clang  14.0.0git
ItaniumMangle.cpp
Go to the documentation of this file.
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace clang;
40 
41 namespace {
42 
43 /// Retrieve the declaration context that should be used when mangling the given
44 /// declaration.
45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46  // The ABI assumes that lambda closure types that occur within
47  // default arguments live in the context of the function. However, due to
48  // the way in which Clang parses and creates function declarations, this is
49  // not the case: the lambda closure type ends up living in the context
50  // where the function itself resides, because the function declaration itself
51  // had not yet been created. Fix the context here.
52  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53  if (RD->isLambda())
54  if (ParmVarDecl *ContextParam
55  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56  return ContextParam->getDeclContext();
57  }
58 
59  // Perform the same check for block literals.
60  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
61  if (ParmVarDecl *ContextParam
62  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
63  return ContextParam->getDeclContext();
64  }
65 
66  const DeclContext *DC = D->getDeclContext();
67  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
68  isa<OMPDeclareMapperDecl>(DC)) {
69  return getEffectiveDeclContext(cast<Decl>(DC));
70  }
71 
72  if (const auto *VD = dyn_cast<VarDecl>(D))
73  if (VD->isExternC())
74  return VD->getASTContext().getTranslationUnitDecl();
75 
76  if (const auto *FD = dyn_cast<FunctionDecl>(D))
77  if (FD->isExternC())
78  return FD->getASTContext().getTranslationUnitDecl();
79 
80  return DC->getRedeclContext();
81 }
82 
83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84  return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86 
87 static bool isLocalContainerContext(const DeclContext *DC) {
88  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90 
91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92  const DeclContext *DC = getEffectiveDeclContext(D);
93  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94  if (isLocalContainerContext(DC))
95  return dyn_cast<RecordDecl>(D);
96  D = cast<Decl>(DC);
97  DC = getEffectiveDeclContext(D);
98  }
99  return nullptr;
100 }
101 
102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104  return ftd->getTemplatedDecl();
105 
106  return fn;
107 }
108 
109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111  return (fn ? getStructor(fn) : decl);
112 }
113 
114 static bool isLambda(const NamedDecl *ND) {
115  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116  if (!Record)
117  return false;
118 
119  return Record->isLambda();
120 }
121 
122 static const unsigned UnknownArity = ~0U;
123 
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128  const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
129 
130  bool NeedsUniqueInternalLinkageNames = false;
131 
132 public:
133  explicit ItaniumMangleContextImpl(
134  ASTContext &Context, DiagnosticsEngine &Diags,
135  DiscriminatorOverrideTy DiscriminatorOverride)
136  : ItaniumMangleContext(Context, Diags),
137  DiscriminatorOverride(DiscriminatorOverride) {}
138 
139  /// @name Mangler Entry Points
140  /// @{
141 
142  bool shouldMangleCXXName(const NamedDecl *D) override;
143  bool shouldMangleStringLiteral(const StringLiteral *) override {
144  return false;
145  }
146 
147  bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
148  void needsUniqueInternalLinkageNames() override {
149  NeedsUniqueInternalLinkageNames = true;
150  }
151 
152  void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
153  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
154  raw_ostream &) override;
155  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
157  raw_ostream &) override;
158  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
159  raw_ostream &) override;
160  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
161  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
162  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
163  const CXXRecordDecl *Type, raw_ostream &) override;
164  void mangleCXXRTTI(QualType T, raw_ostream &) override;
165  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
166  void mangleTypeName(QualType T, raw_ostream &) override;
167 
168  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
169  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
170  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
171  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
172  void mangleDynamicAtExitDestructor(const VarDecl *D,
173  raw_ostream &Out) override;
174  void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
175  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
176  raw_ostream &Out) override;
177  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
178  raw_ostream &Out) override;
179  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
180  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
181  raw_ostream &) override;
182 
183  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
184 
185  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
186 
187  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
188  // Lambda closure types are already numbered.
189  if (isLambda(ND))
190  return false;
191 
192  // Anonymous tags are already numbered.
193  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
194  if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
195  return false;
196  }
197 
198  // Use the canonical number for externally visible decls.
199  if (ND->isExternallyVisible()) {
200  unsigned discriminator = getASTContext().getManglingNumber(ND);
201  if (discriminator == 1)
202  return false;
203  disc = discriminator - 2;
204  return true;
205  }
206 
207  // Make up a reasonable number for internal decls.
208  unsigned &discriminator = Uniquifier[ND];
209  if (!discriminator) {
210  const DeclContext *DC = getEffectiveDeclContext(ND);
211  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
212  }
213  if (discriminator == 1)
214  return false;
215  disc = discriminator-2;
216  return true;
217  }
218 
219  std::string getLambdaString(const CXXRecordDecl *Lambda) override {
220  // This function matches the one in MicrosoftMangle, which returns
221  // the string that is used in lambda mangled names.
222  assert(Lambda->isLambda() && "RD must be a lambda!");
223  std::string Name("<lambda");
224  Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
225  unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
226  unsigned LambdaId;
227  const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
228  const FunctionDecl *Func =
229  Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
230 
231  if (Func) {
232  unsigned DefaultArgNo =
233  Func->getNumParams() - Parm->getFunctionScopeIndex();
234  Name += llvm::utostr(DefaultArgNo);
235  Name += "_";
236  }
237 
238  if (LambdaManglingNumber)
239  LambdaId = LambdaManglingNumber;
240  else
241  LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
242 
243  Name += llvm::utostr(LambdaId);
244  Name += '>';
245  return Name;
246  }
247 
248  DiscriminatorOverrideTy getDiscriminatorOverride() const override {
249  return DiscriminatorOverride;
250  }
251 
252  /// @}
253 };
254 
255 /// Manage the mangling of a single name.
256 class CXXNameMangler {
257  ItaniumMangleContextImpl &Context;
258  raw_ostream &Out;
259  bool NullOut = false;
260  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
261  /// This mode is used when mangler creates another mangler recursively to
262  /// calculate ABI tags for the function return value or the variable type.
263  /// Also it is required to avoid infinite recursion in some cases.
264  bool DisableDerivedAbiTags = false;
265 
266  /// The "structor" is the top-level declaration being mangled, if
267  /// that's not a template specialization; otherwise it's the pattern
268  /// for that specialization.
269  const NamedDecl *Structor;
270  unsigned StructorType;
271 
272  /// The next substitution sequence number.
273  unsigned SeqID;
274 
275  class FunctionTypeDepthState {
276  unsigned Bits;
277 
278  enum { InResultTypeMask = 1 };
279 
280  public:
281  FunctionTypeDepthState() : Bits(0) {}
282 
283  /// The number of function types we're inside.
284  unsigned getDepth() const {
285  return Bits >> 1;
286  }
287 
288  /// True if we're in the return type of the innermost function type.
289  bool isInResultType() const {
290  return Bits & InResultTypeMask;
291  }
292 
293  FunctionTypeDepthState push() {
294  FunctionTypeDepthState tmp = *this;
295  Bits = (Bits & ~InResultTypeMask) + 2;
296  return tmp;
297  }
298 
299  void enterResultType() {
300  Bits |= InResultTypeMask;
301  }
302 
303  void leaveResultType() {
304  Bits &= ~InResultTypeMask;
305  }
306 
307  void pop(FunctionTypeDepthState saved) {
308  assert(getDepth() == saved.getDepth() + 1);
309  Bits = saved.Bits;
310  }
311 
312  } FunctionTypeDepth;
313 
314  // abi_tag is a gcc attribute, taking one or more strings called "tags".
315  // The goal is to annotate against which version of a library an object was
316  // built and to be able to provide backwards compatibility ("dual abi").
317  // For more information see docs/ItaniumMangleAbiTags.rst.
318  typedef SmallVector<StringRef, 4> AbiTagList;
319 
320  // State to gather all implicit and explicit tags used in a mangled name.
321  // Must always have an instance of this while emitting any name to keep
322  // track.
323  class AbiTagState final {
324  public:
325  explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
326  Parent = LinkHead;
327  LinkHead = this;
328  }
329 
330  // No copy, no move.
331  AbiTagState(const AbiTagState &) = delete;
332  AbiTagState &operator=(const AbiTagState &) = delete;
333 
334  ~AbiTagState() { pop(); }
335 
336  void write(raw_ostream &Out, const NamedDecl *ND,
337  const AbiTagList *AdditionalAbiTags) {
338  ND = cast<NamedDecl>(ND->getCanonicalDecl());
339  if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
340  assert(
341  !AdditionalAbiTags &&
342  "only function and variables need a list of additional abi tags");
343  if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
344  if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
345  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
346  AbiTag->tags().end());
347  }
348  // Don't emit abi tags for namespaces.
349  return;
350  }
351  }
352 
353  AbiTagList TagList;
354  if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
355  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
356  AbiTag->tags().end());
357  TagList.insert(TagList.end(), AbiTag->tags().begin(),
358  AbiTag->tags().end());
359  }
360 
361  if (AdditionalAbiTags) {
362  UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
363  AdditionalAbiTags->end());
364  TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
365  AdditionalAbiTags->end());
366  }
367 
368  llvm::sort(TagList);
369  TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
370 
371  writeSortedUniqueAbiTags(Out, TagList);
372  }
373 
374  const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
375  void setUsedAbiTags(const AbiTagList &AbiTags) {
376  UsedAbiTags = AbiTags;
377  }
378 
379  const AbiTagList &getEmittedAbiTags() const {
380  return EmittedAbiTags;
381  }
382 
383  const AbiTagList &getSortedUniqueUsedAbiTags() {
384  llvm::sort(UsedAbiTags);
385  UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
386  UsedAbiTags.end());
387  return UsedAbiTags;
388  }
389 
390  private:
391  //! All abi tags used implicitly or explicitly.
392  AbiTagList UsedAbiTags;
393  //! All explicit abi tags (i.e. not from namespace).
394  AbiTagList EmittedAbiTags;
395 
396  AbiTagState *&LinkHead;
397  AbiTagState *Parent = nullptr;
398 
399  void pop() {
400  assert(LinkHead == this &&
401  "abi tag link head must point to us on destruction");
402  if (Parent) {
403  Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
404  UsedAbiTags.begin(), UsedAbiTags.end());
405  Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
406  EmittedAbiTags.begin(),
407  EmittedAbiTags.end());
408  }
409  LinkHead = Parent;
410  }
411 
412  void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
413  for (const auto &Tag : AbiTags) {
414  EmittedAbiTags.push_back(Tag);
415  Out << "B";
416  Out << Tag.size();
417  Out << Tag;
418  }
419  }
420  };
421 
422  AbiTagState *AbiTags = nullptr;
423  AbiTagState AbiTagsRoot;
424 
425  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
426  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
427 
428  ASTContext &getASTContext() const { return Context.getASTContext(); }
429 
430 public:
431  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
432  const NamedDecl *D = nullptr, bool NullOut_ = false)
433  : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
434  StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
435  // These can't be mangled without a ctor type or dtor type.
436  assert(!D || (!isa<CXXDestructorDecl>(D) &&
437  !isa<CXXConstructorDecl>(D)));
438  }
439  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
441  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
442  SeqID(0), AbiTagsRoot(AbiTags) { }
443  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
445  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
446  SeqID(0), AbiTagsRoot(AbiTags) { }
447 
448  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
449  : Context(Outer.Context), Out(Out_), NullOut(false),
450  Structor(Outer.Structor), StructorType(Outer.StructorType),
451  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
452  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
453 
454  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
455  : Context(Outer.Context), Out(Out_), NullOut(true),
456  Structor(Outer.Structor), StructorType(Outer.StructorType),
457  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
458  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
459 
460  raw_ostream &getStream() { return Out; }
461 
462  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
463  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
464 
465  void mangle(GlobalDecl GD);
466  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
467  void mangleNumber(const llvm::APSInt &I);
468  void mangleNumber(int64_t Number);
469  void mangleFloat(const llvm::APFloat &F);
470  void mangleFunctionEncoding(GlobalDecl GD);
471  void mangleSeqID(unsigned SeqID);
472  void mangleName(GlobalDecl GD);
473  void mangleType(QualType T);
474  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
475  void mangleLambdaSig(const CXXRecordDecl *Lambda);
476 
477 private:
478 
479  bool mangleSubstitution(const NamedDecl *ND);
480  bool mangleSubstitution(QualType T);
481  bool mangleSubstitution(TemplateName Template);
482  bool mangleSubstitution(uintptr_t Ptr);
483 
484  void mangleExistingSubstitution(TemplateName name);
485 
486  bool mangleStandardSubstitution(const NamedDecl *ND);
487 
488  void addSubstitution(const NamedDecl *ND) {
489  ND = cast<NamedDecl>(ND->getCanonicalDecl());
490 
491  addSubstitution(reinterpret_cast<uintptr_t>(ND));
492  }
493  void addSubstitution(QualType T);
494  void addSubstitution(TemplateName Template);
495  void addSubstitution(uintptr_t Ptr);
496  // Destructive copy substitutions from other mangler.
497  void extendSubstitutions(CXXNameMangler* Other);
498 
499  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
500  bool recursive = false);
501  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
503  const TemplateArgumentLoc *TemplateArgs,
504  unsigned NumTemplateArgs,
505  unsigned KnownArity = UnknownArity);
506 
507  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
508 
509  void mangleNameWithAbiTags(GlobalDecl GD,
510  const AbiTagList *AdditionalAbiTags);
511  void mangleModuleName(const Module *M);
512  void mangleModuleNamePrefix(StringRef Name);
513  void mangleTemplateName(const TemplateDecl *TD,
514  const TemplateArgument *TemplateArgs,
515  unsigned NumTemplateArgs);
516  void mangleUnqualifiedName(GlobalDecl GD,
517  const AbiTagList *AdditionalAbiTags) {
518  mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
519  AdditionalAbiTags);
520  }
521  void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
522  unsigned KnownArity,
523  const AbiTagList *AdditionalAbiTags);
524  void mangleUnscopedName(GlobalDecl GD,
525  const AbiTagList *AdditionalAbiTags);
526  void mangleUnscopedTemplateName(GlobalDecl GD,
527  const AbiTagList *AdditionalAbiTags);
528  void mangleSourceName(const IdentifierInfo *II);
529  void mangleRegCallName(const IdentifierInfo *II);
530  void mangleDeviceStubName(const IdentifierInfo *II);
531  void mangleSourceNameWithAbiTags(
532  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
533  void mangleLocalName(GlobalDecl GD,
534  const AbiTagList *AdditionalAbiTags);
535  void mangleBlockForPrefix(const BlockDecl *Block);
536  void mangleUnqualifiedBlock(const BlockDecl *Block);
537  void mangleTemplateParamDecl(const NamedDecl *Decl);
538  void mangleLambda(const CXXRecordDecl *Lambda);
539  void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
540  const AbiTagList *AdditionalAbiTags,
541  bool NoFunction=false);
542  void mangleNestedName(const TemplateDecl *TD,
543  const TemplateArgument *TemplateArgs,
544  unsigned NumTemplateArgs);
545  void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
546  const NamedDecl *PrefixND,
547  const AbiTagList *AdditionalAbiTags);
548  void manglePrefix(NestedNameSpecifier *qualifier);
549  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
550  void manglePrefix(QualType type);
551  void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
552  void mangleTemplatePrefix(TemplateName Template);
553  const NamedDecl *getClosurePrefix(const Decl *ND);
554  void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
555  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
556  StringRef Prefix = "");
557  void mangleOperatorName(DeclarationName Name, unsigned Arity);
558  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
559  void mangleVendorQualifier(StringRef qualifier);
560  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
561  void mangleRefQualifier(RefQualifierKind RefQualifier);
562 
563  void mangleObjCMethodName(const ObjCMethodDecl *MD);
564 
565  // Declare manglers for every type class.
566 #define ABSTRACT_TYPE(CLASS, PARENT)
567 #define NON_CANONICAL_TYPE(CLASS, PARENT)
568 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
569 #include "clang/AST/TypeNodes.inc"
570 
571  void mangleType(const TagType*);
572  void mangleType(TemplateName);
573  static StringRef getCallingConvQualifierName(CallingConv CC);
574  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
575  void mangleExtFunctionInfo(const FunctionType *T);
576  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
577  const FunctionDecl *FD = nullptr);
578  void mangleNeonVectorType(const VectorType *T);
579  void mangleNeonVectorType(const DependentVectorType *T);
580  void mangleAArch64NeonVectorType(const VectorType *T);
581  void mangleAArch64NeonVectorType(const DependentVectorType *T);
582  void mangleAArch64FixedSveVectorType(const VectorType *T);
583  void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
584 
585  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
586  void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
587  void mangleFixedPointLiteral();
588  void mangleNullPointer(QualType T);
589 
590  void mangleMemberExprBase(const Expr *base, bool isArrow);
591  void mangleMemberExpr(const Expr *base, bool isArrow,
592  NestedNameSpecifier *qualifier,
593  NamedDecl *firstQualifierLookup,
595  const TemplateArgumentLoc *TemplateArgs,
596  unsigned NumTemplateArgs,
597  unsigned knownArity);
598  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
599  void mangleInitListElements(const InitListExpr *InitList);
600  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
601  bool AsTemplateArg = false);
602  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
603  void mangleCXXDtorType(CXXDtorType T);
604 
605  void mangleTemplateArgs(TemplateName TN,
606  const TemplateArgumentLoc *TemplateArgs,
607  unsigned NumTemplateArgs);
608  void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
609  unsigned NumTemplateArgs);
610  void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
611  void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
612  void mangleTemplateArgExpr(const Expr *E);
613  void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
614  bool NeedExactType = false);
615 
616  void mangleTemplateParameter(unsigned Depth, unsigned Index);
617 
618  void mangleFunctionParam(const ParmVarDecl *parm);
619 
620  void writeAbiTags(const NamedDecl *ND,
621  const AbiTagList *AdditionalAbiTags);
622 
623  // Returns sorted unique list of ABI tags.
624  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
625  // Returns sorted unique list of ABI tags.
626  AbiTagList makeVariableTypeTags(const VarDecl *VD);
627 };
628 
629 }
630 
631 static bool isInternalLinkageDecl(const NamedDecl *ND) {
632  if (ND && ND->getFormalLinkage() == InternalLinkage &&
633  !ND->isExternallyVisible() &&
634  getEffectiveDeclContext(ND)->isFileContext() &&
635  !ND->isInAnonymousNamespace())
636  return true;
637  return false;
638 }
639 
640 // Check if this Function Decl needs a unique internal linkage name.
642  const NamedDecl *ND) {
643  if (!NeedsUniqueInternalLinkageNames || !ND)
644  return false;
645 
646  const auto *FD = dyn_cast<FunctionDecl>(ND);
647  if (!FD)
648  return false;
649 
650  // For C functions without prototypes, return false as their
651  // names should not be mangled.
652  if (!FD->getType()->getAs<FunctionProtoType>())
653  return false;
654 
655  if (isInternalLinkageDecl(ND))
656  return true;
657 
658  return false;
659 }
660 
661 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
662  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
663  if (FD) {
665  // Overloadable functions need mangling.
666  if (FD->hasAttr<OverloadableAttr>())
667  return true;
668 
669  // "main" is not mangled.
670  if (FD->isMain())
671  return false;
672 
673  // The Windows ABI expects that we would never mangle "typical"
674  // user-defined entry points regardless of visibility or freestanding-ness.
675  //
676  // N.B. This is distinct from asking about "main". "main" has a lot of
677  // special rules associated with it in the standard while these
678  // user-defined entry points are outside of the purview of the standard.
679  // For example, there can be only one definition for "main" in a standards
680  // compliant program; however nothing forbids the existence of wmain and
681  // WinMain in the same translation unit.
682  if (FD->isMSVCRTEntryPoint())
683  return false;
684 
685  // C++ functions and those whose names are not a simple identifier need
686  // mangling.
687  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
688  return true;
689 
690  // C functions are not mangled.
691  if (L == CLanguageLinkage)
692  return false;
693  }
694 
695  // Otherwise, no mangling is done outside C++ mode.
696  if (!getASTContext().getLangOpts().CPlusPlus)
697  return false;
698 
699  const VarDecl *VD = dyn_cast<VarDecl>(D);
700  if (VD && !isa<DecompositionDecl>(D)) {
701  // C variables are not mangled.
702  if (VD->isExternC())
703  return false;
704 
705  // Variables at global scope with non-internal linkage are not mangled
706  const DeclContext *DC = getEffectiveDeclContext(D);
707  // Check for extern variable declared locally.
708  if (DC->isFunctionOrMethod() && D->hasLinkage())
709  while (!DC->isNamespace() && !DC->isTranslationUnit())
710  DC = getEffectiveParentContext(DC);
711  if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
712  !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
713  !isa<VarTemplateSpecializationDecl>(D))
714  return false;
715  }
716 
717  return true;
718 }
719 
720 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
721  const AbiTagList *AdditionalAbiTags) {
722  assert(AbiTags && "require AbiTagState");
723  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
724 }
725 
726 void CXXNameMangler::mangleSourceNameWithAbiTags(
727  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
728  mangleSourceName(ND->getIdentifier());
729  writeAbiTags(ND, AdditionalAbiTags);
730 }
731 
732 void CXXNameMangler::mangle(GlobalDecl GD) {
733  // <mangled-name> ::= _Z <encoding>
734  // ::= <data name>
735  // ::= <special-name>
736  Out << "_Z";
737  if (isa<FunctionDecl>(GD.getDecl()))
738  mangleFunctionEncoding(GD);
740  BindingDecl>(GD.getDecl()))
741  mangleName(GD);
742  else if (const IndirectFieldDecl *IFD =
743  dyn_cast<IndirectFieldDecl>(GD.getDecl()))
744  mangleName(IFD->getAnonField());
745  else
746  llvm_unreachable("unexpected kind of global decl");
747 }
748 
749 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
750  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
751  // <encoding> ::= <function name> <bare-function-type>
752 
753  // Don't mangle in the type if this isn't a decl we should typically mangle.
754  if (!Context.shouldMangleDeclName(FD)) {
755  mangleName(GD);
756  return;
757  }
758 
759  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
760  if (ReturnTypeAbiTags.empty()) {
761  // There are no tags for return type, the simplest case.
762  mangleName(GD);
763  mangleFunctionEncodingBareType(FD);
764  return;
765  }
766 
767  // Mangle function name and encoding to temporary buffer.
768  // We have to output name and encoding to the same mangler to get the same
769  // substitution as it will be in final mangling.
770  SmallString<256> FunctionEncodingBuf;
771  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
772  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
773  // Output name of the function.
774  FunctionEncodingMangler.disableDerivedAbiTags();
775  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
776 
777  // Remember length of the function name in the buffer.
778  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
779  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
780 
781  // Get tags from return type that are not present in function name or
782  // encoding.
783  const AbiTagList &UsedAbiTags =
784  FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
785  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
786  AdditionalAbiTags.erase(
787  std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
788  UsedAbiTags.begin(), UsedAbiTags.end(),
789  AdditionalAbiTags.begin()),
790  AdditionalAbiTags.end());
791 
792  // Output name with implicit tags and function encoding from temporary buffer.
793  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
794  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
795 
796  // Function encoding could create new substitutions so we have to add
797  // temp mangled substitutions to main mangler.
798  extendSubstitutions(&FunctionEncodingMangler);
799 }
800 
801 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
802  if (FD->hasAttr<EnableIfAttr>()) {
803  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
804  Out << "Ua9enable_ifI";
805  for (AttrVec::const_iterator I = FD->getAttrs().begin(),
806  E = FD->getAttrs().end();
807  I != E; ++I) {
808  EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
809  if (!EIA)
810  continue;
811  if (Context.getASTContext().getLangOpts().getClangABICompat() >
813  mangleTemplateArgExpr(EIA->getCond());
814  } else {
815  // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
816  // even though <template-arg> should not include an X/E around
817  // <expr-primary>.
818  Out << 'X';
819  mangleExpression(EIA->getCond());
820  Out << 'E';
821  }
822  }
823  Out << 'E';
824  FunctionTypeDepth.pop(Saved);
825  }
826 
827  // When mangling an inheriting constructor, the bare function type used is
828  // that of the inherited constructor.
829  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
830  if (auto Inherited = CD->getInheritedConstructor())
831  FD = Inherited.getConstructor();
832 
833  // Whether the mangling of a function type includes the return type depends on
834  // the context and the nature of the function. The rules for deciding whether
835  // the return type is included are:
836  //
837  // 1. Template functions (names or types) have return types encoded, with
838  // the exceptions listed below.
839  // 2. Function types not appearing as part of a function name mangling,
840  // e.g. parameters, pointer types, etc., have return type encoded, with the
841  // exceptions listed below.
842  // 3. Non-template function names do not have return types encoded.
843  //
844  // The exceptions mentioned in (1) and (2) above, for which the return type is
845  // never included, are
846  // 1. Constructors.
847  // 2. Destructors.
848  // 3. Conversion operator functions, e.g. operator int.
849  bool MangleReturnType = false;
850  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
851  if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
852  isa<CXXConversionDecl>(FD)))
853  MangleReturnType = true;
854 
855  // Mangle the type of the primary template.
856  FD = PrimaryTemplate->getTemplatedDecl();
857  }
858 
859  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
860  MangleReturnType, FD);
861 }
862 
864  while (isa<LinkageSpecDecl>(DC)) {
865  DC = getEffectiveParentContext(DC);
866  }
867 
868  return DC;
869 }
870 
871 /// Return whether a given namespace is the 'std' namespace.
872 static bool isStd(const NamespaceDecl *NS) {
873  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
874  ->isTranslationUnit())
875  return false;
876 
878  return II && II->isStr("std");
879 }
880 
881 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
882 // namespace.
883 static bool isStdNamespace(const DeclContext *DC) {
884  if (!DC->isNamespace())
885  return false;
886 
887  return isStd(cast<NamespaceDecl>(DC));
888 }
889 
890 static const GlobalDecl
891 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
892  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
893  // Check if we have a function template.
894  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
895  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
896  TemplateArgs = FD->getTemplateSpecializationArgs();
897  return GD.getWithDecl(TD);
898  }
899  }
900 
901  // Check if we have a class template.
902  if (const ClassTemplateSpecializationDecl *Spec =
903  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
904  TemplateArgs = &Spec->getTemplateArgs();
905  return GD.getWithDecl(Spec->getSpecializedTemplate());
906  }
907 
908  // Check if we have a variable template.
909  if (const VarTemplateSpecializationDecl *Spec =
910  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
911  TemplateArgs = &Spec->getTemplateArgs();
912  return GD.getWithDecl(Spec->getSpecializedTemplate());
913  }
914 
915  return GlobalDecl();
916 }
917 
919  const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
920  return TemplateName(const_cast<TemplateDecl*>(TD));
921 }
922 
923 void CXXNameMangler::mangleName(GlobalDecl GD) {
924  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
925  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
926  // Variables should have implicit tags from its type.
927  AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
928  if (VariableTypeAbiTags.empty()) {
929  // Simple case no variable type tags.
930  mangleNameWithAbiTags(VD, nullptr);
931  return;
932  }
933 
934  // Mangle variable name to null stream to collect tags.
935  llvm::raw_null_ostream NullOutStream;
936  CXXNameMangler VariableNameMangler(*this, NullOutStream);
937  VariableNameMangler.disableDerivedAbiTags();
938  VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
939 
940  // Get tags from variable type that are not present in its name.
941  const AbiTagList &UsedAbiTags =
942  VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
943  AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
944  AdditionalAbiTags.erase(
945  std::set_difference(VariableTypeAbiTags.begin(),
946  VariableTypeAbiTags.end(), UsedAbiTags.begin(),
947  UsedAbiTags.end(), AdditionalAbiTags.begin()),
948  AdditionalAbiTags.end());
949 
950  // Output name with implicit tags.
951  mangleNameWithAbiTags(VD, &AdditionalAbiTags);
952  } else {
953  mangleNameWithAbiTags(GD, nullptr);
954  }
955 }
956 
957 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
958  const AbiTagList *AdditionalAbiTags) {
959  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
960  // <name> ::= [<module-name>] <nested-name>
961  // ::= [<module-name>] <unscoped-name>
962  // ::= [<module-name>] <unscoped-template-name> <template-args>
963  // ::= <local-name>
964  //
965  const DeclContext *DC = getEffectiveDeclContext(ND);
966 
967  // If this is an extern variable declared locally, the relevant DeclContext
968  // is that of the containing namespace, or the translation unit.
969  // FIXME: This is a hack; extern variables declared locally should have
970  // a proper semantic declaration context!
971  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
972  while (!DC->isNamespace() && !DC->isTranslationUnit())
973  DC = getEffectiveParentContext(DC);
974  else if (GetLocalClassDecl(ND)) {
975  mangleLocalName(GD, AdditionalAbiTags);
976  return;
977  }
978 
979  DC = IgnoreLinkageSpecDecls(DC);
980 
981  if (isLocalContainerContext(DC)) {
982  mangleLocalName(GD, AdditionalAbiTags);
983  return;
984  }
985 
986  // Do not mangle the owning module for an external linkage declaration.
987  // This enables backwards-compatibility with non-modular code, and is
988  // a valid choice since conflicts are not permitted by C++ Modules TS
989  // [basic.def.odr]/6.2.
990  if (!ND->hasExternalFormalLinkage())
991  if (Module *M = ND->getOwningModuleForLinkage())
992  mangleModuleName(M);
993 
994  // Closures can require a nested-name mangling even if they're semantically
995  // in the global namespace.
996  if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
997  mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
998  return;
999  }
1000 
1001  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1002  // Check if we have a template.
1003  const TemplateArgumentList *TemplateArgs = nullptr;
1004  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1005  mangleUnscopedTemplateName(TD, AdditionalAbiTags);
1006  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1007  return;
1008  }
1009 
1010  mangleUnscopedName(GD, AdditionalAbiTags);
1011  return;
1012  }
1013 
1014  mangleNestedName(GD, DC, AdditionalAbiTags);
1015 }
1016 
1017 void CXXNameMangler::mangleModuleName(const Module *M) {
1018  // Implement the C++ Modules TS name mangling proposal; see
1019  // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
1020  //
1021  // <module-name> ::= W <unscoped-name>+ E
1022  // ::= W <module-subst> <unscoped-name>* E
1023  Out << 'W';
1024  mangleModuleNamePrefix(M->Name);
1025  Out << 'E';
1026 }
1027 
1028 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
1029  // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
1030  // ::= W <seq-id - 10> _ # otherwise
1031  auto It = ModuleSubstitutions.find(Name);
1032  if (It != ModuleSubstitutions.end()) {
1033  if (It->second < 10)
1034  Out << '_' << static_cast<char>('0' + It->second);
1035  else
1036  Out << 'W' << (It->second - 10) << '_';
1037  return;
1038  }
1039 
1040  // FIXME: Preserve hierarchy in module names rather than flattening
1041  // them to strings; use Module*s as substitution keys.
1042  auto Parts = Name.rsplit('.');
1043  if (Parts.second.empty())
1044  Parts.second = Parts.first;
1045  else
1046  mangleModuleNamePrefix(Parts.first);
1047 
1048  Out << Parts.second.size() << Parts.second;
1049  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
1050 }
1051 
1052 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1053  const TemplateArgument *TemplateArgs,
1054  unsigned NumTemplateArgs) {
1055  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
1056 
1057  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1058  mangleUnscopedTemplateName(TD, nullptr);
1059  mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1060  } else {
1061  mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
1062  }
1063 }
1064 
1065 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
1066  const AbiTagList *AdditionalAbiTags) {
1067  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1068  // <unscoped-name> ::= <unqualified-name>
1069  // ::= St <unqualified-name> # ::std::
1070 
1071  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
1072  Out << "St";
1073 
1074  mangleUnqualifiedName(GD, AdditionalAbiTags);
1075 }
1076 
1077 void CXXNameMangler::mangleUnscopedTemplateName(
1078  GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
1079  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1080  // <unscoped-template-name> ::= <unscoped-name>
1081  // ::= <substitution>
1082  if (mangleSubstitution(ND))
1083  return;
1084 
1085  // <template-template-param> ::= <template-param>
1086  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1087  assert(!AdditionalAbiTags &&
1088  "template template param cannot have abi tags");
1089  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1090  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1091  mangleUnscopedName(GD, AdditionalAbiTags);
1092  } else {
1093  mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
1094  }
1095 
1096  addSubstitution(ND);
1097 }
1098 
1099 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1100  // ABI:
1101  // Floating-point literals are encoded using a fixed-length
1102  // lowercase hexadecimal string corresponding to the internal
1103  // representation (IEEE on Itanium), high-order bytes first,
1104  // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1105  // on Itanium.
1106  // The 'without leading zeroes' thing seems to be an editorial
1107  // mistake; see the discussion on cxx-abi-dev beginning on
1108  // 2012-01-16.
1109 
1110  // Our requirements here are just barely weird enough to justify
1111  // using a custom algorithm instead of post-processing APInt::toString().
1112 
1113  llvm::APInt valueBits = f.bitcastToAPInt();
1114  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1115  assert(numCharacters != 0);
1116 
1117  // Allocate a buffer of the right number of characters.
1118  SmallVector<char, 20> buffer(numCharacters);
1119 
1120  // Fill the buffer left-to-right.
1121  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1122  // The bit-index of the next hex digit.
1123  unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1124 
1125  // Project out 4 bits starting at 'digitIndex'.
1126  uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1127  hexDigit >>= (digitBitIndex % 64);
1128  hexDigit &= 0xF;
1129 
1130  // Map that over to a lowercase hex digit.
1131  static const char charForHex[16] = {
1132  '0', '1', '2', '3', '4', '5', '6', '7',
1133  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1134  };
1135  buffer[stringIndex] = charForHex[hexDigit];
1136  }
1137 
1138  Out.write(buffer.data(), numCharacters);
1139 }
1140 
1141 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1142  Out << 'L';
1143  mangleType(T);
1144  mangleFloat(V);
1145  Out << 'E';
1146 }
1147 
1148 void CXXNameMangler::mangleFixedPointLiteral() {
1149  DiagnosticsEngine &Diags = Context.getDiags();
1150  unsigned DiagID = Diags.getCustomDiagID(
1151  DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1152  Diags.Report(DiagID);
1153 }
1154 
1155 void CXXNameMangler::mangleNullPointer(QualType T) {
1156  // <expr-primary> ::= L <type> 0 E
1157  Out << 'L';
1158  mangleType(T);
1159  Out << "0E";
1160 }
1161 
1162 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1163  if (Value.isSigned() && Value.isNegative()) {
1164  Out << 'n';
1165  Value.abs().print(Out, /*signed*/ false);
1166  } else {
1167  Value.print(Out, /*signed*/ false);
1168  }
1169 }
1170 
1171 void CXXNameMangler::mangleNumber(int64_t Number) {
1172  // <number> ::= [n] <non-negative decimal integer>
1173  if (Number < 0) {
1174  Out << 'n';
1175  Number = -Number;
1176  }
1177 
1178  Out << Number;
1179 }
1180 
1181 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1182  // <call-offset> ::= h <nv-offset> _
1183  // ::= v <v-offset> _
1184  // <nv-offset> ::= <offset number> # non-virtual base override
1185  // <v-offset> ::= <offset number> _ <virtual offset number>
1186  // # virtual base override, with vcall offset
1187  if (!Virtual) {
1188  Out << 'h';
1189  mangleNumber(NonVirtual);
1190  Out << '_';
1191  return;
1192  }
1193 
1194  Out << 'v';
1195  mangleNumber(NonVirtual);
1196  Out << '_';
1197  mangleNumber(Virtual);
1198  Out << '_';
1199 }
1200 
1201 void CXXNameMangler::manglePrefix(QualType type) {
1202  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1203  if (!mangleSubstitution(QualType(TST, 0))) {
1204  mangleTemplatePrefix(TST->getTemplateName());
1205 
1206  // FIXME: GCC does not appear to mangle the template arguments when
1207  // the template in question is a dependent template name. Should we
1208  // emulate that badness?
1209  mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1210  TST->getNumArgs());
1211  addSubstitution(QualType(TST, 0));
1212  }
1213  } else if (const auto *DTST =
1215  if (!mangleSubstitution(QualType(DTST, 0))) {
1216  TemplateName Template = getASTContext().getDependentTemplateName(
1217  DTST->getQualifier(), DTST->getIdentifier());
1218  mangleTemplatePrefix(Template);
1219 
1220  // FIXME: GCC does not appear to mangle the template arguments when
1221  // the template in question is a dependent template name. Should we
1222  // emulate that badness?
1223  mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1224  addSubstitution(QualType(DTST, 0));
1225  }
1226  } else {
1227  // We use the QualType mangle type variant here because it handles
1228  // substitutions.
1229  mangleType(type);
1230  }
1231 }
1232 
1233 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1234 ///
1235 /// \param recursive - true if this is being called recursively,
1236 /// i.e. if there is more prefix "to the right".
1237 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1238  bool recursive) {
1239 
1240  // x, ::x
1241  // <unresolved-name> ::= [gs] <base-unresolved-name>
1242 
1243  // T::x / decltype(p)::x
1244  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1245 
1246  // T::N::x /decltype(p)::N::x
1247  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1248  // <base-unresolved-name>
1249 
1250  // A::x, N::y, A<T>::z; "gs" means leading "::"
1251  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1252  // <base-unresolved-name>
1253 
1254  switch (qualifier->getKind()) {
1256  Out << "gs";
1257 
1258  // We want an 'sr' unless this is the entire NNS.
1259  if (recursive)
1260  Out << "sr";
1261 
1262  // We never want an 'E' here.
1263  return;
1264 
1266  llvm_unreachable("Can't mangle __super specifier");
1267 
1269  if (qualifier->getPrefix())
1270  mangleUnresolvedPrefix(qualifier->getPrefix(),
1271  /*recursive*/ true);
1272  else
1273  Out << "sr";
1274  mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1275  break;
1277  if (qualifier->getPrefix())
1278  mangleUnresolvedPrefix(qualifier->getPrefix(),
1279  /*recursive*/ true);
1280  else
1281  Out << "sr";
1282  mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1283  break;
1284 
1287  const Type *type = qualifier->getAsType();
1288 
1289  // We only want to use an unresolved-type encoding if this is one of:
1290  // - a decltype
1291  // - a template type parameter
1292  // - a template template parameter with arguments
1293  // In all of these cases, we should have no prefix.
1294  if (qualifier->getPrefix()) {
1295  mangleUnresolvedPrefix(qualifier->getPrefix(),
1296  /*recursive*/ true);
1297  } else {
1298  // Otherwise, all the cases want this.
1299  Out << "sr";
1300  }
1301 
1302  if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1303  return;
1304 
1305  break;
1306  }
1307 
1309  // Member expressions can have these without prefixes.
1310  if (qualifier->getPrefix())
1311  mangleUnresolvedPrefix(qualifier->getPrefix(),
1312  /*recursive*/ true);
1313  else
1314  Out << "sr";
1315 
1316  mangleSourceName(qualifier->getAsIdentifier());
1317  // An Identifier has no type information, so we can't emit abi tags for it.
1318  break;
1319  }
1320 
1321  // If this was the innermost part of the NNS, and we fell out to
1322  // here, append an 'E'.
1323  if (!recursive)
1324  Out << 'E';
1325 }
1326 
1327 /// Mangle an unresolved-name, which is generally used for names which
1328 /// weren't resolved to specific entities.
1329 void CXXNameMangler::mangleUnresolvedName(
1331  const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1332  unsigned knownArity) {
1333  if (qualifier) mangleUnresolvedPrefix(qualifier);
1334  switch (name.getNameKind()) {
1335  // <base-unresolved-name> ::= <simple-id>
1337  mangleSourceName(name.getAsIdentifierInfo());
1338  break;
1339  // <base-unresolved-name> ::= dn <destructor-name>
1341  Out << "dn";
1342  mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1343  break;
1344  // <base-unresolved-name> ::= on <operator-name>
1348  Out << "on";
1349  mangleOperatorName(name, knownArity);
1350  break;
1352  llvm_unreachable("Can't mangle a constructor name!");
1354  llvm_unreachable("Can't mangle a using directive name!");
1356  llvm_unreachable("Can't mangle a deduction guide name!");
1360  llvm_unreachable("Can't mangle Objective-C selector names here!");
1361  }
1362 
1363  // The <simple-id> and on <operator-name> productions end in an optional
1364  // <template-args>.
1365  if (TemplateArgs)
1366  mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1367 }
1368 
1369 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1370  DeclarationName Name,
1371  unsigned KnownArity,
1372  const AbiTagList *AdditionalAbiTags) {
1373  const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1374  unsigned Arity = KnownArity;
1375  // <unqualified-name> ::= <operator-name>
1376  // ::= <ctor-dtor-name>
1377  // ::= <source-name>
1378  switch (Name.getNameKind()) {
1380  const IdentifierInfo *II = Name.getAsIdentifierInfo();
1381 
1382  // We mangle decomposition declarations as the names of their bindings.
1383  if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1384  // FIXME: Non-standard mangling for decomposition declarations:
1385  //
1386  // <unqualified-name> ::= DC <source-name>* E
1387  //
1388  // These can never be referenced across translation units, so we do
1389  // not need a cross-vendor mangling for anything other than demanglers.
1390  // Proposed on cxx-abi-dev on 2016-08-12
1391  Out << "DC";
1392  for (auto *BD : DD->bindings())
1393  mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1394  Out << 'E';
1395  writeAbiTags(ND, AdditionalAbiTags);
1396  break;
1397  }
1398 
1399  if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1400  // We follow MSVC in mangling GUID declarations as if they were variables
1401  // with a particular reserved name. Continue the pretense here.
1402  SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1403  llvm::raw_svector_ostream GUIDOS(GUID);
1404  Context.mangleMSGuidDecl(GD, GUIDOS);
1405  Out << GUID.size() << GUID;
1406  break;
1407  }
1408 
1409  if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1410  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1411  Out << "TA";
1412  mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1413  TPO->getValue(), /*TopLevel=*/true);
1414  break;
1415  }
1416 
1417  if (II) {
1418  // Match GCC's naming convention for internal linkage symbols, for
1419  // symbols that are not actually visible outside of this TU. GCC
1420  // distinguishes between internal and external linkage symbols in
1421  // its mangling, to support cases like this that were valid C++ prior
1422  // to DR426:
1423  //
1424  // void test() { extern void foo(); }
1425  // static void foo();
1426  //
1427  // Don't bother with the L marker for names in anonymous namespaces; the
1428  // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1429  // matches GCC anyway, because GCC does not treat anonymous namespaces as
1430  // implying internal linkage.
1431  if (isInternalLinkageDecl(ND))
1432  Out << 'L';
1433 
1434  auto *FD = dyn_cast<FunctionDecl>(ND);
1435  bool IsRegCall = FD &&
1436  FD->getType()->castAs<FunctionType>()->getCallConv() ==
1438  bool IsDeviceStub =
1439  FD && FD->hasAttr<CUDAGlobalAttr>() &&
1441  if (IsDeviceStub)
1442  mangleDeviceStubName(II);
1443  else if (IsRegCall)
1444  mangleRegCallName(II);
1445  else
1446  mangleSourceName(II);
1447 
1448  writeAbiTags(ND, AdditionalAbiTags);
1449  break;
1450  }
1451 
1452  // Otherwise, an anonymous entity. We must have a declaration.
1453  assert(ND && "mangling empty name without declaration");
1454 
1455  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1456  if (NS->isAnonymousNamespace()) {
1457  // This is how gcc mangles these names.
1458  Out << "12_GLOBAL__N_1";
1459  break;
1460  }
1461  }
1462 
1463  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1464  // We must have an anonymous union or struct declaration.
1465  const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1466 
1467  // Itanium C++ ABI 5.1.2:
1468  //
1469  // For the purposes of mangling, the name of an anonymous union is
1470  // considered to be the name of the first named data member found by a
1471  // pre-order, depth-first, declaration-order walk of the data members of
1472  // the anonymous union. If there is no such data member (i.e., if all of
1473  // the data members in the union are unnamed), then there is no way for
1474  // a program to refer to the anonymous union, and there is therefore no
1475  // need to mangle its name.
1476  assert(RD->isAnonymousStructOrUnion()
1477  && "Expected anonymous struct or union!");
1478  const FieldDecl *FD = RD->findFirstNamedDataMember();
1479 
1480  // It's actually possible for various reasons for us to get here
1481  // with an empty anonymous struct / union. Fortunately, it
1482  // doesn't really matter what name we generate.
1483  if (!FD) break;
1484  assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1485 
1486  mangleSourceName(FD->getIdentifier());
1487  // Not emitting abi tags: internal name anyway.
1488  break;
1489  }
1490 
1491  // Class extensions have no name as a category, and it's possible
1492  // for them to be the semantic parent of certain declarations
1493  // (primarily, tag decls defined within declarations). Such
1494  // declarations will always have internal linkage, so the name
1495  // doesn't really matter, but we shouldn't crash on them. For
1496  // safety, just handle all ObjC containers here.
1497  if (isa<ObjCContainerDecl>(ND))
1498  break;
1499 
1500  // We must have an anonymous struct.
1501  const TagDecl *TD = cast<TagDecl>(ND);
1502  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1503  assert(TD->getDeclContext() == D->getDeclContext() &&
1504  "Typedef should not be in another decl context!");
1505  assert(D->getDeclName().getAsIdentifierInfo() &&
1506  "Typedef was not named!");
1507  mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1508  assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1509  // Explicit abi tags are still possible; take from underlying type, not
1510  // from typedef.
1511  writeAbiTags(TD, nullptr);
1512  break;
1513  }
1514 
1515  // <unnamed-type-name> ::= <closure-type-name>
1516  //
1517  // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1518  // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1519  // # Parameter types or 'v' for 'void'.
1520  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1521  llvm::Optional<unsigned> DeviceNumber =
1522  Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1523 
1524  // If we have a device-number via the discriminator, use that to mangle
1525  // the lambda, otherwise use the typical lambda-mangling-number. In either
1526  // case, a '0' should be mangled as a normal unnamed class instead of as a
1527  // lambda.
1528  if (Record->isLambda() &&
1529  ((DeviceNumber && *DeviceNumber > 0) ||
1530  (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1531  assert(!AdditionalAbiTags &&
1532  "Lambda type cannot have additional abi tags");
1533  mangleLambda(Record);
1534  break;
1535  }
1536  }
1537 
1538  if (TD->isExternallyVisible()) {
1539  unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1540  Out << "Ut";
1541  if (UnnamedMangle > 1)
1542  Out << UnnamedMangle - 2;
1543  Out << '_';
1544  writeAbiTags(TD, AdditionalAbiTags);
1545  break;
1546  }
1547 
1548  // Get a unique id for the anonymous struct. If it is not a real output
1549  // ID doesn't matter so use fake one.
1550  unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1551 
1552  // Mangle it as a source name in the form
1553  // [n] $_<id>
1554  // where n is the length of the string.
1555  SmallString<8> Str;
1556  Str += "$_";
1557  Str += llvm::utostr(AnonStructId);
1558 
1559  Out << Str.size();
1560  Out << Str;
1561  break;
1562  }
1563 
1567  llvm_unreachable("Can't mangle Objective-C selector names here!");
1568 
1570  const CXXRecordDecl *InheritedFrom = nullptr;
1571  TemplateName InheritedTemplateName;
1572  const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1573  if (auto Inherited =
1574  cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1575  InheritedFrom = Inherited.getConstructor()->getParent();
1576  InheritedTemplateName =
1577  TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1578  InheritedTemplateArgs =
1579  Inherited.getConstructor()->getTemplateSpecializationArgs();
1580  }
1581 
1582  if (ND == Structor)
1583  // If the named decl is the C++ constructor we're mangling, use the type
1584  // we were given.
1585  mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1586  else
1587  // Otherwise, use the complete constructor name. This is relevant if a
1588  // class with a constructor is declared within a constructor.
1589  mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1590 
1591  // FIXME: The template arguments are part of the enclosing prefix or
1592  // nested-name, but it's more convenient to mangle them here.
1593  if (InheritedTemplateArgs)
1594  mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1595 
1596  writeAbiTags(ND, AdditionalAbiTags);
1597  break;
1598  }
1599 
1601  if (ND == Structor)
1602  // If the named decl is the C++ destructor we're mangling, use the type we
1603  // were given.
1604  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1605  else
1606  // Otherwise, use the complete destructor name. This is relevant if a
1607  // class with a destructor is declared within a destructor.
1608  mangleCXXDtorType(Dtor_Complete);
1609  writeAbiTags(ND, AdditionalAbiTags);
1610  break;
1611 
1613  if (ND && Arity == UnknownArity) {
1614  Arity = cast<FunctionDecl>(ND)->getNumParams();
1615 
1616  // If we have a member function, we need to include the 'this' pointer.
1617  if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1618  if (!MD->isStatic())
1619  Arity++;
1620  }
1621  LLVM_FALLTHROUGH;
1624  mangleOperatorName(Name, Arity);
1625  writeAbiTags(ND, AdditionalAbiTags);
1626  break;
1627 
1629  llvm_unreachable("Can't mangle a deduction guide name!");
1630 
1632  llvm_unreachable("Can't mangle a using directive name!");
1633  }
1634 }
1635 
1636 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1637  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1638  // <number> ::= [n] <non-negative decimal integer>
1639  // <identifier> ::= <unqualified source code identifier>
1640  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1641  << II->getName();
1642 }
1643 
1644 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1645  // <source-name> ::= <positive length number> __device_stub__ <identifier>
1646  // <number> ::= [n] <non-negative decimal integer>
1647  // <identifier> ::= <unqualified source code identifier>
1648  Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1649  << II->getName();
1650 }
1651 
1652 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1653  // <source-name> ::= <positive length number> <identifier>
1654  // <number> ::= [n] <non-negative decimal integer>
1655  // <identifier> ::= <unqualified source code identifier>
1656  Out << II->getLength() << II->getName();
1657 }
1658 
1659 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1660  const DeclContext *DC,
1661  const AbiTagList *AdditionalAbiTags,
1662  bool NoFunction) {
1663  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1664  // <nested-name>
1665  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1666  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1667  // <template-args> E
1668 
1669  Out << 'N';
1670  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1671  Qualifiers MethodQuals = Method->getMethodQualifiers();
1672  // We do not consider restrict a distinguishing attribute for overloading
1673  // purposes so we must not mangle it.
1674  MethodQuals.removeRestrict();
1675  mangleQualifiers(MethodQuals);
1676  mangleRefQualifier(Method->getRefQualifier());
1677  }
1678 
1679  // Check if we have a template.
1680  const TemplateArgumentList *TemplateArgs = nullptr;
1681  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1682  mangleTemplatePrefix(TD, NoFunction);
1683  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1684  } else {
1685  manglePrefix(DC, NoFunction);
1686  mangleUnqualifiedName(GD, AdditionalAbiTags);
1687  }
1688 
1689  Out << 'E';
1690 }
1691 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1692  const TemplateArgument *TemplateArgs,
1693  unsigned NumTemplateArgs) {
1694  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1695 
1696  Out << 'N';
1697 
1698  mangleTemplatePrefix(TD);
1699  mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1700 
1701  Out << 'E';
1702 }
1703 
1704 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1705  GlobalDecl GD, const NamedDecl *PrefixND,
1706  const AbiTagList *AdditionalAbiTags) {
1707  // A <closure-prefix> represents a variable or field, not a regular
1708  // DeclContext, so needs special handling. In this case we're mangling a
1709  // limited form of <nested-name>:
1710  //
1711  // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1712 
1713  Out << 'N';
1714 
1715  mangleClosurePrefix(PrefixND);
1716  mangleUnqualifiedName(GD, AdditionalAbiTags);
1717 
1718  Out << 'E';
1719 }
1720 
1722  GlobalDecl GD;
1723  // The Itanium spec says:
1724  // For entities in constructors and destructors, the mangling of the
1725  // complete object constructor or destructor is used as the base function
1726  // name, i.e. the C1 or D1 version.
1727  if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1728  GD = GlobalDecl(CD, Ctor_Complete);
1729  else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1730  GD = GlobalDecl(DD, Dtor_Complete);
1731  else
1732  GD = GlobalDecl(cast<FunctionDecl>(DC));
1733  return GD;
1734 }
1735 
1736 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1737  const AbiTagList *AdditionalAbiTags) {
1738  const Decl *D = GD.getDecl();
1739  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1740  // := Z <function encoding> E s [<discriminator>]
1741  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1742  // _ <entity name>
1743  // <discriminator> := _ <non-negative number>
1744  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1745  const RecordDecl *RD = GetLocalClassDecl(D);
1746  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1747 
1748  Out << 'Z';
1749 
1750  {
1751  AbiTagState LocalAbiTags(AbiTags);
1752 
1753  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1754  mangleObjCMethodName(MD);
1755  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1756  mangleBlockForPrefix(BD);
1757  else
1758  mangleFunctionEncoding(getParentOfLocalEntity(DC));
1759 
1760  // Implicit ABI tags (from namespace) are not available in the following
1761  // entity; reset to actually emitted tags, which are available.
1762  LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1763  }
1764 
1765  Out << 'E';
1766 
1767  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1768  // be a bug that is fixed in trunk.
1769 
1770  if (RD) {
1771  // The parameter number is omitted for the last parameter, 0 for the
1772  // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1773  // <entity name> will of course contain a <closure-type-name>: Its
1774  // numbering will be local to the particular argument in which it appears
1775  // -- other default arguments do not affect its encoding.
1776  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1777  if (CXXRD && CXXRD->isLambda()) {
1778  if (const ParmVarDecl *Parm
1779  = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1780  if (const FunctionDecl *Func
1781  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1782  Out << 'd';
1783  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1784  if (Num > 1)
1785  mangleNumber(Num - 2);
1786  Out << '_';
1787  }
1788  }
1789  }
1790 
1791  // Mangle the name relative to the closest enclosing function.
1792  // equality ok because RD derived from ND above
1793  if (D == RD) {
1794  mangleUnqualifiedName(RD, AdditionalAbiTags);
1795  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1796  if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1797  mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1798  else
1799  manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1800  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1801  mangleUnqualifiedBlock(BD);
1802  } else {
1803  const NamedDecl *ND = cast<NamedDecl>(D);
1804  mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1805  true /*NoFunction*/);
1806  }
1807  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1808  // Mangle a block in a default parameter; see above explanation for
1809  // lambdas.
1810  if (const ParmVarDecl *Parm
1811  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1812  if (const FunctionDecl *Func
1813  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1814  Out << 'd';
1815  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1816  if (Num > 1)
1817  mangleNumber(Num - 2);
1818  Out << '_';
1819  }
1820  }
1821 
1822  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1823  mangleUnqualifiedBlock(BD);
1824  } else {
1825  mangleUnqualifiedName(GD, AdditionalAbiTags);
1826  }
1827 
1828  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1829  unsigned disc;
1830  if (Context.getNextDiscriminator(ND, disc)) {
1831  if (disc < 10)
1832  Out << '_' << disc;
1833  else
1834  Out << "__" << disc << '_';
1835  }
1836  }
1837 }
1838 
1839 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1840  if (GetLocalClassDecl(Block)) {
1841  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1842  return;
1843  }
1844  const DeclContext *DC = getEffectiveDeclContext(Block);
1845  if (isLocalContainerContext(DC)) {
1846  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1847  return;
1848  }
1849  if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1850  mangleClosurePrefix(PrefixND);
1851  else
1852  manglePrefix(DC);
1853  mangleUnqualifiedBlock(Block);
1854 }
1855 
1856 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1857  // When trying to be ABI-compatibility with clang 12 and before, mangle a
1858  // <data-member-prefix> now, with no substitutions and no <template-args>.
1859  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1860  if (getASTContext().getLangOpts().getClangABICompat() <=
1862  (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1863  Context->getDeclContext()->isRecord()) {
1864  const auto *ND = cast<NamedDecl>(Context);
1865  if (ND->getIdentifier()) {
1866  mangleSourceNameWithAbiTags(ND);
1867  Out << 'M';
1868  }
1869  }
1870  }
1871 
1872  // If we have a block mangling number, use it.
1873  unsigned Number = Block->getBlockManglingNumber();
1874  // Otherwise, just make up a number. It doesn't matter what it is because
1875  // the symbol in question isn't externally visible.
1876  if (!Number)
1877  Number = Context.getBlockId(Block, false);
1878  else {
1879  // Stored mangling numbers are 1-based.
1880  --Number;
1881  }
1882  Out << "Ub";
1883  if (Number > 0)
1884  Out << Number - 1;
1885  Out << '_';
1886 }
1887 
1888 // <template-param-decl>
1889 // ::= Ty # template type parameter
1890 // ::= Tn <type> # template non-type parameter
1891 // ::= Tt <template-param-decl>* E # template template parameter
1892 // ::= Tp <template-param-decl> # template parameter pack
1893 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1894  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1895  if (Ty->isParameterPack())
1896  Out << "Tp";
1897  Out << "Ty";
1898  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1899  if (Tn->isExpandedParameterPack()) {
1900  for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1901  Out << "Tn";
1902  mangleType(Tn->getExpansionType(I));
1903  }
1904  } else {
1905  QualType T = Tn->getType();
1906  if (Tn->isParameterPack()) {
1907  Out << "Tp";
1908  if (auto *PackExpansion = T->getAs<PackExpansionType>())
1909  T = PackExpansion->getPattern();
1910  }
1911  Out << "Tn";
1912  mangleType(T);
1913  }
1914  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1915  if (Tt->isExpandedParameterPack()) {
1916  for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1917  ++I) {
1918  Out << "Tt";
1919  for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1920  mangleTemplateParamDecl(Param);
1921  Out << "E";
1922  }
1923  } else {
1924  if (Tt->isParameterPack())
1925  Out << "Tp";
1926  Out << "Tt";
1927  for (auto *Param : *Tt->getTemplateParameters())
1928  mangleTemplateParamDecl(Param);
1929  Out << "E";
1930  }
1931  }
1932 }
1933 
1934 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1935  // When trying to be ABI-compatibility with clang 12 and before, mangle a
1936  // <data-member-prefix> now, with no substitutions.
1937  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1938  if (getASTContext().getLangOpts().getClangABICompat() <=
1940  (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1941  !isa<ParmVarDecl>(Context)) {
1942  if (const IdentifierInfo *Name
1943  = cast<NamedDecl>(Context)->getIdentifier()) {
1944  mangleSourceName(Name);
1945  const TemplateArgumentList *TemplateArgs = nullptr;
1946  if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1947  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1948  Out << 'M';
1949  }
1950  }
1951  }
1952 
1953  Out << "Ul";
1954  mangleLambdaSig(Lambda);
1955  Out << "E";
1956 
1957  // The number is omitted for the first closure type with a given
1958  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1959  // (in lexical order) with that same <lambda-sig> and context.
1960  //
1961  // The AST keeps track of the number for us.
1962  //
1963  // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
1964  // and host-side compilations, an extra device mangle context may be created
1965  // if the host-side CXX ABI has different numbering for lambda. In such case,
1966  // if the mangle context is that device-side one, use the device-side lambda
1967  // mangling number for this lambda.
1968  llvm::Optional<unsigned> DeviceNumber =
1969  Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
1970  unsigned Number =
1971  DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
1972 
1973  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1974  if (Number > 1)
1975  mangleNumber(Number - 2);
1976  Out << '_';
1977 }
1978 
1979 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1980  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1981  mangleTemplateParamDecl(D);
1982  auto *Proto =
1984  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1985  Lambda->getLambdaStaticInvoker());
1986 }
1987 
1988 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1989  switch (qualifier->getKind()) {
1991  // nothing
1992  return;
1993 
1995  llvm_unreachable("Can't mangle __super specifier");
1996 
1998  mangleName(qualifier->getAsNamespace());
1999  return;
2000 
2002  mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
2003  return;
2004 
2007  manglePrefix(QualType(qualifier->getAsType(), 0));
2008  return;
2009 
2011  // Member expressions can have these without prefixes, but that
2012  // should end up in mangleUnresolvedPrefix instead.
2013  assert(qualifier->getPrefix());
2014  manglePrefix(qualifier->getPrefix());
2015 
2016  mangleSourceName(qualifier->getAsIdentifier());
2017  return;
2018  }
2019 
2020  llvm_unreachable("unexpected nested name specifier");
2021 }
2022 
2023 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2024  // <prefix> ::= <prefix> <unqualified-name>
2025  // ::= <template-prefix> <template-args>
2026  // ::= <closure-prefix>
2027  // ::= <template-param>
2028  // ::= # empty
2029  // ::= <substitution>
2030 
2031  DC = IgnoreLinkageSpecDecls(DC);
2032 
2033  if (DC->isTranslationUnit())
2034  return;
2035 
2036  if (NoFunction && isLocalContainerContext(DC))
2037  return;
2038 
2039  assert(!isLocalContainerContext(DC));
2040 
2041  const NamedDecl *ND = cast<NamedDecl>(DC);
2042  if (mangleSubstitution(ND))
2043  return;
2044 
2045  // Check if we have a template-prefix or a closure-prefix.
2046  const TemplateArgumentList *TemplateArgs = nullptr;
2047  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2048  mangleTemplatePrefix(TD);
2049  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2050  } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2051  mangleClosurePrefix(PrefixND, NoFunction);
2052  mangleUnqualifiedName(ND, nullptr);
2053  } else {
2054  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2055  mangleUnqualifiedName(ND, nullptr);
2056  }
2057 
2058  addSubstitution(ND);
2059 }
2060 
2061 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2062  // <template-prefix> ::= <prefix> <template unqualified-name>
2063  // ::= <template-param>
2064  // ::= <substitution>
2065  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2066  return mangleTemplatePrefix(TD);
2067 
2068  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2069  assert(Dependent && "unexpected template name kind");
2070 
2071  // Clang 11 and before mangled the substitution for a dependent template name
2072  // after already having emitted (a substitution for) the prefix.
2073  bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2075  if (!Clang11Compat && mangleSubstitution(Template))
2076  return;
2077 
2078  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2079  manglePrefix(Qualifier);
2080 
2081  if (Clang11Compat && mangleSubstitution(Template))
2082  return;
2083 
2084  if (const IdentifierInfo *Id = Dependent->getIdentifier())
2085  mangleSourceName(Id);
2086  else
2087  mangleOperatorName(Dependent->getOperator(), UnknownArity);
2088 
2089  addSubstitution(Template);
2090 }
2091 
2092 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2093  bool NoFunction) {
2094  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2095  // <template-prefix> ::= <prefix> <template unqualified-name>
2096  // ::= <template-param>
2097  // ::= <substitution>
2098  // <template-template-param> ::= <template-param>
2099  // <substitution>
2100 
2101  if (mangleSubstitution(ND))
2102  return;
2103 
2104  // <template-template-param> ::= <template-param>
2105  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2106  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2107  } else {
2108  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2109  if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2110  mangleUnqualifiedName(GD, nullptr);
2111  else
2112  mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
2113  }
2114 
2115  addSubstitution(ND);
2116 }
2117 
2118 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2119  if (getASTContext().getLangOpts().getClangABICompat() <=
2121  return nullptr;
2122 
2123  const NamedDecl *Context = nullptr;
2124  if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2125  Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2126  } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2127  if (RD->isLambda())
2128  Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2129  }
2130  if (!Context)
2131  return nullptr;
2132 
2133  // Only lambdas within the initializer of a non-local variable or non-static
2134  // data member get a <closure-prefix>.
2135  if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2136  isa<FieldDecl>(Context))
2137  return Context;
2138 
2139  return nullptr;
2140 }
2141 
2142 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2143  // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2144  // ::= <template-prefix> <template-args> M
2145  if (mangleSubstitution(ND))
2146  return;
2147 
2148  const TemplateArgumentList *TemplateArgs = nullptr;
2149  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2150  mangleTemplatePrefix(TD, NoFunction);
2151  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2152  } else {
2153  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2154  mangleUnqualifiedName(ND, nullptr);
2155  }
2156 
2157  Out << 'M';
2158 
2159  addSubstitution(ND);
2160 }
2161 
2162 /// Mangles a template name under the production <type>. Required for
2163 /// template template arguments.
2164 /// <type> ::= <class-enum-type>
2165 /// ::= <template-param>
2166 /// ::= <substitution>
2167 void CXXNameMangler::mangleType(TemplateName TN) {
2168  if (mangleSubstitution(TN))
2169  return;
2170 
2171  TemplateDecl *TD = nullptr;
2172 
2173  switch (TN.getKind()) {
2176  goto HaveDecl;
2177 
2179  TD = TN.getAsTemplateDecl();
2180  goto HaveDecl;
2181 
2182  HaveDecl:
2183  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2184  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2185  else
2186  mangleName(TD);
2187  break;
2188 
2191  llvm_unreachable("can't mangle an overloaded template name as a <type>");
2192 
2194  const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2195  assert(Dependent->isIdentifier());
2196 
2197  // <class-enum-type> ::= <name>
2198  // <name> ::= <nested-name>
2199  mangleUnresolvedPrefix(Dependent->getQualifier());
2200  mangleSourceName(Dependent->getIdentifier());
2201  break;
2202  }
2203 
2205  // Substituted template parameters are mangled as the substituted
2206  // template. This will check for the substitution twice, which is
2207  // fine, but we have to return early so that we don't try to *add*
2208  // the substitution twice.
2211  mangleType(subst->getReplacement());
2212  return;
2213  }
2214 
2216  // FIXME: not clear how to mangle this!
2217  // template <template <class> class T...> class A {
2218  // template <template <class> class U...> void foo(B<T,U> x...);
2219  // };
2220  Out << "_SUBSTPACK_";
2221  break;
2222  }
2223  }
2224 
2225  addSubstitution(TN);
2226 }
2227 
2228 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2229  StringRef Prefix) {
2230  // Only certain other types are valid as prefixes; enumerate them.
2231  switch (Ty->getTypeClass()) {
2232  case Type::Builtin:
2233  case Type::Complex:
2234  case Type::Adjusted:
2235  case Type::Decayed:
2236  case Type::Pointer:
2237  case Type::BlockPointer:
2238  case Type::LValueReference:
2239  case Type::RValueReference:
2240  case Type::MemberPointer:
2241  case Type::ConstantArray:
2242  case Type::IncompleteArray:
2243  case Type::VariableArray:
2244  case Type::DependentSizedArray:
2245  case Type::DependentAddressSpace:
2246  case Type::DependentVector:
2247  case Type::DependentSizedExtVector:
2248  case Type::Vector:
2249  case Type::ExtVector:
2250  case Type::ConstantMatrix:
2251  case Type::DependentSizedMatrix:
2252  case Type::FunctionProto:
2253  case Type::FunctionNoProto:
2254  case Type::Paren:
2255  case Type::Attributed:
2256  case Type::Auto:
2257  case Type::DeducedTemplateSpecialization:
2258  case Type::PackExpansion:
2259  case Type::ObjCObject:
2260  case Type::ObjCInterface:
2261  case Type::ObjCObjectPointer:
2262  case Type::ObjCTypeParam:
2263  case Type::Atomic:
2264  case Type::Pipe:
2265  case Type::MacroQualified:
2266  case Type::ExtInt:
2267  case Type::DependentExtInt:
2268  llvm_unreachable("type is illegal as a nested name specifier");
2269 
2270  case Type::SubstTemplateTypeParmPack:
2271  // FIXME: not clear how to mangle this!
2272  // template <class T...> class A {
2273  // template <class U...> void foo(decltype(T::foo(U())) x...);
2274  // };
2275  Out << "_SUBSTPACK_";
2276  break;
2277 
2278  // <unresolved-type> ::= <template-param>
2279  // ::= <decltype>
2280  // ::= <template-template-param> <template-args>
2281  // (this last is not official yet)
2282  case Type::TypeOfExpr:
2283  case Type::TypeOf:
2284  case Type::Decltype:
2285  case Type::TemplateTypeParm:
2286  case Type::UnaryTransform:
2287  case Type::SubstTemplateTypeParm:
2288  unresolvedType:
2289  // Some callers want a prefix before the mangled type.
2290  Out << Prefix;
2291 
2292  // This seems to do everything we want. It's not really
2293  // sanctioned for a substituted template parameter, though.
2294  mangleType(Ty);
2295 
2296  // We never want to print 'E' directly after an unresolved-type,
2297  // so we return directly.
2298  return true;
2299 
2300  case Type::Typedef:
2301  mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2302  break;
2303 
2304  case Type::UnresolvedUsing:
2305  mangleSourceNameWithAbiTags(
2306  cast<UnresolvedUsingType>(Ty)->getDecl());
2307  break;
2308 
2309  case Type::Enum:
2310  case Type::Record:
2311  mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2312  break;
2313 
2314  case Type::TemplateSpecialization: {
2315  const TemplateSpecializationType *TST =
2316  cast<TemplateSpecializationType>(Ty);
2317  TemplateName TN = TST->getTemplateName();
2318  switch (TN.getKind()) {
2321  TemplateDecl *TD = TN.getAsTemplateDecl();
2322 
2323  // If the base is a template template parameter, this is an
2324  // unresolved type.
2325  assert(TD && "no template for template specialization type");
2326  if (isa<TemplateTemplateParmDecl>(TD))
2327  goto unresolvedType;
2328 
2329  mangleSourceNameWithAbiTags(TD);
2330  break;
2331  }
2332 
2336  llvm_unreachable("invalid base for a template specialization type");
2337 
2341  mangleExistingSubstitution(subst->getReplacement());
2342  break;
2343  }
2344 
2346  // FIXME: not clear how to mangle this!
2347  // template <template <class U> class T...> class A {
2348  // template <class U...> void foo(decltype(T<U>::foo) x...);
2349  // };
2350  Out << "_SUBSTPACK_";
2351  break;
2352  }
2353  }
2354 
2355  // Note: we don't pass in the template name here. We are mangling the
2356  // original source-level template arguments, so we shouldn't consider
2357  // conversions to the corresponding template parameter.
2358  // FIXME: Other compilers mangle partially-resolved template arguments in
2359  // unresolved-qualifier-levels.
2360  mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2361  break;
2362  }
2363 
2364  case Type::InjectedClassName:
2365  mangleSourceNameWithAbiTags(
2366  cast<InjectedClassNameType>(Ty)->getDecl());
2367  break;
2368 
2369  case Type::DependentName:
2370  mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2371  break;
2372 
2373  case Type::DependentTemplateSpecialization: {
2375  cast<DependentTemplateSpecializationType>(Ty);
2376  TemplateName Template = getASTContext().getDependentTemplateName(
2377  DTST->getQualifier(), DTST->getIdentifier());
2378  mangleSourceName(DTST->getIdentifier());
2379  mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2380  break;
2381  }
2382 
2383  case Type::Elaborated:
2384  return mangleUnresolvedTypeOrSimpleId(
2385  cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2386  }
2387 
2388  return false;
2389 }
2390 
2391 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2392  switch (Name.getNameKind()) {
2401  llvm_unreachable("Not an operator name");
2402 
2404  // <operator-name> ::= cv <type> # (cast)
2405  Out << "cv";
2406  mangleType(Name.getCXXNameType());
2407  break;
2408 
2410  Out << "li";
2411  mangleSourceName(Name.getCXXLiteralIdentifier());
2412  return;
2413 
2415  mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2416  break;
2417  }
2418 }
2419 
2420 void
2421 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2422  switch (OO) {
2423  // <operator-name> ::= nw # new
2424  case OO_New: Out << "nw"; break;
2425  // ::= na # new[]
2426  case OO_Array_New: Out << "na"; break;
2427  // ::= dl # delete
2428  case OO_Delete: Out << "dl"; break;
2429  // ::= da # delete[]
2430  case OO_Array_Delete: Out << "da"; break;
2431  // ::= ps # + (unary)
2432  // ::= pl # + (binary or unknown)
2433  case OO_Plus:
2434  Out << (Arity == 1? "ps" : "pl"); break;
2435  // ::= ng # - (unary)
2436  // ::= mi # - (binary or unknown)
2437  case OO_Minus:
2438  Out << (Arity == 1? "ng" : "mi"); break;
2439  // ::= ad # & (unary)
2440  // ::= an # & (binary or unknown)
2441  case OO_Amp:
2442  Out << (Arity == 1? "ad" : "an"); break;
2443  // ::= de # * (unary)
2444  // ::= ml # * (binary or unknown)
2445  case OO_Star:
2446  // Use binary when unknown.
2447  Out << (Arity == 1? "de" : "ml"); break;
2448  // ::= co # ~
2449  case OO_Tilde: Out << "co"; break;
2450  // ::= dv # /
2451  case OO_Slash: Out << "dv"; break;
2452  // ::= rm # %
2453  case OO_Percent: Out << "rm"; break;
2454  // ::= or # |
2455  case OO_Pipe: Out << "or"; break;
2456  // ::= eo # ^
2457  case OO_Caret: Out << "eo"; break;
2458  // ::= aS # =
2459  case OO_Equal: Out << "aS"; break;
2460  // ::= pL # +=
2461  case OO_PlusEqual: Out << "pL"; break;
2462  // ::= mI # -=
2463  case OO_MinusEqual: Out << "mI"; break;
2464  // ::= mL # *=
2465  case OO_StarEqual: Out << "mL"; break;
2466  // ::= dV # /=
2467  case OO_SlashEqual: Out << "dV"; break;
2468  // ::= rM # %=
2469  case OO_PercentEqual: Out << "rM"; break;
2470  // ::= aN # &=
2471  case OO_AmpEqual: Out << "aN"; break;
2472  // ::= oR # |=
2473  case OO_PipeEqual: Out << "oR"; break;
2474  // ::= eO # ^=
2475  case OO_CaretEqual: Out << "eO"; break;
2476  // ::= ls # <<
2477  case OO_LessLess: Out << "ls"; break;
2478  // ::= rs # >>
2479  case OO_GreaterGreater: Out << "rs"; break;
2480  // ::= lS # <<=
2481  case OO_LessLessEqual: Out << "lS"; break;
2482  // ::= rS # >>=
2483  case OO_GreaterGreaterEqual: Out << "rS"; break;
2484  // ::= eq # ==
2485  case OO_EqualEqual: Out << "eq"; break;
2486  // ::= ne # !=
2487  case OO_ExclaimEqual: Out << "ne"; break;
2488  // ::= lt # <
2489  case OO_Less: Out << "lt"; break;
2490  // ::= gt # >
2491  case OO_Greater: Out << "gt"; break;
2492  // ::= le # <=
2493  case OO_LessEqual: Out << "le"; break;
2494  // ::= ge # >=
2495  case OO_GreaterEqual: Out << "ge"; break;
2496  // ::= nt # !
2497  case OO_Exclaim: Out << "nt"; break;
2498  // ::= aa # &&
2499  case OO_AmpAmp: Out << "aa"; break;
2500  // ::= oo # ||
2501  case OO_PipePipe: Out << "oo"; break;
2502  // ::= pp # ++
2503  case OO_PlusPlus: Out << "pp"; break;
2504  // ::= mm # --
2505  case OO_MinusMinus: Out << "mm"; break;
2506  // ::= cm # ,
2507  case OO_Comma: Out << "cm"; break;
2508  // ::= pm # ->*
2509  case OO_ArrowStar: Out << "pm"; break;
2510  // ::= pt # ->
2511  case OO_Arrow: Out << "pt"; break;
2512  // ::= cl # ()
2513  case OO_Call: Out << "cl"; break;
2514  // ::= ix # []
2515  case OO_Subscript: Out << "ix"; break;
2516 
2517  // ::= qu # ?
2518  // The conditional operator can't be overloaded, but we still handle it when
2519  // mangling expressions.
2520  case OO_Conditional: Out << "qu"; break;
2521  // Proposal on cxx-abi-dev, 2015-10-21.
2522  // ::= aw # co_await
2523  case OO_Coawait: Out << "aw"; break;
2524  // Proposed in cxx-abi github issue 43.
2525  // ::= ss # <=>
2526  case OO_Spaceship: Out << "ss"; break;
2527 
2528  case OO_None:
2530  llvm_unreachable("Not an overloaded operator");
2531  }
2532 }
2533 
2534 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2535  // Vendor qualifiers come first and if they are order-insensitive they must
2536  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2537 
2538  // <type> ::= U <addrspace-expr>
2539  if (DAST) {
2540  Out << "U2ASI";
2541  mangleExpression(DAST->getAddrSpaceExpr());
2542  Out << "E";
2543  }
2544 
2545  // Address space qualifiers start with an ordinary letter.
2546  if (Quals.hasAddressSpace()) {
2547  // Address space extension:
2548  //
2549  // <type> ::= U <target-addrspace>
2550  // <type> ::= U <OpenCL-addrspace>
2551  // <type> ::= U <CUDA-addrspace>
2552 
2553  SmallString<64> ASString;
2554  LangAS AS = Quals.getAddressSpace();
2555 
2556  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2557  // <target-addrspace> ::= "AS" <address-space-number>
2558  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2559  if (TargetAS != 0 ||
2560  Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2561  ASString = "AS" + llvm::utostr(TargetAS);
2562  } else {
2563  switch (AS) {
2564  default: llvm_unreachable("Not a language specific address space");
2565  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2566  // "private"| "generic" | "device" |
2567  // "host" ]
2568  case LangAS::opencl_global:
2569  ASString = "CLglobal";
2570  break;
2572  ASString = "CLdevice";
2573  break;
2575  ASString = "CLhost";
2576  break;
2577  case LangAS::opencl_local:
2578  ASString = "CLlocal";
2579  break;
2581  ASString = "CLconstant";
2582  break;
2584  ASString = "CLprivate";
2585  break;
2587  ASString = "CLgeneric";
2588  break;
2589  // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2590  // "device" | "host" ]
2591  case LangAS::sycl_global:
2592  ASString = "SYglobal";
2593  break;
2595  ASString = "SYdevice";
2596  break;
2598  ASString = "SYhost";
2599  break;
2600  case LangAS::sycl_local:
2601  ASString = "SYlocal";
2602  break;
2603  case LangAS::sycl_private:
2604  ASString = "SYprivate";
2605  break;
2606  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2607  case LangAS::cuda_device:
2608  ASString = "CUdevice";
2609  break;
2610  case LangAS::cuda_constant:
2611  ASString = "CUconstant";
2612  break;
2613  case LangAS::cuda_shared:
2614  ASString = "CUshared";
2615  break;
2616  // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2617  case LangAS::ptr32_sptr:
2618  ASString = "ptr32_sptr";
2619  break;
2620  case LangAS::ptr32_uptr:
2621  ASString = "ptr32_uptr";
2622  break;
2623  case LangAS::ptr64:
2624  ASString = "ptr64";
2625  break;
2626  }
2627  }
2628  if (!ASString.empty())
2629  mangleVendorQualifier(ASString);
2630  }
2631 
2632  // The ARC ownership qualifiers start with underscores.
2633  // Objective-C ARC Extension:
2634  //
2635  // <type> ::= U "__strong"
2636  // <type> ::= U "__weak"
2637  // <type> ::= U "__autoreleasing"
2638  //
2639  // Note: we emit __weak first to preserve the order as
2640  // required by the Itanium ABI.
2641  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2642  mangleVendorQualifier("__weak");
2643 
2644  // __unaligned (from -fms-extensions)
2645  if (Quals.hasUnaligned())
2646  mangleVendorQualifier("__unaligned");
2647 
2648  // Remaining ARC ownership qualifiers.
2649  switch (Quals.getObjCLifetime()) {
2650  case Qualifiers::OCL_None:
2651  break;
2652 
2653  case Qualifiers::OCL_Weak:
2654  // Do nothing as we already handled this case above.
2655  break;
2656 
2658  mangleVendorQualifier("__strong");
2659  break;
2660 
2662  mangleVendorQualifier("__autoreleasing");
2663  break;
2664 
2666  // The __unsafe_unretained qualifier is *not* mangled, so that
2667  // __unsafe_unretained types in ARC produce the same manglings as the
2668  // equivalent (but, naturally, unqualified) types in non-ARC, providing
2669  // better ABI compatibility.
2670  //
2671  // It's safe to do this because unqualified 'id' won't show up
2672  // in any type signatures that need to be mangled.
2673  break;
2674  }
2675 
2676  // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2677  if (Quals.hasRestrict())
2678  Out << 'r';
2679  if (Quals.hasVolatile())
2680  Out << 'V';
2681  if (Quals.hasConst())
2682  Out << 'K';
2683 }
2684 
2685 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2686  Out << 'U' << name.size() << name;
2687 }
2688 
2689 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2690  // <ref-qualifier> ::= R # lvalue reference
2691  // ::= O # rvalue-reference
2692  switch (RefQualifier) {
2693  case RQ_None:
2694  break;
2695 
2696  case RQ_LValue:
2697  Out << 'R';
2698  break;
2699 
2700  case RQ_RValue:
2701  Out << 'O';
2702  break;
2703  }
2704 }
2705 
2706 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2707  Context.mangleObjCMethodNameAsSourceName(MD, Out);
2708 }
2709 
2710 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2711  ASTContext &Ctx) {
2712  if (Quals)
2713  return true;
2714  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2715  return true;
2716  if (Ty->isOpenCLSpecificType())
2717  return true;
2718  if (Ty->isBuiltinType())
2719  return false;
2720  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2721  // substitution candidates.
2722  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2723  isa<AutoType>(Ty))
2724  return false;
2725  // A placeholder type for class template deduction is substitutable with
2726  // its corresponding template name; this is handled specially when mangling
2727  // the type.
2728  if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2729  if (DeducedTST->getDeducedType().isNull())
2730  return false;
2731  return true;
2732 }
2733 
2734 void CXXNameMangler::mangleType(QualType T) {
2735  // If our type is instantiation-dependent but not dependent, we mangle
2736  // it as it was written in the source, removing any top-level sugar.
2737  // Otherwise, use the canonical type.
2738  //
2739  // FIXME: This is an approximation of the instantiation-dependent name
2740  // mangling rules, since we should really be using the type as written and
2741  // augmented via semantic analysis (i.e., with implicit conversions and
2742  // default template arguments) for any instantiation-dependent type.
2743  // Unfortunately, that requires several changes to our AST:
2744  // - Instantiation-dependent TemplateSpecializationTypes will need to be
2745  // uniqued, so that we can handle substitutions properly
2746  // - Default template arguments will need to be represented in the
2747  // TemplateSpecializationType, since they need to be mangled even though
2748  // they aren't written.
2749  // - Conversions on non-type template arguments need to be expressed, since
2750  // they can affect the mangling of sizeof/alignof.
2751  //
2752  // FIXME: This is wrong when mapping to the canonical type for a dependent
2753  // type discards instantiation-dependent portions of the type, such as for:
2754  //
2755  // template<typename T, int N> void f(T (&)[sizeof(N)]);
2756  // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2757  //
2758  // It's also wrong in the opposite direction when instantiation-dependent,
2759  // canonically-equivalent types differ in some irrelevant portion of inner
2760  // type sugar. In such cases, we fail to form correct substitutions, eg:
2761  //
2762  // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2763  //
2764  // We should instead canonicalize the non-instantiation-dependent parts,
2765  // regardless of whether the type as a whole is dependent or instantiation
2766  // dependent.
2768  T = T.getCanonicalType();
2769  else {
2770  // Desugar any types that are purely sugar.
2771  do {
2772  // Don't desugar through template specialization types that aren't
2773  // type aliases. We need to mangle the template arguments as written.
2774  if (const TemplateSpecializationType *TST
2775  = dyn_cast<TemplateSpecializationType>(T))
2776  if (!TST->isTypeAlias())
2777  break;
2778 
2779  // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2780  // instantation-dependent qualifiers. See
2781  // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2782 
2783  QualType Desugared
2784  = T.getSingleStepDesugaredType(Context.getASTContext());
2785  if (Desugared == T)
2786  break;
2787 
2788  T = Desugared;
2789  } while (true);
2790  }
2791  SplitQualType split = T.split();
2792  Qualifiers quals = split.Quals;
2793  const Type *ty = split.Ty;
2794 
2795  bool isSubstitutable =
2796  isTypeSubstitutable(quals, ty, Context.getASTContext());
2797  if (isSubstitutable && mangleSubstitution(T))
2798  return;
2799 
2800  // If we're mangling a qualified array type, push the qualifiers to
2801  // the element type.
2802  if (quals && isa<ArrayType>(T)) {
2803  ty = Context.getASTContext().getAsArrayType(T);
2804  quals = Qualifiers();
2805 
2806  // Note that we don't update T: we want to add the
2807  // substitution at the original type.
2808  }
2809 
2810  if (quals || ty->isDependentAddressSpaceType()) {
2811  if (const DependentAddressSpaceType *DAST =
2812  dyn_cast<DependentAddressSpaceType>(ty)) {
2813  SplitQualType splitDAST = DAST->getPointeeType().split();
2814  mangleQualifiers(splitDAST.Quals, DAST);
2815  mangleType(QualType(splitDAST.Ty, 0));
2816  } else {
2817  mangleQualifiers(quals);
2818 
2819  // Recurse: even if the qualified type isn't yet substitutable,
2820  // the unqualified type might be.
2821  mangleType(QualType(ty, 0));
2822  }
2823  } else {
2824  switch (ty->getTypeClass()) {
2825 #define ABSTRACT_TYPE(CLASS, PARENT)
2826 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2827  case Type::CLASS: \
2828  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2829  return;
2830 #define TYPE(CLASS, PARENT) \
2831  case Type::CLASS: \
2832  mangleType(static_cast<const CLASS##Type*>(ty)); \
2833  break;
2834 #include "clang/AST/TypeNodes.inc"
2835  }
2836  }
2837 
2838  // Add the substitution.
2839  if (isSubstitutable)
2840  addSubstitution(T);
2841 }
2842 
2843 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2844  if (!mangleStandardSubstitution(ND))
2845  mangleName(ND);
2846 }
2847 
2848 void CXXNameMangler::mangleType(const BuiltinType *T) {
2849  // <type> ::= <builtin-type>
2850  // <builtin-type> ::= v # void
2851  // ::= w # wchar_t
2852  // ::= b # bool
2853  // ::= c # char
2854  // ::= a # signed char
2855  // ::= h # unsigned char
2856  // ::= s # short
2857  // ::= t # unsigned short
2858  // ::= i # int
2859  // ::= j # unsigned int
2860  // ::= l # long
2861  // ::= m # unsigned long
2862  // ::= x # long long, __int64
2863  // ::= y # unsigned long long, __int64
2864  // ::= n # __int128
2865  // ::= o # unsigned __int128
2866  // ::= f # float
2867  // ::= d # double
2868  // ::= e # long double, __float80
2869  // ::= g # __float128
2870  // ::= g # __ibm128
2871  // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2872  // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2873  // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2874  // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2875  // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2876  // ::= Di # char32_t
2877  // ::= Ds # char16_t
2878  // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2879  // ::= u <source-name> # vendor extended type
2880  std::string type_name;
2881  switch (T->getKind()) {
2882  case BuiltinType::Void:
2883  Out << 'v';
2884  break;
2885  case BuiltinType::Bool:
2886  Out << 'b';
2887  break;
2888  case BuiltinType::Char_U:
2889  case BuiltinType::Char_S:
2890  Out << 'c';
2891  break;
2892  case BuiltinType::UChar:
2893  Out << 'h';
2894  break;
2895  case BuiltinType::UShort:
2896  Out << 't';
2897  break;
2898  case BuiltinType::UInt:
2899  Out << 'j';
2900  break;
2901  case BuiltinType::ULong:
2902  Out << 'm';
2903  break;
2904  case BuiltinType::ULongLong:
2905  Out << 'y';
2906  break;
2907  case BuiltinType::UInt128:
2908  Out << 'o';
2909  break;
2910  case BuiltinType::SChar:
2911  Out << 'a';
2912  break;
2913  case BuiltinType::WChar_S:
2914  case BuiltinType::WChar_U:
2915  Out << 'w';
2916  break;
2917  case BuiltinType::Char8:
2918  Out << "Du";
2919  break;
2920  case BuiltinType::Char16:
2921  Out << "Ds";
2922  break;
2923  case BuiltinType::Char32:
2924  Out << "Di";
2925  break;
2926  case BuiltinType::Short:
2927  Out << 's';
2928  break;
2929  case BuiltinType::Int:
2930  Out << 'i';
2931  break;
2932  case BuiltinType::Long:
2933  Out << 'l';
2934  break;
2935  case BuiltinType::LongLong:
2936  Out << 'x';
2937  break;
2938  case BuiltinType::Int128:
2939  Out << 'n';
2940  break;
2941  case BuiltinType::Float16:
2942  Out << "DF16_";
2943  break;
2944  case BuiltinType::ShortAccum:
2945  case BuiltinType::Accum:
2946  case BuiltinType::LongAccum:
2947  case BuiltinType::UShortAccum:
2948  case BuiltinType::UAccum:
2949  case BuiltinType::ULongAccum:
2950  case BuiltinType::ShortFract:
2951  case BuiltinType::Fract:
2952  case BuiltinType::LongFract:
2953  case BuiltinType::UShortFract:
2954  case BuiltinType::UFract:
2955  case BuiltinType::ULongFract:
2956  case BuiltinType::SatShortAccum:
2957  case BuiltinType::SatAccum:
2958  case BuiltinType::SatLongAccum:
2959  case BuiltinType::SatUShortAccum:
2960  case BuiltinType::SatUAccum:
2961  case BuiltinType::SatULongAccum:
2962  case BuiltinType::SatShortFract:
2963  case BuiltinType::SatFract:
2964  case BuiltinType::SatLongFract:
2965  case BuiltinType::SatUShortFract:
2966  case BuiltinType::SatUFract:
2967  case BuiltinType::SatULongFract:
2968  llvm_unreachable("Fixed point types are disabled for c++");
2969  case BuiltinType::Half:
2970  Out << "Dh";
2971  break;
2972  case BuiltinType::Float:
2973  Out << 'f';
2974  break;
2975  case BuiltinType::Double:
2976  Out << 'd';
2977  break;
2978  case BuiltinType::LongDouble: {
2979  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2980  getASTContext().getLangOpts().OpenMPIsDevice
2981  ? getASTContext().getAuxTargetInfo()
2982  : &getASTContext().getTargetInfo();
2983  Out << TI->getLongDoubleMangling();
2984  break;
2985  }
2986  case BuiltinType::Float128: {
2987  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2988  getASTContext().getLangOpts().OpenMPIsDevice
2989  ? getASTContext().getAuxTargetInfo()
2990  : &getASTContext().getTargetInfo();
2991  Out << TI->getFloat128Mangling();
2992  break;
2993  }
2994  case BuiltinType::BFloat16: {
2995  const TargetInfo *TI = &getASTContext().getTargetInfo();
2996  Out << TI->getBFloat16Mangling();
2997  break;
2998  }
2999  case BuiltinType::Ibm128: {
3000  const TargetInfo *TI = &getASTContext().getTargetInfo();
3001  Out << TI->getIbm128Mangling();
3002  break;
3003  }
3004  case BuiltinType::NullPtr:
3005  Out << "Dn";
3006  break;
3007 
3008 #define BUILTIN_TYPE(Id, SingletonId)
3009 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3010  case BuiltinType::Id:
3011 #include "clang/AST/BuiltinTypes.def"
3012  case BuiltinType::Dependent:
3013  if (!NullOut)
3014  llvm_unreachable("mangling a placeholder type");
3015  break;
3016  case BuiltinType::ObjCId:
3017  Out << "11objc_object";
3018  break;
3019  case BuiltinType::ObjCClass:
3020  Out << "10objc_class";
3021  break;
3022  case BuiltinType::ObjCSel:
3023  Out << "13objc_selector";
3024  break;
3025 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3026  case BuiltinType::Id: \
3027  type_name = "ocl_" #ImgType "_" #Suffix; \
3028  Out << type_name.size() << type_name; \
3029  break;
3030 #include "clang/Basic/OpenCLImageTypes.def"
3031  case BuiltinType::OCLSampler:
3032  Out << "11ocl_sampler";
3033  break;
3034  case BuiltinType::OCLEvent:
3035  Out << "9ocl_event";
3036  break;
3037  case BuiltinType::OCLClkEvent:
3038  Out << "12ocl_clkevent";
3039  break;
3040  case BuiltinType::OCLQueue:
3041  Out << "9ocl_queue";
3042  break;
3043  case BuiltinType::OCLReserveID:
3044  Out << "13ocl_reserveid";
3045  break;
3046 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3047  case BuiltinType::Id: \
3048  type_name = "ocl_" #ExtType; \
3049  Out << type_name.size() << type_name; \
3050  break;
3051 #include "clang/Basic/OpenCLExtensionTypes.def"
3052  // The SVE types are effectively target-specific. The mangling scheme
3053  // is defined in the appendices to the Procedure Call Standard for the
3054  // Arm Architecture.
3055 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \
3056  ElBits, IsSigned, IsFP, IsBF) \
3057  case BuiltinType::Id: \
3058  type_name = MangledName; \
3059  Out << (type_name == InternalName ? "u" : "") << type_name.size() \
3060  << type_name; \
3061  break;
3062 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3063  case BuiltinType::Id: \
3064  type_name = MangledName; \
3065  Out << (type_name == InternalName ? "u" : "") << type_name.size() \
3066  << type_name; \
3067  break;
3068 #include "clang/Basic/AArch64SVEACLETypes.def"
3069 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3070  case BuiltinType::Id: \
3071  type_name = #Name; \
3072  Out << 'u' << type_name.size() << type_name; \
3073  break;
3074 #include "clang/Basic/PPCTypes.def"
3075  // TODO: Check the mangling scheme for RISC-V V.
3076 #define RVV_TYPE(Name, Id, SingletonId) \
3077  case BuiltinType::Id: \
3078  type_name = Name; \
3079  Out << 'u' << type_name.size() << type_name; \
3080  break;
3081 #include "clang/Basic/RISCVVTypes.def"
3082  }
3083 }
3084 
3085 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3086  switch (CC) {
3087  case CC_C:
3088  return "";
3089 
3090  case CC_X86VectorCall:
3091  case CC_X86Pascal:
3092  case CC_X86RegCall:
3093  case CC_AAPCS:
3094  case CC_AAPCS_VFP:
3095  case CC_AArch64VectorCall:
3096  case CC_IntelOclBicc:
3097  case CC_SpirFunction:
3098  case CC_OpenCLKernel:
3099  case CC_PreserveMost:
3100  case CC_PreserveAll:
3101  // FIXME: we should be mangling all of the above.
3102  return "";
3103 
3104  case CC_X86ThisCall:
3105  // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3106  // used explicitly. At this point, we don't have that much information in
3107  // the AST, since clang tends to bake the convention into the canonical
3108  // function type. thiscall only rarely used explicitly, so don't mangle it
3109  // for now.
3110  return "";
3111 
3112  case CC_X86StdCall:
3113  return "stdcall";
3114  case CC_X86FastCall:
3115  return "fastcall";
3116  case CC_X86_64SysV:
3117  return "sysv_abi";
3118  case CC_Win64:
3119  return "ms_abi";
3120  case CC_Swift:
3121  return "swiftcall";
3122  case CC_SwiftAsync:
3123  return "swiftasynccall";
3124  }
3125  llvm_unreachable("bad calling convention");
3126 }
3127 
3128 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3129  // Fast path.
3130  if (T->getExtInfo() == FunctionType::ExtInfo())
3131  return;
3132 
3133  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3134  // This will get more complicated in the future if we mangle other
3135  // things here; but for now, since we mangle ns_returns_retained as
3136  // a qualifier on the result type, we can get away with this:
3137  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3138  if (!CCQualifier.empty())
3139  mangleVendorQualifier(CCQualifier);
3140 
3141  // FIXME: regparm
3142  // FIXME: noreturn
3143 }
3144 
3145 void
3146 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3147  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3148 
3149  // Note that these are *not* substitution candidates. Demanglers might
3150  // have trouble with this if the parameter type is fully substituted.
3151 
3152  switch (PI.getABI()) {
3154  break;
3155 
3156  // All of these start with "swift", so they come before "ns_consumed".
3161  mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3162  break;
3163  }
3164 
3165  if (PI.isConsumed())
3166  mangleVendorQualifier("ns_consumed");
3167 
3168  if (PI.isNoEscape())
3169  mangleVendorQualifier("noescape");
3170 }
3171 
3172 // <type> ::= <function-type>
3173 // <function-type> ::= [<CV-qualifiers>] F [Y]
3174 // <bare-function-type> [<ref-qualifier>] E
3175 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3176  mangleExtFunctionInfo(T);
3177 
3178  // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
3179  // e.g. "const" in "int (A::*)() const".
3180  mangleQualifiers(T->getMethodQuals());
3181 
3182  // Mangle instantiation-dependent exception-specification, if present,
3183  // per cxx-abi-dev proposal on 2016-10-11.
3186  Out << "DO";
3187  mangleExpression(T->getNoexceptExpr());
3188  Out << "E";
3189  } else {
3190  assert(T->getExceptionSpecType() == EST_Dynamic);
3191  Out << "Dw";
3192  for (auto ExceptTy : T->exceptions())
3193  mangleType(ExceptTy);
3194  Out << "E";
3195  }
3196  } else if (T->isNothrow()) {
3197  Out << "Do";
3198  }
3199 
3200  Out << 'F';
3201 
3202  // FIXME: We don't have enough information in the AST to produce the 'Y'
3203  // encoding for extern "C" function types.
3204  mangleBareFunctionType(T, /*MangleReturnType=*/true);
3205 
3206  // Mangle the ref-qualifier, if present.
3207  mangleRefQualifier(T->getRefQualifier());
3208 
3209  Out << 'E';
3210 }
3211 
3212 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3213  // Function types without prototypes can arise when mangling a function type
3214  // within an overloadable function in C. We mangle these as the absence of any
3215  // parameter types (not even an empty parameter list).
3216  Out << 'F';
3217 
3218  FunctionTypeDepthState saved = FunctionTypeDepth.push();
3219 
3220  FunctionTypeDepth.enterResultType();
3221  mangleType(T->getReturnType());
3222  FunctionTypeDepth.leaveResultType();
3223 
3224  FunctionTypeDepth.pop(saved);
3225  Out << 'E';
3226 }
3227 
3228 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3229  bool MangleReturnType,
3230  const FunctionDecl *FD) {
3231  // Record that we're in a function type. See mangleFunctionParam
3232  // for details on what we're trying to achieve here.
3233  FunctionTypeDepthState saved = FunctionTypeDepth.push();
3234 
3235  // <bare-function-type> ::= <signature type>+
3236  if (MangleReturnType) {
3237  FunctionTypeDepth.enterResultType();
3238 
3239  // Mangle ns_returns_retained as an order-sensitive qualifier here.
3240  if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3241  mangleVendorQualifier("ns_returns_retained");
3242 
3243  // Mangle the return type without any direct ARC ownership qualifiers.
3244  QualType ReturnTy = Proto->getReturnType();
3245  if (ReturnTy.getObjCLifetime()) {
3246  auto SplitReturnTy = ReturnTy.split();
3247  SplitReturnTy.Quals.removeObjCLifetime();
3248  ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3249  }
3250  mangleType(ReturnTy);
3251 
3252  FunctionTypeDepth.leaveResultType();
3253  }
3254 
3255  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3256  // <builtin-type> ::= v # void
3257  Out << 'v';
3258 
3259  FunctionTypeDepth.pop(saved);
3260  return;
3261  }
3262 
3263  assert(!FD || FD->getNumParams() == Proto->getNumParams());
3264  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3265  // Mangle extended parameter info as order-sensitive qualifiers here.
3266  if (Proto->hasExtParameterInfos() && FD == nullptr) {
3267  mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3268  }
3269 
3270  // Mangle the type.
3271  QualType ParamTy = Proto->getParamType(I);
3272  mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3273 
3274  if (FD) {
3275  if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3276  // Attr can only take 1 character, so we can hardcode the length below.
3277  assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3278  if (Attr->isDynamic())
3279  Out << "U25pass_dynamic_object_size" << Attr->getType();
3280  else
3281  Out << "U17pass_object_size" << Attr->getType();
3282  }
3283  }
3284  }
3285 
3286  FunctionTypeDepth.pop(saved);
3287 
3288  // <builtin-type> ::= z # ellipsis
3289  if (Proto->isVariadic())
3290  Out << 'z';
3291 }
3292 
3293 // <type> ::= <class-enum-type>
3294 // <class-enum-type> ::= <name>
3295 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3296  mangleName(T->getDecl());
3297 }
3298 
3299 // <type> ::= <class-enum-type>
3300 // <class-enum-type> ::= <name>
3301 void CXXNameMangler::mangleType(const EnumType *T) {
3302  mangleType(static_cast<const TagType*>(T));
3303 }
3304 void CXXNameMangler::mangleType(const RecordType *T) {
3305  mangleType(static_cast<const TagType*>(T));
3306 }
3307 void CXXNameMangler::mangleType(const TagType *T) {
3308  mangleName(T->getDecl());
3309 }
3310 
3311 // <type> ::= <array-type>
3312 // <array-type> ::= A <positive dimension number> _ <element type>
3313 // ::= A [<dimension expression>] _ <element type>
3314 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3315  Out << 'A' << T->getSize() << '_';
3316  mangleType(T->getElementType());
3317 }
3318 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3319  Out << 'A';
3320  // decayed vla types (size 0) will just be skipped.
3321  if (T->getSizeExpr())
3322  mangleExpression(T->getSizeExpr());
3323  Out << '_';
3324  mangleType(T->getElementType());
3325 }
3326 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3327  Out << 'A';
3328  // A DependentSizedArrayType might not have size expression as below
3329  //
3330  // template<int ...N> int arr[] = {N...};
3331  if (T->getSizeExpr())
3332  mangleExpression(T->getSizeExpr());
3333  Out << '_';
3334  mangleType(T->getElementType());
3335 }
3336 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3337  Out << "A_";
3338  mangleType(T->getElementType());
3339 }
3340 
3341 // <type> ::= <pointer-to-member-type>
3342 // <pointer-to-member-type> ::= M <class type> <member type>
3343 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3344  Out << 'M';
3345  mangleType(QualType(T->getClass(), 0));
3346  QualType PointeeType = T->getPointeeType();
3347  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3348  mangleType(FPT);
3349 
3350  // Itanium C++ ABI 5.1.8:
3351  //
3352  // The type of a non-static member function is considered to be different,
3353  // for the purposes of substitution, from the type of a namespace-scope or
3354  // static member function whose type appears similar. The types of two
3355  // non-static member functions are considered to be different, for the
3356  // purposes of substitution, if the functions are members of different
3357  // classes. In other words, for the purposes of substitution, the class of
3358  // which the function is a member is considered part of the type of
3359  // function.
3360 
3361  // Given that we already substitute member function pointers as a
3362  // whole, the net effect of this rule is just to unconditionally
3363  // suppress substitution on the function type in a member pointer.
3364  // We increment the SeqID here to emulate adding an entry to the
3365  // substitution table.
3366  ++SeqID;
3367  } else
3368  mangleType(PointeeType);
3369 }
3370 
3371 // <type> ::= <template-param>
3372 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3373  mangleTemplateParameter(T->getDepth(), T->getIndex());
3374 }
3375 
3376 // <type> ::= <template-param>
3377 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3378  // FIXME: not clear how to mangle this!
3379  // template <class T...> class A {
3380  // template <class U...> void foo(T(*)(U) x...);
3381  // };
3382  Out << "_SUBSTPACK_";
3383 }
3384 
3385 // <type> ::= P <type> # pointer-to
3386 void CXXNameMangler::mangleType(const PointerType *T) {
3387  Out << 'P';
3388  mangleType(T->getPointeeType());
3389 }
3390 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3391  Out << 'P';
3392  mangleType(T->getPointeeType());
3393 }
3394 
3395 // <type> ::= R <type> # reference-to
3396 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3397  Out << 'R';
3398  mangleType(T->getPointeeType());
3399 }
3400 
3401 // <type> ::= O <type> # rvalue reference-to (C++0x)
3402 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3403  Out << 'O';
3404  mangleType(T->getPointeeType());
3405 }
3406 
3407 // <type> ::= C <type> # complex pair (C 2000)
3408 void CXXNameMangler::mangleType(const ComplexType *T) {
3409  Out << 'C';
3410  mangleType(T->getElementType());
3411 }
3412 
3413 // ARM's ABI for Neon vector types specifies that they should be mangled as
3414 // if they are structs (to match ARM's initial implementation). The
3415 // vector type must be one of the special types predefined by ARM.
3416 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3417  QualType EltType = T->getElementType();
3418  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3419  const char *EltName = nullptr;
3421  switch (cast<BuiltinType>(EltType)->getKind()) {
3422  case BuiltinType::SChar:
3423  case BuiltinType::UChar:
3424  EltName = "poly8_t";
3425  break;
3426  case BuiltinType::Short:
3427  case BuiltinType::UShort:
3428  EltName = "poly16_t";
3429  break;
3430  case BuiltinType::LongLong:
3431  case BuiltinType::ULongLong:
3432  EltName = "poly64_t";
3433  break;
3434  default: llvm_unreachable("unexpected Neon polynomial vector element type");
3435  }
3436  } else {
3437  switch (cast<BuiltinType>(EltType)->getKind()) {
3438  case BuiltinType::SChar: EltName = "int8_t"; break;
3439  case BuiltinType::UChar: EltName = "uint8_t"; break;
3440  case BuiltinType::Short: EltName = "int16_t"; break;
3441  case BuiltinType::UShort: EltName = "uint16_t"; break;
3442  case BuiltinType::Int: EltName = "int32_t"; break;
3443  case BuiltinType::UInt: EltName = "uint32_t"; break;
3444  case BuiltinType::LongLong: EltName = "int64_t"; break;
3445  case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3446  case BuiltinType::Double: EltName = "float64_t"; break;
3447  case BuiltinType::Float: EltName = "float32_t"; break;
3448  case BuiltinType::Half: EltName = "float16_t"; break;
3449  case BuiltinType::BFloat16: EltName = "bfloat16_t"; break;
3450  default:
3451  llvm_unreachable("unexpected Neon vector element type");
3452  }
3453  }
3454  const char *BaseName = nullptr;
3455  unsigned BitSize = (T->getNumElements() *
3456  getASTContext().getTypeSize(EltType));
3457  if (BitSize == 64)
3458  BaseName = "__simd64_";
3459  else {
3460  assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3461  BaseName = "__simd128_";
3462  }
3463  Out << strlen(BaseName) + strlen(EltName);
3464  Out << BaseName << EltName;
3465 }
3466 
3467 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3468  DiagnosticsEngine &Diags = Context.getDiags();
3469  unsigned DiagID = Diags.getCustomDiagID(
3471  "cannot mangle this dependent neon vector type yet");
3472  Diags.Report(T->getAttributeLoc(), DiagID);
3473 }
3474 
3475 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3476  switch (EltType->getKind()) {
3477  case BuiltinType::SChar:
3478  return "Int8";
3479  case BuiltinType::Short:
3480  return "Int16";
3481  case BuiltinType::Int:
3482  return "Int32";
3483  case BuiltinType::Long:
3484  case BuiltinType::LongLong:
3485  return "Int64";
3486  case BuiltinType::UChar:
3487  return "Uint8";
3488  case BuiltinType::UShort:
3489  return "Uint16";
3490  case BuiltinType::UInt:
3491  return "Uint32";
3492  case BuiltinType::ULong:
3493  case BuiltinType::ULongLong:
3494  return "Uint64";
3495  case BuiltinType::Half:
3496  return "Float16";
3497  case BuiltinType::Float:
3498  return "Float32";
3499  case BuiltinType::Double:
3500  return "Float64";
3501  case BuiltinType::BFloat16:
3502  return "Bfloat16";
3503  default:
3504  llvm_unreachable("Unexpected vector element base type");
3505  }
3506 }
3507 
3508 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3509 // the equivalent internal name. The vector type must be one of the special
3510 // types predefined by ARM.
3511 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3512  QualType EltType = T->getElementType();
3513  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3514  unsigned BitSize =
3515  (T->getNumElements() * getASTContext().getTypeSize(EltType));
3516  (void)BitSize; // Silence warning.
3517 
3518  assert((BitSize == 64 || BitSize == 128) &&
3519  "Neon vector type not 64 or 128 bits");
3520 
3521  StringRef EltName;
3523  switch (cast<BuiltinType>(EltType)->getKind()) {
3524  case BuiltinType::UChar:
3525  EltName = "Poly8";
3526  break;
3527  case BuiltinType::UShort:
3528  EltName = "Poly16";
3529  break;
3530  case BuiltinType::ULong:
3531  case BuiltinType::ULongLong:
3532  EltName = "Poly64";
3533  break;
3534  default:
3535  llvm_unreachable("unexpected Neon polynomial vector element type");
3536  }
3537  } else
3538  EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3539 
3541  ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3542  Out << TypeName.length() << TypeName;
3543 }
3544 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3545  DiagnosticsEngine &Diags = Context.getDiags();
3546  unsigned DiagID = Diags.getCustomDiagID(
3548  "cannot mangle this dependent neon vector type yet");
3549  Diags.Report(T->getAttributeLoc(), DiagID);
3550 }
3551 
3552 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3553 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3554 // type as the sizeless variants.
3555 //
3556 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3557 //
3558 // '__SVE_VLS<<type>, <vector length>>'
3559 //
3560 // Combining the existing SVE type and a specific vector length (in bits).
3561 // For example:
3562 //
3563 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3564 //
3565 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3566 //
3567 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3568 //
3569 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3570 //
3571 // The latest ACLE specification (00bet5) does not contain details of this
3572 // mangling scheme, it will be specified in the next revision. The mangling
3573 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3574 // for the Arm Architecture, see
3575 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
3576 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3579  "expected fixed-length SVE vector!");
3580 
3581  QualType EltType = T->getElementType();
3582  assert(EltType->isBuiltinType() &&
3583  "expected builtin type for fixed-length SVE vector!");
3584 
3585  StringRef TypeName;
3586  switch (cast<BuiltinType>(EltType)->getKind()) {
3587  case BuiltinType::SChar:
3588  TypeName = "__SVInt8_t";
3589  break;
3590  case BuiltinType::UChar: {
3592  TypeName = "__SVUint8_t";
3593  else
3594  TypeName = "__SVBool_t";
3595  break;
3596  }
3597  case BuiltinType::Short:
3598  TypeName = "__SVInt16_t";
3599  break;
3600  case BuiltinType::UShort:
3601  TypeName = "__SVUint16_t";
3602  break;
3603  case BuiltinType::Int:
3604  TypeName = "__SVInt32_t";
3605  break;
3606  case BuiltinType::UInt:
3607  TypeName = "__SVUint32_t";
3608  break;
3609  case BuiltinType::Long:
3610  TypeName = "__SVInt64_t";
3611  break;
3612  case BuiltinType::ULong:
3613  TypeName = "__SVUint64_t";
3614  break;
3615  case BuiltinType::Half:
3616  TypeName = "__SVFloat16_t";
3617  break;
3618  case BuiltinType::Float:
3619  TypeName = "__SVFloat32_t";
3620  break;
3621  case BuiltinType::Double:
3622  TypeName = "__SVFloat64_t";
3623  break;
3624  case BuiltinType::BFloat16:
3625  TypeName = "__SVBfloat16_t";
3626  break;
3627  default:
3628  llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3629  }
3630 
3631  unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3632 
3634  VecSizeInBits *= 8;
3635 
3636  Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3637  << VecSizeInBits << "EE";
3638 }
3639 
3640 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3641  const DependentVectorType *T) {
3642  DiagnosticsEngine &Diags = Context.getDiags();
3643  unsigned DiagID = Diags.getCustomDiagID(
3645  "cannot mangle this dependent fixed-length SVE vector type yet");
3646  Diags.Report(T->getAttributeLoc(), DiagID);
3647 }
3648 
3649 // GNU extension: vector types
3650 // <type> ::= <vector-type>
3651 // <vector-type> ::= Dv <positive dimension number> _
3652 // <extended element type>
3653 // ::= Dv [<dimension expression>] _ <element type>
3654 // <extended element type> ::= <element type>
3655 // ::= p # AltiVec vector pixel
3656 // ::= b # Altivec vector bool
3657 void CXXNameMangler::mangleType(const VectorType *T) {
3658  if ((T->getVectorKind() == VectorType::NeonVector ||
3660  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3661  llvm::Triple::ArchType Arch =
3662  getASTContext().getTargetInfo().getTriple().getArch();
3663  if ((Arch == llvm::Triple::aarch64 ||
3664  Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3665  mangleAArch64NeonVectorType(T);
3666  else
3667  mangleNeonVectorType(T);
3668  return;
3671  mangleAArch64FixedSveVectorType(T);
3672  return;
3673  }
3674  Out << "Dv" << T->getNumElements() << '_';
3676  Out << 'p';
3677  else if (T->getVectorKind() == VectorType::AltiVecBool)
3678  Out << 'b';
3679  else
3680  mangleType(T->getElementType());
3681 }
3682 
3683 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3684  if ((T->getVectorKind() == VectorType::NeonVector ||
3686  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3687  llvm::Triple::ArchType Arch =
3688  getASTContext().getTargetInfo().getTriple().getArch();
3689  if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3690  !Target.isOSDarwin())
3691  mangleAArch64NeonVectorType(T);
3692  else
3693  mangleNeonVectorType(T);
3694  return;
3697  mangleAArch64FixedSveVectorType(T);
3698  return;
3699  }
3700 
3701  Out << "Dv";
3702  mangleExpression(T->getSizeExpr());
3703  Out << '_';
3705  Out << 'p';
3706  else if (T->getVectorKind() == VectorType::AltiVecBool)
3707  Out << 'b';
3708  else
3709  mangleType(T->getElementType());
3710 }
3711 
3712 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3713  mangleType(static_cast<const VectorType*>(T));
3714 }
3715 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3716  Out << "Dv";
3717  mangleExpression(T->getSizeExpr());
3718  Out << '_';
3719  mangleType(T->getElementType());
3720 }
3721 
3722 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3723  // Mangle matrix types as a vendor extended type:
3724  // u<Len>matrix_typeI<Rows><Columns><element type>E
3725 
3726  StringRef VendorQualifier = "matrix_type";
3727  Out << "u" << VendorQualifier.size() << VendorQualifier;
3728 
3729  Out << "I";
3730  auto &ASTCtx = getASTContext();
3731  unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3732  llvm::APSInt Rows(BitWidth);
3733  Rows = T->getNumRows();
3734  mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3735  llvm::APSInt Columns(BitWidth);
3736  Columns = T->getNumColumns();
3737  mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3738  mangleType(T->getElementType());
3739  Out << "E";
3740 }
3741 
3742 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3743  // Mangle matrix types as a vendor extended type:
3744  // u<Len>matrix_typeI<row expr><column expr><element type>E
3745  StringRef VendorQualifier = "matrix_type";
3746  Out << "u" << VendorQualifier.size() << VendorQualifier;
3747 
3748  Out << "I";
3749  mangleTemplateArgExpr(T->getRowExpr());
3750  mangleTemplateArgExpr(T->getColumnExpr());
3751  mangleType(T->getElementType());
3752  Out << "E";
3753 }
3754 
3755 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3756  SplitQualType split = T->getPointeeType().split();
3757  mangleQualifiers(split.Quals, T);
3758  mangleType(QualType(split.Ty, 0));
3759 }
3760 
3761 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3762  // <type> ::= Dp <type> # pack expansion (C++0x)
3763  Out << "Dp";
3764  mangleType(T->getPattern());
3765 }
3766 
3767 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3768  mangleSourceName(T->getDecl()->getIdentifier());
3769 }
3770 
3771 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3772  // Treat __kindof as a vendor extended type qualifier.
3773  if (T->isKindOfType())
3774  Out << "U8__kindof";
3775 
3776  if (!T->qual_empty()) {
3777  // Mangle protocol qualifiers.
3778  SmallString<64> QualStr;
3779  llvm::raw_svector_ostream QualOS(QualStr);
3780  QualOS << "objcproto";
3781  for (const auto *I : T->quals()) {
3782  StringRef name = I->getName();
3783  QualOS << name.size() << name;
3784  }
3785  Out << 'U' << QualStr.size() << QualStr;
3786  }
3787 
3788  mangleType(T->getBaseType());
3789 
3790  if (T->isSpecialized()) {
3791  // Mangle type arguments as I <type>+ E
3792  Out << 'I';
3793  for (auto typeArg : T->getTypeArgs())
3794  mangleType(typeArg);
3795  Out << 'E';
3796  }
3797 }
3798 
3799 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3800  Out << "U13block_pointer";
3801  mangleType(T->getPointeeType());
3802 }
3803 
3804 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3805  // Mangle injected class name types as if the user had written the
3806  // specialization out fully. It may not actually be possible to see
3807  // this mangling, though.
3808  mangleType(T->getInjectedSpecializationType());
3809 }
3810 
3811 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3812  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3813  mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3814  } else {
3815  if (mangleSubstitution(QualType(T, 0)))
3816  return;
3817 
3818  mangleTemplatePrefix(T->getTemplateName());
3819 
3820  // FIXME: GCC does not appear to mangle the template arguments when
3821  // the template in question is a dependent template name. Should we
3822  // emulate that badness?
3823  mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3824  addSubstitution(QualType(T, 0));
3825  }
3826 }
3827 
3828 void CXXNameMangler::mangleType(const DependentNameType *T) {
3829  // Proposal by cxx-abi-dev, 2014-03-26
3830  // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3831  // # dependent elaborated type specifier using
3832  // # 'typename'
3833  // ::= Ts <name> # dependent elaborated type specifier using
3834  // # 'struct' or 'class'
3835  // ::= Tu <name> # dependent elaborated type specifier using
3836  // # 'union'
3837  // ::= Te <name> # dependent elaborated type specifier using
3838  // # 'enum'
3839  switch (T->getKeyword()) {
3840  case ETK_None:
3841  case ETK_Typename:
3842  break;
3843  case ETK_Struct:
3844  case ETK_Class:
3845  case ETK_Interface:
3846  Out << "Ts";
3847  break;
3848  case ETK_Union:
3849  Out << "Tu";
3850  break;
3851  case ETK_Enum:
3852  Out << "Te";
3853  break;
3854  }
3855  // Typename types are always nested
3856  Out << 'N';
3857  manglePrefix(T->getQualifier());
3858  mangleSourceName(T->getIdentifier());
3859  Out << 'E';
3860 }
3861 
3862 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3863  // Dependently-scoped template types are nested if they have a prefix.
3864  Out << 'N';
3865 
3866  // TODO: avoid making this TemplateName.
3867  TemplateName Prefix =
3868  getASTContext().getDependentTemplateName(T->getQualifier(),
3869  T->getIdentifier());
3870  mangleTemplatePrefix(Prefix);
3871 
3872  // FIXME: GCC does not appear to mangle the template arguments when
3873  // the template in question is a dependent template name. Should we
3874  // emulate that badness?
3875  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3876  Out << 'E';
3877 }
3878 
3879 void CXXNameMangler::mangleType(const TypeOfType *T) {
3880  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3881  // "extension with parameters" mangling.
3882  Out << "u6typeof";
3883 }
3884 
3885 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3886  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3887  // "extension with parameters" mangling.
3888  Out << "u6typeof";
3889 }
3890 
3891 void CXXNameMangler::mangleType(const DecltypeType *T) {
3892  Expr *E = T->getUnderlyingExpr();
3893 
3894  // type ::= Dt <expression> E # decltype of an id-expression
3895  // # or class member access
3896  // ::= DT <expression> E # decltype of an expression
3897 
3898  // This purports to be an exhaustive list of id-expressions and
3899  // class member accesses. Note that we do not ignore parentheses;
3900  // parentheses change the semantics of decltype for these
3901  // expressions (and cause the mangler to use the other form).
3902  if (isa<DeclRefExpr>(E) ||
3903  isa<MemberExpr>(E) ||
3904  isa<UnresolvedLookupExpr>(E) ||
3905  isa<DependentScopeDeclRefExpr>(E) ||
3906  isa<CXXDependentScopeMemberExpr>(E) ||
3907  isa<UnresolvedMemberExpr>(E))
3908  Out << "Dt";
3909  else
3910  Out << "DT";
3911  mangleExpression(E);
3912  Out << 'E';
3913 }
3914 
3915 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3916  // If this is dependent, we need to record that. If not, we simply
3917  // mangle it as the underlying type since they are equivalent.
3918  if (T->isDependentType()) {
3919  Out << 'U';
3920 
3921  switch (T->getUTTKind()) {
3923  Out << "3eut";
3924  break;
3925  }
3926  }
3927 
3928  mangleType(T->getBaseType());
3929 }
3930 
3931 void CXXNameMangler::mangleType(const AutoType *T) {
3932  assert(T->getDeducedType().isNull() &&
3933  "Deduced AutoType shouldn't be handled here!");
3934  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3935  "shouldn't need to mangle __auto_type!");
3936  // <builtin-type> ::= Da # auto
3937  // ::= Dc # decltype(auto)
3938  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3939 }
3940 
3941 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3942  QualType Deduced = T->getDeducedType();
3943  if (!Deduced.isNull())
3944  return mangleType(Deduced);
3945 
3947  assert(TD && "shouldn't form deduced TST unless we know we have a template");
3948 
3949  if (mangleSubstitution(TD))
3950  return;
3951 
3952  mangleName(GlobalDecl(TD));
3953  addSubstitution(TD);
3954 }
3955 
3956 void CXXNameMangler::mangleType(const AtomicType *T) {
3957  // <type> ::= U <source-name> <type> # vendor extended type qualifier
3958  // (Until there's a standardized mangling...)
3959  Out << "U7_Atomic";
3960  mangleType(T->getValueType());
3961 }
3962 
3963 void CXXNameMangler::mangleType(const PipeType *T) {
3964  // Pipe type mangling rules are described in SPIR 2.0 specification
3965  // A.1 Data types and A.3 Summary of changes
3966  // <type> ::= 8ocl_pipe
3967  Out << "8ocl_pipe";
3968 }
3969 
3970 void CXXNameMangler::mangleType(const ExtIntType *T) {
3971  Out << "U7_ExtInt";
3972  llvm::APSInt BW(32, true);
3973  BW = T->getNumBits();
3974  TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3975  mangleTemplateArgs(TemplateName(), &TA, 1);
3976  if (T->isUnsigned())
3977  Out << "j";
3978  else
3979  Out << "i";
3980 }
3981 
3982 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3983  Out << "U7_ExtInt";
3985  mangleTemplateArgs(TemplateName(), &TA, 1);
3986  if (T->isUnsigned())
3987  Out << "j";
3988  else
3989  Out << "i";
3990 }
3991 
3992 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3993  const llvm::APSInt &Value) {
3994  // <expr-primary> ::= L <type> <value number> E # integer literal
3995  Out << 'L';
3996 
3997  mangleType(T);
3998  if (T->isBooleanType()) {
3999  // Boolean values are encoded as 0/1.
4000  Out << (Value.getBoolValue() ? '1' : '0');
4001  } else {
4002  mangleNumber(Value);
4003  }
4004  Out << 'E';
4005 
4006 }
4007 
4008 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
4009  // Ignore member expressions involving anonymous unions.
4010  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4011  if (!RT->getDecl()->isAnonymousStructOrUnion())
4012  break;
4013  const auto *ME = dyn_cast<MemberExpr>(Base);
4014  if (!ME)
4015  break;
4016  Base = ME->getBase();
4017  IsArrow = ME->isArrow();
4018  }
4019 
4020  if (Base->isImplicitCXXThis()) {
4021  // Note: GCC mangles member expressions to the implicit 'this' as
4022  // *this., whereas we represent them as this->. The Itanium C++ ABI
4023  // does not specify anything here, so we follow GCC.
4024  Out << "dtdefpT";
4025  } else {
4026  Out << (IsArrow ? "pt" : "dt");
4027  mangleExpression(Base);
4028  }
4029 }
4030 
4031 /// Mangles a member expression.
4032 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4033  bool isArrow,
4034  NestedNameSpecifier *qualifier,
4035  NamedDecl *firstQualifierLookup,
4037  const TemplateArgumentLoc *TemplateArgs,
4038  unsigned NumTemplateArgs,
4039  unsigned arity) {
4040  // <expression> ::= dt <expression> <unresolved-name>
4041  // ::= pt <expression> <unresolved-name>
4042  if (base)
4043  mangleMemberExprBase(base, isArrow);
4044  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4045 }
4046 
4047 /// Look at the callee of the given call expression and determine if
4048 /// it's a parenthesized id-expression which would have triggered ADL
4049 /// otherwise.
4050 static bool isParenthesizedADLCallee(const CallExpr *call) {
4051  const Expr *callee = call->getCallee();
4052  const Expr *fn = callee->IgnoreParens();
4053 
4054  // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
4055  // too, but for those to appear in the callee, it would have to be
4056  // parenthesized.
4057  if (callee == fn) return false;
4058 
4059  // Must be an unresolved lookup.
4060  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4061  if (!lookup) return false;
4062 
4063  assert(!lookup->requiresADL());
4064 
4065  // Must be an unqualified lookup.
4066  if (lookup->getQualifier()) return false;
4067 
4068  // Must not have found a class member. Note that if one is a class
4069  // member, they're all class members.
4070  if (lookup->getNumDecls() > 0 &&
4071  (*lookup->decls_begin())->isCXXClassMember())
4072  return false;
4073 
4074  // Otherwise, ADL would have been triggered.
4075  return true;
4076 }
4077 
4078 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4079  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4080  Out << CastEncoding;
4081  mangleType(ECE->getType());
4082  mangleExpression(ECE->getSubExpr());
4083 }
4084 
4085 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4086  if (auto *Syntactic = InitList->getSyntacticForm())
4087  InitList = Syntactic;
4088  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4089  mangleExpression(InitList->getInit(i));
4090 }
4091 
4092 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4093  bool AsTemplateArg) {
4094  // <expression> ::= <unary operator-name> <expression>
4095  // ::= <binary operator-name> <expression> <expression>
4096  // ::= <trinary operator-name> <expression> <expression> <expression>
4097  // ::= cv <type> expression # conversion with one argument
4098  // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4099  // ::= dc <type> <expression> # dynamic_cast<type> (expression)
4100  // ::= sc <type> <expression> # static_cast<type> (expression)
4101  // ::= cc <type> <expression> # const_cast<type> (expression)
4102  // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
4103  // ::= st <type> # sizeof (a type)
4104  // ::= at <type> # alignof (a type)
4105  // ::= <template-param>
4106  // ::= <function-param>
4107  // ::= fpT # 'this' expression (part of <function-param>)
4108  // ::= sr <type> <unqualified-name> # dependent name
4109  // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
4110  // ::= ds <expression> <expression> # expr.*expr
4111  // ::= sZ <template-param> # size of a parameter pack
4112  // ::= sZ <function-param> # size of a function parameter pack
4113  // ::= u <source-name> <template-arg>* E # vendor extended expression
4114  // ::= <expr-primary>
4115  // <expr-primary> ::= L <type> <value number> E # integer literal
4116  // ::= L <type> <value float> E # floating literal
4117  // ::= L <type> <string type> E # string literal
4118  // ::= L <nullptr type> E # nullptr literal "LDnE"
4119  // ::= L <pointer type> 0 E # null pointer template argument
4120  // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang
4121  // ::= L <mangled-name> E # external name
4122  QualType ImplicitlyConvertedToType;
4123 
4124  // A top-level expression that's not <expr-primary> needs to be wrapped in
4125  // X...E in a template arg.
4126  bool IsPrimaryExpr = true;
4127  auto NotPrimaryExpr = [&] {
4128  if (AsTemplateArg && IsPrimaryExpr)
4129  Out << 'X';
4130  IsPrimaryExpr = false;
4131  };
4132 
4133  auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4134  switch (D->getKind()) {
4135  default:
4136  // <expr-primary> ::= L <mangled-name> E # external name
4137  Out << 'L';
4138  mangle(D);
4139  Out << 'E';
4140  break;
4141 
4142  case Decl::ParmVar:
4143  NotPrimaryExpr();
4144  mangleFunctionParam(cast<ParmVarDecl>(D));
4145  break;
4146 
4147  case Decl::EnumConstant: {
4148  // <expr-primary>
4149  const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4150  mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4151  break;
4152  }
4153 
4154  case Decl::NonTypeTemplateParm:
4155  NotPrimaryExpr();
4156  const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4157  mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4158  break;
4159  }
4160  };
4161 
4162  // 'goto recurse' is used when handling a simple "unwrapping" node which
4163  // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4164  // to be preserved.
4165 recurse:
4166  switch (E->getStmtClass()) {
4167  case Expr::NoStmtClass:
4168 #define ABSTRACT_STMT(Type)
4169 #define EXPR(Type, Base)
4170 #define STMT(Type, Base) \
4171  case Expr::Type##Class:
4172 #include "clang/AST/StmtNodes.inc"
4173  // fallthrough
4174 
4175  // These all can only appear in local or variable-initialization
4176  // contexts and so should never appear in a mangling.
4177  case Expr::AddrLabelExprClass:
4178  case Expr::DesignatedInitUpdateExprClass:
4179  case Expr::ImplicitValueInitExprClass:
4180  case Expr::ArrayInitLoopExprClass:
4181  case Expr::ArrayInitIndexExprClass:
4182  case Expr::NoInitExprClass:
4183  case Expr::ParenListExprClass:
4184  case Expr::MSPropertyRefExprClass:
4185  case Expr::MSPropertySubscriptExprClass:
4186  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4187  case Expr::RecoveryExprClass:
4188  case Expr::OMPArraySectionExprClass:
4189  case Expr::OMPArrayShapingExprClass:
4190  case Expr::OMPIteratorExprClass:
4191  case Expr::CXXInheritedCtorInitExprClass:
4192  llvm_unreachable("unexpected statement kind");
4193 
4194  case Expr::ConstantExprClass:
4195  E = cast<ConstantExpr>(E)->getSubExpr();
4196  goto recurse;
4197 
4198  // FIXME: invent manglings for all these.
4199  case Expr::BlockExprClass:
4200  case Expr::ChooseExprClass:
4201  case Expr::CompoundLiteralExprClass:
4202  case Expr::ExtVectorElementExprClass:
4203  case Expr::GenericSelectionExprClass:
4204  case Expr::ObjCEncodeExprClass:
4205  case Expr::ObjCIsaExprClass:
4206  case Expr::ObjCIvarRefExprClass:
4207  case Expr::ObjCMessageExprClass:
4208  case Expr::ObjCPropertyRefExprClass:
4209  case Expr::ObjCProtocolExprClass:
4210  case Expr::ObjCSelectorExprClass:
4211  case Expr::ObjCStringLiteralClass:
4212  case Expr::ObjCBoxedExprClass:
4213  case Expr::ObjCArrayLiteralClass:
4214  case Expr::ObjCDictionaryLiteralClass:
4215  case Expr::ObjCSubscriptRefExprClass:
4216  case Expr::ObjCIndirectCopyRestoreExprClass:
4217  case Expr::ObjCAvailabilityCheckExprClass:
4218  case Expr::OffsetOfExprClass:
4219  case Expr::PredefinedExprClass:
4220  case Expr::ShuffleVectorExprClass:
4221  case Expr::ConvertVectorExprClass:
4222  case Expr::StmtExprClass:
4223  case Expr::TypeTraitExprClass:
4224  case Expr::RequiresExprClass:
4225  case Expr::ArrayTypeTraitExprClass:
4226  case Expr::ExpressionTraitExprClass:
4227  case Expr::VAArgExprClass:
4228  case Expr::CUDAKernelCallExprClass:
4229  case Expr::AsTypeExprClass:
4230  case Expr::PseudoObjectExprClass:
4231  case Expr::AtomicExprClass:
4232  case Expr::SourceLocExprClass:
4233  case Expr::BuiltinBitCastExprClass:
4234  {
4235  NotPrimaryExpr();
4236  if (!NullOut) {
4237  // As bad as this diagnostic is, it's better than crashing.
4238  DiagnosticsEngine &Diags = Context.getDiags();
4239  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4240  "cannot yet mangle expression type %0");
4241  Diags.Report(E->getExprLoc(), DiagID)
4242  << E->getStmtClassName() << E->getSourceRange();
4243  return;
4244  }
4245  break;
4246  }
4247 
4248  case Expr::CXXUuidofExprClass: {
4249  NotPrimaryExpr();
4250  const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4251  // As of clang 12, uuidof uses the vendor extended expression
4252  // mangling. Previously, it used a special-cased nonstandard extension.
4253  if (Context.getASTContext().getLangOpts().getClangABICompat() >
4255  Out << "u8__uuidof";
4256  if (UE->isTypeOperand())
4257  mangleType(UE->getTypeOperand(Context.getASTContext()));
4258  else
4259  mangleTemplateArgExpr(UE->getExprOperand());
4260  Out << 'E';
4261  } else {
4262  if (UE->isTypeOperand()) {
4263  QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4264  Out << "u8__uuidoft";
4265  mangleType(UuidT);
4266  } else {
4267  Expr *UuidExp = UE->getExprOperand();
4268  Out << "u8__uuidofz";
4269  mangleExpression(UuidExp);
4270  }
4271  }
4272  break;
4273  }
4274 
4275  // Even gcc-4.5 doesn't mangle this.
4276  case Expr::BinaryConditionalOperatorClass: {
4277  NotPrimaryExpr();
4278  DiagnosticsEngine &Diags = Context.getDiags();
4279  unsigned DiagID =
4281  "?: operator with omitted middle operand cannot be mangled");
4282  Diags.Report(E->getExprLoc(), DiagID)
4283  << E->getStmtClassName() << E->getSourceRange();
4284  return;
4285  }
4286 
4287  // These are used for internal purposes and cannot be meaningfully mangled.
4288  case Expr::OpaqueValueExprClass:
4289  llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4290 
4291  case Expr::InitListExprClass: {
4292  NotPrimaryExpr();
4293  Out << "il";
4294  mangleInitListElements(cast<InitListExpr>(E));
4295  Out << "E";
4296  break;
4297  }
4298 
4299  case Expr::DesignatedInitExprClass: {
4300  NotPrimaryExpr();
4301  auto *DIE = cast<DesignatedInitExpr>(E);
4302  for (const auto &Designator : DIE->designators()) {
4303  if (Designator.isFieldDesignator()) {
4304  Out << "di";
4305  mangleSourceName(Designator.getFieldName());
4306  } else if (Designator.isArrayDesignator()) {
4307  Out << "dx";
4308  mangleExpression(DIE->getArrayIndex(Designator));
4309  } else {
4311  "unknown designator kind");
4312  Out << "dX";
4313  mangleExpression(DIE->getArrayRangeStart(Designator));
4314  mangleExpression(DIE->getArrayRangeEnd(Designator));
4315  }
4316  }
4317  mangleExpression(DIE->getInit());
4318  break;
4319  }
4320 
4321  case Expr::CXXDefaultArgExprClass:
4322  E = cast<CXXDefaultArgExpr>(E)->getExpr();
4323  goto recurse;
4324 
4325  case Expr::CXXDefaultInitExprClass:
4326  E = cast<CXXDefaultInitExpr>(E)->getExpr();
4327  goto recurse;
4328 
4329  case Expr::CXXStdInitializerListExprClass:
4330  E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4331  goto recurse;
4332 
4333  case Expr::SubstNonTypeTemplateParmExprClass:
4334  E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4335  goto recurse;
4336 
4337  case Expr::UserDefinedLiteralClass:
4338  // We follow g++'s approach of mangling a UDL as a call to the literal
4339  // operator.
4340  case Expr::CXXMemberCallExprClass: // fallthrough
4341  case Expr::CallExprClass: {
4342  NotPrimaryExpr();
4343  const CallExpr *CE = cast<CallExpr>(E);
4344 
4345  // <expression> ::= cp <simple-id> <expression>* E
4346  // We use this mangling only when the call would use ADL except
4347  // for being parenthesized. Per discussion with David
4348  // Vandervoorde, 2011.04.25.
4349  if (isParenthesizedADLCallee(CE)) {
4350  Out << "cp";
4351  // The callee here is a parenthesized UnresolvedLookupExpr with
4352  // no qualifier and should always get mangled as a <simple-id>
4353  // anyway.
4354 
4355  // <expression> ::= cl <expression>* E
4356  } else {
4357  Out << "cl";
4358  }
4359 
4360  unsigned CallArity = CE->getNumArgs();
4361  for (const Expr *Arg : CE->arguments())
4362  if (isa<PackExpansionExpr>(Arg))
4363  CallArity = UnknownArity;
4364 
4365  mangleExpression(CE->getCallee(), CallArity);
4366  for (const Expr *Arg : CE->arguments())
4367  mangleExpression(Arg);
4368  Out << 'E';
4369  break;
4370  }
4371 
4372  case Expr::CXXNewExprClass: {
4373  NotPrimaryExpr();
4374  const CXXNewExpr *New = cast<CXXNewExpr>(E);
4375  if (New->isGlobalNew()) Out << "gs";
4376  Out << (New->isArray() ? "na" : "nw");
4378  E = New->placement_arg_end(); I != E; ++I)
4379  mangleExpression(*I);
4380  Out << '_';
4381  mangleType(New->getAllocatedType());
4382  if (New->hasInitializer()) {
4384  Out << "il";
4385  else
4386  Out << "pi";
4387  const Expr *Init = New->getInitializer();
4388  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4389  // Directly inline the initializers.
4390  for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4391  E = CCE->arg_end();
4392  I != E; ++I)
4393  mangleExpression(*I);
4394  } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4395  for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4396  mangleExpression(PLE->getExpr(i));
4397  } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4398  isa<InitListExpr>(Init)) {
4399  // Only take InitListExprs apart for list-initialization.
4400  mangleInitListElements(cast<InitListExpr>(Init));
4401  } else
4402  mangleExpression(Init);
4403  }
4404  Out << 'E';
4405  break;
4406  }
4407 
4408  case Expr::CXXPseudoDestructorExprClass: {
4409  NotPrimaryExpr();
4410  const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4411  if (const Expr *Base = PDE->getBase())
4412  mangleMemberExprBase(Base, PDE->isArrow());
4413  NestedNameSpecifier *Qualifier = PDE->getQualifier();
4414  if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4415  if (Qualifier) {
4416  mangleUnresolvedPrefix(Qualifier,
4417  /*recursive=*/true);
4418  mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4419  Out << 'E';
4420  } else {
4421  Out << "sr";
4422  if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4423  Out << 'E';
4424  }
4425  } else if (Qualifier) {
4426  mangleUnresolvedPrefix(Qualifier);
4427  }
4428  // <base-unresolved-name> ::= dn <destructor-name>
4429  Out << "dn";
4430  QualType DestroyedType = PDE->getDestroyedType();
4431  mangleUnresolvedTypeOrSimpleId(DestroyedType);
4432  break;
4433  }
4434 
4435  case Expr::MemberExprClass: {
4436  NotPrimaryExpr();
4437  const MemberExpr *ME = cast<MemberExpr>(E);
4438  mangleMemberExpr(ME->getBase(), ME->isArrow(),
4439  ME->getQualifier(), nullptr,
4440  ME->getMemberDecl()->getDeclName(),
4441  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4442  Arity);
4443  break;
4444  }
4445 
4446  case Expr::UnresolvedMemberExprClass: {
4447  NotPrimaryExpr();
4448  const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4449  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4450  ME->isArrow(), ME->getQualifier(), nullptr,
4451  ME->getMemberName(),
4452  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4453  Arity);
4454  break;
4455  }
4456 
4457  case Expr::CXXDependentScopeMemberExprClass: {
4458  NotPrimaryExpr();
4459  const CXXDependentScopeMemberExpr *ME
4460  = cast<CXXDependentScopeMemberExpr>(E);
4461  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4462  ME->isArrow(), ME->getQualifier(),
4464  ME->getMember(),
4465  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4466  Arity);
4467  break;
4468  }
4469 
4470  case Expr::UnresolvedLookupExprClass: {
4471  NotPrimaryExpr();
4472  const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4473  mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4474  ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4475  Arity);
4476  break;
4477  }
4478 
4479  case Expr::CXXUnresolvedConstructExprClass: {
4480  NotPrimaryExpr();
4481  const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4482  unsigned N = CE->getNumArgs();
4483 
4484  if (CE->isListInitialization()) {
4485  assert(N == 1 && "unexpected form for list initialization");
4486  auto *IL = cast<InitListExpr>(CE->getArg(0));
4487  Out << "tl";
4488  mangleType(CE->getType());
4489  mangleInitListElements(IL);
4490  Out << "E";
4491  break;
4492  }
4493 
4494  Out << "cv";
4495  mangleType(CE->getType());
4496  if (N != 1) Out << '_';
4497  for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4498  if (N != 1) Out << 'E';
4499  break;
4500  }
4501 
4502  case Expr::CXXConstructExprClass: {
4503  // An implicit cast is silent, thus may contain <expr-primary>.
4504  const auto *CE = cast<CXXConstructExpr>(E);
4505  if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4506  assert(
4507  CE->getNumArgs() >= 1 &&
4508  (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4509  "implicit CXXConstructExpr must have one argument");
4510  E = cast<CXXConstructExpr>(E)->getArg(0);
4511  goto recurse;
4512  }
4513  NotPrimaryExpr();
4514  Out << "il";
4515  for (auto *E : CE->arguments())
4516  mangleExpression(E);
4517  Out << "E";
4518  break;
4519  }
4520 
4521  case Expr::CXXTemporaryObjectExprClass: {
4522  NotPrimaryExpr();
4523  const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4524  unsigned N = CE->getNumArgs();
4525  bool List = CE->isListInitialization();
4526 
4527  if (List)
4528  Out << "tl";
4529  else
4530  Out << "cv";
4531  mangleType(CE->getType());
4532  if (!List && N != 1)
4533  Out << '_';
4534  if (CE->isStdInitListInitialization()) {
4535  // We implicitly created a std::initializer_list<T> for the first argument
4536  // of a constructor of type U in an expression of the form U{a, b, c}.
4537  // Strip all the semantic gunk off the initializer list.
4538  auto *SILE =
4539  cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4540  auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4541  mangleInitListElements(ILE);
4542  } else {
4543  for (auto *E : CE->arguments())
4544  mangleExpression(E);
4545  }
4546  if (List || N != 1)
4547  Out << 'E';
4548  break;
4549  }
4550 
4551  case Expr::CXXScalarValueInitExprClass:
4552  NotPrimaryExpr();
4553  Out << "cv";
4554  mangleType(E->getType());
4555  Out << "_E";
4556  break;
4557 
4558  case Expr::CXXNoexceptExprClass:
4559  NotPrimaryExpr();
4560  Out << "nx";
4561  mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4562  break;
4563 
4564  case Expr::UnaryExprOrTypeTraitExprClass: {
4565  // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4566  const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4567 
4568  if (!SAE->isInstantiationDependent()) {
4569  // Itanium C++ ABI:
4570  // If the operand of a sizeof or alignof operator is not
4571  // instantiation-dependent it is encoded as an integer literal
4572  // reflecting the result of the operator.
4573  //
4574  // If the result of the operator is implicitly converted to a known
4575  // integer type, that type is used for the literal; otherwise, the type
4576  // of std::size_t or std::ptrdiff_t is used.
4577  QualType T = (ImplicitlyConvertedToType.isNull() ||
4578  !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4579  : ImplicitlyConvertedToType;
4580  llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4581  mangleIntegerLiteral(T, V);
4582  break;
4583  }
4584 
4585  NotPrimaryExpr(); // But otherwise, they are not.
4586 
4587  auto MangleAlignofSizeofArg = [&] {
4588  if (SAE->isArgumentType()) {
4589  Out << 't';
4590  mangleType(SAE->getArgumentType());
4591  } else {
4592  Out << 'z';
4593  mangleExpression(SAE->getArgumentExpr());
4594  }
4595  };
4596 
4597  switch(SAE->getKind()) {
4598  case UETT_SizeOf:
4599  Out << 's';
4600  MangleAlignofSizeofArg();
4601  break;
4602  case UETT_PreferredAlignOf:
4603  // As of clang 12, we mangle __alignof__ differently than alignof. (They
4604  // have acted differently since Clang 8, but were previously mangled the
4605  // same.)
4606  if (Context.getASTContext().getLangOpts().getClangABICompat() >
4608  Out << "u11__alignof__";
4609  if (SAE->isArgumentType())
4610  mangleType(SAE->getArgumentType());
4611  else
4612  mangleTemplateArgExpr(SAE->getArgumentExpr());
4613  Out << 'E';
4614  break;
4615  }
4616  LLVM_FALLTHROUGH;
4617  case UETT_AlignOf:
4618  Out << 'a';
4619  MangleAlignofSizeofArg();
4620  break;
4621  case UETT_VecStep: {
4622  DiagnosticsEngine &Diags = Context.getDiags();
4623  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4624  "cannot yet mangle vec_step expression");
4625  Diags.Report(DiagID);
4626  return;
4627  }
4628  case UETT_OpenMPRequiredSimdAlign: {
4629  DiagnosticsEngine &Diags = Context.getDiags();
4630  unsigned DiagID = Diags.getCustomDiagID(
4632  "cannot yet mangle __builtin_omp_required_simd_align expression");
4633  Diags.Report(DiagID);
4634  return;
4635  }
4636  }
4637  break;
4638  }
4639 
4640  case Expr::CXXThrowExprClass: {
4641  NotPrimaryExpr();
4642  const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4643  // <expression> ::= tw <expression> # throw expression
4644  // ::= tr # rethrow
4645  if (TE->getSubExpr()) {
4646  Out << "tw";
4647  mangleExpression(TE->getSubExpr());
4648  } else {
4649  Out << "tr";
4650  }
4651  break;
4652  }
4653 
4654  case Expr::CXXTypeidExprClass: {
4655  NotPrimaryExpr();
4656  const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4657  // <expression> ::= ti <type> # typeid (type)
4658  // ::= te <expression> # typeid (expression)
4659  if (TIE->isTypeOperand()) {
4660  Out << "ti";
4661  mangleType(TIE->getTypeOperand(Context.getASTContext()));
4662  } else {
4663  Out << "te";
4664  mangleExpression(TIE->getExprOperand());
4665  }
4666  break;
4667  }
4668 
4669  case Expr::CXXDeleteExprClass: {
4670  NotPrimaryExpr();
4671  const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4672  // <expression> ::= [gs] dl <expression> # [::] delete expr
4673  // ::= [gs] da <expression> # [::] delete [] expr
4674  if (DE->isGlobalDelete()) Out << "gs";
4675  Out << (DE->isArrayForm() ? "da" : "dl");
4676  mangleExpression(DE->getArgument());
4677  break;
4678  }
4679 
4680  case Expr::UnaryOperatorClass: {
4681  NotPrimaryExpr();
4682  const UnaryOperator *UO = cast<UnaryOperator>(E);
4683  mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4684  /*Arity=*/1);
4685  mangleExpression(UO->getSubExpr());
4686  break;
4687  }
4688 
4689  case Expr::ArraySubscriptExprClass: {
4690  NotPrimaryExpr();
4691  const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4692 
4693  // Array subscript is treated as a syntactically weird form of
4694  // binary operator.
4695  Out << "ix";
4696  mangleExpression(AE->getLHS());
4697  mangleExpression(AE->getRHS());
4698  break;
4699  }
4700 
4701  case Expr::MatrixSubscriptExprClass: {
4702  NotPrimaryExpr();
4703  const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4704  Out << "ixix";
4705  mangleExpression(ME->getBase());
4706  mangleExpression(ME->getRowIdx());
4707  mangleExpression(ME->getColumnIdx());
4708  break;
4709  }
4710 
4711  case Expr::CompoundAssignOperatorClass: // fallthrough
4712  case Expr::BinaryOperatorClass: {
4713  NotPrimaryExpr();
4714  const BinaryOperator *BO = cast<BinaryOperator>(E);
4715  if (BO->getOpcode() == BO_PtrMemD)
4716  Out << "ds";
4717  else
4718  mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4719  /*Arity=*/2);
4720  mangleExpression(BO->getLHS());
4721  mangleExpression(BO->getRHS());
4722  break;
4723  }
4724 
4725  case Expr::CXXRewrittenBinaryOperatorClass: {
4726  NotPrimaryExpr();
4727  // The mangled form represents the original syntax.
4729  cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4730  mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4731  /*Arity=*/2);
4732  mangleExpression(Decomposed.LHS);
4733  mangleExpression(Decomposed.RHS);
4734  break;
4735  }
4736 
4737  case Expr::ConditionalOperatorClass: {
4738  NotPrimaryExpr();
4739  const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4740  mangleOperatorName(OO_Conditional, /*Arity=*/3);
4741  mangleExpression(CO->getCond());
4742  mangleExpression(CO->getLHS(), Arity);
4743  mangleExpression(CO->getRHS(), Arity);
4744  break;
4745  }
4746 
4747  case Expr::ImplicitCastExprClass: {
4748  ImplicitlyConvertedToType = E->getType();
4749  E = cast<ImplicitCastExpr>(E)->getSubExpr();
4750  goto recurse;
4751  }
4752 
4753  case Expr::ObjCBridgedCastExprClass: {
4754  NotPrimaryExpr();
4755  // Mangle ownership casts as a vendor extended operator __bridge,
4756  // __bridge_transfer, or __bridge_retain.
4757  StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4758  Out << "v1U" << Kind.size() << Kind;
4759  mangleCastExpression(E, "cv");
4760  break;
4761  }
4762 
4763  case Expr::CStyleCastExprClass:
4764  NotPrimaryExpr();
4765  mangleCastExpression(E, "cv");
4766  break;
4767 
4768  case Expr::CXXFunctionalCastExprClass: {
4769  NotPrimaryExpr();
4770  auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4771  // FIXME: Add isImplicit to CXXConstructExpr.
4772  if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4773  if (CCE->getParenOrBraceRange().isInvalid())
4774  Sub = CCE->getArg(0)->IgnoreImplicit();
4775  if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4776  Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4777  if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4778  Out << "tl";
4779  mangleType(E->getType());
4780  mangleInitListElements(IL);
4781  Out << "E";
4782  } else {
4783  mangleCastExpression(E, "cv");
4784  }
4785  break;
4786  }
4787 
4788  case Expr::CXXStaticCastExprClass:
4789  NotPrimaryExpr();
4790  mangleCastExpression(E, "sc");
4791  break;
4792  case Expr::CXXDynamicCastExprClass:
4793  NotPrimaryExpr();
4794  mangleCastExpression(E, "dc");
4795  break;
4796  case Expr::CXXReinterpretCastExprClass:
4797  NotPrimaryExpr();
4798  mangleCastExpression(E, "rc");
4799  break;
4800  case Expr::CXXConstCastExprClass:
4801  NotPrimaryExpr();
4802  mangleCastExpression(E, "cc");
4803  break;
4804  case Expr::CXXAddrspaceCastExprClass:
4805  NotPrimaryExpr();
4806  mangleCastExpression(E, "ac");
4807  break;
4808 
4809  case Expr::CXXOperatorCallExprClass: {
4810  NotPrimaryExpr();
4811  const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4812  unsigned NumArgs = CE->getNumArgs();
4813  // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4814  // (the enclosing MemberExpr covers the syntactic portion).
4815  if (CE->getOperator() != OO_Arrow)
4816  mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4817  // Mangle the arguments.
4818  for (unsigned i = 0; i != NumArgs; ++i)
4819  mangleExpression(CE->getArg(i));
4820  break;
4821  }
4822 
4823  case Expr::ParenExprClass:
4824  E = cast<ParenExpr>(E)->getSubExpr();
4825  goto recurse;
4826 
4827  case Expr::ConceptSpecializationExprClass: {
4828  // <expr-primary> ::= L <mangled-name> E # external name
4829  Out << "L_Z";
4830  auto *CSE = cast<ConceptSpecializationExpr>(E);
4831  mangleTemplateName(CSE->getNamedConcept(),
4832  CSE->getTemplateArguments().data(),
4833  CSE->getTemplateArguments().size());
4834  Out << 'E';
4835  break;
4836  }
4837 
4838  case Expr::DeclRefExprClass:
4839  // MangleDeclRefExpr helper handles primary-vs-nonprimary
4840  MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4841  break;
4842 
4843  case Expr::SubstNonTypeTemplateParmPackExprClass:
4844  NotPrimaryExpr();
4845  // FIXME: not clear how to mangle this!
4846  // template <unsigned N...> class A {
4847  // template <class U...> void foo(U (&x)[N]...);
4848  // };
4849  Out << "_SUBSTPACK_";
4850  break;
4851 
4852  case Expr::FunctionParmPackExprClass: {
4853  NotPrimaryExpr();
4854  // FIXME: not clear how to mangle this!
4855  const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4856  Out << "v110_SUBSTPACK";
4857  MangleDeclRefExpr(FPPE->getParameterPack());
4858  break;
4859  }
4860 
4861  case Expr::DependentScopeDeclRefExprClass: {
4862  NotPrimaryExpr();
4863  const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4864  mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4865  DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4866  Arity);
4867  break;
4868  }
4869 
4870  case Expr::CXXBindTemporaryExprClass:
4871  E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4872  goto recurse;
4873 
4874  case Expr::ExprWithCleanupsClass:
4875  E = cast<ExprWithCleanups>(E)->getSubExpr();
4876  goto recurse;
4877 
4878  case Expr::FloatingLiteralClass: {
4879  // <expr-primary>
4880  const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4881  mangleFloatLiteral(FL->getType(), FL->getValue());
4882  break;
4883  }
4884 
4885  case Expr::FixedPointLiteralClass:
4886  // Currently unimplemented -- might be <expr-primary> in future?
4887  mangleFixedPointLiteral();
4888  break;
4889 
4890  case Expr::CharacterLiteralClass:
4891  // <expr-primary>
4892  Out << 'L';
4893  mangleType(E->getType());
4894  Out << cast<CharacterLiteral>(E)->getValue();
4895  Out << 'E';
4896  break;
4897 
4898  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4899  case Expr::ObjCBoolLiteralExprClass:
4900  // <expr-primary>
4901  Out << "Lb";
4902  Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4903  Out << 'E';
4904  break;
4905 
4906  case Expr::CXXBoolLiteralExprClass:
4907  // <expr-primary>
4908  Out << "Lb";
4909  Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4910  Out << 'E';
4911  break;
4912 
4913  case Expr::IntegerLiteralClass: {
4914  // <expr-primary>
4915  llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4916  if (E->getType()->isSignedIntegerType())
4917  Value.setIsSigned(true);
4918  mangleIntegerLiteral(E->getType(), Value);
4919  break;
4920  }
4921 
4922  case Expr::ImaginaryLiteralClass: {
4923  // <expr-primary>
4924  const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4925  // Mangle as if a complex literal.
4926  // Proposal from David Vandevoorde, 2010.06.30.
4927  Out << 'L';
4928  mangleType(E->getType());
4929  if (const FloatingLiteral *Imag =
4930  dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4931  // Mangle a floating-point zero of the appropriate type.
4932  mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4933  Out << '_';
4934  mangleFloat(Imag->getValue());
4935  } else {
4936  Out << "0_";
4937  llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4938  if (IE->getSubExpr()->getType()->isSignedIntegerType())
4939  Value.setIsSigned(true);
4940  mangleNumber(Value);
4941  }
4942  Out << 'E';
4943  break;
4944  }
4945 
4946  case Expr::StringLiteralClass: {
4947  // <expr-primary>
4948  // Revised proposal from David Vandervoorde, 2010.07.15.
4949  Out << 'L';
4950  assert(isa<ConstantArrayType>(E->getType()));
4951  mangleType(E->getType());
4952  Out << 'E';
4953  break;
4954  }
4955 
4956  case Expr::GNUNullExprClass:
4957  // <expr-primary>
4958  // Mangle as if an integer literal 0.
4959  mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4960  break;
4961 
4962  case Expr::CXXNullPtrLiteralExprClass: {
4963  // <expr-primary>
4964  Out << "LDnE";
4965  break;
4966  }
4967 
4968  case Expr::LambdaExprClass: {
4969  // A lambda-expression can't appear in the signature of an
4970  // externally-visible declaration, so there's no standard mangling for
4971  // this, but mangling as a literal of the closure type seems reasonable.
4972  Out << "L";
4973  mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
4974  Out << "E";
4975  break;
4976  }
4977 
4978  case Expr::PackExpansionExprClass:
4979  NotPrimaryExpr();
4980  Out << "sp";
4981  mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4982  break;
4983 
4984  case Expr::SizeOfPackExprClass: {
4985  NotPrimaryExpr();
4986  auto *SPE = cast<SizeOfPackExpr>(E);
4987  if (SPE->isPartiallySubstituted()) {
4988  Out << "sP";
4989  for (const auto &A : SPE->getPartialArguments())
4990  mangleTemplateArg(A, false);
4991  Out << "E";
4992  break;
4993  }
4994 
4995  Out << "sZ";
4996  const NamedDecl *Pack = SPE->getPack();
4997  if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4998  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4999  else if (const NonTypeTemplateParmDecl *NTTP
5000  = dyn_cast<NonTypeTemplateParmDecl>(Pack))
5001  mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
5002  else if (const TemplateTemplateParmDecl *TempTP
5003  = dyn_cast<TemplateTemplateParmDecl>(Pack))
5004  mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
5005  else
5006  mangleFunctionParam(cast<ParmVarDecl>(Pack));
5007  break;
5008  }
5009 
5010  case Expr::MaterializeTemporaryExprClass:
5011  E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5012  goto recurse;
5013 
5014  case Expr::CXXFoldExprClass: {
5015  NotPrimaryExpr();
5016  auto *FE = cast<CXXFoldExpr>(E);
5017  if (FE->isLeftFold())
5018  Out << (FE->getInit() ? "fL" : "fl");
5019  else
5020  Out << (FE->getInit() ? "fR" : "fr");
5021 
5022  if (FE->getOperator() == BO_PtrMemD)
5023  Out << "ds";
5024  else
5025  mangleOperatorName(
5026  BinaryOperator::getOverloadedOperator(FE->getOperator()),
5027  /*Arity=*/2);
5028 
5029  if (FE->getLHS())
5030  mangleExpression(FE->getLHS());
5031  if (FE->getRHS())
5032  mangleExpression(FE->getRHS());
5033  break;
5034  }
5035 
5036  case Expr::CXXThisExprClass:
5037  NotPrimaryExpr();
5038  Out << "fpT";
5039  break;
5040 
5041  case Expr::CoawaitExprClass:
5042  // FIXME: Propose a non-vendor mangling.
5043  NotPrimaryExpr();
5044  Out << "v18co_await";
5045  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5046  break;
5047 
5048  case Expr::DependentCoawaitExprClass:
5049  // FIXME: Propose a non-vendor mangling.
5050  NotPrimaryExpr();
5051  Out << "v18co_await";
5052  mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5053  break;
5054 
5055  case Expr::CoyieldExprClass:
5056  // FIXME: Propose a non-vendor mangling.
5057  NotPrimaryExpr();
5058  Out << "v18co_yield";
5059  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5060  break;
5061  case Expr::SYCLUniqueStableNameExprClass: {
5062  const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5063  NotPrimaryExpr();
5064 
5065  Out << "u33__builtin_sycl_unique_stable_name";
5066  mangleType(USN->getTypeSourceInfo()->getType());
5067 
5068  Out << "E";
5069  break;
5070  }
5071  }
5072 
5073  if (AsTemplateArg && !IsPrimaryExpr)
5074  Out << 'E';
5075 }
5076 
5077 /// Mangle an expression which refers to a parameter variable.
5078 ///
5079 /// <expression> ::= <function-param>
5080 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
5081 /// <function-param> ::= fp <top-level CV-qualifiers>
5082 /// <parameter-2 non-negative number> _ # L == 0, I > 0
5083 /// <function-param> ::= fL <L-1 non-negative number>
5084 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
5085 /// <function-param> ::= fL <L-1 non-negative number>
5086 /// p <top-level CV-qualifiers>
5087 /// <I-1 non-negative number> _ # L > 0, I > 0
5088 ///
5089 /// L is the nesting depth of the parameter, defined as 1 if the
5090 /// parameter comes from the innermost function prototype scope
5091 /// enclosing the current context, 2 if from the next enclosing
5092 /// function prototype scope, and so on, with one special case: if
5093 /// we've processed the full parameter clause for the innermost
5094 /// function type, then L is one less. This definition conveniently
5095 /// makes it irrelevant whether a function's result type was written
5096 /// trailing or leading, but is otherwise overly complicated; the
5097 /// numbering was first designed without considering references to
5098 /// parameter in locations other than return types, and then the
5099 /// mangling had to be generalized without changing the existing
5100 /// manglings.
5101 ///
5102 /// I is the zero-based index of the parameter within its parameter
5103 /// declaration clause. Note that the original ABI document describes
5104 /// this using 1-based ordinals.
5105 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5106  unsigned parmDepth = parm->getFunctionScopeDepth();
5107  unsigned parmIndex = parm->getFunctionScopeIndex();
5108 
5109  // Compute 'L'.
5110  // parmDepth does not include the declaring function prototype.
5111  // FunctionTypeDepth does account for that.
5112  assert(parmDepth < FunctionTypeDepth.getDepth());
5113  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5114  if (FunctionTypeDepth.isInResultType())
5115  nestingDepth--;
5116 
5117  if (nestingDepth == 0) {
5118  Out << "fp";
5119  } else {
5120  Out << "fL" << (nestingDepth - 1) << 'p';
5121  }
5122 
5123  // Top-level qualifiers. We don't have to worry about arrays here,
5124  // because parameters declared as arrays should already have been
5125  // transformed to have pointer type. FIXME: apparently these don't
5126  // get mangled if used as an rvalue of a known non-class type?
5127  assert(!parm->getType()->isArrayType()
5128  && "parameter's type is still an array type?");
5129 
5130  if (const DependentAddressSpaceType *DAST =
5131  dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5132  mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5133  } else {
5134  mangleQualifiers(parm->getType().getQualifiers());
5135  }
5136 
5137  // Parameter index.
5138  if (parmIndex != 0) {
5139  Out << (parmIndex - 1);
5140  }
5141  Out << '_';
5142 }
5143 
5144 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5145  const CXXRecordDecl *InheritedFrom) {
5146  // <ctor-dtor-name> ::= C1 # complete object constructor
5147  // ::= C2 # base object constructor
5148  // ::= CI1 <type> # complete inheriting constructor
5149  // ::= CI2 <type> # base inheriting constructor
5150  //
5151  // In addition, C5 is a comdat name with C1 and C2 in it.
5152  Out << 'C';
5153  if (InheritedFrom)
5154  Out << 'I';
5155  switch (T) {
5156  case Ctor_Complete:
5157  Out << '1';
5158  break;
5159  case Ctor_Base:
5160  Out << '2';
5161  break;
5162  case Ctor_Comdat:
5163  Out << '5';
5164  break;
5165  case Ctor_DefaultClosure:
5166  case Ctor_CopyingClosure:
5167  llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5168  }
5169  if (InheritedFrom)
5170  mangleName(InheritedFrom);
5171 }
5172 
5173 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5174  // <ctor-dtor-name> ::= D0 # deleting destructor
5175  // ::= D1 # complete object destructor
5176  // ::= D2 # base object destructor
5177  //
5178  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5179  switch (T) {
5180  case Dtor_Deleting:
5181  Out << "D0";
5182  break;
5183  case Dtor_Complete:
5184  Out << "D1";
5185  break;
5186  case Dtor_Base:
5187  Out << "D2";
5188  break;
5189  case Dtor_Comdat:
5190  Out << "D5";
5191  break;
5192  }
5193 }
5194 
5195 namespace {
5196 // Helper to provide ancillary information on a template used to mangle its
5197 // arguments.
5198 struct TemplateArgManglingInfo {
5199  TemplateDecl *ResolvedTemplate = nullptr;
5200  bool SeenPackExpansionIntoNonPack = false;
5201  const NamedDecl *UnresolvedExpandedPack = nullptr;
5202 
5203  TemplateArgManglingInfo(TemplateName TN) {
5204  if (TemplateDecl *TD = TN.getAsTemplateDecl())
5205  ResolvedTemplate = TD;
5206  }
5207 
5208  /// Do we need to mangle template arguments with exactly correct types?
5209  ///
5210  /// This should be called exactly once for each parameter / argument pair, in
5211  /// order.
5212  bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5213  // We need correct types when the template-name is unresolved or when it
5214  // names a template that is able to be overloaded.
5215  if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5216  return true;
5217 
5218  // Move to the next parameter.
5219  const NamedDecl *Param = UnresolvedExpandedPack;
5220  if (!Param) {
5221  assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5222  "no parameter for argument");
5223  Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5224 
5225  // If we reach an expanded parameter pack whose argument isn't in pack
5226  // form, that means Sema couldn't figure out which arguments belonged to
5227  // it, because it contains a pack expansion. Track the expanded pack for
5228  // all further template arguments until we hit that pack expansion.
5229  if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5230  assert(getExpandedPackSize(Param) &&
5231  "failed to form pack argument for parameter pack");
5232  UnresolvedExpandedPack = Param;
5233  }
5234  }
5235 
5236  // If we encounter a pack argument that is expanded into a non-pack
5237  // parameter, we can no longer track parameter / argument correspondence,
5238  // and need to use exact types from this point onwards.
5239  if (Arg.isPackExpansion() &&
5240  (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5241  SeenPackExpansionIntoNonPack = true;
5242  return true;
5243  }
5244 
5245  // We need exact types for function template arguments because they might be
5246  // overloaded on template parameter type. As a special case, a member
5247  // function template of a generic lambda is not overloadable.
5248  if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5249  auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5250  if (!RD || !RD->isGenericLambda())
5251  return true;
5252  }
5253 
5254  // Otherwise, we only need a correct type if the parameter has a deduced
5255  // type.
5256  //
5257  // Note: for an expanded parameter pack, getType() returns the type prior
5258  // to expansion. We could ask for the expanded type with getExpansionType(),
5259  // but it doesn't matter because substitution and expansion don't affect
5260  // whether a deduced type appears in the type.
5261  auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5262  return NTTP && NTTP->getType()->getContainedDeducedType();
5263  }
5264 };
5265 }
5266 
5267 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5268  const TemplateArgumentLoc *TemplateArgs,
5269  unsigned NumTemplateArgs) {
5270  // <template-args> ::= I <template-arg>+ E
5271  Out << 'I';
5272  TemplateArgManglingInfo Info(TN);
5273  for (unsigned i = 0; i != NumTemplateArgs; ++i)
5274  mangleTemplateArg(TemplateArgs[i].getArgument(),
5275  Info.needExactType(i, TemplateArgs[i].getArgument()));
5276  Out << 'E';
5277 }
5278 
5279 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5280  const TemplateArgumentList &AL) {
5281  // <template-args> ::= I <template-arg>+ E
5282  Out << 'I';
5283  TemplateArgManglingInfo Info(TN);
5284  for (unsigned i = 0, e = AL.size(); i != e; ++i)
5285  mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5286  Out << 'E';
5287 }
5288 
5289 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5290  const TemplateArgument *TemplateArgs,
5291  unsigned NumTemplateArgs) {
5292  // <template-args> ::= I <template-arg>+ E
5293  Out << 'I';
5294  TemplateArgManglingInfo Info(TN);
5295  for (unsigned i = 0; i != NumTemplateArgs; ++i)
5296  mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5297  Out << 'E';
5298 }
5299 
5300 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5301  // <template-arg> ::= <type> # type or template
5302  // ::= X <expression> E # expression
5303  // ::= <expr-primary> # simple expressions
5304  // ::= J <template-arg>* E # argument pack
5305  if (!A.isInstantiationDependent() || A.isDependent())
5306  A = Context.getASTContext().getCanonicalTemplateArgument(A);
5307 
5308  switch (A.getKind()) {
5310  llvm_unreachable("Cannot mangle NULL template argument");
5311 
5313  mangleType(A.getAsType());
5314  break;
5316  // This is mangled as <type>.
5317  mangleType(A.getAsTemplate());
5318  break;
5320  // <type> ::= Dp <type> # pack expansion (C++0x)
5321  Out << "Dp";
5322  mangleType(A.getAsTemplateOrTemplatePattern());
5323  break;
5325  mangleTemplateArgExpr(A.getAsExpr());
5326  break;
5328  mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5329  break;
5331  // <expr-primary> ::= L <mangled-name> E # external name
5332  ValueDecl *D = A.getAsDecl();
5333 
5334  // Template parameter objects are modeled by reproducing a source form
5335  // produced as if by aggregate initialization.
5336  if (A.getParamTypeForDecl()->isRecordType()) {
5337  auto *TPO = cast<TemplateParamObjectDecl>(D);
5338  mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5339  TPO->getValue(), /*TopLevel=*/true,
5340  NeedExactType);
5341  break;
5342  }
5343 
5344  ASTContext &Ctx = Context.getASTContext();
5345  APValue Value;
5346  if (D->isCXXInstanceMember())
5347  // Simple pointer-to-member with no conversion.
5348  Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5349  else if (D->getType()->isArrayType() &&
5350  Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5351  A.getParamTypeForDecl()) &&
5352  Ctx.getLangOpts().getClangABICompat() >
5354  // Build a value corresponding to this implicit array-to-pointer decay.
5357  /*OnePastTheEnd=*/false);
5358  else
5359  // Regular pointer or reference to a declaration.
5362  /*OnePastTheEnd=*/false);
5363  mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5364  NeedExactType);
5365  break;
5366  }
5368  mangleNullPointer(A.getNullPtrType());
5369  break;
5370  }
5371  case TemplateArgument::Pack: {
5372  // <template-arg> ::= J <template-arg>* E
5373  Out << 'J';
5374  for (const auto &P : A.pack_elements())
5375  mangleTemplateArg(P, NeedExactType);
5376  Out << 'E';
5377  }
5378  }
5379 }
5380 
5381 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5382  ASTContext &Ctx = Context.getASTContext();
5383  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5384  mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5385  return;
5386  }
5387 
5388  // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5389  // correctly in cases where the template argument was
5390  // constructed from an expression rather than an already-evaluated
5391  // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5392  // 'Li0E'.
5393  //
5394  // We did special-case DeclRefExpr to attempt to DTRT for that one
5395  // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5396  // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5397  // the proper 'Xfp_E'.
5398  E = E->IgnoreParenImpCasts();
5399  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5400  const ValueDecl *D = DRE->getDecl();
5401  if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5402  Out << 'L';
5403  mangle(D);
5404  Out << 'E';
5405  return;
5406  }
5407  }
5408  Out << 'X';
5409  mangleExpression(E);
5410  Out << 'E';
5411 }
5412 
5413 /// Determine whether a given value is equivalent to zero-initialization for
5414 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5415 ///
5416 /// Note that this is not in general equivalent to determining whether the
5417 /// value has an all-zeroes bit pattern.
5418 static bool isZeroInitialized(QualType T, const APValue &V) {
5419  // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5420  // pathological cases due to using this, but it's a little awkward
5421  // to do this in linear time in general.
5422  switch (V.getKind()) {
5423  case APValue::None:
5426  return false;
5427 
5428  case APValue::Struct: {
5429  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5430  assert(RD && "unexpected type for record value");
5431  unsigned I = 0;
5432  for (const CXXBaseSpecifier &BS : RD->bases()) {
5433  if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5434  return false;
5435  ++I;
5436  }
5437  I = 0;
5438  for (const FieldDecl *FD : RD->fields()) {
5439  if (!FD->isUnnamedBitfield() &&
5440  !isZeroInitialized(FD->getType(), V.getStructField(I)))
5441  return false;
5442  ++I;
5443  }
5444  return true;
5445  }
5446 
5447  case APValue::Union: {
5448  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5449  assert(RD && "unexpected type for union value");
5450  // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5451  for (const FieldDecl *FD : RD->fields()) {
5452  if (!FD->isUnnamedBitfield())
5453  return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5454  isZeroInitialized(FD->getType(), V.getUnionValue());
5455  }
5456  // If there are no fields (other than unnamed bitfields), the value is
5457  // necessarily zero-initialized.
5458  return true;
5459  }
5460 
5461  case APValue::Array: {
5462  QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5463  for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5464  if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5465  return false;
5466  return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5467  }
5468 
5469  case APValue::Vector: {
5470  const VectorType *VT = T->castAs<VectorType>();
5471  for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5472  if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5473  return false;
5474  return true;
5475  }
5476 
5477  case APValue::Int:
5478  return !V.getInt();
5479 
5480  case APValue::Float:
5481  return V.getFloat().isPosZero();
5482 
5483  case APValue::FixedPoint:
5484  return !V.getFixedPoint().getValue();
5485 
5486  case APValue::ComplexFloat:
5487  return V.getComplexFloatReal().isPosZero() &&
5488  V.getComplexFloatImag().isPosZero();
5489 
5490  case APValue::ComplexInt:
5491  return !V.getComplexIntReal() && !V.getComplexIntImag();
5492 
5493  case APValue::LValue:
5494  return V.isNullPointer();
5495 
5497  return !V.getMemberPointerDecl();
5498  }
5499 
5500  llvm_unreachable("Unhandled APValue::ValueKind enum");
5501 }
5502 
5503 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5504  QualType T = LV.getLValueBase().getType();
5505  for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5506  if (const ArrayType *AT = Ctx.getAsArrayType(T))
5507  T = AT->getElementType();
5508  else if (const FieldDecl *FD =
5509  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5510  T = FD->getType();
5511  else
5512  T = Ctx.getRecordType(
5513  cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5514  }
5515  return T;
5516 }
5517 
5518 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5519  bool TopLevel,
5520  bool NeedExactType) {
5521  // Ignore all top-level cv-qualifiers, to match GCC.
5522  Qualifiers Quals;
5523  T = getASTContext().getUnqualifiedArrayType(T, Quals);
5524 
5525  // A top-level expression that's not a primary expression is wrapped in X...E.
5526  bool IsPrimaryExpr = true;
5527  auto NotPrimaryExpr = [&] {
5528  if (TopLevel && IsPrimaryExpr)
5529  Out << 'X';
5530  IsPrimaryExpr = false;
5531  };
5532 
5533  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5534  switch (V.getKind()) {
5535  case APValue::None:
5537  Out << 'L';
5538  mangleType(T);
5539  Out << 'E';
5540  break;
5541 
5543  llvm_unreachable("unexpected value kind in template argument");
5544 
5545  case APValue::Struct: {
5546  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5547  assert(RD && "unexpected type for record value");
5548 
5549  // Drop trailing zero-initialized elements.
5551  RD->field_end());
5552  while (
5553  !Fields.empty() &&
5554  (Fields.back()->isUnnamedBitfield() ||
5555  isZeroInitialized(Fields.back()->getType(),
5556  V.getStructField(Fields.back()->getFieldIndex())))) {
5557  Fields.pop_back();
5558  }
5560  if (Fields.empty()) {
5561  while (!Bases.empty() &&
5562  isZeroInitialized(Bases.back().getType(),
5563  V.getStructBase(Bases.size() - 1)))
5564  Bases = Bases.drop_back();
5565  }
5566 
5567  // <expression> ::= tl <type> <braced-expression>* E
5568  NotPrimaryExpr();
5569  Out << "tl";
5570  mangleType(T);
5571  for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5572  mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5573  for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5574  if (Fields[I]->isUnnamedBitfield())
5575  continue;
5576  mangleValueInTemplateArg(Fields[I]->getType(),
5577  V.getStructField(Fields[I]->getFieldIndex()),
5578  false);
5579  }
5580  Out << 'E';
5581  break;
5582  }
5583 
5584  case APValue::Union: {
5585  assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5586  const FieldDecl *FD = V.getUnionField();
5587 
5588  if (!FD) {
5589  Out << 'L';
5590  mangleType(T);
5591  Out << 'E';
5592  break;
5593  }
5594 
5595  // <braced-expression> ::= di <field source-name> <braced-expression>
5596  NotPrimaryExpr();
5597  Out << "tl";
5598  mangleType(T);
5599  if (!isZeroInitialized(T, V)) {
5600  Out << "di";
5601  mangleSourceName(FD->getIdentifier());
5602  mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5603  }
5604  Out << 'E';
5605  break;
5606  }
5607 
5608  case APValue::Array: {
5609  QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5610 
5611  NotPrimaryExpr();
5612  Out << "tl";
5613  mangleType(T);
5614 
5615  // Drop trailing zero-initialized elements.
5616  unsigned N = V.getArraySize();
5617  if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5618  N = V.getArrayInitializedElts();
5619  while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5620  --N;
5621  }
5622 
5623  for (unsigned I = 0; I != N; ++I) {
5624  const APValue &Elem = I < V.getArrayInitializedElts()
5625  ? V.getArrayInitializedElt(I)
5626  : V.getArrayFiller();
5627  mangleValueInTemplateArg(ElemT, Elem, false);
5628  }
5629  Out << 'E';
5630  break;
5631  }
5632 
5633  case APValue::Vector: {
5634  const VectorType *VT = T->castAs<VectorType>();
5635 
5636  NotPrimaryExpr();
5637  Out << "tl";
5638  mangleType(T);
5639  unsigned N = V.getVectorLength();
5640  while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5641  --N;
5642  for (unsigned I = 0; I != N; ++I)
5643  mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5644  Out << 'E';
5645  break;
5646  }
5647 
5648  case APValue::Int:
5649  mangleIntegerLiteral(T, V.getInt());
5650  break;
5651 
5652  case APValue::Float:
5653  mangleFloatLiteral(T, V.getFloat());
5654  break;
5655 
5656  case APValue::FixedPoint:
5657  mangleFixedPointLiteral();
5658  break;
5659 
5660  case APValue::ComplexFloat: {
5661  const ComplexType *CT = T->castAs<ComplexType>();
5662  NotPrimaryExpr();
5663  Out << "tl";
5664  mangleType(T);
5665  if (!V.getComplexFloatReal().isPosZero() ||
5666  !V.getComplexFloatImag().isPosZero())
5667  mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5668  if (!V.getComplexFloatImag().isPosZero())
5669  mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5670  Out << 'E';
5671  break;
5672  }
5673 
5674  case APValue::ComplexInt: {
5675  const ComplexType *CT = T->castAs<ComplexType>();
5676  NotPrimaryExpr();
5677  Out << "tl";
5678  mangleType(T);
5679  if (V.getComplexIntReal().getBoolValue() ||
5680  V.getComplexIntImag().getBoolValue())
5681  mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5682  if (V.getComplexIntImag().getBoolValue())
5683  mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5684  Out << 'E';
5685  break;
5686  }
5687 
5688  case APValue::LValue: {
5689  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5690  assert((T->isPointerType() || T->isReferenceType()) &&
5691  "unexpected type for LValue template arg");
5692 
5693  if (V.isNullPointer()) {
5694  mangleNullPointer(T);
5695  break;
5696  }
5697 
5698  APValue::LValueBase B = V.getLValueBase();
5699  if (!B) {
5700  // Non-standard mangling for integer cast to a pointer; this can only
5701  // occur as an extension.
5702  CharUnits Offset = V.getLValueOffset();
5703  if (Offset.isZero()) {
5704  // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5705  // a cast, because L <type> 0 E means something else.
5706  NotPrimaryExpr();
5707  Out << "rc";
5708  mangleType(T);
5709  Out << "Li0E";
5710  if (TopLevel)
5711  Out << 'E';
5712  } else {
5713  Out << "L";
5714  mangleType(T);
5715  Out << Offset.getQuantity() << 'E';
5716  }
5717  break;
5718  }
5719 
5720  ASTContext &Ctx = Context.getASTContext();
5721 
5722  enum { Base, Offset, Path } Kind;
5723  if (!V.hasLValuePath()) {
5724  // Mangle as (T*)((char*)&base + N).
5725  if (T->isReferenceType()) {
5726  NotPrimaryExpr();
5727  Out << "decvP";
5728  mangleType(T->getPointeeType());
5729  } else {
5730  NotPrimaryExpr();
5731  Out << "cv";
5732  mangleType(T);
5733  }
5734  Out << "plcvPcad";
5735  Kind = Offset;
5736  } else {
5737  if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5738  NotPrimaryExpr();
5739  // A final conversion to the template parameter's type is usually
5740  // folded into the 'so' mangling, but we can't do that for 'void*'
5741  // parameters without introducing collisions.
5742  if (NeedExactType && T->isVoidPointerType()) {
5743  Out << "cv";
5744  mangleType(T);
5745  }
5746  if (T->isPointerType())
5747  Out << "ad";
5748  Out << "so";
5749  mangleType(T->isVoidPointerType()
5750  ? getLValueType(Ctx, V).getUnqualifiedType()
5751  : T->getPointeeType());
5752  Kind = Path;
5753  } else {
5754  if (NeedExactType &&
5755  !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5756  Ctx.getLangOpts().getClangABICompat() >
5758  NotPrimaryExpr();
5759  Out << "cv";
5760  mangleType(T);
5761  }
5762  if (T->isPointerType()) {
5763  NotPrimaryExpr();
5764  Out << "ad";
5765  }
5766  Kind = Base;
5767  }
5768  }
5769 
5770  QualType TypeSoFar = B.getType();
5771  if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5772  Out << 'L';
5773  mangle(VD);
5774  Out << 'E';
5775  } else if (auto *E = B.dyn_cast<const Expr*>()) {
5776  NotPrimaryExpr();
5777  mangleExpression(E);
5778  } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5779  NotPrimaryExpr();
5780  Out << "ti";
5781  mangleType(QualType(TI.getType(), 0));
5782  } else {
5783  // We should never see dynamic allocations here.
5784  llvm_unreachable("unexpected lvalue base kind in template argument");
5785  }
5786 
5787  switch (Kind) {
5788  case Base:
5789  break;
5790 
5791  case Offset:
5792  Out << 'L';
5793  mangleType(Ctx.getPointerDiffType());
5794  mangleNumber(V.getLValueOffset().getQuantity());
5795  Out << 'E';
5796  break;
5797 
5798  case Path:
5799  // <expression> ::= so <referent type> <expr> [<offset number>]
5800  // <union-selector>* [p] E
5801  if (!V.getLValueOffset().isZero())
5802  mangleNumber(V.getLValueOffset().getQuantity());
5803 
5804  // We model a past-the-end array pointer as array indexing with index N,
5805  // not with the "past the end" flag. Compensate for that.
5806  bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5807 
5808  for (APValue::LValuePathEntry E : V.getLValuePath()) {
5809  if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5810  if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5811  OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5812  TypeSoFar = AT->getElementType();
5813  } else {
5814  const Decl *D = E.getAsBaseOrMember().getPointer();
5815  if (auto *FD = dyn_cast<FieldDecl>(D)) {
5816  // <union-selector> ::= _ <number>
5817  if (FD->getParent()->isUnion()) {
5818  Out << '_';
5819  if (FD->getFieldIndex())
5820  Out << (FD->getFieldIndex() - 1);
5821  }
5822  TypeSoFar = FD->getType();
5823  } else {
5824  TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5825  }
5826  }
5827  }
5828 
5829  if (OnePastTheEnd)
5830  Out << 'p';
5831  Out << 'E';
5832  break;
5833  }
5834 
5835  break;
5836  }
5837 
5839  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5840  if (!V.getMemberPointerDecl()) {
5841  mangleNullPointer(T);
5842  break;
5843  }
5844 
5845  ASTContext &Ctx = Context.getASTContext();
5846 
5847  NotPrimaryExpr();
5848  if (!V.getMemberPointerPath().empty()) {
5849  Out << "mc";
5850  mangleType(T);
5851  } else if (NeedExactType &&
5852  !Ctx.hasSameType(
5854  V.getMemberPointerDecl()->getType()) &&
5855  Ctx.getLangOpts().getClangABICompat() >
5857  Out << "cv";
5858  mangleType(T);
5859  }
5860  Out << "adL";
5861  mangle(V.getMemberPointerDecl());
5862  Out << 'E';
5863  if (!V.getMemberPointerPath().empty()) {
5864  CharUnits Offset =
5865  Context.getASTContext().getMemberPointerPathAdjustment(V);
5866  if (!Offset.isZero())
5867  mangleNumber(Offset.getQuantity());
5868  Out << 'E';
5869  }
5870  break;
5871  }
5872 
5873  if (TopLevel && !IsPrimaryExpr)
5874  Out << 'E';
5875 }
5876 
5877 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5878  // <template-param> ::= T_ # first template parameter
5879  // ::= T <parameter-2 non-negative number> _
5880  // ::= TL <L-1 non-negative number> __
5881  // ::= TL <L-1 non-negative number> _
5882  // <parameter-2 non-negative number> _
5883  //
5884  // The latter two manglings are from a proposal here:
5885  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5886  Out << 'T';
5887  if (Depth != 0)
5888  Out << 'L' << (Depth - 1) << '_';
5889  if (Index != 0)
5890  Out << (Index - 1);
5891  Out << '_';
5892 }
5893 
5894 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5895  if (SeqID == 1)
5896  Out << '0';
5897  else if (SeqID > 1) {
5898  SeqID--;
5899 
5900  // <seq-id> is encoded in base-36, using digits and upper case letters.
5901  char Buffer[7]; // log(2**32) / log(36) ~= 7
5902  MutableArrayRef<char> BufferRef(Buffer);
5903  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5904 
5905  for (; SeqID != 0; SeqID /= 36) {
5906  unsigned C = SeqID % 36;
5907  *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5908  }
5909 
5910  Out.write(I.base(), I - BufferRef.rbegin());
5911  }
5912  Out << '_';
5913 }
5914 
5915 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5916  bool result = mangleSubstitution(tname);
5917  assert(result && "no existing substitution for template name");
5918  (void) result;
5919 }
5920 
5921 // <substitution> ::= S <seq-id> _
5922 // ::= S_
5923 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5924  // Try one of the standard substitutions first.
5925  if (mangleStandardSubstitution(ND))
5926  return true;
5927 
5928  ND = cast<NamedDecl>(ND->getCanonicalDecl());
5929  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5930 }
5931 
5932 /// Determine whether the given type has any qualifiers that are relevant for
5933 /// substitutions.
5935  Qualifiers Qs = T.getQualifiers();
5936  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5937 }
5938 
5939 bool CXXNameMangler::mangleSubstitution(QualType T) {
5941  if (const RecordType *RT = T->getAs<RecordType>())
5942  return mangleSubstitution(RT->getDecl());
5943  }
5944 
5945  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5946 
5947  return mangleSubstitution(TypePtr);
5948 }
5949 
5950 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5951  if (TemplateDecl *TD = Template.getAsTemplateDecl())
5952  return mangleSubstitution(TD);
5953 
5954  Template = Context.getASTContext().getCanonicalTemplateName(Template);
5955  return mangleSubstitution(
5956  reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5957 }
5958 
5959 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5960  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5961  if (I == Substitutions.end())
5962  return false;
5963 
5964  unsigned SeqID = I->second;
5965  Out << 'S';
5966  mangleSeqID(SeqID);
5967 
5968  return true;
5969 }
5970 
5971 static bool isCharType(QualType T) {
5972  if (T.isNull())
5973  return false;
5974 
5975  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
5976  T->isSpecificBuiltinType(BuiltinType::Char_U);
5977 }
5978 
5979 /// Returns whether a given type is a template specialization of a given name
5980 /// with a single argument of type char.
5981 static bool isCharSpecialization(QualType T, const char *Name) {
5982  if (T.isNull())
5983  return false;
5984 
5985  const RecordType *RT = T->getAs<RecordType>();
5986  if (!RT)
5987  return false;
5988 
5990  dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5991  if (!SD)
5992  return false;
5993 
5994  if (!isStdNamespace(getEffectiveDeclContext(SD)))
5995  return false;
5996 
5997  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5998  if (TemplateArgs.size() != 1)
5999  return false;
6000 
6001  if (!isCharType(TemplateArgs[0].getAsType()))
6002  return false;
6003 
6004  return SD->getIdentifier()->getName() == Name;
6005 }
6006 
6007 template <std::size_t StrLen>
6009  const char (&Str)[StrLen]) {
6010  if (!SD->getIdentifier()->isStr(Str))
6011  return false;
6012 
6013  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6014  if (TemplateArgs.size() != 2)
6015  return false;
6016 
6017  if (!isCharType(TemplateArgs[0].getAsType()))
6018  return false;
6019 
6020  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
6021  return false;
6022 
6023  return true;
6024 }
6025 
6026 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
6027  // <substitution> ::= St # ::std::
6028  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
6029  if (isStd(NS)) {
6030  Out << "St";
6031  return true;
6032  }
6033  }
6034 
6035  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
6036  if (!isStdNamespace(getEffectiveDeclContext(TD)))
6037  return false;
6038 
6039  // <substitution> ::= Sa # ::std::allocator
6040  if (TD->getIdentifier()->isStr("allocator")) {
6041  Out << "Sa";
6042  return true;
6043  }
6044 
6045  // <<substitution> ::= Sb # ::std::basic_string
6046  if (TD->getIdentifier()->isStr("basic_string")) {
6047  Out << "Sb";
6048  return true;
6049  }
6050  }
6051 
6052  if (const ClassTemplateSpecializationDecl *SD =
6053  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6054  if (!isStdNamespace(getEffectiveDeclContext(SD)))
6055  return false;
6056 
6057  // <substitution> ::= Ss # ::std::basic_string<char,
6058  // ::std::char_traits<char>,
6059  // ::std::allocator<char> >
6060  if (SD->getIdentifier()->isStr("basic_string")) {
6061  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6062 
6063  if (TemplateArgs.size() != 3)
6064  return