clang  9.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "llvm/ADT/APSInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/None.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstring>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <type_traits>
72 
73 using namespace clang;
74 
76  return D->getASTContext().getPrimaryMergedDecl(D);
77 }
78 
79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
80  SourceLocation Loc = this->Loc;
81  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
82  if (Loc.isValid()) {
83  Loc.print(OS, Context.getSourceManager());
84  OS << ": ";
85  }
86  OS << Message;
87 
88  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
89  OS << " '";
90  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
91  OS << "'";
92  }
93 
94  OS << '\n';
95 }
96 
97 // Defined here so that it can be inlined into its direct callers.
98 bool Decl::isOutOfLine() const {
99  return !getLexicalDeclContext()->Equals(getDeclContext());
100 }
101 
102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
103  : Decl(TranslationUnit, nullptr, SourceLocation()),
104  DeclContext(TranslationUnit), Ctx(ctx) {}
105 
106 //===----------------------------------------------------------------------===//
107 // NamedDecl Implementation
108 //===----------------------------------------------------------------------===//
109 
110 // Visibility rules aren't rigorously externally specified, but here
111 // are the basic principles behind what we implement:
112 //
113 // 1. An explicit visibility attribute is generally a direct expression
114 // of the user's intent and should be honored. Only the innermost
115 // visibility attribute applies. If no visibility attribute applies,
116 // global visibility settings are considered.
117 //
118 // 2. There is one caveat to the above: on or in a template pattern,
119 // an explicit visibility attribute is just a default rule, and
120 // visibility can be decreased by the visibility of template
121 // arguments. But this, too, has an exception: an attribute on an
122 // explicit specialization or instantiation causes all the visibility
123 // restrictions of the template arguments to be ignored.
124 //
125 // 3. A variable that does not otherwise have explicit visibility can
126 // be restricted by the visibility of its type.
127 //
128 // 4. A visibility restriction is explicit if it comes from an
129 // attribute (or something like it), not a global visibility setting.
130 // When emitting a reference to an external symbol, visibility
131 // restrictions are ignored unless they are explicit.
132 //
133 // 5. When computing the visibility of a non-type, including a
134 // non-type member of a class, only non-type visibility restrictions
135 // are considered: the 'visibility' attribute, global value-visibility
136 // settings, and a few special cases like __private_extern.
137 //
138 // 6. When computing the visibility of a type, including a type member
139 // of a class, only type visibility restrictions are considered:
140 // the 'type_visibility' attribute and global type-visibility settings.
141 // However, a 'visibility' attribute counts as a 'type_visibility'
142 // attribute on any declaration that only has the former.
143 //
144 // The visibility of a "secondary" entity, like a template argument,
145 // is computed using the kind of that entity, not the kind of the
146 // primary entity for which we are computing visibility. For example,
147 // the visibility of a specialization of either of these templates:
148 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
149 // template <class T, bool (&compare)(T, X)> class matcher;
150 // is restricted according to the type visibility of the argument 'T',
151 // the type visibility of 'bool(&)(T,X)', and the value visibility of
152 // the argument function 'compare'. That 'has_match' is a value
153 // and 'matcher' is a type only matters when looking for attributes
154 // and settings from the immediate context.
155 
156 /// Does this computation kind permit us to consider additional
157 /// visibility settings from attributes and the like?
159  return computation.IgnoreExplicitVisibility;
160 }
161 
162 /// Given an LVComputationKind, return one of the same type/value sort
163 /// that records that it already has explicit visibility.
164 static LVComputationKind
166  Kind.IgnoreExplicitVisibility = true;
167  return Kind;
168 }
169 
172  assert(!kind.IgnoreExplicitVisibility &&
173  "asking for explicit visibility when we shouldn't be");
175 }
176 
177 /// Is the given declaration a "type" or a "value" for the purposes of
178 /// visibility computation?
179 static bool usesTypeVisibility(const NamedDecl *D) {
180  return isa<TypeDecl>(D) ||
181  isa<ClassTemplateDecl>(D) ||
182  isa<ObjCInterfaceDecl>(D);
183 }
184 
185 /// Does the given declaration have member specialization information,
186 /// and if so, is it an explicit specialization?
187 template <class T> static typename
188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190  if (const MemberSpecializationInfo *member =
191  D->getMemberSpecializationInfo()) {
192  return member->isExplicitSpecialization();
193  }
194  return false;
195 }
196 
197 /// For templates, this question is easier: a member template can't be
198 /// explicitly instantiated, so there's a single bit indicating whether
199 /// or not this is an explicit member specialization.
201  return D->isMemberSpecialization();
202 }
203 
204 /// Given a visibility attribute, return the explicit visibility
205 /// associated with it.
206 template <class T>
207 static Visibility getVisibilityFromAttr(const T *attr) {
208  switch (attr->getVisibility()) {
209  case T::Default:
210  return DefaultVisibility;
211  case T::Hidden:
212  return HiddenVisibility;
213  case T::Protected:
214  return ProtectedVisibility;
215  }
216  llvm_unreachable("bad visibility kind");
217 }
218 
219 /// Return the explicit visibility of the given declaration.
222  // If we're ultimately computing the visibility of a type, look for
223  // a 'type_visibility' attribute before looking for 'visibility'.
224  if (kind == NamedDecl::VisibilityForType) {
225  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
226  return getVisibilityFromAttr(A);
227  }
228  }
229 
230  // If this declaration has an explicit visibility attribute, use it.
231  if (const auto *A = D->getAttr<VisibilityAttr>()) {
232  return getVisibilityFromAttr(A);
233  }
234 
235  return None;
236 }
237 
238 LinkageInfo LinkageComputer::getLVForType(const Type &T,
239  LVComputationKind computation) {
240  if (computation.IgnoreAllVisibility)
241  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
242  return getTypeLinkageAndVisibility(&T);
243 }
244 
245 /// Get the most restrictive linkage for the types in the given
246 /// template parameter list. For visibility purposes, template
247 /// parameters are part of the signature of a template.
248 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
249  const TemplateParameterList *Params, LVComputationKind computation) {
250  LinkageInfo LV;
251  for (const NamedDecl *P : *Params) {
252  // Template type parameters are the most common and never
253  // contribute to visibility, pack or not.
254  if (isa<TemplateTypeParmDecl>(P))
255  continue;
256 
257  // Non-type template parameters can be restricted by the value type, e.g.
258  // template <enum X> class A { ... };
259  // We have to be careful here, though, because we can be dealing with
260  // dependent types.
261  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
262  // Handle the non-pack case first.
263  if (!NTTP->isExpandedParameterPack()) {
264  if (!NTTP->getType()->isDependentType()) {
265  LV.merge(getLVForType(*NTTP->getType(), computation));
266  }
267  continue;
268  }
269 
270  // Look at all the types in an expanded pack.
271  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
272  QualType type = NTTP->getExpansionType(i);
273  if (!type->isDependentType())
274  LV.merge(getTypeLinkageAndVisibility(type));
275  }
276  continue;
277  }
278 
279  // Template template parameters can be restricted by their
280  // template parameters, recursively.
281  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
282 
283  // Handle the non-pack case first.
284  if (!TTP->isExpandedParameterPack()) {
285  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
286  computation));
287  continue;
288  }
289 
290  // Look at all expansions in an expanded pack.
291  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
292  i != n; ++i) {
293  LV.merge(getLVForTemplateParameterList(
294  TTP->getExpansionTemplateParameters(i), computation));
295  }
296  }
297 
298  return LV;
299 }
300 
301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
302  const Decl *Ret = nullptr;
303  const DeclContext *DC = D->getDeclContext();
304  while (DC->getDeclKind() != Decl::TranslationUnit) {
305  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
306  Ret = cast<Decl>(DC);
307  DC = DC->getParent();
308  }
309  return Ret;
310 }
311 
312 /// Get the most restrictive linkage for the types and
313 /// declarations in the given template argument list.
314 ///
315 /// Note that we don't take an LVComputationKind because we always
316 /// want to honor the visibility of template arguments in the same way.
318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
319  LVComputationKind computation) {
320  LinkageInfo LV;
321 
322  for (const TemplateArgument &Arg : Args) {
323  switch (Arg.getKind()) {
327  continue;
328 
330  LV.merge(getLVForType(*Arg.getAsType(), computation));
331  continue;
332 
334  const NamedDecl *ND = Arg.getAsDecl();
335  assert(!usesTypeVisibility(ND));
336  LV.merge(getLVForDecl(ND, computation));
337  continue;
338  }
339 
341  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
342  continue;
343 
346  if (TemplateDecl *Template =
347  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
348  LV.merge(getLVForDecl(Template, computation));
349  continue;
350 
352  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
353  continue;
354  }
355  llvm_unreachable("bad template argument kind");
356  }
357 
358  return LV;
359 }
360 
362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
363  LVComputationKind computation) {
364  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
365 }
366 
368  const FunctionTemplateSpecializationInfo *specInfo) {
369  // Include visibility from the template parameters and arguments
370  // only if this is not an explicit instantiation or specialization
371  // with direct explicit visibility. (Implicit instantiations won't
372  // have a direct attribute.)
374  return true;
375 
376  return !fn->hasAttr<VisibilityAttr>();
377 }
378 
379 /// Merge in template-related linkage and visibility for the given
380 /// function template specialization.
381 ///
382 /// We don't need a computation kind here because we can assume
383 /// LVForValue.
384 ///
385 /// \param[out] LV the computation to use for the parent
386 void LinkageComputer::mergeTemplateLV(
387  LinkageInfo &LV, const FunctionDecl *fn,
388  const FunctionTemplateSpecializationInfo *specInfo,
389  LVComputationKind computation) {
390  bool considerVisibility =
391  shouldConsiderTemplateVisibility(fn, specInfo);
392 
393  // Merge information from the template parameters.
394  FunctionTemplateDecl *temp = specInfo->getTemplate();
395  LinkageInfo tempLV =
396  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
397  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
398 
399  // Merge information from the template arguments.
400  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
401  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
402  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
403 }
404 
405 /// Does the given declaration have a direct visibility attribute
406 /// that would match the given rules?
408  LVComputationKind computation) {
409  if (computation.IgnoreAllVisibility)
410  return false;
411 
412  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
413  D->hasAttr<VisibilityAttr>();
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
420  LVComputationKind computation) {
421  // Include visibility from the template parameters and arguments
422  // only if this is not an explicit instantiation or specialization
423  // with direct explicit visibility (and note that implicit
424  // instantiations won't have a direct attribute).
425  //
426  // Furthermore, we want to ignore template parameters and arguments
427  // for an explicit specialization when computing the visibility of a
428  // member thereof with explicit visibility.
429  //
430  // This is a bit complex; let's unpack it.
431  //
432  // An explicit class specialization is an independent, top-level
433  // declaration. As such, if it or any of its members has an
434  // explicit visibility attribute, that must directly express the
435  // user's intent, and we should honor it. The same logic applies to
436  // an explicit instantiation of a member of such a thing.
437 
438  // Fast path: if this is not an explicit instantiation or
439  // specialization, we always want to consider template-related
440  // visibility restrictions.
442  return true;
443 
444  // This is the 'member thereof' check.
445  if (spec->isExplicitSpecialization() &&
446  hasExplicitVisibilityAlready(computation))
447  return false;
448 
449  return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
454 void LinkageComputer::mergeTemplateLV(
456  LVComputationKind computation) {
457  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459  // Merge information from the template parameters, but ignore
460  // visibility if we're only considering template arguments.
461 
463  LinkageInfo tempLV =
464  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465  LV.mergeMaybeWithVisibility(tempLV,
466  considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468  // Merge information from the template arguments. We ignore
469  // template-argument visibility if we've got an explicit
470  // instantiation with a visibility attribute.
471  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473  if (considerVisibility)
474  LV.mergeVisibility(argsLV);
475  LV.mergeExternalVisibility(argsLV);
476 }
477 
478 /// Should we consider visibility associated with the template
479 /// arguments and parameters of the given variable template
480 /// specialization? As usual, follow class template specialization
481 /// logic up to initialization.
483  const VarTemplateSpecializationDecl *spec,
484  LVComputationKind computation) {
485  // Include visibility from the template parameters and arguments
486  // only if this is not an explicit instantiation or specialization
487  // with direct explicit visibility (and note that implicit
488  // instantiations won't have a direct attribute).
490  return true;
491 
492  // An explicit variable specialization is an independent, top-level
493  // declaration. As such, if it has an explicit visibility attribute,
494  // that must directly express the user's intent, and we should honor
495  // it.
496  if (spec->isExplicitSpecialization() &&
497  hasExplicitVisibilityAlready(computation))
498  return false;
499 
500  return !hasDirectVisibilityAttribute(spec, computation);
501 }
502 
503 /// Merge in template-related linkage and visibility for the given
504 /// variable template specialization. As usual, follow class template
505 /// specialization logic up to initialization.
506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
507  const VarTemplateSpecializationDecl *spec,
508  LVComputationKind computation) {
509  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
510 
511  // Merge information from the template parameters, but ignore
512  // visibility if we're only considering template arguments.
513 
514  VarTemplateDecl *temp = spec->getSpecializedTemplate();
515  LinkageInfo tempLV =
516  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
517  LV.mergeMaybeWithVisibility(tempLV,
518  considerVisibility && !hasExplicitVisibilityAlready(computation));
519 
520  // Merge information from the template arguments. We ignore
521  // template-argument visibility if we've got an explicit
522  // instantiation with a visibility attribute.
523  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
524  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
525  if (considerVisibility)
526  LV.mergeVisibility(argsLV);
527  LV.mergeExternalVisibility(argsLV);
528 }
529 
530 static bool useInlineVisibilityHidden(const NamedDecl *D) {
531  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
532  const LangOptions &Opts = D->getASTContext().getLangOpts();
533  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
534  return false;
535 
536  const auto *FD = dyn_cast<FunctionDecl>(D);
537  if (!FD)
538  return false;
539 
542  = FD->getTemplateSpecializationInfo()) {
543  TSK = spec->getTemplateSpecializationKind();
544  } else if (MemberSpecializationInfo *MSI =
545  FD->getMemberSpecializationInfo()) {
546  TSK = MSI->getTemplateSpecializationKind();
547  }
548 
549  const FunctionDecl *Def = nullptr;
550  // InlineVisibilityHidden only applies to definitions, and
551  // isInlined() only gives meaningful answers on definitions
552  // anyway.
553  return TSK != TSK_ExplicitInstantiationDeclaration &&
555  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
556 }
557 
558 template <typename T> static bool isFirstInExternCContext(T *D) {
559  const T *First = D->getFirstDecl();
560  return First->isInExternCContext();
561 }
562 
563 static bool isSingleLineLanguageLinkage(const Decl &D) {
564  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
565  if (!SD->hasBraces())
566  return true;
567  return false;
568 }
569 
570 /// Determine whether D is declared in the purview of a named module.
571 static bool isInModulePurview(const NamedDecl *D) {
572  if (auto *M = D->getOwningModule())
573  return M->isModulePurview();
574  return false;
575 }
576 
578  // FIXME: Handle isModulePrivate.
579  switch (D->getModuleOwnershipKind()) {
582  return false;
585  return isInModulePurview(D);
586  }
587  llvm_unreachable("unexpected module ownership kind");
588 }
589 
591  // Internal linkage declarations within a module interface unit are modeled
592  // as "module-internal linkage", which means that they have internal linkage
593  // formally but can be indirectly accessed from outside the module via inline
594  // functions and templates defined within the module.
595  if (isInModulePurview(D))
597 
598  return LinkageInfo::internal();
599 }
600 
602  // C++ Modules TS [basic.link]/6.8:
603  // - A name declared at namespace scope that does not have internal linkage
604  // by the previous rules and that is introduced by a non-exported
605  // declaration has module linkage.
607  cast<NamedDecl>(D->getCanonicalDecl())))
609 
610  return LinkageInfo::external();
611 }
612 
614  if (auto *TD = dyn_cast<TemplateDecl>(D))
615  D = TD->getTemplatedDecl();
616  if (D) {
617  if (auto *VD = dyn_cast<VarDecl>(D))
618  return VD->getStorageClass();
619  if (auto *FD = dyn_cast<FunctionDecl>(D))
620  return FD->getStorageClass();
621  }
622  return SC_None;
623 }
624 
626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
627  LVComputationKind computation,
628  bool IgnoreVarTypeLinkage) {
629  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
630  "Not a name having namespace scope");
631  ASTContext &Context = D->getASTContext();
632 
633  // C++ [basic.link]p3:
634  // A name having namespace scope (3.3.6) has internal linkage if it
635  // is the name of
636 
638  // - a variable, variable template, function, or function template
639  // that is explicitly declared static; or
640  // (This bullet corresponds to C99 6.2.2p3.)
641  return getInternalLinkageFor(D);
642  }
643 
644  if (const auto *Var = dyn_cast<VarDecl>(D)) {
645  // - a non-template variable of non-volatile const-qualified type, unless
646  // - it is explicitly declared extern, or
647  // - it is inline or exported, or
648  // - it was previously declared and the prior declaration did not have
649  // internal linkage
650  // (There is no equivalent in C99.)
651  if (Context.getLangOpts().CPlusPlus &&
652  Var->getType().isConstQualified() &&
653  !Var->getType().isVolatileQualified() &&
654  !Var->isInline() &&
656  !isa<VarTemplateSpecializationDecl>(Var) &&
657  !Var->getDescribedVarTemplate()) {
658  const VarDecl *PrevVar = Var->getPreviousDecl();
659  if (PrevVar)
660  return getLVForDecl(PrevVar, computation);
661 
662  if (Var->getStorageClass() != SC_Extern &&
663  Var->getStorageClass() != SC_PrivateExtern &&
665  return getInternalLinkageFor(Var);
666  }
667 
668  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
669  PrevVar = PrevVar->getPreviousDecl()) {
670  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
671  Var->getStorageClass() == SC_None)
672  return getDeclLinkageAndVisibility(PrevVar);
673  // Explicitly declared static.
674  if (PrevVar->getStorageClass() == SC_Static)
675  return getInternalLinkageFor(Var);
676  }
677  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
678  // - a data member of an anonymous union.
679  const VarDecl *VD = IFD->getVarDecl();
680  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
681  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
682  }
683  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
684 
685  // FIXME: This gives internal linkage to names that should have no linkage
686  // (those not covered by [basic.link]p6).
687  if (D->isInAnonymousNamespace()) {
688  const auto *Var = dyn_cast<VarDecl>(D);
689  const auto *Func = dyn_cast<FunctionDecl>(D);
690  // FIXME: The check for extern "C" here is not justified by the standard
691  // wording, but we retain it from the pre-DR1113 model to avoid breaking
692  // code.
693  //
694  // C++11 [basic.link]p4:
695  // An unnamed namespace or a namespace declared directly or indirectly
696  // within an unnamed namespace has internal linkage.
697  if ((!Var || !isFirstInExternCContext(Var)) &&
698  (!Func || !isFirstInExternCContext(Func)))
699  return getInternalLinkageFor(D);
700  }
701 
702  // Set up the defaults.
703 
704  // C99 6.2.2p5:
705  // If the declaration of an identifier for an object has file
706  // scope and no storage-class specifier, its linkage is
707  // external.
709 
710  if (!hasExplicitVisibilityAlready(computation)) {
711  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
712  LV.mergeVisibility(*Vis, true);
713  } else {
714  // If we're declared in a namespace with a visibility attribute,
715  // use that namespace's visibility, and it still counts as explicit.
716  for (const DeclContext *DC = D->getDeclContext();
717  !isa<TranslationUnitDecl>(DC);
718  DC = DC->getParent()) {
719  const auto *ND = dyn_cast<NamespaceDecl>(DC);
720  if (!ND) continue;
721  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
722  LV.mergeVisibility(*Vis, true);
723  break;
724  }
725  }
726  }
727 
728  // Add in global settings if the above didn't give us direct visibility.
729  if (!LV.isVisibilityExplicit()) {
730  // Use global type/value visibility as appropriate.
731  Visibility globalVisibility =
732  computation.isValueVisibility()
733  ? Context.getLangOpts().getValueVisibilityMode()
734  : Context.getLangOpts().getTypeVisibilityMode();
735  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
736 
737  // If we're paying attention to global visibility, apply
738  // -finline-visibility-hidden if this is an inline method.
740  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
741  }
742  }
743 
744  // C++ [basic.link]p4:
745 
746  // A name having namespace scope that has not been given internal linkage
747  // above and that is the name of
748  // [...bullets...]
749  // has its linkage determined as follows:
750  // - if the enclosing namespace has internal linkage, the name has
751  // internal linkage; [handled above]
752  // - otherwise, if the declaration of the name is attached to a named
753  // module and is not exported, the name has module linkage;
754  // - otherwise, the name has external linkage.
755  // LV is currently set up to handle the last two bullets.
756  //
757  // The bullets are:
758 
759  // - a variable; or
760  if (const auto *Var = dyn_cast<VarDecl>(D)) {
761  // GCC applies the following optimization to variables and static
762  // data members, but not to functions:
763  //
764  // Modify the variable's LV by the LV of its type unless this is
765  // C or extern "C". This follows from [basic.link]p9:
766  // A type without linkage shall not be used as the type of a
767  // variable or function with external linkage unless
768  // - the entity has C language linkage, or
769  // - the entity is declared within an unnamed namespace, or
770  // - the entity is not used or is defined in the same
771  // translation unit.
772  // and [basic.link]p10:
773  // ...the types specified by all declarations referring to a
774  // given variable or function shall be identical...
775  // C does not have an equivalent rule.
776  //
777  // Ignore this if we've got an explicit attribute; the user
778  // probably knows what they're doing.
779  //
780  // Note that we don't want to make the variable non-external
781  // because of this, but unique-external linkage suits us.
782  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
783  !IgnoreVarTypeLinkage) {
784  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
785  if (!isExternallyVisible(TypeLV.getLinkage()))
787  if (!LV.isVisibilityExplicit())
788  LV.mergeVisibility(TypeLV);
789  }
790 
791  if (Var->getStorageClass() == SC_PrivateExtern)
793 
794  // Note that Sema::MergeVarDecl already takes care of implementing
795  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
796  // to do it here.
797 
798  // As per function and class template specializations (below),
799  // consider LV for the template and template arguments. We're at file
800  // scope, so we do not need to worry about nested specializations.
801  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
802  mergeTemplateLV(LV, spec, computation);
803  }
804 
805  // - a function; or
806  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
807  // In theory, we can modify the function's LV by the LV of its
808  // type unless it has C linkage (see comment above about variables
809  // for justification). In practice, GCC doesn't do this, so it's
810  // just too painful to make work.
811 
812  if (Function->getStorageClass() == SC_PrivateExtern)
814 
815  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
816  // merging storage classes and visibility attributes, so we don't have to
817  // look at previous decls in here.
818 
819  // In C++, then if the type of the function uses a type with
820  // unique-external linkage, it's not legally usable from outside
821  // this translation unit. However, we should use the C linkage
822  // rules instead for extern "C" declarations.
823  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
824  // Only look at the type-as-written. Otherwise, deducing the return type
825  // of a function could change its linkage.
826  QualType TypeAsWritten = Function->getType();
827  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
828  TypeAsWritten = TSI->getType();
829  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831  }
832 
833  // Consider LV from the template and the template arguments.
834  // We're at file scope, so we do not need to worry about nested
835  // specializations.
837  = Function->getTemplateSpecializationInfo()) {
838  mergeTemplateLV(LV, Function, specInfo, computation);
839  }
840 
841  // - a named class (Clause 9), or an unnamed class defined in a
842  // typedef declaration in which the class has the typedef name
843  // for linkage purposes (7.1.3); or
844  // - a named enumeration (7.2), or an unnamed enumeration
845  // defined in a typedef declaration in which the enumeration
846  // has the typedef name for linkage purposes (7.1.3); or
847  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
848  // Unnamed tags have no linkage.
849  if (!Tag->hasNameForLinkage())
850  return LinkageInfo::none();
851 
852  // If this is a class template specialization, consider the
853  // linkage of the template and template arguments. We're at file
854  // scope, so we do not need to worry about nested specializations.
855  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
856  mergeTemplateLV(LV, spec, computation);
857  }
858 
859  // FIXME: This is not part of the C++ standard any more.
860  // - an enumerator belonging to an enumeration with external linkage; or
861  } else if (isa<EnumConstantDecl>(D)) {
862  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
863  computation);
864  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
865  return LinkageInfo::none();
866  LV.merge(EnumLV);
867 
868  // - a template
869  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
870  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
871  LinkageInfo tempLV =
872  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
873  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
874 
875  // An unnamed namespace or a namespace declared directly or indirectly
876  // within an unnamed namespace has internal linkage. All other namespaces
877  // have external linkage.
878  //
879  // We handled names in anonymous namespaces above.
880  } else if (isa<NamespaceDecl>(D)) {
881  return LV;
882 
883  // By extension, we assign external linkage to Objective-C
884  // interfaces.
885  } else if (isa<ObjCInterfaceDecl>(D)) {
886  // fallout
887 
888  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
889  // A typedef declaration has linkage if it gives a type a name for
890  // linkage purposes.
891  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
892  return LinkageInfo::none();
893 
894  // Everything not covered here has no linkage.
895  } else {
896  return LinkageInfo::none();
897  }
898 
899  // If we ended up with non-externally-visible linkage, visibility should
900  // always be default.
901  if (!isExternallyVisible(LV.getLinkage()))
902  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
903 
904  return LV;
905 }
906 
908 LinkageComputer::getLVForClassMember(const NamedDecl *D,
909  LVComputationKind computation,
910  bool IgnoreVarTypeLinkage) {
911  // Only certain class members have linkage. Note that fields don't
912  // really have linkage, but it's convenient to say they do for the
913  // purposes of calculating linkage of pointer-to-data-member
914  // template arguments.
915  //
916  // Templates also don't officially have linkage, but since we ignore
917  // the C++ standard and look at template arguments when determining
918  // linkage and visibility of a template specialization, we might hit
919  // a template template argument that way. If we do, we need to
920  // consider its linkage.
921  if (!(isa<CXXMethodDecl>(D) ||
922  isa<VarDecl>(D) ||
923  isa<FieldDecl>(D) ||
924  isa<IndirectFieldDecl>(D) ||
925  isa<TagDecl>(D) ||
926  isa<TemplateDecl>(D)))
927  return LinkageInfo::none();
928 
929  LinkageInfo LV;
930 
931  // If we have an explicit visibility attribute, merge that in.
932  if (!hasExplicitVisibilityAlready(computation)) {
933  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
934  LV.mergeVisibility(*Vis, true);
935  // If we're paying attention to global visibility, apply
936  // -finline-visibility-hidden if this is an inline method.
937  //
938  // Note that we do this before merging information about
939  // the class visibility.
941  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
942  }
943 
944  // If this class member has an explicit visibility attribute, the only
945  // thing that can change its visibility is the template arguments, so
946  // only look for them when processing the class.
947  LVComputationKind classComputation = computation;
948  if (LV.isVisibilityExplicit())
949  classComputation = withExplicitVisibilityAlready(computation);
950 
951  LinkageInfo classLV =
952  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
953  // The member has the same linkage as the class. If that's not externally
954  // visible, we don't need to compute anything about the linkage.
955  // FIXME: If we're only computing linkage, can we bail out here?
956  if (!isExternallyVisible(classLV.getLinkage()))
957  return classLV;
958 
959 
960  // Otherwise, don't merge in classLV yet, because in certain cases
961  // we need to completely ignore the visibility from it.
962 
963  // Specifically, if this decl exists and has an explicit attribute.
964  const NamedDecl *explicitSpecSuppressor = nullptr;
965 
966  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
967  // Only look at the type-as-written. Otherwise, deducing the return type
968  // of a function could change its linkage.
969  QualType TypeAsWritten = MD->getType();
970  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
971  TypeAsWritten = TSI->getType();
972  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
974 
975  // If this is a method template specialization, use the linkage for
976  // the template parameters and arguments.
978  = MD->getTemplateSpecializationInfo()) {
979  mergeTemplateLV(LV, MD, spec, computation);
980  if (spec->isExplicitSpecialization()) {
981  explicitSpecSuppressor = MD;
982  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
983  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
984  }
985  } else if (isExplicitMemberSpecialization(MD)) {
986  explicitSpecSuppressor = MD;
987  }
988 
989  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
990  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
991  mergeTemplateLV(LV, spec, computation);
992  if (spec->isExplicitSpecialization()) {
993  explicitSpecSuppressor = spec;
994  } else {
995  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
996  if (isExplicitMemberSpecialization(temp)) {
997  explicitSpecSuppressor = temp->getTemplatedDecl();
998  }
999  }
1000  } else if (isExplicitMemberSpecialization(RD)) {
1001  explicitSpecSuppressor = RD;
1002  }
1003 
1004  // Static data members.
1005  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1006  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1007  mergeTemplateLV(LV, spec, computation);
1008 
1009  // Modify the variable's linkage by its type, but ignore the
1010  // type's visibility unless it's a definition.
1011  if (!IgnoreVarTypeLinkage) {
1012  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1013  // FIXME: If the type's linkage is not externally visible, we can
1014  // give this static data member UniqueExternalLinkage.
1015  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1016  LV.mergeVisibility(typeLV);
1017  LV.mergeExternalVisibility(typeLV);
1018  }
1019 
1021  explicitSpecSuppressor = VD;
1022  }
1023 
1024  // Template members.
1025  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1026  bool considerVisibility =
1027  (!LV.isVisibilityExplicit() &&
1028  !classLV.isVisibilityExplicit() &&
1029  !hasExplicitVisibilityAlready(computation));
1030  LinkageInfo tempLV =
1031  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1032  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1033 
1034  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1035  if (isExplicitMemberSpecialization(redeclTemp)) {
1036  explicitSpecSuppressor = temp->getTemplatedDecl();
1037  }
1038  }
1039  }
1040 
1041  // We should never be looking for an attribute directly on a template.
1042  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1043 
1044  // If this member is an explicit member specialization, and it has
1045  // an explicit attribute, ignore visibility from the parent.
1046  bool considerClassVisibility = true;
1047  if (explicitSpecSuppressor &&
1048  // optimization: hasDVA() is true only with explicit visibility.
1049  LV.isVisibilityExplicit() &&
1050  classLV.getVisibility() != DefaultVisibility &&
1051  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1052  considerClassVisibility = false;
1053  }
1054 
1055  // Finally, merge in information from the class.
1056  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1057  return LV;
1058 }
1059 
1060 void NamedDecl::anchor() {}
1061 
1063  if (!hasCachedLinkage())
1064  return true;
1065 
1066  Linkage L = LinkageComputer{}
1068  .getLinkage();
1069  return L == getCachedLinkage();
1070 }
1071 
1073  StringRef name = getName();
1074  if (name.empty()) return SFF_None;
1075 
1076  if (name.front() == 'C')
1077  if (name == "CFStringCreateWithFormat" ||
1078  name == "CFStringCreateWithFormatAndArguments" ||
1079  name == "CFStringAppendFormat" ||
1080  name == "CFStringAppendFormatAndArguments")
1081  return SFF_CFString;
1082  return SFF_None;
1083 }
1084 
1086  // We don't care about visibility here, so ask for the cheapest
1087  // possible visibility analysis.
1088  return LinkageComputer{}
1090  .getLinkage();
1091 }
1092 
1095 }
1096 
1097 static Optional<Visibility>
1100  bool IsMostRecent) {
1101  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1102 
1103  // Check the declaration itself first.
1104  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1105  return V;
1106 
1107  // If this is a member class of a specialization of a class template
1108  // and the corresponding decl has explicit visibility, use that.
1109  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1110  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1111  if (InstantiatedFrom)
1112  return getVisibilityOf(InstantiatedFrom, kind);
1113  }
1114 
1115  // If there wasn't explicit visibility there, and this is a
1116  // specialization of a class template, check for visibility
1117  // on the pattern.
1118  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1119  // Walk all the template decl till this point to see if there are
1120  // explicit visibility attributes.
1121  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1122  while (TD != nullptr) {
1123  auto Vis = getVisibilityOf(TD, kind);
1124  if (Vis != None)
1125  return Vis;
1126  TD = TD->getPreviousDecl();
1127  }
1128  return None;
1129  }
1130 
1131  // Use the most recent declaration.
1132  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1133  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1134  if (MostRecent != ND)
1135  return getExplicitVisibilityAux(MostRecent, kind, true);
1136  }
1137 
1138  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1139  if (Var->isStaticDataMember()) {
1140  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1141  if (InstantiatedFrom)
1142  return getVisibilityOf(InstantiatedFrom, kind);
1143  }
1144 
1145  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1146  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1147  kind);
1148 
1149  return None;
1150  }
1151  // Also handle function template specializations.
1152  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1153  // If the function is a specialization of a template with an
1154  // explicit visibility attribute, use that.
1155  if (FunctionTemplateSpecializationInfo *templateInfo
1157  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1158  kind);
1159 
1160  // If the function is a member of a specialization of a class template
1161  // and the corresponding decl has explicit visibility, use that.
1162  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1163  if (InstantiatedFrom)
1164  return getVisibilityOf(InstantiatedFrom, kind);
1165 
1166  return None;
1167  }
1168 
1169  // The visibility of a template is stored in the templated decl.
1170  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1171  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1172 
1173  return None;
1174 }
1175 
1178  return getExplicitVisibilityAux(this, kind, false);
1179 }
1180 
1181 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1182  Decl *ContextDecl,
1183  LVComputationKind computation) {
1184  // This lambda has its linkage/visibility determined by its owner.
1185  const NamedDecl *Owner;
1186  if (!ContextDecl)
1187  Owner = dyn_cast<NamedDecl>(DC);
1188  else if (isa<ParmVarDecl>(ContextDecl))
1189  Owner =
1190  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1191  else
1192  Owner = cast<NamedDecl>(ContextDecl);
1193 
1194  if (!Owner)
1195  return LinkageInfo::none();
1196 
1197  // If the owner has a deduced type, we need to skip querying the linkage and
1198  // visibility of that type, because it might involve this closure type. The
1199  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1200  // than NoLinkage when we don't strictly need to, which is benign.
1201  auto *VD = dyn_cast<VarDecl>(Owner);
1202  LinkageInfo OwnerLV =
1203  VD && VD->getType()->getContainedDeducedType()
1204  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1205  : getLVForDecl(Owner, computation);
1206 
1207  // A lambda never formally has linkage. But if the owner is externally
1208  // visible, then the lambda is too. We apply the same rules to blocks.
1209  if (!isExternallyVisible(OwnerLV.getLinkage()))
1210  return LinkageInfo::none();
1211  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1212  OwnerLV.isVisibilityExplicit());
1213 }
1214 
1215 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1216  LVComputationKind computation) {
1217  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1218  if (Function->isInAnonymousNamespace() &&
1219  !isFirstInExternCContext(Function))
1220  return getInternalLinkageFor(Function);
1221 
1222  // This is a "void f();" which got merged with a file static.
1223  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1224  return getInternalLinkageFor(Function);
1225 
1226  LinkageInfo LV;
1227  if (!hasExplicitVisibilityAlready(computation)) {
1228  if (Optional<Visibility> Vis =
1229  getExplicitVisibility(Function, computation))
1230  LV.mergeVisibility(*Vis, true);
1231  }
1232 
1233  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1234  // merging storage classes and visibility attributes, so we don't have to
1235  // look at previous decls in here.
1236 
1237  return LV;
1238  }
1239 
1240  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1241  if (Var->hasExternalStorage()) {
1242  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1243  return getInternalLinkageFor(Var);
1244 
1245  LinkageInfo LV;
1246  if (Var->getStorageClass() == SC_PrivateExtern)
1248  else if (!hasExplicitVisibilityAlready(computation)) {
1249  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1250  LV.mergeVisibility(*Vis, true);
1251  }
1252 
1253  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1254  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1255  if (PrevLV.getLinkage())
1256  LV.setLinkage(PrevLV.getLinkage());
1257  LV.mergeVisibility(PrevLV);
1258  }
1259 
1260  return LV;
1261  }
1262 
1263  if (!Var->isStaticLocal())
1264  return LinkageInfo::none();
1265  }
1266 
1267  ASTContext &Context = D->getASTContext();
1268  if (!Context.getLangOpts().CPlusPlus)
1269  return LinkageInfo::none();
1270 
1271  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1272  if (!OuterD || OuterD->isInvalidDecl())
1273  return LinkageInfo::none();
1274 
1275  LinkageInfo LV;
1276  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1277  if (!BD->getBlockManglingNumber())
1278  return LinkageInfo::none();
1279 
1280  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1281  BD->getBlockManglingContextDecl(), computation);
1282  } else {
1283  const auto *FD = cast<FunctionDecl>(OuterD);
1284  if (!FD->isInlined() &&
1285  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1286  return LinkageInfo::none();
1287 
1288  // If a function is hidden by -fvisibility-inlines-hidden option and
1289  // is not explicitly attributed as a hidden function,
1290  // we should not make static local variables in the function hidden.
1291  LV = getLVForDecl(FD, computation);
1292  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1293  !LV.isVisibilityExplicit()) {
1294  assert(cast<VarDecl>(D)->isStaticLocal());
1295  // If this was an implicitly hidden inline method, check again for
1296  // explicit visibility on the parent class, and use that for static locals
1297  // if present.
1298  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1299  LV = getLVForDecl(MD->getParent(), computation);
1300  if (!LV.isVisibilityExplicit()) {
1301  Visibility globalVisibility =
1302  computation.isValueVisibility()
1303  ? Context.getLangOpts().getValueVisibilityMode()
1304  : Context.getLangOpts().getTypeVisibilityMode();
1305  return LinkageInfo(VisibleNoLinkage, globalVisibility,
1306  /*visibilityExplicit=*/false);
1307  }
1308  }
1309  }
1310  if (!isExternallyVisible(LV.getLinkage()))
1311  return LinkageInfo::none();
1313  LV.isVisibilityExplicit());
1314 }
1315 
1316 static inline const CXXRecordDecl*
1318  const CXXRecordDecl *Ret = Record;
1319  while (Record && Record->isLambda()) {
1320  Ret = Record;
1321  if (!Record->getParent()) break;
1322  // Get the Containing Class of this Lambda Class
1323  Record = dyn_cast_or_null<CXXRecordDecl>(
1324  Record->getParent()->getParent());
1325  }
1326  return Ret;
1327 }
1328 
1330  LVComputationKind computation,
1331  bool IgnoreVarTypeLinkage) {
1332  // Internal_linkage attribute overrides other considerations.
1333  if (D->hasAttr<InternalLinkageAttr>())
1334  return getInternalLinkageFor(D);
1335 
1336  // Objective-C: treat all Objective-C declarations as having external
1337  // linkage.
1338  switch (D->getKind()) {
1339  default:
1340  break;
1341 
1342  // Per C++ [basic.link]p2, only the names of objects, references,
1343  // functions, types, templates, namespaces, and values ever have linkage.
1344  //
1345  // Note that the name of a typedef, namespace alias, using declaration,
1346  // and so on are not the name of the corresponding type, namespace, or
1347  // declaration, so they do *not* have linkage.
1348  case Decl::ImplicitParam:
1349  case Decl::Label:
1350  case Decl::NamespaceAlias:
1351  case Decl::ParmVar:
1352  case Decl::Using:
1353  case Decl::UsingShadow:
1354  case Decl::UsingDirective:
1355  return LinkageInfo::none();
1356 
1357  case Decl::EnumConstant:
1358  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1359  if (D->getASTContext().getLangOpts().CPlusPlus)
1360  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1361  return LinkageInfo::visible_none();
1362 
1363  case Decl::Typedef:
1364  case Decl::TypeAlias:
1365  // A typedef declaration has linkage if it gives a type a name for
1366  // linkage purposes.
1367  if (!cast<TypedefNameDecl>(D)
1368  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1369  return LinkageInfo::none();
1370  break;
1371 
1372  case Decl::TemplateTemplateParm: // count these as external
1373  case Decl::NonTypeTemplateParm:
1374  case Decl::ObjCAtDefsField:
1375  case Decl::ObjCCategory:
1376  case Decl::ObjCCategoryImpl:
1377  case Decl::ObjCCompatibleAlias:
1378  case Decl::ObjCImplementation:
1379  case Decl::ObjCMethod:
1380  case Decl::ObjCProperty:
1381  case Decl::ObjCPropertyImpl:
1382  case Decl::ObjCProtocol:
1383  return getExternalLinkageFor(D);
1384 
1385  case Decl::CXXRecord: {
1386  const auto *Record = cast<CXXRecordDecl>(D);
1387  if (Record->isLambda()) {
1388  if (!Record->getLambdaManglingNumber()) {
1389  // This lambda has no mangling number, so it's internal.
1390  return getInternalLinkageFor(D);
1391  }
1392 
1393  // This lambda has its linkage/visibility determined:
1394  // - either by the outermost lambda if that lambda has no mangling
1395  // number.
1396  // - or by the parent of the outer most lambda
1397  // This prevents infinite recursion in settings such as nested lambdas
1398  // used in NSDMI's, for e.g.
1399  // struct L {
1400  // int t{};
1401  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1402  // };
1403  const CXXRecordDecl *OuterMostLambda =
1405  if (!OuterMostLambda->getLambdaManglingNumber())
1406  return getInternalLinkageFor(D);
1407 
1408  return getLVForClosure(
1409  OuterMostLambda->getDeclContext()->getRedeclContext(),
1410  OuterMostLambda->getLambdaContextDecl(), computation);
1411  }
1412 
1413  break;
1414  }
1415  }
1416 
1417  // Handle linkage for namespace-scope names.
1419  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1420 
1421  // C++ [basic.link]p5:
1422  // In addition, a member function, static data member, a named
1423  // class or enumeration of class scope, or an unnamed class or
1424  // enumeration defined in a class-scope typedef declaration such
1425  // that the class or enumeration has the typedef name for linkage
1426  // purposes (7.1.3), has external linkage if the name of the class
1427  // has external linkage.
1428  if (D->getDeclContext()->isRecord())
1429  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1430 
1431  // C++ [basic.link]p6:
1432  // The name of a function declared in block scope and the name of
1433  // an object declared by a block scope extern declaration have
1434  // linkage. If there is a visible declaration of an entity with
1435  // linkage having the same name and type, ignoring entities
1436  // declared outside the innermost enclosing namespace scope, the
1437  // block scope declaration declares that same entity and receives
1438  // the linkage of the previous declaration. If there is more than
1439  // one such matching entity, the program is ill-formed. Otherwise,
1440  // if no matching entity is found, the block scope entity receives
1441  // external linkage.
1442  if (D->getDeclContext()->isFunctionOrMethod())
1443  return getLVForLocalDecl(D, computation);
1444 
1445  // C++ [basic.link]p6:
1446  // Names not covered by these rules have no linkage.
1447  return LinkageInfo::none();
1448 }
1449 
1450 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1452  LVComputationKind computation) {
1453  // Internal_linkage attribute overrides other considerations.
1454  if (D->hasAttr<InternalLinkageAttr>())
1455  return getInternalLinkageFor(D);
1456 
1457  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1458  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1459 
1460  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1461  return *LI;
1462 
1463  LinkageInfo LV = computeLVForDecl(D, computation);
1464  if (D->hasCachedLinkage())
1465  assert(D->getCachedLinkage() == LV.getLinkage());
1466 
1467  D->setCachedLinkage(LV.getLinkage());
1468  cache(D, computation, LV);
1469 
1470 #ifndef NDEBUG
1471  // In C (because of gnu inline) and in c++ with microsoft extensions an
1472  // static can follow an extern, so we can have two decls with different
1473  // linkages.
1474  const LangOptions &Opts = D->getASTContext().getLangOpts();
1475  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1476  return LV;
1477 
1478  // We have just computed the linkage for this decl. By induction we know
1479  // that all other computed linkages match, check that the one we just
1480  // computed also does.
1481  NamedDecl *Old = nullptr;
1482  for (auto I : D->redecls()) {
1483  auto *T = cast<NamedDecl>(I);
1484  if (T == D)
1485  continue;
1486  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1487  Old = T;
1488  break;
1489  }
1490  }
1491  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1492 #endif
1493 
1494  return LV;
1495 }
1496 
1498  return getLVForDecl(D,
1502 }
1503 
1504 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1505  Module *M = getOwningModule();
1506  if (!M)
1507  return nullptr;
1508 
1509  switch (M->Kind) {
1511  // Module map modules have no special linkage semantics.
1512  return nullptr;
1513 
1515  return M;
1516 
1518  // External linkage declarations in the global module have no owning module
1519  // for linkage purposes. But internal linkage declarations in the global
1520  // module fragment of a particular module are owned by that module for
1521  // linkage purposes.
1522  if (IgnoreLinkage)
1523  return nullptr;
1524  bool InternalLinkage;
1525  if (auto *ND = dyn_cast<NamedDecl>(this))
1526  InternalLinkage = !ND->hasExternalFormalLinkage();
1527  else {
1528  auto *NSD = dyn_cast<NamespaceDecl>(this);
1529  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1530  isInAnonymousNamespace();
1531  }
1532  return InternalLinkage ? M->Parent : nullptr;
1533  }
1534 
1536  // The private module fragment is part of its containing module for linkage
1537  // purposes.
1538  return M->Parent;
1539  }
1540 
1541  llvm_unreachable("unknown module kind");
1542 }
1543 
1544 void NamedDecl::printName(raw_ostream &os) const {
1545  os << Name;
1546 }
1547 
1549  std::string QualName;
1550  llvm::raw_string_ostream OS(QualName);
1551  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1552  return OS.str();
1553 }
1554 
1555 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1556  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1557 }
1558 
1559 void NamedDecl::printQualifiedName(raw_ostream &OS,
1560  const PrintingPolicy &P) const {
1561  const DeclContext *Ctx = getDeclContext();
1562 
1563  // For ObjC methods and properties, look through categories and use the
1564  // interface as context.
1565  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1566  if (auto *ID = MD->getClassInterface())
1567  Ctx = ID;
1568  if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1569  if (auto *MD = PD->getGetterMethodDecl())
1570  if (auto *ID = MD->getClassInterface())
1571  Ctx = ID;
1572  }
1573 
1574  if (Ctx->isFunctionOrMethod()) {
1575  printName(OS);
1576  return;
1577  }
1578 
1579  using ContextsTy = SmallVector<const DeclContext *, 8>;
1580  ContextsTy Contexts;
1581 
1582  // Collect named contexts.
1583  while (Ctx) {
1584  if (isa<NamedDecl>(Ctx))
1585  Contexts.push_back(Ctx);
1586  Ctx = Ctx->getParent();
1587  }
1588 
1589  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1590  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1591  OS << Spec->getName();
1592  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1593  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1594  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1595  if (P.SuppressUnwrittenScope &&
1596  (ND->isAnonymousNamespace() || ND->isInline()))
1597  continue;
1598  if (ND->isAnonymousNamespace()) {
1599  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1600  : "(anonymous namespace)");
1601  }
1602  else
1603  OS << *ND;
1604  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1605  if (!RD->getIdentifier())
1606  OS << "(anonymous " << RD->getKindName() << ')';
1607  else
1608  OS << *RD;
1609  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1610  const FunctionProtoType *FT = nullptr;
1611  if (FD->hasWrittenPrototype())
1612  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1613 
1614  OS << *FD << '(';
1615  if (FT) {
1616  unsigned NumParams = FD->getNumParams();
1617  for (unsigned i = 0; i < NumParams; ++i) {
1618  if (i)
1619  OS << ", ";
1620  OS << FD->getParamDecl(i)->getType().stream(P);
1621  }
1622 
1623  if (FT->isVariadic()) {
1624  if (NumParams > 0)
1625  OS << ", ";
1626  OS << "...";
1627  }
1628  }
1629  OS << ')';
1630  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1631  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1632  // enumerator is declared in the scope that immediately contains
1633  // the enum-specifier. Each scoped enumerator is declared in the
1634  // scope of the enumeration.
1635  // For the case of unscoped enumerator, do not include in the qualified
1636  // name any information about its enum enclosing scope, as its visibility
1637  // is global.
1638  if (ED->isScoped())
1639  OS << *ED;
1640  else
1641  continue;
1642  } else {
1643  OS << *cast<NamedDecl>(DC);
1644  }
1645  OS << "::";
1646  }
1647 
1648  if (getDeclName() || isa<DecompositionDecl>(this))
1649  OS << *this;
1650  else
1651  OS << "(anonymous)";
1652 }
1653 
1654 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1655  const PrintingPolicy &Policy,
1656  bool Qualified) const {
1657  if (Qualified)
1658  printQualifiedName(OS, Policy);
1659  else
1660  printName(OS);
1661 }
1662 
1663 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1664  return true;
1665 }
1666 static bool isRedeclarableImpl(...) { return false; }
1667 static bool isRedeclarable(Decl::Kind K) {
1668  switch (K) {
1669 #define DECL(Type, Base) \
1670  case Decl::Type: \
1671  return isRedeclarableImpl((Type##Decl *)nullptr);
1672 #define ABSTRACT_DECL(DECL)
1673 #include "clang/AST/DeclNodes.inc"
1674  }
1675  llvm_unreachable("unknown decl kind");
1676 }
1677 
1678 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1679  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1680 
1681  // Never replace one imported declaration with another; we need both results
1682  // when re-exporting.
1683  if (OldD->isFromASTFile() && isFromASTFile())
1684  return false;
1685 
1686  // A kind mismatch implies that the declaration is not replaced.
1687  if (OldD->getKind() != getKind())
1688  return false;
1689 
1690  // For method declarations, we never replace. (Why?)
1691  if (isa<ObjCMethodDecl>(this))
1692  return false;
1693 
1694  // For parameters, pick the newer one. This is either an error or (in
1695  // Objective-C) permitted as an extension.
1696  if (isa<ParmVarDecl>(this))
1697  return true;
1698 
1699  // Inline namespaces can give us two declarations with the same
1700  // name and kind in the same scope but different contexts; we should
1701  // keep both declarations in this case.
1702  if (!this->getDeclContext()->getRedeclContext()->Equals(
1703  OldD->getDeclContext()->getRedeclContext()))
1704  return false;
1705 
1706  // Using declarations can be replaced if they import the same name from the
1707  // same context.
1708  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1709  ASTContext &Context = getASTContext();
1710  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1712  cast<UsingDecl>(OldD)->getQualifier());
1713  }
1714  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1715  ASTContext &Context = getASTContext();
1716  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1718  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1719  }
1720 
1721  if (isRedeclarable(getKind())) {
1722  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1723  return false;
1724 
1725  if (IsKnownNewer)
1726  return true;
1727 
1728  // Check whether this is actually newer than OldD. We want to keep the
1729  // newer declaration. This loop will usually only iterate once, because
1730  // OldD is usually the previous declaration.
1731  for (auto D : redecls()) {
1732  if (D == OldD)
1733  break;
1734 
1735  // If we reach the canonical declaration, then OldD is not actually older
1736  // than this one.
1737  //
1738  // FIXME: In this case, we should not add this decl to the lookup table.
1739  if (D->isCanonicalDecl())
1740  return false;
1741  }
1742 
1743  // It's a newer declaration of the same kind of declaration in the same
1744  // scope: we want this decl instead of the existing one.
1745  return true;
1746  }
1747 
1748  // In all other cases, we need to keep both declarations in case they have
1749  // different visibility. Any attempt to use the name will result in an
1750  // ambiguity if more than one is visible.
1751  return false;
1752 }
1753 
1755  return getFormalLinkage() != NoLinkage;
1756 }
1757 
1758 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1759  NamedDecl *ND = this;
1760  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1761  ND = UD->getTargetDecl();
1762 
1763  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1764  return AD->getClassInterface();
1765 
1766  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1767  return AD->getNamespace();
1768 
1769  return ND;
1770 }
1771 
1773  if (!isCXXClassMember())
1774  return false;
1775 
1776  const NamedDecl *D = this;
1777  if (isa<UsingShadowDecl>(D))
1778  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1779 
1780  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1781  return true;
1782  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1783  return MD->isInstance();
1784  return false;
1785 }
1786 
1787 //===----------------------------------------------------------------------===//
1788 // DeclaratorDecl Implementation
1789 //===----------------------------------------------------------------------===//
1790 
1791 template <typename DeclT>
1793  if (decl->getNumTemplateParameterLists() > 0)
1794  return decl->getTemplateParameterList(0)->getTemplateLoc();
1795  else
1796  return decl->getInnerLocStart();
1797 }
1798 
1800  TypeSourceInfo *TSI = getTypeSourceInfo();
1801  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1802  return SourceLocation();
1803 }
1804 
1806  if (QualifierLoc) {
1807  // Make sure the extended decl info is allocated.
1808  if (!hasExtInfo()) {
1809  // Save (non-extended) type source info pointer.
1810  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1811  // Allocate external info struct.
1812  DeclInfo = new (getASTContext()) ExtInfo;
1813  // Restore savedTInfo into (extended) decl info.
1814  getExtInfo()->TInfo = savedTInfo;
1815  }
1816  // Set qualifier info.
1817  getExtInfo()->QualifierLoc = QualifierLoc;
1818  } else {
1819  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1820  if (hasExtInfo()) {
1821  if (getExtInfo()->NumTemplParamLists == 0) {
1822  // Save type source info pointer.
1823  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1824  // Deallocate the extended decl info.
1825  getASTContext().Deallocate(getExtInfo());
1826  // Restore savedTInfo into (non-extended) decl info.
1827  DeclInfo = savedTInfo;
1828  }
1829  else
1830  getExtInfo()->QualifierLoc = QualifierLoc;
1831  }
1832  }
1833 }
1834 
1836  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1837  assert(!TPLists.empty());
1838  // Make sure the extended decl info is allocated.
1839  if (!hasExtInfo()) {
1840  // Save (non-extended) type source info pointer.
1841  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1842  // Allocate external info struct.
1843  DeclInfo = new (getASTContext()) ExtInfo;
1844  // Restore savedTInfo into (extended) decl info.
1845  getExtInfo()->TInfo = savedTInfo;
1846  }
1847  // Set the template parameter lists info.
1848  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1849 }
1850 
1852  return getTemplateOrInnerLocStart(this);
1853 }
1854 
1855 // Helper function: returns true if QT is or contains a type
1856 // having a postfix component.
1857 static bool typeIsPostfix(QualType QT) {
1858  while (true) {
1859  const Type* T = QT.getTypePtr();
1860  switch (T->getTypeClass()) {
1861  default:
1862  return false;
1863  case Type::Pointer:
1864  QT = cast<PointerType>(T)->getPointeeType();
1865  break;
1866  case Type::BlockPointer:
1867  QT = cast<BlockPointerType>(T)->getPointeeType();
1868  break;
1869  case Type::MemberPointer:
1870  QT = cast<MemberPointerType>(T)->getPointeeType();
1871  break;
1872  case Type::LValueReference:
1873  case Type::RValueReference:
1874  QT = cast<ReferenceType>(T)->getPointeeType();
1875  break;
1876  case Type::PackExpansion:
1877  QT = cast<PackExpansionType>(T)->getPattern();
1878  break;
1879  case Type::Paren:
1880  case Type::ConstantArray:
1881  case Type::DependentSizedArray:
1882  case Type::IncompleteArray:
1883  case Type::VariableArray:
1884  case Type::FunctionProto:
1885  case Type::FunctionNoProto:
1886  return true;
1887  }
1888  }
1889 }
1890 
1892  SourceLocation RangeEnd = getLocation();
1893  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1894  // If the declaration has no name or the type extends past the name take the
1895  // end location of the type.
1896  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1897  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1898  }
1899  return SourceRange(getOuterLocStart(), RangeEnd);
1900 }
1901 
1903  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1904  // Free previous template parameters (if any).
1905  if (NumTemplParamLists > 0) {
1906  Context.Deallocate(TemplParamLists);
1907  TemplParamLists = nullptr;
1908  NumTemplParamLists = 0;
1909  }
1910  // Set info on matched template parameter lists (if any).
1911  if (!TPLists.empty()) {
1912  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1913  NumTemplParamLists = TPLists.size();
1914  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1915  }
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // VarDecl Implementation
1920 //===----------------------------------------------------------------------===//
1921 
1923  switch (SC) {
1924  case SC_None: break;
1925  case SC_Auto: return "auto";
1926  case SC_Extern: return "extern";
1927  case SC_PrivateExtern: return "__private_extern__";
1928  case SC_Register: return "register";
1929  case SC_Static: return "static";
1930  }
1931 
1932  llvm_unreachable("Invalid storage class");
1933 }
1934 
1936  SourceLocation StartLoc, SourceLocation IdLoc,
1938  StorageClass SC)
1939  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1940  redeclarable_base(C) {
1941  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1942  "VarDeclBitfields too large!");
1943  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1944  "ParmVarDeclBitfields too large!");
1945  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1946  "NonParmVarDeclBitfields too large!");
1947  AllBits = 0;
1948  VarDeclBits.SClass = SC;
1949  // Everything else is implicitly initialized to false.
1950 }
1951 
1953  SourceLocation StartL, SourceLocation IdL,
1955  StorageClass S) {
1956  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1957 }
1958 
1960  return new (C, ID)
1961  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1962  QualType(), nullptr, SC_None);
1963 }
1964 
1966  assert(isLegalForVariable(SC));
1967  VarDeclBits.SClass = SC;
1968 }
1969 
1971  switch (VarDeclBits.TSCSpec) {
1972  case TSCS_unspecified:
1973  if (!hasAttr<ThreadAttr>() &&
1974  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1975  getASTContext().getTargetInfo().isTLSSupported() &&
1976  hasAttr<OMPThreadPrivateDeclAttr>()))
1977  return TLS_None;
1978  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1980  hasAttr<OMPThreadPrivateDeclAttr>())
1981  ? TLS_Dynamic
1982  : TLS_Static;
1983  case TSCS___thread: // Fall through.
1984  case TSCS__Thread_local:
1985  return TLS_Static;
1986  case TSCS_thread_local:
1987  return TLS_Dynamic;
1988  }
1989  llvm_unreachable("Unknown thread storage class specifier!");
1990 }
1991 
1993  if (const Expr *Init = getInit()) {
1994  SourceLocation InitEnd = Init->getEndLoc();
1995  // If Init is implicit, ignore its source range and fallback on
1996  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1997  if (InitEnd.isValid() && InitEnd != getLocation())
1998  return SourceRange(getOuterLocStart(), InitEnd);
1999  }
2001 }
2002 
2003 template<typename T>
2005  // C++ [dcl.link]p1: All function types, function names with external linkage,
2006  // and variable names with external linkage have a language linkage.
2007  if (!D.hasExternalFormalLinkage())
2008  return NoLanguageLinkage;
2009 
2010  // Language linkage is a C++ concept, but saying that everything else in C has
2011  // C language linkage fits the implementation nicely.
2012  ASTContext &Context = D.getASTContext();
2013  if (!Context.getLangOpts().CPlusPlus)
2014  return CLanguageLinkage;
2015 
2016  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2017  // language linkage of the names of class members and the function type of
2018  // class member functions.
2019  const DeclContext *DC = D.getDeclContext();
2020  if (DC->isRecord())
2021  return CXXLanguageLinkage;
2022 
2023  // If the first decl is in an extern "C" context, any other redeclaration
2024  // will have C language linkage. If the first one is not in an extern "C"
2025  // context, we would have reported an error for any other decl being in one.
2026  if (isFirstInExternCContext(&D))
2027  return CLanguageLinkage;
2028  return CXXLanguageLinkage;
2029 }
2030 
2031 template<typename T>
2032 static bool isDeclExternC(const T &D) {
2033  // Since the context is ignored for class members, they can only have C++
2034  // language linkage or no language linkage.
2035  const DeclContext *DC = D.getDeclContext();
2036  if (DC->isRecord()) {
2037  assert(D.getASTContext().getLangOpts().CPlusPlus);
2038  return false;
2039  }
2040 
2041  return D.getLanguageLinkage() == CLanguageLinkage;
2042 }
2043 
2045  return getDeclLanguageLinkage(*this);
2046 }
2047 
2048 bool VarDecl::isExternC() const {
2049  return isDeclExternC(*this);
2050 }
2051 
2054 }
2055 
2058 }
2059 
2061 
2065  return DeclarationOnly;
2066 
2067  // C++ [basic.def]p2:
2068  // A declaration is a definition unless [...] it contains the 'extern'
2069  // specifier or a linkage-specification and neither an initializer [...],
2070  // it declares a non-inline static data member in a class declaration [...],
2071  // it declares a static data member outside a class definition and the variable
2072  // was defined within the class with the constexpr specifier [...],
2073  // C++1y [temp.expl.spec]p15:
2074  // An explicit specialization of a static data member or an explicit
2075  // specialization of a static data member template is a definition if the
2076  // declaration includes an initializer; otherwise, it is a declaration.
2077  //
2078  // FIXME: How do you declare (but not define) a partial specialization of
2079  // a static data member template outside the containing class?
2080  if (isStaticDataMember()) {
2081  if (isOutOfLine() &&
2082  !(getCanonicalDecl()->isInline() &&
2083  getCanonicalDecl()->isConstexpr()) &&
2084  (hasInit() ||
2085  // If the first declaration is out-of-line, this may be an
2086  // instantiation of an out-of-line partial specialization of a variable
2087  // template for which we have not yet instantiated the initializer.
2092  isa<VarTemplatePartialSpecializationDecl>(this)))
2093  return Definition;
2094  else if (!isOutOfLine() && isInline())
2095  return Definition;
2096  else
2097  return DeclarationOnly;
2098  }
2099  // C99 6.7p5:
2100  // A definition of an identifier is a declaration for that identifier that
2101  // [...] causes storage to be reserved for that object.
2102  // Note: that applies for all non-file-scope objects.
2103  // C99 6.9.2p1:
2104  // If the declaration of an identifier for an object has file scope and an
2105  // initializer, the declaration is an external definition for the identifier
2106  if (hasInit())
2107  return Definition;
2108 
2109  if (hasDefiningAttr())
2110  return Definition;
2111 
2112  if (const auto *SAA = getAttr<SelectAnyAttr>())
2113  if (!SAA->isInherited())
2114  return Definition;
2115 
2116  // A variable template specialization (other than a static data member
2117  // template or an explicit specialization) is a declaration until we
2118  // instantiate its initializer.
2119  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2120  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2121  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2122  !VTSD->IsCompleteDefinition)
2123  return DeclarationOnly;
2124  }
2125 
2126  if (hasExternalStorage())
2127  return DeclarationOnly;
2128 
2129  // [dcl.link] p7:
2130  // A declaration directly contained in a linkage-specification is treated
2131  // as if it contains the extern specifier for the purpose of determining
2132  // the linkage of the declared name and whether it is a definition.
2133  if (isSingleLineLanguageLinkage(*this))
2134  return DeclarationOnly;
2135 
2136  // C99 6.9.2p2:
2137  // A declaration of an object that has file scope without an initializer,
2138  // and without a storage class specifier or the scs 'static', constitutes
2139  // a tentative definition.
2140  // No such thing in C++.
2141  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2142  return TentativeDefinition;
2143 
2144  // What's left is (in C, block-scope) declarations without initializers or
2145  // external storage. These are definitions.
2146  return Definition;
2147 }
2148 
2151  if (Kind != TentativeDefinition)
2152  return nullptr;
2153 
2154  VarDecl *LastTentative = nullptr;
2155  VarDecl *First = getFirstDecl();
2156  for (auto I : First->redecls()) {
2157  Kind = I->isThisDeclarationADefinition();
2158  if (Kind == Definition)
2159  return nullptr;
2160  else if (Kind == TentativeDefinition)
2161  LastTentative = I;
2162  }
2163  return LastTentative;
2164 }
2165 
2167  VarDecl *First = getFirstDecl();
2168  for (auto I : First->redecls()) {
2169  if (I->isThisDeclarationADefinition(C) == Definition)
2170  return I;
2171  }
2172  return nullptr;
2173 }
2174 
2177 
2178  const VarDecl *First = getFirstDecl();
2179  for (auto I : First->redecls()) {
2180  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2181  if (Kind == Definition)
2182  break;
2183  }
2184 
2185  return Kind;
2186 }
2187 
2188 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2189  for (auto I : redecls()) {
2190  if (auto Expr = I->getInit()) {
2191  D = I;
2192  return Expr;
2193  }
2194  }
2195  return nullptr;
2196 }
2197 
2198 bool VarDecl::hasInit() const {
2199  if (auto *P = dyn_cast<ParmVarDecl>(this))
2200  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2201  return false;
2202 
2203  return !Init.isNull();
2204 }
2205 
2207  if (!hasInit())
2208  return nullptr;
2209 
2210  if (auto *S = Init.dyn_cast<Stmt *>())
2211  return cast<Expr>(S);
2212 
2213  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2214 }
2215 
2217  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2218  return &ES->Value;
2219 
2220  return Init.getAddrOfPtr1();
2221 }
2222 
2223 bool VarDecl::isOutOfLine() const {
2224  if (Decl::isOutOfLine())
2225  return true;
2226 
2227  if (!isStaticDataMember())
2228  return false;
2229 
2230  // If this static data member was instantiated from a static data member of
2231  // a class template, check whether that static data member was defined
2232  // out-of-line.
2234  return VD->isOutOfLine();
2235 
2236  return false;
2237 }
2238 
2240  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2241  Eval->~EvaluatedStmt();
2242  getASTContext().Deallocate(Eval);
2243  }
2244 
2245  Init = I;
2246 }
2247 
2249  const LangOptions &Lang = C.getLangOpts();
2250 
2251  if (!Lang.CPlusPlus)
2252  return false;
2253 
2254  // In C++11, any variable of reference type can be used in a constant
2255  // expression if it is initialized by a constant expression.
2256  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2257  return true;
2258 
2259  // Only const objects can be used in constant expressions in C++. C++98 does
2260  // not require the variable to be non-volatile, but we consider this to be a
2261  // defect.
2262  if (!getType().isConstQualified() || getType().isVolatileQualified())
2263  return false;
2264 
2265  // In C++, const, non-volatile variables of integral or enumeration types
2266  // can be used in constant expressions.
2267  if (getType()->isIntegralOrEnumerationType())
2268  return true;
2269 
2270  // Additionally, in C++11, non-volatile constexpr variables can be used in
2271  // constant expressions.
2272  return Lang.CPlusPlus11 && isConstexpr();
2273 }
2274 
2275 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2276 /// form, which contains extra information on the evaluated value of the
2277 /// initializer.
2279  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2280  if (!Eval) {
2281  // Note: EvaluatedStmt contains an APValue, which usually holds
2282  // resources not allocated from the ASTContext. We need to do some
2283  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2284  // where we can detect whether there's anything to clean up or not.
2285  Eval = new (getASTContext()) EvaluatedStmt;
2286  Eval->Value = Init.get<Stmt *>();
2287  Init = Eval;
2288  }
2289  return Eval;
2290 }
2291 
2294  return evaluateValue(Notes);
2295 }
2296 
2298  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2300 
2301  // We only produce notes indicating why an initializer is non-constant the
2302  // first time it is evaluated. FIXME: The notes won't always be emitted the
2303  // first time we try evaluation, so might not be produced at all.
2304  if (Eval->WasEvaluated)
2305  return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2306 
2307  const auto *Init = cast<Expr>(Eval->Value);
2308  assert(!Init->isValueDependent());
2309 
2310  if (Eval->IsEvaluating) {
2311  // FIXME: Produce a diagnostic for self-initialization.
2312  Eval->CheckedICE = true;
2313  Eval->IsICE = false;
2314  return nullptr;
2315  }
2316 
2317  Eval->IsEvaluating = true;
2318 
2319  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2320  this, Notes);
2321 
2322  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2323  // or that it's empty (so that there's nothing to clean up) if evaluation
2324  // failed.
2325  if (!Result)
2326  Eval->Evaluated = APValue();
2327  else if (Eval->Evaluated.needsCleanup())
2329 
2330  Eval->IsEvaluating = false;
2331  Eval->WasEvaluated = true;
2332 
2333  // In C++11, we have determined whether the initializer was a constant
2334  // expression as a side-effect.
2335  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2336  Eval->CheckedICE = true;
2337  Eval->IsICE = Result && Notes.empty();
2338  }
2339 
2340  return Result ? &Eval->Evaluated : nullptr;
2341 }
2342 
2344  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2345  if (Eval->WasEvaluated)
2346  return &Eval->Evaluated;
2347 
2348  return nullptr;
2349 }
2350 
2352  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2353  return Eval->CheckedICE;
2354 
2355  return false;
2356 }
2357 
2358 bool VarDecl::isInitICE() const {
2359  assert(isInitKnownICE() &&
2360  "Check whether we already know that the initializer is an ICE");
2361  return Init.get<EvaluatedStmt *>()->IsICE;
2362 }
2363 
2365  // Initializers of weak variables are never ICEs.
2366  if (isWeak())
2367  return false;
2368 
2370  if (Eval->CheckedICE)
2371  // We have already checked whether this subexpression is an
2372  // integral constant expression.
2373  return Eval->IsICE;
2374 
2375  const auto *Init = cast<Expr>(Eval->Value);
2376  assert(!Init->isValueDependent());
2377 
2378  // In C++11, evaluate the initializer to check whether it's a constant
2379  // expression.
2380  if (getASTContext().getLangOpts().CPlusPlus11) {
2382  evaluateValue(Notes);
2383  return Eval->IsICE;
2384  }
2385 
2386  // It's an ICE whether or not the definition we found is
2387  // out-of-line. See DR 721 and the discussion in Clang PR
2388  // 6206 for details.
2389 
2390  if (Eval->CheckingICE)
2391  return false;
2392  Eval->CheckingICE = true;
2393 
2394  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2395  Eval->CheckingICE = false;
2396  Eval->CheckedICE = true;
2397  return Eval->IsICE;
2398 }
2399 
2400 template<typename DeclT>
2401 static DeclT *getDefinitionOrSelf(DeclT *D) {
2402  assert(D);
2403  if (auto *Def = D->getDefinition())
2404  return Def;
2405  return D;
2406 }
2407 
2409  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2410 }
2411 
2413  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2414 }
2415 
2417  const VarDecl *VD = this;
2418 
2419  // If this is an instantiated member, walk back to the template from which
2420  // it was instantiated.
2422  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2424  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2425  VD = NewVD;
2426  }
2427  }
2428 
2429  // If it's an instantiated variable template specialization, find the
2430  // template or partial specialization from which it was instantiated.
2431  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2432  if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2433  auto From = VDTemplSpec->getInstantiatedFrom();
2434  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2435  while (!VTD->isMemberSpecialization()) {
2436  auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2437  if (!NewVTD)
2438  break;
2439  VTD = NewVTD;
2440  }
2441  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2442  }
2443  if (auto *VTPSD =
2444  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2445  while (!VTPSD->isMemberSpecialization()) {
2446  auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2447  if (!NewVTPSD)
2448  break;
2449  VTPSD = NewVTPSD;
2450  }
2451  return getDefinitionOrSelf<VarDecl>(VTPSD);
2452  }
2453  }
2454  }
2455 
2456  // If this is the pattern of a variable template, find where it was
2457  // instantiated from. FIXME: Is this necessary?
2458  if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2459  while (!VarTemplate->isMemberSpecialization()) {
2460  auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2461  if (!NewVT)
2462  break;
2463  VarTemplate = NewVT;
2464  }
2465 
2466  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2467  }
2468 
2469  if (VD == this)
2470  return nullptr;
2471  return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2472 }
2473 
2476  return cast<VarDecl>(MSI->getInstantiatedFrom());
2477 
2478  return nullptr;
2479 }
2480 
2482  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2483  return Spec->getSpecializationKind();
2484 
2486  return MSI->getTemplateSpecializationKind();
2487 
2488  return TSK_Undeclared;
2489 }
2490 
2494  return MSI->getTemplateSpecializationKind();
2495 
2496  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2497  return Spec->getSpecializationKind();
2498 
2499  return TSK_Undeclared;
2500 }
2501 
2503  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2504  return Spec->getPointOfInstantiation();
2505 
2507  return MSI->getPointOfInstantiation();
2508 
2509  return SourceLocation();
2510 }
2511 
2514  .dyn_cast<VarTemplateDecl *>();
2515 }
2516 
2519 }
2520 
2522  const auto &LangOpts = getASTContext().getLangOpts();
2523  // In CUDA mode without relocatable device code, variables of form 'extern
2524  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2525  // memory pool. These are never undefined variables, even if they appear
2526  // inside of an anon namespace or static function.
2527  //
2528  // With CUDA relocatable device code enabled, these variables don't get
2529  // special handling; they're treated like regular extern variables.
2530  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2531  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2532  isa<IncompleteArrayType>(getType()))
2533  return true;
2534 
2535  return hasDefinition();
2536 }
2537 
2538 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2539  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2540  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2541  !hasAttr<AlwaysDestroyAttr>()));
2542 }
2543 
2545  if (isStaticDataMember())
2546  // FIXME: Remove ?
2547  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2549  .dyn_cast<MemberSpecializationInfo *>();
2550  return nullptr;
2551 }
2552 
2554  SourceLocation PointOfInstantiation) {
2555  assert((isa<VarTemplateSpecializationDecl>(this) ||
2557  "not a variable or static data member template specialization");
2558 
2559  if (VarTemplateSpecializationDecl *Spec =
2560  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2561  Spec->setSpecializationKind(TSK);
2562  if (TSK != TSK_ExplicitSpecialization &&
2563  PointOfInstantiation.isValid() &&
2564  Spec->getPointOfInstantiation().isInvalid()) {
2565  Spec->setPointOfInstantiation(PointOfInstantiation);
2567  L->InstantiationRequested(this);
2568  }
2570  MSI->setTemplateSpecializationKind(TSK);
2571  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2572  MSI->getPointOfInstantiation().isInvalid()) {
2573  MSI->setPointOfInstantiation(PointOfInstantiation);
2575  L->InstantiationRequested(this);
2576  }
2577  }
2578 }
2579 
2580 void
2583  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2584  "Previous template or instantiation?");
2586 }
2587 
2588 //===----------------------------------------------------------------------===//
2589 // ParmVarDecl Implementation
2590 //===----------------------------------------------------------------------===//
2591 
2593  SourceLocation StartLoc,
2595  QualType T, TypeSourceInfo *TInfo,
2596  StorageClass S, Expr *DefArg) {
2597  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2598  S, DefArg);
2599 }
2600 
2603  QualType T = TSI ? TSI->getType() : getType();
2604  if (const auto *DT = dyn_cast<DecayedType>(T))
2605  return DT->getOriginalType();
2606  return T;
2607 }
2608 
2610  return new (C, ID)
2611  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2612  nullptr, QualType(), nullptr, SC_None, nullptr);
2613 }
2614 
2616  if (!hasInheritedDefaultArg()) {
2617  SourceRange ArgRange = getDefaultArgRange();
2618  if (ArgRange.isValid())
2619  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2620  }
2621 
2622  // DeclaratorDecl considers the range of postfix types as overlapping with the
2623  // declaration name, but this is not the case with parameters in ObjC methods.
2624  if (isa<ObjCMethodDecl>(getDeclContext()))
2626 
2628 }
2629 
2631  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2632  assert(!hasUninstantiatedDefaultArg() &&
2633  "Default argument is not yet instantiated!");
2634 
2635  Expr *Arg = getInit();
2636  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2637  return E->getSubExpr();
2638 
2639  return Arg;
2640 }
2641 
2643  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2644  Init = defarg;
2645 }
2646 
2648  switch (ParmVarDeclBits.DefaultArgKind) {
2649  case DAK_None:
2650  case DAK_Unparsed:
2651  // Nothing we can do here.
2652  return SourceRange();
2653 
2654  case DAK_Uninstantiated:
2655  return getUninstantiatedDefaultArg()->getSourceRange();
2656 
2657  case DAK_Normal:
2658  if (const Expr *E = getInit())
2659  return E->getSourceRange();
2660 
2661  // Missing an actual expression, may be invalid.
2662  return SourceRange();
2663  }
2664  llvm_unreachable("Invalid default argument kind.");
2665 }
2666 
2668  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2669  Init = arg;
2670 }
2671 
2673  assert(hasUninstantiatedDefaultArg() &&
2674  "Wrong kind of initialization expression!");
2675  return cast_or_null<Expr>(Init.get<Stmt *>());
2676 }
2677 
2679  // FIXME: We should just return false for DAK_None here once callers are
2680  // prepared for the case that we encountered an invalid default argument and
2681  // were unable to even build an invalid expression.
2682  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2683  !Init.isNull();
2684 }
2685 
2687  return isa<PackExpansionType>(getType());
2688 }
2689 
2690 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2691  getASTContext().setParameterIndex(this, parameterIndex);
2692  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2693 }
2694 
2695 unsigned ParmVarDecl::getParameterIndexLarge() const {
2696  return getASTContext().getParameterIndex(this);
2697 }
2698 
2699 //===----------------------------------------------------------------------===//
2700 // FunctionDecl Implementation
2701 //===----------------------------------------------------------------------===//
2702 
2704  SourceLocation StartLoc,
2705  const DeclarationNameInfo &NameInfo, QualType T,
2706  TypeSourceInfo *TInfo, StorageClass S,
2707  bool isInlineSpecified, bool isConstexprSpecified)
2708  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2709  StartLoc),
2711  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2712  assert(T.isNull() || T->isFunctionType());
2713  FunctionDeclBits.SClass = S;
2715  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2716  FunctionDeclBits.IsVirtualAsWritten = false;
2717  FunctionDeclBits.IsPure = false;
2718  FunctionDeclBits.HasInheritedPrototype = false;
2719  FunctionDeclBits.HasWrittenPrototype = true;
2720  FunctionDeclBits.IsDeleted = false;
2721  FunctionDeclBits.IsTrivial = false;
2722  FunctionDeclBits.IsTrivialForCall = false;
2723  FunctionDeclBits.IsDefaulted = false;
2724  FunctionDeclBits.IsExplicitlyDefaulted = false;
2725  FunctionDeclBits.HasImplicitReturnZero = false;
2726  FunctionDeclBits.IsLateTemplateParsed = false;
2727  FunctionDeclBits.IsConstexpr = isConstexprSpecified;
2728  FunctionDeclBits.InstantiationIsPending = false;
2729  FunctionDeclBits.UsesSEHTry = false;
2730  FunctionDeclBits.HasSkippedBody = false;
2731  FunctionDeclBits.WillHaveBody = false;
2732  FunctionDeclBits.IsMultiVersion = false;
2733  FunctionDeclBits.IsCopyDeductionCandidate = false;
2734  FunctionDeclBits.HasODRHash = false;
2735 }
2736 
2738  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2739  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2740  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2741  if (TemplateArgs)
2742  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2743 }
2744 
2746  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2747  return FT->isVariadic();
2748  return false;
2749 }
2750 
2751 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2752  for (auto I : redecls()) {
2753  if (I->doesThisDeclarationHaveABody()) {
2754  Definition = I;
2755  return true;
2756  }
2757  }
2758 
2759  return false;
2760 }
2761 
2763 {
2764  Stmt *S = getBody();
2765  if (!S) {
2766  // Since we don't have a body for this function, we don't know if it's
2767  // trivial or not.
2768  return false;
2769  }
2770 
2771  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2772  return true;
2773  return false;
2774 }
2775 
2776 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2777  for (auto I : redecls()) {
2778  if (I->isThisDeclarationADefinition()) {
2779  Definition = I;
2780  return true;
2781  }
2782  }
2783 
2784  return false;
2785 }
2786 
2787 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2788  if (!hasBody(Definition))
2789  return nullptr;
2790 
2791  if (Definition->Body)
2792  return Definition->Body.get(getASTContext().getExternalSource());
2793 
2794  return nullptr;
2795 }
2796 
2798  Body = B;
2799  if (B)
2800  EndRangeLoc = B->getEndLoc();
2801 }
2802 
2804  FunctionDeclBits.IsPure = P;
2805  if (P)
2806  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2807  Parent->markedVirtualFunctionPure();
2808 }
2809 
2810 template<std::size_t Len>
2811 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2812  IdentifierInfo *II = ND->getIdentifier();
2813  return II && II->isStr(Str);
2814 }
2815 
2816 bool FunctionDecl::isMain() const {
2817  const TranslationUnitDecl *tunit =
2819  return tunit &&
2820  !tunit->getASTContext().getLangOpts().Freestanding &&
2821  isNamed(this, "main");
2822 }
2823 
2825  const TranslationUnitDecl *TUnit =
2827  if (!TUnit)
2828  return false;
2829 
2830  // Even though we aren't really targeting MSVCRT if we are freestanding,
2831  // semantic analysis for these functions remains the same.
2832 
2833  // MSVCRT entry points only exist on MSVCRT targets.
2834  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2835  return false;
2836 
2837  // Nameless functions like constructors cannot be entry points.
2838  if (!getIdentifier())
2839  return false;
2840 
2841  return llvm::StringSwitch<bool>(getName())
2842  .Cases("main", // an ANSI console app
2843  "wmain", // a Unicode console App
2844  "WinMain", // an ANSI GUI app
2845  "wWinMain", // a Unicode GUI app
2846  "DllMain", // a DLL
2847  true)
2848  .Default(false);
2849 }
2850 
2852  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2853  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2854  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2855  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2856  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2857 
2859  return false;
2860 
2861  const auto *proto = getType()->castAs<FunctionProtoType>();
2862  if (proto->getNumParams() != 2 || proto->isVariadic())
2863  return false;
2864 
2865  ASTContext &Context =
2866  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2867  ->getASTContext();
2868 
2869  // The result type and first argument type are constant across all
2870  // these operators. The second argument must be exactly void*.
2871  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2872 }
2873 
2875  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2876  return false;
2877  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2878  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2879  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2880  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2881  return false;
2882 
2883  if (isa<CXXRecordDecl>(getDeclContext()))
2884  return false;
2885 
2886  // This can only fail for an invalid 'operator new' declaration.
2888  return false;
2889 
2890  const auto *FPT = getType()->castAs<FunctionProtoType>();
2891  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2892  return false;
2893 
2894  // If this is a single-parameter function, it must be a replaceable global
2895  // allocation or deallocation function.
2896  if (FPT->getNumParams() == 1)
2897  return true;
2898 
2899  unsigned Params = 1;
2900  QualType Ty = FPT->getParamType(Params);
2901  ASTContext &Ctx = getASTContext();
2902 
2903  auto Consume = [&] {
2904  ++Params;
2905  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2906  };
2907 
2908  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2909  bool IsSizedDelete = false;
2910  if (Ctx.getLangOpts().SizedDeallocation &&
2911  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2912  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2913  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2914  IsSizedDelete = true;
2915  Consume();
2916  }
2917 
2918  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2919  // new/delete.
2920  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2921  if (IsAligned)
2922  *IsAligned = true;
2923  Consume();
2924  }
2925 
2926  // Finally, if this is not a sized delete, the final parameter can
2927  // be a 'const std::nothrow_t&'.
2928  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2929  Ty = Ty->getPointeeType();
2930  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2931  return false;
2932  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2933  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2934  Consume();
2935  }
2936 
2937  return Params == FPT->getNumParams();
2938 }
2939 
2941  // C++ P0722:
2942  // Within a class C, a single object deallocation function with signature
2943  // (T, std::destroying_delete_t, <more params>)
2944  // is a destroying operator delete.
2945  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2946  getNumParams() < 2)
2947  return false;
2948 
2949  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2950  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2951  RD->getIdentifier()->isStr("destroying_delete_t");
2952 }
2953 
2955  return getDeclLanguageLinkage(*this);
2956 }
2957 
2959  return isDeclExternC(*this);
2960 }
2961 
2963  if (hasAttr<OpenCLKernelAttr>())
2964  return true;
2966 }
2967 
2970 }
2971 
2973  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2974  return Method->isStatic();
2975 
2977  return false;
2978 
2979  for (const DeclContext *DC = getDeclContext();
2980  DC->isNamespace();
2981  DC = DC->getParent()) {
2982  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2983  if (!Namespace->getDeclName())
2984  return false;
2985  break;
2986  }
2987  }
2988 
2989  return true;
2990 }
2991 
2993  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2994  hasAttr<C11NoReturnAttr>())
2995  return true;
2996 
2997  if (auto *FnTy = getType()->getAs<FunctionType>())
2998  return FnTy->getNoReturnAttr();
2999 
3000  return false;
3001 }
3002 
3003 
3005  if (hasAttr<TargetAttr>())
3006  return MultiVersionKind::Target;
3007  if (hasAttr<CPUDispatchAttr>())
3009  if (hasAttr<CPUSpecificAttr>())
3011  return MultiVersionKind::None;
3012 }
3013 
3015  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3016 }
3017 
3019  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3020 }
3021 
3023  return isMultiVersion() && hasAttr<TargetAttr>();
3024 }
3025 
3026 void
3029 
3031  FunctionTemplateDecl *PrevFunTmpl
3032  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3033  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3034  FunTmpl->setPreviousDecl(PrevFunTmpl);
3035  }
3036 
3037  if (PrevDecl && PrevDecl->isInlined())
3038  setImplicitlyInline(true);
3039 }
3040 
3042 
3043 /// Returns a value indicating whether this function corresponds to a builtin
3044 /// function.
3045 ///
3046 /// The function corresponds to a built-in function if it is declared at
3047 /// translation scope or within an extern "C" block and its name matches with
3048 /// the name of a builtin. The returned value will be 0 for functions that do
3049 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3050 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3051 /// value.
3052 ///
3053 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3054 /// functions as their wrapped builtins. This shouldn't be done in general, but
3055 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3056 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3057  if (!getIdentifier())
3058  return 0;
3059 
3060  unsigned BuiltinID = getIdentifier()->getBuiltinID();
3061  if (!BuiltinID)
3062  return 0;
3063 
3064  ASTContext &Context = getASTContext();
3065  if (Context.getLangOpts().CPlusPlus) {
3066  const auto *LinkageDecl =
3068  // In C++, the first declaration of a builtin is always inside an implicit
3069  // extern "C".
3070  // FIXME: A recognised library function may not be directly in an extern "C"
3071  // declaration, for instance "extern "C" { namespace std { decl } }".
3072  if (!LinkageDecl) {
3073  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3074  Context.getTargetInfo().getCXXABI().isMicrosoft())
3075  return Builtin::BI__GetExceptionInfo;
3076  return 0;
3077  }
3078  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3079  return 0;
3080  }
3081 
3082  // If the function is marked "overloadable", it has a different mangled name
3083  // and is not the C library function.
3084  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>())
3085  return 0;
3086 
3087  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3088  return BuiltinID;
3089 
3090  // This function has the name of a known C library
3091  // function. Determine whether it actually refers to the C library
3092  // function or whether it just has the same name.
3093 
3094  // If this is a static function, it's not a builtin.
3095  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3096  return 0;
3097 
3098  // OpenCL v1.2 s6.9.f - The library functions defined in
3099  // the C99 standard headers are not available.
3100  if (Context.getLangOpts().OpenCL &&
3101  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3102  return 0;
3103 
3104  // CUDA does not have device-side standard library. printf and malloc are the
3105  // only special cases that are supported by device-side runtime.
3106  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3107  !hasAttr<CUDAHostAttr>() &&
3108  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3109  return 0;
3110 
3111  return BuiltinID;
3112 }
3113 
3114 /// getNumParams - Return the number of parameters this function must have
3115 /// based on its FunctionType. This is the length of the ParamInfo array
3116 /// after it has been created.
3117 unsigned FunctionDecl::getNumParams() const {
3118  const auto *FPT = getType()->getAs<FunctionProtoType>();
3119  return FPT ? FPT->getNumParams() : 0;
3120 }
3121 
3122 void FunctionDecl::setParams(ASTContext &C,
3123  ArrayRef<ParmVarDecl *> NewParamInfo) {
3124  assert(!ParamInfo && "Already has param info!");
3125  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3126 
3127  // Zero params -> null pointer.
3128  if (!NewParamInfo.empty()) {
3129  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3130  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3131  }
3132 }
3133 
3134 /// getMinRequiredArguments - Returns the minimum number of arguments
3135 /// needed to call this function. This may be fewer than the number of
3136 /// function parameters, if some of the parameters have default
3137 /// arguments (in C++) or are parameter packs (C++11).
3139  if (!getASTContext().getLangOpts().CPlusPlus)
3140  return getNumParams();
3141 
3142  unsigned NumRequiredArgs = 0;
3143  for (auto *Param : parameters())
3144  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3145  ++NumRequiredArgs;
3146  return NumRequiredArgs;
3147 }
3148 
3149 /// The combination of the extern and inline keywords under MSVC forces
3150 /// the function to be required.
3151 ///
3152 /// Note: This function assumes that we will only get called when isInlined()
3153 /// would return true for this FunctionDecl.
3155  assert(isInlined() && "expected to get called on an inlined function!");
3156 
3157  const ASTContext &Context = getASTContext();
3158  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3159  !hasAttr<DLLExportAttr>())
3160  return false;
3161 
3162  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3163  FD = FD->getPreviousDecl())
3164  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3165  return true;
3166 
3167  return false;
3168 }
3169 
3170 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3171  if (Redecl->getStorageClass() != SC_Extern)
3172  return false;
3173 
3174  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3175  FD = FD->getPreviousDecl())
3176  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3177  return false;
3178 
3179  return true;
3180 }
3181 
3182 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3183  // Only consider file-scope declarations in this test.
3184  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3185  return false;
3186 
3187  // Only consider explicit declarations; the presence of a builtin for a
3188  // libcall shouldn't affect whether a definition is externally visible.
3189  if (Redecl->isImplicit())
3190  return false;
3191 
3192  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3193  return true; // Not an inline definition
3194 
3195  return false;
3196 }
3197 
3198 /// For a function declaration in C or C++, determine whether this
3199 /// declaration causes the definition to be externally visible.
3200 ///
3201 /// For instance, this determines if adding the current declaration to the set
3202 /// of redeclarations of the given functions causes
3203 /// isInlineDefinitionExternallyVisible to change from false to true.
3205  assert(!doesThisDeclarationHaveABody() &&
3206  "Must have a declaration without a body.");
3207 
3208  ASTContext &Context = getASTContext();
3209 
3210  if (Context.getLangOpts().MSVCCompat) {
3211  const FunctionDecl *Definition;
3212  if (hasBody(Definition) && Definition->isInlined() &&
3213  redeclForcesDefMSVC(this))
3214  return true;
3215  }
3216 
3217  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3218  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3219  // an externally visible definition.
3220  //
3221  // FIXME: What happens if gnu_inline gets added on after the first
3222  // declaration?
3224  return false;
3225 
3226  const FunctionDecl *Prev = this;
3227  bool FoundBody = false;
3228  while ((Prev = Prev->getPreviousDecl())) {
3229  FoundBody |= Prev->Body.isValid();
3230 
3231  if (Prev->Body) {
3232  // If it's not the case that both 'inline' and 'extern' are
3233  // specified on the definition, then it is always externally visible.
3234  if (!Prev->isInlineSpecified() ||
3235  Prev->getStorageClass() != SC_Extern)
3236  return false;
3237  } else if (Prev->isInlineSpecified() &&
3238  Prev->getStorageClass() != SC_Extern) {
3239  return false;
3240  }
3241  }
3242  return FoundBody;
3243  }
3244 
3245  if (Context.getLangOpts().CPlusPlus)
3246  return false;
3247 
3248  // C99 6.7.4p6:
3249  // [...] If all of the file scope declarations for a function in a
3250  // translation unit include the inline function specifier without extern,
3251  // then the definition in that translation unit is an inline definition.
3253  return false;
3254  const FunctionDecl *Prev = this;
3255  bool FoundBody = false;
3256  while ((Prev = Prev->getPreviousDecl())) {
3257  FoundBody |= Prev->Body.isValid();
3258  if (RedeclForcesDefC99(Prev))
3259  return false;
3260  }
3261  return FoundBody;
3262 }
3263 
3265  const TypeSourceInfo *TSI = getTypeSourceInfo();
3266  if (!TSI)
3267  return SourceRange();
3268  FunctionTypeLoc FTL =
3270  if (!FTL)
3271  return SourceRange();
3272 
3273  // Skip self-referential return types.
3275  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3276  SourceLocation Boundary = getNameInfo().getBeginLoc();
3277  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3278  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3279  return SourceRange();
3280 
3281  return RTRange;
3282 }
3283 
3285  const TypeSourceInfo *TSI = getTypeSourceInfo();
3286  if (!TSI)
3287  return SourceRange();
3288  FunctionTypeLoc FTL =
3290  if (!FTL)
3291  return SourceRange();
3292 
3293  return FTL.getExceptionSpecRange();
3294 }
3295 
3296 /// For an inline function definition in C, or for a gnu_inline function
3297 /// in C++, determine whether the definition will be externally visible.
3298 ///
3299 /// Inline function definitions are always available for inlining optimizations.
3300 /// However, depending on the language dialect, declaration specifiers, and
3301 /// attributes, the definition of an inline function may or may not be
3302 /// "externally" visible to other translation units in the program.
3303 ///
3304 /// In C99, inline definitions are not externally visible by default. However,
3305 /// if even one of the global-scope declarations is marked "extern inline", the
3306 /// inline definition becomes externally visible (C99 6.7.4p6).
3307 ///
3308 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3309 /// definition, we use the GNU semantics for inline, which are nearly the
3310 /// opposite of C99 semantics. In particular, "inline" by itself will create
3311 /// an externally visible symbol, but "extern inline" will not create an
3312 /// externally visible symbol.
3314  assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3315  "Must be a function definition");
3316  assert(isInlined() && "Function must be inline");
3317  ASTContext &Context = getASTContext();
3318 
3319  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3320  // Note: If you change the logic here, please change
3321  // doesDeclarationForceExternallyVisibleDefinition as well.
3322  //
3323  // If it's not the case that both 'inline' and 'extern' are
3324  // specified on the definition, then this inline definition is
3325  // externally visible.
3326  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3327  return true;
3328 
3329  // If any declaration is 'inline' but not 'extern', then this definition
3330  // is externally visible.
3331  for (auto Redecl : redecls()) {
3332  if (Redecl->isInlineSpecified() &&
3333  Redecl->getStorageClass() != SC_Extern)
3334  return true;
3335  }
3336 
3337  return false;
3338  }
3339 
3340  // The rest of this function is C-only.
3341  assert(!Context.getLangOpts().CPlusPlus &&
3342  "should not use C inline rules in C++");
3343 
3344  // C99 6.7.4p6:
3345  // [...] If all of the file scope declarations for a function in a
3346  // translation unit include the inline function specifier without extern,
3347  // then the definition in that translation unit is an inline definition.
3348  for (auto Redecl : redecls()) {
3349  if (RedeclForcesDefC99(Redecl))
3350  return true;
3351  }
3352 
3353  // C99 6.7.4p6:
3354  // An inline definition does not provide an external definition for the
3355  // function, and does not forbid an external definition in another
3356  // translation unit.
3357  return false;
3358 }
3359 
3360 /// getOverloadedOperator - Which C++ overloaded operator this
3361 /// function represents, if any.
3363  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3365  else
3366  return OO_None;
3367 }
3368 
3369 /// getLiteralIdentifier - The literal suffix identifier this function
3370 /// represents, if any.
3374  else
3375  return nullptr;
3376 }
3377 
3379  if (TemplateOrSpecialization.isNull())
3380  return TK_NonTemplate;
3381  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3382  return TK_FunctionTemplate;
3383  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3384  return TK_MemberSpecialization;
3385  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3387  if (TemplateOrSpecialization.is
3390 
3391  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3392 }
3393 
3396  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3397 
3398  return nullptr;
3399 }
3400 
3402  if (auto *MSI =
3403  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3404  return MSI;
3405  if (auto *FTSI = TemplateOrSpecialization
3406  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3407  return FTSI->getMemberSpecializationInfo();
3408  return nullptr;
3409 }
3410 
3411 void
3412 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3413  FunctionDecl *FD,
3415  assert(TemplateOrSpecialization.isNull() &&
3416  "Member function is already a specialization");
3418  = new (C) MemberSpecializationInfo(FD, TSK);
3419  TemplateOrSpecialization = Info;
3420 }
3421 
3423  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3424 }
3425 
3427  assert(TemplateOrSpecialization.isNull() &&
3428  "Member function is already a specialization");
3429  TemplateOrSpecialization = Template;
3430 }
3431 
3433  // If the function is invalid, it can't be implicitly instantiated.
3434  if (isInvalidDecl())
3435  return false;
3436 
3438  case TSK_Undeclared:
3441  return false;
3442 
3444  return true;
3445 
3447  // Handled below.
3448  break;
3449  }
3450 
3451  // Find the actual template from which we will instantiate.
3452  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3453  bool HasPattern = false;
3454  if (PatternDecl)
3455  HasPattern = PatternDecl->hasBody(PatternDecl);
3456 
3457  // C++0x [temp.explicit]p9:
3458  // Except for inline functions, other explicit instantiation declarations
3459  // have the effect of suppressing the implicit instantiation of the entity
3460  // to which they refer.
3461  if (!HasPattern || !PatternDecl)
3462  return true;
3463 
3464  return PatternDecl->isInlined();
3465 }
3466 
3468  // FIXME: Remove this, it's not clear what it means. (Which template
3469  // specialization kind?)
3471 }
3472 
3474  // If this is a generic lambda call operator specialization, its
3475  // instantiation pattern is always its primary template's pattern
3476  // even if its primary template was instantiated from another
3477  // member template (which happens with nested generic lambdas).
3478  // Since a lambda's call operator's body is transformed eagerly,
3479  // we don't have to go hunting for a prototype definition template
3480  // (i.e. instantiated-from-member-template) to use as an instantiation
3481  // pattern.
3482 
3484  dyn_cast<CXXMethodDecl>(this))) {
3485  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3486  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3487  }
3488 
3490  if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3491  return nullptr;
3492  return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3493  }
3494 
3496  return nullptr;
3497 
3498  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3499  // If we hit a point where the user provided a specialization of this
3500  // template, we're done looking.
3501  while (!Primary->isMemberSpecialization()) {
3502  auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3503  if (!NewPrimary)
3504  break;
3505  Primary = NewPrimary;
3506  }
3507 
3508  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3509  }
3510 
3511  return nullptr;
3512 }
3513 
3516  = TemplateOrSpecialization
3517  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3518  return Info->getTemplate();
3519  }
3520  return nullptr;
3521 }
3522 
3525  return TemplateOrSpecialization
3526  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3527 }
3528 
3529 const TemplateArgumentList *
3532  = TemplateOrSpecialization
3533  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3534  return Info->TemplateArguments;
3535  }
3536  return nullptr;
3537 }
3538 
3542  = TemplateOrSpecialization
3543  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3544  return Info->TemplateArgumentsAsWritten;
3545  }
3546  return nullptr;
3547 }
3548 
3549 void
3550 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3551  FunctionTemplateDecl *Template,
3552  const TemplateArgumentList *TemplateArgs,
3553  void *InsertPos,
3555  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3556  SourceLocation PointOfInstantiation) {
3557  assert((TemplateOrSpecialization.isNull() ||
3558  TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3559  "Member function is already a specialization");
3560  assert(TSK != TSK_Undeclared &&
3561  "Must specify the type of function template specialization");
3562  assert((TemplateOrSpecialization.isNull() ||
3563  TSK == TSK_ExplicitSpecialization) &&
3564  "Member specialization must be an explicit specialization");
3567  C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3568  PointOfInstantiation,
3569  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3570  TemplateOrSpecialization = Info;
3571  Template->addSpecialization(Info, InsertPos);
3572 }
3573 
3574 void
3576  const UnresolvedSetImpl &Templates,
3577  const TemplateArgumentListInfo &TemplateArgs) {
3578  assert(TemplateOrSpecialization.isNull());
3581  TemplateArgs);
3582  TemplateOrSpecialization = Info;
3583 }
3584 
3587  return TemplateOrSpecialization
3589 }
3590 
3593  ASTContext &Context, const UnresolvedSetImpl &Ts,
3594  const TemplateArgumentListInfo &TArgs) {
3595  void *Buffer = Context.Allocate(
3596  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3597  TArgs.size(), Ts.size()));
3598  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3599 }
3600 
3601 DependentFunctionTemplateSpecializationInfo::
3602 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3603  const TemplateArgumentListInfo &TArgs)
3604  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3605  NumTemplates = Ts.size();
3606  NumArgs = TArgs.size();
3607 
3608  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3609  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3610  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3611 
3612  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3613  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3614  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3615 }
3616 
3618  // For a function template specialization, query the specialization
3619  // information object.
3620  if (FunctionTemplateSpecializationInfo *FTSInfo =
3621  TemplateOrSpecialization
3622  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3623  return FTSInfo->getTemplateSpecializationKind();
3624 
3625  if (MemberSpecializationInfo *MSInfo =
3626  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3627  return MSInfo->getTemplateSpecializationKind();
3628 
3629  return TSK_Undeclared;
3630 }
3631 
3634  // This is the same as getTemplateSpecializationKind(), except that for a
3635  // function that is both a function template specialization and a member
3636  // specialization, we prefer the member specialization information. Eg:
3637  //
3638  // template<typename T> struct A {
3639  // template<typename U> void f() {}
3640  // template<> void f<int>() {}
3641  // };
3642  //
3643  // For A<int>::f<int>():
3644  // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3645  // * getTemplateSpecializationKindForInstantiation() will return
3646  // TSK_ImplicitInstantiation
3647  //
3648  // This reflects the facts that A<int>::f<int> is an explicit specialization
3649  // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3650  // from A::f<int> if a definition is needed.
3651  if (FunctionTemplateSpecializationInfo *FTSInfo =
3652  TemplateOrSpecialization
3653  .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3654  if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3655  return MSInfo->getTemplateSpecializationKind();
3656  return FTSInfo->getTemplateSpecializationKind();
3657  }
3658 
3659  if (MemberSpecializationInfo *MSInfo =
3660  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3661  return MSInfo->getTemplateSpecializationKind();
3662 
3663  return TSK_Undeclared;
3664 }
3665 
3666 void
3668  SourceLocation PointOfInstantiation) {
3670  = TemplateOrSpecialization.dyn_cast<
3672  FTSInfo->setTemplateSpecializationKind(TSK);
3673  if (TSK != TSK_ExplicitSpecialization &&
3674  PointOfInstantiation.isValid() &&
3675  FTSInfo->getPointOfInstantiation().isInvalid()) {
3676  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3678  L->InstantiationRequested(this);
3679  }
3680  } else if (MemberSpecializationInfo *MSInfo
3681  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3682  MSInfo->setTemplateSpecializationKind(TSK);
3683  if (TSK != TSK_ExplicitSpecialization &&
3684  PointOfInstantiation.isValid() &&
3685  MSInfo->getPointOfInstantiation().isInvalid()) {
3686  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3688  L->InstantiationRequested(this);
3689  }
3690  } else
3691  llvm_unreachable("Function cannot have a template specialization kind");
3692 }
3693 
3696  = TemplateOrSpecialization.dyn_cast<
3698  return FTSInfo->getPointOfInstantiation();
3699  else if (MemberSpecializationInfo *MSInfo
3700  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3701  return MSInfo->getPointOfInstantiation();
3702 
3703  return SourceLocation();
3704 }
3705 
3707  if (Decl::isOutOfLine())
3708  return true;
3709 
3710  // If this function was instantiated from a member function of a
3711  // class template, check whether that member function was defined out-of-line.
3713  const FunctionDecl *Definition;
3714  if (FD->hasBody(Definition))
3715  return Definition->isOutOfLine();
3716  }
3717 
3718  // If this function was instantiated from a function template,
3719  // check whether that function template was defined out-of-line.
3720  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3721  const FunctionDecl *Definition;
3722  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3723  return Definition->isOutOfLine();
3724  }
3725 
3726  return false;
3727 }
3728 
3730  return SourceRange(getOuterLocStart(), EndRangeLoc);
3731 }
3732 
3734  IdentifierInfo *FnInfo = getIdentifier();
3735 
3736  if (!FnInfo)
3737  return 0;
3738 
3739  // Builtin handling.
3740  switch (getBuiltinID()) {
3741  case Builtin::BI__builtin_memset:
3742  case Builtin::BI__builtin___memset_chk:
3743  case Builtin::BImemset:
3744  return Builtin::BImemset;
3745 
3746  case Builtin::BI__builtin_memcpy:
3747  case Builtin::BI__builtin___memcpy_chk:
3748  case Builtin::BImemcpy:
3749  return Builtin::BImemcpy;
3750 
3751  case Builtin::BI__builtin_memmove:
3752  case Builtin::BI__builtin___memmove_chk:
3753  case Builtin::BImemmove:
3754  return Builtin::BImemmove;
3755 
3756  case Builtin::BIstrlcpy:
3757  case Builtin::BI__builtin___strlcpy_chk:
3758  return Builtin::BIstrlcpy;
3759 
3760  case Builtin::BIstrlcat:
3761  case Builtin::BI__builtin___strlcat_chk:
3762  return Builtin::BIstrlcat;
3763 
3764  case Builtin::BI__builtin_memcmp:
3765  case Builtin::BImemcmp:
3766  return Builtin::BImemcmp;
3767 
3768  case Builtin::BI__builtin_bcmp:
3769  case Builtin::BIbcmp:
3770  return Builtin::BIbcmp;
3771 
3772  case Builtin::BI__builtin_strncpy:
3773  case Builtin::BI__builtin___strncpy_chk:
3774  case Builtin::BIstrncpy:
3775  return Builtin::BIstrncpy;
3776 
3777  case Builtin::BI__builtin_strncmp:
3778  case Builtin::BIstrncmp:
3779  return Builtin::BIstrncmp;
3780 
3781  case Builtin::BI__builtin_strncasecmp:
3782  case Builtin::BIstrncasecmp:
3783  return Builtin::BIstrncasecmp;
3784 
3785  case Builtin::BI__builtin_strncat:
3786  case Builtin::BI__builtin___strncat_chk:
3787  case Builtin::BIstrncat:
3788  return Builtin::BIstrncat;
3789 
3790  case Builtin::BI__builtin_strndup:
3791  case Builtin::BIstrndup:
3792  return Builtin::BIstrndup;
3793 
3794  case Builtin::BI__builtin_strlen:
3795  case Builtin::BIstrlen:
3796  return Builtin::BIstrlen;
3797 
3798  case Builtin::BI__builtin_bzero:
3799  case Builtin::BIbzero:
3800  return Builtin::BIbzero;
3801 
3802  default:
3803  if (isExternC()) {
3804  if (FnInfo->isStr("memset"))
3805  return Builtin::BImemset;
3806  else if (FnInfo->isStr("memcpy"))
3807  return Builtin::BImemcpy;
3808  else if (FnInfo->isStr("memmove"))
3809  return Builtin::BImemmove;
3810  else if (FnInfo->isStr("memcmp"))
3811  return Builtin::BImemcmp;
3812  else if (FnInfo->isStr("bcmp"))
3813  return Builtin::BIbcmp;
3814  else if (FnInfo->isStr("strncpy"))
3815  return Builtin::BIstrncpy;
3816  else if (FnInfo->isStr("strncmp"))
3817  return Builtin::BIstrncmp;
3818  else if (FnInfo->isStr("strncasecmp"))
3819  return Builtin::BIstrncasecmp;
3820  else if (FnInfo->isStr("strncat"))
3821  return Builtin::BIstrncat;
3822  else if (FnInfo->isStr("strndup"))
3823  return Builtin::BIstrndup;
3824  else if (FnInfo->isStr("strlen"))
3825  return Builtin::BIstrlen;
3826  else if (FnInfo->isStr("bzero"))
3827  return Builtin::BIbzero;
3828  }
3829  break;
3830  }
3831  return 0;
3832 }
3833 
3834 unsigned FunctionDecl::getODRHash() const {
3835  assert(hasODRHash());
3836  return ODRHash;
3837 }
3838 
3840  if (hasODRHash())
3841  return ODRHash;
3842 
3843  if (auto *FT = getInstantiatedFromMemberFunction()) {
3844  setHasODRHash(true);
3845  ODRHash = FT->getODRHash();
3846  return ODRHash;
3847  }
3848 
3849  class ODRHash Hash;
3850  Hash.AddFunctionDecl(this);
3851  setHasODRHash(true);
3852  ODRHash = Hash.CalculateHash();
3853  return ODRHash;
3854 }
3855 
3856 //===----------------------------------------------------------------------===//
3857 // FieldDecl Implementation
3858 //===----------------------------------------------------------------------===//
3859 
3861  SourceLocation StartLoc, SourceLocation IdLoc,
3863  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3864  InClassInitStyle InitStyle) {
3865  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3866  BW, Mutable, InitStyle);
3867 }
3868 
3870  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3871  SourceLocation(), nullptr, QualType(), nullptr,
3872  nullptr, false, ICIS_NoInit);
3873 }
3874 
3876  if (!isImplicit() || getDeclName())
3877  return false;
3878 
3879  if (const auto *Record = getType()->getAs<RecordType>())
3880  return Record->getDecl()->isAnonymousStructOrUnion();
3881 
3882  return false;
3883 }
3884 
3885 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3886  assert(isBitField() && "not a bitfield");
3887  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3888 }
3889 
3891  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3892  getBitWidthValue(Ctx) == 0;
3893 }
3894 
3895 unsigned FieldDecl::getFieldIndex() const {
3896  const FieldDecl *Canonical = getCanonicalDecl();
3897  if (Canonical != this)
3898  return Canonical->getFieldIndex();
3899 
3900  if (CachedFieldIndex) return CachedFieldIndex - 1;
3901 
3902  unsigned Index = 0;
3903  const RecordDecl *RD = getParent()->getDefinition();
3904  assert(RD && "requested index for field of struct with no definition");
3905 
3906  for (auto *Field : RD->fields()) {
3907  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3908  ++Index;
3909  }
3910 
3911  assert(CachedFieldIndex && "failed to find field in parent");
3912  return CachedFieldIndex - 1;
3913 }
3914 
3916  const Expr *FinalExpr = getInClassInitializer();
3917  if (!FinalExpr)
3918  FinalExpr = getBitWidth();
3919  if (FinalExpr)
3920  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3922 }
3923 
3925  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3926  "capturing type in non-lambda or captured record.");
3927  assert(InitStorage.getInt() == ISK_NoInit &&
3928  InitStorage.getPointer() == nullptr &&
3929  "bit width, initializer or captured type already set");
3930  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3931  ISK_CapturedVLAType);
3932 }
3933 
3934 //===----------------------------------------------------------------------===//
3935 // TagDecl Implementation
3936 //===----------------------------------------------------------------------===//
3937 
3939  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3940  SourceLocation StartL)
3941  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3942  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3943  assert((DK != Enum || TK == TTK_Enum) &&
3944  "EnumDecl not matched with TTK_Enum");
3945  setPreviousDecl(PrevDecl);
3946  setTagKind(TK);
3947  setCompleteDefinition(false);
3948  setBeingDefined(false);
3949  setEmbeddedInDeclarator(false);
3950  setFreeStanding(false);
3952 }
3953 
3955  return getTemplateOrInnerLocStart(this);
3956 }
3957 
3959  SourceLocation RBraceLoc = BraceRange.getEnd();
3960  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3961  return SourceRange(getOuterLocStart(), E);
3962 }
3963 
3965 
3967  TypedefNameDeclOrQualifier = TDD;
3968  if (const Type *T = getTypeForDecl()) {
3969  (void)T;
3970  assert(T->isLinkageValid());
3971  }
3972  assert(isLinkageValid());
3973 }
3974 
3976  setBeingDefined(true);
3977 
3978  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3979  struct CXXRecordDecl::DefinitionData *Data =
3980  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3981  for (auto I : redecls())
3982  cast<CXXRecordDecl>(I)->DefinitionData = Data;
3983  }
3984 }
3985 
3987  assert((!isa<CXXRecordDecl>(this) ||
3988  cast<CXXRecordDecl>(this)->hasDefinition()) &&
3989  "definition completed but not started");
3990 
3991  setCompleteDefinition(true);
3992  setBeingDefined(false);
3993 
3995  L->CompletedTagDefinition(this);
3996 }
3997 
3999  if (isCompleteDefinition())
4000  return const_cast<TagDecl *>(this);
4001 
4002  // If it's possible for us to have an out-of-date definition, check now.
4003  if (mayHaveOutOfDateDef()) {
4004  if (IdentifierInfo *II = getIdentifier()) {
4005  if (II->isOutOfDate()) {
4006  updateOutOfDate(*II);
4007  }
4008  }
4009  }
4010 
4011  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4012  return CXXRD->getDefinition();
4013 
4014  for (auto R : redecls())
4015  if (R->isCompleteDefinition())
4016  return R;
4017 
4018  return nullptr;
4019 }
4020 
4022  if (QualifierLoc) {
4023  // Make sure the extended qualifier info is allocated.
4024  if (!hasExtInfo())
4025  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4026  // Set qualifier info.
4027  getExtInfo()->QualifierLoc = QualifierLoc;
4028  } else {
4029  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4030  if (hasExtInfo()) {
4031  if (getExtInfo()->NumTemplParamLists == 0) {
4032  getASTContext().Deallocate(getExtInfo());
4033  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4034  }
4035  else
4036  getExtInfo()->QualifierLoc = QualifierLoc;
4037  }
4038  }
4039 }
4040 
4042  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4043  assert(!TPLists.empty());
4044  // Make sure the extended decl info is allocated.
4045  if (!hasExtInfo())
4046  // Allocate external info struct.
4047  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4048  // Set the template parameter lists info.
4049  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4050 }
4051 
4052 //===----------------------------------------------------------------------===//
4053 // EnumDecl Implementation
4054 //===----------------------------------------------------------------------===//
4055 
4056 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4057  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4058  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4059  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4060  assert(Scoped || !ScopedUsingClassTag);
4061  IntegerType = nullptr;
4062  setNumPositiveBits(0);
4063  setNumNegativeBits(0);
4064  setScoped(Scoped);
4065  setScopedUsingClassTag(ScopedUsingClassTag);
4066  setFixed(Fixed);
4067  setHasODRHash(false);
4068  ODRHash = 0;
4069 }
4070 
4071 void EnumDecl::anchor() {}
4072 
4074  SourceLocation StartLoc, SourceLocation IdLoc,
4075  IdentifierInfo *Id,
4076  EnumDecl *PrevDecl, bool IsScoped,
4077  bool IsScopedUsingClassTag, bool IsFixed) {
4078  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4079  IsScoped, IsScopedUsingClassTag, IsFixed);
4080  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4081  C.getTypeDeclType(Enum, PrevDecl);
4082  return Enum;
4083 }
4084 
4086  EnumDecl *Enum =
4087  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4088  nullptr, nullptr, false, false, false);
4089  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4090  return Enum;
4091 }
4092 
4094  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4095  return TI->getTypeLoc().getSourceRange();
4096  return SourceRange();
4097 }
4098 
4100  QualType NewPromotionType,
4101  unsigned NumPositiveBits,
4102  unsigned NumNegativeBits) {
4103  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4104  if (!IntegerType)
4105  IntegerType = NewType.getTypePtr();
4106  PromotionType = NewPromotionType;
4107  setNumPositiveBits(NumPositiveBits);
4108  setNumNegativeBits(NumNegativeBits);
4110 }
4111 
4112 bool EnumDecl::isClosed() const {
4113  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4114  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4115  return true;
4116 }
4117 
4119  return isClosed() && hasAttr<FlagEnumAttr>();
4120 }
4121 
4123  return isClosed() && !hasAttr<FlagEnumAttr>();
4124 }
4125 
4127  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4128  return MSI->getTemplateSpecializationKind();
4129 
4130  return TSK_Undeclared;
4131 }
4132 
4134  SourceLocation PointOfInstantiation) {
4135  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4136  assert(MSI && "Not an instantiated member enumeration?");
4138  if (TSK != TSK_ExplicitSpecialization &&
4139  PointOfInstantiation.isValid() &&
4141  MSI->setPointOfInstantiation(PointOfInstantiation);
4142 }
4143 
4145  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4146  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4147  EnumDecl *ED = getInstantiatedFromMemberEnum();
4148  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4149  ED = NewED;
4150  return getDefinitionOrSelf(ED);
4151  }
4152  }
4153 
4155  "couldn't find pattern for enum instantiation");
4156  return nullptr;
4157 }
4158 
4160  if (SpecializationInfo)
4161  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4162 
4163  return nullptr;
4164 }
4165 
4166 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4168  assert(!SpecializationInfo && "Member enum is already a specialization");
4169  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4170 }
4171 
4173  if (hasODRHash())
4174  return ODRHash;
4175 
4176  class ODRHash Hash;
4177  Hash.AddEnumDecl(this);
4178  setHasODRHash(true);
4179  ODRHash = Hash.CalculateHash();
4180  return ODRHash;
4181 }
4182 
4183 //===----------------------------------------------------------------------===//
4184 // RecordDecl Implementation
4185 //===----------------------------------------------------------------------===//
4186 
4188  DeclContext *DC, SourceLocation StartLoc,
4189  SourceLocation IdLoc, IdentifierInfo *Id,
4190  RecordDecl *PrevDecl)
4191  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4192  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4195  setHasObjectMember(false);
4196  setHasVolatileMember(false);
4203 }
4204 
4206  SourceLocation StartLoc, SourceLocation IdLoc,
4207  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4208  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4209  StartLoc, IdLoc, Id, PrevDecl);
4210  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4211 
4212  C.getTypeDeclType(R, PrevDecl);
4213  return R;
4214 }
4215 
4217  RecordDecl *R =
4218  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4219  SourceLocation(), nullptr, nullptr);
4220  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4221  return R;
4222 }
4223 
4225  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4226  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4227 }
4228 
4229 bool RecordDecl::isLambda() const {
4230  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4231  return RD->isLambda();
4232  return false;
4233 }
4234 
4236  return hasAttr<CapturedRecordAttr>();
4237 }
4238 
4240  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4241 }
4242 
4245  LoadFieldsFromExternalStorage();
4246 
4248 }
4249 
4250 /// completeDefinition - Notes that the definition of this type is now
4251 /// complete.
4253  assert(!isCompleteDefinition() && "Cannot redefine record!");
4255 }
4256 
4257 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4258 /// This which can be turned on with an attribute, pragma, or the
4259 /// -mms-bitfields command-line option.
4260 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4261  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4262 }
4263 
4264 void RecordDecl::LoadFieldsFromExternalStorage() const {
4266  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4267 
4268  // Notify that we have a RecordDecl doing some initialization.
4269  ExternalASTSource::Deserializing TheFields(Source);
4270 
4271  SmallVector<Decl*, 64> Decls;
4273  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4275  }, Decls);
4276 
4277 #ifndef NDEBUG
4278  // Check that all decls we got were FieldDecls.
4279  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4280  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4281 #endif
4282 
4283  if (Decls.empty())
4284  return;
4285 
4286  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4287  /*FieldsAlreadyLoaded=*/false);
4288 }
4289 
4290 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4291  ASTContext &Context = getASTContext();
4292  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4293  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4294  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4295  return false;
4296  const auto &Blacklist = Context.getSanitizerBlacklist();
4297  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4298  // We may be able to relax some of these requirements.
4299  int ReasonToReject = -1;
4300  if (!CXXRD || CXXRD->isExternCContext())
4301  ReasonToReject = 0; // is not C++.
4302  else if (CXXRD->hasAttr<PackedAttr>())
4303  ReasonToReject = 1; // is packed.
4304  else if (CXXRD->isUnion())
4305  ReasonToReject = 2; // is a union.
4306  else if (CXXRD->isTriviallyCopyable())
4307  ReasonToReject = 3; // is trivially copyable.
4308  else if (CXXRD->hasTrivialDestructor())
4309  ReasonToReject = 4; // has trivial destructor.
4310  else if (CXXRD->isStandardLayout())
4311  ReasonToReject = 5; // is standard layout.
4312  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4313  "field-padding"))
4314  ReasonToReject = 6; // is in a blacklisted file.
4315  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4317  "field-padding"))
4318  ReasonToReject = 7; // is blacklisted.
4319 
4320  if (EmitRemark) {
4321  if (ReasonToReject >= 0)
4322  Context.getDiagnostics().Report(
4323  getLocation(),
4324  diag::remark_sanitize_address_insert_extra_padding_rejected)
4325  << getQualifiedNameAsString() << ReasonToReject;
4326  else
4327  Context.getDiagnostics().Report(
4328  getLocation(),
4329  diag::remark_sanitize_address_insert_extra_padding_accepted)
4331  }
4332  return ReasonToReject < 0;
4333 }
4334 
4336  for (const auto *I : fields()) {
4337  if (I->getIdentifier())
4338  return I;
4339 
4340  if (const auto *RT = I->getType()->getAs<RecordType>())
4341  if (const FieldDecl *NamedDataMember =
4342  RT->getDecl()->findFirstNamedDataMember())
4343  return NamedDataMember;
4344  }
4345 
4346  // We didn't find a named data member.
4347  return nullptr;
4348 }
4349 
4350 //===----------------------------------------------------------------------===//
4351 // BlockDecl Implementation
4352 //===----------------------------------------------------------------------===//
4353 
4355  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4356  setIsVariadic(false);
4357  setCapturesCXXThis(false);
4360  setDoesNotEscape(false);
4361  setCanAvoidCopyToHeap(false);
4362 }
4363 
4365  assert(!ParamInfo && "Already has param info!");
4366 
4367  // Zero params -> null pointer.
4368  if (!NewParamInfo.empty()) {
4369  NumParams = NewParamInfo.size();
4370  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4371  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4372  }
4373 }
4374 
4376  bool CapturesCXXThis) {
4377  this->setCapturesCXXThis(CapturesCXXThis);
4378  this->NumCaptures = Captures.size();
4379 
4380  if (Captures.empty()) {
4381  this->Captures = nullptr;
4382  return;
4383  }
4384 
4385  this->Captures = Captures.copy(Context).data();
4386 }
4387 
4388 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4389  for (const auto &I : captures())
4390  // Only auto vars can be captured, so no redeclaration worries.
4391  if (I.getVariable() == variable)
4392  return true;
4393 
4394  return false;
4395 }
4396 
4398  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4399 }
4400 
4401 //===----------------------------------------------------------------------===//
4402 // Other Decl Allocation/Deallocation Method Implementations
4403 //===----------------------------------------------------------------------===//
4404 
4405 void TranslationUnitDecl::anchor() {}
4406 
4408  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4409 }
4410 
4411 void PragmaCommentDecl::anchor() {}
4412 
4414  TranslationUnitDecl *DC,
4415  SourceLocation CommentLoc,
4416  PragmaMSCommentKind CommentKind,
4417  StringRef Arg) {
4418  PragmaCommentDecl *PCD =
4419  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4420  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4421  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4422  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4423  return PCD;
4424 }
4425 
4427  unsigned ID,
4428  unsigned ArgSize) {
4429  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4431 }
4432 
4433 void PragmaDetectMismatchDecl::anchor() {}
4434 
4437  SourceLocation Loc, StringRef Name,
4438  StringRef Value) {
4439  size_t ValueStart = Name.size() + 1;
4440  PragmaDetectMismatchDecl *PDMD =
4441  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4442  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4443  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4444  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4445  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4446  Value.size());
4447  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4448  return PDMD;
4449 }
4450 
4453  unsigned NameValueSize) {
4454  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4456 }
4457 
4458 void ExternCContextDecl::anchor() {}
4459 
4461  TranslationUnitDecl *DC) {
4462  return new (C, DC) ExternCContextDecl(DC);
4463 }
4464 
4465 void LabelDecl::anchor() {}
4466 
4468  SourceLocation IdentL, IdentifierInfo *II) {
4469  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4470 }
4471 
4473  SourceLocation IdentL, IdentifierInfo *II,
4474  SourceLocation GnuLabelL) {
4475  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4476  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4477 }
4478 
4480  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4481  SourceLocation());
4482 }
4483 
4484 void LabelDecl::setMSAsmLabel(StringRef Name) {
4485  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4486  memcpy(Buffer, Name.data(), Name.size());
4487  Buffer[Name.size()] = '\0';
4488  MSAsmName = Buffer;
4489 }
4490 
4491 void ValueDecl::anchor() {}
4492 
4493 bool ValueDecl::isWeak() const {
4494  for (const auto *I : attrs())
4495  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4496  return true;
4497 
4498  return isWeakImported();
4499 }
4500 
4501 void ImplicitParamDecl::anchor() {}
4502 
4504  SourceLocation IdLoc,
4506  ImplicitParamKind ParamKind) {
4507  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4508 }
4509 
4511  ImplicitParamKind ParamKind) {
4512  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4513 }
4514 
4516  unsigned ID) {
4517  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4518 }
4519 
4521  SourceLocation StartLoc,
4522  const DeclarationNameInfo &NameInfo,
4523  QualType T, TypeSourceInfo *TInfo,
4524  StorageClass SC,
4525  bool isInlineSpecified,
4526  bool hasWrittenPrototype,
4527  bool isConstexprSpecified) {
4528  FunctionDecl *New =
4529  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4530  SC, isInlineSpecified, isConstexprSpecified);
4531  New->setHasWrittenPrototype(hasWrittenPrototype);
4532  return New;
4533 }
4534 
4536  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4537  DeclarationNameInfo(), QualType(), nullptr,
4538  SC_None, false, false);
4539 }
4540 
4542  return new (C, DC) BlockDecl(DC, L);
4543 }
4544 
4546  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4547 }
4548 
4549 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4550  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4551  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4552 
4554  unsigned NumParams) {
4555  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4556  CapturedDecl(DC, NumParams);
4557 }
4558 
4560  unsigned NumParams) {
4561  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4562  CapturedDecl(nullptr, NumParams);
4563 }
4564 
4565 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4566 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4567 
4568 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4569 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4570 
4572  SourceLocation L,
4573  IdentifierInfo *Id, QualType T,
4574  Expr *E, const llvm::APSInt &V) {
4575  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4576 }
4577 
4580  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4581  QualType(), nullptr, llvm::APSInt());
4582 }
4583 
4584 void IndirectFieldDecl::anchor() {}
4585 
4586 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4588  QualType T,
4590  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4591  ChainingSize(CH.size()) {
4592  // In C++, indirect field declarations conflict with tag declarations in the
4593  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4594  if (C.getLangOpts().CPlusPlus)
4596 }
4597 
4600  IdentifierInfo *Id, QualType T,
4602  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4603 }
4604 
4606  unsigned ID) {
4607  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4608  DeclarationName(), QualType(), None);
4609 }
4610 
4613  if (Init)
4614  End = Init->getEndLoc();
4615  return SourceRange(getLocation(), End);
4616 }
4617 
4618 void TypeDecl::anchor() {}
4619 
4621  SourceLocation StartLoc, SourceLocation IdLoc,
4622  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4623  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4624 }
4625 
4626 void TypedefNameDecl::anchor() {}
4627 
4629  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4630  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4631  auto *ThisTypedef = this;
4632  if (AnyRedecl && OwningTypedef) {
4633  OwningTypedef = OwningTypedef->getCanonicalDecl();
4634  ThisTypedef = ThisTypedef->getCanonicalDecl();
4635  }
4636  if (OwningTypedef == ThisTypedef)
4637  return TT->getDecl();
4638  }
4639 
4640  return nullptr;
4641 }
4642 
4643 bool TypedefNameDecl::isTransparentTagSlow() const {
4644  auto determineIsTransparent = [&]() {
4645  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4646  if (auto *TD = TT->getDecl()) {
4647  if (TD->getName() != getName())
4648  return false;
4649  SourceLocation TTLoc = getLocation();
4650  SourceLocation TDLoc = TD->getLocation();
4651  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4652  return false;
4654  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4655  }
4656  }
4657  return false;
4658  };
4659 
4660  bool isTransparent = determineIsTransparent();
4661  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4662  return isTransparent;
4663 }
4664 
4666  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4667  nullptr, nullptr);
4668 }
4669 
4671  SourceLocation StartLoc,
4672  SourceLocation IdLoc, IdentifierInfo *Id,
4673  TypeSourceInfo *TInfo) {
4674  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4675 }
4676 
4678  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4679  SourceLocation(), nullptr, nullptr);
4680 }
4681 
4683  SourceLocation RangeEnd = getLocation();
4684  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4685  if (typeIsPostfix(TInfo->getType()))
4686  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4687  }
4688  return SourceRange(getBeginLoc(), RangeEnd);
4689 }
4690 
4692  SourceLocation RangeEnd = getBeginLoc();
4693  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4694  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4695  return SourceRange(getBeginLoc(), RangeEnd);
4696 }
4697 
4698 void FileScopeAsmDecl::anchor() {}
4699 
4701  StringLiteral *Str,
4702  SourceLocation AsmLoc,
4703  SourceLocation RParenLoc) {
4704  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4705 }
4706 
4708  unsigned ID) {
4709  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4710  SourceLocation());
4711 }
4712 
4713 void EmptyDecl::anchor() {}
4714 
4716  return new (C, DC) EmptyDecl(DC, L);
4717 }
4718 
4720  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4721 }
4722 
4723 //===----------------------------------------------------------------------===//
4724 // ImportDecl Implementation
4725 //===----------------------------------------------------------------------===//
4726 
4727 /// Retrieve the number of module identifiers needed to name the given
4728 /// module.
4729 static unsigned getNumModuleIdentifiers(Module *Mod) {
4730  unsigned Result = 1;
4731  while (Mod->Parent) {
4732  Mod = Mod->Parent;
4733  ++Result;
4734  }
4735  return Result;
4736 }
4737 
4738 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4739  Module *Imported,
4740  ArrayRef<SourceLocation> IdentifierLocs)
4741  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4742  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4743  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4744  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4745  StoredLocs);
4746 }
4747 
4748 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4749  Module *Imported, SourceLocation EndLoc)
4750  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4751  *getTrailingObjects<SourceLocation>() = EndLoc;
4752 }
4753 
4755  SourceLocation StartLoc, Module *Imported,
4756  ArrayRef<SourceLocation> IdentifierLocs) {
4757  return new (C, DC,
4758  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4759  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4760 }
4761 
4763  SourceLocation StartLoc,
4764  Module *Imported,
4765  SourceLocation EndLoc) {
4766  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4767  ImportDecl(DC, StartLoc, Imported, EndLoc);
4768  Import->setImplicit();
4769  return Import;
4770 }
4771 
4773  unsigned NumLocations) {
4774  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4776 }
4777 
4779  if (!ImportedAndComplete.getInt())
4780  return None;
4781 
4782  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4783  return llvm::makeArrayRef(StoredLocs,
4784  getNumModuleIdentifiers(getImportedModule()));
4785 }
4786 
4788  if (!ImportedAndComplete.getInt())
4789  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4790 
4791  return SourceRange(getLocation(), getIdentifierLocs().back());
4792 }
4793 
4794 //===----------------------------------------------------------------------===//
4795 // ExportDecl Implementation
4796 //===----------------------------------------------------------------------===//
4797 
4798 void ExportDecl::anchor() {}
4799 
4801  SourceLocation ExportLoc) {
4802  return new (C, DC) ExportDecl(DC, ExportLoc);
4803 }
4804 
4806  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4807 }
void setLinkage(Linkage L)
Definition: Visibility.h:87
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4144
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2512
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:2992
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4682
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
void setImplicit(bool I=true)
Definition: DeclBase.h:552
Represents a function declaration or definition.
Definition: Decl.h:1743
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1417
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2851
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:571
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3733
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1288
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3717
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified, bool isConstexprSpecified)
Definition: Decl.cpp:2703
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2044
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4122
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3675
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:752
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4772
CanQualType VoidPtrTy
Definition: ASTContext.h:1039
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:2968
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:639
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:3998
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3177
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3132
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:49
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2958
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1959
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4611
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2235
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1504
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3701
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4599
Stmt - This represents one statement.
Definition: Stmt.h:65
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:38
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4303
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3367
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:183
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:801
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3540
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2816
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3706
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:983
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2791
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3204
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:26
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:3966
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3023
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:788
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4426
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2962
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2358
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2903
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4014
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:601
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:414
bool isNothrow() const
Definition: Decl.cpp:4568
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3732
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4787
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2803
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:3027
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3895
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:207
bool isUninit() const
Definition: APValue.h:299
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1498
The base class of the type hierarchy.
Definition: Type.h:1414
Represents an empty-declaration.
Definition: Decl.h:4273
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4364
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1296
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:514
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI, MemberSpecializationInfo *MSInfo)
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:189
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4252
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:418
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:690
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:38
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3687
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4093
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:796
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2737
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:3954
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1902
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1209
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3432
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:75
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4559
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3174
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1497
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3126
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4569
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4172
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:812
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:380
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:785
Declaration of a redeclarable template.
Definition: DeclTemplate.h:793
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:2004
unsigned getNumParams() const
Definition: Type.h:3900
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:111
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6803
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2678
Visibility getVisibility() const
Definition: Visibility.h:84
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1129
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3890
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:603
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1737
bool isInvalidDecl() const
Definition: DeclBase.h:546
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
Not a TLS variable.
Definition: Decl.h:829
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
Represents a parameter to a function.
Definition: Decl.h:1555
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1451
std::string getName(ArrayRef< StringRef > Parts) const
Get the platform-specific name separator.
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:728
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3875
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4290
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3264
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3598
This is the private module fragment within some C++ module.
Definition: Module.h:84
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:84
C11 _Thread_local.
Definition: Specifiers.h:209
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1667
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1947
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1052
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1851
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1857
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:346
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4235
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4205
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2667
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4605
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2762
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3170
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:792
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
static LinkageInfo internal()
Definition: Visibility.h:70
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:179
field_range fields() const
Definition: Decl.h:3789
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4729
static bool isInModulePurview(const NamedDecl *D)
Determine whether D is declared in the purview of a named module.
Definition: Decl.cpp:571
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:301
Represents a member of a struct/union/class.
Definition: Decl.h:2584
friend class DeclContext
Definition: DeclBase.h:247
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:3986
bool isNamespace() const
Definition: DeclBase.h:1847
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3975
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4354
bool isReferenceType() const
Definition: Type.h:6355
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:173
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:89
This declaration is definitely a definition.
Definition: Decl.h:1152
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1062
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3688
Describes a module or submodule.
Definition: Module.h:64
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4413
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3786
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2276
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:45
virtual bool isDefined() const
Definition: Decl.h:1963
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:512
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2502
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:2993
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2149
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2874
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:529
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4565
The argument of this type can be passed directly in registers.
Definition: Decl.h:3609
Kinds of LV computation.
Definition: Linkage.h:28
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For an enumeration member that was instantiated from a member enumeration of a templated class...
Definition: Decl.cpp:4133
QualType getOriginalType() const
Definition: Decl.cpp:2601
static ExternCContextDecl * Create(const ASTContext &C, TranslationUnitDecl *TU)
Definition: Decl.cpp:4460
A convenient class for passing around template argument information.
Definition: TemplateBase.h:554
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:3740
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
void AddFunctionDecl(const FunctionDecl *Function, bool SkipBody=false)
Definition: ODRHash.cpp:509
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes, if any.
Definition: Decl.cpp:4628
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
Wrapper for source info for functions.
Definition: TypeLoc.h:1362
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:779
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4571
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3422
bool isMemberSpecialization() const
Determines whether this template was a specialization of a member template.
Definition: DeclTemplate.h:936
ASTContext & getASTContext() const
Definition: Decl.h:119
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:33
DefinitionKind hasDefinition() const
Definition: Decl.h:1165
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:654
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2481
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1891
Represents a declaration of a type.
Definition: Decl.h:2879
void setHasObjectMember(bool val)
Definition: Decl.h:3680
A set of unresolved declarations.
Definition: UnresolvedSet.h:60
Module * Parent
The parent of this module.
Definition: Module.h:92
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1381
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:3524
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1195
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6119
field_iterator field_begin() const
Definition: Decl.cpp:4243