clang  10.0.0svn
ItaniumMangle.cpp
Go to the documentation of this file.
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 #include "clang/AST/Mangle.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace clang;
36 
37 namespace {
38 
39 /// Retrieve the declaration context that should be used when mangling the given
40 /// declaration.
41 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
42  // The ABI assumes that lambda closure types that occur within
43  // default arguments live in the context of the function. However, due to
44  // the way in which Clang parses and creates function declarations, this is
45  // not the case: the lambda closure type ends up living in the context
46  // where the function itself resides, because the function declaration itself
47  // had not yet been created. Fix the context here.
48  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
49  if (RD->isLambda())
50  if (ParmVarDecl *ContextParam
51  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
52  return ContextParam->getDeclContext();
53  }
54 
55  // Perform the same check for block literals.
56  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
57  if (ParmVarDecl *ContextParam
58  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
59  return ContextParam->getDeclContext();
60  }
61 
62  const DeclContext *DC = D->getDeclContext();
63  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
64  isa<OMPDeclareMapperDecl>(DC)) {
65  return getEffectiveDeclContext(cast<Decl>(DC));
66  }
67 
68  if (const auto *VD = dyn_cast<VarDecl>(D))
69  if (VD->isExternC())
70  return VD->getASTContext().getTranslationUnitDecl();
71 
72  if (const auto *FD = dyn_cast<FunctionDecl>(D))
73  if (FD->isExternC())
74  return FD->getASTContext().getTranslationUnitDecl();
75 
76  return DC->getRedeclContext();
77 }
78 
79 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
80  return getEffectiveDeclContext(cast<Decl>(DC));
81 }
82 
83 static bool isLocalContainerContext(const DeclContext *DC) {
84  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
85 }
86 
87 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
88  const DeclContext *DC = getEffectiveDeclContext(D);
89  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
90  if (isLocalContainerContext(DC))
91  return dyn_cast<RecordDecl>(D);
92  D = cast<Decl>(DC);
93  DC = getEffectiveDeclContext(D);
94  }
95  return nullptr;
96 }
97 
98 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
99  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
100  return ftd->getTemplatedDecl();
101 
102  return fn;
103 }
104 
105 static const NamedDecl *getStructor(const NamedDecl *decl) {
106  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
107  return (fn ? getStructor(fn) : decl);
108 }
109 
110 static bool isLambda(const NamedDecl *ND) {
111  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
112  if (!Record)
113  return false;
114 
115  return Record->isLambda();
116 }
117 
118 static const unsigned UnknownArity = ~0U;
119 
120 class ItaniumMangleContextImpl : public ItaniumMangleContext {
121  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
122  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
123  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
124 
125 public:
126  explicit ItaniumMangleContextImpl(ASTContext &Context,
127  DiagnosticsEngine &Diags)
128  : ItaniumMangleContext(Context, Diags) {}
129 
130  /// @name Mangler Entry Points
131  /// @{
132 
133  bool shouldMangleCXXName(const NamedDecl *D) override;
134  bool shouldMangleStringLiteral(const StringLiteral *) override {
135  return false;
136  }
137  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
138  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
139  raw_ostream &) override;
140  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
142  raw_ostream &) override;
143  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
144  raw_ostream &) override;
145  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
146  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
147  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
148  const CXXRecordDecl *Type, raw_ostream &) override;
149  void mangleCXXRTTI(QualType T, raw_ostream &) override;
150  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
151  void mangleTypeName(QualType T, raw_ostream &) override;
152  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
153  raw_ostream &) override;
154  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
155  raw_ostream &) override;
156 
157  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
158  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
159  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
160  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
161  void mangleDynamicAtExitDestructor(const VarDecl *D,
162  raw_ostream &Out) override;
163  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
164  raw_ostream &Out) override;
165  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
166  raw_ostream &Out) override;
167  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
168  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
169  raw_ostream &) override;
170 
171  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
172 
173  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
174 
175  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
176  // Lambda closure types are already numbered.
177  if (isLambda(ND))
178  return false;
179 
180  // Anonymous tags are already numbered.
181  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
182  if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
183  return false;
184  }
185 
186  // Use the canonical number for externally visible decls.
187  if (ND->isExternallyVisible()) {
188  unsigned discriminator = getASTContext().getManglingNumber(ND);
189  if (discriminator == 1)
190  return false;
191  disc = discriminator - 2;
192  return true;
193  }
194 
195  // Make up a reasonable number for internal decls.
196  unsigned &discriminator = Uniquifier[ND];
197  if (!discriminator) {
198  const DeclContext *DC = getEffectiveDeclContext(ND);
199  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
200  }
201  if (discriminator == 1)
202  return false;
203  disc = discriminator-2;
204  return true;
205  }
206  /// @}
207 };
208 
209 /// Manage the mangling of a single name.
210 class CXXNameMangler {
211  ItaniumMangleContextImpl &Context;
212  raw_ostream &Out;
213  bool NullOut = false;
214  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
215  /// This mode is used when mangler creates another mangler recursively to
216  /// calculate ABI tags for the function return value or the variable type.
217  /// Also it is required to avoid infinite recursion in some cases.
218  bool DisableDerivedAbiTags = false;
219 
220  /// The "structor" is the top-level declaration being mangled, if
221  /// that's not a template specialization; otherwise it's the pattern
222  /// for that specialization.
223  const NamedDecl *Structor;
224  unsigned StructorType;
225 
226  /// The next substitution sequence number.
227  unsigned SeqID;
228 
229  class FunctionTypeDepthState {
230  unsigned Bits;
231 
232  enum { InResultTypeMask = 1 };
233 
234  public:
235  FunctionTypeDepthState() : Bits(0) {}
236 
237  /// The number of function types we're inside.
238  unsigned getDepth() const {
239  return Bits >> 1;
240  }
241 
242  /// True if we're in the return type of the innermost function type.
243  bool isInResultType() const {
244  return Bits & InResultTypeMask;
245  }
246 
247  FunctionTypeDepthState push() {
248  FunctionTypeDepthState tmp = *this;
249  Bits = (Bits & ~InResultTypeMask) + 2;
250  return tmp;
251  }
252 
253  void enterResultType() {
254  Bits |= InResultTypeMask;
255  }
256 
257  void leaveResultType() {
258  Bits &= ~InResultTypeMask;
259  }
260 
261  void pop(FunctionTypeDepthState saved) {
262  assert(getDepth() == saved.getDepth() + 1);
263  Bits = saved.Bits;
264  }
265 
266  } FunctionTypeDepth;
267 
268  // abi_tag is a gcc attribute, taking one or more strings called "tags".
269  // The goal is to annotate against which version of a library an object was
270  // built and to be able to provide backwards compatibility ("dual abi").
271  // For more information see docs/ItaniumMangleAbiTags.rst.
272  typedef SmallVector<StringRef, 4> AbiTagList;
273 
274  // State to gather all implicit and explicit tags used in a mangled name.
275  // Must always have an instance of this while emitting any name to keep
276  // track.
277  class AbiTagState final {
278  public:
279  explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
280  Parent = LinkHead;
281  LinkHead = this;
282  }
283 
284  // No copy, no move.
285  AbiTagState(const AbiTagState &) = delete;
286  AbiTagState &operator=(const AbiTagState &) = delete;
287 
288  ~AbiTagState() { pop(); }
289 
290  void write(raw_ostream &Out, const NamedDecl *ND,
291  const AbiTagList *AdditionalAbiTags) {
292  ND = cast<NamedDecl>(ND->getCanonicalDecl());
293  if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
294  assert(
295  !AdditionalAbiTags &&
296  "only function and variables need a list of additional abi tags");
297  if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
298  if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
299  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
300  AbiTag->tags().end());
301  }
302  // Don't emit abi tags for namespaces.
303  return;
304  }
305  }
306 
307  AbiTagList TagList;
308  if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
309  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
310  AbiTag->tags().end());
311  TagList.insert(TagList.end(), AbiTag->tags().begin(),
312  AbiTag->tags().end());
313  }
314 
315  if (AdditionalAbiTags) {
316  UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
317  AdditionalAbiTags->end());
318  TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
319  AdditionalAbiTags->end());
320  }
321 
322  llvm::sort(TagList);
323  TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
324 
325  writeSortedUniqueAbiTags(Out, TagList);
326  }
327 
328  const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
329  void setUsedAbiTags(const AbiTagList &AbiTags) {
330  UsedAbiTags = AbiTags;
331  }
332 
333  const AbiTagList &getEmittedAbiTags() const {
334  return EmittedAbiTags;
335  }
336 
337  const AbiTagList &getSortedUniqueUsedAbiTags() {
338  llvm::sort(UsedAbiTags);
339  UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
340  UsedAbiTags.end());
341  return UsedAbiTags;
342  }
343 
344  private:
345  //! All abi tags used implicitly or explicitly.
346  AbiTagList UsedAbiTags;
347  //! All explicit abi tags (i.e. not from namespace).
348  AbiTagList EmittedAbiTags;
349 
350  AbiTagState *&LinkHead;
351  AbiTagState *Parent = nullptr;
352 
353  void pop() {
354  assert(LinkHead == this &&
355  "abi tag link head must point to us on destruction");
356  if (Parent) {
357  Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
358  UsedAbiTags.begin(), UsedAbiTags.end());
359  Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
360  EmittedAbiTags.begin(),
361  EmittedAbiTags.end());
362  }
363  LinkHead = Parent;
364  }
365 
366  void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
367  for (const auto &Tag : AbiTags) {
368  EmittedAbiTags.push_back(Tag);
369  Out << "B";
370  Out << Tag.size();
371  Out << Tag;
372  }
373  }
374  };
375 
376  AbiTagState *AbiTags = nullptr;
377  AbiTagState AbiTagsRoot;
378 
379  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
380  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
381 
382  ASTContext &getASTContext() const { return Context.getASTContext(); }
383 
384 public:
385  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
386  const NamedDecl *D = nullptr, bool NullOut_ = false)
387  : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
388  StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
389  // These can't be mangled without a ctor type or dtor type.
390  assert(!D || (!isa<CXXDestructorDecl>(D) &&
391  !isa<CXXConstructorDecl>(D)));
392  }
393  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
395  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
396  SeqID(0), AbiTagsRoot(AbiTags) { }
397  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
400  SeqID(0), AbiTagsRoot(AbiTags) { }
401 
402  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
403  : Context(Outer.Context), Out(Out_), NullOut(false),
404  Structor(Outer.Structor), StructorType(Outer.StructorType),
405  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
406  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
407 
408  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
409  : Context(Outer.Context), Out(Out_), NullOut(true),
410  Structor(Outer.Structor), StructorType(Outer.StructorType),
411  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
412  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
413 
414  raw_ostream &getStream() { return Out; }
415 
416  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
417  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
418 
419  void mangle(const NamedDecl *D);
420  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
421  void mangleNumber(const llvm::APSInt &I);
422  void mangleNumber(int64_t Number);
423  void mangleFloat(const llvm::APFloat &F);
424  void mangleFunctionEncoding(const FunctionDecl *FD);
425  void mangleSeqID(unsigned SeqID);
426  void mangleName(const NamedDecl *ND);
427  void mangleType(QualType T);
428  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
429  void mangleLambdaSig(const CXXRecordDecl *Lambda);
430 
431 private:
432 
433  bool mangleSubstitution(const NamedDecl *ND);
434  bool mangleSubstitution(QualType T);
435  bool mangleSubstitution(TemplateName Template);
436  bool mangleSubstitution(uintptr_t Ptr);
437 
438  void mangleExistingSubstitution(TemplateName name);
439 
440  bool mangleStandardSubstitution(const NamedDecl *ND);
441 
442  void addSubstitution(const NamedDecl *ND) {
443  ND = cast<NamedDecl>(ND->getCanonicalDecl());
444 
445  addSubstitution(reinterpret_cast<uintptr_t>(ND));
446  }
447  void addSubstitution(QualType T);
448  void addSubstitution(TemplateName Template);
449  void addSubstitution(uintptr_t Ptr);
450  // Destructive copy substitutions from other mangler.
451  void extendSubstitutions(CXXNameMangler* Other);
452 
453  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
454  bool recursive = false);
455  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
457  const TemplateArgumentLoc *TemplateArgs,
458  unsigned NumTemplateArgs,
459  unsigned KnownArity = UnknownArity);
460 
461  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
462 
463  void mangleNameWithAbiTags(const NamedDecl *ND,
464  const AbiTagList *AdditionalAbiTags);
465  void mangleModuleName(const Module *M);
466  void mangleModuleNamePrefix(StringRef Name);
467  void mangleTemplateName(const TemplateDecl *TD,
468  const TemplateArgument *TemplateArgs,
469  unsigned NumTemplateArgs);
470  void mangleUnqualifiedName(const NamedDecl *ND,
471  const AbiTagList *AdditionalAbiTags) {
472  mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
473  AdditionalAbiTags);
474  }
475  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
476  unsigned KnownArity,
477  const AbiTagList *AdditionalAbiTags);
478  void mangleUnscopedName(const NamedDecl *ND,
479  const AbiTagList *AdditionalAbiTags);
480  void mangleUnscopedTemplateName(const TemplateDecl *ND,
481  const AbiTagList *AdditionalAbiTags);
482  void mangleUnscopedTemplateName(TemplateName,
483  const AbiTagList *AdditionalAbiTags);
484  void mangleSourceName(const IdentifierInfo *II);
485  void mangleRegCallName(const IdentifierInfo *II);
486  void mangleSourceNameWithAbiTags(
487  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
488  void mangleLocalName(const Decl *D,
489  const AbiTagList *AdditionalAbiTags);
490  void mangleBlockForPrefix(const BlockDecl *Block);
491  void mangleUnqualifiedBlock(const BlockDecl *Block);
492  void mangleTemplateParamDecl(const NamedDecl *Decl);
493  void mangleLambda(const CXXRecordDecl *Lambda);
494  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
495  const AbiTagList *AdditionalAbiTags,
496  bool NoFunction=false);
497  void mangleNestedName(const TemplateDecl *TD,
498  const TemplateArgument *TemplateArgs,
499  unsigned NumTemplateArgs);
500  void manglePrefix(NestedNameSpecifier *qualifier);
501  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
502  void manglePrefix(QualType type);
503  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
504  void mangleTemplatePrefix(TemplateName Template);
505  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
506  StringRef Prefix = "");
507  void mangleOperatorName(DeclarationName Name, unsigned Arity);
508  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
509  void mangleVendorQualifier(StringRef qualifier);
510  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
511  void mangleRefQualifier(RefQualifierKind RefQualifier);
512 
513  void mangleObjCMethodName(const ObjCMethodDecl *MD);
514 
515  // Declare manglers for every type class.
516 #define ABSTRACT_TYPE(CLASS, PARENT)
517 #define NON_CANONICAL_TYPE(CLASS, PARENT)
518 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
519 #include "clang/AST/TypeNodes.inc"
520 
521  void mangleType(const TagType*);
522  void mangleType(TemplateName);
523  static StringRef getCallingConvQualifierName(CallingConv CC);
524  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
525  void mangleExtFunctionInfo(const FunctionType *T);
526  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
527  const FunctionDecl *FD = nullptr);
528  void mangleNeonVectorType(const VectorType *T);
529  void mangleNeonVectorType(const DependentVectorType *T);
530  void mangleAArch64NeonVectorType(const VectorType *T);
531  void mangleAArch64NeonVectorType(const DependentVectorType *T);
532 
533  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
534  void mangleMemberExprBase(const Expr *base, bool isArrow);
535  void mangleMemberExpr(const Expr *base, bool isArrow,
536  NestedNameSpecifier *qualifier,
537  NamedDecl *firstQualifierLookup,
539  const TemplateArgumentLoc *TemplateArgs,
540  unsigned NumTemplateArgs,
541  unsigned knownArity);
542  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
543  void mangleInitListElements(const InitListExpr *InitList);
544  void mangleDeclRefExpr(const NamedDecl *D);
545  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
546  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
547  void mangleCXXDtorType(CXXDtorType T);
548 
549  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
550  unsigned NumTemplateArgs);
551  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
552  unsigned NumTemplateArgs);
553  void mangleTemplateArgs(const TemplateArgumentList &AL);
554  void mangleTemplateArg(TemplateArgument A);
555 
556  void mangleTemplateParameter(unsigned Depth, unsigned Index);
557 
558  void mangleFunctionParam(const ParmVarDecl *parm);
559 
560  void writeAbiTags(const NamedDecl *ND,
561  const AbiTagList *AdditionalAbiTags);
562 
563  // Returns sorted unique list of ABI tags.
564  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
565  // Returns sorted unique list of ABI tags.
566  AbiTagList makeVariableTypeTags(const VarDecl *VD);
567 };
568 
569 }
570 
571 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
572  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
573  if (FD) {
575  // Overloadable functions need mangling.
576  if (FD->hasAttr<OverloadableAttr>())
577  return true;
578 
579  // "main" is not mangled.
580  if (FD->isMain())
581  return false;
582 
583  // The Windows ABI expects that we would never mangle "typical"
584  // user-defined entry points regardless of visibility or freestanding-ness.
585  //
586  // N.B. This is distinct from asking about "main". "main" has a lot of
587  // special rules associated with it in the standard while these
588  // user-defined entry points are outside of the purview of the standard.
589  // For example, there can be only one definition for "main" in a standards
590  // compliant program; however nothing forbids the existence of wmain and
591  // WinMain in the same translation unit.
592  if (FD->isMSVCRTEntryPoint())
593  return false;
594 
595  // C++ functions and those whose names are not a simple identifier need
596  // mangling.
597  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
598  return true;
599 
600  // C functions are not mangled.
601  if (L == CLanguageLinkage)
602  return false;
603  }
604 
605  // Otherwise, no mangling is done outside C++ mode.
606  if (!getASTContext().getLangOpts().CPlusPlus)
607  return false;
608 
609  const VarDecl *VD = dyn_cast<VarDecl>(D);
610  if (VD && !isa<DecompositionDecl>(D)) {
611  // C variables are not mangled.
612  if (VD->isExternC())
613  return false;
614 
615  // Variables at global scope with non-internal linkage are not mangled
616  const DeclContext *DC = getEffectiveDeclContext(D);
617  // Check for extern variable declared locally.
618  if (DC->isFunctionOrMethod() && D->hasLinkage())
619  while (!DC->isNamespace() && !DC->isTranslationUnit())
620  DC = getEffectiveParentContext(DC);
621  if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
622  !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
623  !isa<VarTemplateSpecializationDecl>(D))
624  return false;
625  }
626 
627  return true;
628 }
629 
630 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
631  const AbiTagList *AdditionalAbiTags) {
632  assert(AbiTags && "require AbiTagState");
633  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
634 }
635 
636 void CXXNameMangler::mangleSourceNameWithAbiTags(
637  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
638  mangleSourceName(ND->getIdentifier());
639  writeAbiTags(ND, AdditionalAbiTags);
640 }
641 
642 void CXXNameMangler::mangle(const NamedDecl *D) {
643  // <mangled-name> ::= _Z <encoding>
644  // ::= <data name>
645  // ::= <special-name>
646  Out << "_Z";
647  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
648  mangleFunctionEncoding(FD);
649  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
650  mangleName(VD);
651  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
652  mangleName(IFD->getAnonField());
653  else
654  mangleName(cast<FieldDecl>(D));
655 }
656 
657 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
658  // <encoding> ::= <function name> <bare-function-type>
659 
660  // Don't mangle in the type if this isn't a decl we should typically mangle.
661  if (!Context.shouldMangleDeclName(FD)) {
662  mangleName(FD);
663  return;
664  }
665 
666  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
667  if (ReturnTypeAbiTags.empty()) {
668  // There are no tags for return type, the simplest case.
669  mangleName(FD);
670  mangleFunctionEncodingBareType(FD);
671  return;
672  }
673 
674  // Mangle function name and encoding to temporary buffer.
675  // We have to output name and encoding to the same mangler to get the same
676  // substitution as it will be in final mangling.
677  SmallString<256> FunctionEncodingBuf;
678  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
679  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
680  // Output name of the function.
681  FunctionEncodingMangler.disableDerivedAbiTags();
682  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
683 
684  // Remember length of the function name in the buffer.
685  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
686  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
687 
688  // Get tags from return type that are not present in function name or
689  // encoding.
690  const AbiTagList &UsedAbiTags =
691  FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
692  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
693  AdditionalAbiTags.erase(
694  std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
695  UsedAbiTags.begin(), UsedAbiTags.end(),
696  AdditionalAbiTags.begin()),
697  AdditionalAbiTags.end());
698 
699  // Output name with implicit tags and function encoding from temporary buffer.
700  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
701  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
702 
703  // Function encoding could create new substitutions so we have to add
704  // temp mangled substitutions to main mangler.
705  extendSubstitutions(&FunctionEncodingMangler);
706 }
707 
708 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
709  if (FD->hasAttr<EnableIfAttr>()) {
710  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
711  Out << "Ua9enable_ifI";
712  for (AttrVec::const_iterator I = FD->getAttrs().begin(),
713  E = FD->getAttrs().end();
714  I != E; ++I) {
715  EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
716  if (!EIA)
717  continue;
718  Out << 'X';
719  mangleExpression(EIA->getCond());
720  Out << 'E';
721  }
722  Out << 'E';
723  FunctionTypeDepth.pop(Saved);
724  }
725 
726  // When mangling an inheriting constructor, the bare function type used is
727  // that of the inherited constructor.
728  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
729  if (auto Inherited = CD->getInheritedConstructor())
730  FD = Inherited.getConstructor();
731 
732  // Whether the mangling of a function type includes the return type depends on
733  // the context and the nature of the function. The rules for deciding whether
734  // the return type is included are:
735  //
736  // 1. Template functions (names or types) have return types encoded, with
737  // the exceptions listed below.
738  // 2. Function types not appearing as part of a function name mangling,
739  // e.g. parameters, pointer types, etc., have return type encoded, with the
740  // exceptions listed below.
741  // 3. Non-template function names do not have return types encoded.
742  //
743  // The exceptions mentioned in (1) and (2) above, for which the return type is
744  // never included, are
745  // 1. Constructors.
746  // 2. Destructors.
747  // 3. Conversion operator functions, e.g. operator int.
748  bool MangleReturnType = false;
749  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
750  if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
751  isa<CXXConversionDecl>(FD)))
752  MangleReturnType = true;
753 
754  // Mangle the type of the primary template.
755  FD = PrimaryTemplate->getTemplatedDecl();
756  }
757 
758  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
759  MangleReturnType, FD);
760 }
761 
763  while (isa<LinkageSpecDecl>(DC)) {
764  DC = getEffectiveParentContext(DC);
765  }
766 
767  return DC;
768 }
769 
770 /// Return whether a given namespace is the 'std' namespace.
771 static bool isStd(const NamespaceDecl *NS) {
772  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
773  ->isTranslationUnit())
774  return false;
775 
777  return II && II->isStr("std");
778 }
779 
780 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
781 // namespace.
782 static bool isStdNamespace(const DeclContext *DC) {
783  if (!DC->isNamespace())
784  return false;
785 
786  return isStd(cast<NamespaceDecl>(DC));
787 }
788 
789 static const TemplateDecl *
790 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
791  // Check if we have a function template.
792  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
793  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
794  TemplateArgs = FD->getTemplateSpecializationArgs();
795  return TD;
796  }
797  }
798 
799  // Check if we have a class template.
800  if (const ClassTemplateSpecializationDecl *Spec =
801  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
802  TemplateArgs = &Spec->getTemplateArgs();
803  return Spec->getSpecializedTemplate();
804  }
805 
806  // Check if we have a variable template.
807  if (const VarTemplateSpecializationDecl *Spec =
808  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
809  TemplateArgs = &Spec->getTemplateArgs();
810  return Spec->getSpecializedTemplate();
811  }
812 
813  return nullptr;
814 }
815 
816 void CXXNameMangler::mangleName(const NamedDecl *ND) {
817  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
818  // Variables should have implicit tags from its type.
819  AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
820  if (VariableTypeAbiTags.empty()) {
821  // Simple case no variable type tags.
822  mangleNameWithAbiTags(VD, nullptr);
823  return;
824  }
825 
826  // Mangle variable name to null stream to collect tags.
827  llvm::raw_null_ostream NullOutStream;
828  CXXNameMangler VariableNameMangler(*this, NullOutStream);
829  VariableNameMangler.disableDerivedAbiTags();
830  VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
831 
832  // Get tags from variable type that are not present in its name.
833  const AbiTagList &UsedAbiTags =
834  VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
835  AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
836  AdditionalAbiTags.erase(
837  std::set_difference(VariableTypeAbiTags.begin(),
838  VariableTypeAbiTags.end(), UsedAbiTags.begin(),
839  UsedAbiTags.end(), AdditionalAbiTags.begin()),
840  AdditionalAbiTags.end());
841 
842  // Output name with implicit tags.
843  mangleNameWithAbiTags(VD, &AdditionalAbiTags);
844  } else {
845  mangleNameWithAbiTags(ND, nullptr);
846  }
847 }
848 
849 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
850  const AbiTagList *AdditionalAbiTags) {
851  // <name> ::= [<module-name>] <nested-name>
852  // ::= [<module-name>] <unscoped-name>
853  // ::= [<module-name>] <unscoped-template-name> <template-args>
854  // ::= <local-name>
855  //
856  const DeclContext *DC = getEffectiveDeclContext(ND);
857 
858  // If this is an extern variable declared locally, the relevant DeclContext
859  // is that of the containing namespace, or the translation unit.
860  // FIXME: This is a hack; extern variables declared locally should have
861  // a proper semantic declaration context!
862  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
863  while (!DC->isNamespace() && !DC->isTranslationUnit())
864  DC = getEffectiveParentContext(DC);
865  else if (GetLocalClassDecl(ND)) {
866  mangleLocalName(ND, AdditionalAbiTags);
867  return;
868  }
869 
870  DC = IgnoreLinkageSpecDecls(DC);
871 
872  if (isLocalContainerContext(DC)) {
873  mangleLocalName(ND, AdditionalAbiTags);
874  return;
875  }
876 
877  // Do not mangle the owning module for an external linkage declaration.
878  // This enables backwards-compatibility with non-modular code, and is
879  // a valid choice since conflicts are not permitted by C++ Modules TS
880  // [basic.def.odr]/6.2.
881  if (!ND->hasExternalFormalLinkage())
882  if (Module *M = ND->getOwningModuleForLinkage())
883  mangleModuleName(M);
884 
885  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
886  // Check if we have a template.
887  const TemplateArgumentList *TemplateArgs = nullptr;
888  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
889  mangleUnscopedTemplateName(TD, AdditionalAbiTags);
890  mangleTemplateArgs(*TemplateArgs);
891  return;
892  }
893 
894  mangleUnscopedName(ND, AdditionalAbiTags);
895  return;
896  }
897 
898  mangleNestedName(ND, DC, AdditionalAbiTags);
899 }
900 
901 void CXXNameMangler::mangleModuleName(const Module *M) {
902  // Implement the C++ Modules TS name mangling proposal; see
903  // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
904  //
905  // <module-name> ::= W <unscoped-name>+ E
906  // ::= W <module-subst> <unscoped-name>* E
907  Out << 'W';
908  mangleModuleNamePrefix(M->Name);
909  Out << 'E';
910 }
911 
912 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
913  // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
914  // ::= W <seq-id - 10> _ # otherwise
915  auto It = ModuleSubstitutions.find(Name);
916  if (It != ModuleSubstitutions.end()) {
917  if (It->second < 10)
918  Out << '_' << static_cast<char>('0' + It->second);
919  else
920  Out << 'W' << (It->second - 10) << '_';
921  return;
922  }
923 
924  // FIXME: Preserve hierarchy in module names rather than flattening
925  // them to strings; use Module*s as substitution keys.
926  auto Parts = Name.rsplit('.');
927  if (Parts.second.empty())
928  Parts.second = Parts.first;
929  else
930  mangleModuleNamePrefix(Parts.first);
931 
932  Out << Parts.second.size() << Parts.second;
933  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
934 }
935 
936 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
937  const TemplateArgument *TemplateArgs,
938  unsigned NumTemplateArgs) {
939  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
940 
941  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
942  mangleUnscopedTemplateName(TD, nullptr);
943  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
944  } else {
945  mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
946  }
947 }
948 
949 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
950  const AbiTagList *AdditionalAbiTags) {
951  // <unscoped-name> ::= <unqualified-name>
952  // ::= St <unqualified-name> # ::std::
953 
954  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
955  Out << "St";
956 
957  mangleUnqualifiedName(ND, AdditionalAbiTags);
958 }
959 
960 void CXXNameMangler::mangleUnscopedTemplateName(
961  const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
962  // <unscoped-template-name> ::= <unscoped-name>
963  // ::= <substitution>
964  if (mangleSubstitution(ND))
965  return;
966 
967  // <template-template-param> ::= <template-param>
968  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
969  assert(!AdditionalAbiTags &&
970  "template template param cannot have abi tags");
971  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
972  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
973  mangleUnscopedName(ND, AdditionalAbiTags);
974  } else {
975  mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
976  }
977 
978  addSubstitution(ND);
979 }
980 
981 void CXXNameMangler::mangleUnscopedTemplateName(
982  TemplateName Template, const AbiTagList *AdditionalAbiTags) {
983  // <unscoped-template-name> ::= <unscoped-name>
984  // ::= <substitution>
985  if (TemplateDecl *TD = Template.getAsTemplateDecl())
986  return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
987 
988  if (mangleSubstitution(Template))
989  return;
990 
991  assert(!AdditionalAbiTags &&
992  "dependent template name cannot have abi tags");
993 
994  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
995  assert(Dependent && "Not a dependent template name?");
996  if (const IdentifierInfo *Id = Dependent->getIdentifier())
997  mangleSourceName(Id);
998  else
999  mangleOperatorName(Dependent->getOperator(), UnknownArity);
1000 
1001  addSubstitution(Template);
1002 }
1003 
1004 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1005  // ABI:
1006  // Floating-point literals are encoded using a fixed-length
1007  // lowercase hexadecimal string corresponding to the internal
1008  // representation (IEEE on Itanium), high-order bytes first,
1009  // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1010  // on Itanium.
1011  // The 'without leading zeroes' thing seems to be an editorial
1012  // mistake; see the discussion on cxx-abi-dev beginning on
1013  // 2012-01-16.
1014 
1015  // Our requirements here are just barely weird enough to justify
1016  // using a custom algorithm instead of post-processing APInt::toString().
1017 
1018  llvm::APInt valueBits = f.bitcastToAPInt();
1019  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1020  assert(numCharacters != 0);
1021 
1022  // Allocate a buffer of the right number of characters.
1023  SmallVector<char, 20> buffer(numCharacters);
1024 
1025  // Fill the buffer left-to-right.
1026  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1027  // The bit-index of the next hex digit.
1028  unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1029 
1030  // Project out 4 bits starting at 'digitIndex'.
1031  uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1032  hexDigit >>= (digitBitIndex % 64);
1033  hexDigit &= 0xF;
1034 
1035  // Map that over to a lowercase hex digit.
1036  static const char charForHex[16] = {
1037  '0', '1', '2', '3', '4', '5', '6', '7',
1038  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1039  };
1040  buffer[stringIndex] = charForHex[hexDigit];
1041  }
1042 
1043  Out.write(buffer.data(), numCharacters);
1044 }
1045 
1046 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1047  if (Value.isSigned() && Value.isNegative()) {
1048  Out << 'n';
1049  Value.abs().print(Out, /*signed*/ false);
1050  } else {
1051  Value.print(Out, /*signed*/ false);
1052  }
1053 }
1054 
1055 void CXXNameMangler::mangleNumber(int64_t Number) {
1056  // <number> ::= [n] <non-negative decimal integer>
1057  if (Number < 0) {
1058  Out << 'n';
1059  Number = -Number;
1060  }
1061 
1062  Out << Number;
1063 }
1064 
1065 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1066  // <call-offset> ::= h <nv-offset> _
1067  // ::= v <v-offset> _
1068  // <nv-offset> ::= <offset number> # non-virtual base override
1069  // <v-offset> ::= <offset number> _ <virtual offset number>
1070  // # virtual base override, with vcall offset
1071  if (!Virtual) {
1072  Out << 'h';
1073  mangleNumber(NonVirtual);
1074  Out << '_';
1075  return;
1076  }
1077 
1078  Out << 'v';
1079  mangleNumber(NonVirtual);
1080  Out << '_';
1081  mangleNumber(Virtual);
1082  Out << '_';
1083 }
1084 
1085 void CXXNameMangler::manglePrefix(QualType type) {
1086  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1087  if (!mangleSubstitution(QualType(TST, 0))) {
1088  mangleTemplatePrefix(TST->getTemplateName());
1089 
1090  // FIXME: GCC does not appear to mangle the template arguments when
1091  // the template in question is a dependent template name. Should we
1092  // emulate that badness?
1093  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1094  addSubstitution(QualType(TST, 0));
1095  }
1096  } else if (const auto *DTST =
1098  if (!mangleSubstitution(QualType(DTST, 0))) {
1099  TemplateName Template = getASTContext().getDependentTemplateName(
1100  DTST->getQualifier(), DTST->getIdentifier());
1101  mangleTemplatePrefix(Template);
1102 
1103  // FIXME: GCC does not appear to mangle the template arguments when
1104  // the template in question is a dependent template name. Should we
1105  // emulate that badness?
1106  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1107  addSubstitution(QualType(DTST, 0));
1108  }
1109  } else {
1110  // We use the QualType mangle type variant here because it handles
1111  // substitutions.
1112  mangleType(type);
1113  }
1114 }
1115 
1116 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1117 ///
1118 /// \param recursive - true if this is being called recursively,
1119 /// i.e. if there is more prefix "to the right".
1120 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1121  bool recursive) {
1122 
1123  // x, ::x
1124  // <unresolved-name> ::= [gs] <base-unresolved-name>
1125 
1126  // T::x / decltype(p)::x
1127  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1128 
1129  // T::N::x /decltype(p)::N::x
1130  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1131  // <base-unresolved-name>
1132 
1133  // A::x, N::y, A<T>::z; "gs" means leading "::"
1134  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1135  // <base-unresolved-name>
1136 
1137  switch (qualifier->getKind()) {
1139  Out << "gs";
1140 
1141  // We want an 'sr' unless this is the entire NNS.
1142  if (recursive)
1143  Out << "sr";
1144 
1145  // We never want an 'E' here.
1146  return;
1147 
1149  llvm_unreachable("Can't mangle __super specifier");
1150 
1152  if (qualifier->getPrefix())
1153  mangleUnresolvedPrefix(qualifier->getPrefix(),
1154  /*recursive*/ true);
1155  else
1156  Out << "sr";
1157  mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1158  break;
1160  if (qualifier->getPrefix())
1161  mangleUnresolvedPrefix(qualifier->getPrefix(),
1162  /*recursive*/ true);
1163  else
1164  Out << "sr";
1165  mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1166  break;
1167 
1170  const Type *type = qualifier->getAsType();
1171 
1172  // We only want to use an unresolved-type encoding if this is one of:
1173  // - a decltype
1174  // - a template type parameter
1175  // - a template template parameter with arguments
1176  // In all of these cases, we should have no prefix.
1177  if (qualifier->getPrefix()) {
1178  mangleUnresolvedPrefix(qualifier->getPrefix(),
1179  /*recursive*/ true);
1180  } else {
1181  // Otherwise, all the cases want this.
1182  Out << "sr";
1183  }
1184 
1185  if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1186  return;
1187 
1188  break;
1189  }
1190 
1192  // Member expressions can have these without prefixes.
1193  if (qualifier->getPrefix())
1194  mangleUnresolvedPrefix(qualifier->getPrefix(),
1195  /*recursive*/ true);
1196  else
1197  Out << "sr";
1198 
1199  mangleSourceName(qualifier->getAsIdentifier());
1200  // An Identifier has no type information, so we can't emit abi tags for it.
1201  break;
1202  }
1203 
1204  // If this was the innermost part of the NNS, and we fell out to
1205  // here, append an 'E'.
1206  if (!recursive)
1207  Out << 'E';
1208 }
1209 
1210 /// Mangle an unresolved-name, which is generally used for names which
1211 /// weren't resolved to specific entities.
1212 void CXXNameMangler::mangleUnresolvedName(
1214  const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1215  unsigned knownArity) {
1216  if (qualifier) mangleUnresolvedPrefix(qualifier);
1217  switch (name.getNameKind()) {
1218  // <base-unresolved-name> ::= <simple-id>
1220  mangleSourceName(name.getAsIdentifierInfo());
1221  break;
1222  // <base-unresolved-name> ::= dn <destructor-name>
1224  Out << "dn";
1225  mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1226  break;
1227  // <base-unresolved-name> ::= on <operator-name>
1231  Out << "on";
1232  mangleOperatorName(name, knownArity);
1233  break;
1235  llvm_unreachable("Can't mangle a constructor name!");
1237  llvm_unreachable("Can't mangle a using directive name!");
1239  llvm_unreachable("Can't mangle a deduction guide name!");
1243  llvm_unreachable("Can't mangle Objective-C selector names here!");
1244  }
1245 
1246  // The <simple-id> and on <operator-name> productions end in an optional
1247  // <template-args>.
1248  if (TemplateArgs)
1249  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1250 }
1251 
1252 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1253  DeclarationName Name,
1254  unsigned KnownArity,
1255  const AbiTagList *AdditionalAbiTags) {
1256  unsigned Arity = KnownArity;
1257  // <unqualified-name> ::= <operator-name>
1258  // ::= <ctor-dtor-name>
1259  // ::= <source-name>
1260  switch (Name.getNameKind()) {
1262  const IdentifierInfo *II = Name.getAsIdentifierInfo();
1263 
1264  // We mangle decomposition declarations as the names of their bindings.
1265  if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1266  // FIXME: Non-standard mangling for decomposition declarations:
1267  //
1268  // <unqualified-name> ::= DC <source-name>* E
1269  //
1270  // These can never be referenced across translation units, so we do
1271  // not need a cross-vendor mangling for anything other than demanglers.
1272  // Proposed on cxx-abi-dev on 2016-08-12
1273  Out << "DC";
1274  for (auto *BD : DD->bindings())
1275  mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1276  Out << 'E';
1277  writeAbiTags(ND, AdditionalAbiTags);
1278  break;
1279  }
1280 
1281  if (II) {
1282  // Match GCC's naming convention for internal linkage symbols, for
1283  // symbols that are not actually visible outside of this TU. GCC
1284  // distinguishes between internal and external linkage symbols in
1285  // its mangling, to support cases like this that were valid C++ prior
1286  // to DR426:
1287  //
1288  // void test() { extern void foo(); }
1289  // static void foo();
1290  //
1291  // Don't bother with the L marker for names in anonymous namespaces; the
1292  // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1293  // matches GCC anyway, because GCC does not treat anonymous namespaces as
1294  // implying internal linkage.
1295  if (ND && ND->getFormalLinkage() == InternalLinkage &&
1296  !ND->isExternallyVisible() &&
1297  getEffectiveDeclContext(ND)->isFileContext() &&
1298  !ND->isInAnonymousNamespace())
1299  Out << 'L';
1300 
1301  auto *FD = dyn_cast<FunctionDecl>(ND);
1302  bool IsRegCall = FD &&
1303  FD->getType()->castAs<FunctionType>()->getCallConv() ==
1305  if (IsRegCall)
1306  mangleRegCallName(II);
1307  else
1308  mangleSourceName(II);
1309 
1310  writeAbiTags(ND, AdditionalAbiTags);
1311  break;
1312  }
1313 
1314  // Otherwise, an anonymous entity. We must have a declaration.
1315  assert(ND && "mangling empty name without declaration");
1316 
1317  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1318  if (NS->isAnonymousNamespace()) {
1319  // This is how gcc mangles these names.
1320  Out << "12_GLOBAL__N_1";
1321  break;
1322  }
1323  }
1324 
1325  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1326  // We must have an anonymous union or struct declaration.
1327  const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1328 
1329  // Itanium C++ ABI 5.1.2:
1330  //
1331  // For the purposes of mangling, the name of an anonymous union is
1332  // considered to be the name of the first named data member found by a
1333  // pre-order, depth-first, declaration-order walk of the data members of
1334  // the anonymous union. If there is no such data member (i.e., if all of
1335  // the data members in the union are unnamed), then there is no way for
1336  // a program to refer to the anonymous union, and there is therefore no
1337  // need to mangle its name.
1338  assert(RD->isAnonymousStructOrUnion()
1339  && "Expected anonymous struct or union!");
1340  const FieldDecl *FD = RD->findFirstNamedDataMember();
1341 
1342  // It's actually possible for various reasons for us to get here
1343  // with an empty anonymous struct / union. Fortunately, it
1344  // doesn't really matter what name we generate.
1345  if (!FD) break;
1346  assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1347 
1348  mangleSourceName(FD->getIdentifier());
1349  // Not emitting abi tags: internal name anyway.
1350  break;
1351  }
1352 
1353  // Class extensions have no name as a category, and it's possible
1354  // for them to be the semantic parent of certain declarations
1355  // (primarily, tag decls defined within declarations). Such
1356  // declarations will always have internal linkage, so the name
1357  // doesn't really matter, but we shouldn't crash on them. For
1358  // safety, just handle all ObjC containers here.
1359  if (isa<ObjCContainerDecl>(ND))
1360  break;
1361 
1362  // We must have an anonymous struct.
1363  const TagDecl *TD = cast<TagDecl>(ND);
1364  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1365  assert(TD->getDeclContext() == D->getDeclContext() &&
1366  "Typedef should not be in another decl context!");
1367  assert(D->getDeclName().getAsIdentifierInfo() &&
1368  "Typedef was not named!");
1369  mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1370  assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1371  // Explicit abi tags are still possible; take from underlying type, not
1372  // from typedef.
1373  writeAbiTags(TD, nullptr);
1374  break;
1375  }
1376 
1377  // <unnamed-type-name> ::= <closure-type-name>
1378  //
1379  // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1380  // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1381  // # Parameter types or 'v' for 'void'.
1382  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1383  if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1384  assert(!AdditionalAbiTags &&
1385  "Lambda type cannot have additional abi tags");
1386  mangleLambda(Record);
1387  break;
1388  }
1389  }
1390 
1391  if (TD->isExternallyVisible()) {
1392  unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1393  Out << "Ut";
1394  if (UnnamedMangle > 1)
1395  Out << UnnamedMangle - 2;
1396  Out << '_';
1397  writeAbiTags(TD, AdditionalAbiTags);
1398  break;
1399  }
1400 
1401  // Get a unique id for the anonymous struct. If it is not a real output
1402  // ID doesn't matter so use fake one.
1403  unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1404 
1405  // Mangle it as a source name in the form
1406  // [n] $_<id>
1407  // where n is the length of the string.
1408  SmallString<8> Str;
1409  Str += "$_";
1410  Str += llvm::utostr(AnonStructId);
1411 
1412  Out << Str.size();
1413  Out << Str;
1414  break;
1415  }
1416 
1420  llvm_unreachable("Can't mangle Objective-C selector names here!");
1421 
1423  const CXXRecordDecl *InheritedFrom = nullptr;
1424  const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1425  if (auto Inherited =
1426  cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1427  InheritedFrom = Inherited.getConstructor()->getParent();
1428  InheritedTemplateArgs =
1429  Inherited.getConstructor()->getTemplateSpecializationArgs();
1430  }
1431 
1432  if (ND == Structor)
1433  // If the named decl is the C++ constructor we're mangling, use the type
1434  // we were given.
1435  mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1436  else
1437  // Otherwise, use the complete constructor name. This is relevant if a
1438  // class with a constructor is declared within a constructor.
1439  mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1440 
1441  // FIXME: The template arguments are part of the enclosing prefix or
1442  // nested-name, but it's more convenient to mangle them here.
1443  if (InheritedTemplateArgs)
1444  mangleTemplateArgs(*InheritedTemplateArgs);
1445 
1446  writeAbiTags(ND, AdditionalAbiTags);
1447  break;
1448  }
1449 
1451  if (ND == Structor)
1452  // If the named decl is the C++ destructor we're mangling, use the type we
1453  // were given.
1454  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1455  else
1456  // Otherwise, use the complete destructor name. This is relevant if a
1457  // class with a destructor is declared within a destructor.
1458  mangleCXXDtorType(Dtor_Complete);
1459  writeAbiTags(ND, AdditionalAbiTags);
1460  break;
1461 
1463  if (ND && Arity == UnknownArity) {
1464  Arity = cast<FunctionDecl>(ND)->getNumParams();
1465 
1466  // If we have a member function, we need to include the 'this' pointer.
1467  if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1468  if (!MD->isStatic())
1469  Arity++;
1470  }
1471  LLVM_FALLTHROUGH;
1474  mangleOperatorName(Name, Arity);
1475  writeAbiTags(ND, AdditionalAbiTags);
1476  break;
1477 
1479  llvm_unreachable("Can't mangle a deduction guide name!");
1480 
1482  llvm_unreachable("Can't mangle a using directive name!");
1483  }
1484 }
1485 
1486 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1487  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1488  // <number> ::= [n] <non-negative decimal integer>
1489  // <identifier> ::= <unqualified source code identifier>
1490  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1491  << II->getName();
1492 }
1493 
1494 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1495  // <source-name> ::= <positive length number> <identifier>
1496  // <number> ::= [n] <non-negative decimal integer>
1497  // <identifier> ::= <unqualified source code identifier>
1498  Out << II->getLength() << II->getName();
1499 }
1500 
1501 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1502  const DeclContext *DC,
1503  const AbiTagList *AdditionalAbiTags,
1504  bool NoFunction) {
1505  // <nested-name>
1506  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1507  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1508  // <template-args> E
1509 
1510  Out << 'N';
1511  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1512  Qualifiers MethodQuals = Method->getMethodQualifiers();
1513  // We do not consider restrict a distinguishing attribute for overloading
1514  // purposes so we must not mangle it.
1515  MethodQuals.removeRestrict();
1516  mangleQualifiers(MethodQuals);
1517  mangleRefQualifier(Method->getRefQualifier());
1518  }
1519 
1520  // Check if we have a template.
1521  const TemplateArgumentList *TemplateArgs = nullptr;
1522  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1523  mangleTemplatePrefix(TD, NoFunction);
1524  mangleTemplateArgs(*TemplateArgs);
1525  }
1526  else {
1527  manglePrefix(DC, NoFunction);
1528  mangleUnqualifiedName(ND, AdditionalAbiTags);
1529  }
1530 
1531  Out << 'E';
1532 }
1533 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1534  const TemplateArgument *TemplateArgs,
1535  unsigned NumTemplateArgs) {
1536  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1537 
1538  Out << 'N';
1539 
1540  mangleTemplatePrefix(TD);
1541  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1542 
1543  Out << 'E';
1544 }
1545 
1546 void CXXNameMangler::mangleLocalName(const Decl *D,
1547  const AbiTagList *AdditionalAbiTags) {
1548  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1549  // := Z <function encoding> E s [<discriminator>]
1550  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1551  // _ <entity name>
1552  // <discriminator> := _ <non-negative number>
1553  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1554  const RecordDecl *RD = GetLocalClassDecl(D);
1555  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1556 
1557  Out << 'Z';
1558 
1559  {
1560  AbiTagState LocalAbiTags(AbiTags);
1561 
1562  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1563  mangleObjCMethodName(MD);
1564  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1565  mangleBlockForPrefix(BD);
1566  else
1567  mangleFunctionEncoding(cast<FunctionDecl>(DC));
1568 
1569  // Implicit ABI tags (from namespace) are not available in the following
1570  // entity; reset to actually emitted tags, which are available.
1571  LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1572  }
1573 
1574  Out << 'E';
1575 
1576  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1577  // be a bug that is fixed in trunk.
1578 
1579  if (RD) {
1580  // The parameter number is omitted for the last parameter, 0 for the
1581  // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1582  // <entity name> will of course contain a <closure-type-name>: Its
1583  // numbering will be local to the particular argument in which it appears
1584  // -- other default arguments do not affect its encoding.
1585  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1586  if (CXXRD && CXXRD->isLambda()) {
1587  if (const ParmVarDecl *Parm
1588  = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1589  if (const FunctionDecl *Func
1590  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1591  Out << 'd';
1592  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1593  if (Num > 1)
1594  mangleNumber(Num - 2);
1595  Out << '_';
1596  }
1597  }
1598  }
1599 
1600  // Mangle the name relative to the closest enclosing function.
1601  // equality ok because RD derived from ND above
1602  if (D == RD) {
1603  mangleUnqualifiedName(RD, AdditionalAbiTags);
1604  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1605  manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1606  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1607  mangleUnqualifiedBlock(BD);
1608  } else {
1609  const NamedDecl *ND = cast<NamedDecl>(D);
1610  mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1611  true /*NoFunction*/);
1612  }
1613  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1614  // Mangle a block in a default parameter; see above explanation for
1615  // lambdas.
1616  if (const ParmVarDecl *Parm
1617  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1618  if (const FunctionDecl *Func
1619  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1620  Out << 'd';
1621  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1622  if (Num > 1)
1623  mangleNumber(Num - 2);
1624  Out << '_';
1625  }
1626  }
1627 
1628  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1629  mangleUnqualifiedBlock(BD);
1630  } else {
1631  mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1632  }
1633 
1634  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1635  unsigned disc;
1636  if (Context.getNextDiscriminator(ND, disc)) {
1637  if (disc < 10)
1638  Out << '_' << disc;
1639  else
1640  Out << "__" << disc << '_';
1641  }
1642  }
1643 }
1644 
1645 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1646  if (GetLocalClassDecl(Block)) {
1647  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1648  return;
1649  }
1650  const DeclContext *DC = getEffectiveDeclContext(Block);
1651  if (isLocalContainerContext(DC)) {
1652  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1653  return;
1654  }
1655  manglePrefix(getEffectiveDeclContext(Block));
1656  mangleUnqualifiedBlock(Block);
1657 }
1658 
1659 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1660  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1661  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1662  Context->getDeclContext()->isRecord()) {
1663  const auto *ND = cast<NamedDecl>(Context);
1664  if (ND->getIdentifier()) {
1665  mangleSourceNameWithAbiTags(ND);
1666  Out << 'M';
1667  }
1668  }
1669  }
1670 
1671  // If we have a block mangling number, use it.
1672  unsigned Number = Block->getBlockManglingNumber();
1673  // Otherwise, just make up a number. It doesn't matter what it is because
1674  // the symbol in question isn't externally visible.
1675  if (!Number)
1676  Number = Context.getBlockId(Block, false);
1677  else {
1678  // Stored mangling numbers are 1-based.
1679  --Number;
1680  }
1681  Out << "Ub";
1682  if (Number > 0)
1683  Out << Number - 1;
1684  Out << '_';
1685 }
1686 
1687 // <template-param-decl>
1688 // ::= Ty # template type parameter
1689 // ::= Tn <type> # template non-type parameter
1690 // ::= Tt <template-param-decl>* E # template template parameter
1691 // ::= Tp <template-param-decl> # template parameter pack
1692 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1693  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1694  if (Ty->isParameterPack())
1695  Out << "Tp";
1696  Out << "Ty";
1697  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1698  if (Tn->isExpandedParameterPack()) {
1699  for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1700  Out << "Tn";
1701  mangleType(Tn->getExpansionType(I));
1702  }
1703  } else {
1704  QualType T = Tn->getType();
1705  if (Tn->isParameterPack()) {
1706  Out << "Tp";
1707  if (auto *PackExpansion = T->getAs<PackExpansionType>())
1708  T = PackExpansion->getPattern();
1709  }
1710  Out << "Tn";
1711  mangleType(T);
1712  }
1713  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1714  if (Tt->isExpandedParameterPack()) {
1715  for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1716  ++I) {
1717  Out << "Tt";
1718  for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1719  mangleTemplateParamDecl(Param);
1720  Out << "E";
1721  }
1722  } else {
1723  if (Tt->isParameterPack())
1724  Out << "Tp";
1725  Out << "Tt";
1726  for (auto *Param : *Tt->getTemplateParameters())
1727  mangleTemplateParamDecl(Param);
1728  Out << "E";
1729  }
1730  }
1731 }
1732 
1733 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1734  // If the context of a closure type is an initializer for a class member
1735  // (static or nonstatic), it is encoded in a qualified name with a final
1736  // <prefix> of the form:
1737  //
1738  // <data-member-prefix> := <member source-name> M
1739  //
1740  // Technically, the data-member-prefix is part of the <prefix>. However,
1741  // since a closure type will always be mangled with a prefix, it's easier
1742  // to emit that last part of the prefix here.
1743  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1744  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1745  !isa<ParmVarDecl>(Context)) {
1746  // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1747  // reasonable mangling here.
1748  if (const IdentifierInfo *Name
1749  = cast<NamedDecl>(Context)->getIdentifier()) {
1750  mangleSourceName(Name);
1751  const TemplateArgumentList *TemplateArgs = nullptr;
1752  if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1753  mangleTemplateArgs(*TemplateArgs);
1754  Out << 'M';
1755  }
1756  }
1757  }
1758 
1759  Out << "Ul";
1760  mangleLambdaSig(Lambda);
1761  Out << "E";
1762 
1763  // The number is omitted for the first closure type with a given
1764  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1765  // (in lexical order) with that same <lambda-sig> and context.
1766  //
1767  // The AST keeps track of the number for us.
1768  unsigned Number = Lambda->getLambdaManglingNumber();
1769  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1770  if (Number > 1)
1771  mangleNumber(Number - 2);
1772  Out << '_';
1773 }
1774 
1775 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1776  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1777  mangleTemplateParamDecl(D);
1778  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1779  getAs<FunctionProtoType>();
1780  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1781  Lambda->getLambdaStaticInvoker());
1782 }
1783 
1784 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1785  switch (qualifier->getKind()) {
1787  // nothing
1788  return;
1789 
1791  llvm_unreachable("Can't mangle __super specifier");
1792 
1794  mangleName(qualifier->getAsNamespace());
1795  return;
1796 
1798  mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1799  return;
1800 
1803  manglePrefix(QualType(qualifier->getAsType(), 0));
1804  return;
1805 
1807  // Member expressions can have these without prefixes, but that
1808  // should end up in mangleUnresolvedPrefix instead.
1809  assert(qualifier->getPrefix());
1810  manglePrefix(qualifier->getPrefix());
1811 
1812  mangleSourceName(qualifier->getAsIdentifier());
1813  return;
1814  }
1815 
1816  llvm_unreachable("unexpected nested name specifier");
1817 }
1818 
1819 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1820  // <prefix> ::= <prefix> <unqualified-name>
1821  // ::= <template-prefix> <template-args>
1822  // ::= <template-param>
1823  // ::= # empty
1824  // ::= <substitution>
1825 
1826  DC = IgnoreLinkageSpecDecls(DC);
1827 
1828  if (DC->isTranslationUnit())
1829  return;
1830 
1831  if (NoFunction && isLocalContainerContext(DC))
1832  return;
1833 
1834  assert(!isLocalContainerContext(DC));
1835 
1836  const NamedDecl *ND = cast<NamedDecl>(DC);
1837  if (mangleSubstitution(ND))
1838  return;
1839 
1840  // Check if we have a template.
1841  const TemplateArgumentList *TemplateArgs = nullptr;
1842  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1843  mangleTemplatePrefix(TD);
1844  mangleTemplateArgs(*TemplateArgs);
1845  } else {
1846  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1847  mangleUnqualifiedName(ND, nullptr);
1848  }
1849 
1850  addSubstitution(ND);
1851 }
1852 
1853 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1854  // <template-prefix> ::= <prefix> <template unqualified-name>
1855  // ::= <template-param>
1856  // ::= <substitution>
1857  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1858  return mangleTemplatePrefix(TD);
1859 
1860  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1861  manglePrefix(Qualified->getQualifier());
1862 
1863  if (OverloadedTemplateStorage *Overloaded
1864  = Template.getAsOverloadedTemplate()) {
1865  mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1866  UnknownArity, nullptr);
1867  return;
1868  }
1869 
1870  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1871  assert(Dependent && "Unknown template name kind?");
1872  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1873  manglePrefix(Qualifier);
1874  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1875 }
1876 
1877 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1878  bool NoFunction) {
1879  // <template-prefix> ::= <prefix> <template unqualified-name>
1880  // ::= <template-param>
1881  // ::= <substitution>
1882  // <template-template-param> ::= <template-param>
1883  // <substitution>
1884 
1885  if (mangleSubstitution(ND))
1886  return;
1887 
1888  // <template-template-param> ::= <template-param>
1889  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1890  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1891  } else {
1892  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1893  if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1894  mangleUnqualifiedName(ND, nullptr);
1895  else
1896  mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1897  }
1898 
1899  addSubstitution(ND);
1900 }
1901 
1902 /// Mangles a template name under the production <type>. Required for
1903 /// template template arguments.
1904 /// <type> ::= <class-enum-type>
1905 /// ::= <template-param>
1906 /// ::= <substitution>
1907 void CXXNameMangler::mangleType(TemplateName TN) {
1908  if (mangleSubstitution(TN))
1909  return;
1910 
1911  TemplateDecl *TD = nullptr;
1912 
1913  switch (TN.getKind()) {
1916  goto HaveDecl;
1917 
1919  TD = TN.getAsTemplateDecl();
1920  goto HaveDecl;
1921 
1922  HaveDecl:
1923  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
1924  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1925  else
1926  mangleName(TD);
1927  break;
1928 
1931  llvm_unreachable("can't mangle an overloaded template name as a <type>");
1932 
1934  const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1935  assert(Dependent->isIdentifier());
1936 
1937  // <class-enum-type> ::= <name>
1938  // <name> ::= <nested-name>
1939  mangleUnresolvedPrefix(Dependent->getQualifier());
1940  mangleSourceName(Dependent->getIdentifier());
1941  break;
1942  }
1943 
1945  // Substituted template parameters are mangled as the substituted
1946  // template. This will check for the substitution twice, which is
1947  // fine, but we have to return early so that we don't try to *add*
1948  // the substitution twice.
1951  mangleType(subst->getReplacement());
1952  return;
1953  }
1954 
1956  // FIXME: not clear how to mangle this!
1957  // template <template <class> class T...> class A {
1958  // template <template <class> class U...> void foo(B<T,U> x...);
1959  // };
1960  Out << "_SUBSTPACK_";
1961  break;
1962  }
1963  }
1964 
1965  addSubstitution(TN);
1966 }
1967 
1968 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1969  StringRef Prefix) {
1970  // Only certain other types are valid as prefixes; enumerate them.
1971  switch (Ty->getTypeClass()) {
1972  case Type::Builtin:
1973  case Type::Complex:
1974  case Type::Adjusted:
1975  case Type::Decayed:
1976  case Type::Pointer:
1977  case Type::BlockPointer:
1978  case Type::LValueReference:
1979  case Type::RValueReference:
1980  case Type::MemberPointer:
1981  case Type::ConstantArray:
1982  case Type::IncompleteArray:
1983  case Type::VariableArray:
1984  case Type::DependentSizedArray:
1985  case Type::DependentAddressSpace:
1986  case Type::DependentVector:
1987  case Type::DependentSizedExtVector:
1988  case Type::Vector:
1989  case Type::ExtVector:
1990  case Type::FunctionProto:
1991  case Type::FunctionNoProto:
1992  case Type::Paren:
1993  case Type::Attributed:
1994  case Type::Auto:
1995  case Type::DeducedTemplateSpecialization:
1996  case Type::PackExpansion:
1997  case Type::ObjCObject:
1998  case Type::ObjCInterface:
1999  case Type::ObjCObjectPointer:
2000  case Type::ObjCTypeParam:
2001  case Type::Atomic:
2002  case Type::Pipe:
2003  case Type::MacroQualified:
2004  llvm_unreachable("type is illegal as a nested name specifier");
2005 
2006  case Type::SubstTemplateTypeParmPack:
2007  // FIXME: not clear how to mangle this!
2008  // template <class T...> class A {
2009  // template <class U...> void foo(decltype(T::foo(U())) x...);
2010  // };
2011  Out << "_SUBSTPACK_";
2012  break;
2013 
2014  // <unresolved-type> ::= <template-param>
2015  // ::= <decltype>
2016  // ::= <template-template-param> <template-args>
2017  // (this last is not official yet)
2018  case Type::TypeOfExpr:
2019  case Type::TypeOf:
2020  case Type::Decltype:
2021  case Type::TemplateTypeParm:
2022  case Type::UnaryTransform:
2023  case Type::SubstTemplateTypeParm:
2024  unresolvedType:
2025  // Some callers want a prefix before the mangled type.
2026  Out << Prefix;
2027 
2028  // This seems to do everything we want. It's not really
2029  // sanctioned for a substituted template parameter, though.
2030  mangleType(Ty);
2031 
2032  // We never want to print 'E' directly after an unresolved-type,
2033  // so we return directly.
2034  return true;
2035 
2036  case Type::Typedef:
2037  mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2038  break;
2039 
2040  case Type::UnresolvedUsing:
2041  mangleSourceNameWithAbiTags(
2042  cast<UnresolvedUsingType>(Ty)->getDecl());
2043  break;
2044 
2045  case Type::Enum:
2046  case Type::Record:
2047  mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2048  break;
2049 
2050  case Type::TemplateSpecialization: {
2051  const TemplateSpecializationType *TST =
2052  cast<TemplateSpecializationType>(Ty);
2053  TemplateName TN = TST->getTemplateName();
2054  switch (TN.getKind()) {
2057  TemplateDecl *TD = TN.getAsTemplateDecl();
2058 
2059  // If the base is a template template parameter, this is an
2060  // unresolved type.
2061  assert(TD && "no template for template specialization type");
2062  if (isa<TemplateTemplateParmDecl>(TD))
2063  goto unresolvedType;
2064 
2065  mangleSourceNameWithAbiTags(TD);
2066  break;
2067  }
2068 
2072  llvm_unreachable("invalid base for a template specialization type");
2073 
2077  mangleExistingSubstitution(subst->getReplacement());
2078  break;
2079  }
2080 
2082  // FIXME: not clear how to mangle this!
2083  // template <template <class U> class T...> class A {
2084  // template <class U...> void foo(decltype(T<U>::foo) x...);
2085  // };
2086  Out << "_SUBSTPACK_";
2087  break;
2088  }
2089  }
2090 
2091  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2092  break;
2093  }
2094 
2095  case Type::InjectedClassName:
2096  mangleSourceNameWithAbiTags(
2097  cast<InjectedClassNameType>(Ty)->getDecl());
2098  break;
2099 
2100  case Type::DependentName:
2101  mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2102  break;
2103 
2104  case Type::DependentTemplateSpecialization: {
2106  cast<DependentTemplateSpecializationType>(Ty);
2107  mangleSourceName(DTST->getIdentifier());
2108  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2109  break;
2110  }
2111 
2112  case Type::Elaborated:
2113  return mangleUnresolvedTypeOrSimpleId(
2114  cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2115  }
2116 
2117  return false;
2118 }
2119 
2120 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2121  switch (Name.getNameKind()) {
2130  llvm_unreachable("Not an operator name");
2131 
2133  // <operator-name> ::= cv <type> # (cast)
2134  Out << "cv";
2135  mangleType(Name.getCXXNameType());
2136  break;
2137 
2139  Out << "li";
2140  mangleSourceName(Name.getCXXLiteralIdentifier());
2141  return;
2142 
2144  mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2145  break;
2146  }
2147 }
2148 
2149 void
2150 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2151  switch (OO) {
2152  // <operator-name> ::= nw # new
2153  case OO_New: Out << "nw"; break;
2154  // ::= na # new[]
2155  case OO_Array_New: Out << "na"; break;
2156  // ::= dl # delete
2157  case OO_Delete: Out << "dl"; break;
2158  // ::= da # delete[]
2159  case OO_Array_Delete: Out << "da"; break;
2160  // ::= ps # + (unary)
2161  // ::= pl # + (binary or unknown)
2162  case OO_Plus:
2163  Out << (Arity == 1? "ps" : "pl"); break;
2164  // ::= ng # - (unary)
2165  // ::= mi # - (binary or unknown)
2166  case OO_Minus:
2167  Out << (Arity == 1? "ng" : "mi"); break;
2168  // ::= ad # & (unary)
2169  // ::= an # & (binary or unknown)
2170  case OO_Amp:
2171  Out << (Arity == 1? "ad" : "an"); break;
2172  // ::= de # * (unary)
2173  // ::= ml # * (binary or unknown)
2174  case OO_Star:
2175  // Use binary when unknown.
2176  Out << (Arity == 1? "de" : "ml"); break;
2177  // ::= co # ~
2178  case OO_Tilde: Out << "co"; break;
2179  // ::= dv # /
2180  case OO_Slash: Out << "dv"; break;
2181  // ::= rm # %
2182  case OO_Percent: Out << "rm"; break;
2183  // ::= or # |
2184  case OO_Pipe: Out << "or"; break;
2185  // ::= eo # ^
2186  case OO_Caret: Out << "eo"; break;
2187  // ::= aS # =
2188  case OO_Equal: Out << "aS"; break;
2189  // ::= pL # +=
2190  case OO_PlusEqual: Out << "pL"; break;
2191  // ::= mI # -=
2192  case OO_MinusEqual: Out << "mI"; break;
2193  // ::= mL # *=
2194  case OO_StarEqual: Out << "mL"; break;
2195  // ::= dV # /=
2196  case OO_SlashEqual: Out << "dV"; break;
2197  // ::= rM # %=
2198  case OO_PercentEqual: Out << "rM"; break;
2199  // ::= aN # &=
2200  case OO_AmpEqual: Out << "aN"; break;
2201  // ::= oR # |=
2202  case OO_PipeEqual: Out << "oR"; break;
2203  // ::= eO # ^=
2204  case OO_CaretEqual: Out << "eO"; break;
2205  // ::= ls # <<
2206  case OO_LessLess: Out << "ls"; break;
2207  // ::= rs # >>
2208  case OO_GreaterGreater: Out << "rs"; break;
2209  // ::= lS # <<=
2210  case OO_LessLessEqual: Out << "lS"; break;
2211  // ::= rS # >>=
2212  case OO_GreaterGreaterEqual: Out << "rS"; break;
2213  // ::= eq # ==
2214  case OO_EqualEqual: Out << "eq"; break;
2215  // ::= ne # !=
2216  case OO_ExclaimEqual: Out << "ne"; break;
2217  // ::= lt # <
2218  case OO_Less: Out << "lt"; break;
2219  // ::= gt # >
2220  case OO_Greater: Out << "gt"; break;
2221  // ::= le # <=
2222  case OO_LessEqual: Out << "le"; break;
2223  // ::= ge # >=
2224  case OO_GreaterEqual: Out << "ge"; break;
2225  // ::= nt # !
2226  case OO_Exclaim: Out << "nt"; break;
2227  // ::= aa # &&
2228  case OO_AmpAmp: Out << "aa"; break;
2229  // ::= oo # ||
2230  case OO_PipePipe: Out << "oo"; break;
2231  // ::= pp # ++
2232  case OO_PlusPlus: Out << "pp"; break;
2233  // ::= mm # --
2234  case OO_MinusMinus: Out << "mm"; break;
2235  // ::= cm # ,
2236  case OO_Comma: Out << "cm"; break;
2237  // ::= pm # ->*
2238  case OO_ArrowStar: Out << "pm"; break;
2239  // ::= pt # ->
2240  case OO_Arrow: Out << "pt"; break;
2241  // ::= cl # ()
2242  case OO_Call: Out << "cl"; break;
2243  // ::= ix # []
2244  case OO_Subscript: Out << "ix"; break;
2245 
2246  // ::= qu # ?
2247  // The conditional operator can't be overloaded, but we still handle it when
2248  // mangling expressions.
2249  case OO_Conditional: Out << "qu"; break;
2250  // Proposal on cxx-abi-dev, 2015-10-21.
2251  // ::= aw # co_await
2252  case OO_Coawait: Out << "aw"; break;
2253  // Proposed in cxx-abi github issue 43.
2254  // ::= ss # <=>
2255  case OO_Spaceship: Out << "ss"; break;
2256 
2257  case OO_None:
2259  llvm_unreachable("Not an overloaded operator");
2260  }
2261 }
2262 
2263 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2264  // Vendor qualifiers come first and if they are order-insensitive they must
2265  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2266 
2267  // <type> ::= U <addrspace-expr>
2268  if (DAST) {
2269  Out << "U2ASI";
2270  mangleExpression(DAST->getAddrSpaceExpr());
2271  Out << "E";
2272  }
2273 
2274  // Address space qualifiers start with an ordinary letter.
2275  if (Quals.hasAddressSpace()) {
2276  // Address space extension:
2277  //
2278  // <type> ::= U <target-addrspace>
2279  // <type> ::= U <OpenCL-addrspace>
2280  // <type> ::= U <CUDA-addrspace>
2281 
2282  SmallString<64> ASString;
2283  LangAS AS = Quals.getAddressSpace();
2284 
2285  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2286  // <target-addrspace> ::= "AS" <address-space-number>
2287  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2288  if (TargetAS != 0)
2289  ASString = "AS" + llvm::utostr(TargetAS);
2290  } else {
2291  switch (AS) {
2292  default: llvm_unreachable("Not a language specific address space");
2293  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2294  // "private"| "generic" ]
2295  case LangAS::opencl_global: ASString = "CLglobal"; break;
2296  case LangAS::opencl_local: ASString = "CLlocal"; break;
2297  case LangAS::opencl_constant: ASString = "CLconstant"; break;
2298  case LangAS::opencl_private: ASString = "CLprivate"; break;
2299  case LangAS::opencl_generic: ASString = "CLgeneric"; break;
2300  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2301  case LangAS::cuda_device: ASString = "CUdevice"; break;
2302  case LangAS::cuda_constant: ASString = "CUconstant"; break;
2303  case LangAS::cuda_shared: ASString = "CUshared"; break;
2304  }
2305  }
2306  if (!ASString.empty())
2307  mangleVendorQualifier(ASString);
2308  }
2309 
2310  // The ARC ownership qualifiers start with underscores.
2311  // Objective-C ARC Extension:
2312  //
2313  // <type> ::= U "__strong"
2314  // <type> ::= U "__weak"
2315  // <type> ::= U "__autoreleasing"
2316  //
2317  // Note: we emit __weak first to preserve the order as
2318  // required by the Itanium ABI.
2319  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2320  mangleVendorQualifier("__weak");
2321 
2322  // __unaligned (from -fms-extensions)
2323  if (Quals.hasUnaligned())
2324  mangleVendorQualifier("__unaligned");
2325 
2326  // Remaining ARC ownership qualifiers.
2327  switch (Quals.getObjCLifetime()) {
2328  case Qualifiers::OCL_None:
2329  break;
2330 
2331  case Qualifiers::OCL_Weak:
2332  // Do nothing as we already handled this case above.
2333  break;
2334 
2336  mangleVendorQualifier("__strong");
2337  break;
2338 
2340  mangleVendorQualifier("__autoreleasing");
2341  break;
2342 
2344  // The __unsafe_unretained qualifier is *not* mangled, so that
2345  // __unsafe_unretained types in ARC produce the same manglings as the
2346  // equivalent (but, naturally, unqualified) types in non-ARC, providing
2347  // better ABI compatibility.
2348  //
2349  // It's safe to do this because unqualified 'id' won't show up
2350  // in any type signatures that need to be mangled.
2351  break;
2352  }
2353 
2354  // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2355  if (Quals.hasRestrict())
2356  Out << 'r';
2357  if (Quals.hasVolatile())
2358  Out << 'V';
2359  if (Quals.hasConst())
2360  Out << 'K';
2361 }
2362 
2363 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2364  Out << 'U' << name.size() << name;
2365 }
2366 
2367 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2368  // <ref-qualifier> ::= R # lvalue reference
2369  // ::= O # rvalue-reference
2370  switch (RefQualifier) {
2371  case RQ_None:
2372  break;
2373 
2374  case RQ_LValue:
2375  Out << 'R';
2376  break;
2377 
2378  case RQ_RValue:
2379  Out << 'O';
2380  break;
2381  }
2382 }
2383 
2384 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2385  Context.mangleObjCMethodName(MD, Out);
2386 }
2387 
2388 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2389  ASTContext &Ctx) {
2390  if (Quals)
2391  return true;
2392  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2393  return true;
2394  if (Ty->isOpenCLSpecificType())
2395  return true;
2396  if (Ty->isBuiltinType())
2397  return false;
2398  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2399  // substitution candidates.
2400  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2401  isa<AutoType>(Ty))
2402  return false;
2403  return true;
2404 }
2405 
2406 void CXXNameMangler::mangleType(QualType T) {
2407  // If our type is instantiation-dependent but not dependent, we mangle
2408  // it as it was written in the source, removing any top-level sugar.
2409  // Otherwise, use the canonical type.
2410  //
2411  // FIXME: This is an approximation of the instantiation-dependent name
2412  // mangling rules, since we should really be using the type as written and
2413  // augmented via semantic analysis (i.e., with implicit conversions and
2414  // default template arguments) for any instantiation-dependent type.
2415  // Unfortunately, that requires several changes to our AST:
2416  // - Instantiation-dependent TemplateSpecializationTypes will need to be
2417  // uniqued, so that we can handle substitutions properly
2418  // - Default template arguments will need to be represented in the
2419  // TemplateSpecializationType, since they need to be mangled even though
2420  // they aren't written.
2421  // - Conversions on non-type template arguments need to be expressed, since
2422  // they can affect the mangling of sizeof/alignof.
2423  //
2424  // FIXME: This is wrong when mapping to the canonical type for a dependent
2425  // type discards instantiation-dependent portions of the type, such as for:
2426  //
2427  // template<typename T, int N> void f(T (&)[sizeof(N)]);
2428  // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2429  //
2430  // It's also wrong in the opposite direction when instantiation-dependent,
2431  // canonically-equivalent types differ in some irrelevant portion of inner
2432  // type sugar. In such cases, we fail to form correct substitutions, eg:
2433  //
2434  // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2435  //
2436  // We should instead canonicalize the non-instantiation-dependent parts,
2437  // regardless of whether the type as a whole is dependent or instantiation
2438  // dependent.
2440  T = T.getCanonicalType();
2441  else {
2442  // Desugar any types that are purely sugar.
2443  do {
2444  // Don't desugar through template specialization types that aren't
2445  // type aliases. We need to mangle the template arguments as written.
2446  if (const TemplateSpecializationType *TST
2447  = dyn_cast<TemplateSpecializationType>(T))
2448  if (!TST->isTypeAlias())
2449  break;
2450 
2451  QualType Desugared
2452  = T.getSingleStepDesugaredType(Context.getASTContext());
2453  if (Desugared == T)
2454  break;
2455 
2456  T = Desugared;
2457  } while (true);
2458  }
2459  SplitQualType split = T.split();
2460  Qualifiers quals = split.Quals;
2461  const Type *ty = split.Ty;
2462 
2463  bool isSubstitutable =
2464  isTypeSubstitutable(quals, ty, Context.getASTContext());
2465  if (isSubstitutable && mangleSubstitution(T))
2466  return;
2467 
2468  // If we're mangling a qualified array type, push the qualifiers to
2469  // the element type.
2470  if (quals && isa<ArrayType>(T)) {
2471  ty = Context.getASTContext().getAsArrayType(T);
2472  quals = Qualifiers();
2473 
2474  // Note that we don't update T: we want to add the
2475  // substitution at the original type.
2476  }
2477 
2478  if (quals || ty->isDependentAddressSpaceType()) {
2479  if (const DependentAddressSpaceType *DAST =
2480  dyn_cast<DependentAddressSpaceType>(ty)) {
2481  SplitQualType splitDAST = DAST->getPointeeType().split();
2482  mangleQualifiers(splitDAST.Quals, DAST);
2483  mangleType(QualType(splitDAST.Ty, 0));
2484  } else {
2485  mangleQualifiers(quals);
2486 
2487  // Recurse: even if the qualified type isn't yet substitutable,
2488  // the unqualified type might be.
2489  mangleType(QualType(ty, 0));
2490  }
2491  } else {
2492  switch (ty->getTypeClass()) {
2493 #define ABSTRACT_TYPE(CLASS, PARENT)
2494 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2495  case Type::CLASS: \
2496  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2497  return;
2498 #define TYPE(CLASS, PARENT) \
2499  case Type::CLASS: \
2500  mangleType(static_cast<const CLASS##Type*>(ty)); \
2501  break;
2502 #include "clang/AST/TypeNodes.inc"
2503  }
2504  }
2505 
2506  // Add the substitution.
2507  if (isSubstitutable)
2508  addSubstitution(T);
2509 }
2510 
2511 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2512  if (!mangleStandardSubstitution(ND))
2513  mangleName(ND);
2514 }
2515 
2516 void CXXNameMangler::mangleType(const BuiltinType *T) {
2517  // <type> ::= <builtin-type>
2518  // <builtin-type> ::= v # void
2519  // ::= w # wchar_t
2520  // ::= b # bool
2521  // ::= c # char
2522  // ::= a # signed char
2523  // ::= h # unsigned char
2524  // ::= s # short
2525  // ::= t # unsigned short
2526  // ::= i # int
2527  // ::= j # unsigned int
2528  // ::= l # long
2529  // ::= m # unsigned long
2530  // ::= x # long long, __int64
2531  // ::= y # unsigned long long, __int64
2532  // ::= n # __int128
2533  // ::= o # unsigned __int128
2534  // ::= f # float
2535  // ::= d # double
2536  // ::= e # long double, __float80
2537  // ::= g # __float128
2538  // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2539  // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2540  // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2541  // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2542  // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2543  // ::= Di # char32_t
2544  // ::= Ds # char16_t
2545  // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2546  // ::= u <source-name> # vendor extended type
2547  std::string type_name;
2548  switch (T->getKind()) {
2549  case BuiltinType::Void:
2550  Out << 'v';
2551  break;
2552  case BuiltinType::Bool:
2553  Out << 'b';
2554  break;
2555  case BuiltinType::Char_U:
2556  case BuiltinType::Char_S:
2557  Out << 'c';
2558  break;
2559  case BuiltinType::UChar:
2560  Out << 'h';
2561  break;
2562  case BuiltinType::UShort:
2563  Out << 't';
2564  break;
2565  case BuiltinType::UInt:
2566  Out << 'j';
2567  break;
2568  case BuiltinType::ULong:
2569  Out << 'm';
2570  break;
2571  case BuiltinType::ULongLong:
2572  Out << 'y';
2573  break;
2574  case BuiltinType::UInt128:
2575  Out << 'o';
2576  break;
2577  case BuiltinType::SChar:
2578  Out << 'a';
2579  break;
2580  case BuiltinType::WChar_S:
2581  case BuiltinType::WChar_U:
2582  Out << 'w';
2583  break;
2584  case BuiltinType::Char8:
2585  Out << "Du";
2586  break;
2587  case BuiltinType::Char16:
2588  Out << "Ds";
2589  break;
2590  case BuiltinType::Char32:
2591  Out << "Di";
2592  break;
2593  case BuiltinType::Short:
2594  Out << 's';
2595  break;
2596  case BuiltinType::Int:
2597  Out << 'i';
2598  break;
2599  case BuiltinType::Long:
2600  Out << 'l';
2601  break;
2602  case BuiltinType::LongLong:
2603  Out << 'x';
2604  break;
2605  case BuiltinType::Int128:
2606  Out << 'n';
2607  break;
2608  case BuiltinType::Float16:
2609  Out << "DF16_";
2610  break;
2611  case BuiltinType::ShortAccum:
2612  case BuiltinType::Accum:
2613  case BuiltinType::LongAccum:
2614  case BuiltinType::UShortAccum:
2615  case BuiltinType::UAccum:
2616  case BuiltinType::ULongAccum:
2617  case BuiltinType::ShortFract:
2618  case BuiltinType::Fract:
2619  case BuiltinType::LongFract:
2620  case BuiltinType::UShortFract:
2621  case BuiltinType::UFract:
2622  case BuiltinType::ULongFract:
2623  case BuiltinType::SatShortAccum:
2624  case BuiltinType::SatAccum:
2625  case BuiltinType::SatLongAccum:
2626  case BuiltinType::SatUShortAccum:
2627  case BuiltinType::SatUAccum:
2628  case BuiltinType::SatULongAccum:
2629  case BuiltinType::SatShortFract:
2630  case BuiltinType::SatFract:
2631  case BuiltinType::SatLongFract:
2632  case BuiltinType::SatUShortFract:
2633  case BuiltinType::SatUFract:
2634  case BuiltinType::SatULongFract:
2635  llvm_unreachable("Fixed point types are disabled for c++");
2636  case BuiltinType::Half:
2637  Out << "Dh";
2638  break;
2639  case BuiltinType::Float:
2640  Out << 'f';
2641  break;
2642  case BuiltinType::Double:
2643  Out << 'd';
2644  break;
2645  case BuiltinType::LongDouble: {
2646  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2647  getASTContext().getLangOpts().OpenMPIsDevice
2648  ? getASTContext().getAuxTargetInfo()
2649  : &getASTContext().getTargetInfo();
2650  Out << TI->getLongDoubleMangling();
2651  break;
2652  }
2653  case BuiltinType::Float128: {
2654  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2655  getASTContext().getLangOpts().OpenMPIsDevice
2656  ? getASTContext().getAuxTargetInfo()
2657  : &getASTContext().getTargetInfo();
2658  Out << TI->getFloat128Mangling();
2659  break;
2660  }
2661  case BuiltinType::NullPtr:
2662  Out << "Dn";
2663  break;
2664 
2665 #define BUILTIN_TYPE(Id, SingletonId)
2666 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2667  case BuiltinType::Id:
2668 #include "clang/AST/BuiltinTypes.def"
2669  case BuiltinType::Dependent:
2670  if (!NullOut)
2671  llvm_unreachable("mangling a placeholder type");
2672  break;
2673  case BuiltinType::ObjCId:
2674  Out << "11objc_object";
2675  break;
2676  case BuiltinType::ObjCClass:
2677  Out << "10objc_class";
2678  break;
2679  case BuiltinType::ObjCSel:
2680  Out << "13objc_selector";
2681  break;
2682 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2683  case BuiltinType::Id: \
2684  type_name = "ocl_" #ImgType "_" #Suffix; \
2685  Out << type_name.size() << type_name; \
2686  break;
2687 #include "clang/Basic/OpenCLImageTypes.def"
2688  case BuiltinType::OCLSampler:
2689  Out << "11ocl_sampler";
2690  break;
2691  case BuiltinType::OCLEvent:
2692  Out << "9ocl_event";
2693  break;
2694  case BuiltinType::OCLClkEvent:
2695  Out << "12ocl_clkevent";
2696  break;
2697  case BuiltinType::OCLQueue:
2698  Out << "9ocl_queue";
2699  break;
2700  case BuiltinType::OCLReserveID:
2701  Out << "13ocl_reserveid";
2702  break;
2703 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2704  case BuiltinType::Id: \
2705  type_name = "ocl_" #ExtType; \
2706  Out << type_name.size() << type_name; \
2707  break;
2708 #include "clang/Basic/OpenCLExtensionTypes.def"
2709  // The SVE types are effectively target-specific. The mangling scheme
2710  // is defined in the appendices to the Procedure Call Standard for the
2711  // Arm Architecture.
2712 #define SVE_TYPE(Name, Id, SingletonId) \
2713  case BuiltinType::Id: \
2714  type_name = Name; \
2715  Out << 'u' << type_name.size() << type_name; \
2716  break;
2717 #include "clang/Basic/AArch64SVEACLETypes.def"
2718  }
2719 }
2720 
2721 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2722  switch (CC) {
2723  case CC_C:
2724  return "";
2725 
2726  case CC_X86VectorCall:
2727  case CC_X86Pascal:
2728  case CC_X86RegCall:
2729  case CC_AAPCS:
2730  case CC_AAPCS_VFP:
2731  case CC_AArch64VectorCall:
2732  case CC_IntelOclBicc:
2733  case CC_SpirFunction:
2734  case CC_OpenCLKernel:
2735  case CC_PreserveMost:
2736  case CC_PreserveAll:
2737  // FIXME: we should be mangling all of the above.
2738  return "";
2739 
2740  case CC_X86ThisCall:
2741  // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2742  // used explicitly. At this point, we don't have that much information in
2743  // the AST, since clang tends to bake the convention into the canonical
2744  // function type. thiscall only rarely used explicitly, so don't mangle it
2745  // for now.
2746  return "";
2747 
2748  case CC_X86StdCall:
2749  return "stdcall";
2750  case CC_X86FastCall:
2751  return "fastcall";
2752  case CC_X86_64SysV:
2753  return "sysv_abi";
2754  case CC_Win64:
2755  return "ms_abi";
2756  case CC_Swift:
2757  return "swiftcall";
2758  }
2759  llvm_unreachable("bad calling convention");
2760 }
2761 
2762 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2763  // Fast path.
2764  if (T->getExtInfo() == FunctionType::ExtInfo())
2765  return;
2766 
2767  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2768  // This will get more complicated in the future if we mangle other
2769  // things here; but for now, since we mangle ns_returns_retained as
2770  // a qualifier on the result type, we can get away with this:
2771  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2772  if (!CCQualifier.empty())
2773  mangleVendorQualifier(CCQualifier);
2774 
2775  // FIXME: regparm
2776  // FIXME: noreturn
2777 }
2778 
2779 void
2780 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2781  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2782 
2783  // Note that these are *not* substitution candidates. Demanglers might
2784  // have trouble with this if the parameter type is fully substituted.
2785 
2786  switch (PI.getABI()) {
2788  break;
2789 
2790  // All of these start with "swift", so they come before "ns_consumed".
2794  mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2795  break;
2796  }
2797 
2798  if (PI.isConsumed())
2799  mangleVendorQualifier("ns_consumed");
2800 
2801  if (PI.isNoEscape())
2802  mangleVendorQualifier("noescape");
2803 }
2804 
2805 // <type> ::= <function-type>
2806 // <function-type> ::= [<CV-qualifiers>] F [Y]
2807 // <bare-function-type> [<ref-qualifier>] E
2808 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2809  mangleExtFunctionInfo(T);
2810 
2811  // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2812  // e.g. "const" in "int (A::*)() const".
2813  mangleQualifiers(T->getMethodQuals());
2814 
2815  // Mangle instantiation-dependent exception-specification, if present,
2816  // per cxx-abi-dev proposal on 2016-10-11.
2819  Out << "DO";
2820  mangleExpression(T->getNoexceptExpr());
2821  Out << "E";
2822  } else {
2823  assert(T->getExceptionSpecType() == EST_Dynamic);
2824  Out << "Dw";
2825  for (auto ExceptTy : T->exceptions())
2826  mangleType(ExceptTy);
2827  Out << "E";
2828  }
2829  } else if (T->isNothrow()) {
2830  Out << "Do";
2831  }
2832 
2833  Out << 'F';
2834 
2835  // FIXME: We don't have enough information in the AST to produce the 'Y'
2836  // encoding for extern "C" function types.
2837  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2838 
2839  // Mangle the ref-qualifier, if present.
2840  mangleRefQualifier(T->getRefQualifier());
2841 
2842  Out << 'E';
2843 }
2844 
2845 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2846  // Function types without prototypes can arise when mangling a function type
2847  // within an overloadable function in C. We mangle these as the absence of any
2848  // parameter types (not even an empty parameter list).
2849  Out << 'F';
2850 
2851  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2852 
2853  FunctionTypeDepth.enterResultType();
2854  mangleType(T->getReturnType());
2855  FunctionTypeDepth.leaveResultType();
2856 
2857  FunctionTypeDepth.pop(saved);
2858  Out << 'E';
2859 }
2860 
2861 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2862  bool MangleReturnType,
2863  const FunctionDecl *FD) {
2864  // Record that we're in a function type. See mangleFunctionParam
2865  // for details on what we're trying to achieve here.
2866  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2867 
2868  // <bare-function-type> ::= <signature type>+
2869  if (MangleReturnType) {
2870  FunctionTypeDepth.enterResultType();
2871 
2872  // Mangle ns_returns_retained as an order-sensitive qualifier here.
2873  if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2874  mangleVendorQualifier("ns_returns_retained");
2875 
2876  // Mangle the return type without any direct ARC ownership qualifiers.
2877  QualType ReturnTy = Proto->getReturnType();
2878  if (ReturnTy.getObjCLifetime()) {
2879  auto SplitReturnTy = ReturnTy.split();
2880  SplitReturnTy.Quals.removeObjCLifetime();
2881  ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2882  }
2883  mangleType(ReturnTy);
2884 
2885  FunctionTypeDepth.leaveResultType();
2886  }
2887 
2888  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2889  // <builtin-type> ::= v # void
2890  Out << 'v';
2891 
2892  FunctionTypeDepth.pop(saved);
2893  return;
2894  }
2895 
2896  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2897  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2898  // Mangle extended parameter info as order-sensitive qualifiers here.
2899  if (Proto->hasExtParameterInfos() && FD == nullptr) {
2900  mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2901  }
2902 
2903  // Mangle the type.
2904  QualType ParamTy = Proto->getParamType(I);
2905  mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2906 
2907  if (FD) {
2908  if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2909  // Attr can only take 1 character, so we can hardcode the length below.
2910  assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2911  if (Attr->isDynamic())
2912  Out << "U25pass_dynamic_object_size" << Attr->getType();
2913  else
2914  Out << "U17pass_object_size" << Attr->getType();
2915  }
2916  }
2917  }
2918 
2919  FunctionTypeDepth.pop(saved);
2920 
2921  // <builtin-type> ::= z # ellipsis
2922  if (Proto->isVariadic())
2923  Out << 'z';
2924 }
2925 
2926 // <type> ::= <class-enum-type>
2927 // <class-enum-type> ::= <name>
2928 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2929  mangleName(T->getDecl());
2930 }
2931 
2932 // <type> ::= <class-enum-type>
2933 // <class-enum-type> ::= <name>
2934 void CXXNameMangler::mangleType(const EnumType *T) {
2935  mangleType(static_cast<const TagType*>(T));
2936 }
2937 void CXXNameMangler::mangleType(const RecordType *T) {
2938  mangleType(static_cast<const TagType*>(T));
2939 }
2940 void CXXNameMangler::mangleType(const TagType *T) {
2941  mangleName(T->getDecl());
2942 }
2943 
2944 // <type> ::= <array-type>
2945 // <array-type> ::= A <positive dimension number> _ <element type>
2946 // ::= A [<dimension expression>] _ <element type>
2947 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2948  Out << 'A' << T->getSize() << '_';
2949  mangleType(T->getElementType());
2950 }
2951 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2952  Out << 'A';
2953  // decayed vla types (size 0) will just be skipped.
2954  if (T->getSizeExpr())
2955  mangleExpression(T->getSizeExpr());
2956  Out << '_';
2957  mangleType(T->getElementType());
2958 }
2959 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2960  Out << 'A';
2961  mangleExpression(T->getSizeExpr());
2962  Out << '_';
2963  mangleType(T->getElementType());
2964 }
2965 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2966  Out << "A_";
2967  mangleType(T->getElementType());
2968 }
2969 
2970 // <type> ::= <pointer-to-member-type>
2971 // <pointer-to-member-type> ::= M <class type> <member type>
2972 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2973  Out << 'M';
2974  mangleType(QualType(T->getClass(), 0));
2975  QualType PointeeType = T->getPointeeType();
2976  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2977  mangleType(FPT);
2978 
2979  // Itanium C++ ABI 5.1.8:
2980  //
2981  // The type of a non-static member function is considered to be different,
2982  // for the purposes of substitution, from the type of a namespace-scope or
2983  // static member function whose type appears similar. The types of two
2984  // non-static member functions are considered to be different, for the
2985  // purposes of substitution, if the functions are members of different
2986  // classes. In other words, for the purposes of substitution, the class of
2987  // which the function is a member is considered part of the type of
2988  // function.
2989 
2990  // Given that we already substitute member function pointers as a
2991  // whole, the net effect of this rule is just to unconditionally
2992  // suppress substitution on the function type in a member pointer.
2993  // We increment the SeqID here to emulate adding an entry to the
2994  // substitution table.
2995  ++SeqID;
2996  } else
2997  mangleType(PointeeType);
2998 }
2999 
3000 // <type> ::= <template-param>
3001 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3002  mangleTemplateParameter(T->getDepth(), T->getIndex());
3003 }
3004 
3005 // <type> ::= <template-param>
3006 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3007  // FIXME: not clear how to mangle this!
3008  // template <class T...> class A {
3009  // template <class U...> void foo(T(*)(U) x...);
3010  // };
3011  Out << "_SUBSTPACK_";
3012 }
3013 
3014 // <type> ::= P <type> # pointer-to
3015 void CXXNameMangler::mangleType(const PointerType *T) {
3016  Out << 'P';
3017  mangleType(T->getPointeeType());
3018 }
3019 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3020  Out << 'P';
3021  mangleType(T->getPointeeType());
3022 }
3023 
3024 // <type> ::= R <type> # reference-to
3025 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3026  Out << 'R';
3027  mangleType(T->getPointeeType());
3028 }
3029 
3030 // <type> ::= O <type> # rvalue reference-to (C++0x)
3031 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3032  Out << 'O';
3033  mangleType(T->getPointeeType());
3034 }
3035 
3036 // <type> ::= C <type> # complex pair (C 2000)
3037 void CXXNameMangler::mangleType(const ComplexType *T) {
3038  Out << 'C';
3039  mangleType(T->getElementType());
3040 }
3041 
3042 // ARM's ABI for Neon vector types specifies that they should be mangled as
3043 // if they are structs (to match ARM's initial implementation). The
3044 // vector type must be one of the special types predefined by ARM.
3045 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3046  QualType EltType = T->getElementType();
3047  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3048  const char *EltName = nullptr;
3050  switch (cast<BuiltinType>(EltType)->getKind()) {
3051  case BuiltinType::SChar:
3052  case BuiltinType::UChar:
3053  EltName = "poly8_t";
3054  break;
3055  case BuiltinType::Short:
3056  case BuiltinType::UShort:
3057  EltName = "poly16_t";
3058  break;
3059  case BuiltinType::ULongLong:
3060  EltName = "poly64_t";
3061  break;
3062  default: llvm_unreachable("unexpected Neon polynomial vector element type");
3063  }
3064  } else {
3065  switch (cast<BuiltinType>(EltType)->getKind()) {
3066  case BuiltinType::SChar: EltName = "int8_t"; break;
3067  case BuiltinType::UChar: EltName = "uint8_t"; break;
3068  case BuiltinType::Short: EltName = "int16_t"; break;
3069  case BuiltinType::UShort: EltName = "uint16_t"; break;
3070  case BuiltinType::Int: EltName = "int32_t"; break;
3071  case BuiltinType::UInt: EltName = "uint32_t"; break;
3072  case BuiltinType::LongLong: EltName = "int64_t"; break;
3073  case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3074  case BuiltinType::Double: EltName = "float64_t"; break;
3075  case BuiltinType::Float: EltName = "float32_t"; break;
3076  case BuiltinType::Half: EltName = "float16_t";break;
3077  default:
3078  llvm_unreachable("unexpected Neon vector element type");
3079  }
3080  }
3081  const char *BaseName = nullptr;
3082  unsigned BitSize = (T->getNumElements() *
3083  getASTContext().getTypeSize(EltType));
3084  if (BitSize == 64)
3085  BaseName = "__simd64_";
3086  else {
3087  assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3088  BaseName = "__simd128_";
3089  }
3090  Out << strlen(BaseName) + strlen(EltName);
3091  Out << BaseName << EltName;
3092 }
3093 
3094 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3095  DiagnosticsEngine &Diags = Context.getDiags();
3096  unsigned DiagID = Diags.getCustomDiagID(
3098  "cannot mangle this dependent neon vector type yet");
3099  Diags.Report(T->getAttributeLoc(), DiagID);
3100 }
3101 
3102 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3103  switch (EltType->getKind()) {
3104  case BuiltinType::SChar:
3105  return "Int8";
3106  case BuiltinType::Short:
3107  return "Int16";
3108  case BuiltinType::Int:
3109  return "Int32";
3110  case BuiltinType::Long:
3111  case BuiltinType::LongLong:
3112  return "Int64";
3113  case BuiltinType::UChar:
3114  return "Uint8";
3115  case BuiltinType::UShort:
3116  return "Uint16";
3117  case BuiltinType::UInt:
3118  return "Uint32";
3119  case BuiltinType::ULong:
3120  case BuiltinType::ULongLong:
3121  return "Uint64";
3122  case BuiltinType::Half:
3123  return "Float16";
3124  case BuiltinType::Float:
3125  return "Float32";
3126  case BuiltinType::Double:
3127  return "Float64";
3128  default:
3129  llvm_unreachable("Unexpected vector element base type");
3130  }
3131 }
3132 
3133 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3134 // the equivalent internal name. The vector type must be one of the special
3135 // types predefined by ARM.
3136 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3137  QualType EltType = T->getElementType();
3138  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3139  unsigned BitSize =
3140  (T->getNumElements() * getASTContext().getTypeSize(EltType));
3141  (void)BitSize; // Silence warning.
3142 
3143  assert((BitSize == 64 || BitSize == 128) &&
3144  "Neon vector type not 64 or 128 bits");
3145 
3146  StringRef EltName;
3148  switch (cast<BuiltinType>(EltType)->getKind()) {
3149  case BuiltinType::UChar:
3150  EltName = "Poly8";
3151  break;
3152  case BuiltinType::UShort:
3153  EltName = "Poly16";
3154  break;
3155  case BuiltinType::ULong:
3156  case BuiltinType::ULongLong:
3157  EltName = "Poly64";
3158  break;
3159  default:
3160  llvm_unreachable("unexpected Neon polynomial vector element type");
3161  }
3162  } else
3163  EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3164 
3165  std::string TypeName =
3166  ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3167  Out << TypeName.length() << TypeName;
3168 }
3169 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3170  DiagnosticsEngine &Diags = Context.getDiags();
3171  unsigned DiagID = Diags.getCustomDiagID(
3173  "cannot mangle this dependent neon vector type yet");
3174  Diags.Report(T->getAttributeLoc(), DiagID);
3175 }
3176 
3177 // GNU extension: vector types
3178 // <type> ::= <vector-type>
3179 // <vector-type> ::= Dv <positive dimension number> _
3180 // <extended element type>
3181 // ::= Dv [<dimension expression>] _ <element type>
3182 // <extended element type> ::= <element type>
3183 // ::= p # AltiVec vector pixel
3184 // ::= b # Altivec vector bool
3185 void CXXNameMangler::mangleType(const VectorType *T) {
3186  if ((T->getVectorKind() == VectorType::NeonVector ||
3188  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3189  llvm::Triple::ArchType Arch =
3190  getASTContext().getTargetInfo().getTriple().getArch();
3191  if ((Arch == llvm::Triple::aarch64 ||
3192  Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3193  mangleAArch64NeonVectorType(T);
3194  else
3195  mangleNeonVectorType(T);
3196  return;
3197  }
3198  Out << "Dv" << T->getNumElements() << '_';
3200  Out << 'p';
3201  else if (T->getVectorKind() == VectorType::AltiVecBool)
3202  Out << 'b';
3203  else
3204  mangleType(T->getElementType());
3205 }
3206 
3207 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3208  if ((T->getVectorKind() == VectorType::NeonVector ||
3210  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3211  llvm::Triple::ArchType Arch =
3212  getASTContext().getTargetInfo().getTriple().getArch();
3213  if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3214  !Target.isOSDarwin())
3215  mangleAArch64NeonVectorType(T);
3216  else
3217  mangleNeonVectorType(T);
3218  return;
3219  }
3220 
3221  Out << "Dv";
3222  mangleExpression(T->getSizeExpr());
3223  Out << '_';
3225  Out << 'p';
3226  else if (T->getVectorKind() == VectorType::AltiVecBool)
3227  Out << 'b';
3228  else
3229  mangleType(T->getElementType());
3230 }
3231 
3232 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3233  mangleType(static_cast<const VectorType*>(T));
3234 }
3235 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3236  Out << "Dv";
3237  mangleExpression(T->getSizeExpr());
3238  Out << '_';
3239  mangleType(T->getElementType());
3240 }
3241 
3242 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3243  SplitQualType split = T->getPointeeType().split();
3244  mangleQualifiers(split.Quals, T);
3245  mangleType(QualType(split.Ty, 0));
3246 }
3247 
3248 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3249  // <type> ::= Dp <type> # pack expansion (C++0x)
3250  Out << "Dp";
3251  mangleType(T->getPattern());
3252 }
3253 
3254 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3255  mangleSourceName(T->getDecl()->getIdentifier());
3256 }
3257 
3258 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3259  // Treat __kindof as a vendor extended type qualifier.
3260  if (T->isKindOfType())
3261  Out << "U8__kindof";
3262 
3263  if (!T->qual_empty()) {
3264  // Mangle protocol qualifiers.
3265  SmallString<64> QualStr;
3266  llvm::raw_svector_ostream QualOS(QualStr);
3267  QualOS << "objcproto";
3268  for (const auto *I : T->quals()) {
3269  StringRef name = I->getName();
3270  QualOS << name.size() << name;
3271  }
3272  Out << 'U' << QualStr.size() << QualStr;
3273  }
3274 
3275  mangleType(T->getBaseType());
3276 
3277  if (T->isSpecialized()) {
3278  // Mangle type arguments as I <type>+ E
3279  Out << 'I';
3280  for (auto typeArg : T->getTypeArgs())
3281  mangleType(typeArg);
3282  Out << 'E';
3283  }
3284 }
3285 
3286 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3287  Out << "U13block_pointer";
3288  mangleType(T->getPointeeType());
3289 }
3290 
3291 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3292  // Mangle injected class name types as if the user had written the
3293  // specialization out fully. It may not actually be possible to see
3294  // this mangling, though.
3295  mangleType(T->getInjectedSpecializationType());
3296 }
3297 
3298 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3299  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3300  mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3301  } else {
3302  if (mangleSubstitution(QualType(T, 0)))
3303  return;
3304 
3305  mangleTemplatePrefix(T->getTemplateName());
3306 
3307  // FIXME: GCC does not appear to mangle the template arguments when
3308  // the template in question is a dependent template name. Should we
3309  // emulate that badness?
3310  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3311  addSubstitution(QualType(T, 0));
3312  }
3313 }
3314 
3315 void CXXNameMangler::mangleType(const DependentNameType *T) {
3316  // Proposal by cxx-abi-dev, 2014-03-26
3317  // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3318  // # dependent elaborated type specifier using
3319  // # 'typename'
3320  // ::= Ts <name> # dependent elaborated type specifier using
3321  // # 'struct' or 'class'
3322  // ::= Tu <name> # dependent elaborated type specifier using
3323  // # 'union'
3324  // ::= Te <name> # dependent elaborated type specifier using
3325  // # 'enum'
3326  switch (T->getKeyword()) {
3327  case ETK_None:
3328  case ETK_Typename:
3329  break;
3330  case ETK_Struct:
3331  case ETK_Class:
3332  case ETK_Interface:
3333  Out << "Ts";
3334  break;
3335  case ETK_Union:
3336  Out << "Tu";
3337  break;
3338  case ETK_Enum:
3339  Out << "Te";
3340  break;
3341  }
3342  // Typename types are always nested
3343  Out << 'N';
3344  manglePrefix(T->getQualifier());
3345  mangleSourceName(T->getIdentifier());
3346  Out << 'E';
3347 }
3348 
3349 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3350  // Dependently-scoped template types are nested if they have a prefix.
3351  Out << 'N';
3352 
3353  // TODO: avoid making this TemplateName.
3354  TemplateName Prefix =
3355  getASTContext().getDependentTemplateName(T->getQualifier(),
3356  T->getIdentifier());
3357  mangleTemplatePrefix(Prefix);
3358 
3359  // FIXME: GCC does not appear to mangle the template arguments when
3360  // the template in question is a dependent template name. Should we
3361  // emulate that badness?
3362  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3363  Out << 'E';
3364 }
3365 
3366 void CXXNameMangler::mangleType(const TypeOfType *T) {
3367  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3368  // "extension with parameters" mangling.
3369  Out << "u6typeof";
3370 }
3371 
3372 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3373  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3374  // "extension with parameters" mangling.
3375  Out << "u6typeof";
3376 }
3377 
3378 void CXXNameMangler::mangleType(const DecltypeType *T) {
3379  Expr *E = T->getUnderlyingExpr();
3380 
3381  // type ::= Dt <expression> E # decltype of an id-expression
3382  // # or class member access
3383  // ::= DT <expression> E # decltype of an expression
3384 
3385  // This purports to be an exhaustive list of id-expressions and
3386  // class member accesses. Note that we do not ignore parentheses;
3387  // parentheses change the semantics of decltype for these
3388  // expressions (and cause the mangler to use the other form).
3389  if (isa<DeclRefExpr>(E) ||
3390  isa<MemberExpr>(E) ||
3391  isa<UnresolvedLookupExpr>(E) ||
3392  isa<DependentScopeDeclRefExpr>(E) ||
3393  isa<CXXDependentScopeMemberExpr>(E) ||
3394  isa<UnresolvedMemberExpr>(E))
3395  Out << "Dt";
3396  else
3397  Out << "DT";
3398  mangleExpression(E);
3399  Out << 'E';
3400 }
3401 
3402 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3403  // If this is dependent, we need to record that. If not, we simply
3404  // mangle it as the underlying type since they are equivalent.
3405  if (T->isDependentType()) {
3406  Out << 'U';
3407 
3408  switch (T->getUTTKind()) {
3410  Out << "3eut";
3411  break;
3412  }
3413  }
3414 
3415  mangleType(T->getBaseType());
3416 }
3417 
3418 void CXXNameMangler::mangleType(const AutoType *T) {
3419  assert(T->getDeducedType().isNull() &&
3420  "Deduced AutoType shouldn't be handled here!");
3421  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3422  "shouldn't need to mangle __auto_type!");
3423  // <builtin-type> ::= Da # auto
3424  // ::= Dc # decltype(auto)
3425  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3426 }
3427 
3428 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3429  // FIXME: This is not the right mangling. We also need to include a scope
3430  // here in some cases.
3431  QualType D = T->getDeducedType();
3432  if (D.isNull())
3433  mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3434  else
3435  mangleType(D);
3436 }
3437 
3438 void CXXNameMangler::mangleType(const AtomicType *T) {
3439  // <type> ::= U <source-name> <type> # vendor extended type qualifier
3440  // (Until there's a standardized mangling...)
3441  Out << "U7_Atomic";
3442  mangleType(T->getValueType());
3443 }
3444 
3445 void CXXNameMangler::mangleType(const PipeType *T) {
3446  // Pipe type mangling rules are described in SPIR 2.0 specification
3447  // A.1 Data types and A.3 Summary of changes
3448  // <type> ::= 8ocl_pipe
3449  Out << "8ocl_pipe";
3450 }
3451 
3452 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3453  const llvm::APSInt &Value) {
3454  // <expr-primary> ::= L <type> <value number> E # integer literal
3455  Out << 'L';
3456 
3457  mangleType(T);
3458  if (T->isBooleanType()) {
3459  // Boolean values are encoded as 0/1.
3460  Out << (Value.getBoolValue() ? '1' : '0');
3461  } else {
3462  mangleNumber(Value);
3463  }
3464  Out << 'E';
3465 
3466 }
3467 
3468 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3469  // Ignore member expressions involving anonymous unions.
3470  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3471  if (!RT->getDecl()->isAnonymousStructOrUnion())
3472  break;
3473  const auto *ME = dyn_cast<MemberExpr>(Base);
3474  if (!ME)
3475  break;
3476  Base = ME->getBase();
3477  IsArrow = ME->isArrow();
3478  }
3479 
3480  if (Base->isImplicitCXXThis()) {
3481  // Note: GCC mangles member expressions to the implicit 'this' as
3482  // *this., whereas we represent them as this->. The Itanium C++ ABI
3483  // does not specify anything here, so we follow GCC.
3484  Out << "dtdefpT";
3485  } else {
3486  Out << (IsArrow ? "pt" : "dt");
3487  mangleExpression(Base);
3488  }
3489 }
3490 
3491 /// Mangles a member expression.
3492 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3493  bool isArrow,
3494  NestedNameSpecifier *qualifier,
3495  NamedDecl *firstQualifierLookup,
3497  const TemplateArgumentLoc *TemplateArgs,
3498  unsigned NumTemplateArgs,
3499  unsigned arity) {
3500  // <expression> ::= dt <expression> <unresolved-name>
3501  // ::= pt <expression> <unresolved-name>
3502  if (base)
3503  mangleMemberExprBase(base, isArrow);
3504  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3505 }
3506 
3507 /// Look at the callee of the given call expression and determine if
3508 /// it's a parenthesized id-expression which would have triggered ADL
3509 /// otherwise.
3510 static bool isParenthesizedADLCallee(const CallExpr *call) {
3511  const Expr *callee = call->getCallee();
3512  const Expr *fn = callee->IgnoreParens();
3513 
3514  // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
3515  // too, but for those to appear in the callee, it would have to be
3516  // parenthesized.
3517  if (callee == fn) return false;
3518 
3519  // Must be an unresolved lookup.
3520  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3521  if (!lookup) return false;
3522 
3523  assert(!lookup->requiresADL());
3524 
3525  // Must be an unqualified lookup.
3526  if (lookup->getQualifier()) return false;
3527 
3528  // Must not have found a class member. Note that if one is a class
3529  // member, they're all class members.
3530  if (lookup->getNumDecls() > 0 &&
3531  (*lookup->decls_begin())->isCXXClassMember())
3532  return false;
3533 
3534  // Otherwise, ADL would have been triggered.
3535  return true;
3536 }
3537 
3538 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3539  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3540  Out << CastEncoding;
3541  mangleType(ECE->getType());
3542  mangleExpression(ECE->getSubExpr());
3543 }
3544 
3545 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3546  if (auto *Syntactic = InitList->getSyntacticForm())
3547  InitList = Syntactic;
3548  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3549  mangleExpression(InitList->getInit(i));
3550 }
3551 
3552 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3553  switch (D->getKind()) {
3554  default:
3555  // <expr-primary> ::= L <mangled-name> E # external name
3556  Out << 'L';
3557  mangle(D);
3558  Out << 'E';
3559  break;
3560 
3561  case Decl::ParmVar:
3562  mangleFunctionParam(cast<ParmVarDecl>(D));
3563  break;
3564 
3565  case Decl::EnumConstant: {
3566  const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3567  mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3568  break;
3569  }
3570 
3571  case Decl::NonTypeTemplateParm:
3572  const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3573  mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3574  break;
3575  }
3576 }
3577 
3578 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3579  // <expression> ::= <unary operator-name> <expression>
3580  // ::= <binary operator-name> <expression> <expression>
3581  // ::= <trinary operator-name> <expression> <expression> <expression>
3582  // ::= cv <type> expression # conversion with one argument
3583  // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3584  // ::= dc <type> <expression> # dynamic_cast<type> (expression)
3585  // ::= sc <type> <expression> # static_cast<type> (expression)
3586  // ::= cc <type> <expression> # const_cast<type> (expression)
3587  // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
3588  // ::= st <type> # sizeof (a type)
3589  // ::= at <type> # alignof (a type)
3590  // ::= <template-param>
3591  // ::= <function-param>
3592  // ::= sr <type> <unqualified-name> # dependent name
3593  // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
3594  // ::= ds <expression> <expression> # expr.*expr
3595  // ::= sZ <template-param> # size of a parameter pack
3596  // ::= sZ <function-param> # size of a function parameter pack
3597  // ::= <expr-primary>
3598  // <expr-primary> ::= L <type> <value number> E # integer literal
3599  // ::= L <type <value float> E # floating literal
3600  // ::= L <mangled-name> E # external name
3601  // ::= fpT # 'this' expression
3602  QualType ImplicitlyConvertedToType;
3603 
3604 recurse:
3605  switch (E->getStmtClass()) {
3606  case Expr::NoStmtClass:
3607 #define ABSTRACT_STMT(Type)
3608 #define EXPR(Type, Base)
3609 #define STMT(Type, Base) \
3610  case Expr::Type##Class:
3611 #include "clang/AST/StmtNodes.inc"
3612  // fallthrough
3613 
3614  // These all can only appear in local or variable-initialization
3615  // contexts and so should never appear in a mangling.
3616  case Expr::AddrLabelExprClass:
3617  case Expr::DesignatedInitUpdateExprClass:
3618  case Expr::ImplicitValueInitExprClass:
3619  case Expr::ArrayInitLoopExprClass:
3620  case Expr::ArrayInitIndexExprClass:
3621  case Expr::NoInitExprClass:
3622  case Expr::ParenListExprClass:
3623  case Expr::LambdaExprClass:
3624  case Expr::MSPropertyRefExprClass:
3625  case Expr::MSPropertySubscriptExprClass:
3626  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3627  case Expr::OMPArraySectionExprClass:
3628  case Expr::CXXInheritedCtorInitExprClass:
3629  llvm_unreachable("unexpected statement kind");
3630 
3631  case Expr::ConstantExprClass:
3632  E = cast<ConstantExpr>(E)->getSubExpr();
3633  goto recurse;
3634 
3635  // FIXME: invent manglings for all these.
3636  case Expr::BlockExprClass:
3637  case Expr::ChooseExprClass:
3638  case Expr::CompoundLiteralExprClass:
3639  case Expr::ExtVectorElementExprClass:
3640  case Expr::GenericSelectionExprClass:
3641  case Expr::ObjCEncodeExprClass:
3642  case Expr::ObjCIsaExprClass:
3643  case Expr::ObjCIvarRefExprClass:
3644  case Expr::ObjCMessageExprClass:
3645  case Expr::ObjCPropertyRefExprClass:
3646  case Expr::ObjCProtocolExprClass:
3647  case Expr::ObjCSelectorExprClass:
3648  case Expr::ObjCStringLiteralClass:
3649  case Expr::ObjCBoxedExprClass:
3650  case Expr::ObjCArrayLiteralClass:
3651  case Expr::ObjCDictionaryLiteralClass:
3652  case Expr::ObjCSubscriptRefExprClass:
3653  case Expr::ObjCIndirectCopyRestoreExprClass:
3654  case Expr::ObjCAvailabilityCheckExprClass:
3655  case Expr::OffsetOfExprClass:
3656  case Expr::PredefinedExprClass:
3657  case Expr::ShuffleVectorExprClass:
3658  case Expr::ConvertVectorExprClass:
3659  case Expr::StmtExprClass:
3660  case Expr::TypeTraitExprClass:
3661  case Expr::ArrayTypeTraitExprClass:
3662  case Expr::ExpressionTraitExprClass:
3663  case Expr::VAArgExprClass:
3664  case Expr::CUDAKernelCallExprClass:
3665  case Expr::AsTypeExprClass:
3666  case Expr::PseudoObjectExprClass:
3667  case Expr::AtomicExprClass:
3668  case Expr::SourceLocExprClass:
3669  case Expr::FixedPointLiteralClass:
3670  case Expr::BuiltinBitCastExprClass:
3671  {
3672  if (!NullOut) {
3673  // As bad as this diagnostic is, it's better than crashing.
3674  DiagnosticsEngine &Diags = Context.getDiags();
3675  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3676  "cannot yet mangle expression type %0");
3677  Diags.Report(E->getExprLoc(), DiagID)
3678  << E->getStmtClassName() << E->getSourceRange();
3679  }
3680  break;
3681  }
3682 
3683  case Expr::CXXUuidofExprClass: {
3684  const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3685  if (UE->isTypeOperand()) {
3686  QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3687  Out << "u8__uuidoft";
3688  mangleType(UuidT);
3689  } else {
3690  Expr *UuidExp = UE->getExprOperand();
3691  Out << "u8__uuidofz";
3692  mangleExpression(UuidExp, Arity);
3693  }
3694  break;
3695  }
3696 
3697  // Even gcc-4.5 doesn't mangle this.
3698  case Expr::BinaryConditionalOperatorClass: {
3699  DiagnosticsEngine &Diags = Context.getDiags();
3700  unsigned DiagID =
3702  "?: operator with omitted middle operand cannot be mangled");
3703  Diags.Report(E->getExprLoc(), DiagID)
3704  << E->getStmtClassName() << E->getSourceRange();
3705  break;
3706  }
3707 
3708  // These are used for internal purposes and cannot be meaningfully mangled.
3709  case Expr::OpaqueValueExprClass:
3710  llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3711 
3712  case Expr::InitListExprClass: {
3713  Out << "il";
3714  mangleInitListElements(cast<InitListExpr>(E));
3715  Out << "E";
3716  break;
3717  }
3718 
3719  case Expr::DesignatedInitExprClass: {
3720  auto *DIE = cast<DesignatedInitExpr>(E);
3721  for (const auto &Designator : DIE->designators()) {
3722  if (Designator.isFieldDesignator()) {
3723  Out << "di";
3724  mangleSourceName(Designator.getFieldName());
3725  } else if (Designator.isArrayDesignator()) {
3726  Out << "dx";
3727  mangleExpression(DIE->getArrayIndex(Designator));
3728  } else {
3730  "unknown designator kind");
3731  Out << "dX";
3732  mangleExpression(DIE->getArrayRangeStart(Designator));
3733  mangleExpression(DIE->getArrayRangeEnd(Designator));
3734  }
3735  }
3736  mangleExpression(DIE->getInit());
3737  break;
3738  }
3739 
3740  case Expr::CXXDefaultArgExprClass:
3741  mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3742  break;
3743 
3744  case Expr::CXXDefaultInitExprClass:
3745  mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3746  break;
3747 
3748  case Expr::CXXStdInitializerListExprClass:
3749  mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3750  break;
3751 
3752  case Expr::SubstNonTypeTemplateParmExprClass:
3753  mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3754  Arity);
3755  break;
3756 
3757  case Expr::UserDefinedLiteralClass:
3758  // We follow g++'s approach of mangling a UDL as a call to the literal
3759  // operator.
3760  case Expr::CXXMemberCallExprClass: // fallthrough
3761  case Expr::CallExprClass: {
3762  const CallExpr *CE = cast<CallExpr>(E);
3763 
3764  // <expression> ::= cp <simple-id> <expression>* E
3765  // We use this mangling only when the call would use ADL except
3766  // for being parenthesized. Per discussion with David
3767  // Vandervoorde, 2011.04.25.
3768  if (isParenthesizedADLCallee(CE)) {
3769  Out << "cp";
3770  // The callee here is a parenthesized UnresolvedLookupExpr with
3771  // no qualifier and should always get mangled as a <simple-id>
3772  // anyway.
3773 
3774  // <expression> ::= cl <expression>* E
3775  } else {
3776  Out << "cl";
3777  }
3778 
3779  unsigned CallArity = CE->getNumArgs();
3780  for (const Expr *Arg : CE->arguments())
3781  if (isa<PackExpansionExpr>(Arg))
3782  CallArity = UnknownArity;
3783 
3784  mangleExpression(CE->getCallee(), CallArity);
3785  for (const Expr *Arg : CE->arguments())
3786  mangleExpression(Arg);
3787  Out << 'E';
3788  break;
3789  }
3790 
3791  case Expr::CXXNewExprClass: {
3792  const CXXNewExpr *New = cast<CXXNewExpr>(E);
3793  if (New->isGlobalNew()) Out << "gs";
3794  Out << (New->isArray() ? "na" : "nw");
3796  E = New->placement_arg_end(); I != E; ++I)
3797  mangleExpression(*I);
3798  Out << '_';
3799  mangleType(New->getAllocatedType());
3800  if (New->hasInitializer()) {
3802  Out << "il";
3803  else
3804  Out << "pi";
3805  const Expr *Init = New->getInitializer();
3806  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3807  // Directly inline the initializers.
3808  for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3809  E = CCE->arg_end();
3810  I != E; ++I)
3811  mangleExpression(*I);
3812  } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3813  for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3814  mangleExpression(PLE->getExpr(i));
3815  } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3816  isa<InitListExpr>(Init)) {
3817  // Only take InitListExprs apart for list-initialization.
3818  mangleInitListElements(cast<InitListExpr>(Init));
3819  } else
3820  mangleExpression(Init);
3821  }
3822  Out << 'E';
3823  break;
3824  }
3825 
3826  case Expr::CXXPseudoDestructorExprClass: {
3827  const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3828  if (const Expr *Base = PDE->getBase())
3829  mangleMemberExprBase(Base, PDE->isArrow());
3830  NestedNameSpecifier *Qualifier = PDE->getQualifier();
3831  if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3832  if (Qualifier) {
3833  mangleUnresolvedPrefix(Qualifier,
3834  /*recursive=*/true);
3835  mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3836  Out << 'E';
3837  } else {
3838  Out << "sr";
3839  if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3840  Out << 'E';
3841  }
3842  } else if (Qualifier) {
3843  mangleUnresolvedPrefix(Qualifier);
3844  }
3845  // <base-unresolved-name> ::= dn <destructor-name>
3846  Out << "dn";
3847  QualType DestroyedType = PDE->getDestroyedType();
3848  mangleUnresolvedTypeOrSimpleId(DestroyedType);
3849  break;
3850  }
3851 
3852  case Expr::MemberExprClass: {
3853  const MemberExpr *ME = cast<MemberExpr>(E);
3854  mangleMemberExpr(ME->getBase(), ME->isArrow(),
3855  ME->getQualifier(), nullptr,
3856  ME->getMemberDecl()->getDeclName(),
3857  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3858  Arity);
3859  break;
3860  }
3861 
3862  case Expr::UnresolvedMemberExprClass: {
3863  const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3864  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3865  ME->isArrow(), ME->getQualifier(), nullptr,
3866  ME->getMemberName(),
3867  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3868  Arity);
3869  break;
3870  }
3871 
3872  case Expr::CXXDependentScopeMemberExprClass: {
3873  const CXXDependentScopeMemberExpr *ME
3874  = cast<CXXDependentScopeMemberExpr>(E);
3875  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3876  ME->isArrow(), ME->getQualifier(),
3878  ME->getMember(),
3879  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3880  Arity);
3881  break;
3882  }
3883 
3884  case Expr::UnresolvedLookupExprClass: {
3885  const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3886  mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3887  ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3888  Arity);
3889  break;
3890  }
3891 
3892  case Expr::CXXUnresolvedConstructExprClass: {
3893  const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3894  unsigned N = CE->arg_size();
3895 
3896  if (CE->isListInitialization()) {
3897  assert(N == 1 && "unexpected form for list initialization");
3898  auto *IL = cast<InitListExpr>(CE->getArg(0));
3899  Out << "tl";
3900  mangleType(CE->getType());
3901  mangleInitListElements(IL);
3902  Out << "E";
3903  return;
3904  }
3905 
3906  Out << "cv";
3907  mangleType(CE->getType());
3908  if (N != 1) Out << '_';
3909  for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3910  if (N != 1) Out << 'E';
3911  break;
3912  }
3913 
3914  case Expr::CXXConstructExprClass: {
3915  const auto *CE = cast<CXXConstructExpr>(E);
3916  if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3917  assert(
3918  CE->getNumArgs() >= 1 &&
3919  (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3920  "implicit CXXConstructExpr must have one argument");
3921  return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3922  }
3923  Out << "il";
3924  for (auto *E : CE->arguments())
3925  mangleExpression(E);
3926  Out << "E";
3927  break;
3928  }
3929 
3930  case Expr::CXXTemporaryObjectExprClass: {
3931  const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3932  unsigned N = CE->getNumArgs();
3933  bool List = CE->isListInitialization();
3934 
3935  if (List)
3936  Out << "tl";
3937  else
3938  Out << "cv";
3939  mangleType(CE->getType());
3940  if (!List && N != 1)
3941  Out << '_';
3942  if (CE->isStdInitListInitialization()) {
3943  // We implicitly created a std::initializer_list<T> for the first argument
3944  // of a constructor of type U in an expression of the form U{a, b, c}.
3945  // Strip all the semantic gunk off the initializer list.
3946  auto *SILE =
3947  cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3948  auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3949  mangleInitListElements(ILE);
3950  } else {
3951  for (auto *E : CE->arguments())
3952  mangleExpression(E);
3953  }
3954  if (List || N != 1)
3955  Out << 'E';
3956  break;
3957  }
3958 
3959  case Expr::CXXScalarValueInitExprClass:
3960  Out << "cv";
3961  mangleType(E->getType());
3962  Out << "_E";
3963  break;
3964 
3965  case Expr::CXXNoexceptExprClass:
3966  Out << "nx";
3967  mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3968  break;
3969 
3970  case Expr::UnaryExprOrTypeTraitExprClass: {
3971  const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3972 
3973  if (!SAE->isInstantiationDependent()) {
3974  // Itanium C++ ABI:
3975  // If the operand of a sizeof or alignof operator is not
3976  // instantiation-dependent it is encoded as an integer literal
3977  // reflecting the result of the operator.
3978  //
3979  // If the result of the operator is implicitly converted to a known
3980  // integer type, that type is used for the literal; otherwise, the type
3981  // of std::size_t or std::ptrdiff_t is used.
3982  QualType T = (ImplicitlyConvertedToType.isNull() ||
3983  !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3984  : ImplicitlyConvertedToType;
3985  llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3986  mangleIntegerLiteral(T, V);
3987  break;
3988  }
3989 
3990  switch(SAE->getKind()) {
3991  case UETT_SizeOf:
3992  Out << 's';
3993  break;
3994  case UETT_PreferredAlignOf:
3995  case UETT_AlignOf:
3996  Out << 'a';
3997  break;
3998  case UETT_VecStep: {
3999  DiagnosticsEngine &Diags = Context.getDiags();
4000  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4001  "cannot yet mangle vec_step expression");
4002  Diags.Report(DiagID);
4003  return;
4004  }
4006  DiagnosticsEngine &Diags = Context.getDiags();
4007  unsigned DiagID = Diags.getCustomDiagID(
4009  "cannot yet mangle __builtin_omp_required_simd_align expression");
4010  Diags.Report(DiagID);
4011  return;
4012  }
4013  }
4014  if (SAE->isArgumentType()) {
4015  Out << 't';
4016  mangleType(SAE->getArgumentType());
4017  } else {
4018  Out << 'z';
4019  mangleExpression(SAE->getArgumentExpr());
4020  }
4021  break;
4022  }
4023 
4024  case Expr::CXXThrowExprClass: {
4025  const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4026  // <expression> ::= tw <expression> # throw expression
4027  // ::= tr # rethrow
4028  if (TE->getSubExpr()) {
4029  Out << "tw";
4030  mangleExpression(TE->getSubExpr());
4031  } else {
4032  Out << "tr";
4033  }
4034  break;
4035  }
4036 
4037  case Expr::CXXTypeidExprClass: {
4038  const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4039  // <expression> ::= ti <type> # typeid (type)
4040  // ::= te <expression> # typeid (expression)
4041  if (TIE->isTypeOperand()) {
4042  Out << "ti";
4043  mangleType(TIE->getTypeOperand(Context.getASTContext()));
4044  } else {
4045  Out << "te";
4046  mangleExpression(TIE->getExprOperand());
4047  }
4048  break;
4049  }
4050 
4051  case Expr::CXXDeleteExprClass: {
4052  const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4053  // <expression> ::= [gs] dl <expression> # [::] delete expr
4054  // ::= [gs] da <expression> # [::] delete [] expr
4055  if (DE->isGlobalDelete()) Out << "gs";
4056  Out << (DE->isArrayForm() ? "da" : "dl");
4057  mangleExpression(DE->getArgument());
4058  break;
4059  }
4060 
4061  case Expr::UnaryOperatorClass: {
4062  const UnaryOperator *UO = cast<UnaryOperator>(E);
4063  mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4064  /*Arity=*/1);
4065  mangleExpression(UO->getSubExpr());
4066  break;
4067  }
4068 
4069  case Expr::ArraySubscriptExprClass: {
4070  const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4071 
4072  // Array subscript is treated as a syntactically weird form of
4073  // binary operator.
4074  Out << "ix";
4075  mangleExpression(AE->getLHS());
4076  mangleExpression(AE->getRHS());
4077  break;
4078  }
4079 
4080  case Expr::CompoundAssignOperatorClass: // fallthrough
4081  case Expr::BinaryOperatorClass: {
4082  const BinaryOperator *BO = cast<BinaryOperator>(E);
4083  if (BO->getOpcode() == BO_PtrMemD)
4084  Out << "ds";
4085  else
4086  mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4087  /*Arity=*/2);
4088  mangleExpression(BO->getLHS());
4089  mangleExpression(BO->getRHS());
4090  break;
4091  }
4092 
4093  case Expr::CXXRewrittenBinaryOperatorClass: {
4094  // The mangled form represents the original syntax.
4096  cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4097  mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4098  /*Arity=*/2);
4099  mangleExpression(Decomposed.LHS);
4100  mangleExpression(Decomposed.RHS);
4101  break;
4102  }
4103 
4104  case Expr::ConditionalOperatorClass: {
4105  const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4106  mangleOperatorName(OO_Conditional, /*Arity=*/3);
4107  mangleExpression(CO->getCond());
4108  mangleExpression(CO->getLHS(), Arity);
4109  mangleExpression(CO->getRHS(), Arity);
4110  break;
4111  }
4112 
4113  case Expr::ImplicitCastExprClass: {
4114  ImplicitlyConvertedToType = E->getType();
4115  E = cast<ImplicitCastExpr>(E)->getSubExpr();
4116  goto recurse;
4117  }
4118 
4119  case Expr::ObjCBridgedCastExprClass: {
4120  // Mangle ownership casts as a vendor extended operator __bridge,
4121  // __bridge_transfer, or __bridge_retain.
4122  StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4123  Out << "v1U" << Kind.size() << Kind;
4124  }
4125  // Fall through to mangle the cast itself.
4126  LLVM_FALLTHROUGH;
4127 
4128  case Expr::CStyleCastExprClass:
4129  mangleCastExpression(E, "cv");
4130  break;
4131 
4132  case Expr::CXXFunctionalCastExprClass: {
4133  auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4134  // FIXME: Add isImplicit to CXXConstructExpr.
4135  if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4136  if (CCE->getParenOrBraceRange().isInvalid())
4137  Sub = CCE->getArg(0)->IgnoreImplicit();
4138  if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4139  Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4140  if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4141  Out << "tl";
4142  mangleType(E->getType());
4143  mangleInitListElements(IL);
4144  Out << "E";
4145  } else {
4146  mangleCastExpression(E, "cv");
4147  }
4148  break;
4149  }
4150 
4151  case Expr::CXXStaticCastExprClass:
4152  mangleCastExpression(E, "sc");
4153  break;
4154  case Expr::CXXDynamicCastExprClass:
4155  mangleCastExpression(E, "dc");
4156  break;
4157  case Expr::CXXReinterpretCastExprClass:
4158  mangleCastExpression(E, "rc");
4159  break;
4160  case Expr::CXXConstCastExprClass:
4161  mangleCastExpression(E, "cc");
4162  break;
4163 
4164  case Expr::CXXOperatorCallExprClass: {
4165  const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4166  unsigned NumArgs = CE->getNumArgs();
4167  // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4168  // (the enclosing MemberExpr covers the syntactic portion).
4169  if (CE->getOperator() != OO_Arrow)
4170  mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4171  // Mangle the arguments.
4172  for (unsigned i = 0; i != NumArgs; ++i)
4173  mangleExpression(CE->getArg(i));
4174  break;
4175  }
4176 
4177  case Expr::ParenExprClass:
4178  mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4179  break;
4180 
4181 
4182  case Expr::ConceptSpecializationExprClass: {
4183  // <expr-primary> ::= L <mangled-name> E # external name
4184  Out << "L_Z";
4185  auto *CSE = cast<ConceptSpecializationExpr>(E);
4186  mangleTemplateName(CSE->getNamedConcept(),
4187  CSE->getTemplateArguments().data(),
4188  CSE->getTemplateArguments().size());
4189  Out << 'E';
4190  break;
4191  }
4192 
4193  case Expr::DeclRefExprClass:
4194  mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4195  break;
4196 
4197  case Expr::SubstNonTypeTemplateParmPackExprClass:
4198  // FIXME: not clear how to mangle this!
4199  // template <unsigned N...> class A {
4200  // template <class U...> void foo(U (&x)[N]...);
4201  // };
4202  Out << "_SUBSTPACK_";
4203  break;
4204 
4205  case Expr::FunctionParmPackExprClass: {
4206  // FIXME: not clear how to mangle this!
4207  const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4208  Out << "v110_SUBSTPACK";
4209  mangleDeclRefExpr(FPPE->getParameterPack());
4210  break;
4211  }
4212 
4213  case Expr::DependentScopeDeclRefExprClass: {
4214  const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4215  mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4216  DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4217  Arity);
4218  break;
4219  }
4220 
4221  case Expr::CXXBindTemporaryExprClass:
4222  mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4223  break;
4224 
4225  case Expr::ExprWithCleanupsClass:
4226  mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4227  break;
4228 
4229  case Expr::FloatingLiteralClass: {
4230  const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4231  Out << 'L';
4232  mangleType(FL->getType());
4233  mangleFloat(FL->getValue());
4234  Out << 'E';
4235  break;
4236  }
4237 
4238  case Expr::CharacterLiteralClass:
4239  Out << 'L';
4240  mangleType(E->getType());
4241  Out << cast<CharacterLiteral>(E)->getValue();
4242  Out << 'E';
4243  break;
4244 
4245  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4246  case Expr::ObjCBoolLiteralExprClass:
4247  Out << "Lb";
4248  Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4249  Out << 'E';
4250  break;
4251 
4252  case Expr::CXXBoolLiteralExprClass:
4253  Out << "Lb";
4254  Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4255  Out << 'E';
4256  break;
4257 
4258  case Expr::IntegerLiteralClass: {
4259  llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4260  if (E->getType()->isSignedIntegerType())
4261  Value.setIsSigned(true);
4262  mangleIntegerLiteral(E->getType(), Value);
4263  break;
4264  }
4265 
4266  case Expr::ImaginaryLiteralClass: {
4267  const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4268  // Mangle as if a complex literal.
4269  // Proposal from David Vandevoorde, 2010.06.30.
4270  Out << 'L';
4271  mangleType(E->getType());
4272  if (const FloatingLiteral *Imag =
4273  dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4274  // Mangle a floating-point zero of the appropriate type.
4275  mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4276  Out << '_';
4277  mangleFloat(Imag->getValue());
4278  } else {
4279  Out << "0_";
4280  llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4281  if (IE->getSubExpr()->getType()->isSignedIntegerType())
4282  Value.setIsSigned(true);
4283  mangleNumber(Value);
4284  }
4285  Out << 'E';
4286  break;
4287  }
4288 
4289  case Expr::StringLiteralClass: {
4290  // Revised proposal from David Vandervoorde, 2010.07.15.
4291  Out << 'L';
4292  assert(isa<ConstantArrayType>(E->getType()));
4293  mangleType(E->getType());
4294  Out << 'E';
4295  break;
4296  }
4297 
4298  case Expr::GNUNullExprClass:
4299  // Mangle as if an integer literal 0.
4300  Out << 'L';
4301  mangleType(E->getType());
4302  Out << "0E";
4303  break;
4304 
4305  case Expr::CXXNullPtrLiteralExprClass: {
4306  Out << "LDnE";
4307  break;
4308  }
4309 
4310  case Expr::PackExpansionExprClass:
4311  Out << "sp";
4312  mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4313  break;
4314 
4315  case Expr::SizeOfPackExprClass: {
4316  auto *SPE = cast<SizeOfPackExpr>(E);
4317  if (SPE->isPartiallySubstituted()) {
4318  Out << "sP";
4319  for (const auto &A : SPE->getPartialArguments())
4320  mangleTemplateArg(A);
4321  Out << "E";
4322  break;
4323  }
4324 
4325  Out << "sZ";
4326  const NamedDecl *Pack = SPE->getPack();
4327  if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4328  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4329  else if (const NonTypeTemplateParmDecl *NTTP
4330  = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4331  mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4332  else if (const TemplateTemplateParmDecl *TempTP
4333  = dyn_cast<TemplateTemplateParmDecl>(Pack))
4334  mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4335  else
4336  mangleFunctionParam(cast<ParmVarDecl>(Pack));
4337  break;
4338  }
4339 
4340  case Expr::MaterializeTemporaryExprClass: {
4341  mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
4342  break;
4343  }
4344 
4345  case Expr::CXXFoldExprClass: {
4346  auto *FE = cast<CXXFoldExpr>(E);
4347  if (FE->isLeftFold())
4348  Out << (FE->getInit() ? "fL" : "fl");
4349  else
4350  Out << (FE->getInit() ? "fR" : "fr");
4351 
4352  if (FE->getOperator() == BO_PtrMemD)
4353  Out << "ds";
4354  else
4355  mangleOperatorName(
4356  BinaryOperator::getOverloadedOperator(FE->getOperator()),
4357  /*Arity=*/2);
4358 
4359  if (FE->getLHS())
4360  mangleExpression(FE->getLHS());
4361  if (FE->getRHS())
4362  mangleExpression(FE->getRHS());
4363  break;
4364  }
4365 
4366  case Expr::CXXThisExprClass:
4367  Out << "fpT";
4368  break;
4369 
4370  case Expr::CoawaitExprClass:
4371  // FIXME: Propose a non-vendor mangling.
4372  Out << "v18co_await";
4373  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4374  break;
4375 
4376  case Expr::DependentCoawaitExprClass:
4377  // FIXME: Propose a non-vendor mangling.
4378  Out << "v18co_await";
4379  mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4380  break;
4381 
4382  case Expr::CoyieldExprClass:
4383  // FIXME: Propose a non-vendor mangling.
4384  Out << "v18co_yield";
4385  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4386  break;
4387  }
4388 }
4389 
4390 /// Mangle an expression which refers to a parameter variable.
4391 ///
4392 /// <expression> ::= <function-param>
4393 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
4394 /// <function-param> ::= fp <top-level CV-qualifiers>
4395 /// <parameter-2 non-negative number> _ # L == 0, I > 0
4396 /// <function-param> ::= fL <L-1 non-negative number>
4397 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
4398 /// <function-param> ::= fL <L-1 non-negative number>
4399 /// p <top-level CV-qualifiers>
4400 /// <I-1 non-negative number> _ # L > 0, I > 0
4401 ///
4402 /// L is the nesting depth of the parameter, defined as 1 if the
4403 /// parameter comes from the innermost function prototype scope
4404 /// enclosing the current context, 2 if from the next enclosing
4405 /// function prototype scope, and so on, with one special case: if
4406 /// we've processed the full parameter clause for the innermost
4407 /// function type, then L is one less. This definition conveniently
4408 /// makes it irrelevant whether a function's result type was written
4409 /// trailing or leading, but is otherwise overly complicated; the
4410 /// numbering was first designed without considering references to
4411 /// parameter in locations other than return types, and then the
4412 /// mangling had to be generalized without changing the existing
4413 /// manglings.
4414 ///
4415 /// I is the zero-based index of the parameter within its parameter
4416 /// declaration clause. Note that the original ABI document describes
4417 /// this using 1-based ordinals.
4418 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4419  unsigned parmDepth = parm->getFunctionScopeDepth();
4420  unsigned parmIndex = parm->getFunctionScopeIndex();
4421 
4422  // Compute 'L'.
4423  // parmDepth does not include the declaring function prototype.
4424  // FunctionTypeDepth does account for that.
4425  assert(parmDepth < FunctionTypeDepth.getDepth());
4426  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4427  if (FunctionTypeDepth.isInResultType())
4428  nestingDepth--;
4429 
4430  if (nestingDepth == 0) {
4431  Out << "fp";
4432  } else {
4433  Out << "fL" << (nestingDepth - 1) << 'p';
4434  }
4435 
4436  // Top-level qualifiers. We don't have to worry about arrays here,
4437  // because parameters declared as arrays should already have been
4438  // transformed to have pointer type. FIXME: apparently these don't
4439  // get mangled if used as an rvalue of a known non-class type?
4440  assert(!parm->getType()->isArrayType()
4441  && "parameter's type is still an array type?");
4442 
4443  if (const DependentAddressSpaceType *DAST =
4444  dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4445  mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4446  } else {
4447  mangleQualifiers(parm->getType().getQualifiers());
4448  }
4449 
4450  // Parameter index.
4451  if (parmIndex != 0) {
4452  Out << (parmIndex - 1);
4453  }
4454  Out << '_';
4455 }
4456 
4457 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4458  const CXXRecordDecl *InheritedFrom) {
4459  // <ctor-dtor-name> ::= C1 # complete object constructor
4460  // ::= C2 # base object constructor
4461  // ::= CI1 <type> # complete inheriting constructor
4462  // ::= CI2 <type> # base inheriting constructor
4463  //
4464  // In addition, C5 is a comdat name with C1 and C2 in it.
4465  Out << 'C';
4466  if (InheritedFrom)
4467  Out << 'I';
4468  switch (T) {
4469  case Ctor_Complete:
4470  Out << '1';
4471  break;
4472  case Ctor_Base:
4473  Out << '2';
4474  break;
4475  case Ctor_Comdat:
4476  Out << '5';
4477  break;
4478  case Ctor_DefaultClosure:
4479  case Ctor_CopyingClosure:
4480  llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4481  }
4482  if (InheritedFrom)
4483  mangleName(InheritedFrom);
4484 }
4485 
4486 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4487  // <ctor-dtor-name> ::= D0 # deleting destructor
4488  // ::= D1 # complete object destructor
4489  // ::= D2 # base object destructor
4490  //
4491  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4492  switch (T) {
4493  case Dtor_Deleting:
4494  Out << "D0";
4495  break;
4496  case Dtor_Complete:
4497  Out << "D1";
4498  break;
4499  case Dtor_Base:
4500  Out << "D2";
4501  break;
4502  case Dtor_Comdat:
4503  Out << "D5";
4504  break;
4505  }
4506 }
4507 
4508 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4509  unsigned NumTemplateArgs) {
4510  // <template-args> ::= I <template-arg>+ E
4511  Out << 'I';
4512  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4513  mangleTemplateArg(TemplateArgs[i].getArgument());
4514  Out << 'E';
4515 }
4516 
4517 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4518  // <template-args> ::= I <template-arg>+ E
4519  Out << 'I';
4520  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4521  mangleTemplateArg(AL[i]);
4522  Out << 'E';
4523 }
4524 
4525 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4526  unsigned NumTemplateArgs) {
4527  // <template-args> ::= I <template-arg>+ E
4528  Out << 'I';
4529  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4530  mangleTemplateArg(TemplateArgs[i]);
4531  Out << 'E';
4532 }
4533 
4534 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4535  // <template-arg> ::= <type> # type or template
4536  // ::= X <expression> E # expression
4537  // ::= <expr-primary> # simple expressions
4538  // ::= J <template-arg>* E # argument pack
4539  if (!A.isInstantiationDependent() || A.isDependent())
4540  A = Context.getASTContext().getCanonicalTemplateArgument(A);
4541 
4542  switch (A.getKind()) {
4544  llvm_unreachable("Cannot mangle NULL template argument");
4545 
4547  mangleType(A.getAsType());
4548  break;
4550  // This is mangled as <type>.
4551  mangleType(A.getAsTemplate());
4552  break;
4554  // <type> ::= Dp <type> # pack expansion (C++0x)
4555  Out << "Dp";
4556  mangleType(A.getAsTemplateOrTemplatePattern());
4557  break;
4559  // It's possible to end up with a DeclRefExpr here in certain
4560  // dependent cases, in which case we should mangle as a
4561  // declaration.
4562  const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4563  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4564  const ValueDecl *D = DRE->getDecl();
4565  if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4566  Out << 'L';
4567  mangle(D);
4568  Out << 'E';
4569  break;
4570  }
4571  }
4572 
4573  Out << 'X';
4574  mangleExpression(E);
4575  Out << 'E';
4576  break;
4577  }
4579  mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4580  break;
4582  // <expr-primary> ::= L <mangled-name> E # external name
4583  // Clang produces AST's where pointer-to-member-function expressions
4584  // and pointer-to-function expressions are represented as a declaration not
4585  // an expression. We compensate for it here to produce the correct mangling.
4586  ValueDecl *D = A.getAsDecl();
4587  bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4588  if (compensateMangling) {
4589  Out << 'X';
4590  mangleOperatorName(OO_Amp, 1);
4591  }
4592 
4593  Out << 'L';
4594  // References to external entities use the mangled name; if the name would
4595  // not normally be mangled then mangle it as unqualified.
4596  mangle(D);
4597  Out << 'E';
4598 
4599  if (compensateMangling)
4600  Out << 'E';
4601 
4602  break;
4603  }
4605  // <expr-primary> ::= L <type> 0 E
4606  Out << 'L';
4607  mangleType(A.getNullPtrType());
4608  Out << "0E";
4609  break;
4610  }
4611  case TemplateArgument::Pack: {
4612  // <template-arg> ::= J <template-arg>* E
4613  Out << 'J';
4614  for (const auto &P : A.pack_elements())
4615  mangleTemplateArg(P);
4616  Out << 'E';
4617  }
4618  }
4619 }
4620 
4621 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
4622  // <template-param> ::= T_ # first template parameter
4623  // ::= T <parameter-2 non-negative number> _
4624  // ::= TL <L-1 non-negative number> __
4625  // ::= TL <L-1 non-negative number> _
4626  // <parameter-2 non-negative number> _
4627  //
4628  // The latter two manglings are from a proposal here:
4629  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
4630  Out << 'T';
4631  if (Depth != 0)
4632  Out << 'L' << (Depth - 1) << '_';
4633  if (Index != 0)
4634  Out << (Index - 1);
4635  Out << '_';
4636 }
4637 
4638 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4639  if (SeqID == 1)
4640  Out << '0';
4641  else if (SeqID > 1) {
4642  SeqID--;
4643 
4644  // <seq-id> is encoded in base-36, using digits and upper case letters.
4645  char Buffer[7]; // log(2**32) / log(36) ~= 7
4646  MutableArrayRef<char> BufferRef(Buffer);
4647  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4648 
4649  for (; SeqID != 0; SeqID /= 36) {
4650  unsigned C = SeqID % 36;
4651  *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4652  }
4653 
4654  Out.write(I.base(), I - BufferRef.rbegin());
4655  }
4656  Out << '_';
4657 }
4658 
4659 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4660  bool result = mangleSubstitution(tname);
4661  assert(result && "no existing substitution for template name");
4662  (void) result;
4663 }
4664 
4665 // <substitution> ::= S <seq-id> _
4666 // ::= S_
4667 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4668  // Try one of the standard substitutions first.
4669  if (mangleStandardSubstitution(ND))
4670  return true;
4671 
4672  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4673  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4674 }
4675 
4676 /// Determine whether the given type has any qualifiers that are relevant for
4677 /// substitutions.
4679  Qualifiers Qs = T.getQualifiers();
4680  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4681 }
4682 
4683 bool CXXNameMangler::mangleSubstitution(QualType T) {
4685  if (const RecordType *RT = T->getAs<RecordType>())
4686  return mangleSubstitution(RT->getDecl());
4687  }
4688 
4689  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4690 
4691  return mangleSubstitution(TypePtr);
4692 }
4693 
4694 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4695  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4696  return mangleSubstitution(TD);
4697 
4698  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4699  return mangleSubstitution(
4700  reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4701 }
4702 
4703 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4704  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4705  if (I == Substitutions.end())
4706  return false;
4707 
4708  unsigned SeqID = I->second;
4709  Out << 'S';
4710  mangleSeqID(SeqID);
4711 
4712  return true;
4713 }
4714 
4715 static bool isCharType(QualType T) {
4716  if (T.isNull())
4717  return false;
4718 
4719  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4720  T->isSpecificBuiltinType(BuiltinType::Char_U);
4721 }
4722 
4723 /// Returns whether a given type is a template specialization of a given name
4724 /// with a single argument of type char.
4725 static bool isCharSpecialization(QualType T, const char *Name) {
4726  if (T.isNull())
4727  return false;
4728 
4729  const RecordType *RT = T->getAs<RecordType>();
4730  if (!RT)
4731  return false;
4732 
4734  dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4735  if (!SD)
4736  return false;
4737 
4738  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4739  return false;
4740 
4741  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4742  if (TemplateArgs.size() != 1)
4743  return false;
4744 
4745  if (!isCharType(TemplateArgs[0].getAsType()))
4746  return false;
4747 
4748  return SD->getIdentifier()->getName() == Name;
4749 }
4750 
4751 template <std::size_t StrLen>
4753  const char (&Str)[StrLen]) {
4754  if (!SD->getIdentifier()->isStr(Str))
4755  return false;
4756 
4757  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4758  if (TemplateArgs.size() != 2)
4759  return false;
4760 
4761  if (!isCharType(TemplateArgs[0].getAsType()))
4762  return false;
4763 
4764  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4765  return false;
4766 
4767  return true;
4768 }
4769 
4770 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4771  // <substitution> ::= St # ::std::
4772  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4773  if (isStd(NS)) {
4774  Out << "St";
4775  return true;
4776  }
4777  }
4778 
4779  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4780  if (!isStdNamespace(getEffectiveDeclContext(TD)))
4781  return false;
4782 
4783  // <substitution> ::= Sa # ::std::allocator
4784  if (TD->getIdentifier()->isStr("allocator")) {
4785  Out << "Sa";
4786  return true;
4787  }
4788 
4789  // <<substitution> ::= Sb # ::std::basic_string
4790  if (TD->getIdentifier()->isStr("basic_string")) {
4791  Out << "Sb";
4792  return true;
4793  }
4794  }
4795 
4796  if (const ClassTemplateSpecializationDecl *SD =
4797  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4798  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4799  return false;
4800 
4801  // <substitution> ::= Ss # ::std::basic_string<char,
4802  // ::std::char_traits<char>,
4803  // ::std::allocator<char> >
4804  if (SD->getIdentifier()->isStr("basic_string")) {
4805  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4806 
4807  if (TemplateArgs.size() != 3)
4808  return false;
4809 
4810  if (!isCharType(TemplateArgs[0].getAsType()))
4811  return false;
4812 
4813  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4814  return false;
4815 
4816  if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4817  return false;
4818 
4819  Out << "Ss";
4820  return true;
4821  }
4822 
4823  // <substitution> ::= Si # ::std::basic_istream<char,
4824  // ::std::char_traits<char> >
4825  if (isStreamCharSpecialization(SD, "basic_istream")) {
4826  Out << "Si";
4827  return true;
4828  }
4829 
4830  // <substitution> ::= So # ::std::basic_ostream<char,
4831  // ::std::char_traits<char> >
4832  if (isStreamCharSpecialization(SD, "basic_ostream")) {
4833  Out << "So";
4834  return true;
4835  }
4836 
4837  // <substitution> ::= Sd # ::std::basic_iostream<char,
4838  // ::std::char_traits<char> >
4839  if (isStreamCharSpecialization(SD, "basic_iostream")) {
4840  Out << "Sd";
4841  return true;
4842  }
4843  }
4844  return false;
4845 }
4846 
4847 void CXXNameMangler::addSubstitution(QualType T) {
4849  if (const RecordType *RT = T->getAs<RecordType>()) {
4850  addSubstitution(RT->getDecl());
4851  return;
4852  }
4853  }
4854 
4855  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4856  addSubstitution(TypePtr);
4857 }
4858 
4859 void CXXNameMangler::addSubstitution(TemplateName Template) {
4860  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4861  return addSubstitution(TD);
4862 
4863  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4864  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4865 }
4866 
4867 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4868  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4869  Substitutions[Ptr] = SeqID++;
4870 }
4871 
4872 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4873  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4874  if (Other->SeqID > SeqID) {
4875  Substitutions.swap(Other->Substitutions);
4876  SeqID = Other->SeqID;
4877  }
4878 }
4879 
4880 CXXNameMangler::AbiTagList
4881 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4882  // When derived abi tags are disabled there is no need to make any list.
4883  if (DisableDerivedAbiTags)
4884  return AbiTagList();
4885 
4886  llvm::raw_null_ostream NullOutStream;
4887  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4888  TrackReturnTypeTags.disableDerivedAbiTags();
4889 
4890  const FunctionProtoType *Proto =
4891  cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4892  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4893  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4894  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4895  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4896  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4897 
4898  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4899 }
4900 
4901 CXXNameMangler::AbiTagList
4902 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4903  // When derived abi tags are disabled there is no need to make any list.
4904  if (DisableDerivedAbiTags)
4905  return AbiTagList();
4906 
4907  llvm::raw_null_ostream NullOutStream;
4908  CXXNameMangler TrackVariableType(*this, NullOutStream);
4909  TrackVariableType.disableDerivedAbiTags();
4910 
4911  TrackVariableType.mangleType(VD->getType());
4912 
4913  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4914 }
4915 
4916 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4917  const VarDecl *VD) {
4918  llvm::raw_null_ostream NullOutStream;
4919  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4920  TrackAbiTags.mangle(VD);
4921  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4922 }
4923 
4924 //
4925 
4926 /// Mangles the name of the declaration D and emits that name to the given
4927 /// output stream.
4928 ///
4929 /// If the declaration D requires a mangled name, this routine will emit that
4930 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4931 /// and this routine will return false. In this case, the caller should just
4932 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4933 /// name.
4934 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4935  raw_ostream &Out) {
4936  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4937  "Invalid mangleName() call, argument is not a variable or function!");
4938  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4939  "Invalid mangleName() call on 'structor decl!");
4940 
4941  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4942  getASTContext().getSourceManager(),
4943  "Mangling declaration");
4944 
4945  CXXNameMangler Mangler(*this, Out, D);
4946  Mangler.mangle(D);
4947 }
4948 
4949 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4950  CXXCtorType Type,
4951  raw_ostream &Out) {
4952  CXXNameMangler Mangler(*this, Out, D, Type);
4953  Mangler.mangle(D);
4954 }
4955 
4956 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4957  CXXDtorType Type,
4958  raw_ostream &Out) {
4959  CXXNameMangler Mangler(*this, Out, D, Type);
4960  Mangler.mangle(D);
4961 }
4962 
4963 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4964  raw_ostream &Out) {
4965  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4966  Mangler.mangle(D);
4967 }
4968 
4969 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4970  raw_ostream &Out) {
4971  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4972  Mangler.mangle(D);
4973 }
4974 
4975 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4976  const ThunkInfo &Thunk,
4977  raw_ostream &Out) {
4978  // <special-name> ::= T <call-offset> <base encoding>
4979  // # base is the nominal target function of thunk
4980  // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4981  // # base is the nominal target function of thunk
4982  // # first call-offset is 'this' adjustment
4983  // # second call-offset is result adjustment
4984 
4985  assert(!isa<CXXDestructorDecl>(MD) &&
4986  "Use mangleCXXDtor for destructor decls!");
4987  CXXNameMangler Mangler(*this, Out);
4988  Mangler.getStream() << "_ZT";
4989  if (!Thunk.Return.isEmpty())
4990  Mangler.getStream() << 'c';
4991 
4992  // Mangle the 'this' pointer adjustment.
4993  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4995 
4996  // Mangle the return pointer adjustment if there is one.
4997  if (!Thunk.Return.isEmpty())
4998  Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5000 
5001  Mangler.mangleFunctionEncoding(MD);
5002 }
5003 
5004 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5005  const CXXDestructorDecl *DD, CXXDtorType Type,
5006  const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5007  // <special-name> ::= T <call-offset> <base encoding>
5008  // # base is the nominal target function of thunk
5009  CXXNameMangler Mangler(*this, Out, DD, Type);
5010  Mangler.getStream() << "_ZT";
5011 
5012  // Mangle the 'this' pointer adjustment.
5013  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5014  ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5015 
5016  Mangler.mangleFunctionEncoding(DD);
5017 }
5018 
5019 /// Returns the mangled name for a guard variable for the passed in VarDecl.
5020 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5021  raw_ostream &Out) {
5022  // <special-name> ::= GV <object name> # Guard variable for one-time
5023  // # initialization
5024  CXXNameMangler Mangler(*this, Out);
5025  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5026  // be a bug that is fixed in trunk.
5027  Mangler.getStream() << "_ZGV";
5028  Mangler.mangleName(D);
5029 }
5030 
5031 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5032  raw_ostream &Out) {
5033  // These symbols are internal in the Itanium ABI, so the names don't matter.
5034  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5035  // avoid duplicate symbols.
5036  Out << "__cxx_global_var_init";
5037 }
5038 
5039 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5040  raw_ostream &Out) {
5041  // Prefix the mangling of D with __dtor_.
5042  CXXNameMangler Mangler(*this, Out);
5043  Mangler.getStream() << "__dtor_";
5044  if (shouldMangleDeclName(D))
5045  Mangler.mangle(D);
5046  else
5047  Mangler.getStream() << D->getName();
5048 }
5049 
5050 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5051  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5052  CXXNameMangler Mangler(*this, Out);
5053  Mangler.getStream() << "__filt_";
5054  if (shouldMangleDeclName(EnclosingDecl))
5055  Mangler.mangle(EnclosingDecl);
5056  else
5057  Mangler.getStream() << EnclosingDecl->getName();
5058 }
5059 
5060 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5061  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5062  CXXNameMangler Mangler(*this, Out);
5063  Mangler.getStream() << "__fin_";
5064  if (shouldMangleDeclName(EnclosingDecl))
5065  Mangler.mangle(EnclosingDecl);
5066  else
5067  Mangler.getStream() << EnclosingDecl->getName();
5068 }
5069 
5070 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5071  raw_ostream &Out) {
5072  // <special-name> ::= TH <object name>
5073  CXXNameMangler Mangler(*this, Out);
5074  Mangler.getStream() << "_ZTH";
5075  Mangler.mangleName(D);
5076 }
5077 
5078 void
5079 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5080  raw_ostream &Out) {
5081  // <special-name> ::= TW <object name>
5082  CXXNameMangler Mangler(*this, Out);
5083  Mangler.getStream() << "_ZTW";
5084  Mangler.mangleName(D);
5085 }
5086 
5087 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5088  unsigned ManglingNumber,
5089  raw_ostream &Out) {
5090  // We match the GCC mangling here.
5091  // <special-name> ::= GR <object name>
5092  CXXNameMangler Mangler(*this, Out);
5093  Mangler.getStream() << "_ZGR";
5094  Mangler.mangleName(D);
5095  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5096  Mangler.mangleSeqID(ManglingNumber - 1);
5097 }
5098 
5099 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5100  raw_ostream &Out) {
5101  // <special-name> ::= TV <type> # virtual table
5102  CXXNameMangler Mangler(*this, Out);
5103  Mangler.getStream() << "_ZTV";
5104  Mangler.mangleNameOrStandardSubstitution(RD);
5105 }
5106 
5107 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
5108  raw_ostream &Out) {
5109  // <special-name> ::= TT <type> # VTT structure
5110  CXXNameMangler Mangler(*this, Out);
5111  Mangler.getStream() << "_ZTT";
5112  Mangler.mangleNameOrStandardSubstitution(RD);
5113 }
5114 
5115 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5116  int64_t Offset,
5117  const CXXRecordDecl *Type,
5118  raw_ostream &Out) {
5119  // <special-name> ::= TC <type> <offset number> _ <base type>
5120  CXXNameMangler Mangler(*this, Out);
5121  Mangler.getStream() << "_ZTC";
5122  Mangler.mangleNameOrStandardSubstitution(RD);
5123  Mangler.getStream() << Offset;
5124  Mangler.getStream() << '_';
5125  Mangler.mangleNameOrStandardSubstitution(Type);
5126 }
5127 
5128 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5129  // <special-name> ::= TI <type> # typeinfo structure
5130  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5131  CXXNameMangler Mangler(*this, Out);
5132  Mangler.getStream() << "_ZTI";
5133  Mangler.mangleType(Ty);
5134 }
5135 
5136 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5137  raw_ostream &Out) {
5138  // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
5139  CXXNameMangler Mangler(*this, Out);
5140  Mangler.getStream() << "_ZTS";
5141  Mangler.mangleType(Ty);
5142 }
5143 
5144 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5145  mangleCXXRTTIName(Ty, Out);
5146 }
5147 
5148 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5149  llvm_unreachable("Can't mangle string literals");
5150 }
5151 
5152 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
5153  raw_ostream &Out) {
5154  CXXNameMangler Mangler(*this, Out);
5155  Mangler.mangleLambdaSig(Lambda);
5156 }
5157 
5160  return new ItaniumMangleContextImpl(Context, Diags);
5161 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
QualType getPattern() const
Retrieve the pattern of this pack expansion, which is the type that will be repeatedly instantiated w...
Definition: Type.h:5452
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4809
const Type * Ty
The locally-unqualified type.
Definition: Type.h:584
unsigned getNumDecls() const
Gets the number of declarations in the unresolved set.
Definition: ExprCXX.h:2947
Represents a function declaration or definition.
Definition: Decl.h:1784
std::string Name
The name of this module.
Definition: Module.h:67
Expr * getLHS() const
Definition: Expr.h:3752
The "enum" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5140
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this __uuidof() expression after various required adjustments (removing...
Definition: ExprCXX.cpp:153
RangeSelector member(std::string ID)
Given a MemberExpr, selects the member token.
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2585
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:4062
Complete object ctor.
Definition: ABI.h:25
void * getAsVoidPointer() const
Retrieve the template name as a void pointer.
Definition: TemplateName.h:328
QualType getPointeeType() const
Definition: Type.h:2598
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:4160
A (possibly-)qualified type.
Definition: Type.h:643
OverloadedOperatorKind getOperator() const
Return the overloaded operator to which this template name refers.
Definition: TemplateName.h:514
bool isArrayType() const
Definition: Type.h:6447
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2894
Attempt to be ABI-compatible with code generated by Clang 6.0.x (SVN r321711).
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2677
static const TemplateArgument & getArgument(const TemplateArgument &A)
QualType getInjectedSpecializationType() const
Definition: Type.h:5086
NestedNameSpecifier * getQualifier() const
Return the nested name specifier that qualifies this name.
Definition: TemplateName.h:498
const Expr * getSubExpr() const
Definition: ExprCXX.h:1162
__auto_type (GNU extension)
VarDecl * getParameterPack() const
Get the parameter pack which this expression refers to.
Definition: ExprCXX.h:4366
The COMDAT used for ctors.
Definition: ABI.h:27
BinaryOperatorKind Opcode
The original opcode, prior to rewriting.
Definition: ExprCXX.h:298
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4423
bool isListInitialization() const
Determine whether this expression models list-initialization.
Definition: ExprCXX.h:3444
Expr * getUnderlyingExpr() const
Definition: Type.h:4330
bool isDependent() const
Whether this template argument is dependent on a template parameter such that its result can change f...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1506
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2664
Kind getKind() const
Definition: Type.h:2466
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3393
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2878
bool hasExtParameterInfos() const
Is there any interesting extra information for any of the parameters of this function type...
Definition: Type.h:4098
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:3253
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2855
Defines the SourceManager interface.
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:5288
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
Expr * getBase() const
Definition: Expr.h:2888
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:284
NestedNameSpecifier * getQualifier() const
Retrieve the qualification on this type.
Definition: Type.h:5307
bool isEmpty() const
Definition: ABI.h:86
bool isDecltypeAuto() const
Definition: Type.h:4834
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4041
TagDecl * getDecl() const
Definition: Type.cpp:3293
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD, const char(&Str)[StrLen])
llvm::APFloat getValue() const
Definition: Expr.h:1572
A reference to a name which we were able to look up during parsing but could not resolve to a specifi...
Definition: ExprCXX.h:3037
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3444
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:419
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4823
unsigned getBlockManglingNumber() const
Definition: Decl.h:4117
The base class of the type hierarchy.
Definition: Type.h:1436
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies this declaration.
Definition: ExprCXX.h:3211
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:110
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1290
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:522
bool isArrayRangeDesignator() const
Definition: Designator.h:71
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1422
static bool isParenthesizedADLCallee(const CallExpr *call)
Look at the callee of the given call expression and determine if it&#39;s a parenthesized id-expression w...
ArrayRef< NamedDecl * > getLambdaExplicitTemplateParameters() const
Retrieve the lambda template parameters that were specified explicitly.
Definition: DeclCXX.cpp:1475
A container of type source information.
Definition: Decl.h:86
const Expr * RHS
The original right-hand side.
Definition: ExprCXX.h:302
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:6059
SourceLocation getAttributeLoc() const
Definition: Type.h:3298
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2365
A template template parameter that has been substituted for some other template name.
Definition: TemplateName.h:219
Default closure variant of a ctor.
Definition: ABI.h:29
QualType getElementType() const
Definition: Type.h:2881
const Expr * getSubExpr() const
Definition: Expr.h:1649
const IdentifierInfo * getIdentifier() const
Returns the identifier to which this template name refers.
Definition: TemplateName.h:504
TemplateName getTemplateName() const
Retrieve the name of the template that we are deducing.
Definition: Type.h:4879
An identifier, stored as an IdentifierInfo*.
unsigned getDepth() const
Get the nesting depth of the template parameter.
Represents a variable declaration or definition.
Definition: Decl.h:827
void removeObjCLifetime()
Definition: Type.h:333
unsigned getNumParams() const
Definition: Type.h:3927
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6858
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
Represents a C++17 deduced template specialization type.
Definition: Type.h:4861
A this pointer adjustment.
Definition: ABI.h:107
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
A namespace, stored as a NamespaceDecl*.
DeclarationName getName() const
Gets the name looked up.
Definition: ExprCXX.h:2953
bool requiresADL() const
True if this declaration should be extended by argument-dependent lookup.
Definition: ExprCXX.h:3105
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1140
Expr * getExprOperand() const
Definition: ExprCXX.h:821
Represents a parameter to a function.
Definition: Decl.h:1600
Defines the clang::Expr interface and subclasses for C++ expressions.
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:314
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The collection of all-type qualifiers we support.
Definition: Type.h:137
PipeType - OpenCL20.
Definition: Type.h:6078
Expr * getExprOperand() const
Definition: ExprCXX.h:1046
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm() const
Retrieve the substituted template template parameter, if known.
const char * getStmtClassName() const
Definition: Stmt.cpp:75
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Represents a struct/union/class.
Definition: Decl.h:3662
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:378
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
bool isNothrow(bool ResultIfDependent=false) const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.h:4036
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Represents a class type in Objective C.
Definition: Type.h:5614
void removeRestrict()
Definition: Type.h:266
QualType getPointeeType() const
Definition: Type.h:2702
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:329
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:160
is ARM Neon vector
Definition: Type.h:3222
Represents a dependent template name that cannot be resolved prior to template instantiation.
Definition: TemplateName.h:442
NamespaceDecl * getNamespace()
Retrieve the namespace declaration aliased by this directive.
Definition: DeclCXX.h:3022
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
Used for GCC&#39;s __alignof.
Definition: TypeTraits.h:106
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
NameKind getNameKind() const
Determine what kind of name this is.
Represents a member of a struct/union/class.
Definition: Decl.h:2643
TemplateName getTemplateName() const
Retrieve the name of the template that we are specializing.
Definition: Type.h:4980
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
Expr * getBase()
Retrieve the base object of this member expressions, e.g., the x in x.m.
Definition: ExprCXX.h:3848
const llvm::APSInt & getInitVal() const
Definition: Decl.h:2876
bool isNamespace() const
Definition: DeclBase.h:1863
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1653
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm()
Definition: TemplateName.h:89
bool isReferenceType() const
Definition: Type.h:6403
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4733
bool isSpecificBuiltinType(unsigned K) const
Test for a particular builtin type.
Definition: Type.h:6617
Expr * getArg(unsigned I)
Definition: ExprCXX.h:3465
Represents a C++ member access expression for which lookup produced a set of overloaded functions...
Definition: ExprCXX.h:3771
Expr * getSubExpr()
Definition: Expr.h:3177
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:178
TypeSourceInfo * getLambdaTypeInfo() const
Definition: DeclCXX.h:1776
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:268
Describes a module or submodule.
Definition: Module.h:64
bool getProducesResult() const
Definition: Type.h:3551
Describes an C or C++ initializer list.
Definition: Expr.h:4375
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:764
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2786
UnresolvedUsingTypenameDecl * getDecl() const
Definition: Type.h:4171
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
A qualified template name, where the qualification is kept to describe the source code as written...
Definition: TemplateName.h:211
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1392
Base object ctor.
Definition: ABI.h:26
static ItaniumMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags)
bool isGlobalNew() const
Definition: ExprCXX.h:2259
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:720
bool hasAddressSpace() const
Definition: Type.h:352
An unqualified-id that has been assumed to name a function template that will be found by ADL...
Definition: TemplateName.h:207
The "struct" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5128
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:274
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2275
Deleting dtor.
Definition: ABI.h:34
static bool isStdNamespace(const DeclContext *DC)
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:4250
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: ExprCXX.h:3713
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3409
LangAS getAddressSpace() const
Definition: Type.h:353
const Type * getClass() const
Definition: Type.h:2838
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr or CxxCtorInitializer) selects the name&#39;s to...
bool isArrow() const
Definition: Expr.h:2995
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:962
Expr * getSizeExpr() const
Definition: Type.h:3029
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:4983
unsigned getIndex() const
Get the index of the template parameter within its parameter list.
NestedNameSpecifier * getQualifier() const
Fetches the nested-name qualifier, if one was given.
Definition: ExprCXX.h:2959
Enums/classes describing ABI related information about constructors, destructors and thunks...
bool isInstantiationDependent() const
Whether this template argument is dependent on a template parameter.
virtual const char * getLongDoubleMangling() const
Return the mangled code of long double.
Definition: TargetInfo.h:605
void * getAsOpaquePtr() const
Definition: Type.h:688
DeclarationName getDeclName() const
Retrieve the name that this expression refers to.
Definition: ExprCXX.h:3198
Represents a C++ member access expression where the actual member referenced could not be resolved be...
Definition: ExprCXX.h:3511
is ARM Neon polynomial vector
Definition: Type.h:3225
bool hasConst() const
Definition: Type.h:254
Expr * getSizeExpr() const
Definition: Type.h:3086
unsigned getLength() const
Efficiently return the length of this identifier info.
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:877
bool isTypeOperand() const
Definition: ExprCXX.h:1029
Expr * getSizeExpr() const
Definition: Type.h:3296
QualType getElementType() const
Definition: Type.h:3182
arg_iterator placement_arg_end()
Definition: ExprCXX.h:2316
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
bool isAnonymousStructOrUnion() const
Whether this is an anonymous struct or union.
Definition: Decl.h:3735
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:3166
This object can be modified without requiring retains or releases.
Definition: Type.h:158
NamedDecl * getFirstQualifierFoundInScope() const
Retrieve the first part of the nested-name-specifier that was found in the scope of the member access...
Definition: ExprCXX.h:3645
DeclarationName getMemberName() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3883
bool isArrayForm() const
Definition: ExprCXX.h:2386
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3578
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3688
Expr * getAddrSpaceExpr() const
Definition: Type.h:3137
NodeId Parent
Definition: ASTDiff.cpp:191
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:2061
llvm::StringRef getParameterABISpelling(ParameterABI kind)
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1706
bool hasAttr() const
Definition: DeclBase.h:542
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3707
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5677
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3725
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2922
qual_range quals() const
Definition: Type.h:5514
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: ExprCXX.h:3704
A dependent template name that has not been resolved to a template (or set of templates).
Definition: TemplateName.h:215
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2347
union clang::ReturnAdjustment::VirtualAdjustment Virtual
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:6223
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:263
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
bool isImplicitAccess() const
True if this is an implicit access, i.e.
Definition: ExprCXX.h:3601
unsigned Offset
Definition: Format.cpp:1809
Exposes information about the current target.
Definition: TargetInfo.h:163
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:3064
CXXDtorType
C++ destructor types.
Definition: ABI.h:33
Expr * getCond() const
Definition: Expr.h:3741
QualType getElementType() const
Definition: Type.h:2538
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:5375
unsigned getFunctionScopeDepth() const
Definition: Decl.h:1647
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:3951
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
const FieldDecl * findFirstNamedDataMember() const
Finds the first data member which has a name.
Definition: Decl.cpp:4435
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:644
This represents one expression.
Definition: Expr.h:108
static const DeclContext * IgnoreLinkageSpecDecls(const DeclContext *DC)
QualType getPointeeType() const
Definition: Type.h:2742
TemplateDecl * getTemplateDecl() const
The template declaration to which this qualified name refers.
Definition: TemplateName.h:420
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:5144
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:2997
bool isArrow() const
Determine whether this member expression used the &#39;->&#39; operator; otherwise, it used the &#39;...
Definition: ExprCXX.h:3867
int Id
Definition: ASTDiff.cpp:190
Declaration of a template type parameter.
unsigned getIndex() const
Definition: Type.h:4640
bool isImplicitAccess() const
True if this is an implicit access, i.e., one in which the member being accessed was not written in t...
Definition: ExprCXX.cpp:1530
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6923
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:67
#define V(N, I)
Definition: ASTContext.h:2921
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c-base.h:62
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2629
New-expression has a C++11 list-initializer.
Definition: ExprCXX.h:2160
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
Expr * getCallee()
Definition: Expr.h:2638
unsigned getNumInits() const
Definition: Expr.h:4405
bool isArrayDesignator() const
Definition: Designator.h:70
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3594
struct clang::ThisAdjustment::VirtualAdjustment::@134 Itanium
QualType getArgumentType() const
Definition: Expr.h:2384
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
unsigned getNumTemplateArgs() const
Definition: ExprCXX.h:3003
DeclContext * getDeclContext()
Definition: DeclBase.h:438
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:3015
A structure for storing the information associated with a substituted template template parameter...
Definition: TemplateName.h:345
QualType getBaseType() const
Definition: Type.h:4389
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1315
const IdentifierInfo * getIdentifier() const
Retrieve the type named by the typename specifier as an identifier.
Definition: Type.h:5314
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a C++ template name within the type system.
Definition: TemplateName.h:187
Represents the type decltype(expr) (C++11).
Definition: Type.h:4320
decls_iterator decls_begin() const
Definition: ExprCXX.h:2936
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Defines the clang::TypeLoc interface and its subclasses.
bool isIdentifier() const
Determine whether this template name refers to an identifier.
Definition: TemplateName.h:501
A namespace alias, stored as a NamespaceAliasDecl*.
int Depth
Definition: ASTDiff.cpp:190
IdentifierInfo * getAsIdentifierInfo() const
Retrieve the IdentifierInfo * stored in this declaration name, or null if this declaration name isn&#39;t...
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:582
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType)
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], or an enum decl which has a signed representation.
Definition: Type.cpp:1931
Base object dtor.
Definition: ABI.h:36
QualType getType() const
Definition: Expr.h:137
bool isFunctionOrMethod() const
Definition: DeclBase.h:1831
A unary type transform, which is a type constructed from another.
Definition: Type.h:4363
bool isIdentifier() const
Predicate functions for querying what type of name this is.
Qualifiers Quals
The local qualifiers.
Definition: Type.h:587
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1779
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2262
bool hasInstantiationDependentExceptionSpec() const
Return whether this function has an instantiation-dependent exception spec.
Definition: Type.cpp:3086
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2021
Represents a GCC generic vector type.
Definition: Type.h:3206
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:146
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2768
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
UTTKind getUTTKind() const
Definition: Type.h:4391
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:708
Expr * getLHS()
An array access can be written A[4] or 4[A] (both are equivalent).
Definition: Expr.h:2472
The COMDAT used for dtors.
Definition: ABI.h:37
static StringRef getIdentifier(const Token &Tok)
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:265
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1637
AttrVec & getAttrs()
Definition: DeclBase.h:490
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:6156
RecordDecl * getDecl() const
Definition: Type.h:4454
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies the member name.
Definition: ExprCXX.h:3626
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:44
static bool hasMangledSubstitutionQualifiers(QualType T)
Determine whether the given type has any qualifiers that are relevant for substitutions.
Expr * getArgument()
Definition: ExprCXX.h:2401
A template template parameter pack that has been substituted for a template template argument pack...
Definition: TemplateName.h:224
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
There is no lifetime qualification on this type.
Definition: Type.h:154
OverloadedTemplateStorage * getAsOverloadedTemplate() const
Retrieve the underlying, overloaded function template declarations that this template name refers to...
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:3216
#define false
Definition: stdbool.h:17
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
QualType getCanonicalType() const
Definition: Type.h:6187
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6467
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:200
ExtParameterInfo getExtParameterInfo(unsigned I) const
Definition: Type.h:4117
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:702
ElaboratedTypeKeyword getKeyword() const
Definition: Type.h:5166
Encodes a location in the source.
const Expr * LHS
The original left-hand side.
Definition: ExprCXX.h:300
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5827
QualType getReturnType() const
Definition: Type.h:3651
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4470
llvm::APSInt APSInt
QualType getSingleStepDesugaredType(const ASTContext &Context) const
Return the specified type with one level of "sugar" removed from the type.
Definition: Type.h:956
Expr * getSubExpr() const
Definition: Expr.h:2051
Represents typeof(type), a GCC extension.
Definition: Type.h:4293
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5814
virtual const char * getFloat128Mangling() const
Return the mangled code of __float128.
Definition: TargetInfo.h:608
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:2100
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3133
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:64
CallingConv getCC() const
Definition: Type.h:3563
QualType getElementType() const
Definition: Type.h:3241
Represents a vector type where either the type or size is dependent.
Definition: Type.h:3283
bool isFieldDesignator() const
Definition: Designator.h:69
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1905
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1389
QualType getAllocatedType() const
Definition: ExprCXX.h:2193
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2348
This file defines OpenMP nodes for declarative directives.
Qualifiers getMethodQuals() const
Definition: Type.h:4054
Expr * getNoexceptExpr() const
Return the expression inside noexcept(expression), or a null pointer if there is none (because the ex...
Definition: Type.h:4002
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2378
bool isArray() const
Definition: ExprCXX.h:2223
bool hasRestrict() const
Definition: Type.h:264
arg_range arguments()
Definition: Expr.h:2714
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:3219
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1387
llvm::APInt APInt
Definition: Integral.h:27
Decl * getBlockManglingContextDecl() const
Definition: Decl.h:4119
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:776
AutoTypeKeyword getKeyword() const
Definition: Type.h:4838
TypeClass getTypeClass() const
Definition: Type.h:1851
Used for C&#39;s _Alignof and C++&#39;s alignof.
Definition: TypeTraits.h:100
int64_t VCallOffsetOffset
The offset (in bytes), relative to the address point, of the virtual call offset. ...
Definition: ABI.h:119
Complete object dtor.
Definition: ABI.h:35
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:300
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1395
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
bool isArgumentType() const
Definition: Expr.h:2383
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the und