clang 20.0.0git
RegionStore.cpp
Go to the documentation of this file.
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a basic region store model. In this model, we do have field
10// sensitivity. But we assume nothing about the heap shape. So recursive data
11// structures are largely ignored. Basically we do 1-limiting analysis.
12// Parameter pointers are assumed with no aliasing. Pointee objects of
13// parameters are created lazily.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include <optional>
34#include <utility>
35
36using namespace clang;
37using namespace ento;
38
39//===----------------------------------------------------------------------===//
40// Representation of binding keys.
41//===----------------------------------------------------------------------===//
42
43namespace {
44class BindingKey {
45public:
46 enum Kind { Default = 0x0, Direct = 0x1 };
47private:
48 enum { Symbolic = 0x2 };
49
50 llvm::PointerIntPair<const MemRegion *, 2> P;
52
53 /// Create a key for a binding to region \p r, which has a symbolic offset
54 /// from region \p Base.
55 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
56 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
57 assert(r && Base && "Must have known regions.");
58 assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
59 }
60
61 /// Create a key for a binding at \p offset from base region \p r.
62 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
63 : P(r, k), Data(offset) {
64 assert(r && "Must have known regions.");
65 assert(getOffset() == offset && "Failed to store offset");
66 assert((r == r->getBaseRegion() ||
67 isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
68 "Not a base");
69 }
70
71public:
72 bool isDirect() const { return P.getInt() & Direct; }
73 bool isDefault() const { return !isDirect(); }
74 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
75
76 const MemRegion *getRegion() const { return P.getPointer(); }
77 uint64_t getOffset() const {
78 assert(!hasSymbolicOffset());
79 return Data;
80 }
81
82 const SubRegion *getConcreteOffsetRegion() const {
83 assert(hasSymbolicOffset());
84 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
85 }
86
87 const MemRegion *getBaseRegion() const {
88 if (hasSymbolicOffset())
89 return getConcreteOffsetRegion()->getBaseRegion();
90 return getRegion()->getBaseRegion();
91 }
92
93 void Profile(llvm::FoldingSetNodeID& ID) const {
94 ID.AddPointer(P.getOpaqueValue());
95 ID.AddInteger(Data);
96 }
97
98 static BindingKey Make(const MemRegion *R, Kind k);
99
100 bool operator<(const BindingKey &X) const {
101 if (P.getOpaqueValue() < X.P.getOpaqueValue())
102 return true;
103 if (P.getOpaqueValue() > X.P.getOpaqueValue())
104 return false;
105 return Data < X.Data;
106 }
107
108 bool operator==(const BindingKey &X) const {
109 return P.getOpaqueValue() == X.P.getOpaqueValue() &&
110 Data == X.Data;
111 }
112
113 LLVM_DUMP_METHOD void dump() const;
114};
115} // end anonymous namespace
116
117BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
118 const RegionOffset &RO = R->getAsOffset();
119 if (RO.hasSymbolicOffset())
120 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
121
122 return BindingKey(RO.getRegion(), RO.getOffset(), k);
123}
124
125namespace llvm {
126static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
127 Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
128 << "\", \"offset\": ";
129
130 if (!K.hasSymbolicOffset())
131 Out << K.getOffset();
132 else
133 Out << "null";
134
135 return Out;
136}
137
138} // namespace llvm
139
140#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141void BindingKey::dump() const { llvm::errs() << *this; }
142#endif
143
144//===----------------------------------------------------------------------===//
145// Actual Store type.
146//===----------------------------------------------------------------------===//
147
148typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
149typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
150typedef std::pair<BindingKey, SVal> BindingPair;
151
152typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
154
155namespace {
156class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
157 ClusterBindings> {
158 ClusterBindings::Factory *CBFactory;
159
160 // This flag indicates whether the current bindings are within the analysis
161 // that has started from main(). It affects how we perform loads from
162 // global variables that have initializers: if we have observed the
163 // program execution from the start and we know that these variables
164 // have not been overwritten yet, we can be sure that their initializers
165 // are still relevant. This flag never gets changed when the bindings are
166 // updated, so it could potentially be moved into RegionStoreManager
167 // (as if it's the same bindings but a different loading procedure)
168 // however that would have made the manager needlessly stateful.
169 bool IsMainAnalysis;
170
171public:
172 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
173 ParentTy;
174
175 RegionBindingsRef(ClusterBindings::Factory &CBFactory,
176 const RegionBindings::TreeTy *T,
177 RegionBindings::TreeTy::Factory *F,
178 bool IsMainAnalysis)
179 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
180 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
181
182 RegionBindingsRef(const ParentTy &P,
183 ClusterBindings::Factory &CBFactory,
184 bool IsMainAnalysis)
185 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
186 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
187
188 RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
189 return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
190 *CBFactory, IsMainAnalysis);
191 }
192
193 RegionBindingsRef remove(key_type_ref K) const {
194 return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
195 *CBFactory, IsMainAnalysis);
196 }
197
198 RegionBindingsRef addBinding(BindingKey K, SVal V) const;
199
200 RegionBindingsRef addBinding(const MemRegion *R,
201 BindingKey::Kind k, SVal V) const;
202
203 const SVal *lookup(BindingKey K) const;
204 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
205 using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
206
207 RegionBindingsRef removeBinding(BindingKey K);
208
209 RegionBindingsRef removeBinding(const MemRegion *R,
210 BindingKey::Kind k);
211
212 RegionBindingsRef removeBinding(const MemRegion *R) {
213 return removeBinding(R, BindingKey::Direct).
214 removeBinding(R, BindingKey::Default);
215 }
216
217 std::optional<SVal> getDirectBinding(const MemRegion *R) const;
218
219 /// getDefaultBinding - Returns an SVal* representing an optional default
220 /// binding associated with a region and its subregions.
221 std::optional<SVal> getDefaultBinding(const MemRegion *R) const;
222
223 /// Return the internal tree as a Store.
224 Store asStore() const {
225 llvm::PointerIntPair<Store, 1, bool> Ptr = {
226 asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
227 return reinterpret_cast<Store>(Ptr.getOpaqueValue());
228 }
229
230 bool isMainAnalysis() const {
231 return IsMainAnalysis;
232 }
233
234 void printJson(raw_ostream &Out, const char *NL = "\n",
235 unsigned int Space = 0, bool IsDot = false) const {
236 using namespace llvm;
237 DenseMap<const MemRegion *, std::string> StringifyCache;
238 auto ToString = [&StringifyCache](const MemRegion *R) {
239 auto [Place, Inserted] = StringifyCache.try_emplace(R);
240 if (!Inserted)
241 return Place->second;
242 std::string Res;
243 raw_string_ostream OS(Res);
244 OS << R;
245 Place->second = Res;
246 return Res;
247 };
248
249 using Cluster =
250 std::pair<const MemRegion *, ImmutableMap<BindingKey, SVal>>;
251 using Binding = std::pair<BindingKey, SVal>;
252
253 const auto MemSpaceBeforeRegionName = [&ToString](const Cluster *L,
254 const Cluster *R) {
255 if (isa<MemSpaceRegion>(L->first) && !isa<MemSpaceRegion>(R->first))
256 return true;
257 if (!isa<MemSpaceRegion>(L->first) && isa<MemSpaceRegion>(R->first))
258 return false;
259 return ToString(L->first) < ToString(R->first);
260 };
261
262 const auto SymbolicBeforeOffset = [&ToString](const BindingKey &L,
263 const BindingKey &R) {
264 if (L.hasSymbolicOffset() && !R.hasSymbolicOffset())
265 return true;
266 if (!L.hasSymbolicOffset() && R.hasSymbolicOffset())
267 return false;
268 if (L.hasSymbolicOffset() && R.hasSymbolicOffset())
269 return ToString(L.getRegion()) < ToString(R.getRegion());
270 return L.getOffset() < R.getOffset();
271 };
272
273 const auto DefaultBindingBeforeDirectBindings =
274 [&SymbolicBeforeOffset](const Binding *LPtr, const Binding *RPtr) {
275 const BindingKey &L = LPtr->first;
276 const BindingKey &R = RPtr->first;
277 if (L.isDefault() && !R.isDefault())
278 return true;
279 if (!L.isDefault() && R.isDefault())
280 return false;
281 assert(L.isDefault() == R.isDefault());
282 return SymbolicBeforeOffset(L, R);
283 };
284
285 const auto AddrOf = [](const auto &Item) { return &Item; };
286
287 std::vector<const Cluster *> SortedClusters;
288 SortedClusters.reserve(std::distance(begin(), end()));
289 append_range(SortedClusters, map_range(*this, AddrOf));
290 llvm::sort(SortedClusters, MemSpaceBeforeRegionName);
291
292 for (auto [Idx, C] : llvm::enumerate(SortedClusters)) {
293 const auto &[BaseRegion, Bindings] = *C;
294 Indent(Out, Space, IsDot)
295 << "{ \"cluster\": \"" << BaseRegion << "\", \"pointer\": \""
296 << (const void *)BaseRegion << "\", \"items\": [" << NL;
297
298 std::vector<const Binding *> SortedBindings;
299 SortedBindings.reserve(std::distance(Bindings.begin(), Bindings.end()));
300 append_range(SortedBindings, map_range(Bindings, AddrOf));
301 llvm::sort(SortedBindings, DefaultBindingBeforeDirectBindings);
302
303 ++Space;
304 for (auto [Idx, B] : llvm::enumerate(SortedBindings)) {
305 const auto &[Key, Value] = *B;
306 Indent(Out, Space, IsDot) << "{ " << Key << ", \"value\": ";
307 Value.printJson(Out, /*AddQuotes=*/true);
308 Out << " }";
309 if (Idx != SortedBindings.size() - 1)
310 Out << ',';
311 Out << NL;
312 }
313 --Space;
314 Indent(Out, Space, IsDot) << "]}";
315 if (Idx != SortedClusters.size() - 1)
316 Out << ',';
317 Out << NL;
318 }
319 }
320
321 LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
322};
323} // end anonymous namespace
324
325typedef const RegionBindingsRef& RegionBindingsConstRef;
326
327std::optional<SVal>
328RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
329 const SVal *V = lookup(R, BindingKey::Direct);
330 return V ? std::optional<SVal>(*V) : std::nullopt;
331}
332
333std::optional<SVal>
334RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
335 const SVal *V = lookup(R, BindingKey::Default);
336 return V ? std::optional<SVal>(*V) : std::nullopt;
337}
338
339RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
340 const MemRegion *Base = K.getBaseRegion();
341
342 const ClusterBindings *ExistingCluster = lookup(Base);
343 ClusterBindings Cluster =
344 (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
345
346 ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
347 return add(Base, NewCluster);
348}
349
350
351RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
352 BindingKey::Kind k,
353 SVal V) const {
354 return addBinding(BindingKey::Make(R, k), V);
355}
356
357const SVal *RegionBindingsRef::lookup(BindingKey K) const {
358 const ClusterBindings *Cluster = lookup(K.getBaseRegion());
359 if (!Cluster)
360 return nullptr;
361 return Cluster->lookup(K);
362}
363
364const SVal *RegionBindingsRef::lookup(const MemRegion *R,
365 BindingKey::Kind k) const {
366 return lookup(BindingKey::Make(R, k));
367}
368
369RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
370 const MemRegion *Base = K.getBaseRegion();
371 const ClusterBindings *Cluster = lookup(Base);
372 if (!Cluster)
373 return *this;
374
375 ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
376 if (NewCluster.isEmpty())
377 return remove(Base);
378 return add(Base, NewCluster);
379}
380
381RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
382 BindingKey::Kind k){
383 return removeBinding(BindingKey::Make(R, k));
384}
385
386//===----------------------------------------------------------------------===//
387// Main RegionStore logic.
388//===----------------------------------------------------------------------===//
389
390namespace {
391class InvalidateRegionsWorker;
392
393class RegionStoreManager : public StoreManager {
394public:
395 RegionBindings::Factory RBFactory;
396 mutable ClusterBindings::Factory CBFactory;
397
398 typedef std::vector<SVal> SValListTy;
399private:
400 typedef llvm::DenseMap<const LazyCompoundValData *,
401 SValListTy> LazyBindingsMapTy;
402 LazyBindingsMapTy LazyBindingsMap;
403
404 /// The largest number of fields a struct can have and still be
405 /// considered "small".
406 ///
407 /// This is currently used to decide whether or not it is worth "forcing" a
408 /// LazyCompoundVal on bind.
409 ///
410 /// This is controlled by 'region-store-small-struct-limit' option.
411 /// To disable all small-struct-dependent behavior, set the option to "0".
412 unsigned SmallStructLimit;
413
414 /// The largest number of element an array can have and still be
415 /// considered "small".
416 ///
417 /// This is currently used to decide whether or not it is worth "forcing" a
418 /// LazyCompoundVal on bind.
419 ///
420 /// This is controlled by 'region-store-small-struct-limit' option.
421 /// To disable all small-struct-dependent behavior, set the option to "0".
422 unsigned SmallArrayLimit;
423
424 /// A helper used to populate the work list with the given set of
425 /// regions.
426 void populateWorkList(InvalidateRegionsWorker &W,
427 ArrayRef<SVal> Values,
428 InvalidatedRegions *TopLevelRegions);
429
430public:
431 RegionStoreManager(ProgramStateManager &mgr)
432 : StoreManager(mgr), RBFactory(mgr.getAllocator()),
433 CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) {
434 ExprEngine &Eng = StateMgr.getOwningEngine();
436 SmallStructLimit = Options.RegionStoreSmallStructLimit;
437 SmallArrayLimit = Options.RegionStoreSmallArrayLimit;
438 }
439
440 /// setImplicitDefaultValue - Set the default binding for the provided
441 /// MemRegion to the value implicitly defined for compound literals when
442 /// the value is not specified.
443 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
444 const MemRegion *R, QualType T);
445
446 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
447 /// type. 'Array' represents the lvalue of the array being decayed
448 /// to a pointer, and the returned SVal represents the decayed
449 /// version of that lvalue (i.e., a pointer to the first element of
450 /// the array). This is called by ExprEngine when evaluating
451 /// casts from arrays to pointers.
452 SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
453
454 /// Creates the Store that correctly represents memory contents before
455 /// the beginning of the analysis of the given top-level stack frame.
456 StoreRef getInitialStore(const LocationContext *InitLoc) override {
457 bool IsMainAnalysis = false;
458 if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
459 IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
460 return StoreRef(RegionBindingsRef(
461 RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
462 CBFactory, IsMainAnalysis).asStore(), *this);
463 }
464
465 //===-------------------------------------------------------------------===//
466 // Binding values to regions.
467 //===-------------------------------------------------------------------===//
468 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, const Stmt *S,
469 unsigned Count,
470 const LocationContext *LCtx,
471 RegionBindingsRef B,
472 InvalidatedRegions *Invalidated);
473
474 StoreRef invalidateRegions(Store store, ArrayRef<SVal> Values, const Stmt *S,
475 unsigned Count, const LocationContext *LCtx,
478 InvalidatedRegions *Invalidated,
479 InvalidatedRegions *InvalidatedTopLevel) override;
480
481 bool scanReachableSymbols(Store S, const MemRegion *R,
482 ScanReachableSymbols &Callbacks) override;
483
484 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
485 const SubRegion *R);
486 std::optional<SVal>
487 getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
488 const ElementRegion *R);
489 std::optional<SVal>
490 getSValFromInitListExpr(const InitListExpr *ILE,
491 const SmallVector<uint64_t, 2> &ConcreteOffsets,
492 QualType ElemT);
493 SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
494 QualType ElemT);
495
496public: // Part of public interface to class.
497
498 StoreRef Bind(Store store, Loc LV, SVal V) override {
499 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
500 }
501
502 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
503
504 // BindDefaultInitial is only used to initialize a region with
505 // a default value.
507 SVal V) override {
508 RegionBindingsRef B = getRegionBindings(store);
509 // Use other APIs when you have to wipe the region that was initialized
510 // earlier.
511 assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
512 "Double initialization!");
513 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
514 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
515 }
516
517 // BindDefaultZero is used for zeroing constructors that may accidentally
518 // overwrite existing bindings.
519 StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
520 // FIXME: The offsets of empty bases can be tricky because of
521 // of the so called "empty base class optimization".
522 // If a base class has been optimized out
523 // we should not try to create a binding, otherwise we should.
524 // Unfortunately, at the moment ASTRecordLayout doesn't expose
525 // the actual sizes of the empty bases
526 // and trying to infer them from offsets/alignments
527 // seems to be error-prone and non-trivial because of the trailing padding.
528 // As a temporary mitigation we don't create bindings for empty bases.
529 if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
530 if (BR->getDecl()->isEmpty())
531 return StoreRef(store, *this);
532
533 RegionBindingsRef B = getRegionBindings(store);
534 SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
535 B = removeSubRegionBindings(B, cast<SubRegion>(R));
536 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
537 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
538 }
539
540 /// Attempt to extract the fields of \p LCV and bind them to the struct region
541 /// \p R.
542 ///
543 /// This path is used when it seems advantageous to "force" loading the values
544 /// within a LazyCompoundVal to bind memberwise to the struct region, rather
545 /// than using a Default binding at the base of the entire region. This is a
546 /// heuristic attempting to avoid building long chains of LazyCompoundVals.
547 ///
548 /// \returns The updated store bindings, or \c std::nullopt if binding
549 /// non-lazily would be too expensive.
550 std::optional<RegionBindingsRef>
551 tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R,
552 const RecordDecl *RD, nonloc::LazyCompoundVal LCV);
553
554 /// BindStruct - Bind a compound value to a structure.
555 RegionBindingsRef bindStruct(RegionBindingsConstRef B,
556 const TypedValueRegion* R, SVal V);
557
558 /// BindVector - Bind a compound value to a vector.
559 RegionBindingsRef bindVector(RegionBindingsConstRef B,
560 const TypedValueRegion* R, SVal V);
561
562 std::optional<RegionBindingsRef>
563 tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R,
564 const ArrayType *AT, nonloc::LazyCompoundVal LCV);
565
566 RegionBindingsRef bindArray(RegionBindingsConstRef B,
567 const TypedValueRegion* R,
568 SVal V);
569
570 /// Clears out all bindings in the given region and assigns a new value
571 /// as a Default binding.
572 RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
573 const TypedRegion *R,
574 SVal DefaultVal);
575
576 /// Create a new store with the specified binding removed.
577 /// \param ST the original store, that is the basis for the new store.
578 /// \param L the location whose binding should be removed.
579 StoreRef killBinding(Store ST, Loc L) override;
580
581 void incrementReferenceCount(Store store) override {
582 getRegionBindings(store).manualRetain();
583 }
584
585 /// If the StoreManager supports it, decrement the reference count of
586 /// the specified Store object. If the reference count hits 0, the memory
587 /// associated with the object is recycled.
588 void decrementReferenceCount(Store store) override {
589 getRegionBindings(store).manualRelease();
590 }
591
592 bool includedInBindings(Store store, const MemRegion *region) const override;
593
594 /// Return the value bound to specified location in a given state.
595 ///
596 /// The high level logic for this method is this:
597 /// getBinding (L)
598 /// if L has binding
599 /// return L's binding
600 /// else if L is in killset
601 /// return unknown
602 /// else
603 /// if L is on stack or heap
604 /// return undefined
605 /// else
606 /// return symbolic
607 SVal getBinding(Store S, Loc L, QualType T) override {
608 return getBinding(getRegionBindings(S), L, T);
609 }
610
611 std::optional<SVal> getUniqueDefaultBinding(RegionBindingsConstRef B,
612 const TypedValueRegion *R) const;
613 std::optional<SVal>
614 getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const;
615
616 std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
617 RegionBindingsRef B = getRegionBindings(S);
618 // Default bindings are always applied over a base region so look up the
619 // base region's default binding, otherwise the lookup will fail when R
620 // is at an offset from R->getBaseRegion().
621 return B.getDefaultBinding(R->getBaseRegion());
622 }
623
625
626 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
627
628 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
629
630 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
631
632 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
633
634 SVal getBindingForLazySymbol(const TypedValueRegion *R);
635
636 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
637 const TypedValueRegion *R,
638 QualType Ty);
639
640 SVal getLazyBinding(const SubRegion *LazyBindingRegion,
641 RegionBindingsRef LazyBinding);
642
643 /// Get bindings for the values in a struct and return a CompoundVal, used
644 /// when doing struct copy:
645 /// struct s x, y;
646 /// x = y;
647 /// y's value is retrieved by this method.
648 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
649 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
650 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
651
652 /// Used to lazily generate derived symbols for bindings that are defined
653 /// implicitly by default bindings in a super region.
654 ///
655 /// Note that callers may need to specially handle LazyCompoundVals, which
656 /// are returned as is in case the caller needs to treat them differently.
657 std::optional<SVal>
658 getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
659 const MemRegion *superR,
660 const TypedValueRegion *R, QualType Ty);
661
662 /// Get the state and region whose binding this region \p R corresponds to.
663 ///
664 /// If there is no lazy binding for \p R, the returned value will have a null
665 /// \c second. Note that a null pointer can represents a valid Store.
666 std::pair<Store, const SubRegion *>
667 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
668 const SubRegion *originalRegion);
669
670 /// Returns the cached set of interesting SVals contained within a lazy
671 /// binding.
672 ///
673 /// The precise value of "interesting" is determined for the purposes of
674 /// RegionStore's internal analysis. It must always contain all regions and
675 /// symbols, but may omit constants and other kinds of SVal.
676 ///
677 /// In contrast to compound values, LazyCompoundVals are also added
678 /// to the 'interesting values' list in addition to the child interesting
679 /// values.
680 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
681
682 //===------------------------------------------------------------------===//
683 // State pruning.
684 //===------------------------------------------------------------------===//
685
686 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
687 /// It returns a new Store with these values removed.
689 SymbolReaper& SymReaper) override;
690
691 //===------------------------------------------------------------------===//
692 // Utility methods.
693 //===------------------------------------------------------------------===//
694
695 RegionBindingsRef getRegionBindings(Store store) const {
696 llvm::PointerIntPair<Store, 1, bool> Ptr;
697 Ptr.setFromOpaqueValue(const_cast<void *>(store));
698 return RegionBindingsRef(
699 CBFactory,
700 static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
701 RBFactory.getTreeFactory(),
702 Ptr.getInt());
703 }
704
705 void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
706 unsigned int Space = 0, bool IsDot = false) const override;
707
708 void iterBindings(Store store, BindingsHandler& f) override {
709 RegionBindingsRef B = getRegionBindings(store);
710 for (const auto &[Region, Cluster] : B) {
711 for (const auto &[Key, Value] : Cluster) {
712 if (!Key.isDirect())
713 continue;
714 if (const SubRegion *R = dyn_cast<SubRegion>(Key.getRegion())) {
715 // FIXME: Possibly incorporate the offset?
716 if (!f.HandleBinding(*this, store, R, Value))
717 return;
718 }
719 }
720 }
721 }
722};
723
724} // end anonymous namespace
725
726//===----------------------------------------------------------------------===//
727// RegionStore creation.
728//===----------------------------------------------------------------------===//
729
730std::unique_ptr<StoreManager>
732 return std::make_unique<RegionStoreManager>(StMgr);
733}
734
735//===----------------------------------------------------------------------===//
736// Region Cluster analysis.
737//===----------------------------------------------------------------------===//
738
739namespace {
740/// Used to determine which global regions are automatically included in the
741/// initial worklist of a ClusterAnalysis.
742enum GlobalsFilterKind {
743 /// Don't include any global regions.
744 GFK_None,
745 /// Only include system globals.
746 GFK_SystemOnly,
747 /// Include all global regions.
748 GFK_All
749};
750
751template <typename DERIVED>
752class ClusterAnalysis {
753protected:
754 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
755 typedef const MemRegion * WorkListElement;
757
759
760 WorkList WL;
761
762 RegionStoreManager &RM;
763 ASTContext &Ctx;
764 SValBuilder &svalBuilder;
765
766 RegionBindingsRef B;
767
768
769protected:
770 const ClusterBindings *getCluster(const MemRegion *R) {
771 return B.lookup(R);
772 }
773
774 /// Returns true if all clusters in the given memspace should be initially
775 /// included in the cluster analysis. Subclasses may provide their
776 /// own implementation.
777 bool includeEntireMemorySpace(const MemRegion *Base) {
778 return false;
779 }
780
781public:
782 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
783 RegionBindingsRef b)
784 : RM(rm), Ctx(StateMgr.getContext()),
785 svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
786
787 RegionBindingsRef getRegionBindings() const { return B; }
788
789 bool isVisited(const MemRegion *R) {
790 return Visited.count(getCluster(R));
791 }
792
793 void GenerateClusters() {
794 // Scan the entire set of bindings and record the region clusters.
795 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
796 RI != RE; ++RI){
797 const MemRegion *Base = RI.getKey();
798
799 const ClusterBindings &Cluster = RI.getData();
800 assert(!Cluster.isEmpty() && "Empty clusters should be removed");
801 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
802
803 // If the base's memspace should be entirely invalidated, add the cluster
804 // to the workspace up front.
805 if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
806 AddToWorkList(WorkListElement(Base), &Cluster);
807 }
808 }
809
810 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
811 if (C && !Visited.insert(C).second)
812 return false;
813 WL.push_back(E);
814 return true;
815 }
816
817 bool AddToWorkList(const MemRegion *R) {
818 return static_cast<DERIVED*>(this)->AddToWorkList(R);
819 }
820
821 void RunWorkList() {
822 while (!WL.empty()) {
823 WorkListElement E = WL.pop_back_val();
824 const MemRegion *BaseR = E;
825
826 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
827 }
828 }
829
830 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
831 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
832
833 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
834 bool Flag) {
835 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
836 }
837};
838}
839
840//===----------------------------------------------------------------------===//
841// Binding invalidation.
842//===----------------------------------------------------------------------===//
843
844bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
845 ScanReachableSymbols &Callbacks) {
846 assert(R == R->getBaseRegion() && "Should only be called for base regions");
847 RegionBindingsRef B = getRegionBindings(S);
848 const ClusterBindings *Cluster = B.lookup(R);
849
850 if (!Cluster)
851 return true;
852
853 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
854 RI != RE; ++RI) {
855 if (!Callbacks.scan(RI.getData()))
856 return false;
857 }
858
859 return true;
860}
861
862static inline bool isUnionField(const FieldRegion *FR) {
863 return FR->getDecl()->getParent()->isUnion();
864}
865
867
868static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
869 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
870
871 const MemRegion *Base = K.getConcreteOffsetRegion();
872 const MemRegion *R = K.getRegion();
873
874 while (R != Base) {
875 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
876 if (!isUnionField(FR))
877 Fields.push_back(FR->getDecl());
878
879 R = cast<SubRegion>(R)->getSuperRegion();
880 }
881}
882
883static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
884 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
885
886 if (Fields.empty())
887 return true;
888
889 FieldVector FieldsInBindingKey;
890 getSymbolicOffsetFields(K, FieldsInBindingKey);
891
892 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
893 if (Delta >= 0)
894 return std::equal(FieldsInBindingKey.begin() + Delta,
895 FieldsInBindingKey.end(),
896 Fields.begin());
897 else
898 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
899 Fields.begin() - Delta);
900}
901
902/// Collects all bindings in \p Cluster that may refer to bindings within
903/// \p Top.
904///
905/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
906/// \c second is the value (an SVal).
907///
908/// The \p IncludeAllDefaultBindings parameter specifies whether to include
909/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
910/// an aggregate within a larger aggregate with a default binding.
911static void
913 SValBuilder &SVB, const ClusterBindings &Cluster,
914 const SubRegion *Top, BindingKey TopKey,
915 bool IncludeAllDefaultBindings) {
916 FieldVector FieldsInSymbolicSubregions;
917 if (TopKey.hasSymbolicOffset()) {
918 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
919 Top = TopKey.getConcreteOffsetRegion();
920 TopKey = BindingKey::Make(Top, BindingKey::Default);
921 }
922
923 // Find the length (in bits) of the region being invalidated.
924 uint64_t Length = UINT64_MAX;
925 SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
926 if (std::optional<nonloc::ConcreteInt> ExtentCI =
927 Extent.getAs<nonloc::ConcreteInt>()) {
928 const llvm::APSInt &ExtentInt = ExtentCI->getValue();
929 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
930 // Extents are in bytes but region offsets are in bits. Be careful!
931 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
932 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
933 if (FR->getDecl()->isBitField())
934 Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
935 }
936
937 for (const auto &StoreEntry : Cluster) {
938 BindingKey NextKey = StoreEntry.first;
939 if (NextKey.getRegion() == TopKey.getRegion()) {
940 // FIXME: This doesn't catch the case where we're really invalidating a
941 // region with a symbolic offset. Example:
942 // R: points[i].y
943 // Next: points[0].x
944
945 if (NextKey.getOffset() > TopKey.getOffset() &&
946 NextKey.getOffset() - TopKey.getOffset() < Length) {
947 // Case 1: The next binding is inside the region we're invalidating.
948 // Include it.
949 Bindings.push_back(StoreEntry);
950
951 } else if (NextKey.getOffset() == TopKey.getOffset()) {
952 // Case 2: The next binding is at the same offset as the region we're
953 // invalidating. In this case, we need to leave default bindings alone,
954 // since they may be providing a default value for a regions beyond what
955 // we're invalidating.
956 // FIXME: This is probably incorrect; consider invalidating an outer
957 // struct whose first field is bound to a LazyCompoundVal.
958 if (IncludeAllDefaultBindings || NextKey.isDirect())
959 Bindings.push_back(StoreEntry);
960 }
961
962 } else if (NextKey.hasSymbolicOffset()) {
963 const MemRegion *Base = NextKey.getConcreteOffsetRegion();
964 if (Top->isSubRegionOf(Base) && Top != Base) {
965 // Case 3: The next key is symbolic and we just changed something within
966 // its concrete region. We don't know if the binding is still valid, so
967 // we'll be conservative and include it.
968 if (IncludeAllDefaultBindings || NextKey.isDirect())
969 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
970 Bindings.push_back(StoreEntry);
971 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
972 // Case 4: The next key is symbolic, but we changed a known
973 // super-region. In this case the binding is certainly included.
974 if (BaseSR->isSubRegionOf(Top))
975 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
976 Bindings.push_back(StoreEntry);
977 }
978 }
979 }
980}
981
982static void
984 SValBuilder &SVB, const ClusterBindings &Cluster,
985 const SubRegion *Top, bool IncludeAllDefaultBindings) {
986 collectSubRegionBindings(Bindings, SVB, Cluster, Top,
987 BindingKey::Make(Top, BindingKey::Default),
988 IncludeAllDefaultBindings);
989}
990
991RegionBindingsRef
992RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
993 const SubRegion *Top) {
994 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
995 const MemRegion *ClusterHead = TopKey.getBaseRegion();
996
997 if (Top == ClusterHead) {
998 // We can remove an entire cluster's bindings all in one go.
999 return B.remove(Top);
1000 }
1001
1002 const ClusterBindings *Cluster = B.lookup(ClusterHead);
1003 if (!Cluster) {
1004 // If we're invalidating a region with a symbolic offset, we need to make
1005 // sure we don't treat the base region as uninitialized anymore.
1006 if (TopKey.hasSymbolicOffset()) {
1007 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
1008 return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
1009 }
1010 return B;
1011 }
1012
1014 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
1015 /*IncludeAllDefaultBindings=*/false);
1016
1017 ClusterBindingsRef Result(*Cluster, CBFactory);
1018 for (BindingKey Key : llvm::make_first_range(Bindings))
1019 Result = Result.remove(Key);
1020
1021 // If we're invalidating a region with a symbolic offset, we need to make sure
1022 // we don't treat the base region as uninitialized anymore.
1023 // FIXME: This isn't very precise; see the example in
1024 // collectSubRegionBindings.
1025 if (TopKey.hasSymbolicOffset()) {
1026 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
1027 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
1028 UnknownVal());
1029 }
1030
1031 if (Result.isEmpty())
1032 return B.remove(ClusterHead);
1033 return B.add(ClusterHead, Result.asImmutableMap());
1034}
1035
1036namespace {
1037class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
1038{
1039 const Stmt *S;
1040 unsigned Count;
1041 const LocationContext *LCtx;
1045 GlobalsFilterKind GlobalsFilter;
1046public:
1047 InvalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr,
1048 RegionBindingsRef b, const Stmt *S, unsigned count,
1049 const LocationContext *lctx, InvalidatedSymbols &is,
1052 GlobalsFilterKind GFK)
1053 : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b), S(S),
1054 Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1055 GlobalsFilter(GFK) {}
1056
1057 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1058 void VisitBinding(SVal V);
1059
1060 using ClusterAnalysis::AddToWorkList;
1061
1062 bool AddToWorkList(const MemRegion *R);
1063
1064 /// Returns true if all clusters in the memory space for \p Base should be
1065 /// be invalidated.
1066 bool includeEntireMemorySpace(const MemRegion *Base);
1067
1068 /// Returns true if the memory space of the given region is one of the global
1069 /// regions specially included at the start of invalidation.
1070 bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1071};
1072}
1073
1074bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1075 bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1077 const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1078 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1079}
1080
1081void InvalidateRegionsWorker::VisitBinding(SVal V) {
1082 // A symbol? Mark it touched by the invalidation.
1083 if (SymbolRef Sym = V.getAsSymbol())
1084 IS.insert(Sym);
1085
1086 if (const MemRegion *R = V.getAsRegion()) {
1087 AddToWorkList(R);
1088 return;
1089 }
1090
1091 // Is it a LazyCompoundVal? All references get invalidated as well.
1092 if (std::optional<nonloc::LazyCompoundVal> LCS =
1093 V.getAs<nonloc::LazyCompoundVal>()) {
1094
1095 // `getInterestingValues()` returns SVals contained within LazyCompoundVals,
1096 // so there is no need to visit them.
1097 for (SVal V : RM.getInterestingValues(*LCS))
1098 if (!isa<nonloc::LazyCompoundVal>(V))
1099 VisitBinding(V);
1100
1101 return;
1102 }
1103}
1104
1105void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1106 const ClusterBindings *C) {
1107
1108 bool PreserveRegionsContents =
1109 ITraits.hasTrait(baseR,
1111
1112 if (C) {
1113 for (SVal Val : llvm::make_second_range(*C))
1114 VisitBinding(Val);
1115
1116 // Invalidate regions contents.
1117 if (!PreserveRegionsContents)
1118 B = B.remove(baseR);
1119 }
1120
1121 if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1122 if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1123
1124 // Lambdas can affect all static local variables without explicitly
1125 // capturing those.
1126 // We invalidate all static locals referenced inside the lambda body.
1127 if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1128 using namespace ast_matchers;
1129
1130 const char *DeclBind = "DeclBind";
1132 to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1133 auto Matches =
1134 match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1135 RD->getASTContext());
1136
1137 for (BoundNodes &Match : Matches) {
1138 auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1139 const VarRegion *ToInvalidate =
1140 RM.getRegionManager().getVarRegion(VD, LCtx);
1141 AddToWorkList(ToInvalidate);
1142 }
1143 }
1144 }
1145 }
1146
1147 // BlockDataRegion? If so, invalidate captured variables that are passed
1148 // by reference.
1149 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1150 for (auto Var : BR->referenced_vars()) {
1151 const VarRegion *VR = Var.getCapturedRegion();
1152 const VarDecl *VD = VR->getDecl();
1153 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1154 AddToWorkList(VR);
1155 }
1156 else if (Loc::isLocType(VR->getValueType())) {
1157 // Map the current bindings to a Store to retrieve the value
1158 // of the binding. If that binding itself is a region, we should
1159 // invalidate that region. This is because a block may capture
1160 // a pointer value, but the thing pointed by that pointer may
1161 // get invalidated.
1162 SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1163 if (std::optional<Loc> L = V.getAs<Loc>()) {
1164 if (const MemRegion *LR = L->getAsRegion())
1165 AddToWorkList(LR);
1166 }
1167 }
1168 }
1169 return;
1170 }
1171
1172 // Symbolic region?
1173 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1174 IS.insert(SR->getSymbol());
1175
1176 // Nothing else should be done in the case when we preserve regions context.
1177 if (PreserveRegionsContents)
1178 return;
1179
1180 // Otherwise, we have a normal data region. Record that we touched the region.
1181 if (Regions)
1182 Regions->push_back(baseR);
1183
1184 if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1185 // Invalidate the region by setting its default value to
1186 // conjured symbol. The type of the symbol is irrelevant.
1188 svalBuilder.conjureSymbolVal(baseR, S, LCtx, Ctx.IntTy, Count);
1189 B = B.addBinding(baseR, BindingKey::Default, V);
1190 return;
1191 }
1192
1193 if (!baseR->isBoundable())
1194 return;
1195
1196 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1197 QualType T = TR->getValueType();
1198
1199 if (isInitiallyIncludedGlobalRegion(baseR)) {
1200 // If the region is a global and we are invalidating all globals,
1201 // erasing the entry is good enough. This causes all globals to be lazily
1202 // symbolicated from the same base symbol.
1203 return;
1204 }
1205
1206 if (T->isRecordType()) {
1207 // Invalidate the region by setting its default value to
1208 // conjured symbol. The type of the symbol is irrelevant.
1210 svalBuilder.conjureSymbolVal(baseR, S, LCtx, Ctx.IntTy, Count);
1211 B = B.addBinding(baseR, BindingKey::Default, V);
1212 return;
1213 }
1214
1215 if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1216 bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1217 baseR,
1219
1220 if (doNotInvalidateSuperRegion) {
1221 // We are not doing blank invalidation of the whole array region so we
1222 // have to manually invalidate each elements.
1223 std::optional<uint64_t> NumElements;
1224
1225 // Compute lower and upper offsets for region within array.
1226 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1227 NumElements = CAT->getZExtSize();
1228 if (!NumElements) // We are not dealing with a constant size array
1229 goto conjure_default;
1230 QualType ElementTy = AT->getElementType();
1231 uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1232 const RegionOffset &RO = baseR->getAsOffset();
1233 const MemRegion *SuperR = baseR->getBaseRegion();
1234 if (RO.hasSymbolicOffset()) {
1235 // If base region has a symbolic offset,
1236 // we revert to invalidating the super region.
1237 if (SuperR)
1238 AddToWorkList(SuperR);
1239 goto conjure_default;
1240 }
1241
1242 uint64_t LowerOffset = RO.getOffset();
1243 uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1244 bool UpperOverflow = UpperOffset < LowerOffset;
1245
1246 // Invalidate regions which are within array boundaries,
1247 // or have a symbolic offset.
1248 if (!SuperR)
1249 goto conjure_default;
1250
1251 const ClusterBindings *C = B.lookup(SuperR);
1252 if (!C)
1253 goto conjure_default;
1254
1255 for (const auto &[BK, V] : *C) {
1256 std::optional<uint64_t> ROffset =
1257 BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset();
1258
1259 // Check offset is not symbolic and within array's boundaries.
1260 // Handles arrays of 0 elements and of 0-sized elements as well.
1261 if (!ROffset ||
1262 ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1263 (UpperOverflow &&
1264 (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1265 (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1266 B = B.removeBinding(BK);
1267 // Bound symbolic regions need to be invalidated for dead symbol
1268 // detection.
1269 const MemRegion *R = V.getAsRegion();
1270 if (isa_and_nonnull<SymbolicRegion>(R))
1271 VisitBinding(V);
1272 }
1273 }
1274 }
1275 conjure_default:
1276 // Set the default value of the array to conjured symbol.
1278 baseR, S, LCtx, AT->getElementType(), Count);
1279 B = B.addBinding(baseR, BindingKey::Default, V);
1280 return;
1281 }
1282
1284 svalBuilder.conjureSymbolVal(baseR, S, LCtx, T, Count);
1285 assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1286 B = B.addBinding(baseR, BindingKey::Direct, V);
1287}
1288
1289bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1290 const MemRegion *R) {
1291 switch (GlobalsFilter) {
1292 case GFK_None:
1293 return false;
1294 case GFK_SystemOnly:
1295 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1296 case GFK_All:
1297 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1298 }
1299
1300 llvm_unreachable("unknown globals filter");
1301}
1302
1303bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1304 if (isInitiallyIncludedGlobalRegion(Base))
1305 return true;
1306
1307 const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1308 return ITraits.hasTrait(MemSpace,
1310}
1311
1312RegionBindingsRef RegionStoreManager::invalidateGlobalRegion(
1313 MemRegion::Kind K, const Stmt *S, unsigned Count,
1314 const LocationContext *LCtx, RegionBindingsRef B,
1315 InvalidatedRegions *Invalidated) {
1316 // Bind the globals memory space to a new symbol that we will use to derive
1317 // the bindings for all globals.
1318 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1319 SVal V =
1320 svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void *)GS, S, LCtx,
1321 /* type does not matter */ Ctx.IntTy, Count);
1322
1323 B = B.removeBinding(GS)
1324 .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1325
1326 // Even if there are no bindings in the global scope, we still need to
1327 // record that we touched it.
1328 if (Invalidated)
1329 Invalidated->push_back(GS);
1330
1331 return B;
1332}
1333
1334void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1335 ArrayRef<SVal> Values,
1336 InvalidatedRegions *TopLevelRegions) {
1337 for (SVal V : Values) {
1338 if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
1339 for (SVal S : getInterestingValues(*LCS))
1340 if (const MemRegion *R = S.getAsRegion())
1341 W.AddToWorkList(R);
1342
1343 continue;
1344 }
1345
1346 if (const MemRegion *R = V.getAsRegion()) {
1347 if (TopLevelRegions)
1348 TopLevelRegions->push_back(R);
1349 W.AddToWorkList(R);
1350 continue;
1351 }
1352 }
1353}
1354
1355StoreRef RegionStoreManager::invalidateRegions(
1356 Store store, ArrayRef<SVal> Values, const Stmt *S, unsigned Count,
1357 const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS,
1359 InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated) {
1360 GlobalsFilterKind GlobalsFilter;
1361 if (Call) {
1362 if (Call->isInSystemHeader())
1363 GlobalsFilter = GFK_SystemOnly;
1364 else
1365 GlobalsFilter = GFK_All;
1366 } else {
1367 GlobalsFilter = GFK_None;
1368 }
1369
1370 RegionBindingsRef B = getRegionBindings(store);
1371 InvalidateRegionsWorker W(*this, StateMgr, B, S, Count, LCtx, IS, ITraits,
1372 Invalidated, GlobalsFilter);
1373
1374 // Scan the bindings and generate the clusters.
1375 W.GenerateClusters();
1376
1377 // Add the regions to the worklist.
1378 populateWorkList(W, Values, TopLevelRegions);
1379
1380 W.RunWorkList();
1381
1382 // Return the new bindings.
1383 B = W.getRegionBindings();
1384
1385 // For calls, determine which global regions should be invalidated and
1386 // invalidate them. (Note that function-static and immutable globals are never
1387 // invalidated by this.)
1388 // TODO: This could possibly be more precise with modules.
1389 switch (GlobalsFilter) {
1390 case GFK_All:
1391 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, S,
1392 Count, LCtx, B, Invalidated);
1393 [[fallthrough]];
1394 case GFK_SystemOnly:
1395 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, S, Count,
1396 LCtx, B, Invalidated);
1397 [[fallthrough]];
1398 case GFK_None:
1399 break;
1400 }
1401
1402 return StoreRef(B.asStore(), *this);
1403}
1404
1405//===----------------------------------------------------------------------===//
1406// Location and region casting.
1407//===----------------------------------------------------------------------===//
1408
1409/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1410/// type. 'Array' represents the lvalue of the array being decayed
1411/// to a pointer, and the returned SVal represents the decayed
1412/// version of that lvalue (i.e., a pointer to the first element of
1413/// the array). This is called by ExprEngine when evaluating casts
1414/// from arrays to pointers.
1415SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1416 if (isa<loc::ConcreteInt>(Array))
1417 return Array;
1418
1419 if (!isa<loc::MemRegionVal>(Array))
1420 return UnknownVal();
1421
1422 const SubRegion *R =
1423 cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1424 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1425 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1426}
1427
1428//===----------------------------------------------------------------------===//
1429// Loading values from regions.
1430//===----------------------------------------------------------------------===//
1431
1432SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1433 assert(!isa<UnknownVal>(L) && "location unknown");
1434 assert(!isa<UndefinedVal>(L) && "location undefined");
1435
1436 // For access to concrete addresses, return UnknownVal. Checks
1437 // for null dereferences (and similar errors) are done by checkers, not
1438 // the Store.
1439 // FIXME: We can consider lazily symbolicating such memory, but we really
1440 // should defer this when we can reason easily about symbolicating arrays
1441 // of bytes.
1442 if (L.getAs<loc::ConcreteInt>()) {
1443 return UnknownVal();
1444 }
1445 if (!L.getAs<loc::MemRegionVal>()) {
1446 return UnknownVal();
1447 }
1448
1449 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1450
1451 if (isa<BlockDataRegion>(MR)) {
1452 return UnknownVal();
1453 }
1454
1455 // Auto-detect the binding type.
1456 if (T.isNull()) {
1457 if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
1458 T = TVR->getValueType();
1459 else if (const auto *TR = dyn_cast<TypedRegion>(MR))
1460 T = TR->getLocationType()->getPointeeType();
1461 else if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
1462 T = SR->getPointeeStaticType();
1463 }
1464 assert(!T.isNull() && "Unable to auto-detect binding type!");
1465 assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1466
1467 if (!isa<TypedValueRegion>(MR))
1468 MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1469
1470 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1471 // instead of 'Loc', and have the other Loc cases handled at a higher level.
1472 const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1473 QualType RTy = R->getValueType();
1474
1475 // FIXME: we do not yet model the parts of a complex type, so treat the
1476 // whole thing as "unknown".
1477 if (RTy->isAnyComplexType())
1478 return UnknownVal();
1479
1480 // FIXME: We should eventually handle funny addressing. e.g.:
1481 //
1482 // int x = ...;
1483 // int *p = &x;
1484 // char *q = (char*) p;
1485 // char c = *q; // returns the first byte of 'x'.
1486 //
1487 // Such funny addressing will occur due to layering of regions.
1488 if (RTy->isStructureOrClassType())
1489 return getBindingForStruct(B, R);
1490
1491 // FIXME: Handle unions.
1492 if (RTy->isUnionType())
1493 return createLazyBinding(B, R);
1494
1495 if (RTy->isArrayType()) {
1496 if (RTy->isConstantArrayType())
1497 return getBindingForArray(B, R);
1498 else
1499 return UnknownVal();
1500 }
1501
1502 // FIXME: handle Vector types.
1503 if (RTy->isVectorType())
1504 return UnknownVal();
1505
1506 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1507 return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1508
1509 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1510 // FIXME: Here we actually perform an implicit conversion from the loaded
1511 // value to the element type. Eventually we want to compose these values
1512 // more intelligently. For example, an 'element' can encompass multiple
1513 // bound regions (e.g., several bound bytes), or could be a subset of
1514 // a larger value.
1515 return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1516 }
1517
1518 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1519 // FIXME: Here we actually perform an implicit conversion from the loaded
1520 // value to the ivar type. What we should model is stores to ivars
1521 // that blow past the extent of the ivar. If the address of the ivar is
1522 // reinterpretted, it is possible we stored a different value that could
1523 // fit within the ivar. Either we need to cast these when storing them
1524 // or reinterpret them lazily (as we do here).
1525 return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1526 }
1527
1528 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1529 // FIXME: Here we actually perform an implicit conversion from the loaded
1530 // value to the variable type. What we should model is stores to variables
1531 // that blow past the extent of the variable. If the address of the
1532 // variable is reinterpretted, it is possible we stored a different value
1533 // that could fit within the variable. Either we need to cast these when
1534 // storing them or reinterpret them lazily (as we do here).
1535 return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1536 }
1537
1538 const SVal *V = B.lookup(R, BindingKey::Direct);
1539
1540 // Check if the region has a binding.
1541 if (V)
1542 return *V;
1543
1544 // The location does not have a bound value. This means that it has
1545 // the value it had upon its creation and/or entry to the analyzed
1546 // function/method. These are either symbolic values or 'undefined'.
1548 // All stack variables are considered to have undefined values
1549 // upon creation. All heap allocated blocks are considered to
1550 // have undefined values as well unless they are explicitly bound
1551 // to specific values.
1552 return UndefinedVal();
1553 }
1554
1555 // All other values are symbolic.
1556 return svalBuilder.getRegionValueSymbolVal(R);
1557}
1558
1560 QualType RegionTy;
1561 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1562 RegionTy = TVR->getValueType();
1563
1564 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1565 RegionTy = SR->getSymbol()->getType();
1566
1567 return RegionTy;
1568}
1569
1570/// Checks to see if store \p B has a lazy binding for region \p R.
1571///
1572/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1573/// if there are additional bindings within \p R.
1574///
1575/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1576/// for lazy bindings for super-regions of \p R.
1577static std::optional<nonloc::LazyCompoundVal>
1579 const SubRegion *R, bool AllowSubregionBindings) {
1580 std::optional<SVal> V = B.getDefaultBinding(R);
1581 if (!V)
1582 return std::nullopt;
1583
1584 std::optional<nonloc::LazyCompoundVal> LCV =
1585 V->getAs<nonloc::LazyCompoundVal>();
1586 if (!LCV)
1587 return std::nullopt;
1588
1589 // If the LCV is for a subregion, the types might not match, and we shouldn't
1590 // reuse the binding.
1591 QualType RegionTy = getUnderlyingType(R);
1592 if (!RegionTy.isNull() &&
1593 !RegionTy->isVoidPointerType()) {
1594 QualType SourceRegionTy = LCV->getRegion()->getValueType();
1595 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1596 return std::nullopt;
1597 }
1598
1599 if (!AllowSubregionBindings) {
1600 // If there are any other bindings within this region, we shouldn't reuse
1601 // the top-level binding.
1603 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1604 /*IncludeAllDefaultBindings=*/true);
1605 if (Bindings.size() > 1)
1606 return std::nullopt;
1607 }
1608
1609 return *LCV;
1610}
1611
1612std::pair<Store, const SubRegion *>
1613RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1614 const SubRegion *R,
1615 const SubRegion *originalRegion) {
1616 if (originalRegion != R) {
1617 if (std::optional<nonloc::LazyCompoundVal> V =
1618 getExistingLazyBinding(svalBuilder, B, R, true))
1619 return std::make_pair(V->getStore(), V->getRegion());
1620 }
1621
1622 typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1623 StoreRegionPair Result = StoreRegionPair();
1624
1625 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1626 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1627 originalRegion);
1628
1629 if (Result.second)
1630 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1631
1632 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1633 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1634 originalRegion);
1635
1636 if (Result.second)
1637 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1638
1639 } else if (const CXXBaseObjectRegion *BaseReg =
1640 dyn_cast<CXXBaseObjectRegion>(R)) {
1641 // C++ base object region is another kind of region that we should blast
1642 // through to look for lazy compound value. It is like a field region.
1643 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1644 originalRegion);
1645
1646 if (Result.second)
1647 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1648 Result.second);
1649 }
1650
1651 return Result;
1652}
1653
1654/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1655///
1656/// Return an array of extents of the declared array type.
1657///
1658/// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1661 assert(CAT && "ConstantArrayType should not be null");
1662 CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1664 do {
1665 Extents.push_back(CAT->getZExtSize());
1666 } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1667 return Extents;
1668}
1669
1670/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1671///
1672/// Return an array of offsets from nested ElementRegions and a root base
1673/// region. The array is never empty and a base region is never null.
1674///
1675/// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1676/// This represents an access through indirection: `arr[1][2][3];`
1677///
1678/// \param ER The given (possibly nested) ElementRegion.
1679///
1680/// \note The result array is in the reverse order of indirection expression:
1681/// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1682/// is a number of indirections. It may not affect performance in real-life
1683/// code, though.
1684static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1686 assert(ER && "ConstantArrayType should not be null");
1687 const MemRegion *Base;
1688 SmallVector<SVal, 2> SValOffsets;
1689 do {
1690 SValOffsets.push_back(ER->getIndex());
1691 Base = ER->getSuperRegion();
1692 ER = dyn_cast<ElementRegion>(Base);
1693 } while (ER);
1694 return {SValOffsets, Base};
1695}
1696
1697/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1698///
1699/// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1700/// respective array extents.
1701/// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed
1702/// order (expectedly received from `getElementRegionOffsetsWithBase`).
1703/// \param ArrayExtents [in] The array of extents.
1704/// \param DstOffsets [out] The array of offsets of type `uint64_t`.
1705/// \returns:
1706/// - `std::nullopt` for successful convertion.
1707/// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1708/// will be returned as a suitable value of the access operation.
1709/// which should be returned as a correct
1710///
1711/// \example:
1712/// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1713/// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1714/// // DstOffsets { 4, 5, 6 }
1715/// // returns std::nullopt
1716/// int x2 = arr[42][5][-6]; // returns UndefinedVal
1717/// int x3 = arr[4][5][x2]; // returns UnknownVal
1718static std::optional<SVal>
1720 const SmallVector<uint64_t, 2> ArrayExtents,
1721 SmallVector<uint64_t, 2> &DstOffsets) {
1722 // Check offsets for being out of bounds.
1723 // C++20 [expr.add] 7.6.6.4 (excerpt):
1724 // If P points to an array element i of an array object x with n
1725 // elements, where i < 0 or i > n, the behavior is undefined.
1726 // Dereferencing is not allowed on the "one past the last
1727 // element", when i == n.
1728 // Example:
1729 // const int arr[3][2] = {{1, 2}, {3, 4}};
1730 // arr[0][0]; // 1
1731 // arr[0][1]; // 2
1732 // arr[0][2]; // UB
1733 // arr[1][0]; // 3
1734 // arr[1][1]; // 4
1735 // arr[1][-1]; // UB
1736 // arr[2][0]; // 0
1737 // arr[2][1]; // 0
1738 // arr[-2][0]; // UB
1739 DstOffsets.resize(SrcOffsets.size());
1740 auto ExtentIt = ArrayExtents.begin();
1741 auto OffsetIt = DstOffsets.begin();
1742 // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1743 for (SVal V : llvm::reverse(SrcOffsets)) {
1744 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1745 // When offset is out of array's bounds, result is UB.
1746 const llvm::APSInt &Offset = CI->getValue();
1747 if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1748 return UndefinedVal();
1749 // Store index in a reversive order.
1750 *(OffsetIt++) = Offset.getZExtValue();
1751 continue;
1752 }
1753 // Symbolic index presented. Return Unknown value.
1754 // FIXME: We also need to take ElementRegions with symbolic indexes into
1755 // account.
1756 return UnknownVal();
1757 }
1758 return std::nullopt;
1759}
1760
1761std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1763 assert(R && "ElementRegion should not be null");
1764
1765 // Treat an n-dimensional array.
1766 SmallVector<SVal, 2> SValOffsets;
1767 const MemRegion *Base;
1768 std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1769 const VarRegion *VR = dyn_cast<VarRegion>(Base);
1770 if (!VR)
1771 return std::nullopt;
1772
1773 assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1774 "offsets vector is not empty.");
1775
1776 // Check if the containing array has an initialized value that we can trust.
1777 // We can trust a const value or a value of a global initializer in main().
1778 const VarDecl *VD = VR->getDecl();
1779 if (!VD->getType().isConstQualified() &&
1781 (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1782 return std::nullopt;
1783
1784 // Array's declaration should have `ConstantArrayType` type, because only this
1785 // type contains an array extent. It may happen that array type can be of
1786 // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1787 // type, we should find the declaration in the redeclarations chain that has
1788 // the initialization expression.
1789 // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1790 // from which an initializer is obtained. We replace current `VD` with the new
1791 // `VD`. If the return value of the function is null than `VD` won't be
1792 // replaced.
1793 const Expr *Init = VD->getAnyInitializer(VD);
1794 // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1795 // `Init` for null only and don't worry about the replaced `VD`.
1796 if (!Init)
1797 return std::nullopt;
1798
1799 // Array's declaration should have ConstantArrayType type, because only this
1800 // type contains an array extent.
1801 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1802 if (!CAT)
1803 return std::nullopt;
1804
1805 // Get array extents.
1807
1808 // The number of offsets should equal to the numbers of extents,
1809 // otherwise wrong type punning occurred. For instance:
1810 // int arr[1][2][3];
1811 // auto ptr = (int(*)[42])arr;
1812 // auto x = ptr[4][2]; // UB
1813 // FIXME: Should return UndefinedVal.
1814 if (SValOffsets.size() != Extents.size())
1815 return std::nullopt;
1816
1817 SmallVector<uint64_t, 2> ConcreteOffsets;
1818 if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds(
1819 SValOffsets, Extents, ConcreteOffsets))
1820 return *V;
1821
1822 // Handle InitListExpr.
1823 // Example:
1824 // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1825 if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1826 return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1827
1828 // Handle StringLiteral.
1829 // Example:
1830 // const char arr[] = "abc";
1831 if (const auto *SL = dyn_cast<StringLiteral>(Init))
1832 return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1833 R->getElementType());
1834
1835 // FIXME: Handle CompoundLiteralExpr.
1836
1837 return std::nullopt;
1838}
1839
1840/// Returns an SVal, if possible, for the specified position of an
1841/// initialization list.
1842///
1843/// \param ILE The given initialization list.
1844/// \param Offsets The array of unsigned offsets. E.g. for the expression
1845/// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1846/// \param ElemT The type of the result SVal expression.
1847/// \return Optional SVal for the particular position in the initialization
1848/// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1849/// - {1, 1} returns SVal{4}, because it's the second position in the second
1850/// sublist;
1851/// - {3, 0} returns SVal{0}, because there's no explicit value at this
1852/// position in the sublist.
1853///
1854/// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1855/// for the given initialization list. Otherwise SVal can be an equivalent to 0
1856/// or lead to assertion.
1857std::optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1858 const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1859 QualType ElemT) {
1860 assert(ILE && "InitListExpr should not be null");
1861
1862 for (uint64_t Offset : Offsets) {
1863 // C++20 [dcl.init.string] 9.4.2.1:
1864 // An array of ordinary character type [...] can be initialized by [...]
1865 // an appropriately-typed string-literal enclosed in braces.
1866 // Example:
1867 // const char arr[] = { "abc" };
1868 if (ILE->isStringLiteralInit())
1869 if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1870 return getSValFromStringLiteral(SL, Offset, ElemT);
1871
1872 // C++20 [expr.add] 9.4.17.5 (excerpt):
1873 // i-th array element is value-initialized for each k < i ≤ n,
1874 // where k is an expression-list size and n is an array extent.
1875 if (Offset >= ILE->getNumInits())
1876 return svalBuilder.makeZeroVal(ElemT);
1877
1878 const Expr *E = ILE->getInit(Offset);
1879 const auto *IL = dyn_cast<InitListExpr>(E);
1880 if (!IL)
1881 // Return a constant value, if it is presented.
1882 // FIXME: Support other SVals.
1883 return svalBuilder.getConstantVal(E);
1884
1885 // Go to the nested initializer list.
1886 ILE = IL;
1887 }
1888
1889 assert(ILE);
1890
1891 // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an
1892 // enum?
1893 return std::nullopt;
1894}
1895
1896/// Returns an SVal, if possible, for the specified position in a string
1897/// literal.
1898///
1899/// \param SL The given string literal.
1900/// \param Offset The unsigned offset. E.g. for the expression
1901/// `char x = str[42];` an offset should be 42.
1902/// E.g. for the string "abc" offset:
1903/// - 1 returns SVal{b}, because it's the second position in the string.
1904/// - 42 returns SVal{0}, because there's no explicit value at this
1905/// position in the string.
1906/// \param ElemT The type of the result SVal expression.
1907///
1908/// NOTE: We return `0` for every offset >= the literal length for array
1909/// declarations, like:
1910/// const char str[42] = "123"; // Literal length is 4.
1911/// char c = str[41]; // Offset is 41.
1912/// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1913/// const char * const str = "123"; // Literal length is 4.
1914/// char c = str[41]; // Offset is 41. Returns `0`, but Undef
1915/// // expected.
1916/// It should be properly handled before reaching this point.
1917/// The main problem is that we can't distinguish between these declarations,
1918/// because in case of array we can get the Decl from VarRegion, but in case
1919/// of pointer the region is a StringRegion, which doesn't contain a Decl.
1920/// Possible solution could be passing an array extent along with the offset.
1921SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1922 uint64_t Offset,
1923 QualType ElemT) {
1924 assert(SL && "StringLiteral should not be null");
1925 // C++20 [dcl.init.string] 9.4.2.3:
1926 // If there are fewer initializers than there are array elements, each
1927 // element not explicitly initialized shall be zero-initialized [dcl.init].
1928 uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1929 return svalBuilder.makeIntVal(Code, ElemT);
1930}
1931
1932static std::optional<SVal> getDerivedSymbolForBinding(
1933 RegionBindingsConstRef B, const TypedValueRegion *BaseRegion,
1934 const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) {
1935 assert(BaseRegion);
1936 QualType BaseTy = BaseRegion->getValueType();
1937 QualType Ty = SubReg->getValueType();
1938 if (BaseTy->isScalarType() && Ty->isScalarType()) {
1939 if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) {
1940 if (const std::optional<SVal> &ParentValue =
1941 B.getDirectBinding(BaseRegion)) {
1942 if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol())
1943 return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg);
1944
1945 if (ParentValue->isUndef())
1946 return UndefinedVal();
1947
1948 // Other cases: give up. We are indexing into a larger object
1949 // that has some value, but we don't know how to handle that yet.
1950 return UnknownVal();
1951 }
1952 }
1953 }
1954 return std::nullopt;
1955}
1956
1957SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1958 const ElementRegion* R) {
1959 // Check if the region has a binding.
1960 if (const std::optional<SVal> &V = B.getDirectBinding(R))
1961 return *V;
1962
1963 const MemRegion* superR = R->getSuperRegion();
1964
1965 // Check if the region is an element region of a string literal.
1966 if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1967 // FIXME: Handle loads from strings where the literal is treated as
1968 // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1969 // to C++20 7.2.1.11 [basic.lval].
1970 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1971 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1972 return UnknownVal();
1973 if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1974 const llvm::APSInt &Idx = CI->getValue();
1975 if (Idx < 0)
1976 return UndefinedVal();
1977 const StringLiteral *SL = StrR->getStringLiteral();
1978 return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1979 }
1980 } else if (isa<ElementRegion, VarRegion>(superR)) {
1981 if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1982 return *V;
1983 }
1984
1985 // Check for loads from a code text region. For such loads, just give up.
1986 if (isa<CodeTextRegion>(superR))
1987 return UnknownVal();
1988
1989 // Handle the case where we are indexing into a larger scalar object.
1990 // For example, this handles:
1991 // int x = ...
1992 // char *y = &x;
1993 // return *y;
1994 // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1995 const RegionRawOffset &O = R->getAsArrayOffset();
1996
1997 // If we cannot reason about the offset, return an unknown value.
1998 if (!O.getRegion())
1999 return UnknownVal();
2000
2001 if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion()))
2002 if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder))
2003 return *V;
2004
2005 return getBindingForFieldOrElementCommon(B, R, R->getElementType());
2006}
2007
2008SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
2009 const FieldRegion* R) {
2010
2011 // Check if the region has a binding.
2012 if (const std::optional<SVal> &V = B.getDirectBinding(R))
2013 return *V;
2014
2015 // If the containing record was initialized, try to get its constant value.
2016 const FieldDecl *FD = R->getDecl();
2017 QualType Ty = FD->getType();
2018 const MemRegion* superR = R->getSuperRegion();
2019 if (const auto *VR = dyn_cast<VarRegion>(superR)) {
2020 const VarDecl *VD = VR->getDecl();
2021 QualType RecordVarTy = VD->getType();
2022 unsigned Index = FD->getFieldIndex();
2023 // Either the record variable or the field has an initializer that we can
2024 // trust. We trust initializers of constants and, additionally, respect
2025 // initializers of globals when analyzing main().
2026 if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
2027 (B.isMainAnalysis() && VD->hasGlobalStorage()))
2028 if (const Expr *Init = VD->getAnyInitializer())
2029 if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
2030 if (Index < InitList->getNumInits()) {
2031 if (const Expr *FieldInit = InitList->getInit(Index))
2032 if (std::optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
2033 return *V;
2034 } else {
2035 return svalBuilder.makeZeroVal(Ty);
2036 }
2037 }
2038 }
2039
2040 // Handle the case where we are accessing into a larger scalar object.
2041 // For example, this handles:
2042 // struct header {
2043 // unsigned a : 1;
2044 // unsigned b : 1;
2045 // };
2046 // struct parse_t {
2047 // unsigned bits0 : 1;
2048 // unsigned bits2 : 2; // <-- header
2049 // unsigned bits4 : 4;
2050 // };
2051 // int parse(parse_t *p) {
2052 // unsigned copy = p->bits2;
2053 // header *bits = (header *)&copy;
2054 // return bits->b; <-- here
2055 // }
2056 if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion()))
2057 if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder))
2058 return *V;
2059
2060 return getBindingForFieldOrElementCommon(B, R, Ty);
2061}
2062
2063std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(
2064 RegionBindingsConstRef B, const MemRegion *superR,
2065 const TypedValueRegion *R, QualType Ty) {
2066
2067 if (const std::optional<SVal> &D = B.getDefaultBinding(superR)) {
2068 SVal val = *D;
2069 if (SymbolRef parentSym = val.getAsSymbol())
2070 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2071
2072 if (val.isZeroConstant())
2073 return svalBuilder.makeZeroVal(Ty);
2074
2075 if (val.isUnknownOrUndef())
2076 return val;
2077
2078 // Lazy bindings are usually handled through getExistingLazyBinding().
2079 // We should unify these two code paths at some point.
2080 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val))
2081 return val;
2082
2083 llvm_unreachable("Unknown default value");
2084 }
2085
2086 return std::nullopt;
2087}
2088
2089SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2090 RegionBindingsRef LazyBinding) {
2091 SVal Result;
2092 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2093 Result = getBindingForElement(LazyBinding, ER);
2094 else
2095 Result = getBindingForField(LazyBinding,
2096 cast<FieldRegion>(LazyBindingRegion));
2097
2098 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2099 // default value for /part/ of an aggregate from a default value for the
2100 // /entire/ aggregate. The most common case of this is when struct Outer
2101 // has as its first member a struct Inner, which is copied in from a stack
2102 // variable. In this case, even if the Outer's default value is symbolic, 0,
2103 // or unknown, it gets overridden by the Inner's default value of undefined.
2104 //
2105 // This is a general problem -- if the Inner is zero-initialized, the Outer
2106 // will now look zero-initialized. The proper way to solve this is with a
2107 // new version of RegionStore that tracks the extent of a binding as well
2108 // as the offset.
2109 //
2110 // This hack only takes care of the undefined case because that can very
2111 // quickly result in a warning.
2112 if (Result.isUndef())
2113 Result = UnknownVal();
2114
2115 return Result;
2116}
2117
2118SVal
2119RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2120 const TypedValueRegion *R,
2121 QualType Ty) {
2122
2123 // At this point we have already checked in either getBindingForElement or
2124 // getBindingForField if 'R' has a direct binding.
2125
2126 // Lazy binding?
2127 Store lazyBindingStore = nullptr;
2128 const SubRegion *lazyBindingRegion = nullptr;
2129 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2130 if (lazyBindingRegion)
2131 return getLazyBinding(lazyBindingRegion,
2132 getRegionBindings(lazyBindingStore));
2133
2134 // Record whether or not we see a symbolic index. That can completely
2135 // be out of scope of our lookup.
2136 bool hasSymbolicIndex = false;
2137
2138 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2139 // default value for /part/ of an aggregate from a default value for the
2140 // /entire/ aggregate. The most common case of this is when struct Outer
2141 // has as its first member a struct Inner, which is copied in from a stack
2142 // variable. In this case, even if the Outer's default value is symbolic, 0,
2143 // or unknown, it gets overridden by the Inner's default value of undefined.
2144 //
2145 // This is a general problem -- if the Inner is zero-initialized, the Outer
2146 // will now look zero-initialized. The proper way to solve this is with a
2147 // new version of RegionStore that tracks the extent of a binding as well
2148 // as the offset.
2149 //
2150 // This hack only takes care of the undefined case because that can very
2151 // quickly result in a warning.
2152 bool hasPartialLazyBinding = false;
2153
2154 const SubRegion *SR = R;
2155 while (SR) {
2156 const MemRegion *Base = SR->getSuperRegion();
2157 if (std::optional<SVal> D =
2158 getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2159 if (D->getAs<nonloc::LazyCompoundVal>()) {
2160 hasPartialLazyBinding = true;
2161 break;
2162 }
2163
2164 return *D;
2165 }
2166
2167 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2168 NonLoc index = ER->getIndex();
2169 if (!index.isConstant())
2170 hasSymbolicIndex = true;
2171 }
2172
2173 // If our super region is a field or element itself, walk up the region
2174 // hierarchy to see if there is a default value installed in an ancestor.
2175 SR = dyn_cast<SubRegion>(Base);
2176 }
2177
2179 if (isa<ElementRegion>(R)) {
2180 // Currently we don't reason specially about Clang-style vectors. Check
2181 // if superR is a vector and if so return Unknown.
2182 if (const TypedValueRegion *typedSuperR =
2183 dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2184 if (typedSuperR->getValueType()->isVectorType())
2185 return UnknownVal();
2186 }
2187 }
2188
2189 // FIXME: We also need to take ElementRegions with symbolic indexes into
2190 // account. This case handles both directly accessing an ElementRegion
2191 // with a symbolic offset, but also fields within an element with
2192 // a symbolic offset.
2193 if (hasSymbolicIndex)
2194 return UnknownVal();
2195
2196 // Additionally allow introspection of a block's internal layout.
2197 // Try to get direct binding if all other attempts failed thus far.
2198 // Else, return UndefinedVal()
2199 if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) {
2200 if (const std::optional<SVal> &V = B.getDefaultBinding(R))
2201 return *V;
2202 return UndefinedVal();
2203 }
2204 }
2205
2206 // All other values are symbolic.
2207 return svalBuilder.getRegionValueSymbolVal(R);
2208}
2209
2210SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2211 const ObjCIvarRegion* R) {
2212 // Check if the region has a binding.
2213 if (const std::optional<SVal> &V = B.getDirectBinding(R))
2214 return *V;
2215
2216 const MemRegion *superR = R->getSuperRegion();
2217
2218 // Check if the super region has a default binding.
2219 if (const std::optional<SVal> &V = B.getDefaultBinding(superR)) {
2220 if (SymbolRef parentSym = V->getAsSymbol())
2221 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2222
2223 // Other cases: give up.
2224 return UnknownVal();
2225 }
2226
2227 return getBindingForLazySymbol(R);
2228}
2229
2230SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2231 const VarRegion *R) {
2232
2233 // Check if the region has a binding.
2234 if (std::optional<SVal> V = B.getDirectBinding(R))
2235 return *V;
2236
2237 if (std::optional<SVal> V = B.getDefaultBinding(R))
2238 return *V;
2239
2240 // Lazily derive a value for the VarRegion.
2241 const VarDecl *VD = R->getDecl();
2242 const MemSpaceRegion *MS = R->getMemorySpace();
2243
2244 // Arguments are always symbolic.
2245 if (isa<StackArgumentsSpaceRegion>(MS))
2246 return svalBuilder.getRegionValueSymbolVal(R);
2247
2248 // Is 'VD' declared constant? If so, retrieve the constant value.
2249 if (VD->getType().isConstQualified()) {
2250 if (const Expr *Init = VD->getAnyInitializer()) {
2251 if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2252 return *V;
2253
2254 // If the variable is const qualified and has an initializer but
2255 // we couldn't evaluate initializer to a value, treat the value as
2256 // unknown.
2257 return UnknownVal();
2258 }
2259 }
2260
2261 // This must come after the check for constants because closure-captured
2262 // constant variables may appear in UnknownSpaceRegion.
2263 if (isa<UnknownSpaceRegion>(MS))
2264 return svalBuilder.getRegionValueSymbolVal(R);
2265
2266 if (isa<GlobalsSpaceRegion>(MS)) {
2267 QualType T = VD->getType();
2268
2269 // If we're in main(), then global initializers have not become stale yet.
2270 if (B.isMainAnalysis())
2271 if (const Expr *Init = VD->getAnyInitializer())
2272 if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2273 return *V;
2274
2275 // Function-scoped static variables are default-initialized to 0; if they
2276 // have an initializer, it would have been processed by now.
2277 // FIXME: This is only true when we're starting analysis from main().
2278 // We're losing a lot of coverage here.
2279 if (isa<StaticGlobalSpaceRegion>(MS))
2280 return svalBuilder.makeZeroVal(T);
2281
2282 if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2283 assert(!V->getAs<nonloc::LazyCompoundVal>());
2284 return *V;
2285 }
2286
2287 return svalBuilder.getRegionValueSymbolVal(R);
2288 }
2289
2290 return UndefinedVal();
2291}
2292
2293SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2294 // All other values are symbolic.
2295 return svalBuilder.getRegionValueSymbolVal(R);
2296}
2297
2298const RegionStoreManager::SValListTy &
2299RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2300 // First, check the cache.
2301 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2302 if (I != LazyBindingsMap.end())
2303 return I->second;
2304
2305 // If we don't have a list of values cached, start constructing it.
2306 SValListTy List;
2307
2308 const SubRegion *LazyR = LCV.getRegion();
2309 RegionBindingsRef B = getRegionBindings(LCV.getStore());
2310
2311 // If this region had /no/ bindings at the time, there are no interesting
2312 // values to return.
2313 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2314 if (!Cluster)
2315 return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2316
2318 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2319 /*IncludeAllDefaultBindings=*/true);
2320 for (SVal V : llvm::make_second_range(Bindings)) {
2321 if (V.isUnknownOrUndef() || V.isConstant())
2322 continue;
2323
2324 if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) {
2325 const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2326 List.insert(List.end(), InnerList.begin(), InnerList.end());
2327 }
2328
2329 List.push_back(V);
2330 }
2331
2332 return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2333}
2334
2335NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2336 const TypedValueRegion *R) {
2337 if (std::optional<nonloc::LazyCompoundVal> V =
2338 getExistingLazyBinding(svalBuilder, B, R, false))
2339 return *V;
2340
2341 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2342}
2343
2344SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2345 const TypedValueRegion *R) {
2346 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2347 if (!RD->getDefinition())
2348 return UnknownVal();
2349
2350 // We also create a LCV for copying empty structs because then the store
2351 // behavior doesn't depend on the struct layout.
2352 // This way even an empty struct can carry taint, no matter if creduce drops
2353 // the last field member or not.
2354
2355 // Try to avoid creating a LCV if it would anyways just refer to a single
2356 // default binding.
2357 if (std::optional<SVal> Val = getUniqueDefaultBinding(B, R))
2358 return *Val;
2359 return createLazyBinding(B, R);
2360}
2361
2362SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2363 const TypedValueRegion *R) {
2364 assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2365 "Only constant array types can have compound bindings.");
2366
2367 return createLazyBinding(B, R);
2368}
2369
2370bool RegionStoreManager::includedInBindings(Store store,
2371 const MemRegion *region) const {
2372 RegionBindingsRef B = getRegionBindings(store);
2373 region = region->getBaseRegion();
2374
2375 // Quick path: if the base is the head of a cluster, the region is live.
2376 if (B.lookup(region))
2377 return true;
2378
2379 // Slow path: if the region is the VALUE of any binding, it is live.
2380 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2381 const ClusterBindings &Cluster = RI.getData();
2382 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2383 CI != CE; ++CI) {
2384 SVal D = CI.getData();
2385 if (const MemRegion *R = D.getAsRegion())
2386 if (R->getBaseRegion() == region)
2387 return true;
2388 }
2389 }
2390
2391 return false;
2392}
2393
2394//===----------------------------------------------------------------------===//
2395// Binding values to regions.
2396//===----------------------------------------------------------------------===//
2397
2398StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2399 if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2400 if (const MemRegion* R = LV->getRegion())
2401 return StoreRef(getRegionBindings(ST).removeBinding(R)
2402 .asImmutableMap()
2403 .getRootWithoutRetain(),
2404 *this);
2405
2406 return StoreRef(ST, *this);
2407}
2408
2409RegionBindingsRef
2410RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2411 // We only care about region locations.
2412 auto MemRegVal = L.getAs<loc::MemRegionVal>();
2413 if (!MemRegVal)
2414 return B;
2415
2416 const MemRegion *R = MemRegVal->getRegion();
2417
2418 // Check if the region is a struct region.
2419 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2420 QualType Ty = TR->getValueType();
2421 if (Ty->isArrayType())
2422 return bindArray(B, TR, V);
2423 if (Ty->isStructureOrClassType())
2424 return bindStruct(B, TR, V);
2425 if (Ty->isVectorType())
2426 return bindVector(B, TR, V);
2427 if (Ty->isUnionType())
2428 return bindAggregate(B, TR, V);
2429 }
2430
2431 // Binding directly to a symbolic region should be treated as binding
2432 // to element 0.
2433 if (const auto *SymReg = dyn_cast<SymbolicRegion>(R)) {
2434 QualType Ty = SymReg->getPointeeStaticType();
2435 if (Ty->isVoidType())
2436 Ty = StateMgr.getContext().CharTy;
2437 R = GetElementZeroRegion(SymReg, Ty);
2438 }
2439
2440 assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2441 "'this' pointer is not an l-value and is not assignable");
2442
2443 // Clear out bindings that may overlap with this binding.
2444 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2445
2446 // LazyCompoundVals should be always bound as 'default' bindings.
2447 auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default
2448 : BindingKey::Direct;
2449 return NewB.addBinding(BindingKey::Make(R, KeyKind), V);
2450}
2451
2452RegionBindingsRef
2453RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2454 const MemRegion *R,
2455 QualType T) {
2456 SVal V;
2457
2458 if (Loc::isLocType(T))
2459 V = svalBuilder.makeNullWithType(T);
2460 else if (T->isIntegralOrEnumerationType())
2461 V = svalBuilder.makeZeroVal(T);
2462 else if (T->isStructureOrClassType() || T->isArrayType()) {
2463 // Set the default value to a zero constant when it is a structure
2464 // or array. The type doesn't really matter.
2465 V = svalBuilder.makeZeroVal(Ctx.IntTy);
2466 }
2467 else {
2468 // We can't represent values of this type, but we still need to set a value
2469 // to record that the region has been initialized.
2470 // If this assertion ever fires, a new case should be added above -- we
2471 // should know how to default-initialize any value we can symbolicate.
2472 assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2473 V = UnknownVal();
2474 }
2475
2476 return B.addBinding(R, BindingKey::Default, V);
2477}
2478
2479std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray(
2480 RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT,
2482
2483 auto CAT = dyn_cast<ConstantArrayType>(AT);
2484
2485 // If we don't know the size, create a lazyCompoundVal instead.
2486 if (!CAT)
2487 return std::nullopt;
2488
2489 QualType Ty = CAT->getElementType();
2490 if (!(Ty->isScalarType() || Ty->isReferenceType()))
2491 return std::nullopt;
2492
2493 // If the array is too big, create a LCV instead.
2494 uint64_t ArrSize = CAT->getLimitedSize();
2495 if (ArrSize > SmallArrayLimit)
2496 return std::nullopt;
2497
2498 RegionBindingsRef NewB = B;
2499
2500 for (uint64_t i = 0; i < ArrSize; ++i) {
2501 auto Idx = svalBuilder.makeArrayIndex(i);
2502 const ElementRegion *SrcER =
2503 MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx);
2504 SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER);
2505
2506 const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx);
2507 NewB = bind(NewB, loc::MemRegionVal(DstER), V);
2508 }
2509
2510 return NewB;
2511}
2512
2513RegionBindingsRef
2514RegionStoreManager::bindArray(RegionBindingsConstRef B,
2515 const TypedValueRegion* R,
2516 SVal Init) {
2517
2518 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2519 QualType ElementTy = AT->getElementType();
2520 std::optional<uint64_t> Size;
2521
2522 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2523 Size = CAT->getZExtSize();
2524
2525 // Check if the init expr is a literal. If so, bind the rvalue instead.
2526 // FIXME: It's not responsibility of the Store to transform this lvalue
2527 // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2528 if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2529 SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2530 return bindAggregate(B, R, V);
2531 }
2532
2533 // Handle lazy compound values.
2534 if (std::optional<nonloc::LazyCompoundVal> LCV =
2535 Init.getAs<nonloc::LazyCompoundVal>()) {
2536 if (std::optional<RegionBindingsRef> NewB =
2537 tryBindSmallArray(B, R, AT, *LCV))
2538 return *NewB;
2539
2540 return bindAggregate(B, R, Init);
2541 }
2542
2543 if (Init.isUnknown())
2544 return bindAggregate(B, R, UnknownVal());
2545
2546 // Remaining case: explicit compound values.
2547 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2548 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2549 uint64_t i = 0;
2550
2551 RegionBindingsRef NewB(B);
2552
2553 for (; Size ? i < *Size : true; ++i, ++VI) {
2554 // The init list might be shorter than the array length.
2555 if (VI == VE)
2556 break;
2557
2558 NonLoc Idx = svalBuilder.makeArrayIndex(i);
2559 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2560
2561 if (ElementTy->isStructureOrClassType())
2562 NewB = bindStruct(NewB, ER, *VI);
2563 else if (ElementTy->isArrayType())
2564 NewB = bindArray(NewB, ER, *VI);
2565 else
2566 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2567 }
2568
2569 // If the init list is shorter than the array length (or the array has
2570 // variable length), set the array default value. Values that are already set
2571 // are not overwritten.
2572 if (!Size || i < *Size)
2573 NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2574
2575 return NewB;
2576}
2577
2578RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2579 const TypedValueRegion* R,
2580 SVal V) {
2581 QualType T = R->getValueType();
2582 const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2583
2584 // Handle lazy compound values and symbolic values.
2585 if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V))
2586 return bindAggregate(B, R, V);
2587
2588 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2589 // that we are binding symbolic struct value. Kill the field values, and if
2590 // the value is symbolic go and bind it as a "default" binding.
2591 if (!isa<nonloc::CompoundVal>(V)) {
2592 return bindAggregate(B, R, UnknownVal());
2593 }
2594
2595 QualType ElemType = VT->getElementType();
2597 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2598 unsigned index = 0, numElements = VT->getNumElements();
2599 RegionBindingsRef NewB(B);
2600
2601 for ( ; index != numElements ; ++index) {
2602 if (VI == VE)
2603 break;
2604
2605 NonLoc Idx = svalBuilder.makeArrayIndex(index);
2606 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2607
2608 if (ElemType->isArrayType())
2609 NewB = bindArray(NewB, ER, *VI);
2610 else if (ElemType->isStructureOrClassType())
2611 NewB = bindStruct(NewB, ER, *VI);
2612 else
2613 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2614 }
2615 return NewB;
2616}
2617
2618std::optional<SVal>
2619RegionStoreManager::getUniqueDefaultBinding(RegionBindingsConstRef B,
2620 const TypedValueRegion *R) const {
2621 if (R != R->getBaseRegion())
2622 return std::nullopt;
2623
2624 const auto *Cluster = B.lookup(R);
2625 if (!Cluster || !llvm::hasSingleElement(*Cluster))
2626 return std::nullopt;
2627
2628 const auto [Key, Value] = *Cluster->begin();
2629 return Key.isDirect() ? std::optional<SVal>{} : Value;
2630}
2631
2632std::optional<SVal>
2633RegionStoreManager::getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const {
2634 RegionBindingsConstRef B = getRegionBindings(LCV.getStore());
2635 return getUniqueDefaultBinding(B, LCV.getRegion());
2636}
2637
2638std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct(
2639 RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD,
2641 // If we try to copy a Conjured value representing the value of the whole
2642 // struct, don't try to element-wise copy each field.
2643 // That would unnecessarily bind Derived symbols slicing off the subregion for
2644 // the field from the whole Conjured symbol.
2645 //
2646 // struct Window { int width; int height; };
2647 // Window getWindow(); <-- opaque fn.
2648 // Window w = getWindow(); <-- conjures a new Window.
2649 // Window w2 = w; <-- trivial copy "w", calling "tryBindSmallStruct"
2650 //
2651 // We should not end up with a new Store for "w2" like this:
2652 // Direct [ 0..31]: Derived{Conj{}, w.width}
2653 // Direct [32..63]: Derived{Conj{}, w.height}
2654 // Instead, we should just bind that Conjured value instead.
2655 if (std::optional<SVal> Val = getUniqueDefaultBinding(LCV)) {
2656 return B.addBinding(BindingKey::Make(R, BindingKey::Default), Val.value());
2657 }
2658
2659 FieldVector Fields;
2660
2661 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2662 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2663 return std::nullopt;
2664
2665 for (const auto *FD : RD->fields()) {
2666 if (FD->isUnnamedBitField())
2667 continue;
2668
2669 // If there are too many fields, or if any of the fields are aggregates,
2670 // just use the LCV as a default binding.
2671 if (Fields.size() == SmallStructLimit)
2672 return std::nullopt;
2673
2674 QualType Ty = FD->getType();
2675
2676 // Zero length arrays are basically no-ops, so we also ignore them here.
2677 if (Ty->isConstantArrayType() &&
2679 continue;
2680
2681 if (!(Ty->isScalarType() || Ty->isReferenceType()))
2682 return std::nullopt;
2683
2684 Fields.push_back(FD);
2685 }
2686
2687 RegionBindingsRef NewB = B;
2688
2689 for (const FieldDecl *Field : Fields) {
2690 const FieldRegion *SourceFR = MRMgr.getFieldRegion(Field, LCV.getRegion());
2691 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2692
2693 const FieldRegion *DestFR = MRMgr.getFieldRegion(Field, R);
2694 NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2695 }
2696
2697 return NewB;
2698}
2699
2700RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2701 const TypedValueRegion *R,
2702 SVal V) {
2703 QualType T = R->getValueType();
2704 assert(T->isStructureOrClassType());
2705
2706 const RecordType* RT = T->castAs<RecordType>();
2707 const RecordDecl *RD = RT->getDecl();
2708
2709 if (!RD->isCompleteDefinition())
2710 return B;
2711
2712 // Handle lazy compound values and symbolic values.
2713 if (std::optional<nonloc::LazyCompoundVal> LCV =
2714 V.getAs<nonloc::LazyCompoundVal>()) {
2715 if (std::optional<RegionBindingsRef> NewB =
2716 tryBindSmallStruct(B, R, RD, *LCV))
2717 return *NewB;
2718 return bindAggregate(B, R, V);
2719 }
2720 if (isa<nonloc::SymbolVal>(V))
2721 return bindAggregate(B, R, V);
2722
2723 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2724 // that we are binding symbolic struct value. Kill the field values, and if
2725 // the value is symbolic go and bind it as a "default" binding.
2726 if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
2727 return bindAggregate(B, R, UnknownVal());
2728
2729 // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2730 // list of other values. It appears pretty much only when there's an actual
2731 // initializer list expression in the program, and the analyzer tries to
2732 // unwrap it as soon as possible.
2733 // This code is where such unwrap happens: when the compound value is put into
2734 // the object that it was supposed to initialize (it's an *initializer* list,
2735 // after all), instead of binding the whole value to the whole object, we bind
2736 // sub-values to sub-objects. Sub-values may themselves be compound values,
2737 // and in this case the procedure becomes recursive.
2738 // FIXME: The annoying part about compound values is that they don't carry
2739 // any sort of information about which value corresponds to which sub-object.
2740 // It's simply a list of values in the middle of nowhere; we expect to match
2741 // them to sub-objects, essentially, "by index": first value binds to
2742 // the first field, second value binds to the second field, etc.
2743 // It would have been much safer to organize non-lazy compound values as
2744 // a mapping from fields/bases to values.
2745 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2746 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2747
2748 RegionBindingsRef NewB(B);
2749
2750 // In C++17 aggregates may have base classes, handle those as well.
2751 // They appear before fields in the initializer list / compound value.
2752 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2753 // If the object was constructed with a constructor, its value is a
2754 // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2755 // performing aggregate initialization. The only exception from this
2756 // rule is sending an Objective-C++ message that returns a C++ object
2757 // to a nil receiver; in this case the semantics is to return a
2758 // zero-initialized object even if it's a C++ object that doesn't have
2759 // this sort of constructor; the CompoundVal is empty in this case.
2760 assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2761 "Non-aggregates are constructed with a constructor!");
2762
2763 for (const auto &B : CRD->bases()) {
2764 // (Multiple inheritance is fine though.)
2765 assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2766
2767 if (VI == VE)
2768 break;
2769
2770 QualType BTy = B.getType();
2771 assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2772
2773 const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2774 assert(BRD && "Base classes must be C++ classes!");
2775
2776 const CXXBaseObjectRegion *BR =
2777 MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2778
2779 NewB = bindStruct(NewB, BR, *VI);
2780
2781 ++VI;
2782 }
2783 }
2784
2786
2787 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2788
2789 if (VI == VE)
2790 break;
2791
2792 // Skip any unnamed bitfields to stay in sync with the initializers.
2793 if (FI->isUnnamedBitField())
2794 continue;
2795
2796 QualType FTy = FI->getType();
2797 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2798
2799 if (FTy->isArrayType())
2800 NewB = bindArray(NewB, FR, *VI);
2801 else if (FTy->isStructureOrClassType())
2802 NewB = bindStruct(NewB, FR, *VI);
2803 else
2804 NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2805 ++VI;
2806 }
2807
2808 // There may be fewer values in the initialize list than the fields of struct.
2809 if (FI != FE) {
2810 NewB = NewB.addBinding(R, BindingKey::Default,
2811 svalBuilder.makeIntVal(0, false));
2812 }
2813
2814 return NewB;
2815}
2816
2817RegionBindingsRef
2818RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2819 const TypedRegion *R,
2820 SVal Val) {
2821 // Remove the old bindings, using 'R' as the root of all regions
2822 // we will invalidate. Then add the new binding.
2823 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2824}
2825
2826//===----------------------------------------------------------------------===//
2827// State pruning.
2828//===----------------------------------------------------------------------===//
2829
2830namespace {
2831class RemoveDeadBindingsWorker
2832 : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2834 SymbolReaper &SymReaper;
2835 const StackFrameContext *CurrentLCtx;
2836
2837public:
2838 RemoveDeadBindingsWorker(RegionStoreManager &rm,
2839 ProgramStateManager &stateMgr,
2840 RegionBindingsRef b, SymbolReaper &symReaper,
2841 const StackFrameContext *LCtx)
2842 : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2843 SymReaper(symReaper), CurrentLCtx(LCtx) {}
2844
2845 // Called by ClusterAnalysis.
2846 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2847 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2848 using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2849
2850 using ClusterAnalysis::AddToWorkList;
2851
2852 bool AddToWorkList(const MemRegion *R);
2853
2854 bool UpdatePostponed();
2855 void VisitBinding(SVal V);
2856};
2857}
2858
2859bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2860 const MemRegion *BaseR = R->getBaseRegion();
2861 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2862}
2863
2864void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2865 const ClusterBindings &C) {
2866
2867 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2868 if (SymReaper.isLive(VR))
2869 AddToWorkList(baseR, &C);
2870
2871 return;
2872 }
2873
2874 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2875 if (SymReaper.isLive(SR->getSymbol()))
2876 AddToWorkList(SR, &C);
2877 else
2878 Postponed.push_back(SR);
2879
2880 return;
2881 }
2882
2883 if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2884 AddToWorkList(baseR, &C);
2885 return;
2886 }
2887
2888 // CXXThisRegion in the current or parent location context is live.
2889 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2890 const auto *StackReg =
2891 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2892 const StackFrameContext *RegCtx = StackReg->getStackFrame();
2893 if (CurrentLCtx &&
2894 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2895 AddToWorkList(TR, &C);
2896 }
2897}
2898
2899void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2900 const ClusterBindings *C) {
2901 if (!C)
2902 return;
2903
2904 // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2905 // This means we should continue to track that symbol.
2906 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2907 SymReaper.markLive(SymR->getSymbol());
2908
2909 for (const auto &[Key, Val] : *C) {
2910 // Element index of a binding key is live.
2911 SymReaper.markElementIndicesLive(Key.getRegion());
2912
2913 VisitBinding(Val);
2914 }
2915}
2916
2917void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2918 // Is it a LazyCompoundVal? All referenced regions are live as well.
2919 // The LazyCompoundVal itself is not live but should be readable.
2920 if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
2921 SymReaper.markLazilyCopied(LCS->getRegion());
2922
2923 for (SVal V : RM.getInterestingValues(*LCS)) {
2924 if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>())
2925 SymReaper.markLazilyCopied(DepLCS->getRegion());
2926 else
2927 VisitBinding(V);
2928 }
2929
2930 return;
2931 }
2932
2933 // If V is a region, then add it to the worklist.
2934 if (const MemRegion *R = V.getAsRegion()) {
2935 AddToWorkList(R);
2936 SymReaper.markLive(R);
2937
2938 // All regions captured by a block are also live.
2939 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2940 for (auto Var : BR->referenced_vars())
2941 AddToWorkList(Var.getCapturedRegion());
2942 }
2943 }
2944
2945
2946 // Update the set of live symbols.
2947 for (SymbolRef Sym : V.symbols())
2948 SymReaper.markLive(Sym);
2949}
2950
2951bool RemoveDeadBindingsWorker::UpdatePostponed() {
2952 // See if any postponed SymbolicRegions are actually live now, after
2953 // having done a scan.
2954 bool Changed = false;
2955
2956 for (const SymbolicRegion *SR : Postponed) {
2957 if (SymReaper.isLive(SR->getSymbol())) {
2958 Changed |= AddToWorkList(SR);
2959 SR = nullptr;
2960 }
2961 }
2962
2963 return Changed;
2964}
2965
2966StoreRef RegionStoreManager::removeDeadBindings(Store store,
2967 const StackFrameContext *LCtx,
2968 SymbolReaper& SymReaper) {
2969 RegionBindingsRef B = getRegionBindings(store);
2970 RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2971 W.GenerateClusters();
2972
2973 // Enqueue the region roots onto the worklist.
2974 for (const MemRegion *Reg : SymReaper.regions()) {
2975 W.AddToWorkList(Reg);
2976 }
2977
2978 do W.RunWorkList(); while (W.UpdatePostponed());
2979
2980 // We have now scanned the store, marking reachable regions and symbols
2981 // as live. We now remove all the regions that are dead from the store
2982 // as well as update DSymbols with the set symbols that are now dead.
2983 for (const MemRegion *Base : llvm::make_first_range(B)) {
2984 // If the cluster has been visited, we know the region has been marked.
2985 // Otherwise, remove the dead entry.
2986 if (!W.isVisited(Base))
2987 B = B.remove(Base);
2988 }
2989
2990 return StoreRef(B.asStore(), *this);
2991}
2992
2993//===----------------------------------------------------------------------===//
2994// Utility methods.
2995//===----------------------------------------------------------------------===//
2996
2997void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2998 unsigned int Space, bool IsDot) const {
2999 RegionBindingsRef Bindings = getRegionBindings(S);
3000
3001 Indent(Out, Space, IsDot) << "\"store\": ";
3002
3003 if (Bindings.isEmpty()) {
3004 Out << "null," << NL;
3005 return;
3006 }
3007
3008 Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
3009 Bindings.printJson(Out, NL, Space + 1, IsDot);
3010 Indent(Out, Space, IsDot) << "]}," << NL;
3011}
#define V(N, I)
Definition: ASTContext.h:3443
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
static const MemRegion * getRegion(const CallEvent &Call, const MutexDescriptor &Descriptor, bool IsLock)
const Decl * D
Expr * E
static void dump(llvm::raw_ostream &OS, StringRef FunctionName, ArrayRef< CounterExpression > Expressions, ArrayRef< CounterMappingRegion > Regions)
llvm::DenseSet< const void * > Visited
Definition: HTMLLogger.cpp:145
#define X(type, name)
Definition: Value.h:144
static std::optional< SVal > convertOffsetsFromSvalToUnsigneds(const SmallVector< SVal, 2 > &SrcOffsets, const SmallVector< uint64_t, 2 > ArrayExtents, SmallVector< uint64_t, 2 > &DstOffsets)
llvm::ImmutableMap< const MemRegion *, ClusterBindings > RegionBindings
static std::optional< SVal > getDerivedSymbolForBinding(RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB)
std::pair< BindingKey, SVal > BindingPair
static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields)
SmallVector< const FieldDecl *, 8 > FieldVector
llvm::ImmutableMap< BindingKey, SVal > ClusterBindings
static bool isUnionField(const FieldRegion *FR)
static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields)
static QualType getUnderlyingType(const SubRegion *R)
llvm::ImmutableMapRef< BindingKey, SVal > ClusterBindingsRef
static SmallVector< uint64_t, 2 > getConstantArrayExtents(const ConstantArrayType *CAT)
This is a helper function for getConstantValFromConstArrayInitializer.
static std::pair< SmallVector< SVal, 2 >, const MemRegion * > getElementRegionOffsetsWithBase(const ElementRegion *ER)
This is a helper function for getConstantValFromConstArrayInitializer.
const RegionBindingsRef & RegionBindingsConstRef
static std::optional< nonloc::LazyCompoundVal > getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, const SubRegion *R, bool AllowSubregionBindings)
Checks to see if store B has a lazy binding for region R.
static void collectSubRegionBindings(SmallVectorImpl< BindingPair > &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, BindingKey TopKey, bool IncludeAllDefaultBindings)
Collects all bindings in Cluster that may refer to bindings within Top.
llvm::SmallVector< std::pair< const MemRegion *, SVal >, 4 > Bindings
const char * Data
__device__ __2f16 b
__PTRDIFF_TYPE__ ptrdiff_t
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2915
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2716
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
CanQualType IntTy
Definition: ASTContext.h:1169
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2763
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2482
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const
Return number of constant array elements.
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2486
Stores options for the analyzer from the command line.
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3577
QualType getElementType() const
Definition: Type.h:3589
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3615
uint64_t getLimitedSize() const
Return the size zero-extended to uint64_t or UINT64_MAX if the value is larger than UINT64_MAX.
Definition: Type.h:3704
uint64_t getZExtSize() const
Return the size zero-extended as a uint64_t.
Definition: Type.h:3691
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2369
static void add(Kind k)
Definition: DeclBase.cpp:221
bool hasAttr() const
Definition: DeclBase.h:580
This represents one expression.
Definition: Expr.h:110
Represents a member of a struct/union/class.
Definition: Decl.h:3033
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:4654
const RecordDecl * getParent() const
Returns the parent of this field declaration, which is the struct in which this field is defined.
Definition: Decl.h:3250
bool isUnnamedBitField() const
Determines whether this is an unnamed bitfield.
Definition: Decl.h:3127
Describes an C or C++ initializer list.
Definition: Expr.h:5088
bool isStringLiteralInit() const
Is this an initializer for an array of characters, initialized by a string literal or an @encode?
Definition: Expr.cpp:2446
unsigned getNumInits() const
Definition: Expr.h:5118
const Expr * getInit(unsigned Init) const
Definition: Expr.h:5134
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
bool isParentOf(const LocationContext *LC) const
const Decl * getDecl() const
const StackFrameContext * getStackFrame() const
A (possibly-)qualified type.
Definition: Type.h:929
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:8004
Represents a struct/union/class.
Definition: Decl.h:4148
field_range fields() const
Definition: Decl.h:4354
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:4339
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6072
RecordDecl * getDecl() const
Definition: Type.h:6082
It represents a stack frame of the call stack (based on CallEvent).
Stmt - This represents one statement.
Definition: Stmt.h:84
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
unsigned getLength() const
Definition: Expr.h:1895
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1870
bool isUnion() const
Definition: Decl.h:3770
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1916
bool isVoidType() const
Definition: Type.h:8510
bool isConstantArrayType() const
Definition: Type.h:8262
bool isVoidPointerType() const
Definition: Type.cpp:698
bool isArrayType() const
Definition: Type.h:8258
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8800
bool isReferenceType() const
Definition: Type.h:8204
bool isScalarType() const
Definition: Type.h:8609
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8625
bool isAnyComplexType() const
Definition: Type.h:8294
QualType getCanonicalTypeInternal() const
Definition: Type.h:2989
bool isStructureOrClassType() const
Definition: Type.cpp:690
bool isVectorType() const
Definition: Type.h:8298
bool isRecordType() const
Definition: Type.h:8286
bool isUnionType() const
Definition: Type.cpp:704
QualType getType() const
Definition: Decl.h:682
Represents a variable declaration or definition.
Definition: Decl.h:882
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1177
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1135
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to.
Definition: Decl.h:1309
Represents a GCC generic vector type.
Definition: Type.h:4034
unsigned getNumElements() const
Definition: Type.h:4049
QualType getElementType() const
Definition: Type.h:4048
Maps string IDs to AST nodes matched by parts of a matcher.
Definition: ASTMatchers.h:109
BlockDataRegion - A region that represents a block instance.
Definition: MemRegion.h:678
CXXThisRegion - Represents the region for the implicit 'this' parameter in a call to a C++ method.
Definition: MemRegion.h:1074
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:153
ElementRegion is used to represent both array elements and casts.
Definition: MemRegion.h:1199
QualType getElementType() const
Definition: MemRegion.h:1223
NonLoc getIndex() const
Definition: MemRegion.h:1219
RegionRawOffset getAsArrayOffset() const
Compute the offset within the array. The array might also be a subobject.
Definition: MemRegion.cpp:1446
AnalysisManager & getAnalysisManager()
Definition: ExprEngine.h:198
LLVM_ATTRIBUTE_RETURNS_NONNULL const FieldDecl * getDecl() const override
Definition: MemRegion.h:1125
static bool isLocType(QualType T)
Definition: SVals.h:262
DefinedOrUnknownSVal getStaticSize(const MemRegion *MR, SValBuilder &SVB) const
Definition: MemRegion.cpp:806
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:97
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemSpaceRegion * getMemorySpace() const
Definition: MemRegion.cpp:1351
virtual bool isBoundable() const
Definition: MemRegion.h:183
RegionOffset getAsOffset() const
Compute the offset within the top level memory object.
Definition: MemRegion.cpp:1683
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getBaseRegion() const
Definition: MemRegion.cpp:1377
bool hasStackNonParametersStorage() const
Definition: MemRegion.cpp:1367
MemSpaceRegion - A memory region that represents a "memory space"; for example, the set of global var...
Definition: MemRegion.h:208
Information about invalidation for a particular region/symbol.
Definition: MemRegion.h:1629
@ TK_PreserveContents
Tells that a region's contents is not changed.
Definition: MemRegion.h:1644
@ TK_EntireMemSpace
When applied to a MemSpaceRegion, indicates the entire memory space should be invalidated.
Definition: MemRegion.h:1654
Represent a region's offset within the top level base region.
Definition: MemRegion.h:64
bool hasSymbolicOffset() const
Definition: MemRegion.h:82
const MemRegion * getRegion() const
It might return null.
Definition: MemRegion.h:80
int64_t getOffset() const
Definition: MemRegion.h:84
const MemRegion * getRegion() const
Definition: MemRegion.h:1192
DefinedOrUnknownSVal makeZeroVal(QualType type)
Construct an SVal representing '0' for the specified type.
Definition: SValBuilder.cpp:62
NonLoc makeArrayIndex(uint64_t idx)
Definition: SValBuilder.h:282
ASTContext & getContext()
Definition: SValBuilder.h:148
nonloc::ConcreteInt makeIntVal(const IntegerLiteral *integer)
Definition: SValBuilder.h:288
SVal evalCast(SVal V, QualType CastTy, QualType OriginalTy)
Cast a given SVal to another SVal using given QualType's.
DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag, const Expr *expr, const LocationContext *LCtx, unsigned count)
Create a new symbol with a unique 'name'.
DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, const TypedValueRegion *region)
loc::ConcreteInt makeNullWithType(QualType type)
Create NULL pointer, with proper pointer bit-width for given address space.
Definition: SValBuilder.h:358
std::optional< SVal > getConstantVal(const Expr *E)
Returns the value of E, if it can be determined in a non-path-sensitive manner.
DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region)
Make a unique symbol for value of region.
NonLoc makeLazyCompoundVal(const StoreRef &store, const TypedValueRegion *region)
Definition: SValBuilder.h:264
SVal - This represents a symbolic expression, which can be either an L-value or an R-value.
Definition: SVals.h:56
bool isZeroConstant() const
Definition: SVals.cpp:258
bool isUnknownOrUndef() const
Definition: SVals.h:109
SymbolRef getAsSymbol(bool IncludeBaseRegions=false) const
If this SVal wraps a symbol return that SymbolRef.
Definition: SVals.cpp:104
bool isConstant() const
Definition: SVals.cpp:246
std::optional< T > getAs() const
Convert to the specified SVal type, returning std::nullopt if this SVal is not of the desired type.
Definition: SVals.h:87
const MemRegion * getAsRegion() const
Definition: SVals.cpp:120
T castAs() const
Convert to the specified SVal type, asserting that this SVal is of the desired type.
Definition: SVals.h:83
A utility class that visits the reachable symbols using a custom SymbolVisitor.
Definition: ProgramState.h:885
bool scan(nonloc::LazyCompoundVal val)
virtual StoreRef invalidateRegions(Store store, ArrayRef< SVal > Values, const Stmt *S, unsigned Count, const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, RegionAndSymbolInvalidationTraits &ITraits, InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated)=0
invalidateRegions - Clears out the specified regions from the store, marking their values as unknown.
virtual bool scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Visitor)=0
Finds the transitive closure of symbols within the given region.
virtual void iterBindings(Store store, BindingsHandler &f)=0
iterBindings - Iterate over the bindings in the Store.
virtual StoreRef getInitialStore(const LocationContext *InitLoc)=0
getInitialStore - Returns the initial "empty" store representing the value bindings upon entry to an ...
virtual StoreRef BindDefaultZero(Store store, const MemRegion *R)=0
Return a store with in which all values within the given region are reset to zero.
virtual std::optional< SVal > getDefaultBinding(Store store, const MemRegion *R)=0
Return the default value bound to a region in a given store.
virtual StoreRef killBinding(Store ST, Loc L)=0
Create a new store with the specified binding removed.
virtual void decrementReferenceCount(Store store)
If the StoreManager supports it, decrement the reference count of the specified Store object.
Definition: Store.h:201
virtual StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper &SymReaper)=0
virtual void incrementReferenceCount(Store store)
If the StoreManager supports it, increment the reference count of the specified Store object.
Definition: Store.h:196
virtual SVal ArrayToPointer(Loc Array, QualType ElementTy)=0
ArrayToPointer - Used by ExprEngine::VistCast to handle implicit conversions between arrays and point...
virtual bool includedInBindings(Store store, const MemRegion *region) const =0
virtual SVal getBinding(Store store, Loc loc, QualType T=QualType())=0
Return the value bound to specified location in a given state.
virtual StoreRef BindDefaultInitial(Store store, const MemRegion *R, SVal V)=0
Return a store with the specified value bound to all sub-regions of the region.
virtual void printJson(raw_ostream &Out, Store S, const char *NL, unsigned int Space, bool IsDot) const =0
StringRegion - Region associated with a StringLiteral.
Definition: MemRegion.h:829
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:446
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getSuperRegion() const
Definition: MemRegion.h:459
bool isSubRegionOf(const MemRegion *R) const override
Check if the region is a subregion of the given region.
Definition: MemRegion.cpp:140
MemRegionManager & getMemRegionManager() const override
Definition: MemRegion.cpp:153
Symbolic value.
Definition: SymExpr.h:30
static bool canSymbolicate(QualType T)
A class responsible for cleaning up unused symbols.
llvm::iterator_range< RegionSetTy::const_iterator > regions() const
SymbolicRegion - A special, "non-concrete" region.
Definition: MemRegion.h:780
TypedRegion - An abstract class representing regions that are typed.
Definition: MemRegion.h:511
TypedValueRegion - An abstract class representing regions having a typed value.
Definition: MemRegion.h:535
virtual QualType getValueType() const =0
QualType getLocationType() const override
Definition: MemRegion.h:546
QualType getValueType() const override
Definition: MemRegion.h:971
const VarDecl * getDecl() const override=0
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getRegion() const
Get the underlining region.
Definition: SVals.h:493
The simplest example of a concrete compound value is nonloc::CompoundVal, which represents a concrete...
Definition: SVals.h:339
llvm::ImmutableList< SVal >::iterator iterator
Definition: SVals.h:352
Value representing integer constant.
Definition: SVals.h:300
While nonloc::CompoundVal covers a few simple use cases, nonloc::LazyCompoundVal is a more performant...
Definition: SVals.h:389
LLVM_ATTRIBUTE_RETURNS_NONNULL const LazyCompoundValData * getCVData() const
Definition: SVals.h:399
LLVM_ATTRIBUTE_RETURNS_NONNULL const TypedValueRegion * getRegion() const
This function itself is immaterial.
Definition: SVals.cpp:194
const void * getStore() const
It might return null.
Definition: SVals.cpp:190
Defines the clang::TargetInfo interface.
const internal::VariadicDynCastAllOfMatcher< Decl, VarDecl > varDecl
Matches variable declarations.
const internal::VariadicDynCastAllOfMatcher< Stmt, DeclRefExpr > declRefExpr
Matches expressions that refer to declarations.
const internal::ArgumentAdaptingMatcherFunc< internal::HasDescendantMatcher > hasDescendant
Matches AST nodes that have descendant AST nodes that match the provided matcher.
SmallVector< BoundNodes, 1 > match(MatcherT Matcher, const NodeT &Node, ASTContext &Context)
Returns the results of matching Matcher on Node.
internal::Matcher< Stmt > StatementMatcher
Definition: ASTMatchers.h:144
const internal::VariadicAllOfMatcher< Stmt > stmt
Matches statements.
llvm::DenseSet< SymbolRef > InvalidatedSymbols
Definition: Store.h:51
std::unique_ptr< StoreManager > CreateRegionStoreManager(ProgramStateManager &StMgr)
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
ASTEdit remove(RangeSelector S)
Removes the source selected by S.
The JSON file list parser is used to communicate input to InstallAPI.
@ Bind
'bind' clause, allowed on routine constructs.
bool operator==(const CallGraphNode::CallRecord &LHS, const CallGraphNode::CallRecord &RHS)
Definition: CallGraph.h:204
bool operator<(DeclarationName LHS, DeclarationName RHS)
Ordering on two declaration names.
const FunctionProtoType * T
@ Class
The "class" keyword introduces the elaborated-type-specifier.
unsigned long uint64_t
unsigned int uint32_t
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
static raw_ostream & operator<<(raw_ostream &Out, BindingKey K)
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...