clang  9.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "llvm/ADT/APSInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/None.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstring>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <type_traits>
72 
73 using namespace clang;
74 
76  return D->getASTContext().getPrimaryMergedDecl(D);
77 }
78 
79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
80  SourceLocation Loc = this->Loc;
81  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
82  if (Loc.isValid()) {
83  Loc.print(OS, Context.getSourceManager());
84  OS << ": ";
85  }
86  OS << Message;
87 
88  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
89  OS << " '";
90  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
91  OS << "'";
92  }
93 
94  OS << '\n';
95 }
96 
97 // Defined here so that it can be inlined into its direct callers.
98 bool Decl::isOutOfLine() const {
99  return !getLexicalDeclContext()->Equals(getDeclContext());
100 }
101 
102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
103  : Decl(TranslationUnit, nullptr, SourceLocation()),
104  DeclContext(TranslationUnit), Ctx(ctx) {}
105 
106 //===----------------------------------------------------------------------===//
107 // NamedDecl Implementation
108 //===----------------------------------------------------------------------===//
109 
110 // Visibility rules aren't rigorously externally specified, but here
111 // are the basic principles behind what we implement:
112 //
113 // 1. An explicit visibility attribute is generally a direct expression
114 // of the user's intent and should be honored. Only the innermost
115 // visibility attribute applies. If no visibility attribute applies,
116 // global visibility settings are considered.
117 //
118 // 2. There is one caveat to the above: on or in a template pattern,
119 // an explicit visibility attribute is just a default rule, and
120 // visibility can be decreased by the visibility of template
121 // arguments. But this, too, has an exception: an attribute on an
122 // explicit specialization or instantiation causes all the visibility
123 // restrictions of the template arguments to be ignored.
124 //
125 // 3. A variable that does not otherwise have explicit visibility can
126 // be restricted by the visibility of its type.
127 //
128 // 4. A visibility restriction is explicit if it comes from an
129 // attribute (or something like it), not a global visibility setting.
130 // When emitting a reference to an external symbol, visibility
131 // restrictions are ignored unless they are explicit.
132 //
133 // 5. When computing the visibility of a non-type, including a
134 // non-type member of a class, only non-type visibility restrictions
135 // are considered: the 'visibility' attribute, global value-visibility
136 // settings, and a few special cases like __private_extern.
137 //
138 // 6. When computing the visibility of a type, including a type member
139 // of a class, only type visibility restrictions are considered:
140 // the 'type_visibility' attribute and global type-visibility settings.
141 // However, a 'visibility' attribute counts as a 'type_visibility'
142 // attribute on any declaration that only has the former.
143 //
144 // The visibility of a "secondary" entity, like a template argument,
145 // is computed using the kind of that entity, not the kind of the
146 // primary entity for which we are computing visibility. For example,
147 // the visibility of a specialization of either of these templates:
148 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
149 // template <class T, bool (&compare)(T, X)> class matcher;
150 // is restricted according to the type visibility of the argument 'T',
151 // the type visibility of 'bool(&)(T,X)', and the value visibility of
152 // the argument function 'compare'. That 'has_match' is a value
153 // and 'matcher' is a type only matters when looking for attributes
154 // and settings from the immediate context.
155 
156 /// Does this computation kind permit us to consider additional
157 /// visibility settings from attributes and the like?
159  return computation.IgnoreExplicitVisibility;
160 }
161 
162 /// Given an LVComputationKind, return one of the same type/value sort
163 /// that records that it already has explicit visibility.
164 static LVComputationKind
166  Kind.IgnoreExplicitVisibility = true;
167  return Kind;
168 }
169 
172  assert(!kind.IgnoreExplicitVisibility &&
173  "asking for explicit visibility when we shouldn't be");
175 }
176 
177 /// Is the given declaration a "type" or a "value" for the purposes of
178 /// visibility computation?
179 static bool usesTypeVisibility(const NamedDecl *D) {
180  return isa<TypeDecl>(D) ||
181  isa<ClassTemplateDecl>(D) ||
182  isa<ObjCInterfaceDecl>(D);
183 }
184 
185 /// Does the given declaration have member specialization information,
186 /// and if so, is it an explicit specialization?
187 template <class T> static typename
188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190  if (const MemberSpecializationInfo *member =
191  D->getMemberSpecializationInfo()) {
192  return member->isExplicitSpecialization();
193  }
194  return false;
195 }
196 
197 /// For templates, this question is easier: a member template can't be
198 /// explicitly instantiated, so there's a single bit indicating whether
199 /// or not this is an explicit member specialization.
201  return D->isMemberSpecialization();
202 }
203 
204 /// Given a visibility attribute, return the explicit visibility
205 /// associated with it.
206 template <class T>
207 static Visibility getVisibilityFromAttr(const T *attr) {
208  switch (attr->getVisibility()) {
209  case T::Default:
210  return DefaultVisibility;
211  case T::Hidden:
212  return HiddenVisibility;
213  case T::Protected:
214  return ProtectedVisibility;
215  }
216  llvm_unreachable("bad visibility kind");
217 }
218 
219 /// Return the explicit visibility of the given declaration.
222  // If we're ultimately computing the visibility of a type, look for
223  // a 'type_visibility' attribute before looking for 'visibility'.
224  if (kind == NamedDecl::VisibilityForType) {
225  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
226  return getVisibilityFromAttr(A);
227  }
228  }
229 
230  // If this declaration has an explicit visibility attribute, use it.
231  if (const auto *A = D->getAttr<VisibilityAttr>()) {
232  return getVisibilityFromAttr(A);
233  }
234 
235  return None;
236 }
237 
238 LinkageInfo LinkageComputer::getLVForType(const Type &T,
239  LVComputationKind computation) {
240  if (computation.IgnoreAllVisibility)
241  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
242  return getTypeLinkageAndVisibility(&T);
243 }
244 
245 /// Get the most restrictive linkage for the types in the given
246 /// template parameter list. For visibility purposes, template
247 /// parameters are part of the signature of a template.
248 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
249  const TemplateParameterList *Params, LVComputationKind computation) {
250  LinkageInfo LV;
251  for (const NamedDecl *P : *Params) {
252  // Template type parameters are the most common and never
253  // contribute to visibility, pack or not.
254  if (isa<TemplateTypeParmDecl>(P))
255  continue;
256 
257  // Non-type template parameters can be restricted by the value type, e.g.
258  // template <enum X> class A { ... };
259  // We have to be careful here, though, because we can be dealing with
260  // dependent types.
261  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
262  // Handle the non-pack case first.
263  if (!NTTP->isExpandedParameterPack()) {
264  if (!NTTP->getType()->isDependentType()) {
265  LV.merge(getLVForType(*NTTP->getType(), computation));
266  }
267  continue;
268  }
269 
270  // Look at all the types in an expanded pack.
271  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
272  QualType type = NTTP->getExpansionType(i);
273  if (!type->isDependentType())
274  LV.merge(getTypeLinkageAndVisibility(type));
275  }
276  continue;
277  }
278 
279  // Template template parameters can be restricted by their
280  // template parameters, recursively.
281  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
282 
283  // Handle the non-pack case first.
284  if (!TTP->isExpandedParameterPack()) {
285  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
286  computation));
287  continue;
288  }
289 
290  // Look at all expansions in an expanded pack.
291  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
292  i != n; ++i) {
293  LV.merge(getLVForTemplateParameterList(
294  TTP->getExpansionTemplateParameters(i), computation));
295  }
296  }
297 
298  return LV;
299 }
300 
301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
302  const Decl *Ret = nullptr;
303  const DeclContext *DC = D->getDeclContext();
304  while (DC->getDeclKind() != Decl::TranslationUnit) {
305  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
306  Ret = cast<Decl>(DC);
307  DC = DC->getParent();
308  }
309  return Ret;
310 }
311 
312 /// Get the most restrictive linkage for the types and
313 /// declarations in the given template argument list.
314 ///
315 /// Note that we don't take an LVComputationKind because we always
316 /// want to honor the visibility of template arguments in the same way.
318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
319  LVComputationKind computation) {
320  LinkageInfo LV;
321 
322  for (const TemplateArgument &Arg : Args) {
323  switch (Arg.getKind()) {
327  continue;
328 
330  LV.merge(getLVForType(*Arg.getAsType(), computation));
331  continue;
332 
334  const NamedDecl *ND = Arg.getAsDecl();
335  assert(!usesTypeVisibility(ND));
336  LV.merge(getLVForDecl(ND, computation));
337  continue;
338  }
339 
341  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
342  continue;
343 
346  if (TemplateDecl *Template =
347  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
348  LV.merge(getLVForDecl(Template, computation));
349  continue;
350 
352  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
353  continue;
354  }
355  llvm_unreachable("bad template argument kind");
356  }
357 
358  return LV;
359 }
360 
362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
363  LVComputationKind computation) {
364  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
365 }
366 
368  const FunctionTemplateSpecializationInfo *specInfo) {
369  // Include visibility from the template parameters and arguments
370  // only if this is not an explicit instantiation or specialization
371  // with direct explicit visibility. (Implicit instantiations won't
372  // have a direct attribute.)
374  return true;
375 
376  return !fn->hasAttr<VisibilityAttr>();
377 }
378 
379 /// Merge in template-related linkage and visibility for the given
380 /// function template specialization.
381 ///
382 /// We don't need a computation kind here because we can assume
383 /// LVForValue.
384 ///
385 /// \param[out] LV the computation to use for the parent
386 void LinkageComputer::mergeTemplateLV(
387  LinkageInfo &LV, const FunctionDecl *fn,
388  const FunctionTemplateSpecializationInfo *specInfo,
389  LVComputationKind computation) {
390  bool considerVisibility =
391  shouldConsiderTemplateVisibility(fn, specInfo);
392 
393  // Merge information from the template parameters.
394  FunctionTemplateDecl *temp = specInfo->getTemplate();
395  LinkageInfo tempLV =
396  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
397  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
398 
399  // Merge information from the template arguments.
400  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
401  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
402  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
403 }
404 
405 /// Does the given declaration have a direct visibility attribute
406 /// that would match the given rules?
408  LVComputationKind computation) {
409  if (computation.IgnoreAllVisibility)
410  return false;
411 
412  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
413  D->hasAttr<VisibilityAttr>();
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
420  LVComputationKind computation) {
421  // Include visibility from the template parameters and arguments
422  // only if this is not an explicit instantiation or specialization
423  // with direct explicit visibility (and note that implicit
424  // instantiations won't have a direct attribute).
425  //
426  // Furthermore, we want to ignore template parameters and arguments
427  // for an explicit specialization when computing the visibility of a
428  // member thereof with explicit visibility.
429  //
430  // This is a bit complex; let's unpack it.
431  //
432  // An explicit class specialization is an independent, top-level
433  // declaration. As such, if it or any of its members has an
434  // explicit visibility attribute, that must directly express the
435  // user's intent, and we should honor it. The same logic applies to
436  // an explicit instantiation of a member of such a thing.
437 
438  // Fast path: if this is not an explicit instantiation or
439  // specialization, we always want to consider template-related
440  // visibility restrictions.
442  return true;
443 
444  // This is the 'member thereof' check.
445  if (spec->isExplicitSpecialization() &&
446  hasExplicitVisibilityAlready(computation))
447  return false;
448 
449  return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
454 void LinkageComputer::mergeTemplateLV(
456  LVComputationKind computation) {
457  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459  // Merge information from the template parameters, but ignore
460  // visibility if we're only considering template arguments.
461 
463  LinkageInfo tempLV =
464  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465  LV.mergeMaybeWithVisibility(tempLV,
466  considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468  // Merge information from the template arguments. We ignore
469  // template-argument visibility if we've got an explicit
470  // instantiation with a visibility attribute.
471  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473  if (considerVisibility)
474  LV.mergeVisibility(argsLV);
475  LV.mergeExternalVisibility(argsLV);
476 }
477 
478 /// Should we consider visibility associated with the template
479 /// arguments and parameters of the given variable template
480 /// specialization? As usual, follow class template specialization
481 /// logic up to initialization.
483  const VarTemplateSpecializationDecl *spec,
484  LVComputationKind computation) {
485  // Include visibility from the template parameters and arguments
486  // only if this is not an explicit instantiation or specialization
487  // with direct explicit visibility (and note that implicit
488  // instantiations won't have a direct attribute).
490  return true;
491 
492  // An explicit variable specialization is an independent, top-level
493  // declaration. As such, if it has an explicit visibility attribute,
494  // that must directly express the user's intent, and we should honor
495  // it.
496  if (spec->isExplicitSpecialization() &&
497  hasExplicitVisibilityAlready(computation))
498  return false;
499 
500  return !hasDirectVisibilityAttribute(spec, computation);
501 }
502 
503 /// Merge in template-related linkage and visibility for the given
504 /// variable template specialization. As usual, follow class template
505 /// specialization logic up to initialization.
506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
507  const VarTemplateSpecializationDecl *spec,
508  LVComputationKind computation) {
509  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
510 
511  // Merge information from the template parameters, but ignore
512  // visibility if we're only considering template arguments.
513 
514  VarTemplateDecl *temp = spec->getSpecializedTemplate();
515  LinkageInfo tempLV =
516  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
517  LV.mergeMaybeWithVisibility(tempLV,
518  considerVisibility && !hasExplicitVisibilityAlready(computation));
519 
520  // Merge information from the template arguments. We ignore
521  // template-argument visibility if we've got an explicit
522  // instantiation with a visibility attribute.
523  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
524  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
525  if (considerVisibility)
526  LV.mergeVisibility(argsLV);
527  LV.mergeExternalVisibility(argsLV);
528 }
529 
530 static bool useInlineVisibilityHidden(const NamedDecl *D) {
531  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
532  const LangOptions &Opts = D->getASTContext().getLangOpts();
533  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
534  return false;
535 
536  const auto *FD = dyn_cast<FunctionDecl>(D);
537  if (!FD)
538  return false;
539 
542  = FD->getTemplateSpecializationInfo()) {
543  TSK = spec->getTemplateSpecializationKind();
544  } else if (MemberSpecializationInfo *MSI =
545  FD->getMemberSpecializationInfo()) {
546  TSK = MSI->getTemplateSpecializationKind();
547  }
548 
549  const FunctionDecl *Def = nullptr;
550  // InlineVisibilityHidden only applies to definitions, and
551  // isInlined() only gives meaningful answers on definitions
552  // anyway.
553  return TSK != TSK_ExplicitInstantiationDeclaration &&
555  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
556 }
557 
558 template <typename T> static bool isFirstInExternCContext(T *D) {
559  const T *First = D->getFirstDecl();
560  return First->isInExternCContext();
561 }
562 
563 static bool isSingleLineLanguageLinkage(const Decl &D) {
564  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
565  if (!SD->hasBraces())
566  return true;
567  return false;
568 }
569 
570 /// Determine whether D is declared in the purview of a named module.
571 static bool isInModulePurview(const NamedDecl *D) {
572  if (auto *M = D->getOwningModule())
573  return M->isModulePurview();
574  return false;
575 }
576 
578  // FIXME: Handle isModulePrivate.
579  switch (D->getModuleOwnershipKind()) {
582  return false;
585  return isInModulePurview(D);
586  }
587  llvm_unreachable("unexpected module ownership kind");
588 }
589 
591  // Internal linkage declarations within a module interface unit are modeled
592  // as "module-internal linkage", which means that they have internal linkage
593  // formally but can be indirectly accessed from outside the module via inline
594  // functions and templates defined within the module.
595  if (isInModulePurview(D))
597 
598  return LinkageInfo::internal();
599 }
600 
602  // C++ Modules TS [basic.link]/6.8:
603  // - A name declared at namespace scope that does not have internal linkage
604  // by the previous rules and that is introduced by a non-exported
605  // declaration has module linkage.
607  cast<NamedDecl>(D->getCanonicalDecl())))
609 
610  return LinkageInfo::external();
611 }
612 
614  if (auto *TD = dyn_cast<TemplateDecl>(D))
615  D = TD->getTemplatedDecl();
616  if (D) {
617  if (auto *VD = dyn_cast<VarDecl>(D))
618  return VD->getStorageClass();
619  if (auto *FD = dyn_cast<FunctionDecl>(D))
620  return FD->getStorageClass();
621  }
622  return SC_None;
623 }
624 
626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
627  LVComputationKind computation,
628  bool IgnoreVarTypeLinkage) {
629  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
630  "Not a name having namespace scope");
631  ASTContext &Context = D->getASTContext();
632 
633  // C++ [basic.link]p3:
634  // A name having namespace scope (3.3.6) has internal linkage if it
635  // is the name of
636 
638  // - a variable, variable template, function, or function template
639  // that is explicitly declared static; or
640  // (This bullet corresponds to C99 6.2.2p3.)
641  return getInternalLinkageFor(D);
642  }
643 
644  if (const auto *Var = dyn_cast<VarDecl>(D)) {
645  // - a non-template variable of non-volatile const-qualified type, unless
646  // - it is explicitly declared extern, or
647  // - it is inline or exported, or
648  // - it was previously declared and the prior declaration did not have
649  // internal linkage
650  // (There is no equivalent in C99.)
651  if (Context.getLangOpts().CPlusPlus &&
652  Var->getType().isConstQualified() &&
653  !Var->getType().isVolatileQualified() &&
654  !Var->isInline() &&
656  !isa<VarTemplateSpecializationDecl>(Var) &&
657  !Var->getDescribedVarTemplate()) {
658  const VarDecl *PrevVar = Var->getPreviousDecl();
659  if (PrevVar)
660  return getLVForDecl(PrevVar, computation);
661 
662  if (Var->getStorageClass() != SC_Extern &&
663  Var->getStorageClass() != SC_PrivateExtern &&
665  return getInternalLinkageFor(Var);
666  }
667 
668  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
669  PrevVar = PrevVar->getPreviousDecl()) {
670  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
671  Var->getStorageClass() == SC_None)
672  return getDeclLinkageAndVisibility(PrevVar);
673  // Explicitly declared static.
674  if (PrevVar->getStorageClass() == SC_Static)
675  return getInternalLinkageFor(Var);
676  }
677  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
678  // - a data member of an anonymous union.
679  const VarDecl *VD = IFD->getVarDecl();
680  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
681  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
682  }
683  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
684 
685  // FIXME: This gives internal linkage to names that should have no linkage
686  // (those not covered by [basic.link]p6).
687  if (D->isInAnonymousNamespace()) {
688  const auto *Var = dyn_cast<VarDecl>(D);
689  const auto *Func = dyn_cast<FunctionDecl>(D);
690  // FIXME: The check for extern "C" here is not justified by the standard
691  // wording, but we retain it from the pre-DR1113 model to avoid breaking
692  // code.
693  //
694  // C++11 [basic.link]p4:
695  // An unnamed namespace or a namespace declared directly or indirectly
696  // within an unnamed namespace has internal linkage.
697  if ((!Var || !isFirstInExternCContext(Var)) &&
698  (!Func || !isFirstInExternCContext(Func)))
699  return getInternalLinkageFor(D);
700  }
701 
702  // Set up the defaults.
703 
704  // C99 6.2.2p5:
705  // If the declaration of an identifier for an object has file
706  // scope and no storage-class specifier, its linkage is
707  // external.
709 
710  if (!hasExplicitVisibilityAlready(computation)) {
711  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
712  LV.mergeVisibility(*Vis, true);
713  } else {
714  // If we're declared in a namespace with a visibility attribute,
715  // use that namespace's visibility, and it still counts as explicit.
716  for (const DeclContext *DC = D->getDeclContext();
717  !isa<TranslationUnitDecl>(DC);
718  DC = DC->getParent()) {
719  const auto *ND = dyn_cast<NamespaceDecl>(DC);
720  if (!ND) continue;
721  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
722  LV.mergeVisibility(*Vis, true);
723  break;
724  }
725  }
726  }
727 
728  // Add in global settings if the above didn't give us direct visibility.
729  if (!LV.isVisibilityExplicit()) {
730  // Use global type/value visibility as appropriate.
731  Visibility globalVisibility =
732  computation.isValueVisibility()
733  ? Context.getLangOpts().getValueVisibilityMode()
734  : Context.getLangOpts().getTypeVisibilityMode();
735  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
736 
737  // If we're paying attention to global visibility, apply
738  // -finline-visibility-hidden if this is an inline method.
740  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
741  }
742  }
743 
744  // C++ [basic.link]p4:
745 
746  // A name having namespace scope that has not been given internal linkage
747  // above and that is the name of
748  // [...bullets...]
749  // has its linkage determined as follows:
750  // - if the enclosing namespace has internal linkage, the name has
751  // internal linkage; [handled above]
752  // - otherwise, if the declaration of the name is attached to a named
753  // module and is not exported, the name has module linkage;
754  // - otherwise, the name has external linkage.
755  // LV is currently set up to handle the last two bullets.
756  //
757  // The bullets are:
758 
759  // - a variable; or
760  if (const auto *Var = dyn_cast<VarDecl>(D)) {
761  // GCC applies the following optimization to variables and static
762  // data members, but not to functions:
763  //
764  // Modify the variable's LV by the LV of its type unless this is
765  // C or extern "C". This follows from [basic.link]p9:
766  // A type without linkage shall not be used as the type of a
767  // variable or function with external linkage unless
768  // - the entity has C language linkage, or
769  // - the entity is declared within an unnamed namespace, or
770  // - the entity is not used or is defined in the same
771  // translation unit.
772  // and [basic.link]p10:
773  // ...the types specified by all declarations referring to a
774  // given variable or function shall be identical...
775  // C does not have an equivalent rule.
776  //
777  // Ignore this if we've got an explicit attribute; the user
778  // probably knows what they're doing.
779  //
780  // Note that we don't want to make the variable non-external
781  // because of this, but unique-external linkage suits us.
782  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
783  !IgnoreVarTypeLinkage) {
784  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
785  if (!isExternallyVisible(TypeLV.getLinkage()))
787  if (!LV.isVisibilityExplicit())
788  LV.mergeVisibility(TypeLV);
789  }
790 
791  if (Var->getStorageClass() == SC_PrivateExtern)
793 
794  // Note that Sema::MergeVarDecl already takes care of implementing
795  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
796  // to do it here.
797 
798  // As per function and class template specializations (below),
799  // consider LV for the template and template arguments. We're at file
800  // scope, so we do not need to worry about nested specializations.
801  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
802  mergeTemplateLV(LV, spec, computation);
803  }
804 
805  // - a function; or
806  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
807  // In theory, we can modify the function's LV by the LV of its
808  // type unless it has C linkage (see comment above about variables
809  // for justification). In practice, GCC doesn't do this, so it's
810  // just too painful to make work.
811 
812  if (Function->getStorageClass() == SC_PrivateExtern)
814 
815  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
816  // merging storage classes and visibility attributes, so we don't have to
817  // look at previous decls in here.
818 
819  // In C++, then if the type of the function uses a type with
820  // unique-external linkage, it's not legally usable from outside
821  // this translation unit. However, we should use the C linkage
822  // rules instead for extern "C" declarations.
823  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
824  // Only look at the type-as-written. Otherwise, deducing the return type
825  // of a function could change its linkage.
826  QualType TypeAsWritten = Function->getType();
827  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
828  TypeAsWritten = TSI->getType();
829  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831  }
832 
833  // Consider LV from the template and the template arguments.
834  // We're at file scope, so we do not need to worry about nested
835  // specializations.
837  = Function->getTemplateSpecializationInfo()) {
838  mergeTemplateLV(LV, Function, specInfo, computation);
839  }
840 
841  // - a named class (Clause 9), or an unnamed class defined in a
842  // typedef declaration in which the class has the typedef name
843  // for linkage purposes (7.1.3); or
844  // - a named enumeration (7.2), or an unnamed enumeration
845  // defined in a typedef declaration in which the enumeration
846  // has the typedef name for linkage purposes (7.1.3); or
847  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
848  // Unnamed tags have no linkage.
849  if (!Tag->hasNameForLinkage())
850  return LinkageInfo::none();
851 
852  // If this is a class template specialization, consider the
853  // linkage of the template and template arguments. We're at file
854  // scope, so we do not need to worry about nested specializations.
855  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
856  mergeTemplateLV(LV, spec, computation);
857  }
858 
859  // FIXME: This is not part of the C++ standard any more.
860  // - an enumerator belonging to an enumeration with external linkage; or
861  } else if (isa<EnumConstantDecl>(D)) {
862  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
863  computation);
864  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
865  return LinkageInfo::none();
866  LV.merge(EnumLV);
867 
868  // - a template
869  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
870  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
871  LinkageInfo tempLV =
872  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
873  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
874 
875  // An unnamed namespace or a namespace declared directly or indirectly
876  // within an unnamed namespace has internal linkage. All other namespaces
877  // have external linkage.
878  //
879  // We handled names in anonymous namespaces above.
880  } else if (isa<NamespaceDecl>(D)) {
881  return LV;
882 
883  // By extension, we assign external linkage to Objective-C
884  // interfaces.
885  } else if (isa<ObjCInterfaceDecl>(D)) {
886  // fallout
887 
888  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
889  // A typedef declaration has linkage if it gives a type a name for
890  // linkage purposes.
891  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
892  return LinkageInfo::none();
893 
894  // Everything not covered here has no linkage.
895  } else {
896  return LinkageInfo::none();
897  }
898 
899  // If we ended up with non-externally-visible linkage, visibility should
900  // always be default.
901  if (!isExternallyVisible(LV.getLinkage()))
902  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
903 
904  return LV;
905 }
906 
908 LinkageComputer::getLVForClassMember(const NamedDecl *D,
909  LVComputationKind computation,
910  bool IgnoreVarTypeLinkage) {
911  // Only certain class members have linkage. Note that fields don't
912  // really have linkage, but it's convenient to say they do for the
913  // purposes of calculating linkage of pointer-to-data-member
914  // template arguments.
915  //
916  // Templates also don't officially have linkage, but since we ignore
917  // the C++ standard and look at template arguments when determining
918  // linkage and visibility of a template specialization, we might hit
919  // a template template argument that way. If we do, we need to
920  // consider its linkage.
921  if (!(isa<CXXMethodDecl>(D) ||
922  isa<VarDecl>(D) ||
923  isa<FieldDecl>(D) ||
924  isa<IndirectFieldDecl>(D) ||
925  isa<TagDecl>(D) ||
926  isa<TemplateDecl>(D)))
927  return LinkageInfo::none();
928 
929  LinkageInfo LV;
930 
931  // If we have an explicit visibility attribute, merge that in.
932  if (!hasExplicitVisibilityAlready(computation)) {
933  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
934  LV.mergeVisibility(*Vis, true);
935  // If we're paying attention to global visibility, apply
936  // -finline-visibility-hidden if this is an inline method.
937  //
938  // Note that we do this before merging information about
939  // the class visibility.
941  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
942  }
943 
944  // If this class member has an explicit visibility attribute, the only
945  // thing that can change its visibility is the template arguments, so
946  // only look for them when processing the class.
947  LVComputationKind classComputation = computation;
948  if (LV.isVisibilityExplicit())
949  classComputation = withExplicitVisibilityAlready(computation);
950 
951  LinkageInfo classLV =
952  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
953  // The member has the same linkage as the class. If that's not externally
954  // visible, we don't need to compute anything about the linkage.
955  // FIXME: If we're only computing linkage, can we bail out here?
956  if (!isExternallyVisible(classLV.getLinkage()))
957  return classLV;
958 
959 
960  // Otherwise, don't merge in classLV yet, because in certain cases
961  // we need to completely ignore the visibility from it.
962 
963  // Specifically, if this decl exists and has an explicit attribute.
964  const NamedDecl *explicitSpecSuppressor = nullptr;
965 
966  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
967  // Only look at the type-as-written. Otherwise, deducing the return type
968  // of a function could change its linkage.
969  QualType TypeAsWritten = MD->getType();
970  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
971  TypeAsWritten = TSI->getType();
972  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
974 
975  // If this is a method template specialization, use the linkage for
976  // the template parameters and arguments.
978  = MD->getTemplateSpecializationInfo()) {
979  mergeTemplateLV(LV, MD, spec, computation);
980  if (spec->isExplicitSpecialization()) {
981  explicitSpecSuppressor = MD;
982  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
983  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
984  }
985  } else if (isExplicitMemberSpecialization(MD)) {
986  explicitSpecSuppressor = MD;
987  }
988 
989  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
990  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
991  mergeTemplateLV(LV, spec, computation);
992  if (spec->isExplicitSpecialization()) {
993  explicitSpecSuppressor = spec;
994  } else {
995  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
996  if (isExplicitMemberSpecialization(temp)) {
997  explicitSpecSuppressor = temp->getTemplatedDecl();
998  }
999  }
1000  } else if (isExplicitMemberSpecialization(RD)) {
1001  explicitSpecSuppressor = RD;
1002  }
1003 
1004  // Static data members.
1005  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1006  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1007  mergeTemplateLV(LV, spec, computation);
1008 
1009  // Modify the variable's linkage by its type, but ignore the
1010  // type's visibility unless it's a definition.
1011  if (!IgnoreVarTypeLinkage) {
1012  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1013  // FIXME: If the type's linkage is not externally visible, we can
1014  // give this static data member UniqueExternalLinkage.
1015  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1016  LV.mergeVisibility(typeLV);
1017  LV.mergeExternalVisibility(typeLV);
1018  }
1019 
1021  explicitSpecSuppressor = VD;
1022  }
1023 
1024  // Template members.
1025  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1026  bool considerVisibility =
1027  (!LV.isVisibilityExplicit() &&
1028  !classLV.isVisibilityExplicit() &&
1029  !hasExplicitVisibilityAlready(computation));
1030  LinkageInfo tempLV =
1031  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1032  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1033 
1034  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1035  if (isExplicitMemberSpecialization(redeclTemp)) {
1036  explicitSpecSuppressor = temp->getTemplatedDecl();
1037  }
1038  }
1039  }
1040 
1041  // We should never be looking for an attribute directly on a template.
1042  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1043 
1044  // If this member is an explicit member specialization, and it has
1045  // an explicit attribute, ignore visibility from the parent.
1046  bool considerClassVisibility = true;
1047  if (explicitSpecSuppressor &&
1048  // optimization: hasDVA() is true only with explicit visibility.
1049  LV.isVisibilityExplicit() &&
1050  classLV.getVisibility() != DefaultVisibility &&
1051  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1052  considerClassVisibility = false;
1053  }
1054 
1055  // Finally, merge in information from the class.
1056  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1057  return LV;
1058 }
1059 
1060 void NamedDecl::anchor() {}
1061 
1063  if (!hasCachedLinkage())
1064  return true;
1065 
1066  Linkage L = LinkageComputer{}
1068  .getLinkage();
1069  return L == getCachedLinkage();
1070 }
1071 
1073  StringRef name = getName();
1074  if (name.empty()) return SFF_None;
1075 
1076  if (name.front() == 'C')
1077  if (name == "CFStringCreateWithFormat" ||
1078  name == "CFStringCreateWithFormatAndArguments" ||
1079  name == "CFStringAppendFormat" ||
1080  name == "CFStringAppendFormatAndArguments")
1081  return SFF_CFString;
1082  return SFF_None;
1083 }
1084 
1086  // We don't care about visibility here, so ask for the cheapest
1087  // possible visibility analysis.
1088  return LinkageComputer{}
1090  .getLinkage();
1091 }
1092 
1095 }
1096 
1097 static Optional<Visibility>
1100  bool IsMostRecent) {
1101  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1102 
1103  // Check the declaration itself first.
1104  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1105  return V;
1106 
1107  // If this is a member class of a specialization of a class template
1108  // and the corresponding decl has explicit visibility, use that.
1109  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1110  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1111  if (InstantiatedFrom)
1112  return getVisibilityOf(InstantiatedFrom, kind);
1113  }
1114 
1115  // If there wasn't explicit visibility there, and this is a
1116  // specialization of a class template, check for visibility
1117  // on the pattern.
1118  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1119  // Walk all the template decl till this point to see if there are
1120  // explicit visibility attributes.
1121  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1122  while (TD != nullptr) {
1123  auto Vis = getVisibilityOf(TD, kind);
1124  if (Vis != None)
1125  return Vis;
1126  TD = TD->getPreviousDecl();
1127  }
1128  return None;
1129  }
1130 
1131  // Use the most recent declaration.
1132  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1133  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1134  if (MostRecent != ND)
1135  return getExplicitVisibilityAux(MostRecent, kind, true);
1136  }
1137 
1138  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1139  if (Var->isStaticDataMember()) {
1140  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1141  if (InstantiatedFrom)
1142  return getVisibilityOf(InstantiatedFrom, kind);
1143  }
1144 
1145  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1146  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1147  kind);
1148 
1149  return None;
1150  }
1151  // Also handle function template specializations.
1152  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1153  // If the function is a specialization of a template with an
1154  // explicit visibility attribute, use that.
1155  if (FunctionTemplateSpecializationInfo *templateInfo
1157  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1158  kind);
1159 
1160  // If the function is a member of a specialization of a class template
1161  // and the corresponding decl has explicit visibility, use that.
1162  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1163  if (InstantiatedFrom)
1164  return getVisibilityOf(InstantiatedFrom, kind);
1165 
1166  return None;
1167  }
1168 
1169  // The visibility of a template is stored in the templated decl.
1170  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1171  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1172 
1173  return None;
1174 }
1175 
1178  return getExplicitVisibilityAux(this, kind, false);
1179 }
1180 
1181 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1182  Decl *ContextDecl,
1183  LVComputationKind computation) {
1184  // This lambda has its linkage/visibility determined by its owner.
1185  const NamedDecl *Owner;
1186  if (!ContextDecl)
1187  Owner = dyn_cast<NamedDecl>(DC);
1188  else if (isa<ParmVarDecl>(ContextDecl))
1189  Owner =
1190  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1191  else
1192  Owner = cast<NamedDecl>(ContextDecl);
1193 
1194  if (!Owner)
1195  return LinkageInfo::none();
1196 
1197  // If the owner has a deduced type, we need to skip querying the linkage and
1198  // visibility of that type, because it might involve this closure type. The
1199  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1200  // than NoLinkage when we don't strictly need to, which is benign.
1201  auto *VD = dyn_cast<VarDecl>(Owner);
1202  LinkageInfo OwnerLV =
1203  VD && VD->getType()->getContainedDeducedType()
1204  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1205  : getLVForDecl(Owner, computation);
1206 
1207  // A lambda never formally has linkage. But if the owner is externally
1208  // visible, then the lambda is too. We apply the same rules to blocks.
1209  if (!isExternallyVisible(OwnerLV.getLinkage()))
1210  return LinkageInfo::none();
1211  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1212  OwnerLV.isVisibilityExplicit());
1213 }
1214 
1215 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1216  LVComputationKind computation) {
1217  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1218  if (Function->isInAnonymousNamespace() &&
1219  !isFirstInExternCContext(Function))
1220  return getInternalLinkageFor(Function);
1221 
1222  // This is a "void f();" which got merged with a file static.
1223  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1224  return getInternalLinkageFor(Function);
1225 
1226  LinkageInfo LV;
1227  if (!hasExplicitVisibilityAlready(computation)) {
1228  if (Optional<Visibility> Vis =
1229  getExplicitVisibility(Function, computation))
1230  LV.mergeVisibility(*Vis, true);
1231  }
1232 
1233  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1234  // merging storage classes and visibility attributes, so we don't have to
1235  // look at previous decls in here.
1236 
1237  return LV;
1238  }
1239 
1240  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1241  if (Var->hasExternalStorage()) {
1242  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1243  return getInternalLinkageFor(Var);
1244 
1245  LinkageInfo LV;
1246  if (Var->getStorageClass() == SC_PrivateExtern)
1248  else if (!hasExplicitVisibilityAlready(computation)) {
1249  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1250  LV.mergeVisibility(*Vis, true);
1251  }
1252 
1253  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1254  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1255  if (PrevLV.getLinkage())
1256  LV.setLinkage(PrevLV.getLinkage());
1257  LV.mergeVisibility(PrevLV);
1258  }
1259 
1260  return LV;
1261  }
1262 
1263  if (!Var->isStaticLocal())
1264  return LinkageInfo::none();
1265  }
1266 
1267  ASTContext &Context = D->getASTContext();
1268  if (!Context.getLangOpts().CPlusPlus)
1269  return LinkageInfo::none();
1270 
1271  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1272  if (!OuterD || OuterD->isInvalidDecl())
1273  return LinkageInfo::none();
1274 
1275  LinkageInfo LV;
1276  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1277  if (!BD->getBlockManglingNumber())
1278  return LinkageInfo::none();
1279 
1280  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1281  BD->getBlockManglingContextDecl(), computation);
1282  } else {
1283  const auto *FD = cast<FunctionDecl>(OuterD);
1284  if (!FD->isInlined() &&
1285  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1286  return LinkageInfo::none();
1287 
1288  // If a function is hidden by -fvisibility-inlines-hidden option and
1289  // is not explicitly attributed as a hidden function,
1290  // we should not make static local variables in the function hidden.
1291  LV = getLVForDecl(FD, computation);
1292  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1293  !LV.isVisibilityExplicit()) {
1294  assert(cast<VarDecl>(D)->isStaticLocal());
1295  // If this was an implicitly hidden inline method, check again for
1296  // explicit visibility on the parent class, and use that for static locals
1297  // if present.
1298  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1299  LV = getLVForDecl(MD->getParent(), computation);
1300  if (!LV.isVisibilityExplicit()) {
1301  Visibility globalVisibility =
1302  computation.isValueVisibility()
1303  ? Context.getLangOpts().getValueVisibilityMode()
1304  : Context.getLangOpts().getTypeVisibilityMode();
1305  return LinkageInfo(VisibleNoLinkage, globalVisibility,
1306  /*visibilityExplicit=*/false);
1307  }
1308  }
1309  }
1310  if (!isExternallyVisible(LV.getLinkage()))
1311  return LinkageInfo::none();
1313  LV.isVisibilityExplicit());
1314 }
1315 
1316 static inline const CXXRecordDecl*
1318  const CXXRecordDecl *Ret = Record;
1319  while (Record && Record->isLambda()) {
1320  Ret = Record;
1321  if (!Record->getParent()) break;
1322  // Get the Containing Class of this Lambda Class
1323  Record = dyn_cast_or_null<CXXRecordDecl>(
1324  Record->getParent()->getParent());
1325  }
1326  return Ret;
1327 }
1328 
1330  LVComputationKind computation,
1331  bool IgnoreVarTypeLinkage) {
1332  // Internal_linkage attribute overrides other considerations.
1333  if (D->hasAttr<InternalLinkageAttr>())
1334  return getInternalLinkageFor(D);
1335 
1336  // Objective-C: treat all Objective-C declarations as having external
1337  // linkage.
1338  switch (D->getKind()) {
1339  default:
1340  break;
1341 
1342  // Per C++ [basic.link]p2, only the names of objects, references,
1343  // functions, types, templates, namespaces, and values ever have linkage.
1344  //
1345  // Note that the name of a typedef, namespace alias, using declaration,
1346  // and so on are not the name of the corresponding type, namespace, or
1347  // declaration, so they do *not* have linkage.
1348  case Decl::ImplicitParam:
1349  case Decl::Label:
1350  case Decl::NamespaceAlias:
1351  case Decl::ParmVar:
1352  case Decl::Using:
1353  case Decl::UsingShadow:
1354  case Decl::UsingDirective:
1355  return LinkageInfo::none();
1356 
1357  case Decl::EnumConstant:
1358  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1359  if (D->getASTContext().getLangOpts().CPlusPlus)
1360  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1361  return LinkageInfo::visible_none();
1362 
1363  case Decl::Typedef:
1364  case Decl::TypeAlias:
1365  // A typedef declaration has linkage if it gives a type a name for
1366  // linkage purposes.
1367  if (!cast<TypedefNameDecl>(D)
1368  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1369  return LinkageInfo::none();
1370  break;
1371 
1372  case Decl::TemplateTemplateParm: // count these as external
1373  case Decl::NonTypeTemplateParm:
1374  case Decl::ObjCAtDefsField:
1375  case Decl::ObjCCategory:
1376  case Decl::ObjCCategoryImpl:
1377  case Decl::ObjCCompatibleAlias:
1378  case Decl::ObjCImplementation:
1379  case Decl::ObjCMethod:
1380  case Decl::ObjCProperty:
1381  case Decl::ObjCPropertyImpl:
1382  case Decl::ObjCProtocol:
1383  return getExternalLinkageFor(D);
1384 
1385  case Decl::CXXRecord: {
1386  const auto *Record = cast<CXXRecordDecl>(D);
1387  if (Record->isLambda()) {
1388  if (!Record->getLambdaManglingNumber()) {
1389  // This lambda has no mangling number, so it's internal.
1390  return getInternalLinkageFor(D);
1391  }
1392 
1393  // This lambda has its linkage/visibility determined:
1394  // - either by the outermost lambda if that lambda has no mangling
1395  // number.
1396  // - or by the parent of the outer most lambda
1397  // This prevents infinite recursion in settings such as nested lambdas
1398  // used in NSDMI's, for e.g.
1399  // struct L {
1400  // int t{};
1401  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1402  // };
1403  const CXXRecordDecl *OuterMostLambda =
1405  if (!OuterMostLambda->getLambdaManglingNumber())
1406  return getInternalLinkageFor(D);
1407 
1408  return getLVForClosure(
1409  OuterMostLambda->getDeclContext()->getRedeclContext(),
1410  OuterMostLambda->getLambdaContextDecl(), computation);
1411  }
1412 
1413  break;
1414  }
1415  }
1416 
1417  // Handle linkage for namespace-scope names.
1419  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1420 
1421  // C++ [basic.link]p5:
1422  // In addition, a member function, static data member, a named
1423  // class or enumeration of class scope, or an unnamed class or
1424  // enumeration defined in a class-scope typedef declaration such
1425  // that the class or enumeration has the typedef name for linkage
1426  // purposes (7.1.3), has external linkage if the name of the class
1427  // has external linkage.
1428  if (D->getDeclContext()->isRecord())
1429  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1430 
1431  // C++ [basic.link]p6:
1432  // The name of a function declared in block scope and the name of
1433  // an object declared by a block scope extern declaration have
1434  // linkage. If there is a visible declaration of an entity with
1435  // linkage having the same name and type, ignoring entities
1436  // declared outside the innermost enclosing namespace scope, the
1437  // block scope declaration declares that same entity and receives
1438  // the linkage of the previous declaration. If there is more than
1439  // one such matching entity, the program is ill-formed. Otherwise,
1440  // if no matching entity is found, the block scope entity receives
1441  // external linkage.
1442  if (D->getDeclContext()->isFunctionOrMethod())
1443  return getLVForLocalDecl(D, computation);
1444 
1445  // C++ [basic.link]p6:
1446  // Names not covered by these rules have no linkage.
1447  return LinkageInfo::none();
1448 }
1449 
1450 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1452  LVComputationKind computation) {
1453  // Internal_linkage attribute overrides other considerations.
1454  if (D->hasAttr<InternalLinkageAttr>())
1455  return getInternalLinkageFor(D);
1456 
1457  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1458  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1459 
1460  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1461  return *LI;
1462 
1463  LinkageInfo LV = computeLVForDecl(D, computation);
1464  if (D->hasCachedLinkage())
1465  assert(D->getCachedLinkage() == LV.getLinkage());
1466 
1467  D->setCachedLinkage(LV.getLinkage());
1468  cache(D, computation, LV);
1469 
1470 #ifndef NDEBUG
1471  // In C (because of gnu inline) and in c++ with microsoft extensions an
1472  // static can follow an extern, so we can have two decls with different
1473  // linkages.
1474  const LangOptions &Opts = D->getASTContext().getLangOpts();
1475  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1476  return LV;
1477 
1478  // We have just computed the linkage for this decl. By induction we know
1479  // that all other computed linkages match, check that the one we just
1480  // computed also does.
1481  NamedDecl *Old = nullptr;
1482  for (auto I : D->redecls()) {
1483  auto *T = cast<NamedDecl>(I);
1484  if (T == D)
1485  continue;
1486  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1487  Old = T;
1488  break;
1489  }
1490  }
1491  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1492 #endif
1493 
1494  return LV;
1495 }
1496 
1498  return getLVForDecl(D,
1502 }
1503 
1504 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1505  Module *M = getOwningModule();
1506  if (!M)
1507  return nullptr;
1508 
1509  switch (M->Kind) {
1511  // Module map modules have no special linkage semantics.
1512  return nullptr;
1513 
1515  return M;
1516 
1518  // External linkage declarations in the global module have no owning module
1519  // for linkage purposes. But internal linkage declarations in the global
1520  // module fragment of a particular module are owned by that module for
1521  // linkage purposes.
1522  if (IgnoreLinkage)
1523  return nullptr;
1524  bool InternalLinkage;
1525  if (auto *ND = dyn_cast<NamedDecl>(this))
1526  InternalLinkage = !ND->hasExternalFormalLinkage();
1527  else {
1528  auto *NSD = dyn_cast<NamespaceDecl>(this);
1529  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1530  isInAnonymousNamespace();
1531  }
1532  return InternalLinkage ? M->Parent : nullptr;
1533  }
1534 
1536  // The private module fragment is part of its containing module for linkage
1537  // purposes.
1538  return M->Parent;
1539  }
1540 
1541  llvm_unreachable("unknown module kind");
1542 }
1543 
1544 void NamedDecl::printName(raw_ostream &os) const {
1545  os << Name;
1546 }
1547 
1549  std::string QualName;
1550  llvm::raw_string_ostream OS(QualName);
1551  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1552  return OS.str();
1553 }
1554 
1555 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1556  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1557 }
1558 
1559 void NamedDecl::printQualifiedName(raw_ostream &OS,
1560  const PrintingPolicy &P) const {
1561  const DeclContext *Ctx = getDeclContext();
1562 
1563  // For ObjC methods and properties, look through categories and use the
1564  // interface as context.
1565  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1566  if (auto *ID = MD->getClassInterface())
1567  Ctx = ID;
1568  if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1569  if (auto *MD = PD->getGetterMethodDecl())
1570  if (auto *ID = MD->getClassInterface())
1571  Ctx = ID;
1572  }
1573 
1574  if (Ctx->isFunctionOrMethod()) {
1575  printName(OS);
1576  return;
1577  }
1578 
1579  using ContextsTy = SmallVector<const DeclContext *, 8>;
1580  ContextsTy Contexts;
1581 
1582  // Collect named contexts.
1583  while (Ctx) {
1584  if (isa<NamedDecl>(Ctx))
1585  Contexts.push_back(Ctx);
1586  Ctx = Ctx->getParent();
1587  }
1588 
1589  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1590  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1591  OS << Spec->getName();
1592  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1593  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1594  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1595  if (P.SuppressUnwrittenScope &&
1596  (ND->isAnonymousNamespace() || ND->isInline()))
1597  continue;
1598  if (ND->isAnonymousNamespace()) {
1599  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1600  : "(anonymous namespace)");
1601  }
1602  else
1603  OS << *ND;
1604  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1605  if (!RD->getIdentifier())
1606  OS << "(anonymous " << RD->getKindName() << ')';
1607  else
1608  OS << *RD;
1609  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1610  const FunctionProtoType *FT = nullptr;
1611  if (FD->hasWrittenPrototype())
1612  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1613 
1614  OS << *FD << '(';
1615  if (FT) {
1616  unsigned NumParams = FD->getNumParams();
1617  for (unsigned i = 0; i < NumParams; ++i) {
1618  if (i)
1619  OS << ", ";
1620  OS << FD->getParamDecl(i)->getType().stream(P);
1621  }
1622 
1623  if (FT->isVariadic()) {
1624  if (NumParams > 0)
1625  OS << ", ";
1626  OS << "...";
1627  }
1628  }
1629  OS << ')';
1630  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1631  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1632  // enumerator is declared in the scope that immediately contains
1633  // the enum-specifier. Each scoped enumerator is declared in the
1634  // scope of the enumeration.
1635  // For the case of unscoped enumerator, do not include in the qualified
1636  // name any information about its enum enclosing scope, as its visibility
1637  // is global.
1638  if (ED->isScoped())
1639  OS << *ED;
1640  else
1641  continue;
1642  } else {
1643  OS << *cast<NamedDecl>(DC);
1644  }
1645  OS << "::";
1646  }
1647 
1648  if (getDeclName() || isa<DecompositionDecl>(this))
1649  OS << *this;
1650  else
1651  OS << "(anonymous)";
1652 }
1653 
1654 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1655  const PrintingPolicy &Policy,
1656  bool Qualified) const {
1657  if (Qualified)
1658  printQualifiedName(OS, Policy);
1659  else
1660  printName(OS);
1661 }
1662 
1663 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1664  return true;
1665 }
1666 static bool isRedeclarableImpl(...) { return false; }
1667 static bool isRedeclarable(Decl::Kind K) {
1668  switch (K) {
1669 #define DECL(Type, Base) \
1670  case Decl::Type: \
1671  return isRedeclarableImpl((Type##Decl *)nullptr);
1672 #define ABSTRACT_DECL(DECL)
1673 #include "clang/AST/DeclNodes.inc"
1674  }
1675  llvm_unreachable("unknown decl kind");
1676 }
1677 
1678 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1679  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1680 
1681  // Never replace one imported declaration with another; we need both results
1682  // when re-exporting.
1683  if (OldD->isFromASTFile() && isFromASTFile())
1684  return false;
1685 
1686  // A kind mismatch implies that the declaration is not replaced.
1687  if (OldD->getKind() != getKind())
1688  return false;
1689 
1690  // For method declarations, we never replace. (Why?)
1691  if (isa<ObjCMethodDecl>(this))
1692  return false;
1693 
1694  // For parameters, pick the newer one. This is either an error or (in
1695  // Objective-C) permitted as an extension.
1696  if (isa<ParmVarDecl>(this))
1697  return true;
1698 
1699  // Inline namespaces can give us two declarations with the same
1700  // name and kind in the same scope but different contexts; we should
1701  // keep both declarations in this case.
1702  if (!this->getDeclContext()->getRedeclContext()->Equals(
1703  OldD->getDeclContext()->getRedeclContext()))
1704  return false;
1705 
1706  // Using declarations can be replaced if they import the same name from the
1707  // same context.
1708  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1709  ASTContext &Context = getASTContext();
1710  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1712  cast<UsingDecl>(OldD)->getQualifier());
1713  }
1714  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1715  ASTContext &Context = getASTContext();
1716  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1718  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1719  }
1720 
1721  if (isRedeclarable(getKind())) {
1722  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1723  return false;
1724 
1725  if (IsKnownNewer)
1726  return true;
1727 
1728  // Check whether this is actually newer than OldD. We want to keep the
1729  // newer declaration. This loop will usually only iterate once, because
1730  // OldD is usually the previous declaration.
1731  for (auto D : redecls()) {
1732  if (D == OldD)
1733  break;
1734 
1735  // If we reach the canonical declaration, then OldD is not actually older
1736  // than this one.
1737  //
1738  // FIXME: In this case, we should not add this decl to the lookup table.
1739  if (D->isCanonicalDecl())
1740  return false;
1741  }
1742 
1743  // It's a newer declaration of the same kind of declaration in the same
1744  // scope: we want this decl instead of the existing one.
1745  return true;
1746  }
1747 
1748  // In all other cases, we need to keep both declarations in case they have
1749  // different visibility. Any attempt to use the name will result in an
1750  // ambiguity if more than one is visible.
1751  return false;
1752 }
1753 
1755  return getFormalLinkage() != NoLinkage;
1756 }
1757 
1758 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1759  NamedDecl *ND = this;
1760  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1761  ND = UD->getTargetDecl();
1762 
1763  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1764  return AD->getClassInterface();
1765 
1766  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1767  return AD->getNamespace();
1768 
1769  return ND;
1770 }
1771 
1773  if (!isCXXClassMember())
1774  return false;
1775 
1776  const NamedDecl *D = this;
1777  if (isa<UsingShadowDecl>(D))
1778  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1779 
1780  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1781  return true;
1782  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1783  return MD->isInstance();
1784  return false;
1785 }
1786 
1787 //===----------------------------------------------------------------------===//
1788 // DeclaratorDecl Implementation
1789 //===----------------------------------------------------------------------===//
1790 
1791 template <typename DeclT>
1793  if (decl->getNumTemplateParameterLists() > 0)
1794  return decl->getTemplateParameterList(0)->getTemplateLoc();
1795  else
1796  return decl->getInnerLocStart();
1797 }
1798 
1800  TypeSourceInfo *TSI = getTypeSourceInfo();
1801  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1802  return SourceLocation();
1803 }
1804 
1806  if (QualifierLoc) {
1807  // Make sure the extended decl info is allocated.
1808  if (!hasExtInfo()) {
1809  // Save (non-extended) type source info pointer.
1810  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1811  // Allocate external info struct.
1812  DeclInfo = new (getASTContext()) ExtInfo;
1813  // Restore savedTInfo into (extended) decl info.
1814  getExtInfo()->TInfo = savedTInfo;
1815  }
1816  // Set qualifier info.
1817  getExtInfo()->QualifierLoc = QualifierLoc;
1818  } else {
1819  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1820  if (hasExtInfo()) {
1821  if (getExtInfo()->NumTemplParamLists == 0) {
1822  // Save type source info pointer.
1823  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1824  // Deallocate the extended decl info.
1825  getASTContext().Deallocate(getExtInfo());
1826  // Restore savedTInfo into (non-extended) decl info.
1827  DeclInfo = savedTInfo;
1828  }
1829  else
1830  getExtInfo()->QualifierLoc = QualifierLoc;
1831  }
1832  }
1833 }
1834 
1836  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1837  assert(!TPLists.empty());
1838  // Make sure the extended decl info is allocated.
1839  if (!hasExtInfo()) {
1840  // Save (non-extended) type source info pointer.
1841  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1842  // Allocate external info struct.
1843  DeclInfo = new (getASTContext()) ExtInfo;
1844  // Restore savedTInfo into (extended) decl info.
1845  getExtInfo()->TInfo = savedTInfo;
1846  }
1847  // Set the template parameter lists info.
1848  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1849 }
1850 
1852  return getTemplateOrInnerLocStart(this);
1853 }
1854 
1855 // Helper function: returns true if QT is or contains a type
1856 // having a postfix component.
1857 static bool typeIsPostfix(QualType QT) {
1858  while (true) {
1859  const Type* T = QT.getTypePtr();
1860  switch (T->getTypeClass()) {
1861  default:
1862  return false;
1863  case Type::Pointer:
1864  QT = cast<PointerType>(T)->getPointeeType();
1865  break;
1866  case Type::BlockPointer:
1867  QT = cast<BlockPointerType>(T)->getPointeeType();
1868  break;
1869  case Type::MemberPointer:
1870  QT = cast<MemberPointerType>(T)->getPointeeType();
1871  break;
1872  case Type::LValueReference:
1873  case Type::RValueReference:
1874  QT = cast<ReferenceType>(T)->getPointeeType();
1875  break;
1876  case Type::PackExpansion:
1877  QT = cast<PackExpansionType>(T)->getPattern();
1878  break;
1879  case Type::Paren:
1880  case Type::ConstantArray:
1881  case Type::DependentSizedArray:
1882  case Type::IncompleteArray:
1883  case Type::VariableArray:
1884  case Type::FunctionProto:
1885  case Type::FunctionNoProto:
1886  return true;
1887  }
1888  }
1889 }
1890 
1892  SourceLocation RangeEnd = getLocation();
1893  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1894  // If the declaration has no name or the type extends past the name take the
1895  // end location of the type.
1896  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1897  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1898  }
1899  return SourceRange(getOuterLocStart(), RangeEnd);
1900 }
1901 
1903  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1904  // Free previous template parameters (if any).
1905  if (NumTemplParamLists > 0) {
1906  Context.Deallocate(TemplParamLists);
1907  TemplParamLists = nullptr;
1908  NumTemplParamLists = 0;
1909  }
1910  // Set info on matched template parameter lists (if any).
1911  if (!TPLists.empty()) {
1912  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1913  NumTemplParamLists = TPLists.size();
1914  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1915  }
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // VarDecl Implementation
1920 //===----------------------------------------------------------------------===//
1921 
1923  switch (SC) {
1924  case SC_None: break;
1925  case SC_Auto: return "auto";
1926  case SC_Extern: return "extern";
1927  case SC_PrivateExtern: return "__private_extern__";
1928  case SC_Register: return "register";
1929  case SC_Static: return "static";
1930  }
1931 
1932  llvm_unreachable("Invalid storage class");
1933 }
1934 
1936  SourceLocation StartLoc, SourceLocation IdLoc,
1938  StorageClass SC)
1939  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1940  redeclarable_base(C) {
1941  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1942  "VarDeclBitfields too large!");
1943  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1944  "ParmVarDeclBitfields too large!");
1945  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1946  "NonParmVarDeclBitfields too large!");
1947  AllBits = 0;
1948  VarDeclBits.SClass = SC;
1949  // Everything else is implicitly initialized to false.
1950 }
1951 
1953  SourceLocation StartL, SourceLocation IdL,
1955  StorageClass S) {
1956  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1957 }
1958 
1960  return new (C, ID)
1961  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1962  QualType(), nullptr, SC_None);
1963 }
1964 
1966  assert(isLegalForVariable(SC));
1967  VarDeclBits.SClass = SC;
1968 }
1969 
1971  switch (VarDeclBits.TSCSpec) {
1972  case TSCS_unspecified:
1973  if (!hasAttr<ThreadAttr>() &&
1974  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1975  getASTContext().getTargetInfo().isTLSSupported() &&
1976  hasAttr<OMPThreadPrivateDeclAttr>()))
1977  return TLS_None;
1978  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1980  hasAttr<OMPThreadPrivateDeclAttr>())
1981  ? TLS_Dynamic
1982  : TLS_Static;
1983  case TSCS___thread: // Fall through.
1984  case TSCS__Thread_local:
1985  return TLS_Static;
1986  case TSCS_thread_local:
1987  return TLS_Dynamic;
1988  }
1989  llvm_unreachable("Unknown thread storage class specifier!");
1990 }
1991 
1993  if (const Expr *Init = getInit()) {
1994  SourceLocation InitEnd = Init->getEndLoc();
1995  // If Init is implicit, ignore its source range and fallback on
1996  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1997  if (InitEnd.isValid() && InitEnd != getLocation())
1998  return SourceRange(getOuterLocStart(), InitEnd);
1999  }
2001 }
2002 
2003 template<typename T>
2005  // C++ [dcl.link]p1: All function types, function names with external linkage,
2006  // and variable names with external linkage have a language linkage.
2007  if (!D.hasExternalFormalLinkage())
2008  return NoLanguageLinkage;
2009 
2010  // Language linkage is a C++ concept, but saying that everything else in C has
2011  // C language linkage fits the implementation nicely.
2012  ASTContext &Context = D.getASTContext();
2013  if (!Context.getLangOpts().CPlusPlus)
2014  return CLanguageLinkage;
2015 
2016  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2017  // language linkage of the names of class members and the function type of
2018  // class member functions.
2019  const DeclContext *DC = D.getDeclContext();
2020  if (DC->isRecord())
2021  return CXXLanguageLinkage;
2022 
2023  // If the first decl is in an extern "C" context, any other redeclaration
2024  // will have C language linkage. If the first one is not in an extern "C"
2025  // context, we would have reported an error for any other decl being in one.
2026  if (isFirstInExternCContext(&D))
2027  return CLanguageLinkage;
2028  return CXXLanguageLinkage;
2029 }
2030 
2031 template<typename T>
2032 static bool isDeclExternC(const T &D) {
2033  // Since the context is ignored for class members, they can only have C++
2034  // language linkage or no language linkage.
2035  const DeclContext *DC = D.getDeclContext();
2036  if (DC->isRecord()) {
2037  assert(D.getASTContext().getLangOpts().CPlusPlus);
2038  return false;
2039  }
2040 
2041  return D.getLanguageLinkage() == CLanguageLinkage;
2042 }
2043 
2045  return getDeclLanguageLinkage(*this);
2046 }
2047 
2048 bool VarDecl::isExternC() const {
2049  return isDeclExternC(*this);
2050 }
2051 
2054 }
2055 
2058 }
2059 
2061 
2065  return DeclarationOnly;
2066 
2067  // C++ [basic.def]p2:
2068  // A declaration is a definition unless [...] it contains the 'extern'
2069  // specifier or a linkage-specification and neither an initializer [...],
2070  // it declares a non-inline static data member in a class declaration [...],
2071  // it declares a static data member outside a class definition and the variable
2072  // was defined within the class with the constexpr specifier [...],
2073  // C++1y [temp.expl.spec]p15:
2074  // An explicit specialization of a static data member or an explicit
2075  // specialization of a static data member template is a definition if the
2076  // declaration includes an initializer; otherwise, it is a declaration.
2077  //
2078  // FIXME: How do you declare (but not define) a partial specialization of
2079  // a static data member template outside the containing class?
2080  if (isStaticDataMember()) {
2081  if (isOutOfLine() &&
2082  !(getCanonicalDecl()->isInline() &&
2083  getCanonicalDecl()->isConstexpr()) &&
2084  (hasInit() ||
2085  // If the first declaration is out-of-line, this may be an
2086  // instantiation of an out-of-line partial specialization of a variable
2087  // template for which we have not yet instantiated the initializer.
2092  isa<VarTemplatePartialSpecializationDecl>(this)))
2093  return Definition;
2094  else if (!isOutOfLine() && isInline())
2095  return Definition;
2096  else
2097  return DeclarationOnly;
2098  }
2099  // C99 6.7p5:
2100  // A definition of an identifier is a declaration for that identifier that
2101  // [...] causes storage to be reserved for that object.
2102  // Note: that applies for all non-file-scope objects.
2103  // C99 6.9.2p1:
2104  // If the declaration of an identifier for an object has file scope and an
2105  // initializer, the declaration is an external definition for the identifier
2106  if (hasInit())
2107  return Definition;
2108 
2109  if (hasDefiningAttr())
2110  return Definition;
2111 
2112  if (const auto *SAA = getAttr<SelectAnyAttr>())
2113  if (!SAA->isInherited())
2114  return Definition;
2115 
2116  // A variable template specialization (other than a static data member
2117  // template or an explicit specialization) is a declaration until we
2118  // instantiate its initializer.
2119  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2120  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2121  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2122  !VTSD->IsCompleteDefinition)
2123  return DeclarationOnly;
2124  }
2125 
2126  if (hasExternalStorage())
2127  return DeclarationOnly;
2128 
2129  // [dcl.link] p7:
2130  // A declaration directly contained in a linkage-specification is treated
2131  // as if it contains the extern specifier for the purpose of determining
2132  // the linkage of the declared name and whether it is a definition.
2133  if (isSingleLineLanguageLinkage(*this))
2134  return DeclarationOnly;
2135 
2136  // C99 6.9.2p2:
2137  // A declaration of an object that has file scope without an initializer,
2138  // and without a storage class specifier or the scs 'static', constitutes
2139  // a tentative definition.
2140  // No such thing in C++.
2141  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2142  return TentativeDefinition;
2143 
2144  // What's left is (in C, block-scope) declarations without initializers or
2145  // external storage. These are definitions.
2146  return Definition;
2147 }
2148 
2151  if (Kind != TentativeDefinition)
2152  return nullptr;
2153 
2154  VarDecl *LastTentative = nullptr;
2155  VarDecl *First = getFirstDecl();
2156  for (auto I : First->redecls()) {
2157  Kind = I->isThisDeclarationADefinition();
2158  if (Kind == Definition)
2159  return nullptr;
2160  else if (Kind == TentativeDefinition)
2161  LastTentative = I;
2162  }
2163  return LastTentative;
2164 }
2165 
2167  VarDecl *First = getFirstDecl();
2168  for (auto I : First->redecls()) {
2169  if (I->isThisDeclarationADefinition(C) == Definition)
2170  return I;
2171  }
2172  return nullptr;
2173 }
2174 
2177 
2178  const VarDecl *First = getFirstDecl();
2179  for (auto I : First->redecls()) {
2180  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2181  if (Kind == Definition)
2182  break;
2183  }
2184 
2185  return Kind;
2186 }
2187 
2188 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2189  for (auto I : redecls()) {
2190  if (auto Expr = I->getInit()) {
2191  D = I;
2192  return Expr;
2193  }
2194  }
2195  return nullptr;
2196 }
2197 
2198 bool VarDecl::hasInit() const {
2199  if (auto *P = dyn_cast<ParmVarDecl>(this))
2200  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2201  return false;
2202 
2203  return !Init.isNull();
2204 }
2205 
2207  if (!hasInit())
2208  return nullptr;
2209 
2210  if (auto *S = Init.dyn_cast<Stmt *>())
2211  return cast<Expr>(S);
2212 
2213  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2214 }
2215 
2217  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2218  return &ES->Value;
2219 
2220  return Init.getAddrOfPtr1();
2221 }
2222 
2223 bool VarDecl::isOutOfLine() const {
2224  if (Decl::isOutOfLine())
2225  return true;
2226 
2227  if (!isStaticDataMember())
2228  return false;
2229 
2230  // If this static data member was instantiated from a static data member of
2231  // a class template, check whether that static data member was defined
2232  // out-of-line.
2234  return VD->isOutOfLine();
2235 
2236  return false;
2237 }
2238 
2240  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2241  Eval->~EvaluatedStmt();
2242  getASTContext().Deallocate(Eval);
2243  }
2244 
2245  Init = I;
2246 }
2247 
2249  const LangOptions &Lang = C.getLangOpts();
2250 
2251  if (!Lang.CPlusPlus)
2252  return false;
2253 
2254  // Function parameters are never usable in constant expressions.
2255  if (isa<ParmVarDecl>(this))
2256  return false;
2257 
2258  // In C++11, any variable of reference type can be used in a constant
2259  // expression if it is initialized by a constant expression.
2260  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2261  return true;
2262 
2263  // Only const objects can be used in constant expressions in C++. C++98 does
2264  // not require the variable to be non-volatile, but we consider this to be a
2265  // defect.
2266  if (!getType().isConstQualified() || getType().isVolatileQualified())
2267  return false;
2268 
2269  // In C++, const, non-volatile variables of integral or enumeration types
2270  // can be used in constant expressions.
2271  if (getType()->isIntegralOrEnumerationType())
2272  return true;
2273 
2274  // Additionally, in C++11, non-volatile constexpr variables can be used in
2275  // constant expressions.
2276  return Lang.CPlusPlus11 && isConstexpr();
2277 }
2278 
2280  // C++2a [expr.const]p3:
2281  // A variable is usable in constant expressions after its initializing
2282  // declaration is encountered...
2283  const VarDecl *DefVD = nullptr;
2284  const Expr *Init = getAnyInitializer(DefVD);
2285  if (!Init || Init->isValueDependent() || getType()->isDependentType())
2286  return false;
2287  // ... if it is a constexpr variable, or it is of reference type or of
2288  // const-qualified integral or enumeration type, ...
2289  if (!DefVD->mightBeUsableInConstantExpressions(Context))
2290  return false;
2291  // ... and its initializer is a constant initializer.
2292  return DefVD->checkInitIsICE();
2293 }
2294 
2295 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2296 /// form, which contains extra information on the evaluated value of the
2297 /// initializer.
2299  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2300  if (!Eval) {
2301  // Note: EvaluatedStmt contains an APValue, which usually holds
2302  // resources not allocated from the ASTContext. We need to do some
2303  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2304  // where we can detect whether there's anything to clean up or not.
2305  Eval = new (getASTContext()) EvaluatedStmt;
2306  Eval->Value = Init.get<Stmt *>();
2307  Init = Eval;
2308  }
2309  return Eval;
2310 }
2311 
2314  return evaluateValue(Notes);
2315 }
2316 
2318  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2320 
2321  // We only produce notes indicating why an initializer is non-constant the
2322  // first time it is evaluated. FIXME: The notes won't always be emitted the
2323  // first time we try evaluation, so might not be produced at all.
2324  if (Eval->WasEvaluated)
2325  return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2326 
2327  const auto *Init = cast<Expr>(Eval->Value);
2328  assert(!Init->isValueDependent());
2329 
2330  if (Eval->IsEvaluating) {
2331  // FIXME: Produce a diagnostic for self-initialization.
2332  Eval->CheckedICE = true;
2333  Eval->IsICE = false;
2334  return nullptr;
2335  }
2336 
2337  Eval->IsEvaluating = true;
2338 
2339  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2340  this, Notes);
2341 
2342  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2343  // or that it's empty (so that there's nothing to clean up) if evaluation
2344  // failed.
2345  if (!Result)
2346  Eval->Evaluated = APValue();
2347  else if (Eval->Evaluated.needsCleanup())
2349 
2350  Eval->IsEvaluating = false;
2351  Eval->WasEvaluated = true;
2352 
2353  // In C++11, we have determined whether the initializer was a constant
2354  // expression as a side-effect.
2355  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2356  Eval->CheckedICE = true;
2357  Eval->IsICE = Result && Notes.empty();
2358  }
2359 
2360  return Result ? &Eval->Evaluated : nullptr;
2361 }
2362 
2364  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2365  if (Eval->WasEvaluated)
2366  return &Eval->Evaluated;
2367 
2368  return nullptr;
2369 }
2370 
2372  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2373  return Eval->CheckedICE;
2374 
2375  return false;
2376 }
2377 
2378 bool VarDecl::isInitICE() const {
2379  assert(isInitKnownICE() &&
2380  "Check whether we already know that the initializer is an ICE");
2381  return Init.get<EvaluatedStmt *>()->IsICE;
2382 }
2383 
2385  // Initializers of weak variables are never ICEs.
2386  if (isWeak())
2387  return false;
2388 
2390  if (Eval->CheckedICE)
2391  // We have already checked whether this subexpression is an
2392  // integral constant expression.
2393  return Eval->IsICE;
2394 
2395  const auto *Init = cast<Expr>(Eval->Value);
2396  assert(!Init->isValueDependent());
2397 
2398  // In C++11, evaluate the initializer to check whether it's a constant
2399  // expression.
2400  if (getASTContext().getLangOpts().CPlusPlus11) {
2402  evaluateValue(Notes);
2403  return Eval->IsICE;
2404  }
2405 
2406  // It's an ICE whether or not the definition we found is
2407  // out-of-line. See DR 721 and the discussion in Clang PR
2408  // 6206 for details.
2409 
2410  if (Eval->CheckingICE)
2411  return false;
2412  Eval->CheckingICE = true;
2413 
2414  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2415  Eval->CheckingICE = false;
2416  Eval->CheckedICE = true;
2417  return Eval->IsICE;
2418 }
2419 
2421  return isa<PackExpansionType>(getType());
2422 }
2423 
2424 template<typename DeclT>
2425 static DeclT *getDefinitionOrSelf(DeclT *D) {
2426  assert(D);
2427  if (auto *Def = D->getDefinition())
2428  return Def;
2429  return D;
2430 }
2431 
2433  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2434 }
2435 
2437  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2438 }
2439 
2441  const VarDecl *VD = this;
2442 
2443  // If this is an instantiated member, walk back to the template from which
2444  // it was instantiated.
2446  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2448  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2449  VD = NewVD;
2450  }
2451  }
2452 
2453  // If it's an instantiated variable template specialization, find the
2454  // template or partial specialization from which it was instantiated.
2455  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2456  if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2457  auto From = VDTemplSpec->getInstantiatedFrom();
2458  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2459  while (!VTD->isMemberSpecialization()) {
2460  auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2461  if (!NewVTD)
2462  break;
2463  VTD = NewVTD;
2464  }
2465  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2466  }
2467  if (auto *VTPSD =
2468  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2469  while (!VTPSD->isMemberSpecialization()) {
2470  auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2471  if (!NewVTPSD)
2472  break;
2473  VTPSD = NewVTPSD;
2474  }
2475  return getDefinitionOrSelf<VarDecl>(VTPSD);
2476  }
2477  }
2478  }
2479 
2480  // If this is the pattern of a variable template, find where it was
2481  // instantiated from. FIXME: Is this necessary?
2482  if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2483  while (!VarTemplate->isMemberSpecialization()) {
2484  auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2485  if (!NewVT)
2486  break;
2487  VarTemplate = NewVT;
2488  }
2489 
2490  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2491  }
2492 
2493  if (VD == this)
2494  return nullptr;
2495  return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2496 }
2497 
2500  return cast<VarDecl>(MSI->getInstantiatedFrom());
2501 
2502  return nullptr;
2503 }
2504 
2506  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2507  return Spec->getSpecializationKind();
2508 
2510  return MSI->getTemplateSpecializationKind();
2511 
2512  return TSK_Undeclared;
2513 }
2514 
2518  return MSI->getTemplateSpecializationKind();
2519 
2520  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2521  return Spec->getSpecializationKind();
2522 
2523  return TSK_Undeclared;
2524 }
2525 
2527  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2528  return Spec->getPointOfInstantiation();
2529 
2531  return MSI->getPointOfInstantiation();
2532 
2533  return SourceLocation();
2534 }
2535 
2538  .dyn_cast<VarTemplateDecl *>();
2539 }
2540 
2543 }
2544 
2546  const auto &LangOpts = getASTContext().getLangOpts();
2547  // In CUDA mode without relocatable device code, variables of form 'extern
2548  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2549  // memory pool. These are never undefined variables, even if they appear
2550  // inside of an anon namespace or static function.
2551  //
2552  // With CUDA relocatable device code enabled, these variables don't get
2553  // special handling; they're treated like regular extern variables.
2554  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2555  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2556  isa<IncompleteArrayType>(getType()))
2557  return true;
2558 
2559  return hasDefinition();
2560 }
2561 
2562 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2563  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2564  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2565  !hasAttr<AlwaysDestroyAttr>()));
2566 }
2567 
2569  if (isStaticDataMember())
2570  // FIXME: Remove ?
2571  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2573  .dyn_cast<MemberSpecializationInfo *>();
2574  return nullptr;
2575 }
2576 
2578  SourceLocation PointOfInstantiation) {
2579  assert((isa<VarTemplateSpecializationDecl>(this) ||
2581  "not a variable or static data member template specialization");
2582 
2583  if (VarTemplateSpecializationDecl *Spec =
2584  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2585  Spec->setSpecializationKind(TSK);
2586  if (TSK != TSK_ExplicitSpecialization &&
2587  PointOfInstantiation.isValid() &&
2588  Spec->getPointOfInstantiation().isInvalid()) {
2589  Spec->setPointOfInstantiation(PointOfInstantiation);
2591  L->InstantiationRequested(this);
2592  }
2594  MSI->setTemplateSpecializationKind(TSK);
2595  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2596  MSI->getPointOfInstantiation().isInvalid()) {
2597  MSI->setPointOfInstantiation(PointOfInstantiation);
2599  L->InstantiationRequested(this);
2600  }
2601  }
2602 }
2603 
2604 void
2607  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2608  "Previous template or instantiation?");
2610 }
2611 
2612 //===----------------------------------------------------------------------===//
2613 // ParmVarDecl Implementation
2614 //===----------------------------------------------------------------------===//
2615 
2617  SourceLocation StartLoc,
2619  QualType T, TypeSourceInfo *TInfo,
2620  StorageClass S, Expr *DefArg) {
2621  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2622  S, DefArg);
2623 }
2624 
2627  QualType T = TSI ? TSI->getType() : getType();
2628  if (const auto *DT = dyn_cast<DecayedType>(T))
2629  return DT->getOriginalType();
2630  return T;
2631 }
2632 
2634  return new (C, ID)
2635  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2636  nullptr, QualType(), nullptr, SC_None, nullptr);
2637 }
2638 
2640  if (!hasInheritedDefaultArg()) {
2641  SourceRange ArgRange = getDefaultArgRange();
2642  if (ArgRange.isValid())
2643  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2644  }
2645 
2646  // DeclaratorDecl considers the range of postfix types as overlapping with the
2647  // declaration name, but this is not the case with parameters in ObjC methods.
2648  if (isa<ObjCMethodDecl>(getDeclContext()))
2650 
2652 }
2653 
2655  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2656  assert(!hasUninstantiatedDefaultArg() &&
2657  "Default argument is not yet instantiated!");
2658 
2659  Expr *Arg = getInit();
2660  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2661  return E->getSubExpr();
2662 
2663  return Arg;
2664 }
2665 
2667  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2668  Init = defarg;
2669 }
2670 
2672  switch (ParmVarDeclBits.DefaultArgKind) {
2673  case DAK_None:
2674  case DAK_Unparsed:
2675  // Nothing we can do here.
2676  return SourceRange();
2677 
2678  case DAK_Uninstantiated:
2679  return getUninstantiatedDefaultArg()->getSourceRange();
2680 
2681  case DAK_Normal:
2682  if (const Expr *E = getInit())
2683  return E->getSourceRange();
2684 
2685  // Missing an actual expression, may be invalid.
2686  return SourceRange();
2687  }
2688  llvm_unreachable("Invalid default argument kind.");
2689 }
2690 
2692  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2693  Init = arg;
2694 }
2695 
2697  assert(hasUninstantiatedDefaultArg() &&
2698  "Wrong kind of initialization expression!");
2699  return cast_or_null<Expr>(Init.get<Stmt *>());
2700 }
2701 
2703  // FIXME: We should just return false for DAK_None here once callers are
2704  // prepared for the case that we encountered an invalid default argument and
2705  // were unable to even build an invalid expression.
2706  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2707  !Init.isNull();
2708 }
2709 
2710 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2711  getASTContext().setParameterIndex(this, parameterIndex);
2712  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2713 }
2714 
2715 unsigned ParmVarDecl::getParameterIndexLarge() const {
2716  return getASTContext().getParameterIndex(this);
2717 }
2718 
2719 //===----------------------------------------------------------------------===//
2720 // FunctionDecl Implementation
2721 //===----------------------------------------------------------------------===//
2722 
2724  SourceLocation StartLoc,
2725  const DeclarationNameInfo &NameInfo, QualType T,
2726  TypeSourceInfo *TInfo, StorageClass S,
2727  bool isInlineSpecified,
2728  ConstexprSpecKind ConstexprKind)
2729  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2730  StartLoc),
2732  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2733  assert(T.isNull() || T->isFunctionType());
2734  FunctionDeclBits.SClass = S;
2736  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2737  FunctionDeclBits.IsVirtualAsWritten = false;
2738  FunctionDeclBits.IsPure = false;
2739  FunctionDeclBits.HasInheritedPrototype = false;
2740  FunctionDeclBits.HasWrittenPrototype = true;
2741  FunctionDeclBits.IsDeleted = false;
2742  FunctionDeclBits.IsTrivial = false;
2743  FunctionDeclBits.IsTrivialForCall = false;
2744  FunctionDeclBits.IsDefaulted = false;
2745  FunctionDeclBits.IsExplicitlyDefaulted = false;
2746  FunctionDeclBits.HasImplicitReturnZero = false;
2747  FunctionDeclBits.IsLateTemplateParsed = false;
2748  FunctionDeclBits.ConstexprKind = ConstexprKind;
2749  FunctionDeclBits.InstantiationIsPending = false;
2750  FunctionDeclBits.UsesSEHTry = false;
2751  FunctionDeclBits.HasSkippedBody = false;
2752  FunctionDeclBits.WillHaveBody = false;
2753  FunctionDeclBits.IsMultiVersion = false;
2754  FunctionDeclBits.IsCopyDeductionCandidate = false;
2755  FunctionDeclBits.HasODRHash = false;
2756 }
2757 
2759  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2760  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2761  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2762  if (TemplateArgs)
2763  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2764 }
2765 
2767  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2768  return FT->isVariadic();
2769  return false;
2770 }
2771 
2772 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2773  for (auto I : redecls()) {
2774  if (I->doesThisDeclarationHaveABody()) {
2775  Definition = I;
2776  return true;
2777  }
2778  }
2779 
2780  return false;
2781 }
2782 
2784 {
2785  Stmt *S = getBody();
2786  if (!S) {
2787  // Since we don't have a body for this function, we don't know if it's
2788  // trivial or not.
2789  return false;
2790  }
2791 
2792  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2793  return true;
2794  return false;
2795 }
2796 
2797 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2798  for (auto I : redecls()) {
2799  if (I->isThisDeclarationADefinition()) {
2800  Definition = I;
2801  return true;
2802  }
2803  }
2804 
2805  return false;
2806 }
2807 
2808 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2809  if (!hasBody(Definition))
2810  return nullptr;
2811 
2812  if (Definition->Body)
2813  return Definition->Body.get(getASTContext().getExternalSource());
2814 
2815  return nullptr;
2816 }
2817 
2819  Body = B;
2820  if (B)
2821  EndRangeLoc = B->getEndLoc();
2822 }
2823 
2825  FunctionDeclBits.IsPure = P;
2826  if (P)
2827  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2828  Parent->markedVirtualFunctionPure();
2829 }
2830 
2831 template<std::size_t Len>
2832 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2833  IdentifierInfo *II = ND->getIdentifier();
2834  return II && II->isStr(Str);
2835 }
2836 
2837 bool FunctionDecl::isMain() const {
2838  const TranslationUnitDecl *tunit =
2840  return tunit &&
2841  !tunit->getASTContext().getLangOpts().Freestanding &&
2842  isNamed(this, "main");
2843 }
2844 
2846  const TranslationUnitDecl *TUnit =
2848  if (!TUnit)
2849  return false;
2850 
2851  // Even though we aren't really targeting MSVCRT if we are freestanding,
2852  // semantic analysis for these functions remains the same.
2853 
2854  // MSVCRT entry points only exist on MSVCRT targets.
2855  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2856  return false;
2857 
2858  // Nameless functions like constructors cannot be entry points.
2859  if (!getIdentifier())
2860  return false;
2861 
2862  return llvm::StringSwitch<bool>(getName())
2863  .Cases("main", // an ANSI console app
2864  "wmain", // a Unicode console App
2865  "WinMain", // an ANSI GUI app
2866  "wWinMain", // a Unicode GUI app
2867  "DllMain", // a DLL
2868  true)
2869  .Default(false);
2870 }
2871 
2873  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2874  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2875  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2876  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2877  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2878 
2880  return false;
2881 
2882  const auto *proto = getType()->castAs<FunctionProtoType>();
2883  if (proto->getNumParams() != 2 || proto->isVariadic())
2884  return false;
2885 
2886  ASTContext &Context =
2887  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2888  ->getASTContext();
2889 
2890  // The result type and first argument type are constant across all
2891  // these operators. The second argument must be exactly void*.
2892  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2893 }
2894 
2896  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2897  return false;
2898  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2899  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2900  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2901  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2902  return false;
2903 
2904  if (isa<CXXRecordDecl>(getDeclContext()))
2905  return false;
2906 
2907  // This can only fail for an invalid 'operator new' declaration.
2909  return false;
2910 
2911  const auto *FPT = getType()->castAs<FunctionProtoType>();
2912  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2913  return false;
2914 
2915  // If this is a single-parameter function, it must be a replaceable global
2916  // allocation or deallocation function.
2917  if (FPT->getNumParams() == 1)
2918  return true;
2919 
2920  unsigned Params = 1;
2921  QualType Ty = FPT->getParamType(Params);
2922  ASTContext &Ctx = getASTContext();
2923 
2924  auto Consume = [&] {
2925  ++Params;
2926  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2927  };
2928 
2929  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2930  bool IsSizedDelete = false;
2931  if (Ctx.getLangOpts().SizedDeallocation &&
2932  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2933  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2934  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2935  IsSizedDelete = true;
2936  Consume();
2937  }
2938 
2939  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2940  // new/delete.
2941  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2942  if (IsAligned)
2943  *IsAligned = true;
2944  Consume();
2945  }
2946 
2947  // Finally, if this is not a sized delete, the final parameter can
2948  // be a 'const std::nothrow_t&'.
2949  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2950  Ty = Ty->getPointeeType();
2951  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2952  return false;
2953  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2954  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2955  Consume();
2956  }
2957 
2958  return Params == FPT->getNumParams();
2959 }
2960 
2962  // C++ P0722:
2963  // Within a class C, a single object deallocation function with signature
2964  // (T, std::destroying_delete_t, <more params>)
2965  // is a destroying operator delete.
2966  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2967  getNumParams() < 2)
2968  return false;
2969 
2970  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2971  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2972  RD->getIdentifier()->isStr("destroying_delete_t");
2973 }
2974 
2976  return getDeclLanguageLinkage(*this);
2977 }
2978 
2980  return isDeclExternC(*this);
2981 }
2982 
2984  if (hasAttr<OpenCLKernelAttr>())
2985  return true;
2987 }
2988 
2991 }
2992 
2994  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2995  return Method->isStatic();
2996 
2998  return false;
2999 
3000  for (const DeclContext *DC = getDeclContext();
3001  DC->isNamespace();
3002  DC = DC->getParent()) {
3003  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3004  if (!Namespace->getDeclName())
3005  return false;
3006  break;
3007  }
3008  }
3009 
3010  return true;
3011 }
3012 
3014  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3015  hasAttr<C11NoReturnAttr>())
3016  return true;
3017 
3018  if (auto *FnTy = getType()->getAs<FunctionType>())
3019  return FnTy->getNoReturnAttr();
3020 
3021  return false;
3022 }
3023 
3024 
3026  if (hasAttr<TargetAttr>())
3027  return MultiVersionKind::Target;
3028  if (hasAttr<CPUDispatchAttr>())
3030  if (hasAttr<CPUSpecificAttr>())
3032  return MultiVersionKind::None;
3033 }
3034 
3036  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3037 }
3038 
3040  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3041 }
3042 
3044  return isMultiVersion() && hasAttr<TargetAttr>();
3045 }
3046 
3047 void
3050 
3052  FunctionTemplateDecl *PrevFunTmpl
3053  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3054  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3055  FunTmpl->setPreviousDecl(PrevFunTmpl);
3056  }
3057 
3058  if (PrevDecl && PrevDecl->isInlined())
3059  setImplicitlyInline(true);
3060 }
3061 
3063 
3064 /// Returns a value indicating whether this function corresponds to a builtin
3065 /// function.
3066 ///
3067 /// The function corresponds to a built-in function if it is declared at
3068 /// translation scope or within an extern "C" block and its name matches with
3069 /// the name of a builtin. The returned value will be 0 for functions that do
3070 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3071 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3072 /// value.
3073 ///
3074 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3075 /// functions as their wrapped builtins. This shouldn't be done in general, but
3076 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3077 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3078  if (!getIdentifier())
3079  return 0;
3080 
3081  unsigned BuiltinID = getIdentifier()->getBuiltinID();
3082  if (!BuiltinID)
3083  return 0;
3084 
3085  ASTContext &Context = getASTContext();
3086  if (Context.getLangOpts().CPlusPlus) {
3087  const auto *LinkageDecl =
3089  // In C++, the first declaration of a builtin is always inside an implicit
3090  // extern "C".
3091  // FIXME: A recognised library function may not be directly in an extern "C"
3092  // declaration, for instance "extern "C" { namespace std { decl } }".
3093  if (!LinkageDecl) {
3094  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3095  Context.getTargetInfo().getCXXABI().isMicrosoft())
3096  return Builtin::BI__GetExceptionInfo;
3097  return 0;
3098  }
3099  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3100  return 0;
3101  }
3102 
3103  // If the function is marked "overloadable", it has a different mangled name
3104  // and is not the C library function.
3105  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>())
3106  return 0;
3107 
3108  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3109  return BuiltinID;
3110 
3111  // This function has the name of a known C library
3112  // function. Determine whether it actually refers to the C library
3113  // function or whether it just has the same name.
3114 
3115  // If this is a static function, it's not a builtin.
3116  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3117  return 0;
3118 
3119  // OpenCL v1.2 s6.9.f - The library functions defined in
3120  // the C99 standard headers are not available.
3121  if (Context.getLangOpts().OpenCL &&
3122  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3123  return 0;
3124 
3125  // CUDA does not have device-side standard library. printf and malloc are the
3126  // only special cases that are supported by device-side runtime.
3127  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3128  !hasAttr<CUDAHostAttr>() &&
3129  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3130  return 0;
3131 
3132  return BuiltinID;
3133 }
3134 
3135 /// getNumParams - Return the number of parameters this function must have
3136 /// based on its FunctionType. This is the length of the ParamInfo array
3137 /// after it has been created.
3138 unsigned FunctionDecl::getNumParams() const {
3139  const auto *FPT = getType()->getAs<FunctionProtoType>();
3140  return FPT ? FPT->getNumParams() : 0;
3141 }
3142 
3143 void FunctionDecl::setParams(ASTContext &C,
3144  ArrayRef<ParmVarDecl *> NewParamInfo) {
3145  assert(!ParamInfo && "Already has param info!");
3146  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3147 
3148  // Zero params -> null pointer.
3149  if (!NewParamInfo.empty()) {
3150  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3151  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3152  }
3153 }
3154 
3155 /// getMinRequiredArguments - Returns the minimum number of arguments
3156 /// needed to call this function. This may be fewer than the number of
3157 /// function parameters, if some of the parameters have default
3158 /// arguments (in C++) or are parameter packs (C++11).
3160  if (!getASTContext().getLangOpts().CPlusPlus)
3161  return getNumParams();
3162 
3163  unsigned NumRequiredArgs = 0;
3164  for (auto *Param : parameters())
3165  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3166  ++NumRequiredArgs;
3167  return NumRequiredArgs;
3168 }
3169 
3170 /// The combination of the extern and inline keywords under MSVC forces
3171 /// the function to be required.
3172 ///
3173 /// Note: This function assumes that we will only get called when isInlined()
3174 /// would return true for this FunctionDecl.
3176  assert(isInlined() && "expected to get called on an inlined function!");
3177 
3178  const ASTContext &Context = getASTContext();
3179  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3180  !hasAttr<DLLExportAttr>())
3181  return false;
3182 
3183  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3184  FD = FD->getPreviousDecl())
3185  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3186  return true;
3187 
3188  return false;
3189 }
3190 
3191 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3192  if (Redecl->getStorageClass() != SC_Extern)
3193  return false;
3194 
3195  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3196  FD = FD->getPreviousDecl())
3197  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3198  return false;
3199 
3200  return true;
3201 }
3202 
3203 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3204  // Only consider file-scope declarations in this test.
3205  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3206  return false;
3207 
3208  // Only consider explicit declarations; the presence of a builtin for a
3209  // libcall shouldn't affect whether a definition is externally visible.
3210  if (Redecl->isImplicit())
3211  return false;
3212 
3213  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3214  return true; // Not an inline definition
3215 
3216  return false;
3217 }
3218 
3219 /// For a function declaration in C or C++, determine whether this
3220 /// declaration causes the definition to be externally visible.
3221 ///
3222 /// For instance, this determines if adding the current declaration to the set
3223 /// of redeclarations of the given functions causes
3224 /// isInlineDefinitionExternallyVisible to change from false to true.
3226  assert(!doesThisDeclarationHaveABody() &&
3227  "Must have a declaration without a body.");
3228 
3229  ASTContext &Context = getASTContext();
3230 
3231  if (Context.getLangOpts().MSVCCompat) {
3232  const FunctionDecl *Definition;
3233  if (hasBody(Definition) && Definition->isInlined() &&
3234  redeclForcesDefMSVC(this))
3235  return true;
3236  }
3237 
3238  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3239  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3240  // an externally visible definition.
3241  //
3242  // FIXME: What happens if gnu_inline gets added on after the first
3243  // declaration?
3245  return false;
3246 
3247  const FunctionDecl *Prev = this;
3248  bool FoundBody = false;
3249  while ((Prev = Prev->getPreviousDecl())) {
3250  FoundBody |= Prev->Body.isValid();
3251 
3252  if (Prev->Body) {
3253  // If it's not the case that both 'inline' and 'extern' are
3254  // specified on the definition, then it is always externally visible.
3255  if (!Prev->isInlineSpecified() ||
3256  Prev->getStorageClass() != SC_Extern)
3257  return false;
3258  } else if (Prev->isInlineSpecified() &&
3259  Prev->getStorageClass() != SC_Extern) {
3260  return false;
3261  }
3262  }
3263  return FoundBody;
3264  }
3265 
3266  if (Context.getLangOpts().CPlusPlus)
3267  return false;
3268 
3269  // C99 6.7.4p6:
3270  // [...] If all of the file scope declarations for a function in a
3271  // translation unit include the inline function specifier without extern,
3272  // then the definition in that translation unit is an inline definition.
3274  return false;
3275  const FunctionDecl *Prev = this;
3276  bool FoundBody = false;
3277  while ((Prev = Prev->getPreviousDecl())) {
3278  FoundBody |= Prev->Body.isValid();
3279  if (RedeclForcesDefC99(Prev))
3280  return false;
3281  }
3282  return FoundBody;
3283 }
3284 
3286  const TypeSourceInfo *TSI = getTypeSourceInfo();
3287  if (!TSI)
3288  return SourceRange();
3289  FunctionTypeLoc FTL =
3291  if (!FTL)
3292  return SourceRange();
3293 
3294  // Skip self-referential return types.
3296  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3297  SourceLocation Boundary = getNameInfo().getBeginLoc();
3298  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3299  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3300  return SourceRange();
3301 
3302  return RTRange;
3303 }
3304 
3306  const TypeSourceInfo *TSI = getTypeSourceInfo();
3307  if (!TSI)
3308  return SourceRange();
3309  FunctionTypeLoc FTL =
3311  if (!FTL)
3312  return SourceRange();
3313 
3314  return FTL.getExceptionSpecRange();
3315 }
3316 
3317 /// For an inline function definition in C, or for a gnu_inline function
3318 /// in C++, determine whether the definition will be externally visible.
3319 ///
3320 /// Inline function definitions are always available for inlining optimizations.
3321 /// However, depending on the language dialect, declaration specifiers, and
3322 /// attributes, the definition of an inline function may or may not be
3323 /// "externally" visible to other translation units in the program.
3324 ///
3325 /// In C99, inline definitions are not externally visible by default. However,
3326 /// if even one of the global-scope declarations is marked "extern inline", the
3327 /// inline definition becomes externally visible (C99 6.7.4p6).
3328 ///
3329 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3330 /// definition, we use the GNU semantics for inline, which are nearly the
3331 /// opposite of C99 semantics. In particular, "inline" by itself will create
3332 /// an externally visible symbol, but "extern inline" will not create an
3333 /// externally visible symbol.
3335  assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3336  "Must be a function definition");
3337  assert(isInlined() && "Function must be inline");
3338  ASTContext &Context = getASTContext();
3339 
3340  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3341  // Note: If you change the logic here, please change
3342  // doesDeclarationForceExternallyVisibleDefinition as well.
3343  //
3344  // If it's not the case that both 'inline' and 'extern' are
3345  // specified on the definition, then this inline definition is
3346  // externally visible.
3347  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3348  return true;
3349 
3350  // If any declaration is 'inline' but not 'extern', then this definition
3351  // is externally visible.
3352  for (auto Redecl : redecls()) {
3353  if (Redecl->isInlineSpecified() &&
3354  Redecl->getStorageClass() != SC_Extern)
3355  return true;
3356  }
3357 
3358  return false;
3359  }
3360 
3361  // The rest of this function is C-only.
3362  assert(!Context.getLangOpts().CPlusPlus &&
3363  "should not use C inline rules in C++");
3364 
3365  // C99 6.7.4p6:
3366  // [...] If all of the file scope declarations for a function in a
3367  // translation unit include the inline function specifier without extern,
3368  // then the definition in that translation unit is an inline definition.
3369  for (auto Redecl : redecls()) {
3370  if (RedeclForcesDefC99(Redecl))
3371  return true;
3372  }
3373 
3374  // C99 6.7.4p6:
3375  // An inline definition does not provide an external definition for the
3376  // function, and does not forbid an external definition in another
3377  // translation unit.
3378  return false;
3379 }
3380 
3381 /// getOverloadedOperator - Which C++ overloaded operator this
3382 /// function represents, if any.
3384  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3386  else
3387  return OO_None;
3388 }
3389 
3390 /// getLiteralIdentifier - The literal suffix identifier this function
3391 /// represents, if any.
3395  else
3396  return nullptr;
3397 }
3398 
3400  if (TemplateOrSpecialization.isNull())
3401  return TK_NonTemplate;
3402  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3403  return TK_FunctionTemplate;
3404  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3405  return TK_MemberSpecialization;
3406  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3408  if (TemplateOrSpecialization.is
3411 
3412  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3413 }
3414 
3417  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3418 
3419  return nullptr;
3420 }
3421 
3423  if (auto *MSI =
3424  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3425  return MSI;
3426  if (auto *FTSI = TemplateOrSpecialization
3427  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3428  return FTSI->getMemberSpecializationInfo();
3429  return nullptr;
3430 }
3431 
3432 void
3433 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3434  FunctionDecl *FD,
3436  assert(TemplateOrSpecialization.isNull() &&
3437  "Member function is already a specialization");
3439  = new (C) MemberSpecializationInfo(FD, TSK);
3440  TemplateOrSpecialization = Info;
3441 }
3442 
3444  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3445 }
3446 
3448  assert(TemplateOrSpecialization.isNull() &&
3449  "Member function is already a specialization");
3450  TemplateOrSpecialization = Template;
3451 }
3452 
3454  // If the function is invalid, it can't be implicitly instantiated.
3455  if (isInvalidDecl())
3456  return false;
3457 
3459  case TSK_Undeclared:
3462  return false;
3463 
3465  return true;
3466 
3468  // Handled below.
3469  break;
3470  }
3471 
3472  // Find the actual template from which we will instantiate.
3473  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3474  bool HasPattern = false;
3475  if (PatternDecl)
3476  HasPattern = PatternDecl->hasBody(PatternDecl);
3477 
3478  // C++0x [temp.explicit]p9:
3479  // Except for inline functions, other explicit instantiation declarations
3480  // have the effect of suppressing the implicit instantiation of the entity
3481  // to which they refer.
3482  if (!HasPattern || !PatternDecl)
3483  return true;
3484 
3485  return PatternDecl->isInlined();
3486 }
3487 
3489  // FIXME: Remove this, it's not clear what it means. (Which template
3490  // specialization kind?)
3492 }
3493 
3495  // If this is a generic lambda call operator specialization, its
3496  // instantiation pattern is always its primary template's pattern
3497  // even if its primary template was instantiated from another
3498  // member template (which happens with nested generic lambdas).
3499  // Since a lambda's call operator's body is transformed eagerly,
3500  // we don't have to go hunting for a prototype definition template
3501  // (i.e. instantiated-from-member-template) to use as an instantiation
3502  // pattern.
3503 
3505  dyn_cast<CXXMethodDecl>(this))) {
3506  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3507  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3508  }
3509 
3511  if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3512  return nullptr;
3513  return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3514  }
3515 
3517  return nullptr;
3518 
3519  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3520  // If we hit a point where the user provided a specialization of this
3521  // template, we're done looking.
3522  while (!Primary->isMemberSpecialization()) {
3523  auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3524  if (!NewPrimary)
3525  break;
3526  Primary = NewPrimary;
3527  }
3528 
3529  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3530  }
3531 
3532  return nullptr;
3533 }
3534 
3537  = TemplateOrSpecialization
3538  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3539  return Info->getTemplate();
3540  }
3541  return nullptr;
3542 }
3543 
3546  return TemplateOrSpecialization
3547  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3548 }
3549 
3550 const TemplateArgumentList *
3553  = TemplateOrSpecialization
3554  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3555  return Info->TemplateArguments;
3556  }
3557  return nullptr;
3558 }
3559 
3563  = TemplateOrSpecialization
3564  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3565  return Info->TemplateArgumentsAsWritten;
3566  }
3567  return nullptr;
3568 }
3569 
3570 void
3571 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3572  FunctionTemplateDecl *Template,
3573  const TemplateArgumentList *TemplateArgs,
3574  void *InsertPos,
3576  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3577  SourceLocation PointOfInstantiation) {
3578  assert((TemplateOrSpecialization.isNull() ||
3579  TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3580  "Member function is already a specialization");
3581  assert(TSK != TSK_Undeclared &&
3582  "Must specify the type of function template specialization");
3583  assert((TemplateOrSpecialization.isNull() ||
3584  TSK == TSK_ExplicitSpecialization) &&
3585  "Member specialization must be an explicit specialization");
3588  C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3589  PointOfInstantiation,
3590  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3591  TemplateOrSpecialization = Info;
3592  Template->addSpecialization(Info, InsertPos);
3593 }
3594 
3595 void
3597  const UnresolvedSetImpl &Templates,
3598  const TemplateArgumentListInfo &TemplateArgs) {
3599  assert(TemplateOrSpecialization.isNull());
3602  TemplateArgs);
3603  TemplateOrSpecialization = Info;
3604 }
3605 
3608  return TemplateOrSpecialization
3610 }
3611 
3614  ASTContext &Context, const UnresolvedSetImpl &Ts,
3615  const TemplateArgumentListInfo &TArgs) {
3616  void *Buffer = Context.Allocate(
3617  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3618  TArgs.size(), Ts.size()));
3619  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3620 }
3621 
3622 DependentFunctionTemplateSpecializationInfo::
3623 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3624  const TemplateArgumentListInfo &TArgs)
3625  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3626  NumTemplates = Ts.size();
3627  NumArgs = TArgs.size();
3628 
3629  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3630  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3631  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3632 
3633  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3634  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3635  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3636 }
3637 
3639  // For a function template specialization, query the specialization
3640  // information object.
3641  if (FunctionTemplateSpecializationInfo *FTSInfo =
3642  TemplateOrSpecialization
3643  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3644  return FTSInfo->getTemplateSpecializationKind();
3645 
3646  if (MemberSpecializationInfo *MSInfo =
3647  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3648  return MSInfo->getTemplateSpecializationKind();
3649 
3650  return TSK_Undeclared;
3651 }
3652 
3655  // This is the same as getTemplateSpecializationKind(), except that for a
3656  // function that is both a function template specialization and a member
3657  // specialization, we prefer the member specialization information. Eg:
3658  //
3659  // template<typename T> struct A {
3660  // template<typename U> void f() {}
3661  // template<> void f<int>() {}
3662  // };
3663  //
3664  // For A<int>::f<int>():
3665  // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3666  // * getTemplateSpecializationKindForInstantiation() will return
3667  // TSK_ImplicitInstantiation
3668  //
3669  // This reflects the facts that A<int>::f<int> is an explicit specialization
3670  // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3671  // from A::f<int> if a definition is needed.
3672  if (FunctionTemplateSpecializationInfo *FTSInfo =
3673  TemplateOrSpecialization
3674  .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3675  if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3676  return MSInfo->getTemplateSpecializationKind();
3677  return FTSInfo->getTemplateSpecializationKind();
3678  }
3679 
3680  if (MemberSpecializationInfo *MSInfo =
3681  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3682  return MSInfo->getTemplateSpecializationKind();
3683 
3684  return TSK_Undeclared;
3685 }
3686 
3687 void
3689  SourceLocation PointOfInstantiation) {
3691  = TemplateOrSpecialization.dyn_cast<
3693  FTSInfo->setTemplateSpecializationKind(TSK);
3694  if (TSK != TSK_ExplicitSpecialization &&
3695  PointOfInstantiation.isValid() &&
3696  FTSInfo->getPointOfInstantiation().isInvalid()) {
3697  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3699  L->InstantiationRequested(this);
3700  }
3701  } else if (MemberSpecializationInfo *MSInfo
3702  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3703  MSInfo->setTemplateSpecializationKind(TSK);
3704  if (TSK != TSK_ExplicitSpecialization &&
3705  PointOfInstantiation.isValid() &&
3706  MSInfo->getPointOfInstantiation().isInvalid()) {
3707  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3709  L->InstantiationRequested(this);
3710  }
3711  } else
3712  llvm_unreachable("Function cannot have a template specialization kind");
3713 }
3714 
3717  = TemplateOrSpecialization.dyn_cast<
3719  return FTSInfo->getPointOfInstantiation();
3720  else if (MemberSpecializationInfo *MSInfo
3721  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3722  return MSInfo->getPointOfInstantiation();
3723 
3724  return SourceLocation();
3725 }
3726 
3728  if (Decl::isOutOfLine())
3729  return true;
3730 
3731  // If this function was instantiated from a member function of a
3732  // class template, check whether that member function was defined out-of-line.
3734  const FunctionDecl *Definition;
3735  if (FD->hasBody(Definition))
3736  return Definition->isOutOfLine();
3737  }
3738 
3739  // If this function was instantiated from a function template,
3740  // check whether that function template was defined out-of-line.
3741  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3742  const FunctionDecl *Definition;
3743  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3744  return Definition->isOutOfLine();
3745  }
3746 
3747  return false;
3748 }
3749 
3751  return SourceRange(getOuterLocStart(), EndRangeLoc);
3752 }
3753 
3755  IdentifierInfo *FnInfo = getIdentifier();
3756 
3757  if (!FnInfo)
3758  return 0;
3759 
3760  // Builtin handling.
3761  switch (getBuiltinID()) {
3762  case Builtin::BI__builtin_memset:
3763  case Builtin::BI__builtin___memset_chk:
3764  case Builtin::BImemset:
3765  return Builtin::BImemset;
3766 
3767  case Builtin::BI__builtin_memcpy:
3768  case Builtin::BI__builtin___memcpy_chk:
3769  case Builtin::BImemcpy:
3770  return Builtin::BImemcpy;
3771 
3772  case Builtin::BI__builtin_memmove:
3773  case Builtin::BI__builtin___memmove_chk:
3774  case Builtin::BImemmove:
3775  return Builtin::BImemmove;
3776 
3777  case Builtin::BIstrlcpy:
3778  case Builtin::BI__builtin___strlcpy_chk:
3779  return Builtin::BIstrlcpy;
3780 
3781  case Builtin::BIstrlcat:
3782  case Builtin::BI__builtin___strlcat_chk:
3783  return Builtin::BIstrlcat;
3784 
3785  case Builtin::BI__builtin_memcmp:
3786  case Builtin::BImemcmp:
3787  return Builtin::BImemcmp;
3788 
3789  case Builtin::BI__builtin_bcmp:
3790  case Builtin::BIbcmp:
3791  return Builtin::BIbcmp;
3792 
3793  case Builtin::BI__builtin_strncpy:
3794  case Builtin::BI__builtin___strncpy_chk:
3795  case Builtin::BIstrncpy:
3796  return Builtin::BIstrncpy;
3797 
3798  case Builtin::BI__builtin_strncmp:
3799  case Builtin::BIstrncmp:
3800  return Builtin::BIstrncmp;
3801 
3802  case Builtin::BI__builtin_strncasecmp:
3803  case Builtin::BIstrncasecmp:
3804  return Builtin::BIstrncasecmp;
3805 
3806  case Builtin::BI__builtin_strncat:
3807  case Builtin::BI__builtin___strncat_chk:
3808  case Builtin::BIstrncat:
3809  return Builtin::BIstrncat;
3810 
3811  case Builtin::BI__builtin_strndup:
3812  case Builtin::BIstrndup:
3813  return Builtin::BIstrndup;
3814 
3815  case Builtin::BI__builtin_strlen:
3816  case Builtin::BIstrlen:
3817  return Builtin::BIstrlen;
3818 
3819  case Builtin::BI__builtin_bzero:
3820  case Builtin::BIbzero:
3821  return Builtin::BIbzero;
3822 
3823  default:
3824  if (isExternC()) {
3825  if (FnInfo->isStr("memset"))
3826  return Builtin::BImemset;
3827  else if (FnInfo->isStr("memcpy"))
3828  return Builtin::BImemcpy;
3829  else if (FnInfo->isStr("memmove"))
3830  return Builtin::BImemmove;
3831  else if (FnInfo->isStr("memcmp"))
3832  return Builtin::BImemcmp;
3833  else if (FnInfo->isStr("bcmp"))
3834  return Builtin::BIbcmp;
3835  else if (FnInfo->isStr("strncpy"))
3836  return Builtin::BIstrncpy;
3837  else if (FnInfo->isStr("strncmp"))
3838  return Builtin::BIstrncmp;
3839  else if (FnInfo->isStr("strncasecmp"))
3840  return Builtin::BIstrncasecmp;
3841  else if (FnInfo->isStr("strncat"))
3842  return Builtin::BIstrncat;
3843  else if (FnInfo->isStr("strndup"))
3844  return Builtin::BIstrndup;
3845  else if (FnInfo->isStr("strlen"))
3846  return Builtin::BIstrlen;
3847  else if (FnInfo->isStr("bzero"))
3848  return Builtin::BIbzero;
3849  }
3850  break;
3851  }
3852  return 0;
3853 }
3854 
3855 unsigned FunctionDecl::getODRHash() const {
3856  assert(hasODRHash());
3857  return ODRHash;
3858 }
3859 
3861  if (hasODRHash())
3862  return ODRHash;
3863 
3864  if (auto *FT = getInstantiatedFromMemberFunction()) {
3865  setHasODRHash(true);
3866  ODRHash = FT->getODRHash();
3867  return ODRHash;
3868  }
3869 
3870  class ODRHash Hash;
3871  Hash.AddFunctionDecl(this);
3872  setHasODRHash(true);
3873  ODRHash = Hash.CalculateHash();
3874  return ODRHash;
3875 }
3876 
3877 //===----------------------------------------------------------------------===//
3878 // FieldDecl Implementation
3879 //===----------------------------------------------------------------------===//
3880 
3882  SourceLocation StartLoc, SourceLocation IdLoc,
3884  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3885  InClassInitStyle InitStyle) {
3886  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3887  BW, Mutable, InitStyle);
3888 }
3889 
3891  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3892  SourceLocation(), nullptr, QualType(), nullptr,
3893  nullptr, false, ICIS_NoInit);
3894 }
3895 
3897  if (!isImplicit() || getDeclName())
3898  return false;
3899 
3900  if (const auto *Record = getType()->getAs<RecordType>())
3901  return Record->getDecl()->isAnonymousStructOrUnion();
3902 
3903  return false;
3904 }
3905 
3906 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3907  assert(isBitField() && "not a bitfield");
3908  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3909 }
3910 
3912  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3913  getBitWidthValue(Ctx) == 0;
3914 }
3915 
3916 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
3917  if (isZeroLengthBitField(Ctx))
3918  return true;
3919 
3920  // C++2a [intro.object]p7:
3921  // An object has nonzero size if it
3922  // -- is not a potentially-overlapping subobject, or
3923  if (!hasAttr<NoUniqueAddressAttr>())
3924  return false;
3925 
3926  // -- is not of class type, or
3927  const auto *RT = getType()->getAs<RecordType>();
3928  if (!RT)
3929  return false;
3930  const RecordDecl *RD = RT->getDecl()->getDefinition();
3931  if (!RD) {
3932  assert(isInvalidDecl() && "valid field has incomplete type");
3933  return false;
3934  }
3935 
3936  // -- [has] virtual member functions or virtual base classes, or
3937  // -- has subobjects of nonzero size or bit-fields of nonzero length
3938  const auto *CXXRD = cast<CXXRecordDecl>(RD);
3939  if (!CXXRD->isEmpty())
3940  return false;
3941 
3942  // Otherwise, [...] the circumstances under which the object has zero size
3943  // are implementation-defined.
3944  // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
3945  // ABI will do.
3946  return true;
3947 }
3948 
3949 unsigned FieldDecl::getFieldIndex() const {
3950  const FieldDecl *Canonical = getCanonicalDecl();
3951  if (Canonical != this)
3952  return Canonical->getFieldIndex();
3953 
3954  if (CachedFieldIndex) return CachedFieldIndex - 1;
3955 
3956  unsigned Index = 0;
3957  const RecordDecl *RD = getParent()->getDefinition();
3958  assert(RD && "requested index for field of struct with no definition");
3959 
3960  for (auto *Field : RD->fields()) {
3961  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3962  ++Index;
3963  }
3964 
3965  assert(CachedFieldIndex && "failed to find field in parent");
3966  return CachedFieldIndex - 1;
3967 }
3968 
3970  const Expr *FinalExpr = getInClassInitializer();
3971  if (!FinalExpr)
3972  FinalExpr = getBitWidth();
3973  if (FinalExpr)
3974  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3976 }
3977 
3979  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3980  "capturing type in non-lambda or captured record.");
3981  assert(InitStorage.getInt() == ISK_NoInit &&
3982  InitStorage.getPointer() == nullptr &&
3983  "bit width, initializer or captured type already set");
3984  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3985  ISK_CapturedVLAType);
3986 }
3987 
3988 //===----------------------------------------------------------------------===//
3989 // TagDecl Implementation
3990 //===----------------------------------------------------------------------===//
3991 
3993  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3994  SourceLocation StartL)
3995  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3996  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3997  assert((DK != Enum || TK == TTK_Enum) &&
3998  "EnumDecl not matched with TTK_Enum");
3999  setPreviousDecl(PrevDecl);
4000  setTagKind(TK);
4001  setCompleteDefinition(false);
4002  setBeingDefined(false);
4003  setEmbeddedInDeclarator(false);
4004  setFreeStanding(false);
4006 }
4007 
4009  return getTemplateOrInnerLocStart(this);
4010 }
4011 
4013  SourceLocation RBraceLoc = BraceRange.getEnd();
4014  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4015  return SourceRange(getOuterLocStart(), E);
4016 }
4017 
4019 
4021  TypedefNameDeclOrQualifier = TDD;
4022  if (const Type *T = getTypeForDecl()) {
4023  (void)T;
4024  assert(T->isLinkageValid());
4025  }
4026  assert(isLinkageValid());
4027 }
4028 
4030  setBeingDefined(true);
4031 
4032  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4033  struct CXXRecordDecl::DefinitionData *Data =
4034  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4035  for (auto I : redecls())
4036  cast<CXXRecordDecl>(I)->DefinitionData = Data;
4037  }
4038 }
4039 
4041  assert((!isa<CXXRecordDecl>(this) ||
4042  cast<CXXRecordDecl>(this)->hasDefinition()) &&
4043  "definition completed but not started");
4044 
4045  setCompleteDefinition(true);
4046  setBeingDefined(false);
4047 
4049  L->CompletedTagDefinition(this);
4050 }
4051 
4053  if (isCompleteDefinition())
4054  return const_cast<TagDecl *>(this);
4055 
4056  // If it's possible for us to have an out-of-date definition, check now.
4057  if (mayHaveOutOfDateDef()) {
4058  if (IdentifierInfo *II = getIdentifier()) {
4059  if (II->isOutOfDate()) {
4060  updateOutOfDate(*II);
4061  }
4062  }
4063  }
4064 
4065  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4066  return CXXRD->getDefinition();
4067 
4068  for (auto R : redecls())
4069  if (R->isCompleteDefinition())
4070  return R;
4071 
4072  return nullptr;
4073 }
4074 
4076  if (QualifierLoc) {
4077  // Make sure the extended qualifier info is allocated.
4078  if (!hasExtInfo())
4079  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4080  // Set qualifier info.
4081  getExtInfo()->QualifierLoc = QualifierLoc;
4082  } else {
4083  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4084  if (hasExtInfo()) {
4085  if (getExtInfo()->NumTemplParamLists == 0) {
4086  getASTContext().Deallocate(getExtInfo());
4087  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4088  }
4089  else
4090  getExtInfo()->QualifierLoc = QualifierLoc;
4091  }
4092  }
4093 }
4094 
4096  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4097  assert(!TPLists.empty());
4098  // Make sure the extended decl info is allocated.
4099  if (!hasExtInfo())
4100  // Allocate external info struct.
4101  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4102  // Set the template parameter lists info.
4103  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4104 }
4105 
4106 //===----------------------------------------------------------------------===//
4107 // EnumDecl Implementation
4108 //===----------------------------------------------------------------------===//
4109 
4110 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4111  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4112  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4113  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4114  assert(Scoped || !ScopedUsingClassTag);
4115  IntegerType = nullptr;
4116  setNumPositiveBits(0);
4117  setNumNegativeBits(0);
4118  setScoped(Scoped);
4119  setScopedUsingClassTag(ScopedUsingClassTag);
4120  setFixed(Fixed);
4121  setHasODRHash(false);
4122  ODRHash = 0;
4123 }
4124 
4125 void EnumDecl::anchor() {}
4126 
4128  SourceLocation StartLoc, SourceLocation IdLoc,
4129  IdentifierInfo *Id,
4130  EnumDecl *PrevDecl, bool IsScoped,
4131  bool IsScopedUsingClassTag, bool IsFixed) {
4132  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4133  IsScoped, IsScopedUsingClassTag, IsFixed);
4134  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4135  C.getTypeDeclType(Enum, PrevDecl);
4136  return Enum;
4137 }
4138 
4140  EnumDecl *Enum =
4141  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4142  nullptr, nullptr, false, false, false);
4143  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4144  return Enum;
4145 }
4146 
4148  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4149  return TI->getTypeLoc().getSourceRange();
4150  return SourceRange();
4151 }
4152 
4154  QualType NewPromotionType,
4155  unsigned NumPositiveBits,
4156  unsigned NumNegativeBits) {
4157  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4158  if (!IntegerType)
4159  IntegerType = NewType.getTypePtr();
4160  PromotionType = NewPromotionType;
4161  setNumPositiveBits(NumPositiveBits);
4162  setNumNegativeBits(NumNegativeBits);
4164 }
4165 
4166 bool EnumDecl::isClosed() const {
4167  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4168  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4169  return true;
4170 }
4171 
4173  return isClosed() && hasAttr<FlagEnumAttr>();
4174 }
4175 
4177  return isClosed() && !hasAttr<FlagEnumAttr>();
4178 }
4179 
4181  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4182  return MSI->getTemplateSpecializationKind();
4183 
4184  return TSK_Undeclared;
4185 }
4186 
4188  SourceLocation PointOfInstantiation) {
4189  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4190  assert(MSI && "Not an instantiated member enumeration?");
4192  if (TSK != TSK_ExplicitSpecialization &&
4193  PointOfInstantiation.isValid() &&
4195  MSI->setPointOfInstantiation(PointOfInstantiation);
4196 }
4197 
4199  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4200  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4201  EnumDecl *ED = getInstantiatedFromMemberEnum();
4202  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4203  ED = NewED;
4204  return getDefinitionOrSelf(ED);
4205  }
4206  }
4207 
4209  "couldn't find pattern for enum instantiation");
4210  return nullptr;
4211 }
4212 
4214  if (SpecializationInfo)
4215  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4216 
4217  return nullptr;
4218 }
4219 
4220 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4222  assert(!SpecializationInfo && "Member enum is already a specialization");
4223  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4224 }
4225 
4227  if (hasODRHash())
4228  return ODRHash;
4229 
4230  class ODRHash Hash;
4231  Hash.AddEnumDecl(this);
4232  setHasODRHash(true);
4233  ODRHash = Hash.CalculateHash();
4234  return ODRHash;
4235 }
4236 
4237 //===----------------------------------------------------------------------===//
4238 // RecordDecl Implementation
4239 //===----------------------------------------------------------------------===//
4240 
4242  DeclContext *DC, SourceLocation StartLoc,
4243  SourceLocation IdLoc, IdentifierInfo *Id,
4244  RecordDecl *PrevDecl)
4245  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4246  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4249  setHasObjectMember(false);
4250  setHasVolatileMember(false);
4260 }
4261 
4263  SourceLocation StartLoc, SourceLocation IdLoc,
4264  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4265  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4266  StartLoc, IdLoc, Id, PrevDecl);
4267  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4268 
4269  C.getTypeDeclType(R, PrevDecl);
4270  return R;
4271 }
4272 
4274  RecordDecl *R =
4275  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4276  SourceLocation(), nullptr, nullptr);
4277  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4278  return R;
4279 }
4280 
4282  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4283  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4284 }
4285 
4286 bool RecordDecl::isLambda() const {
4287  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4288  return RD->isLambda();
4289  return false;
4290 }
4291 
4293  return hasAttr<CapturedRecordAttr>();
4294 }
4295 
4297  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4298 }
4299 
4302  LoadFieldsFromExternalStorage();
4303 
4305 }
4306 
4307 /// completeDefinition - Notes that the definition of this type is now
4308 /// complete.
4310  assert(!isCompleteDefinition() && "Cannot redefine record!");
4312 }
4313 
4314 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4315 /// This which can be turned on with an attribute, pragma, or the
4316 /// -mms-bitfields command-line option.
4317 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4318  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4319 }
4320 
4321 void RecordDecl::LoadFieldsFromExternalStorage() const {
4323  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4324 
4325  // Notify that we have a RecordDecl doing some initialization.
4326  ExternalASTSource::Deserializing TheFields(Source);
4327 
4328  SmallVector<Decl*, 64> Decls;
4330  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4332  }, Decls);
4333 
4334 #ifndef NDEBUG
4335  // Check that all decls we got were FieldDecls.
4336  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4337  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4338 #endif
4339 
4340  if (Decls.empty())
4341  return;
4342 
4343  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4344  /*FieldsAlreadyLoaded=*/false);
4345 }
4346 
4347 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4348  ASTContext &Context = getASTContext();
4349  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4350  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4351  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4352  return false;
4353  const auto &Blacklist = Context.getSanitizerBlacklist();
4354  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4355  // We may be able to relax some of these requirements.
4356  int ReasonToReject = -1;
4357  if (!CXXRD || CXXRD->isExternCContext())
4358  ReasonToReject = 0; // is not C++.
4359  else if (CXXRD->hasAttr<PackedAttr>())
4360  ReasonToReject = 1; // is packed.
4361  else if (CXXRD->isUnion())
4362  ReasonToReject = 2; // is a union.
4363  else if (CXXRD->isTriviallyCopyable())
4364  ReasonToReject = 3; // is trivially copyable.
4365  else if (CXXRD->hasTrivialDestructor())
4366  ReasonToReject = 4; // has trivial destructor.
4367  else if (CXXRD->isStandardLayout())
4368  ReasonToReject = 5; // is standard layout.
4369  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4370  "field-padding"))
4371  ReasonToReject = 6; // is in a blacklisted file.
4372  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4374  "field-padding"))
4375  ReasonToReject = 7; // is blacklisted.
4376 
4377  if (EmitRemark) {
4378  if (ReasonToReject >= 0)
4379  Context.getDiagnostics().Report(
4380  getLocation(),
4381  diag::remark_sanitize_address_insert_extra_padding_rejected)
4382  << getQualifiedNameAsString() << ReasonToReject;
4383  else
4384  Context.getDiagnostics().Report(
4385  getLocation(),
4386  diag::remark_sanitize_address_insert_extra_padding_accepted)
4388  }
4389  return ReasonToReject < 0;
4390 }
4391 
4393  for (const auto *I : fields()) {
4394  if (I->getIdentifier())
4395  return I;
4396 
4397  if (const auto *RT = I->getType()->getAs<RecordType>())
4398  if (const FieldDecl *NamedDataMember =
4399  RT->getDecl()->findFirstNamedDataMember())
4400  return NamedDataMember;
4401  }
4402 
4403  // We didn't find a named data member.
4404  return nullptr;
4405 }
4406 
4407 //===----------------------------------------------------------------------===//
4408 // BlockDecl Implementation
4409 //===----------------------------------------------------------------------===//
4410 
4412  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4413  setIsVariadic(false);
4414  setCapturesCXXThis(false);
4417  setDoesNotEscape(false);
4418  setCanAvoidCopyToHeap(false);
4419 }
4420 
4422  assert(!ParamInfo && "Already has param info!");
4423 
4424  // Zero params -> null pointer.
4425  if (!NewParamInfo.empty()) {
4426  NumParams = NewParamInfo.size();
4427  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4428  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4429  }
4430 }
4431 
4433  bool CapturesCXXThis) {
4434  this->setCapturesCXXThis(CapturesCXXThis);
4435  this->NumCaptures = Captures.size();
4436 
4437  if (Captures.empty()) {
4438  this->Captures = nullptr;
4439  return;
4440  }
4441 
4442  this->Captures = Captures.copy(Context).data();
4443 }
4444 
4445 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4446  for (const auto &I : captures())
4447  // Only auto vars can be captured, so no redeclaration worries.
4448  if (I.getVariable() == variable)
4449  return true;
4450 
4451  return false;
4452 }
4453 
4455  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4456 }
4457 
4458 //===----------------------------------------------------------------------===//
4459 // Other Decl Allocation/Deallocation Method Implementations
4460 //===----------------------------------------------------------------------===//
4461 
4462 void TranslationUnitDecl::anchor() {}
4463 
4465  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4466 }
4467 
4468 void PragmaCommentDecl::anchor() {}
4469 
4471  TranslationUnitDecl *DC,
4472  SourceLocation CommentLoc,
4473  PragmaMSCommentKind CommentKind,
4474  StringRef Arg) {
4475  PragmaCommentDecl *PCD =
4476  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4477  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4478  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4479  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4480  return PCD;
4481 }
4482 
4484  unsigned ID,
4485  unsigned ArgSize) {
4486  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4488 }
4489 
4490 void PragmaDetectMismatchDecl::anchor() {}
4491 
4494  SourceLocation Loc, StringRef Name,
4495  StringRef Value) {
4496  size_t ValueStart = Name.size() + 1;
4497  PragmaDetectMismatchDecl *PDMD =
4498  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4499  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4500  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4501  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4502  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4503  Value.size());
4504  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4505  return PDMD;
4506 }
4507 
4510  unsigned NameValueSize) {
4511  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4513 }
4514 
4515 void ExternCContextDecl::anchor() {}
4516 
4518  TranslationUnitDecl *DC) {
4519  return new (C, DC) ExternCContextDecl(DC);
4520 }
4521 
4522 void LabelDecl::anchor() {}
4523 
4525  SourceLocation IdentL, IdentifierInfo *II) {
4526  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4527 }
4528 
4530  SourceLocation IdentL, IdentifierInfo *II,
4531  SourceLocation GnuLabelL) {
4532  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4533  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4534 }
4535 
4537  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4538  SourceLocation());
4539 }
4540 
4541 void LabelDecl::setMSAsmLabel(StringRef Name) {
4542  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4543  memcpy(Buffer, Name.data(), Name.size());
4544  Buffer[Name.size()] = '\0';
4545  MSAsmName = Buffer;
4546 }
4547 
4548 void ValueDecl::anchor() {}
4549 
4550 bool ValueDecl::isWeak() const {
4551  for (const auto *I : attrs())
4552  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4553  return true;
4554 
4555  return isWeakImported();
4556 }
4557 
4558 void ImplicitParamDecl::anchor() {}
4559 
4561  SourceLocation IdLoc,
4563  ImplicitParamKind ParamKind) {
4564  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4565 }
4566 
4568  ImplicitParamKind ParamKind) {
4569  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4570 }
4571 
4573  unsigned ID) {
4574  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4575 }
4576 
4578  SourceLocation StartLoc,
4579  const DeclarationNameInfo &NameInfo,
4580  QualType T, TypeSourceInfo *TInfo,
4581  StorageClass SC, bool isInlineSpecified,
4582  bool hasWrittenPrototype,
4583  ConstexprSpecKind ConstexprKind) {
4584  FunctionDecl *New =
4585  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4586  SC, isInlineSpecified, ConstexprKind);
4587  New->setHasWrittenPrototype(hasWrittenPrototype);
4588  return New;
4589 }
4590 
4592  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4593  DeclarationNameInfo(), QualType(), nullptr,
4594  SC_None, false, CSK_unspecified);
4595 }
4596 
4598  return new (C, DC) BlockDecl(DC, L);
4599 }
4600 
4602  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4603 }
4604 
4605 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4606  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4607  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4608 
4610  unsigned NumParams) {
4611  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4612  CapturedDecl(DC, NumParams);
4613 }
4614 
4616  unsigned NumParams) {
4617  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4618  CapturedDecl(nullptr, NumParams);
4619 }
4620 
4621 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4622 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4623 
4624 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4625 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4626 
4628  SourceLocation L,
4629  IdentifierInfo *Id, QualType T,
4630  Expr *E, const llvm::APSInt &V) {
4631  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4632 }
4633 
4636  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4637  QualType(), nullptr, llvm::APSInt());
4638 }
4639 
4640 void IndirectFieldDecl::anchor() {}
4641 
4642 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4644  QualType T,
4646  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4647  ChainingSize(CH.size()) {
4648  // In C++, indirect field declarations conflict with tag declarations in the
4649  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4650  if (C.getLangOpts().CPlusPlus)
4652 }
4653 
4656  IdentifierInfo *Id, QualType T,
4658  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4659 }
4660 
4662  unsigned ID) {
4663  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4664  DeclarationName(), QualType(), None);
4665 }
4666 
4669  if (Init)
4670  End = Init->getEndLoc();
4671  return SourceRange(getLocation(), End);
4672 }
4673 
4674 void TypeDecl::anchor() {}
4675 
4677  SourceLocation StartLoc, SourceLocation IdLoc,
4678  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4679  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4680 }
4681 
4682 void TypedefNameDecl::anchor() {}
4683 
4685  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4686  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4687  auto *ThisTypedef = this;
4688  if (AnyRedecl && OwningTypedef) {
4689  OwningTypedef = OwningTypedef->getCanonicalDecl();
4690  ThisTypedef = ThisTypedef->getCanonicalDecl();
4691  }
4692  if (OwningTypedef == ThisTypedef)
4693  return TT->getDecl();
4694  }
4695 
4696  return nullptr;
4697 }
4698 
4699 bool TypedefNameDecl::isTransparentTagSlow() const {
4700  auto determineIsTransparent = [&]() {
4701  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4702  if (auto *TD = TT->getDecl()) {
4703  if (TD->getName() != getName())
4704  return false;
4705  SourceLocation TTLoc = getLocation();
4706  SourceLocation TDLoc = TD->getLocation();
4707  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4708  return false;
4710  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4711  }
4712  }
4713  return false;
4714  };
4715 
4716  bool isTransparent = determineIsTransparent();
4717  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4718  return isTransparent;
4719 }
4720 
4722  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4723  nullptr, nullptr);
4724 }
4725 
4727  SourceLocation StartLoc,
4728  SourceLocation IdLoc, IdentifierInfo *Id,
4729  TypeSourceInfo *TInfo) {
4730  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4731 }
4732 
4734  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4735  SourceLocation(), nullptr, nullptr);
4736 }
4737 
4739  SourceLocation RangeEnd = getLocation();
4740  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4741  if (typeIsPostfix(TInfo->getType()))
4742  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4743  }
4744  return SourceRange(getBeginLoc(), RangeEnd);
4745 }
4746 
4748  SourceLocation RangeEnd = getBeginLoc();
4749  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4750  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4751  return SourceRange(getBeginLoc(), RangeEnd);
4752 }
4753 
4754 void FileScopeAsmDecl::anchor() {}
4755 
4757  StringLiteral *Str,
4758  SourceLocation AsmLoc,
4759  SourceLocation RParenLoc) {
4760  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4761 }
4762 
4764  unsigned ID) {
4765  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4766  SourceLocation());
4767 }
4768 
4769 void EmptyDecl::anchor() {}
4770 
4772  return new (C, DC) EmptyDecl(DC, L);
4773 }
4774 
4776  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4777 }
4778 
4779 //===----------------------------------------------------------------------===//
4780 // ImportDecl Implementation
4781 //===----------------------------------------------------------------------===//
4782 
4783 /// Retrieve the number of module identifiers needed to name the given
4784 /// module.
4785 static unsigned getNumModuleIdentifiers(Module *Mod) {
4786  unsigned Result = 1;
4787  while (Mod->Parent) {
4788  Mod = Mod->Parent;
4789  ++Result;
4790  }
4791  return Result;
4792 }
4793 
4794 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4795  Module *Imported,
4796  ArrayRef<SourceLocation> IdentifierLocs)
4797  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4798  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4799  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4800  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4801  StoredLocs);
4802 }
4803 
4804 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4805  Module *Imported, SourceLocation EndLoc)
4806  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4807  *getTrailingObjects<SourceLocation>() = EndLoc;
4808 }
4809 
4811  SourceLocation StartLoc, Module *Imported,
4812  ArrayRef<SourceLocation> IdentifierLocs) {
4813  return new (C, DC,
4814  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4815  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4816 }
4817 
4819  SourceLocation StartLoc,
4820  Module *Imported,
4821  SourceLocation EndLoc) {
4822  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4823  ImportDecl(DC, StartLoc, Imported, EndLoc);
4824  Import->setImplicit();
4825  return Import;
4826 }
4827 
4829  unsigned NumLocations) {
4830  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4832 }
4833 
4835  if (!ImportedAndComplete.getInt())
4836  return None;
4837 
4838  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4839  return llvm::makeArrayRef(StoredLocs,
4840  getNumModuleIdentifiers(getImportedModule()));
4841 }
4842 
4844  if (!ImportedAndComplete.getInt())
4845  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4846 
4847  return SourceRange(getLocation(), getIdentifierLocs().back());
4848 }
4849 
4850 //===----------------------------------------------------------------------===//
4851 // ExportDecl Implementation
4852 //===----------------------------------------------------------------------===//
4853 
4854 void ExportDecl::anchor() {}
4855 
4857  SourceLocation ExportLoc) {
4858  return new (C, DC) ExportDecl(DC, ExportLoc);
4859 }
4860 
4862  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4863 }
void setLinkage(Linkage L)
Definition: Visibility.h:87
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4198
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2536
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:3013
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4738
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
bool mightBeUsableInConstantExpressions(ASTContext &C) const
Determine whether this variable&#39;s value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2248
void setImplicit(bool I=true)
Definition: DeclBase.h:559
Represents a function declaration or definition.
Definition: Decl.h:1748
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1417
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2872
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:571
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3754
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1293
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=CSK_unspecified)
Definition: Decl.h:1895
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3745
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2044
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4176
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3703
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:759
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4828
CanQualType VoidPtrTy
Definition: ASTContext.h:1042
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:2989
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:643
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:4052
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3205
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3160
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:49
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2979
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1959
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4667
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2248
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1504
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3729
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4655
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:38
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4355
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3387
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:184
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:801
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3561
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2837
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3727
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:985
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2819
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3232
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:26
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:4020
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3051
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:788
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4483
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2983
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2378
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2931
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4035
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:601
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:421
bool isNothrow() const
Definition: Decl.cpp:4624
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3784
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4843
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2824
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:3048
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3949
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:207
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1507
The base class of the type hierarchy.
Definition: Type.h:1433
Represents an empty-declaration.
Definition: Decl.h:4325
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4421
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1297
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:514
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI, MemberSpecializationInfo *MSInfo)
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:189
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4309
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:425
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:693
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:38
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr or CxxCtorInitializer) selects the name&#39;s to...
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3648
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4147
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:796
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2758
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:4008
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1902
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1209
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3453
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:75
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4615
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3202
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1497
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3154
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4625
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4226
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:812
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:380
RangeSelector member(std::string ID)
Given a MemberExpr, selects the member token.
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:785
Declaration of a redeclarable template.
Definition: DeclTemplate.h:793
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:2004
unsigned getNumParams() const
Definition: Type.h:3921
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:111
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6851
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2702
Visibility getVisibility() const
Definition: Visibility.h:84
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1133
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3911
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:603
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1753
bool isInvalidDecl() const
Definition: DeclBase.h:553
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
Not a TLS variable.
Definition: Decl.h:829
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
Represents a parameter to a function.
Definition: Decl.h:1564
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
Defines the clang::Expr interface and subclasses for C++ expressions.
long i
Definition: xmmintrin.h:1456
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1451
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:728
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3896
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4347
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3285
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3626
This is the private module fragment within some C++ module.
Definition: Module.h:84
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:84
C11 _Thread_local.
Definition: Specifiers.h:230
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1667
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1947
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1054
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1851
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1857
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:346
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4292
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4262
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2691
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4661
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2783
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3191
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:792
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
static LinkageInfo internal()
Definition: Visibility.h:70
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:179
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:3831
field_range fields() const
Definition: Decl.h:3841
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4785
static bool isInModulePurview(const NamedDecl *D)
Determine whether D is declared in the purview of a named module.
Definition: Decl.cpp:571
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:301
Represents a member of a struct/union/class.
Definition: Decl.h:2607
friend class DeclContext
Definition: DeclBase.h:247
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:4040
bool isNamespace() const
Definition: DeclBase.h:1863
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:4029
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4411
bool isReferenceType() const
Definition: Type.h:6396
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:173
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:89
This declaration is definitely a definition.
Definition: Decl.h:1152
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1062
__DEVICE__ int max(int __a, int __b)
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3716
Describes a module or submodule.
Definition: Module.h:64
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4470
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3838
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2289
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:45
virtual bool isDefined() const
Definition: Decl.h:1963
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:512
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2526
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:3021
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2149
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2895
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:529
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4621
The argument of this type can be passed directly in registers.
Definition: Decl.h:36