clang  10.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "llvm/ADT/APSInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/None.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstring>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <type_traits>
72 
73 using namespace clang;
74 
76  return D->getASTContext().getPrimaryMergedDecl(D);
77 }
78 
79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
80  SourceLocation Loc = this->Loc;
81  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
82  if (Loc.isValid()) {
83  Loc.print(OS, Context.getSourceManager());
84  OS << ": ";
85  }
86  OS << Message;
87 
88  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
89  OS << " '";
90  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
91  OS << "'";
92  }
93 
94  OS << '\n';
95 }
96 
97 // Defined here so that it can be inlined into its direct callers.
98 bool Decl::isOutOfLine() const {
99  return !getLexicalDeclContext()->Equals(getDeclContext());
100 }
101 
102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
103  : Decl(TranslationUnit, nullptr, SourceLocation()),
104  DeclContext(TranslationUnit), Ctx(ctx) {}
105 
106 //===----------------------------------------------------------------------===//
107 // NamedDecl Implementation
108 //===----------------------------------------------------------------------===//
109 
110 // Visibility rules aren't rigorously externally specified, but here
111 // are the basic principles behind what we implement:
112 //
113 // 1. An explicit visibility attribute is generally a direct expression
114 // of the user's intent and should be honored. Only the innermost
115 // visibility attribute applies. If no visibility attribute applies,
116 // global visibility settings are considered.
117 //
118 // 2. There is one caveat to the above: on or in a template pattern,
119 // an explicit visibility attribute is just a default rule, and
120 // visibility can be decreased by the visibility of template
121 // arguments. But this, too, has an exception: an attribute on an
122 // explicit specialization or instantiation causes all the visibility
123 // restrictions of the template arguments to be ignored.
124 //
125 // 3. A variable that does not otherwise have explicit visibility can
126 // be restricted by the visibility of its type.
127 //
128 // 4. A visibility restriction is explicit if it comes from an
129 // attribute (or something like it), not a global visibility setting.
130 // When emitting a reference to an external symbol, visibility
131 // restrictions are ignored unless they are explicit.
132 //
133 // 5. When computing the visibility of a non-type, including a
134 // non-type member of a class, only non-type visibility restrictions
135 // are considered: the 'visibility' attribute, global value-visibility
136 // settings, and a few special cases like __private_extern.
137 //
138 // 6. When computing the visibility of a type, including a type member
139 // of a class, only type visibility restrictions are considered:
140 // the 'type_visibility' attribute and global type-visibility settings.
141 // However, a 'visibility' attribute counts as a 'type_visibility'
142 // attribute on any declaration that only has the former.
143 //
144 // The visibility of a "secondary" entity, like a template argument,
145 // is computed using the kind of that entity, not the kind of the
146 // primary entity for which we are computing visibility. For example,
147 // the visibility of a specialization of either of these templates:
148 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
149 // template <class T, bool (&compare)(T, X)> class matcher;
150 // is restricted according to the type visibility of the argument 'T',
151 // the type visibility of 'bool(&)(T,X)', and the value visibility of
152 // the argument function 'compare'. That 'has_match' is a value
153 // and 'matcher' is a type only matters when looking for attributes
154 // and settings from the immediate context.
155 
156 /// Does this computation kind permit us to consider additional
157 /// visibility settings from attributes and the like?
159  return computation.IgnoreExplicitVisibility;
160 }
161 
162 /// Given an LVComputationKind, return one of the same type/value sort
163 /// that records that it already has explicit visibility.
164 static LVComputationKind
166  Kind.IgnoreExplicitVisibility = true;
167  return Kind;
168 }
169 
172  assert(!kind.IgnoreExplicitVisibility &&
173  "asking for explicit visibility when we shouldn't be");
175 }
176 
177 /// Is the given declaration a "type" or a "value" for the purposes of
178 /// visibility computation?
179 static bool usesTypeVisibility(const NamedDecl *D) {
180  return isa<TypeDecl>(D) ||
181  isa<ClassTemplateDecl>(D) ||
182  isa<ObjCInterfaceDecl>(D);
183 }
184 
185 /// Does the given declaration have member specialization information,
186 /// and if so, is it an explicit specialization?
187 template <class T> static typename
188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190  if (const MemberSpecializationInfo *member =
191  D->getMemberSpecializationInfo()) {
192  return member->isExplicitSpecialization();
193  }
194  return false;
195 }
196 
197 /// For templates, this question is easier: a member template can't be
198 /// explicitly instantiated, so there's a single bit indicating whether
199 /// or not this is an explicit member specialization.
201  return D->isMemberSpecialization();
202 }
203 
204 /// Given a visibility attribute, return the explicit visibility
205 /// associated with it.
206 template <class T>
207 static Visibility getVisibilityFromAttr(const T *attr) {
208  switch (attr->getVisibility()) {
209  case T::Default:
210  return DefaultVisibility;
211  case T::Hidden:
212  return HiddenVisibility;
213  case T::Protected:
214  return ProtectedVisibility;
215  }
216  llvm_unreachable("bad visibility kind");
217 }
218 
219 /// Return the explicit visibility of the given declaration.
222  // If we're ultimately computing the visibility of a type, look for
223  // a 'type_visibility' attribute before looking for 'visibility'.
224  if (kind == NamedDecl::VisibilityForType) {
225  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
226  return getVisibilityFromAttr(A);
227  }
228  }
229 
230  // If this declaration has an explicit visibility attribute, use it.
231  if (const auto *A = D->getAttr<VisibilityAttr>()) {
232  return getVisibilityFromAttr(A);
233  }
234 
235  return None;
236 }
237 
238 LinkageInfo LinkageComputer::getLVForType(const Type &T,
239  LVComputationKind computation) {
240  if (computation.IgnoreAllVisibility)
241  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
242  return getTypeLinkageAndVisibility(&T);
243 }
244 
245 /// Get the most restrictive linkage for the types in the given
246 /// template parameter list. For visibility purposes, template
247 /// parameters are part of the signature of a template.
248 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
249  const TemplateParameterList *Params, LVComputationKind computation) {
250  LinkageInfo LV;
251  for (const NamedDecl *P : *Params) {
252  // Template type parameters are the most common and never
253  // contribute to visibility, pack or not.
254  if (isa<TemplateTypeParmDecl>(P))
255  continue;
256 
257  // Non-type template parameters can be restricted by the value type, e.g.
258  // template <enum X> class A { ... };
259  // We have to be careful here, though, because we can be dealing with
260  // dependent types.
261  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
262  // Handle the non-pack case first.
263  if (!NTTP->isExpandedParameterPack()) {
264  if (!NTTP->getType()->isDependentType()) {
265  LV.merge(getLVForType(*NTTP->getType(), computation));
266  }
267  continue;
268  }
269 
270  // Look at all the types in an expanded pack.
271  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
272  QualType type = NTTP->getExpansionType(i);
273  if (!type->isDependentType())
274  LV.merge(getTypeLinkageAndVisibility(type));
275  }
276  continue;
277  }
278 
279  // Template template parameters can be restricted by their
280  // template parameters, recursively.
281  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
282 
283  // Handle the non-pack case first.
284  if (!TTP->isExpandedParameterPack()) {
285  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
286  computation));
287  continue;
288  }
289 
290  // Look at all expansions in an expanded pack.
291  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
292  i != n; ++i) {
293  LV.merge(getLVForTemplateParameterList(
294  TTP->getExpansionTemplateParameters(i), computation));
295  }
296  }
297 
298  return LV;
299 }
300 
301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
302  const Decl *Ret = nullptr;
303  const DeclContext *DC = D->getDeclContext();
304  while (DC->getDeclKind() != Decl::TranslationUnit) {
305  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
306  Ret = cast<Decl>(DC);
307  DC = DC->getParent();
308  }
309  return Ret;
310 }
311 
312 /// Get the most restrictive linkage for the types and
313 /// declarations in the given template argument list.
314 ///
315 /// Note that we don't take an LVComputationKind because we always
316 /// want to honor the visibility of template arguments in the same way.
318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
319  LVComputationKind computation) {
320  LinkageInfo LV;
321 
322  for (const TemplateArgument &Arg : Args) {
323  switch (Arg.getKind()) {
327  continue;
328 
330  LV.merge(getLVForType(*Arg.getAsType(), computation));
331  continue;
332 
334  const NamedDecl *ND = Arg.getAsDecl();
335  assert(!usesTypeVisibility(ND));
336  LV.merge(getLVForDecl(ND, computation));
337  continue;
338  }
339 
341  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
342  continue;
343 
346  if (TemplateDecl *Template =
347  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
348  LV.merge(getLVForDecl(Template, computation));
349  continue;
350 
352  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
353  continue;
354  }
355  llvm_unreachable("bad template argument kind");
356  }
357 
358  return LV;
359 }
360 
362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
363  LVComputationKind computation) {
364  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
365 }
366 
368  const FunctionTemplateSpecializationInfo *specInfo) {
369  // Include visibility from the template parameters and arguments
370  // only if this is not an explicit instantiation or specialization
371  // with direct explicit visibility. (Implicit instantiations won't
372  // have a direct attribute.)
374  return true;
375 
376  return !fn->hasAttr<VisibilityAttr>();
377 }
378 
379 /// Merge in template-related linkage and visibility for the given
380 /// function template specialization.
381 ///
382 /// We don't need a computation kind here because we can assume
383 /// LVForValue.
384 ///
385 /// \param[out] LV the computation to use for the parent
386 void LinkageComputer::mergeTemplateLV(
387  LinkageInfo &LV, const FunctionDecl *fn,
388  const FunctionTemplateSpecializationInfo *specInfo,
389  LVComputationKind computation) {
390  bool considerVisibility =
391  shouldConsiderTemplateVisibility(fn, specInfo);
392 
393  // Merge information from the template parameters.
394  FunctionTemplateDecl *temp = specInfo->getTemplate();
395  LinkageInfo tempLV =
396  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
397  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
398 
399  // Merge information from the template arguments.
400  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
401  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
402  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
403 }
404 
405 /// Does the given declaration have a direct visibility attribute
406 /// that would match the given rules?
408  LVComputationKind computation) {
409  if (computation.IgnoreAllVisibility)
410  return false;
411 
412  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
413  D->hasAttr<VisibilityAttr>();
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
420  LVComputationKind computation) {
421  // Include visibility from the template parameters and arguments
422  // only if this is not an explicit instantiation or specialization
423  // with direct explicit visibility (and note that implicit
424  // instantiations won't have a direct attribute).
425  //
426  // Furthermore, we want to ignore template parameters and arguments
427  // for an explicit specialization when computing the visibility of a
428  // member thereof with explicit visibility.
429  //
430  // This is a bit complex; let's unpack it.
431  //
432  // An explicit class specialization is an independent, top-level
433  // declaration. As such, if it or any of its members has an
434  // explicit visibility attribute, that must directly express the
435  // user's intent, and we should honor it. The same logic applies to
436  // an explicit instantiation of a member of such a thing.
437 
438  // Fast path: if this is not an explicit instantiation or
439  // specialization, we always want to consider template-related
440  // visibility restrictions.
442  return true;
443 
444  // This is the 'member thereof' check.
445  if (spec->isExplicitSpecialization() &&
446  hasExplicitVisibilityAlready(computation))
447  return false;
448 
449  return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
454 void LinkageComputer::mergeTemplateLV(
456  LVComputationKind computation) {
457  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459  // Merge information from the template parameters, but ignore
460  // visibility if we're only considering template arguments.
461 
463  LinkageInfo tempLV =
464  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465  LV.mergeMaybeWithVisibility(tempLV,
466  considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468  // Merge information from the template arguments. We ignore
469  // template-argument visibility if we've got an explicit
470  // instantiation with a visibility attribute.
471  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473  if (considerVisibility)
474  LV.mergeVisibility(argsLV);
475  LV.mergeExternalVisibility(argsLV);
476 }
477 
478 /// Should we consider visibility associated with the template
479 /// arguments and parameters of the given variable template
480 /// specialization? As usual, follow class template specialization
481 /// logic up to initialization.
483  const VarTemplateSpecializationDecl *spec,
484  LVComputationKind computation) {
485  // Include visibility from the template parameters and arguments
486  // only if this is not an explicit instantiation or specialization
487  // with direct explicit visibility (and note that implicit
488  // instantiations won't have a direct attribute).
490  return true;
491 
492  // An explicit variable specialization is an independent, top-level
493  // declaration. As such, if it has an explicit visibility attribute,
494  // that must directly express the user's intent, and we should honor
495  // it.
496  if (spec->isExplicitSpecialization() &&
497  hasExplicitVisibilityAlready(computation))
498  return false;
499 
500  return !hasDirectVisibilityAttribute(spec, computation);
501 }
502 
503 /// Merge in template-related linkage and visibility for the given
504 /// variable template specialization. As usual, follow class template
505 /// specialization logic up to initialization.
506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
507  const VarTemplateSpecializationDecl *spec,
508  LVComputationKind computation) {
509  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
510 
511  // Merge information from the template parameters, but ignore
512  // visibility if we're only considering template arguments.
513 
514  VarTemplateDecl *temp = spec->getSpecializedTemplate();
515  LinkageInfo tempLV =
516  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
517  LV.mergeMaybeWithVisibility(tempLV,
518  considerVisibility && !hasExplicitVisibilityAlready(computation));
519 
520  // Merge information from the template arguments. We ignore
521  // template-argument visibility if we've got an explicit
522  // instantiation with a visibility attribute.
523  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
524  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
525  if (considerVisibility)
526  LV.mergeVisibility(argsLV);
527  LV.mergeExternalVisibility(argsLV);
528 }
529 
530 static bool useInlineVisibilityHidden(const NamedDecl *D) {
531  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
532  const LangOptions &Opts = D->getASTContext().getLangOpts();
533  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
534  return false;
535 
536  const auto *FD = dyn_cast<FunctionDecl>(D);
537  if (!FD)
538  return false;
539 
542  = FD->getTemplateSpecializationInfo()) {
543  TSK = spec->getTemplateSpecializationKind();
544  } else if (MemberSpecializationInfo *MSI =
545  FD->getMemberSpecializationInfo()) {
546  TSK = MSI->getTemplateSpecializationKind();
547  }
548 
549  const FunctionDecl *Def = nullptr;
550  // InlineVisibilityHidden only applies to definitions, and
551  // isInlined() only gives meaningful answers on definitions
552  // anyway.
553  return TSK != TSK_ExplicitInstantiationDeclaration &&
555  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
556 }
557 
558 template <typename T> static bool isFirstInExternCContext(T *D) {
559  const T *First = D->getFirstDecl();
560  return First->isInExternCContext();
561 }
562 
563 static bool isSingleLineLanguageLinkage(const Decl &D) {
564  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
565  if (!SD->hasBraces())
566  return true;
567  return false;
568 }
569 
570 /// Determine whether D is declared in the purview of a named module.
571 static bool isInModulePurview(const NamedDecl *D) {
572  if (auto *M = D->getOwningModule())
573  return M->isModulePurview();
574  return false;
575 }
576 
578  // FIXME: Handle isModulePrivate.
579  switch (D->getModuleOwnershipKind()) {
582  return false;
585  return isInModulePurview(D);
586  }
587  llvm_unreachable("unexpected module ownership kind");
588 }
589 
591  // Internal linkage declarations within a module interface unit are modeled
592  // as "module-internal linkage", which means that they have internal linkage
593  // formally but can be indirectly accessed from outside the module via inline
594  // functions and templates defined within the module.
595  if (isInModulePurview(D))
597 
598  return LinkageInfo::internal();
599 }
600 
602  // C++ Modules TS [basic.link]/6.8:
603  // - A name declared at namespace scope that does not have internal linkage
604  // by the previous rules and that is introduced by a non-exported
605  // declaration has module linkage.
607  cast<NamedDecl>(D->getCanonicalDecl())))
609 
610  return LinkageInfo::external();
611 }
612 
614  if (auto *TD = dyn_cast<TemplateDecl>(D))
615  D = TD->getTemplatedDecl();
616  if (D) {
617  if (auto *VD = dyn_cast<VarDecl>(D))
618  return VD->getStorageClass();
619  if (auto *FD = dyn_cast<FunctionDecl>(D))
620  return FD->getStorageClass();
621  }
622  return SC_None;
623 }
624 
626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
627  LVComputationKind computation,
628  bool IgnoreVarTypeLinkage) {
629  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
630  "Not a name having namespace scope");
631  ASTContext &Context = D->getASTContext();
632 
633  // C++ [basic.link]p3:
634  // A name having namespace scope (3.3.6) has internal linkage if it
635  // is the name of
636 
638  // - a variable, variable template, function, or function template
639  // that is explicitly declared static; or
640  // (This bullet corresponds to C99 6.2.2p3.)
641  return getInternalLinkageFor(D);
642  }
643 
644  if (const auto *Var = dyn_cast<VarDecl>(D)) {
645  // - a non-template variable of non-volatile const-qualified type, unless
646  // - it is explicitly declared extern, or
647  // - it is inline or exported, or
648  // - it was previously declared and the prior declaration did not have
649  // internal linkage
650  // (There is no equivalent in C99.)
651  if (Context.getLangOpts().CPlusPlus &&
652  Var->getType().isConstQualified() &&
653  !Var->getType().isVolatileQualified() &&
654  !Var->isInline() &&
656  !isa<VarTemplateSpecializationDecl>(Var) &&
657  !Var->getDescribedVarTemplate()) {
658  const VarDecl *PrevVar = Var->getPreviousDecl();
659  if (PrevVar)
660  return getLVForDecl(PrevVar, computation);
661 
662  if (Var->getStorageClass() != SC_Extern &&
663  Var->getStorageClass() != SC_PrivateExtern &&
665  return getInternalLinkageFor(Var);
666  }
667 
668  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
669  PrevVar = PrevVar->getPreviousDecl()) {
670  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
671  Var->getStorageClass() == SC_None)
672  return getDeclLinkageAndVisibility(PrevVar);
673  // Explicitly declared static.
674  if (PrevVar->getStorageClass() == SC_Static)
675  return getInternalLinkageFor(Var);
676  }
677  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
678  // - a data member of an anonymous union.
679  const VarDecl *VD = IFD->getVarDecl();
680  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
681  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
682  }
683  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
684 
685  // FIXME: This gives internal linkage to names that should have no linkage
686  // (those not covered by [basic.link]p6).
687  if (D->isInAnonymousNamespace()) {
688  const auto *Var = dyn_cast<VarDecl>(D);
689  const auto *Func = dyn_cast<FunctionDecl>(D);
690  // FIXME: The check for extern "C" here is not justified by the standard
691  // wording, but we retain it from the pre-DR1113 model to avoid breaking
692  // code.
693  //
694  // C++11 [basic.link]p4:
695  // An unnamed namespace or a namespace declared directly or indirectly
696  // within an unnamed namespace has internal linkage.
697  if ((!Var || !isFirstInExternCContext(Var)) &&
698  (!Func || !isFirstInExternCContext(Func)))
699  return getInternalLinkageFor(D);
700  }
701 
702  // Set up the defaults.
703 
704  // C99 6.2.2p5:
705  // If the declaration of an identifier for an object has file
706  // scope and no storage-class specifier, its linkage is
707  // external.
709 
710  if (!hasExplicitVisibilityAlready(computation)) {
711  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
712  LV.mergeVisibility(*Vis, true);
713  } else {
714  // If we're declared in a namespace with a visibility attribute,
715  // use that namespace's visibility, and it still counts as explicit.
716  for (const DeclContext *DC = D->getDeclContext();
717  !isa<TranslationUnitDecl>(DC);
718  DC = DC->getParent()) {
719  const auto *ND = dyn_cast<NamespaceDecl>(DC);
720  if (!ND) continue;
721  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
722  LV.mergeVisibility(*Vis, true);
723  break;
724  }
725  }
726  }
727 
728  // Add in global settings if the above didn't give us direct visibility.
729  if (!LV.isVisibilityExplicit()) {
730  // Use global type/value visibility as appropriate.
731  Visibility globalVisibility =
732  computation.isValueVisibility()
733  ? Context.getLangOpts().getValueVisibilityMode()
734  : Context.getLangOpts().getTypeVisibilityMode();
735  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
736 
737  // If we're paying attention to global visibility, apply
738  // -finline-visibility-hidden if this is an inline method.
740  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
741  }
742  }
743 
744  // C++ [basic.link]p4:
745 
746  // A name having namespace scope that has not been given internal linkage
747  // above and that is the name of
748  // [...bullets...]
749  // has its linkage determined as follows:
750  // - if the enclosing namespace has internal linkage, the name has
751  // internal linkage; [handled above]
752  // - otherwise, if the declaration of the name is attached to a named
753  // module and is not exported, the name has module linkage;
754  // - otherwise, the name has external linkage.
755  // LV is currently set up to handle the last two bullets.
756  //
757  // The bullets are:
758 
759  // - a variable; or
760  if (const auto *Var = dyn_cast<VarDecl>(D)) {
761  // GCC applies the following optimization to variables and static
762  // data members, but not to functions:
763  //
764  // Modify the variable's LV by the LV of its type unless this is
765  // C or extern "C". This follows from [basic.link]p9:
766  // A type without linkage shall not be used as the type of a
767  // variable or function with external linkage unless
768  // - the entity has C language linkage, or
769  // - the entity is declared within an unnamed namespace, or
770  // - the entity is not used or is defined in the same
771  // translation unit.
772  // and [basic.link]p10:
773  // ...the types specified by all declarations referring to a
774  // given variable or function shall be identical...
775  // C does not have an equivalent rule.
776  //
777  // Ignore this if we've got an explicit attribute; the user
778  // probably knows what they're doing.
779  //
780  // Note that we don't want to make the variable non-external
781  // because of this, but unique-external linkage suits us.
782  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
783  !IgnoreVarTypeLinkage) {
784  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
785  if (!isExternallyVisible(TypeLV.getLinkage()))
787  if (!LV.isVisibilityExplicit())
788  LV.mergeVisibility(TypeLV);
789  }
790 
791  if (Var->getStorageClass() == SC_PrivateExtern)
793 
794  // Note that Sema::MergeVarDecl already takes care of implementing
795  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
796  // to do it here.
797 
798  // As per function and class template specializations (below),
799  // consider LV for the template and template arguments. We're at file
800  // scope, so we do not need to worry about nested specializations.
801  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
802  mergeTemplateLV(LV, spec, computation);
803  }
804 
805  // - a function; or
806  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
807  // In theory, we can modify the function's LV by the LV of its
808  // type unless it has C linkage (see comment above about variables
809  // for justification). In practice, GCC doesn't do this, so it's
810  // just too painful to make work.
811 
812  if (Function->getStorageClass() == SC_PrivateExtern)
814 
815  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
816  // merging storage classes and visibility attributes, so we don't have to
817  // look at previous decls in here.
818 
819  // In C++, then if the type of the function uses a type with
820  // unique-external linkage, it's not legally usable from outside
821  // this translation unit. However, we should use the C linkage
822  // rules instead for extern "C" declarations.
823  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
824  // Only look at the type-as-written. Otherwise, deducing the return type
825  // of a function could change its linkage.
826  QualType TypeAsWritten = Function->getType();
827  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
828  TypeAsWritten = TSI->getType();
829  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831  }
832 
833  // Consider LV from the template and the template arguments.
834  // We're at file scope, so we do not need to worry about nested
835  // specializations.
837  = Function->getTemplateSpecializationInfo()) {
838  mergeTemplateLV(LV, Function, specInfo, computation);
839  }
840 
841  // - a named class (Clause 9), or an unnamed class defined in a
842  // typedef declaration in which the class has the typedef name
843  // for linkage purposes (7.1.3); or
844  // - a named enumeration (7.2), or an unnamed enumeration
845  // defined in a typedef declaration in which the enumeration
846  // has the typedef name for linkage purposes (7.1.3); or
847  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
848  // Unnamed tags have no linkage.
849  if (!Tag->hasNameForLinkage())
850  return LinkageInfo::none();
851 
852  // If this is a class template specialization, consider the
853  // linkage of the template and template arguments. We're at file
854  // scope, so we do not need to worry about nested specializations.
855  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
856  mergeTemplateLV(LV, spec, computation);
857  }
858 
859  // FIXME: This is not part of the C++ standard any more.
860  // - an enumerator belonging to an enumeration with external linkage; or
861  } else if (isa<EnumConstantDecl>(D)) {
862  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
863  computation);
864  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
865  return LinkageInfo::none();
866  LV.merge(EnumLV);
867 
868  // - a template
869  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
870  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
871  LinkageInfo tempLV =
872  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
873  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
874 
875  // An unnamed namespace or a namespace declared directly or indirectly
876  // within an unnamed namespace has internal linkage. All other namespaces
877  // have external linkage.
878  //
879  // We handled names in anonymous namespaces above.
880  } else if (isa<NamespaceDecl>(D)) {
881  return LV;
882 
883  // By extension, we assign external linkage to Objective-C
884  // interfaces.
885  } else if (isa<ObjCInterfaceDecl>(D)) {
886  // fallout
887 
888  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
889  // A typedef declaration has linkage if it gives a type a name for
890  // linkage purposes.
891  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
892  return LinkageInfo::none();
893 
894  // Everything not covered here has no linkage.
895  } else {
896  return LinkageInfo::none();
897  }
898 
899  // If we ended up with non-externally-visible linkage, visibility should
900  // always be default.
901  if (!isExternallyVisible(LV.getLinkage()))
902  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
903 
904  return LV;
905 }
906 
908 LinkageComputer::getLVForClassMember(const NamedDecl *D,
909  LVComputationKind computation,
910  bool IgnoreVarTypeLinkage) {
911  // Only certain class members have linkage. Note that fields don't
912  // really have linkage, but it's convenient to say they do for the
913  // purposes of calculating linkage of pointer-to-data-member
914  // template arguments.
915  //
916  // Templates also don't officially have linkage, but since we ignore
917  // the C++ standard and look at template arguments when determining
918  // linkage and visibility of a template specialization, we might hit
919  // a template template argument that way. If we do, we need to
920  // consider its linkage.
921  if (!(isa<CXXMethodDecl>(D) ||
922  isa<VarDecl>(D) ||
923  isa<FieldDecl>(D) ||
924  isa<IndirectFieldDecl>(D) ||
925  isa<TagDecl>(D) ||
926  isa<TemplateDecl>(D)))
927  return LinkageInfo::none();
928 
929  LinkageInfo LV;
930 
931  // If we have an explicit visibility attribute, merge that in.
932  if (!hasExplicitVisibilityAlready(computation)) {
933  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
934  LV.mergeVisibility(*Vis, true);
935  // If we're paying attention to global visibility, apply
936  // -finline-visibility-hidden if this is an inline method.
937  //
938  // Note that we do this before merging information about
939  // the class visibility.
941  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
942  }
943 
944  // If this class member has an explicit visibility attribute, the only
945  // thing that can change its visibility is the template arguments, so
946  // only look for them when processing the class.
947  LVComputationKind classComputation = computation;
948  if (LV.isVisibilityExplicit())
949  classComputation = withExplicitVisibilityAlready(computation);
950 
951  LinkageInfo classLV =
952  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
953  // The member has the same linkage as the class. If that's not externally
954  // visible, we don't need to compute anything about the linkage.
955  // FIXME: If we're only computing linkage, can we bail out here?
956  if (!isExternallyVisible(classLV.getLinkage()))
957  return classLV;
958 
959 
960  // Otherwise, don't merge in classLV yet, because in certain cases
961  // we need to completely ignore the visibility from it.
962 
963  // Specifically, if this decl exists and has an explicit attribute.
964  const NamedDecl *explicitSpecSuppressor = nullptr;
965 
966  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
967  // Only look at the type-as-written. Otherwise, deducing the return type
968  // of a function could change its linkage.
969  QualType TypeAsWritten = MD->getType();
970  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
971  TypeAsWritten = TSI->getType();
972  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
974 
975  // If this is a method template specialization, use the linkage for
976  // the template parameters and arguments.
978  = MD->getTemplateSpecializationInfo()) {
979  mergeTemplateLV(LV, MD, spec, computation);
980  if (spec->isExplicitSpecialization()) {
981  explicitSpecSuppressor = MD;
982  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
983  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
984  }
985  } else if (isExplicitMemberSpecialization(MD)) {
986  explicitSpecSuppressor = MD;
987  }
988 
989  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
990  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
991  mergeTemplateLV(LV, spec, computation);
992  if (spec->isExplicitSpecialization()) {
993  explicitSpecSuppressor = spec;
994  } else {
995  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
996  if (isExplicitMemberSpecialization(temp)) {
997  explicitSpecSuppressor = temp->getTemplatedDecl();
998  }
999  }
1000  } else if (isExplicitMemberSpecialization(RD)) {
1001  explicitSpecSuppressor = RD;
1002  }
1003 
1004  // Static data members.
1005  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1006  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1007  mergeTemplateLV(LV, spec, computation);
1008 
1009  // Modify the variable's linkage by its type, but ignore the
1010  // type's visibility unless it's a definition.
1011  if (!IgnoreVarTypeLinkage) {
1012  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1013  // FIXME: If the type's linkage is not externally visible, we can
1014  // give this static data member UniqueExternalLinkage.
1015  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1016  LV.mergeVisibility(typeLV);
1017  LV.mergeExternalVisibility(typeLV);
1018  }
1019 
1021  explicitSpecSuppressor = VD;
1022  }
1023 
1024  // Template members.
1025  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1026  bool considerVisibility =
1027  (!LV.isVisibilityExplicit() &&
1028  !classLV.isVisibilityExplicit() &&
1029  !hasExplicitVisibilityAlready(computation));
1030  LinkageInfo tempLV =
1031  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1032  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1033 
1034  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1035  if (isExplicitMemberSpecialization(redeclTemp)) {
1036  explicitSpecSuppressor = temp->getTemplatedDecl();
1037  }
1038  }
1039  }
1040 
1041  // We should never be looking for an attribute directly on a template.
1042  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1043 
1044  // If this member is an explicit member specialization, and it has
1045  // an explicit attribute, ignore visibility from the parent.
1046  bool considerClassVisibility = true;
1047  if (explicitSpecSuppressor &&
1048  // optimization: hasDVA() is true only with explicit visibility.
1049  LV.isVisibilityExplicit() &&
1050  classLV.getVisibility() != DefaultVisibility &&
1051  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1052  considerClassVisibility = false;
1053  }
1054 
1055  // Finally, merge in information from the class.
1056  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1057  return LV;
1058 }
1059 
1060 void NamedDecl::anchor() {}
1061 
1063  if (!hasCachedLinkage())
1064  return true;
1065 
1066  Linkage L = LinkageComputer{}
1068  .getLinkage();
1069  return L == getCachedLinkage();
1070 }
1071 
1073  StringRef name = getName();
1074  if (name.empty()) return SFF_None;
1075 
1076  if (name.front() == 'C')
1077  if (name == "CFStringCreateWithFormat" ||
1078  name == "CFStringCreateWithFormatAndArguments" ||
1079  name == "CFStringAppendFormat" ||
1080  name == "CFStringAppendFormatAndArguments")
1081  return SFF_CFString;
1082  return SFF_None;
1083 }
1084 
1086  // We don't care about visibility here, so ask for the cheapest
1087  // possible visibility analysis.
1088  return LinkageComputer{}
1090  .getLinkage();
1091 }
1092 
1095 }
1096 
1097 static Optional<Visibility>
1100  bool IsMostRecent) {
1101  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1102 
1103  // Check the declaration itself first.
1104  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1105  return V;
1106 
1107  // If this is a member class of a specialization of a class template
1108  // and the corresponding decl has explicit visibility, use that.
1109  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1110  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1111  if (InstantiatedFrom)
1112  return getVisibilityOf(InstantiatedFrom, kind);
1113  }
1114 
1115  // If there wasn't explicit visibility there, and this is a
1116  // specialization of a class template, check for visibility
1117  // on the pattern.
1118  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1119  // Walk all the template decl till this point to see if there are
1120  // explicit visibility attributes.
1121  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1122  while (TD != nullptr) {
1123  auto Vis = getVisibilityOf(TD, kind);
1124  if (Vis != None)
1125  return Vis;
1126  TD = TD->getPreviousDecl();
1127  }
1128  return None;
1129  }
1130 
1131  // Use the most recent declaration.
1132  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1133  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1134  if (MostRecent != ND)
1135  return getExplicitVisibilityAux(MostRecent, kind, true);
1136  }
1137 
1138  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1139  if (Var->isStaticDataMember()) {
1140  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1141  if (InstantiatedFrom)
1142  return getVisibilityOf(InstantiatedFrom, kind);
1143  }
1144 
1145  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1146  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1147  kind);
1148 
1149  return None;
1150  }
1151  // Also handle function template specializations.
1152  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1153  // If the function is a specialization of a template with an
1154  // explicit visibility attribute, use that.
1155  if (FunctionTemplateSpecializationInfo *templateInfo
1157  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1158  kind);
1159 
1160  // If the function is a member of a specialization of a class template
1161  // and the corresponding decl has explicit visibility, use that.
1162  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1163  if (InstantiatedFrom)
1164  return getVisibilityOf(InstantiatedFrom, kind);
1165 
1166  return None;
1167  }
1168 
1169  // The visibility of a template is stored in the templated decl.
1170  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1171  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1172 
1173  return None;
1174 }
1175 
1178  return getExplicitVisibilityAux(this, kind, false);
1179 }
1180 
1181 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1182  Decl *ContextDecl,
1183  LVComputationKind computation) {
1184  // This lambda has its linkage/visibility determined by its owner.
1185  const NamedDecl *Owner;
1186  if (!ContextDecl)
1187  Owner = dyn_cast<NamedDecl>(DC);
1188  else if (isa<ParmVarDecl>(ContextDecl))
1189  Owner =
1190  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1191  else
1192  Owner = cast<NamedDecl>(ContextDecl);
1193 
1194  if (!Owner)
1195  return LinkageInfo::none();
1196 
1197  // If the owner has a deduced type, we need to skip querying the linkage and
1198  // visibility of that type, because it might involve this closure type. The
1199  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1200  // than NoLinkage when we don't strictly need to, which is benign.
1201  auto *VD = dyn_cast<VarDecl>(Owner);
1202  LinkageInfo OwnerLV =
1203  VD && VD->getType()->getContainedDeducedType()
1204  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1205  : getLVForDecl(Owner, computation);
1206 
1207  // A lambda never formally has linkage. But if the owner is externally
1208  // visible, then the lambda is too. We apply the same rules to blocks.
1209  if (!isExternallyVisible(OwnerLV.getLinkage()))
1210  return LinkageInfo::none();
1211  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1212  OwnerLV.isVisibilityExplicit());
1213 }
1214 
1215 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1216  LVComputationKind computation) {
1217  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1218  if (Function->isInAnonymousNamespace() &&
1219  !isFirstInExternCContext(Function))
1220  return getInternalLinkageFor(Function);
1221 
1222  // This is a "void f();" which got merged with a file static.
1223  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1224  return getInternalLinkageFor(Function);
1225 
1226  LinkageInfo LV;
1227  if (!hasExplicitVisibilityAlready(computation)) {
1228  if (Optional<Visibility> Vis =
1229  getExplicitVisibility(Function, computation))
1230  LV.mergeVisibility(*Vis, true);
1231  }
1232 
1233  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1234  // merging storage classes and visibility attributes, so we don't have to
1235  // look at previous decls in here.
1236 
1237  return LV;
1238  }
1239 
1240  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1241  if (Var->hasExternalStorage()) {
1242  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1243  return getInternalLinkageFor(Var);
1244 
1245  LinkageInfo LV;
1246  if (Var->getStorageClass() == SC_PrivateExtern)
1248  else if (!hasExplicitVisibilityAlready(computation)) {
1249  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1250  LV.mergeVisibility(*Vis, true);
1251  }
1252 
1253  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1254  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1255  if (PrevLV.getLinkage())
1256  LV.setLinkage(PrevLV.getLinkage());
1257  LV.mergeVisibility(PrevLV);
1258  }
1259 
1260  return LV;
1261  }
1262 
1263  if (!Var->isStaticLocal())
1264  return LinkageInfo::none();
1265  }
1266 
1267  ASTContext &Context = D->getASTContext();
1268  if (!Context.getLangOpts().CPlusPlus)
1269  return LinkageInfo::none();
1270 
1271  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1272  if (!OuterD || OuterD->isInvalidDecl())
1273  return LinkageInfo::none();
1274 
1275  LinkageInfo LV;
1276  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1277  if (!BD->getBlockManglingNumber())
1278  return LinkageInfo::none();
1279 
1280  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1281  BD->getBlockManglingContextDecl(), computation);
1282  } else {
1283  const auto *FD = cast<FunctionDecl>(OuterD);
1284  if (!FD->isInlined() &&
1285  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1286  return LinkageInfo::none();
1287 
1288  // If a function is hidden by -fvisibility-inlines-hidden option and
1289  // is not explicitly attributed as a hidden function,
1290  // we should not make static local variables in the function hidden.
1291  LV = getLVForDecl(FD, computation);
1292  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1293  !LV.isVisibilityExplicit()) {
1294  assert(cast<VarDecl>(D)->isStaticLocal());
1295  // If this was an implicitly hidden inline method, check again for
1296  // explicit visibility on the parent class, and use that for static locals
1297  // if present.
1298  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1299  LV = getLVForDecl(MD->getParent(), computation);
1300  if (!LV.isVisibilityExplicit()) {
1301  Visibility globalVisibility =
1302  computation.isValueVisibility()
1303  ? Context.getLangOpts().getValueVisibilityMode()
1304  : Context.getLangOpts().getTypeVisibilityMode();
1305  return LinkageInfo(VisibleNoLinkage, globalVisibility,
1306  /*visibilityExplicit=*/false);
1307  }
1308  }
1309  }
1310  if (!isExternallyVisible(LV.getLinkage()))
1311  return LinkageInfo::none();
1313  LV.isVisibilityExplicit());
1314 }
1315 
1316 static inline const CXXRecordDecl*
1318  const CXXRecordDecl *Ret = Record;
1319  while (Record && Record->isLambda()) {
1320  Ret = Record;
1321  if (!Record->getParent()) break;
1322  // Get the Containing Class of this Lambda Class
1323  Record = dyn_cast_or_null<CXXRecordDecl>(
1324  Record->getParent()->getParent());
1325  }
1326  return Ret;
1327 }
1328 
1330  LVComputationKind computation,
1331  bool IgnoreVarTypeLinkage) {
1332  // Internal_linkage attribute overrides other considerations.
1333  if (D->hasAttr<InternalLinkageAttr>())
1334  return getInternalLinkageFor(D);
1335 
1336  // Objective-C: treat all Objective-C declarations as having external
1337  // linkage.
1338  switch (D->getKind()) {
1339  default:
1340  break;
1341 
1342  // Per C++ [basic.link]p2, only the names of objects, references,
1343  // functions, types, templates, namespaces, and values ever have linkage.
1344  //
1345  // Note that the name of a typedef, namespace alias, using declaration,
1346  // and so on are not the name of the corresponding type, namespace, or
1347  // declaration, so they do *not* have linkage.
1348  case Decl::ImplicitParam:
1349  case Decl::Label:
1350  case Decl::NamespaceAlias:
1351  case Decl::ParmVar:
1352  case Decl::Using:
1353  case Decl::UsingShadow:
1354  case Decl::UsingDirective:
1355  return LinkageInfo::none();
1356 
1357  case Decl::EnumConstant:
1358  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1359  if (D->getASTContext().getLangOpts().CPlusPlus)
1360  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1361  return LinkageInfo::visible_none();
1362 
1363  case Decl::Typedef:
1364  case Decl::TypeAlias:
1365  // A typedef declaration has linkage if it gives a type a name for
1366  // linkage purposes.
1367  if (!cast<TypedefNameDecl>(D)
1368  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1369  return LinkageInfo::none();
1370  break;
1371 
1372  case Decl::TemplateTemplateParm: // count these as external
1373  case Decl::NonTypeTemplateParm:
1374  case Decl::ObjCAtDefsField:
1375  case Decl::ObjCCategory:
1376  case Decl::ObjCCategoryImpl:
1377  case Decl::ObjCCompatibleAlias:
1378  case Decl::ObjCImplementation:
1379  case Decl::ObjCMethod:
1380  case Decl::ObjCProperty:
1381  case Decl::ObjCPropertyImpl:
1382  case Decl::ObjCProtocol:
1383  return getExternalLinkageFor(D);
1384 
1385  case Decl::CXXRecord: {
1386  const auto *Record = cast<CXXRecordDecl>(D);
1387  if (Record->isLambda()) {
1388  if (!Record->getLambdaManglingNumber()) {
1389  // This lambda has no mangling number, so it's internal.
1390  return getInternalLinkageFor(D);
1391  }
1392 
1393  // This lambda has its linkage/visibility determined:
1394  // - either by the outermost lambda if that lambda has no mangling
1395  // number.
1396  // - or by the parent of the outer most lambda
1397  // This prevents infinite recursion in settings such as nested lambdas
1398  // used in NSDMI's, for e.g.
1399  // struct L {
1400  // int t{};
1401  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1402  // };
1403  const CXXRecordDecl *OuterMostLambda =
1405  if (!OuterMostLambda->getLambdaManglingNumber())
1406  return getInternalLinkageFor(D);
1407 
1408  return getLVForClosure(
1409  OuterMostLambda->getDeclContext()->getRedeclContext(),
1410  OuterMostLambda->getLambdaContextDecl(), computation);
1411  }
1412 
1413  break;
1414  }
1415  }
1416 
1417  // Handle linkage for namespace-scope names.
1419  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1420 
1421  // C++ [basic.link]p5:
1422  // In addition, a member function, static data member, a named
1423  // class or enumeration of class scope, or an unnamed class or
1424  // enumeration defined in a class-scope typedef declaration such
1425  // that the class or enumeration has the typedef name for linkage
1426  // purposes (7.1.3), has external linkage if the name of the class
1427  // has external linkage.
1428  if (D->getDeclContext()->isRecord())
1429  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1430 
1431  // C++ [basic.link]p6:
1432  // The name of a function declared in block scope and the name of
1433  // an object declared by a block scope extern declaration have
1434  // linkage. If there is a visible declaration of an entity with
1435  // linkage having the same name and type, ignoring entities
1436  // declared outside the innermost enclosing namespace scope, the
1437  // block scope declaration declares that same entity and receives
1438  // the linkage of the previous declaration. If there is more than
1439  // one such matching entity, the program is ill-formed. Otherwise,
1440  // if no matching entity is found, the block scope entity receives
1441  // external linkage.
1442  if (D->getDeclContext()->isFunctionOrMethod())
1443  return getLVForLocalDecl(D, computation);
1444 
1445  // C++ [basic.link]p6:
1446  // Names not covered by these rules have no linkage.
1447  return LinkageInfo::none();
1448 }
1449 
1450 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1452  LVComputationKind computation) {
1453  // Internal_linkage attribute overrides other considerations.
1454  if (D->hasAttr<InternalLinkageAttr>())
1455  return getInternalLinkageFor(D);
1456 
1457  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1458  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1459 
1460  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1461  return *LI;
1462 
1463  LinkageInfo LV = computeLVForDecl(D, computation);
1464  if (D->hasCachedLinkage())
1465  assert(D->getCachedLinkage() == LV.getLinkage());
1466 
1467  D->setCachedLinkage(LV.getLinkage());
1468  cache(D, computation, LV);
1469 
1470 #ifndef NDEBUG
1471  // In C (because of gnu inline) and in c++ with microsoft extensions an
1472  // static can follow an extern, so we can have two decls with different
1473  // linkages.
1474  const LangOptions &Opts = D->getASTContext().getLangOpts();
1475  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1476  return LV;
1477 
1478  // We have just computed the linkage for this decl. By induction we know
1479  // that all other computed linkages match, check that the one we just
1480  // computed also does.
1481  NamedDecl *Old = nullptr;
1482  for (auto I : D->redecls()) {
1483  auto *T = cast<NamedDecl>(I);
1484  if (T == D)
1485  continue;
1486  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1487  Old = T;
1488  break;
1489  }
1490  }
1491  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1492 #endif
1493 
1494  return LV;
1495 }
1496 
1498  return getLVForDecl(D,
1502 }
1503 
1504 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1505  Module *M = getOwningModule();
1506  if (!M)
1507  return nullptr;
1508 
1509  switch (M->Kind) {
1511  // Module map modules have no special linkage semantics.
1512  return nullptr;
1513 
1515  return M;
1516 
1518  // External linkage declarations in the global module have no owning module
1519  // for linkage purposes. But internal linkage declarations in the global
1520  // module fragment of a particular module are owned by that module for
1521  // linkage purposes.
1522  if (IgnoreLinkage)
1523  return nullptr;
1524  bool InternalLinkage;
1525  if (auto *ND = dyn_cast<NamedDecl>(this))
1526  InternalLinkage = !ND->hasExternalFormalLinkage();
1527  else {
1528  auto *NSD = dyn_cast<NamespaceDecl>(this);
1529  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1530  isInAnonymousNamespace();
1531  }
1532  return InternalLinkage ? M->Parent : nullptr;
1533  }
1534 
1536  // The private module fragment is part of its containing module for linkage
1537  // purposes.
1538  return M->Parent;
1539  }
1540 
1541  llvm_unreachable("unknown module kind");
1542 }
1543 
1544 void NamedDecl::printName(raw_ostream &os) const {
1545  os << Name;
1546 }
1547 
1549  std::string QualName;
1550  llvm::raw_string_ostream OS(QualName);
1551  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1552  return OS.str();
1553 }
1554 
1555 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1556  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1557 }
1558 
1559 void NamedDecl::printQualifiedName(raw_ostream &OS,
1560  const PrintingPolicy &P) const {
1561  const DeclContext *Ctx = getDeclContext();
1562 
1563  // For ObjC methods and properties, look through categories and use the
1564  // interface as context.
1565  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1566  if (auto *ID = MD->getClassInterface())
1567  Ctx = ID;
1568  if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1569  if (auto *MD = PD->getGetterMethodDecl())
1570  if (auto *ID = MD->getClassInterface())
1571  Ctx = ID;
1572  }
1573 
1574  if (Ctx->isFunctionOrMethod()) {
1575  printName(OS);
1576  return;
1577  }
1578 
1579  using ContextsTy = SmallVector<const DeclContext *, 8>;
1580  ContextsTy Contexts;
1581 
1582  // Collect named contexts.
1583  while (Ctx) {
1584  if (isa<NamedDecl>(Ctx))
1585  Contexts.push_back(Ctx);
1586  Ctx = Ctx->getParent();
1587  }
1588 
1589  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1590  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1591  OS << Spec->getName();
1592  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1593  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1594  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1595  if (P.SuppressUnwrittenScope &&
1596  (ND->isAnonymousNamespace() || ND->isInline()))
1597  continue;
1598  if (ND->isAnonymousNamespace()) {
1599  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1600  : "(anonymous namespace)");
1601  }
1602  else
1603  OS << *ND;
1604  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1605  if (!RD->getIdentifier())
1606  OS << "(anonymous " << RD->getKindName() << ')';
1607  else
1608  OS << *RD;
1609  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1610  const FunctionProtoType *FT = nullptr;
1611  if (FD->hasWrittenPrototype())
1612  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1613 
1614  OS << *FD << '(';
1615  if (FT) {
1616  unsigned NumParams = FD->getNumParams();
1617  for (unsigned i = 0; i < NumParams; ++i) {
1618  if (i)
1619  OS << ", ";
1620  OS << FD->getParamDecl(i)->getType().stream(P);
1621  }
1622 
1623  if (FT->isVariadic()) {
1624  if (NumParams > 0)
1625  OS << ", ";
1626  OS << "...";
1627  }
1628  }
1629  OS << ')';
1630  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1631  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1632  // enumerator is declared in the scope that immediately contains
1633  // the enum-specifier. Each scoped enumerator is declared in the
1634  // scope of the enumeration.
1635  // For the case of unscoped enumerator, do not include in the qualified
1636  // name any information about its enum enclosing scope, as its visibility
1637  // is global.
1638  if (ED->isScoped())
1639  OS << *ED;
1640  else
1641  continue;
1642  } else {
1643  OS << *cast<NamedDecl>(DC);
1644  }
1645  OS << "::";
1646  }
1647 
1648  if (getDeclName() || isa<DecompositionDecl>(this))
1649  OS << *this;
1650  else
1651  OS << "(anonymous)";
1652 }
1653 
1654 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1655  const PrintingPolicy &Policy,
1656  bool Qualified) const {
1657  if (Qualified)
1658  printQualifiedName(OS, Policy);
1659  else
1660  printName(OS);
1661 }
1662 
1663 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1664  return true;
1665 }
1666 static bool isRedeclarableImpl(...) { return false; }
1667 static bool isRedeclarable(Decl::Kind K) {
1668  switch (K) {
1669 #define DECL(Type, Base) \
1670  case Decl::Type: \
1671  return isRedeclarableImpl((Type##Decl *)nullptr);
1672 #define ABSTRACT_DECL(DECL)
1673 #include "clang/AST/DeclNodes.inc"
1674  }
1675  llvm_unreachable("unknown decl kind");
1676 }
1677 
1678 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1679  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1680 
1681  // Never replace one imported declaration with another; we need both results
1682  // when re-exporting.
1683  if (OldD->isFromASTFile() && isFromASTFile())
1684  return false;
1685 
1686  // A kind mismatch implies that the declaration is not replaced.
1687  if (OldD->getKind() != getKind())
1688  return false;
1689 
1690  // For method declarations, we never replace. (Why?)
1691  if (isa<ObjCMethodDecl>(this))
1692  return false;
1693 
1694  // For parameters, pick the newer one. This is either an error or (in
1695  // Objective-C) permitted as an extension.
1696  if (isa<ParmVarDecl>(this))
1697  return true;
1698 
1699  // Inline namespaces can give us two declarations with the same
1700  // name and kind in the same scope but different contexts; we should
1701  // keep both declarations in this case.
1702  if (!this->getDeclContext()->getRedeclContext()->Equals(
1703  OldD->getDeclContext()->getRedeclContext()))
1704  return false;
1705 
1706  // Using declarations can be replaced if they import the same name from the
1707  // same context.
1708  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1709  ASTContext &Context = getASTContext();
1710  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1712  cast<UsingDecl>(OldD)->getQualifier());
1713  }
1714  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1715  ASTContext &Context = getASTContext();
1716  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1718  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1719  }
1720 
1721  if (isRedeclarable(getKind())) {
1722  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1723  return false;
1724 
1725  if (IsKnownNewer)
1726  return true;
1727 
1728  // Check whether this is actually newer than OldD. We want to keep the
1729  // newer declaration. This loop will usually only iterate once, because
1730  // OldD is usually the previous declaration.
1731  for (auto D : redecls()) {
1732  if (D == OldD)
1733  break;
1734 
1735  // If we reach the canonical declaration, then OldD is not actually older
1736  // than this one.
1737  //
1738  // FIXME: In this case, we should not add this decl to the lookup table.
1739  if (D->isCanonicalDecl())
1740  return false;
1741  }
1742 
1743  // It's a newer declaration of the same kind of declaration in the same
1744  // scope: we want this decl instead of the existing one.
1745  return true;
1746  }
1747 
1748  // In all other cases, we need to keep both declarations in case they have
1749  // different visibility. Any attempt to use the name will result in an
1750  // ambiguity if more than one is visible.
1751  return false;
1752 }
1753 
1755  return getFormalLinkage() != NoLinkage;
1756 }
1757 
1758 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1759  NamedDecl *ND = this;
1760  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1761  ND = UD->getTargetDecl();
1762 
1763  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1764  return AD->getClassInterface();
1765 
1766  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1767  return AD->getNamespace();
1768 
1769  return ND;
1770 }
1771 
1773  if (!isCXXClassMember())
1774  return false;
1775 
1776  const NamedDecl *D = this;
1777  if (isa<UsingShadowDecl>(D))
1778  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1779 
1780  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1781  return true;
1782  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1783  return MD->isInstance();
1784  return false;
1785 }
1786 
1787 //===----------------------------------------------------------------------===//
1788 // DeclaratorDecl Implementation
1789 //===----------------------------------------------------------------------===//
1790 
1791 template <typename DeclT>
1793  if (decl->getNumTemplateParameterLists() > 0)
1794  return decl->getTemplateParameterList(0)->getTemplateLoc();
1795  else
1796  return decl->getInnerLocStart();
1797 }
1798 
1800  TypeSourceInfo *TSI = getTypeSourceInfo();
1801  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1802  return SourceLocation();
1803 }
1804 
1806  if (QualifierLoc) {
1807  // Make sure the extended decl info is allocated.
1808  if (!hasExtInfo()) {
1809  // Save (non-extended) type source info pointer.
1810  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1811  // Allocate external info struct.
1812  DeclInfo = new (getASTContext()) ExtInfo;
1813  // Restore savedTInfo into (extended) decl info.
1814  getExtInfo()->TInfo = savedTInfo;
1815  }
1816  // Set qualifier info.
1817  getExtInfo()->QualifierLoc = QualifierLoc;
1818  } else {
1819  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1820  if (hasExtInfo()) {
1821  if (getExtInfo()->NumTemplParamLists == 0) {
1822  // Save type source info pointer.
1823  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1824  // Deallocate the extended decl info.
1825  getASTContext().Deallocate(getExtInfo());
1826  // Restore savedTInfo into (non-extended) decl info.
1827  DeclInfo = savedTInfo;
1828  }
1829  else
1830  getExtInfo()->QualifierLoc = QualifierLoc;
1831  }
1832  }
1833 }
1834 
1836  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1837  assert(!TPLists.empty());
1838  // Make sure the extended decl info is allocated.
1839  if (!hasExtInfo()) {
1840  // Save (non-extended) type source info pointer.
1841  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1842  // Allocate external info struct.
1843  DeclInfo = new (getASTContext()) ExtInfo;
1844  // Restore savedTInfo into (extended) decl info.
1845  getExtInfo()->TInfo = savedTInfo;
1846  }
1847  // Set the template parameter lists info.
1848  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1849 }
1850 
1852  return getTemplateOrInnerLocStart(this);
1853 }
1854 
1855 // Helper function: returns true if QT is or contains a type
1856 // having a postfix component.
1857 static bool typeIsPostfix(QualType QT) {
1858  while (true) {
1859  const Type* T = QT.getTypePtr();
1860  switch (T->getTypeClass()) {
1861  default:
1862  return false;
1863  case Type::Pointer:
1864  QT = cast<PointerType>(T)->getPointeeType();
1865  break;
1866  case Type::BlockPointer:
1867  QT = cast<BlockPointerType>(T)->getPointeeType();
1868  break;
1869  case Type::MemberPointer:
1870  QT = cast<MemberPointerType>(T)->getPointeeType();
1871  break;
1872  case Type::LValueReference:
1873  case Type::RValueReference:
1874  QT = cast<ReferenceType>(T)->getPointeeType();
1875  break;
1876  case Type::PackExpansion:
1877  QT = cast<PackExpansionType>(T)->getPattern();
1878  break;
1879  case Type::Paren:
1880  case Type::ConstantArray:
1881  case Type::DependentSizedArray:
1882  case Type::IncompleteArray:
1883  case Type::VariableArray:
1884  case Type::FunctionProto:
1885  case Type::FunctionNoProto:
1886  return true;
1887  }
1888  }
1889 }
1890 
1892  SourceLocation RangeEnd = getLocation();
1893  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1894  // If the declaration has no name or the type extends past the name take the
1895  // end location of the type.
1896  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1897  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1898  }
1899  return SourceRange(getOuterLocStart(), RangeEnd);
1900 }
1901 
1903  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1904  // Free previous template parameters (if any).
1905  if (NumTemplParamLists > 0) {
1906  Context.Deallocate(TemplParamLists);
1907  TemplParamLists = nullptr;
1908  NumTemplParamLists = 0;
1909  }
1910  // Set info on matched template parameter lists (if any).
1911  if (!TPLists.empty()) {
1912  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1913  NumTemplParamLists = TPLists.size();
1914  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1915  }
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // VarDecl Implementation
1920 //===----------------------------------------------------------------------===//
1921 
1923  switch (SC) {
1924  case SC_None: break;
1925  case SC_Auto: return "auto";
1926  case SC_Extern: return "extern";
1927  case SC_PrivateExtern: return "__private_extern__";
1928  case SC_Register: return "register";
1929  case SC_Static: return "static";
1930  }
1931 
1932  llvm_unreachable("Invalid storage class");
1933 }
1934 
1936  SourceLocation StartLoc, SourceLocation IdLoc,
1938  StorageClass SC)
1939  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1940  redeclarable_base(C) {
1941  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1942  "VarDeclBitfields too large!");
1943  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1944  "ParmVarDeclBitfields too large!");
1945  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1946  "NonParmVarDeclBitfields too large!");
1947  AllBits = 0;
1948  VarDeclBits.SClass = SC;
1949  // Everything else is implicitly initialized to false.
1950 }
1951 
1953  SourceLocation StartL, SourceLocation IdL,
1955  StorageClass S) {
1956  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1957 }
1958 
1960  return new (C, ID)
1961  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1962  QualType(), nullptr, SC_None);
1963 }
1964 
1966  assert(isLegalForVariable(SC));
1967  VarDeclBits.SClass = SC;
1968 }
1969 
1971  switch (VarDeclBits.TSCSpec) {
1972  case TSCS_unspecified:
1973  if (!hasAttr<ThreadAttr>() &&
1974  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1975  getASTContext().getTargetInfo().isTLSSupported() &&
1976  hasAttr<OMPThreadPrivateDeclAttr>()))
1977  return TLS_None;
1978  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1980  hasAttr<OMPThreadPrivateDeclAttr>())
1981  ? TLS_Dynamic
1982  : TLS_Static;
1983  case TSCS___thread: // Fall through.
1984  case TSCS__Thread_local:
1985  return TLS_Static;
1986  case TSCS_thread_local:
1987  return TLS_Dynamic;
1988  }
1989  llvm_unreachable("Unknown thread storage class specifier!");
1990 }
1991 
1993  if (const Expr *Init = getInit()) {
1994  SourceLocation InitEnd = Init->getEndLoc();
1995  // If Init is implicit, ignore its source range and fallback on
1996  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1997  if (InitEnd.isValid() && InitEnd != getLocation())
1998  return SourceRange(getOuterLocStart(), InitEnd);
1999  }
2001 }
2002 
2003 template<typename T>
2005  // C++ [dcl.link]p1: All function types, function names with external linkage,
2006  // and variable names with external linkage have a language linkage.
2007  if (!D.hasExternalFormalLinkage())
2008  return NoLanguageLinkage;
2009 
2010  // Language linkage is a C++ concept, but saying that everything else in C has
2011  // C language linkage fits the implementation nicely.
2012  ASTContext &Context = D.getASTContext();
2013  if (!Context.getLangOpts().CPlusPlus)
2014  return CLanguageLinkage;
2015 
2016  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2017  // language linkage of the names of class members and the function type of
2018  // class member functions.
2019  const DeclContext *DC = D.getDeclContext();
2020  if (DC->isRecord())
2021  return CXXLanguageLinkage;
2022 
2023  // If the first decl is in an extern "C" context, any other redeclaration
2024  // will have C language linkage. If the first one is not in an extern "C"
2025  // context, we would have reported an error for any other decl being in one.
2026  if (isFirstInExternCContext(&D))
2027  return CLanguageLinkage;
2028  return CXXLanguageLinkage;
2029 }
2030 
2031 template<typename T>
2032 static bool isDeclExternC(const T &D) {
2033  // Since the context is ignored for class members, they can only have C++
2034  // language linkage or no language linkage.
2035  const DeclContext *DC = D.getDeclContext();
2036  if (DC->isRecord()) {
2037  assert(D.getASTContext().getLangOpts().CPlusPlus);
2038  return false;
2039  }
2040 
2041  return D.getLanguageLinkage() == CLanguageLinkage;
2042 }
2043 
2045  return getDeclLanguageLinkage(*this);
2046 }
2047 
2048 bool VarDecl::isExternC() const {
2049  return isDeclExternC(*this);
2050 }
2051 
2054 }
2055 
2058 }
2059 
2061 
2065  return DeclarationOnly;
2066 
2067  // C++ [basic.def]p2:
2068  // A declaration is a definition unless [...] it contains the 'extern'
2069  // specifier or a linkage-specification and neither an initializer [...],
2070  // it declares a non-inline static data member in a class declaration [...],
2071  // it declares a static data member outside a class definition and the variable
2072  // was defined within the class with the constexpr specifier [...],
2073  // C++1y [temp.expl.spec]p15:
2074  // An explicit specialization of a static data member or an explicit
2075  // specialization of a static data member template is a definition if the
2076  // declaration includes an initializer; otherwise, it is a declaration.
2077  //
2078  // FIXME: How do you declare (but not define) a partial specialization of
2079  // a static data member template outside the containing class?
2080  if (isStaticDataMember()) {
2081  if (isOutOfLine() &&
2082  !(getCanonicalDecl()->isInline() &&
2083  getCanonicalDecl()->isConstexpr()) &&
2084  (hasInit() ||
2085  // If the first declaration is out-of-line, this may be an
2086  // instantiation of an out-of-line partial specialization of a variable
2087  // template for which we have not yet instantiated the initializer.
2092  isa<VarTemplatePartialSpecializationDecl>(this)))
2093  return Definition;
2094  else if (!isOutOfLine() && isInline())
2095  return Definition;
2096  else
2097  return DeclarationOnly;
2098  }
2099  // C99 6.7p5:
2100  // A definition of an identifier is a declaration for that identifier that
2101  // [...] causes storage to be reserved for that object.
2102  // Note: that applies for all non-file-scope objects.
2103  // C99 6.9.2p1:
2104  // If the declaration of an identifier for an object has file scope and an
2105  // initializer, the declaration is an external definition for the identifier
2106  if (hasInit())
2107  return Definition;
2108 
2109  if (hasDefiningAttr())
2110  return Definition;
2111 
2112  if (const auto *SAA = getAttr<SelectAnyAttr>())
2113  if (!SAA->isInherited())
2114  return Definition;
2115 
2116  // A variable template specialization (other than a static data member
2117  // template or an explicit specialization) is a declaration until we
2118  // instantiate its initializer.
2119  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2120  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2121  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2122  !VTSD->IsCompleteDefinition)
2123  return DeclarationOnly;
2124  }
2125 
2126  if (hasExternalStorage())
2127  return DeclarationOnly;
2128 
2129  // [dcl.link] p7:
2130  // A declaration directly contained in a linkage-specification is treated
2131  // as if it contains the extern specifier for the purpose of determining
2132  // the linkage of the declared name and whether it is a definition.
2133  if (isSingleLineLanguageLinkage(*this))
2134  return DeclarationOnly;
2135 
2136  // C99 6.9.2p2:
2137  // A declaration of an object that has file scope without an initializer,
2138  // and without a storage class specifier or the scs 'static', constitutes
2139  // a tentative definition.
2140  // No such thing in C++.
2141  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2142  return TentativeDefinition;
2143 
2144  // What's left is (in C, block-scope) declarations without initializers or
2145  // external storage. These are definitions.
2146  return Definition;
2147 }
2148 
2151  if (Kind != TentativeDefinition)
2152  return nullptr;
2153 
2154  VarDecl *LastTentative = nullptr;
2155  VarDecl *First = getFirstDecl();
2156  for (auto I : First->redecls()) {
2157  Kind = I->isThisDeclarationADefinition();
2158  if (Kind == Definition)
2159  return nullptr;
2160  else if (Kind == TentativeDefinition)
2161  LastTentative = I;
2162  }
2163  return LastTentative;
2164 }
2165 
2167  VarDecl *First = getFirstDecl();
2168  for (auto I : First->redecls()) {
2169  if (I->isThisDeclarationADefinition(C) == Definition)
2170  return I;
2171  }
2172  return nullptr;
2173 }
2174 
2177 
2178  const VarDecl *First = getFirstDecl();
2179  for (auto I : First->redecls()) {
2180  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2181  if (Kind == Definition)
2182  break;
2183  }
2184 
2185  return Kind;
2186 }
2187 
2188 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2189  for (auto I : redecls()) {
2190  if (auto Expr = I->getInit()) {
2191  D = I;
2192  return Expr;
2193  }
2194  }
2195  return nullptr;
2196 }
2197 
2198 bool VarDecl::hasInit() const {
2199  if (auto *P = dyn_cast<ParmVarDecl>(this))
2200  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2201  return false;
2202 
2203  return !Init.isNull();
2204 }
2205 
2207  if (!hasInit())
2208  return nullptr;
2209 
2210  if (auto *S = Init.dyn_cast<Stmt *>())
2211  return cast<Expr>(S);
2212 
2213  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2214 }
2215 
2217  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2218  return &ES->Value;
2219 
2220  return Init.getAddrOfPtr1();
2221 }
2222 
2224  VarDecl *Def = nullptr;
2225  for (auto I : redecls()) {
2226  if (I->hasInit())
2227  return I;
2228 
2229  if (I->isThisDeclarationADefinition()) {
2230  if (isStaticDataMember())
2231  return I;
2232  else
2233  Def = I;
2234  }
2235  }
2236  return Def;
2237 }
2238 
2239 bool VarDecl::isOutOfLine() const {
2240  if (Decl::isOutOfLine())
2241  return true;
2242 
2243  if (!isStaticDataMember())
2244  return false;
2245 
2246  // If this static data member was instantiated from a static data member of
2247  // a class template, check whether that static data member was defined
2248  // out-of-line.
2250  return VD->isOutOfLine();
2251 
2252  return false;
2253 }
2254 
2256  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2257  Eval->~EvaluatedStmt();
2258  getASTContext().Deallocate(Eval);
2259  }
2260 
2261  Init = I;
2262 }
2263 
2265  const LangOptions &Lang = C.getLangOpts();
2266 
2267  if (!Lang.CPlusPlus)
2268  return false;
2269 
2270  // Function parameters are never usable in constant expressions.
2271  if (isa<ParmVarDecl>(this))
2272  return false;
2273 
2274  // In C++11, any variable of reference type can be used in a constant
2275  // expression if it is initialized by a constant expression.
2276  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2277  return true;
2278 
2279  // Only const objects can be used in constant expressions in C++. C++98 does
2280  // not require the variable to be non-volatile, but we consider this to be a
2281  // defect.
2282  if (!getType().isConstQualified() || getType().isVolatileQualified())
2283  return false;
2284 
2285  // In C++, const, non-volatile variables of integral or enumeration types
2286  // can be used in constant expressions.
2287  if (getType()->isIntegralOrEnumerationType())
2288  return true;
2289 
2290  // Additionally, in C++11, non-volatile constexpr variables can be used in
2291  // constant expressions.
2292  return Lang.CPlusPlus11 && isConstexpr();
2293 }
2294 
2296  // C++2a [expr.const]p3:
2297  // A variable is usable in constant expressions after its initializing
2298  // declaration is encountered...
2299  const VarDecl *DefVD = nullptr;
2300  const Expr *Init = getAnyInitializer(DefVD);
2301  if (!Init || Init->isValueDependent() || getType()->isDependentType())
2302  return false;
2303  // ... if it is a constexpr variable, or it is of reference type or of
2304  // const-qualified integral or enumeration type, ...
2305  if (!DefVD->mightBeUsableInConstantExpressions(Context))
2306  return false;
2307  // ... and its initializer is a constant initializer.
2308  return DefVD->checkInitIsICE();
2309 }
2310 
2311 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2312 /// form, which contains extra information on the evaluated value of the
2313 /// initializer.
2315  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2316  if (!Eval) {
2317  // Note: EvaluatedStmt contains an APValue, which usually holds
2318  // resources not allocated from the ASTContext. We need to do some
2319  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2320  // where we can detect whether there's anything to clean up or not.
2321  Eval = new (getASTContext()) EvaluatedStmt;
2322  Eval->Value = Init.get<Stmt *>();
2323  Init = Eval;
2324  }
2325  return Eval;
2326 }
2327 
2330  return evaluateValue(Notes);
2331 }
2332 
2334  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2336 
2337  // We only produce notes indicating why an initializer is non-constant the
2338  // first time it is evaluated. FIXME: The notes won't always be emitted the
2339  // first time we try evaluation, so might not be produced at all.
2340  if (Eval->WasEvaluated)
2341  return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2342 
2343  const auto *Init = cast<Expr>(Eval->Value);
2344  assert(!Init->isValueDependent());
2345 
2346  if (Eval->IsEvaluating) {
2347  // FIXME: Produce a diagnostic for self-initialization.
2348  Eval->CheckedICE = true;
2349  Eval->IsICE = false;
2350  return nullptr;
2351  }
2352 
2353  Eval->IsEvaluating = true;
2354 
2355  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2356  this, Notes);
2357 
2358  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2359  // or that it's empty (so that there's nothing to clean up) if evaluation
2360  // failed.
2361  if (!Result)
2362  Eval->Evaluated = APValue();
2363  else if (Eval->Evaluated.needsCleanup())
2365 
2366  Eval->IsEvaluating = false;
2367  Eval->WasEvaluated = true;
2368 
2369  // In C++11, we have determined whether the initializer was a constant
2370  // expression as a side-effect.
2371  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2372  Eval->CheckedICE = true;
2373  Eval->IsICE = Result && Notes.empty();
2374  }
2375 
2376  return Result ? &Eval->Evaluated : nullptr;
2377 }
2378 
2380  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2381  if (Eval->WasEvaluated)
2382  return &Eval->Evaluated;
2383 
2384  return nullptr;
2385 }
2386 
2388  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2389  return Eval->CheckedICE;
2390 
2391  return false;
2392 }
2393 
2394 bool VarDecl::isInitICE() const {
2395  assert(isInitKnownICE() &&
2396  "Check whether we already know that the initializer is an ICE");
2397  return Init.get<EvaluatedStmt *>()->IsICE;
2398 }
2399 
2401  // Initializers of weak variables are never ICEs.
2402  if (isWeak())
2403  return false;
2404 
2406  if (Eval->CheckedICE)
2407  // We have already checked whether this subexpression is an
2408  // integral constant expression.
2409  return Eval->IsICE;
2410 
2411  const auto *Init = cast<Expr>(Eval->Value);
2412  assert(!Init->isValueDependent());
2413 
2414  // In C++11, evaluate the initializer to check whether it's a constant
2415  // expression.
2416  if (getASTContext().getLangOpts().CPlusPlus11) {
2418  evaluateValue(Notes);
2419  return Eval->IsICE;
2420  }
2421 
2422  // It's an ICE whether or not the definition we found is
2423  // out-of-line. See DR 721 and the discussion in Clang PR
2424  // 6206 for details.
2425 
2426  if (Eval->CheckingICE)
2427  return false;
2428  Eval->CheckingICE = true;
2429 
2430  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2431  Eval->CheckingICE = false;
2432  Eval->CheckedICE = true;
2433  return Eval->IsICE;
2434 }
2435 
2437  return isa<PackExpansionType>(getType());
2438 }
2439 
2440 template<typename DeclT>
2441 static DeclT *getDefinitionOrSelf(DeclT *D) {
2442  assert(D);
2443  if (auto *Def = D->getDefinition())
2444  return Def;
2445  return D;
2446 }
2447 
2449  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2450 }
2451 
2453  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2454 }
2455 
2457  const VarDecl *VD = this;
2458 
2459  // If this is an instantiated member, walk back to the template from which
2460  // it was instantiated.
2462  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2464  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2465  VD = NewVD;
2466  }
2467  }
2468 
2469  // If it's an instantiated variable template specialization, find the
2470  // template or partial specialization from which it was instantiated.
2471  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2472  if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2473  auto From = VDTemplSpec->getInstantiatedFrom();
2474  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2475  while (!VTD->isMemberSpecialization()) {
2476  auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2477  if (!NewVTD)
2478  break;
2479  VTD = NewVTD;
2480  }
2481  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2482  }
2483  if (auto *VTPSD =
2484  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2485  while (!VTPSD->isMemberSpecialization()) {
2486  auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2487  if (!NewVTPSD)
2488  break;
2489  VTPSD = NewVTPSD;
2490  }
2491  return getDefinitionOrSelf<VarDecl>(VTPSD);
2492  }
2493  }
2494  }
2495 
2496  // If this is the pattern of a variable template, find where it was
2497  // instantiated from. FIXME: Is this necessary?
2498  if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2499  while (!VarTemplate->isMemberSpecialization()) {
2500  auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2501  if (!NewVT)
2502  break;
2503  VarTemplate = NewVT;
2504  }
2505 
2506  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2507  }
2508 
2509  if (VD == this)
2510  return nullptr;
2511  return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2512 }
2513 
2516  return cast<VarDecl>(MSI->getInstantiatedFrom());
2517 
2518  return nullptr;
2519 }
2520 
2522  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2523  return Spec->getSpecializationKind();
2524 
2526  return MSI->getTemplateSpecializationKind();
2527 
2528  return TSK_Undeclared;
2529 }
2530 
2534  return MSI->getTemplateSpecializationKind();
2535 
2536  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2537  return Spec->getSpecializationKind();
2538 
2539  return TSK_Undeclared;
2540 }
2541 
2543  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2544  return Spec->getPointOfInstantiation();
2545 
2547  return MSI->getPointOfInstantiation();
2548 
2549  return SourceLocation();
2550 }
2551 
2554  .dyn_cast<VarTemplateDecl *>();
2555 }
2556 
2559 }
2560 
2562  const auto &LangOpts = getASTContext().getLangOpts();
2563  // In CUDA mode without relocatable device code, variables of form 'extern
2564  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2565  // memory pool. These are never undefined variables, even if they appear
2566  // inside of an anon namespace or static function.
2567  //
2568  // With CUDA relocatable device code enabled, these variables don't get
2569  // special handling; they're treated like regular extern variables.
2570  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2571  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2572  isa<IncompleteArrayType>(getType()))
2573  return true;
2574 
2575  return hasDefinition();
2576 }
2577 
2578 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2579  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2580  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2581  !hasAttr<AlwaysDestroyAttr>()));
2582 }
2583 
2585  if (isStaticDataMember())
2586  // FIXME: Remove ?
2587  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2589  .dyn_cast<MemberSpecializationInfo *>();
2590  return nullptr;
2591 }
2592 
2594  SourceLocation PointOfInstantiation) {
2595  assert((isa<VarTemplateSpecializationDecl>(this) ||
2597  "not a variable or static data member template specialization");
2598 
2599  if (VarTemplateSpecializationDecl *Spec =
2600  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2601  Spec->setSpecializationKind(TSK);
2602  if (TSK != TSK_ExplicitSpecialization &&
2603  PointOfInstantiation.isValid() &&
2604  Spec->getPointOfInstantiation().isInvalid()) {
2605  Spec->setPointOfInstantiation(PointOfInstantiation);
2607  L->InstantiationRequested(this);
2608  }
2610  MSI->setTemplateSpecializationKind(TSK);
2611  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2612  MSI->getPointOfInstantiation().isInvalid()) {
2613  MSI->setPointOfInstantiation(PointOfInstantiation);
2615  L->InstantiationRequested(this);
2616  }
2617  }
2618 }
2619 
2620 void
2623  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2624  "Previous template or instantiation?");
2626 }
2627 
2628 //===----------------------------------------------------------------------===//
2629 // ParmVarDecl Implementation
2630 //===----------------------------------------------------------------------===//
2631 
2633  SourceLocation StartLoc,
2635  QualType T, TypeSourceInfo *TInfo,
2636  StorageClass S, Expr *DefArg) {
2637  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2638  S, DefArg);
2639 }
2640 
2643  QualType T = TSI ? TSI->getType() : getType();
2644  if (const auto *DT = dyn_cast<DecayedType>(T))
2645  return DT->getOriginalType();
2646  return T;
2647 }
2648 
2650  return new (C, ID)
2651  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2652  nullptr, QualType(), nullptr, SC_None, nullptr);
2653 }
2654 
2656  if (!hasInheritedDefaultArg()) {
2657  SourceRange ArgRange = getDefaultArgRange();
2658  if (ArgRange.isValid())
2659  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2660  }
2661 
2662  // DeclaratorDecl considers the range of postfix types as overlapping with the
2663  // declaration name, but this is not the case with parameters in ObjC methods.
2664  if (isa<ObjCMethodDecl>(getDeclContext()))
2666 
2668 }
2669 
2671  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2672  assert(!hasUninstantiatedDefaultArg() &&
2673  "Default argument is not yet instantiated!");
2674 
2675  Expr *Arg = getInit();
2676  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2677  return E->getSubExpr();
2678 
2679  return Arg;
2680 }
2681 
2683  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2684  Init = defarg;
2685 }
2686 
2688  switch (ParmVarDeclBits.DefaultArgKind) {
2689  case DAK_None:
2690  case DAK_Unparsed:
2691  // Nothing we can do here.
2692  return SourceRange();
2693 
2694  case DAK_Uninstantiated:
2695  return getUninstantiatedDefaultArg()->getSourceRange();
2696 
2697  case DAK_Normal:
2698  if (const Expr *E = getInit())
2699  return E->getSourceRange();
2700 
2701  // Missing an actual expression, may be invalid.
2702  return SourceRange();
2703  }
2704  llvm_unreachable("Invalid default argument kind.");
2705 }
2706 
2708  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2709  Init = arg;
2710 }
2711 
2713  assert(hasUninstantiatedDefaultArg() &&
2714  "Wrong kind of initialization expression!");
2715  return cast_or_null<Expr>(Init.get<Stmt *>());
2716 }
2717 
2719  // FIXME: We should just return false for DAK_None here once callers are
2720  // prepared for the case that we encountered an invalid default argument and
2721  // were unable to even build an invalid expression.
2722  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2723  !Init.isNull();
2724 }
2725 
2726 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2727  getASTContext().setParameterIndex(this, parameterIndex);
2728  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2729 }
2730 
2731 unsigned ParmVarDecl::getParameterIndexLarge() const {
2732  return getASTContext().getParameterIndex(this);
2733 }
2734 
2735 //===----------------------------------------------------------------------===//
2736 // FunctionDecl Implementation
2737 //===----------------------------------------------------------------------===//
2738 
2740  SourceLocation StartLoc,
2741  const DeclarationNameInfo &NameInfo, QualType T,
2742  TypeSourceInfo *TInfo, StorageClass S,
2743  bool isInlineSpecified,
2744  ConstexprSpecKind ConstexprKind)
2745  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2746  StartLoc),
2748  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2749  assert(T.isNull() || T->isFunctionType());
2750  FunctionDeclBits.SClass = S;
2752  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2753  FunctionDeclBits.IsVirtualAsWritten = false;
2754  FunctionDeclBits.IsPure = false;
2755  FunctionDeclBits.HasInheritedPrototype = false;
2756  FunctionDeclBits.HasWrittenPrototype = true;
2757  FunctionDeclBits.IsDeleted = false;
2758  FunctionDeclBits.IsTrivial = false;
2759  FunctionDeclBits.IsTrivialForCall = false;
2760  FunctionDeclBits.IsDefaulted = false;
2761  FunctionDeclBits.IsExplicitlyDefaulted = false;
2762  FunctionDeclBits.HasImplicitReturnZero = false;
2763  FunctionDeclBits.IsLateTemplateParsed = false;
2764  FunctionDeclBits.ConstexprKind = ConstexprKind;
2765  FunctionDeclBits.InstantiationIsPending = false;
2766  FunctionDeclBits.UsesSEHTry = false;
2767  FunctionDeclBits.HasSkippedBody = false;
2768  FunctionDeclBits.WillHaveBody = false;
2769  FunctionDeclBits.IsMultiVersion = false;
2770  FunctionDeclBits.IsCopyDeductionCandidate = false;
2771  FunctionDeclBits.HasODRHash = false;
2772 }
2773 
2775  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2776  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2777  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2778  if (TemplateArgs)
2779  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2780 }
2781 
2783  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2784  return FT->isVariadic();
2785  return false;
2786 }
2787 
2788 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2789  for (auto I : redecls()) {
2790  if (I->doesThisDeclarationHaveABody()) {
2791  Definition = I;
2792  return true;
2793  }
2794  }
2795 
2796  return false;
2797 }
2798 
2800 {
2801  Stmt *S = getBody();
2802  if (!S) {
2803  // Since we don't have a body for this function, we don't know if it's
2804  // trivial or not.
2805  return false;
2806  }
2807 
2808  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2809  return true;
2810  return false;
2811 }
2812 
2813 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2814  for (auto I : redecls()) {
2815  if (I->isThisDeclarationADefinition()) {
2816  Definition = I;
2817  return true;
2818  }
2819  }
2820 
2821  return false;
2822 }
2823 
2824 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2825  if (!hasBody(Definition))
2826  return nullptr;
2827 
2828  if (Definition->Body)
2829  return Definition->Body.get(getASTContext().getExternalSource());
2830 
2831  return nullptr;
2832 }
2833 
2835  Body = B;
2836  if (B)
2837  EndRangeLoc = B->getEndLoc();
2838 }
2839 
2841  FunctionDeclBits.IsPure = P;
2842  if (P)
2843  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2844  Parent->markedVirtualFunctionPure();
2845 }
2846 
2847 template<std::size_t Len>
2848 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2849  IdentifierInfo *II = ND->getIdentifier();
2850  return II && II->isStr(Str);
2851 }
2852 
2853 bool FunctionDecl::isMain() const {
2854  const TranslationUnitDecl *tunit =
2856  return tunit &&
2857  !tunit->getASTContext().getLangOpts().Freestanding &&
2858  isNamed(this, "main");
2859 }
2860 
2862  const TranslationUnitDecl *TUnit =
2864  if (!TUnit)
2865  return false;
2866 
2867  // Even though we aren't really targeting MSVCRT if we are freestanding,
2868  // semantic analysis for these functions remains the same.
2869 
2870  // MSVCRT entry points only exist on MSVCRT targets.
2871  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2872  return false;
2873 
2874  // Nameless functions like constructors cannot be entry points.
2875  if (!getIdentifier())
2876  return false;
2877 
2878  return llvm::StringSwitch<bool>(getName())
2879  .Cases("main", // an ANSI console app
2880  "wmain", // a Unicode console App
2881  "WinMain", // an ANSI GUI app
2882  "wWinMain", // a Unicode GUI app
2883  "DllMain", // a DLL
2884  true)
2885  .Default(false);
2886 }
2887 
2889  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2890  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2891  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2892  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2893  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2894 
2896  return false;
2897 
2898  const auto *proto = getType()->castAs<FunctionProtoType>();
2899  if (proto->getNumParams() != 2 || proto->isVariadic())
2900  return false;
2901 
2902  ASTContext &Context =
2903  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2904  ->getASTContext();
2905 
2906  // The result type and first argument type are constant across all
2907  // these operators. The second argument must be exactly void*.
2908  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2909 }
2910 
2912  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2913  return false;
2914  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2915  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2916  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2917  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2918  return false;
2919 
2920  if (isa<CXXRecordDecl>(getDeclContext()))
2921  return false;
2922 
2923  // This can only fail for an invalid 'operator new' declaration.
2925  return false;
2926 
2927  const auto *FPT = getType()->castAs<FunctionProtoType>();
2928  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2929  return false;
2930 
2931  // If this is a single-parameter function, it must be a replaceable global
2932  // allocation or deallocation function.
2933  if (FPT->getNumParams() == 1)
2934  return true;
2935 
2936  unsigned Params = 1;
2937  QualType Ty = FPT->getParamType(Params);
2938  ASTContext &Ctx = getASTContext();
2939 
2940  auto Consume = [&] {
2941  ++Params;
2942  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2943  };
2944 
2945  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2946  bool IsSizedDelete = false;
2947  if (Ctx.getLangOpts().SizedDeallocation &&
2948  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2949  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2950  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2951  IsSizedDelete = true;
2952  Consume();
2953  }
2954 
2955  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2956  // new/delete.
2957  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2958  if (IsAligned)
2959  *IsAligned = true;
2960  Consume();
2961  }
2962 
2963  // Finally, if this is not a sized delete, the final parameter can
2964  // be a 'const std::nothrow_t&'.
2965  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2966  Ty = Ty->getPointeeType();
2967  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2968  return false;
2969  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2970  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2971  Consume();
2972  }
2973 
2974  return Params == FPT->getNumParams();
2975 }
2976 
2978  // C++ P0722:
2979  // Within a class C, a single object deallocation function with signature
2980  // (T, std::destroying_delete_t, <more params>)
2981  // is a destroying operator delete.
2982  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2983  getNumParams() < 2)
2984  return false;
2985 
2986  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2987  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2988  RD->getIdentifier()->isStr("destroying_delete_t");
2989 }
2990 
2992  return getDeclLanguageLinkage(*this);
2993 }
2994 
2996  return isDeclExternC(*this);
2997 }
2998 
3000  if (hasAttr<OpenCLKernelAttr>())
3001  return true;
3003 }
3004 
3007 }
3008 
3010  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3011  return Method->isStatic();
3012 
3014  return false;
3015 
3016  for (const DeclContext *DC = getDeclContext();
3017  DC->isNamespace();
3018  DC = DC->getParent()) {
3019  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3020  if (!Namespace->getDeclName())
3021  return false;
3022  break;
3023  }
3024  }
3025 
3026  return true;
3027 }
3028 
3030  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3031  hasAttr<C11NoReturnAttr>())
3032  return true;
3033 
3034  if (auto *FnTy = getType()->getAs<FunctionType>())
3035  return FnTy->getNoReturnAttr();
3036 
3037  return false;
3038 }
3039 
3040 
3042  if (hasAttr<TargetAttr>())
3043  return MultiVersionKind::Target;
3044  if (hasAttr<CPUDispatchAttr>())
3046  if (hasAttr<CPUSpecificAttr>())
3048  return MultiVersionKind::None;
3049 }
3050 
3052  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3053 }
3054 
3056  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3057 }
3058 
3060  return isMultiVersion() && hasAttr<TargetAttr>();
3061 }
3062 
3063 void
3066 
3068  FunctionTemplateDecl *PrevFunTmpl
3069  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3070  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3071  FunTmpl->setPreviousDecl(PrevFunTmpl);
3072  }
3073 
3074  if (PrevDecl && PrevDecl->isInlined())
3075  setImplicitlyInline(true);
3076 }
3077 
3079 
3080 /// Returns a value indicating whether this function corresponds to a builtin
3081 /// function.
3082 ///
3083 /// The function corresponds to a built-in function if it is declared at
3084 /// translation scope or within an extern "C" block and its name matches with
3085 /// the name of a builtin. The returned value will be 0 for functions that do
3086 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3087 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3088 /// value.
3089 ///
3090 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3091 /// functions as their wrapped builtins. This shouldn't be done in general, but
3092 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3093 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3094  if (!getIdentifier())
3095  return 0;
3096 
3097  unsigned BuiltinID = getIdentifier()->getBuiltinID();
3098  if (!BuiltinID)
3099  return 0;
3100 
3101  ASTContext &Context = getASTContext();
3102  if (Context.getLangOpts().CPlusPlus) {
3103  const auto *LinkageDecl =
3105  // In C++, the first declaration of a builtin is always inside an implicit
3106  // extern "C".
3107  // FIXME: A recognised library function may not be directly in an extern "C"
3108  // declaration, for instance "extern "C" { namespace std { decl } }".
3109  if (!LinkageDecl) {
3110  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3111  Context.getTargetInfo().getCXXABI().isMicrosoft())
3112  return Builtin::BI__GetExceptionInfo;
3113  return 0;
3114  }
3115  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3116  return 0;
3117  }
3118 
3119  // If the function is marked "overloadable", it has a different mangled name
3120  // and is not the C library function.
3121  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>())
3122  return 0;
3123 
3124  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3125  return BuiltinID;
3126 
3127  // This function has the name of a known C library
3128  // function. Determine whether it actually refers to the C library
3129  // function or whether it just has the same name.
3130 
3131  // If this is a static function, it's not a builtin.
3132  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3133  return 0;
3134 
3135  // OpenCL v1.2 s6.9.f - The library functions defined in
3136  // the C99 standard headers are not available.
3137  if (Context.getLangOpts().OpenCL &&
3138  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3139  return 0;
3140 
3141  // CUDA does not have device-side standard library. printf and malloc are the
3142  // only special cases that are supported by device-side runtime.
3143  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3144  !hasAttr<CUDAHostAttr>() &&
3145  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3146  return 0;
3147 
3148  return BuiltinID;
3149 }
3150 
3151 /// getNumParams - Return the number of parameters this function must have
3152 /// based on its FunctionType. This is the length of the ParamInfo array
3153 /// after it has been created.
3154 unsigned FunctionDecl::getNumParams() const {
3155  const auto *FPT = getType()->getAs<FunctionProtoType>();
3156  return FPT ? FPT->getNumParams() : 0;
3157 }
3158 
3159 void FunctionDecl::setParams(ASTContext &C,
3160  ArrayRef<ParmVarDecl *> NewParamInfo) {
3161  assert(!ParamInfo && "Already has param info!");
3162  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3163 
3164  // Zero params -> null pointer.
3165  if (!NewParamInfo.empty()) {
3166  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3167  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3168  }
3169 }
3170 
3171 /// getMinRequiredArguments - Returns the minimum number of arguments
3172 /// needed to call this function. This may be fewer than the number of
3173 /// function parameters, if some of the parameters have default
3174 /// arguments (in C++) or are parameter packs (C++11).
3176  if (!getASTContext().getLangOpts().CPlusPlus)
3177  return getNumParams();
3178 
3179  unsigned NumRequiredArgs = 0;
3180  for (auto *Param : parameters())
3181  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3182  ++NumRequiredArgs;
3183  return NumRequiredArgs;
3184 }
3185 
3186 /// The combination of the extern and inline keywords under MSVC forces
3187 /// the function to be required.
3188 ///
3189 /// Note: This function assumes that we will only get called when isInlined()
3190 /// would return true for this FunctionDecl.
3192  assert(isInlined() && "expected to get called on an inlined function!");
3193 
3194  const ASTContext &Context = getASTContext();
3195  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3196  !hasAttr<DLLExportAttr>())
3197  return false;
3198 
3199  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3200  FD = FD->getPreviousDecl())
3201  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3202  return true;
3203 
3204  return false;
3205 }
3206 
3207 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3208  if (Redecl->getStorageClass() != SC_Extern)
3209  return false;
3210 
3211  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3212  FD = FD->getPreviousDecl())
3213  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3214  return false;
3215 
3216  return true;
3217 }
3218 
3219 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3220  // Only consider file-scope declarations in this test.
3221  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3222  return false;
3223 
3224  // Only consider explicit declarations; the presence of a builtin for a
3225  // libcall shouldn't affect whether a definition is externally visible.
3226  if (Redecl->isImplicit())
3227  return false;
3228 
3229  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3230  return true; // Not an inline definition
3231 
3232  return false;
3233 }
3234 
3235 /// For a function declaration in C or C++, determine whether this
3236 /// declaration causes the definition to be externally visible.
3237 ///
3238 /// For instance, this determines if adding the current declaration to the set
3239 /// of redeclarations of the given functions causes
3240 /// isInlineDefinitionExternallyVisible to change from false to true.
3242  assert(!doesThisDeclarationHaveABody() &&
3243  "Must have a declaration without a body.");
3244 
3245  ASTContext &Context = getASTContext();
3246 
3247  if (Context.getLangOpts().MSVCCompat) {
3248  const FunctionDecl *Definition;
3249  if (hasBody(Definition) && Definition->isInlined() &&
3250  redeclForcesDefMSVC(this))
3251  return true;
3252  }
3253 
3254  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3255  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3256  // an externally visible definition.
3257  //
3258  // FIXME: What happens if gnu_inline gets added on after the first
3259  // declaration?
3261  return false;
3262 
3263  const FunctionDecl *Prev = this;
3264  bool FoundBody = false;
3265  while ((Prev = Prev->getPreviousDecl())) {
3266  FoundBody |= Prev->Body.isValid();
3267 
3268  if (Prev->Body) {
3269  // If it's not the case that both 'inline' and 'extern' are
3270  // specified on the definition, then it is always externally visible.
3271  if (!Prev->isInlineSpecified() ||
3272  Prev->getStorageClass() != SC_Extern)
3273  return false;
3274  } else if (Prev->isInlineSpecified() &&
3275  Prev->getStorageClass() != SC_Extern) {
3276  return false;
3277  }
3278  }
3279  return FoundBody;
3280  }
3281 
3282  if (Context.getLangOpts().CPlusPlus)
3283  return false;
3284 
3285  // C99 6.7.4p6:
3286  // [...] If all of the file scope declarations for a function in a
3287  // translation unit include the inline function specifier without extern,
3288  // then the definition in that translation unit is an inline definition.
3290  return false;
3291  const FunctionDecl *Prev = this;
3292  bool FoundBody = false;
3293  while ((Prev = Prev->getPreviousDecl())) {
3294  FoundBody |= Prev->Body.isValid();
3295  if (RedeclForcesDefC99(Prev))
3296  return false;
3297  }
3298  return FoundBody;
3299 }
3300 
3302  const TypeSourceInfo *TSI = getTypeSourceInfo();
3303  if (!TSI)
3304  return SourceRange();
3305  FunctionTypeLoc FTL =
3307  if (!FTL)
3308  return SourceRange();
3309 
3310  // Skip self-referential return types.
3312  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3313  SourceLocation Boundary = getNameInfo().getBeginLoc();
3314  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3315  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3316  return SourceRange();
3317 
3318  return RTRange;
3319 }
3320 
3322  const TypeSourceInfo *TSI = getTypeSourceInfo();
3323  if (!TSI)
3324  return SourceRange();
3325  FunctionTypeLoc FTL =
3327  if (!FTL)
3328  return SourceRange();
3329 
3330  return FTL.getExceptionSpecRange();
3331 }
3332 
3333 /// For an inline function definition in C, or for a gnu_inline function
3334 /// in C++, determine whether the definition will be externally visible.
3335 ///
3336 /// Inline function definitions are always available for inlining optimizations.
3337 /// However, depending on the language dialect, declaration specifiers, and
3338 /// attributes, the definition of an inline function may or may not be
3339 /// "externally" visible to other translation units in the program.
3340 ///
3341 /// In C99, inline definitions are not externally visible by default. However,
3342 /// if even one of the global-scope declarations is marked "extern inline", the
3343 /// inline definition becomes externally visible (C99 6.7.4p6).
3344 ///
3345 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3346 /// definition, we use the GNU semantics for inline, which are nearly the
3347 /// opposite of C99 semantics. In particular, "inline" by itself will create
3348 /// an externally visible symbol, but "extern inline" will not create an
3349 /// externally visible symbol.
3351  assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3352  hasAttr<AliasAttr>()) &&
3353  "Must be a function definition");
3354  assert(isInlined() && "Function must be inline");
3355  ASTContext &Context = getASTContext();
3356 
3357  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3358  // Note: If you change the logic here, please change
3359  // doesDeclarationForceExternallyVisibleDefinition as well.
3360  //
3361  // If it's not the case that both 'inline' and 'extern' are
3362  // specified on the definition, then this inline definition is
3363  // externally visible.
3364  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3365  return true;
3366 
3367  // If any declaration is 'inline' but not 'extern', then this definition
3368  // is externally visible.
3369  for (auto Redecl : redecls()) {
3370  if (Redecl->isInlineSpecified() &&
3371  Redecl->getStorageClass() != SC_Extern)
3372  return true;
3373  }
3374 
3375  return false;
3376  }
3377 
3378  // The rest of this function is C-only.
3379  assert(!Context.getLangOpts().CPlusPlus &&
3380  "should not use C inline rules in C++");
3381 
3382  // C99 6.7.4p6:
3383  // [...] If all of the file scope declarations for a function in a
3384  // translation unit include the inline function specifier without extern,
3385  // then the definition in that translation unit is an inline definition.
3386  for (auto Redecl : redecls()) {
3387  if (RedeclForcesDefC99(Redecl))
3388  return true;
3389  }
3390 
3391  // C99 6.7.4p6:
3392  // An inline definition does not provide an external definition for the
3393  // function, and does not forbid an external definition in another
3394  // translation unit.
3395  return false;
3396 }
3397 
3398 /// getOverloadedOperator - Which C++ overloaded operator this
3399 /// function represents, if any.
3401  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3403  else
3404  return OO_None;
3405 }
3406 
3407 /// getLiteralIdentifier - The literal suffix identifier this function
3408 /// represents, if any.
3412  else
3413  return nullptr;
3414 }
3415 
3417  if (TemplateOrSpecialization.isNull())
3418  return TK_NonTemplate;
3419  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3420  return TK_FunctionTemplate;
3421  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3422  return TK_MemberSpecialization;
3423  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3425  if (TemplateOrSpecialization.is
3428 
3429  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3430 }
3431 
3434  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3435 
3436  return nullptr;
3437 }
3438 
3440  if (auto *MSI =
3441  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3442  return MSI;
3443  if (auto *FTSI = TemplateOrSpecialization
3444  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3445  return FTSI->getMemberSpecializationInfo();
3446  return nullptr;
3447 }
3448 
3449 void
3450 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3451  FunctionDecl *FD,
3453  assert(TemplateOrSpecialization.isNull() &&
3454  "Member function is already a specialization");
3456  = new (C) MemberSpecializationInfo(FD, TSK);
3457  TemplateOrSpecialization = Info;
3458 }
3459 
3461  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3462 }
3463 
3465  assert(TemplateOrSpecialization.isNull() &&
3466  "Member function is already a specialization");
3467  TemplateOrSpecialization = Template;
3468 }
3469 
3471  // If the function is invalid, it can't be implicitly instantiated.
3472  if (isInvalidDecl())
3473  return false;
3474 
3476  case TSK_Undeclared:
3479  return false;
3480 
3482  return true;
3483 
3485  // Handled below.
3486  break;
3487  }
3488 
3489  // Find the actual template from which we will instantiate.
3490  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3491  bool HasPattern = false;
3492  if (PatternDecl)
3493  HasPattern = PatternDecl->hasBody(PatternDecl);
3494 
3495  // C++0x [temp.explicit]p9:
3496  // Except for inline functions, other explicit instantiation declarations
3497  // have the effect of suppressing the implicit instantiation of the entity
3498  // to which they refer.
3499  if (!HasPattern || !PatternDecl)
3500  return true;
3501 
3502  return PatternDecl->isInlined();
3503 }
3504 
3506  // FIXME: Remove this, it's not clear what it means. (Which template
3507  // specialization kind?)
3509 }
3510 
3512  // If this is a generic lambda call operator specialization, its
3513  // instantiation pattern is always its primary template's pattern
3514  // even if its primary template was instantiated from another
3515  // member template (which happens with nested generic lambdas).
3516  // Since a lambda's call operator's body is transformed eagerly,
3517  // we don't have to go hunting for a prototype definition template
3518  // (i.e. instantiated-from-member-template) to use as an instantiation
3519  // pattern.
3520 
3522  dyn_cast<CXXMethodDecl>(this))) {
3523  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3524  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3525  }
3526 
3528  if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3529  return nullptr;
3530  return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3531  }
3532 
3534  return nullptr;
3535 
3536  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3537  // If we hit a point where the user provided a specialization of this
3538  // template, we're done looking.
3539  while (!Primary->isMemberSpecialization()) {
3540  auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3541  if (!NewPrimary)
3542  break;
3543  Primary = NewPrimary;
3544  }
3545 
3546  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3547  }
3548 
3549  return nullptr;
3550 }
3551 
3554  = TemplateOrSpecialization
3555  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3556  return Info->getTemplate();
3557  }
3558  return nullptr;
3559 }
3560 
3563  return TemplateOrSpecialization
3564  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3565 }
3566 
3567 const TemplateArgumentList *
3570  = TemplateOrSpecialization
3571  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3572  return Info->TemplateArguments;
3573  }
3574  return nullptr;
3575 }
3576 
3580  = TemplateOrSpecialization
3581  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3582  return Info->TemplateArgumentsAsWritten;
3583  }
3584  return nullptr;
3585 }
3586 
3587 void
3588 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3589  FunctionTemplateDecl *Template,
3590  const TemplateArgumentList *TemplateArgs,
3591  void *InsertPos,
3593  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3594  SourceLocation PointOfInstantiation) {
3595  assert((TemplateOrSpecialization.isNull() ||
3596  TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3597  "Member function is already a specialization");
3598  assert(TSK != TSK_Undeclared &&
3599  "Must specify the type of function template specialization");
3600  assert((TemplateOrSpecialization.isNull() ||
3601  TSK == TSK_ExplicitSpecialization) &&
3602  "Member specialization must be an explicit specialization");
3605  C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3606  PointOfInstantiation,
3607  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3608  TemplateOrSpecialization = Info;
3609  Template->addSpecialization(Info, InsertPos);
3610 }
3611 
3612 void
3614  const UnresolvedSetImpl &Templates,
3615  const TemplateArgumentListInfo &TemplateArgs) {
3616  assert(TemplateOrSpecialization.isNull());
3619  TemplateArgs);
3620  TemplateOrSpecialization = Info;
3621 }
3622 
3625  return TemplateOrSpecialization
3627 }
3628 
3631  ASTContext &Context, const UnresolvedSetImpl &Ts,
3632  const TemplateArgumentListInfo &TArgs) {
3633  void *Buffer = Context.Allocate(
3634  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3635  TArgs.size(), Ts.size()));
3636  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3637 }
3638 
3639 DependentFunctionTemplateSpecializationInfo::
3640 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3641  const TemplateArgumentListInfo &TArgs)
3642  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3643  NumTemplates = Ts.size();
3644  NumArgs = TArgs.size();
3645 
3646  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3647  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3648  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3649 
3650  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3651  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3652  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3653 }
3654 
3656  // For a function template specialization, query the specialization
3657  // information object.
3658  if (FunctionTemplateSpecializationInfo *FTSInfo =
3659  TemplateOrSpecialization
3660  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3661  return FTSInfo->getTemplateSpecializationKind();
3662 
3663  if (MemberSpecializationInfo *MSInfo =
3664  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3665  return MSInfo->getTemplateSpecializationKind();
3666 
3667  return TSK_Undeclared;
3668 }
3669 
3672  // This is the same as getTemplateSpecializationKind(), except that for a
3673  // function that is both a function template specialization and a member
3674  // specialization, we prefer the member specialization information. Eg:
3675  //
3676  // template<typename T> struct A {
3677  // template<typename U> void f() {}
3678  // template<> void f<int>() {}
3679  // };
3680  //
3681  // For A<int>::f<int>():
3682  // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3683  // * getTemplateSpecializationKindForInstantiation() will return
3684  // TSK_ImplicitInstantiation
3685  //
3686  // This reflects the facts that A<int>::f<int> is an explicit specialization
3687  // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3688  // from A::f<int> if a definition is needed.
3689  if (FunctionTemplateSpecializationInfo *FTSInfo =
3690  TemplateOrSpecialization
3691  .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3692  if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3693  return MSInfo->getTemplateSpecializationKind();
3694  return FTSInfo->getTemplateSpecializationKind();
3695  }
3696 
3697  if (MemberSpecializationInfo *MSInfo =
3698  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3699  return MSInfo->getTemplateSpecializationKind();
3700 
3701  return TSK_Undeclared;
3702 }
3703 
3704 void
3706  SourceLocation PointOfInstantiation) {
3708  = TemplateOrSpecialization.dyn_cast<
3710  FTSInfo->setTemplateSpecializationKind(TSK);
3711  if (TSK != TSK_ExplicitSpecialization &&
3712  PointOfInstantiation.isValid() &&
3713  FTSInfo->getPointOfInstantiation().isInvalid()) {
3714  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3716  L->InstantiationRequested(this);
3717  }
3718  } else if (MemberSpecializationInfo *MSInfo
3719  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3720  MSInfo->setTemplateSpecializationKind(TSK);
3721  if (TSK != TSK_ExplicitSpecialization &&
3722  PointOfInstantiation.isValid() &&
3723  MSInfo->getPointOfInstantiation().isInvalid()) {
3724  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3726  L->InstantiationRequested(this);
3727  }
3728  } else
3729  llvm_unreachable("Function cannot have a template specialization kind");
3730 }
3731 
3734  = TemplateOrSpecialization.dyn_cast<
3736  return FTSInfo->getPointOfInstantiation();
3737  else if (MemberSpecializationInfo *MSInfo
3738  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3739  return MSInfo->getPointOfInstantiation();
3740 
3741  return SourceLocation();
3742 }
3743 
3745  if (Decl::isOutOfLine())
3746  return true;
3747 
3748  // If this function was instantiated from a member function of a
3749  // class template, check whether that member function was defined out-of-line.
3751  const FunctionDecl *Definition;
3752  if (FD->hasBody(Definition))
3753  return Definition->isOutOfLine();
3754  }
3755 
3756  // If this function was instantiated from a function template,
3757  // check whether that function template was defined out-of-line.
3758  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3759  const FunctionDecl *Definition;
3760  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3761  return Definition->isOutOfLine();
3762  }
3763 
3764  return false;
3765 }
3766 
3768  return SourceRange(getOuterLocStart(), EndRangeLoc);
3769 }
3770 
3772  IdentifierInfo *FnInfo = getIdentifier();
3773 
3774  if (!FnInfo)
3775  return 0;
3776 
3777  // Builtin handling.
3778  switch (getBuiltinID()) {
3779  case Builtin::BI__builtin_memset:
3780  case Builtin::BI__builtin___memset_chk:
3781  case Builtin::BImemset:
3782  return Builtin::BImemset;
3783 
3784  case Builtin::BI__builtin_memcpy:
3785  case Builtin::BI__builtin___memcpy_chk:
3786  case Builtin::BImemcpy:
3787  return Builtin::BImemcpy;
3788 
3789  case Builtin::BI__builtin_memmove:
3790  case Builtin::BI__builtin___memmove_chk:
3791  case Builtin::BImemmove:
3792  return Builtin::BImemmove;
3793 
3794  case Builtin::BIstrlcpy:
3795  case Builtin::BI__builtin___strlcpy_chk:
3796  return Builtin::BIstrlcpy;
3797 
3798  case Builtin::BIstrlcat:
3799  case Builtin::BI__builtin___strlcat_chk:
3800  return Builtin::BIstrlcat;
3801 
3802  case Builtin::BI__builtin_memcmp:
3803  case Builtin::BImemcmp:
3804  return Builtin::BImemcmp;
3805 
3806  case Builtin::BI__builtin_bcmp:
3807  case Builtin::BIbcmp:
3808  return Builtin::BIbcmp;
3809 
3810  case Builtin::BI__builtin_strncpy:
3811  case Builtin::BI__builtin___strncpy_chk:
3812  case Builtin::BIstrncpy:
3813  return Builtin::BIstrncpy;
3814 
3815  case Builtin::BI__builtin_strncmp:
3816  case Builtin::BIstrncmp:
3817  return Builtin::BIstrncmp;
3818 
3819  case Builtin::BI__builtin_strncasecmp:
3820  case Builtin::BIstrncasecmp:
3821  return Builtin::BIstrncasecmp;
3822 
3823  case Builtin::BI__builtin_strncat:
3824  case Builtin::BI__builtin___strncat_chk:
3825  case Builtin::BIstrncat:
3826  return Builtin::BIstrncat;
3827 
3828  case Builtin::BI__builtin_strndup:
3829  case Builtin::BIstrndup:
3830  return Builtin::BIstrndup;
3831 
3832  case Builtin::BI__builtin_strlen:
3833  case Builtin::BIstrlen:
3834  return Builtin::BIstrlen;
3835 
3836  case Builtin::BI__builtin_bzero:
3837  case Builtin::BIbzero:
3838  return Builtin::BIbzero;
3839 
3840  default:
3841  if (isExternC()) {
3842  if (FnInfo->isStr("memset"))
3843  return Builtin::BImemset;
3844  else if (FnInfo->isStr("memcpy"))
3845  return Builtin::BImemcpy;
3846  else if (FnInfo->isStr("memmove"))
3847  return Builtin::BImemmove;
3848  else if (FnInfo->isStr("memcmp"))
3849  return Builtin::BImemcmp;
3850  else if (FnInfo->isStr("bcmp"))
3851  return Builtin::BIbcmp;
3852  else if (FnInfo->isStr("strncpy"))
3853  return Builtin::BIstrncpy;
3854  else if (FnInfo->isStr("strncmp"))
3855  return Builtin::BIstrncmp;
3856  else if (FnInfo->isStr("strncasecmp"))
3857  return Builtin::BIstrncasecmp;
3858  else if (FnInfo->isStr("strncat"))
3859  return Builtin::BIstrncat;
3860  else if (FnInfo->isStr("strndup"))
3861  return Builtin::BIstrndup;
3862  else if (FnInfo->isStr("strlen"))
3863  return Builtin::BIstrlen;
3864  else if (FnInfo->isStr("bzero"))
3865  return Builtin::BIbzero;
3866  }
3867  break;
3868  }
3869  return 0;
3870 }
3871 
3872 unsigned FunctionDecl::getODRHash() const {
3873  assert(hasODRHash());
3874  return ODRHash;
3875 }
3876 
3878  if (hasODRHash())
3879  return ODRHash;
3880 
3881  if (auto *FT = getInstantiatedFromMemberFunction()) {
3882  setHasODRHash(true);
3883  ODRHash = FT->getODRHash();
3884  return ODRHash;
3885  }
3886 
3887  class ODRHash Hash;
3888  Hash.AddFunctionDecl(this);
3889  setHasODRHash(true);
3890  ODRHash = Hash.CalculateHash();
3891  return ODRHash;
3892 }
3893 
3894 //===----------------------------------------------------------------------===//
3895 // FieldDecl Implementation
3896 //===----------------------------------------------------------------------===//
3897 
3899  SourceLocation StartLoc, SourceLocation IdLoc,
3901  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3902  InClassInitStyle InitStyle) {
3903  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3904  BW, Mutable, InitStyle);
3905 }
3906 
3908  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3909  SourceLocation(), nullptr, QualType(), nullptr,
3910  nullptr, false, ICIS_NoInit);
3911 }
3912 
3914  if (!isImplicit() || getDeclName())
3915  return false;
3916 
3917  if (const auto *Record = getType()->getAs<RecordType>())
3918  return Record->getDecl()->isAnonymousStructOrUnion();
3919 
3920  return false;
3921 }
3922 
3923 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3924  assert(isBitField() && "not a bitfield");
3925  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3926 }
3927 
3929  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3930  getBitWidthValue(Ctx) == 0;
3931 }
3932 
3933 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
3934  if (isZeroLengthBitField(Ctx))
3935  return true;
3936 
3937  // C++2a [intro.object]p7:
3938  // An object has nonzero size if it
3939  // -- is not a potentially-overlapping subobject, or
3940  if (!hasAttr<NoUniqueAddressAttr>())
3941  return false;
3942 
3943  // -- is not of class type, or
3944  const auto *RT = getType()->getAs<RecordType>();
3945  if (!RT)
3946  return false;
3947  const RecordDecl *RD = RT->getDecl()->getDefinition();
3948  if (!RD) {
3949  assert(isInvalidDecl() && "valid field has incomplete type");
3950  return false;
3951  }
3952 
3953  // -- [has] virtual member functions or virtual base classes, or
3954  // -- has subobjects of nonzero size or bit-fields of nonzero length
3955  const auto *CXXRD = cast<CXXRecordDecl>(RD);
3956  if (!CXXRD->isEmpty())
3957  return false;
3958 
3959  // Otherwise, [...] the circumstances under which the object has zero size
3960  // are implementation-defined.
3961  // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
3962  // ABI will do.
3963  return true;
3964 }
3965 
3966 unsigned FieldDecl::getFieldIndex() const {
3967  const FieldDecl *Canonical = getCanonicalDecl();
3968  if (Canonical != this)
3969  return Canonical->getFieldIndex();
3970 
3971  if (CachedFieldIndex) return CachedFieldIndex - 1;
3972 
3973  unsigned Index = 0;
3974  const RecordDecl *RD = getParent()->getDefinition();
3975  assert(RD && "requested index for field of struct with no definition");
3976 
3977  for (auto *Field : RD->fields()) {
3978  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3979  ++Index;
3980  }
3981 
3982  assert(CachedFieldIndex && "failed to find field in parent");
3983  return CachedFieldIndex - 1;
3984 }
3985 
3987  const Expr *FinalExpr = getInClassInitializer();
3988  if (!FinalExpr)
3989  FinalExpr = getBitWidth();
3990  if (FinalExpr)
3991  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3993 }
3994 
3996  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3997  "capturing type in non-lambda or captured record.");
3998  assert(InitStorage.getInt() == ISK_NoInit &&
3999  InitStorage.getPointer() == nullptr &&
4000  "bit width, initializer or captured type already set");
4001  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4002  ISK_CapturedVLAType);
4003 }
4004 
4005 //===----------------------------------------------------------------------===//
4006 // TagDecl Implementation
4007 //===----------------------------------------------------------------------===//
4008 
4010  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4011  SourceLocation StartL)
4012  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4013  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4014  assert((DK != Enum || TK == TTK_Enum) &&
4015  "EnumDecl not matched with TTK_Enum");
4016  setPreviousDecl(PrevDecl);
4017  setTagKind(TK);
4018  setCompleteDefinition(false);
4019  setBeingDefined(false);
4020  setEmbeddedInDeclarator(false);
4021  setFreeStanding(false);
4023 }
4024 
4026  return getTemplateOrInnerLocStart(this);
4027 }
4028 
4030  SourceLocation RBraceLoc = BraceRange.getEnd();
4031  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4032  return SourceRange(getOuterLocStart(), E);
4033 }
4034 
4036 
4038  TypedefNameDeclOrQualifier = TDD;
4039  if (const Type *T = getTypeForDecl()) {
4040  (void)T;
4041  assert(T->isLinkageValid());
4042  }
4043  assert(isLinkageValid());
4044 }
4045 
4047  setBeingDefined(true);
4048 
4049  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4050  struct CXXRecordDecl::DefinitionData *Data =
4051  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4052  for (auto I : redecls())
4053  cast<CXXRecordDecl>(I)->DefinitionData = Data;
4054  }
4055 }
4056 
4058  assert((!isa<CXXRecordDecl>(this) ||
4059  cast<CXXRecordDecl>(this)->hasDefinition()) &&
4060  "definition completed but not started");
4061 
4062  setCompleteDefinition(true);
4063  setBeingDefined(false);
4064 
4066  L->CompletedTagDefinition(this);
4067 }
4068 
4070  if (isCompleteDefinition())
4071  return const_cast<TagDecl *>(this);
4072 
4073  // If it's possible for us to have an out-of-date definition, check now.
4074  if (mayHaveOutOfDateDef()) {
4075  if (IdentifierInfo *II = getIdentifier()) {
4076  if (II->isOutOfDate()) {
4077  updateOutOfDate(*II);
4078  }
4079  }
4080  }
4081 
4082  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4083  return CXXRD->getDefinition();
4084 
4085  for (auto R : redecls())
4086  if (R->isCompleteDefinition())
4087  return R;
4088 
4089  return nullptr;
4090 }
4091 
4093  if (QualifierLoc) {
4094  // Make sure the extended qualifier info is allocated.
4095  if (!hasExtInfo())
4096  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4097  // Set qualifier info.
4098  getExtInfo()->QualifierLoc = QualifierLoc;
4099  } else {
4100  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4101  if (hasExtInfo()) {
4102  if (getExtInfo()->NumTemplParamLists == 0) {
4103  getASTContext().Deallocate(getExtInfo());
4104  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4105  }
4106  else
4107  getExtInfo()->QualifierLoc = QualifierLoc;
4108  }
4109  }
4110 }
4111 
4113  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4114  assert(!TPLists.empty());
4115  // Make sure the extended decl info is allocated.
4116  if (!hasExtInfo())
4117  // Allocate external info struct.
4118  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4119  // Set the template parameter lists info.
4120  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4121 }
4122 
4123 //===----------------------------------------------------------------------===//
4124 // EnumDecl Implementation
4125 //===----------------------------------------------------------------------===//
4126 
4127 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4128  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4129  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4130  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4131  assert(Scoped || !ScopedUsingClassTag);
4132  IntegerType = nullptr;
4133  setNumPositiveBits(0);
4134  setNumNegativeBits(0);
4135  setScoped(Scoped);
4136  setScopedUsingClassTag(ScopedUsingClassTag);
4137  setFixed(Fixed);
4138  setHasODRHash(false);
4139  ODRHash = 0;
4140 }
4141 
4142 void EnumDecl::anchor() {}
4143 
4145  SourceLocation StartLoc, SourceLocation IdLoc,
4146  IdentifierInfo *Id,
4147  EnumDecl *PrevDecl, bool IsScoped,
4148  bool IsScopedUsingClassTag, bool IsFixed) {
4149  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4150  IsScoped, IsScopedUsingClassTag, IsFixed);
4151  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4152  C.getTypeDeclType(Enum, PrevDecl);
4153  return Enum;
4154 }
4155 
4157  EnumDecl *Enum =
4158  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4159  nullptr, nullptr, false, false, false);
4160  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4161  return Enum;
4162 }
4163 
4165  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4166  return TI->getTypeLoc().getSourceRange();
4167  return SourceRange();
4168 }
4169 
4171  QualType NewPromotionType,
4172  unsigned NumPositiveBits,
4173  unsigned NumNegativeBits) {
4174  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4175  if (!IntegerType)
4176  IntegerType = NewType.getTypePtr();
4177  PromotionType = NewPromotionType;
4178  setNumPositiveBits(NumPositiveBits);
4179  setNumNegativeBits(NumNegativeBits);
4181 }
4182 
4183 bool EnumDecl::isClosed() const {
4184  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4185  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4186  return true;
4187 }
4188 
4190  return isClosed() && hasAttr<FlagEnumAttr>();
4191 }
4192 
4194  return isClosed() && !hasAttr<FlagEnumAttr>();
4195 }
4196 
4198  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4199  return MSI->getTemplateSpecializationKind();
4200 
4201  return TSK_Undeclared;
4202 }
4203 
4205  SourceLocation PointOfInstantiation) {
4206  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4207  assert(MSI && "Not an instantiated member enumeration?");
4209  if (TSK != TSK_ExplicitSpecialization &&
4210  PointOfInstantiation.isValid() &&
4212  MSI->setPointOfInstantiation(PointOfInstantiation);
4213 }
4214 
4216  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4217  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4218  EnumDecl *ED = getInstantiatedFromMemberEnum();
4219  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4220  ED = NewED;
4221  return getDefinitionOrSelf(ED);
4222  }
4223  }
4224 
4226  "couldn't find pattern for enum instantiation");
4227  return nullptr;
4228 }
4229 
4231  if (SpecializationInfo)
4232  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4233 
4234  return nullptr;
4235 }
4236 
4237 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4239  assert(!SpecializationInfo && "Member enum is already a specialization");
4240  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4241 }
4242 
4244  if (hasODRHash())
4245  return ODRHash;
4246 
4247  class ODRHash Hash;
4248  Hash.AddEnumDecl(this);
4249  setHasODRHash(true);
4250  ODRHash = Hash.CalculateHash();
4251  return ODRHash;
4252 }
4253 
4254 //===----------------------------------------------------------------------===//
4255 // RecordDecl Implementation
4256 //===----------------------------------------------------------------------===//
4257 
4259  DeclContext *DC, SourceLocation StartLoc,
4260  SourceLocation IdLoc, IdentifierInfo *Id,
4261  RecordDecl *PrevDecl)
4262  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4263  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4266  setHasObjectMember(false);
4267  setHasVolatileMember(false);
4277 }
4278 
4280  SourceLocation StartLoc, SourceLocation IdLoc,
4281  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4282  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4283  StartLoc, IdLoc, Id, PrevDecl);
4284  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4285 
4286  C.getTypeDeclType(R, PrevDecl);
4287  return R;
4288 }
4289 
4291  RecordDecl *R =
4292  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4293  SourceLocation(), nullptr, nullptr);
4294  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4295  return R;
4296 }
4297 
4299  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4300  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4301 }
4302 
4303 bool RecordDecl::isLambda() const {
4304  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4305  return RD->isLambda();
4306  return false;
4307 }
4308 
4310  return hasAttr<CapturedRecordAttr>();
4311 }
4312 
4314  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4315 }
4316 
4319  LoadFieldsFromExternalStorage();
4320 
4322 }
4323 
4324 /// completeDefinition - Notes that the definition of this type is now
4325 /// complete.
4327  assert(!isCompleteDefinition() && "Cannot redefine record!");
4329 }
4330 
4331 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4332 /// This which can be turned on with an attribute, pragma, or the
4333 /// -mms-bitfields command-line option.
4334 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4335  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4336 }
4337 
4338 void RecordDecl::LoadFieldsFromExternalStorage() const {
4340  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4341 
4342  // Notify that we have a RecordDecl doing some initialization.
4343  ExternalASTSource::Deserializing TheFields(Source);
4344 
4345  SmallVector<Decl*, 64> Decls;
4347  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4349  }, Decls);
4350 
4351 #ifndef NDEBUG
4352  // Check that all decls we got were FieldDecls.
4353  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4354  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4355 #endif
4356 
4357  if (Decls.empty())
4358  return;
4359 
4360  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4361  /*FieldsAlreadyLoaded=*/false);
4362 }
4363 
4364 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4365  ASTContext &Context = getASTContext();
4366  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4367  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4368  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4369  return false;
4370  const auto &Blacklist = Context.getSanitizerBlacklist();
4371  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4372  // We may be able to relax some of these requirements.
4373  int ReasonToReject = -1;
4374  if (!CXXRD || CXXRD->isExternCContext())
4375  ReasonToReject = 0; // is not C++.
4376  else if (CXXRD->hasAttr<PackedAttr>())
4377  ReasonToReject = 1; // is packed.
4378  else if (CXXRD->isUnion())
4379  ReasonToReject = 2; // is a union.
4380  else if (CXXRD->isTriviallyCopyable())
4381  ReasonToReject = 3; // is trivially copyable.
4382  else if (CXXRD->hasTrivialDestructor())
4383  ReasonToReject = 4; // has trivial destructor.
4384  else if (CXXRD->isStandardLayout())
4385  ReasonToReject = 5; // is standard layout.
4386  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4387  "field-padding"))
4388  ReasonToReject = 6; // is in a blacklisted file.
4389  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4391  "field-padding"))
4392  ReasonToReject = 7; // is blacklisted.
4393 
4394  if (EmitRemark) {
4395  if (ReasonToReject >= 0)
4396  Context.getDiagnostics().Report(
4397  getLocation(),
4398  diag::remark_sanitize_address_insert_extra_padding_rejected)
4399  << getQualifiedNameAsString() << ReasonToReject;
4400  else
4401  Context.getDiagnostics().Report(
4402  getLocation(),
4403  diag::remark_sanitize_address_insert_extra_padding_accepted)
4405  }
4406  return ReasonToReject < 0;
4407 }
4408 
4410  for (const auto *I : fields()) {
4411  if (I->getIdentifier())
4412  return I;
4413 
4414  if (const auto *RT = I->getType()->getAs<RecordType>())
4415  if (const FieldDecl *NamedDataMember =
4416  RT->getDecl()->findFirstNamedDataMember())
4417  return NamedDataMember;
4418  }
4419 
4420  // We didn't find a named data member.
4421  return nullptr;
4422 }
4423 
4424 //===----------------------------------------------------------------------===//
4425 // BlockDecl Implementation
4426 //===----------------------------------------------------------------------===//
4427 
4429  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4430  setIsVariadic(false);
4431  setCapturesCXXThis(false);
4434  setDoesNotEscape(false);
4435  setCanAvoidCopyToHeap(false);
4436 }
4437 
4439  assert(!ParamInfo && "Already has param info!");
4440 
4441  // Zero params -> null pointer.
4442  if (!NewParamInfo.empty()) {
4443  NumParams = NewParamInfo.size();
4444  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4445  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4446  }
4447 }
4448 
4450  bool CapturesCXXThis) {
4451  this->setCapturesCXXThis(CapturesCXXThis);
4452  this->NumCaptures = Captures.size();
4453 
4454  if (Captures.empty()) {
4455  this->Captures = nullptr;
4456  return;
4457  }
4458 
4459  this->Captures = Captures.copy(Context).data();
4460 }
4461 
4462 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4463  for (const auto &I : captures())
4464  // Only auto vars can be captured, so no redeclaration worries.
4465  if (I.getVariable() == variable)
4466  return true;
4467 
4468  return false;
4469 }
4470 
4472  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4473 }
4474 
4475 //===----------------------------------------------------------------------===//
4476 // Other Decl Allocation/Deallocation Method Implementations
4477 //===----------------------------------------------------------------------===//
4478 
4479 void TranslationUnitDecl::anchor() {}
4480 
4482  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4483 }
4484 
4485 void PragmaCommentDecl::anchor() {}
4486 
4488  TranslationUnitDecl *DC,
4489  SourceLocation CommentLoc,
4490  PragmaMSCommentKind CommentKind,
4491  StringRef Arg) {
4492  PragmaCommentDecl *PCD =
4493  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4494  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4495  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4496  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4497  return PCD;
4498 }
4499 
4501  unsigned ID,
4502  unsigned ArgSize) {
4503  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4505 }
4506 
4507 void PragmaDetectMismatchDecl::anchor() {}
4508 
4511  SourceLocation Loc, StringRef Name,
4512  StringRef Value) {
4513  size_t ValueStart = Name.size() + 1;
4514  PragmaDetectMismatchDecl *PDMD =
4515  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4516  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4517  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4518  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4519  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4520  Value.size());
4521  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4522  return PDMD;
4523 }
4524 
4527  unsigned NameValueSize) {
4528  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4530 }
4531 
4532 void ExternCContextDecl::anchor() {}
4533 
4535  TranslationUnitDecl *DC) {
4536  return new (C, DC) ExternCContextDecl(DC);
4537 }
4538 
4539 void LabelDecl::anchor() {}
4540 
4542  SourceLocation IdentL, IdentifierInfo *II) {
4543  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4544 }
4545 
4547  SourceLocation IdentL, IdentifierInfo *II,
4548  SourceLocation GnuLabelL) {
4549  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4550  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4551 }
4552 
4554  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4555  SourceLocation());
4556 }
4557 
4558 void LabelDecl::setMSAsmLabel(StringRef Name) {
4559  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4560  memcpy(Buffer, Name.data(), Name.size());
4561  Buffer[Name.size()] = '\0';
4562  MSAsmName = Buffer;
4563 }
4564 
4565 void ValueDecl::anchor() {}
4566 
4567 bool ValueDecl::isWeak() const {
4568  for (const auto *I : attrs())
4569  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4570  return true;
4571 
4572  return isWeakImported();
4573 }
4574 
4575 void ImplicitParamDecl::anchor() {}
4576 
4578  SourceLocation IdLoc,
4580  ImplicitParamKind ParamKind) {
4581  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4582 }
4583 
4585  ImplicitParamKind ParamKind) {
4586  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4587 }
4588 
4590  unsigned ID) {
4591  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4592 }
4593 
4595  SourceLocation StartLoc,
4596  const DeclarationNameInfo &NameInfo,
4597  QualType T, TypeSourceInfo *TInfo,
4598  StorageClass SC, bool isInlineSpecified,
4599  bool hasWrittenPrototype,
4600  ConstexprSpecKind ConstexprKind) {
4601  FunctionDecl *New =
4602  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4603  SC, isInlineSpecified, ConstexprKind);
4604  New->setHasWrittenPrototype(hasWrittenPrototype);
4605  return New;
4606 }
4607 
4609  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4610  DeclarationNameInfo(), QualType(), nullptr,
4611  SC_None, false, CSK_unspecified);
4612 }
4613 
4615  return new (C, DC) BlockDecl(DC, L);
4616 }
4617 
4619  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4620 }
4621 
4622 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4623  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4624  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4625 
4627  unsigned NumParams) {
4628  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4629  CapturedDecl(DC, NumParams);
4630 }
4631 
4633  unsigned NumParams) {
4634  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4635  CapturedDecl(nullptr, NumParams);
4636 }
4637 
4638 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4639 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4640 
4641 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4642 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4643 
4645  SourceLocation L,
4646  IdentifierInfo *Id, QualType T,
4647  Expr *E, const llvm::APSInt &V) {
4648  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4649 }
4650 
4653  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4654  QualType(), nullptr, llvm::APSInt());
4655 }
4656 
4657 void IndirectFieldDecl::anchor() {}
4658 
4659 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4661  QualType T,
4663  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4664  ChainingSize(CH.size()) {
4665  // In C++, indirect field declarations conflict with tag declarations in the
4666  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4667  if (C.getLangOpts().CPlusPlus)
4669 }
4670 
4673  IdentifierInfo *Id, QualType T,
4675  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4676 }
4677 
4679  unsigned ID) {
4680  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4681  DeclarationName(), QualType(), None);
4682 }
4683 
4686  if (Init)
4687  End = Init->getEndLoc();
4688  return SourceRange(getLocation(), End);
4689 }
4690 
4691 void TypeDecl::anchor() {}
4692 
4694  SourceLocation StartLoc, SourceLocation IdLoc,
4695  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4696  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4697 }
4698 
4699 void TypedefNameDecl::anchor() {}
4700 
4702  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4703  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4704  auto *ThisTypedef = this;
4705  if (AnyRedecl && OwningTypedef) {
4706  OwningTypedef = OwningTypedef->getCanonicalDecl();
4707  ThisTypedef = ThisTypedef->getCanonicalDecl();
4708  }
4709  if (OwningTypedef == ThisTypedef)
4710  return TT->getDecl();
4711  }
4712 
4713  return nullptr;
4714 }
4715 
4716 bool TypedefNameDecl::isTransparentTagSlow() const {
4717  auto determineIsTransparent = [&]() {
4718  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4719  if (auto *TD = TT->getDecl()) {
4720  if (TD->getName() != getName())
4721  return false;
4722  SourceLocation TTLoc = getLocation();
4723  SourceLocation TDLoc = TD->getLocation();
4724  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4725  return false;
4727  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4728  }
4729  }
4730  return false;
4731  };
4732 
4733  bool isTransparent = determineIsTransparent();
4734  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4735  return isTransparent;
4736 }
4737 
4739  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4740  nullptr, nullptr);
4741 }
4742 
4744  SourceLocation StartLoc,
4745  SourceLocation IdLoc, IdentifierInfo *Id,
4746  TypeSourceInfo *TInfo) {
4747  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4748 }
4749 
4751  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4752  SourceLocation(), nullptr, nullptr);
4753 }
4754 
4756  SourceLocation RangeEnd = getLocation();
4757  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4758  if (typeIsPostfix(TInfo->getType()))
4759  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4760  }
4761  return SourceRange(getBeginLoc(), RangeEnd);
4762 }
4763 
4765  SourceLocation RangeEnd = getBeginLoc();
4766  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4767  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4768  return SourceRange(getBeginLoc(), RangeEnd);
4769 }
4770 
4771 void FileScopeAsmDecl::anchor() {}
4772 
4774  StringLiteral *Str,
4775  SourceLocation AsmLoc,
4776  SourceLocation RParenLoc) {
4777  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4778 }
4779 
4781  unsigned ID) {
4782  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4783  SourceLocation());
4784 }
4785 
4786 void EmptyDecl::anchor() {}
4787 
4789  return new (C, DC) EmptyDecl(DC, L);
4790 }
4791 
4793  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4794 }
4795 
4796 //===----------------------------------------------------------------------===//
4797 // ImportDecl Implementation
4798 //===----------------------------------------------------------------------===//
4799 
4800 /// Retrieve the number of module identifiers needed to name the given
4801 /// module.
4802 static unsigned getNumModuleIdentifiers(Module *Mod) {
4803  unsigned Result = 1;
4804  while (Mod->Parent) {
4805  Mod = Mod->Parent;
4806  ++Result;
4807  }
4808  return Result;
4809 }
4810 
4811 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4812  Module *Imported,
4813  ArrayRef<SourceLocation> IdentifierLocs)
4814  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4815  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4816  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4817  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4818  StoredLocs);
4819 }
4820 
4821 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4822  Module *Imported, SourceLocation EndLoc)
4823  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4824  *getTrailingObjects<SourceLocation>() = EndLoc;
4825 }
4826 
4828  SourceLocation StartLoc, Module *Imported,
4829  ArrayRef<SourceLocation> IdentifierLocs) {
4830  return new (C, DC,
4831  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4832  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4833 }
4834 
4836  SourceLocation StartLoc,
4837  Module *Imported,
4838  SourceLocation EndLoc) {
4839  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4840  ImportDecl(DC, StartLoc, Imported, EndLoc);
4841  Import->setImplicit();
4842  return Import;
4843 }
4844 
4846  unsigned NumLocations) {
4847  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4849 }
4850 
4852  if (!ImportedAndComplete.getInt())
4853  return None;
4854 
4855  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4856  return llvm::makeArrayRef(StoredLocs,
4857  getNumModuleIdentifiers(getImportedModule()));
4858 }
4859 
4861  if (!ImportedAndComplete.getInt())
4862  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4863 
4864  return SourceRange(getLocation(), getIdentifierLocs().back());
4865 }
4866 
4867 //===----------------------------------------------------------------------===//
4868 // ExportDecl Implementation
4869 //===----------------------------------------------------------------------===//
4870 
4871 void ExportDecl::anchor() {}
4872 
4874  SourceLocation ExportLoc) {
4875  return new (C, DC) ExportDecl(DC, ExportLoc);
4876 }
4877 
4879  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4880 }
void setLinkage(Linkage L)
Definition: Visibility.h:87
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4215
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2552
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:3029
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4755
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
bool mightBeUsableInConstantExpressions(ASTContext &C) const
Determine whether this variable&#39;s value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2264
void setImplicit(bool I=true)
Definition: DeclBase.h:559
Represents a function declaration or definition.
Definition: Decl.h:1756
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1417
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2888
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:571
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3771
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1301
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=CSK_unspecified)
Definition: Decl.h:1903
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3753
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2044
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4193
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3711
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:759
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4845
CanQualType VoidPtrTy
Definition: ASTContext.h:1040
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:3005
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:643
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:4069
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3213
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3168
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:49
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2995
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1959
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4684
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2256
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1504
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3737
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4672
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:38
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4363
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3393
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:200
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:801
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3578
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:518
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2853
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3744
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:991
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2827
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3240
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:26
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:4037
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3059
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:788
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4500
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2999
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2394
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2939
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4041
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:601
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:421
bool isNothrow() const
Definition: Decl.cpp:4641
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3792
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4860
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2840
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:3064
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3966
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:207
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1515
The base class of the type hierarchy.
Definition: Type.h:1436
Represents an empty-declaration.
Definition: Decl.h:4333
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4438
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1290
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:514
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI, MemberSpecializationInfo *MSInfo)
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:189
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4326
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:425
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:703
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:38
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr or CxxCtorInitializer) selects the name&#39;s to...
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3665
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4164
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:796
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2774
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:4025
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1902
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1209
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3470
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:75
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4632
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3210
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1497
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3162
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4642
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4243
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:812
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:381
RangeSelector member(std::string ID)
Given a MemberExpr, selects the member token.
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:785
Declaration of a redeclarable template.
Definition: DeclTemplate.h:793
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:2004
unsigned getNumParams() const
Definition: Type.h:3927
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:111
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6857
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2718
Visibility getVisibility() const
Definition: Visibility.h:84
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1140
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3928
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:603
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1753
bool isInvalidDecl() const
Definition: DeclBase.h:553
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
Not a TLS variable.
Definition: Decl.h:829
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
Represents a parameter to a function.
Definition: Decl.h:1572
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1451
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:728
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3913
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4364
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3301
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3634
This is the private module fragment within some C++ module.
Definition: Module.h:84
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:84
C11 _Thread_local.
Definition: Specifiers.h:231
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1667
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1955
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1060
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1851
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1857
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4309
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4279
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2707
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4678
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:160
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2799
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3207
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:792
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
static LinkageInfo internal()
Definition: Visibility.h:70
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:179
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:3839
field_range fields() const
Definition: Decl.h:3849
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4802
static bool isInModulePurview(const NamedDecl *D)
Determine whether D is declared in the purview of a named module.
Definition: Decl.cpp:571
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:301
Represents a member of a struct/union/class.
Definition: Decl.h:2615
friend class DeclContext
Definition: DeclBase.h:247
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:4057
bool isNamespace() const
Definition: DeclBase.h:1863
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:4046
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4428
bool isReferenceType() const
Definition: Type.h:6402
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:173
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:95
This declaration is definitely a definition.
Definition: Decl.h:1152
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1062
__DEVICE__ int max(int __a, int __b)
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3724
Describes a module or submodule.
Definition: Module.h:64
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4487
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3846
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2297
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:45
virtual bool isDefined() const
Definition: Decl.h:1971
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:512
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2542
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:3029
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2149
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2911