clang 20.0.0git
Decl.cpp
Go to the documentation of this file.
1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
17#include "clang/AST/ASTLambda.h"
19#include "clang/AST/Attr.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
30#include "clang/AST/ODRHash.h"
36#include "clang/AST/Stmt.h"
38#include "clang/AST/Type.h"
39#include "clang/AST/TypeLoc.h"
42#include "clang/Basic/LLVM.h"
44#include "clang/Basic/Linkage.h"
45#include "clang/Basic/Module.h"
55#include "llvm/ADT/APSInt.h"
56#include "llvm/ADT/ArrayRef.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/TargetParser/Triple.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <optional>
71#include <string>
72#include <tuple>
73#include <type_traits>
74
75using namespace clang;
76
79}
80
81void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82 SourceLocation Loc = this->Loc;
83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84 if (Loc.isValid()) {
85 Loc.print(OS, Context.getSourceManager());
86 OS << ": ";
87 }
88 OS << Message;
89
90 if (auto *ND = dyn_cast_if_present<NamedDecl>(TheDecl)) {
91 OS << " '";
92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93 OS << "'";
94 }
95
96 OS << '\n';
97}
98
99// Defined here so that it can be inlined into its direct callers.
100bool Decl::isOutOfLine() const {
102}
103
104TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105 : Decl(TranslationUnit, nullptr, SourceLocation()),
106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107
108//===----------------------------------------------------------------------===//
109// NamedDecl Implementation
110//===----------------------------------------------------------------------===//
111
112// Visibility rules aren't rigorously externally specified, but here
113// are the basic principles behind what we implement:
114//
115// 1. An explicit visibility attribute is generally a direct expression
116// of the user's intent and should be honored. Only the innermost
117// visibility attribute applies. If no visibility attribute applies,
118// global visibility settings are considered.
119//
120// 2. There is one caveat to the above: on or in a template pattern,
121// an explicit visibility attribute is just a default rule, and
122// visibility can be decreased by the visibility of template
123// arguments. But this, too, has an exception: an attribute on an
124// explicit specialization or instantiation causes all the visibility
125// restrictions of the template arguments to be ignored.
126//
127// 3. A variable that does not otherwise have explicit visibility can
128// be restricted by the visibility of its type.
129//
130// 4. A visibility restriction is explicit if it comes from an
131// attribute (or something like it), not a global visibility setting.
132// When emitting a reference to an external symbol, visibility
133// restrictions are ignored unless they are explicit.
134//
135// 5. When computing the visibility of a non-type, including a
136// non-type member of a class, only non-type visibility restrictions
137// are considered: the 'visibility' attribute, global value-visibility
138// settings, and a few special cases like __private_extern.
139//
140// 6. When computing the visibility of a type, including a type member
141// of a class, only type visibility restrictions are considered:
142// the 'type_visibility' attribute and global type-visibility settings.
143// However, a 'visibility' attribute counts as a 'type_visibility'
144// attribute on any declaration that only has the former.
145//
146// The visibility of a "secondary" entity, like a template argument,
147// is computed using the kind of that entity, not the kind of the
148// primary entity for which we are computing visibility. For example,
149// the visibility of a specialization of either of these templates:
150// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151// template <class T, bool (&compare)(T, X)> class matcher;
152// is restricted according to the type visibility of the argument 'T',
153// the type visibility of 'bool(&)(T,X)', and the value visibility of
154// the argument function 'compare'. That 'has_match' is a value
155// and 'matcher' is a type only matters when looking for attributes
156// and settings from the immediate context.
157
158/// Does this computation kind permit us to consider additional
159/// visibility settings from attributes and the like?
161 return computation.IgnoreExplicitVisibility;
162}
163
164/// Given an LVComputationKind, return one of the same type/value sort
165/// that records that it already has explicit visibility.
168 Kind.IgnoreExplicitVisibility = true;
169 return Kind;
170}
171
172static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173 LVComputationKind kind) {
174 assert(!kind.IgnoreExplicitVisibility &&
175 "asking for explicit visibility when we shouldn't be");
176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177}
178
179/// Is the given declaration a "type" or a "value" for the purposes of
180/// visibility computation?
181static bool usesTypeVisibility(const NamedDecl *D) {
182 return isa<TypeDecl>(D) ||
183 isa<ClassTemplateDecl>(D) ||
184 isa<ObjCInterfaceDecl>(D);
185}
186
187/// Does the given declaration have member specialization information,
188/// and if so, is it an explicit specialization?
189template <class T>
190static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
192 if (const MemberSpecializationInfo *member =
193 D->getMemberSpecializationInfo()) {
194 return member->isExplicitSpecialization();
195 }
196 return false;
197}
198
199/// For templates, this question is easier: a member template can't be
200/// explicitly instantiated, so there's a single bit indicating whether
201/// or not this is an explicit member specialization.
203 return D->isMemberSpecialization();
204}
205
206/// Given a visibility attribute, return the explicit visibility
207/// associated with it.
208template <class T>
209static Visibility getVisibilityFromAttr(const T *attr) {
210 switch (attr->getVisibility()) {
211 case T::Default:
212 return DefaultVisibility;
213 case T::Hidden:
214 return HiddenVisibility;
215 case T::Protected:
216 return ProtectedVisibility;
217 }
218 llvm_unreachable("bad visibility kind");
219}
220
221/// Return the explicit visibility of the given declaration.
222static std::optional<Visibility>
224 // If we're ultimately computing the visibility of a type, look for
225 // a 'type_visibility' attribute before looking for 'visibility'.
226 if (kind == NamedDecl::VisibilityForType) {
227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228 return getVisibilityFromAttr(A);
229 }
230 }
231
232 // If this declaration has an explicit visibility attribute, use it.
233 if (const auto *A = D->getAttr<VisibilityAttr>()) {
234 return getVisibilityFromAttr(A);
235 }
236
237 return std::nullopt;
238}
239
240LinkageInfo LinkageComputer::getLVForType(const Type &T,
241 LVComputationKind computation) {
242 if (computation.IgnoreAllVisibility)
243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
245}
246
247/// Get the most restrictive linkage for the types in the given
248/// template parameter list. For visibility purposes, template
249/// parameters are part of the signature of a template.
250LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251 const TemplateParameterList *Params, LVComputationKind computation) {
252 LinkageInfo LV;
253 for (const NamedDecl *P : *Params) {
254 // Template type parameters are the most common and never
255 // contribute to visibility, pack or not.
256 if (isa<TemplateTypeParmDecl>(P))
257 continue;
258
259 // Non-type template parameters can be restricted by the value type, e.g.
260 // template <enum X> class A { ... };
261 // We have to be careful here, though, because we can be dealing with
262 // dependent types.
263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264 // Handle the non-pack case first.
265 if (!NTTP->isExpandedParameterPack()) {
266 if (!NTTP->getType()->isDependentType()) {
267 LV.merge(getLVForType(*NTTP->getType(), computation));
268 }
269 continue;
270 }
271
272 // Look at all the types in an expanded pack.
273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274 QualType type = NTTP->getExpansionType(i);
275 if (!type->isDependentType())
277 }
278 continue;
279 }
280
281 // Template template parameters can be restricted by their
282 // template parameters, recursively.
283 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284
285 // Handle the non-pack case first.
286 if (!TTP->isExpandedParameterPack()) {
287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288 computation));
289 continue;
290 }
291
292 // Look at all expansions in an expanded pack.
293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294 i != n; ++i) {
295 LV.merge(getLVForTemplateParameterList(
296 TTP->getExpansionTemplateParameters(i), computation));
297 }
298 }
299
300 return LV;
301}
302
304 const Decl *Ret = nullptr;
305 const DeclContext *DC = D->getDeclContext();
306 while (DC->getDeclKind() != Decl::TranslationUnit) {
307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308 Ret = cast<Decl>(DC);
309 DC = DC->getParent();
310 }
311 return Ret;
312}
313
314/// Get the most restrictive linkage for the types and
315/// declarations in the given template argument list.
316///
317/// Note that we don't take an LVComputationKind because we always
318/// want to honor the visibility of template arguments in the same way.
320LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321 LVComputationKind computation) {
322 LinkageInfo LV;
323
324 for (const TemplateArgument &Arg : Args) {
325 switch (Arg.getKind()) {
329 continue;
330
332 LV.merge(getLVForType(*Arg.getAsType(), computation));
333 continue;
334
336 const NamedDecl *ND = Arg.getAsDecl();
337 assert(!usesTypeVisibility(ND));
338 LV.merge(getLVForDecl(ND, computation));
339 continue;
340 }
341
343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344 continue;
345
347 LV.merge(getLVForValue(Arg.getAsStructuralValue(), computation));
348 continue;
349
352 if (TemplateDecl *Template =
353 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
354 LV.merge(getLVForDecl(Template, computation));
355 continue;
356
358 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
359 continue;
360 }
361 llvm_unreachable("bad template argument kind");
362 }
363
364 return LV;
365}
366
368LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
369 LVComputationKind computation) {
370 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
371}
372
374 const FunctionTemplateSpecializationInfo *specInfo) {
375 // Include visibility from the template parameters and arguments
376 // only if this is not an explicit instantiation or specialization
377 // with direct explicit visibility. (Implicit instantiations won't
378 // have a direct attribute.)
380 return true;
381
382 return !fn->hasAttr<VisibilityAttr>();
383}
384
385/// Merge in template-related linkage and visibility for the given
386/// function template specialization.
387///
388/// We don't need a computation kind here because we can assume
389/// LVForValue.
390///
391/// \param[out] LV the computation to use for the parent
392void LinkageComputer::mergeTemplateLV(
393 LinkageInfo &LV, const FunctionDecl *fn,
395 LVComputationKind computation) {
396 bool considerVisibility =
398
399 FunctionTemplateDecl *temp = specInfo->getTemplate();
400 // Merge information from the template declaration.
401 LinkageInfo tempLV = getLVForDecl(temp, computation);
402 // The linkage of the specialization should be consistent with the
403 // template declaration.
404 LV.setLinkage(tempLV.getLinkage());
405
406 // Merge information from the template parameters.
407 LinkageInfo paramsLV =
408 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
409 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
410
411 // Merge information from the template arguments.
412 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
413 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
414 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
415}
416
417/// Does the given declaration have a direct visibility attribute
418/// that would match the given rules?
420 LVComputationKind computation) {
421 if (computation.IgnoreAllVisibility)
422 return false;
423
424 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
425 D->hasAttr<VisibilityAttr>();
426}
427
428/// Should we consider visibility associated with the template
429/// arguments and parameters of the given class template specialization?
432 LVComputationKind computation) {
433 // Include visibility from the template parameters and arguments
434 // only if this is not an explicit instantiation or specialization
435 // with direct explicit visibility (and note that implicit
436 // instantiations won't have a direct attribute).
437 //
438 // Furthermore, we want to ignore template parameters and arguments
439 // for an explicit specialization when computing the visibility of a
440 // member thereof with explicit visibility.
441 //
442 // This is a bit complex; let's unpack it.
443 //
444 // An explicit class specialization is an independent, top-level
445 // declaration. As such, if it or any of its members has an
446 // explicit visibility attribute, that must directly express the
447 // user's intent, and we should honor it. The same logic applies to
448 // an explicit instantiation of a member of such a thing.
449
450 // Fast path: if this is not an explicit instantiation or
451 // specialization, we always want to consider template-related
452 // visibility restrictions.
454 return true;
455
456 // This is the 'member thereof' check.
457 if (spec->isExplicitSpecialization() &&
458 hasExplicitVisibilityAlready(computation))
459 return false;
460
461 return !hasDirectVisibilityAttribute(spec, computation);
462}
463
464/// Merge in template-related linkage and visibility for the given
465/// class template specialization.
466void LinkageComputer::mergeTemplateLV(
468 LVComputationKind computation) {
469 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
470
471 // Merge information from the template parameters, but ignore
472 // visibility if we're only considering template arguments.
474 // Merge information from the template declaration.
475 LinkageInfo tempLV = getLVForDecl(temp, computation);
476 // The linkage of the specialization should be consistent with the
477 // template declaration.
478 LV.setLinkage(tempLV.getLinkage());
479
480 LinkageInfo paramsLV =
481 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
482 LV.mergeMaybeWithVisibility(paramsLV,
483 considerVisibility && !hasExplicitVisibilityAlready(computation));
484
485 // Merge information from the template arguments. We ignore
486 // template-argument visibility if we've got an explicit
487 // instantiation with a visibility attribute.
488 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
489 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
490 if (considerVisibility)
491 LV.mergeVisibility(argsLV);
492 LV.mergeExternalVisibility(argsLV);
493}
494
495/// Should we consider visibility associated with the template
496/// arguments and parameters of the given variable template
497/// specialization? As usual, follow class template specialization
498/// logic up to initialization.
501 LVComputationKind computation) {
502 // Include visibility from the template parameters and arguments
503 // only if this is not an explicit instantiation or specialization
504 // with direct explicit visibility (and note that implicit
505 // instantiations won't have a direct attribute).
507 return true;
508
509 // An explicit variable specialization is an independent, top-level
510 // declaration. As such, if it has an explicit visibility attribute,
511 // that must directly express the user's intent, and we should honor
512 // it.
513 if (spec->isExplicitSpecialization() &&
514 hasExplicitVisibilityAlready(computation))
515 return false;
516
517 return !hasDirectVisibilityAttribute(spec, computation);
518}
519
520/// Merge in template-related linkage and visibility for the given
521/// variable template specialization. As usual, follow class template
522/// specialization logic up to initialization.
523void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
525 LVComputationKind computation) {
526 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
527
528 // Merge information from the template parameters, but ignore
529 // visibility if we're only considering template arguments.
531 LinkageInfo tempLV =
532 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
533 LV.mergeMaybeWithVisibility(tempLV,
534 considerVisibility && !hasExplicitVisibilityAlready(computation));
535
536 // Merge information from the template arguments. We ignore
537 // template-argument visibility if we've got an explicit
538 // instantiation with a visibility attribute.
539 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
540 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
541 if (considerVisibility)
542 LV.mergeVisibility(argsLV);
543 LV.mergeExternalVisibility(argsLV);
544}
545
547 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
548 const LangOptions &Opts = D->getASTContext().getLangOpts();
549 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
550 return false;
551
552 const auto *FD = dyn_cast<FunctionDecl>(D);
553 if (!FD)
554 return false;
555
558 = FD->getTemplateSpecializationInfo()) {
559 TSK = spec->getTemplateSpecializationKind();
560 } else if (MemberSpecializationInfo *MSI =
561 FD->getMemberSpecializationInfo()) {
562 TSK = MSI->getTemplateSpecializationKind();
563 }
564
565 const FunctionDecl *Def = nullptr;
566 // InlineVisibilityHidden only applies to definitions, and
567 // isInlined() only gives meaningful answers on definitions
568 // anyway.
571 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
572}
573
574template <typename T> static bool isFirstInExternCContext(T *D) {
575 const T *First = D->getFirstDecl();
576 return First->isInExternCContext();
577}
578
579static bool isSingleLineLanguageLinkage(const Decl &D) {
580 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
581 if (!SD->hasBraces())
582 return true;
583 return false;
584}
585
587 return LinkageInfo::external();
588}
589
591 if (auto *TD = dyn_cast<TemplateDecl>(D))
592 D = TD->getTemplatedDecl();
593 if (D) {
594 if (auto *VD = dyn_cast<VarDecl>(D))
595 return VD->getStorageClass();
596 if (auto *FD = dyn_cast<FunctionDecl>(D))
597 return FD->getStorageClass();
598 }
599 return SC_None;
600}
601
603LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
604 LVComputationKind computation,
605 bool IgnoreVarTypeLinkage) {
607 "Not a name having namespace scope");
608 ASTContext &Context = D->getASTContext();
609 const auto *Var = dyn_cast<VarDecl>(D);
610
611 // C++ [basic.link]p3:
612 // A name having namespace scope (3.3.6) has internal linkage if it
613 // is the name of
614
616 (Context.getLangOpts().C23 && Var && Var->isConstexpr())) {
617 // - a variable, variable template, function, or function template
618 // that is explicitly declared static; or
619 // (This bullet corresponds to C99 6.2.2p3.)
620
621 // C23 6.2.2p3
622 // If the declaration of a file scope identifier for
623 // an object contains any of the storage-class specifiers static or
624 // constexpr then the identifier has internal linkage.
625 return LinkageInfo::internal();
626 }
627
628 if (Var) {
629 // - a non-template variable of non-volatile const-qualified type, unless
630 // - it is explicitly declared extern, or
631 // - it is declared in the purview of a module interface unit
632 // (outside the private-module-fragment, if any) or module partition, or
633 // - it is inline, or
634 // - it was previously declared and the prior declaration did not have
635 // internal linkage
636 // (There is no equivalent in C99.)
637 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
638 !Var->getType().isVolatileQualified() && !Var->isInline() &&
639 ![Var]() {
640 // Check if it is module purview except private module fragment
641 // and implementation unit.
642 if (auto *M = Var->getOwningModule())
643 return M->isInterfaceOrPartition() || M->isImplicitGlobalModule();
644 return false;
645 }() &&
646 !isa<VarTemplateSpecializationDecl>(Var) &&
647 !Var->getDescribedVarTemplate()) {
648 const VarDecl *PrevVar = Var->getPreviousDecl();
649 if (PrevVar)
650 return getLVForDecl(PrevVar, computation);
651
652 if (Var->getStorageClass() != SC_Extern &&
653 Var->getStorageClass() != SC_PrivateExtern &&
655 return LinkageInfo::internal();
656 }
657
658 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
659 PrevVar = PrevVar->getPreviousDecl()) {
660 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
661 Var->getStorageClass() == SC_None)
662 return getDeclLinkageAndVisibility(PrevVar);
663 // Explicitly declared static.
664 if (PrevVar->getStorageClass() == SC_Static)
665 return LinkageInfo::internal();
666 }
667 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668 // - a data member of an anonymous union.
669 const VarDecl *VD = IFD->getVarDecl();
670 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672 }
673 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674
675 // FIXME: This gives internal linkage to names that should have no linkage
676 // (those not covered by [basic.link]p6).
677 if (D->isInAnonymousNamespace()) {
678 const auto *Var = dyn_cast<VarDecl>(D);
679 const auto *Func = dyn_cast<FunctionDecl>(D);
680 // FIXME: The check for extern "C" here is not justified by the standard
681 // wording, but we retain it from the pre-DR1113 model to avoid breaking
682 // code.
683 //
684 // C++11 [basic.link]p4:
685 // An unnamed namespace or a namespace declared directly or indirectly
686 // within an unnamed namespace has internal linkage.
687 if ((!Var || !isFirstInExternCContext(Var)) &&
689 return LinkageInfo::internal();
690 }
691
692 // Set up the defaults.
693
694 // C99 6.2.2p5:
695 // If the declaration of an identifier for an object has file
696 // scope and no storage-class specifier, its linkage is
697 // external.
699
700 if (!hasExplicitVisibilityAlready(computation)) {
701 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
702 LV.mergeVisibility(*Vis, true);
703 } else {
704 // If we're declared in a namespace with a visibility attribute,
705 // use that namespace's visibility, and it still counts as explicit.
706 for (const DeclContext *DC = D->getDeclContext();
707 !isa<TranslationUnitDecl>(DC);
708 DC = DC->getParent()) {
709 const auto *ND = dyn_cast<NamespaceDecl>(DC);
710 if (!ND) continue;
711 if (std::optional<Visibility> Vis =
712 getExplicitVisibility(ND, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 break;
715 }
716 }
717 }
718
719 // Add in global settings if the above didn't give us direct visibility.
720 if (!LV.isVisibilityExplicit()) {
721 // Use global type/value visibility as appropriate.
722 Visibility globalVisibility =
723 computation.isValueVisibility()
724 ? Context.getLangOpts().getValueVisibilityMode()
725 : Context.getLangOpts().getTypeVisibilityMode();
726 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
727
728 // If we're paying attention to global visibility, apply
729 // -finline-visibility-hidden if this is an inline method.
731 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
732 }
733 }
734
735 // C++ [basic.link]p4:
736
737 // A name having namespace scope that has not been given internal linkage
738 // above and that is the name of
739 // [...bullets...]
740 // has its linkage determined as follows:
741 // - if the enclosing namespace has internal linkage, the name has
742 // internal linkage; [handled above]
743 // - otherwise, if the declaration of the name is attached to a named
744 // module and is not exported, the name has module linkage;
745 // - otherwise, the name has external linkage.
746 // LV is currently set up to handle the last two bullets.
747 //
748 // The bullets are:
749
750 // - a variable; or
751 if (const auto *Var = dyn_cast<VarDecl>(D)) {
752 // GCC applies the following optimization to variables and static
753 // data members, but not to functions:
754 //
755 // Modify the variable's LV by the LV of its type unless this is
756 // C or extern "C". This follows from [basic.link]p9:
757 // A type without linkage shall not be used as the type of a
758 // variable or function with external linkage unless
759 // - the entity has C language linkage, or
760 // - the entity is declared within an unnamed namespace, or
761 // - the entity is not used or is defined in the same
762 // translation unit.
763 // and [basic.link]p10:
764 // ...the types specified by all declarations referring to a
765 // given variable or function shall be identical...
766 // C does not have an equivalent rule.
767 //
768 // Ignore this if we've got an explicit attribute; the user
769 // probably knows what they're doing.
770 //
771 // Note that we don't want to make the variable non-external
772 // because of this, but unique-external linkage suits us.
773
774 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
775 !IgnoreVarTypeLinkage) {
776 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
777 if (!isExternallyVisible(TypeLV.getLinkage()))
779 if (!LV.isVisibilityExplicit())
780 LV.mergeVisibility(TypeLV);
781 }
782
783 if (Var->getStorageClass() == SC_PrivateExtern)
785
786 // Note that Sema::MergeVarDecl already takes care of implementing
787 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
788 // to do it here.
789
790 // As per function and class template specializations (below),
791 // consider LV for the template and template arguments. We're at file
792 // scope, so we do not need to worry about nested specializations.
793 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
794 mergeTemplateLV(LV, spec, computation);
795 }
796
797 // - a function; or
798 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
799 // In theory, we can modify the function's LV by the LV of its
800 // type unless it has C linkage (see comment above about variables
801 // for justification). In practice, GCC doesn't do this, so it's
802 // just too painful to make work.
803
804 if (Function->getStorageClass() == SC_PrivateExtern)
806
807 // OpenMP target declare device functions are not callable from the host so
808 // they should not be exported from the device image. This applies to all
809 // functions as the host-callable kernel functions are emitted at codegen.
810 if (Context.getLangOpts().OpenMP &&
811 Context.getLangOpts().OpenMPIsTargetDevice &&
812 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
813 Context.getTargetInfo().getTriple().isNVPTX()) ||
814 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
815 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
816
817 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
818 // merging storage classes and visibility attributes, so we don't have to
819 // look at previous decls in here.
820
821 // In C++, then if the type of the function uses a type with
822 // unique-external linkage, it's not legally usable from outside
823 // this translation unit. However, we should use the C linkage
824 // rules instead for extern "C" declarations.
825 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
826 // Only look at the type-as-written. Otherwise, deducing the return type
827 // of a function could change its linkage.
828 QualType TypeAsWritten = Function->getType();
829 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
830 TypeAsWritten = TSI->getType();
831 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
833 }
834
835 // Consider LV from the template and the template arguments.
836 // We're at file scope, so we do not need to worry about nested
837 // specializations.
839 = Function->getTemplateSpecializationInfo()) {
840 mergeTemplateLV(LV, Function, specInfo, computation);
841 }
842
843 // - a named class (Clause 9), or an unnamed class defined in a
844 // typedef declaration in which the class has the typedef name
845 // for linkage purposes (7.1.3); or
846 // - a named enumeration (7.2), or an unnamed enumeration
847 // defined in a typedef declaration in which the enumeration
848 // has the typedef name for linkage purposes (7.1.3); or
849 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
850 // Unnamed tags have no linkage.
851 if (!Tag->hasNameForLinkage())
852 return LinkageInfo::none();
853
854 // If this is a class template specialization, consider the
855 // linkage of the template and template arguments. We're at file
856 // scope, so we do not need to worry about nested specializations.
857 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
858 mergeTemplateLV(LV, spec, computation);
859 }
860
861 // FIXME: This is not part of the C++ standard any more.
862 // - an enumerator belonging to an enumeration with external linkage; or
863 } else if (isa<EnumConstantDecl>(D)) {
864 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
865 computation);
866 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
867 return LinkageInfo::none();
868 LV.merge(EnumLV);
869
870 // - a template
871 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
872 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
873 LinkageInfo tempLV =
874 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
875 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
876
877 // An unnamed namespace or a namespace declared directly or indirectly
878 // within an unnamed namespace has internal linkage. All other namespaces
879 // have external linkage.
880 //
881 // We handled names in anonymous namespaces above.
882 } else if (isa<NamespaceDecl>(D)) {
883 return LV;
884
885 // By extension, we assign external linkage to Objective-C
886 // interfaces.
887 } else if (isa<ObjCInterfaceDecl>(D)) {
888 // fallout
889
890 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
891 // A typedef declaration has linkage if it gives a type a name for
892 // linkage purposes.
893 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
894 return LinkageInfo::none();
895
896 } else if (isa<MSGuidDecl>(D)) {
897 // A GUID behaves like an inline variable with external linkage. Fall
898 // through.
899
900 // Everything not covered here has no linkage.
901 } else {
902 return LinkageInfo::none();
903 }
904
905 // If we ended up with non-externally-visible linkage, visibility should
906 // always be default.
908 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
909
910 return LV;
911}
912
914LinkageComputer::getLVForClassMember(const NamedDecl *D,
915 LVComputationKind computation,
916 bool IgnoreVarTypeLinkage) {
917 // Only certain class members have linkage. Note that fields don't
918 // really have linkage, but it's convenient to say they do for the
919 // purposes of calculating linkage of pointer-to-data-member
920 // template arguments.
921 //
922 // Templates also don't officially have linkage, but since we ignore
923 // the C++ standard and look at template arguments when determining
924 // linkage and visibility of a template specialization, we might hit
925 // a template template argument that way. If we do, we need to
926 // consider its linkage.
927 if (!(isa<CXXMethodDecl>(D) ||
928 isa<VarDecl>(D) ||
929 isa<FieldDecl>(D) ||
930 isa<IndirectFieldDecl>(D) ||
931 isa<TagDecl>(D) ||
932 isa<TemplateDecl>(D)))
933 return LinkageInfo::none();
934
935 LinkageInfo LV;
936
937 // If we have an explicit visibility attribute, merge that in.
938 if (!hasExplicitVisibilityAlready(computation)) {
939 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
940 LV.mergeVisibility(*Vis, true);
941 // If we're paying attention to global visibility, apply
942 // -finline-visibility-hidden if this is an inline method.
943 //
944 // Note that we do this before merging information about
945 // the class visibility.
947 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
948 }
949
950 // If this class member has an explicit visibility attribute, the only
951 // thing that can change its visibility is the template arguments, so
952 // only look for them when processing the class.
953 LVComputationKind classComputation = computation;
954 if (LV.isVisibilityExplicit())
955 classComputation = withExplicitVisibilityAlready(computation);
956
957 LinkageInfo classLV =
958 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
959 // The member has the same linkage as the class. If that's not externally
960 // visible, we don't need to compute anything about the linkage.
961 // FIXME: If we're only computing linkage, can we bail out here?
962 if (!isExternallyVisible(classLV.getLinkage()))
963 return classLV;
964
965
966 // Otherwise, don't merge in classLV yet, because in certain cases
967 // we need to completely ignore the visibility from it.
968
969 // Specifically, if this decl exists and has an explicit attribute.
970 const NamedDecl *explicitSpecSuppressor = nullptr;
971
972 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
973 // Only look at the type-as-written. Otherwise, deducing the return type
974 // of a function could change its linkage.
975 QualType TypeAsWritten = MD->getType();
976 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
977 TypeAsWritten = TSI->getType();
978 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
980
981 // If this is a method template specialization, use the linkage for
982 // the template parameters and arguments.
984 = MD->getTemplateSpecializationInfo()) {
985 mergeTemplateLV(LV, MD, spec, computation);
986 if (spec->isExplicitSpecialization()) {
987 explicitSpecSuppressor = MD;
988 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
989 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
990 }
991 } else if (isExplicitMemberSpecialization(MD)) {
992 explicitSpecSuppressor = MD;
993 }
994
995 // OpenMP target declare device functions are not callable from the host so
996 // they should not be exported from the device image. This applies to all
997 // functions as the host-callable kernel functions are emitted at codegen.
998 ASTContext &Context = D->getASTContext();
999 if (Context.getLangOpts().OpenMP &&
1000 Context.getLangOpts().OpenMPIsTargetDevice &&
1001 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1002 Context.getTargetInfo().getTriple().isNVPTX()) ||
1003 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1004 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1005
1006 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1007 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1008 mergeTemplateLV(LV, spec, computation);
1009 if (spec->isExplicitSpecialization()) {
1010 explicitSpecSuppressor = spec;
1011 } else {
1012 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1014 explicitSpecSuppressor = temp->getTemplatedDecl();
1015 }
1016 }
1017 } else if (isExplicitMemberSpecialization(RD)) {
1018 explicitSpecSuppressor = RD;
1019 }
1020
1021 // Static data members.
1022 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1023 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1024 mergeTemplateLV(LV, spec, computation);
1025
1026 // Modify the variable's linkage by its type, but ignore the
1027 // type's visibility unless it's a definition.
1028 if (!IgnoreVarTypeLinkage) {
1029 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1030 // FIXME: If the type's linkage is not externally visible, we can
1031 // give this static data member UniqueExternalLinkage.
1032 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1033 LV.mergeVisibility(typeLV);
1034 LV.mergeExternalVisibility(typeLV);
1035 }
1036
1038 explicitSpecSuppressor = VD;
1039 }
1040
1041 // Template members.
1042 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1043 bool considerVisibility =
1044 (!LV.isVisibilityExplicit() &&
1045 !classLV.isVisibilityExplicit() &&
1046 !hasExplicitVisibilityAlready(computation));
1047 LinkageInfo tempLV =
1048 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1049 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1050
1051 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1052 if (isExplicitMemberSpecialization(redeclTemp)) {
1053 explicitSpecSuppressor = temp->getTemplatedDecl();
1054 }
1055 }
1056 }
1057
1058 // We should never be looking for an attribute directly on a template.
1059 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1060
1061 // If this member is an explicit member specialization, and it has
1062 // an explicit attribute, ignore visibility from the parent.
1063 bool considerClassVisibility = true;
1064 if (explicitSpecSuppressor &&
1065 // optimization: hasDVA() is true only with explicit visibility.
1066 LV.isVisibilityExplicit() &&
1067 classLV.getVisibility() != DefaultVisibility &&
1068 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1069 considerClassVisibility = false;
1070 }
1071
1072 // Finally, merge in information from the class.
1073 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1074 return LV;
1075}
1076
1077void NamedDecl::anchor() {}
1078
1080 if (!hasCachedLinkage())
1081 return true;
1082
1085 .getLinkage();
1086 return L == getCachedLinkage();
1087}
1088
1089bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const {
1090 // [C++2c] [basic.scope.scope]/p5
1091 // A declaration is name-independent if its name is _ and it declares
1092 // - a variable with automatic storage duration,
1093 // - a structured binding not inhabiting a namespace scope,
1094 // - the variable introduced by an init-capture
1095 // - or a non-static data member.
1096
1097 if (!LangOpts.CPlusPlus || !getIdentifier() ||
1098 !getIdentifier()->isPlaceholder())
1099 return false;
1100 if (isa<FieldDecl>(this))
1101 return true;
1102 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(this)) {
1103 if (!getDeclContext()->isFunctionOrMethod() &&
1104 !getDeclContext()->isRecord())
1105 return false;
1106 const VarDecl *VD = IFD->getVarDecl();
1107 return !VD || VD->getStorageDuration() == SD_Automatic;
1108 }
1109 // and it declares a variable with automatic storage duration
1110 if (const auto *VD = dyn_cast<VarDecl>(this)) {
1111 if (isa<ParmVarDecl>(VD))
1112 return false;
1113 if (VD->isInitCapture())
1114 return true;
1116 }
1117 if (const auto *BD = dyn_cast<BindingDecl>(this);
1119 const VarDecl *VD = BD->getHoldingVar();
1121 }
1122 return false;
1123}
1124
1126NamedDecl::isReserved(const LangOptions &LangOpts) const {
1127 const IdentifierInfo *II = getIdentifier();
1128
1129 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1130 // at lexing time.
1131 if (!II)
1133
1134 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1135 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1136 // This name is only reserved at global scope. Check if this declaration
1137 // conflicts with a global scope declaration.
1138 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1140
1141 // C++ [dcl.link]/7:
1142 // Two declarations [conflict] if [...] one declares a function or
1143 // variable with C language linkage, and the other declares [...] a
1144 // variable that belongs to the global scope.
1145 //
1146 // Therefore names that are reserved at global scope are also reserved as
1147 // names of variables and functions with C language linkage.
1149 if (DC->isTranslationUnit())
1150 return Status;
1151 if (auto *VD = dyn_cast<VarDecl>(this))
1152 if (VD->isExternC())
1154 if (auto *FD = dyn_cast<FunctionDecl>(this))
1155 if (FD->isExternC())
1158 }
1159
1160 return Status;
1161}
1162
1164 StringRef name = getName();
1165 if (name.empty()) return SFF_None;
1166
1167 if (name.front() == 'C')
1168 if (name == "CFStringCreateWithFormat" ||
1169 name == "CFStringCreateWithFormatAndArguments" ||
1170 name == "CFStringAppendFormat" ||
1171 name == "CFStringAppendFormatAndArguments")
1172 return SFF_CFString;
1173 return SFF_None;
1174}
1175
1177 // We don't care about visibility here, so ask for the cheapest
1178 // possible visibility analysis.
1179 return LinkageComputer{}
1181 .getLinkage();
1182}
1183
1185 // FIXME: Handle isModulePrivate.
1186 switch (D->getModuleOwnershipKind()) {
1190 return false;
1193 return D->isInNamedModule();
1194 }
1195 llvm_unreachable("unexpected module ownership kind");
1196}
1197
1198/// Get the linkage from a semantic point of view. Entities in
1199/// anonymous namespaces are external (in c++98).
1201 Linkage InternalLinkage = getLinkageInternal();
1202
1203 // C++ [basic.link]p4.8:
1204 // - if the declaration of the name is attached to a named module and is not
1205 // exported
1206 // the name has module linkage;
1207 //
1208 // [basic.namespace.general]/p2
1209 // A namespace is never attached to a named module and never has a name with
1210 // module linkage.
1211 if (isInNamedModule() && InternalLinkage == Linkage::External &&
1213 cast<NamedDecl>(this->getCanonicalDecl())) &&
1214 !isa<NamespaceDecl>(this))
1215 InternalLinkage = Linkage::Module;
1216
1217 return clang::getFormalLinkage(InternalLinkage);
1218}
1219
1222}
1223
1224static std::optional<Visibility>
1227 bool IsMostRecent) {
1228 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1229
1230 // Check the declaration itself first.
1231 if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1232 return V;
1233
1234 // If this is a member class of a specialization of a class template
1235 // and the corresponding decl has explicit visibility, use that.
1236 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1237 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1238 if (InstantiatedFrom)
1239 return getVisibilityOf(InstantiatedFrom, kind);
1240 }
1241
1242 // If there wasn't explicit visibility there, and this is a
1243 // specialization of a class template, check for visibility
1244 // on the pattern.
1245 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1246 // Walk all the template decl till this point to see if there are
1247 // explicit visibility attributes.
1248 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1249 while (TD != nullptr) {
1250 auto Vis = getVisibilityOf(TD, kind);
1251 if (Vis != std::nullopt)
1252 return Vis;
1253 TD = TD->getPreviousDecl();
1254 }
1255 return std::nullopt;
1256 }
1257
1258 // Use the most recent declaration.
1259 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1260 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1261 if (MostRecent != ND)
1262 return getExplicitVisibilityAux(MostRecent, kind, true);
1263 }
1264
1265 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1266 if (Var->isStaticDataMember()) {
1267 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1268 if (InstantiatedFrom)
1269 return getVisibilityOf(InstantiatedFrom, kind);
1270 }
1271
1272 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1273 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1274 kind);
1275
1276 return std::nullopt;
1277 }
1278 // Also handle function template specializations.
1279 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1280 // If the function is a specialization of a template with an
1281 // explicit visibility attribute, use that.
1282 if (FunctionTemplateSpecializationInfo *templateInfo
1284 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1285 kind);
1286
1287 // If the function is a member of a specialization of a class template
1288 // and the corresponding decl has explicit visibility, use that.
1289 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1290 if (InstantiatedFrom)
1291 return getVisibilityOf(InstantiatedFrom, kind);
1292
1293 return std::nullopt;
1294 }
1295
1296 // The visibility of a template is stored in the templated decl.
1297 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1298 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1299
1300 return std::nullopt;
1301}
1302
1303std::optional<Visibility>
1305 return getExplicitVisibilityAux(this, kind, false);
1306}
1307
1308LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1309 Decl *ContextDecl,
1310 LVComputationKind computation) {
1311 // This lambda has its linkage/visibility determined by its owner.
1312 const NamedDecl *Owner;
1313 if (!ContextDecl)
1314 Owner = dyn_cast<NamedDecl>(DC);
1315 else if (isa<ParmVarDecl>(ContextDecl))
1316 Owner =
1317 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1318 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1319 // Replace with the concept's owning decl, which is either a namespace or a
1320 // TU, so this needs a dyn_cast.
1321 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1322 } else {
1323 Owner = cast<NamedDecl>(ContextDecl);
1324 }
1325
1326 if (!Owner)
1327 return LinkageInfo::none();
1328
1329 // If the owner has a deduced type, we need to skip querying the linkage and
1330 // visibility of that type, because it might involve this closure type. The
1331 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1332 // than NoLinkage when we don't strictly need to, which is benign.
1333 auto *VD = dyn_cast<VarDecl>(Owner);
1334 LinkageInfo OwnerLV =
1335 VD && VD->getType()->getContainedDeducedType()
1336 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1337 : getLVForDecl(Owner, computation);
1338
1339 // A lambda never formally has linkage. But if the owner is externally
1340 // visible, then the lambda is too. We apply the same rules to blocks.
1341 if (!isExternallyVisible(OwnerLV.getLinkage()))
1342 return LinkageInfo::none();
1344 OwnerLV.isVisibilityExplicit());
1345}
1346
1347LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1348 LVComputationKind computation) {
1349 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1350 if (Function->isInAnonymousNamespace() &&
1352 return LinkageInfo::internal();
1353
1354 // This is a "void f();" which got merged with a file static.
1355 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1356 return LinkageInfo::internal();
1357
1358 LinkageInfo LV;
1359 if (!hasExplicitVisibilityAlready(computation)) {
1360 if (std::optional<Visibility> Vis =
1361 getExplicitVisibility(Function, computation))
1362 LV.mergeVisibility(*Vis, true);
1363 }
1364
1365 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1366 // merging storage classes and visibility attributes, so we don't have to
1367 // look at previous decls in here.
1368
1369 return LV;
1370 }
1371
1372 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1373 if (Var->hasExternalStorage()) {
1374 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1375 return LinkageInfo::internal();
1376
1377 LinkageInfo LV;
1378 if (Var->getStorageClass() == SC_PrivateExtern)
1380 else if (!hasExplicitVisibilityAlready(computation)) {
1381 if (std::optional<Visibility> Vis =
1382 getExplicitVisibility(Var, computation))
1383 LV.mergeVisibility(*Vis, true);
1384 }
1385
1386 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1387 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1388 if (PrevLV.getLinkage() != Linkage::Invalid)
1389 LV.setLinkage(PrevLV.getLinkage());
1390 LV.mergeVisibility(PrevLV);
1391 }
1392
1393 return LV;
1394 }
1395
1396 if (!Var->isStaticLocal())
1397 return LinkageInfo::none();
1398 }
1399
1400 ASTContext &Context = D->getASTContext();
1401 if (!Context.getLangOpts().CPlusPlus)
1402 return LinkageInfo::none();
1403
1404 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1405 if (!OuterD || OuterD->isInvalidDecl())
1406 return LinkageInfo::none();
1407
1408 LinkageInfo LV;
1409 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1410 if (!BD->getBlockManglingNumber())
1411 return LinkageInfo::none();
1412
1413 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1414 BD->getBlockManglingContextDecl(), computation);
1415 } else {
1416 const auto *FD = cast<FunctionDecl>(OuterD);
1417 if (!FD->isInlined() &&
1418 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1419 return LinkageInfo::none();
1420
1421 // If a function is hidden by -fvisibility-inlines-hidden option and
1422 // is not explicitly attributed as a hidden function,
1423 // we should not make static local variables in the function hidden.
1424 LV = getLVForDecl(FD, computation);
1425 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1426 !LV.isVisibilityExplicit() &&
1427 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1428 assert(cast<VarDecl>(D)->isStaticLocal());
1429 // If this was an implicitly hidden inline method, check again for
1430 // explicit visibility on the parent class, and use that for static locals
1431 // if present.
1432 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1433 LV = getLVForDecl(MD->getParent(), computation);
1434 if (!LV.isVisibilityExplicit()) {
1435 Visibility globalVisibility =
1436 computation.isValueVisibility()
1437 ? Context.getLangOpts().getValueVisibilityMode()
1438 : Context.getLangOpts().getTypeVisibilityMode();
1439 return LinkageInfo(Linkage::VisibleNone, globalVisibility,
1440 /*visibilityExplicit=*/false);
1441 }
1442 }
1443 }
1445 return LinkageInfo::none();
1448}
1449
1451 LVComputationKind computation,
1452 bool IgnoreVarTypeLinkage) {
1453 // Internal_linkage attribute overrides other considerations.
1454 if (D->hasAttr<InternalLinkageAttr>())
1455 return LinkageInfo::internal();
1456
1457 // Objective-C: treat all Objective-C declarations as having external
1458 // linkage.
1459 switch (D->getKind()) {
1460 default:
1461 break;
1462
1463 // Per C++ [basic.link]p2, only the names of objects, references,
1464 // functions, types, templates, namespaces, and values ever have linkage.
1465 //
1466 // Note that the name of a typedef, namespace alias, using declaration,
1467 // and so on are not the name of the corresponding type, namespace, or
1468 // declaration, so they do *not* have linkage.
1469 case Decl::ImplicitParam:
1470 case Decl::Label:
1471 case Decl::NamespaceAlias:
1472 case Decl::ParmVar:
1473 case Decl::Using:
1474 case Decl::UsingEnum:
1475 case Decl::UsingShadow:
1476 case Decl::UsingDirective:
1477 return LinkageInfo::none();
1478
1479 case Decl::EnumConstant:
1480 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1481 if (D->getASTContext().getLangOpts().CPlusPlus)
1482 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1484
1485 case Decl::Typedef:
1486 case Decl::TypeAlias:
1487 // A typedef declaration has linkage if it gives a type a name for
1488 // linkage purposes.
1489 if (!cast<TypedefNameDecl>(D)
1490 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1491 return LinkageInfo::none();
1492 break;
1493
1494 case Decl::TemplateTemplateParm: // count these as external
1495 case Decl::NonTypeTemplateParm:
1496 case Decl::ObjCAtDefsField:
1497 case Decl::ObjCCategory:
1498 case Decl::ObjCCategoryImpl:
1499 case Decl::ObjCCompatibleAlias:
1500 case Decl::ObjCImplementation:
1501 case Decl::ObjCMethod:
1502 case Decl::ObjCProperty:
1503 case Decl::ObjCPropertyImpl:
1504 case Decl::ObjCProtocol:
1505 return getExternalLinkageFor(D);
1506
1507 case Decl::CXXRecord: {
1508 const auto *Record = cast<CXXRecordDecl>(D);
1509 if (Record->isLambda()) {
1510 if (Record->hasKnownLambdaInternalLinkage() ||
1511 !Record->getLambdaManglingNumber()) {
1512 // This lambda has no mangling number, so it's internal.
1513 return LinkageInfo::internal();
1514 }
1515
1516 return getLVForClosure(
1517 Record->getDeclContext()->getRedeclContext(),
1518 Record->getLambdaContextDecl(), computation);
1519 }
1520
1521 break;
1522 }
1523
1524 case Decl::TemplateParamObject: {
1525 // The template parameter object can be referenced from anywhere its type
1526 // and value can be referenced.
1527 auto *TPO = cast<TemplateParamObjectDecl>(D);
1528 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1529 LV.merge(getLVForValue(TPO->getValue(), computation));
1530 return LV;
1531 }
1532 }
1533
1534 // Handle linkage for namespace-scope names.
1536 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1537
1538 // C++ [basic.link]p5:
1539 // In addition, a member function, static data member, a named
1540 // class or enumeration of class scope, or an unnamed class or
1541 // enumeration defined in a class-scope typedef declaration such
1542 // that the class or enumeration has the typedef name for linkage
1543 // purposes (7.1.3), has external linkage if the name of the class
1544 // has external linkage.
1545 if (D->getDeclContext()->isRecord())
1546 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1547
1548 // C++ [basic.link]p6:
1549 // The name of a function declared in block scope and the name of
1550 // an object declared by a block scope extern declaration have
1551 // linkage. If there is a visible declaration of an entity with
1552 // linkage having the same name and type, ignoring entities
1553 // declared outside the innermost enclosing namespace scope, the
1554 // block scope declaration declares that same entity and receives
1555 // the linkage of the previous declaration. If there is more than
1556 // one such matching entity, the program is ill-formed. Otherwise,
1557 // if no matching entity is found, the block scope entity receives
1558 // external linkage.
1560 return getLVForLocalDecl(D, computation);
1561
1562 // C++ [basic.link]p6:
1563 // Names not covered by these rules have no linkage.
1564 return LinkageInfo::none();
1565}
1566
1567/// getLVForDecl - Get the linkage and visibility for the given declaration.
1569 LVComputationKind computation) {
1570 // Internal_linkage attribute overrides other considerations.
1571 if (D->hasAttr<InternalLinkageAttr>())
1572 return LinkageInfo::internal();
1573
1574 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1576
1577 if (std::optional<LinkageInfo> LI = lookup(D, computation))
1578 return *LI;
1579
1580 LinkageInfo LV = computeLVForDecl(D, computation);
1581 if (D->hasCachedLinkage())
1582 assert(D->getCachedLinkage() == LV.getLinkage());
1583
1585 cache(D, computation, LV);
1586
1587#ifndef NDEBUG
1588 // In C (because of gnu inline) and in c++ with microsoft extensions an
1589 // static can follow an extern, so we can have two decls with different
1590 // linkages.
1591 const LangOptions &Opts = D->getASTContext().getLangOpts();
1592 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1593 return LV;
1594
1595 // We have just computed the linkage for this decl. By induction we know
1596 // that all other computed linkages match, check that the one we just
1597 // computed also does.
1598 NamedDecl *Old = nullptr;
1599 for (auto *I : D->redecls()) {
1600 auto *T = cast<NamedDecl>(I);
1601 if (T == D)
1602 continue;
1603 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1604 Old = T;
1605 break;
1606 }
1607 }
1608 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1609#endif
1610
1611 return LV;
1612}
1613
1618 LVComputationKind CK(EK);
1619 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1620 ? CK.forLinkageOnly()
1621 : CK);
1622}
1623
1625 if (isa<NamespaceDecl>(this))
1626 // Namespaces never have module linkage. It is the entities within them
1627 // that [may] do.
1628 return nullptr;
1629
1630 Module *M = getOwningModule();
1631 if (!M)
1632 return nullptr;
1633
1634 switch (M->Kind) {
1636 // Module map modules have no special linkage semantics.
1637 return nullptr;
1638
1643 return M;
1644
1648 // The global module shouldn't change the linkage.
1649 return nullptr;
1650
1652 // The private module fragment is part of its containing module for linkage
1653 // purposes.
1654 return M->Parent;
1655 }
1656
1657 llvm_unreachable("unknown module kind");
1658}
1659
1660void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1661 Name.print(OS, Policy);
1662}
1663
1664void NamedDecl::printName(raw_ostream &OS) const {
1665 printName(OS, getASTContext().getPrintingPolicy());
1666}
1667
1669 std::string QualName;
1670 llvm::raw_string_ostream OS(QualName);
1671 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1672 return QualName;
1673}
1674
1675void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1676 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1677}
1678
1680 const PrintingPolicy &P) const {
1681 if (getDeclContext()->isFunctionOrMethod()) {
1682 // We do not print '(anonymous)' for function parameters without name.
1683 printName(OS, P);
1684 return;
1685 }
1687 if (getDeclName())
1688 OS << *this;
1689 else {
1690 // Give the printName override a chance to pick a different name before we
1691 // fall back to "(anonymous)".
1692 SmallString<64> NameBuffer;
1693 llvm::raw_svector_ostream NameOS(NameBuffer);
1694 printName(NameOS, P);
1695 if (NameBuffer.empty())
1696 OS << "(anonymous)";
1697 else
1698 OS << NameBuffer;
1699 }
1700}
1701
1702void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1703 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1704}
1705
1707 const PrintingPolicy &P) const {
1708 const DeclContext *Ctx = getDeclContext();
1709
1710 // For ObjC methods and properties, look through categories and use the
1711 // interface as context.
1712 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1713 if (auto *ID = MD->getClassInterface())
1714 Ctx = ID;
1715 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1716 if (auto *MD = PD->getGetterMethodDecl())
1717 if (auto *ID = MD->getClassInterface())
1718 Ctx = ID;
1719 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1720 if (auto *CI = ID->getContainingInterface())
1721 Ctx = CI;
1722 }
1723
1724 if (Ctx->isFunctionOrMethod())
1725 return;
1726
1727 using ContextsTy = SmallVector<const DeclContext *, 8>;
1728 ContextsTy Contexts;
1729
1730 // Collect named contexts.
1731 DeclarationName NameInScope = getDeclName();
1732 for (; Ctx; Ctx = Ctx->getParent()) {
1733 // Suppress anonymous namespace if requested.
1734 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1735 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1736 continue;
1737
1738 // Suppress inline namespace if it doesn't make the result ambiguous.
1739 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1740 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1741 continue;
1742
1743 // Skip non-named contexts such as linkage specifications and ExportDecls.
1744 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1745 if (!ND)
1746 continue;
1747
1748 Contexts.push_back(Ctx);
1749 NameInScope = ND->getDeclName();
1750 }
1751
1752 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1753 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1754 OS << Spec->getName();
1755 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1757 OS, TemplateArgs.asArray(), P,
1758 Spec->getSpecializedTemplate()->getTemplateParameters());
1759 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1760 if (ND->isAnonymousNamespace()) {
1761 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1762 : "(anonymous namespace)");
1763 }
1764 else
1765 OS << *ND;
1766 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1767 if (!RD->getIdentifier())
1768 OS << "(anonymous " << RD->getKindName() << ')';
1769 else
1770 OS << *RD;
1771 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1772 const FunctionProtoType *FT = nullptr;
1773 if (FD->hasWrittenPrototype())
1774 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1775
1776 OS << *FD << '(';
1777 if (FT) {
1778 unsigned NumParams = FD->getNumParams();
1779 for (unsigned i = 0; i < NumParams; ++i) {
1780 if (i)
1781 OS << ", ";
1782 OS << FD->getParamDecl(i)->getType().stream(P);
1783 }
1784
1785 if (FT->isVariadic()) {
1786 if (NumParams > 0)
1787 OS << ", ";
1788 OS << "...";
1789 }
1790 }
1791 OS << ')';
1792 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1793 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1794 // enumerator is declared in the scope that immediately contains
1795 // the enum-specifier. Each scoped enumerator is declared in the
1796 // scope of the enumeration.
1797 // For the case of unscoped enumerator, do not include in the qualified
1798 // name any information about its enum enclosing scope, as its visibility
1799 // is global.
1800 if (ED->isScoped())
1801 OS << *ED;
1802 else
1803 continue;
1804 } else {
1805 OS << *cast<NamedDecl>(DC);
1806 }
1807 OS << "::";
1808 }
1809}
1810
1812 const PrintingPolicy &Policy,
1813 bool Qualified) const {
1814 if (Qualified)
1815 printQualifiedName(OS, Policy);
1816 else
1817 printName(OS, Policy);
1818}
1819
1820template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1821 return true;
1822}
1823static bool isRedeclarableImpl(...) { return false; }
1825 switch (K) {
1826#define DECL(Type, Base) \
1827 case Decl::Type: \
1828 return isRedeclarableImpl((Type##Decl *)nullptr);
1829#define ABSTRACT_DECL(DECL)
1830#include "clang/AST/DeclNodes.inc"
1831 }
1832 llvm_unreachable("unknown decl kind");
1833}
1834
1836 bool IsKnownNewer) const {
1837 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1838
1839 // Never replace one imported declaration with another; we need both results
1840 // when re-exporting.
1841 if (OldD->isFromASTFile() && isFromASTFile())
1842 return false;
1843
1844 // A kind mismatch implies that the declaration is not replaced.
1845 if (OldD->getKind() != getKind())
1846 return false;
1847
1848 // For method declarations, we never replace. (Why?)
1849 if (isa<ObjCMethodDecl>(this))
1850 return false;
1851
1852 // For parameters, pick the newer one. This is either an error or (in
1853 // Objective-C) permitted as an extension.
1854 if (isa<ParmVarDecl>(this))
1855 return true;
1856
1857 // Inline namespaces can give us two declarations with the same
1858 // name and kind in the same scope but different contexts; we should
1859 // keep both declarations in this case.
1860 if (!this->getDeclContext()->getRedeclContext()->Equals(
1861 OldD->getDeclContext()->getRedeclContext()))
1862 return false;
1863
1864 // Using declarations can be replaced if they import the same name from the
1865 // same context.
1866 if (const auto *UD = dyn_cast<UsingDecl>(this)) {
1867 ASTContext &Context = getASTContext();
1868 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1870 cast<UsingDecl>(OldD)->getQualifier());
1871 }
1872 if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1873 ASTContext &Context = getASTContext();
1874 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1876 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1877 }
1878
1879 if (isRedeclarable(getKind())) {
1880 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1881 return false;
1882
1883 if (IsKnownNewer)
1884 return true;
1885
1886 // Check whether this is actually newer than OldD. We want to keep the
1887 // newer declaration. This loop will usually only iterate once, because
1888 // OldD is usually the previous declaration.
1889 for (const auto *D : redecls()) {
1890 if (D == OldD)
1891 break;
1892
1893 // If we reach the canonical declaration, then OldD is not actually older
1894 // than this one.
1895 //
1896 // FIXME: In this case, we should not add this decl to the lookup table.
1897 if (D->isCanonicalDecl())
1898 return false;
1899 }
1900
1901 // It's a newer declaration of the same kind of declaration in the same
1902 // scope: we want this decl instead of the existing one.
1903 return true;
1904 }
1905
1906 // In all other cases, we need to keep both declarations in case they have
1907 // different visibility. Any attempt to use the name will result in an
1908 // ambiguity if more than one is visible.
1909 return false;
1910}
1911
1913 switch (getFormalLinkage()) {
1914 case Linkage::Invalid:
1915 llvm_unreachable("Linkage hasn't been computed!");
1916 case Linkage::None:
1917 return false;
1918 case Linkage::Internal:
1919 return true;
1922 llvm_unreachable("Non-formal linkage is not allowed here!");
1923 case Linkage::Module:
1924 case Linkage::External:
1925 return true;
1926 }
1927 llvm_unreachable("Unhandled Linkage enum");
1928}
1929
1930NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1931 NamedDecl *ND = this;
1932 if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1933 ND = UD->getTargetDecl();
1934
1935 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1936 return AD->getClassInterface();
1937
1938 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1939 return AD->getNamespace();
1940
1941 return ND;
1942}
1943
1945 if (!isCXXClassMember())
1946 return false;
1947
1948 const NamedDecl *D = this;
1949 if (isa<UsingShadowDecl>(D))
1950 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1951
1952 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1953 return true;
1954 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(D->getAsFunction()))
1955 return MD->isInstance();
1956 return false;
1957}
1958
1959//===----------------------------------------------------------------------===//
1960// DeclaratorDecl Implementation
1961//===----------------------------------------------------------------------===//
1962
1963template <typename DeclT>
1965 if (decl->getNumTemplateParameterLists() > 0)
1966 return decl->getTemplateParameterList(0)->getTemplateLoc();
1967 return decl->getInnerLocStart();
1968}
1969
1972 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1973 return SourceLocation();
1974}
1975
1978 if (TSI) return TSI->getTypeLoc().getEndLoc();
1979 return SourceLocation();
1980}
1981
1983 if (QualifierLoc) {
1984 // Make sure the extended decl info is allocated.
1985 if (!hasExtInfo()) {
1986 // Save (non-extended) type source info pointer.
1987 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1988 // Allocate external info struct.
1989 DeclInfo = new (getASTContext()) ExtInfo;
1990 // Restore savedTInfo into (extended) decl info.
1991 getExtInfo()->TInfo = savedTInfo;
1992 }
1993 // Set qualifier info.
1994 getExtInfo()->QualifierLoc = QualifierLoc;
1995 } else if (hasExtInfo()) {
1996 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1997 getExtInfo()->QualifierLoc = QualifierLoc;
1998 }
1999}
2000
2002 assert(TrailingRequiresClause);
2003 // Make sure the extended decl info is allocated.
2004 if (!hasExtInfo()) {
2005 // Save (non-extended) type source info pointer.
2006 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2007 // Allocate external info struct.
2008 DeclInfo = new (getASTContext()) ExtInfo;
2009 // Restore savedTInfo into (extended) decl info.
2010 getExtInfo()->TInfo = savedTInfo;
2011 }
2012 // Set requires clause info.
2013 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
2014}
2015
2018 assert(!TPLists.empty());
2019 // Make sure the extended decl info is allocated.
2020 if (!hasExtInfo()) {
2021 // Save (non-extended) type source info pointer.
2022 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2023 // Allocate external info struct.
2024 DeclInfo = new (getASTContext()) ExtInfo;
2025 // Restore savedTInfo into (extended) decl info.
2026 getExtInfo()->TInfo = savedTInfo;
2027 }
2028 // Set the template parameter lists info.
2029 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
2030}
2031
2033 return getTemplateOrInnerLocStart(this);
2034}
2035
2036// Helper function: returns true if QT is or contains a type
2037// having a postfix component.
2038static bool typeIsPostfix(QualType QT) {
2039 while (true) {
2040 const Type* T = QT.getTypePtr();
2041 switch (T->getTypeClass()) {
2042 default:
2043 return false;
2044 case Type::Pointer:
2045 QT = cast<PointerType>(T)->getPointeeType();
2046 break;
2047 case Type::BlockPointer:
2048 QT = cast<BlockPointerType>(T)->getPointeeType();
2049 break;
2050 case Type::MemberPointer:
2051 QT = cast<MemberPointerType>(T)->getPointeeType();
2052 break;
2053 case Type::LValueReference:
2054 case Type::RValueReference:
2055 QT = cast<ReferenceType>(T)->getPointeeType();
2056 break;
2057 case Type::PackExpansion:
2058 QT = cast<PackExpansionType>(T)->getPattern();
2059 break;
2060 case Type::Paren:
2061 case Type::ConstantArray:
2062 case Type::DependentSizedArray:
2063 case Type::IncompleteArray:
2064 case Type::VariableArray:
2065 case Type::FunctionProto:
2066 case Type::FunctionNoProto:
2067 return true;
2068 }
2069 }
2070}
2071
2073 SourceLocation RangeEnd = getLocation();
2074 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2075 // If the declaration has no name or the type extends past the name take the
2076 // end location of the type.
2077 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2078 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2079 }
2080 return SourceRange(getOuterLocStart(), RangeEnd);
2081}
2082
2085 // Free previous template parameters (if any).
2086 if (NumTemplParamLists > 0) {
2087 Context.Deallocate(TemplParamLists);
2088 TemplParamLists = nullptr;
2090 }
2091 // Set info on matched template parameter lists (if any).
2092 if (!TPLists.empty()) {
2093 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2094 NumTemplParamLists = TPLists.size();
2095 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2096 }
2097}
2098
2099//===----------------------------------------------------------------------===//
2100// VarDecl Implementation
2101//===----------------------------------------------------------------------===//
2102
2104 switch (SC) {
2105 case SC_None: break;
2106 case SC_Auto: return "auto";
2107 case SC_Extern: return "extern";
2108 case SC_PrivateExtern: return "__private_extern__";
2109 case SC_Register: return "register";
2110 case SC_Static: return "static";
2111 }
2112
2113 llvm_unreachable("Invalid storage class");
2114}
2115
2117 SourceLocation StartLoc, SourceLocation IdLoc,
2118 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2119 StorageClass SC)
2120 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2122 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2123 "VarDeclBitfields too large!");
2124 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2125 "ParmVarDeclBitfields too large!");
2126 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2127 "NonParmVarDeclBitfields too large!");
2128 AllBits = 0;
2129 VarDeclBits.SClass = SC;
2130 // Everything else is implicitly initialized to false.
2131}
2132
2134 SourceLocation IdL, const IdentifierInfo *Id,
2136 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2137}
2138
2140 return new (C, ID)
2141 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2142 QualType(), nullptr, SC_None);
2143}
2144
2146 assert(isLegalForVariable(SC));
2147 VarDeclBits.SClass = SC;
2148}
2149
2151 switch (VarDeclBits.TSCSpec) {
2152 case TSCS_unspecified:
2153 if (!hasAttr<ThreadAttr>() &&
2154 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2155 getASTContext().getTargetInfo().isTLSSupported() &&
2156 hasAttr<OMPThreadPrivateDeclAttr>()))
2157 return TLS_None;
2158 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2160 hasAttr<OMPThreadPrivateDeclAttr>())
2161 ? TLS_Dynamic
2162 : TLS_Static;
2163 case TSCS___thread: // Fall through.
2164 case TSCS__Thread_local:
2165 return TLS_Static;
2166 case TSCS_thread_local:
2167 return TLS_Dynamic;
2168 }
2169 llvm_unreachable("Unknown thread storage class specifier!");
2170}
2171
2173 if (const Expr *Init = getInit()) {
2174 SourceLocation InitEnd = Init->getEndLoc();
2175 // If Init is implicit, ignore its source range and fallback on
2176 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2177 if (InitEnd.isValid() && InitEnd != getLocation())
2178 return SourceRange(getOuterLocStart(), InitEnd);
2179 }
2181}
2182
2183template<typename T>
2185 // C++ [dcl.link]p1: All function types, function names with external linkage,
2186 // and variable names with external linkage have a language linkage.
2187 if (!D.hasExternalFormalLinkage())
2188 return NoLanguageLinkage;
2189
2190 // Language linkage is a C++ concept, but saying that everything else in C has
2191 // C language linkage fits the implementation nicely.
2192 if (!D.getASTContext().getLangOpts().CPlusPlus)
2193 return CLanguageLinkage;
2194
2195 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2196 // language linkage of the names of class members and the function type of
2197 // class member functions.
2198 const DeclContext *DC = D.getDeclContext();
2199 if (DC->isRecord())
2200 return CXXLanguageLinkage;
2201
2202 // If the first decl is in an extern "C" context, any other redeclaration
2203 // will have C language linkage. If the first one is not in an extern "C"
2204 // context, we would have reported an error for any other decl being in one.
2206 return CLanguageLinkage;
2207 return CXXLanguageLinkage;
2208}
2209
2210template<typename T>
2211static bool isDeclExternC(const T &D) {
2212 // Since the context is ignored for class members, they can only have C++
2213 // language linkage or no language linkage.
2214 const DeclContext *DC = D.getDeclContext();
2215 if (DC->isRecord()) {
2216 assert(D.getASTContext().getLangOpts().CPlusPlus);
2217 return false;
2218 }
2219
2220 return D.getLanguageLinkage() == CLanguageLinkage;
2221}
2222
2224 return getDeclLanguageLinkage(*this);
2225}
2226
2228 return isDeclExternC(*this);
2229}
2230
2233}
2234
2237}
2238
2240
2244 return DeclarationOnly;
2245
2246 // C++ [basic.def]p2:
2247 // A declaration is a definition unless [...] it contains the 'extern'
2248 // specifier or a linkage-specification and neither an initializer [...],
2249 // it declares a non-inline static data member in a class declaration [...],
2250 // it declares a static data member outside a class definition and the variable
2251 // was defined within the class with the constexpr specifier [...],
2252 // C++1y [temp.expl.spec]p15:
2253 // An explicit specialization of a static data member or an explicit
2254 // specialization of a static data member template is a definition if the
2255 // declaration includes an initializer; otherwise, it is a declaration.
2256 //
2257 // FIXME: How do you declare (but not define) a partial specialization of
2258 // a static data member template outside the containing class?
2259 if (isStaticDataMember()) {
2260 if (isOutOfLine() &&
2261 !(getCanonicalDecl()->isInline() &&
2263 (hasInit() ||
2264 // If the first declaration is out-of-line, this may be an
2265 // instantiation of an out-of-line partial specialization of a variable
2266 // template for which we have not yet instantiated the initializer.
2271 isa<VarTemplatePartialSpecializationDecl>(this)))
2272 return Definition;
2273 if (!isOutOfLine() && isInline())
2274 return Definition;
2275 return DeclarationOnly;
2276 }
2277 // C99 6.7p5:
2278 // A definition of an identifier is a declaration for that identifier that
2279 // [...] causes storage to be reserved for that object.
2280 // Note: that applies for all non-file-scope objects.
2281 // C99 6.9.2p1:
2282 // If the declaration of an identifier for an object has file scope and an
2283 // initializer, the declaration is an external definition for the identifier
2284 if (hasInit())
2285 return Definition;
2286
2287 if (hasDefiningAttr())
2288 return Definition;
2289
2290 if (const auto *SAA = getAttr<SelectAnyAttr>())
2291 if (!SAA->isInherited())
2292 return Definition;
2293
2294 // A variable template specialization (other than a static data member
2295 // template or an explicit specialization) is a declaration until we
2296 // instantiate its initializer.
2297 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2298 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2299 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2300 !VTSD->IsCompleteDefinition)
2301 return DeclarationOnly;
2302 }
2303
2304 if (hasExternalStorage())
2305 return DeclarationOnly;
2306
2307 // [dcl.link] p7:
2308 // A declaration directly contained in a linkage-specification is treated
2309 // as if it contains the extern specifier for the purpose of determining
2310 // the linkage of the declared name and whether it is a definition.
2311 if (isSingleLineLanguageLinkage(*this))
2312 return DeclarationOnly;
2313
2314 // C99 6.9.2p2:
2315 // A declaration of an object that has file scope without an initializer,
2316 // and without a storage class specifier or the scs 'static', constitutes
2317 // a tentative definition.
2318 // No such thing in C++.
2319 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2320 return TentativeDefinition;
2321
2322 // What's left is (in C, block-scope) declarations without initializers or
2323 // external storage. These are definitions.
2324 return Definition;
2325}
2326
2330 return nullptr;
2331
2332 VarDecl *LastTentative = nullptr;
2333
2334 // Loop through the declaration chain, starting with the most recent.
2336 Decl = Decl->getPreviousDecl()) {
2337 Kind = Decl->isThisDeclarationADefinition();
2338 if (Kind == Definition)
2339 return nullptr;
2340 // Record the first (most recent) TentativeDefinition that is encountered.
2341 if (Kind == TentativeDefinition && !LastTentative)
2342 LastTentative = Decl;
2343 }
2344
2345 return LastTentative;
2346}
2347
2350 for (auto *I : First->redecls()) {
2351 if (I->isThisDeclarationADefinition(C) == Definition)
2352 return I;
2353 }
2354 return nullptr;
2355}
2356
2359
2360 const VarDecl *First = getFirstDecl();
2361 for (auto *I : First->redecls()) {
2362 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2363 if (Kind == Definition)
2364 break;
2365 }
2366
2367 return Kind;
2368}
2369
2371 for (auto *I : redecls()) {
2372 if (auto Expr = I->getInit()) {
2373 D = I;
2374 return Expr;
2375 }
2376 }
2377 return nullptr;
2378}
2379
2380bool VarDecl::hasInit() const {
2381 if (auto *P = dyn_cast<ParmVarDecl>(this))
2382 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2383 return false;
2384
2385 if (auto *Eval = getEvaluatedStmt())
2386 return Eval->Value.isValid();
2387
2388 return !Init.isNull();
2389}
2390
2392 if (!hasInit())
2393 return nullptr;
2394
2395 if (auto *S = Init.dyn_cast<Stmt *>())
2396 return cast<Expr>(S);
2397
2398 auto *Eval = getEvaluatedStmt();
2399
2400 return cast<Expr>(Eval->Value.get(
2401 Eval->Value.isOffset() ? getASTContext().getExternalSource() : nullptr));
2402}
2403
2405 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2406 return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2407
2408 return Init.getAddrOfPtr1();
2409}
2410
2412 VarDecl *Def = nullptr;
2413 for (auto *I : redecls()) {
2414 if (I->hasInit())
2415 return I;
2416
2417 if (I->isThisDeclarationADefinition()) {
2418 if (isStaticDataMember())
2419 return I;
2420 Def = I;
2421 }
2422 }
2423 return Def;
2424}
2425
2427 if (Decl::isOutOfLine())
2428 return true;
2429
2430 if (!isStaticDataMember())
2431 return false;
2432
2433 // If this static data member was instantiated from a static data member of
2434 // a class template, check whether that static data member was defined
2435 // out-of-line.
2437 return VD->isOutOfLine();
2438
2439 return false;
2440}
2441
2443 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2444 Eval->~EvaluatedStmt();
2445 getASTContext().Deallocate(Eval);
2446 }
2447
2448 Init = I;
2449}
2450
2452 const LangOptions &Lang = C.getLangOpts();
2453
2454 // OpenCL permits const integral variables to be used in constant
2455 // expressions, like in C++98.
2456 if (!Lang.CPlusPlus && !Lang.OpenCL && !Lang.C23)
2457 return false;
2458
2459 // Function parameters are never usable in constant expressions.
2460 if (isa<ParmVarDecl>(this))
2461 return false;
2462
2463 // The values of weak variables are never usable in constant expressions.
2464 if (isWeak())
2465 return false;
2466
2467 // In C++11, any variable of reference type can be used in a constant
2468 // expression if it is initialized by a constant expression.
2469 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2470 return true;
2471
2472 // Only const objects can be used in constant expressions in C++. C++98 does
2473 // not require the variable to be non-volatile, but we consider this to be a
2474 // defect.
2475 if (!getType().isConstant(C) || getType().isVolatileQualified())
2476 return false;
2477
2478 // In C++, but not in C, const, non-volatile variables of integral or
2479 // enumeration types can be used in constant expressions.
2480 if (getType()->isIntegralOrEnumerationType() && !Lang.C23)
2481 return true;
2482
2483 // C23 6.6p7: An identifier that is:
2484 // ...
2485 // - declared with storage-class specifier constexpr and has an object type,
2486 // is a named constant, ... such a named constant is a constant expression
2487 // with the type and value of the declared object.
2488 // Additionally, in C++11, non-volatile constexpr variables can be used in
2489 // constant expressions.
2490 return (Lang.CPlusPlus11 || Lang.C23) && isConstexpr();
2491}
2492
2494 // C++2a [expr.const]p3:
2495 // A variable is usable in constant expressions after its initializing
2496 // declaration is encountered...
2497 const VarDecl *DefVD = nullptr;
2498 const Expr *Init = getAnyInitializer(DefVD);
2499 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2500 return false;
2501 // ... if it is a constexpr variable, or it is of reference type or of
2502 // const-qualified integral or enumeration type, ...
2503 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2504 return false;
2505 // ... and its initializer is a constant initializer.
2506 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2507 return false;
2508 // C++98 [expr.const]p1:
2509 // An integral constant-expression can involve only [...] const variables
2510 // or static data members of integral or enumeration types initialized with
2511 // [integer] constant expressions (dcl.init)
2512 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2513 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2514 return false;
2515 return true;
2516}
2517
2518/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2519/// form, which contains extra information on the evaluated value of the
2520/// initializer.
2522 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2523 if (!Eval) {
2524 // Note: EvaluatedStmt contains an APValue, which usually holds
2525 // resources not allocated from the ASTContext. We need to do some
2526 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2527 // where we can detect whether there's anything to clean up or not.
2528 Eval = new (getASTContext()) EvaluatedStmt;
2529 Eval->Value = Init.get<Stmt *>();
2530 Init = Eval;
2531 }
2532 return Eval;
2533}
2534
2536 return Init.dyn_cast<EvaluatedStmt *>();
2537}
2538
2541 return evaluateValueImpl(Notes, hasConstantInitialization());
2542}
2543
2544APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2545 bool IsConstantInitialization) const {
2547
2548 const auto *Init = getInit();
2549 assert(!Init->isValueDependent());
2550
2551 // We only produce notes indicating why an initializer is non-constant the
2552 // first time it is evaluated. FIXME: The notes won't always be emitted the
2553 // first time we try evaluation, so might not be produced at all.
2554 if (Eval->WasEvaluated)
2555 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2556
2557 if (Eval->IsEvaluating) {
2558 // FIXME: Produce a diagnostic for self-initialization.
2559 return nullptr;
2560 }
2561
2562 Eval->IsEvaluating = true;
2563
2564 ASTContext &Ctx = getASTContext();
2565 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2566 IsConstantInitialization);
2567
2568 // In C++, or in C23 if we're initialising a 'constexpr' variable, this isn't
2569 // a constant initializer if we produced notes. In that case, we can't keep
2570 // the result, because it may only be correct under the assumption that the
2571 // initializer is a constant context.
2572 if (IsConstantInitialization &&
2573 (Ctx.getLangOpts().CPlusPlus ||
2574 (isConstexpr() && Ctx.getLangOpts().C23)) &&
2575 !Notes.empty())
2576 Result = false;
2577
2578 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2579 // or that it's empty (so that there's nothing to clean up) if evaluation
2580 // failed.
2581 if (!Result)
2582 Eval->Evaluated = APValue();
2583 else if (Eval->Evaluated.needsCleanup())
2584 Ctx.addDestruction(&Eval->Evaluated);
2585
2586 Eval->IsEvaluating = false;
2587 Eval->WasEvaluated = true;
2588
2589 return Result ? &Eval->Evaluated : nullptr;
2590}
2591
2593 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2594 if (Eval->WasEvaluated)
2595 return &Eval->Evaluated;
2596
2597 return nullptr;
2598}
2599
2600bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2601 const Expr *Init = getInit();
2602 assert(Init && "no initializer");
2603
2605 if (!Eval->CheckedForICEInit) {
2606 Eval->CheckedForICEInit = true;
2607 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2608 }
2609 return Eval->HasICEInit;
2610}
2611
2613 // In C, all globals (and only globals) have constant initialization.
2615 return true;
2616
2617 // In C++, it depends on whether the evaluation at the point of definition
2618 // was evaluatable as a constant initializer.
2619 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2620 return Eval->HasConstantInitialization;
2621
2622 return false;
2623}
2624
2628 // If we ask for the value before we know whether we have a constant
2629 // initializer, we can compute the wrong value (for example, due to
2630 // std::is_constant_evaluated()).
2631 assert(!Eval->WasEvaluated &&
2632 "already evaluated var value before checking for constant init");
2633 assert((getASTContext().getLangOpts().CPlusPlus ||
2635 "only meaningful in C++/C23");
2636
2637 assert(!getInit()->isValueDependent());
2638
2639 // Evaluate the initializer to check whether it's a constant expression.
2641 evaluateValueImpl(Notes, true) && Notes.empty();
2642
2643 // If evaluation as a constant initializer failed, allow re-evaluation as a
2644 // non-constant initializer if we later find we want the value.
2645 if (!Eval->HasConstantInitialization)
2646 Eval->WasEvaluated = false;
2647
2648 return Eval->HasConstantInitialization;
2649}
2650
2652 return isa<PackExpansionType>(getType());
2653}
2654
2655template<typename DeclT>
2656static DeclT *getDefinitionOrSelf(DeclT *D) {
2657 assert(D);
2658 if (auto *Def = D->getDefinition())
2659 return Def;
2660 return D;
2661}
2662
2664 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2665}
2666
2668 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2669}
2670
2672 QualType T = getType();
2673 return T->isDependentType() || T->isUndeducedType() ||
2674 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2675 return AA->isAlignmentDependent();
2676 });
2677}
2678
2680 const VarDecl *VD = this;
2681
2682 // If this is an instantiated member, walk back to the template from which
2683 // it was instantiated.
2685 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2687 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2688 VD = NewVD;
2689 }
2690 }
2691
2692 // If it's an instantiated variable template specialization, find the
2693 // template or partial specialization from which it was instantiated.
2694 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2695 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2696 auto From = VDTemplSpec->getInstantiatedFrom();
2697 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2698 while (!VTD->isMemberSpecialization()) {
2699 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2700 if (!NewVTD)
2701 break;
2702 VTD = NewVTD;
2703 }
2704 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2705 }
2706 if (auto *VTPSD =
2707 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2708 while (!VTPSD->isMemberSpecialization()) {
2709 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2710 if (!NewVTPSD)
2711 break;
2712 VTPSD = NewVTPSD;
2713 }
2714 return getDefinitionOrSelf<VarDecl>(VTPSD);
2715 }
2716 }
2717 }
2718
2719 // If this is the pattern of a variable template, find where it was
2720 // instantiated from. FIXME: Is this necessary?
2721 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2722 while (!VarTemplate->isMemberSpecialization()) {
2723 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2724 if (!NewVT)
2725 break;
2726 VarTemplate = NewVT;
2727 }
2728
2729 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2730 }
2731
2732 if (VD == this)
2733 return nullptr;
2734 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2735}
2736
2739 return cast<VarDecl>(MSI->getInstantiatedFrom());
2740
2741 return nullptr;
2742}
2743
2745 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2746 return Spec->getSpecializationKind();
2747
2749 return MSI->getTemplateSpecializationKind();
2750
2751 return TSK_Undeclared;
2752}
2753
2757 return MSI->getTemplateSpecializationKind();
2758
2759 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2760 return Spec->getSpecializationKind();
2761
2762 return TSK_Undeclared;
2763}
2764
2766 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2767 return Spec->getPointOfInstantiation();
2768
2770 return MSI->getPointOfInstantiation();
2771
2772 return SourceLocation();
2773}
2774
2777 .dyn_cast<VarTemplateDecl *>();
2778}
2779
2782}
2783
2785 const auto &LangOpts = getASTContext().getLangOpts();
2786 // In CUDA mode without relocatable device code, variables of form 'extern
2787 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2788 // memory pool. These are never undefined variables, even if they appear
2789 // inside of an anon namespace or static function.
2790 //
2791 // With CUDA relocatable device code enabled, these variables don't get
2792 // special handling; they're treated like regular extern variables.
2793 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2794 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2795 isa<IncompleteArrayType>(getType()))
2796 return true;
2797
2798 return hasDefinition();
2799}
2800
2801bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2802 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2803 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2804 !hasAttr<AlwaysDestroyAttr>()));
2805}
2806
2809 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2810 if (Eval->HasConstantDestruction)
2811 return QualType::DK_none;
2812
2813 if (isNoDestroy(Ctx))
2814 return QualType::DK_none;
2815
2816 return getType().isDestructedType();
2817}
2818
2820 assert(hasInit() && "Expect initializer to check for flexible array init");
2821 auto *Ty = getType()->getAs<RecordType>();
2822 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2823 return false;
2824 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2825 if (!List)
2826 return false;
2827 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2828 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2829 if (!InitTy)
2830 return false;
2831 return !InitTy->isZeroSize();
2832}
2833
2835 assert(hasInit() && "Expect initializer to check for flexible array init");
2836 auto *Ty = getType()->getAs<RecordType>();
2837 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2838 return CharUnits::Zero();
2839 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2840 if (!List || List->getNumInits() == 0)
2841 return CharUnits::Zero();
2842 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2843 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2844 if (!InitTy)
2845 return CharUnits::Zero();
2846 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2847 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2848 CharUnits FlexibleArrayOffset =
2850 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2851 return CharUnits::Zero();
2852 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2853}
2854
2856 if (isStaticDataMember())
2857 // FIXME: Remove ?
2858 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2860 .dyn_cast<MemberSpecializationInfo *>();
2861 return nullptr;
2862}
2863
2865 SourceLocation PointOfInstantiation) {
2866 assert((isa<VarTemplateSpecializationDecl>(this) ||
2868 "not a variable or static data member template specialization");
2869
2871 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2872 Spec->setSpecializationKind(TSK);
2873 if (TSK != TSK_ExplicitSpecialization &&
2874 PointOfInstantiation.isValid() &&
2875 Spec->getPointOfInstantiation().isInvalid()) {
2876 Spec->setPointOfInstantiation(PointOfInstantiation);
2878 L->InstantiationRequested(this);
2879 }
2881 MSI->setTemplateSpecializationKind(TSK);
2882 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2883 MSI->getPointOfInstantiation().isInvalid()) {
2884 MSI->setPointOfInstantiation(PointOfInstantiation);
2886 L->InstantiationRequested(this);
2887 }
2888 }
2889}
2890
2891void
2894 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2895 "Previous template or instantiation?");
2897}
2898
2899//===----------------------------------------------------------------------===//
2900// ParmVarDecl Implementation
2901//===----------------------------------------------------------------------===//
2902
2904 SourceLocation StartLoc, SourceLocation IdLoc,
2905 const IdentifierInfo *Id, QualType T,
2906 TypeSourceInfo *TInfo, StorageClass S,
2907 Expr *DefArg) {
2908 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2909 S, DefArg);
2910}
2911
2914 QualType T = TSI ? TSI->getType() : getType();
2915 if (const auto *DT = dyn_cast<DecayedType>(T))
2916 return DT->getOriginalType();
2917 return T;
2918}
2919
2921 return new (C, ID)
2922 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2923 nullptr, QualType(), nullptr, SC_None, nullptr);
2924}
2925
2927 if (!hasInheritedDefaultArg()) {
2928 SourceRange ArgRange = getDefaultArgRange();
2929 if (ArgRange.isValid())
2930 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2931 }
2932
2933 // DeclaratorDecl considers the range of postfix types as overlapping with the
2934 // declaration name, but this is not the case with parameters in ObjC methods.
2935 if (isa<ObjCMethodDecl>(getDeclContext()))
2937
2939}
2940
2942 // ns_consumed only affects code generation in ARC
2943 if (hasAttr<NSConsumedAttr>())
2944 return getASTContext().getLangOpts().ObjCAutoRefCount;
2945
2946 // FIXME: isParamDestroyedInCallee() should probably imply
2947 // isDestructedType()
2948 const auto *RT = getType()->getAs<RecordType>();
2949 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2951 return true;
2952
2953 return false;
2954}
2955
2957 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2958 assert(!hasUninstantiatedDefaultArg() &&
2959 "Default argument is not yet instantiated!");
2960
2961 Expr *Arg = getInit();
2962 if (auto *E = dyn_cast_if_present<FullExpr>(Arg))
2963 return E->getSubExpr();
2964
2965 return Arg;
2966}
2967
2969 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2970 Init = defarg;
2971}
2972
2974 switch (ParmVarDeclBits.DefaultArgKind) {
2975 case DAK_None:
2976 case DAK_Unparsed:
2977 // Nothing we can do here.
2978 return SourceRange();
2979
2980 case DAK_Uninstantiated:
2982
2983 case DAK_Normal:
2984 if (const Expr *E = getInit())
2985 return E->getSourceRange();
2986
2987 // Missing an actual expression, may be invalid.
2988 return SourceRange();
2989 }
2990 llvm_unreachable("Invalid default argument kind.");
2991}
2992
2994 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2995 Init = arg;
2996}
2997
2999 assert(hasUninstantiatedDefaultArg() &&
3000 "Wrong kind of initialization expression!");
3001 return cast_if_present<Expr>(Init.get<Stmt *>());
3002}
3003
3005 // FIXME: We should just return false for DAK_None here once callers are
3006 // prepared for the case that we encountered an invalid default argument and
3007 // were unable to even build an invalid expression.
3009 !Init.isNull();
3010}
3011
3012void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
3013 getASTContext().setParameterIndex(this, parameterIndex);
3014 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
3015}
3016
3017unsigned ParmVarDecl::getParameterIndexLarge() const {
3018 return getASTContext().getParameterIndex(this);
3019}
3020
3021//===----------------------------------------------------------------------===//
3022// FunctionDecl Implementation
3023//===----------------------------------------------------------------------===//
3024
3026 SourceLocation StartLoc,
3027 const DeclarationNameInfo &NameInfo, QualType T,
3028 TypeSourceInfo *TInfo, StorageClass S,
3029 bool UsesFPIntrin, bool isInlineSpecified,
3030 ConstexprSpecKind ConstexprKind,
3031 Expr *TrailingRequiresClause)
3032 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
3033 StartLoc),
3034 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
3035 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
3036 assert(T.isNull() || T->isFunctionType());
3037 FunctionDeclBits.SClass = S;
3039 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
3040 FunctionDeclBits.IsVirtualAsWritten = false;
3041 FunctionDeclBits.IsPureVirtual = false;
3042 FunctionDeclBits.HasInheritedPrototype = false;
3043 FunctionDeclBits.HasWrittenPrototype = true;
3044 FunctionDeclBits.IsDeleted = false;
3045 FunctionDeclBits.IsTrivial = false;
3046 FunctionDeclBits.IsTrivialForCall = false;
3047 FunctionDeclBits.IsDefaulted = false;
3048 FunctionDeclBits.IsExplicitlyDefaulted = false;
3049 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3050 FunctionDeclBits.IsIneligibleOrNotSelected = false;
3051 FunctionDeclBits.HasImplicitReturnZero = false;
3052 FunctionDeclBits.IsLateTemplateParsed = false;
3053 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3054 FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3055 FunctionDeclBits.InstantiationIsPending = false;
3056 FunctionDeclBits.UsesSEHTry = false;
3057 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3058 FunctionDeclBits.HasSkippedBody = false;
3059 FunctionDeclBits.WillHaveBody = false;
3060 FunctionDeclBits.IsMultiVersion = false;
3061 FunctionDeclBits.DeductionCandidateKind =
3062 static_cast<unsigned char>(DeductionCandidate::Normal);
3063 FunctionDeclBits.HasODRHash = false;
3064 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3065 if (TrailingRequiresClause)
3066 setTrailingRequiresClause(TrailingRequiresClause);
3067}
3068
3070 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3073 if (TemplateArgs)
3074 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3075}
3076
3078 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3079 return FT->isVariadic();
3080 return false;
3081}
3082
3085 ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
3086 StringLiteral *DeletedMessage) {
3087 static constexpr size_t Alignment =
3088 std::max({alignof(DefaultedOrDeletedFunctionInfo),
3089 alignof(DeclAccessPair), alignof(StringLiteral *)});
3090 size_t Size = totalSizeToAlloc<DeclAccessPair, StringLiteral *>(
3091 Lookups.size(), DeletedMessage != nullptr);
3092
3094 new (Context.Allocate(Size, Alignment)) DefaultedOrDeletedFunctionInfo;
3095 Info->NumLookups = Lookups.size();
3096 Info->HasDeletedMessage = DeletedMessage != nullptr;
3097
3098 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3099 Info->getTrailingObjects<DeclAccessPair>());
3100 if (DeletedMessage)
3101 *Info->getTrailingObjects<StringLiteral *>() = DeletedMessage;
3102 return Info;
3103}
3104
3107 assert(!FunctionDeclBits.HasDefaultedOrDeletedInfo && "already have this");
3108 assert(!Body && "can't replace function body with defaulted function info");
3109
3110 FunctionDeclBits.HasDefaultedOrDeletedInfo = true;
3112}
3113
3115 FunctionDeclBits.IsDeleted = D;
3116
3117 if (Message) {
3118 assert(isDeletedAsWritten() && "Function must be deleted");
3119 if (FunctionDeclBits.HasDefaultedOrDeletedInfo)
3121 else
3123 getASTContext(), /*Lookups=*/{}, Message));
3124 }
3125}
3126
3128 StringLiteral *Message) {
3129 // We should never get here with the DefaultedOrDeletedInfo populated, but
3130 // no space allocated for the deleted message, since that would require
3131 // recreating this, but setDefaultedOrDeletedInfo() disallows overwriting
3132 // an already existing DefaultedOrDeletedFunctionInfo.
3133 assert(HasDeletedMessage &&
3134 "No space to store a delete message in this DefaultedOrDeletedInfo");
3135 *getTrailingObjects<StringLiteral *>() = Message;
3136}
3137
3140 return FunctionDeclBits.HasDefaultedOrDeletedInfo ? DefaultedOrDeletedInfo
3141 : nullptr;
3142}
3143
3145 for (const auto *I : redecls()) {
3146 if (I->doesThisDeclarationHaveABody()) {
3147 Definition = I;
3148 return true;
3149 }
3150 }
3151
3152 return false;
3153}
3154
3156 const Stmt *S = getBody();
3157 if (!S) {
3158 // Since we don't have a body for this function, we don't know if it's
3159 // trivial or not.
3160 return false;
3161 }
3162
3163 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3164 return true;
3165 return false;
3166}
3167
3169 if (!getFriendObjectKind())
3170 return false;
3171
3172 // Check for a friend function instantiated from a friend function
3173 // definition in a templated class.
3174 if (const FunctionDecl *InstantiatedFrom =
3176 return InstantiatedFrom->getFriendObjectKind() &&
3177 InstantiatedFrom->isThisDeclarationADefinition();
3178
3179 // Check for a friend function template instantiated from a friend
3180 // function template definition in a templated class.
3181 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3182 if (const FunctionTemplateDecl *InstantiatedFrom =
3184 return InstantiatedFrom->getFriendObjectKind() &&
3185 InstantiatedFrom->isThisDeclarationADefinition();
3186 }
3187
3188 return false;
3189}
3190
3192 bool CheckForPendingFriendDefinition) const {
3193 for (const FunctionDecl *FD : redecls()) {
3194 if (FD->isThisDeclarationADefinition()) {
3195 Definition = FD;
3196 return true;
3197 }
3198
3199 // If this is a friend function defined in a class template, it does not
3200 // have a body until it is used, nevertheless it is a definition, see
3201 // [temp.inst]p2:
3202 //
3203 // ... for the purpose of determining whether an instantiated redeclaration
3204 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3205 // corresponds to a definition in the template is considered to be a
3206 // definition.
3207 //
3208 // The following code must produce redefinition error:
3209 //
3210 // template<typename T> struct C20 { friend void func_20() {} };
3211 // C20<int> c20i;
3212 // void func_20() {}
3213 //
3214 if (CheckForPendingFriendDefinition &&
3215 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3216 Definition = FD;
3217 return true;
3218 }
3219 }
3220
3221 return false;
3222}
3223
3225 if (!hasBody(Definition))
3226 return nullptr;
3227
3228 assert(!Definition->FunctionDeclBits.HasDefaultedOrDeletedInfo &&
3229 "definition should not have a body");
3230 if (Definition->Body)
3231 return Definition->Body.get(getASTContext().getExternalSource());
3232
3233 return nullptr;
3234}
3235
3237 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3238 Body = LazyDeclStmtPtr(B);
3239 if (B)
3240 EndRangeLoc = B->getEndLoc();
3241}
3242
3244 FunctionDeclBits.IsPureVirtual = P;
3245 if (P)
3246 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3247 Parent->markedVirtualFunctionPure();
3248}
3249
3250template<std::size_t Len>
3251static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3252 const IdentifierInfo *II = ND->getIdentifier();
3253 return II && II->isStr(Str);
3254}
3255
3257 // C++23 [expr.const]/p17
3258 // An immediate-escalating function is
3259 // - the call operator of a lambda that is not declared with the consteval
3260 // specifier,
3261 if (isLambdaCallOperator(this) && !isConsteval())
3262 return true;
3263 // - a defaulted special member function that is not declared with the
3264 // consteval specifier,
3265 if (isDefaulted() && !isConsteval())
3266 return true;
3267 // - a function that results from the instantiation of a templated entity
3268 // defined with the constexpr specifier.
3270 if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3272 return true;
3273 return false;
3274}
3275
3277 // C++23 [expr.const]/p18
3278 // An immediate function is a function or constructor that is
3279 // - declared with the consteval specifier
3280 if (isConsteval())
3281 return true;
3282 // - an immediate-escalating function F whose function body contains an
3283 // immediate-escalating expression
3285 return true;
3286
3287 if (const auto *MD = dyn_cast<CXXMethodDecl>(this);
3288 MD && MD->isLambdaStaticInvoker())
3289 return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3290
3291 return false;
3292}
3293
3295 return isNamed(this, "main") && !getLangOpts().Freestanding &&
3297 isExternC());
3298}
3299
3301 const TranslationUnitDecl *TUnit =
3302 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3303 if (!TUnit)
3304 return false;
3305
3306 // Even though we aren't really targeting MSVCRT if we are freestanding,
3307 // semantic analysis for these functions remains the same.
3308
3309 // MSVCRT entry points only exist on MSVCRT targets.
3310 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3311 return false;
3312
3313 // Nameless functions like constructors cannot be entry points.
3314 if (!getIdentifier())
3315 return false;
3316
3317 return llvm::StringSwitch<bool>(getName())
3318 .Cases("main", // an ANSI console app
3319 "wmain", // a Unicode console App
3320 "WinMain", // an ANSI GUI app
3321 "wWinMain", // a Unicode GUI app
3322 "DllMain", // a DLL
3323 true)
3324 .Default(false);
3325}
3326
3328 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3329 return false;
3330 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3331 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3332 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3333 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3334 return false;
3335
3337 return false;
3338
3339 const auto *proto = getType()->castAs<FunctionProtoType>();
3340 if (proto->getNumParams() != 2 || proto->isVariadic())
3341 return false;
3342
3343 const ASTContext &Context =
3344 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3345 ->getASTContext();
3346
3347 // The result type and first argument type are constant across all
3348 // these operators. The second argument must be exactly void*.
3349 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3350}
3351
3353 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3354 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3355 return false;
3356 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3357 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3358 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3359 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3360 return false;
3361
3362 if (isa<CXXRecordDecl>(getDeclContext()))
3363 return false;
3364
3365 // This can only fail for an invalid 'operator new' declaration.
3367 return false;
3368
3369 const auto *FPT = getType()->castAs<FunctionProtoType>();
3370 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3371 return false;
3372
3373 // If this is a single-parameter function, it must be a replaceable global
3374 // allocation or deallocation function.
3375 if (FPT->getNumParams() == 1)
3376 return true;
3377
3378 unsigned Params = 1;
3379 QualType Ty = FPT->getParamType(Params);
3380 const ASTContext &Ctx = getASTContext();
3381
3382 auto Consume = [&] {
3383 ++Params;
3384 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3385 };
3386
3387 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3388 bool IsSizedDelete = false;
3389 if (Ctx.getLangOpts().SizedDeallocation &&
3390 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3391 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3392 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3393 IsSizedDelete = true;
3394 Consume();
3395 }
3396
3397 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3398 // new/delete.
3399 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3400 Consume();
3401 if (AlignmentParam)
3402 *AlignmentParam = Params;
3403 }
3404
3405 // If this is not a sized delete, the next parameter can be a
3406 // 'const std::nothrow_t&'.
3407 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3408 Ty = Ty->getPointeeType();
3410 return false;
3411 if (Ty->isNothrowT()) {
3412 if (IsNothrow)
3413 *IsNothrow = true;
3414 Consume();
3415 }
3416 }
3417
3418 // Finally, recognize the not yet standard versions of new that take a
3419 // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3420 // tcmalloc (see
3421 // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3422 if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3423 QualType T = Ty;
3424 while (const auto *TD = T->getAs<TypedefType>())
3425 T = TD->getDecl()->getUnderlyingType();
3426 const IdentifierInfo *II =
3427 T->castAs<EnumType>()->getDecl()->getIdentifier();
3428 if (II && II->isStr("__hot_cold_t"))
3429 Consume();
3430 }
3431
3432 return Params == FPT->getNumParams();
3433}
3434
3436 if (!getBuiltinID())
3437 return false;
3438
3439 const FunctionDecl *Definition;
3440 if (!hasBody(Definition))
3441 return false;
3442
3443 if (!Definition->isInlineSpecified() ||
3444 !Definition->hasAttr<AlwaysInlineAttr>())
3445 return false;
3446
3447 ASTContext &Context = getASTContext();
3448 switch (Context.GetGVALinkageForFunction(Definition)) {
3449 case GVA_Internal:
3450 case GVA_DiscardableODR:
3451 case GVA_StrongODR:
3452 return false;
3454 case GVA_StrongExternal:
3455 return true;
3456 }
3457 llvm_unreachable("Unknown GVALinkage");
3458}
3459
3461 // C++ P0722:
3462 // Within a class C, a single object deallocation function with signature
3463 // (T, std::destroying_delete_t, <more params>)
3464 // is a destroying operator delete.
3465 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3466 getNumParams() < 2)
3467 return false;
3468
3469 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3470 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3471 RD->getIdentifier()->isStr("destroying_delete_t");
3472}
3473
3475 return getDeclLanguageLinkage(*this);
3476}
3477
3479 return isDeclExternC(*this);
3480}
3481
3483 if (hasAttr<OpenCLKernelAttr>())
3484 return true;
3486}
3487
3490}
3491
3493 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3494 return Method->isStatic();
3495
3497 return false;
3498
3499 for (const DeclContext *DC = getDeclContext();
3500 DC->isNamespace();
3501 DC = DC->getParent()) {
3502 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3503 if (!Namespace->getDeclName())
3504 return false;
3505 }
3506 }
3507
3508 return true;
3509}
3510
3512 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3513 hasAttr<C11NoReturnAttr>())
3514 return true;
3515
3516 if (auto *FnTy = getType()->getAs<FunctionType>())
3517 return FnTy->getNoReturnAttr();
3518
3519 return false;
3520}
3521
3523 // C++20 [temp.friend]p9:
3524 // A non-template friend declaration with a requires-clause [or]
3525 // a friend function template with a constraint that depends on a template
3526 // parameter from an enclosing template [...] does not declare the same
3527 // function or function template as a declaration in any other scope.
3528
3529 // If this isn't a friend then it's not a member-like constrained friend.
3530 if (!getFriendObjectKind()) {
3531 return false;
3532 }
3533
3535 // If these friends don't have constraints, they aren't constrained, and
3536 // thus don't fall under temp.friend p9. Else the simple presence of a
3537 // constraint makes them unique.
3539 }
3540
3542}
3543
3545 if (hasAttr<TargetAttr>())
3547 if (hasAttr<TargetVersionAttr>())
3549 if (hasAttr<CPUDispatchAttr>())
3551 if (hasAttr<CPUSpecificAttr>())
3553 if (hasAttr<TargetClonesAttr>())
3556}
3557
3559 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3560}
3561
3563 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3564}
3565
3567 return isMultiVersion() &&
3568 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3569}
3570
3572 if (!isMultiVersion())
3573 return false;
3574 if (hasAttr<TargetAttr>())
3575 return getAttr<TargetAttr>()->isDefaultVersion();
3576 return hasAttr<TargetVersionAttr>() &&
3577 getAttr<TargetVersionAttr>()->isDefaultVersion();
3578}
3579
3581 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3582}
3583
3585 return isMultiVersion() && hasAttr<TargetVersionAttr>();
3586}
3587
3588void
3591
3593 FunctionTemplateDecl *PrevFunTmpl
3594 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3595 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3596 FunTmpl->setPreviousDecl(PrevFunTmpl);
3597 }
3598
3599 if (PrevDecl && PrevDecl->isInlined())
3600 setImplicitlyInline(true);
3601}
3602
3604
3605/// Returns a value indicating whether this function corresponds to a builtin
3606/// function.
3607///
3608/// The function corresponds to a built-in function if it is declared at
3609/// translation scope or within an extern "C" block and its name matches with
3610/// the name of a builtin. The returned value will be 0 for functions that do
3611/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3612/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3613/// value.
3614///
3615/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3616/// functions as their wrapped builtins. This shouldn't be done in general, but
3617/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3618unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3619 unsigned BuiltinID = 0;
3620
3621 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3622 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3623 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3624 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3625 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3626 BuiltinID = A->getID();
3627 }
3628
3629 if (!BuiltinID)
3630 return 0;
3631
3632 // If the function is marked "overloadable", it has a different mangled name
3633 // and is not the C library function.
3634 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3635 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3636 return 0;
3637
3638 const ASTContext &Context = getASTContext();
3639 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3640 return BuiltinID;
3641
3642 // This function has the name of a known C library
3643 // function. Determine whether it actually refers to the C library
3644 // function or whether it just has the same name.
3645
3646 // If this is a static function, it's not a builtin.
3647 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3648 return 0;
3649
3650 // OpenCL v1.2 s6.9.f - The library functions defined in
3651 // the C99 standard headers are not available.
3652 if (Context.getLangOpts().OpenCL &&
3653 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3654 return 0;
3655
3656 // CUDA does not have device-side standard library. printf and malloc are the
3657 // only special cases that are supported by device-side runtime.
3658 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3659 !hasAttr<CUDAHostAttr>() &&
3660 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3661 return 0;
3662
3663 // As AMDGCN implementation of OpenMP does not have a device-side standard
3664 // library, none of the predefined library functions except printf and malloc
3665 // should be treated as a builtin i.e. 0 should be returned for them.
3666 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3667 Context.getLangOpts().OpenMPIsTargetDevice &&
3668 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3669 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3670 return 0;
3671
3672 return BuiltinID;
3673}
3674
3675/// getNumParams - Return the number of parameters this function must have
3676/// based on its FunctionType. This is the length of the ParamInfo array
3677/// after it has been created.
3679 const auto *FPT = getType()->getAs<FunctionProtoType>();
3680 return FPT ? FPT->getNumParams() : 0;
3681}
3682
3683void FunctionDecl::setParams(ASTContext &C,
3684 ArrayRef<ParmVarDecl *> NewParamInfo) {
3685 assert(!ParamInfo && "Already has param info!");
3686 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3687
3688 // Zero params -> null pointer.
3689 if (!NewParamInfo.empty()) {
3690 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3691 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3692 }
3693}
3694
3695/// getMinRequiredArguments - Returns the minimum number of arguments
3696/// needed to call this function. This may be fewer than the number of
3697/// function parameters, if some of the parameters have default
3698/// arguments (in C++) or are parameter packs (C++11).
3701 return getNumParams();
3702
3703 // Note that it is possible for a parameter with no default argument to
3704 // follow a parameter with a default argument.
3705 unsigned NumRequiredArgs = 0;
3706 unsigned MinParamsSoFar = 0;
3707 for (auto *Param : parameters()) {
3708 if (!Param->isParameterPack()) {
3709 ++MinParamsSoFar;
3710 if (!Param->hasDefaultArg())
3711 NumRequiredArgs = MinParamsSoFar;
3712 }
3713 }
3714 return NumRequiredArgs;
3715}
3716
3719}
3720
3722 return getNumParams() -
3723 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3724}
3725
3727 return getMinRequiredArguments() -
3728 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3729}
3730
3732 return getNumParams() == 1 ||
3733 (getNumParams() > 1 &&
3734 llvm::all_of(llvm::drop_begin(parameters()),
3735 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3736}
3737
3738/// The combination of the extern and inline keywords under MSVC forces
3739/// the function to be required.
3740///
3741/// Note: This function assumes that we will only get called when isInlined()
3742/// would return true for this FunctionDecl.
3744 assert(isInlined() && "expected to get called on an inlined function!");
3745
3746 const ASTContext &Context = getASTContext();
3747 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3748 !hasAttr<DLLExportAttr>())
3749 return false;
3750
3751 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3752 FD = FD->getPreviousDecl())
3753 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3754 return true;
3755
3756 return false;
3757}
3758
3759static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3760 if (Redecl->getStorageClass() != SC_Extern)
3761 return false;
3762
3763 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3764 FD = FD->getPreviousDecl())
3765 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3766 return false;
3767
3768 return true;
3769}
3770
3771static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3772 // Only consider file-scope declarations in this test.
3773 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3774 return false;
3775
3776 // Only consider explicit declarations; the presence of a builtin for a
3777 // libcall shouldn't affect whether a definition is externally visible.
3778 if (Redecl->isImplicit())
3779 return false;
3780
3781 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3782 return true; // Not an inline definition
3783
3784 return false;
3785}
3786
3787/// For a function declaration in C or C++, determine whether this
3788/// declaration causes the definition to be externally visible.
3789///
3790/// For instance, this determines if adding the current declaration to the set
3791/// of redeclarations of the given functions causes
3792/// isInlineDefinitionExternallyVisible to change from false to true.
3794 assert(!doesThisDeclarationHaveABody() &&
3795 "Must have a declaration without a body.");
3796
3797 const ASTContext &Context = getASTContext();
3798
3799 if (Context.getLangOpts().MSVCCompat) {
3800 const FunctionDecl *Definition;
3801 if (hasBody(Definition) && Definition->isInlined() &&
3802 redeclForcesDefMSVC(this))
3803 return true;
3804 }
3805
3806 if (Context.getLangOpts().CPlusPlus)
3807 return false;
3808
3809 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3810 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3811 // an externally visible definition.
3812 //
3813 // FIXME: What happens if gnu_inline gets added on after the first
3814 // declaration?
3816 return false;
3817
3818 const FunctionDecl *Prev = this;
3819 bool FoundBody = false;
3820 while ((Prev = Prev->getPreviousDecl())) {
3821 FoundBody |= Prev->doesThisDeclarationHaveABody();
3822
3823 if (Prev->doesThisDeclarationHaveABody()) {
3824 // If it's not the case that both 'inline' and 'extern' are
3825 // specified on the definition, then it is always externally visible.
3826 if (!Prev->isInlineSpecified() ||
3827 Prev->getStorageClass() != SC_Extern)
3828 return false;
3829 } else if (Prev->isInlineSpecified() &&
3830 Prev->getStorageClass() != SC_Extern) {
3831 return false;
3832 }
3833 }
3834 return FoundBody;
3835 }
3836
3837 // C99 6.7.4p6:
3838 // [...] If all of the file scope declarations for a function in a
3839 // translation unit include the inline function specifier without extern,
3840 // then the definition in that translation unit is an inline definition.
3842 return false;
3843 const FunctionDecl *Prev = this;
3844 bool FoundBody = false;
3845 while ((Prev = Prev->getPreviousDecl())) {
3846 FoundBody |= Prev->doesThisDeclarationHaveABody();
3847 if (RedeclForcesDefC99(Prev))
3848 return false;
3849 }
3850 return FoundBody;
3851}
3852
3854 const TypeSourceInfo *TSI = getTypeSourceInfo();
3855 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3856 : FunctionTypeLoc();
3857}
3858
3861 if (!FTL)
3862 return SourceRange();
3863
3864 // Skip self-referential return types.
3866 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3867 SourceLocation Boundary = getNameInfo().getBeginLoc();
3868 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3869 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3870 return SourceRange();
3871
3872 return RTRange;
3873}
3874
3876 unsigned NP = getNumParams();
3877 SourceLocation EllipsisLoc = getEllipsisLoc();
3878
3879 if (NP == 0 && EllipsisLoc.isInvalid())
3880 return SourceRange();
3881
3883 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3884 SourceLocation End = EllipsisLoc.isValid()
3885 ? EllipsisLoc
3886 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3887
3888 return SourceRange(Begin, End);
3889}
3890
3893 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3894}
3895
3896/// For an inline function definition in C, or for a gnu_inline function
3897/// in C++, determine whether the definition will be externally visible.
3898///
3899/// Inline function definitions are always available for inlining optimizations.
3900/// However, depending on the language dialect, declaration specifiers, and
3901/// attributes, the definition of an inline function may or may not be
3902/// "externally" visible to other translation units in the program.
3903///
3904/// In C99, inline definitions are not externally visible by default. However,
3905/// if even one of the global-scope declarations is marked "extern inline", the
3906/// inline definition becomes externally visible (C99 6.7.4p6).
3907///
3908/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3909/// definition, we use the GNU semantics for inline, which are nearly the
3910/// opposite of C99 semantics. In particular, "inline" by itself will create
3911/// an externally visible symbol, but "extern inline" will not create an
3912/// externally visible symbol.
3915 hasAttr<AliasAttr>()) &&
3916 "Must be a function definition");
3917 assert(isInlined() && "Function must be inline");
3918 ASTContext &Context = getASTContext();
3919
3920 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3921 // Note: If you change the logic here, please change
3922 // doesDeclarationForceExternallyVisibleDefinition as well.
3923 //
3924 // If it's not the case that both 'inline' and 'extern' are
3925 // specified on the definition, then this inline definition is
3926 // externally visible.
3927 if (Context.getLangOpts().CPlusPlus)
3928 return false;
3930 return true;
3931
3932 // If any declaration is 'inline' but not 'extern', then this definition
3933 // is externally visible.
3934 for (auto *Redecl : redecls()) {
3935 if (Redecl->isInlineSpecified() &&
3936 Redecl->getStorageClass() != SC_Extern)
3937 return true;
3938 }
3939
3940 return false;
3941 }
3942
3943 // The rest of this function is C-only.
3944 assert(!Context.getLangOpts().CPlusPlus &&
3945 "should not use C inline rules in C++");
3946
3947 // C99 6.7.4p6:
3948 // [...] If all of the file scope declarations for a function in a
3949 // translation unit include the inline function specifier without extern,
3950 // then the definition in that translation unit is an inline definition.
3951 for (auto *Redecl : redecls()) {
3952 if (RedeclForcesDefC99(Redecl))
3953 return true;
3954 }
3955
3956 // C99 6.7.4p6:
3957 // An inline definition does not provide an external definition for the
3958 // function, and does not forbid an external definition in another
3959 // translation unit.
3960 return false;
3961}
3962
3963/// getOverloadedOperator - Which C++ overloaded operator this
3964/// function represents, if any.
3966 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3968 return OO_None;
3969}
3970
3971/// getLiteralIdentifier - The literal suffix identifier this function
3972/// represents, if any.
3976 return nullptr;
3977}
3978
3980 if (TemplateOrSpecialization.isNull())
3981 return TK_NonTemplate;
3982 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3983 if (isa<FunctionDecl>(ND))
3985 assert(isa<FunctionTemplateDecl>(ND) &&
3986 "No other valid types in NamedDecl");
3987 return TK_FunctionTemplate;
3988 }
3989 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3991 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3993 if (TemplateOrSpecialization.is
3996
3997 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3998}
3999
4002 return cast<FunctionDecl>(Info->getInstantiatedFrom());
4003
4004 return nullptr;
4005}
4006
4008 if (auto *MSI =
4009 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4010 return MSI;
4011 if (auto *FTSI = TemplateOrSpecialization
4012 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4013 return FTSI->getMemberSpecializationInfo();
4014 return nullptr;
4015}
4016
4017void
4018FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
4019 FunctionDecl *FD,
4021 assert(TemplateOrSpecialization.isNull() &&
4022 "Member function is already a specialization");
4024 = new (C) MemberSpecializationInfo(FD, TSK);
4025 TemplateOrSpecialization = Info;
4026}
4027
4029 return dyn_cast_if_present<FunctionTemplateDecl>(
4030 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4031}
4032
4034 FunctionTemplateDecl *Template) {
4035 assert(TemplateOrSpecialization.isNull() &&
4036 "Member function is already a specialization");
4037 TemplateOrSpecialization = Template;
4038}
4039
4041 return TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>() ||
4042 TemplateOrSpecialization
4043 .is<DependentFunctionTemplateSpecializationInfo *>();
4044}
4045
4047 assert(TemplateOrSpecialization.isNull() &&
4048 "Function is already a specialization");
4049 TemplateOrSpecialization = FD;
4050}
4051
4053 return dyn_cast_if_present<FunctionDecl>(
4054 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4055}
4056
4058 // If the function is invalid, it can't be implicitly instantiated.
4059 if (isInvalidDecl())
4060 return false;
4061
4063 case TSK_Undeclared:
4066 return false;
4067
4069 return true;
4070
4072 // Handled below.
4073 break;
4074 }
4075
4076 // Find the actual template from which we will instantiate.
4077 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
4078 bool HasPattern = false;
4079 if (PatternDecl)
4080 HasPattern = PatternDecl->hasBody(PatternDecl);
4081
4082 // C++0x [temp.explicit]p9:
4083 // Except for inline functions, other explicit instantiation declarations
4084 // have the effect of suppressing the implicit instantiation of the entity
4085 // to which they refer.
4086 if (!HasPattern || !PatternDecl)
4087 return true;
4088
4089 return PatternDecl->isInlined();
4090}
4091
4093 // FIXME: Remove this, it's not clear what it means. (Which template
4094 // specialization kind?)
4096}
4097
4100 // If this is a generic lambda call operator specialization, its
4101 // instantiation pattern is always its primary template's pattern
4102 // even if its primary template was instantiated from another
4103 // member template (which happens with nested generic lambdas).
4104 // Since a lambda's call operator's body is transformed eagerly,
4105 // we don't have to go hunting for a prototype definition template
4106 // (i.e. instantiated-from-member-template) to use as an instantiation
4107 // pattern.
4108
4110 dyn_cast<CXXMethodDecl>(this))) {
4111 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
4112 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
4113 }
4114
4115 // Check for a declaration of this function that was instantiated from a
4116 // friend definition.
4117 const FunctionDecl *FD = nullptr;
4118 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
4119 FD = this;
4120
4122 if (ForDefinition &&
4124 return nullptr;
4125 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
4126 }
4127
4128 if (ForDefinition &&
4130 return nullptr;
4131
4132 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4133 // If we hit a point where the user provided a specialization of this
4134 // template, we're done looking.
4135 while (!ForDefinition || !Primary->isMemberSpecialization()) {
4136 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
4137 if (!NewPrimary)
4138 break;
4139 Primary = NewPrimary;
4140 }
4141
4142 return getDefinitionOrSelf(Primary->getTemplatedDecl());
4143 }
4144
4145 return nullptr;
4146}
4147
4150 = TemplateOrSpecialization
4151 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4152 return Info->getTemplate();
4153 }
4154 return nullptr;
4155}
4156
4159 return TemplateOrSpecialization
4161}
4162
4166 = TemplateOrSpecialization
4167 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4168 return Info->TemplateArguments;
4169 }
4170 return nullptr;
4171}
4172
4176 = TemplateOrSpecialization
4177 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4178 return Info->TemplateArgumentsAsWritten;
4179 }
4181 TemplateOrSpecialization
4182 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>()) {
4183 return Info->TemplateArgumentsAsWritten;
4184 }
4185 return nullptr;
4186}
4187
4188void FunctionDecl::setFunctionTemplateSpecialization(
4189 ASTContext &C, FunctionTemplateDecl *Template,
4190 TemplateArgumentList *TemplateArgs, void *InsertPos,
4192 const TemplateArgumentListInfo *TemplateArgsAsWritten,
4193 SourceLocation PointOfInstantiation) {
4194 assert((TemplateOrSpecialization.isNull() ||
4195 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
4196 "Member function is already a specialization");
4197 assert(TSK != TSK_Undeclared &&
4198 "Must specify the type of function template specialization");
4199 assert((TemplateOrSpecialization.isNull() ||
4202 "Member specialization must be an explicit specialization");
4205 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4206 PointOfInstantiation,
4207 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4208 TemplateOrSpecialization = Info;
4209 Template->addSpecialization(Info, InsertPos);
4210}
4211
4213 ASTContext &Context, const UnresolvedSetImpl &Templates,
4214 const TemplateArgumentListInfo *TemplateArgs) {
4215 assert(TemplateOrSpecialization.isNull());
4218 TemplateArgs);
4219 TemplateOrSpecialization = Info;
4220}
4221
4224 return TemplateOrSpecialization
4226}
4227
4230 ASTContext &Context, const UnresolvedSetImpl &Candidates,
4231 const TemplateArgumentListInfo *TArgs) {
4232 const auto *TArgsWritten =
4233 TArgs ? ASTTemplateArgumentListInfo::Create(Context, *TArgs) : nullptr;
4234 return new (Context.Allocate(
4235 totalSizeToAlloc<FunctionTemplateDecl *>(Candidates.size())))
4236 DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten);
4237}
4238
4239DependentFunctionTemplateSpecializationInfo::
4240 DependentFunctionTemplateSpecializationInfo(
4241 const UnresolvedSetImpl &Candidates,
4242 const ASTTemplateArgumentListInfo *TemplateArgsWritten)
4243 : NumCandidates(Candidates.size()),
4244 TemplateArgumentsAsWritten(TemplateArgsWritten) {
4245 std::transform(Candidates.begin(), Candidates.end(),
4246 getTrailingObjects<FunctionTemplateDecl *>(),
4247 [](NamedDecl *ND) {
4248 return cast<FunctionTemplateDecl>(ND->getUnderlyingDecl());
4249 });
4250}
4251
4253 // For a function template specialization, query the specialization
4254 // information object.
4256 TemplateOrSpecialization
4257 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4258 return FTSInfo->getTemplateSpecializationKind();
4259
4260 if (MemberSpecializationInfo *MSInfo =
4261 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4262 return MSInfo->getTemplateSpecializationKind();
4263
4264 // A dependent function template specialization is an explicit specialization,
4265 // except when it's a friend declaration.
4266 if (TemplateOrSpecialization
4267 .is<DependentFunctionTemplateSpecializationInfo *>() &&
4270
4271 return TSK_Undeclared;
4272}
4273
4276 // This is the same as getTemplateSpecializationKind(), except that for a
4277 // function that is both a function template specialization and a member
4278 // specialization, we prefer the member specialization information. Eg:
4279 //
4280 // template<typename T> struct A {
4281 // template<typename U> void f() {}
4282 // template<> void f<int>() {}
4283 // };
4284 //
4285 // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function
4286 // template specialization; both getTemplateSpecializationKind() and
4287 // getTemplateSpecializationKindForInstantiation() will return
4288 // TSK_ExplicitSpecialization.
4289 //
4290 // For A<int>::f<int>():
4291 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4292 // * getTemplateSpecializationKindForInstantiation() will return
4293 // TSK_ImplicitInstantiation
4294 //
4295 // This reflects the facts that A<int>::f<int> is an explicit specialization
4296 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4297 // from A::f<int> if a definition is needed.
4299 TemplateOrSpecialization
4300 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4301 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4302 return MSInfo->getTemplateSpecializationKind();
4303 return FTSInfo->getTemplateSpecializationKind();
4304 }
4305
4306 if (MemberSpecializationInfo *MSInfo =
4307 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4308 return MSInfo->getTemplateSpecializationKind();
4309
4310 if (TemplateOrSpecialization
4311 .is<DependentFunctionTemplateSpecializationInfo *>() &&
4314
4315 return TSK_Undeclared;
4316}
4317
4318void
4320 SourceLocation PointOfInstantiation) {
4322 = TemplateOrSpecialization.dyn_cast<
4324 FTSInfo->setTemplateSpecializationKind(TSK);
4325 if (TSK != TSK_ExplicitSpecialization &&
4326 PointOfInstantiation.isValid() &&
4327 FTSInfo->getPointOfInstantiation().isInvalid()) {
4328 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4330 L->InstantiationRequested(this);
4331 }
4332 } else if (MemberSpecializationInfo *MSInfo
4333 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4334 MSInfo->setTemplateSpecializationKind(TSK);
4335 if (TSK != TSK_ExplicitSpecialization &&
4336 PointOfInstantiation.isValid() &&
4337 MSInfo->getPointOfInstantiation().isInvalid()) {
4338 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4340 L->InstantiationRequested(this);
4341 }
4342 } else
4343 llvm_unreachable("Function cannot have a template specialization kind");
4344}
4345
4348 = TemplateOrSpecialization.dyn_cast<
4350 return FTSInfo->getPointOfInstantiation();
4351 if (MemberSpecializationInfo *MSInfo =
4352 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4353 return MSInfo->getPointOfInstantiation();
4354
4355 return SourceLocation();
4356}
4357
4359 if (Decl::isOutOfLine())
4360 return true;
4361
4362 // If this function was instantiated from a member function of a
4363 // class template, check whether that member function was defined out-of-line.
4365 const FunctionDecl *Definition;
4366 if (FD->hasBody(Definition))
4367 return Definition->isOutOfLine();
4368 }
4369
4370 // If this function was instantiated from a function template,
4371 // check whether that function template was defined out-of-line.
4372 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4373 const FunctionDecl *Definition;
4374 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4375 return Definition->isOutOfLine();
4376 }
4377
4378 return false;
4379}
4380
4382 return SourceRange(getOuterLocStart(), EndRangeLoc);
4383}
4384
4386 IdentifierInfo *FnInfo = getIdentifier();
4387
4388 if (!FnInfo)
4389 return 0;
4390
4391 // Builtin handling.
4392 switch (getBuiltinID()) {
4393 case Builtin::BI__builtin_memset:
4394 case Builtin::BI__builtin___memset_chk:
4395 case Builtin::BImemset:
4396 return Builtin::BImemset;
4397
4398 case Builtin::BI__builtin_memcpy:
4399 case Builtin::BI__builtin___memcpy_chk:
4400 case Builtin::BImemcpy:
4401 return Builtin::BImemcpy;
4402
4403 case Builtin::BI__builtin_mempcpy:
4404 case Builtin::BI__builtin___mempcpy_chk:
4405 case Builtin::BImempcpy:
4406 return Builtin::BImempcpy;
4407
4408 case Builtin::BI__builtin_memmove:
4409 case Builtin::BI__builtin___memmove_chk:
4410 case Builtin::BImemmove:
4411 return Builtin::BImemmove;
4412
4413 case Builtin::BIstrlcpy:
4414 case Builtin::BI__builtin___strlcpy_chk:
4415 return Builtin::BIstrlcpy;
4416
4417 case Builtin::BIstrlcat:
4418 case Builtin::BI__builtin___strlcat_chk:
4419 return Builtin::BIstrlcat;
4420
4421 case Builtin::BI__builtin_memcmp:
4422 case Builtin::BImemcmp:
4423 return Builtin::BImemcmp;
4424
4425 case Builtin::BI__builtin_bcmp:
4426 case Builtin::BIbcmp:
4427 return Builtin::BIbcmp;
4428
4429 case Builtin::BI__builtin_strncpy:
4430 case Builtin::BI__builtin___strncpy_chk:
4431 case Builtin::BIstrncpy:
4432 return Builtin::BIstrncpy;
4433
4434 case Builtin::BI__builtin_strncmp:
4435 case Builtin::BIstrncmp:
4436 return Builtin::BIstrncmp;
4437
4438 case Builtin::BI__builtin_strncasecmp:
4439 case Builtin::BIstrncasecmp:
4440 return Builtin::BIstrncasecmp;
4441
4442 case Builtin::BI__builtin_strncat:
4443 case Builtin::BI__builtin___strncat_chk:
4444 case Builtin::BIstrncat:
4445 return Builtin::BIstrncat;
4446
4447 case Builtin::BI__builtin_strndup:
4448 case Builtin::BIstrndup:
4449 return Builtin::BIstrndup;
4450
4451 case Builtin::BI__builtin_strlen:
4452 case Builtin::BIstrlen:
4453 return Builtin::BIstrlen;
4454
4455 case Builtin::BI__builtin_bzero:
4456 case Builtin::BIbzero:
4457 return Builtin::BIbzero;
4458
4459 case Builtin::BI__builtin_bcopy:
4460 case Builtin::BIbcopy:
4461 return Builtin::BIbcopy;
4462
4463 case Builtin::BIfree:
4464 return Builtin::BIfree;
4465
4466 default:
4467 if (isExternC()) {
4468 if (FnInfo->isStr("memset"))
4469 return Builtin::BImemset;
4470 if (FnInfo->isStr("memcpy"))
4471 return Builtin::BImemcpy;
4472 if (FnInfo->isStr("mempcpy"))
4473 return Builtin::BImempcpy;
4474 if (FnInfo->isStr("memmove"))
4475 return Builtin::BImemmove;
4476 if (FnInfo->isStr("memcmp"))
4477 return Builtin::BImemcmp;
4478 if (FnInfo->isStr("bcmp"))
4479 return Builtin::BIbcmp;
4480 if (FnInfo->isStr("strncpy"))
4481 return Builtin::BIstrncpy;
4482 if (FnInfo->isStr("strncmp"))
4483 return Builtin::BIstrncmp;
4484 if (FnInfo->isStr("strncasecmp"))
4485 return Builtin::BIstrncasecmp;
4486 if (FnInfo->isStr("strncat"))
4487 return Builtin::BIstrncat;
4488 if (FnInfo->isStr("strndup"))
4489 return Builtin::BIstrndup;
4490 if (FnInfo->isStr("strlen"))
4491 return Builtin::BIstrlen;
4492 if (FnInfo->isStr("bzero"))
4493 return Builtin::BIbzero;
4494 if (FnInfo->isStr("bcopy"))
4495 return Builtin::BIbcopy;
4496 } else if (isInStdNamespace()) {
4497 if (FnInfo->isStr("free"))
4498 return Builtin::BIfree;
4499 }
4500 break;
4501 }
4502 return 0;
4503}
4504
4506 assert(hasODRHash());
4507 return ODRHash;
4508}
4509
4511 if (hasODRHash())
4512 return ODRHash;
4513
4514 if (auto *FT = getInstantiatedFromMemberFunction()) {
4515 setHasODRHash(true);
4516 ODRHash = FT->getODRHash();
4517 return ODRHash;
4518 }
4519
4520 class ODRHash Hash;
4521 Hash.AddFunctionDecl(this);
4522 setHasODRHash(true);
4523 ODRHash = Hash.CalculateHash();
4524 return ODRHash;
4525}
4526
4527//===----------------------------------------------------------------------===//
4528// FieldDecl Implementation
4529//===----------------------------------------------------------------------===//
4530
4532 SourceLocation StartLoc, SourceLocation IdLoc,
4533 const IdentifierInfo *Id, QualType T,
4534 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4535 InClassInitStyle InitStyle) {
4536 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4537 BW, Mutable, InitStyle);
4538}
4539
4541 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4542 SourceLocation(), nullptr, QualType(), nullptr,
4543 nullptr, false, ICIS_NoInit);
4544}
4545
4547 if (!isImplicit() || getDeclName())
4548 return false;
4549
4550 if (const auto *Record = getType()->getAs<RecordType>())
4551 return Record->getDecl()->isAnonymousStructOrUnion();
4552
4553 return false;
4554}
4555
4557 if (!hasInClassInitializer())
4558 return nullptr;
4559
4560 LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4561 return cast_if_present<Expr>(
4562 InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4563 : InitPtr.get(nullptr));
4564}
4565
4567 setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4568}
4569
4570void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4572 if (BitField)
4573 InitAndBitWidth->Init = NewInit;
4574 else
4575 Init = NewInit;
4576}
4577
4578unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4579 assert(isBitField() && "not a bitfield");
4580 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4581}
4582
4585 getBitWidthValue(Ctx) == 0;
4586}
4587
4588bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4589 if (isZeroLengthBitField(Ctx))
4590 return true;
4591
4592 // C++2a [intro.object]p7:
4593 // An object has nonzero size if it
4594 // -- is not a potentially-overlapping subobject, or
4595 if (!hasAttr<NoUniqueAddressAttr>())
4596 return false;
4597
4598 // -- is not of class type, or
4599 const auto *RT = getType()->getAs<RecordType>();
4600 if (!RT)
4601 return false;
4602 const RecordDecl *RD = RT->getDecl()->getDefinition();
4603 if (!RD) {
4604 assert(isInvalidDecl() && "valid field has incomplete type");
4605 return false;
4606 }
4607
4608 // -- [has] virtual member functions or virtual base classes, or
4609 // -- has subobjects of nonzero size or bit-fields of nonzero length
4610 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4611 if (!CXXRD->isEmpty())
4612 return false;
4613
4614 // Otherwise, [...] the circumstances under which the object has zero size
4615 // are implementation-defined.
4616 if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft())
4617 return true;
4618
4619 // MS ABI: has nonzero size if it is a class type with class type fields,
4620 // whether or not they have nonzero size
4621 return !llvm::any_of(CXXRD->fields(), [](const FieldDecl *Field) {
4622 return Field->getType()->getAs<RecordType>();
4623 });
4624}
4625
4627 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4628}
4629
4631 const FieldDecl *Canonical = getCanonicalDecl();
4632 if (Canonical != this)
4633 return Canonical->getFieldIndex();
4634
4635 if (CachedFieldIndex) return CachedFieldIndex - 1;
4636
4637 unsigned Index = 0;
4638 const RecordDecl *RD = getParent()->getDefinition();
4639 assert(RD && "requested index for field of struct with no definition");
4640
4641 for (auto *Field : RD->fields()) {
4642 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4643 assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4644 "overflow in field numbering");
4645 ++Index;
4646 }
4647
4648 assert(CachedFieldIndex && "failed to find field in parent");
4649 return CachedFieldIndex - 1;
4650}
4651
4653 const Expr *FinalExpr = getInClassInitializer();
4654 if (!FinalExpr)
4655 FinalExpr = getBitWidth();
4656 if (FinalExpr)
4657 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4659}
4660
4662 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4663 "capturing type in non-lambda or captured record.");
4664 assert(StorageKind == ISK_NoInit && !BitField &&
4665 "bit-field or field with default member initializer cannot capture "
4666 "VLA type");
4667 StorageKind = ISK_CapturedVLAType;
4668 CapturedVLAType = VLAType;
4669}
4670
4671void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4672 // Print unnamed members using name of their type.
4674 this->getType().print(OS, Policy);
4675 return;
4676 }
4677 // Otherwise, do the normal printing.
4678 DeclaratorDecl::printName(OS, Policy);
4679}
4680
4681//===----------------------------------------------------------------------===//
4682// TagDecl Implementation
4683//===----------------------------------------------------------------------===//
4684
4686 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4687 SourceLocation StartL)
4688 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4689 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4690 assert((DK != Enum || TK == TagTypeKind::Enum) &&
4691 "EnumDecl not matched with TagTypeKind::Enum");
4692 setPreviousDecl(PrevDecl);
4693 setTagKind(TK);
4694 setCompleteDefinition(false);
4695 setBeingDefined(false);
4697 setFreeStanding(false);
4699 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4700}
4701
4703 return getTemplateOrInnerLocStart(this);
4704}
4705
4707 SourceLocation RBraceLoc = BraceRange.getEnd();
4708 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4709 return SourceRange(getOuterLocStart(), E);
4710}
4711
4713
4715 TypedefNameDeclOrQualifier = TDD;
4716 if (const Type *T = getTypeForDecl()) {
4717 (void)T;
4718 assert(T->isLinkageValid());
4719 }
4720 assert(isLinkageValid());
4721}
4722
4724 setBeingDefined(true);
4725
4726 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4727 struct CXXRecordDecl::DefinitionData *Data =
4728 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4729 for (auto *I : redecls())
4730 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4731 }
4732}
4733
4735 assert((!isa<CXXRecordDecl>(this) ||
4736 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4737 "definition completed but not started");
4738
4740 setBeingDefined(false);
4741
4743 L->CompletedTagDefinition(this);
4744}
4745
4748 return const_cast<TagDecl *>(this);
4749
4750 // If it's possible for us to have an out-of-date definition, check now.
4751 if (mayHaveOutOfDateDef()) {
4752 if (IdentifierInfo *II = getIdentifier()) {
4753 if (II->isOutOfDate()) {
4754 updateOutOfDate(*II);
4755 }
4756 }
4757 }
4758
4759 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4760 return CXXRD->getDefinition();
4761
4762 for (auto *R : redecls())
4763 if (R->isCompleteDefinition())
4764 return R;
4765
4766 return nullptr;
4767}
4768
4770 if (QualifierLoc) {
4771 // Make sure the extended qualifier info is allocated.
4772 if (!hasExtInfo())
4773 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4774 // Set qualifier info.
4775 getExtInfo()->QualifierLoc = QualifierLoc;
4776 } else {
4777 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4778 if (hasExtInfo()) {
4779 if (getExtInfo()->NumTemplParamLists == 0) {
4780 getASTContext().Deallocate(getExtInfo());
4781 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4782 }
4783 else
4784 getExtInfo()->QualifierLoc = QualifierLoc;
4785 }
4786 }
4787}
4788
4789void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4791 // If the name is supposed to have an identifier but does not have one, then
4792 // the tag is anonymous and we should print it differently.
4793 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4794 // If the caller wanted to print a qualified name, they've already printed
4795 // the scope. And if the caller doesn't want that, the scope information
4796 // is already printed as part of the type.
4797 PrintingPolicy Copy(Policy);
4798 Copy.SuppressScope = true;
4800 return;
4801 }
4802 // Otherwise, do the normal printing.
4803 Name.print(OS, Policy);
4804}
4805
4808 assert(!TPLists.empty());
4809 // Make sure the extended decl info is allocated.
4810 if (!hasExtInfo())
4811 // Allocate external info struct.
4812 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4813 // Set the template parameter lists info.
4814 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4815}
4816
4817//===----------------------------------------------------------------------===//
4818// EnumDecl Implementation
4819//===----------------------------------------------------------------------===//
4820
4821EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4822 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4823 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4824 : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4825 assert(Scoped || !ScopedUsingClassTag);
4826 IntegerType = nullptr;
4827 setNumPositiveBits(0);
4828 setNumNegativeBits(0);
4829 setScoped(Scoped);
4830 setScopedUsingClassTag(ScopedUsingClassTag);
4831 setFixed(Fixed);
4832 setHasODRHash(false);
4833 ODRHash = 0;
4834}
4835
4836void EnumDecl::anchor() {}
4837
4839 SourceLocation StartLoc, SourceLocation IdLoc,
4841 EnumDecl *PrevDecl, bool IsScoped,
4842 bool IsScopedUsingClassTag, bool IsFixed) {
4843 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4844 IsScoped, IsScopedUsingClassTag, IsFixed);
4845 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4846 C.getTypeDeclType(Enum, PrevDecl);
4847 return Enum;
4848}
4849
4851 EnumDecl *Enum =
4852 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4853 nullptr, nullptr, false, false, false);
4854 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4855 return Enum;
4856}
4857
4859 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4860 return TI->getTypeLoc().getSourceRange();
4861 return SourceRange();
4862}
4863
4865 QualType NewPromotionType,
4866 unsigned NumPositiveBits,
4867 unsigned NumNegativeBits) {
4868 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4869 if (!IntegerType)
4870 IntegerType = NewType.getTypePtr();
4871 PromotionType = NewPromotionType;
4872 setNumPositiveBits(NumPositiveBits);
4873 setNumNegativeBits(NumNegativeBits);
4875}
4876
4878 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4879 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4880 return true;
4881}
4882
4884 return isClosed() && hasAttr<FlagEnumAttr>();
4885}
4886
4888 return isClosed() && !hasAttr<FlagEnumAttr>();
4889}
4890
4893 return MSI->getTemplateSpecializationKind();
4894
4895 return TSK_Undeclared;
4896}
4897
4899 SourceLocation PointOfInstantiation) {
4901 assert(MSI && "Not an instantiated member enumeration?");
4903 if (TSK != TSK_ExplicitSpecialization &&
4904 PointOfInstantiation.isValid() &&
4906 MSI->setPointOfInstantiation(PointOfInstantiation);
4907}
4908
4911 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4913 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4914 ED = NewED;
4915 return getDefinitionOrSelf(ED);
4916 }
4917 }
4918
4920 "couldn't find pattern for enum instantiation");
4921 return nullptr;
4922}
4923
4925 if (SpecializationInfo)
4926 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4927
4928 return nullptr;
4929}
4930
4931void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4933 assert(!SpecializationInfo && "Member enum is already a specialization");
4934 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4935}
4936
4938 if (hasODRHash())
4939 return ODRHash;
4940
4941 class ODRHash Hash;
4942 Hash.AddEnumDecl(this);
4943 setHasODRHash(true);
4944 ODRHash = Hash.CalculateHash();
4945 return ODRHash;
4946}
4947
4949 auto Res = TagDecl::getSourceRange();
4950 // Set end-point to enum-base, e.g. enum foo : ^bar
4951 if (auto *TSI = getIntegerTypeSourceInfo()) {
4952 // TagDecl doesn't know about the enum base.
4953 if (!getBraceRange().getEnd().isValid())
4954 Res.setEnd(TSI->getTypeLoc().getEndLoc());
4955 }
4956 return Res;
4957}
4958
4959void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4960 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4961 unsigned NumNegativeBits = getNumNegativeBits();
4962 unsigned NumPositiveBits = getNumPositiveBits();
4963
4964 if (NumNegativeBits) {
4965 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4966 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4967