clang 22.0.0git
Expr.cpp
Go to the documentation of this file.
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/Attr.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
26#include "clang/AST/Mangle.h"
32#include "clang/Lex/Lexer.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 return DerivedType->castAsCXXRecordDecl();
78}
79
82 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
83 const Expr *E = this;
84 while (true) {
85 E = E->IgnoreParens();
86
87 if (const auto *CE = dyn_cast<CastExpr>(E)) {
88 if ((CE->getCastKind() == CK_DerivedToBase ||
89 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
90 E->getType()->isRecordType()) {
91 E = CE->getSubExpr();
92 const auto *Derived = E->getType()->castAsCXXRecordDecl();
93 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
94 continue;
95 }
96
97 if (CE->getCastKind() == CK_NoOp) {
98 E = CE->getSubExpr();
99 continue;
100 }
101 } else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
102 if (!ME->isArrow()) {
103 assert(ME->getBase()->getType()->getAsRecordDecl());
104 if (const auto *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
105 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
106 E = ME->getBase();
107 Adjustments.push_back(SubobjectAdjustment(Field));
108 continue;
109 }
110 }
111 }
112 } else if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
113 if (BO->getOpcode() == BO_PtrMemD) {
114 assert(BO->getRHS()->isPRValue());
115 E = BO->getLHS();
116 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
117 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
118 continue;
119 }
120 if (BO->getOpcode() == BO_Comma) {
121 CommaLHSs.push_back(BO->getLHS());
122 E = BO->getRHS();
123 continue;
124 }
125 }
126
127 // Nothing changed.
128 break;
129 }
130 return E;
131}
132
133bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
134 const Expr *E = IgnoreParens();
135
136 // If this value has _Bool type, it is obvious 0/1.
137 if (E->getType()->isBooleanType()) return true;
138 // If this is a non-scalar-integer type, we don't care enough to try.
139 if (!E->getType()->isIntegralOrEnumerationType()) return false;
140
141 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
142 switch (UO->getOpcode()) {
143 case UO_Plus:
144 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
145 case UO_LNot:
146 return true;
147 default:
148 return false;
149 }
150 }
151
152 // Only look through implicit casts. If the user writes
153 // '(int) (a && b)' treat it as an arbitrary int.
154 // FIXME: Should we look through any cast expression in !Semantic mode?
155 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
156 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
157
158 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
159 switch (BO->getOpcode()) {
160 default: return false;
161 case BO_LT: // Relational operators.
162 case BO_GT:
163 case BO_LE:
164 case BO_GE:
165 case BO_EQ: // Equality operators.
166 case BO_NE:
167 case BO_LAnd: // AND operator.
168 case BO_LOr: // Logical OR operator.
169 return true;
170
171 case BO_And: // Bitwise AND operator.
172 case BO_Xor: // Bitwise XOR operator.
173 case BO_Or: // Bitwise OR operator.
174 // Handle things like (x==2)|(y==12).
175 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
176 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
177
178 case BO_Comma:
179 case BO_Assign:
180 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181 }
182 }
183
184 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
185 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
186 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
187
189 return true;
190
191 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
192 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
193
194 if (const FieldDecl *FD = E->getSourceBitField())
195 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
196 !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1)
197 return true;
198
199 return false;
200}
201
203 const ASTContext &Ctx,
204 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
205 bool IgnoreTemplateOrMacroSubstitution) const {
206 const Expr *E = IgnoreParens();
207 const Decl *D = nullptr;
208
209 if (const auto *ME = dyn_cast<MemberExpr>(E))
210 D = ME->getMemberDecl();
211 else if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
212 D = DRE->getDecl();
213 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
214 D = IRE->getDecl();
215
216 return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(),
217 StrictFlexArraysLevel,
218 IgnoreTemplateOrMacroSubstitution);
219}
220
221const ValueDecl *
223 Expr::EvalResult Eval;
224
225 if (EvaluateAsConstantExpr(Eval, Context)) {
226 APValue &Value = Eval.Val;
227
228 if (Value.isMemberPointer())
229 return Value.getMemberPointerDecl();
230
231 if (Value.isLValue() && Value.getLValueOffset().isZero())
232 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
233 }
234
235 return nullptr;
236}
237
238// Amusing macro metaprogramming hack: check whether a class provides
239// a more specific implementation of getExprLoc().
240//
241// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
242namespace {
243 /// This implementation is used when a class provides a custom
244 /// implementation of getExprLoc.
245 template <class E, class T>
246 SourceLocation getExprLocImpl(const Expr *expr,
247 SourceLocation (T::*v)() const) {
248 return static_cast<const E*>(expr)->getExprLoc();
249 }
250
251 /// This implementation is used when a class doesn't provide
252 /// a custom implementation of getExprLoc. Overload resolution
253 /// should pick it over the implementation above because it's
254 /// more specialized according to function template partial ordering.
255 template <class E>
256 SourceLocation getExprLocImpl(const Expr *expr,
257 SourceLocation (Expr::*v)() const) {
258 return static_cast<const E *>(expr)->getBeginLoc();
259 }
260}
261
263 if (isa<EnumType>(getType()))
264 return getType();
265 if (const auto *ECD = getEnumConstantDecl()) {
266 const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
267 if (ED->isCompleteDefinition())
268 return Ctx.getCanonicalTagType(ED);
269 }
270 return getType();
271}
272
274 switch (getStmtClass()) {
275 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
276#define ABSTRACT_STMT(type)
277#define STMT(type, base) \
278 case Stmt::type##Class: break;
279#define EXPR(type, base) \
280 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
281#include "clang/AST/StmtNodes.inc"
282 }
283 llvm_unreachable("unknown expression kind");
284}
285
286//===----------------------------------------------------------------------===//
287// Primary Expressions.
288//===----------------------------------------------------------------------===//
289
291 assert((Kind == ConstantResultStorageKind::APValue ||
294 "Invalid StorageKind Value");
295 (void)Kind;
296}
297
299 switch (Value.getKind()) {
300 case APValue::None:
303 case APValue::Int:
304 if (!Value.getInt().needsCleanup())
306 [[fallthrough]];
307 default:
309 }
310}
311
314 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
317}
318
319ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
320 bool IsImmediateInvocation)
321 : FullExpr(ConstantExprClass, SubExpr) {
322 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
323 ConstantExprBits.APValueKind = APValue::None;
324 ConstantExprBits.IsUnsigned = false;
325 ConstantExprBits.BitWidth = 0;
326 ConstantExprBits.HasCleanup = false;
327 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
328
329 if (StorageKind == ConstantResultStorageKind::APValue)
330 ::new (getTrailingObjects<APValue>()) APValue();
331}
332
333ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
334 ConstantResultStorageKind StorageKind,
335 bool IsImmediateInvocation) {
336 assert(!isa<ConstantExpr>(E));
337 AssertResultStorageKind(StorageKind);
338
339 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
341 StorageKind == ConstantResultStorageKind::Int64);
342 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
343 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
344}
345
346ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
347 const APValue &Result) {
349 ConstantExpr *Self = Create(Context, E, StorageKind);
350 Self->SetResult(Result, Context);
351 return Self;
352}
353
354ConstantExpr::ConstantExpr(EmptyShell Empty,
355 ConstantResultStorageKind StorageKind)
356 : FullExpr(ConstantExprClass, Empty) {
357 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
358
359 if (StorageKind == ConstantResultStorageKind::APValue)
360 ::new (getTrailingObjects<APValue>()) APValue();
361}
362
363ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
364 ConstantResultStorageKind StorageKind) {
365 AssertResultStorageKind(StorageKind);
366
367 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
369 StorageKind == ConstantResultStorageKind::Int64);
370 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
371 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
372}
373
375 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
376 "Invalid storage for this value kind");
377 ConstantExprBits.APValueKind = Value.getKind();
378 switch (getResultStorageKind()) {
380 return;
382 Int64Result() = *Value.getInt().getRawData();
383 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
384 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
385 return;
387 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
388 ConstantExprBits.HasCleanup = true;
389 Context.addDestruction(&APValueResult());
390 }
391 APValueResult() = std::move(Value);
392 return;
393 }
394 llvm_unreachable("Invalid ResultKind Bits");
395}
396
398 switch (getResultStorageKind()) {
400 return APValueResult().getInt();
402 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
403 ConstantExprBits.IsUnsigned);
404 default:
405 llvm_unreachable("invalid Accessor");
406 }
407}
408
410
411 switch (getResultStorageKind()) {
413 return APValueResult();
415 return APValue(
416 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
417 ConstantExprBits.IsUnsigned));
419 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
421 return APValue();
422 }
423 llvm_unreachable("invalid ResultKind");
424}
425
426DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
427 bool RefersToEnclosingVariableOrCapture, QualType T,
429 const DeclarationNameLoc &LocInfo,
430 NonOdrUseReason NOUR)
431 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
432 DeclRefExprBits.HasQualifier = false;
433 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
434 DeclRefExprBits.HasFoundDecl = false;
435 DeclRefExprBits.HadMultipleCandidates = false;
436 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
437 RefersToEnclosingVariableOrCapture;
438 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
439 DeclRefExprBits.NonOdrUseReason = NOUR;
440 DeclRefExprBits.IsImmediateEscalating = false;
441 DeclRefExprBits.Loc = L;
443}
444
445DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
446 NestedNameSpecifierLoc QualifierLoc,
447 SourceLocation TemplateKWLoc, ValueDecl *D,
448 bool RefersToEnclosingVariableOrCapture,
449 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
450 const TemplateArgumentListInfo *TemplateArgs,
452 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
453 DNLoc(NameInfo.getInfo()) {
454 DeclRefExprBits.Loc = NameInfo.getLoc();
455 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
456 if (QualifierLoc)
457 new (getTrailingObjects<NestedNameSpecifierLoc>())
458 NestedNameSpecifierLoc(QualifierLoc);
459 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
460 if (FoundD)
461 *getTrailingObjects<NamedDecl *>() = FoundD;
462 DeclRefExprBits.HasTemplateKWAndArgsInfo
463 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
464 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
465 RefersToEnclosingVariableOrCapture;
466 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
467 DeclRefExprBits.NonOdrUseReason = NOUR;
468 if (TemplateArgs) {
469 auto Deps = TemplateArgumentDependence::None;
470 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
471 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
472 Deps);
473 assert(!(Deps & TemplateArgumentDependence::Dependent) &&
474 "built a DeclRefExpr with dependent template args");
475 } else if (TemplateKWLoc.isValid()) {
476 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
477 TemplateKWLoc);
478 }
479 DeclRefExprBits.IsImmediateEscalating = false;
480 DeclRefExprBits.HadMultipleCandidates = 0;
482}
483
484DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
485 NestedNameSpecifierLoc QualifierLoc,
486 SourceLocation TemplateKWLoc, ValueDecl *D,
487 bool RefersToEnclosingVariableOrCapture,
488 SourceLocation NameLoc, QualType T,
489 ExprValueKind VK, NamedDecl *FoundD,
490 const TemplateArgumentListInfo *TemplateArgs,
491 NonOdrUseReason NOUR) {
492 return Create(Context, QualifierLoc, TemplateKWLoc, D,
493 RefersToEnclosingVariableOrCapture,
494 DeclarationNameInfo(D->getDeclName(), NameLoc),
495 T, VK, FoundD, TemplateArgs, NOUR);
496}
497
498DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
499 NestedNameSpecifierLoc QualifierLoc,
500 SourceLocation TemplateKWLoc, ValueDecl *D,
501 bool RefersToEnclosingVariableOrCapture,
502 const DeclarationNameInfo &NameInfo,
504 NamedDecl *FoundD,
505 const TemplateArgumentListInfo *TemplateArgs,
506 NonOdrUseReason NOUR) {
507 // Filter out cases where the found Decl is the same as the value refenenced.
508 if (D == FoundD)
509 FoundD = nullptr;
510
511 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
512 std::size_t Size =
513 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
515 QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
516 HasTemplateKWAndArgsInfo ? 1 : 0,
517 TemplateArgs ? TemplateArgs->size() : 0);
518
519 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
520 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
521 RefersToEnclosingVariableOrCapture, NameInfo,
522 FoundD, TemplateArgs, T, VK, NOUR);
523}
524
525DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
526 bool HasQualifier,
527 bool HasFoundDecl,
528 bool HasTemplateKWAndArgsInfo,
529 unsigned NumTemplateArgs) {
530 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
531 std::size_t Size =
532 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
534 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
535 NumTemplateArgs);
536 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
537 return new (Mem) DeclRefExpr(EmptyShell());
538}
539
541 D = NewD;
542 if (getType()->isUndeducedType())
543 setType(NewD->getType());
545}
546
552
553SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
554 SourceLocation LParen,
555 SourceLocation RParen,
556 QualType ResultTy,
557 TypeSourceInfo *TSI)
558 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
559 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
560 setTypeSourceInfo(TSI);
562}
563
564SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
565 QualType ResultTy)
566 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
567
570 SourceLocation LParen, SourceLocation RParen,
571 TypeSourceInfo *TSI) {
572 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
573 return new (Ctx)
574 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
575}
576
579 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
580 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
581}
582
587
589 QualType Ty) {
590 auto MangleCallback = [](ASTContext &Ctx,
591 const NamedDecl *ND) -> UnsignedOrNone {
592 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
593 return RD->getDeviceLambdaManglingNumber();
594 return std::nullopt;
595 };
596
597 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
598 Context, Context.getDiagnostics(), MangleCallback)};
599
600 std::string Buffer;
601 Buffer.reserve(128);
602 llvm::raw_string_ostream Out(Buffer);
603 Ctx->mangleCanonicalTypeName(Ty, Out);
604
605 return Buffer;
606}
607
608PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
609 PredefinedIdentKind IK, bool IsTransparent,
610 StringLiteral *SL)
611 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
612 PredefinedExprBits.Kind = llvm::to_underlying(IK);
613 assert((getIdentKind() == IK) &&
614 "IdentKind do not fit in PredefinedExprBitfields!");
615 bool HasFunctionName = SL != nullptr;
616 PredefinedExprBits.HasFunctionName = HasFunctionName;
617 PredefinedExprBits.IsTransparent = IsTransparent;
618 PredefinedExprBits.Loc = L;
619 if (HasFunctionName)
620 setFunctionName(SL);
622}
623
624PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
625 : Expr(PredefinedExprClass, Empty) {
626 PredefinedExprBits.HasFunctionName = HasFunctionName;
627}
628
631 bool IsTransparent, StringLiteral *SL) {
632 bool HasFunctionName = SL != nullptr;
633 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
634 alignof(PredefinedExpr));
635 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
636}
637
638PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
639 bool HasFunctionName) {
640 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
641 alignof(PredefinedExpr));
642 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
643}
644
646 switch (IK) {
648 return "__func__";
650 return "__FUNCTION__";
652 return "__FUNCDNAME__";
654 return "L__FUNCTION__";
656 return "__PRETTY_FUNCTION__";
658 return "__FUNCSIG__";
660 return "L__FUNCSIG__";
662 break;
663 }
664 llvm_unreachable("Unknown ident kind for PredefinedExpr");
665}
666
667// FIXME: Maybe this should use DeclPrinter with a special "print predefined
668// expr" policy instead.
670 const Decl *CurrentDecl,
671 bool ForceElaboratedPrinting) {
672 ASTContext &Context = CurrentDecl->getASTContext();
673
675 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
676 std::unique_ptr<MangleContext> MC;
677 MC.reset(Context.createMangleContext());
678
679 if (MC->shouldMangleDeclName(ND)) {
680 SmallString<256> Buffer;
681 llvm::raw_svector_ostream Out(Buffer);
682 GlobalDecl GD;
683 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
684 GD = GlobalDecl(CD, Ctor_Base);
685 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
686 GD = GlobalDecl(DD, Dtor_Base);
687 else if (auto FD = dyn_cast<FunctionDecl>(ND)) {
688 GD = FD->isReferenceableKernel() ? GlobalDecl(FD) : GlobalDecl(ND);
689 } else
690 GD = GlobalDecl(ND);
691 MC->mangleName(GD, Out);
692
693 if (!Buffer.empty() && Buffer.front() == '\01')
694 return std::string(Buffer.substr(1));
695 return std::string(Buffer);
696 }
697 return std::string(ND->getIdentifier()->getName());
698 }
699 return "";
700 }
701 if (isa<BlockDecl>(CurrentDecl)) {
702 // For blocks we only emit something if it is enclosed in a function
703 // For top-level block we'd like to include the name of variable, but we
704 // don't have it at this point.
705 auto DC = CurrentDecl->getDeclContext();
706 if (DC->isFileContext())
707 return "";
708
709 SmallString<256> Buffer;
710 llvm::raw_svector_ostream Out(Buffer);
711 if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
712 // For nested blocks, propagate up to the parent.
713 Out << ComputeName(IK, DCBlock);
714 else if (auto *DCDecl = dyn_cast<Decl>(DC))
715 Out << ComputeName(IK, DCDecl) << "_block_invoke";
716 return std::string(Out.str());
717 }
718 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
719 const auto &LO = Context.getLangOpts();
720 bool IsFuncOrFunctionInNonMSVCCompatEnv =
722 IK == PredefinedIdentKind ::Function) &&
723 !LO.MSVCCompat);
724 bool IsLFunctionInMSVCCommpatEnv =
725 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat;
726 bool IsFuncOrFunctionOrLFunctionOrFuncDName =
731 if ((ForceElaboratedPrinting &&
732 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) ||
733 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName))
734 return FD->getNameAsString();
735
736 SmallString<256> Name;
737 llvm::raw_svector_ostream Out(Name);
738
739 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
740 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
741 Out << "virtual ";
742 if (MD->isStatic() && !ForceElaboratedPrinting)
743 Out << "static ";
744 }
745
746 class PrettyCallbacks final : public PrintingCallbacks {
747 public:
748 PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
749 std::string remapPath(StringRef Path) const override {
750 SmallString<128> p(Path);
751 LO.remapPathPrefix(p);
752 return std::string(p);
753 }
754
755 private:
756 const LangOptions &LO;
757 };
758 PrintingPolicy Policy(Context.getLangOpts());
759 PrettyCallbacks PrettyCB(Context.getLangOpts());
760 Policy.Callbacks = &PrettyCB;
761 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting)
762 Policy.SuppressTagKeyword = !LO.MSVCCompat;
763 std::string Proto;
764 llvm::raw_string_ostream POut(Proto);
765
766 const FunctionDecl *Decl = FD;
767 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
768 Decl = Pattern;
769
770 // Bail out if the type of the function has not been set yet.
771 // This can notably happen in the trailing return type of a lambda
772 // expression.
773 const Type *Ty = Decl->getType().getTypePtrOrNull();
774 if (!Ty)
775 return "";
776
777 const FunctionType *AFT = Ty->getAs<FunctionType>();
778 const FunctionProtoType *FT = nullptr;
779 if (FD->hasWrittenPrototype())
780 FT = dyn_cast<FunctionProtoType>(AFT);
781
784 switch (AFT->getCallConv()) {
785 case CC_C: POut << "__cdecl "; break;
786 case CC_X86StdCall: POut << "__stdcall "; break;
787 case CC_X86FastCall: POut << "__fastcall "; break;
788 case CC_X86ThisCall: POut << "__thiscall "; break;
789 case CC_X86VectorCall: POut << "__vectorcall "; break;
790 case CC_X86RegCall: POut << "__regcall "; break;
791 // Only bother printing the conventions that MSVC knows about.
792 default: break;
793 }
794 }
795
796 FD->printQualifiedName(POut, Policy);
797
799 Out << Proto;
800 return std::string(Name);
801 }
802
803 POut << "(";
804 if (FT) {
805 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
806 if (i) POut << ", ";
807 POut << Decl->getParamDecl(i)->getType().stream(Policy);
808 }
809
810 if (FT->isVariadic()) {
811 if (FD->getNumParams()) POut << ", ";
812 POut << "...";
813 } else if ((IK == PredefinedIdentKind::FuncSig ||
815 !Context.getLangOpts().CPlusPlus) &&
816 !Decl->getNumParams()) {
817 POut << "void";
818 }
819 }
820 POut << ")";
821
822 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
823 assert(FT && "We must have a written prototype in this case.");
824 if (FT->isConst())
825 POut << " const";
826 if (FT->isVolatile())
827 POut << " volatile";
828 RefQualifierKind Ref = MD->getRefQualifier();
829 if (Ref == RQ_LValue)
830 POut << " &";
831 else if (Ref == RQ_RValue)
832 POut << " &&";
833 }
834
836 SpecsTy Specs;
837 const DeclContext *Ctx = FD->getDeclContext();
838 while (isa_and_nonnull<NamedDecl>(Ctx)) {
840 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
841 if (Spec && !Spec->isExplicitSpecialization())
842 Specs.push_back(Spec);
843 Ctx = Ctx->getParent();
844 }
845
846 std::string TemplateParams;
847 llvm::raw_string_ostream TOut(TemplateParams);
848 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
849 const TemplateParameterList *Params =
850 D->getSpecializedTemplate()->getTemplateParameters();
851 const TemplateArgumentList &Args = D->getTemplateArgs();
852 assert(Params->size() == Args.size());
853 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
854 StringRef Param = Params->getParam(i)->getName();
855 if (Param.empty()) continue;
856 TOut << Param << " = ";
857 Args.get(i).print(Policy, TOut,
859 Policy, Params, i));
860 TOut << ", ";
861 }
862 }
863
865 = FD->getTemplateSpecializationInfo();
866 if (FSI && !FSI->isExplicitSpecialization()) {
867 const TemplateParameterList* Params
869 const TemplateArgumentList* Args = FSI->TemplateArguments;
870 assert(Params->size() == Args->size());
871 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
872 StringRef Param = Params->getParam(i)->getName();
873 if (Param.empty()) continue;
874 TOut << Param << " = ";
875 Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
876 TOut << ", ";
877 }
878 }
879
880 if (!TemplateParams.empty()) {
881 // remove the trailing comma and space
882 TemplateParams.resize(TemplateParams.size() - 2);
883 POut << " [" << TemplateParams << "]";
884 }
885
886 // Print "auto" for all deduced return types. This includes C++1y return
887 // type deduction and lambdas. For trailing return types resolve the
888 // decltype expression. Otherwise print the real type when this is
889 // not a constructor or destructor.
890 if (isLambdaMethod(FD))
891 Proto = "auto " + Proto;
892 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
893 FT->getReturnType()
894 ->getAs<DecltypeType>()
896 .getAsStringInternal(Proto, Policy);
898 AFT->getReturnType().getAsStringInternal(Proto, Policy);
899
900 Out << Proto;
901
902 return std::string(Name);
903 }
904 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
905 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
906 // Skip to its enclosing function or method, but not its enclosing
907 // CapturedDecl.
908 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
909 const Decl *D = Decl::castFromDeclContext(DC);
910 return ComputeName(IK, D);
911 }
912 llvm_unreachable("CapturedDecl not inside a function or method");
913 }
914 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
915 SmallString<256> Name;
916 llvm::raw_svector_ostream Out(Name);
917 Out << (MD->isInstanceMethod() ? '-' : '+');
918 Out << '[';
919
920 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
921 // a null check to avoid a crash.
922 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
923 Out << *ID;
924
925 if (const ObjCCategoryImplDecl *CID =
926 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
927 Out << '(' << *CID << ')';
928
929 Out << ' ';
930 MD->getSelector().print(Out);
931 Out << ']';
932
933 return std::string(Name);
934 }
935 if (isa<TranslationUnitDecl>(CurrentDecl) &&
937 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
938 return "top level";
939 }
940 return "";
941}
942
944 const llvm::APInt &Val) {
945 if (hasAllocation())
946 C.Deallocate(pVal);
947
948 BitWidth = Val.getBitWidth();
949 unsigned NumWords = Val.getNumWords();
950 const uint64_t* Words = Val.getRawData();
951 if (NumWords > 1) {
952 pVal = new (C) uint64_t[NumWords];
953 std::copy(Words, Words + NumWords, pVal);
954 } else if (NumWords == 1)
955 VAL = Words[0];
956 else
957 VAL = 0;
958}
959
960IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
962 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
963 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
964 assert(V.getBitWidth() == C.getIntWidth(type) &&
965 "Integer type is not the correct size for constant.");
966 setValue(C, V);
967 setDependence(ExprDependence::None);
968}
969
971IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
973 return new (C) IntegerLiteral(C, V, type, l);
974}
975
978 return new (C) IntegerLiteral(Empty);
979}
980
981FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
983 unsigned Scale)
984 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
985 Scale(Scale) {
986 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
987 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
988 "Fixed point type is not the correct size for constant.");
989 setValue(C, V);
990 setDependence(ExprDependence::None);
991}
992
994 const llvm::APInt &V,
997 unsigned Scale) {
998 return new (C) FixedPointLiteral(C, V, type, l, Scale);
999}
1000
1001FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1002 EmptyShell Empty) {
1003 return new (C) FixedPointLiteral(Empty);
1004}
1005
1006std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1007 // Currently the longest decimal number that can be printed is the max for an
1008 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1009 // which is 43 characters.
1012 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1013 return std::string(S);
1014}
1015
1017 raw_ostream &OS) {
1018 switch (Kind) {
1020 break; // no prefix.
1022 OS << 'L';
1023 break;
1025 OS << "u8";
1026 break;
1028 OS << 'u';
1029 break;
1031 OS << 'U';
1032 break;
1033 }
1034
1035 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1036 if (!Escaped.empty()) {
1037 OS << "'" << Escaped << "'";
1038 } else {
1039 // A character literal might be sign-extended, which
1040 // would result in an invalid \U escape sequence.
1041 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1042 // are not correctly handled.
1043 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1044 Val &= 0xFFu;
1045 if (Val < 256 && isPrintable((unsigned char)Val))
1046 OS << "'" << (char)Val << "'";
1047 else if (Val < 256)
1048 OS << "'\\x" << llvm::format("%02x", Val) << "'";
1049 else if (Val <= 0xFFFF)
1050 OS << "'\\u" << llvm::format("%04x", Val) << "'";
1051 else
1052 OS << "'\\U" << llvm::format("%08x", Val) << "'";
1053 }
1054}
1055
1056FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1057 bool isexact, QualType Type, SourceLocation L)
1058 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1059 setSemantics(V.getSemantics());
1060 FloatingLiteralBits.IsExact = isexact;
1061 setValue(C, V);
1062 setDependence(ExprDependence::None);
1063}
1064
1065FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1066 : Expr(FloatingLiteralClass, Empty) {
1067 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1068 FloatingLiteralBits.IsExact = false;
1069}
1070
1072FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1073 bool isexact, QualType Type, SourceLocation L) {
1074 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1075}
1076
1079 return new (C) FloatingLiteral(C, Empty);
1080}
1081
1082/// getValueAsApproximateDouble - This returns the value as an inaccurate
1083/// double. Note that this may cause loss of precision, but is useful for
1084/// debugging dumps, etc.
1086 llvm::APFloat V = getValue();
1087 bool ignored;
1088 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1089 &ignored);
1090 return V.convertToDouble();
1091}
1092
1093unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1094 StringLiteralKind SK) {
1095 unsigned CharByteWidth = 0;
1096 switch (SK) {
1100 CharByteWidth = Target.getCharWidth();
1101 break;
1103 CharByteWidth = Target.getWCharWidth();
1104 break;
1106 CharByteWidth = Target.getChar16Width();
1107 break;
1109 CharByteWidth = Target.getChar32Width();
1110 break;
1112 return sizeof(char); // Host;
1113 }
1114 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1115 CharByteWidth /= 8;
1116 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1117 "The only supported character byte widths are 1,2 and 4!");
1118 return CharByteWidth;
1119}
1120
1121StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1122 StringLiteralKind Kind, bool Pascal, QualType Ty,
1124 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1125
1126 unsigned Length = Str.size();
1127
1128 StringLiteralBits.Kind = llvm::to_underlying(Kind);
1129 StringLiteralBits.NumConcatenated = Locs.size();
1130
1131 if (Kind != StringLiteralKind::Unevaluated) {
1132 assert(Ctx.getAsConstantArrayType(Ty) &&
1133 "StringLiteral must be of constant array type!");
1134 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1135 unsigned ByteLength = Str.size();
1136 assert((ByteLength % CharByteWidth == 0) &&
1137 "The size of the data must be a multiple of CharByteWidth!");
1138
1139 // Avoid the expensive division. The compiler should be able to figure it
1140 // out by itself. However as of clang 7, even with the appropriate
1141 // llvm_unreachable added just here, it is not able to do so.
1142 switch (CharByteWidth) {
1143 case 1:
1144 Length = ByteLength;
1145 break;
1146 case 2:
1147 Length = ByteLength / 2;
1148 break;
1149 case 4:
1150 Length = ByteLength / 4;
1151 break;
1152 default:
1153 llvm_unreachable("Unsupported character width!");
1154 }
1155
1156 StringLiteralBits.CharByteWidth = CharByteWidth;
1157 StringLiteralBits.IsPascal = Pascal;
1158 } else {
1159 assert(!Pascal && "Can't make an unevaluated Pascal string");
1160 StringLiteralBits.CharByteWidth = 1;
1161 StringLiteralBits.IsPascal = false;
1162 }
1163
1164 *getTrailingObjects<unsigned>() = Length;
1165
1166 // Initialize the trailing array of SourceLocation.
1167 // This is safe since SourceLocation is POD-like.
1168 llvm::copy(Locs, getTrailingObjects<SourceLocation>());
1169
1170 // Initialize the trailing array of char holding the string data.
1171 llvm::copy(Str, getTrailingObjects<char>());
1172
1173 setDependence(ExprDependence::None);
1174}
1175
1176StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1177 unsigned Length, unsigned CharByteWidth)
1178 : Expr(StringLiteralClass, Empty) {
1179 StringLiteralBits.CharByteWidth = CharByteWidth;
1180 StringLiteralBits.NumConcatenated = NumConcatenated;
1181 *getTrailingObjects<unsigned>() = Length;
1182}
1183
1184StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1185 StringLiteralKind Kind, bool Pascal,
1186 QualType Ty,
1188 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1189 1, Locs.size(), Str.size()),
1190 alignof(StringLiteral));
1191 return new (Mem) StringLiteral(Ctx, Str, Kind, Pascal, Ty, Locs);
1192}
1193
1194StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1195 unsigned NumConcatenated,
1196 unsigned Length,
1197 unsigned CharByteWidth) {
1198 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1199 1, NumConcatenated, Length * CharByteWidth),
1200 alignof(StringLiteral));
1201 return new (Mem)
1202 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1203}
1204
1205void StringLiteral::outputString(raw_ostream &OS) const {
1206 switch (getKind()) {
1210 break; // no prefix.
1212 OS << 'L';
1213 break;
1215 OS << "u8";
1216 break;
1218 OS << 'u';
1219 break;
1221 OS << 'U';
1222 break;
1223 }
1224 OS << '"';
1225 static const char Hex[] = "0123456789ABCDEF";
1226
1227 unsigned LastSlashX = getLength();
1228 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1229 uint32_t Char = getCodeUnit(I);
1230 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1231 if (Escaped.empty()) {
1232 // FIXME: Convert UTF-8 back to codepoints before rendering.
1233
1234 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1235 // Leave invalid surrogates alone; we'll use \x for those.
1236 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1237 Char >= 0xd800 && Char <= 0xdbff) {
1238 uint32_t Trail = getCodeUnit(I + 1);
1239 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1240 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1241 ++I;
1242 }
1243 }
1244
1245 if (Char > 0xff) {
1246 // If this is a wide string, output characters over 0xff using \x
1247 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1248 // codepoint: use \x escapes for invalid codepoints.
1250 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1251 // FIXME: Is this the best way to print wchar_t?
1252 OS << "\\x";
1253 int Shift = 28;
1254 while ((Char >> Shift) == 0)
1255 Shift -= 4;
1256 for (/**/; Shift >= 0; Shift -= 4)
1257 OS << Hex[(Char >> Shift) & 15];
1258 LastSlashX = I;
1259 continue;
1260 }
1261
1262 if (Char > 0xffff)
1263 OS << "\\U00"
1264 << Hex[(Char >> 20) & 15]
1265 << Hex[(Char >> 16) & 15];
1266 else
1267 OS << "\\u";
1268 OS << Hex[(Char >> 12) & 15]
1269 << Hex[(Char >> 8) & 15]
1270 << Hex[(Char >> 4) & 15]
1271 << Hex[(Char >> 0) & 15];
1272 continue;
1273 }
1274
1275 // If we used \x... for the previous character, and this character is a
1276 // hexadecimal digit, prevent it being slurped as part of the \x.
1277 if (LastSlashX + 1 == I) {
1278 switch (Char) {
1279 case '0': case '1': case '2': case '3': case '4':
1280 case '5': case '6': case '7': case '8': case '9':
1281 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1282 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1283 OS << "\"\"";
1284 }
1285 }
1286
1287 assert(Char <= 0xff &&
1288 "Characters above 0xff should already have been handled.");
1289
1290 if (isPrintable(Char))
1291 OS << (char)Char;
1292 else // Output anything hard as an octal escape.
1293 OS << '\\'
1294 << (char)('0' + ((Char >> 6) & 7))
1295 << (char)('0' + ((Char >> 3) & 7))
1296 << (char)('0' + ((Char >> 0) & 7));
1297 } else {
1298 // Handle some common non-printable cases to make dumps prettier.
1299 OS << Escaped;
1300 }
1301 }
1302 OS << '"';
1303}
1304
1305/// getLocationOfByte - Return a source location that points to the specified
1306/// byte of this string literal.
1307///
1308/// Strings are amazingly complex. They can be formed from multiple tokens and
1309/// can have escape sequences in them in addition to the usual trigraph and
1310/// escaped newline business. This routine handles this complexity.
1311///
1312/// The *StartToken sets the first token to be searched in this function and
1313/// the *StartTokenByteOffset is the byte offset of the first token. Before
1314/// returning, it updates the *StartToken to the TokNo of the token being found
1315/// and sets *StartTokenByteOffset to the byte offset of the token in the
1316/// string.
1317/// Using these two parameters can reduce the time complexity from O(n^2) to
1318/// O(n) if one wants to get the location of byte for all the tokens in a
1319/// string.
1320///
1323 const LangOptions &Features,
1324 const TargetInfo &Target, unsigned *StartToken,
1325 unsigned *StartTokenByteOffset) const {
1326 // No source location of bytes for binary literals since they don't come from
1327 // source.
1329 return getStrTokenLoc(0);
1330
1331 assert((getKind() == StringLiteralKind::Ordinary ||
1334 "Only narrow string literals are currently supported");
1335
1336 // Loop over all of the tokens in this string until we find the one that
1337 // contains the byte we're looking for.
1338 unsigned TokNo = 0;
1339 unsigned StringOffset = 0;
1340 if (StartToken)
1341 TokNo = *StartToken;
1342 if (StartTokenByteOffset) {
1343 StringOffset = *StartTokenByteOffset;
1344 ByteNo -= StringOffset;
1345 }
1346 while (true) {
1347 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1348 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1349
1350 // Get the spelling of the string so that we can get the data that makes up
1351 // the string literal, not the identifier for the macro it is potentially
1352 // expanded through.
1353 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1354
1355 // Re-lex the token to get its length and original spelling.
1356 FileIDAndOffset LocInfo = SM.getDecomposedLoc(StrTokSpellingLoc);
1357 bool Invalid = false;
1358 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1359 if (Invalid) {
1360 if (StartTokenByteOffset != nullptr)
1361 *StartTokenByteOffset = StringOffset;
1362 if (StartToken != nullptr)
1363 *StartToken = TokNo;
1364 return StrTokSpellingLoc;
1365 }
1366
1367 const char *StrData = Buffer.data()+LocInfo.second;
1368
1369 // Create a lexer starting at the beginning of this token.
1370 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1371 Buffer.begin(), StrData, Buffer.end());
1372 Token TheTok;
1373 TheLexer.LexFromRawLexer(TheTok);
1374
1375 // Use the StringLiteralParser to compute the length of the string in bytes.
1376 StringLiteralParser SLP(TheTok, SM, Features, Target);
1377 unsigned TokNumBytes = SLP.GetStringLength();
1378
1379 // If the byte is in this token, return the location of the byte.
1380 if (ByteNo < TokNumBytes ||
1381 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1382 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1383
1384 // Now that we know the offset of the token in the spelling, use the
1385 // preprocessor to get the offset in the original source.
1386 if (StartTokenByteOffset != nullptr)
1387 *StartTokenByteOffset = StringOffset;
1388 if (StartToken != nullptr)
1389 *StartToken = TokNo;
1390 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1391 }
1392
1393 // Move to the next string token.
1394 StringOffset += TokNumBytes;
1395 ++TokNo;
1396 ByteNo -= TokNumBytes;
1397 }
1398}
1399
1400/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1401/// corresponds to, e.g. "sizeof" or "[pre]++".
1403 switch (Op) {
1404#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1405#include "clang/AST/OperationKinds.def"
1406 }
1407 llvm_unreachable("Unknown unary operator");
1408}
1409
1412 switch (OO) {
1413 default: llvm_unreachable("No unary operator for overloaded function");
1414 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1415 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1416 case OO_Amp: return UO_AddrOf;
1417 case OO_Star: return UO_Deref;
1418 case OO_Plus: return UO_Plus;
1419 case OO_Minus: return UO_Minus;
1420 case OO_Tilde: return UO_Not;
1421 case OO_Exclaim: return UO_LNot;
1422 case OO_Coawait: return UO_Coawait;
1423 }
1424}
1425
1427 switch (Opc) {
1428 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1429 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1430 case UO_AddrOf: return OO_Amp;
1431 case UO_Deref: return OO_Star;
1432 case UO_Plus: return OO_Plus;
1433 case UO_Minus: return OO_Minus;
1434 case UO_Not: return OO_Tilde;
1435 case UO_LNot: return OO_Exclaim;
1436 case UO_Coawait: return OO_Coawait;
1437 default: return OO_None;
1438 }
1439}
1440
1441
1442//===----------------------------------------------------------------------===//
1443// Postfix Operators.
1444//===----------------------------------------------------------------------===//
1445#ifndef NDEBUG
1447 switch (SC) {
1448 case Expr::CallExprClass:
1449 return sizeof(CallExpr);
1450 case Expr::CXXOperatorCallExprClass:
1451 return sizeof(CXXOperatorCallExpr);
1452 case Expr::CXXMemberCallExprClass:
1453 return sizeof(CXXMemberCallExpr);
1454 case Expr::UserDefinedLiteralClass:
1455 return sizeof(UserDefinedLiteral);
1456 case Expr::CUDAKernelCallExprClass:
1457 return sizeof(CUDAKernelCallExpr);
1458 default:
1459 llvm_unreachable("unexpected class deriving from CallExpr!");
1460 }
1461}
1462#endif
1463
1464// changing the size of SourceLocation, CallExpr, and
1465// subclasses requires careful considerations
1466static_assert(sizeof(SourceLocation) == 4 && sizeof(CXXOperatorCallExpr) <= 32,
1467 "we assume CXXOperatorCallExpr is at most 32 bytes");
1468
1471 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1472 unsigned MinNumArgs, ADLCallKind UsesADL)
1473 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1474 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1475 unsigned NumPreArgs = PreArgs.size();
1476 CallExprBits.NumPreArgs = NumPreArgs;
1477 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1479 "This CallExpr subclass is too big or unsupported");
1480
1481 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1482
1483 setCallee(Fn);
1484 for (unsigned I = 0; I != NumPreArgs; ++I)
1485 setPreArg(I, PreArgs[I]);
1486 for (unsigned I = 0; I != Args.size(); ++I)
1487 setArg(I, Args[I]);
1488 for (unsigned I = Args.size(); I != NumArgs; ++I)
1489 setArg(I, nullptr);
1490
1491 this->computeDependence();
1492
1493 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1494 CallExprBits.IsCoroElideSafe = false;
1495 CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false;
1496 CallExprBits.HasTrailingSourceLoc = false;
1497
1498 if (hasStoredFPFeatures())
1499 setStoredFPFeatures(FPFeatures);
1500}
1501
1502CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1503 bool HasFPFeatures, EmptyShell Empty)
1504 : Expr(SC, Empty), NumArgs(NumArgs) {
1505 CallExprBits.NumPreArgs = NumPreArgs;
1506 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1507 CallExprBits.HasFPFeatures = HasFPFeatures;
1508 CallExprBits.IsCoroElideSafe = false;
1509 CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false;
1510 CallExprBits.HasTrailingSourceLoc = false;
1511}
1512
1515 SourceLocation RParenLoc,
1516 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1518 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1519 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1520 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1521 void *Mem = Ctx.Allocate(
1522 sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects),
1523 alignof(CallExpr));
1524 CallExpr *E =
1525 new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1526 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1527 E->updateTrailingSourceLoc();
1528 return E;
1529}
1530
1531CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1532 bool HasFPFeatures, EmptyShell Empty) {
1533 unsigned SizeOfTrailingObjects =
1534 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1535 void *Mem = Ctx.Allocate(
1536 sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects),
1537 alignof(CallExpr));
1538 return new (Mem)
1539 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1540}
1541
1543
1544 // Optimize for the common case first
1545 // (simple function or member function call)
1546 // then try more exotic possibilities.
1547 Expr *CEE = IgnoreImpCasts();
1548
1549 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1550 return DRE->getDecl();
1551
1552 if (auto *ME = dyn_cast<MemberExpr>(CEE))
1553 return ME->getMemberDecl();
1554
1555 CEE = CEE->IgnoreParens();
1556
1557 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE))
1558 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1559
1560 // If we're calling a dereference, look at the pointer instead.
1561 while (true) {
1562 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) {
1563 if (BO->isPtrMemOp()) {
1564 CEE = BO->getRHS()->IgnoreParenImpCasts();
1565 continue;
1566 }
1567 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) {
1568 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1569 UO->getOpcode() == UO_Plus) {
1570 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1571 continue;
1572 }
1573 }
1574 break;
1575 }
1576
1577 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1578 return DRE->getDecl();
1579 if (auto *ME = dyn_cast<MemberExpr>(CEE))
1580 return ME->getMemberDecl();
1581 if (auto *BE = dyn_cast<BlockExpr>(CEE))
1582 return BE->getBlockDecl();
1583
1584 return nullptr;
1585}
1586
1587/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1589 const auto *FDecl = getDirectCallee();
1590 return FDecl ? FDecl->getBuiltinID() : 0;
1591}
1592
1594 if (unsigned BI = getBuiltinCallee())
1595 return Ctx.BuiltinInfo.isUnevaluated(BI);
1596 return false;
1597}
1598
1600 const Expr *Callee = getCallee();
1601 QualType CalleeType = Callee->getType();
1602 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1603 CalleeType = FnTypePtr->getPointeeType();
1604 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1605 CalleeType = BPT->getPointeeType();
1606 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1607 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1608 return Ctx.VoidTy;
1609
1610 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1611 return Ctx.DependentTy;
1612
1613 // This should never be overloaded and so should never return null.
1614 CalleeType = Expr::findBoundMemberType(Callee);
1615 assert(!CalleeType.isNull());
1616 } else if (CalleeType->isRecordType()) {
1617 // If the Callee is a record type, then it is a not-yet-resolved
1618 // dependent call to the call operator of that type.
1619 return Ctx.DependentTy;
1620 } else if (CalleeType->isDependentType() ||
1621 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1622 return Ctx.DependentTy;
1623 }
1624
1625 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1626 return FnType->getReturnType();
1627}
1628
1629std::pair<const NamedDecl *, const WarnUnusedResultAttr *>
1630Expr::getUnusedResultAttrImpl(const Decl *Callee, QualType ReturnType) {
1631 // If the callee is marked nodiscard, return that attribute
1632 if (Callee != nullptr)
1633 if (const auto *A = Callee->getAttr<WarnUnusedResultAttr>())
1634 return {nullptr, A};
1635
1636 // If the return type is a struct, union, or enum that is marked nodiscard,
1637 // then return the return type attribute.
1638 if (const TagDecl *TD = ReturnType->getAsTagDecl())
1639 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1640 return {TD, A};
1641
1642 for (const auto *TD = ReturnType->getAs<TypedefType>(); TD;
1643 TD = TD->desugar()->getAs<TypedefType>())
1644 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1645 return {TD->getDecl(), A};
1646 return {nullptr, nullptr};
1647}
1648
1650 SourceLocation OperatorLoc,
1651 TypeSourceInfo *tsi,
1653 ArrayRef<Expr*> exprs,
1654 SourceLocation RParenLoc) {
1655 void *Mem = C.Allocate(
1656 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1657
1658 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1659 RParenLoc);
1660}
1661
1663 unsigned numComps, unsigned numExprs) {
1664 void *Mem =
1665 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1666 return new (Mem) OffsetOfExpr(numComps, numExprs);
1667}
1668
1669OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1670 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1672 SourceLocation RParenLoc)
1673 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1674 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1675 NumComps(comps.size()), NumExprs(exprs.size()) {
1676 for (unsigned i = 0; i != comps.size(); ++i)
1677 setComponent(i, comps[i]);
1678 for (unsigned i = 0; i != exprs.size(); ++i)
1679 setIndexExpr(i, exprs[i]);
1680
1682}
1683
1685 assert(getKind() == Field || getKind() == Identifier);
1686 if (getKind() == Field)
1687 return getField()->getIdentifier();
1688
1689 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1690}
1691
1693 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1695 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1696 OpLoc(op), RParenLoc(rp) {
1697 assert(ExprKind <= UETT_Last && "invalid enum value!");
1698 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1699 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1700 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1701 UnaryExprOrTypeTraitExprBits.IsType = false;
1702 Argument.Ex = E;
1704}
1705
1706MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1707 NestedNameSpecifierLoc QualifierLoc,
1708 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
1709 DeclAccessPair FoundDecl,
1710 const DeclarationNameInfo &NameInfo,
1711 const TemplateArgumentListInfo *TemplateArgs, QualType T,
1713 NonOdrUseReason NOUR)
1714 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1715 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1716 assert(!NameInfo.getName() ||
1717 MemberDecl->getDeclName() == NameInfo.getName());
1718 MemberExprBits.IsArrow = IsArrow;
1719 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier();
1720 MemberExprBits.HasFoundDecl =
1721 FoundDecl.getDecl() != MemberDecl ||
1722 FoundDecl.getAccess() != MemberDecl->getAccess();
1723 MemberExprBits.HasTemplateKWAndArgsInfo =
1724 TemplateArgs || TemplateKWLoc.isValid();
1725 MemberExprBits.HadMultipleCandidates = false;
1726 MemberExprBits.NonOdrUseReason = NOUR;
1727 MemberExprBits.OperatorLoc = OperatorLoc;
1728
1729 if (hasQualifier())
1730 new (getTrailingObjects<NestedNameSpecifierLoc>())
1731 NestedNameSpecifierLoc(QualifierLoc);
1732 if (hasFoundDecl())
1733 *getTrailingObjects<DeclAccessPair>() = FoundDecl;
1734 if (TemplateArgs) {
1735 auto Deps = TemplateArgumentDependence::None;
1736 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1737 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
1738 Deps);
1739 } else if (TemplateKWLoc.isValid()) {
1740 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1741 TemplateKWLoc);
1742 }
1744}
1745
1747 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1748 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1749 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1750 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1752 bool HasQualifier = QualifierLoc.hasQualifier();
1753 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl ||
1754 FoundDecl.getAccess() != MemberDecl->getAccess();
1755 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1756 std::size_t Size =
1757 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1759 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo,
1760 TemplateArgs ? TemplateArgs->size() : 0);
1761
1762 void *Mem = C.Allocate(Size, alignof(MemberExpr));
1763 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc,
1764 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo,
1765 TemplateArgs, T, VK, OK, NOUR);
1766}
1767
1768MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1769 bool HasQualifier, bool HasFoundDecl,
1770 bool HasTemplateKWAndArgsInfo,
1771 unsigned NumTemplateArgs) {
1772 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1773 "template args but no template arg info?");
1774 std::size_t Size =
1775 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1777 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo,
1778 NumTemplateArgs);
1779 void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1780 return new (Mem) MemberExpr(EmptyShell());
1781}
1782
1784 MemberDecl = NewD;
1785 if (getType()->isUndeducedType())
1786 setType(NewD->getType());
1788}
1789
1791 if (isImplicitAccess()) {
1792 if (hasQualifier())
1793 return getQualifierLoc().getBeginLoc();
1794 return MemberLoc;
1795 }
1796
1797 // FIXME: We don't want this to happen. Rather, we should be able to
1798 // detect all kinds of implicit accesses more cleanly.
1799 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1800 if (BaseStartLoc.isValid())
1801 return BaseStartLoc;
1802 return MemberLoc;
1803}
1807 EndLoc = getRAngleLoc();
1808 else if (EndLoc.isInvalid())
1809 EndLoc = getBase()->getEndLoc();
1810 return EndLoc;
1811}
1812
1813bool CastExpr::CastConsistency() const {
1814 switch (getCastKind()) {
1815 case CK_DerivedToBase:
1816 case CK_UncheckedDerivedToBase:
1817 case CK_DerivedToBaseMemberPointer:
1818 case CK_BaseToDerived:
1819 case CK_BaseToDerivedMemberPointer:
1820 assert(!path_empty() && "Cast kind should have a base path!");
1821 break;
1822
1823 case CK_CPointerToObjCPointerCast:
1824 assert(getType()->isObjCObjectPointerType());
1825 assert(getSubExpr()->getType()->isPointerType());
1826 goto CheckNoBasePath;
1827
1828 case CK_BlockPointerToObjCPointerCast:
1829 assert(getType()->isObjCObjectPointerType());
1830 assert(getSubExpr()->getType()->isBlockPointerType());
1831 goto CheckNoBasePath;
1832
1833 case CK_ReinterpretMemberPointer:
1834 assert(getType()->isMemberPointerType());
1835 assert(getSubExpr()->getType()->isMemberPointerType());
1836 goto CheckNoBasePath;
1837
1838 case CK_BitCast:
1839 // Arbitrary casts to C pointer types count as bitcasts.
1840 // Otherwise, we should only have block and ObjC pointer casts
1841 // here if they stay within the type kind.
1842 if (!getType()->isPointerType()) {
1843 assert(getType()->isObjCObjectPointerType() ==
1844 getSubExpr()->getType()->isObjCObjectPointerType());
1845 assert(getType()->isBlockPointerType() ==
1846 getSubExpr()->getType()->isBlockPointerType());
1847 }
1848 goto CheckNoBasePath;
1849
1850 case CK_AnyPointerToBlockPointerCast:
1851 assert(getType()->isBlockPointerType());
1852 assert(getSubExpr()->getType()->isAnyPointerType() &&
1853 !getSubExpr()->getType()->isBlockPointerType());
1854 goto CheckNoBasePath;
1855
1856 case CK_CopyAndAutoreleaseBlockObject:
1857 assert(getType()->isBlockPointerType());
1858 assert(getSubExpr()->getType()->isBlockPointerType());
1859 goto CheckNoBasePath;
1860
1861 case CK_FunctionToPointerDecay:
1862 assert(getType()->isPointerType());
1863 assert(getSubExpr()->getType()->isFunctionType());
1864 goto CheckNoBasePath;
1865
1866 case CK_AddressSpaceConversion: {
1867 auto Ty = getType();
1868 auto SETy = getSubExpr()->getType();
1870 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1871 Ty = Ty->getPointeeType();
1872 SETy = SETy->getPointeeType();
1873 }
1874 assert((Ty->isDependentType() || SETy->isDependentType()) ||
1875 (!Ty.isNull() && !SETy.isNull() &&
1876 Ty.getAddressSpace() != SETy.getAddressSpace()));
1877 goto CheckNoBasePath;
1878 }
1879 // These should not have an inheritance path.
1880 case CK_Dynamic:
1881 case CK_ToUnion:
1882 case CK_ArrayToPointerDecay:
1883 case CK_NullToMemberPointer:
1884 case CK_NullToPointer:
1885 case CK_ConstructorConversion:
1886 case CK_IntegralToPointer:
1887 case CK_PointerToIntegral:
1888 case CK_ToVoid:
1889 case CK_VectorSplat:
1890 case CK_IntegralCast:
1891 case CK_BooleanToSignedIntegral:
1892 case CK_IntegralToFloating:
1893 case CK_FloatingToIntegral:
1894 case CK_FloatingCast:
1895 case CK_ObjCObjectLValueCast:
1896 case CK_FloatingRealToComplex:
1897 case CK_FloatingComplexToReal:
1898 case CK_FloatingComplexCast:
1899 case CK_FloatingComplexToIntegralComplex:
1900 case CK_IntegralRealToComplex:
1901 case CK_IntegralComplexToReal:
1902 case CK_IntegralComplexCast:
1903 case CK_IntegralComplexToFloatingComplex:
1904 case CK_ARCProduceObject:
1905 case CK_ARCConsumeObject:
1906 case CK_ARCReclaimReturnedObject:
1907 case CK_ARCExtendBlockObject:
1908 case CK_ZeroToOCLOpaqueType:
1909 case CK_IntToOCLSampler:
1910 case CK_FloatingToFixedPoint:
1911 case CK_FixedPointToFloating:
1912 case CK_FixedPointCast:
1913 case CK_FixedPointToIntegral:
1914 case CK_IntegralToFixedPoint:
1915 case CK_MatrixCast:
1916 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1917 goto CheckNoBasePath;
1918
1919 case CK_Dependent:
1920 case CK_LValueToRValue:
1921 case CK_NoOp:
1922 case CK_AtomicToNonAtomic:
1923 case CK_NonAtomicToAtomic:
1924 case CK_PointerToBoolean:
1925 case CK_IntegralToBoolean:
1926 case CK_FloatingToBoolean:
1927 case CK_MemberPointerToBoolean:
1928 case CK_FloatingComplexToBoolean:
1929 case CK_IntegralComplexToBoolean:
1930 case CK_LValueBitCast: // -> bool&
1931 case CK_LValueToRValueBitCast:
1932 case CK_UserDefinedConversion: // operator bool()
1933 case CK_BuiltinFnToFnPtr:
1934 case CK_FixedPointToBoolean:
1935 case CK_HLSLArrayRValue:
1936 case CK_HLSLVectorTruncation:
1937 case CK_HLSLElementwiseCast:
1938 case CK_HLSLAggregateSplatCast:
1939 CheckNoBasePath:
1940 assert(path_empty() && "Cast kind should not have a base path!");
1941 break;
1942 }
1943 return true;
1944}
1945
1947 switch (CK) {
1948#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1949#include "clang/AST/OperationKinds.def"
1950 }
1951 llvm_unreachable("Unhandled cast kind!");
1952}
1953
1954namespace {
1955// Skip over implicit nodes produced as part of semantic analysis.
1956// Designed for use with IgnoreExprNodes.
1957static Expr *ignoreImplicitSemaNodes(Expr *E) {
1958 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1959 return Materialize->getSubExpr();
1960
1961 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1962 return Binder->getSubExpr();
1963
1964 if (auto *Full = dyn_cast<FullExpr>(E))
1965 return Full->getSubExpr();
1966
1967 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1968 CPLIE && CPLIE->getInitExprs().size() == 1)
1969 return CPLIE->getInitExprs()[0];
1970
1971 return E;
1972}
1973} // namespace
1974
1976 const Expr *SubExpr = nullptr;
1977
1978 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1979 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1980
1981 // Conversions by constructor and conversion functions have a
1982 // subexpression describing the call; strip it off.
1983 if (E->getCastKind() == CK_ConstructorConversion) {
1984 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1985 ignoreImplicitSemaNodes);
1986 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1987 assert((isa<CallExpr, BlockExpr>(SubExpr)) &&
1988 "Unexpected SubExpr for CK_UserDefinedConversion.");
1989 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1990 SubExpr = MCE->getImplicitObjectArgument();
1991 }
1992 }
1993
1994 return const_cast<Expr *>(SubExpr);
1995}
1996
1998 const Expr *SubExpr = nullptr;
1999
2000 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2001 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2002
2003 if (E->getCastKind() == CK_ConstructorConversion)
2004 return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2005
2006 if (E->getCastKind() == CK_UserDefinedConversion) {
2007 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2008 return MCE->getMethodDecl();
2009 }
2010 }
2011
2012 return nullptr;
2013}
2014
2015CXXBaseSpecifier **CastExpr::path_buffer() {
2016 switch (getStmtClass()) {
2017#define ABSTRACT_STMT(x)
2018#define CASTEXPR(Type, Base) \
2019 case Stmt::Type##Class: \
2020 return static_cast<Type *>(this) \
2021 ->getTrailingObjectsNonStrict<CXXBaseSpecifier *>();
2022#define STMT(Type, Base)
2023#include "clang/AST/StmtNodes.inc"
2024 default:
2025 llvm_unreachable("non-cast expressions not possible here");
2026 }
2027}
2028
2030 QualType opType) {
2031 return getTargetFieldForToUnionCast(unionType->castAsRecordDecl(), opType);
2032}
2033
2035 QualType OpType) {
2036 auto &Ctx = RD->getASTContext();
2037 RecordDecl::field_iterator Field, FieldEnd;
2038 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2039 Field != FieldEnd; ++Field) {
2040 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2041 !Field->isUnnamedBitField()) {
2042 return *Field;
2043 }
2044 }
2045 return nullptr;
2046}
2047
2049 assert(hasStoredFPFeatures());
2050 switch (getStmtClass()) {
2051 case ImplicitCastExprClass:
2052 return static_cast<ImplicitCastExpr *>(this)
2053 ->getTrailingObjects<FPOptionsOverride>();
2054 case CStyleCastExprClass:
2055 return static_cast<CStyleCastExpr *>(this)
2056 ->getTrailingObjects<FPOptionsOverride>();
2057 case CXXFunctionalCastExprClass:
2058 return static_cast<CXXFunctionalCastExpr *>(this)
2059 ->getTrailingObjects<FPOptionsOverride>();
2060 case CXXStaticCastExprClass:
2061 return static_cast<CXXStaticCastExpr *>(this)
2062 ->getTrailingObjects<FPOptionsOverride>();
2063 default:
2064 llvm_unreachable("Cast does not have FPFeatures");
2065 }
2066}
2067
2069 CastKind Kind, Expr *Operand,
2070 const CXXCastPath *BasePath,
2072 FPOptionsOverride FPO) {
2073 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2074 void *Buffer =
2075 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2076 PathSize, FPO.requiresTrailingStorage()));
2077 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2078 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2079 assert((Kind != CK_LValueToRValue ||
2080 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2081 "invalid type for lvalue-to-rvalue conversion");
2082 ImplicitCastExpr *E =
2083 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2084 if (PathSize)
2085 llvm::uninitialized_copy(*BasePath,
2086 E->getTrailingObjects<CXXBaseSpecifier *>());
2087 return E;
2088}
2089
2091 unsigned PathSize,
2092 bool HasFPFeatures) {
2093 void *Buffer =
2094 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2095 PathSize, HasFPFeatures));
2096 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2097}
2098
2100 ExprValueKind VK, CastKind K, Expr *Op,
2101 const CXXCastPath *BasePath,
2103 TypeSourceInfo *WrittenTy,
2105 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2106 void *Buffer =
2107 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2108 PathSize, FPO.requiresTrailingStorage()));
2109 CStyleCastExpr *E =
2110 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2111 if (PathSize)
2112 llvm::uninitialized_copy(*BasePath,
2113 E->getTrailingObjects<CXXBaseSpecifier *>());
2114 return E;
2115}
2116
2118 unsigned PathSize,
2119 bool HasFPFeatures) {
2120 void *Buffer =
2121 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2122 PathSize, HasFPFeatures));
2123 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2124}
2125
2126/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2127/// corresponds to, e.g. "<<=".
2129 switch (Op) {
2130#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2131#include "clang/AST/OperationKinds.def"
2132 }
2133 llvm_unreachable("Invalid OpCode!");
2134}
2135
2138 switch (OO) {
2139 default: llvm_unreachable("Not an overloadable binary operator");
2140 case OO_Plus: return BO_Add;
2141 case OO_Minus: return BO_Sub;
2142 case OO_Star: return BO_Mul;
2143 case OO_Slash: return BO_Div;
2144 case OO_Percent: return BO_Rem;
2145 case OO_Caret: return BO_Xor;
2146 case OO_Amp: return BO_And;
2147 case OO_Pipe: return BO_Or;
2148 case OO_Equal: return BO_Assign;
2149 case OO_Spaceship: return BO_Cmp;
2150 case OO_Less: return BO_LT;
2151 case OO_Greater: return BO_GT;
2152 case OO_PlusEqual: return BO_AddAssign;
2153 case OO_MinusEqual: return BO_SubAssign;
2154 case OO_StarEqual: return BO_MulAssign;
2155 case OO_SlashEqual: return BO_DivAssign;
2156 case OO_PercentEqual: return BO_RemAssign;
2157 case OO_CaretEqual: return BO_XorAssign;
2158 case OO_AmpEqual: return BO_AndAssign;
2159 case OO_PipeEqual: return BO_OrAssign;
2160 case OO_LessLess: return BO_Shl;
2161 case OO_GreaterGreater: return BO_Shr;
2162 case OO_LessLessEqual: return BO_ShlAssign;
2163 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2164 case OO_EqualEqual: return BO_EQ;
2165 case OO_ExclaimEqual: return BO_NE;
2166 case OO_LessEqual: return BO_LE;
2167 case OO_GreaterEqual: return BO_GE;
2168 case OO_AmpAmp: return BO_LAnd;
2169 case OO_PipePipe: return BO_LOr;
2170 case OO_Comma: return BO_Comma;
2171 case OO_ArrowStar: return BO_PtrMemI;
2172 }
2173}
2174
2176 static const OverloadedOperatorKind OverOps[] = {
2177 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2178 OO_Star, OO_Slash, OO_Percent,
2179 OO_Plus, OO_Minus,
2180 OO_LessLess, OO_GreaterGreater,
2181 OO_Spaceship,
2182 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2183 OO_EqualEqual, OO_ExclaimEqual,
2184 OO_Amp,
2185 OO_Caret,
2186 OO_Pipe,
2187 OO_AmpAmp,
2188 OO_PipePipe,
2189 OO_Equal, OO_StarEqual,
2190 OO_SlashEqual, OO_PercentEqual,
2191 OO_PlusEqual, OO_MinusEqual,
2192 OO_LessLessEqual, OO_GreaterGreaterEqual,
2193 OO_AmpEqual, OO_CaretEqual,
2194 OO_PipeEqual,
2195 OO_Comma
2196 };
2197 return OverOps[Opc];
2198}
2199
2201 Opcode Opc,
2202 const Expr *LHS,
2203 const Expr *RHS) {
2204 if (Opc != BO_Add)
2205 return false;
2206
2207 // Check that we have one pointer and one integer operand.
2208 const Expr *PExp;
2209 if (LHS->getType()->isPointerType()) {
2210 if (!RHS->getType()->isIntegerType())
2211 return false;
2212 PExp = LHS;
2213 } else if (RHS->getType()->isPointerType()) {
2214 if (!LHS->getType()->isIntegerType())
2215 return false;
2216 PExp = RHS;
2217 } else {
2218 return false;
2219 }
2220
2221 // Workaround for old glibc's __PTR_ALIGN macro
2222 if (auto *Select =
2223 dyn_cast<ConditionalOperator>(PExp->IgnoreParenNoopCasts(Ctx))) {
2224 // If the condition can be constant evaluated, we check the selected arm.
2225 bool EvalResult;
2226 if (!Select->getCond()->EvaluateAsBooleanCondition(EvalResult, Ctx))
2227 return false;
2228 PExp = EvalResult ? Select->getTrueExpr() : Select->getFalseExpr();
2229 }
2230
2231 // Check that the pointer is a nullptr.
2232 if (!PExp->IgnoreParenCasts()
2234 return false;
2235
2236 // Check that the pointee type is char-sized.
2237 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2238 if (!PTy || !PTy->getPointeeType()->isCharType())
2239 return false;
2240
2241 return true;
2242}
2243
2245 QualType ResultTy, SourceLocation BLoc,
2246 SourceLocation RParenLoc,
2247 DeclContext *ParentContext)
2248 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2249 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2250 SourceLocExprBits.Kind = llvm::to_underlying(Kind);
2251 // In dependent contexts, function names may change.
2252 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2253 ? ExprDependence::Value
2254 : ExprDependence::None);
2255}
2256
2258 switch (getIdentKind()) {
2260 return "__builtin_FILE";
2262 return "__builtin_FILE_NAME";
2264 return "__builtin_FUNCTION";
2266 return "__builtin_FUNCSIG";
2268 return "__builtin_LINE";
2270 return "__builtin_COLUMN";
2272 return "__builtin_source_location";
2273 }
2274 llvm_unreachable("unexpected IdentKind!");
2275}
2276
2278 const Expr *DefaultExpr) const {
2279 SourceLocation Loc;
2280 const DeclContext *Context;
2281
2282 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) {
2283 Loc = DIE->getUsedLocation();
2284 Context = DIE->getUsedContext();
2285 } else if (const auto *DAE =
2286 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) {
2287 Loc = DAE->getUsedLocation();
2288 Context = DAE->getUsedContext();
2289 } else {
2290 Loc = getLocation();
2291 Context = getParentContext();
2292 }
2293
2294 // If we are currently parsing a lambda declarator, we might not have a fully
2295 // formed call operator declaration yet, and we could not form a function name
2296 // for it. Because we do not have access to Sema/function scopes here, we
2297 // detect this case by relying on the fact such method doesn't yet have a
2298 // type.
2299 if (const auto *D = dyn_cast<CXXMethodDecl>(Context);
2300 D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(D))
2301 Context = D->getParent()->getParent();
2302
2305
2306 auto MakeStringLiteral = [&](StringRef Tmp) {
2307 using LValuePathEntry = APValue::LValuePathEntry;
2309 // Decay the string to a pointer to the first character.
2310 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2311 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2312 };
2313
2314 switch (getIdentKind()) {
2316 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2317 // the last part of __builtin_FILE().
2320 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2321 return MakeStringLiteral(FileName);
2322 }
2324 SmallString<256> Path(PLoc.getFilename());
2326 Ctx.getTargetInfo());
2327 return MakeStringLiteral(Path);
2328 }
2331 const auto *CurDecl = dyn_cast<Decl>(Context);
2332 const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2335 return MakeStringLiteral(
2336 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string(""));
2337 }
2339 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy));
2341 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy));
2343 // Fill in a std::source_location::__impl structure, by creating an
2344 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2345 // that.
2346 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2347 assert(ImplDecl);
2348
2349 // Construct an APValue for the __impl struct, and get or create a Decl
2350 // corresponding to that. Note that we've already verified that the shape of
2351 // the ImplDecl type is as expected.
2352
2354 for (const FieldDecl *F : ImplDecl->fields()) {
2355 StringRef Name = F->getName();
2356 if (Name == "_M_file_name") {
2357 SmallString<256> Path(PLoc.getFilename());
2359 Ctx.getTargetInfo());
2360 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2361 } else if (Name == "_M_function_name") {
2362 // Note: this emits the PrettyFunction name -- different than what
2363 // __builtin_FUNCTION() above returns!
2364 const auto *CurDecl = dyn_cast<Decl>(Context);
2365 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2366 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2367 ? StringRef(PredefinedExpr::ComputeName(
2369 : "");
2370 } else if (Name == "_M_line") {
2371 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2372 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2373 } else if (Name == "_M_column") {
2374 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2375 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2376 }
2377 }
2378
2381
2383 false);
2384 }
2385 }
2386 llvm_unreachable("unhandled case");
2387}
2388
2390 EmbedDataStorage *Data, unsigned Begin,
2391 unsigned NumOfElements)
2392 : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary),
2393 EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin),
2394 NumOfElements(NumOfElements) {
2395 setDependence(ExprDependence::None);
2396 FakeChildNode = IntegerLiteral::Create(
2397 Ctx, llvm::APInt::getZero(Ctx.getTypeSize(getType())), getType(), Loc);
2398 assert(getType()->isSignedIntegerType() && "IntTy should be signed");
2399}
2400
2402 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2403 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2404 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2405 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2407 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2408
2410}
2411
2412void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2413 if (NumInits > InitExprs.size())
2414 InitExprs.reserve(C, NumInits);
2415}
2416
2417void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2418 InitExprs.resize(C, NumInits, nullptr);
2419}
2420
2422 if (Init >= InitExprs.size()) {
2423 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2424 setInit(Init, expr);
2425 return nullptr;
2426 }
2427
2428 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2429 setInit(Init, expr);
2430 return Result;
2431}
2432
2434 assert(!hasArrayFiller() && "Filler already set!");
2435 ArrayFillerOrUnionFieldInit = filler;
2436 // Fill out any "holes" in the array due to designated initializers.
2437 Expr **inits = getInits();
2438 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2439 if (inits[i] == nullptr)
2440 inits[i] = filler;
2441}
2442
2444 if (getNumInits() != 1)
2445 return false;
2446 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2447 if (!AT || !AT->getElementType()->isIntegerType())
2448 return false;
2449 // It is possible for getInit() to return null.
2450 const Expr *Init = getInit(0);
2451 if (!Init)
2452 return false;
2453 Init = Init->IgnoreParenImpCasts();
2455}
2456
2458 assert(isSemanticForm() && "syntactic form never semantically transparent");
2459
2460 // A glvalue InitListExpr is always just sugar.
2461 if (isGLValue()) {
2462 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2463 return true;
2464 }
2465
2466 // Otherwise, we're sugar if and only if we have exactly one initializer that
2467 // is of the same type.
2468 if (getNumInits() != 1 || !getInit(0))
2469 return false;
2470
2471 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2472 // transparent struct copy.
2473 if (!getInit(0)->isPRValue() && getType()->isRecordType())
2474 return false;
2475
2476 return getType().getCanonicalType() ==
2478}
2479
2481 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2482
2483 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2484 return false;
2485 }
2486
2487 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2488 return Lit && Lit->getValue() == 0;
2489}
2490
2492 if (InitListExpr *SyntacticForm = getSyntacticForm())
2493 return SyntacticForm->getBeginLoc();
2494 SourceLocation Beg = LBraceLoc;
2495 if (Beg.isInvalid()) {
2496 // Find the first non-null initializer.
2497 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2498 E = InitExprs.end();
2499 I != E; ++I) {
2500 if (Stmt *S = *I) {
2501 Beg = S->getBeginLoc();
2502 break;
2503 }
2504 }
2505 }
2506 return Beg;
2507}
2508
2510 if (InitListExpr *SyntacticForm = getSyntacticForm())
2511 return SyntacticForm->getEndLoc();
2512 SourceLocation End = RBraceLoc;
2513 if (End.isInvalid()) {
2514 // Find the first non-null initializer from the end.
2515 for (Stmt *S : llvm::reverse(InitExprs)) {
2516 if (S) {
2517 End = S->getEndLoc();
2518 break;
2519 }
2520 }
2521 }
2522 return End;
2523}
2524
2525/// getFunctionType - Return the underlying function type for this block.
2526///
2528 // The block pointer is never sugared, but the function type might be.
2530 ->getPointeeType()->castAs<FunctionProtoType>();
2531}
2532
2534 return TheBlock->getCaretLocation();
2535}
2536const Stmt *BlockExpr::getBody() const {
2537 return TheBlock->getBody();
2538}
2540 return TheBlock->getBody();
2541}
2542
2543
2544//===----------------------------------------------------------------------===//
2545// Generic Expression Routines
2546//===----------------------------------------------------------------------===//
2547
2548/// Helper to determine wether \c E is a CXXConstructExpr constructing
2549/// a DecompositionDecl. Used to skip Clang-generated calls to std::get
2550/// for structured bindings.
2551static bool IsDecompositionDeclRefExpr(const Expr *E) {
2552 const auto *Unwrapped = E->IgnoreUnlessSpelledInSource();
2553 const auto *Ref = dyn_cast<DeclRefExpr>(Unwrapped);
2554 if (!Ref)
2555 return false;
2556
2557 return isa_and_nonnull<DecompositionDecl>(Ref->getDecl());
2558}
2559
2561 // In C++11, discarded-value expressions of a certain form are special,
2562 // according to [expr]p10:
2563 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2564 // expression is a glvalue of volatile-qualified type and it has
2565 // one of the following forms:
2566 if (!isGLValue() || !getType().isVolatileQualified())
2567 return false;
2568
2569 const Expr *E = IgnoreParens();
2570
2571 // - id-expression (5.1.1),
2572 if (isa<DeclRefExpr>(E))
2573 return true;
2574
2575 // - subscripting (5.2.1),
2577 return true;
2578
2579 // - class member access (5.2.5),
2580 if (isa<MemberExpr>(E))
2581 return true;
2582
2583 // - indirection (5.3.1),
2584 if (auto *UO = dyn_cast<UnaryOperator>(E))
2585 if (UO->getOpcode() == UO_Deref)
2586 return true;
2587
2588 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2589 // - pointer-to-member operation (5.5),
2590 if (BO->isPtrMemOp())
2591 return true;
2592
2593 // - comma expression (5.18) where the right operand is one of the above.
2594 if (BO->getOpcode() == BO_Comma)
2595 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2596 }
2597
2598 // - conditional expression (5.16) where both the second and the third
2599 // operands are one of the above, or
2600 if (auto *CO = dyn_cast<ConditionalOperator>(E))
2601 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2602 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2603 // The related edge case of "*x ?: *x".
2604 if (auto *BCO =
2605 dyn_cast<BinaryConditionalOperator>(E)) {
2606 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2607 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2608 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2609 }
2610
2611 // Objective-C++ extensions to the rule.
2612 if (isa<ObjCIvarRefExpr>(E))
2613 return true;
2614 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2615 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2616 return true;
2617 }
2618
2619 return false;
2620}
2621
2622/// isUnusedResultAWarning - Return true if this immediate expression should
2623/// be warned about if the result is unused. If so, fill in Loc and Ranges
2624/// with location to warn on and the source range[s] to report with the
2625/// warning.
2627 SourceRange &R1, SourceRange &R2,
2628 ASTContext &Ctx) const {
2629 // Don't warn if the expr is type dependent. The type could end up
2630 // instantiating to void.
2631 if (isTypeDependent())
2632 return false;
2633
2634 switch (getStmtClass()) {
2635 default:
2636 if (getType()->isVoidType())
2637 return false;
2638 WarnE = this;
2639 Loc = getExprLoc();
2640 R1 = getSourceRange();
2641 return true;
2642 case ParenExprClass:
2643 return cast<ParenExpr>(this)->getSubExpr()->
2644 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2645 case GenericSelectionExprClass:
2646 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2647 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2648 case CoawaitExprClass:
2649 case CoyieldExprClass:
2650 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2651 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2652 case ChooseExprClass:
2653 return cast<ChooseExpr>(this)->getChosenSubExpr()->
2654 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2655 case UnaryOperatorClass: {
2656 const UnaryOperator *UO = cast<UnaryOperator>(this);
2657
2658 switch (UO->getOpcode()) {
2659 case UO_Plus:
2660 case UO_Minus:
2661 case UO_AddrOf:
2662 case UO_Not:
2663 case UO_LNot:
2664 case UO_Deref:
2665 break;
2666 case UO_Coawait:
2667 // This is just the 'operator co_await' call inside the guts of a
2668 // dependent co_await call.
2669 case UO_PostInc:
2670 case UO_PostDec:
2671 case UO_PreInc:
2672 case UO_PreDec: // ++/--
2673 return false; // Not a warning.
2674 case UO_Real:
2675 case UO_Imag:
2676 // accessing a piece of a volatile complex is a side-effect.
2677 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2679 return false;
2680 break;
2681 case UO_Extension:
2682 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2683 }
2684 WarnE = this;
2685 Loc = UO->getOperatorLoc();
2686 R1 = UO->getSubExpr()->getSourceRange();
2687 return true;
2688 }
2689 case BinaryOperatorClass: {
2690 const BinaryOperator *BO = cast<BinaryOperator>(this);
2691 switch (BO->getOpcode()) {
2692 default:
2693 break;
2694 // Consider the RHS of comma for side effects. LHS was checked by
2695 // Sema::CheckCommaOperands.
2696 case BO_Comma:
2697 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2698 // lvalue-ness) of an assignment written in a macro.
2699 if (IntegerLiteral *IE =
2700 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2701 if (IE->getValue() == 0)
2702 return false;
2703 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2704 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2705 case BO_LAnd:
2706 case BO_LOr:
2707 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2708 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2709 return false;
2710 break;
2711 }
2712 if (BO->isAssignmentOp())
2713 return false;
2714 WarnE = this;
2715 Loc = BO->getOperatorLoc();
2716 R1 = BO->getLHS()->getSourceRange();
2717 R2 = BO->getRHS()->getSourceRange();
2718 return true;
2719 }
2720 case CompoundAssignOperatorClass:
2721 case VAArgExprClass:
2722 case AtomicExprClass:
2723 return false;
2724
2725 case ConditionalOperatorClass: {
2726 // If only one of the LHS or RHS is a warning, the operator might
2727 // be being used for control flow. Only warn if both the LHS and
2728 // RHS are warnings.
2729 const auto *Exp = cast<ConditionalOperator>(this);
2730 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2731 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2732 }
2733 case BinaryConditionalOperatorClass: {
2734 const auto *Exp = cast<BinaryConditionalOperator>(this);
2735 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2736 }
2737
2738 case MemberExprClass:
2739 WarnE = this;
2740 Loc = cast<MemberExpr>(this)->getMemberLoc();
2741 R1 = SourceRange(Loc, Loc);
2742 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2743 return true;
2744
2745 case ArraySubscriptExprClass:
2746 WarnE = this;
2747 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2748 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2749 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2750 return true;
2751
2752 case CXXOperatorCallExprClass: {
2753 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2754 // overloads as there is no reasonable way to define these such that they
2755 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2756 // warning: operators == and != are commonly typo'ed, and so warning on them
2757 // provides additional value as well. If this list is updated,
2758 // DiagnoseUnusedComparison should be as well.
2760 switch (Op->getOperator()) {
2761 default:
2762 break;
2763 case OO_EqualEqual:
2764 case OO_ExclaimEqual:
2765 case OO_Less:
2766 case OO_Greater:
2767 case OO_GreaterEqual:
2768 case OO_LessEqual:
2769 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2770 Op->getCallReturnType(Ctx)->isVoidType())
2771 break;
2772 WarnE = this;
2773 Loc = Op->getOperatorLoc();
2774 R1 = Op->getSourceRange();
2775 return true;
2776 }
2777
2778 // Fallthrough for generic call handling.
2779 [[fallthrough]];
2780 }
2781 case CallExprClass:
2782 case CXXMemberCallExprClass:
2783 case UserDefinedLiteralClass: {
2784 // If this is a direct call, get the callee.
2785 const CallExpr *CE = cast<CallExpr>(this);
2786 // If the callee has attribute pure, const, or warn_unused_result, warn
2787 // about it. void foo() { strlen("bar"); } should warn.
2788 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2789 // updated to match for QoI.
2790 const Decl *FD = CE->getCalleeDecl();
2791 bool PureOrConst =
2792 FD && (FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>());
2793 if (CE->hasUnusedResultAttr(Ctx) || PureOrConst) {
2794 WarnE = this;
2795 Loc = getBeginLoc();
2796 R1 = getSourceRange();
2797
2798 if (unsigned NumArgs = CE->getNumArgs())
2799 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2800 CE->getArg(NumArgs - 1)->getEndLoc());
2801 return true;
2802 }
2803 return false;
2804 }
2805
2806 // If we don't know precisely what we're looking at, let's not warn.
2807 case UnresolvedLookupExprClass:
2808 case CXXUnresolvedConstructExprClass:
2809 case RecoveryExprClass:
2810 return false;
2811
2812 case CXXTemporaryObjectExprClass:
2813 case CXXConstructExprClass: {
2814 const auto *CE = cast<CXXConstructExpr>(this);
2816
2817 if ((Type && Type->hasAttr<WarnUnusedAttr>()) ||
2818 CE->hasUnusedResultAttr(Ctx)) {
2819 WarnE = this;
2820 Loc = getBeginLoc();
2821 R1 = getSourceRange();
2822
2823 if (unsigned NumArgs = CE->getNumArgs())
2824 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2825 CE->getArg(NumArgs - 1)->getEndLoc());
2826 return true;
2827 }
2828 return false;
2829 }
2830
2831 case ObjCMessageExprClass: {
2832 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2833 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2834 ME->isInstanceMessage() &&
2835 !ME->getType()->isVoidType() &&
2836 ME->getMethodFamily() == OMF_init) {
2837 WarnE = this;
2838 Loc = getExprLoc();
2839 R1 = ME->getSourceRange();
2840 return true;
2841 }
2842
2843 if (ME->hasUnusedResultAttr(Ctx)) {
2844 WarnE = this;
2845 Loc = getExprLoc();
2846 return true;
2847 }
2848
2849 return false;
2850 }
2851
2852 case ObjCPropertyRefExprClass:
2853 case ObjCSubscriptRefExprClass:
2854 WarnE = this;
2855 Loc = getExprLoc();
2856 R1 = getSourceRange();
2857 return true;
2858
2859 case PseudoObjectExprClass: {
2860 const auto *POE = cast<PseudoObjectExpr>(this);
2861
2862 // For some syntactic forms, we should always warn.
2864 POE->getSyntacticForm())) {
2865 WarnE = this;
2866 Loc = getExprLoc();
2867 R1 = getSourceRange();
2868 return true;
2869 }
2870
2871 // For others, we should never warn.
2872 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2873 if (BO->isAssignmentOp())
2874 return false;
2875 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2876 if (UO->isIncrementDecrementOp())
2877 return false;
2878
2879 // Otherwise, warn if the result expression would warn.
2880 const Expr *Result = POE->getResultExpr();
2881 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2882 }
2883
2884 case StmtExprClass: {
2885 // Statement exprs don't logically have side effects themselves, but are
2886 // sometimes used in macros in ways that give them a type that is unused.
2887 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2888 // however, if the result of the stmt expr is dead, we don't want to emit a
2889 // warning.
2890 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2891 if (!CS->body_empty()) {
2892 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2893 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2894 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2895 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2896 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2897 }
2898
2899 if (getType()->isVoidType())
2900 return false;
2901 WarnE = this;
2902 Loc = cast<StmtExpr>(this)->getLParenLoc();
2903 R1 = getSourceRange();
2904 return true;
2905 }
2906 case CXXFunctionalCastExprClass:
2907 case CStyleCastExprClass: {
2908 // Ignore an explicit cast to void, except in C++98 if the operand is a
2909 // volatile glvalue for which we would trigger an implicit read in any
2910 // other language mode. (Such an implicit read always happens as part of
2911 // the lvalue conversion in C, and happens in C++ for expressions of all
2912 // forms where it seems likely the user intended to trigger a volatile
2913 // load.)
2914 const CastExpr *CE = cast<CastExpr>(this);
2915 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2916 if (CE->getCastKind() == CK_ToVoid) {
2917 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2919 // Suppress the "unused value" warning for idiomatic usage of
2920 // '(void)var;' used to suppress "unused variable" warnings.
2921 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2922 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2923 if (!VD->isExternallyVisible())
2924 return false;
2925
2926 // The lvalue-to-rvalue conversion would have no effect for an array.
2927 // It's implausible that the programmer expected this to result in a
2928 // volatile array load, so don't warn.
2929 if (SubE->getType()->isArrayType())
2930 return false;
2931
2932 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2933 }
2934 return false;
2935 }
2936
2937 // If this is a cast to a constructor conversion, check the operand.
2938 // Otherwise, the result of the cast is unused.
2939 if (CE->getCastKind() == CK_ConstructorConversion)
2940 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2941 if (CE->getCastKind() == CK_Dependent)
2942 return false;
2943
2944 WarnE = this;
2945 if (const CXXFunctionalCastExpr *CXXCE =
2946 dyn_cast<CXXFunctionalCastExpr>(this)) {
2947 Loc = CXXCE->getBeginLoc();
2948 R1 = CXXCE->getSubExpr()->getSourceRange();
2949 } else {
2950 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2951 Loc = CStyleCE->getLParenLoc();
2952 R1 = CStyleCE->getSubExpr()->getSourceRange();
2953 }
2954 return true;
2955 }
2956 case ImplicitCastExprClass: {
2957 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2958
2959 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2960 if (ICE->getCastKind() == CK_LValueToRValue &&
2962 return false;
2963
2964 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2965 }
2966 case CXXDefaultArgExprClass:
2967 return (cast<CXXDefaultArgExpr>(this)
2968 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2969 case CXXDefaultInitExprClass:
2970 return (cast<CXXDefaultInitExpr>(this)
2971 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2972
2973 case CXXNewExprClass:
2974 // FIXME: In theory, there might be new expressions that don't have side
2975 // effects (e.g. a placement new with an uninitialized POD).
2976 case CXXDeleteExprClass:
2977 return false;
2978 case MaterializeTemporaryExprClass:
2980 ->getSubExpr()
2981 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2982 case CXXBindTemporaryExprClass:
2983 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2984 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2985 case ExprWithCleanupsClass:
2986 return cast<ExprWithCleanups>(this)->getSubExpr()
2987 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2988 case OpaqueValueExprClass:
2989 return cast<OpaqueValueExpr>(this)->getSourceExpr()->isUnusedResultAWarning(
2990 WarnE, Loc, R1, R2, Ctx);
2991 }
2992}
2993
2994/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2995/// returns true, if it is; false otherwise.
2997 const Expr *E = IgnoreParens();
2998 switch (E->getStmtClass()) {
2999 default:
3000 return false;
3001 case ObjCIvarRefExprClass:
3002 return true;
3003 case Expr::UnaryOperatorClass:
3004 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3005 case ImplicitCastExprClass:
3006 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3007 case MaterializeTemporaryExprClass:
3008 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
3009 Ctx);
3010 case CStyleCastExprClass:
3011 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3012 case DeclRefExprClass: {
3013 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
3014
3015 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3016 if (VD->hasGlobalStorage())
3017 return true;
3018 QualType T = VD->getType();
3019 // dereferencing to a pointer is always a gc'able candidate,
3020 // unless it is __weak.
3021 return T->isPointerType() &&
3023 }
3024 return false;
3025 }
3026 case MemberExprClass: {
3027 const MemberExpr *M = cast<MemberExpr>(E);
3028 return M->getBase()->isOBJCGCCandidate(Ctx);
3029 }
3030 case ArraySubscriptExprClass:
3031 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
3032 }
3033}
3034
3036 if (isTypeDependent())
3037 return false;
3039}
3040
3042 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3043
3044 // Bound member expressions are always one of these possibilities:
3045 // x->m x.m x->*y x.*y
3046 // (possibly parenthesized)
3047
3048 expr = expr->IgnoreParens();
3049 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3050 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3051 return mem->getMemberDecl()->getType();
3052 }
3053
3054 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3055 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3056 ->getPointeeType();
3057 assert(type->isFunctionType());
3058 return type;
3059 }
3060
3062 return QualType();
3063}
3064
3068
3072
3076
3080
3084
3089
3093
3095 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3096 if (isa_and_nonnull<CXXConversionDecl>(MCE->getMethodDecl()))
3097 return MCE->getImplicitObjectArgument();
3098 }
3099 return this;
3100}
3101
3106
3111
3113 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3114 if (auto *CE = dyn_cast<CastExpr>(E)) {
3115 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3116 // ptr<->int casts of the same width. We also ignore all identity casts.
3117 Expr *SubExpr = CE->getSubExpr();
3118 bool IsIdentityCast =
3119 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3120 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3121 E->getType()->isIntegralType(Ctx)) &&
3122 (SubExpr->getType()->isPointerType() ||
3123 SubExpr->getType()->isIntegralType(Ctx)) &&
3124 (Ctx.getTypeSize(E->getType()) ==
3125 Ctx.getTypeSize(SubExpr->getType()));
3126
3127 if (IsIdentityCast || IsSameWidthCast)
3128 return SubExpr;
3129 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3130 return NTTP->getReplacement();
3131
3132 return E;
3133 };
3135 IgnoreNoopCastsSingleStep);
3136}
3137
3140 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3141 auto *SE = Cast->getSubExpr();
3142 if (SE->getSourceRange() == E->getSourceRange())
3143 return SE;
3144 }
3145
3146 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3147 auto NumArgs = C->getNumArgs();
3148 if (NumArgs == 1 ||
3149 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3150 Expr *A = C->getArg(0);
3151 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3152 return A;
3153 }
3154 }
3155 return E;
3156 };
3157 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3158 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3159 Expr *ExprNode = C->getImplicitObjectArgument();
3160 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3161 return ExprNode;
3162 }
3163 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3164 if (PE->getSourceRange() == C->getSourceRange()) {
3165 return cast<Expr>(PE);
3166 }
3167 }
3168 ExprNode = ExprNode->IgnoreParenImpCasts();
3169 if (ExprNode->getSourceRange() == E->getSourceRange())
3170 return ExprNode;
3171 }
3172 return E;
3173 };
3174
3175 // Used when Clang generates calls to std::get for decomposing
3176 // structured bindings.
3177 auto IgnoreImplicitCallSingleStep = [](Expr *E) {
3178 auto *C = dyn_cast<CallExpr>(E);
3179 if (!C)
3180 return E;
3181
3182 // Looking for calls to a std::get, which usually just takes
3183 // 1 argument (i.e., the structure being decomposed). If it has
3184 // more than 1 argument, the others need to be defaulted.
3185 unsigned NumArgs = C->getNumArgs();
3186 if (NumArgs == 0 || (NumArgs > 1 && !isa<CXXDefaultArgExpr>(C->getArg(1))))
3187 return E;
3188
3189 Expr *A = C->getArg(0);
3190
3191 // This was spelled out in source. Don't ignore.
3192 if (A->getSourceRange() != E->getSourceRange())
3193 return E;
3194
3195 // If the argument refers to a DecompositionDecl construction,
3196 // ignore it.
3198 return A;
3199
3200 return E;
3201 };
3202
3203 return IgnoreExprNodes(
3206 IgnoreImplicitMemberCallSingleStep, IgnoreImplicitCallSingleStep);
3207}
3208
3210 const Expr *E = this;
3211 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3212 E = M->getSubExpr();
3213
3214 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3215 E = ICE->getSubExprAsWritten();
3216
3217 return isa<CXXDefaultArgExpr>(E);
3218}
3219
3220/// Skip over any no-op casts and any temporary-binding
3221/// expressions.
3223 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3224 E = M->getSubExpr();
3225
3226 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3227 if (ICE->getCastKind() == CK_NoOp)
3228 E = ICE->getSubExpr();
3229 else
3230 break;
3231 }
3232
3233 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3234 E = BE->getSubExpr();
3235
3236 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3237 if (ICE->getCastKind() == CK_NoOp)
3238 E = ICE->getSubExpr();
3239 else
3240 break;
3241 }
3242
3243 return E->IgnoreParens();
3244}
3245
3246/// isTemporaryObject - Determines if this expression produces a
3247/// temporary of the given class type.
3249 if (!C.hasSameUnqualifiedType(getType(), C.getCanonicalTagType(TempTy)))
3250 return false;
3251
3253
3254 // Temporaries are by definition pr-values of class type.
3255 if (!E->Classify(C).isPRValue()) {
3256 // In this context, property reference is a message call and is pr-value.
3258 return false;
3259 }
3260
3261 // Black-list a few cases which yield pr-values of class type that don't
3262 // refer to temporaries of that type:
3263
3264 // - implicit derived-to-base conversions
3265 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3266 switch (ICE->getCastKind()) {
3267 case CK_DerivedToBase:
3268 case CK_UncheckedDerivedToBase:
3269 return false;
3270 default:
3271 break;
3272 }
3273 }
3274
3275 // - member expressions (all)
3276 if (isa<MemberExpr>(E))
3277 return false;
3278
3279 if (const auto *BO = dyn_cast<BinaryOperator>(E))
3280 if (BO->isPtrMemOp())
3281 return false;
3282
3283 // - opaque values (all)
3284 if (isa<OpaqueValueExpr>(E))
3285 return false;
3286
3287 return true;
3288}
3289
3291 const Expr *E = this;
3292
3293 // Strip away parentheses and casts we don't care about.
3294 while (true) {
3295 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3296 E = Paren->getSubExpr();
3297 continue;
3298 }
3299
3300 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3301 if (ICE->getCastKind() == CK_NoOp ||
3302 ICE->getCastKind() == CK_LValueToRValue ||
3303 ICE->getCastKind() == CK_DerivedToBase ||
3304 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3305 E = ICE->getSubExpr();
3306 continue;
3307 }
3308 }
3309
3310 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3311 if (UnOp->getOpcode() == UO_Extension) {
3312 E = UnOp->getSubExpr();
3313 continue;
3314 }
3315 }
3316
3317 if (const MaterializeTemporaryExpr *M
3318 = dyn_cast<MaterializeTemporaryExpr>(E)) {
3319 E = M->getSubExpr();
3320 continue;
3321 }
3322
3323 break;
3324 }
3325
3326 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3327 return This->isImplicit();
3328
3329 return false;
3330}
3331
3332/// hasAnyTypeDependentArguments - Determines if any of the expressions
3333/// in Exprs is type-dependent.
3335 for (unsigned I = 0; I < Exprs.size(); ++I)
3336 if (Exprs[I]->isTypeDependent())
3337 return true;
3338
3339 return false;
3340}
3341
3343 const Expr **Culprit) const {
3344 assert(!isValueDependent() &&
3345 "Expression evaluator can't be called on a dependent expression.");
3346
3347 // This function is attempting whether an expression is an initializer
3348 // which can be evaluated at compile-time. It very closely parallels
3349 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3350 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3351 // to isEvaluatable most of the time.
3352 //
3353 // If we ever capture reference-binding directly in the AST, we can
3354 // kill the second parameter.
3355
3356 if (IsForRef) {
3357 if (auto *EWC = dyn_cast<ExprWithCleanups>(this))
3358 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3359 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this))
3360 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3362 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3363 return true;
3364 if (Culprit)
3365 *Culprit = this;
3366 return false;
3367 }
3368
3369 switch (getStmtClass()) {
3370 default: break;
3371 case Stmt::ExprWithCleanupsClass:
3372 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3373 Ctx, IsForRef, Culprit);
3374 case StringLiteralClass:
3375 case ObjCEncodeExprClass:
3376 return true;
3377 case CXXTemporaryObjectExprClass:
3378 case CXXConstructExprClass: {
3379 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3380
3381 if (CE->getConstructor()->isTrivial() &&
3383 // Trivial default constructor
3384 if (!CE->getNumArgs()) return true;
3385
3386 // Trivial copy constructor
3387 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3388 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3389 }
3390
3391 break;
3392 }
3393 case ConstantExprClass: {
3394 // FIXME: We should be able to return "true" here, but it can lead to extra
3395 // error messages. E.g. in Sema/array-init.c.
3396 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3397 return Exp->isConstantInitializer(Ctx, false, Culprit);
3398 }
3399 case CompoundLiteralExprClass: {
3400 // This handles gcc's extension that allows global initializers like
3401 // "struct x {int x;} x = (struct x) {};".
3402 // FIXME: This accepts other cases it shouldn't!
3403 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3404 return Exp->isConstantInitializer(Ctx, false, Culprit);
3405 }
3406 case DesignatedInitUpdateExprClass: {
3408 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3409 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3410 }
3411 case InitListExprClass: {
3412 // C++ [dcl.init.aggr]p2:
3413 // The elements of an aggregate are:
3414 // - for an array, the array elements in increasing subscript order, or
3415 // - for a class, the direct base classes in declaration order, followed
3416 // by the direct non-static data members (11.4) that are not members of
3417 // an anonymous union, in declaration order.
3418 const InitListExpr *ILE = cast<InitListExpr>(this);
3419 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3420
3421 if (ILE->isTransparent())
3422 return ILE->getInit(0)->isConstantInitializer(Ctx, false, Culprit);
3423
3424 if (ILE->getType()->isArrayType()) {
3425 unsigned numInits = ILE->getNumInits();
3426 for (unsigned i = 0; i < numInits; i++) {
3427 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3428 return false;
3429 }
3430 return true;
3431 }
3432
3433 if (ILE->getType()->isRecordType()) {
3434 unsigned ElementNo = 0;
3435 auto *RD = ILE->getType()->castAsRecordDecl();
3436
3437 // In C++17, bases were added to the list of members used by aggregate
3438 // initialization.
3439 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3440 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3441 if (ElementNo < ILE->getNumInits()) {
3442 const Expr *Elt = ILE->getInit(ElementNo++);
3443 if (!Elt->isConstantInitializer(Ctx, false, Culprit))
3444 return false;
3445 }
3446 }
3447 }
3448
3449 for (const auto *Field : RD->fields()) {
3450 // If this is a union, skip all the fields that aren't being initialized.
3451 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3452 continue;
3453
3454 // Don't emit anonymous bitfields, they just affect layout.
3455 if (Field->isUnnamedBitField())
3456 continue;
3457
3458 if (ElementNo < ILE->getNumInits()) {
3459 const Expr *Elt = ILE->getInit(ElementNo++);
3460 if (Field->isBitField()) {
3461 // Bitfields have to evaluate to an integer.
3463 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3464 if (Culprit)
3465 *Culprit = Elt;
3466 return false;
3467 }
3468 } else {
3469 bool RefType = Field->getType()->isReferenceType();
3470 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3471 return false;
3472 }
3473 }
3474 }
3475 return true;
3476 }
3477
3478 break;
3479 }
3480 case ImplicitValueInitExprClass:
3481 case NoInitExprClass:
3482 return true;
3483 case ParenExprClass:
3484 return cast<ParenExpr>(this)->getSubExpr()
3485 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3486 case GenericSelectionExprClass:
3487 return cast<GenericSelectionExpr>(this)->getResultExpr()
3488 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3489 case ChooseExprClass:
3490 if (cast<ChooseExpr>(this)->isConditionDependent()) {
3491 if (Culprit)
3492 *Culprit = this;
3493 return false;
3494 }
3495 return cast<ChooseExpr>(this)->getChosenSubExpr()
3496 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3497 case UnaryOperatorClass: {
3498 const UnaryOperator* Exp = cast<UnaryOperator>(this);
3499 if (Exp->getOpcode() == UO_Extension)
3500 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3501 break;
3502 }
3503 case PackIndexingExprClass: {
3504 return cast<PackIndexingExpr>(this)
3505 ->getSelectedExpr()
3506 ->isConstantInitializer(Ctx, false, Culprit);
3507 }
3508 case CXXFunctionalCastExprClass:
3509 case CXXStaticCastExprClass:
3510 case ImplicitCastExprClass:
3511 case CStyleCastExprClass:
3512 case ObjCBridgedCastExprClass:
3513 case CXXDynamicCastExprClass:
3514 case CXXReinterpretCastExprClass:
3515 case CXXAddrspaceCastExprClass:
3516 case CXXConstCastExprClass: {
3517 const CastExpr *CE = cast<CastExpr>(this);
3518
3519 // Handle misc casts we want to ignore.
3520 if (CE->getCastKind() == CK_NoOp ||
3521 CE->getCastKind() == CK_LValueToRValue ||
3522 CE->getCastKind() == CK_ToUnion ||
3523 CE->getCastKind() == CK_ConstructorConversion ||
3524 CE->getCastKind() == CK_NonAtomicToAtomic ||
3525 CE->getCastKind() == CK_AtomicToNonAtomic ||
3526 CE->getCastKind() == CK_NullToPointer ||
3527 CE->getCastKind() == CK_IntToOCLSampler)
3528 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3529
3530 break;
3531 }
3532 case MaterializeTemporaryExprClass:
3534 ->getSubExpr()
3535 ->isConstantInitializer(Ctx, false, Culprit);
3536
3537 case SubstNonTypeTemplateParmExprClass:
3538 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3539 ->isConstantInitializer(Ctx, false, Culprit);
3540 case CXXDefaultArgExprClass:
3541 return cast<CXXDefaultArgExpr>(this)->getExpr()
3542 ->isConstantInitializer(Ctx, false, Culprit);
3543 case CXXDefaultInitExprClass:
3544 return cast<CXXDefaultInitExpr>(this)->getExpr()
3545 ->isConstantInitializer(Ctx, false, Culprit);
3546 }
3547 // Allow certain forms of UB in constant initializers: signed integer
3548 // overflow and floating-point division by zero. We'll give a warning on
3549 // these, but they're common enough that we have to accept them.
3551 return true;
3552 if (Culprit)
3553 *Culprit = this;
3554 return false;
3555}
3556
3558 unsigned BuiltinID = getBuiltinCallee();
3559 if (BuiltinID != Builtin::BI__assume &&
3560 BuiltinID != Builtin::BI__builtin_assume)
3561 return false;
3562
3563 const Expr* Arg = getArg(0);
3564 bool ArgVal;
3565 return !Arg->isValueDependent() &&
3566 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3567}
3568
3569const AllocSizeAttr *CallExpr::getCalleeAllocSizeAttr() const {
3570 if (const FunctionDecl *DirectCallee = getDirectCallee())
3571 return DirectCallee->getAttr<AllocSizeAttr>();
3572 if (const Decl *IndirectCallee = getCalleeDecl())
3573 return IndirectCallee->getAttr<AllocSizeAttr>();
3574 return nullptr;
3575}
3576
3577std::optional<llvm::APInt>
3579 const AllocSizeAttr *AllocSize = getCalleeAllocSizeAttr();
3580
3581 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
3582 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
3583 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
3584 if (getNumArgs() <= SizeArgNo)
3585 return std::nullopt;
3586
3587 auto EvaluateAsSizeT = [&](const Expr *E, llvm::APSInt &Into) {
3589 if (E->isValueDependent() ||
3591 return false;
3592 Into = ExprResult.Val.getInt();
3593 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
3594 return false;
3595 Into = Into.zext(BitsInSizeT);
3596 return true;
3597 };
3598
3599 llvm::APSInt SizeOfElem;
3600 if (!EvaluateAsSizeT(getArg(SizeArgNo), SizeOfElem))
3601 return std::nullopt;
3602
3603 if (!AllocSize->getNumElemsParam().isValid())
3604 return SizeOfElem;
3605
3606 llvm::APSInt NumberOfElems;
3607 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
3608 if (!EvaluateAsSizeT(getArg(NumArgNo), NumberOfElems))
3609 return std::nullopt;
3610
3611 bool Overflow;
3612 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
3613 if (Overflow)
3614 return std::nullopt;
3615
3616 return BytesAvailable;
3617}
3618
3620 return getBuiltinCallee() == Builtin::BImove;
3621}
3622
3623namespace {
3624 /// Look for any side effects within a Stmt.
3625 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3627 const bool IncludePossibleEffects;
3628 bool HasSideEffects;
3629
3630 public:
3631 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3632 : Inherited(Context),
3633 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3634
3635 bool hasSideEffects() const { return HasSideEffects; }
3636
3637 void VisitDecl(const Decl *D) {
3638 if (!D)
3639 return;
3640
3641 // We assume the caller checks subexpressions (eg, the initializer, VLA
3642 // bounds) for side-effects on our behalf.
3643 if (auto *VD = dyn_cast<VarDecl>(D)) {
3644 // Registering a destructor is a side-effect.
3645 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3646 VD->needsDestruction(Context))
3647 HasSideEffects = true;
3648 }
3649 }
3650
3651 void VisitDeclStmt(const DeclStmt *DS) {
3652 for (auto *D : DS->decls())
3653 VisitDecl(D);
3654 Inherited::VisitDeclStmt(DS);
3655 }
3656
3657 void VisitExpr(const Expr *E) {
3658 if (!HasSideEffects &&
3659 E->HasSideEffects(Context, IncludePossibleEffects))
3660 HasSideEffects = true;
3661 }
3662 };
3663}
3664
3666 bool IncludePossibleEffects) const {
3667 // In circumstances where we care about definite side effects instead of
3668 // potential side effects, we want to ignore expressions that are part of a
3669 // macro expansion as a potential side effect.
3670 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3671 return false;
3672
3673 switch (getStmtClass()) {
3674 case NoStmtClass:
3675#define ABSTRACT_STMT(Type)
3676#define STMT(Type, Base) case Type##Class:
3677#define EXPR(Type, Base)
3678#include "clang/AST/StmtNodes.inc"
3679 llvm_unreachable("unexpected Expr kind");
3680
3681 case DependentScopeDeclRefExprClass:
3682 case CXXUnresolvedConstructExprClass:
3683 case CXXDependentScopeMemberExprClass:
3684 case UnresolvedLookupExprClass:
3685 case UnresolvedMemberExprClass:
3686 case PackExpansionExprClass:
3687 case SubstNonTypeTemplateParmPackExprClass:
3688 case FunctionParmPackExprClass:
3689 case RecoveryExprClass:
3690 case CXXFoldExprClass:
3691 // Make a conservative assumption for dependent nodes.
3692 return IncludePossibleEffects;
3693
3694 case DeclRefExprClass:
3695 case ObjCIvarRefExprClass:
3696 case PredefinedExprClass:
3697 case IntegerLiteralClass:
3698 case FixedPointLiteralClass:
3699 case FloatingLiteralClass:
3700 case ImaginaryLiteralClass:
3701 case StringLiteralClass:
3702 case CharacterLiteralClass:
3703 case OffsetOfExprClass:
3704 case ImplicitValueInitExprClass:
3705 case UnaryExprOrTypeTraitExprClass:
3706 case AddrLabelExprClass:
3707 case GNUNullExprClass:
3708 case ArrayInitIndexExprClass:
3709 case NoInitExprClass:
3710 case CXXBoolLiteralExprClass:
3711 case CXXNullPtrLiteralExprClass:
3712 case CXXThisExprClass:
3713 case CXXScalarValueInitExprClass:
3714 case TypeTraitExprClass:
3715 case ArrayTypeTraitExprClass:
3716 case ExpressionTraitExprClass:
3717 case CXXNoexceptExprClass:
3718 case SizeOfPackExprClass:
3719 case ObjCStringLiteralClass:
3720 case ObjCEncodeExprClass:
3721 case ObjCBoolLiteralExprClass:
3722 case ObjCAvailabilityCheckExprClass:
3723 case CXXUuidofExprClass:
3724 case OpaqueValueExprClass:
3725 case SourceLocExprClass:
3726 case EmbedExprClass:
3727 case ConceptSpecializationExprClass:
3728 case RequiresExprClass:
3729 case SYCLUniqueStableNameExprClass:
3730 case PackIndexingExprClass:
3731 case HLSLOutArgExprClass:
3732 case OpenACCAsteriskSizeExprClass:
3733 // These never have a side-effect.
3734 return false;
3735
3736 case ConstantExprClass:
3737 // FIXME: Move this into the "return false;" block above.
3738 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3739 Ctx, IncludePossibleEffects);
3740
3741 case CallExprClass:
3742 case CXXOperatorCallExprClass:
3743 case CXXMemberCallExprClass:
3744 case CUDAKernelCallExprClass:
3745 case UserDefinedLiteralClass: {
3746 // We don't know a call definitely has side effects, except for calls
3747 // to pure/const functions that definitely don't.
3748 // If the call itself is considered side-effect free, check the operands.
3749 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3750 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3751 if (IsPure || !IncludePossibleEffects)
3752 break;
3753 return true;
3754 }
3755
3756 case BlockExprClass:
3757 case CXXBindTemporaryExprClass:
3758 if (!IncludePossibleEffects)
3759 break;
3760 return true;
3761
3762 case MSPropertyRefExprClass:
3763 case MSPropertySubscriptExprClass:
3764 case CompoundAssignOperatorClass:
3765 case VAArgExprClass:
3766 case AtomicExprClass:
3767 case CXXThrowExprClass:
3768 case CXXNewExprClass:
3769 case CXXDeleteExprClass:
3770 case CoawaitExprClass:
3771 case DependentCoawaitExprClass:
3772 case CoyieldExprClass:
3773 // These always have a side-effect.
3774 return true;
3775
3776 case StmtExprClass: {
3777 // StmtExprs have a side-effect if any substatement does.
3778 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3779 Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3780 return Finder.hasSideEffects();
3781 }
3782
3783 case ExprWithCleanupsClass:
3784 if (IncludePossibleEffects)
3785 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3786 return true;
3787 break;
3788
3789 case ParenExprClass:
3790 case ArraySubscriptExprClass:
3791 case MatrixSubscriptExprClass:
3792 case ArraySectionExprClass:
3793 case OMPArrayShapingExprClass:
3794 case OMPIteratorExprClass:
3795 case MemberExprClass:
3796 case ConditionalOperatorClass:
3797 case BinaryConditionalOperatorClass:
3798 case CompoundLiteralExprClass:
3799 case ExtVectorElementExprClass:
3800 case DesignatedInitExprClass:
3801 case DesignatedInitUpdateExprClass:
3802 case ArrayInitLoopExprClass:
3803 case ParenListExprClass:
3804 case CXXPseudoDestructorExprClass:
3805 case CXXRewrittenBinaryOperatorClass:
3806 case CXXStdInitializerListExprClass:
3807 case SubstNonTypeTemplateParmExprClass:
3808 case MaterializeTemporaryExprClass:
3809 case ShuffleVectorExprClass:
3810 case ConvertVectorExprClass:
3811 case AsTypeExprClass:
3812 case CXXParenListInitExprClass:
3813 // These have a side-effect if any subexpression does.
3814 break;
3815
3816 case UnaryOperatorClass:
3817 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3818 return true;
3819 break;
3820
3821 case BinaryOperatorClass:
3822 if (cast<BinaryOperator>(this)->isAssignmentOp())
3823 return true;
3824 break;
3825
3826 case InitListExprClass:
3827 // FIXME: The children for an InitListExpr doesn't include the array filler.
3828 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3829 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3830 return true;
3831 break;
3832
3833 case GenericSelectionExprClass:
3834 return cast<GenericSelectionExpr>(this)->getResultExpr()->HasSideEffects(
3835 Ctx, IncludePossibleEffects);
3836
3837 case ChooseExprClass:
3838 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3839 Ctx, IncludePossibleEffects);
3840
3841 case CXXDefaultArgExprClass:
3842 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3843 Ctx, IncludePossibleEffects);
3844
3845 case CXXDefaultInitExprClass: {
3846 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3847 if (const Expr *E = FD->getInClassInitializer())
3848 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3849 // If we've not yet parsed the initializer, assume it has side-effects.
3850 return true;
3851 }
3852
3853 case CXXDynamicCastExprClass: {
3854 // A dynamic_cast expression has side-effects if it can throw.
3856 if (DCE->getTypeAsWritten()->isReferenceType() &&
3857 DCE->getCastKind() == CK_Dynamic)
3858 return true;
3859 }
3860 [[fallthrough]];
3861 case ImplicitCastExprClass:
3862 case CStyleCastExprClass:
3863 case CXXStaticCastExprClass:
3864 case CXXReinterpretCastExprClass:
3865 case CXXConstCastExprClass:
3866 case CXXAddrspaceCastExprClass:
3867 case CXXFunctionalCastExprClass:
3868 case BuiltinBitCastExprClass: {
3869 // While volatile reads are side-effecting in both C and C++, we treat them
3870 // as having possible (not definite) side-effects. This allows idiomatic
3871 // code to behave without warning, such as sizeof(*v) for a volatile-
3872 // qualified pointer.
3873 if (!IncludePossibleEffects)
3874 break;
3875
3876 const CastExpr *CE = cast<CastExpr>(this);
3877 if (CE->getCastKind() == CK_LValueToRValue &&
3879 return true;
3880 break;
3881 }
3882
3883 case CXXTypeidExprClass: {
3884 const auto *TE = cast<CXXTypeidExpr>(this);
3885 if (!TE->isPotentiallyEvaluated())
3886 return false;
3887
3888 // If this type id expression can throw because of a null pointer, that is a
3889 // side-effect independent of if the operand has a side-effect
3890 if (IncludePossibleEffects && TE->hasNullCheck())
3891 return true;
3892
3893 break;
3894 }
3895
3896 case CXXConstructExprClass:
3897 case CXXTemporaryObjectExprClass: {
3898 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3899 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3900 return true;
3901 // A trivial constructor does not add any side-effects of its own. Just look
3902 // at its arguments.
3903 break;
3904 }
3905
3906 case CXXInheritedCtorInitExprClass: {
3907 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3908 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3909 return true;
3910 break;
3911 }
3912
3913 case LambdaExprClass: {
3914 const LambdaExpr *LE = cast<LambdaExpr>(this);
3915 for (Expr *E : LE->capture_inits())
3916 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3917 return true;
3918 return false;
3919 }
3920
3921 case PseudoObjectExprClass: {
3922 // Only look for side-effects in the semantic form, and look past
3923 // OpaqueValueExpr bindings in that form.
3924 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3926 E = PO->semantics_end();
3927 I != E; ++I) {
3928 const Expr *Subexpr = *I;
3929 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3930 Subexpr = OVE->getSourceExpr();
3931 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3932 return true;
3933 }
3934 return false;
3935 }
3936
3937 case ObjCBoxedExprClass:
3938 case ObjCArrayLiteralClass:
3939 case ObjCDictionaryLiteralClass:
3940 case ObjCSelectorExprClass:
3941 case ObjCProtocolExprClass:
3942 case ObjCIsaExprClass:
3943 case ObjCIndirectCopyRestoreExprClass:
3944 case ObjCSubscriptRefExprClass:
3945 case ObjCBridgedCastExprClass:
3946 case ObjCMessageExprClass:
3947 case ObjCPropertyRefExprClass:
3948 // FIXME: Classify these cases better.
3949 if (IncludePossibleEffects)
3950 return true;
3951 break;
3952 }
3953
3954 // Recurse to children.
3955 for (const Stmt *SubStmt : children())
3956 if (SubStmt &&
3957 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3958 return true;
3959
3960 return false;
3961}
3962
3964 if (auto Call = dyn_cast<CallExpr>(this))
3965 return Call->getFPFeaturesInEffect(LO);
3966 if (auto UO = dyn_cast<UnaryOperator>(this))
3967 return UO->getFPFeaturesInEffect(LO);
3968 if (auto BO = dyn_cast<BinaryOperator>(this))
3969 return BO->getFPFeaturesInEffect(LO);
3970 if (auto Cast = dyn_cast<CastExpr>(this))
3971 return Cast->getFPFeaturesInEffect(LO);
3972 if (auto ConvertVector = dyn_cast<ConvertVectorExpr>(this))
3973 return ConvertVector->getFPFeaturesInEffect(LO);
3975}
3976
3977namespace {
3978 /// Look for a call to a non-trivial function within an expression.
3979 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3980 {
3982
3983 bool NonTrivial;
3984
3985 public:
3986 explicit NonTrivialCallFinder(const ASTContext &Context)
3987 : Inherited(Context), NonTrivial(false) { }
3988
3989 bool hasNonTrivialCall() const { return NonTrivial; }
3990
3991 void VisitCallExpr(const CallExpr *E) {
3992 if (const CXXMethodDecl *Method
3993 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3994 if (Method->isTrivial()) {
3995 // Recurse to children of the call.
3996 Inherited::VisitStmt(E);
3997 return;
3998 }
3999 }
4000
4001 NonTrivial = true;
4002 }
4003
4004 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
4005 if (E->getConstructor()->isTrivial()) {
4006 // Recurse to children of the call.
4007 Inherited::VisitStmt(E);
4008 return;
4009 }
4010
4011 NonTrivial = true;
4012 }
4013
4014 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
4015 // Destructor of the temporary might be null if destructor declaration
4016 // is not valid.
4017 if (const CXXDestructorDecl *DtorDecl =
4018 E->getTemporary()->getDestructor()) {
4019 if (DtorDecl->isTrivial()) {
4020 Inherited::VisitStmt(E);
4021 return;
4022 }
4023 }
4024
4025 NonTrivial = true;
4026 }
4027 };
4028}
4029
4030bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
4031 NonTrivialCallFinder Finder(Ctx);
4032 Finder.Visit(this);
4033 return Finder.hasNonTrivialCall();
4034}
4035
4036/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
4037/// pointer constant or not, as well as the specific kind of constant detected.
4038/// Null pointer constants can be integer constant expressions with the
4039/// value zero, casts of zero to void*, nullptr (C++0X), or __null
4040/// (a GNU extension).
4044 if (isValueDependent() &&
4045 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
4046 // Error-dependent expr should never be a null pointer.
4047 if (containsErrors())
4048 return NPCK_NotNull;
4049 switch (NPC) {
4051 llvm_unreachable("Unexpected value dependent expression!");
4053 if (isTypeDependent() || getType()->isIntegralType(Ctx))
4054 return NPCK_ZeroExpression;
4055 else
4056 return NPCK_NotNull;
4057
4059 return NPCK_NotNull;
4060 }
4061 }
4062
4063 // Strip off a cast to void*, if it exists. Except in C++.
4064 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
4065 if (!Ctx.getLangOpts().CPlusPlus) {
4066 // Check that it is a cast to void*.
4067 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
4068 QualType Pointee = PT->getPointeeType();
4069 Qualifiers Qs = Pointee.getQualifiers();
4070 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
4071 // has non-default address space it is not treated as nullptr.
4072 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
4073 // since it cannot be assigned to a pointer to constant address space.
4074 if (Ctx.getLangOpts().OpenCL &&
4076 Qs.removeAddressSpace();
4077
4078 if (Pointee->isVoidType() && Qs.empty() && // to void*
4079 CE->getSubExpr()->getType()->isIntegerType()) // from int
4080 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4081 }
4082 }
4083 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
4084 // Ignore the ImplicitCastExpr type entirely.
4085 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4086 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
4087 // Accept ((void*)0) as a null pointer constant, as many other
4088 // implementations do.
4089 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4090 } else if (const GenericSelectionExpr *GE =
4091 dyn_cast<GenericSelectionExpr>(this)) {
4092 if (GE->isResultDependent())
4093 return NPCK_NotNull;
4094 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
4095 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
4096 if (CE->isConditionDependent())
4097 return NPCK_NotNull;
4098 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
4099 } else if (const CXXDefaultArgExpr *DefaultArg
4100 = dyn_cast<CXXDefaultArgExpr>(this)) {
4101 // See through default argument expressions.
4102 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
4103 } else if (const CXXDefaultInitExpr *DefaultInit
4104 = dyn_cast<CXXDefaultInitExpr>(this)) {
4105 // See through default initializer expressions.
4106 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
4107 } else if (isa<GNUNullExpr>(this)) {
4108 // The GNU __null extension is always a null pointer constant.
4109 return NPCK_GNUNull;
4110 } else if (const MaterializeTemporaryExpr *M
4111 = dyn_cast<MaterializeTemporaryExpr>(this)) {
4112 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4113 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
4114 if (const Expr *Source = OVE->getSourceExpr())
4115 return Source->isNullPointerConstant(Ctx, NPC);
4116 }
4117
4118 // If the expression has no type information, it cannot be a null pointer
4119 // constant.
4120 if (getType().isNull())
4121 return NPCK_NotNull;
4122
4123 // C++11/C23 nullptr_t is always a null pointer constant.
4124 if (getType()->isNullPtrType())
4125 return NPCK_CXX11_nullptr;
4126
4127 if (const RecordType *UT = getType()->getAsUnionType())
4128 if (!Ctx.getLangOpts().CPlusPlus11 && UT &&
4129 UT->getDecl()->getMostRecentDecl()->hasAttr<TransparentUnionAttr>())
4130 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
4131 const Expr *InitExpr = CLE->getInitializer();
4132 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
4133 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
4134 }
4135 // This expression must be an integer type.
4136 if (!getType()->isIntegerType() ||
4137 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4138 return NPCK_NotNull;
4139
4140 if (Ctx.getLangOpts().CPlusPlus11) {
4141 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4142 // value zero or a prvalue of type std::nullptr_t.
4143 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4144 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
4145 if (Lit && !Lit->getValue())
4146 return NPCK_ZeroLiteral;
4147 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4148 return NPCK_NotNull;
4149 } else {
4150 // If we have an integer constant expression, we need to *evaluate* it and
4151 // test for the value 0.
4152 if (!isIntegerConstantExpr(Ctx))
4153 return NPCK_NotNull;
4154 }
4155
4156 if (EvaluateKnownConstInt(Ctx) != 0)
4157 return NPCK_NotNull;
4158
4159 if (isa<IntegerLiteral>(this))
4160 return NPCK_ZeroLiteral;
4161 return NPCK_ZeroExpression;
4162}
4163
4164/// If this expression is an l-value for an Objective C
4165/// property, find the underlying property reference expression.
4167 const Expr *E = this;
4168 while (true) {
4169 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4170 "expression is not a property reference");
4171 E = E->IgnoreParenCasts();
4172 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4173 if (BO->getOpcode() == BO_Comma) {
4174 E = BO->getRHS();
4175 continue;
4176 }
4177 }
4178
4179 break;
4180 }
4181
4182 return cast<ObjCPropertyRefExpr>(E);
4183}
4184
4186 const Expr *E = IgnoreParenImpCasts();
4187
4188 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4189 if (!DRE)
4190 return false;
4191
4192 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4193 if (!Param)
4194 return false;
4195
4196 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4197 if (!M)
4198 return false;
4199
4200 return M->getSelfDecl() == Param;
4201}
4202
4204 Expr *E = this->IgnoreParens();
4205
4206 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4207 if (ICE->getCastKind() == CK_LValueToRValue ||
4208 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4209 E = ICE->getSubExpr()->IgnoreParens();
4210 else
4211 break;
4212 }
4213
4214 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4215 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4216 if (Field->isBitField())
4217 return Field;
4218
4219 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4220 FieldDecl *Ivar = IvarRef->getDecl();
4221 if (Ivar->isBitField())
4222 return Ivar;
4223 }
4224
4225 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4226 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4227 if (Field->isBitField())
4228 return Field;
4229
4230 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4231 if (Expr *E = BD->getBinding())
4232 return E->getSourceBitField();
4233 }
4234
4235 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4236 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4237 return BinOp->getLHS()->getSourceBitField();
4238
4239 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4240 return BinOp->getRHS()->getSourceBitField();
4241 }
4242
4243 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4244 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4245 return UnOp->getSubExpr()->getSourceBitField();
4246
4247 return nullptr;
4248}
4249
4251 Expr *E = this->IgnoreParenImpCasts();
4252 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4253 return dyn_cast<EnumConstantDecl>(DRE->getDecl());
4254 return nullptr;
4255}
4256
4258 // FIXME: Why do we not just look at the ObjectKind here?
4259 const Expr *E = this->IgnoreParens();
4260
4261 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4262 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4263 E = ICE->getSubExpr()->IgnoreParens();
4264 else
4265 break;
4266 }
4267
4268 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4269 return ASE->getBase()->getType()->isVectorType();
4270
4272 return true;
4273
4274 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4275 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4276 if (auto *E = BD->getBinding())
4277 return E->refersToVectorElement();
4278
4279 return false;
4280}
4281
4283 const Expr *E = this->IgnoreParenImpCasts();
4284
4285 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4286 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4287 if (VD->getStorageClass() == SC_Register &&
4288 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4289 return true;
4290
4291 return false;
4292}
4293
4294bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4295 E1 = E1->IgnoreParens();
4296 E2 = E2->IgnoreParens();
4297
4298 if (E1->getStmtClass() != E2->getStmtClass())
4299 return false;
4300
4301 switch (E1->getStmtClass()) {
4302 default:
4303 return false;
4304 case CXXThisExprClass:
4305 return true;
4306 case DeclRefExprClass: {
4307 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4308 // template parameters.
4309 const auto *DRE1 = cast<DeclRefExpr>(E1);
4310 const auto *DRE2 = cast<DeclRefExpr>(E2);
4311
4312 if (DRE1->getDecl() != DRE2->getDecl())
4313 return false;
4314
4315 if ((DRE1->isPRValue() && DRE2->isPRValue()) ||
4316 (DRE1->isLValue() && DRE2->isLValue()))
4317 return true;
4318
4319 return false;
4320 }
4321 case ImplicitCastExprClass: {
4322 // Peel off implicit casts.
4323 while (true) {
4324 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4325 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4326 if (!ICE1 || !ICE2)
4327 return false;
4328 if (ICE1->getCastKind() != ICE2->getCastKind())
4329 return isSameComparisonOperand(ICE1->IgnoreParenImpCasts(),
4330 ICE2->IgnoreParenImpCasts());
4331 E1 = ICE1->getSubExpr()->IgnoreParens();
4332 E2 = ICE2->getSubExpr()->IgnoreParens();
4333 // The final cast must be one of these types.
4334 if (ICE1->getCastKind() == CK_LValueToRValue ||
4335 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4336 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4337 break;
4338 }
4339 }
4340
4341 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4342 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4343 if (DRE1 && DRE2)
4344 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4345
4346 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4347 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4348 if (Ivar1 && Ivar2) {
4349 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4350 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4351 }
4352
4353 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4354 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4355 if (Array1 && Array2) {
4356 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4357 return false;
4358
4359 auto Idx1 = Array1->getIdx();
4360 auto Idx2 = Array2->getIdx();
4361 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4362 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4363 if (Integer1 && Integer2) {
4364 if (!llvm::APInt::isSameValue(Integer1->getValue(),
4365 Integer2->getValue()))
4366 return false;
4367 } else {
4368 if (!isSameComparisonOperand(Idx1, Idx2))
4369 return false;
4370 }
4371
4372 return true;
4373 }
4374
4375 // Walk the MemberExpr chain.
4376 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4377 const auto *ME1 = cast<MemberExpr>(E1);
4378 const auto *ME2 = cast<MemberExpr>(E2);
4379 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4380 return false;
4381 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4382 if (D->isStaticDataMember())
4383 return true;
4384 E1 = ME1->getBase()->IgnoreParenImpCasts();
4385 E2 = ME2->getBase()->IgnoreParenImpCasts();
4386 }
4387
4388 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4389 return true;
4390
4391 // A static member variable can end the MemberExpr chain with either
4392 // a MemberExpr or a DeclRefExpr.
4393 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4394 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4395 return DRE->getDecl();
4396 if (const auto *ME = dyn_cast<MemberExpr>(E))
4397 return ME->getMemberDecl();
4398 return nullptr;
4399 };
4400
4401 const ValueDecl *VD1 = getAnyDecl(E1);
4402 const ValueDecl *VD2 = getAnyDecl(E2);
4403 return declaresSameEntity(VD1, VD2);
4404 }
4405 }
4406}
4407
4408/// isArrow - Return true if the base expression is a pointer to vector,
4409/// return false if the base expression is a vector.
4411 return getBase()->getType()->isPointerType();
4412}
4413
4415 if (const VectorType *VT = getType()->getAs<VectorType>())
4416 return VT->getNumElements();
4417 return 1;
4418}
4419
4420/// containsDuplicateElements - Return true if any element access is repeated.
4422 // FIXME: Refactor this code to an accessor on the AST node which returns the
4423 // "type" of component access, and share with code below and in Sema.
4424 StringRef Comp = Accessor->getName();
4425
4426 // Halving swizzles do not contain duplicate elements.
4427 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4428 return false;
4429
4430 // Advance past s-char prefix on hex swizzles.
4431 if (Comp[0] == 's' || Comp[0] == 'S')
4432 Comp = Comp.substr(1);
4433
4434 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4435 if (Comp.substr(i + 1).contains(Comp[i]))
4436 return true;
4437
4438 return false;
4439}
4440
4441/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4443 SmallVectorImpl<uint32_t> &Elts) const {
4444 StringRef Comp = Accessor->getName();
4445 bool isNumericAccessor = false;
4446 if (Comp[0] == 's' || Comp[0] == 'S') {
4447 Comp = Comp.substr(1);
4448 isNumericAccessor = true;
4449 }
4450
4451 bool isHi = Comp == "hi";
4452 bool isLo = Comp == "lo";
4453 bool isEven = Comp == "even";
4454 bool isOdd = Comp == "odd";
4455
4456 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4457 uint64_t Index;
4458
4459 if (isHi)
4460 Index = e + i;
4461 else if (isLo)
4462 Index = i;
4463 else if (isEven)
4464 Index = 2 * i;
4465 else if (isOdd)
4466 Index = 2 * i + 1;
4467 else
4468 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4469
4470 Elts.push_back(Index);
4471 }
4472}
4473
4476 SourceLocation RP)
4477 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4478 BuiltinLoc(BLoc), RParenLoc(RP) {
4479 ShuffleVectorExprBits.NumExprs = args.size();
4480 SubExprs = new (C) Stmt*[args.size()];
4481 for (unsigned i = 0; i != args.size(); i++)
4482 SubExprs[i] = args[i];
4483
4485}
4486
4488 if (SubExprs) C.Deallocate(SubExprs);
4489
4490 this->ShuffleVectorExprBits.NumExprs = Exprs.size();
4491 SubExprs = new (C) Stmt *[ShuffleVectorExprBits.NumExprs];
4492 llvm::copy(Exprs, SubExprs);
4493}
4494
4495GenericSelectionExpr::GenericSelectionExpr(
4496 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4497 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4498 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4499 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4500 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4501 AssocExprs[ResultIndex]->getValueKind(),
4502 AssocExprs[ResultIndex]->getObjectKind()),
4503 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4504 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4505 assert(AssocTypes.size() == AssocExprs.size() &&
4506 "Must have the same number of association expressions"
4507 " and TypeSourceInfo!");
4508 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4509
4510 GenericSelectionExprBits.GenericLoc = GenericLoc;
4511 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4512 ControllingExpr;
4513 llvm::copy(AssocExprs,
4514 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4515 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4516 getIndexOfStartOfAssociatedTypes());
4517
4518 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4519}
4520
4521GenericSelectionExpr::GenericSelectionExpr(
4522 const ASTContext &, SourceLocation GenericLoc,
4523 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4524 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4525 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4526 unsigned ResultIndex)
4527 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4528 AssocExprs[ResultIndex]->getValueKind(),
4529 AssocExprs[ResultIndex]->getObjectKind()),
4530 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4531 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4532 assert(AssocTypes.size() == AssocExprs.size() &&
4533 "Must have the same number of association expressions"
4534 " and TypeSourceInfo!");
4535 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4536
4537 GenericSelectionExprBits.GenericLoc = GenericLoc;
4538 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4539 ControllingType;
4540 llvm::copy(AssocExprs,
4541 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4542 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4543 getIndexOfStartOfAssociatedTypes());
4544
4545 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4546}
4547
4548GenericSelectionExpr::GenericSelectionExpr(
4549 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4550 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4551 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4552 bool ContainsUnexpandedParameterPack)
4553 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4554 OK_Ordinary),
4555 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4556 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4557 assert(AssocTypes.size() == AssocExprs.size() &&
4558 "Must have the same number of association expressions"
4559 " and TypeSourceInfo!");
4560
4561 GenericSelectionExprBits.GenericLoc = GenericLoc;
4562 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4563 ControllingExpr;
4564 llvm::copy(AssocExprs,
4565 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4566 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4567 getIndexOfStartOfAssociatedTypes());
4568
4569 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4570}
4571
4572GenericSelectionExpr::GenericSelectionExpr(
4573 const ASTContext &Context, SourceLocation GenericLoc,
4574 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4575 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4576 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4577 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4578 OK_Ordinary),
4579 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4580 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4581 assert(AssocTypes.size() == AssocExprs.size() &&
4582 "Must have the same number of association expressions"
4583 " and TypeSourceInfo!");
4584
4585 GenericSelectionExprBits.GenericLoc = GenericLoc;
4586 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4587 ControllingType;
4588 llvm::copy(AssocExprs,
4589 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4590 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4591 getIndexOfStartOfAssociatedTypes());
4592
4593 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4594}
4595
4596GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4597 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4598
4599GenericSelectionExpr *GenericSelectionExpr::Create(
4600 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4601 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4602 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4603 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4604 unsigned NumAssocs = AssocExprs.size();
4605 void *Mem = Context.Allocate(
4606 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4607 alignof(GenericSelectionExpr));
4608 return new (Mem) GenericSelectionExpr(
4609 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4610 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4611}
4612
4613GenericSelectionExpr *GenericSelectionExpr::Create(
4614 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4615 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4616 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4617 bool ContainsUnexpandedParameterPack) {
4618 unsigned NumAssocs = AssocExprs.size();
4619 void *Mem = Context.Allocate(
4620 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4621 alignof(GenericSelectionExpr));
4622 return new (Mem) GenericSelectionExpr(
4623 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4624 RParenLoc, ContainsUnexpandedParameterPack);
4625}
4626
4627GenericSelectionExpr *GenericSelectionExpr::Create(
4628 const ASTContext &Context, SourceLocation GenericLoc,
4629 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4630 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4631 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4632 unsigned ResultIndex) {
4633 unsigned NumAssocs = AssocExprs.size();
4634 void *Mem = Context.Allocate(
4635 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4636 alignof(GenericSelectionExpr));
4637 return new (Mem) GenericSelectionExpr(
4638 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4639 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4640}
4641
4642GenericSelectionExpr *GenericSelectionExpr::Create(
4643 const ASTContext &Context, SourceLocation GenericLoc,
4644 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4645 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4646 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4647 unsigned NumAssocs = AssocExprs.size();
4648 void *Mem = Context.Allocate(
4649 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4650 alignof(GenericSelectionExpr));
4651 return new (Mem) GenericSelectionExpr(
4652 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4653 RParenLoc, ContainsUnexpandedParameterPack);
4654}
4655
4658 unsigned NumAssocs) {
4659 void *Mem = Context.Allocate(
4660 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4661 alignof(GenericSelectionExpr));
4662 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4663}
4664
4665//===----------------------------------------------------------------------===//
4666// DesignatedInitExpr
4667//===----------------------------------------------------------------------===//
4668
4670 assert(isFieldDesignator() && "Only valid on a field designator");
4671 if (FieldInfo.NameOrField & 0x01)
4672 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4673 return getFieldDecl()->getIdentifier();
4674}
4675
4676DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4677 ArrayRef<Designator> Designators,
4678 SourceLocation EqualOrColonLoc,
4679 bool GNUSyntax,
4680 ArrayRef<Expr *> IndexExprs, Expr *Init)
4681 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4682 Init->getObjectKind()),
4683 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4684 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4685 this->Designators = new (C) Designator[NumDesignators];
4686
4687 // Record the initializer itself.
4688 child_iterator Child = child_begin();
4689 *Child++ = Init;
4690
4691 // Copy the designators and their subexpressions, computing
4692 // value-dependence along the way.
4693 unsigned IndexIdx = 0;
4694 for (unsigned I = 0; I != NumDesignators; ++I) {
4695 this->Designators[I] = Designators[I];
4696 if (this->Designators[I].isArrayDesignator()) {
4697 // Copy the index expressions into permanent storage.
4698 *Child++ = IndexExprs[IndexIdx++];
4699 } else if (this->Designators[I].isArrayRangeDesignator()) {
4700 // Copy the start/end expressions into permanent storage.
4701 *Child++ = IndexExprs[IndexIdx++];
4702 *Child++ = IndexExprs[IndexIdx++];
4703 }
4704 }
4705
4706 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4708}
4709
4710DesignatedInitExpr *DesignatedInitExpr::Create(const ASTContext &C,
4711 ArrayRef<Designator> Designators,
4712 ArrayRef<Expr *> IndexExprs,
4713 SourceLocation ColonOrEqualLoc,
4714 bool UsesColonSyntax,
4715 Expr *Init) {
4716 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4717 alignof(DesignatedInitExpr));
4718 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4719 ColonOrEqualLoc, UsesColonSyntax,
4720 IndexExprs, Init);
4721}
4722
4724 unsigned NumIndexExprs) {
4725 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4726 alignof(DesignatedInitExpr));
4727 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4728}
4729
4731 const Designator *Desigs,
4732 unsigned NumDesigs) {
4733 Designators = new (C) Designator[NumDesigs];
4734 NumDesignators = NumDesigs;
4735 for (unsigned I = 0; I != NumDesigs; ++I)
4736 Designators[I] = Desigs[I];
4737}
4738
4740 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4741 if (size() == 1)
4742 return DIE->getDesignator(0)->getSourceRange();
4743 return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4744 DIE->getDesignator(size() - 1)->getEndLoc());
4745}
4746
4748 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4749 Designator &First = *DIE->getDesignator(0);
4750 if (First.isFieldDesignator()) {
4751 // Skip past implicit designators for anonymous structs/unions, since
4752 // these do not have valid source locations.
4753 for (unsigned int i = 0; i < DIE->size(); i++) {
4754 Designator &Des = *DIE->getDesignator(i);
4755 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc();
4756 if (!retval.isValid())
4757 continue;
4758 return retval;
4759 }
4760 }
4761 return First.getLBracketLoc();
4762}
4763
4767
4769 assert(D.isArrayDesignator() && "Requires array designator");
4770 return getSubExpr(D.getArrayIndex() + 1);
4771}
4772
4774 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4775 return getSubExpr(D.getArrayIndex() + 1);
4776}
4777
4779 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4780 return getSubExpr(D.getArrayIndex() + 2);
4781}
4782
4783/// Replaces the designator at index @p Idx with the series
4784/// of designators in [First, Last).
4786 const Designator *First,
4787 const Designator *Last) {
4788 unsigned NumNewDesignators = Last - First;
4789 if (NumNewDesignators == 0) {
4790 std::copy_backward(Designators + Idx + 1,
4791 Designators + NumDesignators,
4792 Designators + Idx);
4793 --NumNewDesignators;
4794 return;
4795 }
4796 if (NumNewDesignators == 1) {
4797 Designators[Idx] = *First;
4798 return;
4799 }
4800
4801 Designator *NewDesignators
4802 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4803 std::copy(Designators, Designators + Idx, NewDesignators);
4804 std::copy(First, Last, NewDesignators + Idx);
4805 std::copy(Designators + Idx + 1, Designators + NumDesignators,
4806 NewDesignators + Idx + NumNewDesignators);
4807 Designators = NewDesignators;
4808 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4809}
4810
4812 SourceLocation lBraceLoc,
4813 Expr *baseExpr,
4814 SourceLocation rBraceLoc)
4815 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4816 OK_Ordinary) {
4817 BaseAndUpdaterExprs[0] = baseExpr;
4818
4819 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc);
4820 ILE->setType(baseExpr->getType());
4821 BaseAndUpdaterExprs[1] = ILE;
4822
4823 // FIXME: this is wrong, set it correctly.
4824 setDependence(ExprDependence::None);
4825}
4826
4830
4834
4835ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4836 SourceLocation RParenLoc)
4837 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4838 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4839 ParenListExprBits.NumExprs = Exprs.size();
4840 llvm::copy(Exprs, getTrailingObjects());
4842}
4843
4844ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4845 : Expr(ParenListExprClass, Empty) {
4846 ParenListExprBits.NumExprs = NumExprs;
4847}
4848
4849ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4850 SourceLocation LParenLoc,
4851 ArrayRef<Expr *> Exprs,
4852 SourceLocation RParenLoc) {
4853 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4854 alignof(ParenListExpr));
4855 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4856}
4857
4858ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4859 unsigned NumExprs) {
4860 void *Mem =
4861 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4862 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4863}
4864
4865/// Certain overflow-dependent code patterns can have their integer overflow
4866/// sanitization disabled. Check for the common pattern `if (a + b < a)` and
4867/// return the resulting BinaryOperator responsible for the addition so we can
4868/// elide overflow checks during codegen.
4869static std::optional<BinaryOperator *>
4871 Expr *Addition, *ComparedTo;
4872 if (E->getOpcode() == BO_LT) {
4873 Addition = E->getLHS();
4874 ComparedTo = E->getRHS();
4875 } else if (E->getOpcode() == BO_GT) {
4876 Addition = E->getRHS();
4877 ComparedTo = E->getLHS();
4878 } else {
4879 return {};
4880 }
4881
4882 const Expr *AddLHS = nullptr, *AddRHS = nullptr;
4883 BinaryOperator *BO = dyn_cast<BinaryOperator>(Addition);
4884
4885 if (BO && BO->getOpcode() == clang::BO_Add) {
4886 // now store addends for lookup on other side of '>'
4887 AddLHS = BO->getLHS();
4888 AddRHS = BO->getRHS();
4889 }
4890
4891 if (!AddLHS || !AddRHS)
4892 return {};
4893
4894 const Decl *LHSDecl, *RHSDecl, *OtherDecl;
4895
4896 LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4897 RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4898 OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4899
4900 if (!OtherDecl)
4901 return {};
4902
4903 if (!LHSDecl && !RHSDecl)
4904 return {};
4905
4906 if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) ||
4907 (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl))
4908 return BO;
4909 return {};
4910}
4911
4912/// Compute and set the OverflowPatternExclusion bit based on whether the
4913/// BinaryOperator expression matches an overflow pattern being ignored by
4914/// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or
4915/// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test
4917 const BinaryOperator *E) {
4918 std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E);
4919 if (!Result.has_value())
4920 return;
4921 QualType AdditionResultType = Result.value()->getType();
4922
4923 if ((AdditionResultType->isSignedIntegerType() &&
4926 (AdditionResultType->isUnsignedIntegerType() &&
4929 Result.value()->setExcludedOverflowPattern(true);
4930}
4931
4933 Opcode opc, QualType ResTy, ExprValueKind VK,
4935 FPOptionsOverride FPFeatures)
4936 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4937 BinaryOperatorBits.Opc = opc;
4938 assert(!isCompoundAssignmentOp() &&
4939 "Use CompoundAssignOperator for compound assignments");
4940 BinaryOperatorBits.OpLoc = opLoc;
4941 BinaryOperatorBits.ExcludedOverflowPattern = false;
4942 SubExprs[LHS] = lhs;
4943 SubExprs[RHS] = rhs;
4945 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4946 if (hasStoredFPFeatures())
4947 setStoredFPFeatures(FPFeatures);
4949}
4950
4952 Opcode opc, QualType ResTy, ExprValueKind VK,
4954 FPOptionsOverride FPFeatures, bool dead2)
4955 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4956 BinaryOperatorBits.Opc = opc;
4957 BinaryOperatorBits.ExcludedOverflowPattern = false;
4958 assert(isCompoundAssignmentOp() &&
4959 "Use CompoundAssignOperator for compound assignments");
4960 BinaryOperatorBits.OpLoc = opLoc;
4961 SubExprs[LHS] = lhs;
4962 SubExprs[RHS] = rhs;
4963 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4964 if (hasStoredFPFeatures())
4965 setStoredFPFeatures(FPFeatures);
4967}
4968
4970 bool HasFPFeatures) {
4971 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4972 void *Mem =
4973 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4974 return new (Mem) BinaryOperator(EmptyShell());
4975}
4976
4978 Expr *rhs, Opcode opc, QualType ResTy,
4980 SourceLocation opLoc,
4981 FPOptionsOverride FPFeatures) {
4982 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4983 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4984 void *Mem =
4985 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4986 return new (Mem)
4987 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4988}
4989
4992 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4993 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4994 alignof(CompoundAssignOperator));
4995 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4996}
4997
5000 Opcode opc, QualType ResTy, ExprValueKind VK,
5002 FPOptionsOverride FPFeatures,
5003 QualType CompLHSType, QualType CompResultType) {
5004 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5005 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
5006 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
5007 alignof(CompoundAssignOperator));
5008 return new (Mem)
5009 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
5010 CompLHSType, CompResultType);
5011}
5012
5014 bool hasFPFeatures) {
5015 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
5016 alignof(UnaryOperator));
5017 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
5018}
5019
5022 SourceLocation l, bool CanOverflow,
5023 FPOptionsOverride FPFeatures)
5024 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
5025 UnaryOperatorBits.Opc = opc;
5026 UnaryOperatorBits.CanOverflow = CanOverflow;
5027 UnaryOperatorBits.Loc = l;
5028 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
5029 if (hasStoredFPFeatures())
5030 setStoredFPFeatures(FPFeatures);
5031 setDependence(computeDependence(this, Ctx));
5032}
5033
5035 Opcode opc, QualType type,
5037 SourceLocation l, bool CanOverflow,
5038 FPOptionsOverride FPFeatures) {
5039 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5040 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
5041 void *Mem = C.Allocate(Size, alignof(UnaryOperator));
5042 return new (Mem)
5043 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
5044}
5045
5047 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
5048 e = ewc->getSubExpr();
5049 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
5050 e = m->getSubExpr();
5051 e = cast<CXXConstructExpr>(e)->getArg(0);
5052 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
5053 e = ice->getSubExpr();
5054 return cast<OpaqueValueExpr>(e);
5055}
5056
5057PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
5058 EmptyShell sh,
5059 unsigned numSemanticExprs) {
5060 void *buffer =
5061 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
5062 alignof(PseudoObjectExpr));
5063 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
5064}
5065
5066PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
5067 : Expr(PseudoObjectExprClass, shell) {
5068 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
5069}
5070
5073 unsigned resultIndex) {
5074 assert(syntax && "no syntactic expression!");
5075 assert(semantics.size() && "no semantic expressions!");
5076
5077 QualType type;
5079 if (resultIndex == NoResult) {
5080 type = C.VoidTy;
5081 VK = VK_PRValue;
5082 } else {
5083 assert(resultIndex < semantics.size());
5084 type = semantics[resultIndex]->getType();
5085 VK = semantics[resultIndex]->getValueKind();
5086 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
5087 }
5088
5089 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
5090 alignof(PseudoObjectExpr));
5091 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
5092 resultIndex);
5093}
5094
5095PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
5096 Expr *syntax, ArrayRef<Expr *> semantics,
5097 unsigned resultIndex)
5098 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
5099 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
5100 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
5101 MutableArrayRef<Expr *> Trail = getTrailingObjects(semantics.size() + 1);
5102 Trail[0] = syntax;
5103
5104 assert(llvm::all_of(semantics,
5105 [](const Expr *E) {
5106 return !isa<OpaqueValueExpr>(E) ||
5107 cast<OpaqueValueExpr>(E)->getSourceExpr() !=
5108 nullptr;
5109 }) &&
5110 "opaque-value semantic expressions for pseudo-object "
5111 "operations must have sources");
5112
5113 llvm::copy(semantics, Trail.drop_front().begin());
5115}
5116
5117//===----------------------------------------------------------------------===//
5118// Child Iterators for iterating over subexpressions/substatements
5119//===----------------------------------------------------------------------===//
5120
5121// UnaryExprOrTypeTraitExpr
5123 const_child_range CCR =
5124 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
5125 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
5126}
5127
5129 // If this is of a type and the type is a VLA type (and not a typedef), the
5130 // size expression of the VLA needs to be treated as an executable expression.
5131 // Why isn't this weirdness documented better in StmtIterator?
5132 if (isArgumentType()) {
5133 if (const VariableArrayType *T =
5134 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
5137 }
5138 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
5139}
5140
5142 AtomicOp op, SourceLocation RP)
5143 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
5144 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
5145 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
5146 for (unsigned i = 0; i != args.size(); i++)
5147 SubExprs[i] = args[i];
5149}
5150
5152 switch (Op) {
5153 case AO__c11_atomic_init:
5154 case AO__opencl_atomic_init:
5155 case AO__c11_atomic_load:
5156 case AO__atomic_load_n:
5157 case AO__atomic_test_and_set:
5158 case AO__atomic_clear:
5159 return 2;
5160
5161 case AO__scoped_atomic_load_n:
5162 case AO__opencl_atomic_load:
5163 case AO__hip_atomic_load:
5164 case AO__c11_atomic_store:
5165 case AO__c11_atomic_exchange:
5166 case AO__atomic_load:
5167 case AO__atomic_store:
5168 case AO__atomic_store_n:
5169 case AO__atomic_exchange_n:
5170 case AO__c11_atomic_fetch_add:
5171 case AO__c11_atomic_fetch_sub:
5172 case AO__c11_atomic_fetch_and:
5173 case AO__c11_atomic_fetch_or:
5174 case AO__c11_atomic_fetch_xor:
5175 case AO__c11_atomic_fetch_nand:
5176 case AO__c11_atomic_fetch_max:
5177 case AO__c11_atomic_fetch_min:
5178 case AO__atomic_fetch_add:
5179 case AO__atomic_fetch_sub:
5180 case AO__atomic_fetch_and:
5181 case AO__atomic_fetch_or:
5182 case AO__atomic_fetch_xor:
5183 case AO__atomic_fetch_nand:
5184 case AO__atomic_add_fetch:
5185 case AO__atomic_sub_fetch:
5186 case AO__atomic_and_fetch:
5187 case AO__atomic_or_fetch:
5188 case AO__atomic_xor_fetch:
5189 case AO__atomic_nand_fetch:
5190 case AO__atomic_min_fetch:
5191 case AO__atomic_max_fetch:
5192 case AO__atomic_fetch_min:
5193 case AO__atomic_fetch_max:
5194 return 3;
5195
5196 case AO__scoped_atomic_load:
5197 case AO__scoped_atomic_store:
5198 case AO__scoped_atomic_store_n:
5199 case AO__scoped_atomic_fetch_add:
5200 case AO__scoped_atomic_fetch_sub:
5201 case AO__scoped_atomic_fetch_and:
5202 case AO__scoped_atomic_fetch_or:
5203 case AO__scoped_atomic_fetch_xor:
5204 case AO__scoped_atomic_fetch_nand:
5205 case AO__scoped_atomic_add_fetch:
5206 case AO__scoped_atomic_sub_fetch:
5207 case AO__scoped_atomic_and_fetch:
5208 case AO__scoped_atomic_or_fetch:
5209 case AO__scoped_atomic_xor_fetch:
5210 case AO__scoped_atomic_nand_fetch:
5211 case AO__scoped_atomic_min_fetch:
5212 case AO__scoped_atomic_max_fetch:
5213 case AO__scoped_atomic_fetch_min:
5214 case AO__scoped_atomic_fetch_max:
5215 case AO__scoped_atomic_exchange_n:
5216 case AO__hip_atomic_exchange:
5217 case AO__hip_atomic_fetch_add:
5218 case AO__hip_atomic_fetch_sub:
5219 case AO__hip_atomic_fetch_and:
5220 case AO__hip_atomic_fetch_or:
5221 case AO__hip_atomic_fetch_xor:
5222 case AO__hip_atomic_fetch_min:
5223 case AO__hip_atomic_fetch_max:
5224 case AO__opencl_atomic_store:
5225 case AO__hip_atomic_store:
5226 case AO__opencl_atomic_exchange:
5227 case AO__opencl_atomic_fetch_add:
5228 case AO__opencl_atomic_fetch_sub:
5229 case AO__opencl_atomic_fetch_and:
5230 case AO__opencl_atomic_fetch_or:
5231 case AO__opencl_atomic_fetch_xor:
5232 case AO__opencl_atomic_fetch_min:
5233 case AO__opencl_atomic_fetch_max:
5234 case AO__atomic_exchange:
5235 return 4;
5236
5237 case AO__scoped_atomic_exchange:
5238 case AO__c11_atomic_compare_exchange_strong:
5239 case AO__c11_atomic_compare_exchange_weak:
5240 return 5;
5241 case AO__hip_atomic_compare_exchange_strong:
5242 case AO__opencl_atomic_compare_exchange_strong:
5243 case AO__opencl_atomic_compare_exchange_weak:
5244 case AO__hip_atomic_compare_exchange_weak:
5245 case AO__atomic_compare_exchange:
5246 case AO__atomic_compare_exchange_n:
5247 return 6;
5248
5249 case AO__scoped_atomic_compare_exchange:
5250 case AO__scoped_atomic_compare_exchange_n:
5251 return 7;
5252 }
5253 llvm_unreachable("unknown atomic op");
5254}
5255
5257 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5258 if (auto AT = T->getAs<AtomicType>())
5259 return AT->getValueType();
5260 return T;
5261}
5262
5264 unsigned ArraySectionCount = 0;
5265 while (auto *OASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParens())) {
5266 Base = OASE->getBase();
5267 ++ArraySectionCount;
5268 }
5269 while (auto *ASE =
5270 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
5271 Base = ASE->getBase();
5272 ++ArraySectionCount;
5273 }
5274 Base = Base->IgnoreParenImpCasts();
5275 auto OriginalTy = Base->getType();
5276 if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
5277 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
5278 OriginalTy = PVD->getOriginalType().getNonReferenceType();
5279
5280 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5281 if (OriginalTy->isAnyPointerType())
5282 OriginalTy = OriginalTy->getPointeeType();
5283 else if (OriginalTy->isArrayType())
5284 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5285 else
5286 return {};
5287 }
5288 return OriginalTy;
5289}
5290
5293 // We only have to look into the array section exprs, else we will get the
5294 // type of the base, which should already be valid.
5295 if (auto *ASE = dyn_cast<ArraySectionExpr>(getBase()->IgnoreParenImpCasts()))
5296 BaseTy = ASE->getElementType();
5297
5298 if (BaseTy->isAnyPointerType())
5299 return BaseTy->getPointeeType();
5300 if (BaseTy->isArrayType())
5301 return BaseTy->castAsArrayTypeUnsafe()->getElementType();
5302
5303 // If this isn't a pointer or array, the base is a dependent expression, so
5304 // just return the BaseTy anyway.
5305 assert(BaseTy->isInstantiationDependentType());
5306 return BaseTy;
5307}
5308
5310 // We only have to look into the array section exprs, else we will get the
5311 // type of the base, which should already be valid.
5312 if (auto *ASE = dyn_cast<ArraySectionExpr>(getBase()->IgnoreParenImpCasts()))
5313 return ASE->getElementType();
5314
5315 return getBase()->IgnoreParenImpCasts()->getType();
5316}
5317
5318RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5319 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5320 : Expr(RecoveryExprClass, T.getNonReferenceType(),
5321 T->isDependentType() ? VK_LValue : getValueKindForType(T),
5322 OK_Ordinary),
5323 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5324 assert(!T.isNull());
5325 assert(!llvm::is_contained(SubExprs, nullptr));
5326
5327 llvm::copy(SubExprs, getTrailingObjects());
5329}
5330
5332 SourceLocation BeginLoc,
5333 SourceLocation EndLoc,
5334 ArrayRef<Expr *> SubExprs) {
5335 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5336 alignof(RecoveryExpr));
5337 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5338}
5339
5340RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5341 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5342 alignof(RecoveryExpr));
5343 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5344}
5345
5346void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5347 assert(
5348 NumDims == Dims.size() &&
5349 "Preallocated number of dimensions is different from the provided one.");
5350 llvm::copy(Dims, getTrailingObjects<Expr *>());
5351}
5352
5353void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5354 assert(
5355 NumDims == BR.size() &&
5356 "Preallocated number of dimensions is different from the provided one.");
5357 llvm::copy(BR, getTrailingObjects<SourceRange>());
5358}
5359
5360OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5362 ArrayRef<Expr *> Dims)
5363 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5364 RPLoc(R), NumDims(Dims.size()) {
5365 setBase(Op);
5366 setDimensions(Dims);
5368}
5369
5373 ArrayRef<Expr *> Dims,
5374 ArrayRef<SourceRange> BracketRanges) {
5375 assert(Dims.size() == BracketRanges.size() &&
5376 "Different number of dimensions and brackets ranges.");
5377 void *Mem = Context.Allocate(
5378 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
5379 alignof(OMPArrayShapingExpr));
5380 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5381 E->setBracketsRanges(BracketRanges);
5382 return E;
5383}
5384
5385OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5386 unsigned NumDims) {
5387 void *Mem = Context.Allocate(
5388 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
5389 alignof(OMPArrayShapingExpr));
5390 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5391}
5392
5393void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5394 getTrailingObjects<Decl *>(NumIterators)[I] = D;
5395}
5396
5397void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5398 assert(I < NumIterators &&
5399 "Idx is greater or equal the number of iterators definitions.");
5400 getTrailingObjects<
5401 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5402 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5403}
5404
5405void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5406 SourceLocation ColonLoc, Expr *End,
5407 SourceLocation SecondColonLoc,
5408 Expr *Step) {
5409 assert(I < NumIterators &&
5410 "Idx is greater or equal the number of iterators definitions.");
5411 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5412 static_cast<int>(RangeExprOffset::Begin)] =
5413 Begin;
5414 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5415 static_cast<int>(RangeExprOffset::End)] = End;
5416 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5417 static_cast<int>(RangeExprOffset::Step)] = Step;
5418 getTrailingObjects<
5419 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5420 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5421 ColonLoc;
5422 getTrailingObjects<
5423 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5424 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5425 SecondColonLoc;
5426}
5427
5429 return getTrailingObjects<Decl *>()[I];
5430}
5431
5433 IteratorRange Res;
5434 Res.Begin =
5435 getTrailingObjects<Expr *>()[I * static_cast<int>(
5436 RangeExprOffset::Total) +
5437 static_cast<int>(RangeExprOffset::Begin)];
5438 Res.End =
5439 getTrailingObjects<Expr *>()[I * static_cast<int>(
5440 RangeExprOffset::Total) +
5441 static_cast<int>(RangeExprOffset::End)];
5442 Res.Step =
5443 getTrailingObjects<Expr *>()[I * static_cast<int>(
5444 RangeExprOffset::Total) +
5445 static_cast<int>(RangeExprOffset::Step)];
5446 return Res;
5447}
5448
5450 return getTrailingObjects<
5451 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5452 static_cast<int>(RangeLocOffset::AssignLoc)];
5453}
5454
5456 return getTrailingObjects<
5457 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5458 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5459}
5460
5462 return getTrailingObjects<
5463 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5464 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5465}
5466
5467void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5468 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5469}
5470
5472 return getTrailingObjects<OMPIteratorHelperData>()[I];
5473}
5474
5476 return getTrailingObjects<OMPIteratorHelperData>()[I];
5477}
5478
5479OMPIteratorExpr::OMPIteratorExpr(
5480 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5483 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5484 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5485 NumIterators(Data.size()) {
5486 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5487 const IteratorDefinition &D = Data[I];
5488 setIteratorDeclaration(I, D.IteratorDecl);
5489 setAssignmentLoc(I, D.AssignmentLoc);
5490 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5491 D.SecondColonLoc, D.Range.Step);
5492 setHelper(I, Helpers[I]);
5493 }
5495}
5496
5499 SourceLocation IteratorKwLoc, SourceLocation L,
5503 assert(Data.size() == Helpers.size() &&
5504 "Data and helpers must have the same size.");
5505 void *Mem = Context.Allocate(
5506 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5507 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5508 Data.size() * static_cast<int>(RangeLocOffset::Total),
5509 Helpers.size()),
5510 alignof(OMPIteratorExpr));
5511 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5512}
5513
5514OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5515 unsigned NumIterators) {
5516 void *Mem = Context.Allocate(
5517 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5518 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5519 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5520 alignof(OMPIteratorExpr));
5521 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5522}
5523
5524HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty,
5526 OpaqueValueExpr *OpV, Expr *WB,
5527 bool IsInOut) {
5528 return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut);
5529}
5530
5532 return new (C) HLSLOutArgExpr(EmptyShell());
5533}
5534
5535OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C,
5536 SourceLocation Loc) {
5537 return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy);
5538}
5539
5542 return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy);
5543}
5544
5546 bool hasFPFeatures) {
5547 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
5548 alignof(ConvertVectorExpr));
5549 return new (Mem) ConvertVectorExpr(hasFPFeatures, EmptyShell());
5550}
5551
5552ConvertVectorExpr *ConvertVectorExpr::Create(
5553 const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType,
5555 SourceLocation RParenLoc, FPOptionsOverride FPFeatures) {
5556 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5557 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
5558 void *Mem = C.Allocate(Size, alignof(ConvertVectorExpr));
5559 return new (Mem) ConvertVectorExpr(SrcExpr, TI, DstType, VK, OK, BuiltinLoc,
5560 RParenLoc, FPFeatures);
5561}
5562
5564 assert(hasStaticStorage());
5565 if (!StaticValue) {
5566 StaticValue = new (Ctx) APValue;
5567 Ctx.addDestruction(StaticValue);
5568 }
5569 return *StaticValue;
5570}
5571
5573 assert(StaticValue);
5574 return *StaticValue;
5575}
Defines the clang::ASTContext interface.
#define V(N, I)
This file provides some common utility functions for processing Lambda related AST Constructs.
static bool isBooleanType(QualType Ty)
static Expr * IgnoreImplicitConstructorSingleStep(Expr *E)
Definition BuildTree.cpp:47
Defines enum values for all the target-independent builtin functions.
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
Defines the clang::Expr interface and subclasses for C++ expressions.
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition Expr.cpp:3222
static bool IsDecompositionDeclRefExpr(const Expr *E)
Helper to determine wether E is a CXXConstructExpr constructing a DecompositionDecl.
Definition Expr.cpp:2551
static unsigned SizeOfCallExprInstance(Expr::StmtClass SC)
Definition Expr.cpp:1446
static void AssertResultStorageKind(ConstantResultStorageKind Kind)
Definition Expr.cpp:290
static void computeOverflowPatternExclusion(const ASTContext &Ctx, const BinaryOperator *E)
Compute and set the OverflowPatternExclusion bit based on whether the BinaryOperator expression match...
Definition Expr.cpp:4916
static std::optional< BinaryOperator * > getOverflowPatternBinOp(const BinaryOperator *E)
Certain overflow-dependent code patterns can have their integer overflow sanitization disabled.
Definition Expr.cpp:4870
TokenType getType() const
Returns the token's type, e.g.
#define SM(sm)
Defines the clang::Preprocessor interface.
static QualType getUnderlyingType(const SubRegion *R)
static bool isRecordType(QualType T)
Defines the SourceManager interface.
Expr * getExpr()
Get 'expr' part of the associated expression/statement.
static QualType getPointeeType(const MemRegion *R)
static const TypeInfo & getInfo(unsigned id)
Definition Types.cpp:44
a trap message and trap category.
void setValue(const ASTContext &C, const llvm::APInt &Val)
llvm::APInt getValue() const
uint64_t * pVal
Used to store the >64 bits integer value.
uint64_t VAL
Used to store the <= 64 bits integer value.
void setIntValue(const ASTContext &C, const llvm::APInt &Val)
Definition Expr.cpp:943
A non-discriminated union of a base, field, or array index.
Definition APValue.h:207
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition APValue.h:122
static APValue IndeterminateValue()
Definition APValue.h:432
@ Indeterminate
This object has an indeterminate value (C++ [basic.indet]).
Definition APValue.h:131
@ None
There is no such object (it's outside its lifetime).
Definition APValue.h:129
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
SourceManager & getSourceManager()
Definition ASTContext.h:833
const ConstantArrayType * getAsConstantArrayType(QualType T) const
static CanQualType getCanonicalType(QualType T)
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
CanQualType DependentTy
Builtin::Context & BuiltinInfo
Definition ASTContext.h:774
const LangOptions & getLangOpts() const
Definition ASTContext.h:926
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
CanQualType CharTy
LangAS getDefaultOpenCLPointeeAddrSpace()
Returns default address space based on OpenCL version and enabled features.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
CanQualType VoidTy
void * Allocate(size_t Size, unsigned Align=8) const
Definition ASTContext.h:846
CanQualType UnsignedIntTy
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const
Make an APSInt of the appropriate width and signedness for the given Value and integer Type.
StringLiteral * getPredefinedStringLiteralFromCache(StringRef Key) const
Return a string representing the human readable name for the specified function declaration or file n...
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
UnnamedGlobalConstantDecl * getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const
Return a declaration for a uniquified anonymous global constant corresponding to a given APValue.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:891
void addDestruction(T *Ptr) const
If T isn't trivially destructible, calls AddDeallocation to register it for destruction.
CanQualType getCanonicalTagType(const TagDecl *TD) const
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
const Stmt ** const_iterator
Definition ASTVector.h:86
QualType getElementType() const
Return the effective 'element' type of this array section.
Definition Expr.cpp:5291
Expr * getBase()
Get base of the array section.
Definition Expr.h:7183
static QualType getBaseOriginalType(const Expr *Base)
Return original type of the base expression for array section.
Definition Expr.cpp:5263
QualType getBaseType() const
Returns the effective 'type' of the base of this array section.
Definition Expr.cpp:5309
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition Expr.h:2721
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition TypeBase.h:3722
QualType getElementType() const
Definition TypeBase.h:3734
static unsigned getNumSubExprs(AtomicOp Op)
Determine the number of arguments the specified atomic builtin should have.
Definition Expr.cpp:5151
QualType getValueType() const
Definition Expr.cpp:5256
Expr * getPtr() const
Definition Expr.h:6845
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr * > args, QualType t, AtomicOp op, SourceLocation RP)
Definition Expr.cpp:5141
unsigned getNumSubExprs() const
Definition Expr.h:6887
A builtin binary operation expression such as "x + y" or "x <= y".
Definition Expr.h:3972
Expr * getLHS() const
Definition Expr.h:4022
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given binary opcode.
Definition Expr.cpp:2175
StringRef getOpcodeStr() const
Definition Expr.h:4038
SourceLocation getOperatorLoc() const
Definition Expr.h:4014
bool hasStoredFPFeatures() const
Definition Expr.h:4157
bool isCompoundAssignmentOp() const
Definition Expr.h:4116
Expr * getRHS() const
Definition Expr.h:4024
static unsigned sizeOfTrailingObjects(bool HasFPFeatures)
Return the size in bytes needed for the trailing objects.
Definition Expr.h:4223
static BinaryOperator * Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures)
Definition Expr.cpp:4977
static BinaryOperator * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition Expr.cpp:4969
static bool isAssignmentOp(Opcode Opc)
Definition Expr.h:4108
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, const Expr *LHS, const Expr *RHS)
Return true if a binary operator using the specified opcode and operands would match the 'p = (i8*)nu...
Definition Expr.cpp:2200
Opcode getOpcode() const
Definition Expr.h:4017
void setStoredFPFeatures(FPOptionsOverride F)
Set FPFeatures in trailing storage, used only by Serialization.
Definition Expr.h:4174
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)
Retrieve the binary opcode that corresponds to the given overloaded operator.
Definition Expr.cpp:2137
BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures)
Build a binary operator, assuming that appropriate storage has been allocated for the trailing object...
Definition Expr.cpp:4932
BinaryOperatorKind Opcode
Definition Expr.h:3977
A binding in a decomposition declaration.
Definition DeclCXX.h:4185
SourceLocation getCaretLocation() const
Definition Expr.cpp:2533
BlockDecl * TheBlock
Definition Expr.h:6560
const Stmt * getBody() const
Definition Expr.cpp:2536
const FunctionProtoType * getFunctionType() const
getFunctionType - Return the underlying function type for this block.
Definition Expr.cpp:2527
Pointer to a block type.
Definition TypeBase.h:3542
bool isUnevaluated(unsigned ID) const
Returns true if this builtin does not perform the side-effects of its arguments.
Definition Builtins.h:296
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr....
Definition Expr.h:3903
static CStyleCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures)
Definition Expr.cpp:2117
static CStyleCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, FPOptionsOverride FPO, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R)
Definition Expr.cpp:2099
SourceLocation getLParenLoc() const
Definition Expr.h:3935
Represents a call to a CUDA kernel function.
Definition ExprCXX.h:234
Represents a base class of a C++ class.
Definition DeclCXX.h:146
Represents binding an expression to a temporary.
Definition ExprCXX.h:1494
CXXTemporary * getTemporary()
Definition ExprCXX.h:1512
Represents a call to a C++ constructor.
Definition ExprCXX.h:1549
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition ExprCXX.h:1692
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition ExprCXX.h:1612
unsigned getNumArgs() const
Return the number of arguments to the constructor call.
Definition ExprCXX.h:1689
Represents a C++ constructor within a class.
Definition DeclCXX.h:2604
A default argument (C++ [dcl.fct.default]).
Definition ExprCXX.h:1271
A use of a default initializer in a constructor or in aggregate initialization.
Definition ExprCXX.h:1378
Represents a C++ destructor within a class.
Definition DeclCXX.h:2869
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition ExprCXX.h:481
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr....
Definition ExprCXX.h:1833
Represents a call to a member function that may be written either with member call syntax (e....
Definition ExprCXX.h:179
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition DeclCXX.h:2255
A call to an overloaded operator written using operator syntax.
Definition ExprCXX.h:84
SourceLocation getOperatorLoc() const
Returns the location of the operator symbol in the expression.
Definition ExprCXX.h:152
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition ExprCXX.h:114
SourceRange getSourceRange() const
Definition ExprCXX.h:164
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition DeclCXX.h:1366
A C++ static_cast expression (C++ [expr.static.cast]).
Definition ExprCXX.h:436
const CXXDestructorDecl * getDestructor() const
Definition ExprCXX.h:1471
Represents the this expression in C++.
Definition ExprCXX.h:1155
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition Expr.h:3081
bool hasStoredFPFeatures() const
Definition Expr.h:3036
std::optional< llvm::APInt > evaluateBytesReturnedByAllocSizeCall(const ASTContext &Ctx) const
Evaluates the total size in bytes allocated by calling a function decorated with alloc_size.
Definition Expr.cpp:3578
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs, bool HasFPFeatures)
Return the size in bytes needed for the trailing objects.
Definition Expr.h:2960
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition Expr.h:3094
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition Expr.cpp:1513
const AllocSizeAttr * getCalleeAllocSizeAttr() const
Try to get the alloc_size attribute of the callee. May return null.
Definition Expr.cpp:3569
unsigned getBuiltinCallee() const
getBuiltinCallee - If this is a call to a builtin, return the builtin ID of the callee.
Definition Expr.cpp:1588
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition Expr.h:3060
static CallExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty)
Create an empty call expression, for deserialization.
Definition Expr.cpp:1531
bool isCallToStdMove() const
Definition Expr.cpp:3619
void setPreArg(unsigned I, Stmt *PreArg)
Definition Expr.h:2974
Expr * getCallee()
Definition Expr.h:3024
static constexpr unsigned OffsetToTrailingObjects
Definition Expr.h:2914
void computeDependence()
Compute and set dependence bits.
Definition Expr.h:3100
void setStoredFPFeatures(FPOptionsOverride F)
Set FPOptionsOverride in trailing storage. Used only by Serialization.
Definition Expr.h:3158
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition Expr.h:3068
CallExpr(StmtClass SC, Expr *Fn, ArrayRef< Expr * > PreArgs, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs, ADLCallKind UsesADL)
Build a call expression, assuming that appropriate storage has been allocated for the trailing object...
Definition Expr.cpp:1469
static constexpr unsigned sizeToAllocateForCallExprSubclass(unsigned SizeOfTrailingObjects)
Definition Expr.h:2917
static constexpr ADLCallKind UsesADL
Definition Expr.h:2944
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const
Return true if this is a call to __assume() or __builtin_assume() with a non-value-dependent constant...
Definition Expr.cpp:3557
Decl * getCalleeDecl()
Definition Expr.h:3054
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition Expr.cpp:1599
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const
Returns true if this is a call to a builtin which does not evaluate side-effects within its arguments...
Definition Expr.cpp:1593
void setCallee(Expr *F)
Definition Expr.h:3026
unsigned getNumPreArgs() const
Definition Expr.h:2979
bool hasUnusedResultAttr(const ASTContext &Ctx) const
Returns true if this call expression should warn on unused results.
Definition Expr.h:3204
QualType withConst() const
Retrieves a version of this type with const applied.
bool isVolatileQualified() const
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition Decl.h:4926
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition Expr.h:3610
FPOptionsOverride * getTrailingFPFeatures()
Return a pointer to the trailing FPOptions.
Definition Expr.cpp:2048
NamedDecl * getConversionFunction() const
If this cast applies a user-defined conversion, retrieve the conversion function that it invokes.
Definition Expr.cpp:1997
Expr * getSubExprAsWritten()
Retrieve the cast subexpression as it was written in the source code, looking through any implicit ca...
Definition Expr.cpp:1975
CastKind getCastKind() const
Definition Expr.h:3654
bool hasStoredFPFeatures() const
Definition Expr.h:3709
static const FieldDecl * getTargetFieldForToUnionCast(QualType unionType, QualType opType)
Definition Expr.cpp:2029
CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind, Expr *op, unsigned BasePathSize, bool HasFPFeatures)
Definition Expr.h:3623
const char * getCastKindName() const
Definition Expr.h:3658
bool path_empty() const
Definition Expr.h:3678
Expr * getSubExpr()
Definition Expr.h:3660
SourceLocation getEnd() const
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition CharUnits.h:53
void setValue(unsigned Val)
Definition Expr.h:1635
static void print(unsigned val, CharacterLiteralKind Kind, raw_ostream &OS)
Definition Expr.cpp:1016
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition Expr.h:4782
Represents a class template specialization, which refers to a class template with a given set of temp...
CompoundAssignOperator - For compound assignments (e.g.
Definition Expr.h:4234
static CompoundAssignOperator * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition Expr.cpp:4991
static CompoundAssignOperator * Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures, QualType CompLHSType=QualType(), QualType CompResultType=QualType())
Definition Expr.cpp:4999
CompoundLiteralExpr - [C99 6.5.2.5].
Definition Expr.h:3539
bool hasStaticStorage() const
Definition Expr.h:3584
APValue & getStaticValue() const
Definition Expr.cpp:5572
APValue & getOrCreateStaticValue(ASTContext &Ctx) const
Definition Expr.cpp:5563
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition Stmt.h:1720
bool body_empty() const
Definition Stmt.h:1764
Stmt * body_back()
Definition Stmt.h:1788
ConditionalOperator - The ?
Definition Expr.h:4325
ConstEvaluatedExprVisitor - This class visits 'const Expr *'s.
APValue getAPValueResult() const
Definition Expr.cpp:409
static ConstantResultStorageKind getStorageKind(const APValue &Value)
Definition Expr.cpp:298
void MoveIntoResult(APValue &Value, const ASTContext &Context)
Definition Expr.cpp:374
llvm::APSInt getResultAsAPSInt() const
Definition Expr.cpp:397
ConstantResultStorageKind getResultStorageKind() const
Definition Expr.h:1151
static ConstantExpr * Create(const ASTContext &Context, Expr *E, const APValue &Result)
Definition Expr.cpp:346
static ConstantExpr * CreateEmpty(const ASTContext &Context, ConstantResultStorageKind StorageKind)
Definition Expr.cpp:363
static ConvertVectorExpr * Create(const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType, ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, SourceLocation RParenLoc, FPOptionsOverride FPFeatures)
Definition Expr.cpp:5552
static ConvertVectorExpr * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition Expr.cpp:5545
A POD class for pairing a NamedDecl* with an access specifier.
NamedDecl * getDecl() const
AccessSpecifier getAccess() const
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition DeclBase.h:1449
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
A reference to a declared variable, function, enum, etc.
Definition Expr.h:1270
bool hasExplicitTemplateArgs() const
Determines whether this declaration reference was followed by an explicit template argument list.
Definition Expr.h:1425
void setDecl(ValueDecl *NewD)
Definition Expr.cpp:540
static DeclRefExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Construct an empty declaration reference expression.
Definition Expr.cpp:525
DeclarationNameInfo getNameInfo() const
Definition Expr.h:1342
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr, NonOdrUseReason NOUR=NOUR_None)
Definition Expr.cpp:484
ValueDecl * getDecl()
Definition Expr.h:1338
SourceLocation getEndLoc() const LLVM_READONLY
Definition Expr.cpp:547
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition Expr.h:1413
decl_range decls()
Definition Stmt.h:1659
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
static bool isFlexibleArrayMemberLike(const ASTContext &Context, const Decl *D, QualType Ty, LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, bool IgnoreTemplateOrMacroSubstitution)
Whether it resembles a flexible array member.
Definition DeclBase.cpp:459
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:546
static Decl * castFromDeclContext(const DeclContext *)
DeclContext * getDeclContext()
Definition DeclBase.h:448
AccessSpecifier getAccess() const
Definition DeclBase.h:507
bool hasAttr() const
Definition DeclBase.h:577
DeclarationNameLoc - Additional source/type location info for a declaration name.
Represents a single C99 designator.
Definition Expr.h:5528
SourceRange getSourceRange() const LLVM_READONLY
Definition Expr.h:5700
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Expr.h:5690
struct FieldDesignatorInfo FieldInfo
A field designator, e.g., ".x".
Definition Expr.h:5590
FieldDecl * getFieldDecl() const
Definition Expr.h:5619
SourceLocation getFieldLoc() const
Definition Expr.h:5636
const IdentifierInfo * getFieldName() const
Definition Expr.cpp:4669
SourceLocation getDotLoc() const
Definition Expr.h:5631
static DesignatedInitExpr * CreateEmpty(const ASTContext &C, unsigned NumIndexExprs)
Definition Expr.cpp:4723
Expr * getArrayRangeEnd(const Designator &D) const
Definition Expr.cpp:4778
Expr * getSubExpr(unsigned Idx) const
Definition Expr.h:5767
SourceRange getDesignatorsSourceRange() const
Definition Expr.cpp:4739
Expr * getArrayRangeStart(const Designator &D) const
Definition Expr.cpp:4773
void ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last)
Replaces the designator at index Idx with the series of designators in [First, Last).
Definition Expr.cpp:4785
Expr * getArrayIndex(const Designator &D) const
Definition Expr.cpp:4768
Designator * getDesignator(unsigned Idx)
Definition Expr.h:5726
Expr * getInit() const
Retrieve the initializer value.
Definition Expr.h:5753
unsigned size() const
Returns the number of designators in this initializer.
Definition Expr.h:5715
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Expr.cpp:4747
void setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs)
Definition Expr.cpp:4730
SourceLocation getEndLoc() const LLVM_READONLY
Definition Expr.cpp:4764
static DesignatedInitExpr * Create(const ASTContext &C, ArrayRef< Designator > Designators, ArrayRef< Expr * > IndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init)
Definition Expr.cpp:4710
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Expr.cpp:4827
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExprs, SourceLocation rBraceLoc)
Definition Expr.cpp:4811
SourceLocation getEndLoc() const LLVM_READONLY
Definition Expr.cpp:4831
InitListExpr * getUpdater() const
Definition Expr.h:5870
EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, EmbedDataStorage *Data, unsigned Begin, unsigned NumOfElements)
Definition Expr.cpp:2389
An instance of this object exists for each enum constant that is defined.
Definition Decl.h:3423
ExplicitCastExpr - An explicit cast written in the source code.
Definition Expr.h:3862
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition Expr.h:3889
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition ExprCXX.h:3663
bool isPRValue() const
Definition Expr.h:390
This represents one expression.
Definition Expr.h:112
@ LV_MemberFunction
Definition Expr.h:296
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer,...
EnumConstantDecl * getEnumConstantDecl()
If this expression refers to an enum constant, retrieve its declaration.
Definition Expr.cpp:4250
bool isReadIfDiscardedInCPlusPlus11() const
Determine whether an lvalue-to-rvalue conversion should implicitly be applied to this expression if i...
Definition Expr.cpp:2560
bool isIntegerConstantExpr(const ASTContext &Ctx) const
bool isGLValue() const
Definition Expr.h:287
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parentheses and casts which do not change the value (including ptr->int casts of the sa...
Definition Expr.cpp:3112
@ SE_AllowSideEffects
Allow any unmodeled side effect.
Definition Expr.h:674
@ SE_AllowUndefinedBehavior
Allow UB that we can give a value, but not arbitrary unmodeled side effects.
Definition Expr.h:672
static QualType findBoundMemberType(const Expr *expr)
Given an expression of bound-member type, find the type of the member.
Definition Expr.cpp:3041
static std::pair< const NamedDecl *, const WarnUnusedResultAttr * > getUnusedResultAttrImpl(const Decl *Callee, QualType ReturnType)
Returns the WarnUnusedResultAttr that is declared on the callee or its return type declaration,...
Definition Expr.cpp:1630
bool isImplicitCXXThis() const
Whether this expression is an implicit reference to 'this' in C++.
Definition Expr.cpp:3290
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition Expr.cpp:3090
void setType(QualType t)
Definition Expr.h:145
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const
isUnusedResultAWarning - Return true if this immediate expression should be warned about if the resul...
Definition Expr.cpp:2626
LValueClassification ClassifyLValue(ASTContext &Ctx) const
Reasons why an expression might not be an l-value.
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition Expr.h:177
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition Expr.h:444
bool refersToVectorElement() const
Returns whether this expression refers to a vector element.
Definition Expr.cpp:4257
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition Expr.h:194
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
Expr * IgnoreParenLValueCasts() LLVM_READONLY
Skip past any parentheses and lvalue casts which might surround this expression until reaching a fixe...
Definition Expr.cpp:3102
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition Expr.cpp:3963
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition Expr.cpp:68
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition Expr.cpp:3085
Expr * IgnoreImplicit() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3073
Expr * IgnoreConversionOperatorSingleStep() LLVM_READONLY
Skip conversion operators.
Definition Expr.cpp:3094
bool containsErrors() const
Whether this expression contains subexpressions which had errors.
Definition Expr.h:246
bool isObjCSelfExpr() const
Check if this expression is the ObjC 'self' implicit parameter.
Definition Expr.cpp:4185
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3081
bool isFlexibleArrayMemberLike(const ASTContext &Context, LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, bool IgnoreTemplateOrMacroSubstitution=false) const
Check whether this array fits the idiom of a flexible array member, depending on the value of -fstric...
Definition Expr.cpp:202
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
Expr * IgnoreParenBaseCasts() LLVM_READONLY
Skip past any parentheses and derived-to-base casts until reaching a fixed point.
Definition Expr.cpp:3107
bool isPRValue() const
Definition Expr.h:285
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition Expr.h:284
static bool hasAnyTypeDependentArguments(ArrayRef< Expr * > Exprs)
hasAnyTypeDependentArguments - Determines if any of the expressions in Exprs is type-dependent.
Definition Expr.cpp:3334
FieldDecl * getSourceBitField()
If this expression refers to a bit-field, retrieve the declaration of that bit-field.
Definition Expr.cpp:4203
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition Expr.h:825
@ NPC_ValueDependentIsNull
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition Expr.h:831
@ NPC_NeverValueDependent
Specifies that the expression should never be value-dependent.
Definition Expr.h:827
@ NPC_ValueDependentIsNotNull
Specifies that a value-dependent expression should be considered to never be a null pointer constant.
Definition Expr.h:835
Expr * IgnoreUnlessSpelledInSource()
Skip past any invisible AST nodes which might surround this statement, such as ExprWithCleanups or Im...
Definition Expr.cpp:3138
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition Expr.h:451
Expr * IgnoreCasts() LLVM_READONLY
Skip past any casts which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3069
Decl * getReferencedDeclOfCallee()
Definition Expr.cpp:1542
Expr * IgnoreImplicitAsWritten() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3077
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition Expr.cpp:3665
bool EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, ConstantExprKind Kind=ConstantExprKind::Normal) const
Evaluate an expression that is required to be a constant expression.
const Expr * getBestDynamicClassTypeExpr() const
Get the inner expression that determines the best dynamic class.
Definition Expr.cpp:43
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3065
NullPointerConstantKind
Enumeration used to describe the kind of Null pointer constant returned from isNullPointerConstant().
Definition Expr.h:802
@ NPCK_ZeroExpression
Expression is a Null pointer constant built from a zero integer expression that is not a simple,...
Definition Expr.h:811
@ NPCK_ZeroLiteral
Expression is a Null pointer constant built from a literal zero.
Definition Expr.h:814
@ NPCK_CXX11_nullptr
Expression is a C++11 nullptr.
Definition Expr.h:817
@ NPCK_GNUNull
Expression is a GNU-style __null constant.
Definition Expr.h:820
@ NPCK_NotNull
Expression is not a Null pointer constant.
Definition Expr.h:804
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boo...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type.
Definition Expr.cpp:3248
NullPointerConstantKind isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const
isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant.
Definition Expr.cpp:4042
QualType getEnumCoercedType(const ASTContext &Ctx) const
If this expression is an enumeration constant, return the enumeration type under which said constant ...
Definition Expr.cpp:262
bool isBoundMemberFunction(ASTContext &Ctx) const
Returns true if this expression is a bound member function.
Definition Expr.cpp:3035
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant,...
Definition Expr.cpp:3342
Expr()=delete
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
static bool isSameComparisonOperand(const Expr *E1, const Expr *E2)
Checks that the two Expr's will refer to the same value as a comparison operand.
Definition Expr.cpp:4294
bool isDefaultArgument() const
Determine whether this expression is a default function argument.
Definition Expr.cpp:3209
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition Expr.h:412
QualType getType() const
Definition Expr.h:144
bool hasNonTrivialCall(const ASTContext &Ctx) const
Determine whether this expression involves a call to any function that is not trivial.
Definition Expr.cpp:4030
bool refersToGlobalRegisterVar() const
Returns whether this expression refers to a global register variable.
Definition Expr.cpp:4282
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
const ValueDecl * getAsBuiltinConstantDeclRef(const ASTContext &Context) const
If this expression is an unambiguous reference to a single declaration, in the style of __builtin_fun...
Definition Expr.cpp:222
bool isOBJCGCCandidate(ASTContext &Ctx) const
isOBJCGCCandidate - Return true if this expression may be used in a read/ write barrier.
Definition Expr.cpp:2996
static ExprValueKind getValueKindForType(QualType T)
getValueKindForType - Given a formal return or parameter type, give its value kind.
Definition Expr.h:434
const Expr * skipRValueSubobjectAdjustments() const
Definition Expr.h:1020
bool isKnownToHaveBooleanValue(bool Semantic=true) const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition Expr.cpp:133
void setDependence(ExprDependence Deps)
Each concrete expr subclass is expected to compute its dependence and call this in the constructor.
Definition Expr.h:137
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition Expr.cpp:4166
bool containsDuplicateElements() const
containsDuplicateElements - Return true if any element access is repeated.
Definition Expr.cpp:4421
bool isArrow() const
isArrow - Return true if the base expression is a pointer to vector, return false if the base express...
Definition Expr.cpp:4410
void getEncodedElementAccess(SmallVectorImpl< uint32_t > &Elts) const
getEncodedElementAccess - Encode the elements accessed into an llvm aggregate Constant of ConstantInt...
Definition Expr.cpp:4442
const Expr * getBase() const
Definition Expr.h:6515
unsigned getNumElements() const
getNumElements - Get the number of components being selected.
Definition Expr.cpp:4414
static int getAccessorIdx(char c, bool isNumericAccessor)
Definition TypeBase.h:4313
Represents difference between two FPOptions values.
bool requiresTrailingStorage() const
static FPOptions defaultWithoutTrailingStorage(const LangOptions &LO)
Return the default value of FPOptions that's used when trailing storage isn't required.
Represents a member of a struct/union/class.
Definition Decl.h:3160
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set.
Definition Decl.cpp:4714
bool isBitField() const
Determines whether this field is a bitfield.
Definition Decl.h:3263
static FixedPointLiteral * Create(const ASTContext &C, EmptyShell Empty)
Returns an empty fixed-point literal.
Definition Expr.cpp:1001
std::string getValueAsString(unsigned Radix) const
Definition Expr.cpp:1006
llvm::APInt getValue() const
Returns an internal integer representation of the literal.
Definition Expr.h:1575
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition Expr.cpp:993
static FloatingLiteral * Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L)
Definition Expr.cpp:1072
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition Expr.cpp:1085
llvm::APFloat getValue() const
Definition Expr.h:1666
FullExpr - Represents a "full-expression" node.
Definition Expr.h:1049
Represents a function declaration or definition.
Definition Decl.h:2000
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition Decl.cpp:4253
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition Decl.h:2377
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5254
Provides information about a function template specialization, which is a FunctionDecl that has been ...
TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4450
CallingConv getCallConv() const
Definition TypeBase.h:4805
QualType getReturnType() const
Definition TypeBase.h:4790
Represents a C11 generic selection.
Definition Expr.h:6112
static GenericSelectionExpr * Create(const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef< TypeSourceInfo * > AssocTypes, ArrayRef< Expr * > AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
Create a non-result-dependent generic selection expression accepting an expression predicate.
Definition Expr.cpp:4599
static GenericSelectionExpr * CreateEmpty(const ASTContext &Context, unsigned NumAssocs)
Create an empty generic selection expression for deserialization.
Definition Expr.cpp:4657
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
static HLSLOutArgExpr * CreateEmpty(const ASTContext &Ctx)
Definition Expr.cpp:5531
static HLSLOutArgExpr * Create(const ASTContext &C, QualType Ty, OpaqueValueExpr *Base, OpaqueValueExpr *OpV, Expr *WB, bool IsInOut)
Definition Expr.cpp:5524
One of these records is kept for each identifier that is lexed.
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition Expr.h:3787
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat, FPOptionsOverride FPO)
Definition Expr.cpp:2068
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures)
Definition Expr.cpp:2090
Describes an C or C++ initializer list.
Definition Expr.h:5233
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition Expr.h:5345
InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef< Expr * > initExprs, SourceLocation rbraceloc)
Definition Expr.cpp:2401
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic,...
Definition Expr.cpp:2457
void resizeInits(const ASTContext &Context, unsigned NumInits)
Specify the number of initializers.
Definition Expr.cpp:2417
bool isStringLiteralInit() const
Is this an initializer for an array of characters, initialized by a string literal or an @encode?
Definition Expr.cpp:2443
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition Expr.h:5359
unsigned getNumInits() const
Definition Expr.h:5263
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Expr.cpp:2491
bool isSemanticForm() const
Definition Expr.h:5399
void setInit(unsigned Init, Expr *expr)
Definition Expr.h:5297
Expr * updateInit(const ASTContext &C, unsigned Init, Expr *expr)
Updates the initializer at index Init with the new expression expr, and returns the old expression at...
Definition Expr.cpp:2421
void setArrayFiller(Expr *filler)
Definition Expr.cpp:2433
InitListExpr * getSyntacticForm() const
Definition Expr.h:5406
const Expr * getInit(unsigned Init) const
Definition Expr.h:5287
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const
Is this the zero initializer {0} in a language which considers it idiomatic?
Definition Expr.cpp:2480
SourceLocation getEndLoc() const LLVM_READONLY
Definition Expr.cpp:2509
bool isSyntacticForm() const
Definition Expr.h:5403
ArrayRef< Expr * > inits()
Definition Expr.h:5283
void sawArrayRangeDesignator(bool ARD=true)
Definition Expr.h:5420
Expr ** getInits()
Retrieve the set of initializers.
Definition Expr.h:5276
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition Expr.cpp:2412
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value 'V' and type 'type'.
Definition Expr.cpp:971
static ItaniumMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags, bool IsAux=false)
LabelStmt - Represents a label, which has a substatement.
Definition Stmt.h:2146
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition ExprCXX.h:1970
@ AddUnsignedOverflowTest
if (a + b < a)
@ AddSignedOverflowTest
if (a + b < a)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
bool isOverflowPatternExcluded(OverflowPatternExclusionKind Kind) const
void remapPathPrefix(SmallVectorImpl< char > &Path) const
Remap path prefix according to -fmacro-prefix-path option.
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens.
Definition Lexer.h:78
bool LexFromRawLexer(Token &Result)
LexFromRawLexer - Lex a token from a designated raw lexer (one with no associated preprocessor object...
Definition Lexer.h:236
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token,...
Definition Lexer.h:399
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition ExprCXX.h:4922
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition Expr.h:3298
static MemberExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Definition Expr.cpp:1768
void setMemberDecl(ValueDecl *D)
Definition Expr.cpp:1783
NestedNameSpecifierLoc getQualifierLoc() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name,...
Definition Expr.h:3400
bool hasExplicitTemplateArgs() const
Determines whether the member name was followed by an explicit template argument list.
Definition Expr.h:3442
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition Expr.h:3395
static MemberExpr * Create(const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, DeclAccessPair FoundDecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR)
Definition Expr.cpp:1746
bool isImplicitAccess() const
Determine whether the base of this explicit is implicit.
Definition Expr.h:3496
Expr * getBase() const
Definition Expr.h:3375
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition Expr.h:3431
SourceLocation getEndLoc() const LLVM_READONLY
Definition Expr.cpp:1804
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Expr.cpp:1790
DeclarationNameInfo getMemberNameInfo() const
Retrieve the member declaration name info.
Definition Expr.h:3475
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition TypeBase.h:3653
This represents a decl that may have a name.
Definition Decl.h:274
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition Decl.h:295
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition Decl.h:301
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition Decl.h:340
A C++ nested-name-specifier augmented with source location information.
SourceLocation getBeginLoc() const
Retrieve the location of the beginning of this nested-name-specifier.
bool hasQualifier() const
Evaluates true when this nested-name-specifier location is non-empty.
An explicit cast in C or a C-style cast in C++, which uses the syntax ([s1][s2]......
Definition ExprOpenMP.h:24
static OMPArrayShapingExpr * CreateEmpty(const ASTContext &Context, unsigned NumDims)
Definition Expr.cpp:5385
static OMPArrayShapingExpr * Create(const ASTContext &Context, QualType T, Expr *Op, SourceLocation L, SourceLocation R, ArrayRef< Expr * > Dims, ArrayRef< SourceRange > BracketRanges)
Definition Expr.cpp:5371
OpenMP 5.0 [2.1.6 Iterators] Iterators are identifiers that expand to multiple values in the clause o...
Definition ExprOpenMP.h:151
static OMPIteratorExpr * Create(const ASTContext &Context, QualType T, SourceLocation IteratorKwLoc, SourceLocation L, SourceLocation R, ArrayRef< IteratorDefinition > Data, ArrayRef< OMPIteratorHelperData > Helpers)
Definition Expr.cpp:5498
static OMPIteratorExpr * CreateEmpty(const ASTContext &Context, unsigned NumIterators)
Definition Expr.cpp:5514
SourceLocation getSecondColonLoc(unsigned I) const
Gets the location of the second ':' (if any) in the range for the given iteratori definition.
Definition Expr.cpp:5461
SourceLocation getColonLoc(unsigned I) const
Gets the location of the first ':' in the range for the given iterator definition.
Definition Expr.cpp:5455
IteratorRange getIteratorRange(unsigned I)
Gets the iterator range for the given iterator.
Definition Expr.cpp:5432
OMPIteratorHelperData & getHelper(unsigned I)
Fetches helper data for the specified iteration space.
Definition Expr.cpp:5471
SourceLocation getAssignLoc(unsigned I) const
Gets the location of '=' for the given iterator definition.
Definition Expr.cpp:5449
Decl * getIteratorDecl(unsigned I)
Gets the iterator declaration for the given iterator.
Definition Expr.cpp:5428
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration.
Definition DeclObjC.h:2545
Represents an ObjC class declaration.
Definition DeclObjC.h:1154
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition ExprObjC.h:548
An expression that sends a message to the given Objective-C object or class.
Definition ExprObjC.h:940
ObjCMethodFamily getMethodFamily() const
Definition ExprObjC.h:1383
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition ExprObjC.h:1256
bool hasUnusedResultAttr(ASTContext &Ctx) const
Returns true if this message send should warn on unused results.
Definition ExprObjC.h:1247
ObjCMethodDecl - Represents an instance or class method declaration.
Definition DeclObjC.h:140
ImplicitParamDecl * getSelfDecl() const
Definition DeclObjC.h:418
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition ExprObjC.h:616
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition Expr.cpp:1662
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr * > exprs, SourceLocation RParenLoc)
Definition Expr.cpp:1649
void setIndexExpr(unsigned Idx, Expr *E)
Definition Expr.h:2594
void setComponent(unsigned Idx, OffsetOfNode ON)
Definition Expr.h:2578
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition Expr.h:2485
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition Expr.cpp:1684
@ Identifier
A field in a dependent type, known only by its name.
Definition Expr.h:2430
@ Field
A field.
Definition Expr.h:2428
Kind getKind() const
Determine what kind of offsetof node this is.
Definition Expr.h:2475
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition Expr.h:1178
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition Expr.cpp:5046
OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK, ExprObjectKind OK=OK_Ordinary, Expr *SourceExpr=nullptr)
Definition Expr.h:1183
This expression type represents an asterisk in an OpenACC Size-Expr, used in the 'tile' and 'gang' cl...
Definition Expr.h:2090
static OpenACCAsteriskSizeExpr * Create(const ASTContext &C, SourceLocation Loc)
Definition Expr.cpp:5535
static OpenACCAsteriskSizeExpr * CreateEmpty(const ASTContext &C)
Definition Expr.cpp:5541
ParenExpr - This represents a parenthesized expression, e.g.
Definition Expr.h:2182
static ParenListExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumExprs)
Create an empty paren list.
Definition Expr.cpp:4858
static ParenListExpr * Create(const ASTContext &Ctx, SourceLocation LParenLoc, ArrayRef< Expr * > Exprs, SourceLocation RParenLoc)
Create a paren list.
Definition Expr.cpp:4849
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
QualType getPointeeType() const
Definition TypeBase.h:3338
static PredefinedExpr * Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, PredefinedIdentKind IK, bool IsTransparent, StringLiteral *SL)
Create a PredefinedExpr.
Definition Expr.cpp:629
StringRef getIdentKindName() const
Definition Expr.h:2062
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition Expr.cpp:638
static std::string ComputeName(PredefinedIdentKind IK, const Decl *CurrentDecl, bool ForceElaboratedPrinting=false)
Definition Expr.cpp:669
static void processPathToFileName(SmallVectorImpl< char > &FileName, const PresumedLoc &PLoc, const LangOptions &LangOpts, const TargetInfo &TI)
static void processPathForFileMacro(SmallVectorImpl< char > &Path, const LangOptions &LangOpts, const TargetInfo &TI)
Represents an unpacked "presumed" location which can be presented to the user.
unsigned getColumn() const
Return the presumed column number of this location.
const char * getFilename() const
Return the presumed filename of this location.
unsigned getLine() const
Return the presumed line number of this location.
Callbacks to use to customize the behavior of the pretty-printer.
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition Expr.h:6690
semantics_iterator semantics_end()
Definition Expr.h:6755
semantics_iterator semantics_begin()
Definition Expr.h:6751
const Expr *const * const_semantics_iterator
Definition Expr.h:6750
static PseudoObjectExpr * Create(const ASTContext &Context, Expr *syntactic, ArrayRef< Expr * > semantic, unsigned resultIndex)
Definition Expr.cpp:5071
ArrayRef< Expr * > semantics()
Definition Expr.h:6762
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition TypeBase.h:8362
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
LangAS getAddressSpace() const
Return the address space of this type.
Definition TypeBase.h:8404
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition TypeBase.h:8318
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
QualType getCanonicalType() const
Definition TypeBase.h:8330
The collection of all-type qualifiers we support.
Definition TypeBase.h:331
void removeAddressSpace()
Definition TypeBase.h:596
bool empty() const
Definition TypeBase.h:647
Represents a struct/union/class.
Definition Decl.h:4312
field_iterator field_end() const
Definition Decl.h:4518
field_range fields() const
Definition Decl.h:4515
specific_decl_iterator< FieldDecl > field_iterator
Definition Decl.h:4512
field_iterator field_begin() const
Definition Decl.cpp:5202
static RecoveryExpr * Create(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, SourceLocation EndLoc, ArrayRef< Expr * > SubExprs)
Definition Expr.cpp:5331
static RecoveryExpr * CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs)
Definition Expr.cpp:5340
TypeSourceInfo * getTypeSourceInfo()
Definition Expr.h:2143
static SYCLUniqueStableNameExpr * Create(const ASTContext &Ctx, SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, TypeSourceInfo *TSI)
Definition Expr.cpp:569
std::string ComputeName(ASTContext &Context) const
Definition Expr.cpp:583
static SYCLUniqueStableNameExpr * CreateEmpty(const ASTContext &Ctx)
Definition Expr.cpp:578
void setExprs(const ASTContext &C, ArrayRef< Expr * > Exprs)
Definition Expr.cpp:4487
ShuffleVectorExpr(const ASTContext &C, ArrayRef< Expr * > args, QualType Type, SourceLocation BLoc, SourceLocation RP)
Definition Expr.cpp:4474
APValue EvaluateInContext(const ASTContext &Ctx, const Expr *DefaultExpr) const
Return the result of evaluating this SourceLocExpr in the specified (and possibly null) default argum...
Definition Expr.cpp:2277
SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Type, QualType ResultTy, SourceLocation BLoc, SourceLocation RParenLoc, DeclContext *Context)
Definition Expr.cpp:2244
SourceLocation getLocation() const
Definition Expr.h:4995
const DeclContext * getParentContext() const
If the SourceLocExpr has been resolved return the subexpression representing the resolved value.
Definition Expr.h:4992
StringRef getBuiltinStr() const
Return a string representing the name of the specific builtin function.
Definition Expr.cpp:2257
static bool MayBeDependent(SourceLocIdentKind Kind)
Definition Expr.h:5011
SourceLocIdentKind getIdentKind() const
Definition Expr.h:4971
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
This class handles loading and caching of source files into memory.
PresumedLoc getPresumedLoc(SourceLocation Loc, bool UseLineDirectives=true) const
Returns the "presumed" location of a SourceLocation specifies.
CharSourceRange getExpansionRange(SourceLocation Loc) const
Given a SourceLocation object, return the range of tokens covered by the expansion in the ultimate fi...
A trivial tuple used to represent a source range.
Stmt - This represents one statement.
Definition Stmt.h:85
SourceLocation getEndLoc() const LLVM_READONLY
Definition Stmt.cpp:362
@ NoStmtClass
Definition Stmt.h:88
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits
Definition Stmt.h:1331
GenericSelectionExprBitfields GenericSelectionExprBits
Definition Stmt.h:1339
ParenListExprBitfields ParenListExprBits
Definition Stmt.h:1338
StmtIterator child_iterator
Child Iterators: All subclasses must implement 'children' to permit easy iteration over the substatem...
Definition Stmt.h:1558
CallExprBitfields CallExprBits
Definition Stmt.h:1333
child_range children()
Definition Stmt.cpp:299
ShuffleVectorExprBitfields ShuffleVectorExprBits
Definition Stmt.h:1343
FloatingLiteralBitfields FloatingLiteralBits
Definition Stmt.h:1327
child_iterator child_begin()
Definition Stmt.h:1571
StmtClass getStmtClass() const
Definition Stmt.h:1472
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:338
UnaryOperatorBitfields UnaryOperatorBits
Definition Stmt.h:1330
SourceLocExprBitfields SourceLocExprBits
Definition Stmt.h:1341
ConstantExprBitfields ConstantExprBits
Definition Stmt.h:1324
llvm::iterator_range< child_iterator > child_range
Definition Stmt.h:1561
StringLiteralBitfields StringLiteralBits
Definition Stmt.h:1328
MemberExprBitfields MemberExprBits
Definition Stmt.h:1334
DeclRefExprBitfields DeclRefExprBits
Definition Stmt.h:1326
ConstStmtIterator const_child_iterator
Definition Stmt.h:1559
PredefinedExprBitfields PredefinedExprBits
Definition Stmt.h:1325
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Stmt.cpp:350
BinaryOperatorBitfields BinaryOperatorBits
Definition Stmt.h:1336
PseudoObjectExprBitfields PseudoObjectExprBits
Definition Stmt.h:1340
llvm::iterator_range< const_child_iterator > const_child_range
Definition Stmt.h:1562
StringLiteralParser - This decodes string escape characters and performs wide string analysis and Tra...
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
unsigned GetStringLength() const
StringLiteral - This represents a string literal expression, e.g.
Definition Expr.h:1799
SourceLocation getStrTokenLoc(unsigned TokNum) const
Get one of the string literal token.
Definition Expr.h:1945
unsigned getLength() const
Definition Expr.h:1909
StringLiteralKind getKind() const
Definition Expr.h:1912
static StringLiteral * Create(const ASTContext &Ctx, StringRef Str, StringLiteralKind Kind, bool Pascal, QualType Ty, ArrayRef< SourceLocation > Locs)
This is the "fully general" constructor that allows representation of strings formed from one or more...
Definition Expr.cpp:1184
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition Expr.cpp:1322
uint32_t getCodeUnit(size_t i) const
Definition Expr.h:1882
void outputString(raw_ostream &OS) const
Definition Expr.cpp:1205
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition Expr.cpp:1194
unsigned getNumConcatenated() const
getNumConcatenated - Get the number of string literal tokens that were concatenated in translation ph...
Definition Expr.h:1940
Represents the declaration of a struct/union/class/enum.
Definition Decl.h:3717
Exposes information about the current target.
Definition TargetInfo.h:226
A convenient class for passing around template argument information.
A template argument list.
unsigned size() const
Retrieve the number of template arguments in this template argument list.
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Location wrapper for a TemplateArgument.
void print(const PrintingPolicy &Policy, raw_ostream &Out, bool IncludeType) const
Print this template argument to the given output stream.
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Stores a list of template parameters for a TemplateDecl and its derived classes.
NamedDecl * getParam(unsigned Idx)
static bool shouldIncludeTypeForArgument(const PrintingPolicy &Policy, const TemplateParameterList *TPL, unsigned Idx)
Token - This structure provides full information about a lexed token.
Definition Token.h:36
A container of type source information.
Definition TypeBase.h:8249
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isVoidType() const
Definition TypeBase.h:8871
bool isBooleanType() const
Definition TypeBase.h:9001
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition Type.cpp:1951
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type.
Definition TypeBase.h:9167
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
bool isArrayType() const
Definition TypeBase.h:8614
bool isCharType() const
Definition Type.cpp:2132
CXXRecordDecl * castAsCXXRecordDecl() const
Definition Type.h:36
bool isPointerType() const
Definition TypeBase.h:8515
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8915
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition TypeBase.h:8860
bool isReferenceType() const
Definition TypeBase.h:8539
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to.
Definition Type.cpp:1909
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition Type.cpp:2103
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition TypeBase.h:8989
TagDecl * getAsTagDecl() const
Retrieves the TagDecl that this type refers to, either because the type is a TagType or because it is...
Definition Type.h:63
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition TypeBase.h:2790
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition TypeBase.h:2782
RecordDecl * castAsRecordDecl() const
Definition Type.h:48
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type.
Definition TypeBase.h:9144
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition Type.cpp:2253
bool isAnyPointerType() const
Definition TypeBase.h:8523
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
bool isRecordType() const
Definition TypeBase.h:8642
QualType desugar() const
Definition Type.cpp:4040
QualType getArgumentType() const
Definition Expr.h:2668
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition Expr.h:2633
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition Expr.h:2244
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition Expr.h:2289
Expr * getSubExpr() const
Definition Expr.h:2285
Opcode getOpcode() const
Definition Expr.h:2280
bool hasStoredFPFeatures() const
Is FPFeatures in Trailing Storage?
Definition Expr.h:2381
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode.
Definition Expr.cpp:1426
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition Expr.cpp:5034
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix)
Retrieve the unary opcode that corresponds to the given overloaded operator.
Definition Expr.cpp:1411
void setStoredFPFeatures(FPOptionsOverride F)
Set FPFeatures in trailing storage, used by Serialization & ASTImporter.
Definition Expr.h:2395
UnaryOperatorKind Opcode
Definition Expr.h:2258
UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition Expr.cpp:5020
static UnaryOperator * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition Expr.cpp:5013
static StringRef getOpcodeStr(Opcode Op)
getOpcodeStr - Turn an Opcode enum value into the punctuation char it corresponds to,...
Definition Expr.cpp:1402
An artificial decl, representing a global anonymous constant value which is uniquified by value withi...
Definition DeclCXX.h:4455
A call to a literal operator (C++11 [over.literal]) written as a user-defined literal (C++11 [lit....
Definition ExprCXX.h:640
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition Decl.h:712
QualType getType() const
Definition Decl.h:723
Stmt(StmtClass SC, EmptyShell)
Construct an empty statement.
Definition Stmt.h:1454
Kind getKind() const
Definition Value.h:137
Represents a variable declaration or definition.
Definition Decl.h:926
Represents a C array with a specified size that is not an integer-constant-expression.
Definition TypeBase.h:3966
Represents a GCC generic vector type.
Definition TypeBase.h:4175
Defines the clang::TargetInfo interface.
Definition SPIR.cpp:47
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
@ OO_None
Not an overloaded operator.
ConstantResultStorageKind
Describes the kind of result that can be tail-allocated.
Definition Expr.h:1076
@ Ctor_Base
Base object ctor.
Definition ABI.h:26
bool isa(CodeGen::Address addr)
Definition Address.h:330
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition CharInfo.h:160
LLVM_READONLY auto escapeCStyle(CharT Ch) -> StringRef
Return C-style escaped string for special characters, or an empty string if there is no such mapping.
Definition CharInfo.h:191
Expr * IgnoreExprNodes(Expr *E, FnTys &&... Fns)
Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, Recursively apply each of the f...
Definition IgnoreExpr.h:34
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition TypeBase.h:1780
@ RQ_LValue
An lvalue ref-qualifier was provided (&).
Definition TypeBase.h:1785
@ RQ_RValue
An rvalue ref-qualifier was provided (&&).
Definition TypeBase.h:1788
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition Specifiers.h:149
@ OK_ObjCProperty
An Objective-C property is a logical field of an Objective-C object which is read and written via Obj...
Definition Specifiers.h:161
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition Specifiers.h:151
std::pair< FileID, unsigned > FileIDAndOffset
ExprDependence computeDependence(FullExpr *E)
@ Create
'create' clause, allowed on Compute and Combined constructs, plus 'data', 'enter data',...
@ Self
'self' clause, allowed on Compute and Combined Constructs, plus 'update'.
nullptr
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
@ SC_Register
Definition Specifiers.h:257
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition TypeTraits.h:51
@ UETT_Last
Definition TypeTraits.h:55
Expr * IgnoreImplicitCastsExtraSingleStep(Expr *E)
Definition IgnoreExpr.h:58
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
const FunctionProtoType * T
Expr * IgnoreImplicitCastsSingleStep(Expr *E)
Definition IgnoreExpr.h:48
@ Dtor_Base
Base object dtor.
Definition ABI.h:37
CastKind
CastKind - The kind of operation required for a conversion.
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition Type.cpp:5456
Expr * IgnoreImplicitSingleStep(Expr *E)
Definition IgnoreExpr.h:111
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition Specifiers.h:132
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition Specifiers.h:135
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition Specifiers.h:139
Expr * IgnoreParensSingleStep(Expr *E)
Definition IgnoreExpr.h:150
SmallVector< CXXBaseSpecifier *, 4 > CXXCastPath
A simple array of base specifiers.
Definition ASTContext.h:149
Expr * IgnoreImplicitAsWrittenSingleStep(Expr *E)
Definition IgnoreExpr.h:137
Expr * IgnoreCastsSingleStep(Expr *E)
Definition IgnoreExpr.h:75
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
StringLiteralKind
Definition Expr.h:1763
@ CC_X86ThisCall
Definition Specifiers.h:282
@ CC_X86RegCall
Definition Specifiers.h:287
@ CC_X86VectorCall
Definition Specifiers.h:283
@ CC_X86StdCall
Definition Specifiers.h:280
@ CC_X86FastCall
Definition Specifiers.h:281
U cast(CodeGen::Address addr)
Definition Address.h:327
SourceLocIdentKind
Definition Expr.h:4938
Expr * IgnoreLValueCastsSingleStep(Expr *E)
Definition IgnoreExpr.h:91
bool isLambdaMethod(const DeclContext *DC)
Definition ASTLambda.h:39
ActionResult< Expr * > ExprResult
Definition Ownership.h:249
Expr * IgnoreParensOnlySingleStep(Expr *E)
Definition IgnoreExpr.h:144
PredefinedIdentKind
Definition Expr.h:1989
@ PrettyFunctionNoVirtual
The same as PrettyFunction, except that the 'virtual' keyword is omitted for virtual member functions...
Definition Expr.h:1999
CharacterLiteralKind
Definition Expr.h:1603
Expr * IgnoreBaseCastsSingleStep(Expr *E)
Definition IgnoreExpr.h:101
NonOdrUseReason
The reason why a DeclRefExpr does not constitute an odr-use.
Definition Specifiers.h:173
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
#define false
Definition stdbool.h:26
#define true
Definition stdbool.h:25
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
DeclarationName getName() const
getName - Returns the embedded declaration name.
SourceLocation getEndLoc() const LLVM_READONLY
Stores data related to a single embed directive.
Definition Expr.h:5027
EvalResult is a struct with detailed info about an evaluated expression.
Definition Expr.h:645
APValue Val
Val - This is the value the expression can be folded to.
Definition Expr.h:647
Iterator range representation begin:end[:step].
Definition ExprOpenMP.h:154
Helper expressions and declaration for OMPIteratorExpr class for each iteration space.
Definition ExprOpenMP.h:111
Describes how types, statements, expressions, and declarations should be printed.
unsigned SuppressTagKeyword
Whether type printing should skip printing the tag keyword.
const PrintingCallbacks * Callbacks
Callbacks to use to allow the behavior of printing to be customized.
A placeholder type used to construct an empty shell of a type, that will be filled in later (e....
Definition Stmt.h:1412
An adjustment to be made to the temporary created when emitting a reference binding,...
Definition Expr.h:68