clang  8.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "Linkage.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringSwitch.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
77  return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81  SourceLocation Loc = this->Loc;
82  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83  if (Loc.isValid()) {
84  Loc.print(OS, Context.getSourceManager());
85  OS << ": ";
86  }
87  OS << Message;
88 
89  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90  OS << " '";
91  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92  OS << "'";
93  }
94 
95  OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100  return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104  : Decl(TranslationUnit, nullptr, SourceLocation()),
105  DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored. Only the innermost
116 // visibility attribute applies. If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments. But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility. For example,
148 // the visibility of a specialization of either of these templates:
149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 // template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'. That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
160  return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
167  Kind.IgnoreExplicitVisibility = true;
168  return Kind;
169 }
170 
173  assert(!kind.IgnoreExplicitVisibility &&
174  "asking for explicit visibility when we shouldn't be");
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181  return isa<TypeDecl>(D) ||
182  isa<ClassTemplateDecl>(D) ||
183  isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
191  if (const MemberSpecializationInfo *member =
192  D->getMemberSpecializationInfo()) {
193  return member->isExplicitSpecialization();
194  }
195  return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
202  return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209  switch (attr->getVisibility()) {
210  case T::Default:
211  return DefaultVisibility;
212  case T::Hidden:
213  return HiddenVisibility;
214  case T::Protected:
215  return ProtectedVisibility;
216  }
217  llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
223  // If we're ultimately computing the visibility of a type, look for
224  // a 'type_visibility' attribute before looking for 'visibility'.
225  if (kind == NamedDecl::VisibilityForType) {
226  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227  return getVisibilityFromAttr(A);
228  }
229  }
230 
231  // If this declaration has an explicit visibility attribute, use it.
232  if (const auto *A = D->getAttr<VisibilityAttr>()) {
233  return getVisibilityFromAttr(A);
234  }
235 
236  return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240  LVComputationKind computation) {
241  if (computation.IgnoreAllVisibility)
242  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243  return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list. For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250  const TemplateParameterList *Params, LVComputationKind computation) {
251  LinkageInfo LV;
252  for (const NamedDecl *P : *Params) {
253  // Template type parameters are the most common and never
254  // contribute to visibility, pack or not.
255  if (isa<TemplateTypeParmDecl>(P))
256  continue;
257 
258  // Non-type template parameters can be restricted by the value type, e.g.
259  // template <enum X> class A { ... };
260  // We have to be careful here, though, because we can be dealing with
261  // dependent types.
262  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263  // Handle the non-pack case first.
264  if (!NTTP->isExpandedParameterPack()) {
265  if (!NTTP->getType()->isDependentType()) {
266  LV.merge(getLVForType(*NTTP->getType(), computation));
267  }
268  continue;
269  }
270 
271  // Look at all the types in an expanded pack.
272  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273  QualType type = NTTP->getExpansionType(i);
274  if (!type->isDependentType())
275  LV.merge(getTypeLinkageAndVisibility(type));
276  }
277  continue;
278  }
279 
280  // Template template parameters can be restricted by their
281  // template parameters, recursively.
282  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284  // Handle the non-pack case first.
285  if (!TTP->isExpandedParameterPack()) {
286  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287  computation));
288  continue;
289  }
290 
291  // Look at all expansions in an expanded pack.
292  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293  i != n; ++i) {
294  LV.merge(getLVForTemplateParameterList(
295  TTP->getExpansionTemplateParameters(i), computation));
296  }
297  }
298 
299  return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303  const Decl *Ret = nullptr;
304  const DeclContext *DC = D->getDeclContext();
305  while (DC->getDeclKind() != Decl::TranslationUnit) {
306  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307  Ret = cast<Decl>(DC);
308  DC = DC->getParent();
309  }
310  return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320  LVComputationKind computation) {
321  LinkageInfo LV;
322 
323  for (const TemplateArgument &Arg : Args) {
324  switch (Arg.getKind()) {
328  continue;
329 
331  LV.merge(getLVForType(*Arg.getAsType(), computation));
332  continue;
333 
335  const NamedDecl *ND = Arg.getAsDecl();
336  assert(!usesTypeVisibility(ND));
337  LV.merge(getLVForDecl(ND, computation));
338  continue;
339  }
340 
342  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343  continue;
344 
347  if (TemplateDecl *Template =
348  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349  LV.merge(getLVForDecl(Template, computation));
350  continue;
351 
353  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354  continue;
355  }
356  llvm_unreachable("bad template argument kind");
357  }
358 
359  return LV;
360 }
361 
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364  LVComputationKind computation) {
365  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
369  const FunctionTemplateSpecializationInfo *specInfo) {
370  // Include visibility from the template parameters and arguments
371  // only if this is not an explicit instantiation or specialization
372  // with direct explicit visibility. (Implicit instantiations won't
373  // have a direct attribute.)
375  return true;
376 
377  return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388  LinkageInfo &LV, const FunctionDecl *fn,
389  const FunctionTemplateSpecializationInfo *specInfo,
390  LVComputationKind computation) {
391  bool considerVisibility =
392  shouldConsiderTemplateVisibility(fn, specInfo);
393 
394  // Merge information from the template parameters.
395  FunctionTemplateDecl *temp = specInfo->getTemplate();
396  LinkageInfo tempLV =
397  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400  // Merge information from the template arguments.
401  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
409  LVComputationKind computation) {
410  if (computation.IgnoreAllVisibility)
411  return false;
412 
413  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414  D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
421  LVComputationKind computation) {
422  // Include visibility from the template parameters and arguments
423  // only if this is not an explicit instantiation or specialization
424  // with direct explicit visibility (and note that implicit
425  // instantiations won't have a direct attribute).
426  //
427  // Furthermore, we want to ignore template parameters and arguments
428  // for an explicit specialization when computing the visibility of a
429  // member thereof with explicit visibility.
430  //
431  // This is a bit complex; let's unpack it.
432  //
433  // An explicit class specialization is an independent, top-level
434  // declaration. As such, if it or any of its members has an
435  // explicit visibility attribute, that must directly express the
436  // user's intent, and we should honor it. The same logic applies to
437  // an explicit instantiation of a member of such a thing.
438 
439  // Fast path: if this is not an explicit instantiation or
440  // specialization, we always want to consider template-related
441  // visibility restrictions.
443  return true;
444 
445  // This is the 'member thereof' check.
446  if (spec->isExplicitSpecialization() &&
447  hasExplicitVisibilityAlready(computation))
448  return false;
449 
450  return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
457  LVComputationKind computation) {
458  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460  // Merge information from the template parameters, but ignore
461  // visibility if we're only considering template arguments.
462 
464  LinkageInfo tempLV =
465  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466  LV.mergeMaybeWithVisibility(tempLV,
467  considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469  // Merge information from the template arguments. We ignore
470  // template-argument visibility if we've got an explicit
471  // instantiation with a visibility attribute.
472  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474  if (considerVisibility)
475  LV.mergeVisibility(argsLV);
476  LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
484  const VarTemplateSpecializationDecl *spec,
485  LVComputationKind computation) {
486  // Include visibility from the template parameters and arguments
487  // only if this is not an explicit instantiation or specialization
488  // with direct explicit visibility (and note that implicit
489  // instantiations won't have a direct attribute).
491  return true;
492 
493  // An explicit variable specialization is an independent, top-level
494  // declaration. As such, if it has an explicit visibility attribute,
495  // that must directly express the user's intent, and we should honor
496  // it.
497  if (spec->isExplicitSpecialization() &&
498  hasExplicitVisibilityAlready(computation))
499  return false;
500 
501  return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508  const VarTemplateSpecializationDecl *spec,
509  LVComputationKind computation) {
510  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512  // Merge information from the template parameters, but ignore
513  // visibility if we're only considering template arguments.
514 
515  VarTemplateDecl *temp = spec->getSpecializedTemplate();
516  LinkageInfo tempLV =
517  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518  LV.mergeMaybeWithVisibility(tempLV,
519  considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521  // Merge information from the template arguments. We ignore
522  // template-argument visibility if we've got an explicit
523  // instantiation with a visibility attribute.
524  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526  if (considerVisibility)
527  LV.mergeVisibility(argsLV);
528  LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533  const LangOptions &Opts = D->getASTContext().getLangOpts();
534  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535  return false;
536 
537  const auto *FD = dyn_cast<FunctionDecl>(D);
538  if (!FD)
539  return false;
540 
543  = FD->getTemplateSpecializationInfo()) {
544  TSK = spec->getTemplateSpecializationKind();
545  } else if (MemberSpecializationInfo *MSI =
546  FD->getMemberSpecializationInfo()) {
547  TSK = MSI->getTemplateSpecializationKind();
548  }
549 
550  const FunctionDecl *Def = nullptr;
551  // InlineVisibilityHidden only applies to definitions, and
552  // isInlined() only gives meaningful answers on definitions
553  // anyway.
554  return TSK != TSK_ExplicitInstantiationDeclaration &&
556  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560  const T *First = D->getFirstDecl();
561  return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566  if (!SD->hasBraces())
567  return true;
568  return false;
569 }
570 
572  // FIXME: Handle isModulePrivate.
573  switch (D->getModuleOwnershipKind()) {
576  return false;
579  if (auto *M = D->getOwningModule())
580  return M->Kind == Module::ModuleInterfaceUnit;
581  }
582  llvm_unreachable("unexpected module ownership kind");
583 }
584 
586  // Internal linkage declarations within a module interface unit are modeled
587  // as "module-internal linkage", which means that they have internal linkage
588  // formally but can be indirectly accessed from outside the module via inline
589  // functions and templates defined within the module.
590  if (auto *M = D->getOwningModule())
591  if (M->Kind == Module::ModuleInterfaceUnit)
593 
594  return LinkageInfo::internal();
595 }
596 
598  // C++ Modules TS [basic.link]/6.8:
599  // - A name declared at namespace scope that does not have internal linkage
600  // by the previous rules and that is introduced by a non-exported
601  // declaration has module linkage.
602  if (auto *M = D->getOwningModule())
603  if (M->Kind == Module::ModuleInterfaceUnit)
605  cast<NamedDecl>(D->getCanonicalDecl())))
607 
608  return LinkageInfo::external();
609 }
610 
612 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
613  LVComputationKind computation,
614  bool IgnoreVarTypeLinkage) {
615  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
616  "Not a name having namespace scope");
617  ASTContext &Context = D->getASTContext();
618 
619  // C++ [basic.link]p3:
620  // A name having namespace scope (3.3.6) has internal linkage if it
621  // is the name of
622  // - an object, reference, function or function template that is
623  // explicitly declared static; or,
624  // (This bullet corresponds to C99 6.2.2p3.)
625  if (const auto *Var = dyn_cast<VarDecl>(D)) {
626  // Explicitly declared static.
627  if (Var->getStorageClass() == SC_Static)
628  return getInternalLinkageFor(Var);
629 
630  // - a non-inline, non-volatile object or reference that is explicitly
631  // declared const or constexpr and neither explicitly declared extern
632  // nor previously declared to have external linkage; or (there is no
633  // equivalent in C99)
634  // The C++ modules TS adds "non-exported" to this list.
635  if (Context.getLangOpts().CPlusPlus &&
636  Var->getType().isConstQualified() &&
637  !Var->getType().isVolatileQualified() &&
638  !Var->isInline() &&
640  const VarDecl *PrevVar = Var->getPreviousDecl();
641  if (PrevVar)
642  return getLVForDecl(PrevVar, computation);
643 
644  if (Var->getStorageClass() != SC_Extern &&
645  Var->getStorageClass() != SC_PrivateExtern &&
647  return getInternalLinkageFor(Var);
648  }
649 
650  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
651  PrevVar = PrevVar->getPreviousDecl()) {
652  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
653  Var->getStorageClass() == SC_None)
654  return getDeclLinkageAndVisibility(PrevVar);
655  // Explicitly declared static.
656  if (PrevVar->getStorageClass() == SC_Static)
657  return getInternalLinkageFor(Var);
658  }
659  } else if (const FunctionDecl *Function = D->getAsFunction()) {
660  // C++ [temp]p4:
661  // A non-member function template can have internal linkage; any
662  // other template name shall have external linkage.
663 
664  // Explicitly declared static.
665  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
666  return getInternalLinkageFor(Function);
667  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668  // - a data member of an anonymous union.
669  const VarDecl *VD = IFD->getVarDecl();
670  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672  }
673  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674 
675  if (D->isInAnonymousNamespace()) {
676  const auto *Var = dyn_cast<VarDecl>(D);
677  const auto *Func = dyn_cast<FunctionDecl>(D);
678  // FIXME: The check for extern "C" here is not justified by the standard
679  // wording, but we retain it from the pre-DR1113 model to avoid breaking
680  // code.
681  //
682  // C++11 [basic.link]p4:
683  // An unnamed namespace or a namespace declared directly or indirectly
684  // within an unnamed namespace has internal linkage.
685  if ((!Var || !isFirstInExternCContext(Var)) &&
686  (!Func || !isFirstInExternCContext(Func)))
687  return getInternalLinkageFor(D);
688  }
689 
690  // Set up the defaults.
691 
692  // C99 6.2.2p5:
693  // If the declaration of an identifier for an object has file
694  // scope and no storage-class specifier, its linkage is
695  // external.
697 
698  if (!hasExplicitVisibilityAlready(computation)) {
699  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
700  LV.mergeVisibility(*Vis, true);
701  } else {
702  // If we're declared in a namespace with a visibility attribute,
703  // use that namespace's visibility, and it still counts as explicit.
704  for (const DeclContext *DC = D->getDeclContext();
705  !isa<TranslationUnitDecl>(DC);
706  DC = DC->getParent()) {
707  const auto *ND = dyn_cast<NamespaceDecl>(DC);
708  if (!ND) continue;
709  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
710  LV.mergeVisibility(*Vis, true);
711  break;
712  }
713  }
714  }
715 
716  // Add in global settings if the above didn't give us direct visibility.
717  if (!LV.isVisibilityExplicit()) {
718  // Use global type/value visibility as appropriate.
719  Visibility globalVisibility =
720  computation.isValueVisibility()
721  ? Context.getLangOpts().getValueVisibilityMode()
722  : Context.getLangOpts().getTypeVisibilityMode();
723  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
724 
725  // If we're paying attention to global visibility, apply
726  // -finline-visibility-hidden if this is an inline method.
728  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
729  }
730  }
731 
732  // C++ [basic.link]p4:
733 
734  // A name having namespace scope has external linkage if it is the
735  // name of
736  //
737  // - an object or reference, unless it has internal linkage; or
738  if (const auto *Var = dyn_cast<VarDecl>(D)) {
739  // GCC applies the following optimization to variables and static
740  // data members, but not to functions:
741  //
742  // Modify the variable's LV by the LV of its type unless this is
743  // C or extern "C". This follows from [basic.link]p9:
744  // A type without linkage shall not be used as the type of a
745  // variable or function with external linkage unless
746  // - the entity has C language linkage, or
747  // - the entity is declared within an unnamed namespace, or
748  // - the entity is not used or is defined in the same
749  // translation unit.
750  // and [basic.link]p10:
751  // ...the types specified by all declarations referring to a
752  // given variable or function shall be identical...
753  // C does not have an equivalent rule.
754  //
755  // Ignore this if we've got an explicit attribute; the user
756  // probably knows what they're doing.
757  //
758  // Note that we don't want to make the variable non-external
759  // because of this, but unique-external linkage suits us.
760  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
761  !IgnoreVarTypeLinkage) {
762  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
763  if (!isExternallyVisible(TypeLV.getLinkage()))
765  if (!LV.isVisibilityExplicit())
766  LV.mergeVisibility(TypeLV);
767  }
768 
769  if (Var->getStorageClass() == SC_PrivateExtern)
771 
772  // Note that Sema::MergeVarDecl already takes care of implementing
773  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
774  // to do it here.
775 
776  // As per function and class template specializations (below),
777  // consider LV for the template and template arguments. We're at file
778  // scope, so we do not need to worry about nested specializations.
779  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
780  mergeTemplateLV(LV, spec, computation);
781  }
782 
783  // - a function, unless it has internal linkage; or
784  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
785  // In theory, we can modify the function's LV by the LV of its
786  // type unless it has C linkage (see comment above about variables
787  // for justification). In practice, GCC doesn't do this, so it's
788  // just too painful to make work.
789 
790  if (Function->getStorageClass() == SC_PrivateExtern)
792 
793  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
794  // merging storage classes and visibility attributes, so we don't have to
795  // look at previous decls in here.
796 
797  // In C++, then if the type of the function uses a type with
798  // unique-external linkage, it's not legally usable from outside
799  // this translation unit. However, we should use the C linkage
800  // rules instead for extern "C" declarations.
801  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
802  // Only look at the type-as-written. Otherwise, deducing the return type
803  // of a function could change its linkage.
804  QualType TypeAsWritten = Function->getType();
805  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
806  TypeAsWritten = TSI->getType();
807  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
809  }
810 
811  // Consider LV from the template and the template arguments.
812  // We're at file scope, so we do not need to worry about nested
813  // specializations.
815  = Function->getTemplateSpecializationInfo()) {
816  mergeTemplateLV(LV, Function, specInfo, computation);
817  }
818 
819  // - a named class (Clause 9), or an unnamed class defined in a
820  // typedef declaration in which the class has the typedef name
821  // for linkage purposes (7.1.3); or
822  // - a named enumeration (7.2), or an unnamed enumeration
823  // defined in a typedef declaration in which the enumeration
824  // has the typedef name for linkage purposes (7.1.3); or
825  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
826  // Unnamed tags have no linkage.
827  if (!Tag->hasNameForLinkage())
828  return LinkageInfo::none();
829 
830  // If this is a class template specialization, consider the
831  // linkage of the template and template arguments. We're at file
832  // scope, so we do not need to worry about nested specializations.
833  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
834  mergeTemplateLV(LV, spec, computation);
835  }
836 
837  // - an enumerator belonging to an enumeration with external linkage;
838  } else if (isa<EnumConstantDecl>(D)) {
839  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
840  computation);
841  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
842  return LinkageInfo::none();
843  LV.merge(EnumLV);
844 
845  // - a template, unless it is a function template that has
846  // internal linkage (Clause 14);
847  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
848  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
849  LinkageInfo tempLV =
850  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
851  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
852 
853  // - a namespace (7.3), unless it is declared within an unnamed
854  // namespace.
855  //
856  // We handled names in anonymous namespaces above.
857  } else if (isa<NamespaceDecl>(D)) {
858  return LV;
859 
860  // By extension, we assign external linkage to Objective-C
861  // interfaces.
862  } else if (isa<ObjCInterfaceDecl>(D)) {
863  // fallout
864 
865  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
866  // A typedef declaration has linkage if it gives a type a name for
867  // linkage purposes.
868  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
869  return LinkageInfo::none();
870 
871  // Everything not covered here has no linkage.
872  } else {
873  return LinkageInfo::none();
874  }
875 
876  // If we ended up with non-externally-visible linkage, visibility should
877  // always be default.
878  if (!isExternallyVisible(LV.getLinkage()))
879  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
880 
881  return LV;
882 }
883 
885 LinkageComputer::getLVForClassMember(const NamedDecl *D,
886  LVComputationKind computation,
887  bool IgnoreVarTypeLinkage) {
888  // Only certain class members have linkage. Note that fields don't
889  // really have linkage, but it's convenient to say they do for the
890  // purposes of calculating linkage of pointer-to-data-member
891  // template arguments.
892  //
893  // Templates also don't officially have linkage, but since we ignore
894  // the C++ standard and look at template arguments when determining
895  // linkage and visibility of a template specialization, we might hit
896  // a template template argument that way. If we do, we need to
897  // consider its linkage.
898  if (!(isa<CXXMethodDecl>(D) ||
899  isa<VarDecl>(D) ||
900  isa<FieldDecl>(D) ||
901  isa<IndirectFieldDecl>(D) ||
902  isa<TagDecl>(D) ||
903  isa<TemplateDecl>(D)))
904  return LinkageInfo::none();
905 
906  LinkageInfo LV;
907 
908  // If we have an explicit visibility attribute, merge that in.
909  if (!hasExplicitVisibilityAlready(computation)) {
910  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
911  LV.mergeVisibility(*Vis, true);
912  // If we're paying attention to global visibility, apply
913  // -finline-visibility-hidden if this is an inline method.
914  //
915  // Note that we do this before merging information about
916  // the class visibility.
918  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
919  }
920 
921  // If this class member has an explicit visibility attribute, the only
922  // thing that can change its visibility is the template arguments, so
923  // only look for them when processing the class.
924  LVComputationKind classComputation = computation;
925  if (LV.isVisibilityExplicit())
926  classComputation = withExplicitVisibilityAlready(computation);
927 
928  LinkageInfo classLV =
929  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
930  // The member has the same linkage as the class. If that's not externally
931  // visible, we don't need to compute anything about the linkage.
932  // FIXME: If we're only computing linkage, can we bail out here?
933  if (!isExternallyVisible(classLV.getLinkage()))
934  return classLV;
935 
936 
937  // Otherwise, don't merge in classLV yet, because in certain cases
938  // we need to completely ignore the visibility from it.
939 
940  // Specifically, if this decl exists and has an explicit attribute.
941  const NamedDecl *explicitSpecSuppressor = nullptr;
942 
943  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
944  // Only look at the type-as-written. Otherwise, deducing the return type
945  // of a function could change its linkage.
946  QualType TypeAsWritten = MD->getType();
947  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
948  TypeAsWritten = TSI->getType();
949  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
951 
952  // If this is a method template specialization, use the linkage for
953  // the template parameters and arguments.
955  = MD->getTemplateSpecializationInfo()) {
956  mergeTemplateLV(LV, MD, spec, computation);
957  if (spec->isExplicitSpecialization()) {
958  explicitSpecSuppressor = MD;
959  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
960  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
961  }
962  } else if (isExplicitMemberSpecialization(MD)) {
963  explicitSpecSuppressor = MD;
964  }
965 
966  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
967  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
968  mergeTemplateLV(LV, spec, computation);
969  if (spec->isExplicitSpecialization()) {
970  explicitSpecSuppressor = spec;
971  } else {
972  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
973  if (isExplicitMemberSpecialization(temp)) {
974  explicitSpecSuppressor = temp->getTemplatedDecl();
975  }
976  }
977  } else if (isExplicitMemberSpecialization(RD)) {
978  explicitSpecSuppressor = RD;
979  }
980 
981  // Static data members.
982  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
983  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
984  mergeTemplateLV(LV, spec, computation);
985 
986  // Modify the variable's linkage by its type, but ignore the
987  // type's visibility unless it's a definition.
988  if (!IgnoreVarTypeLinkage) {
989  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
990  // FIXME: If the type's linkage is not externally visible, we can
991  // give this static data member UniqueExternalLinkage.
992  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
993  LV.mergeVisibility(typeLV);
994  LV.mergeExternalVisibility(typeLV);
995  }
996 
998  explicitSpecSuppressor = VD;
999  }
1000 
1001  // Template members.
1002  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1003  bool considerVisibility =
1004  (!LV.isVisibilityExplicit() &&
1005  !classLV.isVisibilityExplicit() &&
1006  !hasExplicitVisibilityAlready(computation));
1007  LinkageInfo tempLV =
1008  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1009  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1010 
1011  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1012  if (isExplicitMemberSpecialization(redeclTemp)) {
1013  explicitSpecSuppressor = temp->getTemplatedDecl();
1014  }
1015  }
1016  }
1017 
1018  // We should never be looking for an attribute directly on a template.
1019  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1020 
1021  // If this member is an explicit member specialization, and it has
1022  // an explicit attribute, ignore visibility from the parent.
1023  bool considerClassVisibility = true;
1024  if (explicitSpecSuppressor &&
1025  // optimization: hasDVA() is true only with explicit visibility.
1026  LV.isVisibilityExplicit() &&
1027  classLV.getVisibility() != DefaultVisibility &&
1028  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1029  considerClassVisibility = false;
1030  }
1031 
1032  // Finally, merge in information from the class.
1033  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1034  return LV;
1035 }
1036 
1037 void NamedDecl::anchor() {}
1038 
1040  if (!hasCachedLinkage())
1041  return true;
1042 
1043  Linkage L = LinkageComputer{}
1045  .getLinkage();
1046  return L == getCachedLinkage();
1047 }
1048 
1050  StringRef name = getName();
1051  if (name.empty()) return SFF_None;
1052 
1053  if (name.front() == 'C')
1054  if (name == "CFStringCreateWithFormat" ||
1055  name == "CFStringCreateWithFormatAndArguments" ||
1056  name == "CFStringAppendFormat" ||
1057  name == "CFStringAppendFormatAndArguments")
1058  return SFF_CFString;
1059  return SFF_None;
1060 }
1061 
1063  // We don't care about visibility here, so ask for the cheapest
1064  // possible visibility analysis.
1065  return LinkageComputer{}
1067  .getLinkage();
1068 }
1069 
1072 }
1073 
1074 static Optional<Visibility>
1077  bool IsMostRecent) {
1078  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1079 
1080  // Check the declaration itself first.
1081  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1082  return V;
1083 
1084  // If this is a member class of a specialization of a class template
1085  // and the corresponding decl has explicit visibility, use that.
1086  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1087  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1088  if (InstantiatedFrom)
1089  return getVisibilityOf(InstantiatedFrom, kind);
1090  }
1091 
1092  // If there wasn't explicit visibility there, and this is a
1093  // specialization of a class template, check for visibility
1094  // on the pattern.
1095  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1096  // Walk all the template decl till this point to see if there are
1097  // explicit visibility attributes.
1098  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1099  while (TD != nullptr) {
1100  auto Vis = getVisibilityOf(TD, kind);
1101  if (Vis != None)
1102  return Vis;
1103  TD = TD->getPreviousDecl();
1104  }
1105  return None;
1106  }
1107 
1108  // Use the most recent declaration.
1109  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1110  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1111  if (MostRecent != ND)
1112  return getExplicitVisibilityAux(MostRecent, kind, true);
1113  }
1114 
1115  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1116  if (Var->isStaticDataMember()) {
1117  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1118  if (InstantiatedFrom)
1119  return getVisibilityOf(InstantiatedFrom, kind);
1120  }
1121 
1122  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1123  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1124  kind);
1125 
1126  return None;
1127  }
1128  // Also handle function template specializations.
1129  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1130  // If the function is a specialization of a template with an
1131  // explicit visibility attribute, use that.
1132  if (FunctionTemplateSpecializationInfo *templateInfo
1134  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1135  kind);
1136 
1137  // If the function is a member of a specialization of a class template
1138  // and the corresponding decl has explicit visibility, use that.
1139  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1140  if (InstantiatedFrom)
1141  return getVisibilityOf(InstantiatedFrom, kind);
1142 
1143  return None;
1144  }
1145 
1146  // The visibility of a template is stored in the templated decl.
1147  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1148  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1149 
1150  return None;
1151 }
1152 
1155  return getExplicitVisibilityAux(this, kind, false);
1156 }
1157 
1158 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1159  Decl *ContextDecl,
1160  LVComputationKind computation) {
1161  // This lambda has its linkage/visibility determined by its owner.
1162  const NamedDecl *Owner;
1163  if (!ContextDecl)
1164  Owner = dyn_cast<NamedDecl>(DC);
1165  else if (isa<ParmVarDecl>(ContextDecl))
1166  Owner =
1167  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1168  else
1169  Owner = cast<NamedDecl>(ContextDecl);
1170 
1171  if (!Owner)
1172  return LinkageInfo::none();
1173 
1174  // If the owner has a deduced type, we need to skip querying the linkage and
1175  // visibility of that type, because it might involve this closure type. The
1176  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1177  // than NoLinkage when we don't strictly need to, which is benign.
1178  auto *VD = dyn_cast<VarDecl>(Owner);
1179  LinkageInfo OwnerLV =
1180  VD && VD->getType()->getContainedDeducedType()
1181  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1182  : getLVForDecl(Owner, computation);
1183 
1184  // A lambda never formally has linkage. But if the owner is externally
1185  // visible, then the lambda is too. We apply the same rules to blocks.
1186  if (!isExternallyVisible(OwnerLV.getLinkage()))
1187  return LinkageInfo::none();
1188  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1189  OwnerLV.isVisibilityExplicit());
1190 }
1191 
1192 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1193  LVComputationKind computation) {
1194  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1195  if (Function->isInAnonymousNamespace() &&
1196  !isFirstInExternCContext(Function))
1197  return getInternalLinkageFor(Function);
1198 
1199  // This is a "void f();" which got merged with a file static.
1200  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1201  return getInternalLinkageFor(Function);
1202 
1203  LinkageInfo LV;
1204  if (!hasExplicitVisibilityAlready(computation)) {
1205  if (Optional<Visibility> Vis =
1206  getExplicitVisibility(Function, computation))
1207  LV.mergeVisibility(*Vis, true);
1208  }
1209 
1210  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1211  // merging storage classes and visibility attributes, so we don't have to
1212  // look at previous decls in here.
1213 
1214  return LV;
1215  }
1216 
1217  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1218  if (Var->hasExternalStorage()) {
1219  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1220  return getInternalLinkageFor(Var);
1221 
1222  LinkageInfo LV;
1223  if (Var->getStorageClass() == SC_PrivateExtern)
1225  else if (!hasExplicitVisibilityAlready(computation)) {
1226  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1227  LV.mergeVisibility(*Vis, true);
1228  }
1229 
1230  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1231  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1232  if (PrevLV.getLinkage())
1233  LV.setLinkage(PrevLV.getLinkage());
1234  LV.mergeVisibility(PrevLV);
1235  }
1236 
1237  return LV;
1238  }
1239 
1240  if (!Var->isStaticLocal())
1241  return LinkageInfo::none();
1242  }
1243 
1244  ASTContext &Context = D->getASTContext();
1245  if (!Context.getLangOpts().CPlusPlus)
1246  return LinkageInfo::none();
1247 
1248  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1249  if (!OuterD || OuterD->isInvalidDecl())
1250  return LinkageInfo::none();
1251 
1252  LinkageInfo LV;
1253  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1254  if (!BD->getBlockManglingNumber())
1255  return LinkageInfo::none();
1256 
1257  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1258  BD->getBlockManglingContextDecl(), computation);
1259  } else {
1260  const auto *FD = cast<FunctionDecl>(OuterD);
1261  if (!FD->isInlined() &&
1262  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1263  return LinkageInfo::none();
1264 
1265  // If a function is hidden by -fvisibility-inlines-hidden option and
1266  // is not explicitly attributed as a hidden function,
1267  // we should not make static local variables in the function hidden.
1268  LV = getLVForDecl(FD, computation);
1269  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1270  !LV.isVisibilityExplicit()) {
1271  assert(cast<VarDecl>(D)->isStaticLocal());
1272  // If this was an implicitly hidden inline method, check again for
1273  // explicit visibility on the parent class, and use that for static locals
1274  // if present.
1275  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1276  LV = getLVForDecl(MD->getParent(), computation);
1277  if (!LV.isVisibilityExplicit()) {
1278  Visibility globalVisibility =
1279  computation.isValueVisibility()
1280  ? Context.getLangOpts().getValueVisibilityMode()
1281  : Context.getLangOpts().getTypeVisibilityMode();
1282  return LinkageInfo(VisibleNoLinkage, globalVisibility,
1283  /*visibilityExplicit=*/false);
1284  }
1285  }
1286  }
1287  if (!isExternallyVisible(LV.getLinkage()))
1288  return LinkageInfo::none();
1290  LV.isVisibilityExplicit());
1291 }
1292 
1293 static inline const CXXRecordDecl*
1295  const CXXRecordDecl *Ret = Record;
1296  while (Record && Record->isLambda()) {
1297  Ret = Record;
1298  if (!Record->getParent()) break;
1299  // Get the Containing Class of this Lambda Class
1300  Record = dyn_cast_or_null<CXXRecordDecl>(
1301  Record->getParent()->getParent());
1302  }
1303  return Ret;
1304 }
1305 
1307  LVComputationKind computation,
1308  bool IgnoreVarTypeLinkage) {
1309  // Internal_linkage attribute overrides other considerations.
1310  if (D->hasAttr<InternalLinkageAttr>())
1311  return getInternalLinkageFor(D);
1312 
1313  // Objective-C: treat all Objective-C declarations as having external
1314  // linkage.
1315  switch (D->getKind()) {
1316  default:
1317  break;
1318 
1319  // Per C++ [basic.link]p2, only the names of objects, references,
1320  // functions, types, templates, namespaces, and values ever have linkage.
1321  //
1322  // Note that the name of a typedef, namespace alias, using declaration,
1323  // and so on are not the name of the corresponding type, namespace, or
1324  // declaration, so they do *not* have linkage.
1325  case Decl::ImplicitParam:
1326  case Decl::Label:
1327  case Decl::NamespaceAlias:
1328  case Decl::ParmVar:
1329  case Decl::Using:
1330  case Decl::UsingShadow:
1331  case Decl::UsingDirective:
1332  return LinkageInfo::none();
1333 
1334  case Decl::EnumConstant:
1335  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1336  if (D->getASTContext().getLangOpts().CPlusPlus)
1337  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1338  return LinkageInfo::visible_none();
1339 
1340  case Decl::Typedef:
1341  case Decl::TypeAlias:
1342  // A typedef declaration has linkage if it gives a type a name for
1343  // linkage purposes.
1344  if (!cast<TypedefNameDecl>(D)
1345  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1346  return LinkageInfo::none();
1347  break;
1348 
1349  case Decl::TemplateTemplateParm: // count these as external
1350  case Decl::NonTypeTemplateParm:
1351  case Decl::ObjCAtDefsField:
1352  case Decl::ObjCCategory:
1353  case Decl::ObjCCategoryImpl:
1354  case Decl::ObjCCompatibleAlias:
1355  case Decl::ObjCImplementation:
1356  case Decl::ObjCMethod:
1357  case Decl::ObjCProperty:
1358  case Decl::ObjCPropertyImpl:
1359  case Decl::ObjCProtocol:
1360  return getExternalLinkageFor(D);
1361 
1362  case Decl::CXXRecord: {
1363  const auto *Record = cast<CXXRecordDecl>(D);
1364  if (Record->isLambda()) {
1365  if (!Record->getLambdaManglingNumber()) {
1366  // This lambda has no mangling number, so it's internal.
1367  return getInternalLinkageFor(D);
1368  }
1369 
1370  // This lambda has its linkage/visibility determined:
1371  // - either by the outermost lambda if that lambda has no mangling
1372  // number.
1373  // - or by the parent of the outer most lambda
1374  // This prevents infinite recursion in settings such as nested lambdas
1375  // used in NSDMI's, for e.g.
1376  // struct L {
1377  // int t{};
1378  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1379  // };
1380  const CXXRecordDecl *OuterMostLambda =
1382  if (!OuterMostLambda->getLambdaManglingNumber())
1383  return getInternalLinkageFor(D);
1384 
1385  return getLVForClosure(
1386  OuterMostLambda->getDeclContext()->getRedeclContext(),
1387  OuterMostLambda->getLambdaContextDecl(), computation);
1388  }
1389 
1390  break;
1391  }
1392  }
1393 
1394  // Handle linkage for namespace-scope names.
1396  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1397 
1398  // C++ [basic.link]p5:
1399  // In addition, a member function, static data member, a named
1400  // class or enumeration of class scope, or an unnamed class or
1401  // enumeration defined in a class-scope typedef declaration such
1402  // that the class or enumeration has the typedef name for linkage
1403  // purposes (7.1.3), has external linkage if the name of the class
1404  // has external linkage.
1405  if (D->getDeclContext()->isRecord())
1406  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1407 
1408  // C++ [basic.link]p6:
1409  // The name of a function declared in block scope and the name of
1410  // an object declared by a block scope extern declaration have
1411  // linkage. If there is a visible declaration of an entity with
1412  // linkage having the same name and type, ignoring entities
1413  // declared outside the innermost enclosing namespace scope, the
1414  // block scope declaration declares that same entity and receives
1415  // the linkage of the previous declaration. If there is more than
1416  // one such matching entity, the program is ill-formed. Otherwise,
1417  // if no matching entity is found, the block scope entity receives
1418  // external linkage.
1419  if (D->getDeclContext()->isFunctionOrMethod())
1420  return getLVForLocalDecl(D, computation);
1421 
1422  // C++ [basic.link]p6:
1423  // Names not covered by these rules have no linkage.
1424  return LinkageInfo::none();
1425 }
1426 
1427 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1429  LVComputationKind computation) {
1430  // Internal_linkage attribute overrides other considerations.
1431  if (D->hasAttr<InternalLinkageAttr>())
1432  return getInternalLinkageFor(D);
1433 
1434  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1435  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1436 
1437  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1438  return *LI;
1439 
1440  LinkageInfo LV = computeLVForDecl(D, computation);
1441  if (D->hasCachedLinkage())
1442  assert(D->getCachedLinkage() == LV.getLinkage());
1443 
1444  D->setCachedLinkage(LV.getLinkage());
1445  cache(D, computation, LV);
1446 
1447 #ifndef NDEBUG
1448  // In C (because of gnu inline) and in c++ with microsoft extensions an
1449  // static can follow an extern, so we can have two decls with different
1450  // linkages.
1451  const LangOptions &Opts = D->getASTContext().getLangOpts();
1452  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1453  return LV;
1454 
1455  // We have just computed the linkage for this decl. By induction we know
1456  // that all other computed linkages match, check that the one we just
1457  // computed also does.
1458  NamedDecl *Old = nullptr;
1459  for (auto I : D->redecls()) {
1460  auto *T = cast<NamedDecl>(I);
1461  if (T == D)
1462  continue;
1463  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1464  Old = T;
1465  break;
1466  }
1467  }
1468  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1469 #endif
1470 
1471  return LV;
1472 }
1473 
1475  return getLVForDecl(D,
1479 }
1480 
1481 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1482  Module *M = getOwningModule();
1483  if (!M)
1484  return nullptr;
1485 
1486  switch (M->Kind) {
1488  // Module map modules have no special linkage semantics.
1489  return nullptr;
1490 
1492  return M;
1493 
1495  // External linkage declarations in the global module have no owning module
1496  // for linkage purposes. But internal linkage declarations in the global
1497  // module fragment of a particular module are owned by that module for
1498  // linkage purposes.
1499  if (IgnoreLinkage)
1500  return nullptr;
1501  bool InternalLinkage;
1502  if (auto *ND = dyn_cast<NamedDecl>(this))
1503  InternalLinkage = !ND->hasExternalFormalLinkage();
1504  else {
1505  auto *NSD = dyn_cast<NamespaceDecl>(this);
1506  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1507  isInAnonymousNamespace();
1508  }
1509  return InternalLinkage ? M->Parent : nullptr;
1510  }
1511  }
1512 
1513  llvm_unreachable("unknown module kind");
1514 }
1515 
1516 void NamedDecl::printName(raw_ostream &os) const {
1517  os << Name;
1518 }
1519 
1521  std::string QualName;
1522  llvm::raw_string_ostream OS(QualName);
1523  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1524  return OS.str();
1525 }
1526 
1527 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1528  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1529 }
1530 
1531 void NamedDecl::printQualifiedName(raw_ostream &OS,
1532  const PrintingPolicy &P) const {
1533  const DeclContext *Ctx = getDeclContext();
1534 
1535  // For ObjC methods, look through categories and use the interface as context.
1536  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1537  if (auto *ID = MD->getClassInterface())
1538  Ctx = ID;
1539 
1540  if (Ctx->isFunctionOrMethod()) {
1541  printName(OS);
1542  return;
1543  }
1544 
1545  using ContextsTy = SmallVector<const DeclContext *, 8>;
1546  ContextsTy Contexts;
1547 
1548  // Collect named contexts.
1549  while (Ctx) {
1550  if (isa<NamedDecl>(Ctx))
1551  Contexts.push_back(Ctx);
1552  Ctx = Ctx->getParent();
1553  }
1554 
1555  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1556  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1557  OS << Spec->getName();
1558  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1559  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1560  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1561  if (P.SuppressUnwrittenScope &&
1562  (ND->isAnonymousNamespace() || ND->isInline()))
1563  continue;
1564  if (ND->isAnonymousNamespace()) {
1565  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1566  : "(anonymous namespace)");
1567  }
1568  else
1569  OS << *ND;
1570  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1571  if (!RD->getIdentifier())
1572  OS << "(anonymous " << RD->getKindName() << ')';
1573  else
1574  OS << *RD;
1575  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1576  const FunctionProtoType *FT = nullptr;
1577  if (FD->hasWrittenPrototype())
1578  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1579 
1580  OS << *FD << '(';
1581  if (FT) {
1582  unsigned NumParams = FD->getNumParams();
1583  for (unsigned i = 0; i < NumParams; ++i) {
1584  if (i)
1585  OS << ", ";
1586  OS << FD->getParamDecl(i)->getType().stream(P);
1587  }
1588 
1589  if (FT->isVariadic()) {
1590  if (NumParams > 0)
1591  OS << ", ";
1592  OS << "...";
1593  }
1594  }
1595  OS << ')';
1596  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1597  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1598  // enumerator is declared in the scope that immediately contains
1599  // the enum-specifier. Each scoped enumerator is declared in the
1600  // scope of the enumeration.
1601  // For the case of unscoped enumerator, do not include in the qualified
1602  // name any information about its enum enclosing scope, as its visibility
1603  // is global.
1604  if (ED->isScoped())
1605  OS << *ED;
1606  else
1607  continue;
1608  } else {
1609  OS << *cast<NamedDecl>(DC);
1610  }
1611  OS << "::";
1612  }
1613 
1614  if (getDeclName() || isa<DecompositionDecl>(this))
1615  OS << *this;
1616  else
1617  OS << "(anonymous)";
1618 }
1619 
1620 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1621  const PrintingPolicy &Policy,
1622  bool Qualified) const {
1623  if (Qualified)
1624  printQualifiedName(OS, Policy);
1625  else
1626  printName(OS);
1627 }
1628 
1629 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1630  return true;
1631 }
1632 static bool isRedeclarableImpl(...) { return false; }
1633 static bool isRedeclarable(Decl::Kind K) {
1634  switch (K) {
1635 #define DECL(Type, Base) \
1636  case Decl::Type: \
1637  return isRedeclarableImpl((Type##Decl *)nullptr);
1638 #define ABSTRACT_DECL(DECL)
1639 #include "clang/AST/DeclNodes.inc"
1640  }
1641  llvm_unreachable("unknown decl kind");
1642 }
1643 
1644 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1645  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1646 
1647  // Never replace one imported declaration with another; we need both results
1648  // when re-exporting.
1649  if (OldD->isFromASTFile() && isFromASTFile())
1650  return false;
1651 
1652  // A kind mismatch implies that the declaration is not replaced.
1653  if (OldD->getKind() != getKind())
1654  return false;
1655 
1656  // For method declarations, we never replace. (Why?)
1657  if (isa<ObjCMethodDecl>(this))
1658  return false;
1659 
1660  // For parameters, pick the newer one. This is either an error or (in
1661  // Objective-C) permitted as an extension.
1662  if (isa<ParmVarDecl>(this))
1663  return true;
1664 
1665  // Inline namespaces can give us two declarations with the same
1666  // name and kind in the same scope but different contexts; we should
1667  // keep both declarations in this case.
1668  if (!this->getDeclContext()->getRedeclContext()->Equals(
1669  OldD->getDeclContext()->getRedeclContext()))
1670  return false;
1671 
1672  // Using declarations can be replaced if they import the same name from the
1673  // same context.
1674  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1675  ASTContext &Context = getASTContext();
1676  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1678  cast<UsingDecl>(OldD)->getQualifier());
1679  }
1680  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1681  ASTContext &Context = getASTContext();
1682  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1684  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1685  }
1686 
1687  if (isRedeclarable(getKind())) {
1688  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1689  return false;
1690 
1691  if (IsKnownNewer)
1692  return true;
1693 
1694  // Check whether this is actually newer than OldD. We want to keep the
1695  // newer declaration. This loop will usually only iterate once, because
1696  // OldD is usually the previous declaration.
1697  for (auto D : redecls()) {
1698  if (D == OldD)
1699  break;
1700 
1701  // If we reach the canonical declaration, then OldD is not actually older
1702  // than this one.
1703  //
1704  // FIXME: In this case, we should not add this decl to the lookup table.
1705  if (D->isCanonicalDecl())
1706  return false;
1707  }
1708 
1709  // It's a newer declaration of the same kind of declaration in the same
1710  // scope: we want this decl instead of the existing one.
1711  return true;
1712  }
1713 
1714  // In all other cases, we need to keep both declarations in case they have
1715  // different visibility. Any attempt to use the name will result in an
1716  // ambiguity if more than one is visible.
1717  return false;
1718 }
1719 
1721  return getFormalLinkage() != NoLinkage;
1722 }
1723 
1724 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1725  NamedDecl *ND = this;
1726  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1727  ND = UD->getTargetDecl();
1728 
1729  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1730  return AD->getClassInterface();
1731 
1732  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1733  return AD->getNamespace();
1734 
1735  return ND;
1736 }
1737 
1739  if (!isCXXClassMember())
1740  return false;
1741 
1742  const NamedDecl *D = this;
1743  if (isa<UsingShadowDecl>(D))
1744  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1745 
1746  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1747  return true;
1748  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1749  return MD->isInstance();
1750  return false;
1751 }
1752 
1753 //===----------------------------------------------------------------------===//
1754 // DeclaratorDecl Implementation
1755 //===----------------------------------------------------------------------===//
1756 
1757 template <typename DeclT>
1759  if (decl->getNumTemplateParameterLists() > 0)
1760  return decl->getTemplateParameterList(0)->getTemplateLoc();
1761  else
1762  return decl->getInnerLocStart();
1763 }
1764 
1766  TypeSourceInfo *TSI = getTypeSourceInfo();
1767  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1768  return SourceLocation();
1769 }
1770 
1772  if (QualifierLoc) {
1773  // Make sure the extended decl info is allocated.
1774  if (!hasExtInfo()) {
1775  // Save (non-extended) type source info pointer.
1776  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1777  // Allocate external info struct.
1778  DeclInfo = new (getASTContext()) ExtInfo;
1779  // Restore savedTInfo into (extended) decl info.
1780  getExtInfo()->TInfo = savedTInfo;
1781  }
1782  // Set qualifier info.
1783  getExtInfo()->QualifierLoc = QualifierLoc;
1784  } else {
1785  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1786  if (hasExtInfo()) {
1787  if (getExtInfo()->NumTemplParamLists == 0) {
1788  // Save type source info pointer.
1789  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1790  // Deallocate the extended decl info.
1791  getASTContext().Deallocate(getExtInfo());
1792  // Restore savedTInfo into (non-extended) decl info.
1793  DeclInfo = savedTInfo;
1794  }
1795  else
1796  getExtInfo()->QualifierLoc = QualifierLoc;
1797  }
1798  }
1799 }
1800 
1802  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1803  assert(!TPLists.empty());
1804  // Make sure the extended decl info is allocated.
1805  if (!hasExtInfo()) {
1806  // Save (non-extended) type source info pointer.
1807  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1808  // Allocate external info struct.
1809  DeclInfo = new (getASTContext()) ExtInfo;
1810  // Restore savedTInfo into (extended) decl info.
1811  getExtInfo()->TInfo = savedTInfo;
1812  }
1813  // Set the template parameter lists info.
1814  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1815 }
1816 
1818  return getTemplateOrInnerLocStart(this);
1819 }
1820 
1821 // Helper function: returns true if QT is or contains a type
1822 // having a postfix component.
1823 static bool typeIsPostfix(QualType QT) {
1824  while (true) {
1825  const Type* T = QT.getTypePtr();
1826  switch (T->getTypeClass()) {
1827  default:
1828  return false;
1829  case Type::Pointer:
1830  QT = cast<PointerType>(T)->getPointeeType();
1831  break;
1832  case Type::BlockPointer:
1833  QT = cast<BlockPointerType>(T)->getPointeeType();
1834  break;
1835  case Type::MemberPointer:
1836  QT = cast<MemberPointerType>(T)->getPointeeType();
1837  break;
1838  case Type::LValueReference:
1839  case Type::RValueReference:
1840  QT = cast<ReferenceType>(T)->getPointeeType();
1841  break;
1842  case Type::PackExpansion:
1843  QT = cast<PackExpansionType>(T)->getPattern();
1844  break;
1845  case Type::Paren:
1846  case Type::ConstantArray:
1847  case Type::DependentSizedArray:
1848  case Type::IncompleteArray:
1849  case Type::VariableArray:
1850  case Type::FunctionProto:
1851  case Type::FunctionNoProto:
1852  return true;
1853  }
1854  }
1855 }
1856 
1858  SourceLocation RangeEnd = getLocation();
1859  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1860  // If the declaration has no name or the type extends past the name take the
1861  // end location of the type.
1862  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1863  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1864  }
1865  return SourceRange(getOuterLocStart(), RangeEnd);
1866 }
1867 
1869  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1870  // Free previous template parameters (if any).
1871  if (NumTemplParamLists > 0) {
1872  Context.Deallocate(TemplParamLists);
1873  TemplParamLists = nullptr;
1874  NumTemplParamLists = 0;
1875  }
1876  // Set info on matched template parameter lists (if any).
1877  if (!TPLists.empty()) {
1878  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1879  NumTemplParamLists = TPLists.size();
1880  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1881  }
1882 }
1883 
1884 //===----------------------------------------------------------------------===//
1885 // VarDecl Implementation
1886 //===----------------------------------------------------------------------===//
1887 
1889  switch (SC) {
1890  case SC_None: break;
1891  case SC_Auto: return "auto";
1892  case SC_Extern: return "extern";
1893  case SC_PrivateExtern: return "__private_extern__";
1894  case SC_Register: return "register";
1895  case SC_Static: return "static";
1896  }
1897 
1898  llvm_unreachable("Invalid storage class");
1899 }
1900 
1902  SourceLocation StartLoc, SourceLocation IdLoc,
1904  StorageClass SC)
1905  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1906  redeclarable_base(C) {
1907  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1908  "VarDeclBitfields too large!");
1909  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1910  "ParmVarDeclBitfields too large!");
1911  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1912  "NonParmVarDeclBitfields too large!");
1913  AllBits = 0;
1914  VarDeclBits.SClass = SC;
1915  // Everything else is implicitly initialized to false.
1916 }
1917 
1919  SourceLocation StartL, SourceLocation IdL,
1921  StorageClass S) {
1922  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1923 }
1924 
1926  return new (C, ID)
1927  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1928  QualType(), nullptr, SC_None);
1929 }
1930 
1932  assert(isLegalForVariable(SC));
1933  VarDeclBits.SClass = SC;
1934 }
1935 
1937  switch (VarDeclBits.TSCSpec) {
1938  case TSCS_unspecified:
1939  if (!hasAttr<ThreadAttr>() &&
1940  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1941  getASTContext().getTargetInfo().isTLSSupported() &&
1942  hasAttr<OMPThreadPrivateDeclAttr>()))
1943  return TLS_None;
1944  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1946  hasAttr<OMPThreadPrivateDeclAttr>())
1947  ? TLS_Dynamic
1948  : TLS_Static;
1949  case TSCS___thread: // Fall through.
1950  case TSCS__Thread_local:
1951  return TLS_Static;
1952  case TSCS_thread_local:
1953  return TLS_Dynamic;
1954  }
1955  llvm_unreachable("Unknown thread storage class specifier!");
1956 }
1957 
1959  if (const Expr *Init = getInit()) {
1960  SourceLocation InitEnd = Init->getEndLoc();
1961  // If Init is implicit, ignore its source range and fallback on
1962  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1963  if (InitEnd.isValid() && InitEnd != getLocation())
1964  return SourceRange(getOuterLocStart(), InitEnd);
1965  }
1967 }
1968 
1969 template<typename T>
1971  // C++ [dcl.link]p1: All function types, function names with external linkage,
1972  // and variable names with external linkage have a language linkage.
1973  if (!D.hasExternalFormalLinkage())
1974  return NoLanguageLinkage;
1975 
1976  // Language linkage is a C++ concept, but saying that everything else in C has
1977  // C language linkage fits the implementation nicely.
1978  ASTContext &Context = D.getASTContext();
1979  if (!Context.getLangOpts().CPlusPlus)
1980  return CLanguageLinkage;
1981 
1982  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1983  // language linkage of the names of class members and the function type of
1984  // class member functions.
1985  const DeclContext *DC = D.getDeclContext();
1986  if (DC->isRecord())
1987  return CXXLanguageLinkage;
1988 
1989  // If the first decl is in an extern "C" context, any other redeclaration
1990  // will have C language linkage. If the first one is not in an extern "C"
1991  // context, we would have reported an error for any other decl being in one.
1992  if (isFirstInExternCContext(&D))
1993  return CLanguageLinkage;
1994  return CXXLanguageLinkage;
1995 }
1996 
1997 template<typename T>
1998 static bool isDeclExternC(const T &D) {
1999  // Since the context is ignored for class members, they can only have C++
2000  // language linkage or no language linkage.
2001  const DeclContext *DC = D.getDeclContext();
2002  if (DC->isRecord()) {
2003  assert(D.getASTContext().getLangOpts().CPlusPlus);
2004  return false;
2005  }
2006 
2007  return D.getLanguageLinkage() == CLanguageLinkage;
2008 }
2009 
2011  return getDeclLanguageLinkage(*this);
2012 }
2013 
2014 bool VarDecl::isExternC() const {
2015  return isDeclExternC(*this);
2016 }
2017 
2020 }
2021 
2024 }
2025 
2027 
2031  return DeclarationOnly;
2032 
2033  // C++ [basic.def]p2:
2034  // A declaration is a definition unless [...] it contains the 'extern'
2035  // specifier or a linkage-specification and neither an initializer [...],
2036  // it declares a non-inline static data member in a class declaration [...],
2037  // it declares a static data member outside a class definition and the variable
2038  // was defined within the class with the constexpr specifier [...],
2039  // C++1y [temp.expl.spec]p15:
2040  // An explicit specialization of a static data member or an explicit
2041  // specialization of a static data member template is a definition if the
2042  // declaration includes an initializer; otherwise, it is a declaration.
2043  //
2044  // FIXME: How do you declare (but not define) a partial specialization of
2045  // a static data member template outside the containing class?
2046  if (isStaticDataMember()) {
2047  if (isOutOfLine() &&
2048  !(getCanonicalDecl()->isInline() &&
2049  getCanonicalDecl()->isConstexpr()) &&
2050  (hasInit() ||
2051  // If the first declaration is out-of-line, this may be an
2052  // instantiation of an out-of-line partial specialization of a variable
2053  // template for which we have not yet instantiated the initializer.
2058  isa<VarTemplatePartialSpecializationDecl>(this)))
2059  return Definition;
2060  else if (!isOutOfLine() && isInline())
2061  return Definition;
2062  else
2063  return DeclarationOnly;
2064  }
2065  // C99 6.7p5:
2066  // A definition of an identifier is a declaration for that identifier that
2067  // [...] causes storage to be reserved for that object.
2068  // Note: that applies for all non-file-scope objects.
2069  // C99 6.9.2p1:
2070  // If the declaration of an identifier for an object has file scope and an
2071  // initializer, the declaration is an external definition for the identifier
2072  if (hasInit())
2073  return Definition;
2074 
2075  if (hasDefiningAttr())
2076  return Definition;
2077 
2078  if (const auto *SAA = getAttr<SelectAnyAttr>())
2079  if (!SAA->isInherited())
2080  return Definition;
2081 
2082  // A variable template specialization (other than a static data member
2083  // template or an explicit specialization) is a declaration until we
2084  // instantiate its initializer.
2085  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2086  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2087  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2088  !VTSD->IsCompleteDefinition)
2089  return DeclarationOnly;
2090  }
2091 
2092  if (hasExternalStorage())
2093  return DeclarationOnly;
2094 
2095  // [dcl.link] p7:
2096  // A declaration directly contained in a linkage-specification is treated
2097  // as if it contains the extern specifier for the purpose of determining
2098  // the linkage of the declared name and whether it is a definition.
2099  if (isSingleLineLanguageLinkage(*this))
2100  return DeclarationOnly;
2101 
2102  // C99 6.9.2p2:
2103  // A declaration of an object that has file scope without an initializer,
2104  // and without a storage class specifier or the scs 'static', constitutes
2105  // a tentative definition.
2106  // No such thing in C++.
2107  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2108  return TentativeDefinition;
2109 
2110  // What's left is (in C, block-scope) declarations without initializers or
2111  // external storage. These are definitions.
2112  return Definition;
2113 }
2114 
2117  if (Kind != TentativeDefinition)
2118  return nullptr;
2119 
2120  VarDecl *LastTentative = nullptr;
2121  VarDecl *First = getFirstDecl();
2122  for (auto I : First->redecls()) {
2123  Kind = I->isThisDeclarationADefinition();
2124  if (Kind == Definition)
2125  return nullptr;
2126  else if (Kind == TentativeDefinition)
2127  LastTentative = I;
2128  }
2129  return LastTentative;
2130 }
2131 
2133  VarDecl *First = getFirstDecl();
2134  for (auto I : First->redecls()) {
2135  if (I->isThisDeclarationADefinition(C) == Definition)
2136  return I;
2137  }
2138  return nullptr;
2139 }
2140 
2143 
2144  const VarDecl *First = getFirstDecl();
2145  for (auto I : First->redecls()) {
2146  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2147  if (Kind == Definition)
2148  break;
2149  }
2150 
2151  return Kind;
2152 }
2153 
2154 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2155  for (auto I : redecls()) {
2156  if (auto Expr = I->getInit()) {
2157  D = I;
2158  return Expr;
2159  }
2160  }
2161  return nullptr;
2162 }
2163 
2164 bool VarDecl::hasInit() const {
2165  if (auto *P = dyn_cast<ParmVarDecl>(this))
2166  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2167  return false;
2168 
2169  return !Init.isNull();
2170 }
2171 
2173  if (!hasInit())
2174  return nullptr;
2175 
2176  if (auto *S = Init.dyn_cast<Stmt *>())
2177  return cast<Expr>(S);
2178 
2179  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2180 }
2181 
2183  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2184  return &ES->Value;
2185 
2186  return Init.getAddrOfPtr1();
2187 }
2188 
2189 bool VarDecl::isOutOfLine() const {
2190  if (Decl::isOutOfLine())
2191  return true;
2192 
2193  if (!isStaticDataMember())
2194  return false;
2195 
2196  // If this static data member was instantiated from a static data member of
2197  // a class template, check whether that static data member was defined
2198  // out-of-line.
2200  return VD->isOutOfLine();
2201 
2202  return false;
2203 }
2204 
2206  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2207  Eval->~EvaluatedStmt();
2208  getASTContext().Deallocate(Eval);
2209  }
2210 
2211  Init = I;
2212 }
2213 
2215  const LangOptions &Lang = C.getLangOpts();
2216 
2217  if (!Lang.CPlusPlus)
2218  return false;
2219 
2220  // In C++11, any variable of reference type can be used in a constant
2221  // expression if it is initialized by a constant expression.
2222  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2223  return true;
2224 
2225  // Only const objects can be used in constant expressions in C++. C++98 does
2226  // not require the variable to be non-volatile, but we consider this to be a
2227  // defect.
2228  if (!getType().isConstQualified() || getType().isVolatileQualified())
2229  return false;
2230 
2231  // In C++, const, non-volatile variables of integral or enumeration types
2232  // can be used in constant expressions.
2233  if (getType()->isIntegralOrEnumerationType())
2234  return true;
2235 
2236  // Additionally, in C++11, non-volatile constexpr variables can be used in
2237  // constant expressions.
2238  return Lang.CPlusPlus11 && isConstexpr();
2239 }
2240 
2241 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2242 /// form, which contains extra information on the evaluated value of the
2243 /// initializer.
2245  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2246  if (!Eval) {
2247  // Note: EvaluatedStmt contains an APValue, which usually holds
2248  // resources not allocated from the ASTContext. We need to do some
2249  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2250  // where we can detect whether there's anything to clean up or not.
2251  Eval = new (getASTContext()) EvaluatedStmt;
2252  Eval->Value = Init.get<Stmt *>();
2253  Init = Eval;
2254  }
2255  return Eval;
2256 }
2257 
2260  return evaluateValue(Notes);
2261 }
2262 
2264  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2266 
2267  // We only produce notes indicating why an initializer is non-constant the
2268  // first time it is evaluated. FIXME: The notes won't always be emitted the
2269  // first time we try evaluation, so might not be produced at all.
2270  if (Eval->WasEvaluated)
2271  return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2272 
2273  const auto *Init = cast<Expr>(Eval->Value);
2274  assert(!Init->isValueDependent());
2275 
2276  if (Eval->IsEvaluating) {
2277  // FIXME: Produce a diagnostic for self-initialization.
2278  Eval->CheckedICE = true;
2279  Eval->IsICE = false;
2280  return nullptr;
2281  }
2282 
2283  Eval->IsEvaluating = true;
2284 
2285  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2286  this, Notes);
2287 
2288  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2289  // or that it's empty (so that there's nothing to clean up) if evaluation
2290  // failed.
2291  if (!Result)
2292  Eval->Evaluated = APValue();
2293  else if (Eval->Evaluated.needsCleanup())
2295 
2296  Eval->IsEvaluating = false;
2297  Eval->WasEvaluated = true;
2298 
2299  // In C++11, we have determined whether the initializer was a constant
2300  // expression as a side-effect.
2301  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2302  Eval->CheckedICE = true;
2303  Eval->IsICE = Result && Notes.empty();
2304  }
2305 
2306  return Result ? &Eval->Evaluated : nullptr;
2307 }
2308 
2310  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2311  if (Eval->WasEvaluated)
2312  return &Eval->Evaluated;
2313 
2314  return nullptr;
2315 }
2316 
2318  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2319  return Eval->CheckedICE;
2320 
2321  return false;
2322 }
2323 
2324 bool VarDecl::isInitICE() const {
2325  assert(isInitKnownICE() &&
2326  "Check whether we already know that the initializer is an ICE");
2327  return Init.get<EvaluatedStmt *>()->IsICE;
2328 }
2329 
2331  // Initializers of weak variables are never ICEs.
2332  if (isWeak())
2333  return false;
2334 
2336  if (Eval->CheckedICE)
2337  // We have already checked whether this subexpression is an
2338  // integral constant expression.
2339  return Eval->IsICE;
2340 
2341  const auto *Init = cast<Expr>(Eval->Value);
2342  assert(!Init->isValueDependent());
2343 
2344  // In C++11, evaluate the initializer to check whether it's a constant
2345  // expression.
2346  if (getASTContext().getLangOpts().CPlusPlus11) {
2348  evaluateValue(Notes);
2349  return Eval->IsICE;
2350  }
2351 
2352  // It's an ICE whether or not the definition we found is
2353  // out-of-line. See DR 721 and the discussion in Clang PR
2354  // 6206 for details.
2355 
2356  if (Eval->CheckingICE)
2357  return false;
2358  Eval->CheckingICE = true;
2359 
2360  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2361  Eval->CheckingICE = false;
2362  Eval->CheckedICE = true;
2363  return Eval->IsICE;
2364 }
2365 
2366 template<typename DeclT>
2367 static DeclT *getDefinitionOrSelf(DeclT *D) {
2368  assert(D);
2369  if (auto *Def = D->getDefinition())
2370  return Def;
2371  return D;
2372 }
2373 
2375  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2376 }
2377 
2379  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2380 }
2381 
2383  // If it's a variable template specialization, find the template or partial
2384  // specialization from which it was instantiated.
2385  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2386  auto From = VDTemplSpec->getInstantiatedFrom();
2387  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2388  while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) {
2389  if (NewVTD->isMemberSpecialization())
2390  break;
2391  VTD = NewVTD;
2392  }
2393  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2394  }
2395  if (auto *VTPSD =
2396  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2397  while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) {
2398  if (NewVTPSD->isMemberSpecialization())
2399  break;
2400  VTPSD = NewVTPSD;
2401  }
2402  return getDefinitionOrSelf<VarDecl>(VTPSD);
2403  }
2404  }
2405 
2407  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2409  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2410  VD = NewVD;
2411  return getDefinitionOrSelf(VD);
2412  }
2413  }
2414 
2415  if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) {
2416  while (VarTemplate->getInstantiatedFromMemberTemplate()) {
2417  if (VarTemplate->isMemberSpecialization())
2418  break;
2419  VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate();
2420  }
2421 
2422  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2423  }
2424  return nullptr;
2425 }
2426 
2429  return cast<VarDecl>(MSI->getInstantiatedFrom());
2430 
2431  return nullptr;
2432 }
2433 
2435  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2436  return Spec->getSpecializationKind();
2437 
2439  return MSI->getTemplateSpecializationKind();
2440 
2441  return TSK_Undeclared;
2442 }
2443 
2445  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2446  return Spec->getPointOfInstantiation();
2447 
2449  return MSI->getPointOfInstantiation();
2450 
2451  return SourceLocation();
2452 }
2453 
2456  .dyn_cast<VarTemplateDecl *>();
2457 }
2458 
2461 }
2462 
2464  const auto &LangOpts = getASTContext().getLangOpts();
2465  // In CUDA mode without relocatable device code, variables of form 'extern
2466  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2467  // memory pool. These are never undefined variables, even if they appear
2468  // inside of an anon namespace or static function.
2469  //
2470  // With CUDA relocatable device code enabled, these variables don't get
2471  // special handling; they're treated like regular extern variables.
2472  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2473  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2474  isa<IncompleteArrayType>(getType()))
2475  return true;
2476 
2477  return hasDefinition();
2478 }
2479 
2480 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2481  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2482  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2483  !hasAttr<AlwaysDestroyAttr>()));
2484 }
2485 
2487  if (isStaticDataMember())
2488  // FIXME: Remove ?
2489  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2491  .dyn_cast<MemberSpecializationInfo *>();
2492  return nullptr;
2493 }
2494 
2496  SourceLocation PointOfInstantiation) {
2497  assert((isa<VarTemplateSpecializationDecl>(this) ||
2499  "not a variable or static data member template specialization");
2500 
2501  if (VarTemplateSpecializationDecl *Spec =
2502  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2503  Spec->setSpecializationKind(TSK);
2504  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2505  Spec->getPointOfInstantiation().isInvalid()) {
2506  Spec->setPointOfInstantiation(PointOfInstantiation);
2508  L->InstantiationRequested(this);
2509  }
2510  }
2511 
2513  MSI->setTemplateSpecializationKind(TSK);
2514  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2515  MSI->getPointOfInstantiation().isInvalid()) {
2516  MSI->setPointOfInstantiation(PointOfInstantiation);
2518  L->InstantiationRequested(this);
2519  }
2520  }
2521 }
2522 
2523 void
2526  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2527  "Previous template or instantiation?");
2529 }
2530 
2531 //===----------------------------------------------------------------------===//
2532 // ParmVarDecl Implementation
2533 //===----------------------------------------------------------------------===//
2534 
2536  SourceLocation StartLoc,
2538  QualType T, TypeSourceInfo *TInfo,
2539  StorageClass S, Expr *DefArg) {
2540  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2541  S, DefArg);
2542 }
2543 
2546  QualType T = TSI ? TSI->getType() : getType();
2547  if (const auto *DT = dyn_cast<DecayedType>(T))
2548  return DT->getOriginalType();
2549  return T;
2550 }
2551 
2553  return new (C, ID)
2554  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2555  nullptr, QualType(), nullptr, SC_None, nullptr);
2556 }
2557 
2559  if (!hasInheritedDefaultArg()) {
2560  SourceRange ArgRange = getDefaultArgRange();
2561  if (ArgRange.isValid())
2562  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2563  }
2564 
2565  // DeclaratorDecl considers the range of postfix types as overlapping with the
2566  // declaration name, but this is not the case with parameters in ObjC methods.
2567  if (isa<ObjCMethodDecl>(getDeclContext()))
2569 
2571 }
2572 
2574  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2575  assert(!hasUninstantiatedDefaultArg() &&
2576  "Default argument is not yet instantiated!");
2577 
2578  Expr *Arg = getInit();
2579  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2580  return E->getSubExpr();
2581 
2582  return Arg;
2583 }
2584 
2586  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2587  Init = defarg;
2588 }
2589 
2591  switch (ParmVarDeclBits.DefaultArgKind) {
2592  case DAK_None:
2593  case DAK_Unparsed:
2594  // Nothing we can do here.
2595  return SourceRange();
2596 
2597  case DAK_Uninstantiated:
2598  return getUninstantiatedDefaultArg()->getSourceRange();
2599 
2600  case DAK_Normal:
2601  if (const Expr *E = getInit())
2602  return E->getSourceRange();
2603 
2604  // Missing an actual expression, may be invalid.
2605  return SourceRange();
2606  }
2607  llvm_unreachable("Invalid default argument kind.");
2608 }
2609 
2611  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2612  Init = arg;
2613 }
2614 
2616  assert(hasUninstantiatedDefaultArg() &&
2617  "Wrong kind of initialization expression!");
2618  return cast_or_null<Expr>(Init.get<Stmt *>());
2619 }
2620 
2622  // FIXME: We should just return false for DAK_None here once callers are
2623  // prepared for the case that we encountered an invalid default argument and
2624  // were unable to even build an invalid expression.
2625  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2626  !Init.isNull();
2627 }
2628 
2630  return isa<PackExpansionType>(getType());
2631 }
2632 
2633 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2634  getASTContext().setParameterIndex(this, parameterIndex);
2635  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2636 }
2637 
2638 unsigned ParmVarDecl::getParameterIndexLarge() const {
2639  return getASTContext().getParameterIndex(this);
2640 }
2641 
2642 //===----------------------------------------------------------------------===//
2643 // FunctionDecl Implementation
2644 //===----------------------------------------------------------------------===//
2645 
2647  SourceLocation StartLoc,
2648  const DeclarationNameInfo &NameInfo, QualType T,
2649  TypeSourceInfo *TInfo, StorageClass S,
2650  bool isInlineSpecified, bool isConstexprSpecified)
2651  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2652  StartLoc),
2654  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2655  assert(T.isNull() || T->isFunctionType());
2656  setStorageClass(S);
2657  setInlineSpecified(isInlineSpecified);
2658  setExplicitSpecified(false);
2659  setVirtualAsWritten(false);
2660  setPure(false);
2661  setHasInheritedPrototype(false);
2662  setHasWrittenPrototype(true);
2663  setDeletedAsWritten(false);
2664  setTrivial(false);
2665  setTrivialForCall(false);
2666  setDefaulted(false);
2667  setExplicitlyDefaulted(false);
2668  setHasImplicitReturnZero(false);
2669  setLateTemplateParsed(false);
2670  setConstexpr(isConstexprSpecified);
2672  setUsesSEHTry(false);
2673  setHasSkippedBody(false);
2674  setWillHaveBody(false);
2675  setIsMultiVersion(false);
2676  setHasODRHash(false);
2677 }
2678 
2680  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2681  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2682  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2683  if (TemplateArgs)
2684  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2685 }
2686 
2688  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2689  return FT->isVariadic();
2690  return false;
2691 }
2692 
2693 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2694  for (auto I : redecls()) {
2695  if (I->doesThisDeclarationHaveABody()) {
2696  Definition = I;
2697  return true;
2698  }
2699  }
2700 
2701  return false;
2702 }
2703 
2705 {
2706  Stmt *S = getBody();
2707  if (!S) {
2708  // Since we don't have a body for this function, we don't know if it's
2709  // trivial or not.
2710  return false;
2711  }
2712 
2713  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2714  return true;
2715  return false;
2716 }
2717 
2718 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2719  for (auto I : redecls()) {
2720  if (I->isThisDeclarationADefinition()) {
2721  Definition = I;
2722  return true;
2723  }
2724  }
2725 
2726  return false;
2727 }
2728 
2729 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2730  if (!hasBody(Definition))
2731  return nullptr;
2732 
2733  if (Definition->Body)
2734  return Definition->Body.get(getASTContext().getExternalSource());
2735 
2736  return nullptr;
2737 }
2738 
2740  Body = B;
2741  if (B)
2742  EndRangeLoc = B->getEndLoc();
2743 }
2744 
2746  FunctionDeclBits.IsPure = P;
2747  if (P)
2748  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2749  Parent->markedVirtualFunctionPure();
2750 }
2751 
2752 template<std::size_t Len>
2753 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2754  IdentifierInfo *II = ND->getIdentifier();
2755  return II && II->isStr(Str);
2756 }
2757 
2758 bool FunctionDecl::isMain() const {
2759  const TranslationUnitDecl *tunit =
2761  return tunit &&
2762  !tunit->getASTContext().getLangOpts().Freestanding &&
2763  isNamed(this, "main");
2764 }
2765 
2767  const TranslationUnitDecl *TUnit =
2769  if (!TUnit)
2770  return false;
2771 
2772  // Even though we aren't really targeting MSVCRT if we are freestanding,
2773  // semantic analysis for these functions remains the same.
2774 
2775  // MSVCRT entry points only exist on MSVCRT targets.
2776  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2777  return false;
2778 
2779  // Nameless functions like constructors cannot be entry points.
2780  if (!getIdentifier())
2781  return false;
2782 
2783  return llvm::StringSwitch<bool>(getName())
2784  .Cases("main", // an ANSI console app
2785  "wmain", // a Unicode console App
2786  "WinMain", // an ANSI GUI app
2787  "wWinMain", // a Unicode GUI app
2788  "DllMain", // a DLL
2789  true)
2790  .Default(false);
2791 }
2792 
2794  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2795  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2796  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2797  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2798  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2799 
2801  return false;
2802 
2803  const auto *proto = getType()->castAs<FunctionProtoType>();
2804  if (proto->getNumParams() != 2 || proto->isVariadic())
2805  return false;
2806 
2807  ASTContext &Context =
2808  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2809  ->getASTContext();
2810 
2811  // The result type and first argument type are constant across all
2812  // these operators. The second argument must be exactly void*.
2813  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2814 }
2815 
2817  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2818  return false;
2819  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2820  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2821  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2822  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2823  return false;
2824 
2825  if (isa<CXXRecordDecl>(getDeclContext()))
2826  return false;
2827 
2828  // This can only fail for an invalid 'operator new' declaration.
2830  return false;
2831 
2832  const auto *FPT = getType()->castAs<FunctionProtoType>();
2833  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2834  return false;
2835 
2836  // If this is a single-parameter function, it must be a replaceable global
2837  // allocation or deallocation function.
2838  if (FPT->getNumParams() == 1)
2839  return true;
2840 
2841  unsigned Params = 1;
2842  QualType Ty = FPT->getParamType(Params);
2843  ASTContext &Ctx = getASTContext();
2844 
2845  auto Consume = [&] {
2846  ++Params;
2847  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2848  };
2849 
2850  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2851  bool IsSizedDelete = false;
2852  if (Ctx.getLangOpts().SizedDeallocation &&
2853  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2854  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2855  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2856  IsSizedDelete = true;
2857  Consume();
2858  }
2859 
2860  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2861  // new/delete.
2862  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2863  if (IsAligned)
2864  *IsAligned = true;
2865  Consume();
2866  }
2867 
2868  // Finally, if this is not a sized delete, the final parameter can
2869  // be a 'const std::nothrow_t&'.
2870  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2871  Ty = Ty->getPointeeType();
2872  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2873  return false;
2874  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2875  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2876  Consume();
2877  }
2878 
2879  return Params == FPT->getNumParams();
2880 }
2881 
2883  // C++ P0722:
2884  // Within a class C, a single object deallocation function with signature
2885  // (T, std::destroying_delete_t, <more params>)
2886  // is a destroying operator delete.
2887  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2888  getNumParams() < 2)
2889  return false;
2890 
2891  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2892  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2893  RD->getIdentifier()->isStr("destroying_delete_t");
2894 }
2895 
2897  return getDeclLanguageLinkage(*this);
2898 }
2899 
2901  return isDeclExternC(*this);
2902 }
2903 
2906 }
2907 
2910 }
2911 
2913  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2914  return Method->isStatic();
2915 
2917  return false;
2918 
2919  for (const DeclContext *DC = getDeclContext();
2920  DC->isNamespace();
2921  DC = DC->getParent()) {
2922  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2923  if (!Namespace->getDeclName())
2924  return false;
2925  break;
2926  }
2927  }
2928 
2929  return true;
2930 }
2931 
2933  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2934  hasAttr<C11NoReturnAttr>())
2935  return true;
2936 
2937  if (auto *FnTy = getType()->getAs<FunctionType>())
2938  return FnTy->getNoReturnAttr();
2939 
2940  return false;
2941 }
2942 
2944  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
2945 }
2946 
2948  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
2949 }
2950 
2952  return isMultiVersion() && hasAttr<TargetAttr>();
2953 }
2954 
2955 void
2958 
2960  FunctionTemplateDecl *PrevFunTmpl
2961  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2962  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2963  FunTmpl->setPreviousDecl(PrevFunTmpl);
2964  }
2965 
2966  if (PrevDecl && PrevDecl->isInlined())
2967  setImplicitlyInline(true);
2968 }
2969 
2971 
2972 /// Returns a value indicating whether this function
2973 /// corresponds to a builtin function.
2974 ///
2975 /// The function corresponds to a built-in function if it is
2976 /// declared at translation scope or within an extern "C" block and
2977 /// its name matches with the name of a builtin. The returned value
2978 /// will be 0 for functions that do not correspond to a builtin, a
2979 /// value of type \c Builtin::ID if in the target-independent range
2980 /// \c [1,Builtin::First), or a target-specific builtin value.
2981 unsigned FunctionDecl::getBuiltinID() const {
2982  if (!getIdentifier())
2983  return 0;
2984 
2985  unsigned BuiltinID = getIdentifier()->getBuiltinID();
2986  if (!BuiltinID)
2987  return 0;
2988 
2989  ASTContext &Context = getASTContext();
2990  if (Context.getLangOpts().CPlusPlus) {
2991  const auto *LinkageDecl =
2993  // In C++, the first declaration of a builtin is always inside an implicit
2994  // extern "C".
2995  // FIXME: A recognised library function may not be directly in an extern "C"
2996  // declaration, for instance "extern "C" { namespace std { decl } }".
2997  if (!LinkageDecl) {
2998  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2999  Context.getTargetInfo().getCXXABI().isMicrosoft())
3000  return Builtin::BI__GetExceptionInfo;
3001  return 0;
3002  }
3003  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3004  return 0;
3005  }
3006 
3007  // If the function is marked "overloadable", it has a different mangled name
3008  // and is not the C library function.
3009  if (hasAttr<OverloadableAttr>())
3010  return 0;
3011 
3012  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3013  return BuiltinID;
3014 
3015  // This function has the name of a known C library
3016  // function. Determine whether it actually refers to the C library
3017  // function or whether it just has the same name.
3018 
3019  // If this is a static function, it's not a builtin.
3020  if (getStorageClass() == SC_Static)
3021  return 0;
3022 
3023  // OpenCL v1.2 s6.9.f - The library functions defined in
3024  // the C99 standard headers are not available.
3025  if (Context.getLangOpts().OpenCL &&
3026  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3027  return 0;
3028 
3029  // CUDA does not have device-side standard library. printf and malloc are the
3030  // only special cases that are supported by device-side runtime.
3031  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3032  !hasAttr<CUDAHostAttr>() &&
3033  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3034  return 0;
3035 
3036  return BuiltinID;
3037 }
3038 
3039 /// getNumParams - Return the number of parameters this function must have
3040 /// based on its FunctionType. This is the length of the ParamInfo array
3041 /// after it has been created.
3042 unsigned FunctionDecl::getNumParams() const {
3043  const auto *FPT = getType()->getAs<FunctionProtoType>();
3044  return FPT ? FPT->getNumParams() : 0;
3045 }
3046 
3047 void FunctionDecl::setParams(ASTContext &C,
3048  ArrayRef<ParmVarDecl *> NewParamInfo) {
3049  assert(!ParamInfo && "Already has param info!");
3050  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3051 
3052  // Zero params -> null pointer.
3053  if (!NewParamInfo.empty()) {
3054  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3055  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3056  }
3057 }
3058 
3059 /// getMinRequiredArguments - Returns the minimum number of arguments
3060 /// needed to call this function. This may be fewer than the number of
3061 /// function parameters, if some of the parameters have default
3062 /// arguments (in C++) or are parameter packs (C++11).
3064  if (!getASTContext().getLangOpts().CPlusPlus)
3065  return getNumParams();
3066 
3067  unsigned NumRequiredArgs = 0;
3068  for (auto *Param : parameters())
3069  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3070  ++NumRequiredArgs;
3071  return NumRequiredArgs;
3072 }
3073 
3074 /// The combination of the extern and inline keywords under MSVC forces
3075 /// the function to be required.
3076 ///
3077 /// Note: This function assumes that we will only get called when isInlined()
3078 /// would return true for this FunctionDecl.
3080  assert(isInlined() && "expected to get called on an inlined function!");
3081 
3082  const ASTContext &Context = getASTContext();
3083  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3084  !hasAttr<DLLExportAttr>())
3085  return false;
3086 
3087  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3088  FD = FD->getPreviousDecl())
3089  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3090  return true;
3091 
3092  return false;
3093 }
3094 
3095 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3096  if (Redecl->getStorageClass() != SC_Extern)
3097  return false;
3098 
3099  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3100  FD = FD->getPreviousDecl())
3101  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3102  return false;
3103 
3104  return true;
3105 }
3106 
3107 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3108  // Only consider file-scope declarations in this test.
3109  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3110  return false;
3111 
3112  // Only consider explicit declarations; the presence of a builtin for a
3113  // libcall shouldn't affect whether a definition is externally visible.
3114  if (Redecl->isImplicit())
3115  return false;
3116 
3117  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3118  return true; // Not an inline definition
3119 
3120  return false;
3121 }
3122 
3123 /// For a function declaration in C or C++, determine whether this
3124 /// declaration causes the definition to be externally visible.
3125 ///
3126 /// For instance, this determines if adding the current declaration to the set
3127 /// of redeclarations of the given functions causes
3128 /// isInlineDefinitionExternallyVisible to change from false to true.
3130  assert(!doesThisDeclarationHaveABody() &&
3131  "Must have a declaration without a body.");
3132 
3133  ASTContext &Context = getASTContext();
3134 
3135  if (Context.getLangOpts().MSVCCompat) {
3136  const FunctionDecl *Definition;
3137  if (hasBody(Definition) && Definition->isInlined() &&
3138  redeclForcesDefMSVC(this))
3139  return true;
3140  }
3141 
3142  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3143  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3144  // an externally visible definition.
3145  //
3146  // FIXME: What happens if gnu_inline gets added on after the first
3147  // declaration?
3149  return false;
3150 
3151  const FunctionDecl *Prev = this;
3152  bool FoundBody = false;
3153  while ((Prev = Prev->getPreviousDecl())) {
3154  FoundBody |= Prev->Body.isValid();
3155 
3156  if (Prev->Body) {
3157  // If it's not the case that both 'inline' and 'extern' are
3158  // specified on the definition, then it is always externally visible.
3159  if (!Prev->isInlineSpecified() ||
3160  Prev->getStorageClass() != SC_Extern)
3161  return false;
3162  } else if (Prev->isInlineSpecified() &&
3163  Prev->getStorageClass() != SC_Extern) {
3164  return false;
3165  }
3166  }
3167  return FoundBody;
3168  }
3169 
3170  if (Context.getLangOpts().CPlusPlus)
3171  return false;
3172 
3173  // C99 6.7.4p6:
3174  // [...] If all of the file scope declarations for a function in a
3175  // translation unit include the inline function specifier without extern,
3176  // then the definition in that translation unit is an inline definition.
3178  return false;
3179  const FunctionDecl *Prev = this;
3180  bool FoundBody = false;
3181  while ((Prev = Prev->getPreviousDecl())) {
3182  FoundBody |= Prev->Body.isValid();
3183  if (RedeclForcesDefC99(Prev))
3184  return false;
3185  }
3186  return FoundBody;
3187 }
3188 
3190  const TypeSourceInfo *TSI = getTypeSourceInfo();
3191  if (!TSI)
3192  return SourceRange();
3193  FunctionTypeLoc FTL =
3195  if (!FTL)
3196  return SourceRange();
3197 
3198  // Skip self-referential return types.
3200  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3201  SourceLocation Boundary = getNameInfo().getBeginLoc();
3202  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3203  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3204  return SourceRange();
3205 
3206  return RTRange;
3207 }
3208 
3210  const TypeSourceInfo *TSI = getTypeSourceInfo();
3211  if (!TSI)
3212  return SourceRange();
3213  FunctionTypeLoc FTL =
3215  if (!FTL)
3216  return SourceRange();
3217 
3218  return FTL.getExceptionSpecRange();
3219 }
3220 
3222  QualType RetType = getReturnType();
3223  if (const auto *Ret = RetType->getAsRecordDecl()) {
3224  if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
3225  return R;
3226  } else if (const auto *ET = RetType->getAs<EnumType>()) {
3227  if (const EnumDecl *ED = ET->getDecl()) {
3228  if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
3229  return R;
3230  }
3231  }
3232  return getAttr<WarnUnusedResultAttr>();
3233 }
3234 
3235 /// For an inline function definition in C, or for a gnu_inline function
3236 /// in C++, determine whether the definition will be externally visible.
3237 ///
3238 /// Inline function definitions are always available for inlining optimizations.
3239 /// However, depending on the language dialect, declaration specifiers, and
3240 /// attributes, the definition of an inline function may or may not be
3241 /// "externally" visible to other translation units in the program.
3242 ///
3243 /// In C99, inline definitions are not externally visible by default. However,
3244 /// if even one of the global-scope declarations is marked "extern inline", the
3245 /// inline definition becomes externally visible (C99 6.7.4p6).
3246 ///
3247 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3248 /// definition, we use the GNU semantics for inline, which are nearly the
3249 /// opposite of C99 semantics. In particular, "inline" by itself will create
3250 /// an externally visible symbol, but "extern inline" will not create an
3251 /// externally visible symbol.
3253  assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3254  "Must be a function definition");
3255  assert(isInlined() && "Function must be inline");
3256  ASTContext &Context = getASTContext();
3257 
3258  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3259  // Note: If you change the logic here, please change
3260  // doesDeclarationForceExternallyVisibleDefinition as well.
3261  //
3262  // If it's not the case that both 'inline' and 'extern' are
3263  // specified on the definition, then this inline definition is
3264  // externally visible.
3265  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3266  return true;
3267 
3268  // If any declaration is 'inline' but not 'extern', then this definition
3269  // is externally visible.
3270  for (auto Redecl : redecls()) {
3271  if (Redecl->isInlineSpecified() &&
3272  Redecl->getStorageClass() != SC_Extern)
3273  return true;
3274  }
3275 
3276  return false;
3277  }
3278 
3279  // The rest of this function is C-only.
3280  assert(!Context.getLangOpts().CPlusPlus &&
3281  "should not use C inline rules in C++");
3282 
3283  // C99 6.7.4p6:
3284  // [...] If all of the file scope declarations for a function in a
3285  // translation unit include the inline function specifier without extern,
3286  // then the definition in that translation unit is an inline definition.
3287  for (auto Redecl : redecls()) {
3288  if (RedeclForcesDefC99(Redecl))
3289  return true;
3290  }
3291 
3292  // C99 6.7.4p6:
3293  // An inline definition does not provide an external definition for the
3294  // function, and does not forbid an external definition in another
3295  // translation unit.
3296  return false;
3297 }
3298 
3299 /// getOverloadedOperator - Which C++ overloaded operator this
3300 /// function represents, if any.
3302  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3304  else
3305  return OO_None;
3306 }
3307 
3308 /// getLiteralIdentifier - The literal suffix identifier this function
3309 /// represents, if any.
3313  else
3314  return nullptr;
3315 }
3316 
3318  if (TemplateOrSpecialization.isNull())
3319  return TK_NonTemplate;
3320  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3321  return TK_FunctionTemplate;
3322  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3323  return TK_MemberSpecialization;
3324  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3326  if (TemplateOrSpecialization.is
3329 
3330  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3331 }
3332 
3335  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3336 
3337  return nullptr;
3338 }
3339 
3341  return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3342 }
3343 
3344 void
3345 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3346  FunctionDecl *FD,
3348  assert(TemplateOrSpecialization.isNull() &&
3349  "Member function is already a specialization");
3351  = new (C) MemberSpecializationInfo(FD, TSK);
3352  TemplateOrSpecialization = Info;
3353 }
3354 
3356  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3357 }
3358 
3360  TemplateOrSpecialization = Template;
3361 }
3362 
3364  // If the function is invalid, it can't be implicitly instantiated.
3365  if (isInvalidDecl())
3366  return false;
3367 
3368  switch (getTemplateSpecializationKind()) {
3369  case TSK_Undeclared:
3371  return false;
3372 
3374  return true;
3375 
3376  // It is possible to instantiate TSK_ExplicitSpecialization kind
3377  // if the FunctionDecl has a class scope specialization pattern.
3379  return getClassScopeSpecializationPattern() != nullptr;
3380 
3382  // Handled below.
3383  break;
3384  }
3385 
3386  // Find the actual template from which we will instantiate.
3387  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3388  bool HasPattern = false;
3389  if (PatternDecl)
3390  HasPattern = PatternDecl->hasBody(PatternDecl);
3391 
3392  // C++0x [temp.explicit]p9:
3393  // Except for inline functions, other explicit instantiation declarations
3394  // have the effect of suppressing the implicit instantiation of the entity
3395  // to which they refer.
3396  if (!HasPattern || !PatternDecl)
3397  return true;
3398 
3399  return PatternDecl->isInlined();
3400 }
3401 
3403  switch (getTemplateSpecializationKind()) {
3404  case TSK_Undeclared:
3406  return false;
3410  return true;
3411  }
3412  llvm_unreachable("All TSK values handled.");
3413 }
3414 
3416  // Handle class scope explicit specialization special case.
3418  if (auto *Spec = getClassScopeSpecializationPattern())
3419  return getDefinitionOrSelf(Spec);
3420  return nullptr;
3421  }
3422 
3423  // If this is a generic lambda call operator specialization, its
3424  // instantiation pattern is always its primary template's pattern
3425  // even if its primary template was instantiated from another
3426  // member template (which happens with nested generic lambdas).
3427  // Since a lambda's call operator's body is transformed eagerly,
3428  // we don't have to go hunting for a prototype definition template
3429  // (i.e. instantiated-from-member-template) to use as an instantiation
3430  // pattern.
3431 
3433  dyn_cast<CXXMethodDecl>(this))) {
3434  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3435  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3436  }
3437 
3438  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3439  while (Primary->getInstantiatedFromMemberTemplate()) {
3440  // If we have hit a point where the user provided a specialization of
3441  // this template, we're done looking.
3442  if (Primary->isMemberSpecialization())
3443  break;
3444  Primary = Primary->getInstantiatedFromMemberTemplate();
3445  }
3446 
3447  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3448  }
3449 
3450  if (auto *MFD = getInstantiatedFromMemberFunction())
3451  return getDefinitionOrSelf(MFD);
3452 
3453  return nullptr;
3454 }
3455 
3458  = TemplateOrSpecialization
3459  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3460  return Info->Template.getPointer();
3461  }
3462  return nullptr;
3463 }
3464 
3467 }
3468 
3471  return TemplateOrSpecialization
3472  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3473 }
3474 
3475 const TemplateArgumentList *
3478  = TemplateOrSpecialization
3479  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3480  return Info->TemplateArguments;
3481  }
3482  return nullptr;
3483 }
3484 
3488  = TemplateOrSpecialization
3489  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3490  return Info->TemplateArgumentsAsWritten;
3491  }
3492  return nullptr;
3493 }
3494 
3495 void
3496 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3497  FunctionTemplateDecl *Template,
3498  const TemplateArgumentList *TemplateArgs,
3499  void *InsertPos,
3501  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3502  SourceLocation PointOfInstantiation) {
3503  assert(TSK != TSK_Undeclared &&
3504  "Must specify the type of function template specialization");
3506  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3507  if (!Info)
3508  Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3509  TemplateArgs,
3510  TemplateArgsAsWritten,
3511  PointOfInstantiation);
3512  TemplateOrSpecialization = Info;
3513  Template->addSpecialization(Info, InsertPos);
3514 }
3515 
3516 void
3518  const UnresolvedSetImpl &Templates,
3519  const TemplateArgumentListInfo &TemplateArgs) {
3520  assert(TemplateOrSpecialization.isNull());
3523  TemplateArgs);
3524  TemplateOrSpecialization = Info;
3525 }
3526 
3529  return TemplateOrSpecialization
3531 }
3532 
3535  ASTContext &Context, const UnresolvedSetImpl &Ts,
3536  const TemplateArgumentListInfo &TArgs) {
3537  void *Buffer = Context.Allocate(
3538  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3539  TArgs.size(), Ts.size()));
3540  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3541 }
3542 
3543 DependentFunctionTemplateSpecializationInfo::
3544 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3545  const TemplateArgumentListInfo &TArgs)
3546  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3547  NumTemplates = Ts.size();
3548  NumArgs = TArgs.size();
3549 
3550  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3551  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3552  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3553 
3554  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3555  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3556  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3557 }
3558 
3560  // For a function template specialization, query the specialization
3561  // information object.
3563  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3564  if (FTSInfo)
3565  return FTSInfo->getTemplateSpecializationKind();
3566 
3567  MemberSpecializationInfo *MSInfo
3568  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3569  if (MSInfo)
3570  return MSInfo->getTemplateSpecializationKind();
3571 
3572  return TSK_Undeclared;
3573 }
3574 
3575 void
3577  SourceLocation PointOfInstantiation) {
3579  = TemplateOrSpecialization.dyn_cast<
3581  FTSInfo->setTemplateSpecializationKind(TSK);
3582  if (TSK != TSK_ExplicitSpecialization &&
3583  PointOfInstantiation.isValid() &&
3584  FTSInfo->getPointOfInstantiation().isInvalid()) {
3585  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3587  L->InstantiationRequested(this);
3588  }
3589  } else if (MemberSpecializationInfo *MSInfo
3590  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3591  MSInfo->setTemplateSpecializationKind(TSK);
3592  if (TSK != TSK_ExplicitSpecialization &&
3593  PointOfInstantiation.isValid() &&
3594  MSInfo->getPointOfInstantiation().isInvalid()) {
3595  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3597  L->InstantiationRequested(this);
3598  }
3599  } else
3600  llvm_unreachable("Function cannot have a template specialization kind");
3601 }
3602 
3605  = TemplateOrSpecialization.dyn_cast<
3607  return FTSInfo->getPointOfInstantiation();
3608  else if (MemberSpecializationInfo *MSInfo
3609  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3610  return MSInfo->getPointOfInstantiation();
3611 
3612  return SourceLocation();
3613 }
3614 
3616  if (Decl::isOutOfLine())
3617  return true;
3618 
3619  // If this function was instantiated from a member function of a
3620  // class template, check whether that member function was defined out-of-line.
3622  const FunctionDecl *Definition;
3623  if (FD->hasBody(Definition))
3624  return Definition->isOutOfLine();
3625  }
3626 
3627  // If this function was instantiated from a function template,
3628  // check whether that function template was defined out-of-line.
3629  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3630  const FunctionDecl *Definition;
3631  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3632  return Definition->isOutOfLine();
3633  }
3634 
3635  return false;
3636 }
3637 
3639  return SourceRange(getOuterLocStart(), EndRangeLoc);
3640 }
3641 
3643  IdentifierInfo *FnInfo = getIdentifier();
3644 
3645  if (!FnInfo)
3646  return 0;
3647 
3648  // Builtin handling.
3649  switch (getBuiltinID()) {
3650  case Builtin::BI__builtin_memset:
3651  case Builtin::BI__builtin___memset_chk:
3652  case Builtin::BImemset:
3653  return Builtin::BImemset;
3654 
3655  case Builtin::BI__builtin_memcpy:
3656  case Builtin::BI__builtin___memcpy_chk:
3657  case Builtin::BImemcpy:
3658  return Builtin::BImemcpy;
3659 
3660  case Builtin::BI__builtin_memmove:
3661  case Builtin::BI__builtin___memmove_chk:
3662  case Builtin::BImemmove:
3663  return Builtin::BImemmove;
3664 
3665  case Builtin::BIstrlcpy:
3666  case Builtin::BI__builtin___strlcpy_chk:
3667  return Builtin::BIstrlcpy;
3668 
3669  case Builtin::BIstrlcat:
3670  case Builtin::BI__builtin___strlcat_chk:
3671  return Builtin::BIstrlcat;
3672 
3673  case Builtin::BI__builtin_memcmp:
3674  case Builtin::BImemcmp:
3675  return Builtin::BImemcmp;
3676 
3677  case Builtin::BI__builtin_strncpy:
3678  case Builtin::BI__builtin___strncpy_chk:
3679  case Builtin::BIstrncpy:
3680  return Builtin::BIstrncpy;
3681 
3682  case Builtin::BI__builtin_strncmp:
3683  case Builtin::BIstrncmp:
3684  return Builtin::BIstrncmp;
3685 
3686  case Builtin::BI__builtin_strncasecmp:
3687  case Builtin::BIstrncasecmp:
3688  return Builtin::BIstrncasecmp;
3689 
3690  case Builtin::BI__builtin_strncat:
3691  case Builtin::BI__builtin___strncat_chk:
3692  case Builtin::BIstrncat:
3693  return Builtin::BIstrncat;
3694 
3695  case Builtin::BI__builtin_strndup:
3696  case Builtin::BIstrndup:
3697  return Builtin::BIstrndup;
3698 
3699  case Builtin::BI__builtin_strlen:
3700  case Builtin::BIstrlen:
3701  return Builtin::BIstrlen;
3702 
3703  case Builtin::BI__builtin_bzero:
3704  case Builtin::BIbzero:
3705  return Builtin::BIbzero;
3706 
3707  default:
3708  if (isExternC()) {
3709  if (FnInfo->isStr("memset"))
3710  return Builtin::BImemset;
3711  else if (FnInfo->isStr("memcpy"))
3712  return Builtin::BImemcpy;
3713  else if (FnInfo->isStr("memmove"))
3714  return Builtin::BImemmove;
3715  else if (FnInfo->isStr("memcmp"))
3716  return Builtin::BImemcmp;
3717  else if (FnInfo->isStr("strncpy"))
3718  return Builtin::BIstrncpy;
3719  else if (FnInfo->isStr("strncmp"))
3720  return Builtin::BIstrncmp;
3721  else if (FnInfo->isStr("strncasecmp"))
3722  return Builtin::BIstrncasecmp;
3723  else if (FnInfo->isStr("strncat"))
3724  return Builtin::BIstrncat;
3725  else if (FnInfo->isStr("strndup"))
3726  return Builtin::BIstrndup;
3727  else if (FnInfo->isStr("strlen"))
3728  return Builtin::BIstrlen;
3729  else if (FnInfo->isStr("bzero"))
3730  return Builtin::BIbzero;
3731  }
3732  break;
3733  }
3734  return 0;
3735 }
3736 
3737 unsigned FunctionDecl::getODRHash() const {
3738  assert(hasODRHash());
3739  return ODRHash;
3740 }
3741 
3743  if (hasODRHash())
3744  return ODRHash;
3745 
3746  if (auto *FT = getInstantiatedFromMemberFunction()) {
3747  setHasODRHash(true);
3748  ODRHash = FT->getODRHash();
3749  return ODRHash;
3750  }
3751 
3752  class ODRHash Hash;
3753  Hash.AddFunctionDecl(this);
3754  setHasODRHash(true);
3755  ODRHash = Hash.CalculateHash();
3756  return ODRHash;
3757 }
3758 
3759 //===----------------------------------------------------------------------===//
3760 // FieldDecl Implementation
3761 //===----------------------------------------------------------------------===//
3762 
3764  SourceLocation StartLoc, SourceLocation IdLoc,
3766  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3767  InClassInitStyle InitStyle) {
3768  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3769  BW, Mutable, InitStyle);
3770 }
3771 
3773  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3774  SourceLocation(), nullptr, QualType(), nullptr,
3775  nullptr, false, ICIS_NoInit);
3776 }
3777 
3779  if (!isImplicit() || getDeclName())
3780  return false;
3781 
3782  if (const auto *Record = getType()->getAs<RecordType>())
3783  return Record->getDecl()->isAnonymousStructOrUnion();
3784 
3785  return false;
3786 }
3787 
3788 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3789  assert(isBitField() && "not a bitfield");
3790  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3791 }
3792 
3794  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3795  getBitWidthValue(Ctx) == 0;
3796 }
3797 
3798 unsigned FieldDecl::getFieldIndex() const {
3799  const FieldDecl *Canonical = getCanonicalDecl();
3800  if (Canonical != this)
3801  return Canonical->getFieldIndex();
3802 
3803  if (CachedFieldIndex) return CachedFieldIndex - 1;
3804 
3805  unsigned Index = 0;
3806  const RecordDecl *RD = getParent()->getDefinition();
3807  assert(RD && "requested index for field of struct with no definition");
3808 
3809  for (auto *Field : RD->fields()) {
3810  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3811  ++Index;
3812  }
3813 
3814  assert(CachedFieldIndex && "failed to find field in parent");
3815  return CachedFieldIndex - 1;
3816 }
3817 
3819  const Expr *FinalExpr = getInClassInitializer();
3820  if (!FinalExpr)
3821  FinalExpr = getBitWidth();
3822  if (FinalExpr)
3823  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3825 }
3826 
3828  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3829  "capturing type in non-lambda or captured record.");
3830  assert(InitStorage.getInt() == ISK_NoInit &&
3831  InitStorage.getPointer() == nullptr &&
3832  "bit width, initializer or captured type already set");
3833  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3834  ISK_CapturedVLAType);
3835 }
3836 
3837 //===----------------------------------------------------------------------===//
3838 // TagDecl Implementation
3839 //===----------------------------------------------------------------------===//
3840 
3842  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3843  SourceLocation StartL)
3844  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3845  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3846  assert((DK != Enum || TK == TTK_Enum) &&
3847  "EnumDecl not matched with TTK_Enum");
3848  setPreviousDecl(PrevDecl);
3849  setTagKind(TK);
3850  setCompleteDefinition(false);
3851  setBeingDefined(false);
3852  setEmbeddedInDeclarator(false);
3853  setFreeStanding(false);
3855 }
3856 
3858  return getTemplateOrInnerLocStart(this);
3859 }
3860 
3862  SourceLocation RBraceLoc = BraceRange.getEnd();
3863  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3864  return SourceRange(getOuterLocStart(), E);
3865 }
3866 
3868 
3870  TypedefNameDeclOrQualifier = TDD;
3871  if (const Type *T = getTypeForDecl()) {
3872  (void)T;
3873  assert(T->isLinkageValid());
3874  }
3875  assert(isLinkageValid());
3876 }
3877 
3879  setBeingDefined(true);
3880 
3881  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3882  struct CXXRecordDecl::DefinitionData *Data =
3883  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3884  for (auto I : redecls())
3885  cast<CXXRecordDecl>(I)->DefinitionData = Data;
3886  }
3887 }
3888 
3890  assert((!isa<CXXRecordDecl>(this) ||
3891  cast<CXXRecordDecl>(this)->hasDefinition()) &&
3892  "definition completed but not started");
3893 
3894  setCompleteDefinition(true);
3895  setBeingDefined(false);
3896 
3898  L->CompletedTagDefinition(this);
3899 }
3900 
3902  if (isCompleteDefinition())
3903  return const_cast<TagDecl *>(this);
3904 
3905  // If it's possible for us to have an out-of-date definition, check now.
3906  if (mayHaveOutOfDateDef()) {
3907  if (IdentifierInfo *II = getIdentifier()) {
3908  if (II->isOutOfDate()) {
3909  updateOutOfDate(*II);
3910  }
3911  }
3912  }
3913 
3914  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3915  return CXXRD->getDefinition();
3916 
3917  for (auto R : redecls())
3918  if (R->isCompleteDefinition())
3919  return R;
3920 
3921  return nullptr;
3922 }
3923 
3925  if (QualifierLoc) {
3926  // Make sure the extended qualifier info is allocated.
3927  if (!hasExtInfo())
3928  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3929  // Set qualifier info.
3930  getExtInfo()->QualifierLoc = QualifierLoc;
3931  } else {
3932  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3933  if (hasExtInfo()) {
3934  if (getExtInfo()->NumTemplParamLists == 0) {
3935  getASTContext().Deallocate(getExtInfo());
3936  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3937  }
3938  else
3939  getExtInfo()->QualifierLoc = QualifierLoc;
3940  }
3941  }
3942 }
3943 
3945  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3946  assert(!TPLists.empty());
3947  // Make sure the extended decl info is allocated.
3948  if (!hasExtInfo())
3949  // Allocate external info struct.
3950  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3951  // Set the template parameter lists info.
3952  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3953 }
3954 
3955 //===----------------------------------------------------------------------===//
3956 // EnumDecl Implementation
3957 //===----------------------------------------------------------------------===//
3958 
3959 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3960  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3961  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
3962  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3963  assert(Scoped || !ScopedUsingClassTag);
3964  IntegerType = nullptr;
3965  setNumPositiveBits(0);
3966  setNumNegativeBits(0);
3967  setScoped(Scoped);
3968  setScopedUsingClassTag(ScopedUsingClassTag);
3969  setFixed(Fixed);
3970  setHasODRHash(false);
3971  ODRHash = 0;
3972 }
3973 
3974 void EnumDecl::anchor() {}
3975 
3977  SourceLocation StartLoc, SourceLocation IdLoc,
3978  IdentifierInfo *Id,
3979  EnumDecl *PrevDecl, bool IsScoped,
3980  bool IsScopedUsingClassTag, bool IsFixed) {
3981  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3982  IsScoped, IsScopedUsingClassTag, IsFixed);
3983  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
3984  C.getTypeDeclType(Enum, PrevDecl);
3985  return Enum;
3986 }
3987 
3989  EnumDecl *Enum =
3990  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3991  nullptr, nullptr, false, false, false);
3992  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
3993  return Enum;
3994 }
3995 
3997  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3998  return TI->getTypeLoc().getSourceRange();
3999  return SourceRange();
4000 }
4001 
4003  QualType NewPromotionType,
4004  unsigned NumPositiveBits,
4005  unsigned NumNegativeBits) {
4006  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4007  if (!IntegerType)
4008  IntegerType = NewType.getTypePtr();
4009  PromotionType = NewPromotionType;
4010  setNumPositiveBits(NumPositiveBits);
4011  setNumNegativeBits(NumNegativeBits);
4013 }
4014 
4015 bool EnumDecl::isClosed() const {
4016  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4017  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4018  return true;
4019 }
4020 
4022  return isClosed() && hasAttr<FlagEnumAttr>();
4023 }
4024 
4026  return isClosed() && !hasAttr<FlagEnumAttr>();
4027 }
4028 
4030  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4031  return MSI->getTemplateSpecializationKind();
4032 
4033  return TSK_Undeclared;
4034 }
4035 
4037  SourceLocation PointOfInstantiation) {
4038  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4039  assert(MSI && "Not an instantiated member enumeration?");
4041  if (TSK != TSK_ExplicitSpecialization &&
4042  PointOfInstantiation.isValid() &&
4044  MSI->setPointOfInstantiation(PointOfInstantiation);
4045 }
4046 
4048  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4049  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4050  EnumDecl *ED = getInstantiatedFromMemberEnum();
4051  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4052  ED = NewED;
4053  return getDefinitionOrSelf(ED);
4054  }
4055  }
4056 
4058  "couldn't find pattern for enum instantiation");
4059  return nullptr;
4060 }
4061 
4063  if (SpecializationInfo)
4064  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4065 
4066  return nullptr;
4067 }
4068 
4069 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4071  assert(!SpecializationInfo && "Member enum is already a specialization");
4072  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4073 }
4074 
4076  if (hasODRHash())
4077  return ODRHash;
4078 
4079  class ODRHash Hash;
4080  Hash.AddEnumDecl(this);
4081  setHasODRHash(true);
4082  ODRHash = Hash.CalculateHash();
4083  return ODRHash;
4084 }
4085 
4086 //===----------------------------------------------------------------------===//
4087 // RecordDecl Implementation
4088 //===----------------------------------------------------------------------===//
4089 
4091  DeclContext *DC, SourceLocation StartLoc,
4092  SourceLocation IdLoc, IdentifierInfo *Id,
4093  RecordDecl *PrevDecl)
4094  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4095  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4098  setHasObjectMember(false);
4099  setHasVolatileMember(false);
4106 }
4107 
4109  SourceLocation StartLoc, SourceLocation IdLoc,
4110  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4111  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4112  StartLoc, IdLoc, Id, PrevDecl);
4113  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4114 
4115  C.getTypeDeclType(R, PrevDecl);
4116  return R;
4117 }
4118 
4120  RecordDecl *R =
4121  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4122  SourceLocation(), nullptr, nullptr);
4123  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4124  return R;
4125 }
4126 
4128  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4129  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4130 }
4131 
4132 bool RecordDecl::isLambda() const {
4133  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4134  return RD->isLambda();
4135  return false;
4136 }
4137 
4139  return hasAttr<CapturedRecordAttr>();
4140 }
4141 
4143  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4144 }
4145 
4148  LoadFieldsFromExternalStorage();
4149 
4151 }
4152 
4153 /// completeDefinition - Notes that the definition of this type is now
4154 /// complete.
4156  assert(!isCompleteDefinition() && "Cannot redefine record!");
4158 }
4159 
4160 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4161 /// This which can be turned on with an attribute, pragma, or the
4162 /// -mms-bitfields command-line option.
4163 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4164  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4165 }
4166 
4167 void RecordDecl::LoadFieldsFromExternalStorage() const {
4169  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4170 
4171  // Notify that we have a RecordDecl doing some initialization.
4172  ExternalASTSource::Deserializing TheFields(Source);
4173 
4174  SmallVector<Decl*, 64> Decls;
4176  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4178  }, Decls);
4179 
4180 #ifndef NDEBUG
4181  // Check that all decls we got were FieldDecls.
4182  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4183  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4184 #endif
4185 
4186  if (Decls.empty())
4187  return;
4188 
4189  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4190  /*FieldsAlreadyLoaded=*/false);
4191 }
4192 
4193 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4194  ASTContext &Context = getASTContext();
4195  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4196  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4197  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4198  return false;
4199  const auto &Blacklist = Context.getSanitizerBlacklist();
4200  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4201  // We may be able to relax some of these requirements.
4202  int ReasonToReject = -1;
4203  if (!CXXRD || CXXRD->isExternCContext())
4204  ReasonToReject = 0; // is not C++.
4205  else if (CXXRD->hasAttr<PackedAttr>())
4206  ReasonToReject = 1; // is packed.
4207  else if (CXXRD->isUnion())
4208  ReasonToReject = 2; // is a union.
4209  else if (CXXRD->isTriviallyCopyable())
4210  ReasonToReject = 3; // is trivially copyable.
4211  else if (CXXRD->hasTrivialDestructor())
4212  ReasonToReject = 4; // has trivial destructor.
4213  else if (CXXRD->isStandardLayout())
4214  ReasonToReject = 5; // is standard layout.
4215  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4216  "field-padding"))
4217  ReasonToReject = 6; // is in a blacklisted file.
4218  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4220  "field-padding"))
4221  ReasonToReject = 7; // is blacklisted.
4222 
4223  if (EmitRemark) {
4224  if (ReasonToReject >= 0)
4225  Context.getDiagnostics().Report(
4226  getLocation(),
4227  diag::remark_sanitize_address_insert_extra_padding_rejected)
4228  << getQualifiedNameAsString() << ReasonToReject;
4229  else
4230  Context.getDiagnostics().Report(
4231  getLocation(),
4232  diag::remark_sanitize_address_insert_extra_padding_accepted)
4234  }
4235  return ReasonToReject < 0;
4236 }
4237 
4239  for (const auto *I : fields()) {
4240  if (I->getIdentifier())
4241  return I;
4242 
4243  if (const auto *RT = I->getType()->getAs<RecordType>())
4244  if (const FieldDecl *NamedDataMember =
4245  RT->getDecl()->findFirstNamedDataMember())
4246  return NamedDataMember;
4247  }
4248 
4249  // We didn't find a named data member.
4250  return nullptr;
4251 }
4252 
4253 //===----------------------------------------------------------------------===//
4254 // BlockDecl Implementation
4255 //===----------------------------------------------------------------------===//
4256 
4258  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4259  setIsVariadic(false);
4260  setCapturesCXXThis(false);
4263  setDoesNotEscape(false);
4264 }
4265 
4267  assert(!ParamInfo && "Already has param info!");
4268 
4269  // Zero params -> null pointer.
4270  if (!NewParamInfo.empty()) {
4271  NumParams = NewParamInfo.size();
4272  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4273  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4274  }
4275 }
4276 
4278  bool CapturesCXXThis) {
4279  this->setCapturesCXXThis(CapturesCXXThis);
4280  this->NumCaptures = Captures.size();
4281 
4282  if (Captures.empty()) {
4283  this->Captures = nullptr;
4284  return;
4285  }
4286 
4287  this->Captures = Captures.copy(Context).data();
4288 }
4289 
4290 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4291  for (const auto &I : captures())
4292  // Only auto vars can be captured, so no redeclaration worries.
4293  if (I.getVariable() == variable)
4294  return true;
4295 
4296  return false;
4297 }
4298 
4300  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4301 }
4302 
4303 //===----------------------------------------------------------------------===//
4304 // Other Decl Allocation/Deallocation Method Implementations
4305 //===----------------------------------------------------------------------===//
4306 
4307 void TranslationUnitDecl::anchor() {}
4308 
4310  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4311 }
4312 
4313 void PragmaCommentDecl::anchor() {}
4314 
4316  TranslationUnitDecl *DC,
4317  SourceLocation CommentLoc,
4318  PragmaMSCommentKind CommentKind,
4319  StringRef Arg) {
4320  PragmaCommentDecl *PCD =
4321  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4322  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4323  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4324  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4325  return PCD;
4326 }
4327 
4329  unsigned ID,
4330  unsigned ArgSize) {
4331  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4333 }
4334 
4335 void PragmaDetectMismatchDecl::anchor() {}
4336 
4339  SourceLocation Loc, StringRef Name,
4340  StringRef Value) {
4341  size_t ValueStart = Name.size() + 1;
4342  PragmaDetectMismatchDecl *PDMD =
4343  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4344  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4345  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4346  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4347  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4348  Value.size());
4349  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4350  return PDMD;
4351 }
4352 
4355  unsigned NameValueSize) {
4356  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4358 }
4359 
4360 void ExternCContextDecl::anchor() {}
4361 
4363  TranslationUnitDecl *DC) {
4364  return new (C, DC) ExternCContextDecl(DC);
4365 }
4366 
4367 void LabelDecl::anchor() {}
4368 
4370  SourceLocation IdentL, IdentifierInfo *II) {
4371  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4372 }
4373 
4375  SourceLocation IdentL, IdentifierInfo *II,
4376  SourceLocation GnuLabelL) {
4377  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4378  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4379 }
4380 
4382  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4383  SourceLocation());
4384 }
4385 
4386 void LabelDecl::setMSAsmLabel(StringRef Name) {
4387  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4388  memcpy(Buffer, Name.data(), Name.size());
4389  Buffer[Name.size()] = '\0';
4390  MSAsmName = Buffer;
4391 }
4392 
4393 void ValueDecl::anchor() {}
4394 
4395 bool ValueDecl::isWeak() const {
4396  for (const auto *I : attrs())
4397  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4398  return true;
4399 
4400  return isWeakImported();
4401 }
4402 
4403 void ImplicitParamDecl::anchor() {}
4404 
4406  SourceLocation IdLoc,
4408  ImplicitParamKind ParamKind) {
4409  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4410 }
4411 
4413  ImplicitParamKind ParamKind) {
4414  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4415 }
4416 
4418  unsigned ID) {
4419  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4420 }
4421 
4423  SourceLocation StartLoc,
4424  const DeclarationNameInfo &NameInfo,
4425  QualType T, TypeSourceInfo *TInfo,
4426  StorageClass SC,
4427  bool isInlineSpecified,
4428  bool hasWrittenPrototype,
4429  bool isConstexprSpecified) {
4430  FunctionDecl *New =
4431  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4432  SC, isInlineSpecified, isConstexprSpecified);
4433  New->setHasWrittenPrototype(hasWrittenPrototype);
4434  return New;
4435 }
4436 
4438  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4439  DeclarationNameInfo(), QualType(), nullptr,
4440  SC_None, false, false);
4441 }
4442 
4444  return new (C, DC) BlockDecl(DC, L);
4445 }
4446 
4448  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4449 }
4450 
4451 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4452  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4453  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4454 
4456  unsigned NumParams) {
4457  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4458  CapturedDecl(DC, NumParams);
4459 }
4460 
4462  unsigned NumParams) {
4463  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4464  CapturedDecl(nullptr, NumParams);
4465 }
4466 
4467 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4468 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4469 
4470 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4471 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4472 
4474  SourceLocation L,
4475  IdentifierInfo *Id, QualType T,
4476  Expr *E, const llvm::APSInt &V) {
4477  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4478 }
4479 
4482  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4483  QualType(), nullptr, llvm::APSInt());
4484 }
4485 
4486 void IndirectFieldDecl::anchor() {}
4487 
4488 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4490  QualType T,
4492  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4493  ChainingSize(CH.size()) {
4494  // In C++, indirect field declarations conflict with tag declarations in the
4495  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4496  if (C.getLangOpts().CPlusPlus)
4498 }
4499 
4502  IdentifierInfo *Id, QualType T,
4504  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4505 }
4506 
4508  unsigned ID) {
4509  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4510  DeclarationName(), QualType(), None);
4511 }
4512 
4515  if (Init)
4516  End = Init->getEndLoc();
4517  return SourceRange(getLocation(), End);
4518 }
4519 
4520 void TypeDecl::anchor() {}
4521 
4523  SourceLocation StartLoc, SourceLocation IdLoc,
4524  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4525  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4526 }
4527 
4528 void TypedefNameDecl::anchor() {}
4529 
4531  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4532  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4533  auto *ThisTypedef = this;
4534  if (AnyRedecl && OwningTypedef) {
4535  OwningTypedef = OwningTypedef->getCanonicalDecl();
4536  ThisTypedef = ThisTypedef->getCanonicalDecl();
4537  }
4538  if (OwningTypedef == ThisTypedef)
4539  return TT->getDecl();
4540  }
4541 
4542  return nullptr;
4543 }
4544 
4545 bool TypedefNameDecl::isTransparentTagSlow() const {
4546  auto determineIsTransparent = [&]() {
4547  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4548  if (auto *TD = TT->getDecl()) {
4549  if (TD->getName() != getName())
4550  return false;
4551  SourceLocation TTLoc = getLocation();
4552  SourceLocation TDLoc = TD->getLocation();
4553  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4554  return false;
4556  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4557  }
4558  }
4559  return false;
4560  };
4561 
4562  bool isTransparent = determineIsTransparent();
4563  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4564  return isTransparent;
4565 }
4566 
4568  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4569  nullptr, nullptr);
4570 }
4571 
4573  SourceLocation StartLoc,
4574  SourceLocation IdLoc, IdentifierInfo *Id,
4575  TypeSourceInfo *TInfo) {
4576  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4577 }
4578 
4580  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4581  SourceLocation(), nullptr, nullptr);
4582 }
4583 
4585  SourceLocation RangeEnd = getLocation();
4586  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4587  if (typeIsPostfix(TInfo->getType()))
4588  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4589  }
4590  return SourceRange(getBeginLoc(), RangeEnd);
4591 }
4592 
4594  SourceLocation RangeEnd = getBeginLoc();
4595  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4596  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4597  return SourceRange(getBeginLoc(), RangeEnd);
4598 }
4599 
4600 void FileScopeAsmDecl::anchor() {}
4601 
4603  StringLiteral *Str,
4604  SourceLocation AsmLoc,
4605  SourceLocation RParenLoc) {
4606  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4607 }
4608 
4610  unsigned ID) {
4611  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4612  SourceLocation());
4613 }
4614 
4615 void EmptyDecl::anchor() {}
4616 
4618  return new (C, DC) EmptyDecl(DC, L);
4619 }
4620 
4622  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4623 }
4624 
4625 //===----------------------------------------------------------------------===//
4626 // ImportDecl Implementation
4627 //===----------------------------------------------------------------------===//
4628 
4629 /// Retrieve the number of module identifiers needed to name the given
4630 /// module.
4631 static unsigned getNumModuleIdentifiers(Module *Mod) {
4632  unsigned Result = 1;
4633  while (Mod->Parent) {
4634  Mod = Mod->Parent;
4635  ++Result;
4636  }
4637  return Result;
4638 }
4639 
4640 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4641  Module *Imported,
4642  ArrayRef<SourceLocation> IdentifierLocs)
4643  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4644  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4645  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4646  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4647  StoredLocs);
4648 }
4649 
4650 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4651  Module *Imported, SourceLocation EndLoc)
4652  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4653  *getTrailingObjects<SourceLocation>() = EndLoc;
4654 }
4655 
4657  SourceLocation StartLoc, Module *Imported,
4658  ArrayRef<SourceLocation> IdentifierLocs) {
4659  return new (C, DC,
4660  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4661  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4662 }
4663 
4665  SourceLocation StartLoc,
4666  Module *Imported,
4667  SourceLocation EndLoc) {
4668  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4669  ImportDecl(DC, StartLoc, Imported, EndLoc);
4670  Import->setImplicit();
4671  return Import;
4672 }
4673 
4675  unsigned NumLocations) {
4676  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4678 }
4679 
4681  if (!ImportedAndComplete.getInt())
4682  return None;
4683 
4684  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4685  return llvm::makeArrayRef(StoredLocs,
4686  getNumModuleIdentifiers(getImportedModule()));
4687 }
4688 
4690  if (!ImportedAndComplete.getInt())
4691  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4692 
4693  return SourceRange(getLocation(), getIdentifierLocs().back());
4694 }
4695 
4696 //===----------------------------------------------------------------------===//
4697 // ExportDecl Implementation
4698 //===----------------------------------------------------------------------===//
4699 
4700 void ExportDecl::anchor() {}
4701 
4703  SourceLocation ExportLoc) {
4704  return new (C, DC) ExportDecl(DC, ExportLoc);
4705 }
4706 
4708  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4709 }
void setLinkage(Linkage L)
Definition: Visibility.h:88
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4047
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2454
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:2932
void setHasSkippedBody(bool Skipped=true)
Definition: Decl.h:2210
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4584
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
void setImplicit(bool I=true)
Definition: DeclBase.h:548
Represents a function declaration or definition.
Definition: Decl.h:1732
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1382
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2793
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:550
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3642
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1288
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3708
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:141
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified, bool isConstexprSpecified)
Definition: Decl.cpp:2646
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2010
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4025
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3666
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:752
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4674
CanQualType VoidPtrTy
Definition: ASTContext.h:1053
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:2908
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:642
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:3901
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3168
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3123
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:50
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2900
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1925
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4513
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2215
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1481
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3692
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4501
void setExplicitSpecified(bool ExpSpec=true)
State that this function is marked as explicit explicitly.
Definition: Decl.h:2360
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:39
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4285
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3361
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:176
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:801
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3486
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2758
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3615
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:949
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2782
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3195
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:27
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:3869
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3014
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:788
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4328
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2904
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2324
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2894
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:3993
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:597
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:410
bool isNothrow() const
Definition: Decl.cpp:4470
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3723
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4689
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2745
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:2956
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3798
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:208
bool isUninit() const
Definition: APValue.h:233
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1494
The base class of the type hierarchy.
Definition: Type.h:1415
Represents an empty-declaration.
Definition: Decl.h:4255
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4266
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
Represent a C++ namespace.
Definition: Decl.h:514
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:190
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4155
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:414
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:699
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:39
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3564
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:3996
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:796
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2679
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:3857
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1868
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1209
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3363
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:76
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4461
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3165
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1474
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3117
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4471
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4075
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:812
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:380
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:785
Declaration of a redeclarable template.
Definition: DeclTemplate.h:737
QualType getReturnType() const
Definition: Decl.h:2290
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:1970
unsigned getNumParams() const
Definition: Type.h:3879
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:112
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6716
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2621
Visibility getVisibility() const
Definition: Visibility.h:85
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:553
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1132
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3793
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:601
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1725
bool isInvalidDecl() const
Definition: DeclBase.h:542
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
Not a TLS variable.
Definition: Decl.h:829
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:630
Represents a parameter to a function.
Definition: Decl.h:1551
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:24
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1428
std::string getName(ArrayRef< StringRef > Parts) const
Get the platform-specific name separator.
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:672
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3778
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4193
ModuleKind Kind
The kind of this module.
Definition: Module.h:87
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3189
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3589
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:85
C11 _Thread_local.
Definition: Specifiers.h:202
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1633
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1927
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1018
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1817
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1823
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4138
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4108
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2610
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4507
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2704
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3095
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:792
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
static LinkageInfo internal()
Definition: Visibility.h:71
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:180
field_range fields() const
Definition: Decl.h:3780
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4631
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:302
Represents a member of a struct/union/class.
Definition: Decl.h:2575
friend class DeclContext
Definition: DeclBase.h:243
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:3889
bool isNamespace() const
Definition: DeclBase.h:1831
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3878
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4257
bool isReferenceType() const
Definition: Type.h:6294
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:73
const Attr * getUnusedResultAttr() const
Returns the WarnUnusedResultAttr that is either declared on this function, or its return type declara...
Definition: Decl.cpp:3221
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:90
This declaration is definitely a definition.
Definition: Decl.h:1152
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1039
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3679
Describes a module or submodule.
Definition: Module.h:65
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4315
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3777
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2250
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:46
virtual bool isDefined() const
Definition: Decl.h:1943
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:508
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2444
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:2984
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2115
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2816
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:540
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4467
The argument of this type can be passed directly in registers.
Definition: Decl.h:3600
Kinds of LV computation.
Definition: Linkage.h:29
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For an enumeration member that was instantiated from a member enumeration of a templated class...
Definition: Decl.cpp:4036
QualType getOriginalType() const
Definition: Decl.cpp:2544
static ExternCContextDecl * Create(const ASTContext &C, TranslationUnitDecl *TU)
Definition: Decl.cpp:4362
A convenient class for passing around template argument information.
Definition: TemplateBase.h:552
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:3731
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
void AddFunctionDecl(const FunctionDecl *Function, bool SkipBody=false)
Definition: ODRHash.cpp:509
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes, if any.
Definition: Decl.cpp:4530
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
Wrapper for source info for functions.
Definition: TypeLoc.h:1327
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:779
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4473
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3355
bool isMemberSpecialization() const
Determines whether this template was a specialization of a member template.
Definition: DeclTemplate.h:879
ASTContext & getASTContext() const
Definition: Decl.h:119
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:34
DefinitionKind hasDefinition() const
Definition: Decl.h:1165
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:663
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2434
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1857
Represents a declaration of a type.
Definition: Decl.h:2870
void setHasObjectMember(bool val)
Definition: Decl.h:3671
A set of unresolved declarations.
Definition: UnresolvedSet.h:61
void setHasImplicitReturnZero(bool IRZ)
State that falling off this function implicitly returns null/zero.
Definition: Decl.h:2053
Module * Parent
The parent of this module.
Definition: Module.h:91
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1383
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:3470
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1196
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6058
field_iterator field_begin() const
Definition: Decl.cpp:4146
unsigned getBitWidthValue(const ASTContext &Ctx) const
Definition: Decl.cpp:3788
static FileScopeAsmDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4609
bool isTargetMultiVersion() const
True if this function is a multiversioned dispatch function as a part of the target functionality...
Definition: Decl.cpp:2951
void setTrivial(bool IT)
Definition: Decl.h:2021
bool isInlineDefinitionExternallyVisible() const
For an inline function definition in C, or for a gnu_inline function in C++, determine whether the de...
Definition: Decl.cpp:3252
bool isCPUSpecificMultiVersion() const
True if this function is a multiversioned processor specific function as a part of the cpu_specific/c...
Definition: Decl.cpp:2947
Defines the Linkage enumeration and various utility functions.
static TypeAliasDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4579
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:821
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1918
ArrayRef< SourceLocation > getIdentifierLocs() const
Retrieves the locations of each of the identifiers that make up the complete module name in the impor...
Definition: Decl.cpp:4680
bool needsCleanup() const
Returns whether the object performed allocations.
Definition: APValue.cpp:257
SourceRange getExceptionSpecSourceRange() const
Attempt to compute an informative source range covering the function exception specification, if any.
Definition: Decl.cpp:3209
FunctionDecl * getInstantiatedFromMemberFunction() const
If this function is an instantiation of a member function of a class template specialization, retrieves the function from which it was instantiated.
Definition: Decl.cpp:3333
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI)
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4040
Represents a linkage specification.
Definition: DeclCXX.h:2820
static ParmVarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:2552
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1765
CXXRecordDecl * getTemplatedDecl() const
Get the underlying class declarations of the template.
LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage=false)
Definition: Decl.cpp:1306
MemberSpecializationInfo * getMemberSpecializationInfo() const
If this function is an instantiation of a member function of a class template specialization, retrieves the member specialization information.
Definition: Decl.cpp:3340
Decl * getPrimaryMergedDecl(Decl *D)
Definition: ASTContext.h:980
void setCachedLinkage(Linkage L) const
Definition: DeclBase.h:396
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, bool isConstexprSpecified=false)
Definition: Decl.h:1869
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:870
void setHasInheritedPrototype(bool P=true)
State that this function inherited its prototype from a previous declaration.
Definition: Decl.h:2083