clang  14.0.0git
Expr.cpp
Go to the documentation of this file.
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cstring>
39 using namespace clang;
40 
42  const Expr *E = this;
43  while (true) {
44  E = E->IgnoreParenBaseCasts();
45 
46  // Follow the RHS of a comma operator.
47  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
48  if (BO->getOpcode() == BO_Comma) {
49  E = BO->getRHS();
50  continue;
51  }
52  }
53 
54  // Step into initializer for materialized temporaries.
55  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
56  E = MTE->getSubExpr();
57  continue;
58  }
59 
60  break;
61  }
62 
63  return E;
64 }
65 
67  const Expr *E = getBestDynamicClassTypeExpr();
68  QualType DerivedType = E->getType();
69  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
70  DerivedType = PTy->getPointeeType();
71 
72  if (DerivedType->isDependentType())
73  return nullptr;
74 
75  const RecordType *Ty = DerivedType->castAs<RecordType>();
76  Decl *D = Ty->getDecl();
77  return cast<CXXRecordDecl>(D);
78 }
79 
82  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
83  const Expr *E = this;
84  while (true) {
85  E = E->IgnoreParens();
86 
87  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
88  if ((CE->getCastKind() == CK_DerivedToBase ||
89  CE->getCastKind() == CK_UncheckedDerivedToBase) &&
90  E->getType()->isRecordType()) {
91  E = CE->getSubExpr();
92  auto *Derived =
93  cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
94  Adjustments.push_back(SubobjectAdjustment(CE, Derived));
95  continue;
96  }
97 
98  if (CE->getCastKind() == CK_NoOp) {
99  E = CE->getSubExpr();
100  continue;
101  }
102  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
103  if (!ME->isArrow()) {
104  assert(ME->getBase()->getType()->isRecordType());
105  if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
106  if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
107  E = ME->getBase();
108  Adjustments.push_back(SubobjectAdjustment(Field));
109  continue;
110  }
111  }
112  }
113  } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
114  if (BO->getOpcode() == BO_PtrMemD) {
115  assert(BO->getRHS()->isPRValue());
116  E = BO->getLHS();
117  const MemberPointerType *MPT =
118  BO->getRHS()->getType()->getAs<MemberPointerType>();
119  Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
120  continue;
121  }
122  if (BO->getOpcode() == BO_Comma) {
123  CommaLHSs.push_back(BO->getLHS());
124  E = BO->getRHS();
125  continue;
126  }
127  }
128 
129  // Nothing changed.
130  break;
131  }
132  return E;
133 }
134 
135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
136  const Expr *E = IgnoreParens();
137 
138  // If this value has _Bool type, it is obvious 0/1.
139  if (E->getType()->isBooleanType()) return true;
140  // If this is a non-scalar-integer type, we don't care enough to try.
141  if (!E->getType()->isIntegralOrEnumerationType()) return false;
142 
143  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144  switch (UO->getOpcode()) {
145  case UO_Plus:
146  return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
147  case UO_LNot:
148  return true;
149  default:
150  return false;
151  }
152  }
153 
154  // Only look through implicit casts. If the user writes
155  // '(int) (a && b)' treat it as an arbitrary int.
156  // FIXME: Should we look through any cast expression in !Semantic mode?
157  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
158  return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
159 
160  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
161  switch (BO->getOpcode()) {
162  default: return false;
163  case BO_LT: // Relational operators.
164  case BO_GT:
165  case BO_LE:
166  case BO_GE:
167  case BO_EQ: // Equality operators.
168  case BO_NE:
169  case BO_LAnd: // AND operator.
170  case BO_LOr: // Logical OR operator.
171  return true;
172 
173  case BO_And: // Bitwise AND operator.
174  case BO_Xor: // Bitwise XOR operator.
175  case BO_Or: // Bitwise OR operator.
176  // Handle things like (x==2)|(y==12).
177  return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
178  BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
179 
180  case BO_Comma:
181  case BO_Assign:
182  return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
183  }
184  }
185 
186  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
187  return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
188  CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
189 
190  if (isa<ObjCBoolLiteralExpr>(E))
191  return true;
192 
193  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
194  return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
195 
196  if (const FieldDecl *FD = E->getSourceBitField())
197  if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
198  !FD->getBitWidth()->isValueDependent() &&
199  FD->getBitWidthValue(FD->getASTContext()) == 1)
200  return true;
201 
202  return false;
203 }
204 
205 const ValueDecl *
207  Expr::EvalResult Eval;
208 
209  if (EvaluateAsConstantExpr(Eval, Context)) {
210  APValue &Value = Eval.Val;
211 
212  if (Value.isMemberPointer())
213  return Value.getMemberPointerDecl();
214 
215  if (Value.isLValue() && Value.getLValueOffset().isZero())
216  return Value.getLValueBase().dyn_cast<const ValueDecl *>();
217  }
218 
219  return nullptr;
220 }
221 
222 // Amusing macro metaprogramming hack: check whether a class provides
223 // a more specific implementation of getExprLoc().
224 //
225 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
226 namespace {
227  /// This implementation is used when a class provides a custom
228  /// implementation of getExprLoc.
229  template <class E, class T>
230  SourceLocation getExprLocImpl(const Expr *expr,
231  SourceLocation (T::*v)() const) {
232  return static_cast<const E*>(expr)->getExprLoc();
233  }
234 
235  /// This implementation is used when a class doesn't provide
236  /// a custom implementation of getExprLoc. Overload resolution
237  /// should pick it over the implementation above because it's
238  /// more specialized according to function template partial ordering.
239  template <class E>
240  SourceLocation getExprLocImpl(const Expr *expr,
241  SourceLocation (Expr::*v)() const) {
242  return static_cast<const E *>(expr)->getBeginLoc();
243  }
244 }
245 
247  switch (getStmtClass()) {
248  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
249 #define ABSTRACT_STMT(type)
250 #define STMT(type, base) \
251  case Stmt::type##Class: break;
252 #define EXPR(type, base) \
253  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
254 #include "clang/AST/StmtNodes.inc"
255  }
256  llvm_unreachable("unknown expression kind");
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // Primary Expressions.
261 //===----------------------------------------------------------------------===//
262 
264  assert((Kind == ConstantExpr::RSK_APValue ||
266  "Invalid StorageKind Value");
267  (void)Kind;
268 }
269 
272  switch (Value.getKind()) {
273  case APValue::None:
275  return ConstantExpr::RSK_None;
276  case APValue::Int:
277  if (!Value.getInt().needsCleanup())
279  LLVM_FALLTHROUGH;
280  default:
282  }
283 }
284 
286 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
287  if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
290 }
291 
292 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
293  bool IsImmediateInvocation)
294  : FullExpr(ConstantExprClass, SubExpr) {
295  ConstantExprBits.ResultKind = StorageKind;
296  ConstantExprBits.APValueKind = APValue::None;
297  ConstantExprBits.IsUnsigned = false;
298  ConstantExprBits.BitWidth = 0;
299  ConstantExprBits.HasCleanup = false;
300  ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
301 
302  if (StorageKind == ConstantExpr::RSK_APValue)
303  ::new (getTrailingObjects<APValue>()) APValue();
304 }
305 
307  ResultStorageKind StorageKind,
308  bool IsImmediateInvocation) {
309  assert(!isa<ConstantExpr>(E));
310  AssertResultStorageKind(StorageKind);
311 
312  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
313  StorageKind == ConstantExpr::RSK_APValue,
314  StorageKind == ConstantExpr::RSK_Int64);
315  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
316  return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
317 }
318 
320  const APValue &Result) {
321  ResultStorageKind StorageKind = getStorageKind(Result);
322  ConstantExpr *Self = Create(Context, E, StorageKind);
323  Self->SetResult(Result, Context);
324  return Self;
325 }
326 
327 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
328  : FullExpr(ConstantExprClass, Empty) {
329  ConstantExprBits.ResultKind = StorageKind;
330 
331  if (StorageKind == ConstantExpr::RSK_APValue)
332  ::new (getTrailingObjects<APValue>()) APValue();
333 }
334 
336  ResultStorageKind StorageKind) {
337  AssertResultStorageKind(StorageKind);
338 
339  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
340  StorageKind == ConstantExpr::RSK_APValue,
341  StorageKind == ConstantExpr::RSK_Int64);
342  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
343  return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
344 }
345 
347  assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
348  "Invalid storage for this value kind");
349  ConstantExprBits.APValueKind = Value.getKind();
350  switch (ConstantExprBits.ResultKind) {
351  case RSK_None:
352  return;
353  case RSK_Int64:
354  Int64Result() = *Value.getInt().getRawData();
355  ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
356  ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
357  return;
358  case RSK_APValue:
359  if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
360  ConstantExprBits.HasCleanup = true;
361  Context.addDestruction(&APValueResult());
362  }
363  APValueResult() = std::move(Value);
364  return;
365  }
366  llvm_unreachable("Invalid ResultKind Bits");
367 }
368 
370  switch (ConstantExprBits.ResultKind) {
372  return APValueResult().getInt();
374  return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
375  ConstantExprBits.IsUnsigned);
376  default:
377  llvm_unreachable("invalid Accessor");
378  }
379 }
380 
382 
383  switch (ConstantExprBits.ResultKind) {
385  return APValueResult();
387  return APValue(
388  llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
389  ConstantExprBits.IsUnsigned));
391  if (ConstantExprBits.APValueKind == APValue::Indeterminate)
393  return APValue();
394  }
395  llvm_unreachable("invalid ResultKind");
396 }
397 
398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
399  bool RefersToEnclosingVariableOrCapture, QualType T,
401  const DeclarationNameLoc &LocInfo,
402  NonOdrUseReason NOUR)
403  : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
404  DeclRefExprBits.HasQualifier = false;
405  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
406  DeclRefExprBits.HasFoundDecl = false;
407  DeclRefExprBits.HadMultipleCandidates = false;
408  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
409  RefersToEnclosingVariableOrCapture;
410  DeclRefExprBits.NonOdrUseReason = NOUR;
411  DeclRefExprBits.Loc = L;
412  setDependence(computeDependence(this, Ctx));
413 }
414 
415 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
416  NestedNameSpecifierLoc QualifierLoc,
417  SourceLocation TemplateKWLoc, ValueDecl *D,
418  bool RefersToEnclosingVariableOrCapture,
419  const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
420  const TemplateArgumentListInfo *TemplateArgs,
422  : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
423  DNLoc(NameInfo.getInfo()) {
424  DeclRefExprBits.Loc = NameInfo.getLoc();
425  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
426  if (QualifierLoc)
427  new (getTrailingObjects<NestedNameSpecifierLoc>())
428  NestedNameSpecifierLoc(QualifierLoc);
429  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
430  if (FoundD)
431  *getTrailingObjects<NamedDecl *>() = FoundD;
432  DeclRefExprBits.HasTemplateKWAndArgsInfo
433  = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
434  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
435  RefersToEnclosingVariableOrCapture;
436  DeclRefExprBits.NonOdrUseReason = NOUR;
437  if (TemplateArgs) {
439  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
440  TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
441  Deps);
442  assert(!(Deps & TemplateArgumentDependence::Dependent) &&
443  "built a DeclRefExpr with dependent template args");
444  } else if (TemplateKWLoc.isValid()) {
445  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
446  TemplateKWLoc);
447  }
448  DeclRefExprBits.HadMultipleCandidates = 0;
449  setDependence(computeDependence(this, Ctx));
450 }
451 
453  NestedNameSpecifierLoc QualifierLoc,
454  SourceLocation TemplateKWLoc, ValueDecl *D,
455  bool RefersToEnclosingVariableOrCapture,
456  SourceLocation NameLoc, QualType T,
457  ExprValueKind VK, NamedDecl *FoundD,
458  const TemplateArgumentListInfo *TemplateArgs,
459  NonOdrUseReason NOUR) {
460  return Create(Context, QualifierLoc, TemplateKWLoc, D,
461  RefersToEnclosingVariableOrCapture,
462  DeclarationNameInfo(D->getDeclName(), NameLoc),
463  T, VK, FoundD, TemplateArgs, NOUR);
464 }
465 
467  NestedNameSpecifierLoc QualifierLoc,
468  SourceLocation TemplateKWLoc, ValueDecl *D,
469  bool RefersToEnclosingVariableOrCapture,
470  const DeclarationNameInfo &NameInfo,
471  QualType T, ExprValueKind VK,
472  NamedDecl *FoundD,
473  const TemplateArgumentListInfo *TemplateArgs,
474  NonOdrUseReason NOUR) {
475  // Filter out cases where the found Decl is the same as the value refenenced.
476  if (D == FoundD)
477  FoundD = nullptr;
478 
479  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
480  std::size_t Size =
481  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
483  QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
484  HasTemplateKWAndArgsInfo ? 1 : 0,
485  TemplateArgs ? TemplateArgs->size() : 0);
486 
487  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
488  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
489  RefersToEnclosingVariableOrCapture, NameInfo,
490  FoundD, TemplateArgs, T, VK, NOUR);
491 }
492 
494  bool HasQualifier,
495  bool HasFoundDecl,
496  bool HasTemplateKWAndArgsInfo,
497  unsigned NumTemplateArgs) {
498  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
499  std::size_t Size =
500  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
502  HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
503  NumTemplateArgs);
504  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
505  return new (Mem) DeclRefExpr(EmptyShell());
506 }
507 
509  D = NewD;
510  if (getType()->isUndeducedType())
511  setType(NewD->getType());
513 }
514 
516  if (hasQualifier())
517  return getQualifierLoc().getBeginLoc();
518  return getNameInfo().getBeginLoc();
519 }
522  return getRAngleLoc();
523  return getNameInfo().getEndLoc();
524 }
525 
526 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
527  SourceLocation LParen,
528  SourceLocation RParen,
529  QualType ResultTy,
530  TypeSourceInfo *TSI)
531  : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
532  OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
533  setTypeSourceInfo(TSI);
535 }
536 
537 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
538  QualType ResultTy)
539  : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
540 
543  SourceLocation LParen, SourceLocation RParen,
544  TypeSourceInfo *TSI) {
545  QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
546  return new (Ctx)
547  SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
548 }
549 
552  QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
553  return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
554 }
555 
559 }
560 
562  QualType Ty) {
563  auto MangleCallback = [](ASTContext &Ctx,
564  const NamedDecl *ND) -> llvm::Optional<unsigned> {
565  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
566  return RD->getDeviceLambdaManglingNumber();
567  return llvm::None;
568  };
569 
570  std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
571  Context, Context.getDiagnostics(), MangleCallback)};
572 
573  std::string Buffer;
574  Buffer.reserve(128);
575  llvm::raw_string_ostream Out(Buffer);
576  Ctx->mangleTypeName(Ty, Out);
577 
578  return Out.str();
579 }
580 
581 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
582  StringLiteral *SL)
583  : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
584  PredefinedExprBits.Kind = IK;
585  assert((getIdentKind() == IK) &&
586  "IdentKind do not fit in PredefinedExprBitfields!");
587  bool HasFunctionName = SL != nullptr;
588  PredefinedExprBits.HasFunctionName = HasFunctionName;
589  PredefinedExprBits.Loc = L;
590  if (HasFunctionName)
591  setFunctionName(SL);
593 }
594 
595 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
596  : Expr(PredefinedExprClass, Empty) {
597  PredefinedExprBits.HasFunctionName = HasFunctionName;
598 }
599 
601  QualType FNTy, IdentKind IK,
602  StringLiteral *SL) {
603  bool HasFunctionName = SL != nullptr;
604  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
605  alignof(PredefinedExpr));
606  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
607 }
608 
610  bool HasFunctionName) {
611  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
612  alignof(PredefinedExpr));
613  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
614 }
615 
617  switch (IK) {
618  case Func:
619  return "__func__";
620  case Function:
621  return "__FUNCTION__";
622  case FuncDName:
623  return "__FUNCDNAME__";
624  case LFunction:
625  return "L__FUNCTION__";
626  case PrettyFunction:
627  return "__PRETTY_FUNCTION__";
628  case FuncSig:
629  return "__FUNCSIG__";
630  case LFuncSig:
631  return "L__FUNCSIG__";
633  break;
634  }
635  llvm_unreachable("Unknown ident kind for PredefinedExpr");
636 }
637 
638 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
639 // expr" policy instead.
641  ASTContext &Context = CurrentDecl->getASTContext();
642 
643  if (IK == PredefinedExpr::FuncDName) {
644  if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
645  std::unique_ptr<MangleContext> MC;
646  MC.reset(Context.createMangleContext());
647 
648  if (MC->shouldMangleDeclName(ND)) {
649  SmallString<256> Buffer;
650  llvm::raw_svector_ostream Out(Buffer);
651  GlobalDecl GD;
652  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
653  GD = GlobalDecl(CD, Ctor_Base);
654  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
655  GD = GlobalDecl(DD, Dtor_Base);
656  else if (ND->hasAttr<CUDAGlobalAttr>())
657  GD = GlobalDecl(cast<FunctionDecl>(ND));
658  else
659  GD = GlobalDecl(ND);
660  MC->mangleName(GD, Out);
661 
662  if (!Buffer.empty() && Buffer.front() == '\01')
663  return std::string(Buffer.substr(1));
664  return std::string(Buffer.str());
665  }
666  return std::string(ND->getIdentifier()->getName());
667  }
668  return "";
669  }
670  if (isa<BlockDecl>(CurrentDecl)) {
671  // For blocks we only emit something if it is enclosed in a function
672  // For top-level block we'd like to include the name of variable, but we
673  // don't have it at this point.
674  auto DC = CurrentDecl->getDeclContext();
675  if (DC->isFileContext())
676  return "";
677 
678  SmallString<256> Buffer;
679  llvm::raw_svector_ostream Out(Buffer);
680  if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
681  // For nested blocks, propagate up to the parent.
682  Out << ComputeName(IK, DCBlock);
683  else if (auto *DCDecl = dyn_cast<Decl>(DC))
684  Out << ComputeName(IK, DCDecl) << "_block_invoke";
685  return std::string(Out.str());
686  }
687  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
688  if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
689  IK != FuncSig && IK != LFuncSig)
690  return FD->getNameAsString();
691 
692  SmallString<256> Name;
693  llvm::raw_svector_ostream Out(Name);
694 
695  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
696  if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
697  Out << "virtual ";
698  if (MD->isStatic())
699  Out << "static ";
700  }
701 
702  PrintingPolicy Policy(Context.getLangOpts());
703  std::string Proto;
704  llvm::raw_string_ostream POut(Proto);
705 
706  const FunctionDecl *Decl = FD;
707  if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
708  Decl = Pattern;
709  const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
710  const FunctionProtoType *FT = nullptr;
711  if (FD->hasWrittenPrototype())
712  FT = dyn_cast<FunctionProtoType>(AFT);
713 
714  if (IK == FuncSig || IK == LFuncSig) {
715  switch (AFT->getCallConv()) {
716  case CC_C: POut << "__cdecl "; break;
717  case CC_X86StdCall: POut << "__stdcall "; break;
718  case CC_X86FastCall: POut << "__fastcall "; break;
719  case CC_X86ThisCall: POut << "__thiscall "; break;
720  case CC_X86VectorCall: POut << "__vectorcall "; break;
721  case CC_X86RegCall: POut << "__regcall "; break;
722  // Only bother printing the conventions that MSVC knows about.
723  default: break;
724  }
725  }
726 
727  FD->printQualifiedName(POut, Policy);
728 
729  POut << "(";
730  if (FT) {
731  for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
732  if (i) POut << ", ";
733  POut << Decl->getParamDecl(i)->getType().stream(Policy);
734  }
735 
736  if (FT->isVariadic()) {
737  if (FD->getNumParams()) POut << ", ";
738  POut << "...";
739  } else if ((IK == FuncSig || IK == LFuncSig ||
740  !Context.getLangOpts().CPlusPlus) &&
741  !Decl->getNumParams()) {
742  POut << "void";
743  }
744  }
745  POut << ")";
746 
747  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
748  assert(FT && "We must have a written prototype in this case.");
749  if (FT->isConst())
750  POut << " const";
751  if (FT->isVolatile())
752  POut << " volatile";
753  RefQualifierKind Ref = MD->getRefQualifier();
754  if (Ref == RQ_LValue)
755  POut << " &";
756  else if (Ref == RQ_RValue)
757  POut << " &&";
758  }
759 
761  SpecsTy Specs;
762  const DeclContext *Ctx = FD->getDeclContext();
763  while (Ctx && isa<NamedDecl>(Ctx)) {
765  = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
766  if (Spec && !Spec->isExplicitSpecialization())
767  Specs.push_back(Spec);
768  Ctx = Ctx->getParent();
769  }
770 
771  std::string TemplateParams;
772  llvm::raw_string_ostream TOut(TemplateParams);
773  for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
774  const TemplateParameterList *Params =
775  D->getSpecializedTemplate()->getTemplateParameters();
776  const TemplateArgumentList &Args = D->getTemplateArgs();
777  assert(Params->size() == Args.size());
778  for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
779  StringRef Param = Params->getParam(i)->getName();
780  if (Param.empty()) continue;
781  TOut << Param << " = ";
782  Args.get(i).print(Policy, TOut,
784  Policy, Params, i));
785  TOut << ", ";
786  }
787  }
788 
790  = FD->getTemplateSpecializationInfo();
791  if (FSI && !FSI->isExplicitSpecialization()) {
792  const TemplateParameterList* Params
794  const TemplateArgumentList* Args = FSI->TemplateArguments;
795  assert(Params->size() == Args->size());
796  for (unsigned i = 0, e = Params->size(); i != e; ++i) {
797  StringRef Param = Params->getParam(i)->getName();
798  if (Param.empty()) continue;
799  TOut << Param << " = ";
800  Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
801  TOut << ", ";
802  }
803  }
804 
805  TOut.flush();
806  if (!TemplateParams.empty()) {
807  // remove the trailing comma and space
808  TemplateParams.resize(TemplateParams.size() - 2);
809  POut << " [" << TemplateParams << "]";
810  }
811 
812  POut.flush();
813 
814  // Print "auto" for all deduced return types. This includes C++1y return
815  // type deduction and lambdas. For trailing return types resolve the
816  // decltype expression. Otherwise print the real type when this is
817  // not a constructor or destructor.
818  if (isa<CXXMethodDecl>(FD) &&
819  cast<CXXMethodDecl>(FD)->getParent()->isLambda())
820  Proto = "auto " + Proto;
821  else if (FT && FT->getReturnType()->getAs<DecltypeType>())
822  FT->getReturnType()
823  ->getAs<DecltypeType>()
825  .getAsStringInternal(Proto, Policy);
826  else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
827  AFT->getReturnType().getAsStringInternal(Proto, Policy);
828 
829  Out << Proto;
830 
831  return std::string(Name);
832  }
833  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
834  for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
835  // Skip to its enclosing function or method, but not its enclosing
836  // CapturedDecl.
837  if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
838  const Decl *D = Decl::castFromDeclContext(DC);
839  return ComputeName(IK, D);
840  }
841  llvm_unreachable("CapturedDecl not inside a function or method");
842  }
843  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
844  SmallString<256> Name;
845  llvm::raw_svector_ostream Out(Name);
846  Out << (MD->isInstanceMethod() ? '-' : '+');
847  Out << '[';
848 
849  // For incorrect code, there might not be an ObjCInterfaceDecl. Do
850  // a null check to avoid a crash.
851  if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
852  Out << *ID;
853 
854  if (const ObjCCategoryImplDecl *CID =
855  dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
856  Out << '(' << *CID << ')';
857 
858  Out << ' ';
859  MD->getSelector().print(Out);
860  Out << ']';
861 
862  return std::string(Name);
863  }
864  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
865  // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
866  return "top level";
867  }
868  return "";
869 }
870 
872  const llvm::APInt &Val) {
873  if (hasAllocation())
874  C.Deallocate(pVal);
875 
876  BitWidth = Val.getBitWidth();
877  unsigned NumWords = Val.getNumWords();
878  const uint64_t* Words = Val.getRawData();
879  if (NumWords > 1) {
880  pVal = new (C) uint64_t[NumWords];
881  std::copy(Words, Words + NumWords, pVal);
882  } else if (NumWords == 1)
883  VAL = Words[0];
884  else
885  VAL = 0;
886 }
887 
888 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
890  : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
891  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
892  assert(V.getBitWidth() == C.getIntWidth(type) &&
893  "Integer type is not the correct size for constant.");
894  setValue(C, V);
896 }
897 
901  return new (C) IntegerLiteral(C, V, type, l);
902 }
903 
906  return new (C) IntegerLiteral(Empty);
907 }
908 
909 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
911  unsigned Scale)
912  : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
913  Scale(Scale) {
914  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
915  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
916  "Fixed point type is not the correct size for constant.");
917  setValue(C, V);
919 }
920 
922  const llvm::APInt &V,
923  QualType type,
924  SourceLocation l,
925  unsigned Scale) {
926  return new (C) FixedPointLiteral(C, V, type, l, Scale);
927 }
928 
930  EmptyShell Empty) {
931  return new (C) FixedPointLiteral(Empty);
932 }
933 
935  // Currently the longest decimal number that can be printed is the max for an
936  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
937  // which is 43 characters.
938  SmallString<64> S;
940  S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
941  return std::string(S.str());
942 }
943 
945  raw_ostream &OS) {
946  switch (Kind) {
948  break; // no prefix.
950  OS << 'L';
951  break;
953  OS << "u8";
954  break;
956  OS << 'u';
957  break;
959  OS << 'U';
960  break;
961  }
962 
963  switch (Val) {
964  case '\\':
965  OS << "'\\\\'";
966  break;
967  case '\'':
968  OS << "'\\''";
969  break;
970  case '\a':
971  // TODO: K&R: the meaning of '\\a' is different in traditional C
972  OS << "'\\a'";
973  break;
974  case '\b':
975  OS << "'\\b'";
976  break;
977  // Nonstandard escape sequence.
978  /*case '\e':
979  OS << "'\\e'";
980  break;*/
981  case '\f':
982  OS << "'\\f'";
983  break;
984  case '\n':
985  OS << "'\\n'";
986  break;
987  case '\r':
988  OS << "'\\r'";
989  break;
990  case '\t':
991  OS << "'\\t'";
992  break;
993  case '\v':
994  OS << "'\\v'";
995  break;
996  default:
997  // A character literal might be sign-extended, which
998  // would result in an invalid \U escape sequence.
999  // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1000  // are not correctly handled.
1001  if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
1002  Val &= 0xFFu;
1003  if (Val < 256 && isPrintable((unsigned char)Val))
1004  OS << "'" << (char)Val << "'";
1005  else if (Val < 256)
1006  OS << "'\\x" << llvm::format("%02x", Val) << "'";
1007  else if (Val <= 0xFFFF)
1008  OS << "'\\u" << llvm::format("%04x", Val) << "'";
1009  else
1010  OS << "'\\U" << llvm::format("%08x", Val) << "'";
1011  }
1012 }
1013 
1014 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1015  bool isexact, QualType Type, SourceLocation L)
1016  : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1017  setSemantics(V.getSemantics());
1018  FloatingLiteralBits.IsExact = isexact;
1019  setValue(C, V);
1021 }
1022 
1023 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1024  : Expr(FloatingLiteralClass, Empty) {
1025  setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1026  FloatingLiteralBits.IsExact = false;
1027 }
1028 
1030 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1031  bool isexact, QualType Type, SourceLocation L) {
1032  return new (C) FloatingLiteral(C, V, isexact, Type, L);
1033 }
1034 
1037  return new (C) FloatingLiteral(C, Empty);
1038 }
1039 
1040 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1041 /// double. Note that this may cause loss of precision, but is useful for
1042 /// debugging dumps, etc.
1044  llvm::APFloat V = getValue();
1045  bool ignored;
1046  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1047  &ignored);
1048  return V.convertToDouble();
1049 }
1050 
1051 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1052  StringKind SK) {
1053  unsigned CharByteWidth = 0;
1054  switch (SK) {
1055  case Ascii:
1056  case UTF8:
1057  CharByteWidth = Target.getCharWidth();
1058  break;
1059  case Wide:
1060  CharByteWidth = Target.getWCharWidth();
1061  break;
1062  case UTF16:
1063  CharByteWidth = Target.getChar16Width();
1064  break;
1065  case UTF32:
1066  CharByteWidth = Target.getChar32Width();
1067  break;
1068  }
1069  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1070  CharByteWidth /= 8;
1071  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1072  "The only supported character byte widths are 1,2 and 4!");
1073  return CharByteWidth;
1074 }
1075 
1076 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1077  StringKind Kind, bool Pascal, QualType Ty,
1078  const SourceLocation *Loc,
1079  unsigned NumConcatenated)
1080  : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1081  assert(Ctx.getAsConstantArrayType(Ty) &&
1082  "StringLiteral must be of constant array type!");
1083  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1084  unsigned ByteLength = Str.size();
1085  assert((ByteLength % CharByteWidth == 0) &&
1086  "The size of the data must be a multiple of CharByteWidth!");
1087 
1088  // Avoid the expensive division. The compiler should be able to figure it
1089  // out by itself. However as of clang 7, even with the appropriate
1090  // llvm_unreachable added just here, it is not able to do so.
1091  unsigned Length;
1092  switch (CharByteWidth) {
1093  case 1:
1094  Length = ByteLength;
1095  break;
1096  case 2:
1097  Length = ByteLength / 2;
1098  break;
1099  case 4:
1100  Length = ByteLength / 4;
1101  break;
1102  default:
1103  llvm_unreachable("Unsupported character width!");
1104  }
1105 
1106  StringLiteralBits.Kind = Kind;
1107  StringLiteralBits.CharByteWidth = CharByteWidth;
1108  StringLiteralBits.IsPascal = Pascal;
1109  StringLiteralBits.NumConcatenated = NumConcatenated;
1110  *getTrailingObjects<unsigned>() = Length;
1111 
1112  // Initialize the trailing array of SourceLocation.
1113  // This is safe since SourceLocation is POD-like.
1114  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1115  NumConcatenated * sizeof(SourceLocation));
1116 
1117  // Initialize the trailing array of char holding the string data.
1118  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1119 
1121 }
1122 
1123 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1124  unsigned Length, unsigned CharByteWidth)
1125  : Expr(StringLiteralClass, Empty) {
1126  StringLiteralBits.CharByteWidth = CharByteWidth;
1127  StringLiteralBits.NumConcatenated = NumConcatenated;
1128  *getTrailingObjects<unsigned>() = Length;
1129 }
1130 
1132  StringKind Kind, bool Pascal, QualType Ty,
1133  const SourceLocation *Loc,
1134  unsigned NumConcatenated) {
1135  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1136  1, NumConcatenated, Str.size()),
1137  alignof(StringLiteral));
1138  return new (Mem)
1139  StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1140 }
1141 
1143  unsigned NumConcatenated,
1144  unsigned Length,
1145  unsigned CharByteWidth) {
1146  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1147  1, NumConcatenated, Length * CharByteWidth),
1148  alignof(StringLiteral));
1149  return new (Mem)
1150  StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1151 }
1152 
1153 void StringLiteral::outputString(raw_ostream &OS) const {
1154  switch (getKind()) {
1155  case Ascii: break; // no prefix.
1156  case Wide: OS << 'L'; break;
1157  case UTF8: OS << "u8"; break;
1158  case UTF16: OS << 'u'; break;
1159  case UTF32: OS << 'U'; break;
1160  }
1161  OS << '"';
1162  static const char Hex[] = "0123456789ABCDEF";
1163 
1164  unsigned LastSlashX = getLength();
1165  for (unsigned I = 0, N = getLength(); I != N; ++I) {
1166  switch (uint32_t Char = getCodeUnit(I)) {
1167  default:
1168  // FIXME: Convert UTF-8 back to codepoints before rendering.
1169 
1170  // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1171  // Leave invalid surrogates alone; we'll use \x for those.
1172  if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1173  Char <= 0xdbff) {
1174  uint32_t Trail = getCodeUnit(I + 1);
1175  if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1176  Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1177  ++I;
1178  }
1179  }
1180 
1181  if (Char > 0xff) {
1182  // If this is a wide string, output characters over 0xff using \x
1183  // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1184  // codepoint: use \x escapes for invalid codepoints.
1185  if (getKind() == Wide ||
1186  (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1187  // FIXME: Is this the best way to print wchar_t?
1188  OS << "\\x";
1189  int Shift = 28;
1190  while ((Char >> Shift) == 0)
1191  Shift -= 4;
1192  for (/**/; Shift >= 0; Shift -= 4)
1193  OS << Hex[(Char >> Shift) & 15];
1194  LastSlashX = I;
1195  break;
1196  }
1197 
1198  if (Char > 0xffff)
1199  OS << "\\U00"
1200  << Hex[(Char >> 20) & 15]
1201  << Hex[(Char >> 16) & 15];
1202  else
1203  OS << "\\u";
1204  OS << Hex[(Char >> 12) & 15]
1205  << Hex[(Char >> 8) & 15]
1206  << Hex[(Char >> 4) & 15]
1207  << Hex[(Char >> 0) & 15];
1208  break;
1209  }
1210 
1211  // If we used \x... for the previous character, and this character is a
1212  // hexadecimal digit, prevent it being slurped as part of the \x.
1213  if (LastSlashX + 1 == I) {
1214  switch (Char) {
1215  case '0': case '1': case '2': case '3': case '4':
1216  case '5': case '6': case '7': case '8': case '9':
1217  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1218  case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1219  OS << "\"\"";
1220  }
1221  }
1222 
1223  assert(Char <= 0xff &&
1224  "Characters above 0xff should already have been handled.");
1225 
1226  if (isPrintable(Char))
1227  OS << (char)Char;
1228  else // Output anything hard as an octal escape.
1229  OS << '\\'
1230  << (char)('0' + ((Char >> 6) & 7))
1231  << (char)('0' + ((Char >> 3) & 7))
1232  << (char)('0' + ((Char >> 0) & 7));
1233  break;
1234  // Handle some common non-printable cases to make dumps prettier.
1235  case '\\': OS << "\\\\"; break;
1236  case '"': OS << "\\\""; break;
1237  case '\a': OS << "\\a"; break;
1238  case '\b': OS << "\\b"; break;
1239  case '\f': OS << "\\f"; break;
1240  case '\n': OS << "\\n"; break;
1241  case '\r': OS << "\\r"; break;
1242  case '\t': OS << "\\t"; break;
1243  case '\v': OS << "\\v"; break;
1244  }
1245  }
1246  OS << '"';
1247 }
1248 
1249 /// getLocationOfByte - Return a source location that points to the specified
1250 /// byte of this string literal.
1251 ///
1252 /// Strings are amazingly complex. They can be formed from multiple tokens and
1253 /// can have escape sequences in them in addition to the usual trigraph and
1254 /// escaped newline business. This routine handles this complexity.
1255 ///
1256 /// The *StartToken sets the first token to be searched in this function and
1257 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1258 /// returning, it updates the *StartToken to the TokNo of the token being found
1259 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1260 /// string.
1261 /// Using these two parameters can reduce the time complexity from O(n^2) to
1262 /// O(n) if one wants to get the location of byte for all the tokens in a
1263 /// string.
1264 ///
1267  const LangOptions &Features,
1268  const TargetInfo &Target, unsigned *StartToken,
1269  unsigned *StartTokenByteOffset) const {
1270  assert((getKind() == StringLiteral::Ascii ||
1271  getKind() == StringLiteral::UTF8) &&
1272  "Only narrow string literals are currently supported");
1273 
1274  // Loop over all of the tokens in this string until we find the one that
1275  // contains the byte we're looking for.
1276  unsigned TokNo = 0;
1277  unsigned StringOffset = 0;
1278  if (StartToken)
1279  TokNo = *StartToken;
1280  if (StartTokenByteOffset) {
1281  StringOffset = *StartTokenByteOffset;
1282  ByteNo -= StringOffset;
1283  }
1284  while (true) {
1285  assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1286  SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1287 
1288  // Get the spelling of the string so that we can get the data that makes up
1289  // the string literal, not the identifier for the macro it is potentially
1290  // expanded through.
1291  SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1292 
1293  // Re-lex the token to get its length and original spelling.
1294  std::pair<FileID, unsigned> LocInfo =
1295  SM.getDecomposedLoc(StrTokSpellingLoc);
1296  bool Invalid = false;
1297  StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1298  if (Invalid) {
1299  if (StartTokenByteOffset != nullptr)
1300  *StartTokenByteOffset = StringOffset;
1301  if (StartToken != nullptr)
1302  *StartToken = TokNo;
1303  return StrTokSpellingLoc;
1304  }
1305 
1306  const char *StrData = Buffer.data()+LocInfo.second;
1307 
1308  // Create a lexer starting at the beginning of this token.
1309  Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1310  Buffer.begin(), StrData, Buffer.end());
1311  Token TheTok;
1312  TheLexer.LexFromRawLexer(TheTok);
1313 
1314  // Use the StringLiteralParser to compute the length of the string in bytes.
1315  StringLiteralParser SLP(TheTok, SM, Features, Target);
1316  unsigned TokNumBytes = SLP.GetStringLength();
1317 
1318  // If the byte is in this token, return the location of the byte.
1319  if (ByteNo < TokNumBytes ||
1320  (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1321  unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1322 
1323  // Now that we know the offset of the token in the spelling, use the
1324  // preprocessor to get the offset in the original source.
1325  if (StartTokenByteOffset != nullptr)
1326  *StartTokenByteOffset = StringOffset;
1327  if (StartToken != nullptr)
1328  *StartToken = TokNo;
1329  return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1330  }
1331 
1332  // Move to the next string token.
1333  StringOffset += TokNumBytes;
1334  ++TokNo;
1335  ByteNo -= TokNumBytes;
1336  }
1337 }
1338 
1339 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1340 /// corresponds to, e.g. "sizeof" or "[pre]++".
1342  switch (Op) {
1343 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1344 #include "clang/AST/OperationKinds.def"
1345  }
1346  llvm_unreachable("Unknown unary operator");
1347 }
1348 
1351  switch (OO) {
1352  default: llvm_unreachable("No unary operator for overloaded function");
1353  case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1354  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1355  case OO_Amp: return UO_AddrOf;
1356  case OO_Star: return UO_Deref;
1357  case OO_Plus: return UO_Plus;
1358  case OO_Minus: return UO_Minus;
1359  case OO_Tilde: return UO_Not;
1360  case OO_Exclaim: return UO_LNot;
1361  case OO_Coawait: return UO_Coawait;
1362  }
1363 }
1364 
1366  switch (Opc) {
1367  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1368  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1369  case UO_AddrOf: return OO_Amp;
1370  case UO_Deref: return OO_Star;
1371  case UO_Plus: return OO_Plus;
1372  case UO_Minus: return OO_Minus;
1373  case UO_Not: return OO_Tilde;
1374  case UO_LNot: return OO_Exclaim;
1375  case UO_Coawait: return OO_Coawait;
1376  default: return OO_None;
1377  }
1378 }
1379 
1380 
1381 //===----------------------------------------------------------------------===//
1382 // Postfix Operators.
1383 //===----------------------------------------------------------------------===//
1384 
1387  SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1388  unsigned MinNumArgs, ADLCallKind UsesADL)
1389  : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1390  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1391  unsigned NumPreArgs = PreArgs.size();
1392  CallExprBits.NumPreArgs = NumPreArgs;
1393  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1394 
1395  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1396  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1397  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1398  "OffsetToTrailingObjects overflow!");
1399 
1400  CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1401 
1402  setCallee(Fn);
1403  for (unsigned I = 0; I != NumPreArgs; ++I)
1404  setPreArg(I, PreArgs[I]);
1405  for (unsigned I = 0; I != Args.size(); ++I)
1406  setArg(I, Args[I]);
1407  for (unsigned I = Args.size(); I != NumArgs; ++I)
1408  setArg(I, nullptr);
1409 
1410  this->computeDependence();
1411 
1412  CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1413  if (hasStoredFPFeatures())
1414  setStoredFPFeatures(FPFeatures);
1415 }
1416 
1417 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1418  bool HasFPFeatures, EmptyShell Empty)
1419  : Expr(SC, Empty), NumArgs(NumArgs) {
1420  CallExprBits.NumPreArgs = NumPreArgs;
1421  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1422 
1423  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1424  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1425  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1426  "OffsetToTrailingObjects overflow!");
1427  CallExprBits.HasFPFeatures = HasFPFeatures;
1428 }
1429 
1432  SourceLocation RParenLoc,
1433  FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1434  ADLCallKind UsesADL) {
1435  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1436  unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1437  /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1438  void *Mem =
1439  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1440  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1441  RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1442 }
1443 
1445  ExprValueKind VK, SourceLocation RParenLoc,
1446  ADLCallKind UsesADL) {
1447  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1448  "Misaligned memory in CallExpr::CreateTemporary!");
1449  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1450  VK, RParenLoc, FPOptionsOverride(),
1451  /*MinNumArgs=*/0, UsesADL);
1452 }
1453 
1454 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1455  bool HasFPFeatures, EmptyShell Empty) {
1456  unsigned SizeOfTrailingObjects =
1457  CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1458  void *Mem =
1459  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1460  return new (Mem)
1461  CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1462 }
1463 
1464 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1465  switch (SC) {
1466  case CallExprClass:
1467  return sizeof(CallExpr);
1468  case CXXOperatorCallExprClass:
1469  return sizeof(CXXOperatorCallExpr);
1470  case CXXMemberCallExprClass:
1471  return sizeof(CXXMemberCallExpr);
1472  case UserDefinedLiteralClass:
1473  return sizeof(UserDefinedLiteral);
1474  case CUDAKernelCallExprClass:
1475  return sizeof(CUDAKernelCallExpr);
1476  default:
1477  llvm_unreachable("unexpected class deriving from CallExpr!");
1478  }
1479 }
1480 
1482  Expr *CEE = IgnoreParenImpCasts();
1483 
1484  while (SubstNonTypeTemplateParmExpr *NTTP =
1485  dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1486  CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1487  }
1488 
1489  // If we're calling a dereference, look at the pointer instead.
1490  while (true) {
1491  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1492  if (BO->isPtrMemOp()) {
1493  CEE = BO->getRHS()->IgnoreParenImpCasts();
1494  continue;
1495  }
1496  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1497  if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1498  UO->getOpcode() == UO_Plus) {
1499  CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1500  continue;
1501  }
1502  }
1503  break;
1504  }
1505 
1506  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1507  return DRE->getDecl();
1508  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1509  return ME->getMemberDecl();
1510  if (auto *BE = dyn_cast<BlockExpr>(CEE))
1511  return BE->getBlockDecl();
1512 
1513  return nullptr;
1514 }
1515 
1516 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1517 unsigned CallExpr::getBuiltinCallee() const {
1518  auto *FDecl =
1519  dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
1520  return FDecl ? FDecl->getBuiltinID() : 0;
1521 }
1522 
1524  if (unsigned BI = getBuiltinCallee())
1525  return Ctx.BuiltinInfo.isUnevaluated(BI);
1526  return false;
1527 }
1528 
1530  const Expr *Callee = getCallee();
1531  QualType CalleeType = Callee->getType();
1532  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1533  CalleeType = FnTypePtr->getPointeeType();
1534  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1535  CalleeType = BPT->getPointeeType();
1536  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1537  if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1538  return Ctx.VoidTy;
1539 
1540  if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1541  return Ctx.DependentTy;
1542 
1543  // This should never be overloaded and so should never return null.
1544  CalleeType = Expr::findBoundMemberType(Callee);
1545  assert(!CalleeType.isNull());
1546  } else if (CalleeType->isDependentType() ||
1547  CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1548  return Ctx.DependentTy;
1549  }
1550 
1551  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1552  return FnType->getReturnType();
1553 }
1554 
1556  // If the return type is a struct, union, or enum that is marked nodiscard,
1557  // then return the return type attribute.
1558  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1559  if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1560  return A;
1561 
1562  // Otherwise, see if the callee is marked nodiscard and return that attribute
1563  // instead.
1564  const Decl *D = getCalleeDecl();
1565  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1566 }
1567 
1569  if (isa<CXXOperatorCallExpr>(this))
1570  return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1571 
1572  SourceLocation begin = getCallee()->getBeginLoc();
1573  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1574  begin = getArg(0)->getBeginLoc();
1575  return begin;
1576 }
1578  if (isa<CXXOperatorCallExpr>(this))
1579  return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1580 
1581  SourceLocation end = getRParenLoc();
1582  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1583  end = getArg(getNumArgs() - 1)->getEndLoc();
1584  return end;
1585 }
1586 
1588  SourceLocation OperatorLoc,
1589  TypeSourceInfo *tsi,
1590  ArrayRef<OffsetOfNode> comps,
1591  ArrayRef<Expr*> exprs,
1592  SourceLocation RParenLoc) {
1593  void *Mem = C.Allocate(
1594  totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1595 
1596  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1597  RParenLoc);
1598 }
1599 
1601  unsigned numComps, unsigned numExprs) {
1602  void *Mem =
1603  C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1604  return new (Mem) OffsetOfExpr(numComps, numExprs);
1605 }
1606 
1607 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1608  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1610  SourceLocation RParenLoc)
1611  : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1612  OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1613  NumComps(comps.size()), NumExprs(exprs.size()) {
1614  for (unsigned i = 0; i != comps.size(); ++i)
1615  setComponent(i, comps[i]);
1616  for (unsigned i = 0; i != exprs.size(); ++i)
1617  setIndexExpr(i, exprs[i]);
1618 
1620 }
1621 
1623  assert(getKind() == Field || getKind() == Identifier);
1624  if (getKind() == Field)
1625  return getField()->getIdentifier();
1626 
1627  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1628 }
1629 
1631  UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1633  : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1634  OpLoc(op), RParenLoc(rp) {
1635  assert(ExprKind <= UETT_Last && "invalid enum value!");
1636  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1637  assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1638  "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1639  UnaryExprOrTypeTraitExprBits.IsType = false;
1640  Argument.Ex = E;
1642 }
1643 
1644 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1645  ValueDecl *MemberDecl,
1646  const DeclarationNameInfo &NameInfo, QualType T,
1648  NonOdrUseReason NOUR)
1649  : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1650  MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1651  assert(!NameInfo.getName() ||
1652  MemberDecl->getDeclName() == NameInfo.getName());
1653  MemberExprBits.IsArrow = IsArrow;
1654  MemberExprBits.HasQualifierOrFoundDecl = false;
1655  MemberExprBits.HasTemplateKWAndArgsInfo = false;
1656  MemberExprBits.HadMultipleCandidates = false;
1657  MemberExprBits.NonOdrUseReason = NOUR;
1658  MemberExprBits.OperatorLoc = OperatorLoc;
1660 }
1661 
1663  const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1664  NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1665  ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1666  DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1668  bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1669  FoundDecl.getAccess() != MemberDecl->getAccess();
1670  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1671  std::size_t Size =
1674  HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1675  TemplateArgs ? TemplateArgs->size() : 0);
1676 
1677  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1678  MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1679  NameInfo, T, VK, OK, NOUR);
1680 
1681  // FIXME: remove remaining dependence computation to computeDependence().
1682  auto Deps = E->getDependence();
1683  if (HasQualOrFound) {
1684  // FIXME: Wrong. We should be looking at the member declaration we found.
1685  if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1686  Deps |= ExprDependence::TypeValueInstantiation;
1687  else if (QualifierLoc &&
1689  Deps |= ExprDependence::Instantiation;
1690 
1691  E->MemberExprBits.HasQualifierOrFoundDecl = true;
1692 
1694  E->getTrailingObjects<MemberExprNameQualifier>();
1695  NQ->QualifierLoc = QualifierLoc;
1696  NQ->FoundDecl = FoundDecl;
1697  }
1698 
1699  E->MemberExprBits.HasTemplateKWAndArgsInfo =
1700  TemplateArgs || TemplateKWLoc.isValid();
1701 
1702  if (TemplateArgs) {
1703  auto TemplateArgDeps = TemplateArgumentDependence::None;
1704  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1705  TemplateKWLoc, *TemplateArgs,
1706  E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1707  if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1708  Deps |= ExprDependence::Instantiation;
1709  } else if (TemplateKWLoc.isValid()) {
1710  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1711  TemplateKWLoc);
1712  }
1713  E->setDependence(Deps);
1714 
1715  return E;
1716 }
1717 
1719  bool HasQualifier, bool HasFoundDecl,
1720  bool HasTemplateKWAndArgsInfo,
1721  unsigned NumTemplateArgs) {
1722  assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1723  "template args but no template arg info?");
1724  bool HasQualOrFound = HasQualifier || HasFoundDecl;
1725  std::size_t Size =
1727  TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1728  HasTemplateKWAndArgsInfo ? 1 : 0,
1729  NumTemplateArgs);
1730  void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1731  return new (Mem) MemberExpr(EmptyShell());
1732 }
1733 
1735  MemberDecl = NewD;
1736  if (getType()->isUndeducedType())
1737  setType(NewD->getType());
1739 }
1740 
1742  if (isImplicitAccess()) {
1743  if (hasQualifier())
1744  return getQualifierLoc().getBeginLoc();
1745  return MemberLoc;
1746  }
1747 
1748  // FIXME: We don't want this to happen. Rather, we should be able to
1749  // detect all kinds of implicit accesses more cleanly.
1750  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1751  if (BaseStartLoc.isValid())
1752  return BaseStartLoc;
1753  return MemberLoc;
1754 }
1758  EndLoc = getRAngleLoc();
1759  else if (EndLoc.isInvalid())
1760  EndLoc = getBase()->getEndLoc();
1761  return EndLoc;
1762 }
1763 
1764 bool CastExpr::CastConsistency() const {
1765  switch (getCastKind()) {
1766  case CK_DerivedToBase:
1767  case CK_UncheckedDerivedToBase:
1768  case CK_DerivedToBaseMemberPointer:
1769  case CK_BaseToDerived:
1770  case CK_BaseToDerivedMemberPointer:
1771  assert(!path_empty() && "Cast kind should have a base path!");
1772  break;
1773 
1774  case CK_CPointerToObjCPointerCast:
1775  assert(getType()->isObjCObjectPointerType());
1776  assert(getSubExpr()->getType()->isPointerType());
1777  goto CheckNoBasePath;
1778 
1779  case CK_BlockPointerToObjCPointerCast:
1780  assert(getType()->isObjCObjectPointerType());
1781  assert(getSubExpr()->getType()->isBlockPointerType());
1782  goto CheckNoBasePath;
1783 
1784  case CK_ReinterpretMemberPointer:
1785  assert(getType()->isMemberPointerType());
1786  assert(getSubExpr()->getType()->isMemberPointerType());
1787  goto CheckNoBasePath;
1788 
1789  case CK_BitCast:
1790  // Arbitrary casts to C pointer types count as bitcasts.
1791  // Otherwise, we should only have block and ObjC pointer casts
1792  // here if they stay within the type kind.
1793  if (!getType()->isPointerType()) {
1794  assert(getType()->isObjCObjectPointerType() ==
1795  getSubExpr()->getType()->isObjCObjectPointerType());
1796  assert(getType()->isBlockPointerType() ==
1797  getSubExpr()->getType()->isBlockPointerType());
1798  }
1799  goto CheckNoBasePath;
1800 
1801  case CK_AnyPointerToBlockPointerCast:
1802  assert(getType()->isBlockPointerType());
1803  assert(getSubExpr()->getType()->isAnyPointerType() &&
1804  !getSubExpr()->getType()->isBlockPointerType());
1805  goto CheckNoBasePath;
1806 
1807  case CK_CopyAndAutoreleaseBlockObject:
1808  assert(getType()->isBlockPointerType());
1809  assert(getSubExpr()->getType()->isBlockPointerType());
1810  goto CheckNoBasePath;
1811 
1812  case CK_FunctionToPointerDecay:
1813  assert(getType()->isPointerType());
1814  assert(getSubExpr()->getType()->isFunctionType());
1815  goto CheckNoBasePath;
1816 
1817  case CK_AddressSpaceConversion: {
1818  auto Ty = getType();
1819  auto SETy = getSubExpr()->getType();
1820  assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1821  if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1822  Ty = Ty->getPointeeType();
1823  SETy = SETy->getPointeeType();
1824  }
1825  assert((Ty->isDependentType() || SETy->isDependentType()) ||
1826  (!Ty.isNull() && !SETy.isNull() &&
1827  Ty.getAddressSpace() != SETy.getAddressSpace()));
1828  goto CheckNoBasePath;
1829  }
1830  // These should not have an inheritance path.
1831  case CK_Dynamic:
1832  case CK_ToUnion:
1833  case CK_ArrayToPointerDecay:
1834  case CK_NullToMemberPointer:
1835  case CK_NullToPointer:
1836  case CK_ConstructorConversion:
1837  case CK_IntegralToPointer:
1838  case CK_PointerToIntegral:
1839  case CK_ToVoid:
1840  case CK_VectorSplat:
1841  case CK_IntegralCast:
1842  case CK_BooleanToSignedIntegral:
1843  case CK_IntegralToFloating:
1844  case CK_FloatingToIntegral:
1845  case CK_FloatingCast:
1846  case CK_ObjCObjectLValueCast:
1847  case CK_FloatingRealToComplex:
1848  case CK_FloatingComplexToReal:
1849  case CK_FloatingComplexCast:
1850  case CK_FloatingComplexToIntegralComplex:
1851  case CK_IntegralRealToComplex:
1852  case CK_IntegralComplexToReal:
1853  case CK_IntegralComplexCast:
1854  case CK_IntegralComplexToFloatingComplex:
1855  case CK_ARCProduceObject:
1856  case CK_ARCConsumeObject:
1857  case CK_ARCReclaimReturnedObject:
1858  case CK_ARCExtendBlockObject:
1859  case CK_ZeroToOCLOpaqueType:
1860  case CK_IntToOCLSampler:
1861  case CK_FloatingToFixedPoint:
1862  case CK_FixedPointToFloating:
1863  case CK_FixedPointCast:
1864  case CK_FixedPointToIntegral:
1865  case CK_IntegralToFixedPoint:
1866  case CK_MatrixCast:
1867  assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1868  goto CheckNoBasePath;
1869 
1870  case CK_Dependent:
1871  case CK_LValueToRValue:
1872  case CK_NoOp:
1873  case CK_AtomicToNonAtomic:
1874  case CK_NonAtomicToAtomic:
1875  case CK_PointerToBoolean:
1876  case CK_IntegralToBoolean:
1877  case CK_FloatingToBoolean:
1878  case CK_MemberPointerToBoolean:
1879  case CK_FloatingComplexToBoolean:
1880  case CK_IntegralComplexToBoolean:
1881  case CK_LValueBitCast: // -> bool&
1882  case CK_LValueToRValueBitCast:
1883  case CK_UserDefinedConversion: // operator bool()
1884  case CK_BuiltinFnToFnPtr:
1885  case CK_FixedPointToBoolean:
1886  CheckNoBasePath:
1887  assert(path_empty() && "Cast kind should not have a base path!");
1888  break;
1889  }
1890  return true;
1891 }
1892 
1894  switch (CK) {
1895 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1896 #include "clang/AST/OperationKinds.def"
1897  }
1898  llvm_unreachable("Unhandled cast kind!");
1899 }
1900 
1901 namespace {
1902  const Expr *skipImplicitTemporary(const Expr *E) {
1903  // Skip through reference binding to temporary.
1904  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1905  E = Materialize->getSubExpr();
1906 
1907  // Skip any temporary bindings; they're implicit.
1908  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1909  E = Binder->getSubExpr();
1910 
1911  return E;
1912  }
1913 }
1914 
1916  const Expr *SubExpr = nullptr;
1917  const CastExpr *E = this;
1918  do {
1919  SubExpr = skipImplicitTemporary(E->getSubExpr());
1920 
1921  // Conversions by constructor and conversion functions have a
1922  // subexpression describing the call; strip it off.
1923  if (E->getCastKind() == CK_ConstructorConversion)
1924  SubExpr =
1925  skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0));
1926  else if (E->getCastKind() == CK_UserDefinedConversion) {
1927  SubExpr = SubExpr->IgnoreImplicit();
1928  assert((isa<CXXMemberCallExpr>(SubExpr) ||
1929  isa<BlockExpr>(SubExpr)) &&
1930  "Unexpected SubExpr for CK_UserDefinedConversion.");
1931  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1932  SubExpr = MCE->getImplicitObjectArgument();
1933  }
1934 
1935  // If the subexpression we're left with is an implicit cast, look
1936  // through that, too.
1937  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1938 
1939  return const_cast<Expr*>(SubExpr);
1940 }
1941 
1943  const Expr *SubExpr = nullptr;
1944 
1945  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1946  SubExpr = skipImplicitTemporary(E->getSubExpr());
1947 
1948  if (E->getCastKind() == CK_ConstructorConversion)
1949  return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1950 
1951  if (E->getCastKind() == CK_UserDefinedConversion) {
1952  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1953  return MCE->getMethodDecl();
1954  }
1955  }
1956 
1957  return nullptr;
1958 }
1959 
1960 CXXBaseSpecifier **CastExpr::path_buffer() {
1961  switch (getStmtClass()) {
1962 #define ABSTRACT_STMT(x)
1963 #define CASTEXPR(Type, Base) \
1964  case Stmt::Type##Class: \
1965  return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1966 #define STMT(Type, Base)
1967 #include "clang/AST/StmtNodes.inc"
1968  default:
1969  llvm_unreachable("non-cast expressions not possible here");
1970  }
1971 }
1972 
1974  QualType opType) {
1975  auto RD = unionType->castAs<RecordType>()->getDecl();
1976  return getTargetFieldForToUnionCast(RD, opType);
1977 }
1978 
1980  QualType OpType) {
1981  auto &Ctx = RD->getASTContext();
1982  RecordDecl::field_iterator Field, FieldEnd;
1983  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1984  Field != FieldEnd; ++Field) {
1985  if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1986  !Field->isUnnamedBitfield()) {
1987  return *Field;
1988  }
1989  }
1990  return nullptr;
1991 }
1992 
1994  assert(hasStoredFPFeatures());
1995  switch (getStmtClass()) {
1996  case ImplicitCastExprClass:
1997  return static_cast<ImplicitCastExpr *>(this)
1998  ->getTrailingObjects<FPOptionsOverride>();
1999  case CStyleCastExprClass:
2000  return static_cast<CStyleCastExpr *>(this)
2001  ->getTrailingObjects<FPOptionsOverride>();
2002  case CXXFunctionalCastExprClass:
2003  return static_cast<CXXFunctionalCastExpr *>(this)
2004  ->getTrailingObjects<FPOptionsOverride>();
2005  case CXXStaticCastExprClass:
2006  return static_cast<CXXStaticCastExpr *>(this)
2007  ->getTrailingObjects<FPOptionsOverride>();
2008  default:
2009  llvm_unreachable("Cast does not have FPFeatures");
2010  }
2011 }
2012 
2014  CastKind Kind, Expr *Operand,
2015  const CXXCastPath *BasePath,
2016  ExprValueKind VK,
2017  FPOptionsOverride FPO) {
2018  unsigned PathSize = (BasePath ? BasePath->size() : 0);
2019  void *Buffer =
2020  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2021  PathSize, FPO.requiresTrailingStorage()));
2022  // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2023  // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2024  assert((Kind != CK_LValueToRValue ||
2025  !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2026  "invalid type for lvalue-to-rvalue conversion");
2027  ImplicitCastExpr *E =
2028  new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2029  if (PathSize)
2030  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2031  E->getTrailingObjects<CXXBaseSpecifier *>());
2032  return E;
2033 }
2034 
2036  unsigned PathSize,
2037  bool HasFPFeatures) {
2038  void *Buffer =
2039  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2040  PathSize, HasFPFeatures));
2041  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2042 }
2043 
2045  ExprValueKind VK, CastKind K, Expr *Op,
2046  const CXXCastPath *BasePath,
2047  FPOptionsOverride FPO,
2048  TypeSourceInfo *WrittenTy,
2050  unsigned PathSize = (BasePath ? BasePath->size() : 0);
2051  void *Buffer =
2052  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2053  PathSize, FPO.requiresTrailingStorage()));
2054  CStyleCastExpr *E =
2055  new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2056  if (PathSize)
2057  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2058  E->getTrailingObjects<CXXBaseSpecifier *>());
2059  return E;
2060 }
2061 
2063  unsigned PathSize,
2064  bool HasFPFeatures) {
2065  void *Buffer =
2066  C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2067  PathSize, HasFPFeatures));
2068  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2069 }
2070 
2071 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2072 /// corresponds to, e.g. "<<=".
2074  switch (Op) {
2075 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2076 #include "clang/AST/OperationKinds.def"
2077  }
2078  llvm_unreachable("Invalid OpCode!");
2079 }
2080 
2083  switch (OO) {
2084  default: llvm_unreachable("Not an overloadable binary operator");
2085  case OO_Plus: return BO_Add;
2086  case OO_Minus: return BO_Sub;
2087  case OO_Star: return BO_Mul;
2088  case OO_Slash: return BO_Div;
2089  case OO_Percent: return BO_Rem;
2090  case OO_Caret: return BO_Xor;
2091  case OO_Amp: return BO_And;
2092  case OO_Pipe: return BO_Or;
2093  case OO_Equal: return BO_Assign;
2094  case OO_Spaceship: return BO_Cmp;
2095  case OO_Less: return BO_LT;
2096  case OO_Greater: return BO_GT;
2097  case OO_PlusEqual: return BO_AddAssign;
2098  case OO_MinusEqual: return BO_SubAssign;
2099  case OO_StarEqual: return BO_MulAssign;
2100  case OO_SlashEqual: return BO_DivAssign;
2101  case OO_PercentEqual: return BO_RemAssign;
2102  case OO_CaretEqual: return BO_XorAssign;
2103  case OO_AmpEqual: return BO_AndAssign;
2104  case OO_PipeEqual: return BO_OrAssign;
2105  case OO_LessLess: return BO_Shl;
2106  case OO_GreaterGreater: return BO_Shr;
2107  case OO_LessLessEqual: return BO_ShlAssign;
2108  case OO_GreaterGreaterEqual: return BO_ShrAssign;
2109  case OO_EqualEqual: return BO_EQ;
2110  case OO_ExclaimEqual: return BO_NE;
2111  case OO_LessEqual: return BO_LE;
2112  case OO_GreaterEqual: return BO_GE;
2113  case OO_AmpAmp: return BO_LAnd;
2114  case OO_PipePipe: return BO_LOr;
2115  case OO_Comma: return BO_Comma;
2116  case OO_ArrowStar: return BO_PtrMemI;
2117  }
2118 }
2119 
2121  static const OverloadedOperatorKind OverOps[] = {
2122  /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2123  OO_Star, OO_Slash, OO_Percent,
2124  OO_Plus, OO_Minus,
2125  OO_LessLess, OO_GreaterGreater,
2126  OO_Spaceship,
2127  OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2128  OO_EqualEqual, OO_ExclaimEqual,
2129  OO_Amp,
2130  OO_Caret,
2131  OO_Pipe,
2132  OO_AmpAmp,
2133  OO_PipePipe,
2134  OO_Equal, OO_StarEqual,
2135  OO_SlashEqual, OO_PercentEqual,
2136  OO_PlusEqual, OO_MinusEqual,
2137  OO_LessLessEqual, OO_GreaterGreaterEqual,
2138  OO_AmpEqual, OO_CaretEqual,
2139  OO_PipeEqual,
2140  OO_Comma
2141  };
2142  return OverOps[Opc];
2143 }
2144 
2146  Opcode Opc,
2147  Expr *LHS, Expr *RHS) {
2148  if (Opc != BO_Add)
2149  return false;
2150 
2151  // Check that we have one pointer and one integer operand.
2152  Expr *PExp;
2153  if (LHS->getType()->isPointerType()) {
2154  if (!RHS->getType()->isIntegerType())
2155  return false;
2156  PExp = LHS;
2157  } else if (RHS->getType()->isPointerType()) {
2158  if (!LHS->getType()->isIntegerType())
2159  return false;
2160  PExp = RHS;
2161  } else {
2162  return false;
2163  }
2164 
2165  // Check that the pointer is a nullptr.
2166  if (!PExp->IgnoreParenCasts()
2168  return false;
2169 
2170  // Check that the pointee type is char-sized.
2171  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2172  if (!PTy || !PTy->getPointeeType()->isCharType())
2173  return false;
2174 
2175  return true;
2176 }
2177 
2180  switch (Kind) {
2181  case SourceLocExpr::File:
2182  case SourceLocExpr::Function: {
2183  QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2184  return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2185  }
2186  case SourceLocExpr::Line:
2187  case SourceLocExpr::Column:
2188  return Ctx.UnsignedIntTy;
2189  }
2190  llvm_unreachable("unhandled case");
2191 }
2192 
2194  SourceLocation BLoc, SourceLocation RParenLoc,
2195  DeclContext *ParentContext)
2196  : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2198  BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2199  SourceLocExprBits.Kind = Kind;
2201 }
2202 
2203 StringRef SourceLocExpr::getBuiltinStr() const {
2204  switch (getIdentKind()) {
2205  case File:
2206  return "__builtin_FILE";
2207  case Function:
2208  return "__builtin_FUNCTION";
2209  case Line:
2210  return "__builtin_LINE";
2211  case Column:
2212  return "__builtin_COLUMN";
2213  }
2214  llvm_unreachable("unexpected IdentKind!");
2215 }
2216 
2218  const Expr *DefaultExpr) const {
2219  SourceLocation Loc;
2220  const DeclContext *Context;
2221 
2222  std::tie(Loc,
2223  Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2224  if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2225  return {DIE->getUsedLocation(), DIE->getUsedContext()};
2226  if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2227  return {DAE->getUsedLocation(), DAE->getUsedContext()};
2228  return {this->getLocation(), this->getParentContext()};
2229  }();
2230 
2233 
2234  auto MakeStringLiteral = [&](StringRef Tmp) {
2235  using LValuePathEntry = APValue::LValuePathEntry;
2237  // Decay the string to a pointer to the first character.
2238  LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2239  return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2240  };
2241 
2242  switch (getIdentKind()) {
2243  case SourceLocExpr::File: {
2244  SmallString<256> Path(PLoc.getFilename());
2245  Ctx.getLangOpts().remapPathPrefix(Path);
2246  return MakeStringLiteral(Path);
2247  }
2248  case SourceLocExpr::Function: {
2249  const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2250  return MakeStringLiteral(
2252  : std::string(""));
2253  }
2254  case SourceLocExpr::Line:
2255  case SourceLocExpr::Column: {
2256  llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2257  /*isUnsigned=*/true);
2258  IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2259  : PLoc.getColumn();
2260  return APValue(IntVal);
2261  }
2262  }
2263  llvm_unreachable("unhandled case");
2264 }
2265 
2267  ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2268  : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2269  InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2270  RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2271  sawArrayRangeDesignator(false);
2272  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2273 
2275 }
2276 
2277 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2278  if (NumInits > InitExprs.size())
2279  InitExprs.reserve(C, NumInits);
2280 }
2281 
2282 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2283  InitExprs.resize(C, NumInits, nullptr);
2284 }
2285 
2286 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2287  if (Init >= InitExprs.size()) {
2288  InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2289  setInit(Init, expr);
2290  return nullptr;
2291  }
2292 
2293  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2294  setInit(Init, expr);
2295  return Result;
2296 }
2297 
2299  assert(!hasArrayFiller() && "Filler already set!");
2300  ArrayFillerOrUnionFieldInit = filler;
2301  // Fill out any "holes" in the array due to designated initializers.
2302  Expr **inits = getInits();
2303  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2304  if (inits[i] == nullptr)
2305  inits[i] = filler;
2306 }
2307 
2309  if (getNumInits() != 1)
2310  return false;
2311  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2312  if (!AT || !AT->getElementType()->isIntegerType())
2313  return false;
2314  // It is possible for getInit() to return null.
2315  const Expr *Init = getInit(0);
2316  if (!Init)
2317  return false;
2318  Init = Init->IgnoreParenImpCasts();
2319  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2320 }
2321 
2323  assert(isSemanticForm() && "syntactic form never semantically transparent");
2324 
2325  // A glvalue InitListExpr is always just sugar.
2326  if (isGLValue()) {
2327  assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2328  return true;
2329  }
2330 
2331  // Otherwise, we're sugar if and only if we have exactly one initializer that
2332  // is of the same type.
2333  if (getNumInits() != 1 || !getInit(0))
2334  return false;
2335 
2336  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2337  // transparent struct copy.
2338  if (!getInit(0)->isPRValue() && getType()->isRecordType())
2339  return false;
2340 
2341  return getType().getCanonicalType() ==
2343 }
2344 
2346  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2347 
2348  if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2349  return false;
2350  }
2351 
2352  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2353  return Lit && Lit->getValue() == 0;
2354 }
2355 
2357  if (InitListExpr *SyntacticForm = getSyntacticForm())
2358  return SyntacticForm->getBeginLoc();
2359  SourceLocation Beg = LBraceLoc;
2360  if (Beg.isInvalid()) {
2361  // Find the first non-null initializer.
2362  for (InitExprsTy::const_iterator I = InitExprs.begin(),
2363  E = InitExprs.end();
2364  I != E; ++I) {
2365  if (Stmt *S = *I) {
2366  Beg = S->getBeginLoc();
2367  break;
2368  }
2369  }
2370  }
2371  return Beg;
2372 }
2373 
2375  if (InitListExpr *SyntacticForm = getSyntacticForm())
2376  return SyntacticForm->getEndLoc();
2377  SourceLocation End = RBraceLoc;
2378  if (End.isInvalid()) {
2379  // Find the first non-null initializer from the end.
2380  for (Stmt *S : llvm::reverse(InitExprs)) {
2381  if (S) {
2382  End = S->getEndLoc();
2383  break;
2384  }
2385  }
2386  }
2387  return End;
2388 }
2389 
2390 /// getFunctionType - Return the underlying function type for this block.
2391 ///
2393  // The block pointer is never sugared, but the function type might be.
2394  return cast<BlockPointerType>(getType())
2396 }
2397 
2399  return TheBlock->getCaretLocation();
2400 }
2401 const Stmt *BlockExpr::getBody() const {
2402  return TheBlock->getBody();
2403 }
2405  return TheBlock->getBody();
2406 }
2407 
2408 
2409 //===----------------------------------------------------------------------===//
2410 // Generic Expression Routines
2411 //===----------------------------------------------------------------------===//
2412 
2414  // In C++11, discarded-value expressions of a certain form are special,
2415  // according to [expr]p10:
2416  // The lvalue-to-rvalue conversion (4.1) is applied only if the
2417  // expression is a glvalue of volatile-qualified type and it has
2418  // one of the following forms:
2419  if (!isGLValue() || !getType().isVolatileQualified())
2420  return false;
2421 
2422  const Expr *E = IgnoreParens();
2423 
2424  // - id-expression (5.1.1),
2425  if (isa<DeclRefExpr>(E))
2426  return true;
2427 
2428  // - subscripting (5.2.1),
2429  if (isa<ArraySubscriptExpr>(E))
2430  return true;
2431 
2432  // - class member access (5.2.5),
2433  if (isa<MemberExpr>(E))
2434  return true;
2435 
2436  // - indirection (5.3.1),
2437  if (auto *UO = dyn_cast<UnaryOperator>(E))
2438  if (UO->getOpcode() == UO_Deref)
2439  return true;
2440 
2441  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2442  // - pointer-to-member operation (5.5),
2443  if (BO->isPtrMemOp())
2444  return true;
2445 
2446  // - comma expression (5.18) where the right operand is one of the above.
2447  if (BO->getOpcode() == BO_Comma)
2448  return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2449  }
2450 
2451  // - conditional expression (5.16) where both the second and the third
2452  // operands are one of the above, or
2453  if (auto *CO = dyn_cast<ConditionalOperator>(E))
2454  return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2455  CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2456  // The related edge case of "*x ?: *x".
2457  if (auto *BCO =
2458  dyn_cast<BinaryConditionalOperator>(E)) {
2459  if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2460  return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2461  BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2462  }
2463 
2464  // Objective-C++ extensions to the rule.
2465  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
2466  return true;
2467 
2468  return false;
2469 }
2470 
2471 /// isUnusedResultAWarning - Return true if this immediate expression should
2472 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2473 /// with location to warn on and the source range[s] to report with the
2474 /// warning.
2476  SourceRange &R1, SourceRange &R2,
2477  ASTContext &Ctx) const {
2478  // Don't warn if the expr is type dependent. The type could end up
2479  // instantiating to void.
2480  if (isTypeDependent())
2481  return false;
2482 
2483  switch (getStmtClass()) {
2484  default:
2485  if (getType()->isVoidType())
2486  return false;
2487  WarnE = this;
2488  Loc = getExprLoc();
2489  R1 = getSourceRange();
2490  return true;
2491  case ParenExprClass:
2492  return cast<ParenExpr>(this)->getSubExpr()->
2493  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2494  case GenericSelectionExprClass:
2495  return cast<GenericSelectionExpr>(this)->getResultExpr()->
2496  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2497  case CoawaitExprClass:
2498  case CoyieldExprClass:
2499  return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2500  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2501  case ChooseExprClass:
2502  return cast<ChooseExpr>(this)->getChosenSubExpr()->
2503  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2504  case UnaryOperatorClass: {
2505  const UnaryOperator *UO = cast<UnaryOperator>(this);
2506 
2507  switch (UO->getOpcode()) {
2508  case UO_Plus:
2509  case UO_Minus:
2510  case UO_AddrOf:
2511  case UO_Not:
2512  case UO_LNot:
2513  case UO_Deref:
2514  break;
2515  case UO_Coawait:
2516  // This is just the 'operator co_await' call inside the guts of a
2517  // dependent co_await call.
2518  case UO_PostInc:
2519  case UO_PostDec:
2520  case UO_PreInc:
2521  case UO_PreDec: // ++/--
2522  return false; // Not a warning.
2523  case UO_Real:
2524  case UO_Imag:
2525  // accessing a piece of a volatile complex is a side-effect.
2526  if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2528  return false;
2529  break;
2530  case UO_Extension:
2531  return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2532  }
2533  WarnE = this;
2534  Loc = UO->getOperatorLoc();
2535  R1 = UO->getSubExpr()->getSourceRange();
2536  return true;
2537  }
2538  case BinaryOperatorClass: {
2539  const BinaryOperator *BO = cast<BinaryOperator>(this);
2540  switch (BO->getOpcode()) {
2541  default:
2542  break;
2543  // Consider the RHS of comma for side effects. LHS was checked by
2544  // Sema::CheckCommaOperands.
2545  case BO_Comma:
2546  // ((foo = <blah>), 0) is an idiom for hiding the result (and
2547  // lvalue-ness) of an assignment written in a macro.
2548  if (IntegerLiteral *IE =
2549  dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2550  if (IE->getValue() == 0)
2551  return false;
2552  return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2553  // Consider '||', '&&' to have side effects if the LHS or RHS does.
2554  case BO_LAnd:
2555  case BO_LOr:
2556  if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2557  !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2558  return false;
2559  break;
2560  }
2561  if (BO->isAssignmentOp())
2562  return false;
2563  WarnE = this;
2564  Loc = BO->getOperatorLoc();
2565  R1 = BO->getLHS()->getSourceRange();
2566  R2 = BO->getRHS()->getSourceRange();
2567  return true;
2568  }
2569  case CompoundAssignOperatorClass:
2570  case VAArgExprClass:
2571  case AtomicExprClass:
2572  return false;
2573 
2574  case ConditionalOperatorClass: {
2575  // If only one of the LHS or RHS is a warning, the operator might
2576  // be being used for control flow. Only warn if both the LHS and
2577  // RHS are warnings.
2578  const auto *Exp = cast<ConditionalOperator>(this);
2579  return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2580  Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2581  }
2582  case BinaryConditionalOperatorClass: {
2583  const auto *Exp = cast<BinaryConditionalOperator>(this);
2584  return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2585  }
2586 
2587  case MemberExprClass:
2588  WarnE = this;
2589  Loc = cast<MemberExpr>(this)->getMemberLoc();
2590  R1 = SourceRange(Loc, Loc);
2591  R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2592  return true;
2593 
2594  case ArraySubscriptExprClass:
2595  WarnE = this;
2596  Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2597  R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2598  R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2599  return true;
2600 
2601  case CXXOperatorCallExprClass: {
2602  // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2603  // overloads as there is no reasonable way to define these such that they
2604  // have non-trivial, desirable side-effects. See the -Wunused-comparison
2605  // warning: operators == and != are commonly typo'ed, and so warning on them
2606  // provides additional value as well. If this list is updated,
2607  // DiagnoseUnusedComparison should be as well.
2608  const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2609  switch (Op->getOperator()) {
2610  default:
2611  break;
2612  case OO_EqualEqual:
2613  case OO_ExclaimEqual:
2614  case OO_Less:
2615  case OO_Greater:
2616  case OO_GreaterEqual:
2617  case OO_LessEqual:
2618  if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2619  Op->getCallReturnType(Ctx)->isVoidType())
2620  break;
2621  WarnE = this;
2622  Loc = Op->getOperatorLoc();
2623  R1 = Op->getSourceRange();
2624  return true;
2625  }
2626 
2627  // Fallthrough for generic call handling.
2628  LLVM_FALLTHROUGH;
2629  }
2630  case CallExprClass:
2631  case CXXMemberCallExprClass:
2632  case UserDefinedLiteralClass: {
2633  // If this is a direct call, get the callee.
2634  const CallExpr *CE = cast<CallExpr>(this);
2635  if (const Decl *FD = CE->getCalleeDecl()) {
2636  // If the callee has attribute pure, const, or warn_unused_result, warn
2637  // about it. void foo() { strlen("bar"); } should warn.
2638  //
2639  // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2640  // updated to match for QoI.
2641  if (CE->hasUnusedResultAttr(Ctx) ||
2642  FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2643  WarnE = this;
2644  Loc = CE->getCallee()->getBeginLoc();
2645  R1 = CE->getCallee()->getSourceRange();
2646 
2647  if (unsigned NumArgs = CE->getNumArgs())
2648  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2649  CE->getArg(NumArgs - 1)->getEndLoc());
2650  return true;
2651  }
2652  }
2653  return false;
2654  }
2655 
2656  // If we don't know precisely what we're looking at, let's not warn.
2657  case UnresolvedLookupExprClass:
2658  case CXXUnresolvedConstructExprClass:
2659  case RecoveryExprClass:
2660  return false;
2661 
2662  case CXXTemporaryObjectExprClass:
2663  case CXXConstructExprClass: {
2664  if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2665  const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2666  if (Type->hasAttr<WarnUnusedAttr>() ||
2667  (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2668  WarnE = this;
2669  Loc = getBeginLoc();
2670  R1 = getSourceRange();
2671  return true;
2672  }
2673  }
2674 
2675  const auto *CE = cast<CXXConstructExpr>(this);
2676  if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2677  const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2678  if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2679  WarnE = this;
2680  Loc = getBeginLoc();
2681  R1 = getSourceRange();
2682 
2683  if (unsigned NumArgs = CE->getNumArgs())
2684  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2685  CE->getArg(NumArgs - 1)->getEndLoc());
2686  return true;
2687  }
2688  }
2689 
2690  return false;
2691  }
2692 
2693  case ObjCMessageExprClass: {
2694  const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2695  if (Ctx.getLangOpts().ObjCAutoRefCount &&
2696  ME->isInstanceMessage() &&
2697  !ME->getType()->isVoidType() &&
2698  ME->getMethodFamily() == OMF_init) {
2699  WarnE = this;
2700  Loc = getExprLoc();
2701  R1 = ME->getSourceRange();
2702  return true;
2703  }
2704 
2705  if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2706  if (MD->hasAttr<WarnUnusedResultAttr>()) {
2707  WarnE = this;
2708  Loc = getExprLoc();
2709  return true;
2710  }
2711 
2712  return false;
2713  }
2714 
2715  case ObjCPropertyRefExprClass:
2716  WarnE = this;
2717  Loc = getExprLoc();
2718  R1 = getSourceRange();
2719  return true;
2720 
2721  case PseudoObjectExprClass: {
2722  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2723 
2724  // Only complain about things that have the form of a getter.
2725  if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2726  isa<BinaryOperator>(PO->getSyntacticForm()))
2727  return false;
2728 
2729  WarnE = this;
2730  Loc = getExprLoc();
2731  R1 = getSourceRange();
2732  return true;
2733  }
2734 
2735  case StmtExprClass: {
2736  // Statement exprs don't logically have side effects themselves, but are
2737  // sometimes used in macros in ways that give them a type that is unused.
2738  // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2739  // however, if the result of the stmt expr is dead, we don't want to emit a
2740  // warning.
2741  const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2742  if (!CS->body_empty()) {
2743  if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2744  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2745  if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2746  if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2747  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2748  }
2749 
2750  if (getType()->isVoidType())
2751  return false;
2752  WarnE = this;
2753  Loc = cast<StmtExpr>(this)->getLParenLoc();
2754  R1 = getSourceRange();
2755  return true;
2756  }
2757  case CXXFunctionalCastExprClass:
2758  case CStyleCastExprClass: {
2759  // Ignore an explicit cast to void, except in C++98 if the operand is a
2760  // volatile glvalue for which we would trigger an implicit read in any
2761  // other language mode. (Such an implicit read always happens as part of
2762  // the lvalue conversion in C, and happens in C++ for expressions of all
2763  // forms where it seems likely the user intended to trigger a volatile
2764  // load.)
2765  const CastExpr *CE = cast<CastExpr>(this);
2766  const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2767  if (CE->getCastKind() == CK_ToVoid) {
2768  if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2770  // Suppress the "unused value" warning for idiomatic usage of
2771  // '(void)var;' used to suppress "unused variable" warnings.
2772  if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2773  if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2774  if (!VD->isExternallyVisible())
2775  return false;
2776 
2777  // The lvalue-to-rvalue conversion would have no effect for an array.
2778  // It's implausible that the programmer expected this to result in a
2779  // volatile array load, so don't warn.
2780  if (SubE->getType()->isArrayType())
2781  return false;
2782 
2783  return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2784  }
2785  return false;
2786  }
2787 
2788  // If this is a cast to a constructor conversion, check the operand.
2789  // Otherwise, the result of the cast is unused.
2790  if (CE->getCastKind() == CK_ConstructorConversion)
2791  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2792  if (CE->getCastKind() == CK_Dependent)
2793  return false;
2794 
2795  WarnE = this;
2796  if (const CXXFunctionalCastExpr *CXXCE =
2797  dyn_cast<CXXFunctionalCastExpr>(this)) {
2798  Loc = CXXCE->getBeginLoc();
2799  R1 = CXXCE->getSubExpr()->getSourceRange();
2800  } else {
2801  const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2802  Loc = CStyleCE->getLParenLoc();
2803  R1 = CStyleCE->getSubExpr()->getSourceRange();
2804  }
2805  return true;
2806  }
2807  case ImplicitCastExprClass: {
2808  const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2809 
2810  // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2811  if (ICE->getCastKind() == CK_LValueToRValue &&
2813  return false;
2814 
2815  return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2816  }
2817  case CXXDefaultArgExprClass:
2818  return (cast<CXXDefaultArgExpr>(this)
2819  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2820  case CXXDefaultInitExprClass:
2821  return (cast<CXXDefaultInitExpr>(this)
2822  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2823 
2824  case CXXNewExprClass:
2825  // FIXME: In theory, there might be new expressions that don't have side
2826  // effects (e.g. a placement new with an uninitialized POD).
2827  case CXXDeleteExprClass:
2828  return false;
2829  case MaterializeTemporaryExprClass:
2830  return cast<MaterializeTemporaryExpr>(this)
2831  ->getSubExpr()
2832  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2833  case CXXBindTemporaryExprClass:
2834  return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2835  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2836  case ExprWithCleanupsClass:
2837  return cast<ExprWithCleanups>(this)->getSubExpr()
2838  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2839  }
2840 }
2841 
2842 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2843 /// returns true, if it is; false otherwise.
2845  const Expr *E = IgnoreParens();
2846  switch (E->getStmtClass()) {
2847  default:
2848  return false;
2849  case ObjCIvarRefExprClass:
2850  return true;
2851  case Expr::UnaryOperatorClass:
2852  return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2853  case ImplicitCastExprClass:
2854  return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2855  case MaterializeTemporaryExprClass:
2856  return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2857  Ctx);
2858  case CStyleCastExprClass:
2859  return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2860  case DeclRefExprClass: {
2861  const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2862 
2863  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2864  if (VD->hasGlobalStorage())
2865  return true;
2866  QualType T = VD->getType();
2867  // dereferencing to a pointer is always a gc'able candidate,
2868  // unless it is __weak.
2869  return T->isPointerType() &&
2870  (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2871  }
2872  return false;
2873  }
2874  case MemberExprClass: {
2875  const MemberExpr *M = cast<MemberExpr>(E);
2876  return M->getBase()->isOBJCGCCandidate(Ctx);
2877  }
2878  case ArraySubscriptExprClass:
2879  return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2880  }
2881 }
2882 
2884  if (isTypeDependent())
2885  return false;
2886  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2887 }
2888 
2890  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2891 
2892  // Bound member expressions are always one of these possibilities:
2893  // x->m x.m x->*y x.*y
2894  // (possibly parenthesized)
2895 
2896  expr = expr->IgnoreParens();
2897  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2898  assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2899  return mem->getMemberDecl()->getType();
2900  }
2901 
2902  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2903  QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2904  ->getPointeeType();
2905  assert(type->isFunctionType());
2906  return type;
2907  }
2908 
2909  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2910  return QualType();
2911 }
2912 
2915 }
2916 
2918  return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2919 }
2920 
2923 }
2924 
2927 }
2928 
2931 }
2932 
2936 }
2937 
2940 }
2941 
2943  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2944  if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2945  return MCE->getImplicitObjectArgument();
2946  }
2947  return this;
2948 }
2949 
2953 }
2954 
2958 }
2959 
2961  auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
2962  if (auto *CE = dyn_cast<CastExpr>(E)) {
2963  // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2964  // ptr<->int casts of the same width. We also ignore all identity casts.
2965  Expr *SubExpr = CE->getSubExpr();
2966  bool IsIdentityCast =
2967  Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2968  bool IsSameWidthCast = (E->getType()->isPointerType() ||
2969  E->getType()->isIntegralType(Ctx)) &&
2970  (SubExpr->getType()->isPointerType() ||
2971  SubExpr->getType()->isIntegralType(Ctx)) &&
2972  (Ctx.getTypeSize(E->getType()) ==
2973  Ctx.getTypeSize(SubExpr->getType()));
2974 
2975  if (IsIdentityCast || IsSameWidthCast)
2976  return SubExpr;
2977  } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2978  return NTTP->getReplacement();
2979 
2980  return E;
2981  };
2983  IgnoreNoopCastsSingleStep);
2984 }
2985 
2988  if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
2989  auto *SE = Cast->getSubExpr();
2990  if (SE->getSourceRange() == E->getSourceRange())
2991  return SE;
2992  }
2993 
2994  if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
2995  auto NumArgs = C->getNumArgs();
2996  if (NumArgs == 1 ||
2997  (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
2998  Expr *A = C->getArg(0);
2999  if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3000  return A;
3001  }
3002  }
3003  return E;
3004  };
3005  auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3006  if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3007  Expr *ExprNode = C->getImplicitObjectArgument();
3008  if (ExprNode->getSourceRange() == E->getSourceRange()) {
3009  return ExprNode;
3010  }
3011  if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3012  if (PE->getSourceRange() == C->getSourceRange()) {
3013  return cast<Expr>(PE);
3014  }
3015  }
3016  ExprNode = ExprNode->IgnoreParenImpCasts();
3017  if (ExprNode->getSourceRange() == E->getSourceRange())
3018  return ExprNode;
3019  }
3020  return E;
3021  };
3022  return IgnoreExprNodes(
3025  IgnoreImplicitMemberCallSingleStep);
3026 }
3027 
3029  const Expr *E = this;
3030  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3031  E = M->getSubExpr();
3032 
3033  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3034  E = ICE->getSubExprAsWritten();
3035 
3036  return isa<CXXDefaultArgExpr>(E);
3037 }
3038 
3039 /// Skip over any no-op casts and any temporary-binding
3040 /// expressions.
3042  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3043  E = M->getSubExpr();
3044 
3045  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3046  if (ICE->getCastKind() == CK_NoOp)
3047  E = ICE->getSubExpr();
3048  else
3049  break;
3050  }
3051 
3052  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3053  E = BE->getSubExpr();
3054 
3055  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3056  if (ICE->getCastKind() == CK_NoOp)
3057  E = ICE->getSubExpr();
3058  else
3059  break;
3060  }
3061 
3062  return E->IgnoreParens();
3063 }
3064 
3065 /// isTemporaryObject - Determines if this expression produces a
3066 /// temporary of the given class type.
3067 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3068  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3069  return false;
3070 
3072 
3073  // Temporaries are by definition pr-values of class type.
3074  if (!E->Classify(C).isPRValue()) {
3075  // In this context, property reference is a message call and is pr-value.
3076  if (!isa<ObjCPropertyRefExpr>(E))
3077  return false;
3078  }
3079 
3080  // Black-list a few cases which yield pr-values of class type that don't
3081  // refer to temporaries of that type:
3082 
3083  // - implicit derived-to-base conversions
3084  if (isa<ImplicitCastExpr>(E)) {
3085  switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3086  case CK_DerivedToBase:
3087  case CK_UncheckedDerivedToBase:
3088  return false;
3089  default:
3090  break;
3091  }
3092  }
3093 
3094  // - member expressions (all)
3095  if (isa<MemberExpr>(E))
3096  return false;
3097 
3098  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3099  if (BO->isPtrMemOp())
3100  return false;
3101 
3102  // - opaque values (all)
3103  if (isa<OpaqueValueExpr>(E))
3104  return false;
3105 
3106  return true;
3107 }
3108 
3110  const Expr *E = this;
3111 
3112  // Strip away parentheses and casts we don't care about.
3113  while (true) {
3114  if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3115  E = Paren->getSubExpr();
3116  continue;
3117  }
3118 
3119  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3120  if (ICE->getCastKind() == CK_NoOp ||
3121  ICE->getCastKind() == CK_LValueToRValue ||
3122  ICE->getCastKind() == CK_DerivedToBase ||
3123  ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3124  E = ICE->getSubExpr();
3125  continue;
3126  }
3127  }
3128 
3129  if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3130  if (UnOp->getOpcode() == UO_Extension) {
3131  E = UnOp->getSubExpr();
3132  continue;
3133  }
3134  }
3135 
3136  if (const MaterializeTemporaryExpr *M
3137  = dyn_cast<MaterializeTemporaryExpr>(E)) {
3138  E = M->getSubExpr();
3139  continue;
3140  }
3141 
3142  break;
3143  }
3144 
3145  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3146  return This->isImplicit();
3147 
3148  return false;
3149 }
3150 
3151 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3152 /// in Exprs is type-dependent.
3154  for (unsigned I = 0; I < Exprs.size(); ++I)
3155  if (Exprs[I]->isTypeDependent())
3156  return true;
3157 
3158  return false;
3159 }
3160 
3161 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3162  const Expr **Culprit) const {
3163  assert(!isValueDependent() &&
3164  "Expression evaluator can't be called on a dependent expression.");
3165 
3166  // This function is attempting whether an expression is an initializer
3167  // which can be evaluated at compile-time. It very closely parallels
3168  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3169  // will lead to unexpected results. Like ConstExprEmitter, it falls back
3170  // to isEvaluatable most of the time.
3171  //
3172  // If we ever capture reference-binding directly in the AST, we can
3173  // kill the second parameter.
3174 
3175  if (IsForRef) {
3176  EvalResult Result;
3177  if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3178  return true;
3179  if (Culprit)
3180  *Culprit = this;
3181  return false;
3182  }
3183 
3184  switch (getStmtClass()) {
3185  default: break;
3186  case Stmt::ExprWithCleanupsClass:
3187  return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3188  Ctx, IsForRef, Culprit);
3189  case StringLiteralClass:
3190  case ObjCEncodeExprClass:
3191  return true;
3192  case CXXTemporaryObjectExprClass:
3193  case CXXConstructExprClass: {
3194  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3195 
3196  if (CE->getConstructor()->isTrivial() &&
3198  // Trivial default constructor
3199  if (!CE->getNumArgs()) return true;
3200 
3201  // Trivial copy constructor
3202  assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3203  return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3204  }
3205 
3206  break;
3207  }
3208  case ConstantExprClass: {
3209  // FIXME: We should be able to return "true" here, but it can lead to extra
3210  // error messages. E.g. in Sema/array-init.c.
3211  const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3212  return Exp->isConstantInitializer(Ctx, false, Culprit);
3213  }
3214  case CompoundLiteralExprClass: {
3215  // This handles gcc's extension that allows global initializers like
3216  // "struct x {int x;} x = (struct x) {};".
3217  // FIXME: This accepts other cases it shouldn't!
3218  const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3219  return Exp->isConstantInitializer(Ctx, false, Culprit);
3220  }
3221  case DesignatedInitUpdateExprClass: {
3222  const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3223  return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3224  DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3225  }
3226  case InitListExprClass: {
3227  const InitListExpr *ILE = cast<InitListExpr>(this);
3228  assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3229  if (ILE->getType()->isArrayType()) {
3230  unsigned numInits = ILE->getNumInits();
3231  for (unsigned i = 0; i < numInits; i++) {
3232  if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3233  return false;
3234  }
3235  return true;
3236  }
3237 
3238  if (ILE->getType()->isRecordType()) {
3239  unsigned ElementNo = 0;
3240  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3241  for (const auto *Field : RD->fields()) {
3242  // If this is a union, skip all the fields that aren't being initialized.
3243  if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3244  continue;
3245 
3246  // Don't emit anonymous bitfields, they just affect layout.
3247  if (Field->isUnnamedBitfield())
3248  continue;
3249 
3250  if (ElementNo < ILE->getNumInits()) {
3251  const Expr *Elt = ILE->getInit(ElementNo++);
3252  if (Field->isBitField()) {
3253  // Bitfields have to evaluate to an integer.
3254  EvalResult Result;
3255  if (!Elt->EvaluateAsInt(Result, Ctx)) {
3256  if (Culprit)
3257  *Culprit = Elt;
3258  return false;
3259  }
3260  } else {
3261  bool RefType = Field->getType()->isReferenceType();
3262  if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3263  return false;
3264  }
3265  }
3266  }
3267  return true;
3268  }
3269 
3270  break;
3271  }
3272  case ImplicitValueInitExprClass:
3273  case NoInitExprClass:
3274  return true;
3275  case ParenExprClass:
3276  return cast<ParenExpr>(this)->getSubExpr()
3277  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3278  case GenericSelectionExprClass:
3279  return cast<GenericSelectionExpr>(this)->getResultExpr()
3280  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3281  case ChooseExprClass:
3282  if (cast<ChooseExpr>(this)->isConditionDependent()) {
3283  if (Culprit)
3284  *Culprit = this;
3285  return false;
3286  }
3287  return cast<ChooseExpr>(this)->getChosenSubExpr()
3288  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3289  case UnaryOperatorClass: {
3290  const UnaryOperator* Exp = cast<UnaryOperator>(this);
3291  if (Exp->getOpcode() == UO_Extension)
3292  return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3293  break;
3294  }
3295  case CXXFunctionalCastExprClass:
3296  case CXXStaticCastExprClass:
3297  case ImplicitCastExprClass:
3298  case CStyleCastExprClass:
3299  case ObjCBridgedCastExprClass:
3300  case CXXDynamicCastExprClass:
3301  case CXXReinterpretCastExprClass:
3302  case CXXAddrspaceCastExprClass:
3303  case CXXConstCastExprClass: {
3304  const CastExpr *CE = cast<CastExpr>(this);
3305 
3306  // Handle misc casts we want to ignore.
3307  if (CE->getCastKind() == CK_NoOp ||
3308  CE->getCastKind() == CK_LValueToRValue ||
3309  CE->getCastKind() == CK_ToUnion ||
3310  CE->getCastKind() == CK_ConstructorConversion ||
3311  CE->getCastKind() == CK_NonAtomicToAtomic ||
3312  CE->getCastKind() == CK_AtomicToNonAtomic ||
3313  CE->getCastKind() == CK_IntToOCLSampler)
3314  return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3315 
3316  break;
3317  }
3318  case MaterializeTemporaryExprClass:
3319  return cast<MaterializeTemporaryExpr>(this)
3320  ->getSubExpr()
3321  ->isConstantInitializer(Ctx, false, Culprit);
3322 
3323  case SubstNonTypeTemplateParmExprClass:
3324  return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3325  ->isConstantInitializer(Ctx, false, Culprit);
3326  case CXXDefaultArgExprClass:
3327  return cast<CXXDefaultArgExpr>(this)->getExpr()
3328  ->isConstantInitializer(Ctx, false, Culprit);
3329  case CXXDefaultInitExprClass:
3330  return cast<CXXDefaultInitExpr>(this)->getExpr()
3331  ->isConstantInitializer(Ctx, false, Culprit);
3332  }
3333  // Allow certain forms of UB in constant initializers: signed integer
3334  // overflow and floating-point division by zero. We'll give a warning on
3335  // these, but they're common enough that we have to accept them.
3337  return true;
3338  if (Culprit)
3339  *Culprit = this;
3340  return false;
3341 }
3342 
3344  const FunctionDecl* FD = getDirectCallee();
3345  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3346  FD->getBuiltinID() != Builtin::BI__builtin_assume))
3347  return false;
3348 
3349  const Expr* Arg = getArg(0);
3350  bool ArgVal;
3351  return !Arg->isValueDependent() &&
3352  Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3353 }
3354 
3355 namespace {
3356  /// Look for any side effects within a Stmt.
3357  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3359  const bool IncludePossibleEffects;
3360  bool HasSideEffects;
3361 
3362  public:
3363  explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3364  : Inherited(Context),
3365  IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3366 
3367  bool hasSideEffects() const { return HasSideEffects; }
3368 
3369  void VisitDecl(const Decl *D) {
3370  if (!D)
3371  return;
3372 
3373  // We assume the caller checks subexpressions (eg, the initializer, VLA
3374  // bounds) for side-effects on our behalf.
3375  if (auto *VD = dyn_cast<VarDecl>(D)) {
3376  // Registering a destructor is a side-effect.
3377  if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3378  VD->needsDestruction(Context))
3379  HasSideEffects = true;
3380  }
3381  }
3382 
3383  void VisitDeclStmt(const DeclStmt *DS) {
3384  for (auto *D : DS->decls())
3385  VisitDecl(D);
3386  Inherited::VisitDeclStmt(DS);
3387  }
3388 
3389  void VisitExpr(const Expr *E) {
3390  if (!HasSideEffects &&
3391  E->HasSideEffects(Context, IncludePossibleEffects))
3392  HasSideEffects = true;
3393  }
3394  };
3395 }
3396 
3398  bool IncludePossibleEffects) const {
3399  // In circumstances where we care about definite side effects instead of
3400  // potential side effects, we want to ignore expressions that are part of a
3401  // macro expansion as a potential side effect.
3402  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3403  return false;
3404 
3405  switch (getStmtClass()) {
3406  case NoStmtClass:
3407  #define ABSTRACT_STMT(Type)
3408  #define STMT(Type, Base) case Type##Class:
3409  #define EXPR(Type, Base)
3410  #include "clang/AST/StmtNodes.inc"
3411  llvm_unreachable("unexpected Expr kind");
3412 
3413  case DependentScopeDeclRefExprClass:
3414  case CXXUnresolvedConstructExprClass:
3415  case CXXDependentScopeMemberExprClass:
3416  case UnresolvedLookupExprClass:
3417  case UnresolvedMemberExprClass:
3418  case PackExpansionExprClass:
3419  case SubstNonTypeTemplateParmPackExprClass:
3420  case FunctionParmPackExprClass:
3421  case TypoExprClass:
3422  case RecoveryExprClass:
3423  case CXXFoldExprClass:
3424  // Make a conservative assumption for dependent nodes.
3425  return IncludePossibleEffects;
3426 
3427  case DeclRefExprClass:
3428  case ObjCIvarRefExprClass:
3429  case PredefinedExprClass:
3430  case IntegerLiteralClass:
3431  case FixedPointLiteralClass:
3432  case FloatingLiteralClass:
3433  case ImaginaryLiteralClass:
3434  case StringLiteralClass:
3435  case CharacterLiteralClass:
3436  case OffsetOfExprClass:
3437  case ImplicitValueInitExprClass:
3438  case UnaryExprOrTypeTraitExprClass:
3439  case AddrLabelExprClass:
3440  case GNUNullExprClass:
3441  case ArrayInitIndexExprClass:
3442  case NoInitExprClass:
3443  case CXXBoolLiteralExprClass:
3444  case CXXNullPtrLiteralExprClass:
3445  case CXXThisExprClass:
3446  case CXXScalarValueInitExprClass:
3447  case TypeTraitExprClass:
3448  case ArrayTypeTraitExprClass:
3449  case ExpressionTraitExprClass:
3450  case CXXNoexceptExprClass:
3451  case SizeOfPackExprClass:
3452  case ObjCStringLiteralClass:
3453  case ObjCEncodeExprClass:
3454  case ObjCBoolLiteralExprClass:
3455  case ObjCAvailabilityCheckExprClass:
3456  case CXXUuidofExprClass:
3457  case OpaqueValueExprClass:
3458  case SourceLocExprClass:
3459  case ConceptSpecializationExprClass:
3460  case RequiresExprClass:
3461  case SYCLUniqueStableNameExprClass:
3462  // These never have a side-effect.
3463  return false;
3464 
3465  case ConstantExprClass:
3466  // FIXME: Move this into the "return false;" block above.
3467  return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3468  Ctx, IncludePossibleEffects);
3469 
3470  case CallExprClass:
3471  case CXXOperatorCallExprClass:
3472  case CXXMemberCallExprClass:
3473  case CUDAKernelCallExprClass:
3474  case UserDefinedLiteralClass: {
3475  // We don't know a call definitely has side effects, except for calls
3476  // to pure/const functions that definitely don't.
3477  // If the call itself is considered side-effect free, check the operands.
3478  const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3479  bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3480  if (IsPure || !IncludePossibleEffects)
3481  break;
3482  return true;
3483  }
3484 
3485  case BlockExprClass:
3486  case CXXBindTemporaryExprClass:
3487  if (!IncludePossibleEffects)
3488  break;
3489  return true;
3490 
3491  case MSPropertyRefExprClass:
3492  case MSPropertySubscriptExprClass:
3493  case CompoundAssignOperatorClass:
3494  case VAArgExprClass:
3495  case AtomicExprClass:
3496  case CXXThrowExprClass:
3497  case CXXNewExprClass:
3498  case CXXDeleteExprClass:
3499  case CoawaitExprClass:
3500  case DependentCoawaitExprClass:
3501  case CoyieldExprClass:
3502  // These always have a side-effect.
3503  return true;
3504 
3505  case StmtExprClass: {
3506  // StmtExprs have a side-effect if any substatement does.
3507  SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3508  Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3509  return Finder.hasSideEffects();
3510  }
3511 
3512  case ExprWithCleanupsClass:
3513  if (IncludePossibleEffects)
3514  if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3515  return true;
3516  break;
3517 
3518  case ParenExprClass:
3519  case ArraySubscriptExprClass:
3520  case MatrixSubscriptExprClass:
3521  case OMPArraySectionExprClass:
3522  case OMPArrayShapingExprClass:
3523  case OMPIteratorExprClass:
3524  case MemberExprClass:
3525  case ConditionalOperatorClass:
3526  case BinaryConditionalOperatorClass:
3527  case CompoundLiteralExprClass:
3528  case ExtVectorElementExprClass:
3529  case DesignatedInitExprClass:
3530  case DesignatedInitUpdateExprClass:
3531  case ArrayInitLoopExprClass:
3532  case ParenListExprClass:
3533  case CXXPseudoDestructorExprClass:
3534  case CXXRewrittenBinaryOperatorClass:
3535  case CXXStdInitializerListExprClass:
3536  case SubstNonTypeTemplateParmExprClass:
3537  case MaterializeTemporaryExprClass:
3538  case ShuffleVectorExprClass:
3539  case ConvertVectorExprClass:
3540  case AsTypeExprClass:
3541  // These have a side-effect if any subexpression does.
3542  break;
3543 
3544  case UnaryOperatorClass:
3545  if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3546  return true;
3547  break;
3548 
3549  case BinaryOperatorClass:
3550  if (cast<BinaryOperator>(this)->isAssignmentOp())
3551  return true;
3552  break;
3553 
3554  case InitListExprClass:
3555  // FIXME: The children for an InitListExpr doesn't include the array filler.
3556  if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3557  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3558  return true;
3559  break;
3560 
3561  case GenericSelectionExprClass:
3562  return cast<GenericSelectionExpr>(this)->getResultExpr()->
3563  HasSideEffects(Ctx, IncludePossibleEffects);
3564 
3565  case ChooseExprClass:
3566  return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3567  Ctx, IncludePossibleEffects);
3568 
3569  case CXXDefaultArgExprClass:
3570  return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3571  Ctx, IncludePossibleEffects);
3572 
3573  case CXXDefaultInitExprClass: {
3574  const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3575  if (const Expr *E = FD->getInClassInitializer())
3576  return E->HasSideEffects(Ctx, IncludePossibleEffects);
3577  // If we've not yet parsed the initializer, assume it has side-effects.
3578  return true;
3579  }
3580 
3581  case CXXDynamicCastExprClass: {
3582  // A dynamic_cast expression has side-effects if it can throw.
3583  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3584  if (DCE->getTypeAsWritten()->isReferenceType() &&
3585  DCE->getCastKind() == CK_Dynamic)
3586  return true;
3587  }
3588  LLVM_FALLTHROUGH;
3589  case ImplicitCastExprClass:
3590  case CStyleCastExprClass:
3591  case CXXStaticCastExprClass:
3592  case CXXReinterpretCastExprClass:
3593  case CXXConstCastExprClass:
3594  case CXXAddrspaceCastExprClass:
3595  case CXXFunctionalCastExprClass:
3596  case BuiltinBitCastExprClass: {
3597  // While volatile reads are side-effecting in both C and C++, we treat them
3598  // as having possible (not definite) side-effects. This allows idiomatic
3599  // code to behave without warning, such as sizeof(*v) for a volatile-
3600  // qualified pointer.
3601  if (!IncludePossibleEffects)
3602  break;
3603 
3604  const CastExpr *CE = cast<CastExpr>(this);
3605  if (CE->getCastKind() == CK_LValueToRValue &&
3607  return true;
3608  break;
3609  }
3610 
3611  case CXXTypeidExprClass:
3612  // typeid might throw if its subexpression is potentially-evaluated, so has
3613  // side-effects in that case whether or not its subexpression does.
3614  return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3615 
3616  case CXXConstructExprClass:
3617  case CXXTemporaryObjectExprClass: {
3618  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3619  if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3620  return true;
3621  // A trivial constructor does not add any side-effects of its own. Just look
3622  // at its arguments.
3623  break;
3624  }
3625 
3626  case CXXInheritedCtorInitExprClass: {
3627  const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3628  if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3629  return true;
3630  break;
3631  }
3632 
3633  case LambdaExprClass: {
3634  const LambdaExpr *LE = cast<LambdaExpr>(this);
3635  for (Expr *E : LE->capture_inits())
3636  if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3637  return true;
3638  return false;
3639  }
3640 
3641  case PseudoObjectExprClass: {
3642  // Only look for side-effects in the semantic form, and look past
3643  // OpaqueValueExpr bindings in that form.
3644  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3646  E = PO->semantics_end();
3647  I != E; ++I) {
3648  const Expr *Subexpr = *I;
3649  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3650  Subexpr = OVE->getSourceExpr();
3651  if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3652  return true;
3653  }
3654  return false;
3655  }
3656 
3657  case ObjCBoxedExprClass:
3658  case ObjCArrayLiteralClass:
3659  case ObjCDictionaryLiteralClass:
3660  case ObjCSelectorExprClass:
3661  case ObjCProtocolExprClass:
3662  case ObjCIsaExprClass:
3663  case ObjCIndirectCopyRestoreExprClass:
3664  case ObjCSubscriptRefExprClass:
3665  case ObjCBridgedCastExprClass:
3666  case ObjCMessageExprClass:
3667  case ObjCPropertyRefExprClass:
3668  // FIXME: Classify these cases better.
3669  if (IncludePossibleEffects)
3670  return true;
3671  break;
3672  }
3673 
3674  // Recurse to children.
3675  for (const Stmt *SubStmt : children())
3676  if (SubStmt &&
3677  cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3678  return true;
3679 
3680  return false;
3681 }
3682 
3684  if (auto Call = dyn_cast<CallExpr>(this))
3685  return Call->getFPFeaturesInEffect(LO);
3686  if (auto UO = dyn_cast<UnaryOperator>(this))
3687  return UO->getFPFeaturesInEffect(LO);
3688  if (auto BO = dyn_cast<BinaryOperator>(this))
3689  return BO->getFPFeaturesInEffect(LO);
3690  if (auto Cast = dyn_cast<CastExpr>(this))
3691  return Cast->getFPFeaturesInEffect(LO);
3693 }
3694 
3695 namespace {
3696  /// Look for a call to a non-trivial function within an expression.
3697  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3698  {
3700 
3701  bool NonTrivial;
3702 
3703  public:
3704  explicit NonTrivialCallFinder(const ASTContext &Context)
3705  : Inherited(Context), NonTrivial(false) { }
3706 
3707  bool hasNonTrivialCall() const { return NonTrivial; }
3708 
3709  void VisitCallExpr(const CallExpr *E) {
3710  if (const CXXMethodDecl *Method
3711  = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3712  if (Method->isTrivial()) {
3713  // Recurse to children of the call.
3714  Inherited::VisitStmt(E);
3715  return;
3716  }
3717  }
3718 
3719  NonTrivial = true;
3720  }
3721 
3722  void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3723  if (E->getConstructor()->isTrivial()) {
3724  // Recurse to children of the call.
3725  Inherited::VisitStmt(E);
3726  return;
3727  }
3728 
3729  NonTrivial = true;
3730  }
3731 
3732  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3733  if (E->getTemporary()->getDestructor()->isTrivial()) {
3734  Inherited::VisitStmt(E);
3735  return;
3736  }
3737 
3738  NonTrivial = true;
3739  }
3740  };
3741 }
3742 
3743 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3744  NonTrivialCallFinder Finder(Ctx);
3745  Finder.Visit(this);
3746  return Finder.hasNonTrivialCall();
3747 }
3748 
3749 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3750 /// pointer constant or not, as well as the specific kind of constant detected.
3751 /// Null pointer constants can be integer constant expressions with the
3752 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3753 /// (a GNU extension).
3757  if (isValueDependent() &&
3758  (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3759  // Error-dependent expr should never be a null pointer.
3760  if (containsErrors())
3761  return NPCK_NotNull;
3762  switch (NPC) {
3764  llvm_unreachable("Unexpected value dependent expression!");
3766  if (isTypeDependent() || getType()->isIntegralType(Ctx))
3767  return NPCK_ZeroExpression;
3768  else
3769  return NPCK_NotNull;
3770 
3772  return NPCK_NotNull;
3773  }
3774  }
3775 
3776  // Strip off a cast to void*, if it exists. Except in C++.
3777  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3778  if (!Ctx.getLangOpts().CPlusPlus) {
3779  // Check that it is a cast to void*.
3780  if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3781  QualType Pointee = PT->getPointeeType();
3782  Qualifiers Qs = Pointee.getQualifiers();
3783  // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3784  // has non-default address space it is not treated as nullptr.
3785  // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3786  // since it cannot be assigned to a pointer to constant address space.
3787  if (Ctx.getLangOpts().OpenCL &&
3789  Qs.removeAddressSpace();
3790 
3791  if (Pointee->isVoidType() && Qs.empty() && // to void*
3792  CE->getSubExpr()->getType()->isIntegerType()) // from int
3793  return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3794  }
3795  }
3796  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3797  // Ignore the ImplicitCastExpr type entirely.
3798  return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3799  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3800  // Accept ((void*)0) as a null pointer constant, as many other
3801  // implementations do.
3802  return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3803  } else if (const GenericSelectionExpr *GE =
3804  dyn_cast<GenericSelectionExpr>(this)) {
3805  if (GE->isResultDependent())
3806  return NPCK_NotNull;
3807  return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3808  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3809  if (CE->isConditionDependent())
3810  return NPCK_NotNull;
3811  return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3812  } else if (const CXXDefaultArgExpr *DefaultArg
3813  = dyn_cast<CXXDefaultArgExpr>(this)) {
3814  // See through default argument expressions.
3815  return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3816  } else if (const CXXDefaultInitExpr *DefaultInit
3817  = dyn_cast<CXXDefaultInitExpr>(this)) {
3818  // See through default initializer expressions.
3819  return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3820  } else if (isa<GNUNullExpr>(this)) {
3821  // The GNU __null extension is always a null pointer constant.
3822  return NPCK_GNUNull;
3823  } else if (const MaterializeTemporaryExpr *M
3824  = dyn_cast<MaterializeTemporaryExpr>(this)) {
3825  return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3826  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3827  if (const Expr *Source = OVE->getSourceExpr())
3828  return Source->isNullPointerConstant(Ctx, NPC);
3829  }
3830 
3831  // If the expression has no type information, it cannot be a null pointer
3832  // constant.
3833  if (getType().isNull())
3834  return NPCK_NotNull;
3835 
3836  // C++11 nullptr_t is always a null pointer constant.
3837  if (getType()->isNullPtrType())
3838  return NPCK_CXX11_nullptr;
3839 
3840  if (const RecordType *UT = getType()->getAsUnionType())
3841  if (!Ctx.getLangOpts().CPlusPlus11 &&
3842  UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3843  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3844  const Expr *InitExpr = CLE->getInitializer();
3845  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3846  return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3847  }
3848  // This expression must be an integer type.
3849  if (!getType()->isIntegerType() ||
3850  (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3851  return NPCK_NotNull;
3852 
3853  if (Ctx.getLangOpts().CPlusPlus11) {
3854  // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3855  // value zero or a prvalue of type std::nullptr_t.
3856  // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3857  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3858  if (Lit && !Lit->getValue())
3859  return NPCK_ZeroLiteral;
3860  if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3861  return NPCK_NotNull;
3862  } else {
3863  // If we have an integer constant expression, we need to *evaluate* it and
3864  // test for the value 0.
3865  if (!isIntegerConstantExpr(Ctx))
3866  return NPCK_NotNull;
3867  }
3868 
3869  if (EvaluateKnownConstInt(Ctx) != 0)
3870  return NPCK_NotNull;
3871 
3872  if (isa<IntegerLiteral>(this))
3873  return NPCK_ZeroLiteral;
3874  return NPCK_ZeroExpression;
3875 }
3876 
3877 /// If this expression is an l-value for an Objective C
3878 /// property, find the underlying property reference expression.
3880  const Expr *E = this;
3881  while (true) {
3882  assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3883  "expression is not a property reference");
3884  E = E->IgnoreParenCasts();
3885  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3886  if (BO->getOpcode() == BO_Comma) {
3887  E = BO->getRHS();
3888  continue;
3889  }
3890  }
3891 
3892  break;
3893  }
3894 
3895  return cast<ObjCPropertyRefExpr>(E);
3896 }
3897 
3898 bool Expr::isObjCSelfExpr() const {
3899  const Expr *E = IgnoreParenImpCasts();
3900 
3901  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3902  if (!DRE)
3903  return false;
3904 
3905  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3906  if (!Param)
3907  return false;
3908 
3909  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3910  if (!M)
3911  return false;
3912 
3913  return M->getSelfDecl() == Param;
3914 }
3915 
3917  Expr *E = this->IgnoreParens();
3918 
3919  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3920  if (ICE->getCastKind() == CK_LValueToRValue ||
3921  (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
3922  E = ICE->getSubExpr()->IgnoreParens();
3923  else
3924  break;
3925  }
3926 
3927  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3928  if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3929  if (Field->isBitField())
3930  return Field;
3931 
3932  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3933  FieldDecl *Ivar = IvarRef->getDecl();
3934  if (Ivar->isBitField())
3935  return Ivar;
3936  }
3937 
3938  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3939  if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3940  if (Field->isBitField())
3941  return Field;
3942 
3943  if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3944  if (Expr *E = BD->getBinding())
3945  return E->getSourceBitField();
3946  }
3947 
3948  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3949  if (BinOp->isAssignmentOp() && BinOp->getLHS())
3950  return BinOp->getLHS()->getSourceBitField();
3951 
3952  if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3953  return BinOp->getRHS()->getSourceBitField();
3954  }
3955 
3956  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3957  if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3958  return UnOp->getSubExpr()->getSourceBitField();
3959 
3960  return nullptr;
3961 }
3962 
3964  // FIXME: Why do we not just look at the ObjectKind here?
3965  const Expr *E = this->IgnoreParens();
3966 
3967  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3968  if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
3969  E = ICE->getSubExpr()->IgnoreParens();
3970  else
3971  break;
3972  }
3973 
3974  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3975  return ASE->getBase()->getType()->isVectorType();
3976 
3977  if (isa<ExtVectorElementExpr>(E))
3978  return true;
3979 
3980  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3981  if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3982  if (auto *E = BD->getBinding())
3983  return E->refersToVectorElement();
3984 
3985  return false;
3986 }
3987 
3989  const Expr *E = this->IgnoreParenImpCasts();
3990 
3991  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3992  if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3993  if (VD->getStorageClass() == SC_Register &&
3994  VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3995  return true;
3996 
3997  return false;
3998 }
3999 
4000 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4001  E1 = E1->IgnoreParens();
4002  E2 = E2->IgnoreParens();
4003 
4004  if (E1->getStmtClass() != E2->getStmtClass())
4005  return false;
4006 
4007  switch (E1->getStmtClass()) {
4008  default:
4009  return false;
4010  case CXXThisExprClass:
4011  return true;
4012  case DeclRefExprClass: {
4013  // DeclRefExpr without an ImplicitCastExpr can happen for integral
4014  // template parameters.
4015  const auto *DRE1 = cast<DeclRefExpr>(E1);
4016  const auto *DRE2 = cast<DeclRefExpr>(E2);
4017  return DRE1->isPRValue() && DRE2->isPRValue() &&
4018  DRE1->getDecl() == DRE2->getDecl();
4019  }
4020  case ImplicitCastExprClass: {
4021  // Peel off implicit casts.
4022  while (true) {
4023  const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4024  const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4025  if (!ICE1 || !ICE2)
4026  return false;
4027  if (ICE1->getCastKind() != ICE2->getCastKind())
4028  return false;
4029  E1 = ICE1->getSubExpr()->IgnoreParens();
4030  E2 = ICE2->getSubExpr()->IgnoreParens();
4031  // The final cast must be one of these types.
4032  if (ICE1->getCastKind() == CK_LValueToRValue ||
4033  ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4034  ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4035  break;
4036  }
4037  }
4038 
4039  const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4040  const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4041  if (DRE1 && DRE2)
4042  return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4043 
4044  const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4045  const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4046  if (Ivar1 && Ivar2) {
4047  return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4048  declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4049  }
4050 
4051  const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4052  const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4053  if (Array1 && Array2) {
4054  if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4055  return false;
4056 
4057  auto Idx1 = Array1->getIdx();
4058  auto Idx2 = Array2->getIdx();
4059  const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4060  const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4061  if (Integer1 && Integer2) {
4062  if (!llvm::APInt::isSameValue(Integer1->getValue(),
4063  Integer2->getValue()))
4064  return false;
4065  } else {
4066  if (!isSameComparisonOperand(Idx1, Idx2))
4067  return false;
4068  }
4069 
4070  return true;
4071  }
4072 
4073  // Walk the MemberExpr chain.
4074  while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4075  const auto *ME1 = cast<MemberExpr>(E1);
4076  const auto *ME2 = cast<MemberExpr>(E2);
4077  if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4078  return false;
4079  if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4080  if (D->isStaticDataMember())
4081  return true;
4082  E1 = ME1->getBase()->IgnoreParenImpCasts();
4083  E2 = ME2->getBase()->IgnoreParenImpCasts();
4084  }
4085 
4086  if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4087  return true;
4088 
4089  // A static member variable can end the MemberExpr chain with either
4090  // a MemberExpr or a DeclRefExpr.
4091  auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4092  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4093  return DRE->getDecl();
4094  if (const auto *ME = dyn_cast<MemberExpr>(E))
4095  return ME->getMemberDecl();
4096  return nullptr;
4097  };
4098 
4099  const ValueDecl *VD1 = getAnyDecl(E1);
4100  const ValueDecl *VD2 = getAnyDecl(E2);
4101  return declaresSameEntity(VD1, VD2);
4102  }
4103  }
4104 }
4105 
4106 /// isArrow - Return true if the base expression is a pointer to vector,
4107 /// return false if the base expression is a vector.
4109  return getBase()->getType()->isPointerType();
4110 }
4111 
4113  if (const VectorType *VT = getType()->getAs<VectorType>())
4114  return VT->getNumElements();
4115  return 1;
4116 }
4117 
4118 /// containsDuplicateElements - Return true if any element access is repeated.
4120  // FIXME: Refactor this code to an accessor on the AST node which returns the
4121  // "type" of component access, and share with code below and in Sema.
4122  StringRef Comp = Accessor->getName();
4123 
4124  // Halving swizzles do not contain duplicate elements.
4125  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4126  return false;
4127 
4128  // Advance past s-char prefix on hex swizzles.
4129  if (Comp[0] == 's' || Comp[0] == 'S')
4130  Comp = Comp.substr(1);
4131 
4132  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4133  if (Comp.substr(i + 1).contains(Comp[i]))
4134  return true;
4135 
4136  return false;
4137 }
4138 
4139 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4141  SmallVectorImpl<uint32_t> &Elts) const {
4142  StringRef Comp = Accessor->getName();
4143  bool isNumericAccessor = false;
4144  if (Comp[0] == 's' || Comp[0] == 'S') {
4145  Comp = Comp.substr(1);
4146  isNumericAccessor = true;
4147  }
4148 
4149  bool isHi = Comp == "hi";
4150  bool isLo = Comp == "lo";
4151  bool isEven = Comp == "even";
4152  bool isOdd = Comp == "odd";
4153 
4154  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4155  uint64_t Index;
4156 
4157  if (isHi)
4158  Index = e + i;
4159  else if (isLo)
4160  Index = i;
4161  else if (isEven)
4162  Index = 2 * i;
4163  else if (isOdd)
4164  Index = 2 * i + 1;
4165  else
4166  Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4167 
4168  Elts.push_back(Index);
4169  }
4170 }
4171 
4174  SourceLocation RP)
4175  : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4176  BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4177  SubExprs = new (C) Stmt*[args.size()];
4178  for (unsigned i = 0; i != args.size(); i++)
4179  SubExprs[i] = args[i];
4180 
4182 }
4183 
4185  if (SubExprs) C.Deallocate(SubExprs);
4186 
4187  this->NumExprs = Exprs.size();
4188  SubExprs = new (C) Stmt*[NumExprs];
4189  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4190 }
4191 
4192 GenericSelectionExpr::GenericSelectionExpr(
4193  const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4194  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4195  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4196  bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4197  : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4198  AssocExprs[ResultIndex]->getValueKind(),
4199  AssocExprs[ResultIndex]->getObjectKind()),
4200  NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4201  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4202  assert(AssocTypes.size() == AssocExprs.size() &&
4203  "Must have the same number of association expressions"
4204  " and TypeSourceInfo!");
4205  assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4206 
4207  GenericSelectionExprBits.GenericLoc = GenericLoc;
4208  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4209  std::copy(AssocExprs.begin(), AssocExprs.end(),
4210  getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4211  std::copy(AssocTypes.begin(), AssocTypes.end(),
4212  getTrailingObjects<TypeSourceInfo *>());
4213 
4214  setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4215 }
4216 
4217 GenericSelectionExpr::GenericSelectionExpr(
4218  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4219  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4220  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4221  bool ContainsUnexpandedParameterPack)
4222  : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4223  OK_Ordinary),
4224  NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4225  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4226  assert(AssocTypes.size() == AssocExprs.size() &&
4227  "Must have the same number of association expressions"
4228  " and TypeSourceInfo!");
4229 
4230  GenericSelectionExprBits.GenericLoc = GenericLoc;
4231  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4232  std::copy(AssocExprs.begin(), AssocExprs.end(),
4233  getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4234  std::copy(AssocTypes.begin(), AssocTypes.end(),
4235  getTrailingObjects<TypeSourceInfo *>());
4236 
4237  setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4238 }
4239 
4240 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4241  : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4242 
4244  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4245  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4246  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4247  bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4248  unsigned NumAssocs = AssocExprs.size();
4249  void *Mem = Context.Allocate(
4250  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4251  alignof(GenericSelectionExpr));
4252  return new (Mem) GenericSelectionExpr(
4253  Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4254  RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4255 }
4256 
4258  const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4259  ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4260  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4261  bool ContainsUnexpandedParameterPack) {
4262  unsigned NumAssocs = AssocExprs.size();
4263  void *Mem = Context.Allocate(
4264  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4265  alignof(GenericSelectionExpr));
4266  return new (Mem) GenericSelectionExpr(
4267  Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4268  RParenLoc, ContainsUnexpandedParameterPack);
4269 }
4270 
4273  unsigned NumAssocs) {
4274  void *Mem = Context.Allocate(
4275  totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4276  alignof(GenericSelectionExpr));
4277  return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4278 }
4279 
4280 //===----------------------------------------------------------------------===//
4281 // DesignatedInitExpr
4282 //===----------------------------------------------------------------------===//
4283 
4285  assert(Kind == FieldDesignator && "Only valid on a field designator");
4286  if (Field.NameOrField & 0x01)
4287  return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4288  return getField()->getIdentifier();
4289 }
4290 
4291 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4292  llvm::ArrayRef<Designator> Designators,
4293  SourceLocation EqualOrColonLoc,
4294  bool GNUSyntax,
4295  ArrayRef<Expr *> IndexExprs, Expr *Init)
4296  : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4297  Init->getObjectKind()),
4298  EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4299  NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4300  this->Designators = new (C) Designator[NumDesignators];
4301 
4302  // Record the initializer itself.
4303  child_iterator Child = child_begin();
4304  *Child++ = Init;
4305 
4306  // Copy the designators and their subexpressions, computing
4307  // value-dependence along the way.
4308  unsigned IndexIdx = 0;
4309  for (unsigned I = 0; I != NumDesignators; ++I) {
4310  this->Designators[I] = Designators[I];
4311  if (this->Designators[I].isArrayDesignator()) {
4312  // Copy the index expressions into permanent storage.
4313  *Child++ = IndexExprs[IndexIdx++];
4314  } else if (this->Designators[I].isArrayRangeDesignator()) {
4315  // Copy the start/end expressions into permanent storage.
4316  *Child++ = IndexExprs[IndexIdx++];
4317  *Child++ = IndexExprs[IndexIdx++];
4318  }
4319  }
4320 
4321  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4323 }
4324 
4327  llvm::ArrayRef<Designator> Designators,
4328  ArrayRef<Expr*> IndexExprs,
4329  SourceLocation ColonOrEqualLoc,
4330  bool UsesColonSyntax, Expr *Init) {
4331  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4332  alignof(DesignatedInitExpr));
4333  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4334  ColonOrEqualLoc, UsesColonSyntax,
4335  IndexExprs, Init);
4336 }
4337 
4339  unsigned NumIndexExprs) {
4340  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4341  alignof(DesignatedInitExpr));
4342  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4343 }
4344 
4346  const Designator *Desigs,
4347  unsigned NumDesigs) {
4348  Designators = new (C) Designator[NumDesigs];
4349  NumDesignators = NumDesigs;
4350  for (unsigned I = 0; I != NumDesigs; ++I)
4351  Designators[I] = Desigs[I];
4352 }
4353 
4355  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4356  if (size() == 1)
4357  return DIE->getDesignator(0)->getSourceRange();
4358  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4359  DIE->getDesignator(size() - 1)->getEndLoc());
4360 }
4361 
4363  SourceLocation StartLoc;
4364  auto *DIE = const_cast<DesignatedInitExpr *>(this);
4365  Designator &First = *DIE->getDesignator(0);
4366  if (First.isFieldDesignator())
4367  StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4368  else
4369  StartLoc = First.ArrayOrRange.LBracketLoc;
4370  return StartLoc;
4371 }
4372 
4374  return getInit()->getEndLoc();
4375 }
4376 
4378  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4379  return getSubExpr(D.ArrayOrRange.Index + 1);
4380 }
4381 
4383  assert(D.Kind == Designator::ArrayRangeDesignator &&
4384  "Requires array range designator");
4385  return getSubExpr(D.ArrayOrRange.Index + 1);
4386 }
4387 
4389  assert(D.Kind == Designator::ArrayRangeDesignator &&
4390  "Requires array range designator");
4391  return getSubExpr(D.ArrayOrRange.Index + 2);
4392 }
4393 
4394 /// Replaces the designator at index @p Idx with the series
4395 /// of designators in [First, Last).
4397  const Designator *First,
4398  const Designator *Last) {
4399  unsigned NumNewDesignators = Last - First;
4400  if (NumNewDesignators == 0) {
4401  std::copy_backward(Designators + Idx + 1,
4402  Designators + NumDesignators,
4403  Designators + Idx);
4404  --NumNewDesignators;
4405  return;
4406  }
4407  if (NumNewDesignators == 1) {
4408  Designators[Idx] = *First;
4409  return;
4410  }
4411 
4412  Designator *NewDesignators
4413  = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4414  std::copy(Designators, Designators + Idx, NewDesignators);
4415  std::copy(First, Last, NewDesignators + Idx);
4416  std::copy(Designators + Idx + 1, Designators + NumDesignators,
4417  NewDesignators + Idx + NumNewDesignators);
4418  Designators = NewDesignators;
4419  NumDesignators = NumDesignators - 1 + NumNewDesignators;
4420 }
4421 
4423  SourceLocation lBraceLoc,
4424  Expr *baseExpr,
4425  SourceLocation rBraceLoc)
4426  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4427  OK_Ordinary) {
4428  BaseAndUpdaterExprs[0] = baseExpr;
4429 
4430  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4431  ILE->setType(baseExpr->getType());
4432  BaseAndUpdaterExprs[1] = ILE;
4433 
4434  // FIXME: this is wrong, set it correctly.
4436 }
4437 
4439  return getBase()->getBeginLoc();
4440 }
4441 
4443  return getBase()->getEndLoc();
4444 }
4445 
4446 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4447  SourceLocation RParenLoc)
4448  : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4449  LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4450  ParenListExprBits.NumExprs = Exprs.size();
4451 
4452  for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4453  getTrailingObjects<Stmt *>()[I] = Exprs[I];
4455 }
4456 
4457 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4458  : Expr(ParenListExprClass, Empty) {
4459  ParenListExprBits.NumExprs = NumExprs;
4460 }
4461 
4463  SourceLocation LParenLoc,
4464  ArrayRef<Expr *> Exprs,
4465  SourceLocation RParenLoc) {
4466  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4467  alignof(ParenListExpr));
4468  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4469 }
4470 
4472  unsigned NumExprs) {
4473  void *Mem =
4474  Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4475  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4476 }
4477 
4479  Opcode opc, QualType ResTy, ExprValueKind VK,
4480  ExprObjectKind OK, SourceLocation opLoc,
4481  FPOptionsOverride FPFeatures)
4482  : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4483  BinaryOperatorBits.Opc = opc;
4484  assert(!isCompoundAssignmentOp() &&
4485  "Use CompoundAssignOperator for compound assignments");
4486  BinaryOperatorBits.OpLoc = opLoc;
4487  SubExprs[LHS] = lhs;
4488  SubExprs[RHS] = rhs;
4489  BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4490  if (hasStoredFPFeatures())
4491  setStoredFPFeatures(FPFeatures);
4493 }
4494 
4496  Opcode opc, QualType ResTy, ExprValueKind VK,
4497  ExprObjectKind OK, SourceLocation opLoc,
4498  FPOptionsOverride FPFeatures, bool dead2)
4499  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4500  BinaryOperatorBits.Opc = opc;
4501  assert(isCompoundAssignmentOp() &&
4502  "Use CompoundAssignOperator for compound assignments");
4503  BinaryOperatorBits.OpLoc = opLoc;
4504  SubExprs[LHS] = lhs;
4505  SubExprs[RHS] = rhs;
4506  BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4507  if (hasStoredFPFeatures())
4508  setStoredFPFeatures(FPFeatures);
4510 }
4511 
4513  bool HasFPFeatures) {
4514  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4515  void *Mem =
4516  C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4517  return new (Mem) BinaryOperator(EmptyShell());
4518 }
4519 
4521  Expr *rhs, Opcode opc, QualType ResTy,
4523  SourceLocation opLoc,
4524  FPOptionsOverride FPFeatures) {
4525  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4526  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4527  void *Mem =
4528  C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4529  return new (Mem)
4530  BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4531 }
4532 
4534 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4535  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4536  void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4537  alignof(CompoundAssignOperator));
4538  return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4539 }
4540 
4543  Opcode opc, QualType ResTy, ExprValueKind VK,
4544  ExprObjectKind OK, SourceLocation opLoc,
4545  FPOptionsOverride FPFeatures,
4546  QualType CompLHSType, QualType CompResultType) {
4547  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4548  unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4549  void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4550  alignof(CompoundAssignOperator));
4551  return new (Mem)
4552  CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4553  CompLHSType, CompResultType);
4554 }
4555 
4557  bool hasFPFeatures) {
4558  void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4559  alignof(UnaryOperator));
4560  return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4561 }
4562 
4565  SourceLocation l, bool CanOverflow,
4566  FPOptionsOverride FPFeatures)
4567  : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4568  UnaryOperatorBits.Opc = opc;
4569  UnaryOperatorBits.CanOverflow = CanOverflow;
4570  UnaryOperatorBits.Loc = l;
4571  UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4572  if (hasStoredFPFeatures())
4573  setStoredFPFeatures(FPFeatures);
4574  setDependence(computeDependence(this, Ctx));
4575 }
4576 
4578  Opcode opc, QualType type,
4580  SourceLocation l, bool CanOverflow,
4581  FPOptionsOverride FPFeatures) {
4582  bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4583  unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4584  void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4585  return new (Mem)
4586  UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4587 }
4588 
4590  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4591  e = ewc->getSubExpr();
4592  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4593  e = m->getSubExpr();
4594  e = cast<CXXConstructExpr>(e)->getArg(0);
4595  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4596  e = ice->getSubExpr();
4597  return cast<OpaqueValueExpr>(e);
4598 }
4599 
4601  EmptyShell sh,
4602  unsigned numSemanticExprs) {
4603  void *buffer =
4604  Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4605  alignof(PseudoObjectExpr));
4606  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4607 }
4608 
4609 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4610  : Expr(PseudoObjectExprClass, shell) {
4611  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4612 }
4613 
4615  ArrayRef<Expr*> semantics,
4616  unsigned resultIndex) {
4617  assert(syntax && "no syntactic expression!");
4618  assert(semantics.size() && "no semantic expressions!");
4619 
4620  QualType type;
4621  ExprValueKind VK;
4622  if (resultIndex == NoResult) {
4623  type = C.VoidTy;
4624  VK = VK_PRValue;
4625  } else {
4626  assert(resultIndex < semantics.size());
4627  type = semantics[resultIndex]->getType();
4628  VK = semantics[resultIndex]->getValueKind();
4629  assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4630  }
4631 
4632  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4633  alignof(PseudoObjectExpr));
4634  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4635  resultIndex);
4636 }
4637 
4638 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4639  Expr *syntax, ArrayRef<Expr *> semantics,
4640  unsigned resultIndex)
4641  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4642  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4643  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4644 
4645  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4646  Expr *E = (i == 0 ? syntax : semantics[i-1]);
4647  getSubExprsBuffer()[i] = E;
4648 
4649  if (isa<OpaqueValueExpr>(E))
4650  assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4651  "opaque-value semantic expressions for pseudo-object "
4652  "operations must have sources");
4653  }
4654 
4656 }
4657 
4658 //===----------------------------------------------------------------------===//
4659 // Child Iterators for iterating over subexpressions/substatements
4660 //===----------------------------------------------------------------------===//
4661 
4662 // UnaryExprOrTypeTraitExpr
4664  const_child_range CCR =
4665  const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4666  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4667 }
4668 
4670  // If this is of a type and the type is a VLA type (and not a typedef), the
4671  // size expression of the VLA needs to be treated as an executable expression.
4672  // Why isn't this weirdness documented better in StmtIterator?
4673  if (isArgumentType()) {
4674  if (const VariableArrayType *T =
4675  dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4678  }
4679  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4680 }
4681 
4683  AtomicOp op, SourceLocation RP)
4684  : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4685  NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4686  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4687  for (unsigned i = 0; i != args.size(); i++)
4688  SubExprs[i] = args[i];
4690 }
4691 
4693  switch (Op) {
4694  case AO__c11_atomic_init:
4695  case AO__opencl_atomic_init:
4696  case AO__c11_atomic_load:
4697  case AO__atomic_load_n:
4698  return 2;
4699 
4700  case AO__opencl_atomic_load:
4701  case AO__hip_atomic_load:
4702  case AO__c11_atomic_store:
4703  case AO__c11_atomic_exchange:
4704  case AO__atomic_load:
4705  case AO__atomic_store:
4706  case AO__atomic_store_n:
4707  case AO__atomic_exchange_n:
4708  case AO__c11_atomic_fetch_add:
4709  case AO__c11_atomic_fetch_sub:
4710  case AO__c11_atomic_fetch_and:
4711  case AO__c11_atomic_fetch_or:
4712  case AO__c11_atomic_fetch_xor:
4713  case AO__c11_atomic_fetch_nand:
4714  case AO__c11_atomic_fetch_max:
4715  case AO__c11_atomic_fetch_min:
4716  case AO__atomic_fetch_add:
4717  case AO__atomic_fetch_sub:
4718  case AO__atomic_fetch_and:
4719  case AO__atomic_fetch_or:
4720  case AO__atomic_fetch_xor:
4721  case AO__atomic_fetch_nand:
4722  case AO__atomic_add_fetch:
4723  case AO__atomic_sub_fetch:
4724  case AO__atomic_and_fetch:
4725  case AO__atomic_or_fetch:
4726  case AO__atomic_xor_fetch:
4727  case AO__atomic_nand_fetch:
4728  case AO__atomic_min_fetch:
4729  case AO__atomic_max_fetch:
4730  case AO__atomic_fetch_min:
4731  case AO__atomic_fetch_max:
4732  return 3;
4733 
4734  case AO__hip_atomic_exchange:
4735  case AO__hip_atomic_fetch_add:
4736  case AO__hip_atomic_fetch_and:
4737  case AO__hip_atomic_fetch_or:
4738  case AO__hip_atomic_fetch_xor:
4739  case AO__hip_atomic_fetch_min:
4740  case AO__hip_atomic_fetch_max:
4741  case AO__opencl_atomic_store:
4742  case AO__hip_atomic_store:
4743  case AO__opencl_atomic_exchange:
4744  case AO__opencl_atomic_fetch_add:
4745  case AO__opencl_atomic_fetch_sub:
4746  case AO__opencl_atomic_fetch_and:
4747  case AO__opencl_atomic_fetch_or:
4748  case AO__opencl_atomic_fetch_xor:
4749  case AO__opencl_atomic_fetch_min:
4750  case AO__opencl_atomic_fetch_max:
4751  case AO__atomic_exchange:
4752  return 4;
4753 
4754  case AO__c11_atomic_compare_exchange_strong:
4755  case AO__c11_atomic_compare_exchange_weak:
4756  return 5;
4757  case AO__hip_atomic_compare_exchange_strong:
4758  case AO__opencl_atomic_compare_exchange_strong:
4759  case AO__opencl_atomic_compare_exchange_weak:
4760  case AO__hip_atomic_compare_exchange_weak:
4761  case AO__atomic_compare_exchange:
4762  case AO__atomic_compare_exchange_n:
4763  return 6;
4764  }
4765  llvm_unreachable("unknown atomic op");
4766 }
4767 
4769  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4770  if (auto AT = T->getAs<AtomicType>())
4771  return AT->getValueType();
4772  return T;
4773 }
4774 
4776  unsigned ArraySectionCount = 0;
4777  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4778  Base = OASE->getBase();
4779  ++ArraySectionCount;
4780  }
4781  while (auto *ASE =
4782  dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4783  Base = ASE->getBase();
4784  ++ArraySectionCount;
4785  }
4786  Base = Base->IgnoreParenImpCasts();
4787  auto OriginalTy = Base->getType();
4788  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4789  if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4790  OriginalTy = PVD->getOriginalType().getNonReferenceType();
4791 
4792  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4793  if (OriginalTy->isAnyPointerType())
4794  OriginalTy = OriginalTy->getPointeeType();
4795  else {
4796  assert (OriginalTy->isArrayType());
4797  OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4798  }
4799  }
4800  return OriginalTy;
4801 }
4802 
4803 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4804  SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4805  : Expr(RecoveryExprClass, T.getNonReferenceType(),
4806  T->isDependentType() ? VK_LValue : getValueKindForType(T),
4807  OK_Ordinary),
4808  BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4809  assert(!T.isNull());
4810  assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4811 
4812  llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4814 }
4815 
4817  SourceLocation BeginLoc,
4818  SourceLocation EndLoc,
4819  ArrayRef<Expr *> SubExprs) {
4820  void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4821  alignof(RecoveryExpr));
4822  return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4823 }
4824 
4825 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4826  void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4827  alignof(RecoveryExpr));
4828  return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4829 }
4830 
4831 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4832  assert(
4833  NumDims == Dims.size() &&
4834  "Preallocated number of dimensions is different from the provided one.");
4835  llvm::copy(Dims, getTrailingObjects<Expr *>());
4836 }
4837 
4838 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4839  assert(
4840  NumDims == BR.size() &&
4841  "Preallocated number of dimensions is different from the provided one.");
4842  llvm::copy(BR, getTrailingObjects<SourceRange>());
4843 }
4844 
4845 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4847  ArrayRef<Expr *> Dims)
4848  : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4849  RPLoc(R), NumDims(Dims.size()) {
4850  setBase(Op);
4851  setDimensions(Dims);
4853 }
4854 
4858  ArrayRef<Expr *> Dims,
4859  ArrayRef<SourceRange> BracketRanges) {
4860  assert(Dims.size() == BracketRanges.size() &&
4861  "Different number of dimensions and brackets ranges.");
4862  void *Mem = Context.Allocate(
4863  totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4864  alignof(OMPArrayShapingExpr));
4865  auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4866  E->setBracketsRanges(BracketRanges);
4867  return E;
4868 }
4869 
4871  unsigned NumDims) {
4872  void *Mem = Context.Allocate(
4873  totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4874  alignof(OMPArrayShapingExpr));
4875  return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4876 }
4877 
4878 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4879  assert(I < NumIterators &&
4880  "Idx is greater or equal the number of iterators definitions.");
4881  getTrailingObjects<Decl *>()[I] = D;
4882 }
4883 
4884 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4885  assert(I < NumIterators &&
4886  "Idx is greater or equal the number of iterators definitions.");
4887  getTrailingObjects<
4888  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4889  static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4890 }
4891 
4892 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4893  SourceLocation ColonLoc, Expr *End,
4894  SourceLocation SecondColonLoc,
4895  Expr *Step) {
4896  assert(I < NumIterators &&
4897  "Idx is greater or equal the number of iterators definitions.");
4898  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4899  static_cast<int>(RangeExprOffset::Begin)] =
4900  Begin;
4901  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4902  static_cast<int>(RangeExprOffset::End)] = End;
4903  getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4904  static_cast<int>(RangeExprOffset::Step)] = Step;
4905  getTrailingObjects<
4906  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4907  static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4908  ColonLoc;
4909  getTrailingObjects<
4910  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4911  static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4912  SecondColonLoc;
4913 }
4914 
4916  return getTrailingObjects<Decl *>()[I];
4917 }
4918 
4920  IteratorRange Res;
4921  Res.Begin =
4922  getTrailingObjects<Expr *>()[I * static_cast<int>(
4923  RangeExprOffset::Total) +
4924  static_cast<int>(RangeExprOffset::Begin)];
4925  Res.End =
4926  getTrailingObjects<Expr *>()[I * static_cast<int>(
4927  RangeExprOffset::Total) +
4928  static_cast<int>(RangeExprOffset::End)];
4929  Res.Step =
4930  getTrailingObjects<Expr *>()[I * static_cast<int>(
4931  RangeExprOffset::Total) +
4932  static_cast<int>(RangeExprOffset::Step)];
4933  return Res;
4934 }
4935 
4937  return getTrailingObjects<
4938  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4939  static_cast<int>(RangeLocOffset::AssignLoc)];
4940 }
4941 
4943  return getTrailingObjects<
4944  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4945  static_cast<int>(RangeLocOffset::FirstColonLoc)];
4946 }
4947 
4949  return getTrailingObjects<
4950  SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4951  static_cast<int>(RangeLocOffset::SecondColonLoc)];
4952 }
4953 
4954 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4955  getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4956 }
4957 
4959  return getTrailingObjects<OMPIteratorHelperData>()[I];
4960 }
4961 
4963  return getTrailingObjects<OMPIteratorHelperData>()[I];
4964 }
4965 
4966 OMPIteratorExpr::OMPIteratorExpr(
4967  QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4970  : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4971  IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4972  NumIterators(Data.size()) {
4973  for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4974  const IteratorDefinition &D = Data[I];
4975  setIteratorDeclaration(I, D.IteratorDecl);
4976  setAssignmentLoc(I, D.AssignmentLoc);
4977  setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
4978  D.SecondColonLoc, D.Range.Step);
4979  setHelper(I, Helpers[I]);
4980  }
4982 }
4983 
4986  SourceLocation IteratorKwLoc, SourceLocation L,
4987  SourceLocation R,
4990  assert(Data.size() == Helpers.size() &&
4991  "Data and helpers must have the same size.");
4992  void *Mem = Context.Allocate(
4993  totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4994  Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
4995  Data.size() * static_cast<int>(RangeLocOffset::Total),
4996  Helpers.size()),
4997  alignof(OMPIteratorExpr));
4998  return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
4999 }
5000 
5002  unsigned NumIterators) {
5003  void *Mem = Context.Allocate(
5004  totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5005  NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5006  NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5007  alignof(OMPIteratorExpr));
5008  return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5009 }
clang::Type::isIntegralType
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1925
clang::LabelStmt
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1804
clang::CanQual::isVolatileQualified
bool isVolatileQualified() const
Definition: CanonicalType.h:141
clang::ObjCInterfaceDecl
Represents an ObjC class declaration.
Definition: DeclObjC.h:1150
clang::InitListExpr::setInit
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4850
clang::NonOdrUseReason
NonOdrUseReason
The reason why a DeclRefExpr does not constitute an odr-use.
Definition: Specifiers.h:158
clang::OMPIteratorExpr
OpenMP 5.0 [2.1.6 Iterators] Iterators are identifiers that expand to multiple values in the clause o...
Definition: ExprOpenMP.h:272
clang::SubstNonTypeTemplateParmExpr
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4245
clang::Expr::getValueKind
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:430
clang::Expr::getDependence
ExprDependence getDependence() const
Definition: Expr.h:155
clang::InitListExpr::getSyntacticForm
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4953
clang::AtomicExpr::getPtr
Expr * getPtr() const
Definition: Expr.h:6267
clang::IgnoreLValueCastsSingleStep
Expr * IgnoreLValueCastsSingleStep(Expr *E)
Definition: IgnoreExpr.h:90
Builtins.h
clang::ObjCMessageExpr::isInstanceMessage
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition: ExprObjC.h:1238
clang::PredefinedExpr::PrettyFunction
@ PrettyFunction
Definition: Expr.h:1977
clang::Type::isRecordType
bool isRecordType() const
Definition: Type.h:6788
clang::Decl::getASTContext
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:414
clang::Dtor_Base
@ Dtor_Base
Base object dtor.
Definition: ABI.h:36
clang::Type::getAsArrayTypeUnsafe
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type.
Definition: Type.h:7238
clang::RecordDecl::field_begin
field_iterator field_begin() const
Definition: Decl.cpp:4624
clang::StringLiteral::getCodeUnit
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1865
clang::CXXConstructorDecl
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2400
clang::BinaryOperator::isAssignmentOp
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3944
clang::CallExpr::setPreArg
void setPreArg(unsigned I, Stmt *PreArg)
Definition: Expr.h:2889
clang::CC_X86FastCall
@ CC_X86FastCall
Definition: Specifiers.h:266
clang::StringLiteral::UTF16
@ UTF16
Definition: Expr.h:1789
clang::CharacterLiteral::CharacterKind
CharacterKind
Definition: Expr.h:1586
clang::DesignatedInitExpr::Designator::isArrayRangeDesignator
bool isArrayRangeDesignator() const
Definition: Expr.h:5158
clang::Type::hasAttr
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1777
clang::OffsetOfExpr::setComponent
void setComponent(unsigned Idx, OffsetOfNode ON)
Definition: Expr.h:2498
clang::PredefinedExpr::CreateEmpty
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition: Expr.cpp:609
clang::OffsetOfExpr
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type,...
Definition: Expr.h:2444
clang::AtomicExpr::AtomicExpr
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr * > args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:4682
clang::isPrintable
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:144
clang::DesignatedInitExpr::Designator::isArrayDesignator
bool isArrayDesignator() const
Definition: Expr.h:5157
clang::interp::APInt
llvm::APInt APInt
Definition: Integral.h:27
clang::BinaryOperator::isCompoundAssignmentOp
bool isCompoundAssignmentOp() const
Definition: Expr.h:3952
clang::OK_Ordinary
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition: Specifiers.h:136
clang::DeclContext::specific_decl_iterator
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2129
clang::OffsetOfExpr::Create
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr * > exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1587
type
clang::SYCLUniqueStableNameExpr::CreateEmpty
static SYCLUniqueStableNameExpr * CreateEmpty(const ASTContext &Ctx)
Definition: Expr.cpp:551
clang::DesignatedInitExpr::getSubExpr
Expr * getSubExpr(unsigned Idx) const
Definition: Expr.h:5285
clang::PseudoObjectExpr::semantics_begin
semantics_iterator semantics_begin()
Definition: Expr.h:6169
clang::SourceLocExpr::IdentKind
IdentKind
Definition: Expr.h:4689
clang::SourceLocExpr::SourceLocExpr
SourceLocExpr(const ASTContext &Ctx, IdentKind Type, SourceLocation BLoc, SourceLocation RParenLoc, DeclContext *Context)
Definition: Expr.cpp:2193
clang::CallExpr::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1568
clang::Expr::isLValue
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:270
clang::Stmt::ParenListExprBits
ParenListExprBitfields ParenListExprBits
Definition: Stmt.h:1037
clang::DeclarationNameLoc
DeclarationNameLoc - Additional source/type location info for a declaration name.
Definition: DeclarationName.h:648
clang::FPOptionsOverride::requiresTrailingStorage
bool requiresTrailingStorage() const
Definition: LangOptions.h:625
clang::SourceRange
A trivial tuple used to represent a source range.
Definition: SourceLocation.h:210
string
string(SUBSTRING ${CMAKE_CURRENT_BINARY_DIR} 0 ${PATH_LIB_START} PATH_HEAD) string(SUBSTRING $
Definition: CMakeLists.txt:22
clang::Stmt::PseudoObjectExprBits
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:1039
clang::DeclContext
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1341
clang::DesignatedInitExpr::FieldDesignator
A field designator, e.g., ".x".
Definition: Expr.h:5069
clang::OMPArrayShapingExpr::CreateEmpty
static OMPArrayShapingExpr * CreateEmpty(const ASTContext &Context, unsigned NumDims)
Definition: Expr.cpp:4870
clang::PresumedLoc::getLine
unsigned getLine() const
Return the presumed line number of this location.
Definition: SourceLocation.h:337
clang::SourceLocExpr::getParentContext
const DeclContext * getParentContext() const
If the SourceLocExpr has been resolved return the subexpression representing the resolved value.
Definition: Expr.h:4724
clang::DeclRefExpr::getRAngleLoc
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:1364
clang::StringLiteral::CreateEmpty
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition: Expr.cpp:1142
clang::Decl::hasAttr
bool hasAttr() const
Definition: DeclBase.h:541
clang::InitListExpr::hasArrayFiller
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4898
clang::AtomicExpr::getValueType
QualType getValueType() const
Definition: Expr.cpp:4768
clang::CXXConstructExpr::getNumArgs
unsigned getNumArgs() const
Return the number of arguments to the constructor call.
Definition: ExprCXX.h:1608
clang::ASTVector::resize
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:341
clang::SourceLocExpr::Column
@ Column
Definition: Expr.h:4689
clang::NestedNameSpecifier::isDependent
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
Definition: NestedNameSpecifier.cpp:234
clang::FunctionTemplateSpecializationInfo::TemplateArguments
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:485
DependenceFlags.h
clang::FloatingLiteral::getValue
llvm::APFloat getValue() const
Definition: Expr.h:1653
clang::DesignatedInitUpdateExpr::getBase
Expr * getBase() const
Definition: Expr.h:5387
clang::UnaryOperator::Create
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4577
clang::OMPIteratorHelperData
Helper expressions and declaration for OMPIteratorExpr class for each iteration space.
Definition: ExprOpenMP.h:235
clang::BindingDecl
A binding in a decomposition declaration.
Definition: DeclCXX.h:3958
clang::PredefinedExpr::FuncDName
@ FuncDName
Definition: Expr.h:1974
clang::DesignatedInitExpr
Represents a C99 designated initializer expression.
Definition: Expr.h:5030
clang::Expr::IgnoreImplicit
Expr * IgnoreImplicit() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:2921
clang::ASTContext::VoidTy
CanQualType VoidTy
Definition: ASTContext.h:1073
clang::Type::isCharType
bool isCharType() const
Definition: Type.cpp:1956
llvm::SmallVector
Definition: LLVM.h:38
clang::APValue::getInt
APSInt & getInt()
Definition: APValue.h:415
clang::PredefinedExpr::LFuncSig
@ LFuncSig
Definition: Expr.h:1976
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:86
clang::OMPIteratorExpr::getIteratorRange
IteratorRange getIteratorRange(unsigned I)
Gets the iterator range for the given iterator.
Definition: Expr.cpp:4919
clang::CallExpr::hasStoredFPFeatures
bool hasStoredFPFeatures() const
Definition: Expr.h:2963
clang::Qualifiers::removeAddressSpace
void removeAddressSpace()
Definition: Type.h:387
clang::QualType::getQualifiers
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6477
clang::ASTContext::getIntWidth
unsigned getIntWidth(QualType T) const
Definition: ASTContext.cpp:10293
clang::Stmt::GenericSelectionExprBits
GenericSelectionExprBitfields GenericSelectionExprBits
Definition: Stmt.h:1038
clang::OpaqueValueExpr::findInCopyConstruct
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:4589
clang::NamedDecl
This represents a decl that may have a name.
Definition: Decl.h:247
clang::ASTContext::BuiltinInfo
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:648
clang::ParenListExpr
Definition: Expr.h:5538
clang::OffsetOfNode::getKind
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2394
clang::OffsetOfExpr::CreateEmpty
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1600
clang::Stmt::StmtClass
StmtClass
Definition: Stmt.h:71
EvaluatedExprVisitor.h
clang::MemberExpr::Create
static MemberExpr * Create(const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, DeclAccessPair FoundDecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR)
Definition: Expr.cpp:1662
TargetInfo.h
clang::MultiVersionKind::Target
@ Target
clang::ConstantExpr::getAPValueResult
APValue getAPValueResult() const
Definition: Expr.cpp:381
clang::CastExpr::getSubExpr
Expr * getSubExpr()
Definition: Expr.h:3530
clang::InitListExpr::reserveInits
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition: Expr.cpp:2277
clang::FixedPointLiteral::CreateFromRawInt
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:921
clang::Stmt::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:324
clang::NestedNameSpecifier::isInstantiationDependent
bool isInstantiationDependent() const
Whether this nested name specifier involves a template parameter.
Definition: NestedNameSpecifier.cpp:238
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:674
Attr.h
clang::Expr::getObjectKind
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:437
clang::DeclarationNameInfo::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclarationName.h:865
clang::OMF_init
@ OMF_init
Definition: IdentifierTable.h:696
clang::QualType::getCanonicalType
QualType getCanonicalType() const
Definition: Type.h:6489
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2838
clang::CastExpr::path_empty
bool path_empty() const
Definition: Expr.h:3548
clang::Qualifiers
The collection of all-type qualifiers we support.
Definition: Type.h:146
clang::FieldDecl::getInClassInitializer
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set.
Definition: Decl.h:2985
clang::Expr::skipRValueSubobjectAdjustments
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:975
clang::ast_matchers::type
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchersInternal.cpp:773
clang::TargetInfo
Exposes information about the current target.
Definition: TargetInfo.h:186
clang::Stmt::ConstantExprBits
ConstantExprBitfields ConstantExprBits
Definition: Stmt.h:1023
DeclCXX.h
memcpy
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
Definition: __clang_cuda_device_functions.h:1549
clang::TypeInfo::Width
uint64_t Width
Definition: ASTContext.h:180
clang::SourceLocExpr::File
@ File
Definition: Expr.h:4689
clang::BinaryOperator::getOpcodeStr
StringRef getOpcodeStr() const
Definition: Expr.h:3874
clang::InitListExpr::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2356
clang::Stmt::StringLiteralBits
StringLiteralBitfields StringLiteralBits
Definition: Stmt.h:1027
clang::StringLiteral::getStrTokenLoc
SourceLocation getStrTokenLoc(unsigned TokNum) const
Get one of the string literal token.
Definition: Expr.h:1914
clang::ExprObjectKind
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:134
clang::RecoveryExpr
Frontend produces RecoveryExprs on semantic errors that prevent creating other well-formed expression...
Definition: Expr.h:6422
clang::BlockDecl::getBody
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.h:4239
clang::SourceManager::getExpansionRange
CharSourceRange getExpansionRange(SourceLocation Loc) const
Given a SourceLocation object, return the range of tokens covered by the expansion in the ultimate fi...
Definition: SourceManager.cpp:1038
clang::OMPIteratorExpr::CreateEmpty
static OMPIteratorExpr * CreateEmpty(const ASTContext &Context, unsigned NumIterators)
Definition: Expr.cpp:5001
clang::Expr::IgnoreParenNoopCasts
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parenthese and casts which do not change the value (including ptr->int casts of the sam...
Definition: Expr.cpp:2960
clang::ASTContext::createMangleContext
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
Definition: ASTContext.cpp:11265
clang::InitListExpr
Describes an C or C++ initializer list.
Definition: Expr.h:4792
clang::DesignatedInitExpr::Designator::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:5218
llvm::Optional< unsigned >
clang::OffsetOfNode::getFieldName
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1622
clang::ComparisonCategoryType::First
@ First
clang::CharacterLiteral::UTF8
@ UTF8
Definition: Expr.h:1589
clang::RQ_RValue
@ RQ_RValue
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1450
clang::MemberExpr::isImplicitAccess
bool isImplicitAccess() const
Determine whether the base of this explicit is implicit.
Definition: Expr.h:3366
clang::UnaryOperator
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2163
clang::Expr::isPRValue
bool isPRValue() const
Definition: Expr.h:271
clang::Ctor_Base
@ Ctor_Base
Base object ctor.
Definition: ABI.h:26
SourceManager.h
clang::Expr::NPC_NeverValueDependent
@ NPC_NeverValueDependent
Specifies that the expression should never be value-dependent.
Definition: Expr.h:782
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:6981
clang::Expr::getObjCProperty
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:3879
clang::QualType::isVolatileQualified
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6520
clang::SourceManager::getPresumedLoc
PresumedLoc getPresumedLoc(SourceLocation Loc, bool UseLineDirectives=true) const
Returns the "presumed" location of a SourceLocation specifies.
Definition: SourceManager.cpp:1515
clang::APValue::None
@ None
There is no such object (it's outside its lifetime).
Definition: APValue.h:129
clang::CallExpr::getRParenLoc
SourceLocation getRParenLoc() const
Definition: Expr.h:3115
clang::RefQualifierKind
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1442
clang::Qualifiers::empty
bool empty() const
Definition: Type.h:424
clang::ImplicitCastExpr::CreateEmpty
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures)
Definition: Expr.cpp:2035
clang::Expr::isCXX98IntegralConstantExpr
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
Definition: ExprConstant.cpp:15665
clang::FloatingLiteral::getValueAsApproximateDouble
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition: Expr.cpp:1043
clang::Decl::getAttr
T * getAttr() const
Definition: DeclBase.h:537
clang::CC_X86ThisCall
@ CC_X86ThisCall
Definition: Specifiers.h:267
clang::Stmt::SourceLocExprBits
SourceLocExprBitfields SourceLocExprBits
Definition: Stmt.h:1040
skipTemporaryBindingsNoOpCastsAndParens
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition: Expr.cpp:3041
clang::CallExpr::getCalleeDecl
Decl * getCalleeDecl()
Definition: Expr.h:2965
clang::CXXStaticCastExpr
A C++ static_cast expression (C++ [expr.static.cast]).
Definition: ExprCXX.h:431
clang::PrintingPolicy
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57
clang::ConstantExpr::getResultAsAPSInt
llvm::APSInt getResultAsAPSInt() const
Definition: Expr.cpp:369
clang::DesignatedInitExpr::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:4373
clang::PseudoObjectExpr::semantics_end
semantics_iterator semantics_end()
Definition: Expr.h:6175
clang::BinaryOperator::getOpcode
Opcode getOpcode() const
Definition: Expr.h:3853
clang::Lexer::LexFromRawLexer
bool LexFromRawLexer(Token &Result)
LexFromRawLexer - Lex a token from a designated raw lexer (one with no associated preprocessor object...
Definition: Lexer.h:204
clang::StringLiteral::Wide
@ Wide
Definition: Expr.h:1789
clang::FunctionType
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3547
clang::CompoundStmt::body_empty
bool body_empty() const
Definition: Stmt.h:1431
clang::CapturedDecl
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4349
clang::Token
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
clang::SubobjectAdjustment
An adjustment to be made to the temporary created when emitting a reference binding,...
Definition: Expr.h:64
clang::CXXBindTemporaryExpr::getTemporary
CXXTemporary * getTemporary()
Definition: ExprCXX.h:1430
clang::DesignatedInitExpr::getArrayRangeEnd
Expr * getArrayRangeEnd(const Designator &D) const
Definition: Expr.cpp:4388
clang::Expr::IgnoreImpCasts
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:2913
LiteralSupport.h
clang::Expr::EvalResult::Val
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:614
clang::APValue::IndeterminateValue
static APValue IndeterminateValue()
Definition: APValue.h:358
clang::CastExpr::getTrailingFPFeatures
FPOptionsOverride * getTrailingFPFeatures()
Return a pointer to the trailing FPOptions.
Definition: Expr.cpp:1993
End
SourceLocation End
Definition: USRLocFinder.cpp:167