clang  15.0.0git
Expr.cpp
Go to the documentation of this file.
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cstring>
40 using namespace clang;
41 
43  const Expr *E = this;
44  while (true) {
45  E = E->IgnoreParenBaseCasts();
46 
47  // Follow the RHS of a comma operator.
48  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
49  if (BO->getOpcode() == BO_Comma) {
50  E = BO->getRHS();
51  continue;
52  }
53  }
54 
55  // Step into initializer for materialized temporaries.
56  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
57  E = MTE->getSubExpr();
58  continue;
59  }
60 
61  break;
62  }
63 
64  return E;
65 }
66 
68  const Expr *E = getBestDynamicClassTypeExpr();
69  QualType DerivedType = E->getType();
70  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
71  DerivedType = PTy->getPointeeType();
72 
73  if (DerivedType->isDependentType())
74  return nullptr;
75 
76  const RecordType *Ty = DerivedType->castAs<RecordType>();
77  Decl *D = Ty->getDecl();
78  return cast<CXXRecordDecl>(D);
79 }
80 
83  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
84  const Expr *E = this;
85  while (true) {
86  E = E->IgnoreParens();
87 
88  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
89  if ((CE->getCastKind() == CK_DerivedToBase ||
90  CE->getCastKind() == CK_UncheckedDerivedToBase) &&
91  E->getType()->isRecordType()) {
92  E = CE->getSubExpr();
93  auto *Derived =
94  cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
95  Adjustments.push_back(SubobjectAdjustment(CE, Derived));
96  continue;
97  }
98 
99  if (CE->getCastKind() == CK_NoOp) {
100  E = CE->getSubExpr();
101  continue;
102  }
103  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
104  if (!ME->isArrow()) {
105  assert(ME->getBase()->getType()->isRecordType());
106  if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
107  if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
108  E = ME->getBase();
109  Adjustments.push_back(SubobjectAdjustment(Field));
110  continue;
111  }
112  }
113  }
114  } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
115  if (BO->getOpcode() == BO_PtrMemD) {
116  assert(BO->getRHS()->isPRValue());
117  E = BO->getLHS();
118  const MemberPointerType *MPT =
119  BO->getRHS()->getType()->getAs<MemberPointerType>();
120  Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
121  continue;
122  }
123  if (BO->getOpcode() == BO_Comma) {
124  CommaLHSs.push_back(BO->getLHS());
125  E = BO->getRHS();
126  continue;
127  }
128  }
129 
130  // Nothing changed.
131  break;
132  }
133  return E;
134 }
135 
136 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137  const Expr *E = IgnoreParens();
138 
139  // If this value has _Bool type, it is obvious 0/1.
140  if (E->getType()->isBooleanType()) return true;
141  // If this is a non-scalar-integer type, we don't care enough to try.
142  if (!E->getType()->isIntegralOrEnumerationType()) return false;
143 
144  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
145  switch (UO->getOpcode()) {
146  case UO_Plus:
147  return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148  case UO_LNot:
149  return true;
150  default:
151  return false;
152  }
153  }
154 
155  // Only look through implicit casts. If the user writes
156  // '(int) (a && b)' treat it as an arbitrary int.
157  // FIXME: Should we look through any cast expression in !Semantic mode?
158  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
159  return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160 
161  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
162  switch (BO->getOpcode()) {
163  default: return false;
164  case BO_LT: // Relational operators.
165  case BO_GT:
166  case BO_LE:
167  case BO_GE:
168  case BO_EQ: // Equality operators.
169  case BO_NE:
170  case BO_LAnd: // AND operator.
171  case BO_LOr: // Logical OR operator.
172  return true;
173 
174  case BO_And: // Bitwise AND operator.
175  case BO_Xor: // Bitwise XOR operator.
176  case BO_Or: // Bitwise OR operator.
177  // Handle things like (x==2)|(y==12).
178  return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179  BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180 
181  case BO_Comma:
182  case BO_Assign:
183  return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184  }
185  }
186 
187  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
188  return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189  CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190 
191  if (isa<ObjCBoolLiteralExpr>(E))
192  return true;
193 
194  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
195  return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196 
197  if (const FieldDecl *FD = E->getSourceBitField())
198  if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199  !FD->getBitWidth()->isValueDependent() &&
200  FD->getBitWidthValue(FD->getASTContext()) == 1)
201  return true;
202 
203  return false;
204 }
205 
206 const ValueDecl *
208  Expr::EvalResult Eval;
209 
210  if (EvaluateAsConstantExpr(Eval, Context)) {
211  APValue &Value = Eval.Val;
212 
213  if (Value.isMemberPointer())
214  return Value.getMemberPointerDecl();
215 
216  if (Value.isLValue() && Value.getLValueOffset().isZero())
217  return Value.getLValueBase().dyn_cast<const ValueDecl *>();
218  }
219 
220  return nullptr;
221 }
222 
223 // Amusing macro metaprogramming hack: check whether a class provides
224 // a more specific implementation of getExprLoc().
225 //
226 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
227 namespace {
228  /// This implementation is used when a class provides a custom
229  /// implementation of getExprLoc.
230  template <class E, class T>
231  SourceLocation getExprLocImpl(const Expr *expr,
232  SourceLocation (T::*v)() const) {
233  return static_cast<const E*>(expr)->getExprLoc();
234  }
235 
236  /// This implementation is used when a class doesn't provide
237  /// a custom implementation of getExprLoc. Overload resolution
238  /// should pick it over the implementation above because it's
239  /// more specialized according to function template partial ordering.
240  template <class E>
241  SourceLocation getExprLocImpl(const Expr *expr,
242  SourceLocation (Expr::*v)() const) {
243  return static_cast<const E *>(expr)->getBeginLoc();
244  }
245 }
246 
248  switch (getStmtClass()) {
249  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
250 #define ABSTRACT_STMT(type)
251 #define STMT(type, base) \
252  case Stmt::type##Class: break;
253 #define EXPR(type, base) \
254  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
255 #include "clang/AST/StmtNodes.inc"
256  }
257  llvm_unreachable("unknown expression kind");
258 }
259 
260 //===----------------------------------------------------------------------===//
261 // Primary Expressions.
262 //===----------------------------------------------------------------------===//
263 
265  assert((Kind == ConstantExpr::RSK_APValue ||
267  "Invalid StorageKind Value");
268  (void)Kind;
269 }
270 
273  switch (Value.getKind()) {
274  case APValue::None:
276  return ConstantExpr::RSK_None;
277  case APValue::Int:
278  if (!Value.getInt().needsCleanup())
280  LLVM_FALLTHROUGH;
281  default:
283  }
284 }
285 
287 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
288  if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
291 }
292 
293 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
294  bool IsImmediateInvocation)
295  : FullExpr(ConstantExprClass, SubExpr) {
296  ConstantExprBits.ResultKind = StorageKind;
297  ConstantExprBits.APValueKind = APValue::None;
298  ConstantExprBits.IsUnsigned = false;
299  ConstantExprBits.BitWidth = 0;
300  ConstantExprBits.HasCleanup = false;
301  ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
302 
303  if (StorageKind == ConstantExpr::RSK_APValue)
304  ::new (getTrailingObjects<APValue>()) APValue();
305 }
306 
308  ResultStorageKind StorageKind,
309  bool IsImmediateInvocation) {
310  assert(!isa<ConstantExpr>(E));
311  AssertResultStorageKind(StorageKind);
312 
313  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
314  StorageKind == ConstantExpr::RSK_APValue,
315  StorageKind == ConstantExpr::RSK_Int64);
316  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
317  return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
318 }
319 
321  const APValue &Result) {
322  ResultStorageKind StorageKind = getStorageKind(Result);
323  ConstantExpr *Self = Create(Context, E, StorageKind);
324  Self->SetResult(Result, Context);
325  return Self;
326 }
327 
328 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
329  : FullExpr(ConstantExprClass, Empty) {
330  ConstantExprBits.ResultKind = StorageKind;
331 
332  if (StorageKind == ConstantExpr::RSK_APValue)
333  ::new (getTrailingObjects<APValue>()) APValue();
334 }
335 
337  ResultStorageKind StorageKind) {
338  AssertResultStorageKind(StorageKind);
339 
340  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
341  StorageKind == ConstantExpr::RSK_APValue,
342  StorageKind == ConstantExpr::RSK_Int64);
343  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
344  return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
345 }
346 
348  assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
349  "Invalid storage for this value kind");
350  ConstantExprBits.APValueKind = Value.getKind();
351  switch (ConstantExprBits.ResultKind) {
352  case RSK_None:
353  return;
354  case RSK_Int64:
355  Int64Result() = *Value.getInt().getRawData();
356  ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
357  ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
358  return;
359  case RSK_APValue:
360  if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
361  ConstantExprBits.HasCleanup = true;
362  Context.addDestruction(&APValueResult());
363  }
364  APValueResult() = std::move(Value);
365  return;
366  }
367  llvm_unreachable("Invalid ResultKind Bits");
368 }
369 
371  switch (ConstantExprBits.ResultKind) {
373  return APValueResult().getInt();
375  return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
376  ConstantExprBits.IsUnsigned);
377  default:
378  llvm_unreachable("invalid Accessor");
379  }
380 }
381 
383 
384  switch (ConstantExprBits.ResultKind) {
386  return APValueResult();
388  return APValue(
389  llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
390  ConstantExprBits.IsUnsigned));
392  if (ConstantExprBits.APValueKind == APValue::Indeterminate)
394  return APValue();
395  }
396  llvm_unreachable("invalid ResultKind");
397 }
398 
399 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
400  bool RefersToEnclosingVariableOrCapture, QualType T,
402  const DeclarationNameLoc &LocInfo,
403  NonOdrUseReason NOUR)
404  : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
405  DeclRefExprBits.HasQualifier = false;
406  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
407  DeclRefExprBits.HasFoundDecl = false;
408  DeclRefExprBits.HadMultipleCandidates = false;
409  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
410  RefersToEnclosingVariableOrCapture;
411  DeclRefExprBits.NonOdrUseReason = NOUR;
412  DeclRefExprBits.Loc = L;
413  setDependence(computeDependence(this, Ctx));
414 }
415 
416 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
417  NestedNameSpecifierLoc QualifierLoc,
418  SourceLocation TemplateKWLoc, ValueDecl *D,
419  bool RefersToEnclosingVariableOrCapture,
420  const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
421  const TemplateArgumentListInfo *TemplateArgs,
423  : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
424  DNLoc(NameInfo.getInfo()) {
425  DeclRefExprBits.Loc = NameInfo.getLoc();
426  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
427  if (QualifierLoc)
428  new (getTrailingObjects<NestedNameSpecifierLoc>())
429  NestedNameSpecifierLoc(QualifierLoc);
430  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
431  if (FoundD)
432  *getTrailingObjects<NamedDecl *>() = FoundD;
433  DeclRefExprBits.HasTemplateKWAndArgsInfo
434  = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
435  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
436  RefersToEnclosingVariableOrCapture;
437  DeclRefExprBits.NonOdrUseReason = NOUR;
438  if (TemplateArgs) {
440  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
441  TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
442  Deps);
443  assert(!(Deps & TemplateArgumentDependence::Dependent) &&
444  "built a DeclRefExpr with dependent template args");
445  } else if (TemplateKWLoc.isValid()) {
446  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
447  TemplateKWLoc);
448  }
449  DeclRefExprBits.HadMultipleCandidates = 0;
450  setDependence(computeDependence(this, Ctx));
451 }
452 
454  NestedNameSpecifierLoc QualifierLoc,
455  SourceLocation TemplateKWLoc, ValueDecl *D,
456  bool RefersToEnclosingVariableOrCapture,
457  SourceLocation NameLoc, QualType T,
458  ExprValueKind VK, NamedDecl *FoundD,
459  const TemplateArgumentListInfo *TemplateArgs,
460  NonOdrUseReason NOUR) {
461  return Create(Context, QualifierLoc, TemplateKWLoc, D,
462  RefersToEnclosingVariableOrCapture,
463  DeclarationNameInfo(D->getDeclName(), NameLoc),
464  T, VK, FoundD, TemplateArgs, NOUR);
465 }
466 
468  NestedNameSpecifierLoc QualifierLoc,
469  SourceLocation TemplateKWLoc, ValueDecl *D,
470  bool RefersToEnclosingVariableOrCapture,
471  const DeclarationNameInfo &NameInfo,
472  QualType T, ExprValueKind VK,
473  NamedDecl *FoundD,
474  const TemplateArgumentListInfo *TemplateArgs,
475  NonOdrUseReason NOUR) {
476  // Filter out cases where the found Decl is the same as the value refenenced.
477  if (D == FoundD)
478  FoundD = nullptr;
479 
480  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
481  std::size_t Size =
482  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
484  QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
485  HasTemplateKWAndArgsInfo ? 1 : 0,
486  TemplateArgs ? TemplateArgs->size() : 0);
487 
488  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
489  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
490  RefersToEnclosingVariableOrCapture, NameInfo,
491  FoundD, TemplateArgs, T, VK, NOUR);
492 }
493 
495  bool HasQualifier,
496  bool HasFoundDecl,
497  bool HasTemplateKWAndArgsInfo,
498  unsigned NumTemplateArgs) {
499  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
500  std::size_t Size =
501  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
503  HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
504  NumTemplateArgs);
505  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
506  return new (Mem) DeclRefExpr(EmptyShell());
507 }
508 
510  D = NewD;
511  if (getType()->isUndeducedType())
512  setType(NewD->getType());
514 }
515 
517  if (hasQualifier())
518  return getQualifierLoc().getBeginLoc();
519  return getNameInfo().getBeginLoc();
520 }
523  return getRAngleLoc();
524  return getNameInfo().getEndLoc();
525 }
526 
527 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
528  SourceLocation LParen,
529  SourceLocation RParen,
530  QualType ResultTy,
531  TypeSourceInfo *TSI)
532  : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
533  OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
534  setTypeSourceInfo(TSI);
536 }
537 
538 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
539  QualType ResultTy)
540  : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
541 
544  SourceLocation LParen, SourceLocation RParen,
545  TypeSourceInfo *TSI) {
546  QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
547  return new (Ctx)
548  SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
549 }
550 
553  QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
554  return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
555 }
556 
560 }
561 
563  QualType Ty) {
564  auto MangleCallback = [](ASTContext &Ctx,
565  const NamedDecl *ND) -> llvm::Optional<unsigned> {
566  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
567  return RD->getDeviceLambdaManglingNumber();
568  return llvm::None;
569  };
570 
571  std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
572  Context, Context.getDiagnostics(), MangleCallback)};
573 
574  std::string Buffer;
575  Buffer.reserve(128);
576  llvm::raw_string_ostream Out(Buffer);
577  Ctx->mangleTypeName(Ty, Out);
578 
579  return Out.str();
580 }
581 
582 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
583  StringLiteral *SL)
584  : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
585  PredefinedExprBits.Kind = IK;
586  assert((getIdentKind() == IK) &&
587  "IdentKind do not fit in PredefinedExprBitfields!");
588  bool HasFunctionName = SL != nullptr;
589  PredefinedExprBits.HasFunctionName = HasFunctionName;
590  PredefinedExprBits.Loc = L;
591  if (HasFunctionName)
592  setFunctionName(SL);
594 }
595 
596 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
597  : Expr(PredefinedExprClass, Empty) {
598  PredefinedExprBits.HasFunctionName = HasFunctionName;
599 }
600 
602  QualType FNTy, IdentKind IK,
603  StringLiteral *SL) {
604  bool HasFunctionName = SL != nullptr;
605  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
606  alignof(PredefinedExpr));
607  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
608 }
609 
611  bool HasFunctionName) {
612  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
613  alignof(PredefinedExpr));
614  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
615 }
616 
618  switch (IK) {
619  case Func:
620  return "__func__";
621  case Function:
622  return "__FUNCTION__";
623  case FuncDName:
624  return "__FUNCDNAME__";
625  case LFunction:
626  return "L__FUNCTION__";
627  case PrettyFunction:
628  return "__PRETTY_FUNCTION__";
629  case FuncSig:
630  return "__FUNCSIG__";
631  case LFuncSig:
632  return "L__FUNCSIG__";
634  break;
635  }
636  llvm_unreachable("Unknown ident kind for PredefinedExpr");
637 }
638 
639 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
640 // expr" policy instead.
642  ASTContext &Context = CurrentDecl->getASTContext();
643 
644  if (IK == PredefinedExpr::FuncDName) {
645  if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
646  std::unique_ptr<MangleContext> MC;
647  MC.reset(Context.createMangleContext());
648 
649  if (MC->shouldMangleDeclName(ND)) {
650  SmallString<256> Buffer;
651  llvm::raw_svector_ostream Out(Buffer);
652  GlobalDecl GD;
653  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
654  GD = GlobalDecl(CD, Ctor_Base);
655  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
656  GD = GlobalDecl(DD, Dtor_Base);
657  else if (ND->hasAttr<CUDAGlobalAttr>())
658  GD = GlobalDecl(cast<FunctionDecl>(ND));
659  else
660  GD = GlobalDecl(ND);
661  MC->mangleName(GD, Out);
662 
663  if (!Buffer.empty() && Buffer.front() == '\01')
664  return std::string(Buffer.substr(1));
665  return std::string(Buffer.str());
666  }
667  return std::string(ND->getIdentifier()->getName());
668  }
669  return "";
670  }
671  if (isa<BlockDecl>(CurrentDecl)) {
672  // For blocks we only emit something if it is enclosed in a function
673  // For top-level block we'd like to include the name of variable, but we
674  // don't have it at this point.
675  auto DC = CurrentDecl->getDeclContext();
676  if (DC->isFileContext())
677  return "";
678 
679  SmallString<256> Buffer;
680  llvm::raw_svector_ostream Out(Buffer);
681  if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
682  // For nested blocks, propagate up to the parent.
683  Out << ComputeName(IK, DCBlock);
684  else if (auto *DCDecl = dyn_cast<Decl>(DC))
685  Out << ComputeName(IK, DCDecl) << "_block_invoke";
686  return std::string(Out.str());
687  }
688  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
689  if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
690  IK != FuncSig && IK != LFuncSig)
691  return FD->getNameAsString();
692 
693  SmallString<256> Name;
694  llvm::raw_svector_ostream Out(Name);
695 
696  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
697  if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
698  Out << "virtual ";
699  if (MD->isStatic())
700  Out << "static ";
701  }
702 
703  PrintingPolicy Policy(Context.getLangOpts());
704  std::string Proto;
705  llvm::raw_string_ostream POut(Proto);
706 
707  const FunctionDecl *Decl = FD;
708  if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
709  Decl = Pattern;
710  const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
711  const FunctionProtoType *FT = nullptr;
712  if (FD->hasWrittenPrototype())
713  FT = dyn_cast<FunctionProtoType>(AFT);
714 
715  if (IK == FuncSig || IK == LFuncSig) {
716  switch (AFT->getCallConv()) {
717  case CC_C: POut << "__cdecl "; break;
718  case CC_X86StdCall: POut << "__stdcall "; break;
719  case CC_X86FastCall: POut << "__fastcall "; break;
720  case CC_X86ThisCall: POut << "__thiscall "; break;
721  case CC_X86VectorCall: POut << "__vectorcall "; break;
722  case CC_X86RegCall: POut << "__regcall "; break;
723  // Only bother printing the conventions that MSVC knows about.
724  default: break;
725  }
726  }
727 
728  FD->printQualifiedName(POut, Policy);
729 
730  POut << "(";
731  if (FT) {
732  for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
733  if (i) POut << ", ";
734  POut << Decl->getParamDecl(i)->getType().stream(Policy);
735  }
736 
737  if (FT->isVariadic()) {
738  if (FD->getNumParams()) POut << ", ";
739  POut << "...";
740  } else if ((IK == FuncSig || IK == LFuncSig ||
741  !Context.getLangOpts().CPlusPlus) &&
742  !Decl->getNumParams()) {
743  POut << "void";
744  }
745  }
746  POut << ")";
747 
748  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
749  assert(FT && "We must have a written prototype in this case.");
750  if (FT->isConst())
751  POut << " const";
752  if (FT->isVolatile())
753  POut << " volatile";
754  RefQualifierKind Ref = MD->getRefQualifier();
755  if (Ref == RQ_LValue)
756  POut << " &";
757  else if (Ref == RQ_RValue)
758  POut << " &&";
759  }
760 
762  SpecsTy Specs;
763  const DeclContext *Ctx = FD->getDeclContext();
764  while (Ctx && isa<NamedDecl>(Ctx)) {
766  = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
767  if (Spec && !Spec->isExplicitSpecialization())
768  Specs.push_back(Spec);
769  Ctx = Ctx->getParent();
770  }
771 
772  std::string TemplateParams;
773  llvm::raw_string_ostream TOut(TemplateParams);
774  for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
775  const TemplateParameterList *Params =
776  D->getSpecializedTemplate()->getTemplateParameters();
777  const TemplateArgumentList &Args = D->getTemplateArgs();
778  assert(Params->size() == Args.size());
779  for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
780  StringRef Param = Params->getParam(i)->getName();
781  if (Param.empty()) continue;
782  TOut << Param << " = ";
783  Args.get(i).print(Policy, TOut,
785  Policy, Params, i));
786  TOut << ", ";
787  }
788  }
789 
791  = FD->getTemplateSpecializationInfo();
792  if (FSI && !FSI->isExplicitSpecialization()) {
793  const TemplateParameterList* Params
795  const TemplateArgumentList* Args = FSI->TemplateArguments;
796  assert(Params->size() == Args->size());
797  for (unsigned i = 0, e = Params->size(); i != e; ++i) {
798  StringRef Param = Params->getParam(i)->getName();
799  if (Param.empty()) continue;
800  TOut << Param << " = ";
801  Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
802  TOut << ", ";
803  }
804  }
805 
806  TOut.flush();
807  if (!TemplateParams.empty()) {
808  // remove the trailing comma and space
809  TemplateParams.resize(TemplateParams.size() - 2);
810  POut << " [" << TemplateParams << "]";
811  }
812 
813  POut.flush();
814 
815  // Print "auto" for all deduced return types. This includes C++1y return
816  // type deduction and lambdas. For trailing return types resolve the
817  // decltype expression. Otherwise print the real type when this is
818  // not a constructor or destructor.
819  if (isa<CXXMethodDecl>(FD) &&
820  cast<CXXMethodDecl>(FD)->getParent()->isLambda())
821  Proto = "auto " + Proto;
822  else if (FT && FT->getReturnType()->getAs<DecltypeType>())
823  FT->getReturnType()
824  ->getAs<DecltypeType>()
826  .getAsStringInternal(Proto, Policy);
827  else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
828  AFT->getReturnType().getAsStringInternal(Proto, Policy);
829 
830  Out << Proto;
831 
832  return std::string(Name);
833  }
834  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
835  for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
836  // Skip to its enclosing function or method, but not its enclosing
837  // CapturedDecl.
838  if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
839  const Decl *D = Decl::castFromDeclContext(DC);
840  return ComputeName(IK, D);
841  }
842  llvm_unreachable("CapturedDecl not inside a function or method");
843  }
844  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
845  SmallString<256> Name;
846  llvm::raw_svector_ostream Out(Name);
847  Out << (MD->isInstanceMethod() ? '-' : '+');
848  Out << '[';
849 
850  // For incorrect code, there might not be an ObjCInterfaceDecl. Do
851  // a null check to avoid a crash.
852  if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
853  Out << *ID;
854 
855  if (const ObjCCategoryImplDecl *CID =
856  dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
857  Out << '(' << *CID << ')';
858 
859  Out << ' ';
860  MD->getSelector().print(Out);
861  Out << ']';
862 
863  return std::string(Name);
864  }
865  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
866  // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
867  return "top level";
868  }
869  return "";
870 }
871 
873  const llvm::APInt &Val) {
874  if (hasAllocation())
875  C.Deallocate(pVal);
876 
877  BitWidth = Val.getBitWidth();
878  unsigned NumWords = Val.getNumWords();
879  const uint64_t* Words = Val.getRawData();
880  if (NumWords > 1) {
881  pVal = new (C) uint64_t[NumWords];
882  std::copy(Words, Words + NumWords, pVal);
883  } else if (NumWords == 1)
884  VAL = Words[0];
885  else
886  VAL = 0;
887 }
888 
889 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
891  : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
892  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
893  assert(V.getBitWidth() == C.getIntWidth(type) &&
894  "Integer type is not the correct size for constant.");
895  setValue(C, V);
897 }
898 
902  return new (C) IntegerLiteral(C, V, type, l);
903 }
904 
907  return new (C) IntegerLiteral(Empty);
908 }
909 
910 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
912  unsigned Scale)
913  : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
914  Scale(Scale) {
915  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
916  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
917  "Fixed point type is not the correct size for constant.");
918  setValue(C, V);
920 }
921 
923  const llvm::APInt &V,
924  QualType type,
925  SourceLocation l,
926  unsigned Scale) {
927  return new (C) FixedPointLiteral(C, V, type, l, Scale);
928 }
929 
931  EmptyShell Empty) {
932  return new (C) FixedPointLiteral(Empty);
933 }
934 
936  // Currently the longest decimal number that can be printed is the max for an
937  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
938  // which is 43 characters.
939  SmallString<64> S;
941  S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
942  return std::string(S.str());
943 }
944 
946  raw_ostream &OS) {
947  switch (Kind) {
949  break; // no prefix.
951  OS << 'L';
952  break;
954  OS << "u8";
955  break;
957  OS << 'u';
958  break;
960  OS << 'U';
961  break;
962  }
963 
964  StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
965  if (!Escaped.empty()) {
966  OS << "'" << Escaped << "'";
967  } else {
968  // A character literal might be sign-extended, which
969  // would result in an invalid \U escape sequence.
970  // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
971  // are not correctly handled.
972  if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
973  Val &= 0xFFu;
974  if (Val < 256 && isPrintable((unsigned char)Val))
975  OS << "'" << (char)Val << "'";
976  else if (Val < 256)
977  OS << "'\\x" << llvm::format("%02x", Val) << "'";
978  else if (Val <= 0xFFFF)
979  OS << "'\\u" << llvm::format("%04x", Val) << "'";
980  else
981  OS << "'\\U" << llvm::format("%08x", Val) << "'";
982  }
983 }
984 
985 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
986  bool isexact, QualType Type, SourceLocation L)
987  : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
988  setSemantics(V.getSemantics());
989  FloatingLiteralBits.IsExact = isexact;
990  setValue(C, V);
992 }
993 
994 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
995  : Expr(FloatingLiteralClass, Empty) {
996  setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
997  FloatingLiteralBits.IsExact = false;
998 }
999 
1001 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1002  bool isexact, QualType Type, SourceLocation L) {
1003  return new (C) FloatingLiteral(C, V, isexact, Type, L);
1004 }
1005 
1008  return new (C) FloatingLiteral(C, Empty);
1009 }
1010 
1011 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1012 /// double. Note that this may cause loss of precision, but is useful for
1013 /// debugging dumps, etc.
1015  llvm::APFloat V = getValue();
1016  bool ignored;
1017  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1018  &ignored);
1019  return V.convertToDouble();
1020 }
1021 
1022 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1023  StringKind SK) {
1024  unsigned CharByteWidth = 0;
1025  switch (SK) {
1026  case Ordinary:
1027  case UTF8:
1028  CharByteWidth = Target.getCharWidth();
1029  break;
1030  case Wide:
1031  CharByteWidth = Target.getWCharWidth();
1032  break;
1033  case UTF16:
1034  CharByteWidth = Target.getChar16Width();
1035  break;
1036  case UTF32:
1037  CharByteWidth = Target.getChar32Width();
1038  break;
1039  }
1040  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1041  CharByteWidth /= 8;
1042  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1043  "The only supported character byte widths are 1,2 and 4!");
1044  return CharByteWidth;
1045 }
1046 
1047 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1048  StringKind Kind, bool Pascal, QualType Ty,
1049  const SourceLocation *Loc,
1050  unsigned NumConcatenated)
1051  : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1052  assert(Ctx.getAsConstantArrayType(Ty) &&
1053  "StringLiteral must be of constant array type!");
1054  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1055  unsigned ByteLength = Str.size();
1056  assert((ByteLength % CharByteWidth == 0) &&
1057  "The size of the data must be a multiple of CharByteWidth!");
1058 
1059  // Avoid the expensive division. The compiler should be able to figure it
1060  // out by itself. However as of clang 7, even with the appropriate
1061  // llvm_unreachable added just here, it is not able to do so.
1062  unsigned Length;
1063  switch (CharByteWidth) {
1064  case 1:
1065  Length = ByteLength;
1066  break;
1067  case 2:
1068  Length = ByteLength / 2;
1069  break;
1070  case 4:
1071  Length = ByteLength / 4;
1072  break;
1073  default:
1074  llvm_unreachable("Unsupported character width!");
1075  }
1076 
1077  StringLiteralBits.Kind = Kind;
1078  StringLiteralBits.CharByteWidth = CharByteWidth;
1079  StringLiteralBits.IsPascal = Pascal;
1080  StringLiteralBits.NumConcatenated = NumConcatenated;
1081  *getTrailingObjects<unsigned>() = Length;
1082 
1083  // Initialize the trailing array of SourceLocation.
1084  // This is safe since SourceLocation is POD-like.
1085  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1086  NumConcatenated * sizeof(SourceLocation));
1087 
1088  // Initialize the trailing array of char holding the string data.
1089  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1090 
1092 }
1093 
1094 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1095  unsigned Length, unsigned CharByteWidth)
1096  : Expr(StringLiteralClass, Empty) {
1097  StringLiteralBits.CharByteWidth = CharByteWidth;
1098  StringLiteralBits.NumConcatenated = NumConcatenated;
1099  *getTrailingObjects<unsigned>() = Length;
1100 }
1101 
1103  StringKind Kind, bool Pascal, QualType Ty,
1104  const SourceLocation *Loc,
1105  unsigned NumConcatenated) {
1106  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1107  1, NumConcatenated, Str.size()),
1108  alignof(StringLiteral));
1109  return new (Mem)
1110  StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1111 }
1112 
1114  unsigned NumConcatenated,
1115  unsigned Length,
1116  unsigned CharByteWidth) {
1117  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1118  1, NumConcatenated, Length * CharByteWidth),
1119  alignof(StringLiteral));
1120  return new (Mem)
1121  StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1122 }
1123 
1124 void StringLiteral::outputString(raw_ostream &OS) const {
1125  switch (getKind()) {
1126  case Ordinary:
1127  break; // no prefix.
1128  case Wide: OS << 'L'; break;
1129  case UTF8: OS << "u8"; break;
1130  case UTF16: OS << 'u'; break;
1131  case UTF32: OS << 'U'; break;
1132  }
1133  OS << '"';
1134  static const char Hex[] = "0123456789ABCDEF";
1135 
1136  unsigned LastSlashX = getLength();
1137  for (unsigned I = 0, N = getLength(); I != N; ++I) {
1138  uint32_t Char = getCodeUnit(I);
1139  StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1140  if (Escaped.empty()) {
1141  // FIXME: Convert UTF-8 back to codepoints before rendering.
1142 
1143  // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1144  // Leave invalid surrogates alone; we'll use \x for those.
1145  if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1146  Char <= 0xdbff) {
1147  uint32_t Trail = getCodeUnit(I + 1);
1148  if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1149  Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1150  ++I;
1151  }
1152  }
1153 
1154  if (Char > 0xff) {
1155  // If this is a wide string, output characters over 0xff using \x
1156  // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1157  // codepoint: use \x escapes for invalid codepoints.
1158  if (getKind() == Wide ||
1159  (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1160  // FIXME: Is this the best way to print wchar_t?
1161  OS << "\\x";
1162  int Shift = 28;
1163  while ((Char >> Shift) == 0)
1164  Shift -= 4;
1165  for (/**/; Shift >= 0; Shift -= 4)
1166  OS << Hex[(Char >> Shift) & 15];
1167  LastSlashX = I;
1168  continue;
1169  }
1170 
1171  if (Char > 0xffff)
1172  OS << "\\U00"
1173  << Hex[(Char >> 20) & 15]
1174  << Hex[(Char >> 16) & 15];
1175  else
1176  OS << "\\u";
1177  OS << Hex[(Char >> 12) & 15]
1178  << Hex[(Char >> 8) & 15]
1179  << Hex[(Char >> 4) & 15]
1180  << Hex[(Char >> 0) & 15];
1181  continue;
1182  }
1183 
1184  // If we used \x... for the previous character, and this character is a
1185  // hexadecimal digit, prevent it being slurped as part of the \x.
1186  if (LastSlashX + 1 == I) {
1187  switch (Char) {
1188  case '0': case '1': case '2': case '3': case '4':
1189  case '5': case '6': case '7': case '8': case '9':
1190  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1191  case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1192  OS << "\"\"";
1193  }
1194  }
1195 
1196  assert(Char <= 0xff &&
1197  "Characters above 0xff should already have been handled.");
1198 
1199  if (isPrintable(Char))
1200  OS << (char)Char;
1201  else // Output anything hard as an octal escape.
1202  OS << '\\'
1203  << (char)('0' + ((Char >> 6) & 7))
1204  << (char)('0' + ((Char >> 3) & 7))
1205  << (char)('0' + ((Char >> 0) & 7));
1206  } else {
1207  // Handle some common non-printable cases to make dumps prettier.
1208  OS << Escaped;
1209  }
1210  }
1211  OS << '"';
1212 }
1213 
1214 /// getLocationOfByte - Return a source location that points to the specified
1215 /// byte of this string literal.
1216 ///
1217 /// Strings are amazingly complex. They can be formed from multiple tokens and
1218 /// can have escape sequences in them in addition to the usual trigraph and
1219 /// escaped newline business. This routine handles this complexity.
1220 ///
1221 /// The *StartToken sets the first token to be searched in this function and
1222 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1223 /// returning, it updates the *StartToken to the TokNo of the token being found
1224 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1225 /// string.
1226 /// Using these two parameters can reduce the time complexity from O(n^2) to
1227 /// O(n) if one wants to get the location of byte for all the tokens in a
1228 /// string.
1229 ///
1232  const LangOptions &Features,
1233  const TargetInfo &Target, unsigned *StartToken,
1234  unsigned *StartTokenByteOffset) const {
1235  assert((getKind() == StringLiteral::Ordinary ||
1236  getKind() == StringLiteral::UTF8) &&
1237  "Only narrow string literals are currently supported");
1238 
1239  // Loop over all of the tokens in this string until we find the one that
1240  // contains the byte we're looking for.
1241  unsigned TokNo = 0;
1242  unsigned StringOffset = 0;
1243  if (StartToken)
1244  TokNo = *StartToken;
1245  if (StartTokenByteOffset) {
1246  StringOffset = *StartTokenByteOffset;
1247  ByteNo -= StringOffset;
1248  }
1249  while (true) {
1250  assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1251  SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1252 
1253  // Get the spelling of the string so that we can get the data that makes up
1254  // the string literal, not the identifier for the macro it is potentially
1255  // expanded through.
1256  SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1257 
1258  // Re-lex the token to get its length and original spelling.
1259  std::pair<FileID, unsigned> LocInfo =
1260  SM.getDecomposedLoc(StrTokSpellingLoc);
1261  bool Invalid = false;
1262  StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1263  if (Invalid) {
1264  if (StartTokenByteOffset != nullptr)
1265  *StartTokenByteOffset = StringOffset;
1266  if (StartToken != nullptr)
1267  *StartToken = TokNo;
1268  return StrTokSpellingLoc;
1269  }
1270 
1271  const char *StrData = Buffer.data()+LocInfo.second;
1272 
1273  // Create a lexer starting at the beginning of this token.
1274  Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1275  Buffer.begin(), StrData, Buffer.end());
1276  Token TheTok;
1277  TheLexer.LexFromRawLexer(TheTok);
1278 
1279  // Use the StringLiteralParser to compute the length of the string in bytes.
1280  StringLiteralParser SLP(TheTok, SM, Features, Target);
1281  unsigned TokNumBytes = SLP.GetStringLength();
1282 
1283  // If the byte is in this token, return the location of the byte.
1284  if (ByteNo < TokNumBytes ||
1285  (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1286  unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1287 
1288  // Now that we know the offset of the token in the spelling, use the
1289  // preprocessor to get the offset in the original source.
1290  if (StartTokenByteOffset != nullptr)
1291  *StartTokenByteOffset = StringOffset;
1292  if (StartToken != nullptr)
1293  *StartToken = TokNo;
1294  return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1295  }
1296 
1297  // Move to the next string token.
1298  StringOffset += TokNumBytes;
1299  ++TokNo;
1300  ByteNo -= TokNumBytes;
1301  }
1302 }
1303 
1304 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1305 /// corresponds to, e.g. "sizeof" or "[pre]++".
1307  switch (Op) {
1308 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1309 #include "clang/AST/OperationKinds.def"
1310  }
1311  llvm_unreachable("Unknown unary operator");
1312 }
1313 
1316  switch (OO) {
1317  default: llvm_unreachable("No unary operator for overloaded function");
1318  case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1319  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1320  case OO_Amp: return UO_AddrOf;
1321  case OO_Star: return UO_Deref;
1322  case OO_Plus: return UO_Plus;
1323  case OO_Minus: return UO_Minus;
1324  case OO_Tilde: return UO_Not;
1325  case OO_Exclaim: return UO_LNot;
1326  case OO_Coawait: return UO_Coawait;
1327  }
1328 }
1329 
1331  switch (Opc) {
1332  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1333  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1334  case UO_AddrOf: return OO_Amp;
1335  case UO_Deref: return OO_Star;
1336  case UO_Plus: return OO_Plus;
1337  case UO_Minus: return OO_Minus;
1338  case UO_Not: return OO_Tilde;
1339  case UO_LNot: return OO_Exclaim;
1340  case UO_Coawait: return OO_Coawait;
1341  default: return OO_None;
1342  }
1343 }
1344 
1345 
1346 //===----------------------------------------------------------------------===//
1347 // Postfix Operators.
1348 //===----------------------------------------------------------------------===//
1349 
1352  SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1353  unsigned MinNumArgs, ADLCallKind UsesADL)
1354  : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1355  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1356  unsigned NumPreArgs = PreArgs.size();
1357  CallExprBits.NumPreArgs = NumPreArgs;
1358  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1359 
1360  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1361  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1362  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1363  "OffsetToTrailingObjects overflow!");
1364 
1365  CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1366 
1367  setCallee(Fn);
1368  for (unsigned I = 0; I != NumPreArgs; ++I)
1369  setPreArg(I, PreArgs[I]);
1370  for (unsigned I = 0; I != Args.size(); ++I)
1371  setArg(I, Args[I]);
1372  for (unsigned I = Args.size(); I != NumArgs; ++I)
1373  setArg(I, nullptr);
1374 
1375  this->computeDependence();
1376 
1377  CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1378  if (hasStoredFPFeatures())
1379  setStoredFPFeatures(FPFeatures);
1380 }
1381 
1382 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1383  bool HasFPFeatures, EmptyShell Empty)
1384  : Expr(SC, Empty), NumArgs(NumArgs) {
1385  CallExprBits.NumPreArgs = NumPreArgs;
1386  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1387 
1388  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1389  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1390  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1391  "OffsetToTrailingObjects overflow!");
1392  CallExprBits.HasFPFeatures = HasFPFeatures;
1393 }
1394 
1397  SourceLocation RParenLoc,
1398  FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1399  ADLCallKind UsesADL) {
1400  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1401  unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1402  /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1403  void *Mem =
1404  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1405  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1406  RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1407 }
1408 
1410  ExprValueKind VK, SourceLocation RParenLoc,
1411  ADLCallKind UsesADL) {
1412  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1413  "Misaligned memory in CallExpr::CreateTemporary!");
1414  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1415  VK, RParenLoc, FPOptionsOverride(),
1416  /*MinNumArgs=*/0, UsesADL);
1417 }
1418 
1419 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1420  bool HasFPFeatures, EmptyShell Empty) {
1421  unsigned SizeOfTrailingObjects =
1422  CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1423  void *Mem =
1424  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1425  return new (Mem)
1426  CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1427 }
1428 
1429 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1430  switch (SC) {
1431  case CallExprClass:
1432  return sizeof(CallExpr);
1433  case CXXOperatorCallExprClass:
1434  return sizeof(CXXOperatorCallExpr);
1435  case CXXMemberCallExprClass:
1436  return sizeof(CXXMemberCallExpr);
1437  case UserDefinedLiteralClass:
1438  return sizeof(UserDefinedLiteral);
1439  case CUDAKernelCallExprClass:
1440  return sizeof(CUDAKernelCallExpr);
1441  default:
1442  llvm_unreachable("unexpected class deriving from CallExpr!");
1443  }
1444 }
1445 
1447  Expr *CEE = IgnoreParenImpCasts();
1448 
1449  while (SubstNonTypeTemplateParmExpr *NTTP =
1450  dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1451  CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1452  }
1453 
1454  // If we're calling a dereference, look at the pointer instead.
1455  while (true) {
1456  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1457  if (BO->isPtrMemOp()) {
1458  CEE = BO->getRHS()->IgnoreParenImpCasts();
1459  continue;
1460  }
1461  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1462  if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1463  UO->getOpcode() == UO_Plus) {
1464  CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1465  continue;
1466  }
1467  }
1468  break;
1469  }
1470 
1471  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1472  return DRE->getDecl();
1473  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1474  return ME->getMemberDecl();
1475  if (auto *BE = dyn_cast<BlockExpr>(CEE))
1476  return BE->getBlockDecl();
1477 
1478  return nullptr;
1479 }
1480 
1481 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1482 unsigned CallExpr::getBuiltinCallee() const {
1483  auto *FDecl = getDirectCallee();
1484  return FDecl ? FDecl->getBuiltinID() : 0;
1485 }
1486 
1488  if (unsigned BI = getBuiltinCallee())
1489  return Ctx.BuiltinInfo.isUnevaluated(BI);
1490  return false;
1491 }
1492 
1494  const Expr *Callee = getCallee();
1495  QualType CalleeType = Callee->getType();
1496  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1497  CalleeType = FnTypePtr->getPointeeType();
1498  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1499  CalleeType = BPT->getPointeeType();
1500  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1501  if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1502  return Ctx.VoidTy;
1503 
1504  if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1505  return Ctx.DependentTy;
1506 
1507  // This should never be overloaded and so should never return null.
1508  CalleeType = Expr::findBoundMemberType(Callee);
1509  assert(!CalleeType.isNull());
1510  } else if (CalleeType->isDependentType() ||
1511  CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1512  return Ctx.DependentTy;
1513  }
1514 
1515  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1516  return FnType->getReturnType();
1517 }
1518 
1520  // If the return type is a struct, union, or enum that is marked nodiscard,
1521  // then return the return type attribute.
1522  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1523  if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1524  return A;
1525 
1526  for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1527  TD = TD->desugar()->getAs<TypedefType>())
1528  if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1529  return A;
1530 
1531  // Otherwise, see if the callee is marked nodiscard and return that attribute
1532  // instead.
1533  const Decl *D = getCalleeDecl();
1534  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1535 }
1536 
1538  if (isa<CXXOperatorCallExpr>(this))
1539  return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1540 
1541  SourceLocation begin = getCallee()->getBeginLoc();
1542  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1543  begin = getArg(0)->getBeginLoc();
1544  return begin;
1545 }
1547  if (isa<CXXOperatorCallExpr>(this))
1548  return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1549 
1550  SourceLocation end = getRParenLoc();
1551  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1552  end = getArg(getNumArgs() - 1)->getEndLoc();
1553  return end;
1554 }
1555 
1557  SourceLocation OperatorLoc,
1558  TypeSourceInfo *tsi,
1559  ArrayRef<OffsetOfNode> comps,
1560  ArrayRef<Expr*> exprs,
1561  SourceLocation RParenLoc) {
1562  void *Mem = C.Allocate(
1563  totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1564 
1565  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1566  RParenLoc);
1567 }
1568 
1570  unsigned numComps, unsigned numExprs) {
1571  void *Mem =
1572  C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1573  return new (Mem) OffsetOfExpr(numComps, numExprs);
1574 }
1575 
1576 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1577  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1579  SourceLocation RParenLoc)
1580  : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1581  OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1582  NumComps(comps.size()), NumExprs(exprs.size()) {
1583  for (unsigned i = 0; i != comps.size(); ++i)
1584  setComponent(i, comps[i]);
1585  for (unsigned i = 0; i != exprs.size(); ++i)
1586  setIndexExpr(i, exprs[i]);
1587 
1589 }
1590 
1592  assert(getKind() == Field || getKind() == Identifier);
1593  if (getKind() == Field)
1594  return getField()->getIdentifier();
1595 
1596  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1597 }
1598 
1600  UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1602  : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1603  OpLoc(op), RParenLoc(rp) {
1604  assert(ExprKind <= UETT_Last && "invalid enum value!");
1605  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1606  assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1607  "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1608  UnaryExprOrTypeTraitExprBits.IsType = false;
1609  Argument.Ex = E;
1611 }
1612 
1613 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1614  ValueDecl *MemberDecl,
1615  const DeclarationNameInfo &NameInfo, QualType T,
1617  NonOdrUseReason NOUR)
1618  : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1619  MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1620  assert(!NameInfo.getName() ||
1621  MemberDecl->getDeclName() == NameInfo.getName());
1622  MemberExprBits.IsArrow = IsArrow;
1623  MemberExprBits.HasQualifierOrFoundDecl = false;
1624  MemberExprBits.HasTemplateKWAndArgsInfo = false;
1625  MemberExprBits.HadMultipleCandidates = false;
1626  MemberExprBits.NonOdrUseReason = NOUR;
1627  MemberExprBits.OperatorLoc = OperatorLoc;
1629 }
1630 
1632  const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1633  NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1634  ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1635  DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1637  bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1638  FoundDecl.getAccess() != MemberDecl->getAccess();
1639  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1640  std::size_t Size =
1643  HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1644  TemplateArgs ? TemplateArgs->size() : 0);
1645 
1646  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1647  MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1648  NameInfo, T, VK, OK, NOUR);
1649 
1650  // FIXME: remove remaining dependence computation to computeDependence().
1651  auto Deps = E->getDependence();
1652  if (HasQualOrFound) {
1653  // FIXME: Wrong. We should be looking at the member declaration we found.
1654  if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1655  Deps |= ExprDependence::TypeValueInstantiation;
1656  else if (QualifierLoc &&
1658  Deps |= ExprDependence::Instantiation;
1659 
1660  E->MemberExprBits.HasQualifierOrFoundDecl = true;
1661 
1663  E->getTrailingObjects<MemberExprNameQualifier>();
1664  NQ->QualifierLoc = QualifierLoc;
1665  NQ->FoundDecl = FoundDecl;
1666  }
1667 
1668  E->MemberExprBits.HasTemplateKWAndArgsInfo =
1669  TemplateArgs || TemplateKWLoc.isValid();
1670 
1671  if (TemplateArgs) {
1672  auto TemplateArgDeps = TemplateArgumentDependence::None;
1673  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1674  TemplateKWLoc, *TemplateArgs,
1675  E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1676  if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1677  Deps |= ExprDependence::Instantiation;
1678  } else if (TemplateKWLoc.isValid()) {
1679  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1680  TemplateKWLoc);
1681  }
1682  E->setDependence(Deps);
1683 
1684  return E;
1685 }
1686 
1688  bool HasQualifier, bool HasFoundDecl,
1689  bool HasTemplateKWAndArgsInfo,
1690  unsigned NumTemplateArgs) {
1691  assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1692  "template args but no template arg info?");
1693  bool HasQualOrFound = HasQualifier || HasFoundDecl;
1694  std::size_t Size =
1696  TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1697  HasTemplateKWAndArgsInfo ? 1 : 0,
1698  NumTemplateArgs);
1699  void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1700  return new (Mem) MemberExpr(EmptyShell());
1701 }
1702 
1704  MemberDecl = NewD;
1705  if (getType()->isUndeducedType())
1706  setType(NewD->getType());
1708 }
1709 
1711  if (isImplicitAccess()) {
1712  if (hasQualifier())
1713  return getQualifierLoc().getBeginLoc();
1714  return MemberLoc;
1715  }
1716 
1717  // FIXME: We don't want this to happen. Rather, we should be able to
1718  // detect all kinds of implicit accesses more cleanly.
1719  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1720  if (BaseStartLoc.isValid())
1721  return BaseStartLoc;
1722  return MemberLoc;
1723 }
1727  EndLoc = getRAngleLoc();
1728  else if (EndLoc.isInvalid())
1729  EndLoc = getBase()->getEndLoc();
1730  return EndLoc;
1731 }
1732 
1733 bool CastExpr::CastConsistency() const {
1734  switch (getCastKind()) {
1735  case CK_DerivedToBase:
1736  case CK_UncheckedDerivedToBase:
1737  case CK_DerivedToBaseMemberPointer:
1738  case CK_BaseToDerived:
1739  case CK_BaseToDerivedMemberPointer:
1740  assert(!path_empty() && "Cast kind should have a base path!");
1741  break;
1742 
1743  case CK_CPointerToObjCPointerCast:
1744  assert(getType()->isObjCObjectPointerType());
1745  assert(getSubExpr()->getType()->isPointerType());
1746  goto CheckNoBasePath;
1747 
1748  case CK_BlockPointerToObjCPointerCast:
1749  assert(getType()->isObjCObjectPointerType());
1750  assert(getSubExpr()->getType()->isBlockPointerType());
1751  goto CheckNoBasePath;
1752 
1753  case CK_ReinterpretMemberPointer:
1754  assert(getType()->isMemberPointerType());
1755  assert(getSubExpr()->getType()->isMemberPointerType());
1756  goto CheckNoBasePath;
1757 
1758  case CK_BitCast:
1759  // Arbitrary casts to C pointer types count as bitcasts.
1760  // Otherwise, we should only have block and ObjC pointer casts
1761  // here if they stay within the type kind.
1762  if (!getType()->isPointerType()) {
1763  assert(getType()->isObjCObjectPointerType() ==
1764  getSubExpr()->getType()->isObjCObjectPointerType());
1765  assert(getType()->isBlockPointerType() ==
1766  getSubExpr()->getType()->isBlockPointerType());
1767  }
1768  goto CheckNoBasePath;
1769 
1770  case CK_AnyPointerToBlockPointerCast:
1771  assert(getType()->isBlockPointerType());
1772  assert(getSubExpr()->getType()->isAnyPointerType() &&
1773  !getSubExpr()->getType()->isBlockPointerType());
1774  goto CheckNoBasePath;
1775 
1776  case CK_CopyAndAutoreleaseBlockObject:
1777  assert(getType()->isBlockPointerType());
1778  assert(getSubExpr()->getType()->isBlockPointerType());
1779  goto CheckNoBasePath;
1780 
1781  case CK_FunctionToPointerDecay:
1782  assert(getType()->isPointerType());
1783  assert(getSubExpr()->getType()->isFunctionType());
1784  goto CheckNoBasePath;
1785 
1786  case CK_AddressSpaceConversion: {
1787  auto Ty = getType();
1788  auto SETy = getSubExpr()->getType();
1789  assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1790  if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1791  Ty = Ty->getPointeeType();
1792  SETy = SETy->getPointeeType();
1793  }
1794  assert((Ty->isDependentType() || SETy->isDependentType()) ||
1795  (!Ty.isNull() && !SETy.isNull() &&
1796  Ty.getAddressSpace() != SETy.getAddressSpace()));
1797  goto CheckNoBasePath;
1798  }
1799  // These should not have an inheritance path.
1800  case CK_Dynamic:
1801  case CK_ToUnion:
1802  case CK_ArrayToPointerDecay:
1803  case CK_NullToMemberPointer:
1804  case CK_NullToPointer:
1805  case CK_ConstructorConversion:
1806  case CK_IntegralToPointer:
1807  case CK_PointerToIntegral:
1808  case CK_ToVoid:
1809  case CK_VectorSplat:
1810  case CK_IntegralCast:
1811  case CK_BooleanToSignedIntegral:
1812  case CK_IntegralToFloating:
1813  case CK_FloatingToIntegral:
1814  case CK_FloatingCast:
1815  case CK_ObjCObjectLValueCast:
1816  case CK_FloatingRealToComplex:
1817  case CK_FloatingComplexToReal:
1818  case CK_FloatingComplexCast:
1819  case CK_FloatingComplexToIntegralComplex:
1820  case CK_IntegralRealToComplex:
1821  case CK_IntegralComplexToReal:
1822  case CK_IntegralComplexCast:
1823  case CK_IntegralComplexToFloatingComplex:
1824  case CK_ARCProduceObject:
1825  case CK_ARCConsumeObject:
1826  case CK_ARCReclaimReturnedObject:
1827  case CK_ARCExtendBlockObject:
1828  case CK_ZeroToOCLOpaqueType:
1829  case CK_IntToOCLSampler:
1830  case CK_FloatingToFixedPoint:
1831  case CK_FixedPointToFloating:
1832  case CK_FixedPointCast:
1833  case CK_FixedPointToIntegral:
1834  case CK_IntegralToFixedPoint:
1835  case CK_MatrixCast:
1836  assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1837  goto CheckNoBasePath;
1838 
1839  case CK_Dependent:
1840  case CK_LValueToRValue:
1841  case CK_NoOp:
1842  case CK_AtomicToNonAtomic:
1843  case CK_NonAtomicToAtomic:
1844  case CK_PointerToBoolean:
1845  case CK_IntegralToBoolean:
1846  case CK_FloatingToBoolean:
1847  case CK_MemberPointerToBoolean:
1848  case CK_FloatingComplexToBoolean:
1849  case CK_IntegralComplexToBoolean:
1850  case CK_LValueBitCast: // -> bool&
1851  case CK_LValueToRValueBitCast:
1852  case CK_UserDefinedConversion: // operator bool()
1853  case CK_BuiltinFnToFnPtr:
1854  case CK_FixedPointToBoolean:
1855  CheckNoBasePath:
1856  assert(path_empty() && "Cast kind should not have a base path!");
1857  break;
1858  }
1859  return true;
1860 }
1861 
1863  switch (CK) {
1864 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1865 #include "clang/AST/OperationKinds.def"
1866  }
1867  llvm_unreachable("Unhandled cast kind!");
1868 }
1869 
1870 namespace {
1871 // Skip over implicit nodes produced as part of semantic analysis.
1872 // Designed for use with IgnoreExprNodes.
1873 Expr *ignoreImplicitSemaNodes(Expr *E) {
1874  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1875  return Materialize->getSubExpr();
1876 
1877  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1878  return Binder->getSubExpr();
1879 
1880  if (auto *Full = dyn_cast<FullExpr>(E))
1881  return Full->getSubExpr();
1882 
1883  return E;
1884 }
1885 } // namespace
1886 
1888  const Expr *SubExpr = nullptr;
1889 
1890  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1891  SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1892 
1893  // Conversions by constructor and conversion functions have a
1894  // subexpression describing the call; strip it off.
1895  if (E->getCastKind() == CK_ConstructorConversion) {
1896  SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1897  ignoreImplicitSemaNodes);
1898  } else if (E->getCastKind() == CK_UserDefinedConversion) {
1899  assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1900  "Unexpected SubExpr for CK_UserDefinedConversion.");
1901  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1902  SubExpr = MCE->getImplicitObjectArgument();
1903  }
1904  }
1905 
1906  return const_cast<Expr *>(SubExpr);
1907 }
1908 
1910  const Expr *SubExpr = nullptr;
1911 
1912  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1913  SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1914 
1915  if (E->getCastKind() == CK_ConstructorConversion)
1916  return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1917 
1918  if (E->getCastKind() == CK_UserDefinedConversion) {
1919  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1920  return MCE->getMethodDecl();
1921  }
1922  }
1923 
1924  return nullptr;
1925 }
1926 
1927 CXXBaseSpecifier **CastExpr::path_buffer() {
1928  switch (getStmtClass()) {
1929 #define ABSTRACT_STMT(x)
1930 #define CASTEXPR(Type, Base) \
1931  case Stmt::Type##Class: \
1932  return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1933 #define STMT(Type, Base)
1934 #include "clang/AST/StmtNodes.inc"
1935  default:
1936  llvm_unreachable("non-cast expressions not possible here");
1937  }
1938 }
1939 
1941  QualType opType) {
1942  auto RD = unionType->castAs<RecordType>()->getDecl();
1943  return getTargetFieldForToUnionCast(RD, opType);
1944 }
1945 
1947  QualType OpType) {
1948  auto &Ctx = RD->getASTContext();
1949  RecordDecl::field_iterator Field, FieldEnd;
1950  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1951  Field != FieldEnd; ++Field) {
1952  if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1953  !Field->isUnnamedBitfield()) {
1954  return *Field;
1955  }
1956  }
1957  return nullptr;
1958 }
1959 
1961  assert(hasStoredFPFeatures());
1962  switch (getStmtClass()) {
1963  case ImplicitCastExprClass:
1964  return static_cast<ImplicitCastExpr *>(this)
1965  ->getTrailingObjects<FPOptionsOverride>();
1966  case CStyleCastExprClass:
1967  return static_cast<CStyleCastExpr *>(this)
1968  ->getTrailingObjects<FPOptionsOverride>();
1969  case CXXFunctionalCastExprClass:
1970  return static_cast<CXXFunctionalCastExpr *>(this)
1971  ->getTrailingObjects<FPOptionsOverride>();
1972  case CXXStaticCastExprClass:
1973  return static_cast<CXXStaticCastExpr *>(this)
1974  ->getTrailingObjects<FPOptionsOverride>();
1975  default:
1976  llvm_unreachable("Cast does not have FPFeatures");
1977  }
1978 }
1979 
1981  CastKind Kind, Expr *Operand,
1982  const CXXCastPath *BasePath,
1983  ExprValueKind VK,
1984  FPOptionsOverride FPO) {
1985  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1986  void *Buffer =
1987  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1988  PathSize, FPO.requiresTrailingStorage()));
1989  // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
1990  // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
1991  assert((Kind != CK_LValueToRValue ||
1992  !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
1993  "invalid type for lvalue-to-rvalue conversion");
1994  ImplicitCastExpr *E =
1995  new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
1996  if (PathSize)
1997  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1998  E->getTrailingObjects<CXXBaseSpecifier *>());
1999  return E;
2000 }
2001 
2003  unsigned PathSize,
2004  bool HasFPFeatures) {
2005  void *Buffer =
2006  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2007  PathSize, HasFPFeatures));
2008  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2009 }
2010 
2012  ExprValueKind VK, CastKind K, Expr *Op,
2013  const CXXCastPath *BasePath,
2014  FPOptionsOverride FPO,
2015  TypeSourceInfo *WrittenTy,
2017  unsigned PathSize = (BasePath ? BasePath->size() : 0);
2018  void *Buffer =
2019  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2020  PathSize, FPO.requiresTrailingStorage()));
2021  CStyleCastExpr *E =
2022  new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2023  if (PathSize)
2024  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2025  E->getTrailingObjects<CXXBaseSpecifier *>());
2026  return E;
2027 }
2028 
2030  unsigned PathSize,
2031  bool HasFPFeatures) {
2032  void *Buffer =
2033  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2034  PathSize, HasFPFeatures));
2035  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2036 }
2037 
2038 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2039 /// corresponds to, e.g. "<<=".
2041  switch (Op) {
2042 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2043 #include "clang/AST/OperationKinds.def"
2044  }
2045  llvm_unreachable("Invalid OpCode!");
2046 }
2047 
2050  switch (OO) {
2051  default: llvm_unreachable("Not an overloadable binary operator");
2052  case OO_Plus: return BO_Add;
2053  case OO_Minus: return BO_Sub;
2054  case OO_Star: return BO_Mul;
2055  case OO_Slash: return BO_Div;
2056  case OO_Percent: return BO_Rem;
2057  case OO_Caret: return BO_Xor;
2058  case OO_Amp: return BO_And;
2059  case OO_Pipe: return BO_Or;
2060  case OO_Equal: return BO_Assign;
2061  case OO_Spaceship: return BO_Cmp;
2062  case OO_Less: return BO_LT;
2063  case OO_Greater: return BO_GT;
2064  case OO_PlusEqual: return BO_AddAssign;
2065  case OO_MinusEqual: return BO_SubAssign;
2066  case OO_StarEqual: return BO_MulAssign;
2067  case OO_SlashEqual: return BO_DivAssign;
2068  case OO_PercentEqual: return BO_RemAssign;
2069  case OO_CaretEqual: return BO_XorAssign;
2070  case OO_AmpEqual: return BO_AndAssign;
2071  case OO_PipeEqual: return BO_OrAssign;
2072  case OO_LessLess: return BO_Shl;
2073  case OO_GreaterGreater: return BO_Shr;
2074  case OO_LessLessEqual: return BO_ShlAssign;
2075  case OO_GreaterGreaterEqual: return BO_ShrAssign;
2076  case OO_EqualEqual: return BO_EQ;
2077  case OO_ExclaimEqual: return BO_NE;
2078  case OO_LessEqual: return BO_LE;
2079  case OO_GreaterEqual: return BO_GE;
2080  case OO_AmpAmp: return BO_LAnd;
2081  case OO_PipePipe: return BO_LOr;
2082  case OO_Comma: return BO_Comma;
2083  case OO_ArrowStar: return BO_PtrMemI;
2084  }
2085 }
2086 
2088  static const OverloadedOperatorKind OverOps[] = {
2089  /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2090  OO_Star, OO_Slash, OO_Percent,
2091  OO_Plus, OO_Minus,
2092  OO_LessLess, OO_GreaterGreater,
2093  OO_Spaceship,
2094  OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2095  OO_EqualEqual, OO_ExclaimEqual,
2096  OO_Amp,
2097  OO_Caret,
2098  OO_Pipe,
2099  OO_AmpAmp,
2100  OO_PipePipe,
2101  OO_Equal, OO_StarEqual,
2102  OO_SlashEqual, OO_PercentEqual,
2103  OO_PlusEqual, OO_MinusEqual,
2104  OO_LessLessEqual, OO_GreaterGreaterEqual,
2105  OO_AmpEqual, OO_CaretEqual,
2106  OO_PipeEqual,
2107  OO_Comma
2108  };
2109  return OverOps[Opc];
2110 }
2111 
2113  Opcode Opc,
2114  Expr *LHS, Expr *RHS) {
2115  if (Opc != BO_Add)
2116  return false;
2117 
2118  // Check that we have one pointer and one integer operand.
2119  Expr *PExp;
2120  if (LHS->getType()->isPointerType()) {
2121  if (!RHS->getType()->isIntegerType())
2122  return false;
2123  PExp = LHS;
2124  } else if (RHS->getType()->isPointerType()) {
2125  if (!LHS->getType()->isIntegerType())
2126  return false;
2127  PExp = RHS;
2128  } else {
2129  return false;
2130  }
2131 
2132  // Check that the pointer is a nullptr.
2133  if (!PExp->IgnoreParenCasts()
2135  return false;
2136 
2137  // Check that the pointee type is char-sized.
2138  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2139  if (!PTy || !PTy->getPointeeType()->isCharType())
2140  return false;
2141 
2142  return true;
2143 }
2144 
2146  QualType ResultTy, SourceLocation BLoc,
2147  SourceLocation RParenLoc,
2148  DeclContext *ParentContext)
2149  : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2150  BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2151  SourceLocExprBits.Kind = Kind;
2153 }
2154 
2155 StringRef SourceLocExpr::getBuiltinStr() const {
2156  switch (getIdentKind()) {
2157  case File:
2158  return "__builtin_FILE";
2159  case Function:
2160  return "__builtin_FUNCTION";
2161  case Line:
2162  return "__builtin_LINE";
2163  case Column:
2164  return "__builtin_COLUMN";
2165  case SourceLocStruct:
2166  return "__builtin_source_location";
2167  }
2168  llvm_unreachable("unexpected IdentKind!");
2169 }
2170 
2172  const Expr *DefaultExpr) const {
2173  SourceLocation Loc;
2174  const DeclContext *Context;
2175 
2176  std::tie(Loc,
2177  Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2178  if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2179  return {DIE->getUsedLocation(), DIE->getUsedContext()};
2180  if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2181  return {DAE->getUsedLocation(), DAE->getUsedContext()};
2182  return {this->getLocation(), this->getParentContext()};
2183  }();
2184 
2187 
2188  auto MakeStringLiteral = [&](StringRef Tmp) {
2189  using LValuePathEntry = APValue::LValuePathEntry;
2191  // Decay the string to a pointer to the first character.
2192  LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2193  return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2194  };
2195 
2196  switch (getIdentKind()) {
2197  case SourceLocExpr::File: {
2198  SmallString<256> Path(PLoc.getFilename());
2200  Ctx.getTargetInfo());
2201  return MakeStringLiteral(Path);
2202  }
2203  case SourceLocExpr::Function: {
2204  const auto *CurDecl = dyn_cast<Decl>(Context);
2205  return MakeStringLiteral(
2207  : std::string(""));
2208  }
2209  case SourceLocExpr::Line:
2210  case SourceLocExpr::Column: {
2211  llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2212  /*isUnsigned=*/true);
2213  IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2214  : PLoc.getColumn();
2215  return APValue(IntVal);
2216  }
2218  // Fill in a std::source_location::__impl structure, by creating an
2219  // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2220  // that.
2221  const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2222  assert(ImplDecl);
2223 
2224  // Construct an APValue for the __impl struct, and get or create a Decl
2225  // corresponding to that. Note that we've already verified that the shape of
2226  // the ImplDecl type is as expected.
2227 
2229  for (FieldDecl *F : ImplDecl->fields()) {
2230  StringRef Name = F->getName();
2231  if (Name == "_M_file_name") {
2232  SmallString<256> Path(PLoc.getFilename());
2234  Ctx.getTargetInfo());
2235  Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2236  } else if (Name == "_M_function_name") {
2237  // Note: this emits the PrettyFunction name -- different than what
2238  // __builtin_FUNCTION() above returns!
2239  const auto *CurDecl = dyn_cast<Decl>(Context);
2240  Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2241  CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2242  ? StringRef(PredefinedExpr::ComputeName(
2244  : "");
2245  } else if (Name == "_M_line") {
2246  QualType Ty = F->getType();
2247  llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2249  IntVal = PLoc.getLine();
2250  Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2251  } else if (Name == "_M_column") {
2252  QualType Ty = F->getType();
2253  llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2255  IntVal = PLoc.getColumn();
2256  Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2257  }
2258  }
2259 
2261  Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2262 
2264  false);
2265  }
2266  }
2267  llvm_unreachable("unhandled case");
2268 }
2269 
2271  ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2272  : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2273  InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2274  RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2275  sawArrayRangeDesignator(false);
2276  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2277 
2279 }
2280 
2281 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2282  if (NumInits > InitExprs.size())
2283  InitExprs.reserve(C, NumInits);
2284 }
2285 
2286 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2287  InitExprs.resize(C, NumInits, nullptr);
2288 }
2289 
2290 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2291  if (Init >= InitExprs.size()) {
2292  InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2293  setInit(Init, expr);
2294  return nullptr;
2295  }
2296 
2297  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2298  setInit(Init, expr);
2299  return Result;
2300 }
2301 
2303  assert(!hasArrayFiller() && "Filler already set!");
2304  ArrayFillerOrUnionFieldInit = filler;
2305  // Fill out any "holes" in the array due to designated initializers.
2306  Expr **inits = getInits();
2307  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2308  if (inits[i] == nullptr)
2309  inits[i] = filler;
2310 }
2311 
2313  if (getNumInits() != 1)
2314  return false;
2315  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2316  if (!AT || !AT->getElementType()->isIntegerType())
2317  return false;
2318  // It is possible for getInit() to return null.
2319  const Expr *Init = getInit(0);
2320  if (!Init)
2321  return false;
2322  Init = Init->IgnoreParenImpCasts();
2323  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2324 }
2325 
2327  assert(isSemanticForm() && "syntactic form never semantically transparent");
2328 
2329  // A glvalue InitListExpr is always just sugar.
2330  if (isGLValue()) {
2331  assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2332  return true;
2333  }
2334 
2335  // Otherwise, we're sugar if and only if we have exactly one initializer that
2336  // is of the same type.
2337  if (getNumInits() != 1 || !getInit(0))
2338  return false;
2339 
2340  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2341  // transparent struct copy.
2342  if (!getInit(0)->isPRValue() && getType()->isRecordType())
2343  return false;
2344 
2345  return getType().getCanonicalType() ==
2347 }
2348 
2350  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2351 
2352  if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2353  return false;
2354  }
2355 
2356  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2357  return Lit && Lit->getValue() == 0;
2358 }
2359 
2361  if (InitListExpr *SyntacticForm = getSyntacticForm())
2362  return SyntacticForm->getBeginLoc();
2363  SourceLocation Beg = LBraceLoc;
2364  if (Beg.isInvalid()) {
2365  // Find the first non-null initializer.
2366  for (InitExprsTy::const_iterator I = InitExprs.begin(),
2367  E = InitExprs.end();
2368  I != E; ++I) {
2369  if (Stmt *S = *I) {
2370  Beg = S->getBeginLoc();
2371  break;
2372  }
2373  }
2374  }
2375  return Beg;
2376 }
2377 
2379  if (InitListExpr *SyntacticForm = getSyntacticForm())
2380  return SyntacticForm->getEndLoc();
2381  SourceLocation End = RBraceLoc;
2382  if (End.isInvalid()) {
2383  // Find the first non-null initializer from the end.
2384  for (Stmt *S : llvm::reverse(InitExprs)) {
2385  if (S) {
2386  End = S->getEndLoc();
2387  break;
2388  }
2389  }
2390  }
2391  return End;
2392 }
2393 
2394 /// getFunctionType - Return the underlying function type for this block.
2395 ///
2397  // The block pointer is never sugared, but the function type might be.
2398  return cast<BlockPointerType>(getType())
2400 }
2401 
2403  return TheBlock->getCaretLocation();
2404 }
2405 const Stmt *BlockExpr::getBody() const {
2406  return TheBlock->getBody();
2407 }
2409  return TheBlock->getBody();
2410 }
2411 
2412 
2413 //===----------------------------------------------------------------------===//
2414 // Generic Expression Routines
2415 //===----------------------------------------------------------------------===//
2416 
2418  // In C++11, discarded-value expressions of a certain form are special,
2419  // according to [expr]p10:
2420  // The lvalue-to-rvalue conversion (4.1) is applied only if the
2421  // expression is a glvalue of volatile-qualified type and it has
2422  // one of the following forms:
2423  if (!isGLValue() || !getType().isVolatileQualified())
2424  return false;
2425 
2426  const Expr *E = IgnoreParens();
2427 
2428  // - id-expression (5.1.1),
2429  if (isa<DeclRefExpr>(E))
2430  return true;
2431 
2432  // - subscripting (5.2.1),
2433  if (isa<ArraySubscriptExpr>(E))
2434  return true;
2435 
2436  // - class member access (5.2.5),
2437  if (isa<MemberExpr>(E))
2438  return true;
2439 
2440  // - indirection (5.3.1),
2441  if (auto *UO = dyn_cast<UnaryOperator>(E))
2442  if (UO->getOpcode() == UO_Deref)
2443  return true;
2444 
2445  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2446  // - pointer-to-member operation (5.5),
2447  if (BO->isPtrMemOp())
2448  return true;
2449 
2450  // - comma expression (5.18) where the right operand is one of the above.
2451  if (BO->getOpcode() == BO_Comma)
2452  return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2453  }
2454 
2455  // - conditional expression (5.16) where both the second and the third
2456  // operands are one of the above, or
2457  if (auto *CO = dyn_cast<ConditionalOperator>(E))
2458  return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2459  CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2460  // The related edge case of "*x ?: *x".
2461  if (auto *BCO =
2462  dyn_cast<BinaryConditionalOperator>(E)) {
2463  if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2464  return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2465  BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2466  }
2467 
2468  // Objective-C++ extensions to the rule.
2469  if (isa<ObjCIvarRefExpr>(E))
2470  return true;
2471  if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2472  if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2473  return true;
2474  }
2475 
2476  return false;
2477 }
2478 
2479 /// isUnusedResultAWarning - Return true if this immediate expression should
2480 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2481 /// with location to warn on and the source range[s] to report with the
2482 /// warning.
2484  SourceRange &R1, SourceRange &R2,
2485  ASTContext &Ctx) const {
2486  // Don't warn if the expr is type dependent. The type could end up
2487  // instantiating to void.
2488  if (isTypeDependent())
2489  return false;
2490 
2491  switch (getStmtClass()) {
2492  default:
2493  if (getType()->isVoidType())
2494  return false;
2495  WarnE = this;
2496  Loc = getExprLoc();
2497  R1 = getSourceRange();
2498  return true;
2499  case ParenExprClass:
2500  return cast<ParenExpr>(this)->getSubExpr()->
2501  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2502  case GenericSelectionExprClass:
2503  return cast<GenericSelectionExpr>(this)->getResultExpr()->
2504  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2505  case CoawaitExprClass:
2506  case CoyieldExprClass:
2507  return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2508  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2509  case ChooseExprClass:
2510  return cast<ChooseExpr>(this)->getChosenSubExpr()->
2511  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2512  case UnaryOperatorClass: {
2513  const UnaryOperator *UO = cast<UnaryOperator>(this);
2514 
2515  switch (UO->getOpcode()) {
2516  case UO_Plus:
2517  case UO_Minus:
2518  case UO_AddrOf:
2519  case UO_Not:
2520  case UO_LNot:
2521  case UO_Deref:
2522  break;
2523  case UO_Coawait:
2524  // This is just the 'operator co_await' call inside the guts of a
2525  // dependent co_await call.
2526  case UO_PostInc:
2527  case UO_PostDec:
2528  case UO_PreInc:
2529  case UO_PreDec: // ++/--
2530  return false; // Not a warning.
2531  case UO_Real:
2532  case UO_Imag:
2533  // accessing a piece of a volatile complex is a side-effect.
2534  if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2536  return false;
2537  break;
2538  case UO_Extension:
2539  return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2540  }
2541  WarnE = this;
2542  Loc = UO->getOperatorLoc();
2543  R1 = UO->getSubExpr()->getSourceRange();
2544  return true;
2545  }
2546  case BinaryOperatorClass: {
2547  const BinaryOperator *BO = cast<BinaryOperator>(this);
2548  switch (BO->getOpcode()) {
2549  default:
2550  break;
2551  // Consider the RHS of comma for side effects. LHS was checked by
2552  // Sema::CheckCommaOperands.
2553  case BO_Comma:
2554  // ((foo = <blah>), 0) is an idiom for hiding the result (and
2555  // lvalue-ness) of an assignment written in a macro.
2556  if (IntegerLiteral *IE =
2557  dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2558  if (IE->getValue() == 0)
2559  return false;
2560  return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2561  // Consider '||', '&&' to have side effects if the LHS or RHS does.
2562  case BO_LAnd:
2563  case BO_LOr:
2564  if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2565  !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2566  return false;
2567  break;
2568  }
2569  if (BO->isAssignmentOp())
2570  return false;
2571  WarnE = this;
2572  Loc = BO->getOperatorLoc();
2573  R1 = BO->getLHS()->getSourceRange();
2574  R2 = BO->getRHS()->getSourceRange();
2575  return true;
2576  }
2577  case CompoundAssignOperatorClass:
2578  case VAArgExprClass:
2579  case AtomicExprClass:
2580  return false;
2581 
2582  case ConditionalOperatorClass: {
2583  // If only one of the LHS or RHS is a warning, the operator might
2584  // be being used for control flow. Only warn if both the LHS and
2585  // RHS are warnings.
2586  const auto *Exp = cast<ConditionalOperator>(this);
2587  return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2588  Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2589  }
2590  case BinaryConditionalOperatorClass: {
2591  const auto *Exp = cast<BinaryConditionalOperator>(this);
2592  return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2593  }
2594 
2595  case MemberExprClass:
2596  WarnE = this;
2597  Loc = cast<MemberExpr>(this)->getMemberLoc();
2598  R1 = SourceRange(Loc, Loc);
2599  R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2600  return true;
2601 
2602  case ArraySubscriptExprClass:
2603  WarnE = this;
2604  Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2605  R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2606  R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2607  return true;
2608 
2609  case CXXOperatorCallExprClass: {
2610  // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2611  // overloads as there is no reasonable way to define these such that they
2612  // have non-trivial, desirable side-effects. See the -Wunused-comparison
2613  // warning: operators == and != are commonly typo'ed, and so warning on them
2614  // provides additional value as well. If this list is updated,
2615  // DiagnoseUnusedComparison should be as well.
2616  const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2617  switch (Op->getOperator()) {
2618  default:
2619  break;
2620  case OO_EqualEqual:
2621  case OO_ExclaimEqual:
2622  case OO_Less:
2623  case OO_Greater:
2624  case OO_GreaterEqual:
2625  case OO_LessEqual:
2626  if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2627  Op->getCallReturnType(Ctx)->isVoidType())
2628  break;
2629  WarnE = this;
2630  Loc = Op->getOperatorLoc();
2631  R1 = Op->getSourceRange();
2632  return true;
2633  }
2634 
2635  // Fallthrough for generic call handling.
2636  LLVM_FALLTHROUGH;
2637  }
2638  case CallExprClass:
2639  case CXXMemberCallExprClass:
2640  case UserDefinedLiteralClass: {
2641  // If this is a direct call, get the callee.
2642  const CallExpr *CE = cast<CallExpr>(this);
2643  if (const Decl *FD = CE->getCalleeDecl()) {
2644  // If the callee has attribute pure, const, or warn_unused_result, warn
2645  // about it. void foo() { strlen("bar"); } should warn.
2646  //
2647  // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2648  // updated to match for QoI.
2649  if (CE->hasUnusedResultAttr(Ctx) ||
2650  FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2651  WarnE = this;
2652  Loc = CE->getCallee()->getBeginLoc();
2653  R1 = CE->getCallee()->getSourceRange();
2654 
2655  if (unsigned NumArgs = CE->getNumArgs())
2656  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2657  CE->getArg(NumArgs - 1)->getEndLoc());
2658  return true;
2659  }
2660  }
2661  return false;
2662  }
2663 
2664  // If we don't know precisely what we're looking at, let's not warn.
2665  case UnresolvedLookupExprClass:
2666  case CXXUnresolvedConstructExprClass:
2667  case RecoveryExprClass:
2668  return false;
2669 
2670  case CXXTemporaryObjectExprClass:
2671  case CXXConstructExprClass: {
2672  if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2673  const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2674  if (Type->hasAttr<WarnUnusedAttr>() ||
2675  (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2676  WarnE = this;
2677  Loc = getBeginLoc();
2678  R1 = getSourceRange();
2679  return true;
2680  }
2681  }
2682 
2683  const auto *CE = cast<CXXConstructExpr>(this);
2684  if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2685  const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2686  if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2687  WarnE = this;
2688  Loc = getBeginLoc();
2689  R1 = getSourceRange();
2690 
2691  if (unsigned NumArgs = CE->getNumArgs())
2692  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2693  CE->getArg(NumArgs - 1)->getEndLoc());
2694  return true;
2695  }
2696  }
2697 
2698  return false;
2699  }
2700 
2701  case ObjCMessageExprClass: {
2702  const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2703  if (Ctx.getLangOpts().ObjCAutoRefCount &&
2704  ME->isInstanceMessage() &&
2705  !ME->getType()->isVoidType() &&
2706  ME->getMethodFamily() == OMF_init) {
2707  WarnE = this;
2708  Loc = getExprLoc();
2709  R1 = ME->getSourceRange();
2710  return true;
2711  }
2712 
2713  if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2714  if (MD->hasAttr<WarnUnusedResultAttr>()) {
2715  WarnE = this;
2716  Loc = getExprLoc();
2717  return true;
2718  }
2719 
2720  return false;
2721  }
2722 
2723  case ObjCPropertyRefExprClass:
2724  case ObjCSubscriptRefExprClass:
2725  WarnE = this;
2726  Loc = getExprLoc();
2727  R1 = getSourceRange();
2728  return true;
2729 
2730  case PseudoObjectExprClass: {
2731  const auto *POE = cast<PseudoObjectExpr>(this);
2732 
2733  // For some syntactic forms, we should always warn.
2734  if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2735  POE->getSyntacticForm())) {
2736  WarnE = this;
2737  Loc = getExprLoc();
2738  R1 = getSourceRange();
2739  return true;
2740  }
2741 
2742  // For others, we should never warn.
2743  if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2744  if (BO->isAssignmentOp())
2745  return false;
2746  if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2747  if (UO->isIncrementDecrementOp())
2748  return false;
2749 
2750  // Otherwise, warn if the result expression would warn.
2751  const Expr *Result = POE->getResultExpr();
2752  return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2753  }
2754 
2755  case StmtExprClass: {
2756  // Statement exprs don't logically have side effects themselves, but are
2757  // sometimes used in macros in ways that give them a type that is unused.
2758  // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2759  // however, if the result of the stmt expr is dead, we don't want to emit a
2760  // warning.
2761  const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2762  if (!CS->body_empty()) {
2763  if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2764  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2765  if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2766  if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2767  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2768  }
2769 
2770  if (getType()->isVoidType())
2771  return false;
2772  WarnE = this;
2773  Loc = cast<StmtExpr>(this)->getLParenLoc();
2774  R1 = getSourceRange();
2775  return true;
2776  }
2777  case CXXFunctionalCastExprClass:
2778  case CStyleCastExprClass: {
2779  // Ignore an explicit cast to void, except in C++98 if the operand is a
2780  // volatile glvalue for which we would trigger an implicit read in any
2781  // other language mode. (Such an implicit read always happens as part of
2782  // the lvalue conversion in C, and happens in C++ for expressions of all
2783  // forms where it seems likely the user intended to trigger a volatile
2784  // load.)
2785  const CastExpr *CE = cast<CastExpr>(this);
2786  const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2787  if (CE->getCastKind() == CK_ToVoid) {
2788  if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2790  // Suppress the "unused value" warning for idiomatic usage of
2791  // '(void)var;' used to suppress "unused variable" warnings.
2792  if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2793  if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2794  if (!VD->isExternallyVisible())
2795  return false;
2796 
2797  // The lvalue-to-rvalue conversion would have no effect for an array.
2798  // It's implausible that the programmer expected this to result in a
2799  // volatile array load, so don't warn.
2800  if (SubE->getType()->isArrayType())
2801  return false;
2802 
2803  return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2804  }
2805  return false;
2806  }
2807 
2808  // If this is a cast to a constructor conversion, check the operand.
2809  // Otherwise, the result of the cast is unused.
2810  if (CE->getCastKind() == CK_ConstructorConversion)
2811  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2812  if (CE->getCastKind() == CK_Dependent)
2813  return false;
2814 
2815  WarnE = this;
2816  if (const CXXFunctionalCastExpr *CXXCE =
2817  dyn_cast<CXXFunctionalCastExpr>(this)) {
2818  Loc = CXXCE->getBeginLoc();
2819  R1 = CXXCE->getSubExpr()->getSourceRange();
2820  } else {
2821  const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2822  Loc = CStyleCE->getLParenLoc();
2823  R1 = CStyleCE->getSubExpr()->getSourceRange();
2824  }
2825  return true;
2826  }
2827  case ImplicitCastExprClass: {
2828  const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2829 
2830  // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2831  if (ICE->getCastKind() == CK_LValueToRValue &&
2833  return false;
2834 
2835  return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2836  }
2837  case CXXDefaultArgExprClass:
2838  return (cast<CXXDefaultArgExpr>(this)
2839  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2840  case CXXDefaultInitExprClass:
2841  return (cast<CXXDefaultInitExpr>(this)
2842  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2843 
2844  case CXXNewExprClass:
2845  // FIXME: In theory, there might be new expressions that don't have side
2846  // effects (e.g. a placement new with an uninitialized POD).
2847  case CXXDeleteExprClass:
2848  return false;
2849  case MaterializeTemporaryExprClass:
2850  return cast<MaterializeTemporaryExpr>(this)
2851  ->getSubExpr()
2852  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2853  case CXXBindTemporaryExprClass:
2854  return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2855  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2856  case ExprWithCleanupsClass:
2857  return cast<ExprWithCleanups>(this)->getSubExpr()
2858  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2859  }
2860 }
2861 
2862 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2863 /// returns true, if it is; false otherwise.
2865  const Expr *E = IgnoreParens();
2866  switch (E->getStmtClass()) {
2867  default:
2868  return false;
2869  case ObjCIvarRefExprClass:
2870  return true;
2871  case Expr::UnaryOperatorClass:
2872  return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2873  case ImplicitCastExprClass:
2874  return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2875  case MaterializeTemporaryExprClass:
2876  return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2877  Ctx);
2878  case CStyleCastExprClass:
2879  return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2880  case DeclRefExprClass: {
2881  const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2882 
2883  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2884  if (VD->hasGlobalStorage())
2885  return true;
2886  QualType T = VD->getType();
2887  // dereferencing to a pointer is always a gc'able candidate,
2888  // unless it is __weak.
2889  return T->isPointerType() &&
2890  (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2891  }
2892  return false;
2893  }
2894  case MemberExprClass: {
2895  const MemberExpr *M = cast<MemberExpr>(E);
2896  return M->getBase()->isOBJCGCCandidate(Ctx);
2897  }
2898  case ArraySubscriptExprClass:
2899  return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2900  }
2901 }
2902 
2904  if (isTypeDependent())
2905  return false;
2906  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2907 }
2908 
2910  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2911 
2912  // Bound member expressions are always one of these possibilities:
2913  // x->m x.m x->*y x.*y
2914  // (possibly parenthesized)
2915 
2916  expr = expr->IgnoreParens();
2917  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2918  assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2919  return mem->getMemberDecl()->getType();
2920  }
2921 
2922  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2923  QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2924  ->getPointeeType();
2925  assert(type->isFunctionType());
2926  return type;
2927  }
2928 
2929  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2930  return QualType();
2931 }
2932 
2935 }
2936 
2938  return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2939 }
2940 
2943 }
2944 
2947 }
2948 
2951 }
2952 
2956 }
2957 
2960 }
2961 
2963  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2964  if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2965  return MCE->getImplicitObjectArgument();
2966  }
2967  return this;
2968 }
2969 
2973 }
2974 
2978 }
2979 
2981  auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
2982  if (auto *CE = dyn_cast<CastExpr>(E)) {
2983  // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2984  // ptr<->int casts of the same width. We also ignore all identity casts.
2985  Expr *SubExpr = CE->getSubExpr();
2986  bool IsIdentityCast =
2987  Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2988  bool IsSameWidthCast = (E->getType()->isPointerType() ||
2989  E->getType()->isIntegralType(Ctx)) &&
2990  (SubExpr->getType()->isPointerType() ||
2991  SubExpr->getType()->isIntegralType(Ctx)) &&
2992  (Ctx.getTypeSize(E->getType()) ==
2993  Ctx.getTypeSize(SubExpr->getType()));
2994 
2995  if (IsIdentityCast || IsSameWidthCast)
2996  return SubExpr;
2997  } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2998  return NTTP->getReplacement();
2999 
3000  return E;
3001  };
3003  IgnoreNoopCastsSingleStep);
3004 }
3005 
3008  if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3009  auto *SE = Cast->getSubExpr();
3010  if (SE->getSourceRange() == E->getSourceRange())
3011  return SE;
3012  }
3013 
3014  if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3015  auto NumArgs = C->getNumArgs();
3016  if (NumArgs == 1 ||
3017  (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3018  Expr *A = C->getArg(0);
3019  if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3020  return A;
3021  }
3022  }
3023  return E;
3024  };
3025  auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3026  if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3027  Expr *ExprNode = C->getImplicitObjectArgument();
3028  if (ExprNode->getSourceRange() == E->getSourceRange()) {
3029  return ExprNode;
3030  }
3031  if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3032  if (PE->getSourceRange() == C->getSourceRange()) {
3033  return cast<Expr>(PE);
3034  }
3035  }
3036  ExprNode = ExprNode->IgnoreParenImpCasts();
3037  if (ExprNode->getSourceRange() == E->getSourceRange())
3038  return ExprNode;
3039  }
3040  return E;
3041  };
3042  return IgnoreExprNodes(
3045  IgnoreImplicitMemberCallSingleStep);
3046 }
3047 
3049  const Expr *E = this;
3050  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3051  E = M->getSubExpr();
3052 
3053  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3054  E = ICE->getSubExprAsWritten();
3055 
3056  return isa<CXXDefaultArgExpr>(E);
3057 }
3058 
3059 /// Skip over any no-op casts and any temporary-binding
3060 /// expressions.
3062  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3063  E = M->getSubExpr();
3064 
3065  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3066  if (ICE->getCastKind() == CK_NoOp)
3067  E = ICE->getSubExpr();
3068  else
3069  break;
3070  }
3071 
3072  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3073  E = BE->getSubExpr();
3074 
3075  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3076  if (ICE->getCastKind() == CK_NoOp)
3077  E = ICE->getSubExpr();
3078  else
3079  break;
3080  }
3081 
3082  return E->IgnoreParens();
3083 }
3084 
3085 /// isTemporaryObject - Determines if this expression produces a
3086 /// temporary of the given class type.
3087 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3088  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3089  return false;
3090 
3092 
3093  // Temporaries are by definition pr-values of class type.
3094  if (!E->Classify(C).isPRValue()) {
3095  // In this context, property reference is a message call and is pr-value.
3096  if (!isa<ObjCPropertyRefExpr>(E))
3097  return false;
3098  }
3099 
3100  // Black-list a few cases which yield pr-values of class type that don't
3101  // refer to temporaries of that type:
3102 
3103  // - implicit derived-to-base conversions
3104  if (isa<ImplicitCastExpr>(E)) {
3105  switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3106  case CK_DerivedToBase:
3107  case CK_UncheckedDerivedToBase:
3108  return false;
3109  default:
3110  break;
3111  }
3112  }
3113 
3114  // - member expressions (all)
3115  if (isa<MemberExpr>(E))
3116  return false;
3117 
3118  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3119  if (BO->isPtrMemOp())
3120  return false;
3121 
3122  // - opaque values (all)
3123  if (isa<OpaqueValueExpr>(E))
3124  return false;
3125 
3126  return true;
3127 }
3128 
3130  const Expr *E = this;
3131 
3132  // Strip away parentheses and casts we don't care about.
3133  while (true) {
3134  if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3135  E = Paren->getSubExpr();
3136  continue;
3137  }
3138 
3139  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3140  if (ICE->getCastKind() == CK_NoOp ||
3141  ICE->getCastKind() == CK_LValueToRValue ||
3142  ICE->getCastKind() == CK_DerivedToBase ||
3143  ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3144  E = ICE->getSubExpr();
3145  continue;
3146  }
3147  }
3148 
3149  if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3150  if (UnOp->getOpcode() == UO_Extension) {
3151  E = UnOp->getSubExpr();
3152  continue;
3153  }
3154  }
3155 
3156  if (const MaterializeTemporaryExpr *M
3157  = dyn_cast<MaterializeTemporaryExpr>(E)) {
3158  E = M->getSubExpr();
3159  continue;
3160  }
3161 
3162  break;
3163  }
3164 
3165  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3166  return This->isImplicit();
3167 
3168  return false;
3169 }
3170 
3171 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3172 /// in Exprs is type-dependent.
3174  for (unsigned I = 0; I < Exprs.size(); ++I)
3175  if (Exprs[I]->isTypeDependent())
3176  return true;
3177 
3178  return false;
3179 }
3180 
3181 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3182  const Expr **Culprit) const {
3183  assert(!isValueDependent() &&
3184  "Expression evaluator can't be called on a dependent expression.");
3185 
3186  // This function is attempting whether an expression is an initializer
3187  // which can be evaluated at compile-time. It very closely parallels
3188  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3189  // will lead to unexpected results. Like ConstExprEmitter, it falls back
3190  // to isEvaluatable most of the time.
3191  //
3192  // If we ever capture reference-binding directly in the AST, we can
3193  // kill the second parameter.
3194 
3195  if (IsForRef) {
3196  EvalResult Result;
3197  if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3198  return true;
3199  if (Culprit)
3200  *Culprit = this;
3201  return false;
3202  }
3203 
3204  switch (getStmtClass()) {
3205  default: break;
3206  case Stmt::ExprWithCleanupsClass:
3207  return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3208  Ctx, IsForRef, Culprit);
3209  case StringLiteralClass:
3210  case ObjCEncodeExprClass:
3211  return true;
3212  case CXXTemporaryObjectExprClass:
3213  case CXXConstructExprClass: {
3214  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3215 
3216  if (CE->getConstructor()->isTrivial() &&
3218  // Trivial default constructor
3219  if (!CE->getNumArgs()) return true;
3220 
3221  // Trivial copy constructor
3222  assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3223  return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3224  }
3225 
3226  break;
3227  }
3228  case ConstantExprClass: {
3229  // FIXME: We should be able to return "true" here, but it can lead to extra
3230  // error messages. E.g. in Sema/array-init.c.
3231  const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3232  return Exp->isConstantInitializer(Ctx, false, Culprit);
3233  }
3234  case CompoundLiteralExprClass: {
3235  // This handles gcc's extension that allows global initializers like
3236  // "struct x {int x;} x = (struct x) {};".
3237  // FIXME: This accepts other cases it shouldn't!
3238  const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3239  return Exp->isConstantInitializer(Ctx, false, Culprit);
3240  }
3241  case DesignatedInitUpdateExprClass: {
3242  const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3243  return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3244  DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3245  }
3246  case InitListExprClass: {
3247  const InitListExpr *ILE = cast<InitListExpr>(this);
3248  assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3249  if (ILE->getType()->isArrayType()) {
3250  unsigned numInits = ILE->getNumInits();
3251  for (unsigned i = 0; i < numInits; i++) {
3252  if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3253  return false;
3254  }
3255  return true;
3256  }
3257 
3258  if (ILE->getType()->isRecordType()) {
3259  unsigned ElementNo = 0;
3260  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3261  for (const auto *Field : RD->fields()) {
3262  // If this is a union, skip all the fields that aren't being initialized.
3263  if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3264  continue;
3265 
3266  // Don't emit anonymous bitfields, they just affect layout.
3267  if (Field->isUnnamedBitfield())
3268  continue;
3269 
3270  if (ElementNo < ILE->getNumInits()) {
3271  const Expr *Elt = ILE->getInit(ElementNo++);
3272  if (Field->isBitField()) {
3273  // Bitfields have to evaluate to an integer.
3274  EvalResult Result;
3275  if (!Elt->EvaluateAsInt(Result, Ctx)) {
3276  if (Culprit)
3277  *Culprit = Elt;
3278  return false;
3279  }
3280  } else {
3281  bool RefType = Field->getType()->isReferenceType();
3282  if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3283  return false;
3284  }
3285  }
3286  }
3287  return true;
3288  }
3289 
3290  break;
3291  }
3292  case ImplicitValueInitExprClass:
3293  case NoInitExprClass:
3294  return true;
3295  case ParenExprClass:
3296  return cast<ParenExpr>(this)->getSubExpr()
3297  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3298  case GenericSelectionExprClass:
3299  return cast<GenericSelectionExpr>(this)->getResultExpr()
3300  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3301  case ChooseExprClass:
3302  if (cast<ChooseExpr>(this)->isConditionDependent()) {
3303  if (Culprit)
3304  *Culprit = this;
3305  return false;
3306  }
3307  return cast<ChooseExpr>(this)->getChosenSubExpr()
3308  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3309  case UnaryOperatorClass: {
3310  const UnaryOperator* Exp = cast<UnaryOperator>(this);
3311  if (Exp->getOpcode() == UO_Extension)
3312  return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3313  break;
3314  }
3315  case CXXFunctionalCastExprClass:
3316  case CXXStaticCastExprClass:
3317  case ImplicitCastExprClass:
3318  case CStyleCastExprClass:
3319  case ObjCBridgedCastExprClass:
3320  case CXXDynamicCastExprClass:
3321  case CXXReinterpretCastExprClass:
3322  case CXXAddrspaceCastExprClass:
3323  case CXXConstCastExprClass: {
3324  const CastExpr *CE = cast<CastExpr>(this);
3325 
3326  // Handle misc casts we want to ignore.
3327  if (CE->getCastKind() == CK_NoOp ||
3328  CE->getCastKind() == CK_LValueToRValue ||
3329  CE->getCastKind() == CK_ToUnion ||
3330  CE->getCastKind() == CK_ConstructorConversion ||
3331  CE->getCastKind() == CK_NonAtomicToAtomic ||
3332  CE->getCastKind() == CK_AtomicToNonAtomic ||
3333  CE->getCastKind() == CK_IntToOCLSampler)
3334  return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3335 
3336  break;
3337  }
3338  case MaterializeTemporaryExprClass:
3339  return cast<MaterializeTemporaryExpr>(this)
3340  ->getSubExpr()
3341  ->isConstantInitializer(Ctx, false, Culprit);
3342 
3343  case SubstNonTypeTemplateParmExprClass:
3344  return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3345  ->isConstantInitializer(Ctx, false, Culprit);
3346  case CXXDefaultArgExprClass:
3347  return cast<CXXDefaultArgExpr>(this)->getExpr()
3348  ->isConstantInitializer(Ctx, false, Culprit);
3349  case CXXDefaultInitExprClass:
3350  return cast<CXXDefaultInitExpr>(this)->getExpr()
3351  ->isConstantInitializer(Ctx, false, Culprit);
3352  }
3353  // Allow certain forms of UB in constant initializers: signed integer
3354  // overflow and floating-point division by zero. We'll give a warning on
3355  // these, but they're common enough that we have to accept them.
3357  return true;
3358  if (Culprit)
3359  *Culprit = this;
3360  return false;
3361 }
3362 
3364  unsigned BuiltinID = getBuiltinCallee();
3365  if (BuiltinID != Builtin::BI__assume &&
3366  BuiltinID != Builtin::BI__builtin_assume)
3367  return false;
3368 
3369  const Expr* Arg = getArg(0);
3370  bool ArgVal;
3371  return !Arg->isValueDependent() &&
3372  Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3373 }
3374 
3376  return getBuiltinCallee() == Builtin::BImove;
3377 }
3378 
3379 namespace {
3380  /// Look for any side effects within a Stmt.
3381  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3383  const bool IncludePossibleEffects;
3384  bool HasSideEffects;
3385 
3386  public:
3387  explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3388  : Inherited(Context),
3389  IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3390 
3391  bool hasSideEffects() const { return HasSideEffects; }
3392 
3393  void VisitDecl(const Decl *D) {
3394  if (!D)
3395  return;
3396 
3397  // We assume the caller checks subexpressions (eg, the initializer, VLA
3398  // bounds) for side-effects on our behalf.
3399  if (auto *VD = dyn_cast<VarDecl>(D)) {
3400  // Registering a destructor is a side-effect.
3401  if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3402  VD->needsDestruction(Context))
3403  HasSideEffects = true;
3404  }
3405  }
3406 
3407  void VisitDeclStmt(const DeclStmt *DS) {
3408  for (auto *D : DS->decls())
3409  VisitDecl(D);
3410  Inherited::VisitDeclStmt(DS);
3411  }
3412 
3413  void VisitExpr(const Expr *E) {
3414  if (!HasSideEffects &&
3415  E->HasSideEffects(Context, IncludePossibleEffects))
3416  HasSideEffects = true;
3417  }
3418  };
3419 }
3420 
3422  bool IncludePossibleEffects) const {
3423  // In circumstances where we care about definite side effects instead of
3424  // potential side effects, we want to ignore expressions that are part of a
3425  // macro expansion as a potential side effect.
3426  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3427  return false;
3428 
3429  switch (getStmtClass()) {
3430  case NoStmtClass:
3431  #define ABSTRACT_STMT(Type)
3432  #define STMT(Type, Base) case Type##Class:
3433  #define EXPR(Type, Base)
3434  #include "clang/AST/StmtNodes.inc"
3435  llvm_unreachable("unexpected Expr kind");
3436 
3437  case DependentScopeDeclRefExprClass:
3438  case CXXUnresolvedConstructExprClass:
3439  case CXXDependentScopeMemberExprClass:
3440  case UnresolvedLookupExprClass:
3441  case UnresolvedMemberExprClass:
3442  case PackExpansionExprClass:
3443  case SubstNonTypeTemplateParmPackExprClass:
3444  case FunctionParmPackExprClass:
3445  case TypoExprClass:
3446  case RecoveryExprClass:
3447  case CXXFoldExprClass:
3448  // Make a conservative assumption for dependent nodes.
3449  return IncludePossibleEffects;
3450 
3451  case DeclRefExprClass:
3452  case ObjCIvarRefExprClass:
3453  case PredefinedExprClass:
3454  case IntegerLiteralClass:
3455  case FixedPointLiteralClass:
3456  case FloatingLiteralClass:
3457  case ImaginaryLiteralClass:
3458  case StringLiteralClass:
3459  case CharacterLiteralClass:
3460  case OffsetOfExprClass:
3461  case ImplicitValueInitExprClass:
3462  case UnaryExprOrTypeTraitExprClass:
3463  case AddrLabelExprClass:
3464  case GNUNullExprClass:
3465  case ArrayInitIndexExprClass:
3466  case NoInitExprClass:
3467  case CXXBoolLiteralExprClass:
3468  case CXXNullPtrLiteralExprClass:
3469  case CXXThisExprClass:
3470  case CXXScalarValueInitExprClass:
3471  case TypeTraitExprClass:
3472  case ArrayTypeTraitExprClass:
3473  case ExpressionTraitExprClass:
3474  case CXXNoexceptExprClass:
3475  case SizeOfPackExprClass:
3476  case ObjCStringLiteralClass:
3477  case ObjCEncodeExprClass:
3478  case ObjCBoolLiteralExprClass:
3479  case ObjCAvailabilityCheckExprClass:
3480  case CXXUuidofExprClass:
3481  case OpaqueValueExprClass:
3482  case SourceLocExprClass:
3483  case ConceptSpecializationExprClass:
3484  case RequiresExprClass:
3485  case SYCLUniqueStableNameExprClass:
3486  // These never have a side-effect.
3487  return false;
3488 
3489  case ConstantExprClass:
3490  // FIXME: Move this into the "return false;" block above.
3491  return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3492  Ctx, IncludePossibleEffects);
3493 
3494  case CallExprClass:
3495  case CXXOperatorCallExprClass:
3496  case CXXMemberCallExprClass:
3497  case CUDAKernelCallExprClass:
3498  case UserDefinedLiteralClass: {
3499  // We don't know a call definitely has side effects, except for calls
3500  // to pure/const functions that definitely don't.
3501  // If the call itself is considered side-effect free, check the operands.
3502  const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3503  bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3504  if (IsPure || !IncludePossibleEffects)
3505  break;
3506  return true;
3507  }
3508 
3509  case BlockExprClass:
3510  case CXXBindTemporaryExprClass:
3511  if (!IncludePossibleEffects)
3512  break;
3513  return true;
3514 
3515  case MSPropertyRefExprClass:
3516  case MSPropertySubscriptExprClass:
3517  case CompoundAssignOperatorClass:
3518  case VAArgExprClass:
3519  case AtomicExprClass:
3520  case CXXThrowExprClass:
3521  case CXXNewExprClass:
3522  case CXXDeleteExprClass:
3523  case CoawaitExprClass:
3524  case DependentCoawaitExprClass:
3525  case CoyieldExprClass:
3526  // These always have a side-effect.
3527  return true;
3528 
3529  case StmtExprClass: {
3530  // StmtExprs have a side-effect if any substatement does.
3531  SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3532  Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3533  return Finder.hasSideEffects();
3534  }
3535 
3536  case ExprWithCleanupsClass:
3537  if (IncludePossibleEffects)
3538  if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3539  return true;
3540  break;
3541 
3542  case ParenExprClass:
3543  case ArraySubscriptExprClass:
3544  case MatrixSubscriptExprClass:
3545  case OMPArraySectionExprClass:
3546  case OMPArrayShapingExprClass:
3547  case OMPIteratorExprClass:
3548  case MemberExprClass:
3549  case ConditionalOperatorClass:
3550  case BinaryConditionalOperatorClass:
3551  case CompoundLiteralExprClass:
3552  case ExtVectorElementExprClass:
3553  case DesignatedInitExprClass:
3554  case DesignatedInitUpdateExprClass:
3555  case ArrayInitLoopExprClass:
3556  case ParenListExprClass:
3557  case CXXPseudoDestructorExprClass:
3558  case CXXRewrittenBinaryOperatorClass:
3559  case CXXStdInitializerListExprClass:
3560  case SubstNonTypeTemplateParmExprClass:
3561  case MaterializeTemporaryExprClass:
3562  case ShuffleVectorExprClass:
3563  case ConvertVectorExprClass:
3564  case AsTypeExprClass:
3565  // These have a side-effect if any subexpression does.
3566  break;
3567 
3568  case UnaryOperatorClass:
3569  if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3570  return true;
3571  break;
3572 
3573  case BinaryOperatorClass:
3574  if (cast<BinaryOperator>(this)->isAssignmentOp())
3575  return true;
3576  break;
3577 
3578  case InitListExprClass:
3579  // FIXME: The children for an InitListExpr doesn't include the array filler.
3580  if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3581  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3582  return true;
3583  break;
3584 
3585  case GenericSelectionExprClass:
3586  return cast<GenericSelectionExpr>(this)->getResultExpr()->
3587  HasSideEffects(Ctx, IncludePossibleEffects);
3588 
3589  case ChooseExprClass:
3590  return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3591  Ctx, IncludePossibleEffects);
3592 
3593  case CXXDefaultArgExprClass:
3594  return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3595  Ctx, IncludePossibleEffects);
3596 
3597  case CXXDefaultInitExprClass: {
3598  const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3599  if (const Expr *E = FD->getInClassInitializer())
3600  return E->HasSideEffects(Ctx, IncludePossibleEffects);
3601  // If we've not yet parsed the initializer, assume it has side-effects.
3602  return true;
3603  }
3604 
3605  case CXXDynamicCastExprClass: {
3606  // A dynamic_cast expression has side-effects if it can throw.
3607  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3608  if (DCE->getTypeAsWritten()->isReferenceType() &&
3609  DCE->getCastKind() == CK_Dynamic)
3610  return true;
3611  }
3612  LLVM_FALLTHROUGH;
3613  case ImplicitCastExprClass:
3614  case CStyleCastExprClass:
3615  case CXXStaticCastExprClass:
3616  case CXXReinterpretCastExprClass:
3617  case CXXConstCastExprClass:
3618  case CXXAddrspaceCastExprClass:
3619  case CXXFunctionalCastExprClass:
3620  case BuiltinBitCastExprClass: {
3621  // While volatile reads are side-effecting in both C and C++, we treat them
3622  // as having possible (not definite) side-effects. This allows idiomatic
3623  // code to behave without warning, such as sizeof(*v) for a volatile-
3624  // qualified pointer.
3625  if (!IncludePossibleEffects)
3626  break;
3627 
3628  const CastExpr *CE = cast<CastExpr>(this);
3629  if (CE->getCastKind() == CK_LValueToRValue &&
3631  return true;
3632  break;
3633  }
3634 
3635  case CXXTypeidExprClass:
3636  // typeid might throw if its subexpression is potentially-evaluated, so has
3637  // side-effects in that case whether or not its subexpression does.
3638  return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3639 
3640  case CXXConstructExprClass:
3641  case CXXTemporaryObjectExprClass: {
3642  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3643  if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3644  return true;
3645  // A trivial constructor does not add any side-effects of its own. Just look
3646  // at its arguments.
3647  break;
3648  }
3649 
3650  case CXXInheritedCtorInitExprClass: {
3651  const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3652  if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3653  return true;
3654  break;
3655  }
3656 
3657  case LambdaExprClass: {
3658  const LambdaExpr *LE = cast<LambdaExpr>(this);
3659  for (Expr *E : LE->capture_inits())
3660  if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3661  return true;
3662  return false;
3663  }
3664 
3665  case PseudoObjectExprClass: {
3666  // Only look for side-effects in the semantic form, and look past
3667  // OpaqueValueExpr bindings in that form.
3668  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3670  E = PO->semantics_end();
3671  I != E; ++I) {
3672  const Expr *Subexpr = *I;
3673  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3674  Subexpr = OVE->getSourceExpr();
3675  if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3676  return true;
3677  }
3678  return false;
3679  }
3680 
3681  case ObjCBoxedExprClass:
3682  case ObjCArrayLiteralClass:
3683  case ObjCDictionaryLiteralClass:
3684  case ObjCSelectorExprClass:
3685  case ObjCProtocolExprClass:
3686  case ObjCIsaExprClass:
3687  case ObjCIndirectCopyRestoreExprClass:
3688  case ObjCSubscriptRefExprClass:
3689  case ObjCBridgedCastExprClass:
3690  case ObjCMessageExprClass:
3691  case ObjCPropertyRefExprClass:
3692  // FIXME: Classify these cases better.
3693  if (IncludePossibleEffects)
3694  return true;
3695  break;
3696  }
3697 
3698  // Recurse to children.
3699  for (const Stmt *SubStmt : children())
3700  if (SubStmt &&
3701  cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3702  return true;
3703 
3704  return false;
3705 }
3706 
3708  if (auto Call = dyn_cast<CallExpr>(this))
3709  return Call->getFPFeaturesInEffect(LO);
3710  if (auto UO = dyn_cast<UnaryOperator>(this))
3711  return UO->getFPFeaturesInEffect(LO);
3712  if (auto BO = dyn_cast<BinaryOperator>(this))
3713  return BO->getFPFeaturesInEffect(LO);
3714  if (auto Cast = dyn_cast<CastExpr>(this))
3715  return Cast->getFPFeaturesInEffect(LO);
3717 }
3718 
3719 namespace {
3720  /// Look for a call to a non-trivial function within an expression.
3721  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3722  {
3724 
3725  bool NonTrivial;
3726 
3727  public:
3728  explicit NonTrivialCallFinder(const ASTContext &Context)
3729  : Inherited(Context), NonTrivial(false) { }
3730 
3731  bool hasNonTrivialCall() const { return NonTrivial; }
3732 
3733  void VisitCallExpr(const CallExpr *E) {
3734  if (const CXXMethodDecl *Method
3735  = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3736  if (Method->isTrivial()) {
3737  // Recurse to children of the call.
3738  Inherited::VisitStmt(E);
3739  return;
3740  }
3741  }
3742 
3743  NonTrivial = true;
3744  }
3745 
3746  void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3747  if (E->getConstructor()->isTrivial()) {
3748  // Recurse to children of the call.
3749  Inherited::VisitStmt(E);
3750  return;
3751  }
3752 
3753  NonTrivial = true;
3754  }
3755 
3756  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3757  if (E->getTemporary()->getDestructor()->isTrivial()) {
3758  Inherited::VisitStmt(E);
3759  return;
3760  }
3761 
3762  NonTrivial = true;
3763  }
3764  };
3765 }
3766 
3767 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3768  NonTrivialCallFinder Finder(Ctx);
3769  Finder.Visit(this);
3770  return Finder.hasNonTrivialCall();
3771 }
3772 
3773 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3774 /// pointer constant or not, as well as the specific kind of constant detected.
3775 /// Null pointer constants can be integer constant expressions with the
3776 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3777 /// (a GNU extension).
3781  if (isValueDependent() &&
3782  (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3783  // Error-dependent expr should never be a null pointer.
3784  if (containsErrors())
3785  return NPCK_NotNull;
3786  switch (NPC) {
3788  llvm_unreachable("Unexpected value dependent expression!");
3790  if (isTypeDependent() || getType()->isIntegralType(Ctx))
3791  return NPCK_ZeroExpression;
3792  else
3793  return NPCK_NotNull;
3794 
3796  return NPCK_NotNull;
3797  }
3798  }
3799 
3800  // Strip off a cast to void*, if it exists. Except in C++.
3801  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3802  if (!Ctx.getLangOpts().CPlusPlus) {
3803  // Check that it is a cast to void*.
3804  if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3805  QualType Pointee = PT->getPointeeType();
3806  Qualifiers Qs = Pointee.getQualifiers();
3807  // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3808  // has non-default address space it is not treated as nullptr.
3809  // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3810  // since it cannot be assigned to a pointer to constant address space.
3811  if (Ctx.getLangOpts().OpenCL &&
3813  Qs.removeAddressSpace();
3814 
3815  if (Pointee->isVoidType() && Qs.empty() && // to void*
3816  CE->getSubExpr()->getType()->isIntegerType()) // from int
3817  return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3818  }
3819  }
3820  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3821  // Ignore the ImplicitCastExpr type entirely.
3822  return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3823  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3824  // Accept ((void*)0) as a null pointer constant, as many other
3825  // implementations do.
3826  return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3827  } else if (const GenericSelectionExpr *GE =
3828  dyn_cast<GenericSelectionExpr>(this)) {
3829  if (GE->isResultDependent())
3830  return NPCK_NotNull;
3831  return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3832  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3833  if (CE->isConditionDependent())
3834  return NPCK_NotNull;
3835  return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3836  } else if (const CXXDefaultArgExpr *DefaultArg
3837  = dyn_cast<CXXDefaultArgExpr>(this)) {
3838  // See through default argument expressions.
3839  return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3840  } else if (const CXXDefaultInitExpr *DefaultInit
3841  = dyn_cast<CXXDefaultInitExpr>(this)) {
3842  // See through default initializer expressions.
3843  return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3844  } else if (isa<GNUNullExpr>(this)) {
3845  // The GNU __null extension is always a null pointer constant.
3846  return NPCK_GNUNull;
3847  } else if (const MaterializeTemporaryExpr *M
3848  = dyn_cast<MaterializeTemporaryExpr>(this)) {
3849  return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3850  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3851  if (const Expr *Source = OVE->getSourceExpr())
3852  return Source->isNullPointerConstant(Ctx, NPC);
3853  }
3854 
3855  // If the expression has no type information, it cannot be a null pointer
3856  // constant.
3857  if (getType().isNull())
3858  return NPCK_NotNull;
3859 
3860  // C++11 nullptr_t is always a null pointer constant.
3861  if (getType()->isNullPtrType())
3862  return NPCK_CXX11_nullptr;
3863 
3864  if (const RecordType *UT = getType()->getAsUnionType())
3865  if (!Ctx.getLangOpts().CPlusPlus11 &&
3866  UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3867  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3868  const Expr *InitExpr = CLE->getInitializer();
3869  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3870  return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3871  }
3872  // This expression must be an integer type.
3873  if (!getType()->isIntegerType() ||
3874  (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3875  return NPCK_NotNull;
3876 
3877  if (Ctx.getLangOpts().CPlusPlus11) {
3878  // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3879  // value zero or a prvalue of type std::nullptr_t.
3880  // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3881  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3882  if (Lit && !Lit->getValue())
3883  return NPCK_ZeroLiteral;
3884  if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3885  return NPCK_NotNull;
3886  } else {
3887  // If we have an integer constant expression, we need to *evaluate* it and
3888  // test for the value 0.
3889  if (!isIntegerConstantExpr(Ctx))
3890  return NPCK_NotNull;
3891  }
3892 
3893  if (EvaluateKnownConstInt(Ctx) != 0)
3894  return NPCK_NotNull;
3895 
3896  if (isa<IntegerLiteral>(this))
3897  return NPCK_ZeroLiteral;
3898  return NPCK_ZeroExpression;
3899 }
3900 
3901 /// If this expression is an l-value for an Objective C
3902 /// property, find the underlying property reference expression.
3904  const Expr *E = this;
3905  while (true) {
3906  assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3907  "expression is not a property reference");
3908  E = E->IgnoreParenCasts();
3909  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3910  if (BO->getOpcode() == BO_Comma) {
3911  E = BO->getRHS();
3912  continue;
3913  }
3914  }
3915 
3916  break;
3917  }
3918 
3919  return cast<ObjCPropertyRefExpr>(E);
3920 }
3921 
3922 bool Expr::isObjCSelfExpr() const {
3923  const Expr *E = IgnoreParenImpCasts();
3924 
3925  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3926  if (!DRE)
3927  return false;
3928 
3929  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3930  if (!Param)
3931  return false;
3932 
3933  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3934  if (!M)
3935  return false;
3936 
3937  return M->getSelfDecl() == Param;
3938 }
3939 
3941  Expr *E = this->IgnoreParens();
3942 
3943  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3944  if (ICE->getCastKind() == CK_LValueToRValue ||
3945  (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
3946  E = ICE->getSubExpr()->IgnoreParens();
3947  else
3948  break;
3949  }
3950 
3951  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3952  if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3953  if (Field->isBitField())
3954  return Field;
3955 
3956  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3957  FieldDecl *Ivar = IvarRef->getDecl();
3958  if (Ivar->isBitField())
3959  return Ivar;
3960  }
3961 
3962  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3963  if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3964  if (Field->isBitField())
3965  return Field;
3966 
3967  if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3968  if (Expr *E = BD->getBinding())
3969  return E->getSourceBitField();
3970  }
3971 
3972  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3973  if (BinOp->isAssignmentOp() && BinOp->getLHS())
3974  return BinOp->getLHS()->getSourceBitField();
3975 
3976  if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3977  return BinOp->getRHS()->getSourceBitField();
3978  }
3979 
3980  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3981  if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3982  return UnOp->getSubExpr()->getSourceBitField();
3983 
3984  return nullptr;
3985 }
3986 
3988  // FIXME: Why do we not just look at the ObjectKind here?
3989  const Expr *E = this->IgnoreParens();
3990 
3991  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3992  if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
3993  E = ICE->getSubExpr()->IgnoreParens();
3994  else
3995  break;
3996  }
3997 
3998  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3999  return ASE->getBase()->getType()->isVectorType();
4000 
4001  if (isa<ExtVectorElementExpr>(E))
4002  return true;
4003 
4004  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4005  if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4006  if (auto *E = BD->getBinding())
4007  return E->refersToVectorElement();
4008 
4009  return false;
4010 }
4011 
4013  const Expr *E = this->IgnoreParenImpCasts();
4014 
4015  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4016  if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4017  if (VD->getStorageClass() == SC_Register &&
4018  VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4019  return true;
4020 
4021  return false;
4022 }
4023 
4024 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4025  E1 = E1->IgnoreParens();
4026  E2 = E2->IgnoreParens();
4027 
4028  if (E1->getStmtClass() != E2->getStmtClass())
4029  return false;
4030 
4031  switch (E1->getStmtClass()) {
4032  default:
4033  return false;
4034  case CXXThisExprClass:
4035  return true;
4036  case DeclRefExprClass: {
4037  // DeclRefExpr without an ImplicitCastExpr can happen for integral
4038  // template parameters.
4039  const auto *DRE1 = cast<DeclRefExpr>(E1);
4040  const auto *DRE2 = cast<DeclRefExpr>(E2);
4041  return DRE1->isPRValue() && DRE2->isPRValue() &&
4042  DRE1->getDecl() == DRE2->getDecl();
4043  }
4044  case ImplicitCastExprClass: {
4045  // Peel off implicit casts.
4046  while (true) {
4047  const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4048  const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4049  if (!ICE1 || !ICE2)
4050  return false;
4051  if (ICE1->getCastKind() != ICE2->getCastKind())
4052  return false;
4053  E1 = ICE1->getSubExpr()->IgnoreParens();
4054  E2 = ICE2->getSubExpr()->IgnoreParens();
4055  // The final cast must be one of these types.
4056  if (ICE1->getCastKind() == CK_LValueToRValue ||
4057  ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4058  ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4059  break;
4060  }
4061  }
4062 
4063  const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4064  const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4065  if (DRE1 && DRE2)
4066  return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4067 
4068  const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4069  const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4070  if (Ivar1 && Ivar2) {
4071  return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4072  declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4073  }
4074 
4075  const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4076  const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4077  if (Array1 && Array2) {
4078  if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4079  return false;
4080 
4081  auto Idx1 = Array1->getIdx();
4082  auto Idx2 = Array2->getIdx();
4083  const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4084  const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4085  if (Integer1 && Integer2) {
4086  if (!llvm::APInt::isSameValue(Integer1->getValue(),
4087  Integer2->getValue()))
4088  return false;
4089  } else {
4090  if (!isSameComparisonOperand(Idx1, Idx2))
4091  return false;
4092  }
4093 
4094  return true;
4095  }
4096 
4097  // Walk the MemberExpr chain.
4098  while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4099  const auto *ME1 = cast<MemberExpr>(E1);
4100  const auto *ME2 = cast<MemberExpr>(E2);
4101  if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4102  return false;
4103  if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4104  if (D->isStaticDataMember())
4105  return true;
4106  E1 = ME1->getBase()->IgnoreParenImpCasts();
4107  E2 = ME2->getBase()->IgnoreParenImpCasts();
4108  }
4109 
4110  if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4111  return true;
4112 
4113  // A static member variable can end the MemberExpr chain with either
4114  // a MemberExpr or a DeclRefExpr.
4115  auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4116  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4117  return DRE->getDecl();
4118  if (const auto *ME = dyn_cast<MemberExpr>(E))
4119  return ME->getMemberDecl();
4120  return nullptr;
4121  };
4122 
4123  const ValueDecl *VD1 = getAnyDecl(E1);
4124  const ValueDecl *VD2 = getAnyDecl(E2);
4125  return declaresSameEntity(VD1, VD2);
4126  }
4127  }
4128 }
4129 
4130 /// isArrow - Return true if the base expression is a pointer to vector,
4131 /// return false if the base expression is a vector.
4133  return getBase()->getType()->isPointerType();
4134 }
4135 
4137  if (const VectorType *VT = getType()->getAs<VectorType>())
4138  return VT->getNumElements();
4139  return 1;
4140 }
4141 
4142 /// containsDuplicateElements - Return true if any element access is repeated.
4144  // FIXME: Refactor this code to an accessor on the AST node which returns the
4145  // "type" of component access, and share with code below and in Sema.
4146  StringRef Comp = Accessor->getName();
4147 
4148  // Halving swizzles do not contain duplicate elements.
4149  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4150  return false;
4151 
4152  // Advance past s-char prefix on hex swizzles.
4153  if (Comp[0] == 's' || Comp[0] == 'S')
4154  Comp = Comp.substr(1);
4155 
4156  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4157  if (Comp.substr(i + 1).contains(Comp[i]))
4158  return true;
4159 
4160  return false;
4161 }
4162 
4163 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4165  SmallVectorImpl<uint32_t> &Elts) const {
4166  StringRef Comp = Accessor->getName();
4167  bool isNumericAccessor = false;
4168  if (Comp[0] == 's' || Comp[0] == 'S') {
4169  Comp = Comp.substr(1);
4170  isNumericAccessor = true;
4171  }
4172 
4173  bool isHi = Comp == "hi";
4174  bool isLo = Comp == "lo";
4175  bool isEven = Comp == "even";
4176  bool isOdd = Comp == "odd";
4177 
4178  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4179  uint64_t Index;
4180 
4181  if (isHi)
4182  Index = e + i;
4183  else if (isLo)
4184  Index = i;
4185  else if (isEven)
4186  Index = 2 * i;
4187  else if (isOdd)
4188  Index = 2 * i + 1;
4189  else
4190  Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4191 
4192  Elts.push_back(Index);
4193  }
4194 }
4195 
4198  SourceLocation RP)
4199  : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4200  BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4201  SubExprs = new (C) Stmt*[args.size()];
4202  for (unsigned i = 0; i != args.size(); i++)
4203  SubExprs[i] = args[i];
4204 
4206 }
4207 
4209  if (SubExprs) C.Deallocate(SubExprs);
4210 
4211  this->NumExprs = Exprs.size();
4212  SubExprs = new (C) Stmt*[NumExprs];
4213  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4214 }
4215 
4216 GenericSelectionExpr::GenericSelectionExpr(
4217  const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4218  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4219  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4220  bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4221  : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4222  AssocExprs[ResultIndex]->getValueKind(),
4223  AssocExprs[ResultIndex]->getObjectKind()),
4224  NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4225  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4226  assert(AssocTypes.size() == AssocExprs.size() &&
4227  "Must have the same number of association expressions"
4228  " and TypeSourceInfo!");
4229  assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4230 
4231  GenericSelectionExprBits.GenericLoc = GenericLoc;
4232  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4233  std::copy(AssocExprs.begin(), AssocExprs.end(),
4234  getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4235  std::copy(AssocTypes.begin(), AssocTypes.end(),
4236  getTrailingObjects<TypeSourceInfo *>());
4237 
4238  setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4239 }
4240 
4241 GenericSelectionExpr::GenericSelectionExpr(
4242  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4243  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4244  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4245  bool ContainsUnexpandedParameterPack)
4246  : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4247  OK_Ordinary),
4248  NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4249  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4250  assert(AssocTypes.size() == AssocExprs.size() &&
4251  "Must have the same number of association expressions"
4252  " and TypeSourceInfo!");
4253 
4254  GenericSelectionExprBits.GenericLoc = GenericLoc;
4255  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4256  std::copy(AssocExprs.begin(), AssocExprs.end(),
4257  getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4258  std::copy(AssocTypes.begin(), AssocTypes.end(),
4259  getTrailingObjects<TypeSourceInfo *>());
4260 
4261  setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4262 }
4263 
4264 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4265  : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4266 
4268  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4269  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4270  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4271  bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4272  unsigned NumAssocs = AssocExprs.size();
4273  void *Mem = Context.Allocate(
4274  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4275  alignof(GenericSelectionExpr));
4276  return new (Mem) GenericSelectionExpr(
4277  Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4278  RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4279 }
4280 
4282  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4283  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4284  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4285  bool ContainsUnexpandedParameterPack) {
4286  unsigned NumAssocs = AssocExprs.size();
4287  void *Mem = Context.Allocate(
4288  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4289  alignof(GenericSelectionExpr));
4290  return new (Mem) GenericSelectionExpr(
4291  Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4292  RParenLoc, ContainsUnexpandedParameterPack);
4293 }
4294 
4297  unsigned NumAssocs) {
4298  void *Mem = Context.Allocate(
4299  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4300  alignof(GenericSelectionExpr));
4301  return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4302 }
4303 
4304 //===----------------------------------------------------------------------===//
4305 // DesignatedInitExpr
4306 //===----------------------------------------------------------------------===//
4307 
4309  assert(Kind == FieldDesignator && "Only valid on a field designator");
4310  if (Field.NameOrField & 0x01)
4311  return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4312  return getField()->getIdentifier();
4313 }
4314 
4315 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4316  llvm::ArrayRef<Designator> Designators,
4317  SourceLocation EqualOrColonLoc,
4318  bool GNUSyntax,
4319  ArrayRef<Expr *> IndexExprs, Expr *Init)
4320  : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4321  Init->getObjectKind()),
4322  EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4323  NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4324  this->Designators = new (C) Designator[NumDesignators];
4325 
4326  // Record the initializer itself.
4327  child_iterator Child = child_begin();
4328  *Child++ = Init;
4329 
4330  // Copy the designators and their subexpressions, computing
4331  // value-dependence along the way.
4332  unsigned IndexIdx = 0;
4333  for (unsigned I = 0; I != NumDesignators; ++I) {
4334  this->Designators[I] = Designators[I];
4335  if (this->Designators[I].isArrayDesignator()) {
4336  // Copy the index expressions into permanent storage.
4337  *Child++ = IndexExprs[IndexIdx++];
4338  } else if (this->Designators[I].isArrayRangeDesignator()) {
4339  // Copy the start/end expressions into permanent storage.
4340  *Child++ = IndexExprs[IndexIdx++];
4341  *Child++ = IndexExprs[IndexIdx++];
4342  }
4343  }
4344 
4345  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4347 }
4348 
4351  llvm::ArrayRef<Designator> Designators,
4352  ArrayRef<Expr*> IndexExprs,
4353  SourceLocation ColonOrEqualLoc,
4354  bool UsesColonSyntax, Expr *Init) {
4355  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4356  alignof(DesignatedInitExpr));
4357  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4358  ColonOrEqualLoc, UsesColonSyntax,
4359  IndexExprs, Init);
4360 }
4361 
4363  unsigned NumIndexExprs) {
4364  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4365  alignof(DesignatedInitExpr));
4366  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4367 }
4368 
4370  const Designator *Desigs,
4371  unsigned NumDesigs) {
4372  Designators = new (C) Designator[NumDesigs];
4373  NumDesignators = NumDesigs;
4374  for (unsigned I = 0; I != NumDesigs; ++I)
4375  Designators[I] = Desigs[I];
4376 }
4377 
4379  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4380  if (size() == 1)
4381  return DIE->getDesignator(0)->getSourceRange();
4382  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4383  DIE->getDesignator(size() - 1)->getEndLoc());
4384 }
4385 
4387  SourceLocation StartLoc;
4388  auto *DIE = const_cast<DesignatedInitExpr *>(this);
4389  Designator &First = *DIE->getDesignator(0);
4390  if (First.isFieldDesignator())
4391  StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4392  else
4393  StartLoc = First.ArrayOrRange.LBracketLoc;
4394  return StartLoc;
4395 }
4396 
4398  return getInit()->getEndLoc();
4399 }
4400 
4402  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4403  return getSubExpr(D.ArrayOrRange.Index + 1);
4404 }
4405 
4407  assert(D.Kind == Designator::ArrayRangeDesignator &&
4408  "Requires array range designator");
4409  return getSubExpr(D.ArrayOrRange.Index + 1);
4410 }
4411 
4413  assert(D.Kind == Designator::ArrayRangeDesignator &&
4414  "Requires array range designator");
4415  return getSubExpr(D.ArrayOrRange.Index + 2);
4416 }
4417 
4418 /// Replaces the designator at index @p Idx with the series
4419 /// of designators in [First, Last).
4421  const Designator *First,
4422  const Designator *Last) {
4423  unsigned NumNewDesignators = Last - First;
4424  if (NumNewDesignators == 0) {
4425  std::copy_backward(Designators + Idx + 1,
4426  Designators + NumDesignators,
4427  Designators + Idx);
4428  --NumNewDesignators;
4429  return;
4430  }
4431  if (NumNewDesignators == 1) {
4432  Designators[Idx] = *First;
4433  return;
4434  }
4435 
4436  Designator *NewDesignators
4437  = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4438  std::copy(Designators, Designators + Idx, NewDesignators);
4439  std::copy(First, Last, NewDesignators + Idx);
4440  std::copy(Designators + Idx + 1, Designators + NumDesignators,
4441  NewDesignators + Idx + NumNewDesignators);
4442  Designators = NewDesignators;
4443  NumDesignators = NumDesignators - 1 + NumNewDesignators;
4444 }
4445 
4447  SourceLocation lBraceLoc,
4448  Expr *baseExpr,
4449  SourceLocation rBraceLoc)
4450  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4451  OK_Ordinary) {
4452  BaseAndUpdaterExprs[0] = baseExpr;
4453 
4454  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4455  ILE->setType(baseExpr->getType());
4456  BaseAndUpdaterExprs[1] = ILE;
4457 
4458  // FIXME: this is wrong, set it correctly.
4460 }
4461 
4463  return getBase()->getBeginLoc();
4464 }
4465 
4467  return getBase()->getEndLoc();
4468 }
4469 
4470 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4471  SourceLocation RParenLoc)
4472  : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4473  LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4474  ParenListExprBits.NumExprs = Exprs.size();
4475 
4476  for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4477  getTrailingObjects<Stmt *>()[I] = Exprs[I];
4479 }
4480 
4481 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4482  : Expr(ParenListExprClass, Empty) {
4483  ParenListExprBits.NumExprs = NumExprs;
4484 }
4485 
4487  SourceLocation LParenLoc,
4488  ArrayRef<Expr *> Exprs,
4489  SourceLocation RParenLoc) {
4490  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4491  alignof(ParenListExpr));
4492  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4493 }
4494 
4496  unsigned NumExprs) {
4497  void *Mem =
4498  Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4499  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4500 }
4501 
4503  Opcode opc, QualType ResTy, ExprValueKind VK,
4504  ExprObjectKind OK, SourceLocation opLoc,
4505  FPOptionsOverride FPFeatures)
4506  : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4507  BinaryOperatorBits.Opc = opc;
4508  assert(!isCompoundAssignmentOp() &&
4509  "Use CompoundAssignOperator for compound assignments");
4510  BinaryOperatorBits.OpLoc = opLoc;
4511  SubExprs[LHS] = lhs;
4512  SubExprs[RHS] = rhs;
4513  BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4514  if (hasStoredFPFeatures())
4515  setStoredFPFeatures(FPFeatures);
4517 }
4518 
4520  Opcode opc, QualType ResTy, ExprValueKind VK,
4521  ExprObjectKind OK, SourceLocation opLoc,
4522  FPOptionsOverride FPFeatures, bool dead2)
4523  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4524  BinaryOperatorBits.Opc = opc;
4525  assert(isCompoundAssignmentOp() &&
4526  "Use CompoundAssignOperator for compound assignments");
4527  BinaryOperatorBits.OpLoc = opLoc;
4528  SubExprs[LHS] = lhs;
4529  SubExprs[RHS] = rhs;
4530  BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4531  if (hasStoredFPFeatures())
4532  setStoredFPFeatures(FPFeatures);
4534 }
4535 
4537  bool HasFPFeatures) {
4538  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4539  void *Mem =
4540  C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4541  return new (Mem) BinaryOperator(EmptyShell());
4542 }
4543 
4545  Expr *rhs, Opcode opc, QualType ResTy,
4547  SourceLocation opLoc,
4548  FPOptionsOverride FPFeatures) {
4549  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4550  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4551  void *Mem =
4552  C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4553  return new (Mem)
4554  BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4555 }
4556 
4558 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4559  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4560  void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4561  alignof(CompoundAssignOperator));
4562  return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4563 }
4564 
4567  Opcode opc, QualType ResTy, ExprValueKind VK,
4568  ExprObjectKind OK, SourceLocation opLoc,
4569  FPOptionsOverride FPFeatures,
4570  QualType CompLHSType, QualType CompResultType) {
4571  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4572  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4573  void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4574  alignof(CompoundAssignOperator));
4575  return new (Mem)
4576  CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4577  CompLHSType, CompResultType);
4578 }
4579 
4581  bool hasFPFeatures) {
4582  void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4583  alignof(UnaryOperator));
4584  return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4585 }
4586 
4589  SourceLocation l, bool CanOverflow,
4590  FPOptionsOverride FPFeatures)
4591  : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4592  UnaryOperatorBits.Opc = opc;
4593  UnaryOperatorBits.CanOverflow = CanOverflow;
4594  UnaryOperatorBits.Loc = l;
4595  UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4596  if (hasStoredFPFeatures())
4597  setStoredFPFeatures(FPFeatures);
4598  setDependence(computeDependence(this, Ctx));
4599 }
4600 
4602  Opcode opc, QualType type,
4604  SourceLocation l, bool CanOverflow,
4605  FPOptionsOverride FPFeatures) {
4606  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4607  unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4608  void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4609  return new (Mem)
4610  UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4611 }
4612 
4614  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4615  e = ewc->getSubExpr();
4616  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4617  e = m->getSubExpr();
4618  e = cast<CXXConstructExpr>(e)->getArg(0);
4619  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4620  e = ice->getSubExpr();
4621  return cast<OpaqueValueExpr>(e);
4622 }
4623 
4625  EmptyShell sh,
4626  unsigned numSemanticExprs) {
4627  void *buffer =
4628  Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4629  alignof(PseudoObjectExpr));
4630  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4631 }
4632 
4633 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4634  : Expr(PseudoObjectExprClass, shell) {
4635  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4636 }
4637 
4639  ArrayRef<Expr*> semantics,
4640  unsigned resultIndex) {
4641  assert(syntax && "no syntactic expression!");
4642  assert(semantics.size() && "no semantic expressions!");
4643 
4644  QualType type;
4645  ExprValueKind VK;
4646  if (resultIndex == NoResult) {
4647  type = C.VoidTy;
4648  VK = VK_PRValue;
4649  } else {
4650  assert(resultIndex < semantics.size());
4651  type = semantics[resultIndex]->getType();
4652  VK = semantics[resultIndex]->getValueKind();
4653  assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4654  }
4655 
4656  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4657  alignof(PseudoObjectExpr));
4658  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4659  resultIndex);
4660 }
4661 
4662 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4663  Expr *syntax, ArrayRef<Expr *> semantics,
4664  unsigned resultIndex)
4665  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4666  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4667  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4668 
4669  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4670  Expr *E = (i == 0 ? syntax : semantics[i-1]);
4671  getSubExprsBuffer()[i] = E;
4672 
4673  if (isa<OpaqueValueExpr>(E))
4674  assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4675  "opaque-value semantic expressions for pseudo-object "
4676  "operations must have sources");
4677  }
4678 
4680 }
4681 
4682 //===----------------------------------------------------------------------===//
4683 // Child Iterators for iterating over subexpressions/substatements
4684 //===----------------------------------------------------------------------===//
4685 
4686 // UnaryExprOrTypeTraitExpr
4688  const_child_range CCR =
4689  const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4690  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4691 }
4692 
4694  // If this is of a type and the type is a VLA type (and not a typedef), the
4695  // size expression of the VLA needs to be treated as an executable expression.
4696  // Why isn't this weirdness documented better in StmtIterator?
4697  if (isArgumentType()) {
4698  if (const VariableArrayType *T =
4699  dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4702  }
4703  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4704 }
4705 
4707  AtomicOp op, SourceLocation RP)
4708  : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4709  NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4710  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4711  for (unsigned i = 0; i != args.size(); i++)
4712  SubExprs[i] = args[i];
4714 }
4715 
4717  switch (Op) {
4718  case AO__c11_atomic_init:
4719  case AO__opencl_atomic_init:
4720  case AO__c11_atomic_load:
4721  case AO__atomic_load_n:
4722  return 2;
4723 
4724  case AO__opencl_atomic_load:
4725  case AO__hip_atomic_load:
4726  case AO__c11_atomic_store:
4727  case AO__c11_atomic_exchange:
4728  case AO__atomic_load:
4729  case AO__atomic_store:
4730  case AO__atomic_store_n:
4731  case AO__atomic_exchange_n:
4732  case AO__c11_atomic_fetch_add:
4733  case AO__c11_atomic_fetch_sub:
4734  case AO__c11_atomic_fetch_and:
4735  case AO__c11_atomic_fetch_or:
4736  case AO__c11_atomic_fetch_xor:
4737  case AO__c11_atomic_fetch_nand:
4738  case AO__c11_atomic_fetch_max:
4739  case AO__c11_atomic_fetch_min:
4740  case AO__atomic_fetch_add:
4741  case AO__atomic_fetch_sub:
4742  case AO__atomic_fetch_and:
4743  case AO__atomic_fetch_or:
4744  case AO__atomic_fetch_xor:
4745  case AO__atomic_fetch_nand:
4746  case AO__atomic_add_fetch:
4747  case AO__atomic_sub_fetch:
4748  case AO__atomic_and_fetch:
4749  case AO__atomic_or_fetch:
4750  case AO__atomic_xor_fetch:
4751  case AO__atomic_nand_fetch:
4752  case AO__atomic_min_fetch:
4753  case AO__atomic_max_fetch:
4754  case AO__atomic_fetch_min:
4755  case AO__atomic_fetch_max:
4756  return 3;
4757 
4758  case AO__hip_atomic_exchange:
4759  case AO__hip_atomic_fetch_add:
4760  case AO__hip_atomic_fetch_and:
4761  case AO__hip_atomic_fetch_or:
4762  case AO__hip_atomic_fetch_xor:
4763  case AO__hip_atomic_fetch_min:
4764  case AO__hip_atomic_fetch_max:
4765  case AO__opencl_atomic_store:
4766  case AO__hip_atomic_store:
4767  case AO__opencl_atomic_exchange:
4768  case AO__opencl_atomic_fetch_add:
4769  case AO__opencl_atomic_fetch_sub:
4770  case AO__opencl_atomic_fetch_and:
4771  case AO__opencl_atomic_fetch_or:
4772  case AO__opencl_atomic_fetch_xor:
4773  case AO__opencl_atomic_fetch_min:
4774  case AO__opencl_atomic_fetch_max:
4775  case AO__atomic_exchange:
4776  return 4;
4777 
4778  case AO__c11_atomic_compare_exchange_strong:
4779  case AO__c11_atomic_compare_exchange_weak:
4780  return 5;
4781  case AO__hip_atomic_compare_exchange_strong:
4782  case AO__opencl_atomic_compare_exchange_strong:
4783  case AO__opencl_atomic_compare_exchange_weak:
4784  case AO__hip_atomic_compare_exchange_weak:
4785  case AO__atomic_compare_exchange:
4786  case AO__atomic_compare_exchange_n:
4787  return 6;
4788  }
4789  llvm_unreachable("unknown atomic op");
4790 }
4791 
4793  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4794  if (auto AT = T->getAs<AtomicType>())
4795  return AT->getValueType();
4796  return T;
4797 }
4798 
4800  unsigned ArraySectionCount = 0;
4801  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4802  Base = OASE->getBase();
4803  ++ArraySectionCount;
4804  }
4805  while (auto *ASE =
4806  dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4807  Base = ASE->getBase();
4808  ++ArraySectionCount;
4809  }
4810  Base = Base->IgnoreParenImpCasts();
4811  auto OriginalTy = Base->getType();
4812  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4813  if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4814  OriginalTy = PVD->getOriginalType().getNonReferenceType();
4815 
4816  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4817  if (OriginalTy->isAnyPointerType())
4818  OriginalTy = OriginalTy->getPointeeType();
4819  else {
4820  assert (OriginalTy->isArrayType());
4821  OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4822  }
4823  }
4824  return OriginalTy;
4825 }
4826 
4827 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4828  SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4829  : Expr(RecoveryExprClass, T.getNonReferenceType(),
4830  T->isDependentType() ? VK_LValue : getValueKindForType(T),
4831  OK_Ordinary),
4832  BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4833  assert(!T.isNull());
4834  assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4835 
4836  llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4838 }
4839 
4841  SourceLocation BeginLoc,
4842  SourceLocation EndLoc,
4843  ArrayRef<Expr *> SubExprs) {
4844  void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4845  alignof(RecoveryExpr));
4846  return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4847 }
4848 
4849 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4850  void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4851  alignof(RecoveryExpr));
4852  return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4853 }
4854 
4855 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4856  assert(
4857  NumDims == Dims.size() &&
4858  "Preallocated number of dimensions is different from the provided one.");
4859  llvm::copy(Dims, getTrailingObjects<Expr *>());
4860 }
4861 
4862 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4863  assert(
4864  NumDims == BR.size() &&
4865  "Preallocated number of dimensions is different from the provided one.");
4866  llvm::copy(BR, getTrailingObjects<SourceRange>());
4867 }
4868 
4869 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4871  ArrayRef<Expr *> Dims)
4872  : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4873  RPLoc(R), NumDims(Dims.size()) {
4874  setBase(Op);
4875  setDimensions(Dims);
4877 }
4878 
4882  ArrayRef<Expr *> Dims,
4883  ArrayRef<SourceRange> BracketRanges) {
4884  assert(Dims.size() == BracketRanges.size() &&
4885  "Different number of dimensions and brackets ranges.");
4886  void *Mem = Context.Allocate(
4887  totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4888  alignof(OMPArrayShapingExpr));
4889  auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4890  E->setBracketsRanges(BracketRanges);
4891  return E;
4892 }
4893 
4895  unsigned NumDims) {
4896  void *Mem = Context.Allocate(
4897  totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4898  alignof(OMPArrayShapingExpr));
4899  return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4900 }
4901 
4902 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4903  assert(I < NumIterators &&
4904  "Idx is greater or equal the number of iterators definitions.");
4905  getTrailingObjects<Decl *>()[I] = D;
4906 }
4907 
4908 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4909  assert(I < NumIterators &&
4910  "Idx is greater or equal the number of iterators definitions.");
4911  getTrailingObjects<
4912  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4913  static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4914 }
4915 
4916 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4917  SourceLocation ColonLoc, Expr *End,
4918  SourceLocation SecondColonLoc,
4919  Expr *Step) {
4920  assert(I < NumIterators &&
4921  "Idx is greater or equal the number of iterators definitions.");
4922  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4923  static_cast<int>(RangeExprOffset::Begin)] =
4924  Begin;
4925  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4926  static_cast<int>(RangeExprOffset::End)] = End;
4927  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4928  static_cast<int>(RangeExprOffset::Step)] = Step;
4929  getTrailingObjects<
4930  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4931  static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4932  ColonLoc;
4933  getTrailingObjects<
4934  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4935  static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4936  SecondColonLoc;
4937 }
4938 
4940  return getTrailingObjects<Decl *>()[I];
4941 }
4942 
4944  IteratorRange Res;
4945  Res.Begin =
4946  getTrailingObjects<Expr *>()[I * static_cast<int>(
4947  RangeExprOffset::Total) +
4948  static_cast<int>(RangeExprOffset::Begin)];
4949  Res.End =
4950  getTrailingObjects<Expr *>()[I * static_cast<int>(
4951  RangeExprOffset::Total) +
4952  static_cast<int>(RangeExprOffset::End)];
4953  Res.Step =
4954  getTrailingObjects<Expr *>()[I * static_cast<int>(
4955  RangeExprOffset::Total) +
4956  static_cast<int>(RangeExprOffset::Step)];
4957  return Res;
4958 }
4959 
4961  return getTrailingObjects<
4962  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4963  static_cast<int>(RangeLocOffset::AssignLoc)];
4964 }
4965 
4967  return getTrailingObjects<
4968  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4969  static_cast<int>(RangeLocOffset::FirstColonLoc)];
4970 }
4971 
4973  return getTrailingObjects<
4974  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4975  static_cast<int>(RangeLocOffset::SecondColonLoc)];
4976 }
4977 
4978 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4979  getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4980 }
4981 
4983  return getTrailingObjects<OMPIteratorHelperData>()[I];
4984 }
4985 
4987  return getTrailingObjects<OMPIteratorHelperData>()[I];
4988 }
4989 
4990 OMPIteratorExpr::OMPIteratorExpr(
4991  QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4994  : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4995  IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4996  NumIterators(Data.size()) {
4997  for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4998  const IteratorDefinition &D = Data[I];
4999  setIteratorDeclaration(I, D.IteratorDecl);
5000  setAssignmentLoc(I, D.AssignmentLoc);
5001  setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5002  D.SecondColonLoc, D.Range.Step);
5003  setHelper(I, Helpers[I]);
5004  }
5006 }
5007 
5010  SourceLocation IteratorKwLoc, SourceLocation L,
5011  SourceLocation R,
5014  assert(Data.size() == Helpers.size() &&
5015  "Data and helpers must have the same size.");
5016  void *Mem = Context.Allocate(
5017  totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5018  Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5019  Data.size() * static_cast<int>(RangeLocOffset::Total),
5020  Helpers.size()),
5021  alignof(OMPIteratorExpr));
5022  return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5023 }
5024 
5026  unsigned NumIterators) {
5027  void *Mem = Context.Allocate(
5028  totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5029  NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5030  NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5031  alignof(OMPIteratorExpr));
5032  return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5033 }
clang::Type::isIntegralType
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1930
clang::LabelStmt
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1831
clang::CanQual::isVolatileQualified
bool isVolatileQualified() const
Definition: CanonicalType.h:141
clang::ObjCInterfaceDecl
Represents an ObjC class declaration.
Definition: DeclObjC.h:1150
clang::InitListExpr::setInit
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4849
clang::NonOdrUseReason
NonOdrUseReason
The reason why a DeclRefExpr does not constitute an odr-use.
Definition: Specifiers.h:158
clang::OMPIteratorExpr
OpenMP 5.0 [2.1.6 Iterators] Iterators are identifiers that expand to multiple values in the clause o...
Definition: ExprOpenMP.h:272
clang::SubstNonTypeTemplateParmExpr
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4262
clang::Expr::getValueKind
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:430
clang::Expr::getDependence
ExprDependence getDependence() const
Definition: Expr.h:155
clang::InitListExpr::getSyntacticForm
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4952
clang::AtomicExpr::getPtr
Expr * getPtr() const
Definition: Expr.h:6266
clang::IgnoreLValueCastsSingleStep
Expr * IgnoreLValueCastsSingleStep(Expr *E)
Definition: IgnoreExpr.h:90
Builtins.h
clang::ObjCMessageExpr::isInstanceMessage
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition: ExprObjC.h:1238
clang::PredefinedExpr::PrettyFunction
@ PrettyFunction
Definition: Expr.h:1977
clang::Type::isRecordType
bool isRecordType() const
Definition: Type.h:6897
clang::Decl::getASTContext
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:414
clang::Dtor_Base
@ Dtor_Base
Base object dtor.
Definition: ABI.h:36
clang::Type::getAsArrayTypeUnsafe
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type.
Definition: Type.h:7355
clang::RecordDecl::field_begin
field_iterator field_begin() const
Definition: Decl.cpp:4683
clang::StringLiteral::getCodeUnit
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1865
clang::CXXConstructorDecl
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2434
clang::BinaryOperator::isAssignmentOp
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3942
clang::CallExpr::setPreArg
void setPreArg(unsigned I, Stmt *PreArg)
Definition: Expr.h:2889
clang::CC_X86FastCall
@ CC_X86FastCall
Definition: Specifiers.h:266
clang::StringLiteral::UTF16
@ UTF16
Definition: Expr.h:1789
clang::CharacterLiteral::CharacterKind
CharacterKind
Definition: Expr.h:1586
clang::DesignatedInitExpr::Designator::isArrayRangeDesignator
bool isArrayRangeDesignator() const
Definition: Expr.h:5157
clang::Type::hasAttr
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1776
clang::OffsetOfExpr::setComponent
void setComponent(unsigned Idx, OffsetOfNode ON)
Definition: Expr.h:2498
clang::PredefinedExpr::CreateEmpty
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition: Expr.cpp:610
clang::OffsetOfExpr
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type,...
Definition: Expr.h:2444
clang::AtomicExpr::AtomicExpr
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr * > args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:4706
clang::isPrintable
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:145
clang::DesignatedInitExpr::Designator::isArrayDesignator
bool isArrayDesignator() const
Definition: Expr.h:5156
clang::interp::APInt
llvm::APInt APInt
Definition: Integral.h:27
clang::BinaryOperator::isCompoundAssignmentOp
bool isCompoundAssignmentOp() const
Definition: Expr.h:3950
clang::OK_Ordinary
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition: Specifiers.h:136
clang::DeclContext::specific_decl_iterator
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2177
clang::OffsetOfExpr::Create
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr * > exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1556
type
clang::SYCLUniqueStableNameExpr::CreateEmpty
static SYCLUniqueStableNameExpr * CreateEmpty(const ASTContext &Ctx)
Definition: Expr.cpp:552
clang::DesignatedInitExpr::getSubExpr
Expr * getSubExpr(unsigned Idx) const
Definition: Expr.h:5284
clang::PseudoObjectExpr::semantics_begin
semantics_iterator semantics_begin()
Definition: Expr.h:6168
clang::SourceLocExpr::IdentKind
IdentKind
Definition: Expr.h:4687
clang::CallExpr::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1537
clang::Expr::isLValue
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:270
clang::Stmt::ParenListExprBits
ParenListExprBitfields ParenListExprBits
Definition: Stmt.h:1039
clang::DeclarationNameLoc
DeclarationNameLoc - Additional source/type location info for a declaration name.
Definition: DeclarationName.h:659
clang::FPOptionsOverride::requiresTrailingStorage
bool requiresTrailingStorage() const
Definition: LangOptions.h:802
clang::SourceRange
A trivial tuple used to represent a source range.
Definition: SourceLocation.h:210
string
string(SUBSTRING ${CMAKE_CURRENT_BINARY_DIR} 0 ${PATH_LIB_START} PATH_HEAD) string(SUBSTRING $
Definition: CMakeLists.txt:22
clang::Stmt::PseudoObjectExprBits
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:1041
clang::DeclContext
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1376
clang::DesignatedInitExpr::FieldDesignator
A field designator, e.g., ".x".
Definition: Expr.h:5068
clang::OMPArrayShapingExpr::CreateEmpty
static OMPArrayShapingExpr * CreateEmpty(const ASTContext &Context, unsigned NumDims)
Definition: Expr.cpp:4894
clang::PresumedLoc::getLine
unsigned getLine() const
Return the presumed line number of this location.
Definition: SourceLocation.h:337
clang::SourceLocExpr::getParentContext
const DeclContext * getParentContext() const
If the SourceLocExpr has been resolved return the subexpression representing the resolved value.
Definition: Expr.h:4723
clang::DeclRefExpr::getRAngleLoc
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:1364
clang::StringLiteral::CreateEmpty
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition: Expr.cpp:1113
clang::Decl::hasAttr
bool hasAttr() const
Definition: DeclBase.h:549
clang::InitListExpr::hasArrayFiller
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4897
clang::AtomicExpr::getValueType
QualType getValueType() const
Definition: Expr.cpp:4792
clang::CXXConstructExpr::getNumArgs
unsigned getNumArgs() const
Return the number of arguments to the constructor call.
Definition: ExprCXX.h:1608
clang::ASTVector::resize
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:341
clang::SourceLocExpr::Column
@ Column
Definition: Expr.h:4687
clang::NestedNameSpecifier::isDependent
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
Definition: NestedNameSpecifier.cpp:234
clang::FunctionTemplateSpecializationInfo::TemplateArguments
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:485
DependenceFlags.h
clang::FloatingLiteral::getValue
llvm::APFloat getValue() const
Definition: Expr.h:1653
clang::DesignatedInitUpdateExpr::getBase
Expr * getBase() const
Definition: Expr.h:5386
clang::UnaryOperator::Create
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4601
clang::OMPIteratorHelperData
Helper expressions and declaration for OMPIteratorExpr class for each iteration space.
Definition: ExprOpenMP.h:235
clang::BindingDecl
A binding in a decomposition declaration.
Definition: DeclCXX.h:3992
clang::PredefinedExpr::FuncDName
@ FuncDName
Definition: Expr.h:1974
clang::DesignatedInitExpr
Represents a C99 designated initializer expression.
Definition: Expr.h:5029
clang::Expr::IgnoreImplicit
Expr * IgnoreImplicit() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:2941
clang::ASTContext::VoidTy
CanQualType VoidTy
Definition: ASTContext.h:1096
clang::Type::isCharType
bool isCharType() const
Definition: Type.cpp:1961
llvm::SmallVector
Definition: LLVM.h:38
clang::APValue::getInt
APSInt & getInt()
Definition: APValue.h:415
clang::PredefinedExpr::LFuncSig
@ LFuncSig
Definition: Expr.h:1976
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:86
clang::OMPIteratorExpr::getIteratorRange
IteratorRange getIteratorRange(unsigned I)
Gets the iterator range for the given iterator.
Definition: Expr.cpp:4943
clang::CallExpr::hasStoredFPFeatures
bool hasStoredFPFeatures() const
Definition: Expr.h:2963
clang::Qualifiers::removeAddressSpace
void removeAddressSpace()
Definition: Type.h:403
clang::QualType::getQualifiers
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6586
clang::ASTContext::getIntWidth
unsigned getIntWidth(QualType T) const
Definition: ASTContext.cpp:10711
clang::Stmt::GenericSelectionExprBits
GenericSelectionExprBitfields GenericSelectionExprBits
Definition: Stmt.h:1040
clang::OpaqueValueExpr::findInCopyConstruct
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:4613
clang::NamedDecl
This represents a decl that may have a name.
Definition: Decl.h:247
clang::ASTContext::BuiltinInfo
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:657
clang::ParenListExpr
Definition: Expr.h:5537
clang::OffsetOfNode::getKind
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2394
clang::OffsetOfExpr::CreateEmpty
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1569
clang::Stmt::StmtClass
StmtClass
Definition: Stmt.h:72
EvaluatedExprVisitor.h
clang::MemberExpr::Create
static MemberExpr * Create(const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, DeclAccessPair FoundDecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR)
Definition: Expr.cpp:1631
TargetInfo.h
clang::MultiVersionKind::Target
@ Target
clang::ConstantExpr::getAPValueResult
APValue getAPValueResult() const
Definition: Expr.cpp:382
clang::CastExpr::getSubExpr
Expr * getSubExpr()
Definition: Expr.h:3525
clang::InitListExpr::reserveInits
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition: Expr.cpp:2281
clang::FixedPointLiteral::CreateFromRawInt
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:922
clang::Stmt::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:324
clang::NestedNameSpecifier::isInstantiationDependent
bool isInstantiationDependent() const
Whether this nested name specifier involves a template parameter.
Definition: NestedNameSpecifier.cpp:238
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:731
Attr.h
clang::Expr::getObjectKind
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:437
clang::DeclarationNameInfo::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclarationName.h:876
clang::OMF_init
@ OMF_init
Definition: IdentifierTable.h:700
clang::QualType::getCanonicalType
QualType getCanonicalType() const
Definition: Type.h:6598
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2862
clang::CastExpr::path_empty
bool path_empty() const
Definition: Expr.h:3543
clang::Qualifiers
The collection of all-type qualifiers we support.
Definition: Type.h:147
clang::FieldDecl::getInClassInitializer
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set.
Definition: Decl.h:3009
clang::Expr::skipRValueSubobjectAdjustments
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:975
clang::ast_matchers::type
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchersInternal.cpp:773
clang::SourceLocExpr::SourceLocStruct
@ SourceLocStruct
Definition: Expr.h:4687
clang::TargetInfo
Exposes information about the current target.
Definition: TargetInfo.h:190
clang::Stmt::ConstantExprBits
ConstantExprBitfields ConstantExprBits
Definition: Stmt.h:1025
DeclCXX.h
memcpy
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
Definition: __clang_cuda_device_functions.h:1549
clang::TypeInfo::Width
uint64_t Width
Definition: ASTContext.h:179
clang::SourceLocExpr::File
@ File
Definition: Expr.h:4687
clang::BinaryOperator::getOpcodeStr
StringRef getOpcodeStr() const
Definition: Expr.h:3872
clang::InitListExpr::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2360
clang::Stmt::StringLiteralBits
StringLiteralBitfields StringLiteralBits
Definition: Stmt.h:1029
clang::StringLiteral::getStrTokenLoc
SourceLocation getStrTokenLoc(unsigned TokNum) const
Get one of the string literal token.
Definition: Expr.h:1914
clang::ExprObjectKind
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:134
clang::RecoveryExpr
Frontend produces RecoveryExprs on semantic errors that prevent creating other well-formed expression...
Definition: Expr.h:6421
clang::BlockDecl::getBody
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.h:4287
clang::SourceManager::getExpansionRange
CharSourceRange getExpansionRange(SourceLocation Loc) const
Given a SourceLocation object, return the range of tokens covered by the expansion in the ultimate fi...
Definition: SourceManager.cpp:1036
clang::OMPIteratorExpr::CreateEmpty
static OMPIteratorExpr * CreateEmpty(const ASTContext &Context, unsigned NumIterators)
Definition: Expr.cpp:5025
clang::Expr::IgnoreParenNoopCasts
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parenthese and casts which do not change the value (including ptr->int casts of the sam...
Definition: Expr.cpp:2980
clang::ASTContext::createMangleContext
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
Definition: ASTContext.cpp:11683
clang::InitListExpr
Describes an C or C++ initializer list.
Definition: Expr.h:4791
clang::DesignatedInitExpr::Designator::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:5217
llvm::Optional< unsigned >
clang::OffsetOfNode::getFieldName
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1591
clang::ComparisonCategoryType::First
@ First
clang::CharacterLiteral::UTF8
@ UTF8
Definition: Expr.h:1589
clang::RQ_RValue
@ RQ_RValue
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1515
clang::MemberExpr::isImplicitAccess
bool isImplicitAccess() const
Determine whether the base of this explicit is implicit.
Definition: Expr.h:3362
clang::UnaryOperator
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2163
clang::Expr::isPRValue
bool isPRValue() const
Definition: Expr.h:271
clang::Ctor_Base
@ Ctor_Base
Base object ctor.
Definition: ABI.h:26
SourceManager.h
clang::Expr::NPC_NeverValueDependent
@ NPC_NeverValueDependent
Specifies that the expression should never be value-dependent.
Definition: Expr.h:782
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:7096
clang::Expr::getObjCProperty
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:3903
clang::QualType::isVolatileQualified
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6629
clang::SourceManager::getPresumedLoc
PresumedLoc getPresumedLoc(SourceLocation Loc, bool UseLineDirectives=true) const
Returns the "presumed" location of a SourceLocation specifies.
Definition: SourceManager.cpp:1513
clang::APValue::None
@ None
There is no such object (it's outside its lifetime).
Definition: APValue.h:129
clang::CallExpr::getRParenLoc
SourceLocation getRParenLoc() const
Definition: Expr.h:3115
clang::RefQualifierKind
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1507
clang::Qualifiers::empty
bool empty() const
Definition: Type.h:440
clang::ImplicitCastExpr::CreateEmpty
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures)
Definition: Expr.cpp:2002
clang::Expr::isCXX98IntegralConstantExpr
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
Definition: ExprConstant.cpp:15793
clang::FloatingLiteral::getValueAsApproximateDouble
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition: Expr.cpp:1014
clang::Decl::getAttr
T * getAttr() const
Definition: DeclBase.h:545
clang::CC_X86ThisCall
@ CC_X86ThisCall
Definition: Specifiers.h:267
clang::Stmt::SourceLocExprBits
SourceLocExprBitfields SourceLocExprBits
Definition: Stmt.h:1042
skipTemporaryBindingsNoOpCastsAndParens
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition: Expr.cpp:3061
clang::CallExpr::getCalleeDecl
Decl * getCalleeDecl()
Definition: Expr.h:2965
clang::CXXStaticCastExpr
A C++ static_cast expression (C++ [expr.static.cast]).
Definition: ExprCXX.h:431
clang::PrintingPolicy
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57
clang::ConstantExpr::getResultAsAPSInt
llvm::APSInt getResultAsAPSInt() const
Definition: Expr.cpp:370
clang::DesignatedInitExpr::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:4397
clang::PseudoObjectExpr::semantics_end
semantics_iterator semantics_end()
Definition: Expr.h:6174
clang::BinaryOperator::getOpcode
Opcode getOpcode() const
Definition: Expr.h:3851
clang::Lexer::LexFromRawLexer
bool LexFromRawLexer(Token &Result)
LexFromRawLexer - Lex a token from a designated raw lexer (one with no associated preprocessor object...
Definition: Lexer.h:236
clang::StringLiteral::Wide
@ Wide
Definition: Expr.h:1789
clang::FunctionType
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3618
clang::Compou