clang  15.0.0git
ItaniumMangle.cpp
Go to the documentation of this file.
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace clang;
40 
41 namespace {
42 
43 static bool isLocalContainerContext(const DeclContext *DC) {
44  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
45 }
46 
47 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
48  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
49  return ftd->getTemplatedDecl();
50 
51  return fn;
52 }
53 
54 static const NamedDecl *getStructor(const NamedDecl *decl) {
55  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
56  return (fn ? getStructor(fn) : decl);
57 }
58 
59 static bool isLambda(const NamedDecl *ND) {
60  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
61  if (!Record)
62  return false;
63 
64  return Record->isLambda();
65 }
66 
67 static const unsigned UnknownArity = ~0U;
68 
69 class ItaniumMangleContextImpl : public ItaniumMangleContext {
70  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
71  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
72  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
73  const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
74  NamespaceDecl *StdNamespace = nullptr;
75 
76  bool NeedsUniqueInternalLinkageNames = false;
77 
78 public:
79  explicit ItaniumMangleContextImpl(
80  ASTContext &Context, DiagnosticsEngine &Diags,
81  DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false)
82  : ItaniumMangleContext(Context, Diags, IsAux),
83  DiscriminatorOverride(DiscriminatorOverride) {}
84 
85  /// @name Mangler Entry Points
86  /// @{
87 
88  bool shouldMangleCXXName(const NamedDecl *D) override;
89  bool shouldMangleStringLiteral(const StringLiteral *) override {
90  return false;
91  }
92 
93  bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
94  void needsUniqueInternalLinkageNames() override {
95  NeedsUniqueInternalLinkageNames = true;
96  }
97 
98  void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
99  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
100  raw_ostream &) override;
101  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
103  raw_ostream &) override;
104  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
105  raw_ostream &) override;
106  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
107  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
108  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
109  const CXXRecordDecl *Type, raw_ostream &) override;
110  void mangleCXXRTTI(QualType T, raw_ostream &) override;
111  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
112  void mangleTypeName(QualType T, raw_ostream &) override;
113 
114  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
115  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
116  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
117  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
118  void mangleDynamicAtExitDestructor(const VarDecl *D,
119  raw_ostream &Out) override;
120  void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
121  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
122  raw_ostream &Out) override;
123  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
124  raw_ostream &Out) override;
125  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
126  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
127  raw_ostream &) override;
128 
129  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
130 
131  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
132 
133  void mangleModuleInitializer(const Module *Module, raw_ostream &) override;
134 
135  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
136  // Lambda closure types are already numbered.
137  if (isLambda(ND))
138  return false;
139 
140  // Anonymous tags are already numbered.
141  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
142  if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
143  return false;
144  }
145 
146  // Use the canonical number for externally visible decls.
147  if (ND->isExternallyVisible()) {
148  unsigned discriminator = getASTContext().getManglingNumber(ND, isAux());
149  if (discriminator == 1)
150  return false;
151  disc = discriminator - 2;
152  return true;
153  }
154 
155  // Make up a reasonable number for internal decls.
156  unsigned &discriminator = Uniquifier[ND];
157  if (!discriminator) {
158  const DeclContext *DC = getEffectiveDeclContext(ND);
159  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
160  }
161  if (discriminator == 1)
162  return false;
163  disc = discriminator-2;
164  return true;
165  }
166 
167  std::string getLambdaString(const CXXRecordDecl *Lambda) override {
168  // This function matches the one in MicrosoftMangle, which returns
169  // the string that is used in lambda mangled names.
170  assert(Lambda->isLambda() && "RD must be a lambda!");
171  std::string Name("<lambda");
172  Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
173  unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
174  unsigned LambdaId;
175  const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
176  const FunctionDecl *Func =
177  Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
178 
179  if (Func) {
180  unsigned DefaultArgNo =
181  Func->getNumParams() - Parm->getFunctionScopeIndex();
182  Name += llvm::utostr(DefaultArgNo);
183  Name += "_";
184  }
185 
186  if (LambdaManglingNumber)
187  LambdaId = LambdaManglingNumber;
188  else
189  LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
190 
191  Name += llvm::utostr(LambdaId);
192  Name += '>';
193  return Name;
194  }
195 
196  DiscriminatorOverrideTy getDiscriminatorOverride() const override {
197  return DiscriminatorOverride;
198  }
199 
200  NamespaceDecl *getStdNamespace();
201 
202  const DeclContext *getEffectiveDeclContext(const Decl *D);
203  const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
204  return getEffectiveDeclContext(cast<Decl>(DC));
205  }
206 
207  bool isInternalLinkageDecl(const NamedDecl *ND);
208  const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC);
209 
210  /// @}
211 };
212 
213 /// Manage the mangling of a single name.
214 class CXXNameMangler {
215  ItaniumMangleContextImpl &Context;
216  raw_ostream &Out;
217  bool NullOut = false;
218  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219  /// This mode is used when mangler creates another mangler recursively to
220  /// calculate ABI tags for the function return value or the variable type.
221  /// Also it is required to avoid infinite recursion in some cases.
222  bool DisableDerivedAbiTags = false;
223 
224  /// The "structor" is the top-level declaration being mangled, if
225  /// that's not a template specialization; otherwise it's the pattern
226  /// for that specialization.
227  const NamedDecl *Structor;
228  unsigned StructorType = 0;
229 
230  /// The next substitution sequence number.
231  unsigned SeqID = 0;
232 
233  class FunctionTypeDepthState {
234  unsigned Bits;
235 
236  enum { InResultTypeMask = 1 };
237 
238  public:
239  FunctionTypeDepthState() : Bits(0) {}
240 
241  /// The number of function types we're inside.
242  unsigned getDepth() const {
243  return Bits >> 1;
244  }
245 
246  /// True if we're in the return type of the innermost function type.
247  bool isInResultType() const {
248  return Bits & InResultTypeMask;
249  }
250 
251  FunctionTypeDepthState push() {
252  FunctionTypeDepthState tmp = *this;
253  Bits = (Bits & ~InResultTypeMask) + 2;
254  return tmp;
255  }
256 
257  void enterResultType() {
258  Bits |= InResultTypeMask;
259  }
260 
261  void leaveResultType() {
262  Bits &= ~InResultTypeMask;
263  }
264 
265  void pop(FunctionTypeDepthState saved) {
266  assert(getDepth() == saved.getDepth() + 1);
267  Bits = saved.Bits;
268  }
269 
270  } FunctionTypeDepth;
271 
272  // abi_tag is a gcc attribute, taking one or more strings called "tags".
273  // The goal is to annotate against which version of a library an object was
274  // built and to be able to provide backwards compatibility ("dual abi").
275  // For more information see docs/ItaniumMangleAbiTags.rst.
276  typedef SmallVector<StringRef, 4> AbiTagList;
277 
278  // State to gather all implicit and explicit tags used in a mangled name.
279  // Must always have an instance of this while emitting any name to keep
280  // track.
281  class AbiTagState final {
282  public:
283  explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284  Parent = LinkHead;
285  LinkHead = this;
286  }
287 
288  // No copy, no move.
289  AbiTagState(const AbiTagState &) = delete;
290  AbiTagState &operator=(const AbiTagState &) = delete;
291 
292  ~AbiTagState() { pop(); }
293 
294  void write(raw_ostream &Out, const NamedDecl *ND,
295  const AbiTagList *AdditionalAbiTags) {
296  ND = cast<NamedDecl>(ND->getCanonicalDecl());
297  if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298  assert(
299  !AdditionalAbiTags &&
300  "only function and variables need a list of additional abi tags");
301  if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302  if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304  AbiTag->tags().end());
305  }
306  // Don't emit abi tags for namespaces.
307  return;
308  }
309  }
310 
311  AbiTagList TagList;
312  if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314  AbiTag->tags().end());
315  TagList.insert(TagList.end(), AbiTag->tags().begin(),
316  AbiTag->tags().end());
317  }
318 
319  if (AdditionalAbiTags) {
320  UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321  AdditionalAbiTags->end());
322  TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323  AdditionalAbiTags->end());
324  }
325 
326  llvm::sort(TagList);
327  TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328 
329  writeSortedUniqueAbiTags(Out, TagList);
330  }
331 
332  const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333  void setUsedAbiTags(const AbiTagList &AbiTags) {
334  UsedAbiTags = AbiTags;
335  }
336 
337  const AbiTagList &getEmittedAbiTags() const {
338  return EmittedAbiTags;
339  }
340 
341  const AbiTagList &getSortedUniqueUsedAbiTags() {
342  llvm::sort(UsedAbiTags);
343  UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344  UsedAbiTags.end());
345  return UsedAbiTags;
346  }
347 
348  private:
349  //! All abi tags used implicitly or explicitly.
350  AbiTagList UsedAbiTags;
351  //! All explicit abi tags (i.e. not from namespace).
352  AbiTagList EmittedAbiTags;
353 
354  AbiTagState *&LinkHead;
355  AbiTagState *Parent = nullptr;
356 
357  void pop() {
358  assert(LinkHead == this &&
359  "abi tag link head must point to us on destruction");
360  if (Parent) {
361  Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362  UsedAbiTags.begin(), UsedAbiTags.end());
363  Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364  EmittedAbiTags.begin(),
365  EmittedAbiTags.end());
366  }
367  LinkHead = Parent;
368  }
369 
370  void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371  for (const auto &Tag : AbiTags) {
372  EmittedAbiTags.push_back(Tag);
373  Out << "B";
374  Out << Tag.size();
375  Out << Tag;
376  }
377  }
378  };
379 
380  AbiTagState *AbiTags = nullptr;
381  AbiTagState AbiTagsRoot;
382 
383  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
385 
386  ASTContext &getASTContext() const { return Context.getASTContext(); }
387 
388  bool isStd(const NamespaceDecl *NS);
389  bool isStdNamespace(const DeclContext *DC);
390 
391  const RecordDecl *GetLocalClassDecl(const Decl *D);
392  const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC);
393  bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A);
394  bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD,
395  llvm::StringRef Name, bool HasAllocator);
396 
397 public:
398  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399  const NamedDecl *D = nullptr, bool NullOut_ = false)
400  : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
401  AbiTagsRoot(AbiTags) {
402  // These can't be mangled without a ctor type or dtor type.
403  assert(!D || (!isa<CXXDestructorDecl>(D) &&
404  !isa<CXXConstructorDecl>(D)));
405  }
406  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
408  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
409  AbiTagsRoot(AbiTags) {}
410  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
412  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
413  AbiTagsRoot(AbiTags) {}
414 
415  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
416  : Context(Outer.Context), Out(Out_), Structor(Outer.Structor),
417  StructorType(Outer.StructorType), SeqID(Outer.SeqID),
418  FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags),
419  Substitutions(Outer.Substitutions),
420  ModuleSubstitutions(Outer.ModuleSubstitutions) {}
421 
422  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
423  : CXXNameMangler(Outer, (raw_ostream &)Out_) {
424  NullOut = true;
425  }
426 
427  raw_ostream &getStream() { return Out; }
428 
429  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
430  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
431 
432  void mangle(GlobalDecl GD);
433  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
434  void mangleNumber(const llvm::APSInt &I);
435  void mangleNumber(int64_t Number);
436  void mangleFloat(const llvm::APFloat &F);
437  void mangleFunctionEncoding(GlobalDecl GD);
438  void mangleSeqID(unsigned SeqID);
439  void mangleName(GlobalDecl GD);
440  void mangleType(QualType T);
441  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
442  void mangleLambdaSig(const CXXRecordDecl *Lambda);
443  void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false);
444 
445 private:
446 
447  bool mangleSubstitution(const NamedDecl *ND);
448  bool mangleSubstitution(NestedNameSpecifier *NNS);
449  bool mangleSubstitution(QualType T);
450  bool mangleSubstitution(TemplateName Template);
451  bool mangleSubstitution(uintptr_t Ptr);
452 
453  void mangleExistingSubstitution(TemplateName name);
454 
455  bool mangleStandardSubstitution(const NamedDecl *ND);
456 
457  void addSubstitution(const NamedDecl *ND) {
458  ND = cast<NamedDecl>(ND->getCanonicalDecl());
459 
460  addSubstitution(reinterpret_cast<uintptr_t>(ND));
461  }
462  void addSubstitution(NestedNameSpecifier *NNS) {
463  NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
464 
465  addSubstitution(reinterpret_cast<uintptr_t>(NNS));
466  }
467  void addSubstitution(QualType T);
468  void addSubstitution(TemplateName Template);
469  void addSubstitution(uintptr_t Ptr);
470  // Destructive copy substitutions from other mangler.
471  void extendSubstitutions(CXXNameMangler* Other);
472 
473  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
474  bool recursive = false);
475  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
477  const TemplateArgumentLoc *TemplateArgs,
478  unsigned NumTemplateArgs,
479  unsigned KnownArity = UnknownArity);
480 
481  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
482 
483  void mangleNameWithAbiTags(GlobalDecl GD,
484  const AbiTagList *AdditionalAbiTags);
485  void mangleModuleName(const NamedDecl *ND);
486  void mangleTemplateName(const TemplateDecl *TD,
487  const TemplateArgument *TemplateArgs,
488  unsigned NumTemplateArgs);
489  void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC,
490  const AbiTagList *AdditionalAbiTags) {
491  mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC,
492  UnknownArity, AdditionalAbiTags);
493  }
494  void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
495  const DeclContext *DC, unsigned KnownArity,
496  const AbiTagList *AdditionalAbiTags);
497  void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
498  const AbiTagList *AdditionalAbiTags);
499  void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC,
500  const AbiTagList *AdditionalAbiTags);
501  void mangleSourceName(const IdentifierInfo *II);
502  void mangleRegCallName(const IdentifierInfo *II);
503  void mangleDeviceStubName(const IdentifierInfo *II);
504  void mangleSourceNameWithAbiTags(
505  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
506  void mangleLocalName(GlobalDecl GD,
507  const AbiTagList *AdditionalAbiTags);
508  void mangleBlockForPrefix(const BlockDecl *Block);
509  void mangleUnqualifiedBlock(const BlockDecl *Block);
510  void mangleTemplateParamDecl(const NamedDecl *Decl);
511  void mangleLambda(const CXXRecordDecl *Lambda);
512  void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
513  const AbiTagList *AdditionalAbiTags,
514  bool NoFunction=false);
515  void mangleNestedName(const TemplateDecl *TD,
516  const TemplateArgument *TemplateArgs,
517  unsigned NumTemplateArgs);
518  void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
519  const NamedDecl *PrefixND,
520  const AbiTagList *AdditionalAbiTags);
521  void manglePrefix(NestedNameSpecifier *qualifier);
522  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
523  void manglePrefix(QualType type);
524  void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
525  void mangleTemplatePrefix(TemplateName Template);
526  const NamedDecl *getClosurePrefix(const Decl *ND);
527  void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
528  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
529  StringRef Prefix = "");
530  void mangleOperatorName(DeclarationName Name, unsigned Arity);
531  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
532  void mangleVendorQualifier(StringRef qualifier);
533  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
534  void mangleRefQualifier(RefQualifierKind RefQualifier);
535 
536  void mangleObjCMethodName(const ObjCMethodDecl *MD);
537 
538  // Declare manglers for every type class.
539 #define ABSTRACT_TYPE(CLASS, PARENT)
540 #define NON_CANONICAL_TYPE(CLASS, PARENT)
541 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
542 #include "clang/AST/TypeNodes.inc"
543 
544  void mangleType(const TagType*);
545  void mangleType(TemplateName);
546  static StringRef getCallingConvQualifierName(CallingConv CC);
547  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
548  void mangleExtFunctionInfo(const FunctionType *T);
549  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
550  const FunctionDecl *FD = nullptr);
551  void mangleNeonVectorType(const VectorType *T);
552  void mangleNeonVectorType(const DependentVectorType *T);
553  void mangleAArch64NeonVectorType(const VectorType *T);
554  void mangleAArch64NeonVectorType(const DependentVectorType *T);
555  void mangleAArch64FixedSveVectorType(const VectorType *T);
556  void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
557 
558  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
559  void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
560  void mangleFixedPointLiteral();
561  void mangleNullPointer(QualType T);
562 
563  void mangleMemberExprBase(const Expr *base, bool isArrow);
564  void mangleMemberExpr(const Expr *base, bool isArrow,
565  NestedNameSpecifier *qualifier,
566  NamedDecl *firstQualifierLookup,
568  const TemplateArgumentLoc *TemplateArgs,
569  unsigned NumTemplateArgs,
570  unsigned knownArity);
571  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
572  void mangleInitListElements(const InitListExpr *InitList);
573  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
574  bool AsTemplateArg = false);
575  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
576  void mangleCXXDtorType(CXXDtorType T);
577 
578  void mangleTemplateArgs(TemplateName TN,
579  const TemplateArgumentLoc *TemplateArgs,
580  unsigned NumTemplateArgs);
581  void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
582  unsigned NumTemplateArgs);
583  void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
584  void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
585  void mangleTemplateArgExpr(const Expr *E);
586  void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
587  bool NeedExactType = false);
588 
589  void mangleTemplateParameter(unsigned Depth, unsigned Index);
590 
591  void mangleFunctionParam(const ParmVarDecl *parm);
592 
593  void writeAbiTags(const NamedDecl *ND,
594  const AbiTagList *AdditionalAbiTags);
595 
596  // Returns sorted unique list of ABI tags.
597  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
598  // Returns sorted unique list of ABI tags.
599  AbiTagList makeVariableTypeTags(const VarDecl *VD);
600 };
601 
602 }
603 
604 NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() {
605  if (!StdNamespace) {
606  StdNamespace = NamespaceDecl::Create(
607  getASTContext(), getASTContext().getTranslationUnitDecl(),
608  /*Inline*/ false, SourceLocation(), SourceLocation(),
609  &getASTContext().Idents.get("std"),
610  /*PrevDecl*/ nullptr);
611  StdNamespace->setImplicit();
612  }
613  return StdNamespace;
614 }
615 
616 /// Retrieve the declaration context that should be used when mangling the given
617 /// declaration.
618 const DeclContext *
619 ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) {
620  // The ABI assumes that lambda closure types that occur within
621  // default arguments live in the context of the function. However, due to
622  // the way in which Clang parses and creates function declarations, this is
623  // not the case: the lambda closure type ends up living in the context
624  // where the function itself resides, because the function declaration itself
625  // had not yet been created. Fix the context here.
626  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
627  if (RD->isLambda())
628  if (ParmVarDecl *ContextParam =
629  dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
630  return ContextParam->getDeclContext();
631  }
632 
633  // Perform the same check for block literals.
634  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
635  if (ParmVarDecl *ContextParam =
636  dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
637  return ContextParam->getDeclContext();
638  }
639 
640  // On ARM and AArch64, the va_list tag is always mangled as if in the std
641  // namespace. We do not represent va_list as actually being in the std
642  // namespace in C because this would result in incorrect debug info in C,
643  // among other things. It is important for both languages to have the same
644  // mangling in order for -fsanitize=cfi-icall to work.
645  if (D == getASTContext().getVaListTagDecl()) {
646  const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
647  if (T.isARM() || T.isThumb() || T.isAArch64())
648  return getStdNamespace();
649  }
650 
651  const DeclContext *DC = D->getDeclContext();
652  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
653  isa<OMPDeclareMapperDecl>(DC)) {
654  return getEffectiveDeclContext(cast<Decl>(DC));
655  }
656 
657  if (const auto *VD = dyn_cast<VarDecl>(D))
658  if (VD->isExternC())
659  return getASTContext().getTranslationUnitDecl();
660 
661  if (const auto *FD = dyn_cast<FunctionDecl>(D))
662  if (FD->isExternC())
663  return getASTContext().getTranslationUnitDecl();
664 
665  return DC->getRedeclContext();
666 }
667 
668 bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) {
669  if (ND && ND->getFormalLinkage() == InternalLinkage &&
670  !ND->isExternallyVisible() &&
671  getEffectiveDeclContext(ND)->isFileContext() &&
672  !ND->isInAnonymousNamespace())
673  return true;
674  return false;
675 }
676 
677 // Check if this Function Decl needs a unique internal linkage name.
679  const NamedDecl *ND) {
680  if (!NeedsUniqueInternalLinkageNames || !ND)
681  return false;
682 
683  const auto *FD = dyn_cast<FunctionDecl>(ND);
684  if (!FD)
685  return false;
686 
687  // For C functions without prototypes, return false as their
688  // names should not be mangled.
689  if (!FD->getType()->getAs<FunctionProtoType>())
690  return false;
691 
692  if (isInternalLinkageDecl(ND))
693  return true;
694 
695  return false;
696 }
697 
698 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
699  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
700  LanguageLinkage L = FD->getLanguageLinkage();
701  // Overloadable functions need mangling.
702  if (FD->hasAttr<OverloadableAttr>())
703  return true;
704 
705  // "main" is not mangled.
706  if (FD->isMain())
707  return false;
708 
709  // The Windows ABI expects that we would never mangle "typical"
710  // user-defined entry points regardless of visibility or freestanding-ness.
711  //
712  // N.B. This is distinct from asking about "main". "main" has a lot of
713  // special rules associated with it in the standard while these
714  // user-defined entry points are outside of the purview of the standard.
715  // For example, there can be only one definition for "main" in a standards
716  // compliant program; however nothing forbids the existence of wmain and
717  // WinMain in the same translation unit.
718  if (FD->isMSVCRTEntryPoint())
719  return false;
720 
721  // C++ functions and those whose names are not a simple identifier need
722  // mangling.
723  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
724  return true;
725 
726  // C functions are not mangled.
727  if (L == CLanguageLinkage)
728  return false;
729  }
730 
731  // Otherwise, no mangling is done outside C++ mode.
732  if (!getASTContext().getLangOpts().CPlusPlus)
733  return false;
734 
735  if (const auto *VD = dyn_cast<VarDecl>(D)) {
736  // Decompositions are mangled.
737  if (isa<DecompositionDecl>(VD))
738  return true;
739 
740  // C variables are not mangled.
741  if (VD->isExternC())
742  return false;
743 
744  // Variables at global scope are not mangled unless they have internal
745  // linkage or are specializations or are attached to a named module.
746  const DeclContext *DC = getEffectiveDeclContext(D);
747  // Check for extern variable declared locally.
748  if (DC->isFunctionOrMethod() && D->hasLinkage())
749  while (!DC->isFileContext())
750  DC = getEffectiveParentContext(DC);
751  if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
752  !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
753  !isa<VarTemplateSpecializationDecl>(VD) &&
754  !VD->getOwningModuleForLinkage())
755  return false;
756  }
757 
758  return true;
759 }
760 
761 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
762  const AbiTagList *AdditionalAbiTags) {
763  assert(AbiTags && "require AbiTagState");
764  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
765 }
766 
767 void CXXNameMangler::mangleSourceNameWithAbiTags(
768  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
769  mangleSourceName(ND->getIdentifier());
770  writeAbiTags(ND, AdditionalAbiTags);
771 }
772 
773 void CXXNameMangler::mangle(GlobalDecl GD) {
774  // <mangled-name> ::= _Z <encoding>
775  // ::= <data name>
776  // ::= <special-name>
777  Out << "_Z";
778  if (isa<FunctionDecl>(GD.getDecl()))
779  mangleFunctionEncoding(GD);
781  BindingDecl>(GD.getDecl()))
782  mangleName(GD);
783  else if (const IndirectFieldDecl *IFD =
784  dyn_cast<IndirectFieldDecl>(GD.getDecl()))
785  mangleName(IFD->getAnonField());
786  else
787  llvm_unreachable("unexpected kind of global decl");
788 }
789 
790 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
791  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
792  // <encoding> ::= <function name> <bare-function-type>
793 
794  // Don't mangle in the type if this isn't a decl we should typically mangle.
795  if (!Context.shouldMangleDeclName(FD)) {
796  mangleName(GD);
797  return;
798  }
799 
800  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
801  if (ReturnTypeAbiTags.empty()) {
802  // There are no tags for return type, the simplest case.
803  mangleName(GD);
804  mangleFunctionEncodingBareType(FD);
805  return;
806  }
807 
808  // Mangle function name and encoding to temporary buffer.
809  // We have to output name and encoding to the same mangler to get the same
810  // substitution as it will be in final mangling.
811  SmallString<256> FunctionEncodingBuf;
812  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
813  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
814  // Output name of the function.
815  FunctionEncodingMangler.disableDerivedAbiTags();
816  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
817 
818  // Remember length of the function name in the buffer.
819  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
820  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
821 
822  // Get tags from return type that are not present in function name or
823  // encoding.
824  const AbiTagList &UsedAbiTags =
825  FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
826  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
827  AdditionalAbiTags.erase(
828  std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
829  UsedAbiTags.begin(), UsedAbiTags.end(),
830  AdditionalAbiTags.begin()),
831  AdditionalAbiTags.end());
832 
833  // Output name with implicit tags and function encoding from temporary buffer.
834  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
835  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
836 
837  // Function encoding could create new substitutions so we have to add
838  // temp mangled substitutions to main mangler.
839  extendSubstitutions(&FunctionEncodingMangler);
840 }
841 
842 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
843  if (FD->hasAttr<EnableIfAttr>()) {
844  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
845  Out << "Ua9enable_ifI";
846  for (AttrVec::const_iterator I = FD->getAttrs().begin(),
847  E = FD->getAttrs().end();
848  I != E; ++I) {
849  EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
850  if (!EIA)
851  continue;
852  if (Context.getASTContext().getLangOpts().getClangABICompat() >
854  mangleTemplateArgExpr(EIA->getCond());
855  } else {
856  // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
857  // even though <template-arg> should not include an X/E around
858  // <expr-primary>.
859  Out << 'X';
860  mangleExpression(EIA->getCond());
861  Out << 'E';
862  }
863  }
864  Out << 'E';
865  FunctionTypeDepth.pop(Saved);
866  }
867 
868  // When mangling an inheriting constructor, the bare function type used is
869  // that of the inherited constructor.
870  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
871  if (auto Inherited = CD->getInheritedConstructor())
872  FD = Inherited.getConstructor();
873 
874  // Whether the mangling of a function type includes the return type depends on
875  // the context and the nature of the function. The rules for deciding whether
876  // the return type is included are:
877  //
878  // 1. Template functions (names or types) have return types encoded, with
879  // the exceptions listed below.
880  // 2. Function types not appearing as part of a function name mangling,
881  // e.g. parameters, pointer types, etc., have return type encoded, with the
882  // exceptions listed below.
883  // 3. Non-template function names do not have return types encoded.
884  //
885  // The exceptions mentioned in (1) and (2) above, for which the return type is
886  // never included, are
887  // 1. Constructors.
888  // 2. Destructors.
889  // 3. Conversion operator functions, e.g. operator int.
890  bool MangleReturnType = false;
891  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
892  if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
893  isa<CXXConversionDecl>(FD)))
894  MangleReturnType = true;
895 
896  // Mangle the type of the primary template.
897  FD = PrimaryTemplate->getTemplatedDecl();
898  }
899 
900  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
901  MangleReturnType, FD);
902 }
903 
904 /// Return whether a given namespace is the 'std' namespace.
905 bool CXXNameMangler::isStd(const NamespaceDecl *NS) {
906  if (!Context.getEffectiveParentContext(NS)->isTranslationUnit())
907  return false;
908 
910  return II && II->isStr("std");
911 }
912 
913 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
914 // namespace.
915 bool CXXNameMangler::isStdNamespace(const DeclContext *DC) {
916  if (!DC->isNamespace())
917  return false;
918 
919  return isStd(cast<NamespaceDecl>(DC));
920 }
921 
922 static const GlobalDecl
923 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
924  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
925  // Check if we have a function template.
926  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
927  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
928  TemplateArgs = FD->getTemplateSpecializationArgs();
929  return GD.getWithDecl(TD);
930  }
931  }
932 
933  // Check if we have a class template.
934  if (const ClassTemplateSpecializationDecl *Spec =
935  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
936  TemplateArgs = &Spec->getTemplateArgs();
937  return GD.getWithDecl(Spec->getSpecializedTemplate());
938  }
939 
940  // Check if we have a variable template.
941  if (const VarTemplateSpecializationDecl *Spec =
942  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
943  TemplateArgs = &Spec->getTemplateArgs();
944  return GD.getWithDecl(Spec->getSpecializedTemplate());
945  }
946 
947  return GlobalDecl();
948 }
949 
951  const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
952  return TemplateName(const_cast<TemplateDecl*>(TD));
953 }
954 
955 void CXXNameMangler::mangleName(GlobalDecl GD) {
956  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
957  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
958  // Variables should have implicit tags from its type.
959  AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
960  if (VariableTypeAbiTags.empty()) {
961  // Simple case no variable type tags.
962  mangleNameWithAbiTags(VD, nullptr);
963  return;
964  }
965 
966  // Mangle variable name to null stream to collect tags.
967  llvm::raw_null_ostream NullOutStream;
968  CXXNameMangler VariableNameMangler(*this, NullOutStream);
969  VariableNameMangler.disableDerivedAbiTags();
970  VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
971 
972  // Get tags from variable type that are not present in its name.
973  const AbiTagList &UsedAbiTags =
974  VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
975  AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
976  AdditionalAbiTags.erase(
977  std::set_difference(VariableTypeAbiTags.begin(),
978  VariableTypeAbiTags.end(), UsedAbiTags.begin(),
979  UsedAbiTags.end(), AdditionalAbiTags.begin()),
980  AdditionalAbiTags.end());
981 
982  // Output name with implicit tags.
983  mangleNameWithAbiTags(VD, &AdditionalAbiTags);
984  } else {
985  mangleNameWithAbiTags(GD, nullptr);
986  }
987 }
988 
989 const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) {
990  const DeclContext *DC = Context.getEffectiveDeclContext(D);
991  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
992  if (isLocalContainerContext(DC))
993  return dyn_cast<RecordDecl>(D);
994  D = cast<Decl>(DC);
995  DC = Context.getEffectiveDeclContext(D);
996  }
997  return nullptr;
998 }
999 
1000 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
1001  const AbiTagList *AdditionalAbiTags) {
1002  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1003  // <name> ::= [<module-name>] <nested-name>
1004  // ::= [<module-name>] <unscoped-name>
1005  // ::= [<module-name>] <unscoped-template-name> <template-args>
1006  // ::= <local-name>
1007  //
1008  const DeclContext *DC = Context.getEffectiveDeclContext(ND);
1009 
1010  // If this is an extern variable declared locally, the relevant DeclContext
1011  // is that of the containing namespace, or the translation unit.
1012  // FIXME: This is a hack; extern variables declared locally should have
1013  // a proper semantic declaration context!
1014  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
1015  while (!DC->isNamespace() && !DC->isTranslationUnit())
1016  DC = Context.getEffectiveParentContext(DC);
1017  else if (GetLocalClassDecl(ND)) {
1018  mangleLocalName(GD, AdditionalAbiTags);
1019  return;
1020  }
1021 
1022  assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl");
1023 
1024  if (isLocalContainerContext(DC)) {
1025  mangleLocalName(GD, AdditionalAbiTags);
1026  return;
1027  }
1028 
1029  // Closures can require a nested-name mangling even if they're semantically
1030  // in the global namespace.
1031  if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
1032  mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
1033  return;
1034  }
1035 
1036  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1037  // Check if we have a template.
1038  const TemplateArgumentList *TemplateArgs = nullptr;
1039  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1040  mangleUnscopedTemplateName(TD, DC, AdditionalAbiTags);
1041  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1042  return;
1043  }
1044 
1045  mangleUnscopedName(GD, DC, AdditionalAbiTags);
1046  return;
1047  }
1048 
1049  mangleNestedName(GD, DC, AdditionalAbiTags);
1050 }
1051 
1052 void CXXNameMangler::mangleModuleName(const NamedDecl *ND) {
1053  if (ND->isExternallyVisible())
1054  if (Module *M = ND->getOwningModuleForLinkage())
1055  mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
1056 }
1057 
1058 // <module-name> ::= <module-subname>
1059 // ::= <module-name> <module-subname>
1060 // ::= <substitution>
1061 // <module-subname> ::= W <source-name>
1062 // ::= W P <source-name>
1063 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) {
1064  // <substitution> ::= S <seq-id> _
1065  auto It = ModuleSubstitutions.find(Name);
1066  if (It != ModuleSubstitutions.end()) {
1067  Out << 'S';
1068  mangleSeqID(It->second);
1069  return;
1070  }
1071 
1072  // FIXME: Preserve hierarchy in module names rather than flattening
1073  // them to strings; use Module*s as substitution keys.
1074  auto Parts = Name.rsplit('.');
1075  if (Parts.second.empty())
1076  Parts.second = Parts.first;
1077  else {
1078  mangleModuleNamePrefix(Parts.first, IsPartition);
1079  IsPartition = false;
1080  }
1081 
1082  Out << 'W';
1083  if (IsPartition)
1084  Out << 'P';
1085  Out << Parts.second.size() << Parts.second;
1086  ModuleSubstitutions.insert({Name, SeqID++});
1087 }
1088 
1089 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1090  const TemplateArgument *TemplateArgs,
1091  unsigned NumTemplateArgs) {
1092  const DeclContext *DC = Context.getEffectiveDeclContext(TD);
1093 
1094  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1095  mangleUnscopedTemplateName(TD, DC, nullptr);
1096  mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1097  } else {
1098  mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
1099  }
1100 }
1101 
1102 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
1103  const AbiTagList *AdditionalAbiTags) {
1104  // <unscoped-name> ::= <unqualified-name>
1105  // ::= St <unqualified-name> # ::std::
1106 
1107  assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl");
1108  if (isStdNamespace(DC))
1109  Out << "St";
1110 
1111  mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1112 }
1113 
1114 void CXXNameMangler::mangleUnscopedTemplateName(
1115  GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) {
1116  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1117  // <unscoped-template-name> ::= <unscoped-name>
1118  // ::= <substitution>
1119  if (mangleSubstitution(ND))
1120  return;
1121 
1122  // <template-template-param> ::= <template-param>
1123  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1124  assert(!AdditionalAbiTags &&
1125  "template template param cannot have abi tags");
1126  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1127  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1128  mangleUnscopedName(GD, DC, AdditionalAbiTags);
1129  } else {
1130  mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
1131  AdditionalAbiTags);
1132  }
1133 
1134  addSubstitution(ND);
1135 }
1136 
1137 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1138  // ABI:
1139  // Floating-point literals are encoded using a fixed-length
1140  // lowercase hexadecimal string corresponding to the internal
1141  // representation (IEEE on Itanium), high-order bytes first,
1142  // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1143  // on Itanium.
1144  // The 'without leading zeroes' thing seems to be an editorial
1145  // mistake; see the discussion on cxx-abi-dev beginning on
1146  // 2012-01-16.
1147 
1148  // Our requirements here are just barely weird enough to justify
1149  // using a custom algorithm instead of post-processing APInt::toString().
1150 
1151  llvm::APInt valueBits = f.bitcastToAPInt();
1152  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1153  assert(numCharacters != 0);
1154 
1155  // Allocate a buffer of the right number of characters.
1156  SmallVector<char, 20> buffer(numCharacters);
1157 
1158  // Fill the buffer left-to-right.
1159  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1160  // The bit-index of the next hex digit.
1161  unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1162 
1163  // Project out 4 bits starting at 'digitIndex'.
1164  uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1165  hexDigit >>= (digitBitIndex % 64);
1166  hexDigit &= 0xF;
1167 
1168  // Map that over to a lowercase hex digit.
1169  static const char charForHex[16] = {
1170  '0', '1', '2', '3', '4', '5', '6', '7',
1171  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1172  };
1173  buffer[stringIndex] = charForHex[hexDigit];
1174  }
1175 
1176  Out.write(buffer.data(), numCharacters);
1177 }
1178 
1179 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1180  Out << 'L';
1181  mangleType(T);
1182  mangleFloat(V);
1183  Out << 'E';
1184 }
1185 
1186 void CXXNameMangler::mangleFixedPointLiteral() {
1187  DiagnosticsEngine &Diags = Context.getDiags();
1188  unsigned DiagID = Diags.getCustomDiagID(
1189  DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1190  Diags.Report(DiagID);
1191 }
1192 
1193 void CXXNameMangler::mangleNullPointer(QualType T) {
1194  // <expr-primary> ::= L <type> 0 E
1195  Out << 'L';
1196  mangleType(T);
1197  Out << "0E";
1198 }
1199 
1200 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1201  if (Value.isSigned() && Value.isNegative()) {
1202  Out << 'n';
1203  Value.abs().print(Out, /*signed*/ false);
1204  } else {
1205  Value.print(Out, /*signed*/ false);
1206  }
1207 }
1208 
1209 void CXXNameMangler::mangleNumber(int64_t Number) {
1210  // <number> ::= [n] <non-negative decimal integer>
1211  if (Number < 0) {
1212  Out << 'n';
1213  Number = -Number;
1214  }
1215 
1216  Out << Number;
1217 }
1218 
1219 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1220  // <call-offset> ::= h <nv-offset> _
1221  // ::= v <v-offset> _
1222  // <nv-offset> ::= <offset number> # non-virtual base override
1223  // <v-offset> ::= <offset number> _ <virtual offset number>
1224  // # virtual base override, with vcall offset
1225  if (!Virtual) {
1226  Out << 'h';
1227  mangleNumber(NonVirtual);
1228  Out << '_';
1229  return;
1230  }
1231 
1232  Out << 'v';
1233  mangleNumber(NonVirtual);
1234  Out << '_';
1235  mangleNumber(Virtual);
1236  Out << '_';
1237 }
1238 
1239 void CXXNameMangler::manglePrefix(QualType type) {
1240  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1241  if (!mangleSubstitution(QualType(TST, 0))) {
1242  mangleTemplatePrefix(TST->getTemplateName());
1243 
1244  // FIXME: GCC does not appear to mangle the template arguments when
1245  // the template in question is a dependent template name. Should we
1246  // emulate that badness?
1247  mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1248  TST->getNumArgs());
1249  addSubstitution(QualType(TST, 0));
1250  }
1251  } else if (const auto *DTST =
1253  if (!mangleSubstitution(QualType(DTST, 0))) {
1254  TemplateName Template = getASTContext().getDependentTemplateName(
1255  DTST->getQualifier(), DTST->getIdentifier());
1256  mangleTemplatePrefix(Template);
1257 
1258  // FIXME: GCC does not appear to mangle the template arguments when
1259  // the template in question is a dependent template name. Should we
1260  // emulate that badness?
1261  mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1262  addSubstitution(QualType(DTST, 0));
1263  }
1264  } else {
1265  // We use the QualType mangle type variant here because it handles
1266  // substitutions.
1267  mangleType(type);
1268  }
1269 }
1270 
1271 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1272 ///
1273 /// \param recursive - true if this is being called recursively,
1274 /// i.e. if there is more prefix "to the right".
1275 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1276  bool recursive) {
1277 
1278  // x, ::x
1279  // <unresolved-name> ::= [gs] <base-unresolved-name>
1280 
1281  // T::x / decltype(p)::x
1282  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1283 
1284  // T::N::x /decltype(p)::N::x
1285  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1286  // <base-unresolved-name>
1287 
1288  // A::x, N::y, A<T>::z; "gs" means leading "::"
1289  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1290  // <base-unresolved-name>
1291 
1292  switch (qualifier->getKind()) {
1294  Out << "gs";
1295 
1296  // We want an 'sr' unless this is the entire NNS.
1297  if (recursive)
1298  Out << "sr";
1299 
1300  // We never want an 'E' here.
1301  return;
1302 
1304  llvm_unreachable("Can't mangle __super specifier");
1305 
1307  if (qualifier->getPrefix())
1308  mangleUnresolvedPrefix(qualifier->getPrefix(),
1309  /*recursive*/ true);
1310  else
1311  Out << "sr";
1312  mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1313  break;
1315  if (qualifier->getPrefix())
1316  mangleUnresolvedPrefix(qualifier->getPrefix(),
1317  /*recursive*/ true);
1318  else
1319  Out << "sr";
1320  mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1321  break;
1322 
1325  const Type *type = qualifier->getAsType();
1326 
1327  // We only want to use an unresolved-type encoding if this is one of:
1328  // - a decltype
1329  // - a template type parameter
1330  // - a template template parameter with arguments
1331  // In all of these cases, we should have no prefix.
1332  if (qualifier->getPrefix()) {
1333  mangleUnresolvedPrefix(qualifier->getPrefix(),
1334  /*recursive*/ true);
1335  } else {
1336  // Otherwise, all the cases want this.
1337  Out << "sr";
1338  }
1339 
1340  if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1341  return;
1342 
1343  break;
1344  }
1345 
1347  // Member expressions can have these without prefixes.
1348  if (qualifier->getPrefix())
1349  mangleUnresolvedPrefix(qualifier->getPrefix(),
1350  /*recursive*/ true);
1351  else
1352  Out << "sr";
1353 
1354  mangleSourceName(qualifier->getAsIdentifier());
1355  // An Identifier has no type information, so we can't emit abi tags for it.
1356  break;
1357  }
1358 
1359  // If this was the innermost part of the NNS, and we fell out to
1360  // here, append an 'E'.
1361  if (!recursive)
1362  Out << 'E';
1363 }
1364 
1365 /// Mangle an unresolved-name, which is generally used for names which
1366 /// weren't resolved to specific entities.
1367 void CXXNameMangler::mangleUnresolvedName(
1369  const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1370  unsigned knownArity) {
1371  if (qualifier) mangleUnresolvedPrefix(qualifier);
1372  switch (name.getNameKind()) {
1373  // <base-unresolved-name> ::= <simple-id>
1375  mangleSourceName(name.getAsIdentifierInfo());
1376  break;
1377  // <base-unresolved-name> ::= dn <destructor-name>
1379  Out << "dn";
1380  mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1381  break;
1382  // <base-unresolved-name> ::= on <operator-name>
1386  Out << "on";
1387  mangleOperatorName(name, knownArity);
1388  break;
1390  llvm_unreachable("Can't mangle a constructor name!");
1392  llvm_unreachable("Can't mangle a using directive name!");
1394  llvm_unreachable("Can't mangle a deduction guide name!");
1398  llvm_unreachable("Can't mangle Objective-C selector names here!");
1399  }
1400 
1401  // The <simple-id> and on <operator-name> productions end in an optional
1402  // <template-args>.
1403  if (TemplateArgs)
1404  mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1405 }
1406 
1407 void CXXNameMangler::mangleUnqualifiedName(
1408  GlobalDecl GD, DeclarationName Name, const DeclContext *DC,
1409  unsigned KnownArity, const AbiTagList *AdditionalAbiTags) {
1410  const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1411  // <unqualified-name> ::= [<module-name>] <operator-name>
1412  // ::= <ctor-dtor-name>
1413  // ::= [<module-name>] <source-name>
1414  // ::= [<module-name>] DC <source-name>* E
1415 
1416  if (ND && DC && DC->isFileContext())
1417  mangleModuleName(ND);
1418 
1419  unsigned Arity = KnownArity;
1420  switch (Name.getNameKind()) {
1422  const IdentifierInfo *II = Name.getAsIdentifierInfo();
1423 
1424  // We mangle decomposition declarations as the names of their bindings.
1425  if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1426  // FIXME: Non-standard mangling for decomposition declarations:
1427  //
1428  // <unqualified-name> ::= DC <source-name>* E
1429  //
1430  // Proposed on cxx-abi-dev on 2016-08-12
1431  Out << "DC";
1432  for (auto *BD : DD->bindings())
1433  mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1434  Out << 'E';
1435  writeAbiTags(ND, AdditionalAbiTags);
1436  break;
1437  }
1438 
1439  if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1440  // We follow MSVC in mangling GUID declarations as if they were variables
1441  // with a particular reserved name. Continue the pretense here.
1442  SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1443  llvm::raw_svector_ostream GUIDOS(GUID);
1444  Context.mangleMSGuidDecl(GD, GUIDOS);
1445  Out << GUID.size() << GUID;
1446  break;
1447  }
1448 
1449  if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1450  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1451  Out << "TA";
1452  mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1453  TPO->getValue(), /*TopLevel=*/true);
1454  break;
1455  }
1456 
1457  if (II) {
1458  // Match GCC's naming convention for internal linkage symbols, for
1459  // symbols that are not actually visible outside of this TU. GCC
1460  // distinguishes between internal and external linkage symbols in
1461  // its mangling, to support cases like this that were valid C++ prior
1462  // to DR426:
1463  //
1464  // void test() { extern void foo(); }
1465  // static void foo();
1466  //
1467  // Don't bother with the L marker for names in anonymous namespaces; the
1468  // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1469  // matches GCC anyway, because GCC does not treat anonymous namespaces as
1470  // implying internal linkage.
1471  if (Context.isInternalLinkageDecl(ND))
1472  Out << 'L';
1473 
1474  auto *FD = dyn_cast<FunctionDecl>(ND);
1475  bool IsRegCall = FD &&
1476  FD->getType()->castAs<FunctionType>()->getCallConv() ==
1478  bool IsDeviceStub =
1479  FD && FD->hasAttr<CUDAGlobalAttr>() &&
1481  if (IsDeviceStub)
1482  mangleDeviceStubName(II);
1483  else if (IsRegCall)
1484  mangleRegCallName(II);
1485  else
1486  mangleSourceName(II);
1487 
1488  writeAbiTags(ND, AdditionalAbiTags);
1489  break;
1490  }
1491 
1492  // Otherwise, an anonymous entity. We must have a declaration.
1493  assert(ND && "mangling empty name without declaration");
1494 
1495  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1496  if (NS->isAnonymousNamespace()) {
1497  // This is how gcc mangles these names.
1498  Out << "12_GLOBAL__N_1";
1499  break;
1500  }
1501  }
1502 
1503  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1504  // We must have an anonymous union or struct declaration.
1505  const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1506 
1507  // Itanium C++ ABI 5.1.2:
1508  //
1509  // For the purposes of mangling, the name of an anonymous union is
1510  // considered to be the name of the first named data member found by a
1511  // pre-order, depth-first, declaration-order walk of the data members of
1512  // the anonymous union. If there is no such data member (i.e., if all of
1513  // the data members in the union are unnamed), then there is no way for
1514  // a program to refer to the anonymous union, and there is therefore no
1515  // need to mangle its name.
1516  assert(RD->isAnonymousStructOrUnion()
1517  && "Expected anonymous struct or union!");
1518  const FieldDecl *FD = RD->findFirstNamedDataMember();
1519 
1520  // It's actually possible for various reasons for us to get here
1521  // with an empty anonymous struct / union. Fortunately, it
1522  // doesn't really matter what name we generate.
1523  if (!FD) break;
1524  assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1525 
1526  mangleSourceName(FD->getIdentifier());
1527  // Not emitting abi tags: internal name anyway.
1528  break;
1529  }
1530 
1531  // Class extensions have no name as a category, and it's possible
1532  // for them to be the semantic parent of certain declarations
1533  // (primarily, tag decls defined within declarations). Such
1534  // declarations will always have internal linkage, so the name
1535  // doesn't really matter, but we shouldn't crash on them. For
1536  // safety, just handle all ObjC containers here.
1537  if (isa<ObjCContainerDecl>(ND))
1538  break;
1539 
1540  // We must have an anonymous struct.
1541  const TagDecl *TD = cast<TagDecl>(ND);
1542  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1543  assert(TD->getDeclContext() == D->getDeclContext() &&
1544  "Typedef should not be in another decl context!");
1545  assert(D->getDeclName().getAsIdentifierInfo() &&
1546  "Typedef was not named!");
1547  mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1548  assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1549  // Explicit abi tags are still possible; take from underlying type, not
1550  // from typedef.
1551  writeAbiTags(TD, nullptr);
1552  break;
1553  }
1554 
1555  // <unnamed-type-name> ::= <closure-type-name>
1556  //
1557  // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1558  // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1559  // # Parameter types or 'v' for 'void'.
1560  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1561  llvm::Optional<unsigned> DeviceNumber =
1562  Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1563 
1564  // If we have a device-number via the discriminator, use that to mangle
1565  // the lambda, otherwise use the typical lambda-mangling-number. In either
1566  // case, a '0' should be mangled as a normal unnamed class instead of as a
1567  // lambda.
1568  if (Record->isLambda() &&
1569  ((DeviceNumber && *DeviceNumber > 0) ||
1570  (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1571  assert(!AdditionalAbiTags &&
1572  "Lambda type cannot have additional abi tags");
1573  mangleLambda(Record);
1574  break;
1575  }
1576  }
1577 
1578  if (TD->isExternallyVisible()) {
1579  unsigned UnnamedMangle =
1580  getASTContext().getManglingNumber(TD, Context.isAux());
1581  Out << "Ut";
1582  if (UnnamedMangle > 1)
1583  Out << UnnamedMangle - 2;
1584  Out << '_';
1585  writeAbiTags(TD, AdditionalAbiTags);
1586  break;
1587  }
1588 
1589  // Get a unique id for the anonymous struct. If it is not a real output
1590  // ID doesn't matter so use fake one.
1591  unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1592 
1593  // Mangle it as a source name in the form
1594  // [n] $_<id>
1595  // where n is the length of the string.
1596  SmallString<8> Str;
1597  Str += "$_";
1598  Str += llvm::utostr(AnonStructId);
1599 
1600  Out << Str.size();
1601  Out << Str;
1602  break;
1603  }
1604 
1608  llvm_unreachable("Can't mangle Objective-C selector names here!");
1609 
1611  const CXXRecordDecl *InheritedFrom = nullptr;
1612  TemplateName InheritedTemplateName;
1613  const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1614  if (auto Inherited =
1615  cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1616  InheritedFrom = Inherited.getConstructor()->getParent();
1617  InheritedTemplateName =
1618  TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1619  InheritedTemplateArgs =
1620  Inherited.getConstructor()->getTemplateSpecializationArgs();
1621  }
1622 
1623  if (ND == Structor)
1624  // If the named decl is the C++ constructor we're mangling, use the type
1625  // we were given.
1626  mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1627  else
1628  // Otherwise, use the complete constructor name. This is relevant if a
1629  // class with a constructor is declared within a constructor.
1630  mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1631 
1632  // FIXME: The template arguments are part of the enclosing prefix or
1633  // nested-name, but it's more convenient to mangle them here.
1634  if (InheritedTemplateArgs)
1635  mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1636 
1637  writeAbiTags(ND, AdditionalAbiTags);
1638  break;
1639  }
1640 
1642  if (ND == Structor)
1643  // If the named decl is the C++ destructor we're mangling, use the type we
1644  // were given.
1645  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1646  else
1647  // Otherwise, use the complete destructor name. This is relevant if a
1648  // class with a destructor is declared within a destructor.
1649  mangleCXXDtorType(Dtor_Complete);
1650  writeAbiTags(ND, AdditionalAbiTags);
1651  break;
1652 
1654  if (ND && Arity == UnknownArity) {
1655  Arity = cast<FunctionDecl>(ND)->getNumParams();
1656 
1657  // If we have a member function, we need to include the 'this' pointer.
1658  if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1659  if (!MD->isStatic())
1660  Arity++;
1661  }
1662  LLVM_FALLTHROUGH;
1665  mangleOperatorName(Name, Arity);
1666  writeAbiTags(ND, AdditionalAbiTags);
1667  break;
1668 
1670  llvm_unreachable("Can't mangle a deduction guide name!");
1671 
1673  llvm_unreachable("Can't mangle a using directive name!");
1674  }
1675 }
1676 
1677 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1678  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1679  // <number> ::= [n] <non-negative decimal integer>
1680  // <identifier> ::= <unqualified source code identifier>
1681  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1682  << II->getName();
1683 }
1684 
1685 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1686  // <source-name> ::= <positive length number> __device_stub__ <identifier>
1687  // <number> ::= [n] <non-negative decimal integer>
1688  // <identifier> ::= <unqualified source code identifier>
1689  Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1690  << II->getName();
1691 }
1692 
1693 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1694  // <source-name> ::= <positive length number> <identifier>
1695  // <number> ::= [n] <non-negative decimal integer>
1696  // <identifier> ::= <unqualified source code identifier>
1697  Out << II->getLength() << II->getName();
1698 }
1699 
1700 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1701  const DeclContext *DC,
1702  const AbiTagList *AdditionalAbiTags,
1703  bool NoFunction) {
1704  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1705  // <nested-name>
1706  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1707  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1708  // <template-args> E
1709 
1710  Out << 'N';
1711  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1712  Qualifiers MethodQuals = Method->getMethodQualifiers();
1713  // We do not consider restrict a distinguishing attribute for overloading
1714  // purposes so we must not mangle it.
1715  MethodQuals.removeRestrict();
1716  mangleQualifiers(MethodQuals);
1717  mangleRefQualifier(Method->getRefQualifier());
1718  }
1719 
1720  // Check if we have a template.
1721  const TemplateArgumentList *TemplateArgs = nullptr;
1722  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1723  mangleTemplatePrefix(TD, NoFunction);
1724  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1725  } else {
1726  manglePrefix(DC, NoFunction);
1727  mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1728  }
1729 
1730  Out << 'E';
1731 }
1732 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1733  const TemplateArgument *TemplateArgs,
1734  unsigned NumTemplateArgs) {
1735  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1736 
1737  Out << 'N';
1738 
1739  mangleTemplatePrefix(TD);
1740  mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1741 
1742  Out << 'E';
1743 }
1744 
1745 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1746  GlobalDecl GD, const NamedDecl *PrefixND,
1747  const AbiTagList *AdditionalAbiTags) {
1748  // A <closure-prefix> represents a variable or field, not a regular
1749  // DeclContext, so needs special handling. In this case we're mangling a
1750  // limited form of <nested-name>:
1751  //
1752  // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1753 
1754  Out << 'N';
1755 
1756  mangleClosurePrefix(PrefixND);
1757  mangleUnqualifiedName(GD, nullptr, AdditionalAbiTags);
1758 
1759  Out << 'E';
1760 }
1761 
1763  GlobalDecl GD;
1764  // The Itanium spec says:
1765  // For entities in constructors and destructors, the mangling of the
1766  // complete object constructor or destructor is used as the base function
1767  // name, i.e. the C1 or D1 version.
1768  if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1769  GD = GlobalDecl(CD, Ctor_Complete);
1770  else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1771  GD = GlobalDecl(DD, Dtor_Complete);
1772  else
1773  GD = GlobalDecl(cast<FunctionDecl>(DC));
1774  return GD;
1775 }
1776 
1777 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1778  const AbiTagList *AdditionalAbiTags) {
1779  const Decl *D = GD.getDecl();
1780  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1781  // := Z <function encoding> E s [<discriminator>]
1782  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1783  // _ <entity name>
1784  // <discriminator> := _ <non-negative number>
1785  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1786  const RecordDecl *RD = GetLocalClassDecl(D);
1787  const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D);
1788 
1789  Out << 'Z';
1790 
1791  {
1792  AbiTagState LocalAbiTags(AbiTags);
1793 
1794  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1795  mangleObjCMethodName(MD);
1796  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1797  mangleBlockForPrefix(BD);
1798  else
1799  mangleFunctionEncoding(getParentOfLocalEntity(DC));
1800 
1801  // Implicit ABI tags (from namespace) are not available in the following
1802  // entity; reset to actually emitted tags, which are available.
1803  LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1804  }
1805 
1806  Out << 'E';
1807 
1808  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1809  // be a bug that is fixed in trunk.
1810 
1811  if (RD) {
1812  // The parameter number is omitted for the last parameter, 0 for the
1813  // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1814  // <entity name> will of course contain a <closure-type-name>: Its
1815  // numbering will be local to the particular argument in which it appears
1816  // -- other default arguments do not affect its encoding.
1817  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1818  if (CXXRD && CXXRD->isLambda()) {
1819  if (const ParmVarDecl *Parm
1820  = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1821  if (const FunctionDecl *Func
1822  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1823  Out << 'd';
1824  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1825  if (Num > 1)
1826  mangleNumber(Num - 2);
1827  Out << '_';
1828  }
1829  }
1830  }
1831 
1832  // Mangle the name relative to the closest enclosing function.
1833  // equality ok because RD derived from ND above
1834  if (D == RD) {
1835  mangleUnqualifiedName(RD, DC, AdditionalAbiTags);
1836  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1837  if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1838  mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1839  else
1840  manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/);
1841  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1842  mangleUnqualifiedBlock(BD);
1843  } else {
1844  const NamedDecl *ND = cast<NamedDecl>(D);
1845  mangleNestedName(GD, Context.getEffectiveDeclContext(ND),
1846  AdditionalAbiTags, true /*NoFunction*/);
1847  }
1848  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1849  // Mangle a block in a default parameter; see above explanation for
1850  // lambdas.
1851  if (const ParmVarDecl *Parm
1852  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1853  if (const FunctionDecl *Func
1854  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1855  Out << 'd';
1856  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1857  if (Num > 1)
1858  mangleNumber(Num - 2);
1859  Out << '_';
1860  }
1861  }
1862 
1863  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1864  mangleUnqualifiedBlock(BD);
1865  } else {
1866  mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1867  }
1868 
1869  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1870  unsigned disc;
1871  if (Context.getNextDiscriminator(ND, disc)) {
1872  if (disc < 10)
1873  Out << '_' << disc;
1874  else
1875  Out << "__" << disc << '_';
1876  }
1877  }
1878 }
1879 
1880 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1881  if (GetLocalClassDecl(Block)) {
1882  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1883  return;
1884  }
1885  const DeclContext *DC = Context.getEffectiveDeclContext(Block);
1886  if (isLocalContainerContext(DC)) {
1887  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1888  return;
1889  }
1890  if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1891  mangleClosurePrefix(PrefixND);
1892  else
1893  manglePrefix(DC);
1894  mangleUnqualifiedBlock(Block);
1895 }
1896 
1897 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1898  // When trying to be ABI-compatibility with clang 12 and before, mangle a
1899  // <data-member-prefix> now, with no substitutions and no <template-args>.
1900  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1901  if (getASTContext().getLangOpts().getClangABICompat() <=
1903  (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1904  Context->getDeclContext()->isRecord()) {
1905  const auto *ND = cast<NamedDecl>(Context);
1906  if (ND->getIdentifier()) {
1907  mangleSourceNameWithAbiTags(ND);
1908  Out << 'M';
1909  }
1910  }
1911  }
1912 
1913  // If we have a block mangling number, use it.
1914  unsigned Number = Block->getBlockManglingNumber();
1915  // Otherwise, just make up a number. It doesn't matter what it is because
1916  // the symbol in question isn't externally visible.
1917  if (!Number)
1918  Number = Context.getBlockId(Block, false);
1919  else {
1920  // Stored mangling numbers are 1-based.
1921  --Number;
1922  }
1923  Out << "Ub";
1924  if (Number > 0)
1925  Out << Number - 1;
1926  Out << '_';
1927 }
1928 
1929 // <template-param-decl>
1930 // ::= Ty # template type parameter
1931 // ::= Tn <type> # template non-type parameter
1932 // ::= Tt <template-param-decl>* E # template template parameter
1933 // ::= Tp <template-param-decl> # template parameter pack
1934 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1935  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1936  if (Ty->isParameterPack())
1937  Out << "Tp";
1938  Out << "Ty";
1939  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1940  if (Tn->isExpandedParameterPack()) {
1941  for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1942  Out << "Tn";
1943  mangleType(Tn->getExpansionType(I));
1944  }
1945  } else {
1946  QualType T = Tn->getType();
1947  if (Tn->isParameterPack()) {
1948  Out << "Tp";
1949  if (auto *PackExpansion = T->getAs<PackExpansionType>())
1950  T = PackExpansion->getPattern();
1951  }
1952  Out << "Tn";
1953  mangleType(T);
1954  }
1955  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1956  if (Tt->isExpandedParameterPack()) {
1957  for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1958  ++I) {
1959  Out << "Tt";
1960  for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1961  mangleTemplateParamDecl(Param);
1962  Out << "E";
1963  }
1964  } else {
1965  if (Tt->isParameterPack())
1966  Out << "Tp";
1967  Out << "Tt";
1968  for (auto *Param : *Tt->getTemplateParameters())
1969  mangleTemplateParamDecl(Param);
1970  Out << "E";
1971  }
1972  }
1973 }
1974 
1975 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1976  // When trying to be ABI-compatibility with clang 12 and before, mangle a
1977  // <data-member-prefix> now, with no substitutions.
1978  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1979  if (getASTContext().getLangOpts().getClangABICompat() <=
1981  (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1982  !isa<ParmVarDecl>(Context)) {
1983  if (const IdentifierInfo *Name
1984  = cast<NamedDecl>(Context)->getIdentifier()) {
1985  mangleSourceName(Name);
1986  const TemplateArgumentList *TemplateArgs = nullptr;
1987  if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1988  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1989  Out << 'M';
1990  }
1991  }
1992  }
1993 
1994  Out << "Ul";
1995  mangleLambdaSig(Lambda);
1996  Out << "E";
1997 
1998  // The number is omitted for the first closure type with a given
1999  // <lambda-sig> in a given context; it is n-2 for the nth closure type
2000  // (in lexical order) with that same <lambda-sig> and context.
2001  //
2002  // The AST keeps track of the number for us.
2003  //
2004  // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
2005  // and host-side compilations, an extra device mangle context may be created
2006  // if the host-side CXX ABI has different numbering for lambda. In such case,
2007  // if the mangle context is that device-side one, use the device-side lambda
2008  // mangling number for this lambda.
2009  llvm::Optional<unsigned> DeviceNumber =
2010  Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
2011  unsigned Number =
2012  DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
2013 
2014  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
2015  if (Number > 1)
2016  mangleNumber(Number - 2);
2017  Out << '_';
2018 }
2019 
2020 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
2021  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
2022  mangleTemplateParamDecl(D);
2023  auto *Proto =
2025  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
2026  Lambda->getLambdaStaticInvoker());
2027 }
2028 
2029 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
2030  switch (qualifier->getKind()) {
2032  // nothing
2033  return;
2034 
2036  llvm_unreachable("Can't mangle __super specifier");
2037 
2039  mangleName(qualifier->getAsNamespace());
2040  return;
2041 
2043  mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
2044  return;
2045 
2048  manglePrefix(QualType(qualifier->getAsType(), 0));
2049  return;
2050 
2052  // Clang 14 and before did not consider this substitutable.
2053  bool Clang14Compat = getASTContext().getLangOpts().getClangABICompat() <=
2055  if (!Clang14Compat && mangleSubstitution(qualifier))
2056  return;
2057 
2058  // Member expressions can have these without prefixes, but that
2059  // should end up in mangleUnresolvedPrefix instead.
2060  assert(qualifier->getPrefix());
2061  manglePrefix(qualifier->getPrefix());
2062 
2063  mangleSourceName(qualifier->getAsIdentifier());
2064 
2065  if (!Clang14Compat)
2066  addSubstitution(qualifier);
2067  return;
2068  }
2069 
2070  llvm_unreachable("unexpected nested name specifier");
2071 }
2072 
2073 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2074  // <prefix> ::= <prefix> <unqualified-name>
2075  // ::= <template-prefix> <template-args>
2076  // ::= <closure-prefix>
2077  // ::= <template-param>
2078  // ::= # empty
2079  // ::= <substitution>
2080 
2081  assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl");
2082 
2083  if (DC->isTranslationUnit())
2084  return;
2085 
2086  if (NoFunction && isLocalContainerContext(DC))
2087  return;
2088 
2089  assert(!isLocalContainerContext(DC));
2090 
2091  const NamedDecl *ND = cast<NamedDecl>(DC);
2092  if (mangleSubstitution(ND))
2093  return;
2094 
2095  // Check if we have a template-prefix or a closure-prefix.
2096  const TemplateArgumentList *TemplateArgs = nullptr;
2097  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2098  mangleTemplatePrefix(TD);
2099  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2100  } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2101  mangleClosurePrefix(PrefixND, NoFunction);
2102  mangleUnqualifiedName(ND, nullptr, nullptr);
2103  } else {
2104  const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2105  manglePrefix(DC, NoFunction);
2106  mangleUnqualifiedName(ND, DC, nullptr);
2107  }
2108 
2109  addSubstitution(ND);
2110 }
2111 
2112 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2113  // <template-prefix> ::= <prefix> <template unqualified-name>
2114  // ::= <template-param>
2115  // ::= <substitution>
2116  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2117  return mangleTemplatePrefix(TD);
2118 
2119  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2120  assert(Dependent && "unexpected template name kind");
2121 
2122  // Clang 11 and before mangled the substitution for a dependent template name
2123  // after already having emitted (a substitution for) the prefix.
2124  bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2126  if (!Clang11Compat && mangleSubstitution(Template))
2127  return;
2128 
2129  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2130  manglePrefix(Qualifier);
2131 
2132  if (Clang11Compat && mangleSubstitution(Template))
2133  return;
2134 
2135  if (const IdentifierInfo *Id = Dependent->getIdentifier())
2136  mangleSourceName(Id);
2137  else
2138  mangleOperatorName(Dependent->getOperator(), UnknownArity);
2139 
2140  addSubstitution(Template);
2141 }
2142 
2143 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2144  bool NoFunction) {
2145  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2146  // <template-prefix> ::= <prefix> <template unqualified-name>
2147  // ::= <template-param>
2148  // ::= <substitution>
2149  // <template-template-param> ::= <template-param>
2150  // <substitution>
2151 
2152  if (mangleSubstitution(ND))
2153  return;
2154 
2155  // <template-template-param> ::= <template-param>
2156  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2157  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2158  } else {
2159  const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2160  manglePrefix(DC, NoFunction);
2161  if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2162  mangleUnqualifiedName(GD, DC, nullptr);
2163  else
2164  mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
2165  nullptr);
2166  }
2167 
2168  addSubstitution(ND);
2169 }
2170 
2171 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2172  if (getASTContext().getLangOpts().getClangABICompat() <=
2174  return nullptr;
2175 
2176  const NamedDecl *Context = nullptr;
2177  if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2178  Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2179  } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2180  if (RD->isLambda())
2181  Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2182  }
2183  if (!Context)
2184  return nullptr;
2185 
2186  // Only lambdas within the initializer of a non-local variable or non-static
2187  // data member get a <closure-prefix>.
2188  if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2189  isa<FieldDecl>(Context))
2190  return Context;
2191 
2192  return nullptr;
2193 }
2194 
2195 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2196  // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2197  // ::= <template-prefix> <template-args> M
2198  if (mangleSubstitution(ND))
2199  return;
2200 
2201  const TemplateArgumentList *TemplateArgs = nullptr;
2202  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2203  mangleTemplatePrefix(TD, NoFunction);
2204  mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2205  } else {
2206  const auto *DC = Context.getEffectiveDeclContext(ND);
2207  manglePrefix(DC, NoFunction);
2208  mangleUnqualifiedName(ND, DC, nullptr);
2209  }
2210 
2211  Out << 'M';
2212 
2213  addSubstitution(ND);
2214 }
2215 
2216 /// Mangles a template name under the production <type>. Required for
2217 /// template template arguments.
2218 /// <type> ::= <class-enum-type>
2219 /// ::= <template-param>
2220 /// ::= <substitution>
2221 void CXXNameMangler::mangleType(TemplateName TN) {
2222  if (mangleSubstitution(TN))
2223  return;
2224 
2225  TemplateDecl *TD = nullptr;
2226 
2227  switch (TN.getKind()) {
2231  TD = TN.getAsTemplateDecl();
2232  goto HaveDecl;
2233 
2234  HaveDecl:
2235  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2236  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2237  else
2238  mangleName(TD);
2239  break;
2240 
2243  llvm_unreachable("can't mangle an overloaded template name as a <type>");
2244 
2246  const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2247  assert(Dependent->isIdentifier());
2248 
2249  // <class-enum-type> ::= <name>
2250  // <name> ::= <nested-name>
2251  mangleUnresolvedPrefix(Dependent->getQualifier());
2252  mangleSourceName(Dependent->getIdentifier());
2253  break;
2254  }
2255 
2257  // Substituted template parameters are mangled as the substituted
2258  // template. This will check for the substitution twice, which is
2259  // fine, but we have to return early so that we don't try to *add*
2260  // the substitution twice.
2263  mangleType(subst->getReplacement());
2264  return;
2265  }
2266 
2268  // FIXME: not clear how to mangle this!
2269  // template <template <class> class T...> class A {
2270  // template <template <class> class U...> void foo(B<T,U> x...);
2271  // };
2272  Out << "_SUBSTPACK_";
2273  break;
2274  }
2275  }
2276 
2277  addSubstitution(TN);
2278 }
2279 
2280 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2281  StringRef Prefix) {
2282  // Only certain other types are valid as prefixes; enumerate them.
2283  switch (Ty->getTypeClass()) {
2284  case Type::Builtin:
2285  case Type::Complex:
2286  case Type::Adjusted:
2287  case Type::Decayed:
2288  case Type::Pointer:
2289  case Type::BlockPointer:
2290  case Type::LValueReference:
2291  case Type::RValueReference:
2292  case Type::MemberPointer:
2293  case Type::ConstantArray:
2294  case Type::IncompleteArray:
2295  case Type::VariableArray:
2296  case Type::DependentSizedArray:
2297  case Type::DependentAddressSpace:
2298  case Type::DependentVector:
2299  case Type::DependentSizedExtVector:
2300  case Type::Vector:
2301  case Type::ExtVector:
2302  case Type::ConstantMatrix:
2303  case Type::DependentSizedMatrix:
2304  case Type::FunctionProto:
2305  case Type::FunctionNoProto:
2306  case Type::Paren:
2307  case Type::Attributed:
2308  case Type::BTFTagAttributed:
2309  case Type::Auto:
2310  case Type::DeducedTemplateSpecialization:
2311  case Type::PackExpansion:
2312  case Type::ObjCObject:
2313  case Type::ObjCInterface:
2314  case Type::ObjCObjectPointer:
2315  case Type::ObjCTypeParam:
2316  case Type::Atomic:
2317  case Type::Pipe:
2318  case Type::MacroQualified:
2319  case Type::BitInt:
2320  case Type::DependentBitInt:
2321  llvm_unreachable("type is illegal as a nested name specifier");
2322 
2323  case Type::SubstTemplateTypeParmPack:
2324  // FIXME: not clear how to mangle this!
2325  // template <class T...> class A {
2326  // template <class U...> void foo(decltype(T::foo(U())) x...);
2327  // };
2328  Out << "_SUBSTPACK_";
2329  break;
2330 
2331  // <unresolved-type> ::= <template-param>
2332  // ::= <decltype>
2333  // ::= <template-template-param> <template-args>
2334  // (this last is not official yet)
2335  case Type::TypeOfExpr:
2336  case Type::TypeOf:
2337  case Type::Decltype:
2338  case Type::TemplateTypeParm:
2339  case Type::UnaryTransform:
2340  case Type::SubstTemplateTypeParm:
2341  unresolvedType:
2342  // Some callers want a prefix before the mangled type.
2343  Out << Prefix;
2344 
2345  // This seems to do everything we want. It's not really
2346  // sanctioned for a substituted template parameter, though.
2347  mangleType(Ty);
2348 
2349  // We never want to print 'E' directly after an unresolved-type,
2350  // so we return directly.
2351  return true;
2352 
2353  case Type::Typedef:
2354  mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2355  break;
2356 
2357  case Type::UnresolvedUsing:
2358  mangleSourceNameWithAbiTags(
2359  cast<UnresolvedUsingType>(Ty)->getDecl());
2360  break;
2361 
2362  case Type::Enum:
2363  case Type::Record:
2364  mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2365  break;
2366 
2367  case Type::TemplateSpecialization: {
2368  const TemplateSpecializationType *TST =
2369  cast<TemplateSpecializationType>(Ty);
2370  TemplateName TN = TST->getTemplateName();
2371  switch (TN.getKind()) {
2374  TemplateDecl *TD = TN.getAsTemplateDecl();
2375 
2376  // If the base is a template template parameter, this is an
2377  // unresolved type.
2378  assert(TD && "no template for template specialization type");
2379  if (isa<TemplateTemplateParmDecl>(TD))
2380  goto unresolvedType;
2381 
2382  mangleSourceNameWithAbiTags(TD);
2383  break;
2384  }
2385 
2389  llvm_unreachable("invalid base for a template specialization type");
2390 
2394  mangleExistingSubstitution(subst->getReplacement());
2395  break;
2396  }
2397 
2399  // FIXME: not clear how to mangle this!
2400  // template <template <class U> class T...> class A {
2401  // template <class U...> void foo(decltype(T<U>::foo) x...);
2402  // };
2403  Out << "_SUBSTPACK_";
2404  break;
2405  }
2407  TemplateDecl *TD = TN.getAsTemplateDecl();
2408  assert(TD && !isa<TemplateTemplateParmDecl>(TD));
2409  mangleSourceNameWithAbiTags(TD);
2410  break;
2411  }
2412  }
2413 
2414  // Note: we don't pass in the template name here. We are mangling the
2415  // original source-level template arguments, so we shouldn't consider
2416  // conversions to the corresponding template parameter.
2417  // FIXME: Other compilers mangle partially-resolved template arguments in
2418  // unresolved-qualifier-levels.
2419  mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2420  break;
2421  }
2422 
2423  case Type::InjectedClassName:
2424  mangleSourceNameWithAbiTags(
2425  cast<InjectedClassNameType>(Ty)->getDecl());
2426  break;
2427 
2428  case Type::DependentName:
2429  mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2430  break;
2431 
2432  case Type::DependentTemplateSpecialization: {
2434  cast<DependentTemplateSpecializationType>(Ty);
2435  TemplateName Template = getASTContext().getDependentTemplateName(
2436  DTST->getQualifier(), DTST->getIdentifier());
2437  mangleSourceName(DTST->getIdentifier());
2438  mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2439  break;
2440  }
2441 
2442  case Type::Using:
2443  return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(),
2444  Prefix);
2445  case Type::Elaborated:
2446  return mangleUnresolvedTypeOrSimpleId(
2447  cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2448  }
2449 
2450  return false;
2451 }
2452 
2453 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2454  switch (Name.getNameKind()) {
2463  llvm_unreachable("Not an operator name");
2464 
2466  // <operator-name> ::= cv <type> # (cast)
2467  Out << "cv";
2468  mangleType(Name.getCXXNameType());
2469  break;
2470 
2472  Out << "li";
2473  mangleSourceName(Name.getCXXLiteralIdentifier());
2474  return;
2475 
2477  mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2478  break;
2479  }
2480 }
2481 
2482 void
2483 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2484  switch (OO) {
2485  // <operator-name> ::= nw # new
2486  case OO_New: Out << "nw"; break;
2487  // ::= na # new[]
2488  case OO_Array_New: Out << "na"; break;
2489  // ::= dl # delete
2490  case OO_Delete: Out << "dl"; break;
2491  // ::= da # delete[]
2492  case OO_Array_Delete: Out << "da"; break;
2493  // ::= ps # + (unary)
2494  // ::= pl # + (binary or unknown)
2495  case OO_Plus:
2496  Out << (Arity == 1? "ps" : "pl"); break;
2497  // ::= ng # - (unary)
2498  // ::= mi # - (binary or unknown)
2499  case OO_Minus:
2500  Out << (Arity == 1? "ng" : "mi"); break;
2501  // ::= ad # & (unary)
2502  // ::= an # & (binary or unknown)
2503  case OO_Amp:
2504  Out << (Arity == 1? "ad" : "an"); break;
2505  // ::= de # * (unary)
2506  // ::= ml # * (binary or unknown)
2507  case OO_Star:
2508  // Use binary when unknown.
2509  Out << (Arity == 1? "de" : "ml"); break;
2510  // ::= co # ~
2511  case OO_Tilde: Out << "co"; break;
2512  // ::= dv # /
2513  case OO_Slash: Out << "dv"; break;
2514  // ::= rm # %
2515  case OO_Percent: Out << "rm"; break;
2516  // ::= or # |
2517  case OO_Pipe: Out << "or"; break;
2518  // ::= eo # ^
2519  case OO_Caret: Out << "eo"; break;
2520  // ::= aS # =
2521  case OO_Equal: Out << "aS"; break;
2522  // ::= pL # +=
2523  case OO_PlusEqual: Out << "pL"; break;
2524  // ::= mI # -=
2525  case OO_MinusEqual: Out << "mI"; break;
2526  // ::= mL # *=
2527  case OO_StarEqual: Out << "mL"; break;
2528  // ::= dV # /=
2529  case OO_SlashEqual: Out << "dV"; break;
2530  // ::= rM # %=
2531  case OO_PercentEqual: Out << "rM"; break;
2532  // ::= aN # &=
2533  case OO_AmpEqual: Out << "aN"; break;
2534  // ::= oR # |=
2535  case OO_PipeEqual: Out << "oR"; break;
2536  // ::= eO # ^=
2537  case OO_CaretEqual: Out << "eO"; break;
2538  // ::= ls # <<
2539  case OO_LessLess: Out << "ls"; break;
2540  // ::= rs # >>
2541  case OO_GreaterGreater: Out << "rs"; break;
2542  // ::= lS # <<=
2543  case OO_LessLessEqual: Out << "lS"; break;
2544  // ::= rS # >>=
2545  case OO_GreaterGreaterEqual: Out << "rS"; break;
2546  // ::= eq # ==
2547  case OO_EqualEqual: Out << "eq"; break;
2548  // ::= ne # !=
2549  case OO_ExclaimEqual: Out << "ne"; break;
2550  // ::= lt # <
2551  case OO_Less: Out << "lt"; break;
2552  // ::= gt # >
2553  case OO_Greater: Out << "gt"; break;
2554  // ::= le # <=
2555  case OO_LessEqual: Out << "le"; break;
2556  // ::= ge # >=
2557  case OO_GreaterEqual: Out << "ge"; break;
2558  // ::= nt # !
2559  case OO_Exclaim: Out << "nt"; break;
2560  // ::= aa # &&
2561  case OO_AmpAmp: Out << "aa"; break;
2562  // ::= oo # ||
2563  case OO_PipePipe: Out << "oo"; break;
2564  // ::= pp # ++
2565  case OO_PlusPlus: Out << "pp"; break;
2566  // ::= mm # --
2567  case OO_MinusMinus: Out << "mm"; break;
2568  // ::= cm # ,
2569  case OO_Comma: Out << "cm"; break;
2570  // ::= pm # ->*
2571  case OO_ArrowStar: Out << "pm"; break;
2572  // ::= pt # ->
2573  case OO_Arrow: Out << "pt"; break;
2574  // ::= cl # ()
2575  case OO_Call: Out << "cl"; break;
2576  // ::= ix # []
2577  case OO_Subscript: Out << "ix"; break;
2578 
2579  // ::= qu # ?
2580  // The conditional operator can't be overloaded, but we still handle it when
2581  // mangling expressions.
2582  case OO_Conditional: Out << "qu"; break;
2583  // Proposal on cxx-abi-dev, 2015-10-21.
2584  // ::= aw # co_await
2585  case OO_Coawait: Out << "aw"; break;
2586  // Proposed in cxx-abi github issue 43.
2587  // ::= ss # <=>
2588  case OO_Spaceship: Out << "ss"; break;
2589 
2590  case OO_None:
2592  llvm_unreachable("Not an overloaded operator");
2593  }
2594 }
2595 
2596 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2597  // Vendor qualifiers come first and if they are order-insensitive they must
2598  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2599 
2600  // <type> ::= U <addrspace-expr>
2601  if (DAST) {
2602  Out << "U2ASI";
2603  mangleExpression(DAST->getAddrSpaceExpr());
2604  Out << "E";
2605  }
2606 
2607  // Address space qualifiers start with an ordinary letter.
2608  if (Quals.hasAddressSpace()) {
2609  // Address space extension:
2610  //
2611  // <type> ::= U <target-addrspace>
2612  // <type> ::= U <OpenCL-addrspace>
2613  // <type> ::= U <CUDA-addrspace>
2614 
2615  SmallString<64> ASString;
2616  LangAS AS = Quals.getAddressSpace();
2617 
2618  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2619  // <target-addrspace> ::= "AS" <address-space-number>
2620  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2621  if (TargetAS != 0 ||
2622  Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2623  ASString = "AS" + llvm::utostr(TargetAS);
2624  } else {
2625  switch (AS) {
2626  default: llvm_unreachable("Not a language specific address space");
2627  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2628  // "private"| "generic" | "device" |
2629  // "host" ]
2630  case LangAS::opencl_global:
2631  ASString = "CLglobal";
2632  break;
2634  ASString = "CLdevice";
2635  break;
2637  ASString = "CLhost";
2638  break;
2639  case LangAS::opencl_local:
2640  ASString = "CLlocal";
2641  break;
2643  ASString = "CLconstant";
2644  break;
2646  ASString = "CLprivate";
2647  break;
2649  ASString = "CLgeneric";
2650  break;
2651  // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2652  // "device" | "host" ]
2653  case LangAS::sycl_global:
2654  ASString = "SYglobal";
2655  break;
2657  ASString = "SYdevice";
2658  break;
2660  ASString = "SYhost";
2661  break;
2662  case LangAS::sycl_local:
2663  ASString = "SYlocal";
2664  break;
2665  case LangAS::sycl_private:
2666  ASString = "SYprivate";
2667  break;
2668  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2669  case LangAS::cuda_device:
2670  ASString = "CUdevice";
2671  break;
2672  case LangAS::cuda_constant:
2673  ASString = "CUconstant";
2674  break;
2675  case LangAS::cuda_shared:
2676  ASString = "CUshared";
2677  break;
2678  // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2679  case LangAS::ptr32_sptr:
2680  ASString = "ptr32_sptr";
2681  break;
2682  case LangAS::ptr32_uptr:
2683  ASString = "ptr32_uptr";
2684  break;
2685  case LangAS::ptr64:
2686  ASString = "ptr64";
2687  break;
2688  }
2689  }
2690  if (!ASString.empty())
2691  mangleVendorQualifier(ASString);
2692  }
2693 
2694  // The ARC ownership qualifiers start with underscores.
2695  // Objective-C ARC Extension:
2696  //
2697  // <type> ::= U "__strong"
2698  // <type> ::= U "__weak"
2699  // <type> ::= U "__autoreleasing"
2700  //
2701  // Note: we emit __weak first to preserve the order as
2702  // required by the Itanium ABI.
2703  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2704  mangleVendorQualifier("__weak");
2705 
2706  // __unaligned (from -fms-extensions)
2707  if (Quals.hasUnaligned())
2708  mangleVendorQualifier("__unaligned");
2709 
2710  // Remaining ARC ownership qualifiers.
2711  switch (Quals.getObjCLifetime()) {
2712  case Qualifiers::OCL_None:
2713  break;
2714 
2715  case Qualifiers::OCL_Weak:
2716  // Do nothing as we already handled this case above.
2717  break;
2718 
2720  mangleVendorQualifier("__strong");
2721  break;
2722 
2724  mangleVendorQualifier("__autoreleasing");
2725  break;
2726 
2728  // The __unsafe_unretained qualifier is *not* mangled, so that
2729  // __unsafe_unretained types in ARC produce the same manglings as the
2730  // equivalent (but, naturally, unqualified) types in non-ARC, providing
2731  // better ABI compatibility.
2732  //
2733  // It's safe to do this because unqualified 'id' won't show up
2734  // in any type signatures that need to be mangled.
2735  break;
2736  }
2737 
2738  // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2739  if (Quals.hasRestrict())
2740  Out << 'r';
2741  if (Quals.hasVolatile())
2742  Out << 'V';
2743  if (Quals.hasConst())
2744  Out << 'K';
2745 }
2746 
2747 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2748  Out << 'U' << name.size() << name;
2749 }
2750 
2751 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2752  // <ref-qualifier> ::= R # lvalue reference
2753  // ::= O # rvalue-reference
2754  switch (RefQualifier) {
2755  case RQ_None:
2756  break;
2757 
2758  case RQ_LValue:
2759  Out << 'R';
2760  break;
2761 
2762  case RQ_RValue:
2763  Out << 'O';
2764  break;
2765  }
2766 }
2767 
2768 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2769  Context.mangleObjCMethodNameAsSourceName(MD, Out);
2770 }
2771 
2772 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2773  ASTContext &Ctx) {
2774  if (Quals)
2775  return true;
2776  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2777  return true;
2778  if (Ty->isOpenCLSpecificType())
2779  return true;
2780  if (Ty->isBuiltinType())
2781  return false;
2782  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2783  // substitution candidates.
2784  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2785  isa<AutoType>(Ty))
2786  return false;
2787  // A placeholder type for class template deduction is substitutable with
2788  // its corresponding template name; this is handled specially when mangling
2789  // the type.
2790  if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2791  if (DeducedTST->getDeducedType().isNull())
2792  return false;
2793  return true;
2794 }
2795 
2796 void CXXNameMangler::mangleType(QualType T) {
2797  // If our type is instantiation-dependent but not dependent, we mangle
2798  // it as it was written in the source, removing any top-level sugar.
2799  // Otherwise, use the canonical type.
2800  //
2801  // FIXME: This is an approximation of the instantiation-dependent name
2802  // mangling rules, since we should really be using the type as written and
2803  // augmented via semantic analysis (i.e., with implicit conversions and
2804  // default template arguments) for any instantiation-dependent type.
2805  // Unfortunately, that requires several changes to our AST:
2806  // - Instantiation-dependent TemplateSpecializationTypes will need to be
2807  // uniqued, so that we can handle substitutions properly
2808  // - Default template arguments will need to be represented in the
2809  // TemplateSpecializationType, since they need to be mangled even though
2810  // they aren't written.
2811  // - Conversions on non-type template arguments need to be expressed, since
2812  // they can affect the mangling of sizeof/alignof.
2813  //
2814  // FIXME: This is wrong when mapping to the canonical type for a dependent
2815  // type discards instantiation-dependent portions of the type, such as for:
2816  //
2817  // template<typename T, int N> void f(T (&)[sizeof(N)]);
2818  // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2819  //
2820  // It's also wrong in the opposite direction when instantiation-dependent,
2821  // canonically-equivalent types differ in some irrelevant portion of inner
2822  // type sugar. In such cases, we fail to form correct substitutions, eg:
2823  //
2824  // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2825  //
2826  // We should instead canonicalize the non-instantiation-dependent parts,
2827  // regardless of whether the type as a whole is dependent or instantiation
2828  // dependent.
2830  T = T.getCanonicalType();
2831  else {
2832  // Desugar any types that are purely sugar.
2833  do {
2834  // Don't desugar through template specialization types that aren't
2835  // type aliases. We need to mangle the template arguments as written.
2836  if (const TemplateSpecializationType *TST
2837  = dyn_cast<TemplateSpecializationType>(T))
2838  if (!TST->isTypeAlias())
2839  break;
2840 
2841  // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2842  // instantation-dependent qualifiers. See
2843  // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2844 
2845  QualType Desugared
2846  = T.getSingleStepDesugaredType(Context.getASTContext());
2847  if (Desugared == T)
2848  break;
2849 
2850  T = Desugared;
2851  } while (true);
2852  }
2853  SplitQualType split = T.split();
2854  Qualifiers quals = split.Quals;
2855  const Type *ty = split.Ty;
2856 
2857  bool isSubstitutable =
2858  isTypeSubstitutable(quals, ty, Context.getASTContext());
2859  if (isSubstitutable && mangleSubstitution(T))
2860  return;
2861 
2862  // If we're mangling a qualified array type, push the qualifiers to
2863  // the element type.
2864  if (quals && isa<ArrayType>(T)) {
2865  ty = Context.getASTContext().getAsArrayType(T);
2866  quals = Qualifiers();
2867 
2868  // Note that we don't update T: we want to add the
2869  // substitution at the original type.
2870  }
2871 
2872  if (quals || ty->isDependentAddressSpaceType()) {
2873  if (const DependentAddressSpaceType *DAST =
2874  dyn_cast<DependentAddressSpaceType>(ty)) {
2875  SplitQualType splitDAST = DAST->getPointeeType().split();
2876  mangleQualifiers(splitDAST.Quals, DAST);
2877  mangleType(QualType(splitDAST.Ty, 0));
2878  } else {
2879  mangleQualifiers(quals);
2880 
2881  // Recurse: even if the qualified type isn't yet substitutable,
2882  // the unqualified type might be.
2883  mangleType(QualType(ty, 0));
2884  }
2885  } else {
2886  switch (ty->getTypeClass()) {
2887 #define ABSTRACT_TYPE(CLASS, PARENT)
2888 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2889  case Type::CLASS: \
2890  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2891  return;
2892 #define TYPE(CLASS, PARENT) \
2893  case Type::CLASS: \
2894  mangleType(static_cast<const CLASS##Type*>(ty)); \
2895  break;
2896 #include "clang/AST/TypeNodes.inc"
2897  }
2898  }
2899 
2900  // Add the substitution.
2901  if (isSubstitutable)
2902  addSubstitution(T);
2903 }
2904 
2905 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2906  if (!mangleStandardSubstitution(ND))
2907  mangleName(ND);
2908 }
2909 
2910 void CXXNameMangler::mangleType(const BuiltinType *T) {
2911  // <type> ::= <builtin-type>
2912  // <builtin-type> ::= v # void
2913  // ::= w # wchar_t
2914  // ::= b # bool
2915  // ::= c # char
2916  // ::= a # signed char
2917  // ::= h # unsigned char
2918  // ::= s # short
2919  // ::= t # unsigned short
2920  // ::= i # int
2921  // ::= j # unsigned int
2922  // ::= l # long
2923  // ::= m # unsigned long
2924  // ::= x # long long, __int64
2925  // ::= y # unsigned long long, __int64
2926  // ::= n # __int128
2927  // ::= o # unsigned __int128
2928  // ::= f # float
2929  // ::= d # double
2930  // ::= e # long double, __float80
2931  // ::= g # __float128
2932  // ::= g # __ibm128
2933  // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2934  // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2935  // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2936  // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2937  // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2938  // ::= Di # char32_t
2939  // ::= Ds # char16_t
2940  // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2941  // ::= u <source-name> # vendor extended type
2942  std::string type_name;
2943  switch (T->getKind()) {
2944  case BuiltinType::Void:
2945  Out << 'v';
2946  break;
2947  case BuiltinType::Bool:
2948  Out << 'b';
2949  break;
2950  case BuiltinType::Char_U:
2951  case BuiltinType::Char_S:
2952  Out << 'c';
2953  break;
2954  case BuiltinType::UChar:
2955  Out << 'h';
2956  break;
2957  case BuiltinType::UShort:
2958  Out << 't';
2959  break;
2960  case BuiltinType::UInt:
2961  Out << 'j';
2962  break;
2963  case BuiltinType::ULong:
2964  Out << 'm';
2965  break;
2966  case BuiltinType::ULongLong:
2967  Out << 'y';
2968  break;
2969  case BuiltinType::UInt128:
2970  Out << 'o';
2971  break;
2972  case BuiltinType::SChar:
2973  Out << 'a';
2974  break;
2975  case BuiltinType::WChar_S:
2976  case BuiltinType::WChar_U:
2977  Out << 'w';
2978  break;
2979  case BuiltinType::Char8:
2980  Out << "Du";
2981  break;
2982  case BuiltinType::Char16:
2983  Out << "Ds";
2984  break;
2985  case BuiltinType::Char32:
2986  Out << "Di";
2987  break;
2988  case BuiltinType::Short:
2989  Out << 's';
2990  break;
2991  case BuiltinType::Int:
2992  Out << 'i';
2993  break;
2994  case BuiltinType::Long:
2995  Out << 'l';
2996  break;
2997  case BuiltinType::LongLong:
2998  Out << 'x';
2999  break;
3000  case BuiltinType::Int128:
3001  Out << 'n';
3002  break;
3003  case BuiltinType::Float16:
3004  Out << "DF16_";
3005  break;
3006  case BuiltinType::ShortAccum:
3007  case BuiltinType::Accum:
3008  case BuiltinType::LongAccum:
3009  case BuiltinType::UShortAccum:
3010  case BuiltinType::UAccum:
3011  case BuiltinType::ULongAccum:
3012  case BuiltinType::ShortFract:
3013  case BuiltinType::Fract:
3014  case BuiltinType::LongFract:
3015  case BuiltinType::UShortFract:
3016  case BuiltinType::UFract:
3017  case BuiltinType::ULongFract:
3018  case BuiltinType::SatShortAccum:
3019  case BuiltinType::SatAccum:
3020  case BuiltinType::SatLongAccum:
3021  case BuiltinType::SatUShortAccum:
3022  case BuiltinType::SatUAccum:
3023  case BuiltinType::SatULongAccum:
3024  case BuiltinType::SatShortFract:
3025  case BuiltinType::SatFract:
3026  case BuiltinType::SatLongFract:
3027  case BuiltinType::SatUShortFract:
3028  case BuiltinType::SatUFract:
3029  case BuiltinType::SatULongFract:
3030  llvm_unreachable("Fixed point types are disabled for c++");
3031  case BuiltinType::Half:
3032  Out << "Dh";
3033  break;
3034  case BuiltinType::Float:
3035  Out << 'f';
3036  break;
3037  case BuiltinType::Double:
3038  Out << 'd';
3039  break;
3040  case BuiltinType::LongDouble: {
3041  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
3042  getASTContext().getLangOpts().OpenMPIsDevice
3043  ? getASTContext().getAuxTargetInfo()
3044  : &getASTContext().getTargetInfo();
3045  Out << TI->getLongDoubleMangling();
3046  break;
3047  }
3048  case BuiltinType::Float128: {
3049  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
3050  getASTContext().getLangOpts().OpenMPIsDevice
3051  ? getASTContext().getAuxTargetInfo()
3052  : &getASTContext().getTargetInfo();
3053  Out << TI->getFloat128Mangling();
3054  break;
3055  }
3056  case BuiltinType::BFloat16: {
3057  const TargetInfo *TI = &getASTContext().getTargetInfo();
3058  Out << TI->getBFloat16Mangling();
3059  break;
3060  }
3061  case BuiltinType::Ibm128: {
3062  const TargetInfo *TI = &getASTContext().getTargetInfo();
3063  Out << TI->getIbm128Mangling();
3064  break;
3065  }
3066  case BuiltinType::NullPtr:
3067  Out << "Dn";
3068  break;
3069 
3070 #define BUILTIN_TYPE(Id, SingletonId)
3071 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3072  case BuiltinType::Id:
3073 #include "clang/AST/BuiltinTypes.def"
3074  case BuiltinType::Dependent:
3075  if (!NullOut)
3076  llvm_unreachable("mangling a placeholder type");
3077  break;
3078  case BuiltinType::ObjCId:
3079  Out << "11objc_object";
3080  break;
3081  case BuiltinType::ObjCClass:
3082  Out << "10objc_class";
3083  break;
3084  case BuiltinType::ObjCSel:
3085  Out << "13objc_selector";
3086  break;
3087 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3088  case BuiltinType::Id: \
3089  type_name = "ocl_" #ImgType "_" #Suffix; \
3090  Out << type_name.size() << type_name; \
3091  break;
3092 #include "clang/Basic/OpenCLImageTypes.def"
3093  case BuiltinType::OCLSampler:
3094  Out << "11ocl_sampler";
3095  break;
3096  case BuiltinType::OCLEvent:
3097  Out << "9ocl_event";
3098  break;
3099  case BuiltinType::OCLClkEvent:
3100  Out << "12ocl_clkevent";
3101  break;
3102  case BuiltinType::OCLQueue:
3103  Out << "9ocl_queue";
3104  break;
3105  case BuiltinType::OCLReserveID:
3106  Out << "13ocl_reserveid";
3107  break;
3108 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3109  case BuiltinType::Id: \
3110  type_name = "ocl_" #ExtType; \
3111  Out << type_name.size() << type_name; \
3112  break;
3113 #include "clang/Basic/OpenCLExtensionTypes.def"
3114  // The SVE types are effectively target-specific. The mangling scheme
3115  // is defined in the appendices to the Procedure Call Standard for the
3116  // Arm Architecture.
3117 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \
3118  ElBits, IsSigned, IsFP, IsBF) \
3119  case BuiltinType::Id: \
3120  type_name = MangledName; \
3121  Out << (type_name == InternalName ? "u" : "") << type_name.size() \
3122  << type_name; \
3123  break;
3124 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3125  case BuiltinType::Id: \
3126  type_name = MangledName; \
3127  Out << (type_name == InternalName ? "u" : "") << type_name.size() \
3128  << type_name; \
3129  break;
3130 #include "clang/Basic/AArch64SVEACLETypes.def"
3131 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3132  case BuiltinType::Id: \
3133  type_name = #Name; \
3134  Out << 'u' << type_name.size() << type_name; \
3135  break;
3136 #include "clang/Basic/PPCTypes.def"
3137  // TODO: Check the mangling scheme for RISC-V V.
3138 #define RVV_TYPE(Name, Id, SingletonId) \
3139  case BuiltinType::Id: \
3140  type_name = Name; \
3141  Out << 'u' << type_name.size() << type_name; \
3142  break;
3143 #include "clang/Basic/RISCVVTypes.def"
3144  }
3145 }
3146 
3147 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3148  switch (CC) {
3149  case CC_C:
3150  return "";
3151 
3152  case CC_X86VectorCall:
3153  case CC_X86Pascal:
3154  case CC_X86RegCall:
3155  case CC_AAPCS:
3156  case CC_AAPCS_VFP:
3157  case CC_AArch64VectorCall:
3158  case CC_AArch64SVEPCS:
3159  case CC_AMDGPUKernelCall:
3160  case CC_IntelOclBicc:
3161  case CC_SpirFunction:
3162  case CC_OpenCLKernel:
3163  case CC_PreserveMost:
3164  case CC_PreserveAll:
3165  // FIXME: we should be mangling all of the above.
3166  return "";
3167 
3168  case CC_X86ThisCall:
3169  // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3170  // used explicitly. At this point, we don't have that much information in
3171  // the AST, since clang tends to bake the convention into the canonical
3172  // function type. thiscall only rarely used explicitly, so don't mangle it
3173  // for now.
3174  return "";
3175 
3176  case CC_X86StdCall:
3177  return "stdcall";
3178  case CC_X86FastCall:
3179  return "fastcall";
3180  case CC_X86_64SysV:
3181  return "sysv_abi";
3182  case CC_Win64:
3183  return "ms_abi";
3184  case CC_Swift:
3185  return "swiftcall";
3186  case CC_SwiftAsync:
3187  return "swiftasynccall";
3188  }
3189  llvm_unreachable("bad calling convention");
3190 }
3191 
3192 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3193  // Fast path.
3194  if (T->getExtInfo() == FunctionType::ExtInfo())
3195  return;
3196 
3197  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3198  // This will get more complicated in the future if we mangle other
3199  // things here; but for now, since we mangle ns_returns_retained as
3200  // a qualifier on the result type, we can get away with this:
3201  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3202  if (!CCQualifier.empty())
3203  mangleVendorQualifier(CCQualifier);
3204 
3205  // FIXME: regparm
3206  // FIXME: noreturn
3207 }
3208 
3209 void
3210 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3211  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3212 
3213  // Note that these are *not* substitution candidates. Demanglers might
3214  // have trouble with this if the parameter type is fully substituted.
3215 
3216  switch (PI.getABI()) {
3218  break;
3219 
3220  // All of these start with "swift", so they come before "ns_consumed".
3225  mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3226  break;
3227  }
3228 
3229  if (PI.isConsumed())
3230  mangleVendorQualifier("ns_consumed");
3231 
3232  if (PI.isNoEscape())
3233  mangleVendorQualifier("noescape");
3234 }
3235 
3236 // <type> ::= <function-type>
3237 // <function-type> ::= [<CV-qualifiers>] F [Y]
3238 // <bare-function-type> [<ref-qualifier>] E
3239 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3240  mangleExtFunctionInfo(T);
3241 
3242  // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
3243  // e.g. "const" in "int (A::*)() const".
3244  mangleQualifiers(T->getMethodQuals());
3245 
3246  // Mangle instantiation-dependent exception-specification, if present,
3247  // per cxx-abi-dev proposal on 2016-10-11.
3250  Out << "DO";
3251  mangleExpression(T->getNoexceptExpr());
3252  Out << "E";
3253  } else {
3254  assert(T->getExceptionSpecType() == EST_Dynamic);
3255  Out << "Dw";
3256  for (auto ExceptTy : T->exceptions())
3257  mangleType(ExceptTy);
3258  Out << "E";
3259  }
3260  } else if (T->isNothrow()) {
3261  Out << "Do";
3262  }
3263 
3264  Out << 'F';
3265 
3266  // FIXME: We don't have enough information in the AST to produce the 'Y'
3267  // encoding for extern "C" function types.
3268  mangleBareFunctionType(T, /*MangleReturnType=*/true);
3269 
3270  // Mangle the ref-qualifier, if present.
3271  mangleRefQualifier(T->getRefQualifier());
3272 
3273  Out << 'E';
3274 }
3275 
3276 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3277  // Function types without prototypes can arise when mangling a function type
3278  // within an overloadable function in C. We mangle these as the absence of any
3279  // parameter types (not even an empty parameter list).
3280  Out << 'F';
3281 
3282  FunctionTypeDepthState saved = FunctionTypeDepth.push();
3283 
3284  FunctionTypeDepth.enterResultType();
3285  mangleType(T->getReturnType());
3286  FunctionTypeDepth.leaveResultType();
3287 
3288  FunctionTypeDepth.pop(saved);
3289  Out << 'E';
3290 }
3291 
3292 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3293  bool MangleReturnType,
3294  const FunctionDecl *FD) {
3295  // Record that we're in a function type. See mangleFunctionParam
3296  // for details on what we're trying to achieve here.
3297  FunctionTypeDepthState saved = FunctionTypeDepth.push();
3298 
3299  // <bare-function-type> ::= <signature type>+
3300  if (MangleReturnType) {
3301  FunctionTypeDepth.enterResultType();
3302 
3303  // Mangle ns_returns_retained as an order-sensitive qualifier here.
3304  if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3305  mangleVendorQualifier("ns_returns_retained");
3306 
3307  // Mangle the return type without any direct ARC ownership qualifiers.
3308  QualType ReturnTy = Proto->getReturnType();
3309  if (ReturnTy.getObjCLifetime()) {
3310  auto SplitReturnTy = ReturnTy.split();
3311  SplitReturnTy.Quals.removeObjCLifetime();
3312  ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3313  }
3314  mangleType(ReturnTy);
3315 
3316  FunctionTypeDepth.leaveResultType();
3317  }
3318 
3319  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3320  // <builtin-type> ::= v # void
3321  Out << 'v';
3322 
3323  FunctionTypeDepth.pop(saved);
3324  return;
3325  }
3326 
3327  assert(!FD || FD->getNumParams() == Proto->getNumParams());
3328  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3329  // Mangle extended parameter info as order-sensitive qualifiers here.
3330  if (Proto->hasExtParameterInfos() && FD == nullptr) {
3331  mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3332  }
3333 
3334  // Mangle the type.
3335  QualType ParamTy = Proto->getParamType(I);
3336  mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3337 
3338  if (FD) {
3339  if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3340  // Attr can only take 1 character, so we can hardcode the length below.
3341  assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3342  if (Attr->isDynamic())
3343  Out << "U25pass_dynamic_object_size" << Attr->getType();
3344  else
3345  Out << "U17pass_object_size" << Attr->getType();
3346  }
3347  }
3348  }
3349 
3350  FunctionTypeDepth.pop(saved);
3351 
3352  // <builtin-type> ::= z # ellipsis
3353  if (Proto->isVariadic())
3354  Out << 'z';
3355 }
3356 
3357 // <type> ::= <class-enum-type>
3358 // <class-enum-type> ::= <name>
3359 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3360  mangleName(T->getDecl());
3361 }
3362 
3363 // <type> ::= <class-enum-type>
3364 // <class-enum-type> ::= <name>
3365 void CXXNameMangler::mangleType(const EnumType *T) {
3366  mangleType(static_cast<const TagType*>(T));
3367 }
3368 void CXXNameMangler::mangleType(const RecordType *T) {
3369  mangleType(static_cast<const TagType*>(T));
3370 }
3371 void CXXNameMangler::mangleType(const TagType *T) {
3372  mangleName(T->getDecl());
3373 }
3374 
3375 // <type> ::= <array-type>
3376 // <array-type> ::= A <positive dimension number> _ <element type>
3377 // ::= A [<dimension expression>] _ <element type>
3378 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3379  Out << 'A' << T->getSize() << '_';
3380  mangleType(T->getElementType());
3381 }
3382 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3383  Out << 'A';
3384  // decayed vla types (size 0) will just be skipped.
3385  if (T->getSizeExpr())
3386  mangleExpression(T->getSizeExpr());
3387  Out << '_';
3388  mangleType(T->getElementType());
3389 }
3390 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3391  Out << 'A';
3392  // A DependentSizedArrayType might not have size expression as below
3393  //
3394  // template<int ...N> int arr[] = {N...};
3395  if (T->getSizeExpr())
3396  mangleExpression(T->getSizeExpr());
3397  Out << '_';
3398  mangleType(T->getElementType());
3399 }
3400 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3401  Out << "A_";
3402  mangleType(T->getElementType());
3403 }
3404 
3405 // <type> ::= <pointer-to-member-type>
3406 // <pointer-to-member-type> ::= M <class type> <member type>
3407 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3408  Out << 'M';
3409  mangleType(QualType(T->getClass(), 0));
3410  QualType PointeeType = T->getPointeeType();
3411  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3412  mangleType(FPT);
3413 
3414  // Itanium C++ ABI 5.1.8:
3415  //
3416  // The type of a non-static member function is considered to be different,
3417  // for the purposes of substitution, from the type of a namespace-scope or
3418  // static member function whose type appears similar. The types of two
3419  // non-static member functions are considered to be different, for the
3420  // purposes of substitution, if the functions are members of different
3421  // classes. In other words, for the purposes of substitution, the class of
3422  // which the function is a member is considered part of the type of
3423  // function.
3424 
3425  // Given that we already substitute member function pointers as a
3426  // whole, the net effect of this rule is just to unconditionally
3427  // suppress substitution on the function type in a member pointer.
3428  // We increment the SeqID here to emulate adding an entry to the
3429  // substitution table.
3430  ++SeqID;
3431  } else
3432  mangleType(PointeeType);
3433 }
3434 
3435 // <type> ::= <template-param>
3436 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3437  mangleTemplateParameter(T->getDepth(), T->getIndex());
3438 }
3439 
3440 // <type> ::= <template-param>
3441 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3442  // FIXME: not clear how to mangle this!
3443  // template <class T...> class A {
3444  // template <class U...> void foo(T(*)(U) x...);
3445  // };
3446  Out << "_SUBSTPACK_";
3447 }
3448 
3449 // <type> ::= P <type> # pointer-to
3450 void CXXNameMangler::mangleType(const PointerType *T) {
3451  Out << 'P';
3452  mangleType(T->getPointeeType());
3453 }
3454 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3455  Out << 'P';
3456  mangleType(T->getPointeeType());
3457 }
3458 
3459 // <type> ::= R <type> # reference-to
3460 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3461  Out << 'R';
3462  mangleType(T->getPointeeType());
3463 }
3464 
3465 // <type> ::= O <type> # rvalue reference-to (C++0x)
3466 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3467  Out << 'O';
3468  mangleType(T->getPointeeType());
3469 }
3470 
3471 // <type> ::= C <type> # complex pair (C 2000)
3472 void CXXNameMangler::mangleType(const ComplexType *T) {
3473  Out << 'C';
3474  mangleType(T->getElementType());
3475 }
3476 
3477 // ARM's ABI for Neon vector types specifies that they should be mangled as
3478 // if they are structs (to match ARM's initial implementation). The
3479 // vector type must be one of the special types predefined by ARM.
3480 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3481  QualType EltType = T->getElementType();
3482  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3483  const char *EltName = nullptr;
3485  switch (cast<BuiltinType>(EltType)->getKind()) {
3486  case BuiltinType::SChar:
3487  case BuiltinType::UChar:
3488  EltName = "poly8_t";
3489  break;
3490  case BuiltinType::Short:
3491  case BuiltinType::UShort:
3492  EltName = "poly16_t";
3493  break;
3494  case BuiltinType::LongLong:
3495  case BuiltinType::ULongLong:
3496  EltName = "poly64_t";
3497  break;
3498  default: llvm_unreachable("unexpected Neon polynomial vector element type");
3499  }
3500  } else {
3501  switch (cast<BuiltinType>(EltType)->getKind()) {
3502  case BuiltinType::SChar: EltName = "int8_t"; break;
3503  case BuiltinType::UChar: EltName = "uint8_t"; break;
3504  case BuiltinType::Short: EltName = "int16_t"; break;
3505  case BuiltinType::UShort: EltName = "uint16_t"; break;
3506  case BuiltinType::Int: EltName = "int32_t"; break;
3507  case BuiltinType::UInt: EltName = "uint32_t"; break;
3508  case BuiltinType::LongLong: EltName = "int64_t"; break;
3509  case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3510  case BuiltinType::Double: EltName = "float64_t"; break;
3511  case BuiltinType::Float: EltName = "float32_t"; break;
3512  case BuiltinType::Half: EltName = "float16_t"; break;
3513  case BuiltinType::BFloat16: EltName = "bfloat16_t"; break;
3514  default:
3515  llvm_unreachable("unexpected Neon vector element type");
3516  }
3517  }
3518  const char *BaseName = nullptr;
3519  unsigned BitSize = (T->getNumElements() *
3520  getASTContext().getTypeSize(EltType));
3521  if (BitSize == 64)
3522  BaseName = "__simd64_";
3523  else {
3524  assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3525  BaseName = "__simd128_";
3526  }
3527  Out << strlen(BaseName) + strlen(EltName);
3528  Out << BaseName << EltName;
3529 }
3530 
3531 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3532  DiagnosticsEngine &Diags = Context.getDiags();
3533  unsigned DiagID = Diags.getCustomDiagID(
3535  "cannot mangle this dependent neon vector type yet");
3536  Diags.Report(T->getAttributeLoc(), DiagID);
3537 }
3538 
3539 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3540  switch (EltType->getKind()) {
3541  case BuiltinType::SChar:
3542  return "Int8";
3543  case BuiltinType::Short:
3544  return "Int16";
3545  case BuiltinType::Int:
3546  return "Int32";
3547  case BuiltinType::Long:
3548  case BuiltinType::LongLong:
3549  return "Int64";
3550  case BuiltinType::UChar:
3551  return "Uint8";
3552  case BuiltinType::UShort:
3553  return "Uint16";
3554  case BuiltinType::UInt:
3555  return "Uint32";
3556  case BuiltinType::ULong:
3557  case BuiltinType::ULongLong:
3558  return "Uint64";
3559  case BuiltinType::Half:
3560  return "Float16";
3561  case BuiltinType::Float:
3562  return "Float32";
3563  case BuiltinType::Double:
3564  return "Float64";
3565  case BuiltinType::BFloat16:
3566  return "Bfloat16";
3567  default:
3568  llvm_unreachable("Unexpected vector element base type");
3569  }
3570 }
3571 
3572 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3573 // the equivalent internal name. The vector type must be one of the special
3574 // types predefined by ARM.
3575 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3576  QualType EltType = T->getElementType();
3577  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3578  unsigned BitSize =
3579  (T->getNumElements() * getASTContext().getTypeSize(EltType));
3580  (void)BitSize; // Silence warning.
3581 
3582  assert((BitSize == 64 || BitSize == 128) &&
3583  "Neon vector type not 64 or 128 bits");
3584 
3585  StringRef EltName;
3587  switch (cast<BuiltinType>(EltType)->getKind()) {
3588  case BuiltinType::UChar:
3589  EltName = "Poly8";
3590  break;
3591  case BuiltinType::UShort:
3592  EltName = "Poly16";
3593  break;
3594  case BuiltinType::ULong:
3595  case BuiltinType::ULongLong:
3596  EltName = "Poly64";
3597  break;
3598  default:
3599  llvm_unreachable("unexpected Neon polynomial vector element type");
3600  }
3601  } else
3602  EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3603 
3605  ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3606  Out << TypeName.length() << TypeName;
3607 }
3608 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3609  DiagnosticsEngine &Diags = Context.getDiags();
3610  unsigned DiagID = Diags.getCustomDiagID(
3612  "cannot mangle this dependent neon vector type yet");
3613  Diags.Report(T->getAttributeLoc(), DiagID);
3614 }
3615 
3616 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3617 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3618 // type as the sizeless variants.
3619 //
3620 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3621 //
3622 // '__SVE_VLS<<type>, <vector length>>'
3623 //
3624 // Combining the existing SVE type and a specific vector length (in bits).
3625 // For example:
3626 //
3627 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3628 //
3629 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3630 //
3631 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3632 //
3633 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3634 //
3635 // The latest ACLE specification (00bet5) does not contain details of this
3636 // mangling scheme, it will be specified in the next revision. The mangling
3637 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3638 // for the Arm Architecture, see
3639 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling
3640 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3643  "expected fixed-length SVE vector!");
3644 
3645  QualType EltType = T->getElementType();
3646  assert(EltType->isBuiltinType() &&
3647  "expected builtin type for fixed-length SVE vector!");
3648 
3649  StringRef TypeName;
3650  switch (cast<BuiltinType>(EltType)->getKind()) {
3651  case BuiltinType::SChar:
3652  TypeName = "__SVInt8_t";
3653  break;
3654  case BuiltinType::UChar: {
3656  TypeName = "__SVUint8_t";
3657  else
3658  TypeName = "__SVBool_t";
3659  break;
3660  }
3661  case BuiltinType::Short:
3662  TypeName = "__SVInt16_t";
3663  break;
3664  case BuiltinType::UShort:
3665  TypeName = "__SVUint16_t";
3666  break;
3667  case BuiltinType::Int:
3668  TypeName = "__SVInt32_t";
3669  break;
3670  case BuiltinType::UInt:
3671  TypeName = "__SVUint32_t";
3672  break;
3673  case BuiltinType::Long:
3674  TypeName = "__SVInt64_t";
3675  break;
3676  case BuiltinType::ULong:
3677  TypeName = "__SVUint64_t";
3678  break;
3679  case BuiltinType::Half:
3680  TypeName = "__SVFloat16_t";
3681  break;
3682  case BuiltinType::Float:
3683  TypeName = "__SVFloat32_t";
3684  break;
3685  case BuiltinType::Double:
3686  TypeName = "__SVFloat64_t";
3687  break;
3688  case BuiltinType::BFloat16:
3689  TypeName = "__SVBfloat16_t";
3690  break;
3691  default:
3692  llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3693  }
3694 
3695  unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3696 
3698  VecSizeInBits *= 8;
3699 
3700  Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3701  << VecSizeInBits << "EE";
3702 }
3703 
3704 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3705  const DependentVectorType *T) {
3706  DiagnosticsEngine &Diags = Context.getDiags();
3707  unsigned DiagID = Diags.getCustomDiagID(
3709  "cannot mangle this dependent fixed-length SVE vector type yet");
3710  Diags.Report(T->getAttributeLoc(), DiagID);
3711 }
3712 
3713 // GNU extension: vector types
3714 // <type> ::= <vector-type>
3715 // <vector-type> ::= Dv <positive dimension number> _
3716 // <extended element type>
3717 // ::= Dv [<dimension expression>] _ <element type>
3718 // <extended element type> ::= <element type>
3719 // ::= p # AltiVec vector pixel
3720 // ::= b # Altivec vector bool
3721 void CXXNameMangler::mangleType(const VectorType *T) {
3722  if ((T->getVectorKind() == VectorType::NeonVector ||
3724  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3725  llvm::Triple::ArchType Arch =
3726  getASTContext().getTargetInfo().getTriple().getArch();
3727  if ((Arch == llvm::Triple::aarch64 ||
3728  Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3729  mangleAArch64NeonVectorType(T);
3730  else
3731  mangleNeonVectorType(T);
3732  return;
3735  mangleAArch64FixedSveVectorType(T);
3736  return;
3737  }
3738  Out << "Dv" << T->getNumElements() << '_';
3740  Out << 'p';
3741  else if (T->getVectorKind() == VectorType::AltiVecBool)
3742  Out << 'b';
3743  else
3744  mangleType(T->getElementType());
3745 }
3746 
3747 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3748  if ((T->getVectorKind() == VectorType::NeonVector ||
3750  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3751  llvm::Triple::ArchType Arch =
3752  getASTContext().getTargetInfo().getTriple().getArch();
3753  if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3754  !Target.isOSDarwin())
3755  mangleAArch64NeonVectorType(T);
3756  else
3757  mangleNeonVectorType(T);
3758  return;
3761  mangleAArch64FixedSveVectorType(T);
3762  return;
3763  }
3764 
3765  Out << "Dv";
3766  mangleExpression(T->getSizeExpr());
3767  Out << '_';
3769  Out << 'p';
3770  else if (T->getVectorKind() == VectorType::AltiVecBool)
3771  Out << 'b';
3772  else
3773  mangleType(T->getElementType());
3774 }
3775 
3776 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3777  mangleType(static_cast<const VectorType*>(T));
3778 }
3779 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3780  Out << "Dv";
3781  mangleExpression(T->getSizeExpr());
3782  Out << '_';
3783  mangleType(T->getElementType());
3784 }
3785 
3786 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3787  // Mangle matrix types as a vendor extended type:
3788  // u<Len>matrix_typeI<Rows><Columns><element type>E
3789 
3790  StringRef VendorQualifier = "matrix_type";
3791  Out << "u" << VendorQualifier.size() << VendorQualifier;
3792 
3793  Out << "I";
3794  auto &ASTCtx = getASTContext();
3795  unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3796  llvm::APSInt Rows(BitWidth);
3797  Rows = T->getNumRows();
3798  mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3799  llvm::APSInt Columns(BitWidth);
3800  Columns = T->getNumColumns();
3801  mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3802  mangleType(T->getElementType());
3803  Out << "E";
3804 }
3805 
3806 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3807  // Mangle matrix types as a vendor extended type:
3808  // u<Len>matrix_typeI<row expr><column expr><element type>E
3809  StringRef VendorQualifier = "matrix_type";
3810  Out << "u" << VendorQualifier.size() << VendorQualifier;
3811 
3812  Out << "I";
3813  mangleTemplateArgExpr(T->getRowExpr());
3814  mangleTemplateArgExpr(T->getColumnExpr());
3815  mangleType(T->getElementType());
3816  Out << "E";
3817 }
3818 
3819 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3820  SplitQualType split = T->getPointeeType().split();
3821  mangleQualifiers(split.Quals, T);
3822  mangleType(QualType(split.Ty, 0));
3823 }
3824 
3825 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3826  // <type> ::= Dp <type> # pack expansion (C++0x)
3827  Out << "Dp";
3828  mangleType(T->getPattern());
3829 }
3830 
3831 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3832  mangleSourceName(T->getDecl()->getIdentifier());
3833 }
3834 
3835 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3836  // Treat __kindof as a vendor extended type qualifier.
3837  if (T->isKindOfType())
3838  Out << "U8__kindof";
3839 
3840  if (!T->qual_empty()) {
3841  // Mangle protocol qualifiers.
3842  SmallString<64> QualStr;
3843  llvm::raw_svector_ostream QualOS(QualStr);
3844  QualOS << "objcproto";
3845  for (const auto *I : T->quals()) {
3846  StringRef name = I->getName();
3847  QualOS << name.size() << name;
3848  }
3849  Out << 'U' << QualStr.size() << QualStr;
3850  }
3851 
3852  mangleType(T->getBaseType());
3853 
3854  if (T->isSpecialized()) {
3855  // Mangle type arguments as I <type>+ E
3856  Out << 'I';
3857  for (auto typeArg : T->getTypeArgs())
3858  mangleType(typeArg);
3859  Out << 'E';
3860  }
3861 }
3862 
3863 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3864  Out << "U13block_pointer";
3865  mangleType(T->getPointeeType());
3866 }
3867 
3868 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3869  // Mangle injected class name types as if the user had written the
3870  // specialization out fully. It may not actually be possible to see
3871  // this mangling, though.
3872  mangleType(T->getInjectedSpecializationType());
3873 }
3874 
3875 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3876  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3877  mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3878  } else {
3879  if (mangleSubstitution(QualType(T, 0)))
3880  return;
3881 
3882  mangleTemplatePrefix(T->getTemplateName());
3883 
3884  // FIXME: GCC does not appear to mangle the template arguments when
3885  // the template in question is a dependent template name. Should we
3886  // emulate that badness?
3887  mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3888  addSubstitution(QualType(T, 0));
3889  }
3890 }
3891 
3892 void CXXNameMangler::mangleType(const DependentNameType *T) {
3893  // Proposal by cxx-abi-dev, 2014-03-26
3894  // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3895  // # dependent elaborated type specifier using
3896  // # 'typename'
3897  // ::= Ts <name> # dependent elaborated type specifier using
3898  // # 'struct' or 'class'
3899  // ::= Tu <name> # dependent elaborated type specifier using
3900  // # 'union'
3901  // ::= Te <name> # dependent elaborated type specifier using
3902  // # 'enum'
3903  switch (T->getKeyword()) {
3904  case ETK_None:
3905  case ETK_Typename:
3906  break;
3907  case ETK_Struct:
3908  case ETK_Class:
3909  case ETK_Interface:
3910  Out << "Ts";
3911  break;
3912  case ETK_Union:
3913  Out << "Tu";
3914  break;
3915  case ETK_Enum:
3916  Out << "Te";
3917  break;
3918  }
3919  // Typename types are always nested
3920  Out << 'N';
3921  manglePrefix(T->getQualifier());
3922  mangleSourceName(T->getIdentifier());
3923  Out << 'E';
3924 }
3925 
3926 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3927  // Dependently-scoped template types are nested if they have a prefix.
3928  Out << 'N';
3929 
3930  // TODO: avoid making this TemplateName.
3931  TemplateName Prefix =
3932  getASTContext().getDependentTemplateName(T->getQualifier(),
3933  T->getIdentifier());
3934  mangleTemplatePrefix(Prefix);
3935 
3936  // FIXME: GCC does not appear to mangle the template arguments when
3937  // the template in question is a dependent template name. Should we
3938  // emulate that badness?
3939  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3940  Out << 'E';
3941 }
3942 
3943 void CXXNameMangler::mangleType(const TypeOfType *T) {
3944  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3945  // "extension with parameters" mangling.
3946  Out << "u6typeof";
3947 }
3948 
3949 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3950  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3951  // "extension with parameters" mangling.
3952  Out << "u6typeof";
3953 }
3954 
3955 void CXXNameMangler::mangleType(const DecltypeType *T) {
3956  Expr *E = T->getUnderlyingExpr();
3957 
3958  // type ::= Dt <expression> E # decltype of an id-expression
3959  // # or class member access
3960  // ::= DT <expression> E # decltype of an expression
3961 
3962  // This purports to be an exhaustive list of id-expressions and
3963  // class member accesses. Note that we do not ignore parentheses;
3964  // parentheses change the semantics of decltype for these
3965  // expressions (and cause the mangler to use the other form).
3966  if (isa<DeclRefExpr>(E) ||
3967  isa<MemberExpr>(E) ||
3968  isa<UnresolvedLookupExpr>(E) ||
3969  isa<DependentScopeDeclRefExpr>(E) ||
3970  isa<CXXDependentScopeMemberExpr>(E) ||
3971  isa<UnresolvedMemberExpr>(E))
3972  Out << "Dt";
3973  else
3974  Out << "DT";
3975  mangleExpression(E);
3976  Out << 'E';
3977 }
3978 
3979 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3980  // If this is dependent, we need to record that. If not, we simply
3981  // mangle it as the underlying type since they are equivalent.
3982  if (T->isDependentType()) {
3983  Out << 'U';
3984 
3985  switch (T->getUTTKind()) {
3987  Out << "3eut";
3988  break;
3989  }
3990  }
3991 
3992  mangleType(T->getBaseType());
3993 }
3994 
3995 void CXXNameMangler::mangleType(const AutoType *T) {
3996  assert(T->getDeducedType().isNull() &&
3997  "Deduced AutoType shouldn't be handled here!");
3998  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3999  "shouldn't need to mangle __auto_type!");
4000  // <builtin-type> ::= Da # auto
4001  // ::= Dc # decltype(auto)
4002  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
4003 }
4004 
4005 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
4006  QualType Deduced = T->getDeducedType();
4007  if (!Deduced.isNull())
4008  return mangleType(Deduced);
4009 
4011  assert(TD && "shouldn't form deduced TST unless we know we have a template");
4012 
4013  if (mangleSubstitution(TD))
4014  return;
4015 
4016  mangleName(GlobalDecl(TD));
4017  addSubstitution(TD);
4018 }
4019 
4020 void CXXNameMangler::mangleType(const AtomicType *T) {
4021  // <type> ::= U <source-name> <type> # vendor extended type qualifier
4022  // (Until there's a standardized mangling...)
4023  Out << "U7_Atomic";
4024  mangleType(T->getValueType());
4025 }
4026 
4027 void CXXNameMangler::mangleType(const PipeType *T) {
4028  // Pipe type mangling rules are described in SPIR 2.0 specification
4029  // A.1 Data types and A.3 Summary of changes
4030  // <type> ::= 8ocl_pipe
4031  Out << "8ocl_pipe";
4032 }
4033 
4034 void CXXNameMangler::mangleType(const BitIntType *T) {
4035  // 5.1.5.2 Builtin types
4036  // <type> ::= DB <number | instantiation-dependent expression> _
4037  // ::= DU <number | instantiation-dependent expression> _
4038  Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_";
4039 }
4040 
4041 void CXXNameMangler::mangleType(const DependentBitIntType *T) {
4042  // 5.1.5.2 Builtin types
4043  // <type> ::= DB <number | instantiation-dependent expression> _
4044  // ::= DU <number | instantiation-dependent expression> _
4045  Out << "D" << (T->isUnsigned() ? "U" : "B");
4046  mangleExpression(T->getNumBitsExpr());
4047  Out << "_";
4048 }
4049 
4050 void CXXNameMangler::mangleIntegerLiteral(QualType T,
4051  const llvm::APSInt &Value) {
4052  // <expr-primary> ::= L <type> <value number> E # integer literal
4053  Out << 'L';
4054 
4055  mangleType(T);
4056  if (T->isBooleanType()) {
4057  // Boolean values are encoded as 0/1.
4058  Out << (Value.getBoolValue() ? '1' : '0');
4059  } else {
4060  mangleNumber(Value);
4061  }
4062  Out << 'E';
4063 
4064 }
4065 
4066 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
4067  // Ignore member expressions involving anonymous unions.
4068  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4069  if (!RT->getDecl()->isAnonymousStructOrUnion())
4070  break;
4071  const auto *ME = dyn_cast<MemberExpr>(Base);
4072  if (!ME)
4073  break;
4074  Base = ME->getBase();
4075  IsArrow = ME->isArrow();
4076  }
4077 
4078  if (Base->isImplicitCXXThis()) {
4079  // Note: GCC mangles member expressions to the implicit 'this' as
4080  // *this., whereas we represent them as this->. The Itanium C++ ABI
4081  // does not specify anything here, so we follow GCC.
4082  Out << "dtdefpT";
4083  } else {
4084  Out << (IsArrow ? "pt" : "dt");
4085  mangleExpression(Base);
4086  }
4087 }
4088 
4089 /// Mangles a member expression.
4090 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4091  bool isArrow,
4092  NestedNameSpecifier *qualifier,
4093  NamedDecl *firstQualifierLookup,
4095  const TemplateArgumentLoc *TemplateArgs,
4096  unsigned NumTemplateArgs,
4097  unsigned arity) {
4098  // <expression> ::= dt <expression> <unresolved-name>
4099  // ::= pt <expression> <unresolved-name>
4100  if (base)
4101  mangleMemberExprBase(base, isArrow);
4102  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4103 }
4104 
4105 /// Look at the callee of the given call expression and determine if
4106 /// it's a parenthesized id-expression which would have triggered ADL
4107 /// otherwise.
4108 static bool isParenthesizedADLCallee(const CallExpr *call) {
4109  const Expr *callee = call->getCallee();
4110  const Expr *fn = callee->IgnoreParens();
4111 
4112  // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
4113  // too, but for those to appear in the callee, it would have to be
4114  // parenthesized.
4115  if (callee == fn) return false;
4116 
4117  // Must be an unresolved lookup.
4118  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4119  if (!lookup) return false;
4120 
4121  assert(!lookup->requiresADL());
4122 
4123  // Must be an unqualified lookup.
4124  if (lookup->getQualifier()) return false;
4125 
4126  // Must not have found a class member. Note that if one is a class
4127  // member, they're all class members.
4128  if (lookup->getNumDecls() > 0 &&
4129  (*lookup->decls_begin())->isCXXClassMember())
4130  return false;
4131 
4132  // Otherwise, ADL would have been triggered.
4133  return true;
4134 }
4135 
4136 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4137  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4138  Out << CastEncoding;
4139  mangleType(ECE->getType());
4140  mangleExpression(ECE->getSubExpr());
4141 }
4142 
4143 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4144  if (auto *Syntactic = InitList->getSyntacticForm())
4145  InitList = Syntactic;
4146  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4147  mangleExpression(InitList->getInit(i));
4148 }
4149 
4150 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4151  bool AsTemplateArg) {
4152  // <expression> ::= <unary operator-name> <expression>
4153  // ::= <binary operator-name> <expression> <expression>
4154  // ::= <trinary operator-name> <expression> <expression> <expression>
4155  // ::= cv <type> expression # conversion with one argument
4156  // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4157  // ::= dc <type> <expression> # dynamic_cast<type> (expression)
4158  // ::= sc <type> <expression> # static_cast<type> (expression)
4159  // ::= cc <type> <expression> # const_cast<type> (expression)
4160  // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
4161  // ::= st <type> # sizeof (a type)
4162  // ::= at <type> # alignof (a type)
4163  // ::= <template-param>
4164  // ::= <function-param>
4165  // ::= fpT # 'this' expression (part of <function-param>)
4166  // ::= sr <type> <unqualified-name> # dependent name
4167  // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
4168  // ::= ds <expression> <expression> # expr.*expr
4169  // ::= sZ <template-param> # size of a parameter pack
4170  // ::= sZ <function-param> # size of a function parameter pack
4171  // ::= u <source-name> <template-arg>* E # vendor extended expression
4172  // ::= <expr-primary>
4173  // <expr-primary> ::= L <type> <value number> E # integer literal
4174  // ::= L <type> <value float> E # floating literal
4175  // ::= L <type> <string type> E # string literal
4176  // ::= L <nullptr type> E # nullptr literal "LDnE"
4177  // ::= L <pointer type> 0 E # null pointer template argument
4178  // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang
4179  // ::= L <mangled-name> E # external name
4180  QualType ImplicitlyConvertedToType;
4181 
4182  // A top-level expression that's not <expr-primary> needs to be wrapped in
4183  // X...E in a template arg.
4184  bool IsPrimaryExpr = true;
4185  auto NotPrimaryExpr = [&] {
4186  if (AsTemplateArg && IsPrimaryExpr)
4187  Out << 'X';
4188  IsPrimaryExpr = false;
4189  };
4190 
4191  auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4192  switch (D->getKind()) {
4193  default:
4194  // <expr-primary> ::= L <mangled-name> E # external name
4195  Out << 'L';
4196  mangle(D);
4197  Out << 'E';
4198  break;
4199 
4200  case Decl::ParmVar:
4201  NotPrimaryExpr();
4202  mangleFunctionParam(cast<ParmVarDecl>(D));
4203  break;
4204 
4205  case Decl::EnumConstant: {
4206  // <expr-primary>
4207  const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4208  mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4209  break;
4210  }
4211 
4212  case Decl::NonTypeTemplateParm:
4213  NotPrimaryExpr();
4214  const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4215  mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4216  break;
4217  }
4218  };
4219 
4220  // 'goto recurse' is used when handling a simple "unwrapping" node which
4221  // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4222  // to be preserved.
4223 recurse:
4224  switch (E->getStmtClass()) {
4225  case Expr::NoStmtClass:
4226 #define ABSTRACT_STMT(Type)
4227 #define EXPR(Type, Base)
4228 #define STMT(Type, Base) \
4229  case Expr::Type##Class:
4230 #include "clang/AST/StmtNodes.inc"
4231  // fallthrough
4232 
4233  // These all can only appear in local or variable-initialization
4234  // contexts and so should never appear in a mangling.
4235  case Expr::AddrLabelExprClass:
4236  case Expr::DesignatedInitUpdateExprClass:
4237  case Expr::ImplicitValueInitExprClass:
4238  case Expr::ArrayInitLoopExprClass:
4239  case Expr::ArrayInitIndexExprClass:
4240  case Expr::NoInitExprClass:
4241  case Expr::ParenListExprClass:
4242  case Expr::MSPropertyRefExprClass:
4243  case Expr::MSPropertySubscriptExprClass:
4244  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4245  case Expr::RecoveryExprClass:
4246  case Expr::OMPArraySectionExprClass:
4247  case Expr::OMPArrayShapingExprClass:
4248  case Expr::OMPIteratorExprClass:
4249  case Expr::CXXInheritedCtorInitExprClass:
4250  llvm_unreachable("unexpected statement kind");
4251 
4252  case Expr::ConstantExprClass:
4253  E = cast<ConstantExpr>(E)->getSubExpr();
4254  goto recurse;
4255 
4256  // FIXME: invent manglings for all these.
4257  case Expr::BlockExprClass:
4258  case Expr::ChooseExprClass:
4259  case Expr::CompoundLiteralExprClass:
4260  case Expr::ExtVectorElementExprClass:
4261  case Expr::GenericSelectionExprClass:
4262  case Expr::ObjCEncodeExprClass:
4263  case Expr::ObjCIsaExprClass:
4264  case Expr::ObjCIvarRefExprClass:
4265  case Expr::ObjCMessageExprClass:
4266  case Expr::ObjCPropertyRefExprClass:
4267  case Expr::ObjCProtocolExprClass:
4268  case Expr::ObjCSelectorExprClass:
4269  case Expr::ObjCStringLiteralClass:
4270  case Expr::ObjCBoxedExprClass:
4271  case Expr::ObjCArrayLiteralClass:
4272  case Expr::ObjCDictionaryLiteralClass:
4273  case Expr::ObjCSubscriptRefExprClass:
4274  case Expr::ObjCIndirectCopyRestoreExprClass:
4275  case Expr::ObjCAvailabilityCheckExprClass:
4276  case Expr::OffsetOfExprClass:
4277  case Expr::PredefinedExprClass:
4278  case Expr::ShuffleVectorExprClass:
4279  case Expr::ConvertVectorExprClass:
4280  case Expr::StmtExprClass:
4281  case Expr::TypeTraitExprClass:
4282  case Expr::RequiresExprClass:
4283  case Expr::ArrayTypeTraitExprClass:
4284  case Expr::ExpressionTraitExprClass:
4285  case Expr::VAArgExprClass:
4286  case Expr::CUDAKernelCallExprClass:
4287  case Expr::AsTypeExprClass:
4288  case Expr::PseudoObjectExprClass:
4289  case Expr::AtomicExprClass:
4290  case Expr::SourceLocExprClass:
4291  case Expr::BuiltinBitCastExprClass:
4292  {
4293  NotPrimaryExpr();
4294  if (!NullOut) {
4295  // As bad as this diagnostic is, it's better than crashing.
4296  DiagnosticsEngine &Diags = Context.getDiags();
4297  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4298  "cannot yet mangle expression type %0");
4299  Diags.Report(E->getExprLoc(), DiagID)
4300  << E->getStmtClassName() << E->getSourceRange();
4301  return;
4302  }
4303  break;
4304  }
4305 
4306  case Expr::CXXUuidofExprClass: {
4307  NotPrimaryExpr();
4308  const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4309  // As of clang 12, uuidof uses the vendor extended expression
4310  // mangling. Previously, it used a special-cased nonstandard extension.
4311  if (Context.getASTContext().getLangOpts().getClangABICompat() >
4313  Out << "u8__uuidof";
4314  if (UE->isTypeOperand())
4315  mangleType(UE->getTypeOperand(Context.getASTContext()));
4316  else
4317  mangleTemplateArgExpr(UE->getExprOperand());
4318  Out << 'E';
4319  } else {
4320  if (UE->isTypeOperand()) {
4321  QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4322  Out << "u8__uuidoft";
4323  mangleType(UuidT);
4324  } else {
4325  Expr *UuidExp = UE->getExprOperand();
4326  Out << "u8__uuidofz";
4327  mangleExpression(UuidExp);
4328  }
4329  }
4330  break;
4331  }
4332 
4333  // Even gcc-4.5 doesn't mangle this.
4334  case Expr::BinaryConditionalOperatorClass: {
4335  NotPrimaryExpr();
4336  DiagnosticsEngine &Diags = Context.getDiags();
4337  unsigned DiagID =
4339  "?: operator with omitted middle operand cannot be mangled");
4340  Diags.Report(E->getExprLoc(), DiagID)
4341  << E->getStmtClassName() << E->getSourceRange();
4342  return;
4343  }
4344 
4345  // These are used for internal purposes and cannot be meaningfully mangled.
4346  case Expr::OpaqueValueExprClass:
4347  llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4348 
4349  case Expr::InitListExprClass: {
4350  NotPrimaryExpr();
4351  Out << "il";
4352  mangleInitListElements(cast<InitListExpr>(E));
4353  Out << "E";
4354  break;
4355  }
4356 
4357  case Expr::DesignatedInitExprClass: {
4358  NotPrimaryExpr();
4359  auto *DIE = cast<DesignatedInitExpr>(E);
4360  for (const auto &Designator : DIE->designators()) {
4361  if (Designator.isFieldDesignator()) {
4362  Out << "di";
4363  mangleSourceName(Designator.getFieldName());
4364  } else if (Designator.isArrayDesignator()) {
4365  Out << "dx";
4366  mangleExpression(DIE->getArrayIndex(Designator));
4367  } else {
4369  "unknown designator kind");
4370  Out << "dX";
4371  mangleExpression(DIE->getArrayRangeStart(Designator));
4372  mangleExpression(DIE->getArrayRangeEnd(Designator));
4373  }
4374  }
4375  mangleExpression(DIE->getInit());
4376  break;
4377  }
4378 
4379  case Expr::CXXDefaultArgExprClass:
4380  E = cast<CXXDefaultArgExpr>(E)->getExpr();
4381  goto recurse;
4382 
4383  case Expr::CXXDefaultInitExprClass:
4384  E = cast<CXXDefaultInitExpr>(E)->getExpr();
4385  goto recurse;
4386 
4387  case Expr::CXXStdInitializerListExprClass:
4388  E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4389  goto recurse;
4390 
4391  case Expr::SubstNonTypeTemplateParmExprClass:
4392  E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4393  goto recurse;
4394 
4395  case Expr::UserDefinedLiteralClass:
4396  // We follow g++'s approach of mangling a UDL as a call to the literal
4397  // operator.
4398  case Expr::CXXMemberCallExprClass: // fallthrough
4399  case Expr::CallExprClass: {
4400  NotPrimaryExpr();
4401  const CallExpr *CE = cast<CallExpr>(E);
4402 
4403  // <expression> ::= cp <simple-id> <expression>* E
4404  // We use this mangling only when the call would use ADL except
4405  // for being parenthesized. Per discussion with David
4406  // Vandervoorde, 2011.04.25.
4407  if (isParenthesizedADLCallee(CE)) {
4408  Out << "cp";
4409  // The callee here is a parenthesized UnresolvedLookupExpr with
4410  // no qualifier and should always get mangled as a <simple-id>
4411  // anyway.
4412 
4413  // <expression> ::= cl <expression>* E
4414  } else {
4415  Out << "cl";
4416  }
4417 
4418  unsigned CallArity = CE->getNumArgs();
4419  for (const Expr *Arg : CE->arguments())
4420  if (isa<PackExpansionExpr>(Arg))
4421  CallArity = UnknownArity;
4422 
4423  mangleExpression(CE->getCallee(), CallArity);
4424  for (const Expr *Arg : CE->arguments())
4425  mangleExpression(Arg);
4426  Out << 'E';
4427  break;
4428  }
4429 
4430  case Expr::CXXNewExprClass: {
4431  NotPrimaryExpr();
4432  const CXXNewExpr *New = cast<CXXNewExpr>(E);
4433  if (New->isGlobalNew()) Out << "gs";
4434  Out << (New->isArray() ? "na" : "nw");
4436  E = New->placement_arg_end(); I != E; ++I)
4437  mangleExpression(*I);
4438  Out << '_';
4439  mangleType(New->getAllocatedType());
4440  if (New->hasInitializer()) {
4442  Out << "il";
4443  else
4444  Out << "pi";
4445  const Expr *Init = New->getInitializer();
4446  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4447  // Directly inline the initializers.
4448  for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4449  E = CCE->arg_end();
4450  I != E; ++I)
4451  mangleExpression(*I);
4452  } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4453  for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4454  mangleExpression(PLE->getExpr(i));
4455  } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4456  isa<InitListExpr>(Init)) {
4457  // Only take InitListExprs apart for list-initialization.
4458  mangleInitListElements(cast<InitListExpr>(Init));
4459  } else
4460  mangleExpression(Init);
4461  }
4462  Out << 'E';
4463  break;
4464  }
4465 
4466  case Expr::CXXPseudoDestructorExprClass: {
4467  NotPrimaryExpr();
4468  const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4469  if (const Expr *Base = PDE->getBase())
4470  mangleMemberExprBase(Base, PDE->isArrow());
4471  NestedNameSpecifier *Qualifier = PDE->getQualifier();
4472  if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4473  if (Qualifier) {
4474  mangleUnresolvedPrefix(Qualifier,
4475  /*recursive=*/true);
4476  mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4477  Out << 'E';
4478  } else {
4479  Out << "sr";
4480  if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4481  Out << 'E';
4482  }
4483  } else if (Qualifier) {
4484  mangleUnresolvedPrefix(Qualifier);
4485  }
4486  // <base-unresolved-name> ::= dn <destructor-name>
4487  Out << "dn";
4488  QualType DestroyedType = PDE->getDestroyedType();
4489  mangleUnresolvedTypeOrSimpleId(DestroyedType);
4490  break;
4491  }
4492 
4493  case Expr::MemberExprClass: {
4494  NotPrimaryExpr();
4495  const MemberExpr *ME = cast<MemberExpr>(E);
4496  mangleMemberExpr(ME->getBase(), ME->isArrow(),
4497  ME->getQualifier(), nullptr,
4498  ME->getMemberDecl()->getDeclName(),
4499  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4500  Arity);
4501  break;
4502  }
4503 
4504  case Expr::UnresolvedMemberExprClass: {
4505  NotPrimaryExpr();
4506  const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4507  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4508  ME->isArrow(), ME->getQualifier(), nullptr,
4509  ME->getMemberName(),
4510  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4511  Arity);
4512  break;
4513  }
4514 
4515  case Expr::CXXDependentScopeMemberExprClass: {
4516  NotPrimaryExpr();
4517  const CXXDependentScopeMemberExpr *ME
4518  = cast<CXXDependentScopeMemberExpr>(E);
4519  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4520  ME->isArrow(), ME->getQualifier(),
4522  ME->getMember(),
4523  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4524  Arity);
4525  break;
4526  }
4527 
4528  case Expr::UnresolvedLookupExprClass: {
4529  NotPrimaryExpr();
4530  const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4531  mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4532  ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4533  Arity);
4534  break;
4535  }
4536 
4537  case Expr::CXXUnresolvedConstructExprClass: {
4538  NotPrimaryExpr();
4539  const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4540  unsigned N = CE->getNumArgs();
4541 
4542  if (CE->isListInitialization()) {
4543  assert(N == 1 && "unexpected form for list initialization");
4544  auto *IL = cast<InitListExpr>(CE->getArg(0));
4545  Out << "tl";
4546  mangleType(CE->getType());
4547  mangleInitListElements(IL);
4548  Out << "E";
4549  break;
4550  }
4551 
4552  Out << "cv";
4553  mangleType(CE->getType());
4554  if (N != 1) Out << '_';
4555  for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4556  if (N != 1) Out << 'E';
4557  break;
4558  }
4559 
4560  case Expr::CXXConstructExprClass: {
4561  // An implicit cast is silent, thus may contain <expr-primary>.
4562  const auto *CE = cast<CXXConstructExpr>(E);
4563  if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4564  assert(
4565  CE->getNumArgs() >= 1 &&
4566  (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4567  "implicit CXXConstructExpr must have one argument");
4568  E = cast<CXXConstructExpr>(E)->getArg(0);
4569  goto recurse;
4570  }
4571  NotPrimaryExpr();
4572  Out << "il";
4573  for (auto *E : CE->arguments())
4574  mangleExpression(E);
4575  Out << "E";
4576  break;
4577  }
4578 
4579  case Expr::CXXTemporaryObjectExprClass: {
4580  NotPrimaryExpr();
4581  const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4582  unsigned N = CE->getNumArgs();
4583  bool List = CE->isListInitialization();
4584 
4585  if (List)
4586  Out << "tl";
4587  else
4588  Out << "cv";
4589  mangleType(CE->getType());
4590  if (!List && N != 1)
4591  Out << '_';
4592  if (CE->isStdInitListInitialization()) {
4593  // We implicitly created a std::initializer_list<T> for the first argument
4594  // of a constructor of type U in an expression of the form U{a, b, c}.
4595  // Strip all the semantic gunk off the initializer list.
4596  auto *SILE =
4597  cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4598  auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4599  mangleInitListElements(ILE);
4600  } else {
4601  for (auto *E : CE->arguments())
4602  mangleExpression(E);
4603  }
4604  if (List || N != 1)
4605  Out << 'E';
4606  break;
4607  }
4608 
4609  case Expr::CXXScalarValueInitExprClass:
4610  NotPrimaryExpr();
4611  Out << "cv";
4612  mangleType(E->getType());
4613  Out << "_E";
4614  break;
4615 
4616  case Expr::CXXNoexceptExprClass:
4617  NotPrimaryExpr();
4618  Out << "nx";
4619  mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4620  break;
4621 
4622  case Expr::UnaryExprOrTypeTraitExprClass: {
4623  // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4624  const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4625 
4626  if (!SAE->isInstantiationDependent()) {
4627  // Itanium C++ ABI:
4628  // If the operand of a sizeof or alignof operator is not
4629  // instantiation-dependent it is encoded as an integer literal
4630  // reflecting the result of the operator.
4631  //
4632  // If the result of the operator is implicitly converted to a known
4633  // integer type, that type is used for the literal; otherwise, the type
4634  // of std::size_t or std::ptrdiff_t is used.
4635  QualType T = (ImplicitlyConvertedToType.isNull() ||
4636  !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4637  : ImplicitlyConvertedToType;
4638  llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4639  mangleIntegerLiteral(T, V);
4640  break;
4641  }
4642 
4643  NotPrimaryExpr(); // But otherwise, they are not.
4644 
4645  auto MangleAlignofSizeofArg = [&] {
4646  if (SAE->isArgumentType()) {
4647  Out << 't';
4648  mangleType(SAE->getArgumentType());
4649  } else {
4650  Out << 'z';
4651  mangleExpression(SAE->getArgumentExpr());
4652  }
4653  };
4654 
4655  switch(SAE->getKind()) {
4656  case UETT_SizeOf:
4657  Out << 's';
4658  MangleAlignofSizeofArg();
4659  break;
4660  case UETT_PreferredAlignOf:
4661  // As of clang 12, we mangle __alignof__ differently than alignof. (They
4662  // have acted differently since Clang 8, but were previously mangled the
4663  // same.)
4664  if (Context.getASTContext().getLangOpts().getClangABICompat() >
4666  Out << "u11__alignof__";
4667  if (SAE->isArgumentType())
4668  mangleType(SAE->getArgumentType());
4669  else
4670  mangleTemplateArgExpr(SAE->getArgumentExpr());
4671  Out << 'E';
4672  break;
4673  }
4674  LLVM_FALLTHROUGH;
4675  case UETT_AlignOf:
4676  Out << 'a';
4677  MangleAlignofSizeofArg();
4678  break;
4679  case UETT_VecStep: {
4680  DiagnosticsEngine &Diags = Context.getDiags();
4681  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4682  "cannot yet mangle vec_step expression");
4683  Diags.Report(DiagID);
4684  return;
4685  }
4686  case UETT_OpenMPRequiredSimdAlign: {
4687  DiagnosticsEngine &Diags = Context.getDiags();
4688  unsigned DiagID = Diags.getCustomDiagID(
4690  "cannot yet mangle __builtin_omp_required_simd_align expression");
4691  Diags.Report(DiagID);
4692  return;
4693  }
4694  }
4695  break;
4696  }
4697 
4698  case Expr::CXXThrowExprClass: {
4699  NotPrimaryExpr();
4700  const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4701  // <expression> ::= tw <expression> # throw expression
4702  // ::= tr # rethrow
4703  if (TE->getSubExpr()) {
4704  Out << "tw";
4705  mangleExpression(TE->getSubExpr());
4706  } else {
4707  Out << "tr";
4708  }
4709  break;
4710  }
4711 
4712  case Expr::CXXTypeidExprClass: {
4713  NotPrimaryExpr();
4714  const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4715  // <expression> ::= ti <type> # typeid (type)
4716  // ::= te <expression> # typeid (expression)
4717  if (TIE->isTypeOperand()) {
4718  Out << "ti";
4719  mangleType(TIE->getTypeOperand(Context.getASTContext()));
4720  } else {
4721  Out << "te";
4722  mangleExpression(TIE->getExprOperand());
4723  }
4724  break;
4725  }
4726 
4727  case Expr::CXXDeleteExprClass: {
4728  NotPrimaryExpr();
4729  const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4730  // <expression> ::= [gs] dl <expression> # [::] delete expr
4731  // ::= [gs] da <expression> # [::] delete [] expr
4732  if (DE->isGlobalDelete()) Out << "gs";
4733  Out << (DE->isArrayForm() ? "da" : "dl");
4734  mangleExpression(DE->getArgument());
4735  break;
4736  }
4737 
4738  case Expr::UnaryOperatorClass: {
4739  NotPrimaryExpr();
4740  const UnaryOperator *UO = cast<UnaryOperator>(E);
4741  mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4742  /*Arity=*/1);
4743  mangleExpression(UO->getSubExpr());
4744  break;
4745  }
4746 
4747  case Expr::ArraySubscriptExprClass: {
4748  NotPrimaryExpr();
4749  const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4750 
4751  // Array subscript is treated as a syntactically weird form of
4752  // binary operator.
4753  Out << "ix";
4754  mangleExpression(AE->getLHS());
4755  mangleExpression(AE->getRHS());
4756  break;
4757  }
4758 
4759  case Expr::MatrixSubscriptExprClass: {
4760  NotPrimaryExpr();
4761  const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4762  Out << "ixix";
4763  mangleExpression(ME->getBase());
4764  mangleExpression(ME->getRowIdx());
4765  mangleExpression(ME->getColumnIdx());
4766  break;
4767  }
4768 
4769  case Expr::CompoundAssignOperatorClass: // fallthrough
4770  case Expr::BinaryOperatorClass: {
4771  NotPrimaryExpr();
4772  const BinaryOperator *BO = cast<BinaryOperator>(E);
4773  if (BO->getOpcode() == BO_PtrMemD)
4774  Out << "ds";
4775  else
4776  mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4777  /*Arity=*/2);
4778  mangleExpression(BO->getLHS());
4779  mangleExpression(BO->getRHS());
4780  break;
4781  }
4782 
4783  case Expr::CXXRewrittenBinaryOperatorClass: {
4784  NotPrimaryExpr();
4785  // The mangled form represents the original syntax.
4787  cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4788  mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4789  /*Arity=*/2);
4790  mangleExpression(Decomposed.LHS);
4791  mangleExpression(Decomposed.RHS);
4792  break;
4793  }
4794 
4795  case Expr::ConditionalOperatorClass: {
4796  NotPrimaryExpr();
4797  const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4798  mangleOperatorName(OO_Conditional, /*Arity=*/3);
4799  mangleExpression(CO->getCond());
4800  mangleExpression(CO->getLHS(), Arity);
4801  mangleExpression(CO->getRHS(), Arity);
4802  break;
4803  }
4804 
4805  case Expr::ImplicitCastExprClass: {
4806  ImplicitlyConvertedToType = E->getType();
4807  E = cast<ImplicitCastExpr>(E)->getSubExpr();
4808  goto recurse;
4809  }
4810 
4811  case Expr::ObjCBridgedCastExprClass: {
4812  NotPrimaryExpr();
4813  // Mangle ownership casts as a vendor extended operator __bridge,
4814  // __bridge_transfer, or __bridge_retain.
4815  StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4816  Out << "v1U" << Kind.size() << Kind;
4817  mangleCastExpression(E, "cv");
4818  break;
4819  }
4820 
4821  case Expr::CStyleCastExprClass:
4822  NotPrimaryExpr();
4823  mangleCastExpression(E, "cv");
4824  break;
4825 
4826  case Expr::CXXFunctionalCastExprClass: {
4827  NotPrimaryExpr();
4828  auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4829  // FIXME: Add isImplicit to CXXConstructExpr.
4830  if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4831  if (CCE->getParenOrBraceRange().isInvalid())
4832  Sub = CCE->getArg(0)->IgnoreImplicit();
4833  if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4834  Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4835  if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4836  Out << "tl";
4837  mangleType(E->getType());
4838  mangleInitListElements(IL);
4839  Out << "E";
4840  } else {
4841  mangleCastExpression(E, "cv");
4842  }
4843  break;
4844  }
4845 
4846  case Expr::CXXStaticCastExprClass:
4847  NotPrimaryExpr();
4848  mangleCastExpression(E, "sc");
4849  break;
4850  case Expr::CXXDynamicCastExprClass:
4851  NotPrimaryExpr();
4852  mangleCastExpression(E, "dc");
4853  break;
4854  case Expr::CXXReinterpretCastExprClass:
4855  NotPrimaryExpr();
4856  mangleCastExpression(E, "rc");
4857  break;
4858  case Expr::CXXConstCastExprClass:
4859  NotPrimaryExpr();
4860  mangleCastExpression(E, "cc");
4861  break;
4862  case Expr::CXXAddrspaceCastExprClass:
4863  NotPrimaryExpr();
4864  mangleCastExpression(E, "ac");
4865  break;
4866 
4867  case Expr::CXXOperatorCallExprClass: {
4868  NotPrimaryExpr();
4869  const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4870  unsigned NumArgs = CE->getNumArgs();
4871  // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4872  // (the enclosing MemberExpr covers the syntactic portion).
4873  if (CE->getOperator() != OO_Arrow)
4874  mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4875  // Mangle the arguments.
4876  for (unsigned i = 0; i != NumArgs; ++i)
4877  mangleExpression(CE->getArg(i));
4878  break;
4879  }
4880 
4881  case Expr::ParenExprClass:
4882  E = cast<ParenExpr>(E)->getSubExpr();
4883  goto recurse;
4884 
4885  case Expr::ConceptSpecializationExprClass: {
4886  // <expr-primary> ::= L <mangled-name> E # external name
4887  Out << "L_Z";
4888  auto *CSE = cast<ConceptSpecializationExpr>(E);
4889  mangleTemplateName(CSE->getNamedConcept(),
4890  CSE->getTemplateArguments().data(),
4891  CSE->getTemplateArguments().size());
4892  Out << 'E';
4893  break;
4894  }
4895 
4896  case Expr::DeclRefExprClass:
4897  // MangleDeclRefExpr helper handles primary-vs-nonprimary
4898  MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4899  break;
4900 
4901  case Expr::SubstNonTypeTemplateParmPackExprClass:
4902  NotPrimaryExpr();
4903  // FIXME: not clear how to mangle this!
4904  // template <unsigned N...> class A {
4905  // template <class U...> void foo(U (&x)[N]...);
4906  // };
4907  Out << "_SUBSTPACK_";
4908  break;
4909 
4910  case Expr::FunctionParmPackExprClass: {
4911  NotPrimaryExpr();
4912  // FIXME: not clear how to mangle this!
4913  const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4914  Out << "v110_SUBSTPACK";
4915  MangleDeclRefExpr(FPPE->getParameterPack());
4916  break;
4917  }
4918 
4919  case Expr::DependentScopeDeclRefExprClass: {
4920  NotPrimaryExpr();
4921  const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4922  mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4923  DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4924  Arity);
4925  break;
4926  }
4927 
4928  case Expr::CXXBindTemporaryExprClass:
4929  E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4930  goto recurse;
4931 
4932  case Expr::ExprWithCleanupsClass:
4933  E = cast<ExprWithCleanups>(E)->getSubExpr();
4934  goto recurse;
4935 
4936  case Expr::FloatingLiteralClass: {
4937  // <expr-primary>
4938  const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4939  mangleFloatLiteral(FL->getType(), FL->getValue());
4940  break;
4941  }
4942 
4943  case Expr::FixedPointLiteralClass:
4944  // Currently unimplemented -- might be <expr-primary> in future?
4945  mangleFixedPointLiteral();
4946  break;
4947 
4948  case Expr::CharacterLiteralClass:
4949  // <expr-primary>
4950  Out << 'L';
4951  mangleType(E->getType());
4952  Out << cast<CharacterLiteral>(E)->getValue();
4953  Out << 'E';
4954  break;
4955 
4956  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4957  case Expr::ObjCBoolLiteralExprClass:
4958  // <expr-primary>
4959  Out << "Lb";
4960  Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4961  Out << 'E';
4962  break;
4963 
4964  case Expr::CXXBoolLiteralExprClass:
4965  // <expr-primary>
4966  Out << "Lb";
4967  Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4968  Out << 'E';
4969  break;
4970 
4971  case Expr::IntegerLiteralClass: {
4972  // <expr-primary>
4973  llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4974  if (E->getType()->isSignedIntegerType())
4975  Value.setIsSigned(true);
4976  mangleIntegerLiteral(E->getType(), Value);
4977  break;
4978  }
4979 
4980  case Expr::ImaginaryLiteralClass: {
4981  // <expr-primary>
4982  const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4983  // Mangle as if a complex literal.
4984  // Proposal from David Vandevoorde, 2010.06.30.
4985  Out << 'L';
4986  mangleType(E->getType());
4987  if (const FloatingLiteral *Imag =
4988  dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4989  // Mangle a floating-point zero of the appropriate type.
4990  mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4991  Out << '_';
4992  mangleFloat(Imag->getValue());
4993  } else {
4994  Out << "0_";
4995  llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4996  if (IE->getSubExpr()->getType()->isSignedIntegerType())
4997  Value.setIsSigned(true);
4998  mangleNumber(Value);
4999  }
5000  Out << 'E';
5001  break;
5002  }
5003 
5004  case Expr::StringLiteralClass: {
5005  // <expr-primary>
5006  // Revised proposal from David Vandervoorde, 2010.07.15.
5007  Out << 'L';
5008  assert(isa<ConstantArrayType>(E->getType()));
5009  mangleType(E->getType());
5010  Out << 'E';
5011  break;
5012  }
5013 
5014  case Expr::GNUNullExprClass:
5015  // <expr-primary>
5016  // Mangle as if an integer literal 0.
5017  mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
5018  break;
5019 
5020  case Expr::CXXNullPtrLiteralExprClass: {
5021  // <expr-primary>
5022  Out << "LDnE";
5023  break;
5024  }
5025 
5026  case Expr::LambdaExprClass: {
5027  // A lambda-expression can't appear in the signature of an
5028  // externally-visible declaration, so there's no standard mangling for
5029  // this, but mangling as a literal of the closure type seems reasonable.
5030  Out << "L";
5031  mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
5032  Out << "E";
5033  break;
5034  }
5035 
5036  case Expr::PackExpansionExprClass:
5037  NotPrimaryExpr();
5038  Out << "sp";
5039  mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
5040  break;
5041 
5042  case Expr::SizeOfPackExprClass: {
5043  NotPrimaryExpr();
5044  auto *SPE = cast<SizeOfPackExpr>(E);
5045  if (SPE->isPartiallySubstituted()) {
5046  Out << "sP";
5047  for (const auto &A : SPE->getPartialArguments())
5048  mangleTemplateArg(A, false);
5049  Out << "E";
5050  break;
5051  }
5052 
5053  Out << "sZ";
5054  const NamedDecl *Pack = SPE->getPack();
5055  if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
5056  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
5057  else if (const NonTypeTemplateParmDecl *NTTP
5058  = dyn_cast<NonTypeTemplateParmDecl>(Pack))
5059  mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
5060  else if (const TemplateTemplateParmDecl *TempTP
5061  = dyn_cast<TemplateTemplateParmDecl>(Pack))
5062  mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
5063  else
5064  mangleFunctionParam(cast<ParmVarDecl>(Pack));
5065  break;
5066  }
5067 
5068  case Expr::MaterializeTemporaryExprClass:
5069  E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5070  goto recurse;
5071 
5072  case Expr::CXXFoldExprClass: {
5073  NotPrimaryExpr();
5074  auto *FE = cast<CXXFoldExpr>(E);
5075  if (FE->isLeftFold())
5076  Out << (FE->getInit() ? "fL" : "fl");
5077  else
5078  Out << (FE->getInit() ? "fR" : "fr");
5079 
5080  if (FE->getOperator() == BO_PtrMemD)
5081  Out << "ds";
5082  else
5083  mangleOperatorName(
5084  BinaryOperator::getOverloadedOperator(FE->getOperator()),
5085  /*Arity=*/2);
5086 
5087  if (FE->getLHS())
5088  mangleExpression(FE->getLHS());
5089  if (FE->getRHS())
5090  mangleExpression(FE->getRHS());
5091  break;
5092  }
5093 
5094  case Expr::CXXThisExprClass:
5095  NotPrimaryExpr();
5096  Out << "fpT";
5097  break;
5098 
5099  case Expr::CoawaitExprClass:
5100  // FIXME: Propose a non-vendor mangling.
5101  NotPrimaryExpr();
5102  Out << "v18co_await";
5103  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5104  break;
5105 
5106  case Expr::DependentCoawaitExprClass:
5107  // FIXME: Propose a non-vendor mangling.
5108  NotPrimaryExpr();
5109  Out << "v18co_await";
5110  mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5111  break;
5112 
5113  case Expr::CoyieldExprClass:
5114  // FIXME: Propose a non-vendor mangling.
5115  NotPrimaryExpr();
5116  Out << "v18co_yield";
5117  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5118  break;
5119  case Expr::SYCLUniqueStableNameExprClass: {
5120  const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5121  NotPrimaryExpr();
5122 
5123  Out << "u33__builtin_sycl_unique_stable_name";
5124  mangleType(USN->getTypeSourceInfo()->getType());
5125 
5126  Out << "E";
5127  break;
5128  }
5129  }
5130 
5131  if (AsTemplateArg && !IsPrimaryExpr)
5132  Out << 'E';
5133 }
5134 
5135 /// Mangle an expression which refers to a parameter variable.
5136 ///
5137 /// <expression> ::= <function-param>
5138 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
5139 /// <function-param> ::= fp <top-level CV-qualifiers>
5140 /// <parameter-2 non-negative number> _ # L == 0, I > 0
5141 /// <function-param> ::= fL <L-1 non-negative number>
5142 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
5143 /// <function-param> ::= fL <L-1 non-negative number>
5144 /// p <top-level CV-qualifiers>
5145 /// <I-1 non-negative number> _ # L > 0, I > 0
5146 ///
5147 /// L is the nesting depth of the parameter, defined as 1 if the
5148 /// parameter comes from the innermost function prototype scope
5149 /// enclosing the current context, 2 if from the next enclosing
5150 /// function prototype scope, and so on, with one special case: if
5151 /// we've processed the full parameter clause for the innermost
5152 /// function type, then L is one less. This definition conveniently
5153 /// makes it irrelevant whether a function's result type was written
5154 /// trailing or leading, but is otherwise overly complicated; the
5155 /// numbering was first designed without considering references to
5156 /// parameter in locations other than return types, and then the
5157 /// mangling had to be generalized without changing the existing
5158 /// manglings.
5159 ///
5160 /// I is the zero-based index of the parameter within its parameter
5161 /// declaration clause. Note that the original ABI document describes
5162 /// this using 1-based ordinals.
5163 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5164  unsigned parmDepth = parm->getFunctionScopeDepth();
5165  unsigned parmIndex = parm->getFunctionScopeIndex();
5166 
5167  // Compute 'L'.
5168  // parmDepth does not include the declaring function prototype.
5169  // FunctionTypeDepth does account for that.
5170  assert(parmDepth < FunctionTypeDepth.getDepth());
5171  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5172  if (FunctionTypeDepth.isInResultType())
5173  nestingDepth--;
5174 
5175  if (nestingDepth == 0) {
5176  Out << "fp";
5177  } else {
5178  Out << "fL" << (nestingDepth - 1) << 'p';
5179  }
5180 
5181  // Top-level qualifiers. We don't have to worry about arrays here,
5182  // because parameters declared as arrays should already have been
5183  // transformed to have pointer type. FIXME: apparently these don't
5184  // get mangled if used as an rvalue of a known non-class type?
5185  assert(!parm->getType()->isArrayType()
5186  && "parameter's type is still an array type?");
5187 
5188  if (const DependentAddressSpaceType *DAST =
5189  dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5190  mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5191  } else {
5192  mangleQualifiers(parm->getType().getQualifiers());
5193  }
5194 
5195  // Parameter index.
5196  if (parmIndex != 0) {
5197  Out << (parmIndex - 1);
5198  }
5199  Out << '_';
5200 }
5201 
5202 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5203  const CXXRecordDecl *InheritedFrom) {
5204  // <ctor-dtor-name> ::= C1 # complete object constructor
5205  // ::= C2 # base object constructor
5206  // ::= CI1 <type> # complete inheriting constructor
5207  // ::= CI2 <type> # base inheriting constructor
5208  //
5209  // In addition, C5 is a comdat name with C1 and C2 in it.
5210  Out << 'C';
5211  if (InheritedFrom)
5212  Out << 'I';
5213  switch (T) {
5214  case Ctor_Complete:
5215  Out << '1';
5216  break;
5217  case Ctor_Base:
5218  Out << '2';
5219  break;
5220  case Ctor_Comdat:
5221  Out << '5';
5222  break;
5223  case Ctor_DefaultClosure:
5224  case Ctor_CopyingClosure:
5225  llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5226  }
5227  if (InheritedFrom)
5228  mangleName(InheritedFrom);
5229 }
5230 
5231 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5232  // <ctor-dtor-name> ::= D0 # deleting destructor
5233  // ::= D1 # complete object destructor
5234  // ::= D2 # base object destructor
5235  //
5236  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5237  switch (T) {
5238  case Dtor_Deleting:
5239  Out << "D0";
5240  break;
5241  case Dtor_Complete:
5242  Out << "D1";
5243  break;
5244  case Dtor_Base:
5245  Out << "D2";
5246  break;
5247  case Dtor_Comdat:
5248  Out << "D5";
5249  break;
5250  }
5251 }
5252 
5253 namespace {
5254 // Helper to provide ancillary information on a template used to mangle its
5255 // arguments.
5256 struct TemplateArgManglingInfo {
5257  TemplateDecl *ResolvedTemplate = nullptr;
5258  bool SeenPackExpansionIntoNonPack = false;
5259  const NamedDecl *UnresolvedExpandedPack = nullptr;
5260 
5261  TemplateArgManglingInfo(TemplateName TN) {
5262  if (TemplateDecl *TD = TN.getAsTemplateDecl())
5263  ResolvedTemplate = TD;
5264  }
5265 
5266  /// Do we need to mangle template arguments with exactly correct types?
5267  ///
5268  /// This should be called exactly once for each parameter / argument pair, in
5269  /// order.
5270  bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5271  // We need correct types when the template-name is unresolved or when it
5272  // names a template that is able to be overloaded.
5273  if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5274  return true;
5275 
5276  // Move to the next parameter.
5277  const NamedDecl *Param = UnresolvedExpandedPack;
5278  if (!Param) {
5279  assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5280  "no parameter for argument");
5281  Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5282 
5283  // If we reach an expanded parameter pack whose argument isn't in pack
5284  // form, that means Sema couldn't figure out which arguments belonged to
5285  // it, because it contains a pack expansion. Track the expanded pack for
5286  // all further template arguments until we hit that pack expansion.
5287  if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5288  assert(getExpandedPackSize(Param) &&
5289  "failed to form pack argument for parameter pack");
5290  UnresolvedExpandedPack = Param;
5291  }
5292  }
5293 
5294  // If we encounter a pack argument that is expanded into a non-pack
5295  // parameter, we can no longer track parameter / argument correspondence,
5296  // and need to use exact types from this point onwards.
5297  if (Arg.isPackExpansion() &&
5298  (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5299  SeenPackExpansionIntoNonPack = true;
5300  return true;
5301  }
5302 
5303  // We need exact types for function template arguments because they might be
5304  // overloaded on template parameter type. As a special case, a member
5305  // function template of a generic lambda is not overloadable.
5306  if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5307  auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5308  if (!RD || !RD->isGenericLambda())
5309  return true;
5310  }
5311 
5312  // Otherwise, we only need a correct type if the parameter has a deduced
5313  // type.
5314  //
5315  // Note: for an expanded parameter pack, getType() returns the type prior
5316  // to expansion. We could ask for the expanded type with getExpansionType(),
5317  // but it doesn't matter because substitution and expansion don't affect
5318  // whether a deduced type appears in the type.
5319  auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5320  return NTTP && NTTP->getType()->getContainedDeducedType();
5321  }
5322 };
5323 }
5324 
5325 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5326  const TemplateArgumentLoc *TemplateArgs,
5327  unsigned NumTemplateArgs) {
5328  // <template-args> ::= I <template-arg>+ E
5329  Out << 'I';
5330  TemplateArgManglingInfo Info(TN);
5331  for (unsigned i = 0; i != NumTemplateArgs; ++i)
5332  mangleTemplateArg(TemplateArgs[i].getArgument(),
5333  Info.needExactType(i, TemplateArgs[i].getArgument()));
5334  Out << 'E';
5335 }
5336 
5337 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5338  const TemplateArgumentList &AL) {
5339  // <template-args> ::= I <template-arg>+ E
5340  Out << 'I';
5341  TemplateArgManglingInfo Info(TN);
5342  for (unsigned i = 0, e = AL.size(); i != e; ++i)
5343  mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5344  Out << 'E';
5345 }
5346 
5347 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5348  const TemplateArgument *TemplateArgs,
5349  unsigned NumTemplateArgs) {
5350  // <template-args> ::= I <template-arg>+ E
5351  Out << 'I';
5352  TemplateArgManglingInfo Info(TN);
5353  for (unsigned i = 0; i != NumTemplateArgs; ++i)
5354  mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5355  Out << 'E';
5356 }
5357 
5358 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5359  // <template-arg> ::= <type> # type or template
5360  // ::= X <expression> E # expression
5361  // ::= <expr-primary> # simple expressions
5362  // ::= J <template-arg>* E # argument pack
5363  if (!A.isInstantiationDependent() || A.isDependent())
5364  A = Context.getASTContext().getCanonicalTemplateArgument(A);
5365 
5366  switch (A.getKind()) {
5368  llvm_unreachable("Cannot mangle NULL template argument");
5369 
5371  mangleType(A.getAsType());
5372  break;
5374  // This is mangled as <type>.
5375  mangleType(A.getAsTemplate());
5376  break;
5378  // <type> ::= Dp <type> # pack expansion (C++0x)
5379  Out << "Dp";
5380  mangleType(A.getAsTemplateOrTemplatePattern());
5381  break;
5383  mangleTemplateArgExpr(A.getAsExpr());
5384  break;
5386  mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5387  break;
5389  // <expr-primary> ::= L <mangled-name> E # external name
5390  ValueDecl *D = A.getAsDecl();
5391 
5392  // Template parameter objects are modeled by reproducing a source form
5393  // produced as if by aggregate initialization.
5394  if (A.getParamTypeForDecl()->isRecordType()) {
5395  auto *TPO = cast<TemplateParamObjectDecl>(D);
5396  mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5397  TPO->getValue(), /*TopLevel=*/true,
5398  NeedExactType);
5399  break;
5400  }
5401 
5402  ASTContext &Ctx = Context.getASTContext();
5403  APValue Value;
5404  if (D->isCXXInstanceMember())
5405  // Simple pointer-to-member with no conversion.
5406  Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5407  else if (D->getType()->isArrayType() &&
5408  Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5409  A.getParamTypeForDecl()) &&
5410  Ctx.getLangOpts().getClangABICompat() >
5412  // Build a value corresponding to this implicit array-to-pointer decay.
5415  /*OnePastTheEnd=*/false);
5416  else
5417  // Regular pointer or reference to a declaration.
5420  /*OnePastTheEnd=*/false);
5421  mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5422  NeedExactType);
5423  break;
5424  }
5426  mangleNullPointer(A.getNullPtrType());
5427  break;
5428  }
5429  case TemplateArgument::Pack: {
5430  // <template-arg> ::= J <template-arg>* E
5431  Out << 'J';
5432  for (const auto &P : A.pack_elements())
5433  mangleTemplateArg(P, NeedExactType);
5434  Out << 'E';
5435  }
5436  }
5437 }
5438 
5439 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5440  ASTContext &Ctx = Context.getASTContext();
5441  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5442  mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5443  return;
5444  }
5445 
5446  // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5447  // correctly in cases where the template argument was
5448  // constructed from an expression rather than an already-evaluated
5449  // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5450  // 'Li0E'.
5451  //
5452  // We did special-case DeclRefExpr to attempt to DTRT for that one
5453  // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5454  // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5455  // the proper 'Xfp_E'.
5456  E = E->IgnoreParenImpCasts();
5457  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5458  const ValueDecl *D = DRE->getDecl();
5459  if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5460  Out << 'L';
5461  mangle(D);
5462  Out << 'E';
5463  return;
5464  }
5465  }
5466  Out << 'X';
5467  mangleExpression(E);
5468  Out << 'E';
5469 }
5470 
5471 /// Determine whether a given value is equivalent to zero-initialization for
5472 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5473 ///
5474 /// Note that this is not in general equivalent to determining whether the
5475 /// value has an all-zeroes bit pattern.
5476 static bool isZeroInitialized(QualType T, const APValue &V) {
5477  // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5478  // pathological cases due to using this, but it's a little awkward
5479  // to do this in linear time in general.
5480  switch (V.getKind()) {
5481  case APValue::None:
5484  return false;
5485 
5486  case APValue::Struct: {
5487  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5488  assert(RD && "unexpected type for record value");
5489  unsigned I = 0;
5490  for (const CXXBaseSpecifier &BS : RD->bases()) {
5491  if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5492  return false;
5493  ++I;
5494  }
5495  I = 0;
5496  for (const FieldDecl *FD : RD->fields()) {
5497  if (!FD->isUnnamedBitfield() &&
5498  !isZeroInitialized(FD->getType(), V.getStructField(I)))
5499  return false;
5500  ++I;
5501  }
5502  return true;
5503  }
5504 
5505  case APValue::Union: {
5506  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5507  assert(RD && "unexpected type for union value");
5508  // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5509  for (const FieldDecl *FD : RD->fields()) {
5510  if (!FD->isUnnamedBitfield())
5511  return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5512  isZeroInitialized(FD->getType(), V.getUnionValue());
5513  }
5514  // If there are no fields (other than unnamed bitfields), the value is
5515  // necessarily zero-initialized.
5516  return true;
5517  }
5518 
5519  case APValue::Array: {
5520  QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5521  for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5522  if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5523  return false;
5524  return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5525  }
5526 
5527  case APValue::Vector: {
5528  const VectorType *VT = T->castAs<VectorType>();
5529  for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5530  if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5531  return false;
5532  return true;
5533  }
5534 
5535  case APValue::Int:
5536  return !V.getInt();
5537 
5538  case APValue::Float:
5539  return V.getFloat().isPosZero();
5540 
5541  case APValue::FixedPoint:
5542  return !V.getFixedPoint().getValue();
5543 
5544  case APValue::ComplexFloat:
5545  return V.getComplexFloatReal().isPosZero() &&
5546  V.getComplexFloatImag().isPosZero();
5547 
5548  case APValue::ComplexInt:
5549  return !V.getComplexIntReal() && !V.getComplexIntImag();
5550 
5551  case APValue::LValue:
5552  return V.isNullPointer();
5553 
5555  return !V.getMemberPointerDecl();
5556  }
5557 
5558  llvm_unreachable("Unhandled APValue::ValueKind enum");
5559 }
5560 
5561 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5562  QualType T = LV.getLValueBase().getType();
5563  for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5564  if (const ArrayType *AT = Ctx.getAsArrayType(T))
5565  T = AT->getElementType();
5566  else if (const FieldDecl *FD =
5567  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5568  T = FD->getType();
5569  else
5570  T = Ctx.getRecordType(
5571  cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5572  }
5573  return T;
5574 }
5575 
5577  DiagnosticsEngine &Diags,
5578  const FieldDecl *FD) {
5579  // According to:
5580  // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous
5581  // For the purposes of mangling, the name of an anonymous union is considered
5582  // to be the name of the first named data member found by a pre-order,
5583  // depth-first, declaration-order walk of the data members of the anonymous
5584  // union.
5585 
5586  if (FD->getIdentifier())
5587  return FD->getIdentifier();
5588 
5589  // The only cases where the identifer of a FieldDecl would be blank is if the
5590  // field represents an anonymous record type or if it is an unnamed bitfield.
5591  // There is no type to descend into in the case of a bitfield, so we can just
5592  // return nullptr in that case.
5593  if (FD->isBitField())
5594  return nullptr;
5595  const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl();
5596 
5597  // Consider only the fields in declaration order, searched depth-first. We
5598  // don't care about the active member of the union, as all we are doing is
5599  // looking for a valid name. We also don't check bases, due to guidance from
5600  // the Itanium ABI folks.
5601  for (const FieldDecl *RDField : RD->fields()) {
5602  if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField))
5603  return II;
5604  }
5605 
5606  // According to the Itanium ABI: If there is no such data member (i.e., if all
5607  // of the data members in the union are unnamed), then there is no way for a
5608  // program to refer to the anonymous union, and there is therefore no need to
5609  // mangle its name. However, we should diagnose this anyway.
5610  unsigned DiagID = Diags.getCustomDiagID(
5611  DiagnosticsEngine::Error, "cannot mangle this unnamed union NTTP yet");
5612  Diags.Report(UnionLoc, DiagID);
5613 
5614  return nullptr;
5615 }
5616 
5617 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5618  bool TopLevel,
5619  bool NeedExactType) {
5620  // Ignore all top-level cv-qualifiers, to match GCC.
5621  Qualifiers Quals;
5622  T = getASTContext().getUnqualifiedArrayType(T, Quals);
5623 
5624  // A top-level expression that's not a primary expression is wrapped in X...E.
5625  bool IsPrimaryExpr = true;
5626  auto NotPrimaryExpr = [&] {
5627  if (TopLevel && IsPrimaryExpr)
5628  Out << 'X';
5629  IsPrimaryExpr = false;
5630  };
5631 
5632  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5633  switch (V.getKind()) {
5634  case APValue::None:
5636  Out << 'L';
5637  mangleType(T);
5638  Out << 'E';
5639  break;
5640 
5642  llvm_unreachable("unexpected value kind in template argument");
5643 
5644  case APValue::Struct: {
5645  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5646  assert(RD && "unexpected type for record value");
5647 
5648  // Drop trailing zero-initialized elements.
5650  RD->field_end());
5651  while (
5652  !Fields.empty() &&
5653  (Fields.back()->isUnnamedBitfield() ||
5654  isZeroInitialized(Fields.back()->getType(),
5655  V.getStructField(Fields.back()->getFieldIndex())))) {
5656  Fields.pop_back();
5657  }
5659  if (Fields.empty()) {
5660  while (!Bases.empty() &&
5661  isZeroInitialized(Bases.back().getType(),
5662  V.getStructBase(Bases.size() - 1)))
5663  Bases = Bases.drop_back();
5664  }
5665 
5666  // <expression> ::= tl <type> <braced-expression>* E
5667  NotPrimaryExpr();
5668  Out << "tl";
5669  mangleType(T);
5670  for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5671  mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5672  for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5673  if (Fields[I]->isUnnamedBitfield())
5674  continue;
5675  mangleValueInTemplateArg(Fields[I]->getType(),
5676  V.getStructField(Fields[I]->getFieldIndex()),
5677  false);
5678  }
5679  Out << 'E';
5680  break;
5681  }
5682 
5683  case APValue::Union: {
5684  assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5685  const FieldDecl *FD = V.getUnionField();
5686 
5687  if (!FD) {
5688  Out << 'L';
5689  mangleType(T);
5690  Out << 'E';
5691  break;
5692  }
5693 
5694  // <braced-expression> ::= di <field source-name> <braced-expression>
5695  NotPrimaryExpr();
5696  Out << "tl";
5697  mangleType(T);
5698  if (!isZeroInitialized(T, V)) {
5699  Out << "di";
5701  T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD));
5702  if (II)
5703  mangleSourceName(II);
5704  mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5705  }
5706  Out << 'E';
5707  break;
5708  }
5709 
5710  case APValue::Array: {
5711  QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5712 
5713  NotPrimaryExpr();
5714  Out << "tl";
5715  mangleType(T);
5716 
5717  // Drop trailing zero-initialized elements.
5718  unsigned N = V.getArraySize();
5719  if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5720  N = V.getArrayInitializedElts();
5721  while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5722  --N;
5723  }
5724 
5725  for (unsigned I = 0; I != N; ++I) {
5726  const APValue &Elem = I < V.getArrayInitializedElts()
5727  ? V.getArrayInitializedElt(I)
5728  : V.getArrayFiller();
5729  mangleValueInTemplateArg(ElemT, Elem, false);
5730  }
5731  Out << 'E';
5732  break;
5733  }
5734 
5735  case APValue::Vector: {
5736  const VectorType *VT = T->castAs<VectorType>();
5737 
5738  NotPrimaryExpr();
5739  Out << "tl";
5740  mangleType(T);
5741  unsigned N = V.getVectorLength();
5742  while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5743  --N;
5744  for (unsigned I = 0; I != N; ++I)
5745  mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5746  Out << 'E';
5747  break;
5748  }
5749 
5750  case APValue::Int:
5751  mangleIntegerLiteral(T, V.getInt());
5752  break;
5753 
5754  case APValue::Float:
5755  mangleFloatLiteral(T, V.getFloat());
5756  break;
5757 
5758  case APValue::FixedPoint:
5759  mangleFixedPointLiteral();
5760  break;
5761 
5762  case APValue::ComplexFloat: {
5763  const ComplexType *CT = T->castAs<ComplexType>();
5764  NotPrimaryExpr();
5765  Out << "tl";
5766  mangleType(T);
5767  if (!V.getComplexFloatReal().isPosZero() ||
5768  !V.getComplexFloatImag().isPosZero())
5769  mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5770  if (!V.getComplexFloatImag().isPosZero())
5771  mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5772  Out << 'E';
5773  break;
5774  }
5775 
5776  case APValue::ComplexInt: {
5777  const ComplexType *CT = T->castAs<ComplexType>();
5778  NotPrimaryExpr();
5779  Out << "tl";
5780  mangleType(T);
5781  if (V.getComplexIntReal().getBoolValue() ||
5782  V.getComplexIntImag().getBoolValue())
5783  mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5784  if (V.getComplexIntImag().getBoolValue())
5785  mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5786  Out << 'E';
5787  break;
5788  }
5789 
5790  case APValue::LValue: {
5791  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5792  assert((T->isPointerType() || T->isReferenceType()) &&
5793  "unexpected type for LValue template arg");
5794 
5795  if (V.isNullPointer()) {
5796  mangleNullPointer(T);
5797  break;
5798  }
5799 
5800  APValue::LValueBase B = V.getLValueBase();
5801  if (!B) {
5802  // Non-standard mangling for integer cast to a pointer; this can only
5803  // occur as an extension.
5804  CharUnits Offset = V.getLValueOffset();
5805  if (Offset.isZero()) {
5806  // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5807  // a cast, because L <type> 0 E means something else.
5808  NotPrimaryExpr();
5809  Out << "rc";
5810  mangleType(T);
5811  Out << "Li0E";
5812  if (TopLevel)
5813  Out << 'E';
5814  } else {
5815  Out << "L";
5816  mangleType(T);
5817  Out << Offset.getQuantity() << 'E';
5818  }
5819  break;
5820  }
5821 
5822  ASTContext &Ctx = Context.getASTContext();
5823 
5824  enum { Base, Offset, Path } Kind;
5825  if (!V.hasLValuePath()) {
5826  // Mangle as (T*)((char*)&base + N).
5827  if (T->isReferenceType()) {
5828  NotPrimaryExpr();
5829  Out << "decvP";
5830  mangleType(T->getPointeeType());
5831  } else {
5832  NotPrimaryExpr();
5833  Out << "cv";
5834  mangleType(T);
5835  }
5836  Out << "plcvPcad";
5837  Kind = Offset;
5838  } else {
5839  if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5840  NotPrimaryExpr();
5841  // A final conversion to the template parameter's type is usually
5842  // folded into the 'so' mangling, but we can't do that for 'void*'
5843  // parameters without introducing collisions.
5844  if (NeedExactType && T->isVoidPointerType()) {
5845  Out << "cv";
5846  mangleType(T);
5847  }
5848  if (T->isPointerType())
5849  Out << "ad";
5850  Out << "so";
5851  mangleType(T->isVoidPointerType()
5852  ? getLValueType(Ctx, V).getUnqualifiedType()
5853  : T->getPointeeType());
5854  Kind = Path;
5855  } else {
5856  if (NeedExactType &&
5857  !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5858  Ctx.getLangOpts().getClangABICompat() >
5860  NotPrimaryExpr();
5861  Out << "cv";
5862  mangleType(T);
5863  }
5864  if (T->isPointerType()) {
5865  NotPrimaryExpr();
5866  Out << "ad";
5867  }
5868  Kind = Base;
5869  }
5870  }
5871 
5872  QualType TypeSoFar = B.getType();
5873  if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5874  Out << 'L';
5875  mangle(VD);
5876  Out << 'E';
5877  } else if (auto *E = B.dyn_cast<const Expr*>()) {
5878  NotPrimaryExpr();
5879  mangleExpression(E);
5880  } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5881  NotPrimaryExpr();
5882  Out << "ti";
5883  mangleType(QualType(TI.getType(), 0));
5884  } else {
5885  // We should never see dynamic allocations here.
5886  llvm_unreachable("unexpected lvalue base kind in template argument");
5887  }
5888 
5889  switch (Kind) {
5890  case Base:
5891  break;
5892 
5893  case Offset:
5894  Out << 'L';
5895  mangleType(Ctx.getPointerDiffType());
5896  mangleNumber(V.getLValueOffset().getQuantity());
5897  Out << 'E';
5898  break;
5899 
5900  case Path:
5901  // <expression> ::= so <referent type> <expr> [<offset number>]
5902  // <union-selector>* [p] E
5903  if (!V.getLValueOffset().isZero())
5904  mangleNumber(V.getLValueOffset().getQuantity());
5905 
5906  // We model a past-the-end array pointer as array indexing with index N,
5907  // not with the "past the end" flag. Compensate for that.
5908  bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5909 
5910  for (APValue::LValuePathEntry E : V.getLValuePath()) {
5911  if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5912  if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5913  OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5914  TypeSoFar = AT->getElementType();
5915  } else {
5916  const Decl *D = E.getAsBaseOrMember().getPointer();
5917  if (auto *FD = dyn_cast<FieldDecl>(D)) {
5918  // <union-selector> ::= _ <number>
5919  if (FD->getParent()->isUnion()) {
5920  Out << '_';
5921  if (FD->getFieldIndex())
5922  Out << (FD->getFieldIndex() - 1);
5923  }
5924  TypeSoFar = FD->getType();
5925  } else {
5926  TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5927  }
5928  }
5929  }
5930 
5931  if (OnePastTheEnd)
5932  Out << 'p';
5933  Out << 'E';
5934  break;
5935  }
5936 
5937  break;
5938  }
5939 
5941  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5942  if (!V.getMemberPointerDecl()) {
5943  mangleNullPointer(T);
5944  break;
5945  }
5946 
5947  ASTContext &Ctx = Context.getASTContext();
5948 
5949  NotPrimaryExpr();
5950  if (!V.getMemberPointerPath().empty()) {
5951  Out << "mc";
5952  mangleType(T);
5953  } else if (NeedExactType &&
5954  !Ctx.hasSameType(
5956  V.getMemberPointerDecl()->getType()) &&
5957  Ctx.getLangOpts().getClangABICompat() >
5959  Out << "cv";
5960  mangleType(T);
5961  }
5962  Out << "adL";
5963  mangle(V.getMemberPointerDecl());
5964  Out << 'E';
5965  if (!V.getMemberPointerPath().empty()) {
5966  CharUnits Offset =
5967  Context.getASTContext().getMemberPointerPathAdjustment(V);
5968  if (!Offset.isZero())
5969  mangleNumber(Offset.getQuantity());
5970  Out << 'E';
5971  }
5972  break;
5973  }
5974 
5975  if (TopLevel && !IsPrimaryExpr)
5976  Out << 'E';
5977 }
5978 
5979 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5980  // <template-param> ::= T_ # first template parameter
5981  // ::= T <parameter-2 non-negative number> _
5982  // ::= TL <L-1 non-negative number> __
5983  // ::= TL <L-1 non-negative number> _
5984  // <parameter-2 non-negative number> _
5985  //
5986  // The latter two manglings are from a proposal here:
5987  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5988  Out << 'T';
5989  if (Depth != 0)
5990  Out << 'L' << (Depth - 1) << '_';
5991  if (Index != 0)
5992  Out << (Index - 1);
5993  Out << '_';
5994 }
5995 
5996 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5997  if (SeqID == 0) {
5998  // Nothing.
5999  } else if (SeqID == 1) {
6000  Out << '0';
6001  } else {
6002  SeqID--;
6003 
6004  // <seq-id> is encoded in base-36, using digits and upper case letters.
6005  char Buffer[7]; // log(2**32) / log(36) ~= 7
6006  MutableArrayRef<char> BufferRef(Buffer);
6007  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
6008 
6009  for (; SeqID != 0; SeqID /= 36) {
6010  unsigned C = SeqID % 36;
6011  *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
6012  }
6013 
6014  Out.write(I.base(), I - BufferRef.rbegin());
6015  }
6016  Out << '_';
6017 }
6018 
6019 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
6020  bool result = mangleSubstitution(tname);
6021  assert(result && "no existing substitution for template name");
6022  (void) result;
6023 }
6024 
6025 // <substitution> ::= S <seq-id> _
6026 // ::= S_
6027 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
6028  // Try one of the standard substitutions first.
6029  if (mangleStandardSubstitution(ND))
6030  return true;
6031 
6032  ND = cast<NamedDecl>(ND->getCanonicalDecl());
6033  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
6034 }
6035 
6036 bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) {
6037  assert(NNS->getKind() == NestedNameSpecifier::Identifier &&
6038  "mangleSubstitution(NestedNameSpecifier *) is only used for "
6039  "identifier nested name specifiers.");
6040  NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
6041  return mangleSubstitution(reinterpret_cast<uintptr_t>(NNS));
6042 }
6043 
6044 /// Determine whether the given type has any qualifiers that are relevant for
6045 /// substitutions.
6047  Qualifiers Qs = T.getQualifiers();
6048  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
6049 }
6050 
6051 bool CXXNameMangler::mangleSubstitution(QualType T) {
6053  if (const RecordType *RT = T->getAs<RecordType>())
6054  return mangleSubstitution(RT->getDecl());
6055  }
6056 
6057  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6058 
6059  return mangleSubstitution(TypePtr);
6060 }
6061 
6062 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
6063  if (TemplateDecl *TD = Template.getAsTemplateDecl())
6064  return mangleSubstitution(TD);
6065 
6066  Template = Context.getASTContext().getCanonicalTemplateName(Template);
6067  return mangleSubstitution(
6068  reinterpret_cast<uintptr_t