4097  }
4098 
4099  /// Get whether or not this is an ms_struct which can
4100  /// be turned on with an attribute, pragma, or -mms-bitfields
4101  /// commandline option.
4102  bool isMsStruct(const ASTContext &C) const;
4103 
4104  /// Whether we are allowed to insert extra padding between fields.
4105  /// These padding are added to help AddressSanitizer detect
4106  /// intra-object-overflow bugs.
4107  bool mayInsertExtraPadding(bool EmitRemark = false) const;
4108 
4109  /// Finds the first data member which has a name.
4110  /// nullptr is returned if no named data member exists.
4111  const FieldDecl *findFirstNamedDataMember() const;
4112 
4113 private:
4114  /// Deserialize just the fields.
4115  void LoadFieldsFromExternalStorage() const;
4116 };
4117 
4118 class FileScopeAsmDecl : public Decl {
4119  StringLiteral *AsmString;
4120  SourceLocation RParenLoc;
4121 
4122  FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4123  SourceLocation StartL, SourceLocation EndL)
4124  : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4125 
4126  virtual void anchor();
4127 
4128 public:
4130  StringLiteral *Str, SourceLocation AsmLoc,
4131  SourceLocation RParenLoc);
4132 
4133  static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4134 
4135  SourceLocation getAsmLoc() const { return getLocation(); }
4136  SourceLocation getRParenLoc() const { return RParenLoc; }
4137  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4138  SourceRange getSourceRange() const override LLVM_READONLY {
4139  return SourceRange(getAsmLoc(), getRParenLoc());
4140  }
4141 
4142  const StringLiteral *getAsmString() const { return AsmString; }
4143  StringLiteral *getAsmString() { return AsmString; }
4144  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4145 
4146  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4147  static bool classofKind(Kind K) { return K == FileScopeAsm; }
4148 };
4149 
4150 /// Represents a block literal declaration, which is like an
4151 /// unnamed FunctionDecl. For example:
4152 /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
4153 class BlockDecl : public Decl, public DeclContext {
4154  // This class stores some data in DeclContext::BlockDeclBits
4155  // to save some space. Use the provided accessors to access it.
4156 public:
4157  /// A class which contains all the information about a particular
4158  /// captured value.
4159  class Capture {
4160  enum {
4161  flag_isByRef = 0x1,
4162  flag_isNested = 0x2
4163  };
4164 
4165  /// The variable being captured.
4166  llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4167 
4168  /// The copy expression, expressed in terms of a DeclRef (or
4169  /// BlockDeclRef) to the captured variable. Only required if the
4170  /// variable has a C++ class type.
4171  Expr *CopyExpr;
4172 
4173  public:
4174  Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4175  : VariableAndFlags(variable,
4176  (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4177  CopyExpr(copy) {}
4178 
4179  /// The variable being captured.
4180  VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4181 
4182  /// Whether this is a "by ref" capture, i.e. a capture of a __block
4183  /// variable.
4184  bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4185 
4186  bool isEscapingByref() const {
4187  return getVariable()->isEscapingByref();
4188  }
4189 
4190  bool isNonEscapingByref() const {
4191  return getVariable()->isNonEscapingByref();
4192  }
4193 
4194  /// Whether this is a nested capture, i.e. the variable captured
4195  /// is not from outside the immediately enclosing function/block.
4196  bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4197 
4198  bool hasCopyExpr() const { return CopyExpr != nullptr; }
4199  Expr *getCopyExpr() const { return CopyExpr; }
4200  void setCopyExpr(Expr *e) { CopyExpr = e; }
4201  };
4202 
4203 private:
4204  /// A new[]'d array of pointers to ParmVarDecls for the formal
4205  /// parameters of this function. This is null if a prototype or if there are
4206  /// no formals.
4207  ParmVarDecl **ParamInfo = nullptr;
4208  unsigned NumParams = 0;
4209 
4210  Stmt *Body = nullptr;
4211  TypeSourceInfo *SignatureAsWritten = nullptr;
4212 
4213  const Capture *Captures = nullptr;
4214  unsigned NumCaptures = 0;
4215 
4216  unsigned ManglingNumber = 0;
4217  Decl *ManglingContextDecl = nullptr;
4218 
4219 protected:
4220  BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4221 
4222 public:
4224  static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4225 
4227 
4228  bool isVariadic() const { return BlockDeclBits.IsVariadic; }
4229  void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4230 
4231  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
4232  Stmt *getBody() const override { return (Stmt*) Body; }
4233  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4234 
4235  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
4236  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4237 
4238  // ArrayRef access to formal parameters.
4240  return {ParamInfo, getNumParams()};
4241  }
4243  return {ParamInfo, getNumParams()};
4244  }
4245 
4246  // Iterator access to formal parameters.
4249 
4250  bool param_empty() const { return parameters().empty(); }
4251  param_iterator param_begin() { return parameters().begin(); }
4252  param_iterator param_end() { return parameters().end(); }
4253  param_const_iterator param_begin() const { return parameters().begin(); }
4254  param_const_iterator param_end() const { return parameters().end(); }
4255  size_t param_size() const { return parameters().size(); }
4256 
4257  unsigned getNumParams() const { return NumParams; }
4258 
4259  const ParmVarDecl *getParamDecl(unsigned i) const {
4260  assert(i < getNumParams() && "Illegal param #");
4261  return ParamInfo[i];
4262  }
4263  ParmVarDecl *getParamDecl(unsigned i) {
4264  assert(i < getNumParams() && "Illegal param #");
4265  return ParamInfo[i];
4266  }
4267 
4268  void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4269 
4270  /// True if this block (or its nested blocks) captures
4271  /// anything of local storage from its enclosing scopes.
4272  bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4273 
4274  /// Returns the number of captured variables.
4275  /// Does not include an entry for 'this'.
4276  unsigned getNumCaptures() const { return NumCaptures; }
4277 
4279 
4280  ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4281 
4282  capture_const_iterator capture_begin() const { return captures().begin(); }
4283  capture_const_iterator capture_end() const { return captures().end(); }
4284 
4285  bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4286  void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4287 
4288  bool blockMissingReturnType() const {
4289  return BlockDeclBits.BlockMissingReturnType;
4290  }
4291 
4292  void setBlockMissingReturnType(bool val = true) {
4293  BlockDeclBits.BlockMissingReturnType = val;
4294  }
4295 
4296  bool isConversionFromLambda() const {
4297  return BlockDeclBits.IsConversionFromLambda;
4298  }
4299 
4300  void setIsConversionFromLambda(bool val = true) {
4301  BlockDeclBits.IsConversionFromLambda = val;
4302  }
4303 
4304  bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4305  void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4306 
4307  bool canAvoidCopyToHeap() const {
4308  return BlockDeclBits.CanAvoidCopyToHeap;
4309  }
4310  void setCanAvoidCopyToHeap(bool B = true) {
4311  BlockDeclBits.CanAvoidCopyToHeap = B;
4312  }
4313 
4314  bool capturesVariable(const VarDecl *var) const;
4315 
4316  void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4317  bool CapturesCXXThis);
4318 
4319  unsigned getBlockManglingNumber() const { return ManglingNumber; }
4320 
4321  Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4322 
4323  void setBlockMangling(unsigned Number, Decl *Ctx) {
4324  ManglingNumber = Number;
4325  ManglingContextDecl = Ctx;
4326  }
4327 
4328  SourceRange getSourceRange() const override LLVM_READONLY;
4329 
4330  // Implement isa/cast/dyncast/etc.
4331  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4332  static bool classofKind(Kind K) { return K == Block; }
4334  return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4335  }
4337  return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4338  }
4339 };
4340 
4341 /// Represents the body of a CapturedStmt, and serves as its DeclContext.
4342 class CapturedDecl final
4343  : public Decl,
4344  public DeclContext,
4345  private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4346 protected:
4347  size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4348  return NumParams;
4349  }
4350 
4351 private:
4352  /// The number of parameters to the outlined function.
4353  unsigned NumParams;
4354 
4355  /// The position of context parameter in list of parameters.
4356  unsigned ContextParam;
4357 
4358  /// The body of the outlined function.
4359  llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4360 
4361  explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4362 
4363  ImplicitParamDecl *const *getParams() const {
4364  return getTrailingObjects<ImplicitParamDecl *>();
4365  }
4366 
4367  ImplicitParamDecl **getParams() {
4368  return getTrailingObjects<ImplicitParamDecl *>();
4369  }
4370 
4371 public:
4372  friend class ASTDeclReader;
4373  friend class ASTDeclWriter;
4375 
4376  static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4377  unsigned NumParams);
4378  static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4379  unsigned NumParams);
4380 
4381  Stmt *getBody() const override;
4382  void setBody(Stmt *B);
4383 
4384  bool isNothrow() const;
4385  void setNothrow(bool Nothrow = true);
4386 
4387  unsigned getNumParams() const { return NumParams; }
4388 
4389  ImplicitParamDecl *getParam(unsigned i) const {
4390  assert(i < NumParams);
4391  return getParams()[i];
4392  }
4393  void setParam(unsigned i, ImplicitParamDecl *P) {
4394  assert(i < NumParams);
4395  getParams()[i] = P;
4396  }
4397 
4398  // ArrayRef interface to parameters.
4400  return {getParams(), getNumParams()};
4401  }
4403  return {getParams(), getNumParams()};
4404  }
4405 
4406  /// Retrieve the parameter containing captured variables.
4408  assert(ContextParam < NumParams);
4409  return getParam(ContextParam);
4410  }
4411  void setContextParam(unsigned i, ImplicitParamDecl *P) {
4412  assert(i < NumParams);
4413  ContextParam = i;
4414  setParam(i, P);
4415  }
4416  unsigned getContextParamPosition() const { return ContextParam; }
4417 
4419  using param_range = llvm::iterator_range<param_iterator>;
4420 
4421  /// Retrieve an iterator pointing to the first parameter decl.
4422  param_iterator param_begin() const { return getParams(); }
4423  /// Retrieve an iterator one past the last parameter decl.
4424  param_iterator param_end() const { return getParams() + NumParams; }
4425 
4426  // Implement isa/cast/dyncast/etc.
4427  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4428  static bool classofKind(Kind K) { return K == Captured; }
4430  return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4431  }
4433  return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4434  }
4435 };
4436 
4437 /// Describes a module import declaration, which makes the contents
4438 /// of the named module visible in the current translation unit.
4439 ///
4440 /// An import declaration imports the named module (or submodule). For example:
4441 /// \code
4442 /// @import std.vector;
4443 /// \endcode
4444 ///
4445 /// Import declarations can also be implicitly generated from
4446 /// \#include/\#import directives.
4447 class ImportDecl final : public Decl,
4448  llvm::TrailingObjects<ImportDecl, SourceLocation> {
4449  friend class ASTContext;
4450  friend class ASTDeclReader;
4451  friend class ASTReader;
4452  friend TrailingObjects;
4453 
4454  /// The imported module.
4455  Module *ImportedModule = nullptr;
4456 
4457  /// The next import in the list of imports local to the translation
4458  /// unit being parsed (not loaded from an AST file).
4459  ///
4460  /// Includes a bit that indicates whether we have source-location information
4461  /// for each identifier in the module name.
4462  ///
4463  /// When the bit is false, we only have a single source location for the
4464  /// end of the import declaration.
4465  llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4466 
4467  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4468  ArrayRef<SourceLocation> IdentifierLocs);
4469 
4470  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4471  SourceLocation EndLoc);
4472 
4473  ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4474 
4475  bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4476 
4477  void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4478 
4479  /// The next import in the list of imports local to the translation
4480  /// unit being parsed (not loaded from an AST file).
4481  ImportDecl *getNextLocalImport() const {
4482  return NextLocalImportAndComplete.getPointer();
4483  }
4484 
4485  void setNextLocalImport(ImportDecl *Import) {
4486  NextLocalImportAndComplete.setPointer(Import);
4487  }
4488 
4489 public:
4490  /// Create a new module import declaration.
4491  static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4492  SourceLocation StartLoc, Module *Imported,
4493  ArrayRef<SourceLocation> IdentifierLocs);
4494 
4495  /// Create a new module import declaration for an implicitly-generated
4496  /// import.
4497  static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4498  SourceLocation StartLoc, Module *Imported,
4499  SourceLocation EndLoc);
4500 
4501  /// Create a new, deserialized module import declaration.
4502  static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4503  unsigned NumLocations);
4504 
4505  /// Retrieve the module that was imported by the import declaration.
4506  Module *getImportedModule() const { return ImportedModule; }
4507 
4508  /// Retrieves the locations of each of the identifiers that make up
4509  /// the complete module name in the import declaration.
4510  ///
4511  /// This will return an empty array if the locations of the individual
4512  /// identifiers aren't available.
4514 
4515  SourceRange getSourceRange() const override LLVM_READONLY;
4516 
4517  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4518  static bool classofKind(Kind K) { return K == Import; }
4519 };
4520 
4521 /// Represents a C++ Modules TS module export declaration.
4522 ///
4523 /// For example:
4524 /// \code
4525 /// export void foo();
4526 /// \endcode
4527 class ExportDecl final : public Decl, public DeclContext {
4528  virtual void anchor();
4529 
4530 private:
4531  friend class ASTDeclReader;
4532 
4533  /// The source location for the right brace (if valid).
4534  SourceLocation RBraceLoc;
4535 
4536  ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4537  : Decl(Export, DC, ExportLoc), DeclContext(Export),
4538  RBraceLoc(SourceLocation()) {}
4539 
4540 public:
4541  static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4542  SourceLocation ExportLoc);
4543  static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4544 
4546  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4547  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4548 
4549  bool hasBraces() const { return RBraceLoc.isValid(); }
4550 
4551  SourceLocation getEndLoc() const LLVM_READONLY {
4552  if (hasBraces())
4553  return RBraceLoc;
4554  // No braces: get the end location of the (only) declaration in context
4555  // (if present).
4556  return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4557  }
4558 
4559  SourceRange getSourceRange() const override LLVM_READONLY {
4560  return SourceRange(getLocation(), getEndLoc());
4561  }
4562 
4563  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4564  static bool classofKind(Kind K) { return K == Export; }
4566  return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4567  }
4569  return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4570  }
4571 };
4572 
4573 /// Represents an empty-declaration.
4574 class EmptyDecl : public Decl {
4575  EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4576 
4577  virtual void anchor();
4578 
4579 public:
4580  static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4581  SourceLocation L);
4582  static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4583 
4584  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4585  static bool classofKind(Kind K) { return K == Empty; }
4586 };
4587 
4588 /// Insertion operator for diagnostics. This allows sending NamedDecl's
4589 /// into a diagnostic with <<.
4591  const NamedDecl *ND) {
4592  PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4594  return PD;
4595 }
4596 
4597 template<typename decl_type>
4598 void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4599  // Note: This routine is implemented here because we need both NamedDecl
4600  // and Redeclarable to be defined.
4601  assert(RedeclLink.isFirst() &&
4602  "setPreviousDecl on a decl already in a redeclaration chain");
4603 
4604  if (PrevDecl) {
4605  // Point to previous. Make sure that this is actually the most recent
4606  // redeclaration, or we can build invalid chains. If the most recent
4607  // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4608  First = PrevDecl->getFirstDecl();
4609  assert(First->RedeclLink.isFirst() && "Expected first");
4610  decl_type *MostRecent = First->getNextRedeclaration();
4611  RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4612 
4613  // If the declaration was previously visible, a redeclaration of it remains
4614  // visible even if it wouldn't be visible by itself.
4615  static_cast<decl_type*>(this)->IdentifierNamespace |=
4616  MostRecent->getIdentifierNamespace() &
4618  } else {
4619  // Make this first.
4620  First = static_cast<decl_type*>(this);
4621  }
4622 
4623  // First one will point to this one as latest.
4624  First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4625 
4626  assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
4627  cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
4628 }
4629 
4630 // Inline function definitions.
4631 
4632 /// Check if the given decl is complete.
4633 ///
4634 /// We use this function to break a cycle between the inline definitions in
4635 /// Type.h and Decl.h.
4636 inline bool IsEnumDeclComplete(EnumDecl *ED) {
4637  return ED->isComplete();
4638 }
4639 
4640 /// Check if the given decl is scoped.
4641 ///
4642 /// We use this function to break a cycle between the inline definitions in
4643 /// Type.h and Decl.h.
4644 inline bool IsEnumDeclScoped(EnumDecl *ED) {
4645  return ED->isScoped();
4646 }
4647 
4648 /// OpenMP variants are mangled early based on their OpenMP context selector.
4649 /// The new name looks likes this:
4650 /// <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
4651 static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4652  return "$ompvariant";
4653 }
4654 
4655 } // namespace clang
4656 
4657 #endif // LLVM_CLANG_AST_DECL_H
clang::FunctionDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4005
clang::DeclaratorDecl::getInnerLocStart
SourceLocation getInnerLocStart() const
Return start of source range ignoring outer template declarations.
Definition: Decl.h:771
clang::TypeDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.h:3167
clang::FieldDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4237
clang::FunctionDecl::getParamDecl
ParmVarDecl * getParamDecl(unsigned i)
Definition: Decl.h:2510
clang::EnumDecl::setIntegerTypeSourceInfo
void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo)
Set the underlying integer type source info.
Definition: Decl.h:3758
clang::LabelStmt
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1798
clang::TagDecl::hasNameForLinkage
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type?
Definition: Decl.h:3534
clang::TagDecl::getKindName
StringRef getKindName() const
Definition: Decl.h:3503
clang::RecordDecl::hasFlexibleArrayMember
bool hasFlexibleArrayMember() const
Definition: Decl.h:3913
clang::ExportDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.h:4559
clang::FunctionDecl::getMultiVersionKind
MultiVersionKind getMultiVersionKind() const
Gets the kind of multiversioning attribute this declaration has.
Definition: Decl.cpp:3246
clang::VarDecl::TentativeDefinition
@ TentativeDefinition
This declaration is a tentative definition.
Definition: Decl.h:1215
clang::FunctionDecl::getBody
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.h:2137
clang::EmptyDecl
Represents an empty-declaration.
Definition: Decl.h:4574
clang::FieldDecl::getBitWidthValue
unsigned getBitWidthValue(const ASTContext &Ctx) const
Definition: Decl.cpp:4174
clang::LabelDecl::Create
static LabelDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II)
Definition: Decl.cpp:4813
clang::FunctionDecl::castFromDeclContext
static FunctionDecl * castFromDeclContext(const DeclContext *DC)
Definition: Decl.h:2829
clang::VarDecl::DAK_Unparsed
@ DAK_Unparsed
Definition: Decl.h:945
clang::FunctionDecl::doesThisDeclarationHaveABody
bool doesThisDeclarationHaveABody() const
Returns whether this specific declaration of the function has a body.
Definition: Decl.h:2163
clang::FunctionDecl::getDefinition
const FunctionDecl * getDefinition() const
Definition: Decl.h:2125
clang::FunctionDecl::param_empty
bool param_empty() const
Definition: Decl.h:2494
clang::ImportDecl::classof
static bool classof(const Decl *D)
Definition: Decl.h:4517
clang::NamespaceDecl::Create
static NamespaceDecl * Create(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl)
Definition: DeclCXX.cpp:2859
clang::FunctionDecl::getDefaultedFunctionInfo
DefaultedFunctionInfo * getDefaultedFunctionInfo() const
Definition: Decl.cpp:2931
clang::TypeDecl::classofKind
static bool classofKind(Kind K)
Definition: Decl.h:3176
clang::Decl::getASTContext
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:414
clang::VarDecl::isKnownToBeDefined
bool isKnownToBeDefined() const
Definition: Decl.cpp:2654
clang::FunctionDecl::isDefaulted
bool isDefaulted() const
Whether this function is defaulted.
Definition: Decl.h:2215
clang::NamedDecl::classof
static bool classof(const Decl *D)
Definition: Decl.h:482
clang::BlockDecl::parameters
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:4239
clang::RecordDecl::APK_CanPassInRegs
@ APK_CanPassInRegs
The argument of this type can be passed directly in registers.
Definition: Decl.h:3870
clang::DeclContext::decls_end
decl_iterator decls_end() const
Definition: DeclBase.h:2117
clang::RecordDecl::field_begin
field_iterator field_begin() const
Definition: Decl.cpp:4583
clang::Decl::IDNS_Type
@ IDNS_Type
Types, declared with 'struct foo', typedefs, etc.
Definition: DeclBase.h:133
clang::ParmVarDecl::setUnparsedDefaultArg
void setUnparsedDefaultArg()
Specify that this parameter has an unparsed default argument.
Definition: Decl.h:1794
clang::RecordDecl::setHasNonTrivialToPrimitiveCopyCUnion
void setHasNonTrivialToPrimitiveCopyCUnion(bool V)
Definition: Decl.h:4002
clang::FunctionDecl::setRangeEnd
void setRangeEnd(SourceLocation E)
Definition: Decl.h:2057
clang::FunctionDecl::hasWrittenPrototype
bool hasWrittenPrototype() const
Whether this function has a written prototype.
Definition: Decl.h:2261
clang::VarDecl::getStorageDuration
StorageDuration getStorageDuration() const
Get the storage duration of this variable, per C++ [basic.stc].
Definition: Decl.h:1146
clang::RecordDecl::hasVolatileMember
bool hasVolatileMember() const
Definition: Decl.h:3943
Visibility.h
clang::ExportDecl::getRBraceLoc
SourceLocation getRBraceLoc() const
Definition: Decl.h:4546
clang::VarDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:2057
clang::BlockDecl::isVariadic
bool isVariadic() const
Definition: Decl.h:4228
clang::IndirectFieldDecl::chain_begin
chain_iterator chain_begin() const
Definition: Decl.h:3114
clang::FunctionDecl::getNumParams
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3358
clang::ExternCContextDecl
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:222
clang::EnumDecl::enumerator_end
enumerator_iterator enumerator_end() const
Definition: Decl.h:3730
clang::VarDecl::isFileVarDecl
bool isFileVarDecl() const
Returns true for file scoped variable declaration.
Definition: Decl.h:1259
clang::VarDecl::getTemplateInstantiationPattern
VarDecl * getTemplateInstantiationPattern() const
Retrieve the variable declaration from which this variable could be instantiated, if it is an instant...
Definition: Decl.cpp:2549
clang::RecordDecl::setArgPassingRestrictions
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:4017
clang::Decl::setDeclContext
void setDeclContext(DeclContext *DC)
setDeclContext - Set both the semantic and lexical DeclContext to DC.
Definition: DeclBase.cpp:327
clang::EnumDecl::getPreviousDecl
EnumDecl * getPreviousDecl()
Definition: Decl.h:3678
Specifiers.h
ASTContextAllocate.h
clang::FunctionProtoType::getExceptionSpecType
ExceptionSpecificationType getExceptionSpecType() const
Get the kind of exception specification on this function.
Definition: Type.h:4120
clang::Decl::hasCachedLinkage
bool hasCachedLinkage() const
Definition: DeclBase.h:412
clang::VarDecl::getTLSKind
TLSKind getTLSKind() const
Definition: Decl.cpp:2035
clang::EnumConstantDecl::getInitExpr
Expr * getInitExpr()
Definition: Decl.h:3070
clang::RecordDecl::setHasFlexibleArrayMember
void setHasFlexibleArrayMember(bool V)
Definition: Decl.h:3917
clang::VarDecl::setTemplateSpecializationKind
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For a static data member that was instantiated from a static data member of a class template,...
Definition: Decl.cpp:2698
clang::DeclContext::specific_decl_iterator
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2135
clang::MultiVersionKind::CPUDispatch
@ CPUDispatch
clang::EnumConstantDecl::Create
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4914
clang::RecordDecl::hasNonTrivialToPrimitiveCopyCUnion
bool hasNonTrivialToPrimitiveCopyCUnion() const
Definition: Decl.h:3998
clang::NamespaceDecl::getRBraceLoc
SourceLocation getRBraceLoc() const
Definition: Decl.h:658
clang::NamedDecl::isCXXInstanceMember
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition: Decl.cpp:1828
clang::DependentFunctionTemplateSpecializationInfo
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:683
clang::NamespaceDecl::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:657
clang::LabelDecl::isResolvedMSAsmLabel
bool isResolvedMSAsmLabel() const
Definition: Decl.h:531
clang::BlockDecl::Capture::setCopyExpr
void setCopyExpr(Expr *e)
Definition: Decl.h:4200
clang::ImplicitParamDecl::CXXThis
@ CXXThis
Parameter for C++ 'this' argument.
Definition: Decl.h:1616
clang::VarDecl::isInlineSpecified
b