clang  9.0.0svn
Expr.cpp
Go to the documentation of this file.
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 #include <cstring>
35 using namespace clang;
36 
38  const Expr *E = this;
39  while (true) {
40  E = E->ignoreParenBaseCasts();
41 
42  // Follow the RHS of a comma operator.
43  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
44  if (BO->getOpcode() == BO_Comma) {
45  E = BO->getRHS();
46  continue;
47  }
48  }
49 
50  // Step into initializer for materialized temporaries.
51  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
52  E = MTE->GetTemporaryExpr();
53  continue;
54  }
55 
56  break;
57  }
58 
59  return E;
60 }
61 
63  const Expr *E = getBestDynamicClassTypeExpr();
64  QualType DerivedType = E->getType();
65  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
66  DerivedType = PTy->getPointeeType();
67 
68  if (DerivedType->isDependentType())
69  return nullptr;
70 
71  const RecordType *Ty = DerivedType->castAs<RecordType>();
72  Decl *D = Ty->getDecl();
73  return cast<CXXRecordDecl>(D);
74 }
75 
78  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
79  const Expr *E = this;
80  while (true) {
81  E = E->IgnoreParens();
82 
83  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
84  if ((CE->getCastKind() == CK_DerivedToBase ||
85  CE->getCastKind() == CK_UncheckedDerivedToBase) &&
86  E->getType()->isRecordType()) {
87  E = CE->getSubExpr();
88  CXXRecordDecl *Derived
89  = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
90  Adjustments.push_back(SubobjectAdjustment(CE, Derived));
91  continue;
92  }
93 
94  if (CE->getCastKind() == CK_NoOp) {
95  E = CE->getSubExpr();
96  continue;
97  }
98  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
99  if (!ME->isArrow()) {
100  assert(ME->getBase()->getType()->isRecordType());
101  if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
102  if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
103  E = ME->getBase();
104  Adjustments.push_back(SubobjectAdjustment(Field));
105  continue;
106  }
107  }
108  }
109  } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
110  if (BO->getOpcode() == BO_PtrMemD) {
111  assert(BO->getRHS()->isRValue());
112  E = BO->getLHS();
113  const MemberPointerType *MPT =
114  BO->getRHS()->getType()->getAs<MemberPointerType>();
115  Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
116  continue;
117  } else if (BO->getOpcode() == BO_Comma) {
118  CommaLHSs.push_back(BO->getLHS());
119  E = BO->getRHS();
120  continue;
121  }
122  }
123 
124  // Nothing changed.
125  break;
126  }
127  return E;
128 }
129 
130 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
131 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
132 /// but also int expressions which are produced by things like comparisons in
133 /// C.
135  const Expr *E = IgnoreParens();
136 
137  // If this value has _Bool type, it is obvious 0/1.
138  if (E->getType()->isBooleanType()) return true;
139  // If this is a non-scalar-integer type, we don't care enough to try.
140  if (!E->getType()->isIntegralOrEnumerationType()) return false;
141 
142  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
143  switch (UO->getOpcode()) {
144  case UO_Plus:
145  return UO->getSubExpr()->isKnownToHaveBooleanValue();
146  case UO_LNot:
147  return true;
148  default:
149  return false;
150  }
151  }
152 
153  // Only look through implicit casts. If the user writes
154  // '(int) (a && b)' treat it as an arbitrary int.
155  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
156  return CE->getSubExpr()->isKnownToHaveBooleanValue();
157 
158  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
159  switch (BO->getOpcode()) {
160  default: return false;
161  case BO_LT: // Relational operators.
162  case BO_GT:
163  case BO_LE:
164  case BO_GE:
165  case BO_EQ: // Equality operators.
166  case BO_NE:
167  case BO_LAnd: // AND operator.
168  case BO_LOr: // Logical OR operator.
169  return true;
170 
171  case BO_And: // Bitwise AND operator.
172  case BO_Xor: // Bitwise XOR operator.
173  case BO_Or: // Bitwise OR operator.
174  // Handle things like (x==2)|(y==12).
175  return BO->getLHS()->isKnownToHaveBooleanValue() &&
176  BO->getRHS()->isKnownToHaveBooleanValue();
177 
178  case BO_Comma:
179  case BO_Assign:
180  return BO->getRHS()->isKnownToHaveBooleanValue();
181  }
182  }
183 
184  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
185  return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
186  CO->getFalseExpr()->isKnownToHaveBooleanValue();
187 
188  return false;
189 }
190 
191 // Amusing macro metaprogramming hack: check whether a class provides
192 // a more specific implementation of getExprLoc().
193 //
194 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
195 namespace {
196  /// This implementation is used when a class provides a custom
197  /// implementation of getExprLoc.
198  template <class E, class T>
199  SourceLocation getExprLocImpl(const Expr *expr,
200  SourceLocation (T::*v)() const) {
201  return static_cast<const E*>(expr)->getExprLoc();
202  }
203 
204  /// This implementation is used when a class doesn't provide
205  /// a custom implementation of getExprLoc. Overload resolution
206  /// should pick it over the implementation above because it's
207  /// more specialized according to function template partial ordering.
208  template <class E>
209  SourceLocation getExprLocImpl(const Expr *expr,
210  SourceLocation (Expr::*v)() const) {
211  return static_cast<const E *>(expr)->getBeginLoc();
212  }
213 }
214 
216  switch (getStmtClass()) {
217  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
218 #define ABSTRACT_STMT(type)
219 #define STMT(type, base) \
220  case Stmt::type##Class: break;
221 #define EXPR(type, base) \
222  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
223 #include "clang/AST/StmtNodes.inc"
224  }
225  llvm_unreachable("unknown expression kind");
226 }
227 
228 //===----------------------------------------------------------------------===//
229 // Primary Expressions.
230 //===----------------------------------------------------------------------===//
231 
232 /// Compute the type-, value-, and instantiation-dependence of a
233 /// declaration reference
234 /// based on the declaration being referenced.
235 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
236  QualType T, bool &TypeDependent,
237  bool &ValueDependent,
238  bool &InstantiationDependent) {
239  TypeDependent = false;
240  ValueDependent = false;
241  InstantiationDependent = false;
242 
243  // (TD) C++ [temp.dep.expr]p3:
244  // An id-expression is type-dependent if it contains:
245  //
246  // and
247  //
248  // (VD) C++ [temp.dep.constexpr]p2:
249  // An identifier is value-dependent if it is:
250 
251  // (TD) - an identifier that was declared with dependent type
252  // (VD) - a name declared with a dependent type,
253  if (T->isDependentType()) {
254  TypeDependent = true;
255  ValueDependent = true;
256  InstantiationDependent = true;
257  return;
258  } else if (T->isInstantiationDependentType()) {
259  InstantiationDependent = true;
260  }
261 
262  // (TD) - a conversion-function-id that specifies a dependent type
263  if (D->getDeclName().getNameKind()
266  if (T->isDependentType()) {
267  TypeDependent = true;
268  ValueDependent = true;
269  InstantiationDependent = true;
270  return;
271  }
272 
274  InstantiationDependent = true;
275  }
276 
277  // (VD) - the name of a non-type template parameter,
278  if (isa<NonTypeTemplateParmDecl>(D)) {
279  ValueDependent = true;
280  InstantiationDependent = true;
281  return;
282  }
283 
284  // (VD) - a constant with integral or enumeration type and is
285  // initialized with an expression that is value-dependent.
286  // (VD) - a constant with literal type and is initialized with an
287  // expression that is value-dependent [C++11].
288  // (VD) - FIXME: Missing from the standard:
289  // - an entity with reference type and is initialized with an
290  // expression that is value-dependent [C++11]
291  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
292  if ((Ctx.getLangOpts().CPlusPlus11 ?
293  Var->getType()->isLiteralType(Ctx) :
294  Var->getType()->isIntegralOrEnumerationType()) &&
295  (Var->getType().isConstQualified() ||
296  Var->getType()->isReferenceType())) {
297  if (const Expr *Init = Var->getAnyInitializer())
298  if (Init->isValueDependent()) {
299  ValueDependent = true;
300  InstantiationDependent = true;
301  }
302  }
303 
304  // (VD) - FIXME: Missing from the standard:
305  // - a member function or a static data member of the current
306  // instantiation
307  if (Var->isStaticDataMember() &&
308  Var->getDeclContext()->isDependentContext()) {
309  ValueDependent = true;
310  InstantiationDependent = true;
311  TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
312  if (TInfo->getType()->isIncompleteArrayType())
313  TypeDependent = true;
314  }
315 
316  return;
317  }
318 
319  // (VD) - FIXME: Missing from the standard:
320  // - a member function or a static data member of the current
321  // instantiation
322  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
323  ValueDependent = true;
324  InstantiationDependent = true;
325  }
326 }
327 
328 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
329  bool TypeDependent = false;
330  bool ValueDependent = false;
331  bool InstantiationDependent = false;
332  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
333  ValueDependent, InstantiationDependent);
334 
335  ExprBits.TypeDependent |= TypeDependent;
336  ExprBits.ValueDependent |= ValueDependent;
337  ExprBits.InstantiationDependent |= InstantiationDependent;
338 
339  // Is the declaration a parameter pack?
340  if (getDecl()->isParameterPack())
341  ExprBits.ContainsUnexpandedParameterPack = true;
342 }
343 
344 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
345  bool RefersToEnclosingVariableOrCapture, QualType T,
347  const DeclarationNameLoc &LocInfo)
348  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
349  D(D), DNLoc(LocInfo) {
350  DeclRefExprBits.HasQualifier = false;
351  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
352  DeclRefExprBits.HasFoundDecl = false;
353  DeclRefExprBits.HadMultipleCandidates = false;
354  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
355  RefersToEnclosingVariableOrCapture;
356  DeclRefExprBits.Loc = L;
357  computeDependence(Ctx);
358 }
359 
360 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
361  NestedNameSpecifierLoc QualifierLoc,
362  SourceLocation TemplateKWLoc, ValueDecl *D,
363  bool RefersToEnclosingVariableOrCapture,
364  const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
365  const TemplateArgumentListInfo *TemplateArgs,
366  QualType T, ExprValueKind VK)
367  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
368  D(D), DNLoc(NameInfo.getInfo()) {
369  DeclRefExprBits.Loc = NameInfo.getLoc();
370  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
371  if (QualifierLoc) {
372  new (getTrailingObjects<NestedNameSpecifierLoc>())
373  NestedNameSpecifierLoc(QualifierLoc);
374  auto *NNS = QualifierLoc.getNestedNameSpecifier();
375  if (NNS->isInstantiationDependent())
376  ExprBits.InstantiationDependent = true;
377  if (NNS->containsUnexpandedParameterPack())
378  ExprBits.ContainsUnexpandedParameterPack = true;
379  }
380  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
381  if (FoundD)
382  *getTrailingObjects<NamedDecl *>() = FoundD;
383  DeclRefExprBits.HasTemplateKWAndArgsInfo
384  = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
385  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
386  RefersToEnclosingVariableOrCapture;
387  if (TemplateArgs) {
388  bool Dependent = false;
389  bool InstantiationDependent = false;
390  bool ContainsUnexpandedParameterPack = false;
391  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
392  TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
393  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
394  assert(!Dependent && "built a DeclRefExpr with dependent template args");
395  ExprBits.InstantiationDependent |= InstantiationDependent;
396  ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
397  } else if (TemplateKWLoc.isValid()) {
398  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
399  TemplateKWLoc);
400  }
401  DeclRefExprBits.HadMultipleCandidates = 0;
402 
403  computeDependence(Ctx);
404 }
405 
407  NestedNameSpecifierLoc QualifierLoc,
408  SourceLocation TemplateKWLoc,
409  ValueDecl *D,
410  bool RefersToEnclosingVariableOrCapture,
411  SourceLocation NameLoc,
412  QualType T,
413  ExprValueKind VK,
414  NamedDecl *FoundD,
415  const TemplateArgumentListInfo *TemplateArgs) {
416  return Create(Context, QualifierLoc, TemplateKWLoc, D,
417  RefersToEnclosingVariableOrCapture,
418  DeclarationNameInfo(D->getDeclName(), NameLoc),
419  T, VK, FoundD, TemplateArgs);
420 }
421 
423  NestedNameSpecifierLoc QualifierLoc,
424  SourceLocation TemplateKWLoc,
425  ValueDecl *D,
426  bool RefersToEnclosingVariableOrCapture,
427  const DeclarationNameInfo &NameInfo,
428  QualType T,
429  ExprValueKind VK,
430  NamedDecl *FoundD,
431  const TemplateArgumentListInfo *TemplateArgs) {
432  // Filter out cases where the found Decl is the same as the value refenenced.
433  if (D == FoundD)
434  FoundD = nullptr;
435 
436  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
437  std::size_t Size =
438  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
440  QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
441  HasTemplateKWAndArgsInfo ? 1 : 0,
442  TemplateArgs ? TemplateArgs->size() : 0);
443 
444  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
445  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
446  RefersToEnclosingVariableOrCapture,
447  NameInfo, FoundD, TemplateArgs, T, VK);
448 }
449 
451  bool HasQualifier,
452  bool HasFoundDecl,
453  bool HasTemplateKWAndArgsInfo,
454  unsigned NumTemplateArgs) {
455  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
456  std::size_t Size =
457  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
459  HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
460  NumTemplateArgs);
461  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
462  return new (Mem) DeclRefExpr(EmptyShell());
463 }
464 
466  if (hasQualifier())
467  return getQualifierLoc().getBeginLoc();
468  return getNameInfo().getBeginLoc();
469 }
472  return getRAngleLoc();
473  return getNameInfo().getEndLoc();
474 }
475 
476 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
477  StringLiteral *SL)
478  : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
479  FNTy->isDependentType(), FNTy->isDependentType(),
481  /*ContainsUnexpandedParameterPack=*/false) {
482  PredefinedExprBits.Kind = IK;
483  assert((getIdentKind() == IK) &&
484  "IdentKind do not fit in PredefinedExprBitfields!");
485  bool HasFunctionName = SL != nullptr;
486  PredefinedExprBits.HasFunctionName = HasFunctionName;
487  PredefinedExprBits.Loc = L;
488  if (HasFunctionName)
489  setFunctionName(SL);
490 }
491 
492 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
493  : Expr(PredefinedExprClass, Empty) {
494  PredefinedExprBits.HasFunctionName = HasFunctionName;
495 }
496 
498  QualType FNTy, IdentKind IK,
499  StringLiteral *SL) {
500  bool HasFunctionName = SL != nullptr;
501  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
502  alignof(PredefinedExpr));
503  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
504 }
505 
507  bool HasFunctionName) {
508  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
509  alignof(PredefinedExpr));
510  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
511 }
512 
514  switch (IK) {
515  case Func:
516  return "__func__";
517  case Function:
518  return "__FUNCTION__";
519  case FuncDName:
520  return "__FUNCDNAME__";
521  case LFunction:
522  return "L__FUNCTION__";
523  case PrettyFunction:
524  return "__PRETTY_FUNCTION__";
525  case FuncSig:
526  return "__FUNCSIG__";
527  case LFuncSig:
528  return "L__FUNCSIG__";
529  case PrettyFunctionNoVirtual:
530  break;
531  }
532  llvm_unreachable("Unknown ident kind for PredefinedExpr");
533 }
534 
535 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
536 // expr" policy instead.
537 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
538  ASTContext &Context = CurrentDecl->getASTContext();
539 
540  if (IK == PredefinedExpr::FuncDName) {
541  if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
542  std::unique_ptr<MangleContext> MC;
543  MC.reset(Context.createMangleContext());
544 
545  if (MC->shouldMangleDeclName(ND)) {
546  SmallString<256> Buffer;
547  llvm::raw_svector_ostream Out(Buffer);
548  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
549  MC->mangleCXXCtor(CD, Ctor_Base, Out);
550  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
551  MC->mangleCXXDtor(DD, Dtor_Base, Out);
552  else
553  MC->mangleName(ND, Out);
554 
555  if (!Buffer.empty() && Buffer.front() == '\01')
556  return Buffer.substr(1);
557  return Buffer.str();
558  } else
559  return ND->getIdentifier()->getName();
560  }
561  return "";
562  }
563  if (isa<BlockDecl>(CurrentDecl)) {
564  // For blocks we only emit something if it is enclosed in a function
565  // For top-level block we'd like to include the name of variable, but we
566  // don't have it at this point.
567  auto DC = CurrentDecl->getDeclContext();
568  if (DC->isFileContext())
569  return "";
570 
571  SmallString<256> Buffer;
572  llvm::raw_svector_ostream Out(Buffer);
573  if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
574  // For nested blocks, propagate up to the parent.
575  Out << ComputeName(IK, DCBlock);
576  else if (auto *DCDecl = dyn_cast<Decl>(DC))
577  Out << ComputeName(IK, DCDecl) << "_block_invoke";
578  return Out.str();
579  }
580  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
581  if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
582  IK != FuncSig && IK != LFuncSig)
583  return FD->getNameAsString();
584 
585  SmallString<256> Name;
586  llvm::raw_svector_ostream Out(Name);
587 
588  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
589  if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
590  Out << "virtual ";
591  if (MD->isStatic())
592  Out << "static ";
593  }
594 
595  PrintingPolicy Policy(Context.getLangOpts());
596  std::string Proto;
597  llvm::raw_string_ostream POut(Proto);
598 
599  const FunctionDecl *Decl = FD;
600  if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
601  Decl = Pattern;
602  const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
603  const FunctionProtoType *FT = nullptr;
604  if (FD->hasWrittenPrototype())
605  FT = dyn_cast<FunctionProtoType>(AFT);
606 
607  if (IK == FuncSig || IK == LFuncSig) {
608  switch (AFT->getCallConv()) {
609  case CC_C: POut << "__cdecl "; break;
610  case CC_X86StdCall: POut << "__stdcall "; break;
611  case CC_X86FastCall: POut << "__fastcall "; break;
612  case CC_X86ThisCall: POut << "__thiscall "; break;
613  case CC_X86VectorCall: POut << "__vectorcall "; break;
614  case CC_X86RegCall: POut << "__regcall "; break;
615  // Only bother printing the conventions that MSVC knows about.
616  default: break;
617  }
618  }
619 
620  FD->printQualifiedName(POut, Policy);
621 
622  POut << "(";
623  if (FT) {
624  for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
625  if (i) POut << ", ";
626  POut << Decl->getParamDecl(i)->getType().stream(Policy);
627  }
628 
629  if (FT->isVariadic()) {
630  if (FD->getNumParams()) POut << ", ";
631  POut << "...";
632  } else if ((IK == FuncSig || IK == LFuncSig ||
633  !Context.getLangOpts().CPlusPlus) &&
634  !Decl->getNumParams()) {
635  POut << "void";
636  }
637  }
638  POut << ")";
639 
640  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
641  assert(FT && "We must have a written prototype in this case.");
642  if (FT->isConst())
643  POut << " const";
644  if (FT->isVolatile())
645  POut << " volatile";
646  RefQualifierKind Ref = MD->getRefQualifier();
647  if (Ref == RQ_LValue)
648  POut << " &";
649  else if (Ref == RQ_RValue)
650  POut << " &&";
651  }
652 
654  SpecsTy Specs;
655  const DeclContext *Ctx = FD->getDeclContext();
656  while (Ctx && isa<NamedDecl>(Ctx)) {
658  = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
659  if (Spec && !Spec->isExplicitSpecialization())
660  Specs.push_back(Spec);
661  Ctx = Ctx->getParent();
662  }
663 
664  std::string TemplateParams;
665  llvm::raw_string_ostream TOut(TemplateParams);
666  for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
667  I != E; ++I) {
668  const TemplateParameterList *Params
669  = (*I)->getSpecializedTemplate()->getTemplateParameters();
670  const TemplateArgumentList &Args = (*I)->getTemplateArgs();
671  assert(Params->size() == Args.size());
672  for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
673  StringRef Param = Params->getParam(i)->getName();
674  if (Param.empty()) continue;
675  TOut << Param << " = ";
676  Args.get(i).print(Policy, TOut);
677  TOut << ", ";
678  }
679  }
680 
682  = FD->getTemplateSpecializationInfo();
683  if (FSI && !FSI->isExplicitSpecialization()) {
684  const TemplateParameterList* Params
686  const TemplateArgumentList* Args = FSI->TemplateArguments;
687  assert(Params->size() == Args->size());
688  for (unsigned i = 0, e = Params->size(); i != e; ++i) {
689  StringRef Param = Params->getParam(i)->getName();
690  if (Param.empty()) continue;
691  TOut << Param << " = ";
692  Args->get(i).print(Policy, TOut);
693  TOut << ", ";
694  }
695  }
696 
697  TOut.flush();
698  if (!TemplateParams.empty()) {
699  // remove the trailing comma and space
700  TemplateParams.resize(TemplateParams.size() - 2);
701  POut << " [" << TemplateParams << "]";
702  }
703 
704  POut.flush();
705 
706  // Print "auto" for all deduced return types. This includes C++1y return
707  // type deduction and lambdas. For trailing return types resolve the
708  // decltype expression. Otherwise print the real type when this is
709  // not a constructor or destructor.
710  if (isa<CXXMethodDecl>(FD) &&
711  cast<CXXMethodDecl>(FD)->getParent()->isLambda())
712  Proto = "auto " + Proto;
713  else if (FT && FT->getReturnType()->getAs<DecltypeType>())
714  FT->getReturnType()
715  ->getAs<DecltypeType>()
717  .getAsStringInternal(Proto, Policy);
718  else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
719  AFT->getReturnType().getAsStringInternal(Proto, Policy);
720 
721  Out << Proto;
722 
723  return Name.str().str();
724  }
725  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
726  for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
727  // Skip to its enclosing function or method, but not its enclosing
728  // CapturedDecl.
729  if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
730  const Decl *D = Decl::castFromDeclContext(DC);
731  return ComputeName(IK, D);
732  }
733  llvm_unreachable("CapturedDecl not inside a function or method");
734  }
735  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
736  SmallString<256> Name;
737  llvm::raw_svector_ostream Out(Name);
738  Out << (MD->isInstanceMethod() ? '-' : '+');
739  Out << '[';
740 
741  // For incorrect code, there might not be an ObjCInterfaceDecl. Do
742  // a null check to avoid a crash.
743  if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
744  Out << *ID;
745 
746  if (const ObjCCategoryImplDecl *CID =
747  dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
748  Out << '(' << *CID << ')';
749 
750  Out << ' ';
751  MD->getSelector().print(Out);
752  Out << ']';
753 
754  return Name.str().str();
755  }
756  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
757  // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
758  return "top level";
759  }
760  return "";
761 }
762 
764  const llvm::APInt &Val) {
765  if (hasAllocation())
766  C.Deallocate(pVal);
767 
768  BitWidth = Val.getBitWidth();
769  unsigned NumWords = Val.getNumWords();
770  const uint64_t* Words = Val.getRawData();
771  if (NumWords > 1) {
772  pVal = new (C) uint64_t[NumWords];
773  std::copy(Words, Words + NumWords, pVal);
774  } else if (NumWords == 1)
775  VAL = Words[0];
776  else
777  VAL = 0;
778 }
779 
780 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
782  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
783  false, false),
784  Loc(l) {
785  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
786  assert(V.getBitWidth() == C.getIntWidth(type) &&
787  "Integer type is not the correct size for constant.");
788  setValue(C, V);
789 }
790 
792 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
794  return new (C) IntegerLiteral(C, V, type, l);
795 }
796 
799  return new (C) IntegerLiteral(Empty);
800 }
801 
802 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
804  unsigned Scale)
805  : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
806  false, false),
807  Loc(l), Scale(Scale) {
808  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
809  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
810  "Fixed point type is not the correct size for constant.");
811  setValue(C, V);
812 }
813 
815  const llvm::APInt &V,
816  QualType type,
817  SourceLocation l,
818  unsigned Scale) {
819  return new (C) FixedPointLiteral(C, V, type, l, Scale);
820 }
821 
822 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
823  // Currently the longest decimal number that can be printed is the max for an
824  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
825  // which is 43 characters.
826  SmallString<64> S;
828  S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
829  return S.str();
830 }
831 
832 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
833  bool isexact, QualType Type, SourceLocation L)
834  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
835  false, false), Loc(L) {
836  setSemantics(V.getSemantics());
837  FloatingLiteralBits.IsExact = isexact;
838  setValue(C, V);
839 }
840 
841 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
842  : Expr(FloatingLiteralClass, Empty) {
843  setRawSemantics(IEEEhalf);
844  FloatingLiteralBits.IsExact = false;
845 }
846 
848 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
849  bool isexact, QualType Type, SourceLocation L) {
850  return new (C) FloatingLiteral(C, V, isexact, Type, L);
851 }
852 
855  return new (C) FloatingLiteral(C, Empty);
856 }
857 
858 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
859  switch(FloatingLiteralBits.Semantics) {
860  case IEEEhalf:
861  return llvm::APFloat::IEEEhalf();
862  case IEEEsingle:
863  return llvm::APFloat::IEEEsingle();
864  case IEEEdouble:
865  return llvm::APFloat::IEEEdouble();
866  case x87DoubleExtended:
867  return llvm::APFloat::x87DoubleExtended();
868  case IEEEquad:
869  return llvm::APFloat::IEEEquad();
870  case PPCDoubleDouble:
871  return llvm::APFloat::PPCDoubleDouble();
872  }
873  llvm_unreachable("Unrecognised floating semantics");
874 }
875 
876 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
877  if (&Sem == &llvm::APFloat::IEEEhalf())
878  FloatingLiteralBits.Semantics = IEEEhalf;
879  else if (&Sem == &llvm::APFloat::IEEEsingle())
880  FloatingLiteralBits.Semantics = IEEEsingle;
881  else if (&Sem == &llvm::APFloat::IEEEdouble())
882  FloatingLiteralBits.Semantics = IEEEdouble;
883  else if (&Sem == &llvm::APFloat::x87DoubleExtended())
885  else if (&Sem == &llvm::APFloat::IEEEquad())
886  FloatingLiteralBits.Semantics = IEEEquad;
887  else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
889  else
890  llvm_unreachable("Unknown floating semantics");
891 }
892 
893 /// getValueAsApproximateDouble - This returns the value as an inaccurate
894 /// double. Note that this may cause loss of precision, but is useful for
895 /// debugging dumps, etc.
897  llvm::APFloat V = getValue();
898  bool ignored;
899  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
900  &ignored);
901  return V.convertToDouble();
902 }
903 
904 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
905  StringKind SK) {
906  unsigned CharByteWidth = 0;
907  switch (SK) {
908  case Ascii:
909  case UTF8:
910  CharByteWidth = Target.getCharWidth();
911  break;
912  case Wide:
913  CharByteWidth = Target.getWCharWidth();
914  break;
915  case UTF16:
916  CharByteWidth = Target.getChar16Width();
917  break;
918  case UTF32:
919  CharByteWidth = Target.getChar32Width();
920  break;
921  }
922  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
923  CharByteWidth /= 8;
924  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
925  "The only supported character byte widths are 1,2 and 4!");
926  return CharByteWidth;
927 }
928 
929 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
930  StringKind Kind, bool Pascal, QualType Ty,
931  const SourceLocation *Loc,
932  unsigned NumConcatenated)
933  : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
934  false) {
935  assert(Ctx.getAsConstantArrayType(Ty) &&
936  "StringLiteral must be of constant array type!");
937  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
938  unsigned ByteLength = Str.size();
939  assert((ByteLength % CharByteWidth == 0) &&
940  "The size of the data must be a multiple of CharByteWidth!");
941 
942  // Avoid the expensive division. The compiler should be able to figure it
943  // out by itself. However as of clang 7, even with the appropriate
944  // llvm_unreachable added just here, it is not able to do so.
945  unsigned Length;
946  switch (CharByteWidth) {
947  case 1:
948  Length = ByteLength;
949  break;
950  case 2:
951  Length = ByteLength / 2;
952  break;
953  case 4:
954  Length = ByteLength / 4;
955  break;
956  default:
957  llvm_unreachable("Unsupported character width!");
958  }
959 
960  StringLiteralBits.Kind = Kind;
961  StringLiteralBits.CharByteWidth = CharByteWidth;
962  StringLiteralBits.IsPascal = Pascal;
963  StringLiteralBits.NumConcatenated = NumConcatenated;
964  *getTrailingObjects<unsigned>() = Length;
965 
966  // Initialize the trailing array of SourceLocation.
967  // This is safe since SourceLocation is POD-like.
968  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
969  NumConcatenated * sizeof(SourceLocation));
970 
971  // Initialize the trailing array of char holding the string data.
972  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
973 }
974 
975 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
976  unsigned Length, unsigned CharByteWidth)
977  : Expr(StringLiteralClass, Empty) {
978  StringLiteralBits.CharByteWidth = CharByteWidth;
979  StringLiteralBits.NumConcatenated = NumConcatenated;
980  *getTrailingObjects<unsigned>() = Length;
981 }
982 
983 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
984  StringKind Kind, bool Pascal, QualType Ty,
985  const SourceLocation *Loc,
986  unsigned NumConcatenated) {
987  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
988  1, NumConcatenated, Str.size()),
989  alignof(StringLiteral));
990  return new (Mem)
991  StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
992 }
993 
995  unsigned NumConcatenated,
996  unsigned Length,
997  unsigned CharByteWidth) {
998  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
999  1, NumConcatenated, Length * CharByteWidth),
1000  alignof(StringLiteral));
1001  return new (Mem)
1002  StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1003 }
1004 
1005 void StringLiteral::outputString(raw_ostream &OS) const {
1006  switch (getKind()) {
1007  case Ascii: break; // no prefix.
1008  case Wide: OS << 'L'; break;
1009  case UTF8: OS << "u8"; break;
1010  case UTF16: OS << 'u'; break;
1011  case UTF32: OS << 'U'; break;
1012  }
1013  OS << '"';
1014  static const char Hex[] = "0123456789ABCDEF";
1015 
1016  unsigned LastSlashX = getLength();
1017  for (unsigned I = 0, N = getLength(); I != N; ++I) {
1018  switch (uint32_t Char = getCodeUnit(I)) {
1019  default:
1020  // FIXME: Convert UTF-8 back to codepoints before rendering.
1021 
1022  // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1023  // Leave invalid surrogates alone; we'll use \x for those.
1024  if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1025  Char <= 0xdbff) {
1026  uint32_t Trail = getCodeUnit(I + 1);
1027  if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1028  Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1029  ++I;
1030  }
1031  }
1032 
1033  if (Char > 0xff) {
1034  // If this is a wide string, output characters over 0xff using \x
1035  // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1036  // codepoint: use \x escapes for invalid codepoints.
1037  if (getKind() == Wide ||
1038  (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1039  // FIXME: Is this the best way to print wchar_t?
1040  OS << "\\x";
1041  int Shift = 28;
1042  while ((Char >> Shift) == 0)
1043  Shift -= 4;
1044  for (/**/; Shift >= 0; Shift -= 4)
1045  OS << Hex[(Char >> Shift) & 15];
1046  LastSlashX = I;
1047  break;
1048  }
1049 
1050  if (Char > 0xffff)
1051  OS << "\\U00"
1052  << Hex[(Char >> 20) & 15]
1053  << Hex[(Char >> 16) & 15];
1054  else
1055  OS << "\\u";
1056  OS << Hex[(Char >> 12) & 15]
1057  << Hex[(Char >> 8) & 15]
1058  << Hex[(Char >> 4) & 15]
1059  << Hex[(Char >> 0) & 15];
1060  break;
1061  }
1062 
1063  // If we used \x... for the previous character, and this character is a
1064  // hexadecimal digit, prevent it being slurped as part of the \x.
1065  if (LastSlashX + 1 == I) {
1066  switch (Char) {
1067  case '0': case '1': case '2': case '3': case '4':
1068  case '5': case '6': case '7': case '8': case '9':
1069  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1070  case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1071  OS << "\"\"";
1072  }
1073  }
1074 
1075  assert(Char <= 0xff &&
1076  "Characters above 0xff should already have been handled.");
1077 
1078  if (isPrintable(Char))
1079  OS << (char)Char;
1080  else // Output anything hard as an octal escape.
1081  OS << '\\'
1082  << (char)('0' + ((Char >> 6) & 7))
1083  << (char)('0' + ((Char >> 3) & 7))
1084  << (char)('0' + ((Char >> 0) & 7));
1085  break;
1086  // Handle some common non-printable cases to make dumps prettier.
1087  case '\\': OS << "\\\\"; break;
1088  case '"': OS << "\\\""; break;
1089  case '\a': OS << "\\a"; break;
1090  case '\b': OS << "\\b"; break;
1091  case '\f': OS << "\\f"; break;
1092  case '\n': OS << "\\n"; break;
1093  case '\r': OS << "\\r"; break;
1094  case '\t': OS << "\\t"; break;
1095  case '\v': OS << "\\v"; break;
1096  }
1097  }
1098  OS << '"';
1099 }
1100 
1101 /// getLocationOfByte - Return a source location that points to the specified
1102 /// byte of this string literal.
1103 ///
1104 /// Strings are amazingly complex. They can be formed from multiple tokens and
1105 /// can have escape sequences in them in addition to the usual trigraph and
1106 /// escaped newline business. This routine handles this complexity.
1107 ///
1108 /// The *StartToken sets the first token to be searched in this function and
1109 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1110 /// returning, it updates the *StartToken to the TokNo of the token being found
1111 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1112 /// string.
1113 /// Using these two parameters can reduce the time complexity from O(n^2) to
1114 /// O(n) if one wants to get the location of byte for all the tokens in a
1115 /// string.
1116 ///
1119  const LangOptions &Features,
1120  const TargetInfo &Target, unsigned *StartToken,
1121  unsigned *StartTokenByteOffset) const {
1122  assert((getKind() == StringLiteral::Ascii ||
1123  getKind() == StringLiteral::UTF8) &&
1124  "Only narrow string literals are currently supported");
1125 
1126  // Loop over all of the tokens in this string until we find the one that
1127  // contains the byte we're looking for.
1128  unsigned TokNo = 0;
1129  unsigned StringOffset = 0;
1130  if (StartToken)
1131  TokNo = *StartToken;
1132  if (StartTokenByteOffset) {
1133  StringOffset = *StartTokenByteOffset;
1134  ByteNo -= StringOffset;
1135  }
1136  while (1) {
1137  assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1138  SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1139 
1140  // Get the spelling of the string so that we can get the data that makes up
1141  // the string literal, not the identifier for the macro it is potentially
1142  // expanded through.
1143  SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1144 
1145  // Re-lex the token to get its length and original spelling.
1146  std::pair<FileID, unsigned> LocInfo =
1147  SM.getDecomposedLoc(StrTokSpellingLoc);
1148  bool Invalid = false;
1149  StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1150  if (Invalid) {
1151  if (StartTokenByteOffset != nullptr)
1152  *StartTokenByteOffset = StringOffset;
1153  if (StartToken != nullptr)
1154  *StartToken = TokNo;
1155  return StrTokSpellingLoc;
1156  }
1157 
1158  const char *StrData = Buffer.data()+LocInfo.second;
1159 
1160  // Create a lexer starting at the beginning of this token.
1161  Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1162  Buffer.begin(), StrData, Buffer.end());
1163  Token TheTok;
1164  TheLexer.LexFromRawLexer(TheTok);
1165 
1166  // Use the StringLiteralParser to compute the length of the string in bytes.
1167  StringLiteralParser SLP(TheTok, SM, Features, Target);
1168  unsigned TokNumBytes = SLP.GetStringLength();
1169 
1170  // If the byte is in this token, return the location of the byte.
1171  if (ByteNo < TokNumBytes ||
1172  (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1173  unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1174 
1175  // Now that we know the offset of the token in the spelling, use the
1176  // preprocessor to get the offset in the original source.
1177  if (StartTokenByteOffset != nullptr)
1178  *StartTokenByteOffset = StringOffset;
1179  if (StartToken != nullptr)
1180  *StartToken = TokNo;
1181  return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1182  }
1183 
1184  // Move to the next string token.
1185  StringOffset += TokNumBytes;
1186  ++TokNo;
1187  ByteNo -= TokNumBytes;
1188  }
1189 }
1190 
1191 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1192 /// corresponds to, e.g. "sizeof" or "[pre]++".
1194  switch (Op) {
1195 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1196 #include "clang/AST/OperationKinds.def"
1197  }
1198  llvm_unreachable("Unknown unary operator");
1199 }
1200 
1203  switch (OO) {
1204  default: llvm_unreachable("No unary operator for overloaded function");
1205  case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1206  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1207  case OO_Amp: return UO_AddrOf;
1208  case OO_Star: return UO_Deref;
1209  case OO_Plus: return UO_Plus;
1210  case OO_Minus: return UO_Minus;
1211  case OO_Tilde: return UO_Not;
1212  case OO_Exclaim: return UO_LNot;
1213  case OO_Coawait: return UO_Coawait;
1214  }
1215 }
1216 
1218  switch (Opc) {
1219  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1220  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1221  case UO_AddrOf: return OO_Amp;
1222  case UO_Deref: return OO_Star;
1223  case UO_Plus: return OO_Plus;
1224  case UO_Minus: return OO_Minus;
1225  case UO_Not: return OO_Tilde;
1226  case UO_LNot: return OO_Exclaim;
1227  case UO_Coawait: return OO_Coawait;
1228  default: return OO_None;
1229  }
1230 }
1231 
1232 
1233 //===----------------------------------------------------------------------===//
1234 // Postfix Operators.
1235 //===----------------------------------------------------------------------===//
1236 
1239  SourceLocation RParenLoc, unsigned MinNumArgs,
1240  ADLCallKind UsesADL)
1241  : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
1244  RParenLoc(RParenLoc) {
1245  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1246  unsigned NumPreArgs = PreArgs.size();
1247  CallExprBits.NumPreArgs = NumPreArgs;
1248  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1249 
1250  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1251  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1252  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1253  "OffsetToTrailingObjects overflow!");
1254 
1255  CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1256 
1257  setCallee(Fn);
1258  for (unsigned I = 0; I != NumPreArgs; ++I) {
1259  updateDependenciesFromArg(PreArgs[I]);
1260  setPreArg(I, PreArgs[I]);
1261  }
1262  for (unsigned I = 0; I != Args.size(); ++I) {
1263  updateDependenciesFromArg(Args[I]);
1264  setArg(I, Args[I]);
1265  }
1266  for (unsigned I = Args.size(); I != NumArgs; ++I) {
1267  setArg(I, nullptr);
1268  }
1269 }
1270 
1271 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1272  EmptyShell Empty)
1273  : Expr(SC, Empty), NumArgs(NumArgs) {
1274  CallExprBits.NumPreArgs = NumPreArgs;
1275  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1276 
1277  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1278  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1279  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1280  "OffsetToTrailingObjects overflow!");
1281 }
1282 
1285  SourceLocation RParenLoc, unsigned MinNumArgs,
1286  ADLCallKind UsesADL) {
1287  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1288  unsigned SizeOfTrailingObjects =
1289  CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1290  void *Mem =
1291  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1292  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1293  RParenLoc, MinNumArgs, UsesADL);
1294 }
1295 
1297  ExprValueKind VK, SourceLocation RParenLoc,
1298  ADLCallKind UsesADL) {
1299  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1300  "Misaligned memory in CallExpr::CreateTemporary!");
1301  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1302  VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
1303 }
1304 
1305 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1306  EmptyShell Empty) {
1307  unsigned SizeOfTrailingObjects =
1308  CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1309  void *Mem =
1310  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1311  return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
1312 }
1313 
1314 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1315  switch (SC) {
1316  case CallExprClass:
1317  return sizeof(CallExpr);
1318  case CXXOperatorCallExprClass:
1319  return sizeof(CXXOperatorCallExpr);
1320  case CXXMemberCallExprClass:
1321  return sizeof(CXXMemberCallExpr);
1322  case UserDefinedLiteralClass:
1323  return sizeof(UserDefinedLiteral);
1324  case CUDAKernelCallExprClass:
1325  return sizeof(CUDAKernelCallExpr);
1326  default:
1327  llvm_unreachable("unexpected class deriving from CallExpr!");
1328  }
1329 }
1330 
1331 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1332  if (Arg->isTypeDependent())
1333  ExprBits.TypeDependent = true;
1334  if (Arg->isValueDependent())
1335  ExprBits.ValueDependent = true;
1336  if (Arg->isInstantiationDependent())
1337  ExprBits.InstantiationDependent = true;
1339  ExprBits.ContainsUnexpandedParameterPack = true;
1340 }
1341 
1343  Expr *CEE = IgnoreParenImpCasts();
1344 
1345  while (SubstNonTypeTemplateParmExpr *NTTP
1346  = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1347  CEE = NTTP->getReplacement()->IgnoreParenCasts();
1348  }
1349 
1350  // If we're calling a dereference, look at the pointer instead.
1351  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1352  if (BO->isPtrMemOp())
1353  CEE = BO->getRHS()->IgnoreParenCasts();
1354  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1355  if (UO->getOpcode() == UO_Deref)
1356  CEE = UO->getSubExpr()->IgnoreParenCasts();
1357  }
1358  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1359  return DRE->getDecl();
1360  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1361  return ME->getMemberDecl();
1362  if (auto *BE = dyn_cast<BlockExpr>(CEE))
1363  return BE->getBlockDecl();
1364 
1365  return nullptr;
1366 }
1367 
1368 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1369 /// not, return 0.
1370 unsigned CallExpr::getBuiltinCallee() const {
1371  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1372  // function. As a result, we try and obtain the DeclRefExpr from the
1373  // ImplicitCastExpr.
1374  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1375  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1376  return 0;
1377 
1378  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1379  if (!DRE)
1380  return 0;
1381 
1382  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1383  if (!FDecl)
1384  return 0;
1385 
1386  if (!FDecl->getIdentifier())
1387  return 0;
1388 
1389  return FDecl->getBuiltinID();
1390 }
1391 
1393  if (unsigned BI = getBuiltinCallee())
1394  return Ctx.BuiltinInfo.isUnevaluated(BI);
1395  return false;
1396 }
1397 
1399  const Expr *Callee = getCallee();
1400  QualType CalleeType = Callee->getType();
1401  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1402  CalleeType = FnTypePtr->getPointeeType();
1403  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1404  CalleeType = BPT->getPointeeType();
1405  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1406  if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1407  return Ctx.VoidTy;
1408 
1409  // This should never be overloaded and so should never return null.
1410  CalleeType = Expr::findBoundMemberType(Callee);
1411  }
1412 
1413  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1414  return FnType->getReturnType();
1415 }
1416 
1418  // If the return type is a struct, union, or enum that is marked nodiscard,
1419  // then return the return type attribute.
1420  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1421  if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1422  return A;
1423 
1424  // Otherwise, see if the callee is marked nodiscard and return that attribute
1425  // instead.
1426  const Decl *D = getCalleeDecl();
1427  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1428 }
1429 
1431  if (isa<CXXOperatorCallExpr>(this))
1432  return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1433 
1434  SourceLocation begin = getCallee()->getBeginLoc();
1435  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1436  begin = getArg(0)->getBeginLoc();
1437  return begin;
1438 }
1440  if (isa<CXXOperatorCallExpr>(this))
1441  return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1442 
1443  SourceLocation end = getRParenLoc();
1444  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1445  end = getArg(getNumArgs() - 1)->getEndLoc();
1446  return end;
1447 }
1448 
1450  SourceLocation OperatorLoc,
1451  TypeSourceInfo *tsi,
1452  ArrayRef<OffsetOfNode> comps,
1453  ArrayRef<Expr*> exprs,
1454  SourceLocation RParenLoc) {
1455  void *Mem = C.Allocate(
1456  totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1457 
1458  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1459  RParenLoc);
1460 }
1461 
1463  unsigned numComps, unsigned numExprs) {
1464  void *Mem =
1465  C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1466  return new (Mem) OffsetOfExpr(numComps, numExprs);
1467 }
1468 
1469 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1470  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1472  SourceLocation RParenLoc)
1473  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1474  /*TypeDependent=*/false,
1475  /*ValueDependent=*/tsi->getType()->isDependentType(),
1478  OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1479  NumComps(comps.size()), NumExprs(exprs.size())
1480 {
1481  for (unsigned i = 0; i != comps.size(); ++i) {
1482  setComponent(i, comps[i]);
1483  }
1484 
1485  for (unsigned i = 0; i != exprs.size(); ++i) {
1486  if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1487  ExprBits.ValueDependent = true;
1488  if (exprs[i]->containsUnexpandedParameterPack())
1489  ExprBits.ContainsUnexpandedParameterPack = true;
1490 
1491  setIndexExpr(i, exprs[i]);
1492  }
1493 }
1494 
1496  assert(getKind() == Field || getKind() == Identifier);
1497  if (getKind() == Field)
1498  return getField()->getIdentifier();
1499 
1500  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1501 }
1502 
1504  UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1506  : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1507  false, // Never type-dependent (C++ [temp.dep.expr]p3).
1508  // Value-dependent if the argument is type-dependent.
1511  OpLoc(op), RParenLoc(rp) {
1512  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1513  UnaryExprOrTypeTraitExprBits.IsType = false;
1514  Argument.Ex = E;
1515 
1516  // Check to see if we are in the situation where alignof(decl) should be
1517  // dependent because decl's alignment is dependent.
1518  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
1520  E = E->IgnoreParens();
1521 
1522  const ValueDecl *D = nullptr;
1523  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1524  D = DRE->getDecl();
1525  else if (const auto *ME = dyn_cast<MemberExpr>(E))
1526  D = ME->getMemberDecl();
1527 
1528  if (D) {
1529  for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1530  if (I->isAlignmentDependent()) {
1531  setValueDependent(true);
1533  break;
1534  }
1535  }
1536  }
1537  }
1538  }
1539 }
1540 
1542  const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1543  NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1544  ValueDecl *memberdecl, DeclAccessPair founddecl,
1545  DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1546  QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1547 
1548  bool hasQualOrFound = (QualifierLoc ||
1549  founddecl.getDecl() != memberdecl ||
1550  founddecl.getAccess() != memberdecl->getAccess());
1551 
1552  bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1553  std::size_t Size =
1555  TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1556  HasTemplateKWAndArgsInfo ? 1 : 0,
1557  targs ? targs->size() : 0);
1558 
1559  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1560  MemberExpr *E = new (Mem)
1561  MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1562 
1563  if (hasQualOrFound) {
1564  // FIXME: Wrong. We should be looking at the member declaration we found.
1565  if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1566  E->setValueDependent(true);
1567  E->setTypeDependent(true);
1568  E->setInstantiationDependent(true);
1569  }
1570  else if (QualifierLoc &&
1572  E->setInstantiationDependent(true);
1573 
1574  E->MemberExprBits.HasQualifierOrFoundDecl = true;
1575 
1576  MemberExprNameQualifier *NQ =
1577  E->getTrailingObjects<MemberExprNameQualifier>();
1578  NQ->QualifierLoc = QualifierLoc;
1579  NQ->FoundDecl = founddecl;
1580  }
1581 
1582  E->MemberExprBits.HasTemplateKWAndArgsInfo =
1583  (targs || TemplateKWLoc.isValid());
1584 
1585  if (targs) {
1586  bool Dependent = false;
1587  bool InstantiationDependent = false;
1588  bool ContainsUnexpandedParameterPack = false;
1589  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1590  TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1591  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1592  if (InstantiationDependent)
1593  E->setInstantiationDependent(true);
1594  } else if (TemplateKWLoc.isValid()) {
1595  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1596  TemplateKWLoc);
1597  }
1598 
1599  return E;
1600 }
1601 
1603  if (isImplicitAccess()) {
1604  if (hasQualifier())
1605  return getQualifierLoc().getBeginLoc();
1606  return MemberLoc;
1607  }
1608 
1609  // FIXME: We don't want this to happen. Rather, we should be able to
1610  // detect all kinds of implicit accesses more cleanly.
1611  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1612  if (BaseStartLoc.isValid())
1613  return BaseStartLoc;
1614  return MemberLoc;
1615 }
1617  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1618  if (hasExplicitTemplateArgs())
1619  EndLoc = getRAngleLoc();
1620  else if (EndLoc.isInvalid())
1621  EndLoc = getBase()->getEndLoc();
1622  return EndLoc;
1623 }
1624 
1625 bool CastExpr::CastConsistency() const {
1626  switch (getCastKind()) {
1627  case CK_DerivedToBase:
1628  case CK_UncheckedDerivedToBase:
1629  case CK_DerivedToBaseMemberPointer:
1630  case CK_BaseToDerived:
1631  case CK_BaseToDerivedMemberPointer:
1632  assert(!path_empty() && "Cast kind should have a base path!");
1633  break;
1634 
1635  case CK_CPointerToObjCPointerCast:
1636  assert(getType()->isObjCObjectPointerType());
1637  assert(getSubExpr()->getType()->isPointerType());
1638  goto CheckNoBasePath;
1639 
1640  case CK_BlockPointerToObjCPointerCast:
1641  assert(getType()->isObjCObjectPointerType());
1642  assert(getSubExpr()->getType()->isBlockPointerType());
1643  goto CheckNoBasePath;
1644 
1645  case CK_ReinterpretMemberPointer:
1646  assert(getType()->isMemberPointerType());
1647  assert(getSubExpr()->getType()->isMemberPointerType());
1648  goto CheckNoBasePath;
1649 
1650  case CK_BitCast:
1651  // Arbitrary casts to C pointer types count as bitcasts.
1652  // Otherwise, we should only have block and ObjC pointer casts
1653  // here if they stay within the type kind.
1654  if (!getType()->isPointerType()) {
1655  assert(getType()->isObjCObjectPointerType() ==
1656  getSubExpr()->getType()->isObjCObjectPointerType());
1657  assert(getType()->isBlockPointerType() ==
1658  getSubExpr()->getType()->isBlockPointerType());
1659  }
1660  goto CheckNoBasePath;
1661 
1662  case CK_AnyPointerToBlockPointerCast:
1663  assert(getType()->isBlockPointerType());
1664  assert(getSubExpr()->getType()->isAnyPointerType() &&
1665  !getSubExpr()->getType()->isBlockPointerType());
1666  goto CheckNoBasePath;
1667 
1668  case CK_CopyAndAutoreleaseBlockObject:
1669  assert(getType()->isBlockPointerType());
1670  assert(getSubExpr()->getType()->isBlockPointerType());
1671  goto CheckNoBasePath;
1672 
1673  case CK_FunctionToPointerDecay:
1674  assert(getType()->isPointerType());
1675  assert(getSubExpr()->getType()->isFunctionType());
1676  goto CheckNoBasePath;
1677 
1678  case CK_AddressSpaceConversion: {
1679  auto Ty = getType();
1680  auto SETy = getSubExpr()->getType();
1681  assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1682  if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
1683  Ty = Ty->getPointeeType();
1684  SETy = SETy->getPointeeType();
1685  }
1686  assert(!Ty.isNull() && !SETy.isNull() &&
1687  Ty.getAddressSpace() != SETy.getAddressSpace());
1688  goto CheckNoBasePath;
1689  }
1690  // These should not have an inheritance path.
1691  case CK_Dynamic:
1692  case CK_ToUnion:
1693  case CK_ArrayToPointerDecay:
1694  case CK_NullToMemberPointer:
1695  case CK_NullToPointer:
1696  case CK_ConstructorConversion:
1697  case CK_IntegralToPointer:
1698  case CK_PointerToIntegral:
1699  case CK_ToVoid:
1700  case CK_VectorSplat:
1701  case CK_IntegralCast:
1702  case CK_BooleanToSignedIntegral:
1703  case CK_IntegralToFloating:
1704  case CK_FloatingToIntegral:
1705  case CK_FloatingCast:
1706  case CK_ObjCObjectLValueCast:
1707  case CK_FloatingRealToComplex:
1708  case CK_FloatingComplexToReal:
1709  case CK_FloatingComplexCast:
1710  case CK_FloatingComplexToIntegralComplex:
1711  case CK_IntegralRealToComplex:
1712  case CK_IntegralComplexToReal:
1713  case CK_IntegralComplexCast:
1714  case CK_IntegralComplexToFloatingComplex:
1715  case CK_ARCProduceObject:
1716  case CK_ARCConsumeObject:
1717  case CK_ARCReclaimReturnedObject:
1718  case CK_ARCExtendBlockObject:
1719  case CK_ZeroToOCLOpaqueType:
1720  case CK_IntToOCLSampler:
1721  case CK_FixedPointCast:
1722  case CK_FixedPointToIntegral:
1723  case CK_IntegralToFixedPoint:
1724  assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1725  goto CheckNoBasePath;
1726 
1727  case CK_Dependent:
1728  case CK_LValueToRValue:
1729  case CK_NoOp:
1730  case CK_AtomicToNonAtomic:
1731  case CK_NonAtomicToAtomic:
1732  case CK_PointerToBoolean:
1733  case CK_IntegralToBoolean:
1734  case CK_FloatingToBoolean:
1735  case CK_MemberPointerToBoolean:
1736  case CK_FloatingComplexToBoolean:
1737  case CK_IntegralComplexToBoolean:
1738  case CK_LValueBitCast: // -> bool&
1739  case CK_UserDefinedConversion: // operator bool()
1740  case CK_BuiltinFnToFnPtr:
1741  case CK_FixedPointToBoolean:
1742  CheckNoBasePath:
1743  assert(path_empty() && "Cast kind should not have a base path!");
1744  break;
1745  }
1746  return true;
1747 }
1748 
1750  switch (CK) {
1751 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1752 #include "clang/AST/OperationKinds.def"
1753  }
1754  llvm_unreachable("Unhandled cast kind!");
1755 }
1756 
1757 namespace {
1758  const Expr *skipImplicitTemporary(const Expr *E) {
1759  // Skip through reference binding to temporary.
1760  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1761  E = Materialize->GetTemporaryExpr();
1762 
1763  // Skip any temporary bindings; they're implicit.
1764  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1765  E = Binder->getSubExpr();
1766 
1767  return E;
1768  }
1769 }
1770 
1772  const Expr *SubExpr = nullptr;
1773  const CastExpr *E = this;
1774  do {
1775  SubExpr = skipImplicitTemporary(E->getSubExpr());
1776 
1777  // Conversions by constructor and conversion functions have a
1778  // subexpression describing the call; strip it off.
1779  if (E->getCastKind() == CK_ConstructorConversion)
1780  SubExpr =
1781  skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1782  else if (E->getCastKind() == CK_UserDefinedConversion) {
1783  assert((isa<CXXMemberCallExpr>(SubExpr) ||
1784  isa<BlockExpr>(SubExpr)) &&
1785  "Unexpected SubExpr for CK_UserDefinedConversion.");
1786  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1787  SubExpr = MCE->getImplicitObjectArgument();
1788  }
1789 
1790  // If the subexpression we're left with is an implicit cast, look
1791  // through that, too.
1792  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1793 
1794  return const_cast<Expr*>(SubExpr);
1795 }
1796 
1798  const Expr *SubExpr = nullptr;
1799 
1800  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1801  SubExpr = skipImplicitTemporary(E->getSubExpr());
1802 
1803  if (E->getCastKind() == CK_ConstructorConversion)
1804  return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1805 
1806  if (E->getCastKind() == CK_UserDefinedConversion) {
1807  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1808  return MCE->getMethodDecl();
1809  }
1810  }
1811 
1812  return nullptr;
1813 }
1814 
1815 CXXBaseSpecifier **CastExpr::path_buffer() {
1816  switch (getStmtClass()) {
1817 #define ABSTRACT_STMT(x)
1818 #define CASTEXPR(Type, Base) \
1819  case Stmt::Type##Class: \
1820  return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1821 #define STMT(Type, Base)
1822 #include "clang/AST/StmtNodes.inc"
1823  default:
1824  llvm_unreachable("non-cast expressions not possible here");
1825  }
1826 }
1827 
1829  QualType opType) {
1830  auto RD = unionType->castAs<RecordType>()->getDecl();
1831  return getTargetFieldForToUnionCast(RD, opType);
1832 }
1833 
1835  QualType OpType) {
1836  auto &Ctx = RD->getASTContext();
1837  RecordDecl::field_iterator Field, FieldEnd;
1838  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1839  Field != FieldEnd; ++Field) {
1840  if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1841  !Field->isUnnamedBitfield()) {
1842  return *Field;
1843  }
1844  }
1845  return nullptr;
1846 }
1847 
1849  CastKind Kind, Expr *Operand,
1850  const CXXCastPath *BasePath,
1851  ExprValueKind VK) {
1852  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1853  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1854  ImplicitCastExpr *E =
1855  new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1856  if (PathSize)
1857  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1858  E->getTrailingObjects<CXXBaseSpecifier *>());
1859  return E;
1860 }
1861 
1863  unsigned PathSize) {
1864  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1865  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1866 }
1867 
1868 
1870  ExprValueKind VK, CastKind K, Expr *Op,
1871  const CXXCastPath *BasePath,
1872  TypeSourceInfo *WrittenTy,
1874  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1875  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1876  CStyleCastExpr *E =
1877  new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1878  if (PathSize)
1879  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1880  E->getTrailingObjects<CXXBaseSpecifier *>());
1881  return E;
1882 }
1883 
1885  unsigned PathSize) {
1886  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1887  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1888 }
1889 
1890 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1891 /// corresponds to, e.g. "<<=".
1893  switch (Op) {
1894 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1895 #include "clang/AST/OperationKinds.def"
1896  }
1897  llvm_unreachable("Invalid OpCode!");
1898 }
1899 
1902  switch (OO) {
1903  default: llvm_unreachable("Not an overloadable binary operator");
1904  case OO_Plus: return BO_Add;
1905  case OO_Minus: return BO_Sub;
1906  case OO_Star: return BO_Mul;
1907  case OO_Slash: return BO_Div;
1908  case OO_Percent: return BO_Rem;
1909  case OO_Caret: return BO_Xor;
1910  case OO_Amp: return BO_And;
1911  case OO_Pipe: return BO_Or;
1912  case OO_Equal: return BO_Assign;
1913  case OO_Spaceship: return BO_Cmp;
1914  case OO_Less: return BO_LT;
1915  case OO_Greater: return BO_GT;
1916  case OO_PlusEqual: return BO_AddAssign;
1917  case OO_MinusEqual: return BO_SubAssign;
1918  case OO_StarEqual: return BO_MulAssign;
1919  case OO_SlashEqual: return BO_DivAssign;
1920  case OO_PercentEqual: return BO_RemAssign;
1921  case OO_CaretEqual: return BO_XorAssign;
1922  case OO_AmpEqual: return BO_AndAssign;
1923  case OO_PipeEqual: return BO_OrAssign;
1924  case OO_LessLess: return BO_Shl;
1925  case OO_GreaterGreater: return BO_Shr;
1926  case OO_LessLessEqual: return BO_ShlAssign;
1927  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1928  case OO_EqualEqual: return BO_EQ;
1929  case OO_ExclaimEqual: return BO_NE;
1930  case OO_LessEqual: return BO_LE;
1931  case OO_GreaterEqual: return BO_GE;
1932  case OO_AmpAmp: return BO_LAnd;
1933  case OO_PipePipe: return BO_LOr;
1934  case OO_Comma: return BO_Comma;
1935  case OO_ArrowStar: return BO_PtrMemI;
1936  }
1937 }
1938 
1940  static const OverloadedOperatorKind OverOps[] = {
1941  /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1942  OO_Star, OO_Slash, OO_Percent,
1943  OO_Plus, OO_Minus,
1944  OO_LessLess, OO_GreaterGreater,
1945  OO_Spaceship,
1946  OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1947  OO_EqualEqual, OO_ExclaimEqual,
1948  OO_Amp,
1949  OO_Caret,
1950  OO_Pipe,
1951  OO_AmpAmp,
1952  OO_PipePipe,
1953  OO_Equal, OO_StarEqual,
1954  OO_SlashEqual, OO_PercentEqual,
1955  OO_PlusEqual, OO_MinusEqual,
1956  OO_LessLessEqual, OO_GreaterGreaterEqual,
1957  OO_AmpEqual, OO_CaretEqual,
1958  OO_PipeEqual,
1959  OO_Comma
1960  };
1961  return OverOps[Opc];
1962 }
1963 
1965  Opcode Opc,
1966  Expr *LHS, Expr *RHS) {
1967  if (Opc != BO_Add)
1968  return false;
1969 
1970  // Check that we have one pointer and one integer operand.
1971  Expr *PExp;
1972  if (LHS->getType()->isPointerType()) {
1973  if (!RHS->getType()->isIntegerType())
1974  return false;
1975  PExp = LHS;
1976  } else if (RHS->getType()->isPointerType()) {
1977  if (!LHS->getType()->isIntegerType())
1978  return false;
1979  PExp = RHS;
1980  } else {
1981  return false;
1982  }
1983 
1984  // Check that the pointer is a nullptr.
1985  if (!PExp->IgnoreParenCasts()
1987  return false;
1988 
1989  // Check that the pointee type is char-sized.
1990  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
1991  if (!PTy || !PTy->getPointeeType()->isCharType())
1992  return false;
1993 
1994  return true;
1995 }
1996 
1999  switch (Kind) {
2000  case SourceLocExpr::File:
2001  case SourceLocExpr::Function: {
2002  QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2003  return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2004  }
2005  case SourceLocExpr::Line:
2006  case SourceLocExpr::Column:
2007  return Ctx.UnsignedIntTy;
2008  }
2009  llvm_unreachable("unhandled case");
2010 }
2011 
2013  SourceLocation BLoc, SourceLocation RParenLoc,
2014  DeclContext *ParentContext)
2015  : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2017  BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2018  SourceLocExprBits.Kind = Kind;
2019 }
2020 
2021 StringRef SourceLocExpr::getBuiltinStr() const {
2022  switch (getIdentKind()) {
2023  case File:
2024  return "__builtin_FILE";
2025  case Function:
2026  return "__builtin_FUNCTION";
2027  case Line:
2028  return "__builtin_LINE";
2029  case Column:
2030  return "__builtin_COLUMN";
2031  }
2032  llvm_unreachable("unexpected IdentKind!");
2033 }
2034 
2036  const Expr *DefaultExpr) const {
2037  SourceLocation Loc;
2038  const DeclContext *Context;
2039 
2040  std::tie(Loc,
2041  Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2042  if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2043  return {DIE->getUsedLocation(), DIE->getUsedContext()};
2044  if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2045  return {DAE->getUsedLocation(), DAE->getUsedContext()};
2046  return {this->getLocation(), this->getParentContext()};
2047  }();
2048 
2051 
2052  auto MakeStringLiteral = [&](StringRef Tmp) {
2053  using LValuePathEntry = APValue::LValuePathEntry;
2055  // Decay the string to a pointer to the first character.
2056  LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2057  return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2058  };
2059 
2060  switch (getIdentKind()) {
2061  case SourceLocExpr::File:
2062  return MakeStringLiteral(PLoc.getFilename());
2063  case SourceLocExpr::Function: {
2064  const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2065  return MakeStringLiteral(
2067  : std::string(""));
2068  }
2069  case SourceLocExpr::Line:
2070  case SourceLocExpr::Column: {
2071  llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2072  /*IsUnsigned=*/true);
2073  IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2074  : PLoc.getColumn();
2075  return APValue(IntVal);
2076  }
2077  }
2078  llvm_unreachable("unhandled case");
2079 }
2080 
2082  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
2083  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
2084  false, false),
2085  InitExprs(C, initExprs.size()),
2086  LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
2087 {
2088  sawArrayRangeDesignator(false);
2089  for (unsigned I = 0; I != initExprs.size(); ++I) {
2090  if (initExprs[I]->isTypeDependent())
2091  ExprBits.TypeDependent = true;
2092  if (initExprs[I]->isValueDependent())
2093  ExprBits.ValueDependent = true;
2094  if (initExprs[I]->isInstantiationDependent())
2095  ExprBits.InstantiationDependent = true;
2096  if (initExprs[I]->containsUnexpandedParameterPack())
2097  ExprBits.ContainsUnexpandedParameterPack = true;
2098  }
2099 
2100  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2101 }
2102 
2103 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2104  if (NumInits > InitExprs.size())
2105  InitExprs.reserve(C, NumInits);
2106 }
2107 
2108 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2109  InitExprs.resize(C, NumInits, nullptr);
2110 }
2111 
2112 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2113  if (Init >= InitExprs.size()) {
2114  InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2115  setInit(Init, expr);
2116  return nullptr;
2117  }
2118 
2119  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2120  setInit(Init, expr);
2121  return Result;
2122 }
2123 
2125  assert(!hasArrayFiller() && "Filler already set!");
2126  ArrayFillerOrUnionFieldInit = filler;
2127  // Fill out any "holes" in the array due to designated initializers.
2128  Expr **inits = getInits();
2129  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2130  if (inits[i] == nullptr)
2131  inits[i] = filler;
2132 }
2133 
2135  if (getNumInits() != 1)
2136  return false;
2137  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2138  if (!AT || !AT->getElementType()->isIntegerType())
2139  return false;
2140  // It is possible for getInit() to return null.
2141  const Expr *Init = getInit(0);
2142  if (!Init)
2143  return false;
2144  Init = Init->IgnoreParens();
2145  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2146 }
2147 
2149  assert(isSemanticForm() && "syntactic form never semantically transparent");
2150 
2151  // A glvalue InitListExpr is always just sugar.
2152  if (isGLValue()) {
2153  assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2154  return true;
2155  }
2156 
2157  // Otherwise, we're sugar if and only if we have exactly one initializer that
2158  // is of the same type.
2159  if (getNumInits() != 1 || !getInit(0))
2160  return false;
2161 
2162  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2163  // transparent struct copy.
2164  if (!getInit(0)->isRValue() && getType()->isRecordType())
2165  return false;
2166 
2167  return getType().getCanonicalType() ==
2169 }
2170 
2172  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2173 
2174  if (LangOpts.CPlusPlus || getNumInits() != 1) {
2175  return false;
2176  }
2177 
2178  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0));
2179  return Lit && Lit->getValue() == 0;
2180 }
2181 
2183  if (InitListExpr *SyntacticForm = getSyntacticForm())
2184  return SyntacticForm->getBeginLoc();
2185  SourceLocation Beg = LBraceLoc;
2186  if (Beg.isInvalid()) {
2187  // Find the first non-null initializer.
2188  for (InitExprsTy::const_iterator I = InitExprs.begin(),
2189  E = InitExprs.end();
2190  I != E; ++I) {
2191  if (Stmt *S = *I) {
2192  Beg = S->getBeginLoc();
2193  break;
2194  }
2195  }
2196  }
2197  return Beg;
2198 }
2199 
2201  if (InitListExpr *SyntacticForm = getSyntacticForm())
2202  return SyntacticForm->getEndLoc();
2203  SourceLocation End = RBraceLoc;
2204  if (End.isInvalid()) {
2205  // Find the first non-null initializer from the end.
2206  for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2207  E = InitExprs.rend();
2208  I != E; ++I) {
2209  if (Stmt *S = *I) {
2210  End = S->getEndLoc();
2211  break;
2212  }
2213  }
2214  }
2215  return End;
2216 }
2217 
2218 /// getFunctionType - Return the underlying function type for this block.
2219 ///
2221  // The block pointer is never sugared, but the function type might be.
2222  return cast<BlockPointerType>(getType())
2223  ->getPointeeType()->castAs<FunctionProtoType>();
2224 }
2225 
2227  return TheBlock->getCaretLocation();
2228 }
2229 const Stmt *BlockExpr::getBody() const {
2230  return TheBlock->getBody();
2231 }
2233  return TheBlock->getBody();
2234 }
2235 
2236 
2237 //===----------------------------------------------------------------------===//
2238 // Generic Expression Routines
2239 //===----------------------------------------------------------------------===//
2240 
2241 /// isUnusedResultAWarning - Return true if this immediate expression should
2242 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2243 /// with location to warn on and the source range[s] to report with the
2244 /// warning.
2246  SourceRange &R1, SourceRange &R2,
2247  ASTContext &Ctx) const {
2248  // Don't warn if the expr is type dependent. The type could end up
2249  // instantiating to void.
2250  if (isTypeDependent())
2251  return false;
2252 
2253  switch (getStmtClass()) {
2254  default:
2255  if (getType()->isVoidType())
2256  return false;
2257  WarnE = this;
2258  Loc = getExprLoc();
2259  R1 = getSourceRange();
2260  return true;
2261  case ParenExprClass:
2262  return cast<ParenExpr>(this)->getSubExpr()->
2263  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2264  case GenericSelectionExprClass:
2265  return cast<GenericSelectionExpr>(this)->getResultExpr()->
2266  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2267  case CoawaitExprClass:
2268  case CoyieldExprClass:
2269  return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2270  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2271  case ChooseExprClass:
2272  return cast<ChooseExpr>(this)->getChosenSubExpr()->
2273  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2274  case UnaryOperatorClass: {
2275  const UnaryOperator *UO = cast<UnaryOperator>(this);
2276 
2277  switch (UO->getOpcode()) {
2278  case UO_Plus:
2279  case UO_Minus:
2280  case UO_AddrOf:
2281  case UO_Not:
2282  case UO_LNot:
2283  case UO_Deref:
2284  break;
2285  case UO_Coawait:
2286  // This is just the 'operator co_await' call inside the guts of a
2287  // dependent co_await call.
2288  case UO_PostInc:
2289  case UO_PostDec:
2290  case UO_PreInc:
2291  case UO_PreDec: // ++/--
2292  return false; // Not a warning.
2293  case UO_Real:
2294  case UO_Imag:
2295  // accessing a piece of a volatile complex is a side-effect.
2296  if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2297  .isVolatileQualified())
2298  return false;
2299  break;
2300  case UO_Extension:
2301  return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2302  }
2303  WarnE = this;
2304  Loc = UO->getOperatorLoc();
2305  R1 = UO->getSubExpr()->getSourceRange();
2306  return true;
2307  }
2308  case BinaryOperatorClass: {
2309  const BinaryOperator *BO = cast<BinaryOperator>(this);
2310  switch (BO->getOpcode()) {
2311  default:
2312  break;
2313  // Consider the RHS of comma for side effects. LHS was checked by
2314  // Sema::CheckCommaOperands.
2315  case BO_Comma:
2316  // ((foo = <blah>), 0) is an idiom for hiding the result (and
2317  // lvalue-ness) of an assignment written in a macro.
2318  if (IntegerLiteral *IE =
2319  dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2320  if (IE->getValue() == 0)
2321  return false;
2322  return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2323  // Consider '||', '&&' to have side effects if the LHS or RHS does.
2324  case BO_LAnd:
2325  case BO_LOr:
2326  if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2327  !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2328  return false;
2329  break;
2330  }
2331  if (BO->isAssignmentOp())
2332  return false;
2333  WarnE = this;
2334  Loc = BO->getOperatorLoc();
2335  R1 = BO->getLHS()->getSourceRange();
2336  R2 = BO->getRHS()->getSourceRange();
2337  return true;
2338  }
2339  case CompoundAssignOperatorClass:
2340  case VAArgExprClass:
2341  case AtomicExprClass:
2342  return false;
2343 
2344  case ConditionalOperatorClass: {
2345  // If only one of the LHS or RHS is a warning, the operator might
2346  // be being used for control flow. Only warn if both the LHS and
2347  // RHS are warnings.
2348  const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2349  if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2350  return false;
2351  if (!Exp->getLHS())
2352  return true;
2353  return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2354  }
2355 
2356  case MemberExprClass:
2357  WarnE = this;
2358  Loc = cast<MemberExpr>(this)->getMemberLoc();
2359  R1 = SourceRange(Loc, Loc);
2360  R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2361  return true;
2362 
2363  case ArraySubscriptExprClass:
2364  WarnE = this;
2365  Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2366  R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2367  R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2368  return true;
2369 
2370  case CXXOperatorCallExprClass: {
2371  // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2372  // overloads as there is no reasonable way to define these such that they
2373  // have non-trivial, desirable side-effects. See the -Wunused-comparison
2374  // warning: operators == and != are commonly typo'ed, and so warning on them
2375  // provides additional value as well. If this list is updated,
2376  // DiagnoseUnusedComparison should be as well.
2377  const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2378  switch (Op->getOperator()) {
2379  default:
2380  break;
2381  case OO_EqualEqual:
2382  case OO_ExclaimEqual:
2383  case OO_Less:
2384  case OO_Greater:
2385  case OO_GreaterEqual:
2386  case OO_LessEqual:
2387  if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2388  Op->getCallReturnType(Ctx)->isVoidType())
2389  break;
2390  WarnE = this;
2391  Loc = Op->getOperatorLoc();
2392  R1 = Op->getSourceRange();
2393  return true;
2394  }
2395 
2396  // Fallthrough for generic call handling.
2397  LLVM_FALLTHROUGH;
2398  }
2399  case CallExprClass:
2400  case CXXMemberCallExprClass:
2401  case UserDefinedLiteralClass: {
2402  // If this is a direct call, get the callee.
2403  const CallExpr *CE = cast<CallExpr>(this);
2404  if (const Decl *FD = CE->getCalleeDecl()) {
2405  // If the callee has attribute pure, const, or warn_unused_result, warn
2406  // about it. void foo() { strlen("bar"); } should warn.
2407  //
2408  // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2409  // updated to match for QoI.
2410  if (CE->hasUnusedResultAttr(Ctx) ||
2411  FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2412  WarnE = this;
2413  Loc = CE->getCallee()->getBeginLoc();
2414  R1 = CE->getCallee()->getSourceRange();
2415 
2416  if (unsigned NumArgs = CE->getNumArgs())
2417  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2418  CE->getArg(NumArgs - 1)->getEndLoc());
2419  return true;
2420  }
2421  }
2422  return false;
2423  }
2424 
2425  // If we don't know precisely what we're looking at, let's not warn.
2426  case UnresolvedLookupExprClass:
2427  case CXXUnresolvedConstructExprClass:
2428  return false;
2429 
2430  case CXXTemporaryObjectExprClass:
2431  case CXXConstructExprClass: {
2432  if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2433  if (Type->hasAttr<WarnUnusedAttr>()) {
2434  WarnE = this;
2435  Loc = getBeginLoc();
2436  R1 = getSourceRange();
2437  return true;
2438  }
2439  }
2440  return false;
2441  }
2442 
2443  case ObjCMessageExprClass: {
2444  const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2445  if (Ctx.getLangOpts().ObjCAutoRefCount &&
2446  ME->isInstanceMessage() &&
2447  !ME->getType()->isVoidType() &&
2448  ME->getMethodFamily() == OMF_init) {
2449  WarnE = this;
2450  Loc = getExprLoc();
2451  R1 = ME->getSourceRange();
2452  return true;
2453  }
2454 
2455  if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2456  if (MD->hasAttr<WarnUnusedResultAttr>()) {
2457  WarnE = this;
2458  Loc = getExprLoc();
2459  return true;
2460  }
2461 
2462  return false;
2463  }
2464 
2465  case ObjCPropertyRefExprClass:
2466  WarnE = this;
2467  Loc = getExprLoc();
2468  R1 = getSourceRange();
2469  return true;
2470 
2471  case PseudoObjectExprClass: {
2472  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2473 
2474  // Only complain about things that have the form of a getter.
2475  if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2476  isa<BinaryOperator>(PO->getSyntacticForm()))
2477  return false;
2478 
2479  WarnE = this;
2480  Loc = getExprLoc();
2481  R1 = getSourceRange();
2482  return true;
2483  }
2484 
2485  case StmtExprClass: {
2486  // Statement exprs don't logically have side effects themselves, but are
2487  // sometimes used in macros in ways that give them a type that is unused.
2488  // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2489  // however, if the result of the stmt expr is dead, we don't want to emit a
2490  // warning.
2491  const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2492  if (!CS->body_empty()) {
2493  if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2494  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2495  if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2496  if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2497  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2498  }
2499 
2500  if (getType()->isVoidType())
2501  return false;
2502  WarnE = this;
2503  Loc = cast<StmtExpr>(this)->getLParenLoc();
2504  R1 = getSourceRange();
2505  return true;
2506  }
2507  case CXXFunctionalCastExprClass:
2508  case CStyleCastExprClass: {
2509  // Ignore an explicit cast to void unless the operand is a non-trivial
2510  // volatile lvalue.
2511  const CastExpr *CE = cast<CastExpr>(this);
2512  if (CE->getCastKind() == CK_ToVoid) {
2513  if (CE->getSubExpr()->isGLValue() &&
2514  CE->getSubExpr()->getType().isVolatileQualified()) {
2515  const DeclRefExpr *DRE =
2516  dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2517  if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2518  cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2519  !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2520  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2521  R1, R2, Ctx);
2522  }
2523  }
2524  return false;
2525  }
2526 
2527  // If this is a cast to a constructor conversion, check the operand.
2528  // Otherwise, the result of the cast is unused.
2529  if (CE->getCastKind() == CK_ConstructorConversion)
2530  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2531 
2532  WarnE = this;
2533  if (const CXXFunctionalCastExpr *CXXCE =
2534  dyn_cast<CXXFunctionalCastExpr>(this)) {
2535  Loc = CXXCE->getBeginLoc();
2536  R1 = CXXCE->getSubExpr()->getSourceRange();
2537  } else {
2538  const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2539  Loc = CStyleCE->getLParenLoc();
2540  R1 = CStyleCE->getSubExpr()->getSourceRange();
2541  }
2542  return true;
2543  }
2544  case ImplicitCastExprClass: {
2545  const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2546 
2547  // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2548  if (ICE->getCastKind() == CK_LValueToRValue &&
2550  return false;
2551 
2552  return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2553  }
2554  case CXXDefaultArgExprClass:
2555  return (cast<CXXDefaultArgExpr>(this)
2556  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2557  case CXXDefaultInitExprClass:
2558  return (cast<CXXDefaultInitExpr>(this)
2559  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2560 
2561  case CXXNewExprClass:
2562  // FIXME: In theory, there might be new expressions that don't have side
2563  // effects (e.g. a placement new with an uninitialized POD).
2564  case CXXDeleteExprClass:
2565  return false;
2566  case MaterializeTemporaryExprClass:
2567  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2568  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2569  case CXXBindTemporaryExprClass:
2570  return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2571  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2572  case ExprWithCleanupsClass:
2573  return cast<ExprWithCleanups>(this)->getSubExpr()
2574  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2575  }
2576 }
2577 
2578 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2579 /// returns true, if it is; false otherwise.
2581  const Expr *E = IgnoreParens();
2582  switch (E->getStmtClass()) {
2583  default:
2584  return false;
2585  case ObjCIvarRefExprClass:
2586  return true;
2587  case Expr::UnaryOperatorClass:
2588  return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2589  case ImplicitCastExprClass:
2590  return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2591  case MaterializeTemporaryExprClass:
2592  return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2593  ->isOBJCGCCandidate(Ctx);
2594  case CStyleCastExprClass:
2595  return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2596  case DeclRefExprClass: {
2597  const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2598 
2599  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2600  if (VD->hasGlobalStorage())
2601  return true;
2602  QualType T = VD->getType();
2603  // dereferencing to a pointer is always a gc'able candidate,
2604  // unless it is __weak.
2605  return T->isPointerType() &&
2606  (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2607  }
2608  return false;
2609  }
2610  case MemberExprClass: {
2611  const MemberExpr *M = cast<MemberExpr>(E);
2612  return M->getBase()->isOBJCGCCandidate(Ctx);
2613  }
2614  case ArraySubscriptExprClass:
2615  return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2616  }
2617 }
2618 
2620  if (isTypeDependent())
2621  return false;
2622  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2623 }
2624 
2626  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2627 
2628  // Bound member expressions are always one of these possibilities:
2629  // x->m x.m x->*y x.*y
2630  // (possibly parenthesized)
2631 
2632  expr = expr->IgnoreParens();
2633  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2634  assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2635  return mem->getMemberDecl()->getType();
2636  }
2637 
2638  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2639  QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2640  ->getPointeeType();
2641  assert(type->isFunctionType());
2642  return type;
2643  }
2644 
2645  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2646  return QualType();
2647 }
2648 
2650  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2651  return ICE->getSubExpr();
2652 
2653  if (auto *FE = dyn_cast<FullExpr>(E))
2654  return FE->getSubExpr();
2655 
2656  return E;
2657 }
2658 
2660  // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
2661  // addition to what IgnoreImpCasts() skips to account for the current
2662  // behaviour of IgnoreParenImpCasts().
2663  Expr *SubE = IgnoreImpCastsSingleStep(E);
2664  if (SubE != E)
2665  return SubE;
2666 
2667  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2668  return MTE->GetTemporaryExpr();
2669 
2670  if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2671  return NTTP->getReplacement();
2672 
2673  return E;
2674 }
2675 
2677  if (auto *CE = dyn_cast<CastExpr>(E))
2678  return CE->getSubExpr();
2679 
2680  if (auto *FE = dyn_cast<FullExpr>(E))
2681  return FE->getSubExpr();
2682 
2683  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2684  return MTE->GetTemporaryExpr();
2685 
2686  if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2687  return NTTP->getReplacement();
2688 
2689  return E;
2690 }
2691 
2693  // Skip what IgnoreCastsSingleStep skips, except that only
2694  // lvalue-to-rvalue casts are skipped.
2695  if (auto *CE = dyn_cast<CastExpr>(E))
2696  if (CE->getCastKind() != CK_LValueToRValue)
2697  return E;
2698 
2699  return IgnoreCastsSingleStep(E);
2700 }
2701 
2703  if (auto *CE = dyn_cast<CastExpr>(E))
2704  if (CE->getCastKind() == CK_DerivedToBase ||
2705  CE->getCastKind() == CK_UncheckedDerivedToBase ||
2706  CE->getCastKind() == CK_NoOp)
2707  return CE->getSubExpr();
2708 
2709  return E;
2710 }
2711 
2713  Expr *SubE = IgnoreImpCastsSingleStep(E);
2714  if (SubE != E)
2715  return SubE;
2716 
2717  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2718  return MTE->GetTemporaryExpr();
2719 
2720  if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2721  return BTE->getSubExpr();
2722 
2723  return E;
2724 }
2725 
2727  if (auto *PE = dyn_cast<ParenExpr>(E))
2728  return PE->getSubExpr();
2729 
2730  if (auto *UO = dyn_cast<UnaryOperator>(E)) {
2731  if (UO->getOpcode() == UO_Extension)
2732  return UO->getSubExpr();
2733  }
2734 
2735  else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
2736  if (!GSE->isResultDependent())
2737  return GSE->getResultExpr();
2738  }
2739 
2740  else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
2741  if (!CE->isConditionDependent())
2742  return CE->getChosenSubExpr();
2743  }
2744 
2745  else if (auto *CE = dyn_cast<ConstantExpr>(E))
2746  return CE->getSubExpr();
2747 
2748  return E;
2749 }
2750 
2752  if (auto *CE = dyn_cast<CastExpr>(E)) {
2753  // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2754  // ptr<->int casts of the same width. We also ignore all identity casts.
2755  Expr *SubExpr = CE->getSubExpr();
2756  bool IsIdentityCast =
2757  Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2758  bool IsSameWidthCast =
2759  (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
2760  (SubExpr->getType()->isPointerType() ||
2761  SubExpr->getType()->isIntegralType(Ctx)) &&
2762  (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
2763 
2764  if (IsIdentityCast || IsSameWidthCast)
2765  return SubExpr;
2766  }
2767 
2768  else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2769  return NTTP->getReplacement();
2770 
2771  return E;
2772 }
2773 
2774 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
2775 template <typename FnTy, typename... FnTys>
2776 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
2777  return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
2778 }
2779 
2780 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
2781 /// Recursively apply each of the functions to E until reaching a fixed point.
2782 /// Note that a null E is valid; in this case nothing is done.
2783 template <typename... FnTys>
2784 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
2785  Expr *LastE = nullptr;
2786  while (E != LastE) {
2787  LastE = E;
2788  E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
2789  }
2790  return E;
2791 }
2792 
2795 }
2796 
2798  return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2799 }
2800 
2803 }
2804 
2807 }
2808 
2812 }
2813 
2816 }
2817 
2819  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2820  if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2821  return MCE->getImplicitObjectArgument();
2822  }
2823  return this;
2824 }
2825 
2829 }
2830 
2834 }
2835 
2837  return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
2838  return IgnoreNoopCastsSingleStep(Ctx, E);
2839  });
2840 }
2841 
2843  const Expr *E = this;
2844  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2845  E = M->GetTemporaryExpr();
2846 
2847  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2848  E = ICE->getSubExprAsWritten();
2849 
2850  return isa<CXXDefaultArgExpr>(E);
2851 }
2852 
2853 /// Skip over any no-op casts and any temporary-binding
2854 /// expressions.
2856  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2857  E = M->GetTemporaryExpr();
2858 
2859  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2860  if (ICE->getCastKind() == CK_NoOp)
2861  E = ICE->getSubExpr();
2862  else
2863  break;
2864  }
2865 
2866  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2867  E = BE->getSubExpr();
2868 
2869  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2870  if (ICE->getCastKind() == CK_NoOp)
2871  E = ICE->getSubExpr();
2872  else
2873  break;
2874  }
2875 
2876  return E->IgnoreParens();
2877 }
2878 
2879 /// isTemporaryObject - Determines if this expression produces a
2880 /// temporary of the given class type.
2881 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2882  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2883  return false;
2884 
2886 
2887  // Temporaries are by definition pr-values of class type.
2888  if (!E->Classify(C).isPRValue()) {
2889  // In this context, property reference is a message call and is pr-value.
2890  if (!isa<ObjCPropertyRefExpr>(E))
2891  return false;
2892  }
2893 
2894  // Black-list a few cases which yield pr-values of class type that don't
2895  // refer to temporaries of that type:
2896 
2897  // - implicit derived-to-base conversions
2898  if (isa<ImplicitCastExpr>(E)) {
2899  switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2900  case CK_DerivedToBase:
2901  case CK_UncheckedDerivedToBase:
2902  return false;
2903  default:
2904  break;
2905  }
2906  }
2907 
2908  // - member expressions (all)
2909  if (isa<MemberExpr>(E))
2910  return false;
2911 
2912  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2913  if (BO->isPtrMemOp())
2914  return false;
2915 
2916  // - opaque values (all)
2917  if (isa<OpaqueValueExpr>(E))
2918  return false;
2919 
2920  return true;
2921 }
2922 
2924  const Expr *E = this;
2925 
2926  // Strip away parentheses and casts we don't care about.
2927  while (true) {
2928  if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2929  E = Paren->getSubExpr();
2930  continue;
2931  }
2932 
2933  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2934  if (ICE->getCastKind() == CK_NoOp ||
2935  ICE->getCastKind() == CK_LValueToRValue ||
2936  ICE->getCastKind() == CK_DerivedToBase ||
2937  ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2938  E = ICE->getSubExpr();
2939  continue;
2940  }
2941  }
2942 
2943  if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2944  if (UnOp->getOpcode() == UO_Extension) {
2945  E = UnOp->getSubExpr();
2946  continue;
2947  }
2948  }
2949 
2950  if (const MaterializeTemporaryExpr *M
2951  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2952  E = M->GetTemporaryExpr();
2953  continue;
2954  }
2955 
2956  break;
2957  }
2958 
2959  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2960  return This->isImplicit();
2961 
2962  return false;
2963 }
2964 
2965 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2966 /// in Exprs is type-dependent.
2968  for (unsigned I = 0; I < Exprs.size(); ++I)
2969  if (Exprs[I]->isTypeDependent())
2970  return true;
2971 
2972  return false;
2973 }
2974 
2975 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2976  const Expr **Culprit) const {
2977  assert(!isValueDependent() &&
2978  "Expression evaluator can't be called on a dependent expression.");
2979 
2980  // This function is attempting whether an expression is an initializer
2981  // which can be evaluated at compile-time. It very closely parallels
2982  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2983  // will lead to unexpected results. Like ConstExprEmitter, it falls back
2984  // to isEvaluatable most of the time.
2985  //
2986  // If we ever capture reference-binding directly in the AST, we can
2987  // kill the second parameter.
2988 
2989  if (IsForRef) {
2991  if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2992  return true;
2993  if (Culprit)
2994  *Culprit = this;
2995  return false;
2996  }
2997 
2998  switch (getStmtClass()) {
2999  default: break;
3000  case StringLiteralClass:
3001  case ObjCEncodeExprClass:
3002  return true;
3003  case CXXTemporaryObjectExprClass:
3004  case CXXConstructExprClass: {
3005  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3006 
3007  if (CE->getConstructor()->isTrivial() &&
3009  // Trivial default constructor
3010  if (!CE->getNumArgs()) return true;
3011 
3012  // Trivial copy constructor
3013  assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3014  return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3015  }
3016 
3017  break;
3018  }
3019  case ConstantExprClass: {
3020  // FIXME: We should be able to return "true" here, but it can lead to extra
3021  // error messages. E.g. in Sema/array-init.c.
3022  const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3023  return Exp->isConstantInitializer(Ctx, false, Culprit);
3024  }
3025  case CompoundLiteralExprClass: {
3026  // This handles gcc's extension that allows global initializers like
3027  // "struct x {int x;} x = (struct x) {};".
3028  // FIXME: This accepts other cases it shouldn't!
3029  const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3030  return Exp->isConstantInitializer(Ctx, false, Culprit);
3031  }
3032  case DesignatedInitUpdateExprClass: {
3033  const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3034  return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3035  DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3036  }
3037  case InitListExprClass: {
3038  const InitListExpr *ILE = cast<InitListExpr>(this);
3039  assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3040  if (ILE->getType()->isArrayType()) {
3041  unsigned numInits = ILE->getNumInits();
3042  for (unsigned i = 0; i < numInits; i++) {
3043  if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3044  return false;
3045  }
3046  return true;
3047  }
3048 
3049  if (ILE->getType()->isRecordType()) {
3050  unsigned ElementNo = 0;
3051  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
3052  for (const auto *Field : RD->fields()) {
3053  // If this is a union, skip all the fields that aren't being initialized.
3054  if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3055  continue;
3056 
3057  // Don't emit anonymous bitfields, they just affect layout.
3058  if (Field->isUnnamedBitfield())
3059  continue;
3060 
3061  if (ElementNo < ILE->getNumInits()) {
3062  const Expr *Elt = ILE->getInit(ElementNo++);
3063  if (Field->isBitField()) {
3064  // Bitfields have to evaluate to an integer.
3066  if (!Elt->EvaluateAsInt(Result, Ctx)) {
3067  if (Culprit)
3068  *Culprit = Elt;
3069  return false;
3070  }
3071  } else {
3072  bool RefType = Field->getType()->isReferenceType();
3073  if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3074  return false;
3075  }
3076  }
3077  }
3078  return true;
3079  }
3080 
3081  break;
3082  }
3083  case ImplicitValueInitExprClass:
3084  case NoInitExprClass:
3085  return true;
3086  case ParenExprClass:
3087  return cast<ParenExpr>(this)->getSubExpr()
3088  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3089  case GenericSelectionExprClass:
3090  return cast<GenericSelectionExpr>(this)->getResultExpr()
3091  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3092  case ChooseExprClass:
3093  if (cast<ChooseExpr>(this)->isConditionDependent()) {
3094  if (Culprit)
3095  *Culprit = this;
3096  return false;
3097  }
3098  return cast<ChooseExpr>(this)->getChosenSubExpr()
3099  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3100  case UnaryOperatorClass: {
3101  const UnaryOperator* Exp = cast<UnaryOperator>(this);
3102  if (Exp->getOpcode() == UO_Extension)
3103  return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3104  break;
3105  }
3106  case CXXFunctionalCastExprClass:
3107  case CXXStaticCastExprClass:
3108  case ImplicitCastExprClass:
3109  case CStyleCastExprClass:
3110  case ObjCBridgedCastExprClass:
3111  case CXXDynamicCastExprClass:
3112  case CXXReinterpretCastExprClass:
3113  case CXXConstCastExprClass: {
3114  const CastExpr *CE = cast<CastExpr>(this);
3115 
3116  // Handle misc casts we want to ignore.
3117  if (CE->getCastKind() == CK_NoOp ||
3118  CE->getCastKind() == CK_LValueToRValue ||
3119  CE->getCastKind() == CK_ToUnion ||
3120  CE->getCastKind() == CK_ConstructorConversion ||
3121  CE->getCastKind() == CK_NonAtomicToAtomic ||
3122  CE->getCastKind() == CK_AtomicToNonAtomic ||
3123  CE->getCastKind() == CK_IntToOCLSampler)
3124  return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3125 
3126  break;
3127  }
3128  case MaterializeTemporaryExprClass:
3129  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
3130  ->isConstantInitializer(Ctx, false, Culprit);
3131 
3132  case SubstNonTypeTemplateParmExprClass:
3133  return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3134  ->isConstantInitializer(Ctx, false, Culprit);
3135  case CXXDefaultArgExprClass:
3136  return cast<CXXDefaultArgExpr>(this)->getExpr()
3137  ->isConstantInitializer(Ctx, false, Culprit);
3138  case CXXDefaultInitExprClass:
3139  return cast<CXXDefaultInitExpr>(this)->getExpr()
3140  ->isConstantInitializer(Ctx, false, Culprit);
3141  }
3142  // Allow certain forms of UB in constant initializers: signed integer
3143  // overflow and floating-point division by zero. We'll give a warning on
3144  // these, but they're common enough that we have to accept them.
3146  return true;
3147  if (Culprit)
3148  *Culprit = this;
3149  return false;
3150 }
3151 
3153  const FunctionDecl* FD = getDirectCallee();
3154  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3155  FD->getBuiltinID() != Builtin::BI__builtin_assume))
3156  return false;
3157 
3158  const Expr* Arg = getArg(0);
3159  bool ArgVal;
3160  return !Arg->isValueDependent() &&
3161  Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3162 }
3163 
3164 namespace {
3165  /// Look for any side effects within a Stmt.
3166  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3168  const bool IncludePossibleEffects;
3169  bool HasSideEffects;
3170 
3171  public:
3172  explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3173  : Inherited(Context),
3174  IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3175 
3176  bool hasSideEffects() const { return HasSideEffects; }
3177 
3178  void VisitExpr(const Expr *E) {
3179  if (!HasSideEffects &&
3180  E->HasSideEffects(Context, IncludePossibleEffects))
3181  HasSideEffects = true;
3182  }
3183  };
3184 }
3185 
3187  bool IncludePossibleEffects) const {
3188  // In circumstances where we care about definite side effects instead of
3189  // potential side effects, we want to ignore expressions that are part of a
3190  // macro expansion as a potential side effect.
3191  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3192  return false;
3193 
3195  return IncludePossibleEffects;
3196 
3197  switch (getStmtClass()) {
3198  case NoStmtClass:
3199  #define ABSTRACT_STMT(Type)
3200  #define STMT(Type, Base) case Type##Class:
3201  #define EXPR(Type, Base)
3202  #include "clang/AST/StmtNodes.inc"
3203  llvm_unreachable("unexpected Expr kind");
3204 
3205  case DependentScopeDeclRefExprClass:
3206  case CXXUnresolvedConstructExprClass:
3207  case CXXDependentScopeMemberExprClass:
3208  case UnresolvedLookupExprClass:
3209  case UnresolvedMemberExprClass:
3210  case PackExpansionExprClass:
3211  case SubstNonTypeTemplateParmPackExprClass:
3212  case FunctionParmPackExprClass:
3213  case TypoExprClass:
3214  case CXXFoldExprClass:
3215  llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3216 
3217  case DeclRefExprClass:
3218  case ObjCIvarRefExprClass:
3219  case PredefinedExprClass:
3220  case IntegerLiteralClass:
3221  case FixedPointLiteralClass:
3222  case FloatingLiteralClass:
3223  case ImaginaryLiteralClass:
3224  case StringLiteralClass:
3225  case CharacterLiteralClass:
3226  case OffsetOfExprClass:
3227  case ImplicitValueInitExprClass:
3228  case UnaryExprOrTypeTraitExprClass:
3229  case AddrLabelExprClass:
3230  case GNUNullExprClass:
3231  case ArrayInitIndexExprClass:
3232  case NoInitExprClass:
3233  case CXXBoolLiteralExprClass:
3234  case CXXNullPtrLiteralExprClass:
3235  case CXXThisExprClass:
3236  case CXXScalarValueInitExprClass:
3237  case TypeTraitExprClass:
3238  case ArrayTypeTraitExprClass:
3239  case ExpressionTraitExprClass:
3240  case CXXNoexceptExprClass:
3241  case SizeOfPackExprClass:
3242  case ObjCStringLiteralClass:
3243  case ObjCEncodeExprClass:
3244  case ObjCBoolLiteralExprClass:
3245  case ObjCAvailabilityCheckExprClass:
3246  case CXXUuidofExprClass:
3247  case OpaqueValueExprClass:
3248  case SourceLocExprClass:
3249  // These never have a side-effect.
3250  return false;
3251 
3252  case ConstantExprClass:
3253  // FIXME: Move this into the "return false;" block above.
3254  return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3255  Ctx, IncludePossibleEffects);
3256 
3257  case CallExprClass:
3258  case CXXOperatorCallExprClass:
3259  case CXXMemberCallExprClass:
3260  case CUDAKernelCallExprClass:
3261  case UserDefinedLiteralClass: {
3262  // We don't know a call definitely has side effects, except for calls
3263  // to pure/const functions that definitely don't.
3264  // If the call itself is considered side-effect free, check the operands.
3265  const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3266  bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3267  if (IsPure || !IncludePossibleEffects)
3268  break;
3269  return true;
3270  }
3271 
3272  case BlockExprClass:
3273  case CXXBindTemporaryExprClass:
3274  if (!IncludePossibleEffects)
3275  break;
3276  return true;
3277 
3278  case MSPropertyRefExprClass:
3279  case MSPropertySubscriptExprClass:
3280  case CompoundAssignOperatorClass:
3281  case VAArgExprClass:
3282  case AtomicExprClass:
3283  case CXXThrowExprClass:
3284  case CXXNewExprClass:
3285  case CXXDeleteExprClass:
3286  case CoawaitExprClass:
3287  case DependentCoawaitExprClass:
3288  case CoyieldExprClass:
3289  // These always have a side-effect.
3290  return true;
3291 
3292  case StmtExprClass: {
3293  // StmtExprs have a side-effect if any substatement does.
3294  SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3295  Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3296  return Finder.hasSideEffects();
3297  }
3298 
3299  case ExprWithCleanupsClass:
3300  if (IncludePossibleEffects)
3301  if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3302  return true;
3303  break;
3304 
3305  case ParenExprClass:
3306  case ArraySubscriptExprClass:
3307  case OMPArraySectionExprClass:
3308  case MemberExprClass:
3309  case ConditionalOperatorClass:
3310  case BinaryConditionalOperatorClass:
3311  case CompoundLiteralExprClass:
3312  case ExtVectorElementExprClass:
3313  case DesignatedInitExprClass:
3314  case DesignatedInitUpdateExprClass:
3315  case ArrayInitLoopExprClass:
3316  case ParenListExprClass:
3317  case CXXPseudoDestructorExprClass:
3318  case CXXStdInitializerListExprClass:
3319  case SubstNonTypeTemplateParmExprClass:
3320  case MaterializeTemporaryExprClass:
3321  case ShuffleVectorExprClass:
3322  case ConvertVectorExprClass:
3323  case AsTypeExprClass:
3324  // These have a side-effect if any subexpression does.
3325  break;
3326 
3327  case UnaryOperatorClass:
3328  if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3329  return true;
3330  break;
3331 
3332  case BinaryOperatorClass:
3333  if (cast<BinaryOperator>(this)->isAssignmentOp())
3334  return true;
3335  break;
3336 
3337  case InitListExprClass:
3338  // FIXME: The children for an InitListExpr doesn't include the array filler.
3339  if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3340  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3341  return true;
3342  break;
3343 
3344  case GenericSelectionExprClass:
3345  return cast<GenericSelectionExpr>(this)->getResultExpr()->
3346  HasSideEffects(Ctx, IncludePossibleEffects);
3347 
3348  case ChooseExprClass:
3349  return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3350  Ctx, IncludePossibleEffects);
3351 
3352  case CXXDefaultArgExprClass:
3353  return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3354  Ctx, IncludePossibleEffects);
3355 
3356  case CXXDefaultInitExprClass: {
3357  const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3358  if (const Expr *E = FD->getInClassInitializer())
3359  return E->HasSideEffects(Ctx, IncludePossibleEffects);
3360  // If we've not yet parsed the initializer, assume it has side-effects.
3361  return true;
3362  }
3363 
3364  case CXXDynamicCastExprClass: {
3365  // A dynamic_cast expression has side-effects if it can throw.
3366  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3367  if (DCE->getTypeAsWritten()->isReferenceType() &&
3368  DCE->getCastKind() == CK_Dynamic)
3369  return true;
3370  }
3371  LLVM_FALLTHROUGH;
3372  case ImplicitCastExprClass:
3373  case CStyleCastExprClass:
3374  case CXXStaticCastExprClass:
3375  case CXXReinterpretCastExprClass:
3376  case CXXConstCastExprClass:
3377  case CXXFunctionalCastExprClass: {
3378  // While volatile reads are side-effecting in both C and C++, we treat them
3379  // as having possible (not definite) side-effects. This allows idiomatic
3380  // code to behave without warning, such as sizeof(*v) for a volatile-
3381  // qualified pointer.
3382  if (!IncludePossibleEffects)
3383  break;
3384 
3385  const CastExpr *CE = cast<CastExpr>(this);
3386  if (CE->getCastKind() == CK_LValueToRValue &&
3388  return true;
3389  break;
3390  }
3391 
3392  case CXXTypeidExprClass:
3393  // typeid might throw if its subexpression is potentially-evaluated, so has
3394  // side-effects in that case whether or not its subexpression does.
3395  return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3396 
3397  case CXXConstructExprClass:
3398  case CXXTemporaryObjectExprClass: {
3399  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3400  if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3401  return true;
3402  // A trivial constructor does not add any side-effects of its own. Just look
3403  // at its arguments.
3404  break;
3405  }
3406 
3407  case CXXInheritedCtorInitExprClass: {
3408  const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3409  if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3410  return true;
3411  break;
3412  }
3413 
3414  case LambdaExprClass: {
3415  const LambdaExpr *LE = cast<LambdaExpr>(this);
3416  for (Expr *E : LE->capture_inits())
3417  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3418  return true;
3419  return false;
3420  }
3421 
3422  case PseudoObjectExprClass: {
3423  // Only look for side-effects in the semantic form, and look past
3424  // OpaqueValueExpr bindings in that form.
3425  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3427  E = PO->semantics_end();
3428  I != E; ++I) {
3429  const Expr *Subexpr = *I;
3430  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3431  Subexpr = OVE->getSourceExpr();
3432  if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3433  return true;
3434  }
3435  return false;
3436  }
3437 
3438  case ObjCBoxedExprClass:
3439  case ObjCArrayLiteralClass:
3440  case ObjCDictionaryLiteralClass:
3441  case ObjCSelectorExprClass:
3442  case ObjCProtocolExprClass:
3443  case ObjCIsaExprClass:
3444  case ObjCIndirectCopyRestoreExprClass:
3445  case ObjCSubscriptRefExprClass:
3446  case ObjCBridgedCastExprClass:
3447  case ObjCMessageExprClass:
3448  case ObjCPropertyRefExprClass:
3449  // FIXME: Classify these cases better.
3450  if (IncludePossibleEffects)
3451  return true;
3452  break;
3453  }
3454 
3455  // Recurse to children.
3456  for (const Stmt *SubStmt : children())
3457  if (SubStmt &&
3458  cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3459  return true;
3460 
3461  return false;
3462 }
3463 
3464 namespace {
3465  /// Look for a call to a non-trivial function within an expression.
3466  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3467  {
3469 
3470  bool NonTrivial;
3471 
3472  public:
3473  explicit NonTrivialCallFinder(const ASTContext &Context)
3474  : Inherited(Context), NonTrivial(false) { }
3475 
3476  bool hasNonTrivialCall() const { return NonTrivial; }
3477 
3478  void VisitCallExpr(const CallExpr *E) {
3479  if (const CXXMethodDecl *Method
3480  = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3481  if (Method->isTrivial()) {
3482  // Recurse to children of the call.
3483  Inherited::VisitStmt(E);
3484  return;
3485  }
3486  }
3487 
3488  NonTrivial = true;
3489  }
3490 
3491  void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3492  if (E->getConstructor()->isTrivial()) {
3493  // Recurse to children of the call.
3494  Inherited::VisitStmt(E);
3495  return;
3496  }
3497 
3498  NonTrivial = true;
3499  }
3500 
3501  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3502  if (E->getTemporary()->getDestructor()->isTrivial()) {
3503  Inherited::VisitStmt(E);
3504  return;
3505  }
3506 
3507  NonTrivial = true;
3508  }
3509  };
3510 }
3511 
3512 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3513  NonTrivialCallFinder Finder(Ctx);
3514  Finder.Visit(this);
3515  return Finder.hasNonTrivialCall();
3516 }
3517 
3518 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3519 /// pointer constant or not, as well as the specific kind of constant detected.
3520 /// Null pointer constants can be integer constant expressions with the
3521 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3522 /// (a GNU extension).
3526  if (isValueDependent() &&
3527  (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3528  switch (NPC) {
3530  llvm_unreachable("Unexpected value dependent expression!");
3532  if (isTypeDependent() || getType()->isIntegralType(Ctx))
3533  return NPCK_ZeroExpression;
3534  else
3535  return NPCK_NotNull;
3536 
3538  return NPCK_NotNull;
3539  }
3540  }
3541 
3542  // Strip off a cast to void*, if it exists. Except in C++.
3543  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3544  if (!Ctx.getLangOpts().CPlusPlus) {
3545  // Check that it is a cast to void*.
3546  if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3547  QualType Pointee = PT->getPointeeType();
3548  Qualifiers Qs = Pointee.getQualifiers();
3549  // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3550  // has non-default address space it is not treated as nullptr.
3551  // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3552  // since it cannot be assigned to a pointer to constant address space.
3553  if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3554  Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3555  (Ctx.getLangOpts().OpenCL &&
3556  Ctx.getLangOpts().OpenCLVersion < 200 &&
3558  Qs.removeAddressSpace();
3559 
3560  if (Pointee->isVoidType() && Qs.empty() && // to void*
3561  CE->getSubExpr()->getType()->isIntegerType()) // from int
3562  return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3563  }
3564  }
3565  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3566  // Ignore the ImplicitCastExpr type entirely.
3567  return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3568  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3569  // Accept ((void*)0) as a null pointer constant, as many other
3570  // implementations do.
3571  return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3572  } else if (const GenericSelectionExpr *GE =
3573  dyn_cast<GenericSelectionExpr>(this)) {
3574  if (GE->isResultDependent())
3575  return NPCK_NotNull;
3576  return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3577  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3578  if (CE->isConditionDependent())
3579  return NPCK_NotNull;
3580  return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3581  } else if (const CXXDefaultArgExpr *DefaultArg
3582  = dyn_cast<CXXDefaultArgExpr>(this)) {
3583  // See through default argument expressions.
3584  return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3585  } else if (const CXXDefaultInitExpr *DefaultInit
3586  = dyn_cast<CXXDefaultInitExpr>(this)) {
3587  // See through default initializer expressions.
3588  return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3589  } else if (isa<GNUNullExpr>(this)) {
3590  // The GNU __null extension is always a null pointer constant.
3591  return NPCK_GNUNull;
3592  } else if (const MaterializeTemporaryExpr *M
3593  = dyn_cast<MaterializeTemporaryExpr>(this)) {
3594  return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3595  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3596  if (const Expr *Source = OVE->getSourceExpr())
3597  return Source->isNullPointerConstant(Ctx, NPC);
3598  }
3599 
3600  // C++11 nullptr_t is always a null pointer constant.
3601  if (getType()->isNullPtrType())
3602  return NPCK_CXX11_nullptr;
3603 
3604  if (const RecordType *UT = getType()->getAsUnionType())
3605  if (!Ctx.getLangOpts().CPlusPlus11 &&
3606  UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3607  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3608  const Expr *InitExpr = CLE->getInitializer();
3609  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3610  return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3611  }
3612  // This expression must be an integer type.
3613  if (!getType()->isIntegerType() ||
3614  (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3615  return NPCK_NotNull;
3616 
3617  if (Ctx.getLangOpts().CPlusPlus11) {
3618  // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3619  // value zero or a prvalue of type std::nullptr_t.
3620  // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3621  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3622  if (Lit && !Lit->getValue())
3623  return NPCK_ZeroLiteral;
3624  else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3625  return NPCK_NotNull;
3626  } else {
3627  // If we have an integer constant expression, we need to *evaluate* it and
3628  // test for the value 0.
3629  if (!isIntegerConstantExpr(Ctx))
3630  return NPCK_NotNull;
3631  }
3632 
3633  if (EvaluateKnownConstInt(Ctx) != 0)
3634  return NPCK_NotNull;
3635 
3636  if (isa<IntegerLiteral>(this))
3637  return NPCK_ZeroLiteral;
3638  return NPCK_ZeroExpression;
3639 }
3640 
3641 /// If this expression is an l-value for an Objective C
3642 /// property, find the underlying property reference expression.
3644  const Expr *E = this;
3645  while (true) {
3646  assert((E->getValueKind() == VK_LValue &&
3647  E->getObjectKind() == OK_ObjCProperty) &&
3648  "expression is not a property reference");
3649  E = E->IgnoreParenCasts();
3650  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3651  if (BO->getOpcode() == BO_Comma) {
3652  E = BO->getRHS();
3653  continue;
3654  }
3655  }
3656 
3657  break;
3658  }
3659 
3660  return cast<ObjCPropertyRefExpr>(E);
3661 }
3662 
3663 bool Expr::isObjCSelfExpr() const {
3664  const Expr *E = IgnoreParenImpCasts();
3665 
3666  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3667  if (!DRE)
3668  return false;
3669 
3670  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3671  if (!Param)
3672  return false;
3673 
3674  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3675  if (!M)
3676  return false;
3677 
3678  return M->getSelfDecl() == Param;
3679 }
3680 
3682  Expr *E = this->IgnoreParens();
3683 
3684  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3685  if (ICE->getCastKind() == CK_LValueToRValue ||
3686  (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3687  E = ICE->getSubExpr()->IgnoreParens();
3688  else
3689  break;
3690  }
3691 
3692  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3693  if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3694  if (Field->isBitField())
3695  return Field;
3696 
3697  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3698  FieldDecl *Ivar = IvarRef->getDecl();
3699  if (Ivar->isBitField())
3700  return Ivar;
3701  }
3702 
3703  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3704  if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3705  if (Field->isBitField())
3706  return Field;
3707 
3708  if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3709  if (Expr *E = BD->getBinding())
3710  return E->getSourceBitField();
3711  }
3712 
3713  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3714  if (BinOp->isAssignmentOp() && BinOp->getLHS())
3715  return BinOp->getLHS()->getSourceBitField();
3716 
3717  if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3718  return BinOp->getRHS()->getSourceBitField();
3719  }
3720 
3721  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3722  if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3723  return UnOp->getSubExpr()->getSourceBitField();
3724 
3725  return nullptr;
3726 }
3727 
3729  // FIXME: Why do we not just look at the ObjectKind here?
3730  const Expr *E = this->IgnoreParens();
3731 
3732  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3733  if (ICE->getValueKind() != VK_RValue &&
3734  ICE->getCastKind() == CK_NoOp)
3735  E = ICE->getSubExpr()->IgnoreParens();
3736  else
3737  break;
3738  }
3739 
3740  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3741  return ASE->getBase()->getType()->isVectorType();
3742 
3743  if (isa<ExtVectorElementExpr>(E))
3744  return true;
3745 
3746  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3747  if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3748  if (auto *E = BD->getBinding())
3749  return E->refersToVectorElement();
3750 
3751  return false;
3752 }
3753 
3755  const Expr *E = this->IgnoreParenImpCasts();
3756 
3757  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3758  if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3759  if (VD->getStorageClass() == SC_Register &&
3760  VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3761  return true;
3762 
3763  return false;
3764 }
3765 
3766 /// isArrow - Return true if the base expression is a pointer to vector,
3767 /// return false if the base expression is a vector.
3769  return getBase()->getType()->isPointerType();
3770 }
3771 
3773  if (const VectorType *VT = getType()->getAs<VectorType>())
3774  return VT->getNumElements();
3775  return 1;
3776 }
3777 
3778 /// containsDuplicateElements - Return true if any element access is repeated.
3780  // FIXME: Refactor this code to an accessor on the AST node which returns the
3781  // "type" of component access, and share with code below and in Sema.
3782  StringRef Comp = Accessor->getName();
3783 
3784  // Halving swizzles do not contain duplicate elements.
3785  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3786  return false;
3787 
3788  // Advance past s-char prefix on hex swizzles.
3789  if (Comp[0] == 's' || Comp[0] == 'S')
3790  Comp = Comp.substr(1);
3791 
3792  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3793  if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3794  return true;
3795 
3796  return false;
3797 }
3798 
3799 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3801  SmallVectorImpl<uint32_t> &Elts) const {
3802  StringRef Comp = Accessor->getName();
3803  bool isNumericAccessor = false;
3804  if (Comp[0] == 's' || Comp[0] == 'S') {
3805  Comp = Comp.substr(1);
3806  isNumericAccessor = true;
3807  }
3808 
3809  bool isHi = Comp == "hi";
3810  bool isLo = Comp == "lo";
3811  bool isEven = Comp == "even";
3812  bool isOdd = Comp == "odd";
3813 
3814  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3815  uint64_t Index;
3816 
3817  if (isHi)
3818  Index = e + i;
3819  else if (isLo)
3820  Index = i;
3821  else if (isEven)
3822  Index = 2 * i;
3823  else if (isOdd)
3824  Index = 2 * i + 1;
3825  else
3826  Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3827 
3828  Elts.push_back(Index);
3829  }
3830 }
3831 
3833  QualType Type, SourceLocation BLoc,
3834  SourceLocation RP)
3835  : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3836  Type->isDependentType(), Type->isDependentType(),
3837  Type->isInstantiationDependentType(),
3839  BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3840 {
3841  SubExprs = new (C) Stmt*[args.size()];
3842  for (unsigned i = 0; i != args.size(); i++) {
3843  if (args[i]->isTypeDependent())
3844  ExprBits.TypeDependent = true;
3845  if (args[i]->isValueDependent())
3846  ExprBits.ValueDependent = true;
3847  if (args[i]->isInstantiationDependent())
3848  ExprBits.InstantiationDependent = true;
3849  if (args[i]->containsUnexpandedParameterPack())
3850  ExprBits.ContainsUnexpandedParameterPack = true;
3851 
3852  SubExprs[i] = args[i];
3853  }
3854 }
3855 
3857  if (SubExprs) C.Deallocate(SubExprs);
3858 
3859  this->NumExprs = Exprs.size();
3860  SubExprs = new (C) Stmt*[NumExprs];
3861  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3862 }
3863 
3864 GenericSelectionExpr::GenericSelectionExpr(
3865  const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
3866  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
3867  SourceLocation DefaultLoc, SourceLocation RParenLoc,
3868  bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
3869  : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
3870  AssocExprs[ResultIndex]->getValueKind(),
3871  AssocExprs[ResultIndex]->getObjectKind(),
3872  AssocExprs[ResultIndex]->isTypeDependent(),
3873  AssocExprs[ResultIndex]->isValueDependent(),
3874  AssocExprs[ResultIndex]->isInstantiationDependent(),
3875  ContainsUnexpandedParameterPack),
3876  NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3877  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3878  assert(AssocTypes.size() == AssocExprs.size() &&
3879  "Must have the same number of association expressions"
3880  " and TypeSourceInfo!");
3881  assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
3882 
3883  GenericSelectionExprBits.GenericLoc = GenericLoc;
3884  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
3885  std::copy(AssocExprs.begin(), AssocExprs.end(),
3886  getTrailingObjects<Stmt *>() + AssocExprStartIndex);
3887  std::copy(AssocTypes.begin(), AssocTypes.end(),
3888  getTrailingObjects<TypeSourceInfo *>());
3889 }
3890 
3891 GenericSelectionExpr::GenericSelectionExpr(
3892  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
3893  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
3894  SourceLocation DefaultLoc, SourceLocation RParenLoc,
3895  bool ContainsUnexpandedParameterPack)
3896  : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
3897  OK_Ordinary,
3898  /*isTypeDependent=*/true,
3899  /*isValueDependent=*/true,
3900  /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
3901  NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
3902  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3903  assert(AssocTypes.size() == AssocExprs.size() &&
3904  "Must have the same number of association expressions"
3905  " and TypeSourceInfo!");
3906 
3907  GenericSelectionExprBits.GenericLoc = GenericLoc;
3908  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
3909  std::copy(AssocExprs.begin(), AssocExprs.end(),
3910  getTrailingObjects<Stmt *>() + AssocExprStartIndex);
3911  std::copy(AssocTypes.begin(), AssocTypes.end(),
3912  getTrailingObjects<TypeSourceInfo *>());
3913 }
3914 
3915 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
3916  : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
3917 
3919  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
3920  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
3921  SourceLocation DefaultLoc, SourceLocation RParenLoc,
3922  bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
3923  unsigned NumAssocs = AssocExprs.size();
3924  void *Mem = Context.Allocate(
3925  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
3926  alignof(GenericSelectionExpr));
3927  return new (Mem) GenericSelectionExpr(
3928  Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
3929  RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
3930 }
3931 
3933  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
3934  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
3935  SourceLocation DefaultLoc, SourceLocation RParenLoc,
3936  bool ContainsUnexpandedParameterPack) {
3937  unsigned NumAssocs = AssocExprs.size();
3938  void *Mem = Context.Allocate(
3939  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
3940  alignof(GenericSelectionExpr));
3941  return new (Mem) GenericSelectionExpr(
3942  Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
3943  RParenLoc, ContainsUnexpandedParameterPack);
3944 }
3945 
3948  unsigned NumAssocs) {
3949  void *Mem = Context.Allocate(
3950  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
3951  alignof(GenericSelectionExpr));
3952  return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
3953 }
3954 
3955 //===----------------------------------------------------------------------===//
3956 // DesignatedInitExpr
3957 //===----------------------------------------------------------------------===//
3958 
3960  assert(Kind == FieldDesignator && "Only valid on a field designator");
3961  if (Field.NameOrField & 0x01)
3962  return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3963  else
3964  return getField()->getIdentifier();
3965 }
3966 
3967 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3968  llvm::ArrayRef<Designator> Designators,
3969  SourceLocation EqualOrColonLoc,
3970  bool GNUSyntax,
3971  ArrayRef<Expr*> IndexExprs,
3972  Expr *Init)
3973  : Expr(DesignatedInitExprClass, Ty,
3974  Init->getValueKind(), Init->getObjectKind(),
3975  Init->isTypeDependent(), Init->isValueDependent(),
3976  Init->isInstantiationDependent(),
3978  EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3979  NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3980  this->Designators = new (C) Designator[NumDesignators];
3981 
3982  // Record the initializer itself.
3983  child_iterator Child = child_begin();
3984  *Child++ = Init;
3985 
3986  // Copy the designators and their subexpressions, computing
3987  // value-dependence along the way.
3988  unsigned IndexIdx = 0;
3989  for (unsigned I = 0; I != NumDesignators; ++I) {
3990  this->Designators[I] = Designators[I];
3991 
3992  if (this->Designators[I].isArrayDesignator()) {
3993  // Compute type- and value-dependence.
3994  Expr *Index = IndexExprs[IndexIdx];
3995  if (Index->isTypeDependent() || Index->isValueDependent())
3996  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3997  if (Index->isInstantiationDependent())
3998  ExprBits.InstantiationDependent = true;
3999  // Propagate unexpanded parameter packs.
4001  ExprBits.ContainsUnexpandedParameterPack = true;
4002 
4003  // Copy the index expressions into permanent storage.
4004  *Child++ = IndexExprs[IndexIdx++];
4005  } else if (this->Designators[I].isArrayRangeDesignator()) {
4006  // Compute type- and value-dependence.
4007  Expr *Start = IndexExprs[IndexIdx];
4008  Expr *End = IndexExprs[IndexIdx + 1];
4009  if (Start->isTypeDependent() || Start->isValueDependent() ||
4010  End->isTypeDependent() || End->isValueDependent()) {
4011  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
4012  ExprBits.InstantiationDependent = true;
4013  } else if (Start->isInstantiationDependent() ||
4014  End->isInstantiationDependent()) {
4015  ExprBits.InstantiationDependent = true;
4016  }
4017 
4018  // Propagate unexpanded parameter packs.
4019  if (Start->containsUnexpandedParameterPack() ||
4021  ExprBits.ContainsUnexpandedParameterPack = true;
4022 
4023  // Copy the start/end expressions into permanent storage.
4024  *Child++ = IndexExprs[IndexIdx++];
4025  *Child++ = IndexExprs[IndexIdx++];
4026  }
4027  }
4028 
4029  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4030 }
4031 
4034  llvm::ArrayRef<Designator> Designators,
4035  ArrayRef<Expr*> IndexExprs,
4036  SourceLocation ColonOrEqualLoc,
4037  bool UsesColonSyntax, Expr *Init) {
4038  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4039  alignof(DesignatedInitExpr));
4040  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4041  ColonOrEqualLoc, UsesColonSyntax,
4042  IndexExprs, Init);
4043 }
4044 
4046  unsigned NumIndexExprs) {
4047  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4048  alignof(DesignatedInitExpr));
4049  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4050 }
4051 
4053  const Designator *Desigs,
4054  unsigned NumDesigs) {
4055  Designators = new (C) Designator[NumDesigs];
4056  NumDesignators = NumDesigs;
4057  for (unsigned I = 0; I != NumDesigs; ++I)
4058  Designators[I] = Desigs[I];
4059 }
4060 
4062  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4063  if (size() == 1)
4064  return DIE->getDesignator(0)->getSourceRange();
4065  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4066  DIE->getDesignator(size() - 1)->getEndLoc());
4067 }
4068 
4070  SourceLocation StartLoc;
4071  auto *DIE = const_cast<DesignatedInitExpr *>(this);
4072  Designator &First = *DIE->getDesignator(0);
4073  if (First.isFieldDesignator()) {
4074  if (GNUSyntax)
4076  else
4078  } else
4079  StartLoc =
4081  return StartLoc;
4082 }
4083 
4085  return getInit()->getEndLoc();
4086 }
4087 
4089  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4090  return getSubExpr(D.ArrayOrRange.Index + 1);
4091 }
4092 
4094  assert(D.Kind == Designator::ArrayRangeDesignator &&
4095  "Requires array range designator");
4096  return getSubExpr(D.ArrayOrRange.Index + 1);
4097 }
4098 
4100  assert(D.Kind == Designator::ArrayRangeDesignator &&
4101  "Requires array range designator");
4102  return getSubExpr(D.ArrayOrRange.Index + 2);
4103 }
4104 
4105 /// Replaces the designator at index @p Idx with the series
4106 /// of designators in [First, Last).
4108  const Designator *First,
4109  const Designator *Last) {
4110  unsigned NumNewDesignators = Last - First;
4111  if (NumNewDesignators == 0) {
4112  std::copy_backward(Designators + Idx + 1,
4113  Designators + NumDesignators,
4114  Designators + Idx);
4115  --NumNewDesignators;
4116  return;
4117  } else if (NumNewDesignators == 1) {
4118  Designators[Idx] = *First;
4119  return;
4120  }
4121 
4122  Designator *NewDesignators
4123  = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4124  std::copy(Designators, Designators + Idx, NewDesignators);
4125  std::copy(First, Last, NewDesignators + Idx);
4126  std::copy(Designators + Idx + 1, Designators + NumDesignators,
4127  NewDesignators + Idx + NumNewDesignators);
4128  Designators = NewDesignators;
4129  NumDesignators = NumDesignators - 1 + NumNewDesignators;
4130 }
4131 
4133  SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
4134  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4136  BaseAndUpdaterExprs[0] = baseExpr;
4137 
4138  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4139  ILE->setType(baseExpr->getType());
4140  BaseAndUpdaterExprs[1] = ILE;
4141 }
4142 
4144  return getBase()->getBeginLoc();
4145 }
4146 
4148  return getBase()->getEndLoc();
4149 }
4150 
4151 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4152  SourceLocation RParenLoc)
4153  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
4154  false, false),
4155  LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4156  ParenListExprBits.NumExprs = Exprs.size();
4157 
4158  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
4159  if (Exprs[I]->isTypeDependent())
4160  ExprBits.TypeDependent = true;
4161  if (Exprs[I]->isValueDependent())
4162  ExprBits.ValueDependent = true;
4163  if (Exprs[I]->isInstantiationDependent())
4164  ExprBits.InstantiationDependent = true;
4165  if (Exprs[I]->containsUnexpandedParameterPack())
4166  ExprBits.ContainsUnexpandedParameterPack = true;
4167 
4168  getTrailingObjects<Stmt *>()[I] = Exprs[I];
4169  }
4170 }
4171 
4172 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4173  : Expr(ParenListExprClass, Empty) {
4174  ParenListExprBits.NumExprs = NumExprs;
4175 }
4176 
4178  SourceLocation LParenLoc,
4179  ArrayRef<Expr *> Exprs,
4180  SourceLocation RParenLoc) {
4181  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4182  alignof(ParenListExpr));
4183  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4184 }
4185 
4187  unsigned NumExprs) {
4188  void *Mem =
4189  Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4190  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4191 }
4192 
4194  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4195  e = ewc->getSubExpr();
4196  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4197  e = m->GetTemporaryExpr();
4198  e = cast<CXXConstructExpr>(e)->getArg(0);
4199  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4200  e = ice->getSubExpr();
4201  return cast<OpaqueValueExpr>(e);
4202 }
4203 
4205  EmptyShell sh,
4206  unsigned numSemanticExprs) {
4207  void *buffer =
4208  Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4209  alignof(PseudoObjectExpr));
4210  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4211 }
4212 
4213 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4214  : Expr(PseudoObjectExprClass, shell) {
4215  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4216 }
4217 
4219  ArrayRef<Expr*> semantics,
4220  unsigned resultIndex) {
4221  assert(syntax && "no syntactic expression!");
4222  assert(semantics.size() && "no semantic expressions!");
4223 
4224  QualType type;
4225  ExprValueKind VK;
4226  if (resultIndex == NoResult) {
4227  type = C.VoidTy;
4228  VK = VK_RValue;
4229  } else {
4230  assert(resultIndex < semantics.size());
4231  type = semantics[resultIndex]->getType();
4232  VK = semantics[resultIndex]->getValueKind();
4233  assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4234  }
4235 
4236  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4237  alignof(PseudoObjectExpr));
4238  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4239  resultIndex);
4240 }
4241 
4242 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4243  Expr *syntax, ArrayRef<Expr*> semantics,
4244  unsigned resultIndex)
4245  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4246  /*filled in at end of ctor*/ false, false, false, false) {
4247  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4248  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4249 
4250  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4251  Expr *E = (i == 0 ? syntax : semantics[i-1]);
4252  getSubExprsBuffer()[i] = E;
4253 
4254  if (E->isTypeDependent())
4255  ExprBits.TypeDependent = true;
4256  if (E->isValueDependent())
4257  ExprBits.ValueDependent = true;
4259  ExprBits.InstantiationDependent = true;
4261  ExprBits.ContainsUnexpandedParameterPack = true;
4262 
4263  if (isa<OpaqueValueExpr>(E))
4264  assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4265  "opaque-value semantic expressions for pseudo-object "
4266  "operations must have sources");
4267  }
4268 }
4269 
4270 //===----------------------------------------------------------------------===//
4271 // Child Iterators for iterating over subexpressions/substatements
4272 //===----------------------------------------------------------------------===//
4273 
4274 // UnaryExprOrTypeTraitExpr
4276  const_child_range CCR =
4277  const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4278  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4279 }
4280 
4282  // If this is of a type and the type is a VLA type (and not a typedef), the
4283  // size expression of the VLA needs to be treated as an executable expression.
4284  // Why isn't this weirdness documented better in StmtIterator?
4285  if (isArgumentType()) {
4286  if (const VariableArrayType *T =
4287  dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4290  }
4291  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4292 }
4293 
4295  QualType t, AtomicOp op, SourceLocation RP)
4296  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4297  false, false, false, false),
4298  NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4299 {
4300  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4301  for (unsigned i = 0; i != args.size(); i++) {
4302  if (args[i]->isTypeDependent())
4303  ExprBits.TypeDependent = true;
4304  if (args[i]->isValueDependent())
4305  ExprBits.ValueDependent = true;
4306  if (args[i]->isInstantiationDependent())
4307  ExprBits.InstantiationDependent = true;
4308  if (args[i]->containsUnexpandedParameterPack())
4309  ExprBits.ContainsUnexpandedParameterPack = true;
4310 
4311  SubExprs[i] = args[i];
4312  }
4313 }
4314 
4316  switch (Op) {
4317  case AO__c11_atomic_init:
4318  case AO__opencl_atomic_init:
4319  case AO__c11_atomic_load:
4320  case AO__atomic_load_n:
4321  return 2;
4322 
4323  case AO__opencl_atomic_load:
4324  case AO__c11_atomic_store:
4325  case AO__c11_atomic_exchange:
4326  case AO__atomic_load:
4327  case AO__atomic_store:
4328  case AO__atomic_store_n:
4329  case AO__atomic_exchange_n:
4330  case AO__c11_atomic_fetch_add:
4331  case AO__c11_atomic_fetch_sub:
4332  case AO__c11_atomic_fetch_and:
4333  case AO__c11_atomic_fetch_or:
4334  case AO__c11_atomic_fetch_xor:
4335  case AO__atomic_fetch_add:
4336  case AO__atomic_fetch_sub:
4337  case AO__atomic_fetch_and:
4338  case AO__atomic_fetch_or:
4339  case AO__atomic_fetch_xor:
4340  case AO__atomic_fetch_nand:
4341  case AO__atomic_add_fetch:
4342  case AO__atomic_sub_fetch:
4343  case AO__atomic_and_fetch:
4344  case AO__atomic_or_fetch:
4345  case AO__atomic_xor_fetch:
4346  case AO__atomic_nand_fetch:
4347  case AO__atomic_fetch_min:
4348  case AO__atomic_fetch_max:
4349  return 3;
4350 
4351  case AO__opencl_atomic_store:
4352  case AO__opencl_atomic_exchange:
4353  case AO__opencl_atomic_fetch_add:
4354  case AO__opencl_atomic_fetch_sub:
4355  case AO__opencl_atomic_fetch_and:
4356  case AO__opencl_atomic_fetch_or:
4357  case AO__opencl_atomic_fetch_xor:
4358  case AO__opencl_atomic_fetch_min:
4359  case AO__opencl_atomic_fetch_max:
4360  case AO__atomic_exchange:
4361  return 4;
4362 
4363  case AO__c11_atomic_compare_exchange_strong:
4364  case AO__c11_atomic_compare_exchange_weak:
4365  return 5;
4366 
4367  case AO__opencl_atomic_compare_exchange_strong:
4368  case AO__opencl_atomic_compare_exchange_weak:
4369  case AO__atomic_compare_exchange:
4370  case AO__atomic_compare_exchange_n:
4371  return 6;
4372  }
4373  llvm_unreachable("unknown atomic op");
4374 }
4375 
4377  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4378  if (auto AT = T->getAs<AtomicType>())
4379  return AT->getValueType();
4380  return T;
4381 }
4382 
4384  unsigned ArraySectionCount = 0;
4385  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4386  Base = OASE->getBase();
4387  ++ArraySectionCount;
4388  }
4389  while (auto *ASE =
4390  dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4391  Base = ASE->getBase();
4392  ++ArraySectionCount;
4393  }
4394  Base = Base->IgnoreParenImpCasts();
4395  auto OriginalTy = Base->getType();
4396  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4397  if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4398  OriginalTy = PVD->getOriginalType().getNonReferenceType();
4399 
4400  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4401  if (OriginalTy->isAnyPointerType())
4402  OriginalTy = OriginalTy->getPointeeType();
4403  else {
4404  assert (OriginalTy->isArrayType());
4405  OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4406  }
4407  }
4408  return OriginalTy;
4409 }
child_iterator child_begin()
Definition: Stmt.h:1135
CallExpr(StmtClass SC, Expr *Fn, ArrayRef< Expr *> PreArgs, ArrayRef< Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL)
Build a call expression, assuming that appropriate storage has been allocated for the trailing object...
Definition: Expr.cpp:1237
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:614
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4388
SourceLocation getLocForStartOfFile(FileID FID) const
Return the source location corresponding to the first byte of the specified file. ...
Represents a single C99 designator.
Definition: Expr.h:4593
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
void setValueDependent(bool VD)
Set whether this expression is value-dependent or not.
Definition: Expr.h:154
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:465
static Expr * IgnoreImpCastsExtraSingleStep(Expr *E)
Definition: Expr.cpp:2659
static Expr * IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E)
Definition: Expr.cpp:2751
const CXXDestructorDecl * getDestructor() const
Definition: ExprCXX.h:1268
Represents a function declaration or definition.
Definition: Decl.h:1743
Expr * getArrayIndex(const Designator &D) const
Definition: Expr.cpp:4088
Stmt * body_back()
Definition: Stmt.h:1315
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:571
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1653
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, QualType T, bool &TypeDependent, bool &ValueDependent, bool &InstantiationDependent)
Compute the type-, value-, and instantiation-dependence of a declaration reference based on the decla...
Definition: Expr.cpp:235
bool isFixedPointType() const
Return true if this is a fixed point type according to ISO/IEC JTC1 SC22 WG14 N1169.
Definition: Type.h:6642
Expr * getLHS() const
Definition: Expr.h:3661
StringRef Identifier
Definition: Format.cpp:1714
Expr * getSyntacticForm()
Return the syntactic form of this expression, i.e.
Definition: Expr.h:5620
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens...
Definition: Lexer.h:76
SourceLocation getRParenLoc() const
Definition: Expr.h:2678
void setArrayFiller(Expr *filler)
Definition: Expr.cpp:2124
const FunctionProtoType * getFunctionType() const
getFunctionType - Return the underlying function type for this block.
Definition: Expr.cpp:2220
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2549
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:4069
QualType getPointeeType() const
Definition: Type.h:2562
A (possibly-)qualified type.
Definition: Type.h:639
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
bool isArrayType() const
Definition: Type.h:6392
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2591
const DeclarationNameLoc & getInfo() const
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
Definition: Expr.h:112
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:67
static Decl * castFromDeclContext(const DeclContext *)
Definition: DeclBase.cpp:856
unsigned FieldLoc
The location of the field name in the designated initializer.
Definition: Expr.h:4570
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4332
const DeclContext * getParentContext() const
If the SourceLocExpr has been resolved return the subexpression representing the resolved value...
Definition: Expr.h:4216
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Stmt - This represents one statement.
Definition: Stmt.h:65
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExprs, SourceLocation rBraceLoc)
Definition: Expr.cpp:4132
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2578
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3367
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1118
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
static CallExpr * CreateTemporary(void *Mem, Expr *Fn, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, ADLCallKind UsesADL=NotADL)
Create a temporary call expression with no arguments in the memory pointed to by Mem.
Definition: Expr.cpp:1296
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:474
Defines the SourceManager interface.
bool hasNonTrivialCall(const ASTContext &Ctx) const
Determine whether this expression involves a call to any function that is not trivial.
Definition: Expr.cpp:3512
bool isRecordType() const
Definition: Type.h:6416
reverse_iterator rbegin()
Definition: ASTVector.h:103
Expr * getBase() const
Definition: Expr.h:2810
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:274
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:6582
void setSemantics(const llvm::fltSemantics &Sem)
Set the APFloat semantics this literal uses.
Definition: Expr.cpp:876
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs)
Return the size in bytes needed for the trailing objects.
Definition: Expr.h:2498
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
FloatingLiteralBitfields FloatingLiteralBits
Definition: Stmt.h:935
void getEncodedElementAccess(SmallVectorImpl< uint32_t > &Elts) const
getEncodedElementAccess - Encode the elements accessed into an llvm aggregate Constant of ConstantInt...
Definition: Expr.cpp:3800
void setType(QualType t)
Definition: Expr.h:131
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic, and whose semantics are that of the sole contained initializer)?
Definition: Expr.cpp:2148
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3353
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:379
iterator insert(const ASTContext &C, iterator I, const T &Elt)
Definition: ASTVector.h:219
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1882
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1414
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
bool isSemanticForm() const
Definition: Expr.h:4434
bool hasExplicitTemplateArgs() const
Determines whether this declaration reference was followed by an explicit template argument list...
Definition: Expr.h:1228
llvm::iterator_range< child_iterator > child_range
Definition: Stmt.h:1125
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2824
DeclRefExprBitfields DeclRefExprBits
Definition: Stmt.h:934
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1338
SourceLocation getEndLoc() const LLVM_READONLY
static ExprValueKind getValueKindForType(QualType T)
getValueKindForType - Given a formal return or parameter type, give its value kind.
Definition: Expr.h:397
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:132
SourceLocation getLParenLoc() const
Definition: Expr.h:3281
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:690
A container of type source information.
Definition: Decl.h:86
SourceLocation getLocation() const
Definition: Expr.h:4219
bool containsDuplicateElements() const
containsDuplicateElements - Return true if any element access is repeated.
Definition: Expr.cpp:3779
unsigned getCharWidth() const
Definition: TargetInfo.h:380
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2562
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4332
const Attr * getUnusedResultAttr(const ASTContext &Ctx) const
Returns the WarnUnusedResultAttr that is either declared on the called function, or its return type d...
Definition: Expr.cpp:1417
Expr * ignoreParenBaseCasts() LLVM_READONLY
Skip past any parentheses and derived-to-base casts until reaching a fixed point. ...
Definition: Expr.cpp:2831
QualType getElementType() const
Definition: Type.h:2859
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:470
StringRef getBufferData(FileID FID, bool *Invalid=nullptr) const
Return a StringRef to the source buffer data for the specified FileID.
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1462
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:4193
Represents a variable declaration or definition.
Definition: Decl.h:812
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:3643
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2968
bool isEnumeralType() const
Definition: Type.h:6420
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6803
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6877
void resizeInits(const ASTContext &Context, unsigned NumInits)
Specify the number of initializers.
Definition: Expr.cpp:2108
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4342
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition: Expr.cpp:506
size_type size() const
Definition: ASTVector.h:109
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const
Is this the zero initializer {0} in a language which considers it idiomatic?
Definition: Expr.cpp:2171
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
static DeclRefExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Construct an empty declaration reference expression.
Definition: Expr.cpp:450
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3219
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3444
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:137
FieldDecl * getSourceBitField()
If this expression refers to a bit-field, retrieve the declaration of that bit-field.
Definition: Expr.cpp:3681
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1662
Represents a struct/union/class.
Definition: Decl.h:3598
Represents a C99 designated initializer expression.
Definition: Expr.h:4518
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
unsigned GetStringLength() const
const Expr * getBestDynamicClassTypeExpr() const
Get the inner expression that determines the best dynamic class.
Definition: Expr.cpp:37
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Definition: DeclTemplate.h:259
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
Definition: StmtIterator.h:151
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
A C++ nested-name-specifier augmented with source location information.
LValueClassification ClassifyLValue(ASTContext &Ctx) const
Reasons why an expression might not be an l-value.
static constexpr ADLCallKind UsesADL
Definition: Expr.h:2483
Used for GCC&#39;s __alignof.
Definition: TypeTraits.h:106
unsigned getChar32Width() const
getChar32Width/Align - Return the size of &#39;char32_t&#39; for this target, in bits.
Definition: TargetInfo.h:568
bool isCharType() const
Definition: Type.cpp:1814
field_range fields() const
Definition: Decl.h:3789
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
NameKind getNameKind() const
Determine what kind of name this is.
Represents a member of a struct/union/class.
Definition: Decl.h:2584
static DesignatedInitExpr * Create(const ASTContext &C, llvm::ArrayRef< Designator > Designators, ArrayRef< Expr *> IndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init)
Definition: Expr.cpp:4033
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:96
static Expr * IgnoreLValueCastsSingleStep(Expr *E)
Definition: Expr.cpp:2692
bool isReferenceType() const
Definition: Type.h:6355
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition: Expr.h:2601
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr)
Definition: Expr.cpp:406
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:52
Expr * getSubExpr()
Definition: Expr.h:3093
bool isArrow() const
isArrow - Return true if the base expression is a pointer to vector, return false if the base express...
Definition: Expr.cpp:3768
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6699
NestedNameSpecifierLoc QualifierLoc
The nested-name-specifier that qualifies the name, including source-location information.
Definition: Expr.h:2716
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:117
struct FieldDesignator Field
A field designator, e.g., ".x".
Definition: Expr.h:4603
const Expr *const * const_semantics_iterator
Definition: Expr.h:5643
ShuffleVectorExpr(const ASTContext &C, ArrayRef< Expr *> args, QualType Type, SourceLocation BLoc, SourceLocation RP)
Definition: Expr.cpp:3832
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:512
StringRef getOpcodeStr() const
Definition: Expr.h:3374
bool isGLValue() const
Definition: Expr.h:254
static ParenListExpr * Create(const ASTContext &Ctx, SourceLocation LParenLoc, ArrayRef< Expr *> Exprs, SourceLocation RParenLoc)
Create a paren list.
Definition: Expr.cpp:4177
Describes an C or C++ initializer list.
Definition: Expr.h:4284
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:529
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const
EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boo...
void setValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.h:1326
BinaryOperatorKind
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:814
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2662
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:4084
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1370
Base object ctor.
Definition: ABI.h:26
A convenient class for passing around template argument information.
Definition: TemplateBase.h:554
static Expr * IgnoreCastsSingleStep(Expr *E)
Definition: Expr.cpp:2676
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
Expr * getPtr() const
Definition: Expr.h:5742
static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, SourceLocExpr::IdentKind Kind)
Definition: Expr.cpp:1997
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6854
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:407
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition: Expr.h:717
unsigned getNumPreArgs() const
Definition: Expr.h:2515
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1840
static bool isRecordType(QualType T)
semantics_iterator semantics_end()
Definition: Expr.h:5650
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3318
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6189
SourceLocExpr(const ASTContext &Ctx, IdentKind Type, SourceLocation BLoc, SourceLocation RParenLoc, DeclContext *Context)
Definition: Expr.cpp:2012
child_range children()
Definition: Expr.h:4467
bool isBoundMemberFunction(ASTContext &Ctx) const
Returns true if this expression is a bound member function.
Definition: Expr.cpp:2619
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2814
StringKind
StringLiteral is followed by several trailing objects.
Definition: Expr.h:1621
field_iterator field_begin() const
Definition: Decl.cpp:4243
SourceLocation getCaretLocation() const
Definition: Expr.cpp:2226
IdentKind getIdentKind() const
Definition: Expr.h:4197
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token...
Definition: Lexer.h:348
static bool isBooleanType(QualType Ty)
An adjustment to be made to the temporary created when emitting a reference binding, which accesses a particular subobject of that temporary.
Definition: Expr.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3041
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1289
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
CXXTemporary * getTemporary()
Definition: ExprCXX.h:1308
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1734
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1488
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:792
NestedNameSpecifierLoc getQualifierLoc() const
If the name was qualified, retrieves the nested-name-specifier that precedes the name, with source-location information.
Definition: Expr.h:1166
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:169
An ordinary object is located at an address in memory.
Definition: Specifiers.h:133
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4056
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:1968
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:3056
Expression is a GNU-style __null constant.
Definition: Expr.h:712
StmtClass
Definition: Stmt.h:67
const Stmt * getBody() const
Definition: Expr.cpp:2229
A binding in a decomposition declaration.
Definition: DeclCXX.h:3920
bool isUnevaluated(unsigned ID) const
Returns true if this builtin does not perform the side-effects of its arguments.
Definition: Builtins.h:127
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1118
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix)
Retrieve the unary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1202
void setIntValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.cpp:763
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2793
bool isObjCSelfExpr() const
Check if this expression is the ObjC &#39;self&#39; implicit parameter.
Definition: Expr.cpp:3663
Represents the this expression in C++.
Definition: ExprCXX.h:1013
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS)
Definition: Expr.cpp:1964
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:650
PredefinedExprBitfields PredefinedExprBits
Definition: Stmt.h:933
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3244
bool isInstantiationDependent() const
Whether this nested name specifier involves a template parameter.
void print(const PrintingPolicy &Policy, raw_ostream &Out) const
Print this template argument to the given output stream.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const
Returns true if this is a call to a builtin which does not evaluate side-effects within its arguments...
Definition: Expr.cpp:1392
bool hasAttr() const
Definition: DeclBase.h:535
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3616
llvm::iterator_range< const_child_iterator > const_child_range
Definition: Stmt.h:1126
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1277
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3699
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1410
CastKind
CastKind - The kind of operation required for a conversion.
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1848
Specifies that the expression should never be value-dependent.
Definition: Expr.h:719
StringRef getBuiltinStr() const
Return a string representing the name of the specific builtin function.
Definition: Expr.cpp:2021
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2260
iterator end()
Definition: ASTVector.h:99
InitListExpr * getUpdater() const
Definition: Expr.h:4870
void outputString(raw_ostream &OS) const
Definition: Expr.cpp:1005
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
ConstStmtIterator const_child_iterator
Definition: Stmt.h:1123
unsigned Offset
Definition: Format.cpp:1709
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3186
Exposes information about the current target.
Definition: TargetInfo.h:161
An Objective-C property is a logical field of an Objective-C object which is read and written via Obj...
Definition: Specifiers.h:143
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:436
static StringLiteral * Create(const ASTContext &Ctx, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumConcatenated)
This is the "fully general" constructor that allows representation of strings formed from multiple co...
Definition: Expr.cpp:983
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition: Expr.cpp:1283
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
void setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs)
Definition: Expr.cpp:4052
SourceLocation End
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:114
void setCallee(Expr *F)
Definition: Expr.h:2554
A non-discriminated union of a base, field, or array index.
Definition: APValue.h:148
static Expr * IgnoreExprNodesImpl(Expr *E)
Definition: Expr.cpp:2774
std::string Label
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1495
static Expr * IgnoreImpCastsSingleStep(Expr *E)
Definition: Expr.cpp:2649
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1616
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6868
unsigned getLine() const
Return the presumed line number of this location.
SourceLocation getBeginLoc() const
Retrieve the location of the beginning of this nested-name-specifier.
void setTypeDependent(bool TD)
Set whether this expression is type-dependent or not.
Definition: Expr.h:172
#define V(N, I)
Definition: ASTContext.h:2905
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2826
Expr * getCallee()
Definition: Expr.h:2552
unsigned getNumInits() const
Definition: Expr.h:4314
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:893
field_iterator field_end() const
Definition: Decl.h:3792
DeclContext * getDeclContext()
Definition: DeclBase.h:431
ExprBitfields ExprBits
Definition: Stmt.h:932
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier, e.g., N::foo.
Definition: Expr.h:1162
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1217
static FloatingLiteral * Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L)
Definition: Expr.cpp:848
Represents the type decltype(expr) (C++11).
Definition: Type.h:4293
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
ArrayRef< Expr * > inits()
Definition: Expr.h:4324
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition: Expr.h:723
Extra data stored in some MemberExpr objects.
Definition: Expr.h:2713
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2881
Base object dtor.
Definition: ABI.h:36
QualType getType() const
Definition: Expr.h:130
StringLiteralBitfields StringLiteralBits
Definition: Stmt.h:936
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1763
static PredefinedExpr * Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL)
Create a PredefinedExpr.
Definition: Expr.cpp:497
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:950
Represents an unpacked "presumed" location which can be presented to the user.
InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef< Expr *> initExprs, SourceLocation rbraceloc)
Definition: Expr.cpp:2081
Expr * getSubExprAsWritten()
Retrieve the cast subexpression as it was written in the source code, looking through any implicit ca...
Definition: Expr.cpp:1771
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1934
unsigned Index
Location of the first index expression within the designated initializer expression&#39;s list of subexpr...
Definition: Expr.h:4577
Represents a GCC generic vector type.
Definition: Type.h:3180
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4694
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4122
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1078
Allow UB that we can give a value, but not arbitrary unmodeled side effects.
Definition: Expr.h:599
ValueDecl * getDecl()
Definition: Expr.h:1147
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1395
The result type of a method or function.
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2040
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3255
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:704
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:413
reverse_iterator rend()
Definition: ASTVector.h:105
do v
Definition: arm_acle.h:64
const SourceManager & SM
Definition: Format.cpp:1568
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:89
SourceRange getSourceRange() const
Definition: ExprCXX.h:140
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:276
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:414
unsigned getBuiltinCallee() const
getBuiltinCallee - If this is a call to a builtin, return the builtin ID of the callee.
Definition: Expr.cpp:1370
unsigned getWCharWidth() const
getWCharWidth/Align - Return the size of &#39;wchar_t&#39; for this target, in bits.
Definition: TargetInfo.h:558
RecordDecl * getDecl() const
Definition: Type.h:4427
const char * getFilename() const
Return the presumed filename of this location.
SourceLocation getOperatorLoc() const
Returns the location of the operator symbol in the expression.
Definition: ExprCXX.h:128
Expr * IgnoreCasts() LLVM_READONLY
Skip past any casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:2797
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)
Retrieve the binary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1901
const llvm::fltSemantics & getSemantics() const
Return the APFloat semantics this literal uses.
Definition: Expr.cpp:858
Expr * IgnoreConversionOperator() LLVM_READONLY
Skip conversion operators.
Definition: Expr.cpp:2818
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr *> args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:4294
unsigned DotLoc
The location of the &#39;.&#39; in the designated initializer.
Definition: Expr.h:4567
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition: Expr.h:2268
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:361
void ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last)
Replaces the designator at index Idx with the series of designators in [First, Last).
Definition: Expr.cpp:4107
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:978
Expr * getBase() const
Definition: Expr.h:4867
ParenListExprBitfields ParenListExprBits
Definition: Stmt.h:946
static StringRef getIdentKindName(IdentKind IK)
Definition: Expr.cpp:513
#define false
Definition: stdbool.h:17
Kind
QualType getCanonicalType() const
Definition: Type.h:6158
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5576
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:193
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:1216
unsigned getColumn() const
Return the presumed column number of this location.
NullPointerConstantKind isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const
isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant...
Definition: Expr.cpp:3524
Encodes a location in the source.
StringLiteral * getPredefinedStringLiteralFromCache(StringRef Key) const
Return a string representing the human readable name for the specified function declaration or file n...
QualType getReturnType() const
Definition: Type.h:3625
SourceLocation getOperatorLoc() const
Definition: Expr.h:3350
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:948
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6235
Expression is not a Null pointer constant.
Definition: Expr.h:696
Expr * getSubExpr() const
Definition: Expr.h:1964
CastKind getCastKind() const
Definition: Expr.h:3087
static const FieldDecl * getTargetFieldForToUnionCast(QualType unionType, QualType opType)
Definition: Expr.cpp:1828
A call to a literal operator (C++11 [over.literal]) written as a user-defined literal (C++11 [lit...
Definition: ExprCXX.h:480
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3069
ObjCMethodFamily getMethodFamily() const
Definition: ExprObjC.h:1375
unsigned getChar16Width() const
getChar16Width/Align - Return the size of &#39;char16_t&#39; for this target, in bits.
Definition: TargetInfo.h:563
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:170
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
llvm::iterator_range< capture_init_iterator > capture_inits()
Retrieve the initialization expressions for this lambda&#39;s captures.
Definition: ExprCXX.h:1868
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition: Expr.cpp:994
GenericSelectionExprBitfields GenericSelectionExprBits
Definition: Stmt.h:947
static QualType getUnderlyingType(const SubRegion *R)
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set...
Definition: Decl.h:2726
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:4115
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:131
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr *> exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1449
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1786
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2108
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2437
std::string getValueAsString(unsigned Radix) const
Definition: Expr.cpp:822
static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl)
Definition: Expr.cpp:537
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2299
Specifies that a value-dependent expression should be considered to never be a null pointer constant...
Definition: Expr.h:727
CanQualType VoidTy
Definition: ASTContext.h:1011
Expr * updateInit(const ASTContext &C, unsigned Init, Expr *expr)
Updates the initializer at index Init with the new expression expr, and returns the old expression at...
Definition: Expr.cpp:2112
APValue EvaluateInContext(const ASTContext &Ctx, const Expr *DefaultExpr) const
Return the result of evaluating this SourceLocExpr in the specified (and possibly null) default argum...
Definition: Expr.cpp:2035
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1439
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:151
AccessSpecifier getAccess() const
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:134
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1365
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3158
static QualType findBoundMemberType(const Expr *expr)
Given an expression of bound-member type, find the type of the member.
Definition: Expr.cpp:2625
Expr ** getInits()
Retrieve the set of initializers.
Definition: Expr.h:4317
bool refersToVectorElement() const
Returns whether this expression refers to a vector element.
Definition: Expr.cpp:3728
static DesignatedInitExpr * CreateEmpty(const ASTContext &C, unsigned NumIndexExprs)
Definition: Expr.cpp:4045
Used for C&#39;s _Alignof and C++&#39;s alignof.
Definition: TypeTraits.h:100
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:62
Expr * getArrayRangeStart(const Designator &D) const
Definition: Expr.cpp:4093
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1356
bool isVectorType() const
Definition: Type.h:6428
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1373
unsigned LBracketLoc
The location of the &#39;[&#39; starting the array range designator.
Definition: Expr.h:4579
MemberExprBitfields MemberExprBits
Definition: Stmt.h:942
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:4378
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:139
void sawArrayRangeDesignator(bool ARD=true)
Definition: Expr.h:4455
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2317
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2094
static MemberExpr * Create(const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *targs, QualType ty, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.cpp:1541
A placeholder type used to construct an empty shell of a type, that will be filled in later (e...
Definition: Stmt.h:1006
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
Expr * getLHS() const
Definition: Expr.h:3358
A POD class for pairing a NamedDecl* with an access specifier.
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
void * Allocate(size_t Size, unsigned Align=8) const
Definition: ASTContext.h:669
Represents a C11 generic selection.
Definition: Expr.h:5109
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:2200
CanQualType CharTy
Definition: ASTContext.h:1013
SourceRange getDesignatorsSourceRange() const
Definition: Expr.cpp:4061
StreamedQualTypeHelper stream(const PrintingPolicy &Policy, const Twine &PlaceHolder=Twine(), unsigned Indentation=0) const
Definition: Type.h:1028
Dataflow Directional Tag Classes.
static GenericSelectionExpr * CreateEmpty(const ASTContext &Context, unsigned NumAssocs)
Create an empty generic selection expression for deserialization.
Definition: Expr.cpp:3947
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2182
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1791
UnaryOperatorKind
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1264
static Expr * IgnoreParensSingleStep(Expr *E)
Definition: Expr.cpp:2726
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:573
bool hasSideEffects(Expr *E, ASTContext &Ctx)
Definition: Transforms.cpp:167
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:106
static Expr * IgnoreBaseCastsSingleStep(Expr *E)
Definition: Expr.cpp:2702
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
Decl * getReferencedDeclOfCallee()
Definition: Expr.cpp:1342
A field designator, e.g., ".x".
Definition: Expr.h:4557
void setExprs(const ASTContext &C, ArrayRef< Expr *> Exprs)
Definition: Expr.cpp:3856
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
AccessSpecifier getAccess() const
Definition: DeclBase.h:466
static GenericSelectionExpr * Create(const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef< TypeSourceInfo *> AssocTypes, ArrayRef< Expr *> AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
Create a non-result-dependent generic selection expression.
Definition: Expr.cpp:3918
FunctionDecl * getTemplateInstantiationPattern() const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:3473
StmtClass getStmtClass() const
Definition: Stmt.h:1053
const char * getCastKindName() const
Definition: Expr.h:3091
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2233
bool isBooleanType() const
Definition: Type.h:6712
Expression is a Null pointer constant built from a zero integer expression that is not a simple...
Definition: Expr.h:703
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:341
static PseudoObjectExpr * Create(const ASTContext &Context, Expr *syntactic, ArrayRef< Expr *> semantic, unsigned resultIndex)
Definition: Expr.cpp:4218
void setInstantiationDependent(bool ID)
Set whether this expression is instantiation-dependent or not.
Definition: Expr.h:198
const T * const_iterator
Definition: ASTVector.h:86
PresumedLoc getPresumedLoc(SourceLocation Loc, bool UseLineDirectives=true) const
Returns the "presumed" location of a SourceLocation specifies.
Expression is a C++11 nullptr.
Definition: Expr.h:709
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2768
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
unsigned getNumElements() const
getNumElements - Get the number of components being selected.
Definition: Expr.cpp:3772
semantics_iterator semantics_begin()
Definition: Expr.h:5644