clang  8.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "Linkage.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringSwitch.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
77  return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81  SourceLocation Loc = this->Loc;
82  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83  if (Loc.isValid()) {
84  Loc.print(OS, Context.getSourceManager());
85  OS << ": ";
86  }
87  OS << Message;
88 
89  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90  OS << " '";
91  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92  OS << "'";
93  }
94 
95  OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100  return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104  : Decl(TranslationUnit, nullptr, SourceLocation()),
105  DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored. Only the innermost
116 // visibility attribute applies. If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments. But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility. For example,
148 // the visibility of a specialization of either of these templates:
149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 // template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'. That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
160  return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
167  Kind.IgnoreExplicitVisibility = true;
168  return Kind;
169 }
170 
173  assert(!kind.IgnoreExplicitVisibility &&
174  "asking for explicit visibility when we shouldn't be");
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181  return isa<TypeDecl>(D) ||
182  isa<ClassTemplateDecl>(D) ||
183  isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
191  if (const MemberSpecializationInfo *member =
192  D->getMemberSpecializationInfo()) {
193  return member->isExplicitSpecialization();
194  }
195  return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
202  return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209  switch (attr->getVisibility()) {
210  case T::Default:
211  return DefaultVisibility;
212  case T::Hidden:
213  return HiddenVisibility;
214  case T::Protected:
215  return ProtectedVisibility;
216  }
217  llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
223  // If we're ultimately computing the visibility of a type, look for
224  // a 'type_visibility' attribute before looking for 'visibility'.
225  if (kind == NamedDecl::VisibilityForType) {
226  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227  return getVisibilityFromAttr(A);
228  }
229  }
230 
231  // If this declaration has an explicit visibility attribute, use it.
232  if (const auto *A = D->getAttr<VisibilityAttr>()) {
233  return getVisibilityFromAttr(A);
234  }
235 
236  return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240  LVComputationKind computation) {
241  if (computation.IgnoreAllVisibility)
242  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243  return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list. For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250  const TemplateParameterList *Params, LVComputationKind computation) {
251  LinkageInfo LV;
252  for (const NamedDecl *P : *Params) {
253  // Template type parameters are the most common and never
254  // contribute to visibility, pack or not.
255  if (isa<TemplateTypeParmDecl>(P))
256  continue;
257 
258  // Non-type template parameters can be restricted by the value type, e.g.
259  // template <enum X> class A { ... };
260  // We have to be careful here, though, because we can be dealing with
261  // dependent types.
262  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263  // Handle the non-pack case first.
264  if (!NTTP->isExpandedParameterPack()) {
265  if (!NTTP->getType()->isDependentType()) {
266  LV.merge(getLVForType(*NTTP->getType(), computation));
267  }
268  continue;
269  }
270 
271  // Look at all the types in an expanded pack.
272  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273  QualType type = NTTP->getExpansionType(i);
274  if (!type->isDependentType())
275  LV.merge(getTypeLinkageAndVisibility(type));
276  }
277  continue;
278  }
279 
280  // Template template parameters can be restricted by their
281  // template parameters, recursively.
282  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284  // Handle the non-pack case first.
285  if (!TTP->isExpandedParameterPack()) {
286  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287  computation));
288  continue;
289  }
290 
291  // Look at all expansions in an expanded pack.
292  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293  i != n; ++i) {
294  LV.merge(getLVForTemplateParameterList(
295  TTP->getExpansionTemplateParameters(i), computation));
296  }
297  }
298 
299  return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303  const Decl *Ret = nullptr;
304  const DeclContext *DC = D->getDeclContext();
305  while (DC->getDeclKind() != Decl::TranslationUnit) {
306  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307  Ret = cast<Decl>(DC);
308  DC = DC->getParent();
309  }
310  return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320  LVComputationKind computation) {
321  LinkageInfo LV;
322 
323  for (const TemplateArgument &Arg : Args) {
324  switch (Arg.getKind()) {
328  continue;
329 
331  LV.merge(getLVForType(*Arg.getAsType(), computation));
332  continue;
333 
335  const NamedDecl *ND = Arg.getAsDecl();
336  assert(!usesTypeVisibility(ND));
337  LV.merge(getLVForDecl(ND, computation));
338  continue;
339  }
340 
342  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343  continue;
344 
347  if (TemplateDecl *Template =
348  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349  LV.merge(getLVForDecl(Template, computation));
350  continue;
351 
353  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354  continue;
355  }
356  llvm_unreachable("bad template argument kind");
357  }
358 
359  return LV;
360 }
361 
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364  LVComputationKind computation) {
365  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
369  const FunctionTemplateSpecializationInfo *specInfo) {
370  // Include visibility from the template parameters and arguments
371  // only if this is not an explicit instantiation or specialization
372  // with direct explicit visibility. (Implicit instantiations won't
373  // have a direct attribute.)
375  return true;
376 
377  return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388  LinkageInfo &LV, const FunctionDecl *fn,
389  const FunctionTemplateSpecializationInfo *specInfo,
390  LVComputationKind computation) {
391  bool considerVisibility =
392  shouldConsiderTemplateVisibility(fn, specInfo);
393 
394  // Merge information from the template parameters.
395  FunctionTemplateDecl *temp = specInfo->getTemplate();
396  LinkageInfo tempLV =
397  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400  // Merge information from the template arguments.
401  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
409  LVComputationKind computation) {
410  if (computation.IgnoreAllVisibility)
411  return false;
412 
413  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414  D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
421  LVComputationKind computation) {
422  // Include visibility from the template parameters and arguments
423  // only if this is not an explicit instantiation or specialization
424  // with direct explicit visibility (and note that implicit
425  // instantiations won't have a direct attribute).
426  //
427  // Furthermore, we want to ignore template parameters and arguments
428  // for an explicit specialization when computing the visibility of a
429  // member thereof with explicit visibility.
430  //
431  // This is a bit complex; let's unpack it.
432  //
433  // An explicit class specialization is an independent, top-level
434  // declaration. As such, if it or any of its members has an
435  // explicit visibility attribute, that must directly express the
436  // user's intent, and we should honor it. The same logic applies to
437  // an explicit instantiation of a member of such a thing.
438 
439  // Fast path: if this is not an explicit instantiation or
440  // specialization, we always want to consider template-related
441  // visibility restrictions.
443  return true;
444 
445  // This is the 'member thereof' check.
446  if (spec->isExplicitSpecialization() &&
447  hasExplicitVisibilityAlready(computation))
448  return false;
449 
450  return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
457  LVComputationKind computation) {
458  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460  // Merge information from the template parameters, but ignore
461  // visibility if we're only considering template arguments.
462 
464  LinkageInfo tempLV =
465  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466  LV.mergeMaybeWithVisibility(tempLV,
467  considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469  // Merge information from the template arguments. We ignore
470  // template-argument visibility if we've got an explicit
471  // instantiation with a visibility attribute.
472  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474  if (considerVisibility)
475  LV.mergeVisibility(argsLV);
476  LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
484  const VarTemplateSpecializationDecl *spec,
485  LVComputationKind computation) {
486  // Include visibility from the template parameters and arguments
487  // only if this is not an explicit instantiation or specialization
488  // with direct explicit visibility (and note that implicit
489  // instantiations won't have a direct attribute).
491  return true;
492 
493  // An explicit variable specialization is an independent, top-level
494  // declaration. As such, if it has an explicit visibility attribute,
495  // that must directly express the user's intent, and we should honor
496  // it.
497  if (spec->isExplicitSpecialization() &&
498  hasExplicitVisibilityAlready(computation))
499  return false;
500 
501  return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508  const VarTemplateSpecializationDecl *spec,
509  LVComputationKind computation) {
510  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512  // Merge information from the template parameters, but ignore
513  // visibility if we're only considering template arguments.
514 
515  VarTemplateDecl *temp = spec->getSpecializedTemplate();
516  LinkageInfo tempLV =
517  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518  LV.mergeMaybeWithVisibility(tempLV,
519  considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521  // Merge information from the template arguments. We ignore
522  // template-argument visibility if we've got an explicit
523  // instantiation with a visibility attribute.
524  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526  if (considerVisibility)
527  LV.mergeVisibility(argsLV);
528  LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533  const LangOptions &Opts = D->getASTContext().getLangOpts();
534  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535  return false;
536 
537  const auto *FD = dyn_cast<FunctionDecl>(D);
538  if (!FD)
539  return false;
540 
543  = FD->getTemplateSpecializationInfo()) {
544  TSK = spec->getTemplateSpecializationKind();
545  } else if (MemberSpecializationInfo *MSI =
546  FD->getMemberSpecializationInfo()) {
547  TSK = MSI->getTemplateSpecializationKind();
548  }
549 
550  const FunctionDecl *Def = nullptr;
551  // InlineVisibilityHidden only applies to definitions, and
552  // isInlined() only gives meaningful answers on definitions
553  // anyway.
554  return TSK != TSK_ExplicitInstantiationDeclaration &&
556  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560  const T *First = D->getFirstDecl();
561  return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566  if (!SD->hasBraces())
567  return true;
568  return false;
569 }
570 
572  // FIXME: Handle isModulePrivate.
573  switch (D->getModuleOwnershipKind()) {
576  return false;
579  if (auto *M = D->getOwningModule())
580  return M->Kind == Module::ModuleInterfaceUnit;
581  }
582  llvm_unreachable("unexpected module ownership kind");
583 }
584 
586  // Internal linkage declarations within a module interface unit are modeled
587  // as "module-internal linkage", which means that they have internal linkage
588  // formally but can be indirectly accessed from outside the module via inline
589  // functions and templates defined within the module.
590  if (auto *M = D->getOwningModule())
591  if (M->Kind == Module::ModuleInterfaceUnit)
593 
594  return LinkageInfo::internal();
595 }
596 
598  // C++ Modules TS [basic.link]/6.8:
599  // - A name declared at namespace scope that does not have internal linkage
600  // by the previous rules and that is introduced by a non-exported
601  // declaration has module linkage.
602  if (auto *M = D->getOwningModule())
603  if (M->Kind == Module::ModuleInterfaceUnit)
605  cast<NamedDecl>(D->getCanonicalDecl())))
607 
608  return LinkageInfo::external();
609 }
610 
612 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
613  LVComputationKind computation,
614  bool IgnoreVarTypeLinkage) {
615  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
616  "Not a name having namespace scope");
617  ASTContext &Context = D->getASTContext();
618 
619  // C++ [basic.link]p3:
620  // A name having namespace scope (3.3.6) has internal linkage if it
621  // is the name of
622  // - an object, reference, function or function template that is
623  // explicitly declared static; or,
624  // (This bullet corresponds to C99 6.2.2p3.)
625  if (const auto *Var = dyn_cast<VarDecl>(D)) {
626  // Explicitly declared static.
627  if (Var->getStorageClass() == SC_Static)
628  return getInternalLinkageFor(Var);
629 
630  // - a non-inline, non-volatile object or reference that is explicitly
631  // declared const or constexpr and neither explicitly declared extern
632  // nor previously declared to have external linkage; or (there is no
633  // equivalent in C99)
634  // The C++ modules TS adds "non-exported" to this list.
635  if (Context.getLangOpts().CPlusPlus &&
636  Var->getType().isConstQualified() &&
637  !Var->getType().isVolatileQualified() &&
638  !Var->isInline() &&
640  const VarDecl *PrevVar = Var->getPreviousDecl();
641  if (PrevVar)
642  return getLVForDecl(PrevVar, computation);
643 
644  if (Var->getStorageClass() != SC_Extern &&
645  Var->getStorageClass() != SC_PrivateExtern &&
647  return getInternalLinkageFor(Var);
648  }
649 
650  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
651  PrevVar = PrevVar->getPreviousDecl()) {
652  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
653  Var->getStorageClass() == SC_None)
654  return getDeclLinkageAndVisibility(PrevVar);
655  // Explicitly declared static.
656  if (PrevVar->getStorageClass() == SC_Static)
657  return getInternalLinkageFor(Var);
658  }
659  } else if (const FunctionDecl *Function = D->getAsFunction()) {
660  // C++ [temp]p4:
661  // A non-member function template can have internal linkage; any
662  // other template name shall have external linkage.
663 
664  // Explicitly declared static.
665  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
666  return getInternalLinkageFor(Function);
667  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668  // - a data member of an anonymous union.
669  const VarDecl *VD = IFD->getVarDecl();
670  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672  }
673  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674 
675  if (D->isInAnonymousNamespace()) {
676  const auto *Var = dyn_cast<VarDecl>(D);
677  const auto *Func = dyn_cast<FunctionDecl>(D);
678  // FIXME: The check for extern "C" here is not justified by the standard
679  // wording, but we retain it from the pre-DR1113 model to avoid breaking
680  // code.
681  //
682  // C++11 [basic.link]p4:
683  // An unnamed namespace or a namespace declared directly or indirectly
684  // within an unnamed namespace has internal linkage.
685  if ((!Var || !isFirstInExternCContext(Var)) &&
686  (!Func || !isFirstInExternCContext(Func)))
687  return getInternalLinkageFor(D);
688  }
689 
690  // Set up the defaults.
691 
692  // C99 6.2.2p5:
693  // If the declaration of an identifier for an object has file
694  // scope and no storage-class specifier, its linkage is
695  // external.
697 
698  if (!hasExplicitVisibilityAlready(computation)) {
699  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
700  LV.mergeVisibility(*Vis, true);
701  } else {
702  // If we're declared in a namespace with a visibility attribute,
703  // use that namespace's visibility, and it still counts as explicit.
704  for (const DeclContext *DC = D->getDeclContext();
705  !isa<TranslationUnitDecl>(DC);
706  DC = DC->getParent()) {
707  const auto *ND = dyn_cast<NamespaceDecl>(DC);
708  if (!ND) continue;
709  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
710  LV.mergeVisibility(*Vis, true);
711  break;
712  }
713  }
714  }
715 
716  // Add in global settings if the above didn't give us direct visibility.
717  if (!LV.isVisibilityExplicit()) {
718  // Use global type/value visibility as appropriate.
719  Visibility globalVisibility =
720  computation.isValueVisibility()
721  ? Context.getLangOpts().getValueVisibilityMode()
722  : Context.getLangOpts().getTypeVisibilityMode();
723  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
724 
725  // If we're paying attention to global visibility, apply
726  // -finline-visibility-hidden if this is an inline method.
729  }
730  }
731 
732  // C++ [basic.link]p4:
733 
734  // A name having namespace scope has external linkage if it is the
735  // name of
736  //
737  // - an object or reference, unless it has internal linkage; or
738  if (const auto *Var = dyn_cast<VarDecl>(D)) {
739  // GCC applies the following optimization to variables and static
740  // data members, but not to functions:
741  //
742  // Modify the variable's LV by the LV of its type unless this is
743  // C or extern "C". This follows from [basic.link]p9:
744  // A type without linkage shall not be used as the type of a
745  // variable or function with external linkage unless
746  // - the entity has C language linkage, or
747  // - the entity is declared within an unnamed namespace, or
748  // - the entity is not used or is defined in the same
749  // translation unit.
750  // and [basic.link]p10:
751  // ...the types specified by all declarations referring to a
752  // given variable or function shall be identical...
753  // C does not have an equivalent rule.
754  //
755  // Ignore this if we've got an explicit attribute; the user
756  // probably knows what they're doing.
757  //
758  // Note that we don't want to make the variable non-external
759  // because of this, but unique-external linkage suits us.
760  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
761  !IgnoreVarTypeLinkage) {
762  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
763  if (!isExternallyVisible(TypeLV.getLinkage()))
765  if (!LV.isVisibilityExplicit())
766  LV.mergeVisibility(TypeLV);
767  }
768 
769  if (Var->getStorageClass() == SC_PrivateExtern)
771 
772  // Note that Sema::MergeVarDecl already takes care of implementing
773  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
774  // to do it here.
775 
776  // As per function and class template specializations (below),
777  // consider LV for the template and template arguments. We're at file
778  // scope, so we do not need to worry about nested specializations.
779  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
780  mergeTemplateLV(LV, spec, computation);
781  }
782 
783  // - a function, unless it has internal linkage; or
784  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
785  // In theory, we can modify the function's LV by the LV of its
786  // type unless it has C linkage (see comment above about variables
787  // for justification). In practice, GCC doesn't do this, so it's
788  // just too painful to make work.
789 
790  if (Function->getStorageClass() == SC_PrivateExtern)
792 
793  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
794  // merging storage classes and visibility attributes, so we don't have to
795  // look at previous decls in here.
796 
797  // In C++, then if the type of the function uses a type with
798  // unique-external linkage, it's not legally usable from outside
799  // this translation unit. However, we should use the C linkage
800  // rules instead for extern "C" declarations.
801  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
802  // Only look at the type-as-written. Otherwise, deducing the return type
803  // of a function could change its linkage.
804  QualType TypeAsWritten = Function->getType();
805  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
806  TypeAsWritten = TSI->getType();
807  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
809  }
810 
811  // Consider LV from the template and the template arguments.
812  // We're at file scope, so we do not need to worry about nested
813  // specializations.
815  = Function->getTemplateSpecializationInfo()) {
816  mergeTemplateLV(LV, Function, specInfo, computation);
817  }
818 
819  // - a named class (Clause 9), or an unnamed class defined in a
820  // typedef declaration in which the class has the typedef name
821  // for linkage purposes (7.1.3); or
822  // - a named enumeration (7.2), or an unnamed enumeration
823  // defined in a typedef declaration in which the enumeration
824  // has the typedef name for linkage purposes (7.1.3); or
825  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
826  // Unnamed tags have no linkage.
827  if (!Tag->hasNameForLinkage())
828  return LinkageInfo::none();
829 
830  // If this is a class template specialization, consider the
831  // linkage of the template and template arguments. We're at file
832  // scope, so we do not need to worry about nested specializations.
833  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
834  mergeTemplateLV(LV, spec, computation);
835  }
836 
837  // - an enumerator belonging to an enumeration with external linkage;
838  } else if (isa<EnumConstantDecl>(D)) {
839  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
840  computation);
841  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
842  return LinkageInfo::none();
843  LV.merge(EnumLV);
844 
845  // - a template, unless it is a function template that has
846  // internal linkage (Clause 14);
847  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
848  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
849  LinkageInfo tempLV =
850  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
851  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
852 
853  // - a namespace (7.3), unless it is declared within an unnamed
854  // namespace.
855  //
856  // We handled names in anonymous namespaces above.
857  } else if (isa<NamespaceDecl>(D)) {
858  return LV;
859 
860  // By extension, we assign external linkage to Objective-C
861  // interfaces.
862  } else if (isa<ObjCInterfaceDecl>(D)) {
863  // fallout
864 
865  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
866  // A typedef declaration has linkage if it gives a type a name for
867  // linkage purposes.
868  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
869  return LinkageInfo::none();
870 
871  // Everything not covered here has no linkage.
872  } else {
873  return LinkageInfo::none();
874  }
875 
876  // If we ended up with non-externally-visible linkage, visibility should
877  // always be default.
878  if (!isExternallyVisible(LV.getLinkage()))
879  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
880 
881  return LV;
882 }
883 
885 LinkageComputer::getLVForClassMember(const NamedDecl *D,
886  LVComputationKind computation,
887  bool IgnoreVarTypeLinkage) {
888  // Only certain class members have linkage. Note that fields don't
889  // really have linkage, but it's convenient to say they do for the
890  // purposes of calculating linkage of pointer-to-data-member
891  // template arguments.
892  //
893  // Templates also don't officially have linkage, but since we ignore
894  // the C++ standard and look at template arguments when determining
895  // linkage and visibility of a template specialization, we might hit
896  // a template template argument that way. If we do, we need to
897  // consider its linkage.
898  if (!(isa<CXXMethodDecl>(D) ||
899  isa<VarDecl>(D) ||
900  isa<FieldDecl>(D) ||
901  isa<IndirectFieldDecl>(D) ||
902  isa<TagDecl>(D) ||
903  isa<TemplateDecl>(D)))
904  return LinkageInfo::none();
905 
906  LinkageInfo LV;
907 
908  // If we have an explicit visibility attribute, merge that in.
909  if (!hasExplicitVisibilityAlready(computation)) {
910  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
911  LV.mergeVisibility(*Vis, true);
912  // If we're paying attention to global visibility, apply
913  // -finline-visibility-hidden if this is an inline method.
914  //
915  // Note that we do this before merging information about
916  // the class visibility.
919  }
920 
921  // If this class member has an explicit visibility attribute, the only
922  // thing that can change its visibility is the template arguments, so
923  // only look for them when processing the class.
924  LVComputationKind classComputation = computation;
925  if (LV.isVisibilityExplicit())
926  classComputation = withExplicitVisibilityAlready(computation);
927 
928  LinkageInfo classLV =
929  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
930  // The member has the same linkage as the class. If that's not externally
931  // visible, we don't need to compute anything about the linkage.
932  // FIXME: If we're only computing linkage, can we bail out here?
933  if (!isExternallyVisible(classLV.getLinkage()))
934  return classLV;
935 
936 
937  // Otherwise, don't merge in classLV yet, because in certain cases
938  // we need to completely ignore the visibility from it.
939 
940  // Specifically, if this decl exists and has an explicit attribute.
941  const NamedDecl *explicitSpecSuppressor = nullptr;
942 
943  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
944  // Only look at the type-as-written. Otherwise, deducing the return type
945  // of a function could change its linkage.
946  QualType TypeAsWritten = MD->getType();
947  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
948  TypeAsWritten = TSI->getType();
949  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
951 
952  // If this is a method template specialization, use the linkage for
953  // the template parameters and arguments.
955  = MD->getTemplateSpecializationInfo()) {
956  mergeTemplateLV(LV, MD, spec, computation);
957  if (spec->isExplicitSpecialization()) {
958  explicitSpecSuppressor = MD;
959  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
960  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
961  }
962  } else if (isExplicitMemberSpecialization(MD)) {
963  explicitSpecSuppressor = MD;
964  }
965 
966  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
967  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
968  mergeTemplateLV(LV, spec, computation);
969  if (spec->isExplicitSpecialization()) {
970  explicitSpecSuppressor = spec;
971  } else {
972  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
973  if (isExplicitMemberSpecialization(temp)) {
974  explicitSpecSuppressor = temp->getTemplatedDecl();
975  }
976  }
977  } else if (isExplicitMemberSpecialization(RD)) {
978  explicitSpecSuppressor = RD;
979  }
980 
981  // Static data members.
982  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
983  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
984  mergeTemplateLV(LV, spec, computation);
985 
986  // Modify the variable's linkage by its type, but ignore the
987  // type's visibility unless it's a definition.
988  if (!IgnoreVarTypeLinkage) {
989  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
990  // FIXME: If the type's linkage is not externally visible, we can
991  // give this static data member UniqueExternalLinkage.
992  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
993  LV.mergeVisibility(typeLV);
994  LV.mergeExternalVisibility(typeLV);
995  }
996 
998  explicitSpecSuppressor = VD;
999  }
1000 
1001  // Template members.
1002  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1003  bool considerVisibility =
1004  (!LV.isVisibilityExplicit() &&
1005  !classLV.isVisibilityExplicit() &&
1006  !hasExplicitVisibilityAlready(computation));
1007  LinkageInfo tempLV =
1008  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1009  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1010 
1011  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1012  if (isExplicitMemberSpecialization(redeclTemp)) {
1013  explicitSpecSuppressor = temp->getTemplatedDecl();
1014  }
1015  }
1016  }
1017 
1018  // We should never be looking for an attribute directly on a template.
1019  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1020 
1021  // If this member is an explicit member specialization, and it has
1022  // an explicit attribute, ignore visibility from the parent.
1023  bool considerClassVisibility = true;
1024  if (explicitSpecSuppressor &&
1025  // optimization: hasDVA() is true only with explicit visibility.
1026  LV.isVisibilityExplicit() &&
1027  classLV.getVisibility() != DefaultVisibility &&
1028  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1029  considerClassVisibility = false;
1030  }
1031 
1032  // Finally, merge in information from the class.
1033  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1034  return LV;
1035 }
1036 
1037 void NamedDecl::anchor() {}
1038 
1040  if (!hasCachedLinkage())
1041  return true;
1042 
1043  Linkage L = LinkageComputer{}
1045  .getLinkage();
1046  return L == getCachedLinkage();
1047 }
1048 
1050  StringRef name = getName();
1051  if (name.empty()) return SFF_None;
1052 
1053  if (name.front() == 'C')
1054  if (name == "CFStringCreateWithFormat" ||
1055  name == "CFStringCreateWithFormatAndArguments" ||
1056  name == "CFStringAppendFormat" ||
1057  name == "CFStringAppendFormatAndArguments")
1058  return SFF_CFString;
1059  return SFF_None;
1060 }
1061 
1063  // We don't care about visibility here, so ask for the cheapest
1064  // possible visibility analysis.
1065  return LinkageComputer{}
1067  .getLinkage();
1068 }
1069 
1072 }
1073 
1074 static Optional<Visibility>
1077  bool IsMostRecent) {
1078  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1079 
1080  // Check the declaration itself first.
1081  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1082  return V;
1083 
1084  // If this is a member class of a specialization of a class template
1085  // and the corresponding decl has explicit visibility, use that.
1086  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1087  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1088  if (InstantiatedFrom)
1089  return getVisibilityOf(InstantiatedFrom, kind);
1090  }
1091 
1092  // If there wasn't explicit visibility there, and this is a
1093  // specialization of a class template, check for visibility
1094  // on the pattern.
1095  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1096  // Walk all the template decl till this point to see if there are
1097  // explicit visibility attributes.
1098  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1099  while (TD != nullptr) {
1100  auto Vis = getVisibilityOf(TD, kind);
1101  if (Vis != None)
1102  return Vis;
1103  TD = TD->getPreviousDecl();
1104  }
1105  return None;
1106  }
1107 
1108  // Use the most recent declaration.
1109  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1110  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1111  if (MostRecent != ND)
1112  return getExplicitVisibilityAux(MostRecent, kind, true);
1113  }
1114 
1115  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1116  if (Var->isStaticDataMember()) {
1117  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1118  if (InstantiatedFrom)
1119  return getVisibilityOf(InstantiatedFrom, kind);
1120  }
1121 
1122  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1123  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1124  kind);
1125 
1126  return None;
1127  }
1128  // Also handle function template specializations.
1129  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1130  // If the function is a specialization of a template with an
1131  // explicit visibility attribute, use that.
1132  if (FunctionTemplateSpecializationInfo *templateInfo
1134  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1135  kind);
1136 
1137  // If the function is a member of a specialization of a class template
1138  // and the corresponding decl has explicit visibility, use that.
1139  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1140  if (InstantiatedFrom)
1141  return getVisibilityOf(InstantiatedFrom, kind);
1142 
1143  return None;
1144  }
1145 
1146  // The visibility of a template is stored in the templated decl.
1147  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1148  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1149 
1150  return None;
1151 }
1152 
1155  return getExplicitVisibilityAux(this, kind, false);
1156 }
1157 
1158 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1159  Decl *ContextDecl,
1160  LVComputationKind computation) {
1161  // This lambda has its linkage/visibility determined by its owner.
1162  const NamedDecl *Owner;
1163  if (!ContextDecl)
1164  Owner = dyn_cast<NamedDecl>(DC);
1165  else if (isa<ParmVarDecl>(ContextDecl))
1166  Owner =
1167  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1168  else
1169  Owner = cast<NamedDecl>(ContextDecl);
1170 
1171  if (!Owner)
1172  return LinkageInfo::none();
1173 
1174  // If the owner has a deduced type, we need to skip querying the linkage and
1175  // visibility of that type, because it might involve this closure type. The
1176  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1177  // than NoLinkage when we don't strictly need to, which is benign.
1178  auto *VD = dyn_cast<VarDecl>(Owner);
1179  LinkageInfo OwnerLV =
1180  VD && VD->getType()->getContainedDeducedType()
1181  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1182  : getLVForDecl(Owner, computation);
1183 
1184  // A lambda never formally has linkage. But if the owner is externally
1185  // visible, then the lambda is too. We apply the same rules to blocks.
1186  if (!isExternallyVisible(OwnerLV.getLinkage()))
1187  return LinkageInfo::none();
1188  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1189  OwnerLV.isVisibilityExplicit());
1190 }
1191 
1192 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1193  LVComputationKind computation) {
1194  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1195  if (Function->isInAnonymousNamespace() &&
1196  !isFirstInExternCContext(Function))
1197  return getInternalLinkageFor(Function);
1198 
1199  // This is a "void f();" which got merged with a file static.
1200  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1201  return getInternalLinkageFor(Function);
1202 
1203  LinkageInfo LV;
1204  if (!hasExplicitVisibilityAlready(computation)) {
1205  if (Optional<Visibility> Vis =
1206  getExplicitVisibility(Function, computation))
1207  LV.mergeVisibility(*Vis, true);
1208  }
1209 
1210  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1211  // merging storage classes and visibility attributes, so we don't have to
1212  // look at previous decls in here.
1213 
1214  return LV;
1215  }
1216 
1217  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1218  if (Var->hasExternalStorage()) {
1219  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1220  return getInternalLinkageFor(Var);
1221 
1222  LinkageInfo LV;
1223  if (Var->getStorageClass() == SC_PrivateExtern)
1225  else if (!hasExplicitVisibilityAlready(computation)) {
1226  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1227  LV.mergeVisibility(*Vis, true);
1228  }
1229 
1230  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1231  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1232  if (PrevLV.getLinkage())
1233  LV.setLinkage(PrevLV.getLinkage());
1234  LV.mergeVisibility(PrevLV);
1235  }
1236 
1237  return LV;
1238  }
1239 
1240  if (!Var->isStaticLocal())
1241  return LinkageInfo::none();
1242  }
1243 
1244  ASTContext &Context = D->getASTContext();
1245  if (!Context.getLangOpts().CPlusPlus)
1246  return LinkageInfo::none();
1247 
1248  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1249  if (!OuterD || OuterD->isInvalidDecl())
1250  return LinkageInfo::none();
1251 
1252  LinkageInfo LV;
1253  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1254  if (!BD->getBlockManglingNumber())
1255  return LinkageInfo::none();
1256 
1257  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1258  BD->getBlockManglingContextDecl(), computation);
1259  } else {
1260  const auto *FD = cast<FunctionDecl>(OuterD);
1261  if (!FD->isInlined() &&
1262  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1263  return LinkageInfo::none();
1264 
1265  // If a function is hidden by -fvisibility-inlines-hidden option and
1266  // is not explicitly attributed as a hidden function,
1267  // we should not make static local variables in the function hidden.
1268  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1269  !(!hasExplicitVisibilityAlready(computation) &&
1270  getExplicitVisibility(FD, computation))) {
1271  assert(cast<VarDecl>(D)->isStaticLocal());
1273  }
1274 
1275  LV = getLVForDecl(FD, computation);
1276  }
1277  if (!isExternallyVisible(LV.getLinkage()))
1278  return LinkageInfo::none();
1280  LV.isVisibilityExplicit());
1281 }
1282 
1283 static inline const CXXRecordDecl*
1285  const CXXRecordDecl *Ret = Record;
1286  while (Record && Record->isLambda()) {
1287  Ret = Record;
1288  if (!Record->getParent()) break;
1289  // Get the Containing Class of this Lambda Class
1290  Record = dyn_cast_or_null<CXXRecordDecl>(
1291  Record->getParent()->getParent());
1292  }
1293  return Ret;
1294 }
1295 
1297  LVComputationKind computation,
1298  bool IgnoreVarTypeLinkage) {
1299  // Internal_linkage attribute overrides other considerations.
1300  if (D->hasAttr<InternalLinkageAttr>())
1301  return getInternalLinkageFor(D);
1302 
1303  // Objective-C: treat all Objective-C declarations as having external
1304  // linkage.
1305  switch (D->getKind()) {
1306  default:
1307  break;
1308 
1309  // Per C++ [basic.link]p2, only the names of objects, references,
1310  // functions, types, templates, namespaces, and values ever have linkage.
1311  //
1312  // Note that the name of a typedef, namespace alias, using declaration,
1313  // and so on are not the name of the corresponding type, namespace, or
1314  // declaration, so they do *not* have linkage.
1315  case Decl::ImplicitParam:
1316  case Decl::Label:
1317  case Decl::NamespaceAlias:
1318  case Decl::ParmVar:
1319  case Decl::Using:
1320  case Decl::UsingShadow:
1321  case Decl::UsingDirective:
1322  return LinkageInfo::none();
1323 
1324  case Decl::EnumConstant:
1325  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1326  if (D->getASTContext().getLangOpts().CPlusPlus)
1327  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1328  return LinkageInfo::visible_none();
1329 
1330  case Decl::Typedef:
1331  case Decl::TypeAlias:
1332  // A typedef declaration has linkage if it gives a type a name for
1333  // linkage purposes.
1334  if (!cast<TypedefNameDecl>(D)
1335  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1336  return LinkageInfo::none();
1337  break;
1338 
1339  case Decl::TemplateTemplateParm: // count these as external
1340  case Decl::NonTypeTemplateParm:
1341  case Decl::ObjCAtDefsField:
1342  case Decl::ObjCCategory:
1343  case Decl::ObjCCategoryImpl:
1344  case Decl::ObjCCompatibleAlias:
1345  case Decl::ObjCImplementation:
1346  case Decl::ObjCMethod:
1347  case Decl::ObjCProperty:
1348  case Decl::ObjCPropertyImpl:
1349  case Decl::ObjCProtocol:
1350  return getExternalLinkageFor(D);
1351 
1352  case Decl::CXXRecord: {
1353  const auto *Record = cast<CXXRecordDecl>(D);
1354  if (Record->isLambda()) {
1355  if (!Record->getLambdaManglingNumber()) {
1356  // This lambda has no mangling number, so it's internal.
1357  return getInternalLinkageFor(D);
1358  }
1359 
1360  // This lambda has its linkage/visibility determined:
1361  // - either by the outermost lambda if that lambda has no mangling
1362  // number.
1363  // - or by the parent of the outer most lambda
1364  // This prevents infinite recursion in settings such as nested lambdas
1365  // used in NSDMI's, for e.g.
1366  // struct L {
1367  // int t{};
1368  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1369  // };
1370  const CXXRecordDecl *OuterMostLambda =
1372  if (!OuterMostLambda->getLambdaManglingNumber())
1373  return getInternalLinkageFor(D);
1374 
1375  return getLVForClosure(
1376  OuterMostLambda->getDeclContext()->getRedeclContext(),
1377  OuterMostLambda->getLambdaContextDecl(), computation);
1378  }
1379 
1380  break;
1381  }
1382  }
1383 
1384  // Handle linkage for namespace-scope names.
1386  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1387 
1388  // C++ [basic.link]p5:
1389  // In addition, a member function, static data member, a named
1390  // class or enumeration of class scope, or an unnamed class or
1391  // enumeration defined in a class-scope typedef declaration such
1392  // that the class or enumeration has the typedef name for linkage
1393  // purposes (7.1.3), has external linkage if the name of the class
1394  // has external linkage.
1395  if (D->getDeclContext()->isRecord())
1396  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1397 
1398  // C++ [basic.link]p6:
1399  // The name of a function declared in block scope and the name of
1400  // an object declared by a block scope extern declaration have
1401  // linkage. If there is a visible declaration of an entity with
1402  // linkage having the same name and type, ignoring entities
1403  // declared outside the innermost enclosing namespace scope, the
1404  // block scope declaration declares that same entity and receives
1405  // the linkage of the previous declaration. If there is more than
1406  // one such matching entity, the program is ill-formed. Otherwise,
1407  // if no matching entity is found, the block scope entity receives
1408  // external linkage.
1409  if (D->getDeclContext()->isFunctionOrMethod())
1410  return getLVForLocalDecl(D, computation);
1411 
1412  // C++ [basic.link]p6:
1413  // Names not covered by these rules have no linkage.
1414  return LinkageInfo::none();
1415 }
1416 
1417 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1419  LVComputationKind computation) {
1420  // Internal_linkage attribute overrides other considerations.
1421  if (D->hasAttr<InternalLinkageAttr>())
1422  return getInternalLinkageFor(D);
1423 
1424  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1425  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1426 
1427  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1428  return *LI;
1429 
1430  LinkageInfo LV = computeLVForDecl(D, computation);
1431  if (D->hasCachedLinkage())
1432  assert(D->getCachedLinkage() == LV.getLinkage());
1433 
1434  D->setCachedLinkage(LV.getLinkage());
1435  cache(D, computation, LV);
1436 
1437 #ifndef NDEBUG
1438  // In C (because of gnu inline) and in c++ with microsoft extensions an
1439  // static can follow an extern, so we can have two decls with different
1440  // linkages.
1441  const LangOptions &Opts = D->getASTContext().getLangOpts();
1442  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1443  return LV;
1444 
1445  // We have just computed the linkage for this decl. By induction we know
1446  // that all other computed linkages match, check that the one we just
1447  // computed also does.
1448  NamedDecl *Old = nullptr;
1449  for (auto I : D->redecls()) {
1450  auto *T = cast<NamedDecl>(I);
1451  if (T == D)
1452  continue;
1453  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1454  Old = T;
1455  break;
1456  }
1457  }
1458  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1459 #endif
1460 
1461  return LV;
1462 }
1463 
1465  return getLVForDecl(D,
1469 }
1470 
1471 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1472  Module *M = getOwningModule();
1473  if (!M)
1474  return nullptr;
1475 
1476  switch (M->Kind) {
1478  // Module map modules have no special linkage semantics.
1479  return nullptr;
1480 
1482  return M;
1483 
1485  // External linkage declarations in the global module have no owning module
1486  // for linkage purposes. But internal linkage declarations in the global
1487  // module fragment of a particular module are owned by that module for
1488  // linkage purposes.
1489  if (IgnoreLinkage)
1490  return nullptr;
1491  bool InternalLinkage;
1492  if (auto *ND = dyn_cast<NamedDecl>(this))
1493  InternalLinkage = !ND->hasExternalFormalLinkage();
1494  else {
1495  auto *NSD = dyn_cast<NamespaceDecl>(this);
1496  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1497  isInAnonymousNamespace();
1498  }
1499  return InternalLinkage ? M->Parent : nullptr;
1500  }
1501  }
1502 
1503  llvm_unreachable("unknown module kind");
1504 }
1505 
1506 void NamedDecl::printName(raw_ostream &os) const {
1507  os << Name;
1508 }
1509 
1511  std::string QualName;
1512  llvm::raw_string_ostream OS(QualName);
1513  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1514  return OS.str();
1515 }
1516 
1517 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1518  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1519 }
1520 
1521 void NamedDecl::printQualifiedName(raw_ostream &OS,
1522  const PrintingPolicy &P) const {
1523  const DeclContext *Ctx = getDeclContext();
1524 
1525  // For ObjC methods, look through categories and use the interface as context.
1526  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1527  if (auto *ID = MD->getClassInterface())
1528  Ctx = ID;
1529 
1530  if (Ctx->isFunctionOrMethod()) {
1531  printName(OS);
1532  return;
1533  }
1534 
1535  using ContextsTy = SmallVector<const DeclContext *, 8>;
1536  ContextsTy Contexts;
1537 
1538  // Collect named contexts.
1539  while (Ctx) {
1540  if (isa<NamedDecl>(Ctx))
1541  Contexts.push_back(Ctx);
1542  Ctx = Ctx->getParent();
1543  }
1544 
1545  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1546  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1547  OS << Spec->getName();
1548  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1549  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1550  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1551  if (P.SuppressUnwrittenScope &&
1552  (ND->isAnonymousNamespace() || ND->isInline()))
1553  continue;
1554  if (ND->isAnonymousNamespace()) {
1555  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1556  : "(anonymous namespace)");
1557  }
1558  else
1559  OS << *ND;
1560  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1561  if (!RD->getIdentifier())
1562  OS << "(anonymous " << RD->getKindName() << ')';
1563  else
1564  OS << *RD;
1565  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1566  const FunctionProtoType *FT = nullptr;
1567  if (FD->hasWrittenPrototype())
1568  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1569 
1570  OS << *FD << '(';
1571  if (FT) {
1572  unsigned NumParams = FD->getNumParams();
1573  for (unsigned i = 0; i < NumParams; ++i) {
1574  if (i)
1575  OS << ", ";
1576  OS << FD->getParamDecl(i)->getType().stream(P);
1577  }
1578 
1579  if (FT->isVariadic()) {
1580  if (NumParams > 0)
1581  OS << ", ";
1582  OS << "...";
1583  }
1584  }
1585  OS << ')';
1586  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1587  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1588  // enumerator is declared in the scope that immediately contains
1589  // the enum-specifier. Each scoped enumerator is declared in the
1590  // scope of the enumeration.
1591  // For the case of unscoped enumerator, do not include in the qualified
1592  // name any information about its enum enclosing scope, as its visibility
1593  // is global.
1594  if (ED->isScoped())
1595  OS << *ED;
1596  else
1597  continue;
1598  } else {
1599  OS << *cast<NamedDecl>(DC);
1600  }
1601  OS << "::";
1602  }
1603 
1604  if (getDeclName() || isa<DecompositionDecl>(this))
1605  OS << *this;
1606  else
1607  OS << "(anonymous)";
1608 }
1609 
1610 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1611  const PrintingPolicy &Policy,
1612  bool Qualified) const {
1613  if (Qualified)
1614  printQualifiedName(OS, Policy);
1615  else
1616  printName(OS);
1617 }
1618 
1619 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1620  return true;
1621 }
1622 static bool isRedeclarableImpl(...) { return false; }
1623 static bool isRedeclarable(Decl::Kind K) {
1624  switch (K) {
1625 #define DECL(Type, Base) \
1626  case Decl::Type: \
1627  return isRedeclarableImpl((Type##Decl *)nullptr);
1628 #define ABSTRACT_DECL(DECL)
1629 #include "clang/AST/DeclNodes.inc"
1630  }
1631  llvm_unreachable("unknown decl kind");
1632 }
1633 
1634 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1635  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1636 
1637  // Never replace one imported declaration with another; we need both results
1638  // when re-exporting.
1639  if (OldD->isFromASTFile() && isFromASTFile())
1640  return false;
1641 
1642  // A kind mismatch implies that the declaration is not replaced.
1643  if (OldD->getKind() != getKind())
1644  return false;
1645 
1646  // For method declarations, we never replace. (Why?)
1647  if (isa<ObjCMethodDecl>(this))
1648  return false;
1649 
1650  // For parameters, pick the newer one. This is either an error or (in
1651  // Objective-C) permitted as an extension.
1652  if (isa<ParmVarDecl>(this))
1653  return true;
1654 
1655  // Inline namespaces can give us two declarations with the same
1656  // name and kind in the same scope but different contexts; we should
1657  // keep both declarations in this case.
1658  if (!this->getDeclContext()->getRedeclContext()->Equals(
1659  OldD->getDeclContext()->getRedeclContext()))
1660  return false;
1661 
1662  // Using declarations can be replaced if they import the same name from the
1663  // same context.
1664  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1665  ASTContext &Context = getASTContext();
1666  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1668  cast<UsingDecl>(OldD)->getQualifier());
1669  }
1670  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1671  ASTContext &Context = getASTContext();
1672  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1674  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1675  }
1676 
1677  if (isRedeclarable(getKind())) {
1678  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1679  return false;
1680 
1681  if (IsKnownNewer)
1682  return true;
1683 
1684  // Check whether this is actually newer than OldD. We want to keep the
1685  // newer declaration. This loop will usually only iterate once, because
1686  // OldD is usually the previous declaration.
1687  for (auto D : redecls()) {
1688  if (D == OldD)
1689  break;
1690 
1691  // If we reach the canonical declaration, then OldD is not actually older
1692  // than this one.
1693  //
1694  // FIXME: In this case, we should not add this decl to the lookup table.
1695  if (D->isCanonicalDecl())
1696  return false;
1697  }
1698 
1699  // It's a newer declaration of the same kind of declaration in the same
1700  // scope: we want this decl instead of the existing one.
1701  return true;
1702  }
1703 
1704  // In all other cases, we need to keep both declarations in case they have
1705  // different visibility. Any attempt to use the name will result in an
1706  // ambiguity if more than one is visible.
1707  return false;
1708 }
1709 
1711  return getFormalLinkage() != NoLinkage;
1712 }
1713 
1714 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1715  NamedDecl *ND = this;
1716  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1717  ND = UD->getTargetDecl();
1718 
1719  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1720  return AD->getClassInterface();
1721 
1722  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1723  return AD->getNamespace();
1724 
1725  return ND;
1726 }
1727 
1729  if (!isCXXClassMember())
1730  return false;
1731 
1732  const NamedDecl *D = this;
1733  if (isa<UsingShadowDecl>(D))
1734  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1735 
1736  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1737  return true;
1738  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1739  return MD->isInstance();
1740  return false;
1741 }
1742 
1743 //===----------------------------------------------------------------------===//
1744 // DeclaratorDecl Implementation
1745 //===----------------------------------------------------------------------===//
1746 
1747 template <typename DeclT>
1749  if (decl->getNumTemplateParameterLists() > 0)
1750  return decl->getTemplateParameterList(0)->getTemplateLoc();
1751  else
1752  return decl->getInnerLocStart();
1753 }
1754 
1756  TypeSourceInfo *TSI = getTypeSourceInfo();
1757  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1758  return SourceLocation();
1759 }
1760 
1762  if (QualifierLoc) {
1763  // Make sure the extended decl info is allocated.
1764  if (!hasExtInfo()) {
1765  // Save (non-extended) type source info pointer.
1766  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1767  // Allocate external info struct.
1768  DeclInfo = new (getASTContext()) ExtInfo;
1769  // Restore savedTInfo into (extended) decl info.
1770  getExtInfo()->TInfo = savedTInfo;
1771  }
1772  // Set qualifier info.
1773  getExtInfo()->QualifierLoc = QualifierLoc;
1774  } else {
1775  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1776  if (hasExtInfo()) {
1777  if (getExtInfo()->NumTemplParamLists == 0) {
1778  // Save type source info pointer.
1779  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1780  // Deallocate the extended decl info.
1781  getASTContext().Deallocate(getExtInfo());
1782  // Restore savedTInfo into (non-extended) decl info.
1783  DeclInfo = savedTInfo;
1784  }
1785  else
1786  getExtInfo()->QualifierLoc = QualifierLoc;
1787  }
1788  }
1789 }
1790 
1792  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1793  assert(!TPLists.empty());
1794  // Make sure the extended decl info is allocated.
1795  if (!hasExtInfo()) {
1796  // Save (non-extended) type source info pointer.
1797  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1798  // Allocate external info struct.
1799  DeclInfo = new (getASTContext()) ExtInfo;
1800  // Restore savedTInfo into (extended) decl info.
1801  getExtInfo()->TInfo = savedTInfo;
1802  }
1803  // Set the template parameter lists info.
1804  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1805 }
1806 
1808  return getTemplateOrInnerLocStart(this);
1809 }
1810 
1811 // Helper function: returns true if QT is or contains a type
1812 // having a postfix component.
1813 static bool typeIsPostfix(QualType QT) {
1814  while (true) {
1815  const Type* T = QT.getTypePtr();
1816  switch (T->getTypeClass()) {
1817  default:
1818  return false;
1819  case Type::Pointer:
1820  QT = cast<PointerType>(T)->getPointeeType();
1821  break;
1822  case Type::BlockPointer:
1823  QT = cast<BlockPointerType>(T)->getPointeeType();
1824  break;
1825  case Type::MemberPointer:
1826  QT = cast<MemberPointerType>(T)->getPointeeType();
1827  break;
1828  case Type::LValueReference:
1829  case Type::RValueReference:
1830  QT = cast<ReferenceType>(T)->getPointeeType();
1831  break;
1832  case Type::PackExpansion:
1833  QT = cast<PackExpansionType>(T)->getPattern();
1834  break;
1835  case Type::Paren:
1836  case Type::ConstantArray:
1837  case Type::DependentSizedArray:
1838  case Type::IncompleteArray:
1839  case Type::VariableArray:
1840  case Type::FunctionProto:
1841  case Type::FunctionNoProto:
1842  return true;
1843  }
1844  }
1845 }
1846 
1848  SourceLocation RangeEnd = getLocation();
1849  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1850  // If the declaration has no name or the type extends past the name take the
1851  // end location of the type.
1852  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1853  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1854  }
1855  return SourceRange(getOuterLocStart(), RangeEnd);
1856 }
1857 
1859  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1860  // Free previous template parameters (if any).
1861  if (NumTemplParamLists > 0) {
1862  Context.Deallocate(TemplParamLists);
1863  TemplParamLists = nullptr;
1864  NumTemplParamLists = 0;
1865  }
1866  // Set info on matched template parameter lists (if any).
1867  if (!TPLists.empty()) {
1868  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1869  NumTemplParamLists = TPLists.size();
1870  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1871  }
1872 }
1873 
1874 //===----------------------------------------------------------------------===//
1875 // VarDecl Implementation
1876 //===----------------------------------------------------------------------===//
1877 
1879  switch (SC) {
1880  case SC_None: break;
1881  case SC_Auto: return "auto";
1882  case SC_Extern: return "extern";
1883  case SC_PrivateExtern: return "__private_extern__";
1884  case SC_Register: return "register";
1885  case SC_Static: return "static";
1886  }
1887 
1888  llvm_unreachable("Invalid storage class");
1889 }
1890 
1892  SourceLocation StartLoc, SourceLocation IdLoc,
1894  StorageClass SC)
1895  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1896  redeclarable_base(C) {
1897  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1898  "VarDeclBitfields too large!");
1899  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1900  "ParmVarDeclBitfields too large!");
1901  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1902  "NonParmVarDeclBitfields too large!");
1903  AllBits = 0;
1904  VarDeclBits.SClass = SC;
1905  // Everything else is implicitly initialized to false.
1906 }
1907 
1909  SourceLocation StartL, SourceLocation IdL,
1911  StorageClass S) {
1912  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1913 }
1914 
1916  return new (C, ID)
1917  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1918  QualType(), nullptr, SC_None);
1919 }
1920 
1922  assert(isLegalForVariable(SC));
1923  VarDeclBits.SClass = SC;
1924 }
1925 
1927  switch (VarDeclBits.TSCSpec) {
1928  case TSCS_unspecified:
1929  if (!hasAttr<ThreadAttr>() &&
1930  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1931  getASTContext().getTargetInfo().isTLSSupported() &&
1932  hasAttr<OMPThreadPrivateDeclAttr>()))
1933  return TLS_None;
1934  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1936  hasAttr<OMPThreadPrivateDeclAttr>())
1937  ? TLS_Dynamic
1938  : TLS_Static;
1939  case TSCS___thread: // Fall through.
1940  case TSCS__Thread_local:
1941  return TLS_Static;
1942  case TSCS_thread_local:
1943  return TLS_Dynamic;
1944  }
1945  llvm_unreachable("Unknown thread storage class specifier!");
1946 }
1947 
1949  if (const Expr *Init = getInit()) {
1950  SourceLocation InitEnd = Init->getEndLoc();
1951  // If Init is implicit, ignore its source range and fallback on
1952  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1953  if (InitEnd.isValid() && InitEnd != getLocation())
1954  return SourceRange(getOuterLocStart(), InitEnd);
1955  }
1957 }
1958 
1959 template<typename T>
1961  // C++ [dcl.link]p1: All function types, function names with external linkage,
1962  // and variable names with external linkage have a language linkage.
1963  if (!D.hasExternalFormalLinkage())
1964  return NoLanguageLinkage;
1965 
1966  // Language linkage is a C++ concept, but saying that everything else in C has
1967  // C language linkage fits the implementation nicely.
1968  ASTContext &Context = D.getASTContext();
1969  if (!Context.getLangOpts().CPlusPlus)
1970  return CLanguageLinkage;
1971 
1972  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1973  // language linkage of the names of class members and the function type of
1974  // class member functions.
1975  const DeclContext *DC = D.getDeclContext();
1976  if (DC->isRecord())
1977  return CXXLanguageLinkage;
1978 
1979  // If the first decl is in an extern "C" context, any other redeclaration
1980  // will have C language linkage. If the first one is not in an extern "C"
1981  // context, we would have reported an error for any other decl being in one.
1982  if (isFirstInExternCContext(&D))
1983  return CLanguageLinkage;
1984  return CXXLanguageLinkage;
1985 }
1986 
1987 template<typename T>
1988 static bool isDeclExternC(const T &D) {
1989  // Since the context is ignored for class members, they can only have C++
1990  // language linkage or no language linkage.
1991  const DeclContext *DC = D.getDeclContext();
1992  if (DC->isRecord()) {
1993  assert(D.getASTContext().getLangOpts().CPlusPlus);
1994  return false;
1995  }
1996 
1997  return D.getLanguageLinkage() == CLanguageLinkage;
1998 }
1999 
2001  return getDeclLanguageLinkage(*this);
2002 }
2003 
2004 bool VarDecl::isExternC() const {
2005  return isDeclExternC(*this);
2006 }
2007 
2010 }
2011 
2014 }
2015 
2017 
2021  return DeclarationOnly;
2022 
2023  // C++ [basic.def]p2:
2024  // A declaration is a definition unless [...] it contains the 'extern'
2025  // specifier or a linkage-specification and neither an initializer [...],
2026  // it declares a non-inline static data member in a class declaration [...],
2027  // it declares a static data member outside a class definition and the variable
2028  // was defined within the class with the constexpr specifier [...],
2029  // C++1y [temp.expl.spec]p15:
2030  // An explicit specialization of a static data member or an explicit
2031  // specialization of a static data member template is a definition if the
2032  // declaration includes an initializer; otherwise, it is a declaration.
2033  //
2034  // FIXME: How do you declare (but not define) a partial specialization of
2035  // a static data member template outside the containing class?
2036  if (isStaticDataMember()) {
2037  if (isOutOfLine() &&
2038  !(getCanonicalDecl()->isInline() &&
2039  getCanonicalDecl()->isConstexpr()) &&
2040  (hasInit() ||
2041  // If the first declaration is out-of-line, this may be an
2042  // instantiation of an out-of-line partial specialization of a variable
2043  // template for which we have not yet instantiated the initializer.
2048  isa<VarTemplatePartialSpecializationDecl>(this)))
2049  return Definition;
2050  else if (!isOutOfLine() && isInline())
2051  return Definition;
2052  else
2053  return DeclarationOnly;
2054  }
2055  // C99 6.7p5:
2056  // A definition of an identifier is a declaration for that identifier that
2057  // [...] causes storage to be reserved for that object.
2058  // Note: that applies for all non-file-scope objects.
2059  // C99 6.9.2p1:
2060  // If the declaration of an identifier for an object has file scope and an
2061  // initializer, the declaration is an external definition for the identifier
2062  if (hasInit())
2063  return Definition;
2064 
2065  if (hasDefiningAttr())
2066  return Definition;
2067 
2068  if (const auto *SAA = getAttr<SelectAnyAttr>())
2069  if (!SAA->isInherited())
2070  return Definition;
2071 
2072  // A variable template specialization (other than a static data member
2073  // template or an explicit specialization) is a declaration until we
2074  // instantiate its initializer.
2075  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2076  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2077  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2078  !VTSD->IsCompleteDefinition)
2079  return DeclarationOnly;
2080  }
2081 
2082  if (hasExternalStorage())
2083  return DeclarationOnly;
2084 
2085  // [dcl.link] p7:
2086  // A declaration directly contained in a linkage-specification is treated
2087  // as if it contains the extern specifier for the purpose of determining
2088  // the linkage of the declared name and whether it is a definition.
2089  if (isSingleLineLanguageLinkage(*this))
2090  return DeclarationOnly;
2091 
2092  // C99 6.9.2p2:
2093  // A declaration of an object that has file scope without an initializer,
2094  // and without a storage class specifier or the scs 'static', constitutes
2095  // a tentative definition.
2096  // No such thing in C++.
2097  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2098  return TentativeDefinition;
2099 
2100  // What's left is (in C, block-scope) declarations without initializers or
2101  // external storage. These are definitions.
2102  return Definition;
2103 }
2104 
2107  if (Kind != TentativeDefinition)
2108  return nullptr;
2109 
2110  VarDecl *LastTentative = nullptr;
2111  VarDecl *First = getFirstDecl();
2112  for (auto I : First->redecls()) {
2113  Kind = I->isThisDeclarationADefinition();
2114  if (Kind == Definition)
2115  return nullptr;
2116  else if (Kind == TentativeDefinition)
2117  LastTentative = I;
2118  }
2119  return LastTentative;
2120 }
2121 
2123  VarDecl *First = getFirstDecl();
2124  for (auto I : First->redecls()) {
2125  if (I->isThisDeclarationADefinition(C) == Definition)
2126  return I;
2127  }
2128  return nullptr;
2129 }
2130 
2133 
2134  const VarDecl *First = getFirstDecl();
2135  for (auto I : First->redecls()) {
2136  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2137  if (Kind == Definition)
2138  break;
2139  }
2140 
2141  return Kind;
2142 }
2143 
2144 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2145  for (auto I : redecls()) {
2146  if (auto Expr = I->getInit()) {
2147  D = I;
2148  return Expr;
2149  }
2150  }
2151  return nullptr;
2152 }
2153 
2154 bool VarDecl::hasInit() const {
2155  if (auto *P = dyn_cast<ParmVarDecl>(this))
2156  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2157  return false;
2158 
2159  return !Init.isNull();
2160 }
2161 
2163  if (!hasInit())
2164  return nullptr;
2165 
2166  if (auto *S = Init.dyn_cast<Stmt *>())
2167  return cast<Expr>(S);
2168 
2169  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2170 }
2171 
2173  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2174  return &ES->Value;
2175 
2176  return Init.getAddrOfPtr1();
2177 }
2178 
2179 bool VarDecl::isOutOfLine() const {
2180  if (Decl::isOutOfLine())
2181  return true;
2182 
2183  if (!isStaticDataMember())
2184  return false;
2185 
2186  // If this static data member was instantiated from a static data member of
2187  // a class template, check whether that static data member was defined
2188  // out-of-line.
2190  return VD->isOutOfLine();
2191 
2192  return false;
2193 }
2194 
2196  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2197  Eval->~EvaluatedStmt();
2198  getASTContext().Deallocate(Eval);
2199  }
2200 
2201  Init = I;
2202 }
2203 
2205  const LangOptions &Lang = C.getLangOpts();
2206 
2207  if (!Lang.CPlusPlus)
2208  return false;
2209 
2210  // In C++11, any variable of reference type can be used in a constant
2211  // expression if it is initialized by a constant expression.
2212  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2213  return true;
2214 
2215  // Only const objects can be used in constant expressions in C++. C++98 does
2216  // not require the variable to be non-volatile, but we consider this to be a
2217  // defect.
2218  if (!getType().isConstQualified() || getType().isVolatileQualified())
2219  return false;
2220 
2221  // In C++, const, non-volatile variables of integral or enumeration types
2222  // can be used in constant expressions.
2223  if (getType()->isIntegralOrEnumerationType())
2224  return true;
2225 
2226  // Additionally, in C++11, non-volatile constexpr variables can be used in
2227  // constant expressions.
2228  return Lang.CPlusPlus11 && isConstexpr();
2229 }
2230 
2231 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2232 /// form, which contains extra information on the evaluated value of the
2233 /// initializer.
2235  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2236  if (!Eval) {
2237  // Note: EvaluatedStmt contains an APValue, which usually holds
2238  // resources not allocated from the ASTContext. We need to do some
2239  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2240  // where we can detect whether there's anything to clean up or not.
2241  Eval = new (getASTContext()) EvaluatedStmt;
2242  Eval->Value = Init.get<Stmt *>();
2243  Init = Eval;
2244  }
2245  return Eval;
2246 }
2247 
2250  return evaluateValue(Notes);
2251 }
2252 
2254  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2256 
2257  // We only produce notes indicating why an initializer is non-constant the
2258  // first time it is evaluated. FIXME: The notes won't always be emitted the
2259  // first time we try evaluation, so might not be produced at all.
2260  if (Eval->WasEvaluated)
2261  return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2262 
2263  const auto *Init = cast<Expr>(Eval->Value);
2264  assert(!Init->isValueDependent());
2265 
2266  if (Eval->IsEvaluating) {
2267  // FIXME: Produce a diagnostic for self-initialization.
2268  Eval->CheckedICE = true;
2269  Eval->IsICE = false;
2270  return nullptr;
2271  }
2272 
2273  Eval->IsEvaluating = true;
2274 
2275  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2276  this, Notes);
2277 
2278  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2279  // or that it's empty (so that there's nothing to clean up) if evaluation
2280  // failed.
2281  if (!Result)
2282  Eval->Evaluated = APValue();
2283  else if (Eval->Evaluated.needsCleanup())
2285 
2286  Eval->IsEvaluating = false;
2287  Eval->WasEvaluated = true;
2288 
2289  // In C++11, we have determined whether the initializer was a constant
2290  // expression as a side-effect.
2291  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2292  Eval->CheckedICE = true;
2293  Eval->IsICE = Result && Notes.empty();
2294  }
2295 
2296  return Result ? &Eval->Evaluated : nullptr;
2297 }
2298 
2300  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2301  if (Eval->WasEvaluated)
2302  return &Eval->Evaluated;
2303 
2304  return nullptr;
2305 }
2306 
2308  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2309  return Eval->CheckedICE;
2310 
2311  return false;
2312 }
2313 
2314 bool VarDecl::isInitICE() const {
2315  assert(isInitKnownICE() &&
2316  "Check whether we already know that the initializer is an ICE");
2317  return Init.get<EvaluatedStmt *>()->IsICE;
2318 }
2319 
2321  // Initializers of weak variables are never ICEs.
2322  if (isWeak())
2323  return false;
2324 
2326  if (Eval->CheckedICE)
2327  // We have already checked whether this subexpression is an
2328  // integral constant expression.
2329  return Eval->IsICE;
2330 
2331  const auto *Init = cast<Expr>(Eval->Value);
2332  assert(!Init->isValueDependent());
2333 
2334  // In C++11, evaluate the initializer to check whether it's a constant
2335  // expression.
2336  if (getASTContext().getLangOpts().CPlusPlus11) {
2338  evaluateValue(Notes);
2339  return Eval->IsICE;
2340  }
2341 
2342  // It's an ICE whether or not the definition we found is
2343  // out-of-line. See DR 721 and the discussion in Clang PR
2344  // 6206 for details.
2345 
2346  if (Eval->CheckingICE)
2347  return false;
2348  Eval->CheckingICE = true;
2349 
2350  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2351  Eval->CheckingICE = false;
2352  Eval->CheckedICE = true;
2353  return Eval->IsICE;
2354 }
2355 
2356 template<typename DeclT>
2357 static DeclT *getDefinitionOrSelf(DeclT *D) {
2358  assert(D);
2359  if (auto *Def = D->getDefinition())
2360  return Def;
2361  return D;
2362 }
2363 
2365  // If it's a variable template specialization, find the template or partial
2366  // specialization from which it was instantiated.
2367  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2368  auto From = VDTemplSpec->getInstantiatedFrom();
2369  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2370  while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) {
2371  if (NewVTD->isMemberSpecialization())
2372  break;
2373  VTD = NewVTD;
2374  }
2375  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2376  }
2377  if (auto *VTPSD =
2378  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2379  while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) {
2380  if (NewVTPSD->isMemberSpecialization())
2381  break;
2382  VTPSD = NewVTPSD;
2383  }
2384  return getDefinitionOrSelf<VarDecl>(VTPSD);
2385  }
2386  }
2387 
2389  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2391  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2392  VD = NewVD;
2393  return getDefinitionOrSelf(VD);
2394  }
2395  }
2396 
2397  if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) {
2398  while (VarTemplate->getInstantiatedFromMemberTemplate()) {
2399  if (VarTemplate->isMemberSpecialization())
2400  break;
2401  VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate();
2402  }
2403 
2404  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2405  }
2406  return nullptr;
2407 }
2408 
2411  return cast<VarDecl>(MSI->getInstantiatedFrom());
2412 
2413  return nullptr;
2414 }
2415 
2417  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2418  return Spec->getSpecializationKind();
2419 
2421  return MSI->getTemplateSpecializationKind();
2422 
2423  return TSK_Undeclared;
2424 }
2425 
2427  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2428  return Spec->getPointOfInstantiation();
2429 
2431  return MSI->getPointOfInstantiation();
2432 
2433  return SourceLocation();
2434 }
2435 
2438  .dyn_cast<VarTemplateDecl *>();
2439 }
2440 
2443 }
2444 
2446  const auto &LangOpts = getASTContext().getLangOpts();
2447  // In CUDA mode without relocatable device code, variables of form 'extern
2448  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2449  // memory pool. These are never undefined variables, even if they appear
2450  // inside of an anon namespace or static function.
2451  //
2452  // With CUDA relocatable device code enabled, these variables don't get
2453  // special handling; they're treated like regular extern variables.
2454  if (LangOpts.CUDA && !LangOpts.CUDARelocatableDeviceCode &&
2455  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2456  isa<IncompleteArrayType>(getType()))
2457  return true;
2458 
2459  return hasDefinition();
2460 }
2461 
2462 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2463  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2464  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2465  !hasAttr<AlwaysDestroyAttr>()));
2466 }
2467 
2469  if (isStaticDataMember())
2470  // FIXME: Remove ?
2471  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2473  .dyn_cast<MemberSpecializationInfo *>();
2474  return nullptr;
2475 }
2476 
2478  SourceLocation PointOfInstantiation) {
2479  assert((isa<VarTemplateSpecializationDecl>(this) ||
2481  "not a variable or static data member template specialization");
2482 
2483  if (VarTemplateSpecializationDecl *Spec =
2484  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2485  Spec->setSpecializationKind(TSK);
2486  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2487  Spec->getPointOfInstantiation().isInvalid()) {
2488  Spec->setPointOfInstantiation(PointOfInstantiation);
2490  L->InstantiationRequested(this);
2491  }
2492  }
2493 
2495  MSI->setTemplateSpecializationKind(TSK);
2496  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2497  MSI->getPointOfInstantiation().isInvalid()) {
2498  MSI->setPointOfInstantiation(PointOfInstantiation);
2500  L->InstantiationRequested(this);
2501  }
2502  }
2503 }
2504 
2505 void
2508  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2509  "Previous template or instantiation?");
2511 }
2512 
2513 //===----------------------------------------------------------------------===//
2514 // ParmVarDecl Implementation
2515 //===----------------------------------------------------------------------===//
2516 
2518  SourceLocation StartLoc,
2520  QualType T, TypeSourceInfo *TInfo,
2521  StorageClass S, Expr *DefArg) {
2522  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2523  S, DefArg);
2524 }
2525 
2528  QualType T = TSI ? TSI->getType() : getType();
2529  if (const auto *DT = dyn_cast<DecayedType>(T))
2530  return DT->getOriginalType();
2531  return T;
2532 }
2533 
2535  return new (C, ID)
2536  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2537  nullptr, QualType(), nullptr, SC_None, nullptr);
2538 }
2539 
2541  if (!hasInheritedDefaultArg()) {
2542  SourceRange ArgRange = getDefaultArgRange();
2543  if (ArgRange.isValid())
2544  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2545  }
2546 
2547  // DeclaratorDecl considers the range of postfix types as overlapping with the
2548  // declaration name, but this is not the case with parameters in ObjC methods.
2549  if (isa<ObjCMethodDecl>(getDeclContext()))
2551 
2553 }
2554 
2556  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2557  assert(!hasUninstantiatedDefaultArg() &&
2558  "Default argument is not yet instantiated!");
2559 
2560  Expr *Arg = getInit();
2561  if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2562  return E->getSubExpr();
2563 
2564  return Arg;
2565 }
2566 
2568  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2569  Init = defarg;
2570 }
2571 
2573  switch (ParmVarDeclBits.DefaultArgKind) {
2574  case DAK_None:
2575  case DAK_Unparsed:
2576  // Nothing we can do here.
2577  return SourceRange();
2578 
2579  case DAK_Uninstantiated:
2580  return getUninstantiatedDefaultArg()->getSourceRange();
2581 
2582  case DAK_Normal:
2583  if (const Expr *E = getInit())
2584  return E->getSourceRange();
2585 
2586  // Missing an actual expression, may be invalid.
2587  return SourceRange();
2588  }
2589  llvm_unreachable("Invalid default argument kind.");
2590 }
2591 
2593  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2594  Init = arg;
2595 }
2596 
2598  assert(hasUninstantiatedDefaultArg() &&
2599  "Wrong kind of initialization expression!");
2600  return cast_or_null<Expr>(Init.get<Stmt *>());
2601 }
2602 
2604  // FIXME: We should just return false for DAK_None here once callers are
2605  // prepared for the case that we encountered an invalid default argument and
2606  // were unable to even build an invalid expression.
2607  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2608  !Init.isNull();
2609 }
2610 
2612  return isa<PackExpansionType>(getType());
2613 }
2614 
2615 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2616  getASTContext().setParameterIndex(this, parameterIndex);
2617  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2618 }
2619 
2620 unsigned ParmVarDecl::getParameterIndexLarge() const {
2621  return getASTContext().getParameterIndex(this);
2622 }
2623 
2624 //===----------------------------------------------------------------------===//
2625 // FunctionDecl Implementation
2626 //===----------------------------------------------------------------------===//
2627 
2629  SourceLocation StartLoc,
2630  const DeclarationNameInfo &NameInfo, QualType T,
2631  TypeSourceInfo *TInfo, StorageClass S,
2632  bool isInlineSpecified, bool isConstexprSpecified)
2633  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2634  StartLoc),
2636  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2637  setStorageClass(S);
2638  setInlineSpecified(isInlineSpecified);
2639  setExplicitSpecified(false);
2640  setVirtualAsWritten(false);
2641  setPure(false);
2642  setHasInheritedPrototype(false);
2643  setHasWrittenPrototype(true);
2644  setDeletedAsWritten(false);
2645  setTrivial(false);
2646  setTrivialForCall(false);
2647  setDefaulted(false);
2648  setExplicitlyDefaulted(false);
2649  setHasImplicitReturnZero(false);
2650  setLateTemplateParsed(false);
2651  setConstexpr(isConstexprSpecified);
2653  setUsesSEHTry(false);
2654  setHasSkippedBody(false);
2655  setWillHaveBody(false);
2656  setIsMultiVersion(false);
2657  setHasODRHash(false);
2658 }
2659 
2661  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2662  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2663  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2664  if (TemplateArgs)
2665  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2666 }
2667 
2669  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2670  return FT->isVariadic();
2671  return false;
2672 }
2673 
2674 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2675  for (auto I : redecls()) {
2676  if (I->doesThisDeclarationHaveABody()) {
2677  Definition = I;
2678  return true;
2679  }
2680  }
2681 
2682  return false;
2683 }
2684 
2686 {
2687  Stmt *S = getBody();
2688  if (!S) {
2689  // Since we don't have a body for this function, we don't know if it's
2690  // trivial or not.
2691  return false;
2692  }
2693 
2694  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2695  return true;
2696  return false;
2697 }
2698 
2699 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2700  for (auto I : redecls()) {
2701  if (I->isThisDeclarationADefinition()) {
2702  Definition = I;
2703  return true;
2704  }
2705  }
2706 
2707  return false;
2708 }
2709 
2710 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2711  if (!hasBody(Definition))
2712  return nullptr;
2713 
2714  if (Definition->Body)
2715  return Definition->Body.get(getASTContext().getExternalSource());
2716 
2717  return nullptr;
2718 }
2719 
2721  Body = B;
2722  if (B)
2723  EndRangeLoc = B->getEndLoc();
2724 }
2725 
2727  FunctionDeclBits.IsPure = P;
2728  if (P)
2729  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2730  Parent->markedVirtualFunctionPure();
2731 }
2732 
2733 template<std::size_t Len>
2734 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2735  IdentifierInfo *II = ND->getIdentifier();
2736  return II && II->isStr(Str);
2737 }
2738 
2739 bool FunctionDecl::isMain() const {
2740  const TranslationUnitDecl *tunit =
2742  return tunit &&
2743  !tunit->getASTContext().getLangOpts().Freestanding &&
2744  isNamed(this, "main");
2745 }
2746 
2748  const TranslationUnitDecl *TUnit =
2750  if (!TUnit)
2751  return false;
2752 
2753  // Even though we aren't really targeting MSVCRT if we are freestanding,
2754  // semantic analysis for these functions remains the same.
2755 
2756  // MSVCRT entry points only exist on MSVCRT targets.
2757  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2758  return false;
2759 
2760  // Nameless functions like constructors cannot be entry points.
2761  if (!getIdentifier())
2762  return false;
2763 
2764  return llvm::StringSwitch<bool>(getName())
2765  .Cases("main", // an ANSI console app
2766  "wmain", // a Unicode console App
2767  "WinMain", // an ANSI GUI app
2768  "wWinMain", // a Unicode GUI app
2769  "DllMain", // a DLL
2770  true)
2771  .Default(false);
2772 }
2773 
2775  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2776  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2777  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2778  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2779  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2780 
2782  return false;
2783 
2784  const auto *proto = getType()->castAs<FunctionProtoType>();
2785  if (proto->getNumParams() != 2 || proto->isVariadic())
2786  return false;
2787 
2788  ASTContext &Context =
2789  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2790  ->getASTContext();
2791 
2792  // The result type and first argument type are constant across all
2793  // these operators. The second argument must be exactly void*.
2794  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2795 }
2796 
2798  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2799  return false;
2800  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2801  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2802  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2803  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2804  return false;
2805 
2806  if (isa<CXXRecordDecl>(getDeclContext()))
2807  return false;
2808 
2809  // This can only fail for an invalid 'operator new' declaration.
2811  return false;
2812 
2813  const auto *FPT = getType()->castAs<FunctionProtoType>();
2814  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2815  return false;
2816 
2817  // If this is a single-parameter function, it must be a replaceable global
2818  // allocation or deallocation function.
2819  if (FPT->getNumParams() == 1)
2820  return true;
2821 
2822  unsigned Params = 1;
2823  QualType Ty = FPT->getParamType(Params);
2824  ASTContext &Ctx = getASTContext();
2825 
2826  auto Consume = [&] {
2827  ++Params;
2828  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2829  };
2830 
2831  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2832  bool IsSizedDelete = false;
2833  if (Ctx.getLangOpts().SizedDeallocation &&
2834  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2835  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2836  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2837  IsSizedDelete = true;
2838  Consume();
2839  }
2840 
2841  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2842  // new/delete.
2843  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2844  if (IsAligned)
2845  *IsAligned = true;
2846  Consume();
2847  }
2848 
2849  // Finally, if this is not a sized delete, the final parameter can
2850  // be a 'const std::nothrow_t&'.
2851  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2852  Ty = Ty->getPointeeType();
2853  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2854  return false;
2855  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2856  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2857  Consume();
2858  }
2859 
2860  return Params == FPT->getNumParams();
2861 }
2862 
2864  // C++ P0722:
2865  // Within a class C, a single object deallocation function with signature
2866  // (T, std::destroying_delete_t, <more params>)
2867  // is a destroying operator delete.
2868  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2869  getNumParams() < 2)
2870  return false;
2871 
2872  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2873  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2874  RD->getIdentifier()->isStr("destroying_delete_t");
2875 }
2876 
2878  return getDeclLanguageLinkage(*this);
2879 }
2880 
2882  return isDeclExternC(*this);
2883 }
2884 
2887 }
2888 
2891 }
2892 
2894  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2895  return Method->isStatic();
2896 
2898  return false;
2899 
2900  for (const DeclContext *DC = getDeclContext();
2901  DC->isNamespace();
2902  DC = DC->getParent()) {
2903  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2904  if (!Namespace->getDeclName())
2905  return false;
2906  break;
2907  }
2908  }
2909 
2910  return true;
2911 }
2912 
2914  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2915  hasAttr<C11NoReturnAttr>())
2916  return true;
2917 
2918  if (auto *FnTy = getType()->getAs<FunctionType>())
2919  return FnTy->getNoReturnAttr();
2920 
2921  return false;
2922 }
2923 
2925  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
2926 }
2927 
2929  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
2930 }
2931 
2932 void
2935 
2937  FunctionTemplateDecl *PrevFunTmpl
2938  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2939  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2940  FunTmpl->setPreviousDecl(PrevFunTmpl);
2941  }
2942 
2943  if (PrevDecl && PrevDecl->isInlined())
2944  setImplicitlyInline(true);
2945 }
2946 
2948 
2949 /// Returns a value indicating whether this function
2950 /// corresponds to a builtin function.
2951 ///
2952 /// The function corresponds to a built-in function if it is
2953 /// declared at translation scope or within an extern "C" block and
2954 /// its name matches with the name of a builtin. The returned value
2955 /// will be 0 for functions that do not correspond to a builtin, a
2956 /// value of type \c Builtin::ID if in the target-independent range
2957 /// \c [1,Builtin::First), or a target-specific builtin value.
2958 unsigned FunctionDecl::getBuiltinID() const {
2959  if (!getIdentifier())
2960  return 0;
2961 
2962  unsigned BuiltinID = getIdentifier()->getBuiltinID();
2963  if (!BuiltinID)
2964  return 0;
2965 
2966  ASTContext &Context = getASTContext();
2967  if (Context.getLangOpts().CPlusPlus) {
2968  const auto *LinkageDecl =
2970  // In C++, the first declaration of a builtin is always inside an implicit
2971  // extern "C".
2972  // FIXME: A recognised library function may not be directly in an extern "C"
2973  // declaration, for instance "extern "C" { namespace std { decl } }".
2974  if (!LinkageDecl) {
2975  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2976  Context.getTargetInfo().getCXXABI().isMicrosoft())
2977  return Builtin::BI__GetExceptionInfo;
2978  return 0;
2979  }
2980  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2981  return 0;
2982  }
2983 
2984  // If the function is marked "overloadable", it has a different mangled name
2985  // and is not the C library function.
2986  if (hasAttr<OverloadableAttr>())
2987  return 0;
2988 
2989  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2990  return BuiltinID;
2991 
2992  // This function has the name of a known C library
2993  // function. Determine whether it actually refers to the C library
2994  // function or whether it just has the same name.
2995 
2996  // If this is a static function, it's not a builtin.
2997  if (getStorageClass() == SC_Static)
2998  return 0;
2999 
3000  // OpenCL v1.2 s6.9.f - The library functions defined in
3001  // the C99 standard headers are not available.
3002  if (Context.getLangOpts().OpenCL &&
3003  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3004  return 0;
3005 
3006  // CUDA does not have device-side standard library. printf and malloc are the
3007  // only special cases that are supported by device-side runtime.
3008  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3009  !hasAttr<CUDAHostAttr>() &&
3010  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3011  return 0;
3012 
3013  return BuiltinID;
3014 }
3015 
3016 /// getNumParams - Return the number of parameters this function must have
3017 /// based on its FunctionType. This is the length of the ParamInfo array
3018 /// after it has been created.
3019 unsigned FunctionDecl::getNumParams() const {
3020  const auto *FPT = getType()->getAs<FunctionProtoType>();
3021  return FPT ? FPT->getNumParams() : 0;
3022 }
3023 
3024 void FunctionDecl::setParams(ASTContext &C,
3025  ArrayRef<ParmVarDecl *> NewParamInfo) {
3026  assert(!ParamInfo && "Already has param info!");
3027  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3028 
3029  // Zero params -> null pointer.
3030  if (!NewParamInfo.empty()) {
3031  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3032  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3033  }
3034 }
3035 
3036 /// getMinRequiredArguments - Returns the minimum number of arguments
3037 /// needed to call this function. This may be fewer than the number of
3038 /// function parameters, if some of the parameters have default
3039 /// arguments (in C++) or are parameter packs (C++11).
3041  if (!getASTContext().getLangOpts().CPlusPlus)
3042  return getNumParams();
3043 
3044  unsigned NumRequiredArgs = 0;
3045  for (auto *Param : parameters())
3046  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3047  ++NumRequiredArgs;
3048  return NumRequiredArgs;
3049 }
3050 
3051 /// The combination of the extern and inline keywords under MSVC forces
3052 /// the function to be required.
3053 ///
3054 /// Note: This function assumes that we will only get called when isInlined()
3055 /// would return true for this FunctionDecl.
3057  assert(isInlined() && "expected to get called on an inlined function!");
3058 
3059  const ASTContext &Context = getASTContext();
3060  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3061  !hasAttr<DLLExportAttr>())
3062  return false;
3063 
3064  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3065  FD = FD->getPreviousDecl())
3066  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3067  return true;
3068 
3069  return false;
3070 }
3071 
3072 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3073  if (Redecl->getStorageClass() != SC_Extern)
3074  return false;
3075 
3076  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3077  FD = FD->getPreviousDecl())
3078  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3079  return false;
3080 
3081  return true;
3082 }
3083 
3084 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3085  // Only consider file-scope declarations in this test.
3086  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3087  return false;
3088 
3089  // Only consider explicit declarations; the presence of a builtin for a
3090  // libcall shouldn't affect whether a definition is externally visible.
3091  if (Redecl->isImplicit())
3092  return false;
3093 
3094  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3095  return true; // Not an inline definition
3096 
3097  return false;
3098 }
3099 
3100 /// For a function declaration in C or C++, determine whether this
3101 /// declaration causes the definition to be externally visible.
3102 ///
3103 /// For instance, this determines if adding the current declaration to the set
3104 /// of redeclarations of the given functions causes
3105 /// isInlineDefinitionExternallyVisible to change from false to true.
3107  assert(!doesThisDeclarationHaveABody() &&
3108  "Must have a declaration without a body.");
3109 
3110  ASTContext &Context = getASTContext();
3111 
3112  if (Context.getLangOpts().MSVCCompat) {
3113  const FunctionDecl *Definition;
3114  if (hasBody(Definition) && Definition->isInlined() &&
3115  redeclForcesDefMSVC(this))
3116  return true;
3117  }
3118 
3119  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3120  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3121  // an externally visible definition.
3122  //
3123  // FIXME: What happens if gnu_inline gets added on after the first
3124  // declaration?
3126  return false;
3127 
3128  const FunctionDecl *Prev = this;
3129  bool FoundBody = false;
3130  while ((Prev = Prev->getPreviousDecl())) {
3131  FoundBody |= Prev->Body.isValid();
3132 
3133  if (Prev->Body) {
3134  // If it's not the case that both 'inline' and 'extern' are
3135  // specified on the definition, then it is always externally visible.
3136  if (!Prev->isInlineSpecified() ||
3137  Prev->getStorageClass() != SC_Extern)
3138  return false;
3139  } else if (Prev->isInlineSpecified() &&
3140  Prev->getStorageClass() != SC_Extern) {
3141  return false;
3142  }
3143  }
3144  return FoundBody;
3145  }
3146 
3147  if (Context.getLangOpts().CPlusPlus)
3148  return false;
3149 
3150  // C99 6.7.4p6:
3151  // [...] If all of the file scope declarations for a function in a
3152  // translation unit include the inline function specifier without extern,
3153  // then the definition in that translation unit is an inline definition.
3155  return false;
3156  const FunctionDecl *Prev = this;
3157  bool FoundBody = false;
3158  while ((Prev = Prev->getPreviousDecl())) {
3159  FoundBody |= Prev->Body.isValid();
3160  if (RedeclForcesDefC99(Prev))
3161  return false;
3162  }
3163  return FoundBody;
3164 }
3165 
3167  const TypeSourceInfo *TSI = getTypeSourceInfo();
3168  if (!TSI)
3169  return SourceRange();
3170  FunctionTypeLoc FTL =
3172  if (!FTL)
3173  return SourceRange();
3174 
3175  // Skip self-referential return types.
3177  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3178  SourceLocation Boundary = getNameInfo().getBeginLoc();
3179  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3180  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3181  return SourceRange();
3182 
3183  return RTRange;
3184 }
3185 
3187  const TypeSourceInfo *TSI = getTypeSourceInfo();
3188  if (!TSI)
3189  return SourceRange();
3190  FunctionTypeLoc FTL =
3192  if (!FTL)
3193  return SourceRange();
3194 
3195  return FTL.getExceptionSpecRange();
3196 }
3197 
3199  QualType RetType = getReturnType();
3200  if (const auto *Ret = RetType->getAsRecordDecl()) {
3201  if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
3202  return R;
3203  } else if (const auto *ET = RetType->getAs<EnumType>()) {
3204  if (const EnumDecl *ED = ET->getDecl()) {
3205  if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
3206  return R;
3207  }
3208  }
3209  return getAttr<WarnUnusedResultAttr>();
3210 }
3211 
3212 /// For an inline function definition in C, or for a gnu_inline function
3213 /// in C++, determine whether the definition will be externally visible.
3214 ///
3215 /// Inline function definitions are always available for inlining optimizations.
3216 /// However, depending on the language dialect, declaration specifiers, and
3217 /// attributes, the definition of an inline function may or may not be
3218 /// "externally" visible to other translation units in the program.
3219 ///
3220 /// In C99, inline definitions are not externally visible by default. However,
3221 /// if even one of the global-scope declarations is marked "extern inline", the
3222 /// inline definition becomes externally visible (C99 6.7.4p6).
3223 ///
3224 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3225 /// definition, we use the GNU semantics for inline, which are nearly the
3226 /// opposite of C99 semantics. In particular, "inline" by itself will create
3227 /// an externally visible symbol, but "extern inline" will not create an
3228 /// externally visible symbol.
3230  assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3231  "Must be a function definition");
3232  assert(isInlined() && "Function must be inline");
3233  ASTContext &Context = getASTContext();
3234 
3235  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3236  // Note: If you change the logic here, please change
3237  // doesDeclarationForceExternallyVisibleDefinition as well.
3238  //
3239  // If it's not the case that both 'inline' and 'extern' are
3240  // specified on the definition, then this inline definition is
3241  // externally visible.
3242  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3243  return true;
3244 
3245  // If any declaration is 'inline' but not 'extern', then this definition
3246  // is externally visible.
3247  for (auto Redecl : redecls()) {
3248  if (Redecl->isInlineSpecified() &&
3249  Redecl->getStorageClass() != SC_Extern)
3250  return true;
3251  }
3252 
3253  return false;
3254  }
3255 
3256  // The rest of this function is C-only.
3257  assert(!Context.getLangOpts().CPlusPlus &&
3258  "should not use C inline rules in C++");
3259 
3260  // C99 6.7.4p6:
3261  // [...] If all of the file scope declarations for a function in a
3262  // translation unit include the inline function specifier without extern,
3263  // then the definition in that translation unit is an inline definition.
3264  for (auto Redecl : redecls()) {
3265  if (RedeclForcesDefC99(Redecl))
3266  return true;
3267  }
3268 
3269  // C99 6.7.4p6:
3270  // An inline definition does not provide an external definition for the
3271  // function, and does not forbid an external definition in another
3272  // translation unit.
3273  return false;
3274 }
3275 
3276 /// getOverloadedOperator - Which C++ overloaded operator this
3277 /// function represents, if any.
3279  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3281  else
3282  return OO_None;
3283 }
3284 
3285 /// getLiteralIdentifier - The literal suffix identifier this function
3286 /// represents, if any.
3290  else
3291  return nullptr;
3292 }
3293 
3295  if (TemplateOrSpecialization.isNull())
3296  return TK_NonTemplate;
3297  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3298  return TK_FunctionTemplate;
3299  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3300  return TK_MemberSpecialization;
3301  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3303  if (TemplateOrSpecialization.is
3306 
3307  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3308 }
3309 
3312  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3313 
3314  return nullptr;
3315 }
3316 
3318  return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3319 }
3320 
3321 void
3322 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3323  FunctionDecl *FD,
3325  assert(TemplateOrSpecialization.isNull() &&
3326  "Member function is already a specialization");
3328  = new (C) MemberSpecializationInfo(FD, TSK);
3329  TemplateOrSpecialization = Info;
3330 }
3331 
3333  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3334 }
3335 
3337  TemplateOrSpecialization = Template;
3338 }
3339 
3341  // If the function is invalid, it can't be implicitly instantiated.
3342  if (isInvalidDecl())
3343  return false;
3344 
3345  switch (getTemplateSpecializationKind()) {
3346  case TSK_Undeclared:
3348  return false;
3349 
3351  return true;
3352 
3353  // It is possible to instantiate TSK_ExplicitSpecialization kind
3354  // if the FunctionDecl has a class scope specialization pattern.
3356  return getClassScopeSpecializationPattern() != nullptr;
3357 
3359  // Handled below.
3360  break;
3361  }
3362 
3363  // Find the actual template from which we will instantiate.
3364  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3365  bool HasPattern = false;
3366  if (PatternDecl)
3367  HasPattern = PatternDecl->hasBody(PatternDecl);
3368 
3369  // C++0x [temp.explicit]p9:
3370  // Except for inline functions, other explicit instantiation declarations
3371  // have the effect of suppressing the implicit instantiation of the entity
3372  // to which they refer.
3373  if (!HasPattern || !PatternDecl)
3374  return true;
3375 
3376  return PatternDecl->isInlined();
3377 }
3378 
3380  switch (getTemplateSpecializationKind()) {
3381  case TSK_Undeclared:
3383  return false;
3387  return true;
3388  }
3389  llvm_unreachable("All TSK values handled.");
3390 }
3391 
3393  // Handle class scope explicit specialization special case.
3395  if (auto *Spec = getClassScopeSpecializationPattern())
3396  return getDefinitionOrSelf(Spec);
3397  return nullptr;
3398  }
3399 
3400  // If this is a generic lambda call operator specialization, its
3401  // instantiation pattern is always its primary template's pattern
3402  // even if its primary template was instantiated from another
3403  // member template (which happens with nested generic lambdas).
3404  // Since a lambda's call operator's body is transformed eagerly,
3405  // we don't have to go hunting for a prototype definition template
3406  // (i.e. instantiated-from-member-template) to use as an instantiation
3407  // pattern.
3408 
3410  dyn_cast<CXXMethodDecl>(this))) {
3411  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3412  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3413  }
3414 
3415  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3416  while (Primary->getInstantiatedFromMemberTemplate()) {
3417  // If we have hit a point where the user provided a specialization of
3418  // this template, we're done looking.
3419  if (Primary->isMemberSpecialization())
3420  break;
3421  Primary = Primary->getInstantiatedFromMemberTemplate();
3422  }
3423 
3424  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3425  }
3426 
3427  if (auto *MFD = getInstantiatedFromMemberFunction())
3428  return getDefinitionOrSelf(MFD);
3429 
3430  return nullptr;
3431 }
3432 
3435  = TemplateOrSpecialization
3436  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3437  return Info->Template.getPointer();
3438  }
3439  return nullptr;
3440 }
3441 
3444 }
3445 
3448  return TemplateOrSpecialization
3449  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3450 }
3451 
3452 const TemplateArgumentList *
3455  = TemplateOrSpecialization
3456  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3457  return Info->TemplateArguments;
3458  }
3459  return nullptr;
3460 }
3461 
3465  = TemplateOrSpecialization
3466  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3467  return Info->TemplateArgumentsAsWritten;
3468  }
3469  return nullptr;
3470 }
3471 
3472 void
3473 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3474  FunctionTemplateDecl *Template,
3475  const TemplateArgumentList *TemplateArgs,
3476  void *InsertPos,
3478  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3479  SourceLocation PointOfInstantiation) {
3480  assert(TSK != TSK_Undeclared &&
3481  "Must specify the type of function template specialization");
3483  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3484  if (!Info)
3485  Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3486  TemplateArgs,
3487  TemplateArgsAsWritten,
3488  PointOfInstantiation);
3489  TemplateOrSpecialization = Info;
3490  Template->addSpecialization(Info, InsertPos);
3491 }
3492 
3493 void
3495  const UnresolvedSetImpl &Templates,
3496  const TemplateArgumentListInfo &TemplateArgs) {
3497  assert(TemplateOrSpecialization.isNull());
3500  TemplateArgs);
3501  TemplateOrSpecialization = Info;
3502 }
3503 
3506  return TemplateOrSpecialization
3508 }
3509 
3512  ASTContext &Context, const UnresolvedSetImpl &Ts,
3513  const TemplateArgumentListInfo &TArgs) {
3514  void *Buffer = Context.Allocate(
3515  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3516  TArgs.size(), Ts.size()));
3517  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3518 }
3519 
3520 DependentFunctionTemplateSpecializationInfo::
3521 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3522  const TemplateArgumentListInfo &TArgs)
3523  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3524  NumTemplates = Ts.size();
3525  NumArgs = TArgs.size();
3526 
3527  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3528  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3529  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3530 
3531  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3532  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3533  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3534 }
3535 
3537  // For a function template specialization, query the specialization
3538  // information object.
3540  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3541  if (FTSInfo)
3542  return FTSInfo->getTemplateSpecializationKind();
3543 
3544  MemberSpecializationInfo *MSInfo
3545  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3546  if (MSInfo)
3547  return MSInfo->getTemplateSpecializationKind();
3548 
3549  return TSK_Undeclared;
3550 }
3551 
3552 void
3554  SourceLocation PointOfInstantiation) {
3556  = TemplateOrSpecialization.dyn_cast<
3558  FTSInfo->setTemplateSpecializationKind(TSK);
3559  if (TSK != TSK_ExplicitSpecialization &&
3560  PointOfInstantiation.isValid() &&
3561  FTSInfo->getPointOfInstantiation().isInvalid()) {
3562  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3564  L->InstantiationRequested(this);
3565  }
3566  } else if (MemberSpecializationInfo *MSInfo
3567  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3568  MSInfo->setTemplateSpecializationKind(TSK);
3569  if (TSK != TSK_ExplicitSpecialization &&
3570  PointOfInstantiation.isValid() &&
3571  MSInfo->getPointOfInstantiation().isInvalid()) {
3572  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3574  L->InstantiationRequested(this);
3575  }
3576  } else
3577  llvm_unreachable("Function cannot have a template specialization kind");
3578 }
3579 
3582  = TemplateOrSpecialization.dyn_cast<
3584  return FTSInfo->getPointOfInstantiation();
3585  else if (MemberSpecializationInfo *MSInfo
3586  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3587  return MSInfo->getPointOfInstantiation();
3588 
3589  return SourceLocation();
3590 }
3591 
3593  if (Decl::isOutOfLine())
3594  return true;
3595 
3596  // If this function was instantiated from a member function of a
3597  // class template, check whether that member function was defined out-of-line.
3599  const FunctionDecl *Definition;
3600  if (FD->hasBody(Definition))
3601  return Definition->isOutOfLine();
3602  }
3603 
3604  // If this function was instantiated from a function template,
3605  // check whether that function template was defined out-of-line.
3606  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3607  const FunctionDecl *Definition;
3608  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3609  return Definition->isOutOfLine();
3610  }
3611 
3612  return false;
3613 }
3614 
3616  return SourceRange(getOuterLocStart(), EndRangeLoc);
3617 }
3618 
3620  IdentifierInfo *FnInfo = getIdentifier();
3621 
3622  if (!FnInfo)
3623  return 0;
3624 
3625  // Builtin handling.
3626  switch (getBuiltinID()) {
3627  case Builtin::BI__builtin_memset:
3628  case Builtin::BI__builtin___memset_chk:
3629  case Builtin::BImemset:
3630  return Builtin::BImemset;
3631 
3632  case Builtin::BI__builtin_memcpy:
3633  case Builtin::BI__builtin___memcpy_chk:
3634  case Builtin::BImemcpy:
3635  return Builtin::BImemcpy;
3636 
3637  case Builtin::BI__builtin_memmove:
3638  case Builtin::BI__builtin___memmove_chk:
3639  case Builtin::BImemmove:
3640  return Builtin::BImemmove;
3641 
3642  case Builtin::BIstrlcpy:
3643  case Builtin::BI__builtin___strlcpy_chk:
3644  return Builtin::BIstrlcpy;
3645 
3646  case Builtin::BIstrlcat:
3647  case Builtin::BI__builtin___strlcat_chk:
3648  return Builtin::BIstrlcat;
3649 
3650  case Builtin::BI__builtin_memcmp:
3651  case Builtin::BImemcmp:
3652  return Builtin::BImemcmp;
3653 
3654  case Builtin::BI__builtin_strncpy:
3655  case Builtin::BI__builtin___strncpy_chk:
3656  case Builtin::BIstrncpy:
3657  return Builtin::BIstrncpy;
3658 
3659  case Builtin::BI__builtin_strncmp:
3660  case Builtin::BIstrncmp:
3661  return Builtin::BIstrncmp;
3662 
3663  case Builtin::BI__builtin_strncasecmp:
3664  case Builtin::BIstrncasecmp:
3665  return Builtin::BIstrncasecmp;
3666 
3667  case Builtin::BI__builtin_strncat:
3668  case Builtin::BI__builtin___strncat_chk:
3669  case Builtin::BIstrncat:
3670  return Builtin::BIstrncat;
3671 
3672  case Builtin::BI__builtin_strndup:
3673  case Builtin::BIstrndup:
3674  return Builtin::BIstrndup;
3675 
3676  case Builtin::BI__builtin_strlen:
3677  case Builtin::BIstrlen:
3678  return Builtin::BIstrlen;
3679 
3680  case Builtin::BI__builtin_bzero:
3681  case Builtin::BIbzero:
3682  return Builtin::BIbzero;
3683 
3684  default:
3685  if (isExternC()) {
3686  if (FnInfo->isStr("memset"))
3687  return Builtin::BImemset;
3688  else if (FnInfo->isStr("memcpy"))
3689  return Builtin::BImemcpy;
3690  else if (FnInfo->isStr("memmove"))
3691  return Builtin::BImemmove;
3692  else if (FnInfo->isStr("memcmp"))
3693  return Builtin::BImemcmp;
3694  else if (FnInfo->isStr("strncpy"))
3695  return Builtin::BIstrncpy;
3696  else if (FnInfo->isStr("strncmp"))
3697  return Builtin::BIstrncmp;
3698  else if (FnInfo->isStr("strncasecmp"))
3699  return Builtin::BIstrncasecmp;
3700  else if (FnInfo->isStr("strncat"))
3701  return Builtin::BIstrncat;
3702  else if (FnInfo->isStr("strndup"))
3703  return Builtin::BIstrndup;
3704  else if (FnInfo->isStr("strlen"))
3705  return Builtin::BIstrlen;
3706  else if (FnInfo->isStr("bzero"))
3707  return Builtin::BIbzero;
3708  }
3709  break;
3710  }
3711  return 0;
3712 }
3713 
3714 unsigned FunctionDecl::getODRHash() const {
3715  assert(hasODRHash());
3716  return ODRHash;
3717 }
3718 
3720  if (hasODRHash())
3721  return ODRHash;
3722 
3723  if (auto *FT = getInstantiatedFromMemberFunction()) {
3724  setHasODRHash(true);
3725  ODRHash = FT->getODRHash();
3726  return ODRHash;
3727  }
3728 
3729  class ODRHash Hash;
3730  Hash.AddFunctionDecl(this);
3731  setHasODRHash(true);
3732  ODRHash = Hash.CalculateHash();
3733  return ODRHash;
3734 }
3735 
3736 //===----------------------------------------------------------------------===//
3737 // FieldDecl Implementation
3738 //===----------------------------------------------------------------------===//
3739 
3741  SourceLocation StartLoc, SourceLocation IdLoc,
3743  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3744  InClassInitStyle InitStyle) {
3745  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3746  BW, Mutable, InitStyle);
3747 }
3748 
3750  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3751  SourceLocation(), nullptr, QualType(), nullptr,
3752  nullptr, false, ICIS_NoInit);
3753 }
3754 
3756  if (!isImplicit() || getDeclName())
3757  return false;
3758 
3759  if (const auto *Record = getType()->getAs<RecordType>())
3760  return Record->getDecl()->isAnonymousStructOrUnion();
3761 
3762  return false;
3763 }
3764 
3765 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3766  assert(isBitField() && "not a bitfield");
3767  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3768 }
3769 
3771  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3772  getBitWidthValue(Ctx) == 0;
3773 }
3774 
3775 unsigned FieldDecl::getFieldIndex() const {
3776  const FieldDecl *Canonical = getCanonicalDecl();
3777  if (Canonical != this)
3778  return Canonical->getFieldIndex();
3779 
3780  if (CachedFieldIndex) return CachedFieldIndex - 1;
3781 
3782  unsigned Index = 0;
3783  const RecordDecl *RD = getParent()->getDefinition();
3784  assert(RD && "requested index for field of struct with no definition");
3785 
3786  for (auto *Field : RD->fields()) {
3787  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3788  ++Index;
3789  }
3790 
3791  assert(CachedFieldIndex && "failed to find field in parent");
3792  return CachedFieldIndex - 1;
3793 }
3794 
3796  const Expr *FinalExpr = getInClassInitializer();
3797  if (!FinalExpr)
3798  FinalExpr = getBitWidth();
3799  if (FinalExpr)
3800  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3802 }
3803 
3805  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3806  "capturing type in non-lambda or captured record.");
3807  assert(InitStorage.getInt() == ISK_NoInit &&
3808  InitStorage.getPointer() == nullptr &&
3809  "bit width, initializer or captured type already set");
3810  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3811  ISK_CapturedVLAType);
3812 }
3813 
3814 //===----------------------------------------------------------------------===//
3815 // TagDecl Implementation
3816 //===----------------------------------------------------------------------===//
3817 
3819  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3820  SourceLocation StartL)
3821  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3822  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3823  assert((DK != Enum || TK == TTK_Enum) &&
3824  "EnumDecl not matched with TTK_Enum");
3825  setPreviousDecl(PrevDecl);
3826  setTagKind(TK);
3827  setCompleteDefinition(false);
3828  setBeingDefined(false);
3829  setEmbeddedInDeclarator(false);
3830  setFreeStanding(false);
3832 }
3833 
3835  return getTemplateOrInnerLocStart(this);
3836 }
3837 
3839  SourceLocation RBraceLoc = BraceRange.getEnd();
3840  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3841  return SourceRange(getOuterLocStart(), E);
3842 }
3843 
3845 
3847  TypedefNameDeclOrQualifier = TDD;
3848  if (const Type *T = getTypeForDecl()) {
3849  (void)T;
3850  assert(T->isLinkageValid());
3851  }
3852  assert(isLinkageValid());
3853 }
3854 
3856  setBeingDefined(true);
3857 
3858  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3859  struct CXXRecordDecl::DefinitionData *Data =
3860  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3861  for (auto I : redecls())
3862  cast<CXXRecordDecl>(I)->DefinitionData = Data;
3863  }
3864 }
3865 
3867  assert((!isa<CXXRecordDecl>(this) ||
3868  cast<CXXRecordDecl>(this)->hasDefinition()) &&
3869  "definition completed but not started");
3870 
3871  setCompleteDefinition(true);
3872  setBeingDefined(false);
3873 
3875  L->CompletedTagDefinition(this);
3876 }
3877 
3879  if (isCompleteDefinition())
3880  return const_cast<TagDecl *>(this);
3881 
3882  // If it's possible for us to have an out-of-date definition, check now.
3883  if (mayHaveOutOfDateDef()) {
3884  if (IdentifierInfo *II = getIdentifier()) {
3885  if (II->isOutOfDate()) {
3886  updateOutOfDate(*II);
3887  }
3888  }
3889  }
3890 
3891  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3892  return CXXRD->getDefinition();
3893 
3894  for (auto R : redecls())
3895  if (R->isCompleteDefinition())
3896  return R;
3897 
3898  return nullptr;
3899 }
3900 
3902  if (QualifierLoc) {
3903  // Make sure the extended qualifier info is allocated.
3904  if (!hasExtInfo())
3905  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3906  // Set qualifier info.
3907  getExtInfo()->QualifierLoc = QualifierLoc;
3908  } else {
3909  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3910  if (hasExtInfo()) {
3911  if (getExtInfo()->NumTemplParamLists == 0) {
3912  getASTContext().Deallocate(getExtInfo());
3913  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3914  }
3915  else
3916  getExtInfo()->QualifierLoc = QualifierLoc;
3917  }
3918  }
3919 }
3920 
3922  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3923  assert(!TPLists.empty());
3924  // Make sure the extended decl info is allocated.
3925  if (!hasExtInfo())
3926  // Allocate external info struct.
3927  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3928  // Set the template parameter lists info.
3929  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3930 }
3931 
3932 //===----------------------------------------------------------------------===//
3933 // EnumDecl Implementation
3934 //===----------------------------------------------------------------------===//
3935 
3936 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3937  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3938  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
3939  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3940  assert(Scoped || !ScopedUsingClassTag);
3941  IntegerType = nullptr;
3942  setNumPositiveBits(0);
3943  setNumNegativeBits(0);
3944  setScoped(Scoped);
3945  setScopedUsingClassTag(ScopedUsingClassTag);
3946  setFixed(Fixed);
3947  setHasODRHash(false);
3948  ODRHash = 0;
3949 }
3950 
3951 void EnumDecl::anchor() {}
3952 
3954  SourceLocation StartLoc, SourceLocation IdLoc,
3955  IdentifierInfo *Id,
3956  EnumDecl *PrevDecl, bool IsScoped,
3957  bool IsScopedUsingClassTag, bool IsFixed) {
3958  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3959  IsScoped, IsScopedUsingClassTag, IsFixed);
3960  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
3961  C.getTypeDeclType(Enum, PrevDecl);
3962  return Enum;
3963 }
3964 
3966  EnumDecl *Enum =
3967  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3968  nullptr, nullptr, false, false, false);
3969  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
3970  return Enum;
3971 }
3972 
3974  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3975  return TI->getTypeLoc().getSourceRange();
3976  return SourceRange();
3977 }
3978 
3980  QualType NewPromotionType,
3981  unsigned NumPositiveBits,
3982  unsigned NumNegativeBits) {
3983  assert(!isCompleteDefinition() && "Cannot redefine enums!");
3984  if (!IntegerType)
3985  IntegerType = NewType.getTypePtr();
3986  PromotionType = NewPromotionType;
3987  setNumPositiveBits(NumPositiveBits);
3988  setNumNegativeBits(NumNegativeBits);
3990 }
3991 
3992 bool EnumDecl::isClosed() const {
3993  if (const auto *A = getAttr<EnumExtensibilityAttr>())
3994  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
3995  return true;
3996 }
3997 
3999  return isClosed() && hasAttr<FlagEnumAttr>();
4000 }
4001 
4003  return isClosed() && !hasAttr<FlagEnumAttr>();
4004 }
4005 
4007  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4008  return MSI->getTemplateSpecializationKind();
4009 
4010  return TSK_Undeclared;
4011 }
4012 
4014  SourceLocation PointOfInstantiation) {
4015  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4016  assert(MSI && "Not an instantiated member enumeration?");
4018  if (TSK != TSK_ExplicitSpecialization &&
4019  PointOfInstantiation.isValid() &&
4021  MSI->setPointOfInstantiation(PointOfInstantiation);
4022 }
4023 
4025  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4026  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4027  EnumDecl *ED = getInstantiatedFromMemberEnum();
4028  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4029  ED = NewED;
4030  return getDefinitionOrSelf(ED);
4031  }
4032  }
4033 
4035  "couldn't find pattern for enum instantiation");
4036  return nullptr;
4037 }
4038 
4040  if (SpecializationInfo)
4041  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4042 
4043  return nullptr;
4044 }
4045 
4046 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4048  assert(!SpecializationInfo && "Member enum is already a specialization");
4049  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4050 }
4051 
4053  if (hasODRHash())
4054  return ODRHash;
4055 
4056  class ODRHash Hash;
4057  Hash.AddEnumDecl(this);
4058  setHasODRHash(true);
4059  ODRHash = Hash.CalculateHash();
4060  return ODRHash;
4061 }
4062 
4063 //===----------------------------------------------------------------------===//
4064 // RecordDecl Implementation
4065 //===----------------------------------------------------------------------===//
4066 
4068  DeclContext *DC, SourceLocation StartLoc,
4069  SourceLocation IdLoc, IdentifierInfo *Id,
4070  RecordDecl *PrevDecl)
4071  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4072  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4075  setHasObjectMember(false);
4076  setHasVolatileMember(false);
4083 }
4084 
4086  SourceLocation StartLoc, SourceLocation IdLoc,
4087  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4088  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4089  StartLoc, IdLoc, Id, PrevDecl);
4090  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4091 
4092  C.getTypeDeclType(R, PrevDecl);
4093  return R;
4094 }
4095 
4097  RecordDecl *R =
4098  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4099  SourceLocation(), nullptr, nullptr);
4100  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4101  return R;
4102 }
4103 
4105  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4106  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4107 }
4108 
4109 bool RecordDecl::isLambda() const {
4110  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4111  return RD->isLambda();
4112  return false;
4113 }
4114 
4116  return hasAttr<CapturedRecordAttr>();
4117 }
4118 
4120  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4121 }
4122 
4125  LoadFieldsFromExternalStorage();
4126 
4128 }
4129 
4130 /// completeDefinition - Notes that the definition of this type is now
4131 /// complete.
4133  assert(!isCompleteDefinition() && "Cannot redefine record!");
4135 }
4136 
4137 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4138 /// This which can be turned on with an attribute, pragma, or the
4139 /// -mms-bitfields command-line option.
4140 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4141  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4142 }
4143 
4144 void RecordDecl::LoadFieldsFromExternalStorage() const {
4146  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4147 
4148  // Notify that we have a RecordDecl doing some initialization.
4149  ExternalASTSource::Deserializing TheFields(Source);
4150 
4151  SmallVector<Decl*, 64> Decls;
4153  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4155  }, Decls);
4156 
4157 #ifndef NDEBUG
4158  // Check that all decls we got were FieldDecls.
4159  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4160  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4161 #endif
4162 
4163  if (Decls.empty())
4164  return;
4165 
4166  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4167  /*FieldsAlreadyLoaded=*/false);
4168 }
4169 
4170 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4171  ASTContext &Context = getASTContext();
4172  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4173  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4174  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4175  return false;
4176  const auto &Blacklist = Context.getSanitizerBlacklist();
4177  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4178  // We may be able to relax some of these requirements.
4179  int ReasonToReject = -1;
4180  if (!CXXRD || CXXRD->isExternCContext())
4181  ReasonToReject = 0; // is not C++.
4182  else if (CXXRD->hasAttr<PackedAttr>())
4183  ReasonToReject = 1; // is packed.
4184  else if (CXXRD->isUnion())
4185  ReasonToReject = 2; // is a union.
4186  else if (CXXRD->isTriviallyCopyable())
4187  ReasonToReject = 3; // is trivially copyable.
4188  else if (CXXRD->hasTrivialDestructor())
4189  ReasonToReject = 4; // has trivial destructor.
4190  else if (CXXRD->isStandardLayout())
4191  ReasonToReject = 5; // is standard layout.
4192  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4193  "field-padding"))
4194  ReasonToReject = 6; // is in a blacklisted file.
4195  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4197  "field-padding"))
4198  ReasonToReject = 7; // is blacklisted.
4199 
4200  if (EmitRemark) {
4201  if (ReasonToReject >= 0)
4202  Context.getDiagnostics().Report(
4203  getLocation(),
4204  diag::remark_sanitize_address_insert_extra_padding_rejected)
4205  << getQualifiedNameAsString() << ReasonToReject;
4206  else
4207  Context.getDiagnostics().Report(
4208  getLocation(),
4209  diag::remark_sanitize_address_insert_extra_padding_accepted)
4211  }
4212  return ReasonToReject < 0;
4213 }
4214 
4216  for (const auto *I : fields()) {
4217  if (I->getIdentifier())
4218  return I;
4219 
4220  if (const auto *RT = I->getType()->getAs<RecordType>())
4221  if (const FieldDecl *NamedDataMember =
4222  RT->getDecl()->findFirstNamedDataMember())
4223  return NamedDataMember;
4224  }
4225 
4226  // We didn't find a named data member.
4227  return nullptr;
4228 }
4229 
4230 //===----------------------------------------------------------------------===//
4231 // BlockDecl Implementation
4232 //===----------------------------------------------------------------------===//
4233 
4235  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4236  setIsVariadic(false);
4237  setCapturesCXXThis(false);
4240  setDoesNotEscape(false);
4241 }
4242 
4244  assert(!ParamInfo && "Already has param info!");
4245 
4246  // Zero params -> null pointer.
4247  if (!NewParamInfo.empty()) {
4248  NumParams = NewParamInfo.size();
4249  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4250  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4251  }
4252 }
4253 
4255  bool CapturesCXXThis) {
4256  this->setCapturesCXXThis(CapturesCXXThis);
4257  this->NumCaptures = Captures.size();
4258 
4259  if (Captures.empty()) {
4260  this->Captures = nullptr;
4261  return;
4262  }
4263 
4264  this->Captures = Captures.copy(Context).data();
4265 }
4266 
4267 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4268  for (const auto &I : captures())
4269  // Only auto vars can be captured, so no redeclaration worries.
4270  if (I.getVariable() == variable)
4271  return true;
4272 
4273  return false;
4274 }
4275 
4277  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4278 }
4279 
4280 //===----------------------------------------------------------------------===//
4281 // Other Decl Allocation/Deallocation Method Implementations
4282 //===----------------------------------------------------------------------===//
4283 
4284 void TranslationUnitDecl::anchor() {}
4285 
4287  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4288 }
4289 
4290 void PragmaCommentDecl::anchor() {}
4291 
4293  TranslationUnitDecl *DC,
4294  SourceLocation CommentLoc,
4295  PragmaMSCommentKind CommentKind,
4296  StringRef Arg) {
4297  PragmaCommentDecl *PCD =
4298  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4299  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4300  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4301  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4302  return PCD;
4303 }
4304 
4306  unsigned ID,
4307  unsigned ArgSize) {
4308  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4310 }
4311 
4312 void PragmaDetectMismatchDecl::anchor() {}
4313 
4316  SourceLocation Loc, StringRef Name,
4317  StringRef Value) {
4318  size_t ValueStart = Name.size() + 1;
4319  PragmaDetectMismatchDecl *PDMD =
4320  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4321  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4322  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4323  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4324  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4325  Value.size());
4326  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4327  return PDMD;
4328 }
4329 
4332  unsigned NameValueSize) {
4333  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4335 }
4336 
4337 void ExternCContextDecl::anchor() {}
4338 
4340  TranslationUnitDecl *DC) {
4341  return new (C, DC) ExternCContextDecl(DC);
4342 }
4343 
4344 void LabelDecl::anchor() {}
4345 
4347  SourceLocation IdentL, IdentifierInfo *II) {
4348  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4349 }
4350 
4352  SourceLocation IdentL, IdentifierInfo *II,
4353  SourceLocation GnuLabelL) {
4354  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4355  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4356 }
4357 
4359  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4360  SourceLocation());
4361 }
4362 
4363 void LabelDecl::setMSAsmLabel(StringRef Name) {
4364  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4365  memcpy(Buffer, Name.data(), Name.size());
4366  Buffer[Name.size()] = '\0';
4367  MSAsmName = Buffer;
4368 }
4369 
4370 void ValueDecl::anchor() {}
4371 
4372 bool ValueDecl::isWeak() const {
4373  for (const auto *I : attrs())
4374  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4375  return true;
4376 
4377  return isWeakImported();
4378 }
4379 
4380 void ImplicitParamDecl::anchor() {}
4381 
4383  SourceLocation IdLoc,
4385  ImplicitParamKind ParamKind) {
4386  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4387 }
4388 
4390  ImplicitParamKind ParamKind) {
4391  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4392 }
4393 
4395  unsigned ID) {
4396  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4397 }
4398 
4400  SourceLocation StartLoc,
4401  const DeclarationNameInfo &NameInfo,
4402  QualType T, TypeSourceInfo *TInfo,
4403  StorageClass SC,
4404  bool isInlineSpecified,
4405  bool hasWrittenPrototype,
4406  bool isConstexprSpecified) {
4407  FunctionDecl *New =
4408  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4409  SC, isInlineSpecified, isConstexprSpecified);
4410  New->setHasWrittenPrototype(hasWrittenPrototype);
4411  return New;
4412 }
4413 
4415  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4416  DeclarationNameInfo(), QualType(), nullptr,
4417  SC_None, false, false);
4418 }
4419 
4421  return new (C, DC) BlockDecl(DC, L);
4422 }
4423 
4425  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4426 }
4427 
4428 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4429  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4430  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4431 
4433  unsigned NumParams) {
4434  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4435  CapturedDecl(DC, NumParams);
4436 }
4437 
4439  unsigned NumParams) {
4440  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4441  CapturedDecl(nullptr, NumParams);
4442 }
4443 
4444 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4445 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4446 
4447 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4448 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4449 
4451  SourceLocation L,
4452  IdentifierInfo *Id, QualType T,
4453  Expr *E, const llvm::APSInt &V) {
4454  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4455 }
4456 
4459  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4460  QualType(), nullptr, llvm::APSInt());
4461 }
4462 
4463 void IndirectFieldDecl::anchor() {}
4464 
4465 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4467  QualType T,
4469  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4470  ChainingSize(CH.size()) {
4471  // In C++, indirect field declarations conflict with tag declarations in the
4472  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4473  if (C.getLangOpts().CPlusPlus)
4475 }
4476 
4479  IdentifierInfo *Id, QualType T,
4481  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4482 }
4483 
4485  unsigned ID) {
4486  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4487  DeclarationName(), QualType(), None);
4488 }
4489 
4492  if (Init)
4493  End = Init->getEndLoc();
4494  return SourceRange(getLocation(), End);
4495 }
4496 
4497 void TypeDecl::anchor() {}
4498 
4500  SourceLocation StartLoc, SourceLocation IdLoc,
4501  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4502  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4503 }
4504 
4505 void TypedefNameDecl::anchor() {}
4506 
4508  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4509  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4510  auto *ThisTypedef = this;
4511  if (AnyRedecl && OwningTypedef) {
4512  OwningTypedef = OwningTypedef->getCanonicalDecl();
4513  ThisTypedef = ThisTypedef->getCanonicalDecl();
4514  }
4515  if (OwningTypedef == ThisTypedef)
4516  return TT->getDecl();
4517  }
4518 
4519  return nullptr;
4520 }
4521 
4522 bool TypedefNameDecl::isTransparentTagSlow() const {
4523  auto determineIsTransparent = [&]() {
4524  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4525  if (auto *TD = TT->getDecl()) {
4526  if (TD->getName() != getName())
4527  return false;
4528  SourceLocation TTLoc = getLocation();
4529  SourceLocation TDLoc = TD->getLocation();
4530  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4531  return false;
4533  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4534  }
4535  }
4536  return false;
4537  };
4538 
4539  bool isTransparent = determineIsTransparent();
4540  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4541  return isTransparent;
4542 }
4543 
4545  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4546  nullptr, nullptr);
4547 }
4548 
4550  SourceLocation StartLoc,
4551  SourceLocation IdLoc, IdentifierInfo *Id,
4552  TypeSourceInfo *TInfo) {
4553  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4554 }
4555 
4557  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4558  SourceLocation(), nullptr, nullptr);
4559 }
4560 
4562  SourceLocation RangeEnd = getLocation();
4563  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4564  if (typeIsPostfix(TInfo->getType()))
4565  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4566  }
4567  return SourceRange(getBeginLoc(), RangeEnd);
4568 }
4569 
4571  SourceLocation RangeEnd = getBeginLoc();
4572  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4573  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4574  return SourceRange(getBeginLoc(), RangeEnd);
4575 }
4576 
4577 void FileScopeAsmDecl::anchor() {}
4578 
4580  StringLiteral *Str,
4581  SourceLocation AsmLoc,
4582  SourceLocation RParenLoc) {
4583  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4584 }
4585 
4587  unsigned ID) {
4588  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4589  SourceLocation());
4590 }
4591 
4592 void EmptyDecl::anchor() {}
4593 
4595  return new (C, DC) EmptyDecl(DC, L);
4596 }
4597 
4599  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4600 }
4601 
4602 //===----------------------------------------------------------------------===//
4603 // ImportDecl Implementation
4604 //===----------------------------------------------------------------------===//
4605 
4606 /// Retrieve the number of module identifiers needed to name the given
4607 /// module.
4608 static unsigned getNumModuleIdentifiers(Module *Mod) {
4609  unsigned Result = 1;
4610  while (Mod->Parent) {
4611  Mod = Mod->Parent;
4612  ++Result;
4613  }
4614  return Result;
4615 }
4616 
4617 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4618  Module *Imported,
4619  ArrayRef<SourceLocation> IdentifierLocs)
4620  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4621  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4622  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4623  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4624  StoredLocs);
4625 }
4626 
4627 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4628  Module *Imported, SourceLocation EndLoc)
4629  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4630  *getTrailingObjects<SourceLocation>() = EndLoc;
4631 }
4632 
4634  SourceLocation StartLoc, Module *Imported,
4635  ArrayRef<SourceLocation> IdentifierLocs) {
4636  return new (C, DC,
4637  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4638  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4639 }
4640 
4642  SourceLocation StartLoc,
4643  Module *Imported,
4644  SourceLocation EndLoc) {
4645  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4646  ImportDecl(DC, StartLoc, Imported, EndLoc);
4647  Import->setImplicit();
4648  return Import;
4649 }
4650 
4652  unsigned NumLocations) {
4653  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4655 }
4656 
4658  if (!ImportedAndComplete.getInt())
4659  return None;
4660 
4661  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4662  return llvm::makeArrayRef(StoredLocs,
4663  getNumModuleIdentifiers(getImportedModule()));
4664 }
4665 
4667  if (!ImportedAndComplete.getInt())
4668  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4669 
4670  return SourceRange(getLocation(), getIdentifierLocs().back());
4671 }
4672 
4673 //===----------------------------------------------------------------------===//
4674 // ExportDecl Implementation
4675 //===----------------------------------------------------------------------===//
4676 
4677 void ExportDecl::anchor() {}
4678 
4680  SourceLocation ExportLoc) {
4681  return new (C, DC) ExportDecl(DC, ExportLoc);
4682 }
4683 
4685  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4686 }
void setLinkage(Linkage L)
Definition: Visibility.h:88
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4024
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2436
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:2913
void setHasSkippedBody(bool Skipped=true)
Definition: Decl.h:2195
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4561
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
void setImplicit(bool I=true)
Definition: DeclBase.h:554
Represents a function declaration or definition.
Definition: Decl.h:1717
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1382
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2774
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:550
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3619
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1286
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3689
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:141
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified, bool isConstexprSpecified)
Definition: Decl.cpp:2628
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2000
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4002
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3647
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:758
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4651
CanQualType VoidPtrTy
Definition: ASTContext.h:1053
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:2889
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:642
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:3878
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3149
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3104
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:50
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2881
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1915
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4490
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2200
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1471
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3673
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4478
void setExplicitSpecified(bool ExpSpec=true)
State that this function is marked as explicit explicitly.
Definition: Decl.h:2341
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:39
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4258
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3329
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:153
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:801
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3463
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2739
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3592
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:949
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2763
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3176
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:27
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:3846
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:2995
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:788
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4305
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2885
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2314
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2875
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
bool isVariadic() const
Definition: Type.h:3892
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:597
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:410
bool isNothrow() const
Definition: Decl.cpp:4447
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3704
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4666
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2726
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:2933
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3775
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:208
bool isUninit() const
Definition: APValue.h:233
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1479
The base class of the type hierarchy.
Definition: Type.h:1415
Represents an empty-declaration.
Definition: Decl.h:4228
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4243
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
Represent a C++ namespace.
Definition: Decl.h:514
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:190
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4132
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:414
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:699
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:39
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3550
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:3973
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:796
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2660
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:3834
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1858
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1207
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3340
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:76
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4438
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3146
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1464
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3098
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4448
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4052
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:812
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:380
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:785
Declaration of a redeclarable template.
Definition: DeclTemplate.h:737
QualType getReturnType() const
Definition: Decl.h:2271
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:1960
unsigned getNumParams() const
Definition: Type.h:3786
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:112
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6590
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2603
Visibility getVisibility() const
Definition: Visibility.h:85
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:553
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1108
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3770
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:601
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1732
bool isInvalidDecl() const
Definition: DeclBase.h:548
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
Not a TLS variable.
Definition: Decl.h:829
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:630
Represents a parameter to a function.
Definition: Decl.h:1536
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:24
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1418
std::string getName(ArrayRef< StringRef > Parts) const
Get the platform-specific name separator.
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:672
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3755
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4170
ModuleKind Kind
The kind of this module.
Definition: Module.h:87
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3166
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3570
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:85
C11 _Thread_local.
Definition: Specifiers.h:202
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1623
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1912
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1018
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1807
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1813
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4115
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4085
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2592
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4484
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2685
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3072
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:792
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
static LinkageInfo internal()
Definition: Visibility.h:71
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:180
field_range fields() const
Definition: Decl.h:3761
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4608
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:302
Represents a member of a struct/union/class.
Definition: Decl.h:2556
friend class DeclContext
Definition: DeclBase.h:243
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:3866
bool isNamespace() const
Definition: DeclBase.h:1838
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3855
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4234
bool isReferenceType() const
Definition: Type.h:6189
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:73
const Attr * getUnusedResultAttr() const
Returns the WarnUnusedResultAttr that is either declared on this function, or its return type declara...
Definition: Decl.cpp:3198
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:90
This declaration is definitely a definition.
Definition: Decl.h:1150
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1039
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3660
Describes a module or submodule.
Definition: Module.h:65
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4292
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3758
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2231
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:46
virtual bool isDefined() const
Definition: Decl.h:1928
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:508
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2426
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:2965
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2105
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2797
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:540
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4444
The argument of this type can be passed directly in registers.
Definition: Decl.h:3581
Kinds of LV computation.
Definition: Linkage.h:28
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For an enumeration member that was instantiated from a member enumeration of a templated class...
Definition: Decl.cpp:4013
QualType getOriginalType() const
Definition: Decl.cpp:2526
static ExternCContextDecl * Create(const ASTContext &C, TranslationUnitDecl *TU)
Definition: Decl.cpp:4339
A convenient class for passing around template argument information.
Definition: TemplateBase.h:552
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:3712
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
void AddFunctionDecl(const FunctionDecl *Function, bool SkipBody=false)
Definition: ODRHash.cpp:509
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes, if any.
Definition: Decl.cpp:4507
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
Wrapper for source info for functions.
Definition: TypeLoc.h:1327
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:785
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4450
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3332
bool isMemberSpecialization() const
Determines whether this template was a specialization of a member template.
Definition: DeclTemplate.h:879
ASTContext & getASTContext() const
Definition: Decl.h:119
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:34
DefinitionKind hasDefinition() const
Definition: Decl.h:1163
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:663
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2416
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1847
Represents a declaration of a type.
Definition: Decl.h:2851
void setHasObjectMember(bool val)
Definition: Decl.h:3652
A set of unresolved declarations.
Definition: UnresolvedSet.h:61
void setHasImplicitReturnZero(bool IRZ)
State that falling off this function implicitly returns null/zero.
Definition: Decl.h:2038
Module * Parent
The parent of this module.
Definition: Module.h:91
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1381
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:3447
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1202
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5953
field_iterator field_begin() const
Definition: Decl.cpp:4123
unsigned getBitWidthValue(const ASTContext &Ctx) const
Definition: Decl.cpp:3765
static FileScopeAsmDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4586
void setTrivial(bool IT)
Definition: Decl.h:2006
bool isInlineDefinitionExternallyVisible() const
For an inline function definition in C, or for a gnu_inline function in C++, determine whether the de...
Definition: Decl.cpp:3229
bool isCPUSpecificMultiVersion() const
True if this function is a multiversioned processor specific function as a part of the cpu_specific/c...
Definition: Decl.cpp:2928
Defines the Linkage enumeration and various utility functions.
static TypeAliasDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4556
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:827
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1908
ArrayRef< SourceLocation > getIdentifierLocs() const
Retrieves the locations of each of the identifiers that make up the complete module name in the impor...
Definition: Decl.cpp:4657
bool needsCleanup() const
Returns whether the object performed allocations.
Definition: APValue.cpp:257
SourceRange getExceptionSpecSourceRange() const
Attempt to compute an informative source range covering the function exception specification, if any.
Definition: Decl.cpp:3186
FunctionDecl * getInstantiatedFromMemberFunction() const
If this function is an instantiation of a member function of a class template specialization, retrieves the function from which it was instantiated.
Definition: Decl.cpp:3310
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI)
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4013
Represents a linkage specification.
Definition: DeclCXX.h:2822
static ParmVarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:2534
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1755
CXXRecordDecl * getTemplatedDecl() const
Get the underlying class declarations of the template.
LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage=false)
Definition: Decl.cpp:1296
MemberSpecializationInfo * getMemberSpecializationInfo() const
If this function is an instantiation of a member function of a class template specialization, retrieves the member specialization information.
Definition: Decl.cpp:3317
Decl * getPrimaryMergedDecl(Decl *D)
Definition: ASTContext.h:980
void setCachedLinkage(Linkage L) const
Definition: DeclBase.h:396
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, bool isConstexprSpecified=false)
Definition: Decl.h:1854
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:876
void setHasInheritedPrototype(bool P=true)
State that this function inherited its prototype from a previous declaration.
Definition: Decl.h:2068
Defines the clang::Visibility enumeration and various utility functions.
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3433
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:4382
NodeId Parent
Definition: ASTDiff.cpp:192
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:2004
bool isInExternCContext() const
Determines whether this variable&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2008
static ImportDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef< SourceLocation > IdentifierLocs)
Create a new module import declaration.
Definition: Decl.cpp:4633
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1906
bool hasAttr() const
Definition: DeclBase.h:537
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1609