clang  14.0.0git
RegionStore.cpp
Go to the documentation of this file.
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
23 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class BindingKey {
44 public:
45  enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47  enum { Symbolic = 0x2 };
48 
49  llvm::PointerIntPair<const MemRegion *, 2> P;
50  uint64_t Data;
51 
52  /// Create a key for a binding to region \p r, which has a symbolic offset
53  /// from region \p Base.
54  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55  : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56  assert(r && Base && "Must have known regions.");
57  assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58  }
59 
60  /// Create a key for a binding at \p offset from base region \p r.
61  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62  : P(r, k), Data(offset) {
63  assert(r && "Must have known regions.");
64  assert(getOffset() == offset && "Failed to store offset");
65  assert((r == r->getBaseRegion() ||
66  isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67  "Not a base");
68  }
69 public:
70 
71  bool isDirect() const { return P.getInt() & Direct; }
72  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73 
74  const MemRegion *getRegion() const { return P.getPointer(); }
75  uint64_t getOffset() const {
76  assert(!hasSymbolicOffset());
77  return Data;
78  }
79 
80  const SubRegion *getConcreteOffsetRegion() const {
81  assert(hasSymbolicOffset());
82  return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83  }
84 
85  const MemRegion *getBaseRegion() const {
86  if (hasSymbolicOffset())
87  return getConcreteOffsetRegion()->getBaseRegion();
88  return getRegion()->getBaseRegion();
89  }
90 
91  void Profile(llvm::FoldingSetNodeID& ID) const {
92  ID.AddPointer(P.getOpaqueValue());
93  ID.AddInteger(Data);
94  }
95 
96  static BindingKey Make(const MemRegion *R, Kind k);
97 
98  bool operator<(const BindingKey &X) const {
99  if (P.getOpaqueValue() < X.P.getOpaqueValue())
100  return true;
101  if (P.getOpaqueValue() > X.P.getOpaqueValue())
102  return false;
103  return Data < X.Data;
104  }
105 
106  bool operator==(const BindingKey &X) const {
107  return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108  Data == X.Data;
109  }
110 
111  LLVM_DUMP_METHOD void dump() const;
112 };
113 } // end anonymous namespace
114 
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116  const RegionOffset &RO = R->getAsOffset();
117  if (RO.hasSymbolicOffset())
118  return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119 
120  return BindingKey(RO.getRegion(), RO.getOffset(), k);
121 }
122 
123 namespace llvm {
124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126  << "\", \"offset\": ";
127 
128  if (!K.hasSymbolicOffset())
129  Out << K.getOffset();
130  else
131  Out << "null";
132 
133  return Out;
134 }
135 
136 } // namespace llvm
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void BindingKey::dump() const { llvm::errs() << *this; }
140 #endif
141 
142 //===----------------------------------------------------------------------===//
143 // Actual Store type.
144 //===----------------------------------------------------------------------===//
145 
146 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148 typedef std::pair<BindingKey, SVal> BindingPair;
149 
150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
152 
153 namespace {
154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155  ClusterBindings> {
156  ClusterBindings::Factory *CBFactory;
157 
158  // This flag indicates whether the current bindings are within the analysis
159  // that has started from main(). It affects how we perform loads from
160  // global variables that have initializers: if we have observed the
161  // program execution from the start and we know that these variables
162  // have not been overwritten yet, we can be sure that their initializers
163  // are still relevant. This flag never gets changed when the bindings are
164  // updated, so it could potentially be moved into RegionStoreManager
165  // (as if it's the same bindings but a different loading procedure)
166  // however that would have made the manager needlessly stateful.
167  bool IsMainAnalysis;
168 
169 public:
170  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171  ParentTy;
172 
173  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174  const RegionBindings::TreeTy *T,
175  RegionBindings::TreeTy::Factory *F,
176  bool IsMainAnalysis)
177  : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178  CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179 
180  RegionBindingsRef(const ParentTy &P,
181  ClusterBindings::Factory &CBFactory,
182  bool IsMainAnalysis)
183  : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184  CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185 
186  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187  return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188  *CBFactory, IsMainAnalysis);
189  }
190 
191  RegionBindingsRef remove(key_type_ref K) const {
192  return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193  *CBFactory, IsMainAnalysis);
194  }
195 
196  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197 
198  RegionBindingsRef addBinding(const MemRegion *R,
199  BindingKey::Kind k, SVal V) const;
200 
201  const SVal *lookup(BindingKey K) const;
202  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204 
205  RegionBindingsRef removeBinding(BindingKey K);
206 
207  RegionBindingsRef removeBinding(const MemRegion *R,
208  BindingKey::Kind k);
209 
210  RegionBindingsRef removeBinding(const MemRegion *R) {
211  return removeBinding(R, BindingKey::Direct).
212  removeBinding(R, BindingKey::Default);
213  }
214 
215  Optional<SVal> getDirectBinding(const MemRegion *R) const;
216 
217  /// getDefaultBinding - Returns an SVal* representing an optional default
218  /// binding associated with a region and its subregions.
219  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
220 
221  /// Return the internal tree as a Store.
222  Store asStore() const {
223  llvm::PointerIntPair<Store, 1, bool> Ptr = {
224  asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225  return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226  }
227 
228  bool isMainAnalysis() const {
229  return IsMainAnalysis;
230  }
231 
232  void printJson(raw_ostream &Out, const char *NL = "\n",
233  unsigned int Space = 0, bool IsDot = false) const {
234  for (iterator I = begin(); I != end(); ++I) {
235  // TODO: We might need a .printJson for I.getKey() as well.
236  Indent(Out, Space, IsDot)
237  << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238  << (const void *)I.getKey() << "\", \"items\": [" << NL;
239 
240  ++Space;
241  const ClusterBindings &CB = I.getData();
242  for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243  Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244  CI.getData().printJson(Out, /*AddQuotes=*/true);
245  Out << " }";
246  if (std::next(CI) != CB.end())
247  Out << ',';
248  Out << NL;
249  }
250 
251  --Space;
252  Indent(Out, Space, IsDot) << "]}";
253  if (std::next(I) != end())
254  Out << ',';
255  Out << NL;
256  }
257  }
258 
259  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260 };
261 } // end anonymous namespace
262 
263 typedef const RegionBindingsRef& RegionBindingsConstRef;
264 
265 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
266  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
267 }
268 
269 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
270  return Optional<SVal>::create(lookup(R, BindingKey::Default));
271 }
272 
273 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
274  const MemRegion *Base = K.getBaseRegion();
275 
276  const ClusterBindings *ExistingCluster = lookup(Base);
277  ClusterBindings Cluster =
278  (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
279 
280  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
281  return add(Base, NewCluster);
282 }
283 
284 
285 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
286  BindingKey::Kind k,
287  SVal V) const {
288  return addBinding(BindingKey::Make(R, k), V);
289 }
290 
291 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
292  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
293  if (!Cluster)
294  return nullptr;
295  return Cluster->lookup(K);
296 }
297 
298 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
299  BindingKey::Kind k) const {
300  return lookup(BindingKey::Make(R, k));
301 }
302 
303 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
304  const MemRegion *Base = K.getBaseRegion();
305  const ClusterBindings *Cluster = lookup(Base);
306  if (!Cluster)
307  return *this;
308 
309  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
310  if (NewCluster.isEmpty())
311  return remove(Base);
312  return add(Base, NewCluster);
313 }
314 
315 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
316  BindingKey::Kind k){
317  return removeBinding(BindingKey::Make(R, k));
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Fine-grained control of RegionStoreManager.
322 //===----------------------------------------------------------------------===//
323 
324 namespace {
325 struct minimal_features_tag {};
326 struct maximal_features_tag {};
327 
328 class RegionStoreFeatures {
329  bool SupportsFields;
330 public:
331  RegionStoreFeatures(minimal_features_tag) :
332  SupportsFields(false) {}
333 
334  RegionStoreFeatures(maximal_features_tag) :
335  SupportsFields(true) {}
336 
337  void enableFields(bool t) { SupportsFields = t; }
338 
339  bool supportsFields() const { return SupportsFields; }
340 };
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Main RegionStore logic.
345 //===----------------------------------------------------------------------===//
346 
347 namespace {
348 class InvalidateRegionsWorker;
349 
350 class RegionStoreManager : public StoreManager {
351 public:
352  const RegionStoreFeatures Features;
353 
354  RegionBindings::Factory RBFactory;
355  mutable ClusterBindings::Factory CBFactory;
356 
357  typedef std::vector<SVal> SValListTy;
358 private:
359  typedef llvm::DenseMap<const LazyCompoundValData *,
360  SValListTy> LazyBindingsMapTy;
361  LazyBindingsMapTy LazyBindingsMap;
362 
363  /// The largest number of fields a struct can have and still be
364  /// considered "small".
365  ///
366  /// This is currently used to decide whether or not it is worth "forcing" a
367  /// LazyCompoundVal on bind.
368  ///
369  /// This is controlled by 'region-store-small-struct-limit' option.
370  /// To disable all small-struct-dependent behavior, set the option to "0".
371  unsigned SmallStructLimit;
372 
373  /// A helper used to populate the work list with the given set of
374  /// regions.
375  void populateWorkList(InvalidateRegionsWorker &W,
376  ArrayRef<SVal> Values,
377  InvalidatedRegions *TopLevelRegions);
378 
379 public:
380  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
381  : StoreManager(mgr), Features(f),
382  RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
383  SmallStructLimit(0) {
384  ExprEngine &Eng = StateMgr.getOwningEngine();
385  AnalyzerOptions &Options = Eng.getAnalysisManager().options;
386  SmallStructLimit = Options.RegionStoreSmallStructLimit;
387  }
388 
389 
390  /// setImplicitDefaultValue - Set the default binding for the provided
391  /// MemRegion to the value implicitly defined for compound literals when
392  /// the value is not specified.
393  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
394  const MemRegion *R, QualType T);
395 
396  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
397  /// type. 'Array' represents the lvalue of the array being decayed
398  /// to a pointer, and the returned SVal represents the decayed
399  /// version of that lvalue (i.e., a pointer to the first element of
400  /// the array). This is called by ExprEngine when evaluating
401  /// casts from arrays to pointers.
402  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
403 
404  /// Creates the Store that correctly represents memory contents before
405  /// the beginning of the analysis of the given top-level stack frame.
406  StoreRef getInitialStore(const LocationContext *InitLoc) override {
407  bool IsMainAnalysis = false;
408  if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
409  IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
410  return StoreRef(RegionBindingsRef(
411  RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
412  CBFactory, IsMainAnalysis).asStore(), *this);
413  }
414 
415  //===-------------------------------------------------------------------===//
416  // Binding values to regions.
417  //===-------------------------------------------------------------------===//
418  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
419  const Expr *Ex,
420  unsigned Count,
421  const LocationContext *LCtx,
422  RegionBindingsRef B,
423  InvalidatedRegions *Invalidated);
424 
425  StoreRef invalidateRegions(Store store,
426  ArrayRef<SVal> Values,
427  const Expr *E, unsigned Count,
428  const LocationContext *LCtx,
429  const CallEvent *Call,
430  InvalidatedSymbols &IS,
431  RegionAndSymbolInvalidationTraits &ITraits,
432  InvalidatedRegions *Invalidated,
433  InvalidatedRegions *InvalidatedTopLevel) override;
434 
435  bool scanReachableSymbols(Store S, const MemRegion *R,
436  ScanReachableSymbols &Callbacks) override;
437 
438  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
439  const SubRegion *R);
440  Optional<SVal> getConstantValFromConstArrayInitializer(
441  RegionBindingsConstRef B, const VarRegion *VR, const ElementRegion *R);
442  Optional<SVal> getSValFromInitListExpr(const InitListExpr *ILE,
443  uint64_t Offset, QualType ElemT);
444 
445 public: // Part of public interface to class.
446 
447  StoreRef Bind(Store store, Loc LV, SVal V) override {
448  return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
449  }
450 
451  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
452 
453  // BindDefaultInitial is only used to initialize a region with
454  // a default value.
455  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
456  SVal V) override {
457  RegionBindingsRef B = getRegionBindings(store);
458  // Use other APIs when you have to wipe the region that was initialized
459  // earlier.
460  assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
461  "Double initialization!");
462  B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
463  return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
464  }
465 
466  // BindDefaultZero is used for zeroing constructors that may accidentally
467  // overwrite existing bindings.
468  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
469  // FIXME: The offsets of empty bases can be tricky because of
470  // of the so called "empty base class optimization".
471  // If a base class has been optimized out
472  // we should not try to create a binding, otherwise we should.
473  // Unfortunately, at the moment ASTRecordLayout doesn't expose
474  // the actual sizes of the empty bases
475  // and trying to infer them from offsets/alignments
476  // seems to be error-prone and non-trivial because of the trailing padding.
477  // As a temporary mitigation we don't create bindings for empty bases.
478  if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
479  if (BR->getDecl()->isEmpty())
480  return StoreRef(store, *this);
481 
482  RegionBindingsRef B = getRegionBindings(store);
483  SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
484  B = removeSubRegionBindings(B, cast<SubRegion>(R));
485  B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
486  return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
487  }
488 
489  /// Attempt to extract the fields of \p LCV and bind them to the struct region
490  /// \p R.
491  ///
492  /// This path is used when it seems advantageous to "force" loading the values
493  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
494  /// than using a Default binding at the base of the entire region. This is a
495  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
496  ///
497  /// \returns The updated store bindings, or \c None if binding non-lazily
498  /// would be too expensive.
500  const TypedValueRegion *R,
501  const RecordDecl *RD,
502  nonloc::LazyCompoundVal LCV);
503 
504  /// BindStruct - Bind a compound value to a structure.
505  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
506  const TypedValueRegion* R, SVal V);
507 
508  /// BindVector - Bind a compound value to a vector.
509  RegionBindingsRef bindVector(RegionBindingsConstRef B,
510  const TypedValueRegion* R, SVal V);
511 
512  RegionBindingsRef bindArray(RegionBindingsConstRef B,
513  const TypedValueRegion* R,
514  SVal V);
515 
516  /// Clears out all bindings in the given region and assigns a new value
517  /// as a Default binding.
518  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
519  const TypedRegion *R,
520  SVal DefaultVal);
521 
522  /// Create a new store with the specified binding removed.
523  /// \param ST the original store, that is the basis for the new store.
524  /// \param L the location whose binding should be removed.
525  StoreRef killBinding(Store ST, Loc L) override;
526 
527  void incrementReferenceCount(Store store) override {
528  getRegionBindings(store).manualRetain();
529  }
530 
531  /// If the StoreManager supports it, decrement the reference count of
532  /// the specified Store object. If the reference count hits 0, the memory
533  /// associated with the object is recycled.
534  void decrementReferenceCount(Store store) override {
535  getRegionBindings(store).manualRelease();
536  }
537 
538  bool includedInBindings(Store store, const MemRegion *region) const override;
539 
540  /// Return the value bound to specified location in a given state.
541  ///
542  /// The high level logic for this method is this:
543  /// getBinding (L)
544  /// if L has binding
545  /// return L's binding
546  /// else if L is in killset
547  /// return unknown
548  /// else
549  /// if L is on stack or heap
550  /// return undefined
551  /// else
552  /// return symbolic
553  SVal getBinding(Store S, Loc L, QualType T) override {
554  return getBinding(getRegionBindings(S), L, T);
555  }
556 
557  Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
558  RegionBindingsRef B = getRegionBindings(S);
559  // Default bindings are always applied over a base region so look up the
560  // base region's default binding, otherwise the lookup will fail when R
561  // is at an offset from R->getBaseRegion().
562  return B.getDefaultBinding(R->getBaseRegion());
563  }
564 
565  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
566 
567  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
568 
569  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
570 
571  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
572 
573  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
574 
575  SVal getBindingForLazySymbol(const TypedValueRegion *R);
576 
577  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
578  const TypedValueRegion *R,
579  QualType Ty);
580 
581  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
582  RegionBindingsRef LazyBinding);
583 
584  /// Get bindings for the values in a struct and return a CompoundVal, used
585  /// when doing struct copy:
586  /// struct s x, y;
587  /// x = y;
588  /// y's value is retrieved by this method.
589  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
590  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
591  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
592 
593  /// Used to lazily generate derived symbols for bindings that are defined
594  /// implicitly by default bindings in a super region.
595  ///
596  /// Note that callers may need to specially handle LazyCompoundVals, which
597  /// are returned as is in case the caller needs to treat them differently.
598  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
599  const MemRegion *superR,
600  const TypedValueRegion *R,
601  QualType Ty);
602 
603  /// Get the state and region whose binding this region \p R corresponds to.
604  ///
605  /// If there is no lazy binding for \p R, the returned value will have a null
606  /// \c second. Note that a null pointer can represents a valid Store.
607  std::pair<Store, const SubRegion *>
608  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
609  const SubRegion *originalRegion);
610 
611  /// Returns the cached set of interesting SVals contained within a lazy
612  /// binding.
613  ///
614  /// The precise value of "interesting" is determined for the purposes of
615  /// RegionStore's internal analysis. It must always contain all regions and
616  /// symbols, but may omit constants and other kinds of SVal.
617  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
618 
619  //===------------------------------------------------------------------===//
620  // State pruning.
621  //===------------------------------------------------------------------===//
622 
623  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
624  /// It returns a new Store with these values removed.
625  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
626  SymbolReaper& SymReaper) override;
627 
628  //===------------------------------------------------------------------===//
629  // Utility methods.
630  //===------------------------------------------------------------------===//
631 
632  RegionBindingsRef getRegionBindings(Store store) const {
633  llvm::PointerIntPair<Store, 1, bool> Ptr;
634  Ptr.setFromOpaqueValue(const_cast<void *>(store));
635  return RegionBindingsRef(
636  CBFactory,
637  static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
638  RBFactory.getTreeFactory(),
639  Ptr.getInt());
640  }
641 
642  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
643  unsigned int Space = 0, bool IsDot = false) const override;
644 
645  void iterBindings(Store store, BindingsHandler& f) override {
646  RegionBindingsRef B = getRegionBindings(store);
647  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
648  const ClusterBindings &Cluster = I.getData();
649  for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
650  CI != CE; ++CI) {
651  const BindingKey &K = CI.getKey();
652  if (!K.isDirect())
653  continue;
654  if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
655  // FIXME: Possibly incorporate the offset?
656  if (!f.HandleBinding(*this, store, R, CI.getData()))
657  return;
658  }
659  }
660  }
661  }
662 };
663 
664 } // end anonymous namespace
665 
666 //===----------------------------------------------------------------------===//
667 // RegionStore creation.
668 //===----------------------------------------------------------------------===//
669 
670 std::unique_ptr<StoreManager>
672  RegionStoreFeatures F = maximal_features_tag();
673  return std::make_unique<RegionStoreManager>(StMgr, F);
674 }
675 
676 std::unique_ptr<StoreManager>
678  RegionStoreFeatures F = minimal_features_tag();
679  F.enableFields(true);
680  return std::make_unique<RegionStoreManager>(StMgr, F);
681 }
682 
683 
684 //===----------------------------------------------------------------------===//
685 // Region Cluster analysis.
686 //===----------------------------------------------------------------------===//
687 
688 namespace {
689 /// Used to determine which global regions are automatically included in the
690 /// initial worklist of a ClusterAnalysis.
691 enum GlobalsFilterKind {
692  /// Don't include any global regions.
693  GFK_None,
694  /// Only include system globals.
695  GFK_SystemOnly,
696  /// Include all global regions.
697  GFK_All
698 };
699 
700 template <typename DERIVED>
701 class ClusterAnalysis {
702 protected:
703  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
704  typedef const MemRegion * WorkListElement;
705  typedef SmallVector<WorkListElement, 10> WorkList;
706 
708 
709  WorkList WL;
710 
711  RegionStoreManager &RM;
712  ASTContext &Ctx;
713  SValBuilder &svalBuilder;
714 
715  RegionBindingsRef B;
716 
717 
718 protected:
719  const ClusterBindings *getCluster(const MemRegion *R) {
720  return B.lookup(R);
721  }
722 
723  /// Returns true if all clusters in the given memspace should be initially
724  /// included in the cluster analysis. Subclasses may provide their
725  /// own implementation.
726  bool includeEntireMemorySpace(const MemRegion *Base) {
727  return false;
728  }
729 
730 public:
731  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
732  RegionBindingsRef b)
733  : RM(rm), Ctx(StateMgr.getContext()),
734  svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
735 
736  RegionBindingsRef getRegionBindings() const { return B; }
737 
738  bool isVisited(const MemRegion *R) {
739  return Visited.count(getCluster(R));
740  }
741 
742  void GenerateClusters() {
743  // Scan the entire set of bindings and record the region clusters.
744  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
745  RI != RE; ++RI){
746  const MemRegion *Base = RI.getKey();
747 
748  const ClusterBindings &Cluster = RI.getData();
749  assert(!Cluster.isEmpty() && "Empty clusters should be removed");
750  static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
751 
752  // If the base's memspace should be entirely invalidated, add the cluster
753  // to the workspace up front.
754  if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
755  AddToWorkList(WorkListElement(Base), &Cluster);
756  }
757  }
758 
759  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
760  if (C && !Visited.insert(C).second)
761  return false;
762  WL.push_back(E);
763  return true;
764  }
765 
766  bool AddToWorkList(const MemRegion *R) {
767  return static_cast<DERIVED*>(this)->AddToWorkList(R);
768  }
769 
770  void RunWorkList() {
771  while (!WL.empty()) {
772  WorkListElement E = WL.pop_back_val();
773  const MemRegion *BaseR = E;
774 
775  static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
776  }
777  }
778 
779  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
780  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
781 
782  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
783  bool Flag) {
784  static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
785  }
786 };
787 }
788 
789 //===----------------------------------------------------------------------===//
790 // Binding invalidation.
791 //===----------------------------------------------------------------------===//
792 
793 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
794  ScanReachableSymbols &Callbacks) {
795  assert(R == R->getBaseRegion() && "Should only be called for base regions");
796  RegionBindingsRef B = getRegionBindings(S);
797  const ClusterBindings *Cluster = B.lookup(R);
798 
799  if (!Cluster)
800  return true;
801 
802  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
803  RI != RE; ++RI) {
804  if (!Callbacks.scan(RI.getData()))
805  return false;
806  }
807 
808  return true;
809 }
810 
811 static inline bool isUnionField(const FieldRegion *FR) {
812  return FR->getDecl()->getParent()->isUnion();
813 }
814 
816 
817 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
818  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
819 
820  const MemRegion *Base = K.getConcreteOffsetRegion();
821  const MemRegion *R = K.getRegion();
822 
823  while (R != Base) {
824  if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
825  if (!isUnionField(FR))
826  Fields.push_back(FR->getDecl());
827 
828  R = cast<SubRegion>(R)->getSuperRegion();
829  }
830 }
831 
832 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
833  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
834 
835  if (Fields.empty())
836  return true;
837 
838  FieldVector FieldsInBindingKey;
839  getSymbolicOffsetFields(K, FieldsInBindingKey);
840 
841  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
842  if (Delta >= 0)
843  return std::equal(FieldsInBindingKey.begin() + Delta,
844  FieldsInBindingKey.end(),
845  Fields.begin());
846  else
847  return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
848  Fields.begin() - Delta);
849 }
850 
851 /// Collects all bindings in \p Cluster that may refer to bindings within
852 /// \p Top.
853 ///
854 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
855 /// \c second is the value (an SVal).
856 ///
857 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
858 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
859 /// an aggregate within a larger aggregate with a default binding.
860 static void
862  SValBuilder &SVB, const ClusterBindings &Cluster,
863  const SubRegion *Top, BindingKey TopKey,
864  bool IncludeAllDefaultBindings) {
865  FieldVector FieldsInSymbolicSubregions;
866  if (TopKey.hasSymbolicOffset()) {
867  getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
868  Top = TopKey.getConcreteOffsetRegion();
869  TopKey = BindingKey::Make(Top, BindingKey::Default);
870  }
871 
872  // Find the length (in bits) of the region being invalidated.
873  uint64_t Length = UINT64_MAX;
874  SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
875  if (Optional<nonloc::ConcreteInt> ExtentCI =
876  Extent.getAs<nonloc::ConcreteInt>()) {
877  const llvm::APSInt &ExtentInt = ExtentCI->getValue();
878  assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
879  // Extents are in bytes but region offsets are in bits. Be careful!
880  Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
881  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
882  if (FR->getDecl()->isBitField())
883  Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
884  }
885 
886  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
887  I != E; ++I) {
888  BindingKey NextKey = I.getKey();
889  if (NextKey.getRegion() == TopKey.getRegion()) {
890  // FIXME: This doesn't catch the case where we're really invalidating a
891  // region with a symbolic offset. Example:
892  // R: points[i].y
893  // Next: points[0].x
894 
895  if (NextKey.getOffset() > TopKey.getOffset() &&
896  NextKey.getOffset() - TopKey.getOffset() < Length) {
897  // Case 1: The next binding is inside the region we're invalidating.
898  // Include it.
899  Bindings.push_back(*I);
900 
901  } else if (NextKey.getOffset() == TopKey.getOffset()) {
902  // Case 2: The next binding is at the same offset as the region we're
903  // invalidating. In this case, we need to leave default bindings alone,
904  // since they may be providing a default value for a regions beyond what
905  // we're invalidating.
906  // FIXME: This is probably incorrect; consider invalidating an outer
907  // struct whose first field is bound to a LazyCompoundVal.
908  if (IncludeAllDefaultBindings || NextKey.isDirect())
909  Bindings.push_back(*I);
910  }
911 
912  } else if (NextKey.hasSymbolicOffset()) {
913  const MemRegion *Base = NextKey.getConcreteOffsetRegion();
914  if (Top->isSubRegionOf(Base) && Top != Base) {
915  // Case 3: The next key is symbolic and we just changed something within
916  // its concrete region. We don't know if the binding is still valid, so
917  // we'll be conservative and include it.
918  if (IncludeAllDefaultBindings || NextKey.isDirect())
919  if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
920  Bindings.push_back(*I);
921  } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
922  // Case 4: The next key is symbolic, but we changed a known
923  // super-region. In this case the binding is certainly included.
924  if (BaseSR->isSubRegionOf(Top))
925  if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
926  Bindings.push_back(*I);
927  }
928  }
929  }
930 }
931 
932 static void
934  SValBuilder &SVB, const ClusterBindings &Cluster,
935  const SubRegion *Top, bool IncludeAllDefaultBindings) {
936  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
937  BindingKey::Make(Top, BindingKey::Default),
938  IncludeAllDefaultBindings);
939 }
940 
941 RegionBindingsRef
942 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
943  const SubRegion *Top) {
944  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
945  const MemRegion *ClusterHead = TopKey.getBaseRegion();
946 
947  if (Top == ClusterHead) {
948  // We can remove an entire cluster's bindings all in one go.
949  return B.remove(Top);
950  }
951 
952  const ClusterBindings *Cluster = B.lookup(ClusterHead);
953  if (!Cluster) {
954  // If we're invalidating a region with a symbolic offset, we need to make
955  // sure we don't treat the base region as uninitialized anymore.
956  if (TopKey.hasSymbolicOffset()) {
957  const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
958  return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
959  }
960  return B;
961  }
962 
964  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
965  /*IncludeAllDefaultBindings=*/false);
966 
967  ClusterBindingsRef Result(*Cluster, CBFactory);
969  E = Bindings.end();
970  I != E; ++I)
971  Result = Result.remove(I->first);
972 
973  // If we're invalidating a region with a symbolic offset, we need to make sure
974  // we don't treat the base region as uninitialized anymore.
975  // FIXME: This isn't very precise; see the example in
976  // collectSubRegionBindings.
977  if (TopKey.hasSymbolicOffset()) {
978  const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
979  Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
980  UnknownVal());
981  }
982 
983  if (Result.isEmpty())
984  return B.remove(ClusterHead);
985  return B.add(ClusterHead, Result.asImmutableMap());
986 }
987 
988 namespace {
989 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
990 {
991  const Expr *Ex;
992  unsigned Count;
993  const LocationContext *LCtx;
994  InvalidatedSymbols &IS;
995  RegionAndSymbolInvalidationTraits &ITraits;
997  GlobalsFilterKind GlobalsFilter;
998 public:
999  InvalidateRegionsWorker(RegionStoreManager &rm,
1000  ProgramStateManager &stateMgr,
1001  RegionBindingsRef b,
1002  const Expr *ex, unsigned count,
1003  const LocationContext *lctx,
1004  InvalidatedSymbols &is,
1005  RegionAndSymbolInvalidationTraits &ITraitsIn,
1007  GlobalsFilterKind GFK)
1008  : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1009  Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1010  GlobalsFilter(GFK) {}
1011 
1012  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1013  void VisitBinding(SVal V);
1014 
1015  using ClusterAnalysis::AddToWorkList;
1016 
1017  bool AddToWorkList(const MemRegion *R);
1018 
1019  /// Returns true if all clusters in the memory space for \p Base should be
1020  /// be invalidated.
1021  bool includeEntireMemorySpace(const MemRegion *Base);
1022 
1023  /// Returns true if the memory space of the given region is one of the global
1024  /// regions specially included at the start of invalidation.
1025  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1026 };
1027 }
1028 
1029 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1030  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1032  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1033  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1034 }
1035 
1036 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1037  // A symbol? Mark it touched by the invalidation.
1038  if (SymbolRef Sym = V.getAsSymbol())
1039  IS.insert(Sym);
1040 
1041  if (const MemRegion *R = V.getAsRegion()) {
1042  AddToWorkList(R);
1043  return;
1044  }
1045 
1046  // Is it a LazyCompoundVal? All references get invalidated as well.
1048  V.getAs<nonloc::LazyCompoundVal>()) {
1049 
1050  const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1051 
1052  for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1053  E = Vals.end();
1054  I != E; ++I)
1055  VisitBinding(*I);
1056 
1057  return;
1058  }
1059 }
1060 
1061 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1062  const ClusterBindings *C) {
1063 
1064  bool PreserveRegionsContents =
1065  ITraits.hasTrait(baseR,
1067 
1068  if (C) {
1069  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1070  VisitBinding(I.getData());
1071 
1072  // Invalidate regions contents.
1073  if (!PreserveRegionsContents)
1074  B = B.remove(baseR);
1075  }
1076 
1077  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1078  if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1079 
1080  // Lambdas can affect all static local variables without explicitly
1081  // capturing those.
1082  // We invalidate all static locals referenced inside the lambda body.
1083  if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1084  using namespace ast_matchers;
1085 
1086  const char *DeclBind = "DeclBind";
1088  to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1089  auto Matches =
1090  match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1091  RD->getASTContext());
1092 
1093  for (BoundNodes &Match : Matches) {
1094  auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1095  const VarRegion *ToInvalidate =
1096  RM.getRegionManager().getVarRegion(VD, LCtx);
1097  AddToWorkList(ToInvalidate);
1098  }
1099  }
1100  }
1101  }
1102 
1103  // BlockDataRegion? If so, invalidate captured variables that are passed
1104  // by reference.
1105  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1106  for (BlockDataRegion::referenced_vars_iterator
1107  BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1108  BI != BE; ++BI) {
1109  const VarRegion *VR = BI.getCapturedRegion();
1110  const VarDecl *VD = VR->getDecl();
1111  if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1112  AddToWorkList(VR);
1113  }
1114  else if (Loc::isLocType(VR->getValueType())) {
1115  // Map the current bindings to a Store to retrieve the value
1116  // of the binding. If that binding itself is a region, we should
1117  // invalidate that region. This is because a block may capture
1118  // a pointer value, but the thing pointed by that pointer may
1119  // get invalidated.
1120  SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1121  if (Optional<Loc> L = V.getAs<Loc>()) {
1122  if (const MemRegion *LR = L->getAsRegion())
1123  AddToWorkList(LR);
1124  }
1125  }
1126  }
1127  return;
1128  }
1129 
1130  // Symbolic region?
1131  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1132  IS.insert(SR->getSymbol());
1133 
1134  // Nothing else should be done in the case when we preserve regions context.
1135  if (PreserveRegionsContents)
1136  return;
1137 
1138  // Otherwise, we have a normal data region. Record that we touched the region.
1139  if (Regions)
1140  Regions->push_back(baseR);
1141 
1142  if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1143  // Invalidate the region by setting its default value to
1144  // conjured symbol. The type of the symbol is irrelevant.
1145  DefinedOrUnknownSVal V =
1146  svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1147  B = B.addBinding(baseR, BindingKey::Default, V);
1148  return;
1149  }
1150 
1151  if (!baseR->isBoundable())
1152  return;
1153 
1154  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1155  QualType T = TR->getValueType();
1156 
1157  if (isInitiallyIncludedGlobalRegion(baseR)) {
1158  // If the region is a global and we are invalidating all globals,
1159  // erasing the entry is good enough. This causes all globals to be lazily
1160  // symbolicated from the same base symbol.
1161  return;
1162  }
1163 
1164  if (T->isRecordType()) {
1165  // Invalidate the region by setting its default value to
1166  // conjured symbol. The type of the symbol is irrelevant.
1167  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1168  Ctx.IntTy, Count);
1169  B = B.addBinding(baseR, BindingKey::Default, V);
1170  return;
1171  }
1172 
1173  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1174  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1175  baseR,
1177 
1178  if (doNotInvalidateSuperRegion) {
1179  // We are not doing blank invalidation of the whole array region so we
1180  // have to manually invalidate each elements.
1181  Optional<uint64_t> NumElements;
1182 
1183  // Compute lower and upper offsets for region within array.
1184  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1185  NumElements = CAT->getSize().getZExtValue();
1186  if (!NumElements) // We are not dealing with a constant size array
1187  goto conjure_default;
1188  QualType ElementTy = AT->getElementType();
1189  uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1190  const RegionOffset &RO = baseR->getAsOffset();
1191  const MemRegion *SuperR = baseR->getBaseRegion();
1192  if (RO.hasSymbolicOffset()) {
1193  // If base region has a symbolic offset,
1194  // we revert to invalidating the super region.
1195  if (SuperR)
1196  AddToWorkList(SuperR);
1197  goto conjure_default;
1198  }
1199 
1200  uint64_t LowerOffset = RO.getOffset();
1201  uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1202  bool UpperOverflow = UpperOffset < LowerOffset;
1203 
1204  // Invalidate regions which are within array boundaries,
1205  // or have a symbolic offset.
1206  if (!SuperR)
1207  goto conjure_default;
1208 
1209  const ClusterBindings *C = B.lookup(SuperR);
1210  if (!C)
1211  goto conjure_default;
1212 
1213  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1214  ++I) {
1215  const BindingKey &BK = I.getKey();
1216  Optional<uint64_t> ROffset =
1217  BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1218 
1219  // Check offset is not symbolic and within array's boundaries.
1220  // Handles arrays of 0 elements and of 0-sized elements as well.
1221  if (!ROffset ||
1222  ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1223  (UpperOverflow &&
1224  (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1225  (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1226  B = B.removeBinding(I.getKey());
1227  // Bound symbolic regions need to be invalidated for dead symbol
1228  // detection.
1229  SVal V = I.getData();
1230  const MemRegion *R = V.getAsRegion();
1231  if (isa_and_nonnull<SymbolicRegion>(R))
1232  VisitBinding(V);
1233  }
1234  }
1235  }
1236  conjure_default:
1237  // Set the default value of the array to conjured symbol.
1238  DefinedOrUnknownSVal V =
1239  svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1240  AT->getElementType(), Count);
1241  B = B.addBinding(baseR, BindingKey::Default, V);
1242  return;
1243  }
1244 
1245  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1246  T,Count);
1247  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1248  B = B.addBinding(baseR, BindingKey::Direct, V);
1249 }
1250 
1251 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1252  const MemRegion *R) {
1253  switch (GlobalsFilter) {
1254  case GFK_None:
1255  return false;
1256  case GFK_SystemOnly:
1257  return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1258  case GFK_All:
1259  return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1260  }
1261 
1262  llvm_unreachable("unknown globals filter");
1263 }
1264 
1265 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1266  if (isInitiallyIncludedGlobalRegion(Base))
1267  return true;
1268 
1269  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1270  return ITraits.hasTrait(MemSpace,
1272 }
1273 
1274 RegionBindingsRef
1275 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1276  const Expr *Ex,
1277  unsigned Count,
1278  const LocationContext *LCtx,
1279  RegionBindingsRef B,
1280  InvalidatedRegions *Invalidated) {
1281  // Bind the globals memory space to a new symbol that we will use to derive
1282  // the bindings for all globals.
1283  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1284  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1285  /* type does not matter */ Ctx.IntTy,
1286  Count);
1287 
1288  B = B.removeBinding(GS)
1289  .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1290 
1291  // Even if there are no bindings in the global scope, we still need to
1292  // record that we touched it.
1293  if (Invalidated)
1294  Invalidated->push_back(GS);
1295 
1296  return B;
1297 }
1298 
1299 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1300  ArrayRef<SVal> Values,
1301  InvalidatedRegions *TopLevelRegions) {
1302  for (ArrayRef<SVal>::iterator I = Values.begin(),
1303  E = Values.end(); I != E; ++I) {
1304  SVal V = *I;
1306  V.getAs<nonloc::LazyCompoundVal>()) {
1307 
1308  const SValListTy &Vals = getInterestingValues(*LCS);
1309 
1310  for (SValListTy::const_iterator I = Vals.begin(),
1311  E = Vals.end(); I != E; ++I) {
1312  // Note: the last argument is false here because these are
1313  // non-top-level regions.
1314  if (const MemRegion *R = (*I).getAsRegion())
1315  W.AddToWorkList(R);
1316  }
1317  continue;
1318  }
1319 
1320  if (const MemRegion *R = V.getAsRegion()) {
1321  if (TopLevelRegions)
1322  TopLevelRegions->push_back(R);
1323  W.AddToWorkList(R);
1324  continue;
1325  }
1326  }
1327 }
1328 
1329 StoreRef
1330 RegionStoreManager::invalidateRegions(Store store,
1331  ArrayRef<SVal> Values,
1332  const Expr *Ex, unsigned Count,
1333  const LocationContext *LCtx,
1334  const CallEvent *Call,
1335  InvalidatedSymbols &IS,
1336  RegionAndSymbolInvalidationTraits &ITraits,
1337  InvalidatedRegions *TopLevelRegions,
1338  InvalidatedRegions *Invalidated) {
1339  GlobalsFilterKind GlobalsFilter;
1340  if (Call) {
1341  if (Call->isInSystemHeader())
1342  GlobalsFilter = GFK_SystemOnly;
1343  else
1344  GlobalsFilter = GFK_All;
1345  } else {
1346  GlobalsFilter = GFK_None;
1347  }
1348 
1349  RegionBindingsRef B = getRegionBindings(store);
1350  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1351  Invalidated, GlobalsFilter);
1352 
1353  // Scan the bindings and generate the clusters.
1354  W.GenerateClusters();
1355 
1356  // Add the regions to the worklist.
1357  populateWorkList(W, Values, TopLevelRegions);
1358 
1359  W.RunWorkList();
1360 
1361  // Return the new bindings.
1362  B = W.getRegionBindings();
1363 
1364  // For calls, determine which global regions should be invalidated and
1365  // invalidate them. (Note that function-static and immutable globals are never
1366  // invalidated by this.)
1367  // TODO: This could possibly be more precise with modules.
1368  switch (GlobalsFilter) {
1369  case GFK_All:
1370  B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1371  Ex, Count, LCtx, B, Invalidated);
1372  LLVM_FALLTHROUGH;
1373  case GFK_SystemOnly:
1374  B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1375  Ex, Count, LCtx, B, Invalidated);
1376  LLVM_FALLTHROUGH;
1377  case GFK_None:
1378  break;
1379  }
1380 
1381  return StoreRef(B.asStore(), *this);
1382 }
1383 
1384 //===----------------------------------------------------------------------===//
1385 // Location and region casting.
1386 //===----------------------------------------------------------------------===//
1387 
1388 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1389 /// type. 'Array' represents the lvalue of the array being decayed
1390 /// to a pointer, and the returned SVal represents the decayed
1391 /// version of that lvalue (i.e., a pointer to the first element of
1392 /// the array). This is called by ExprEngine when evaluating casts
1393 /// from arrays to pointers.
1394 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1395  if (Array.getAs<loc::ConcreteInt>())
1396  return Array;
1397 
1398  if (!Array.getAs<loc::MemRegionVal>())
1399  return UnknownVal();
1400 
1401  const SubRegion *R =
1402  cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1403  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1404  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1405 }
1406 
1407 //===----------------------------------------------------------------------===//
1408 // Loading values from regions.
1409 //===----------------------------------------------------------------------===//
1410 
1411 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1412  assert(!L.getAs<UnknownVal>() && "location unknown");
1413  assert(!L.getAs<UndefinedVal>() && "location undefined");
1414 
1415  // For access to concrete addresses, return UnknownVal. Checks
1416  // for null dereferences (and similar errors) are done by checkers, not
1417  // the Store.
1418  // FIXME: We can consider lazily symbolicating such memory, but we really
1419  // should defer this when we can reason easily about symbolicating arrays
1420  // of bytes.
1421  if (L.getAs<loc::ConcreteInt>()) {
1422  return UnknownVal();
1423  }
1424  if (!L.getAs<loc::MemRegionVal>()) {
1425  return UnknownVal();
1426  }
1427 
1428  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1429 
1430  if (isa<BlockDataRegion>(MR)) {
1431  return UnknownVal();
1432  }
1433 
1434  if (!isa<TypedValueRegion>(MR)) {
1435  if (T.isNull()) {
1436  if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1437  T = TR->getLocationType()->getPointeeType();
1438  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1439  T = SR->getSymbol()->getType()->getPointeeType();
1440  }
1441  assert(!T.isNull() && "Unable to auto-detect binding type!");
1442  assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1443  MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1444  } else {
1445  T = cast<TypedValueRegion>(MR)->getValueType();
1446  }
1447 
1448  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1449  // instead of 'Loc', and have the other Loc cases handled at a higher level.
1450  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1451  QualType RTy = R->getValueType();
1452 
1453  // FIXME: we do not yet model the parts of a complex type, so treat the
1454  // whole thing as "unknown".
1455  if (RTy->isAnyComplexType())
1456  return UnknownVal();
1457 
1458  // FIXME: We should eventually handle funny addressing. e.g.:
1459  //
1460  // int x = ...;
1461  // int *p = &x;
1462  // char *q = (char*) p;
1463  // char c = *q; // returns the first byte of 'x'.
1464  //
1465  // Such funny addressing will occur due to layering of regions.
1466  if (RTy->isStructureOrClassType())
1467  return getBindingForStruct(B, R);
1468 
1469  // FIXME: Handle unions.
1470  if (RTy->isUnionType())
1471  return createLazyBinding(B, R);
1472 
1473  if (RTy->isArrayType()) {
1474  if (RTy->isConstantArrayType())
1475  return getBindingForArray(B, R);
1476  else
1477  return UnknownVal();
1478  }
1479 
1480  // FIXME: handle Vector types.
1481  if (RTy->isVectorType())
1482  return UnknownVal();
1483 
1484  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1485  return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1486 
1487  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1488  // FIXME: Here we actually perform an implicit conversion from the loaded
1489  // value to the element type. Eventually we want to compose these values
1490  // more intelligently. For example, an 'element' can encompass multiple
1491  // bound regions (e.g., several bound bytes), or could be a subset of
1492  // a larger value.
1493  return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1494  }
1495 
1496  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1497  // FIXME: Here we actually perform an implicit conversion from the loaded
1498  // value to the ivar type. What we should model is stores to ivars
1499  // that blow past the extent of the ivar. If the address of the ivar is
1500  // reinterpretted, it is possible we stored a different value that could
1501  // fit within the ivar. Either we need to cast these when storing them
1502  // or reinterpret them lazily (as we do here).
1503  return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1504  }
1505 
1506  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1507  // FIXME: Here we actually perform an implicit conversion from the loaded
1508  // value to the variable type. What we should model is stores to variables
1509  // that blow past the extent of the variable. If the address of the
1510  // variable is reinterpretted, it is possible we stored a different value
1511  // that could fit within the variable. Either we need to cast these when
1512  // storing them or reinterpret them lazily (as we do here).
1513  return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1514  }
1515 
1516  const SVal *V = B.lookup(R, BindingKey::Direct);
1517 
1518  // Check if the region has a binding.
1519  if (V)
1520  return *V;
1521 
1522  // The location does not have a bound value. This means that it has
1523  // the value it had upon its creation and/or entry to the analyzed
1524  // function/method. These are either symbolic values or 'undefined'.
1525  if (R->hasStackNonParametersStorage()) {
1526  // All stack variables are considered to have undefined values
1527  // upon creation. All heap allocated blocks are considered to
1528  // have undefined values as well unless they are explicitly bound
1529  // to specific values.
1530  return UndefinedVal();
1531  }
1532 
1533  // All other values are symbolic.
1534  return svalBuilder.getRegionValueSymbolVal(R);
1535 }
1536 
1537 static QualType getUnderlyingType(const SubRegion *R) {
1538  QualType RegionTy;
1539  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1540  RegionTy = TVR->getValueType();
1541 
1542  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1543  RegionTy = SR->getSymbol()->getType();
1544 
1545  return RegionTy;
1546 }
1547 
1548 /// Checks to see if store \p B has a lazy binding for region \p R.
1549 ///
1550 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1551 /// if there are additional bindings within \p R.
1552 ///
1553 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1554 /// for lazy bindings for super-regions of \p R.
1557  const SubRegion *R, bool AllowSubregionBindings) {
1558  Optional<SVal> V = B.getDefaultBinding(R);
1559  if (!V)
1560  return None;
1561 
1562  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1563  if (!LCV)
1564  return None;
1565 
1566  // If the LCV is for a subregion, the types might not match, and we shouldn't
1567  // reuse the binding.
1568  QualType RegionTy = getUnderlyingType(R);
1569  if (!RegionTy.isNull() &&
1570  !RegionTy->isVoidPointerType()) {
1571  QualType SourceRegionTy = LCV->getRegion()->getValueType();
1572  if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1573  return None;
1574  }
1575 
1576  if (!AllowSubregionBindings) {
1577  // If there are any other bindings within this region, we shouldn't reuse
1578  // the top-level binding.
1580  collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1581  /*IncludeAllDefaultBindings=*/true);
1582  if (Bindings.size() > 1)
1583  return None;
1584  }
1585 
1586  return *LCV;
1587 }
1588 
1589 
1590 std::pair<Store, const SubRegion *>
1591 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1592  const SubRegion *R,
1593  const SubRegion *originalRegion) {
1594  if (originalRegion != R) {
1596  getExistingLazyBinding(svalBuilder, B, R, true))
1597  return std::make_pair(V->getStore(), V->getRegion());
1598  }
1599 
1600  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1601  StoreRegionPair Result = StoreRegionPair();
1602 
1603  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1604  Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1605  originalRegion);
1606 
1607  if (Result.second)
1608  Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1609 
1610  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1611  Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1612  originalRegion);
1613 
1614  if (Result.second)
1615  Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1616 
1617  } else if (const CXXBaseObjectRegion *BaseReg =
1618  dyn_cast<CXXBaseObjectRegion>(R)) {
1619  // C++ base object region is another kind of region that we should blast
1620  // through to look for lazy compound value. It is like a field region.
1621  Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1622  originalRegion);
1623 
1624  if (Result.second)
1625  Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1626  Result.second);
1627  }
1628 
1629  return Result;
1630 }
1631 
1632 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1633  RegionBindingsConstRef B, const VarRegion *VR, const ElementRegion *R) {
1634  assert(R && VR && "Regions should not be null");
1635 
1636  // Check if the containing array has an initialized value that we can trust.
1637  // We can trust a const value or a value of a global initializer in main().
1638  const VarDecl *VD = VR->getDecl();
1639  if (!VD->getType().isConstQualified() &&
1640  !R->getElementType().isConstQualified() &&
1641  (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1642  return None;
1643 
1644  // Array's declaration should have `ConstantArrayType` type, because only this
1645  // type contains an array extent. It may happen that array type can be of
1646  // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1647  // type, we should find the declaration in the redeclarations chain that has
1648  // the initialization expression.
1649  // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1650  // from which an initializer is obtained. We replace current `VD` with the new
1651  // `VD`. If the return value of the function is null than `VD` won't be
1652  // replaced.
1653  const Expr *Init = VD->getAnyInitializer(VD);
1654  // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1655  // `Init` for null only and don't worry about the replaced `VD`.
1656  if (!Init)
1657  return None;
1658 
1659  // Array's declaration should have ConstantArrayType type, because only this
1660  // type contains an array extent.
1661  const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1662  if (!CAT)
1663  return None;
1664 
1665  // Array should be one-dimensional.
1666  // TODO: Support multidimensional array.
1667  if (isa<ConstantArrayType>(CAT->getElementType())) // is multidimensional
1668  return None;
1669 
1670  // Array's offset should be a concrete value.
1671  // Return Unknown value if symbolic index presented.
1672  // FIXME: We also need to take ElementRegions with symbolic
1673  // indexes into account.
1674  const auto OffsetVal = R->getIndex().getAs<nonloc::ConcreteInt>();
1675  if (!OffsetVal.hasValue())
1676  return UnknownVal();
1677 
1678  // Check offset for being out of bounds.
1679  // C++20 [expr.add] 7.6.6.4 (excerpt):
1680  // If P points to an array element i of an array object x with n
1681  // elements, where i < 0 or i > n, the behavior is undefined.
1682  // Dereferencing is not allowed on the "one past the last
1683  // element", when i == n.
1684  // Example:
1685  // const int arr[4] = {1, 2};
1686  // const int *ptr = arr;
1687  // int x0 = ptr[0]; // 1
1688  // int x1 = ptr[1]; // 2
1689  // int x2 = ptr[2]; // 0
1690  // int x3 = ptr[3]; // 0
1691  // int x4 = ptr[4]; // UB
1692  // int x5 = ptr[-1]; // UB
1693  const llvm::APSInt &OffsetInt = OffsetVal->getValue();
1694  const auto Offset = static_cast<uint64_t>(OffsetInt.getExtValue());
1695  // Use `getZExtValue` because array extent can not be negative.
1696  const uint64_t Extent = CAT->getSize().getZExtValue();
1697  // Check for `OffsetInt < 0` but NOT for `Offset < 0`, because `OffsetInt`
1698  // CAN be negative, but `Offset` can NOT, because `Offset` is an uint64_t.
1699  if (OffsetInt < 0 || Offset >= Extent)
1700  return UndefinedVal();
1701  // From here `Offset` is in the bounds.
1702 
1703  // Handle InitListExpr.
1704  if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1705  return getSValFromInitListExpr(ILE, Offset, R->getElementType());
1706 
1707  // FIXME: Handle StringLiteral.
1708 
1709  // FIXME: Handle CompoundLiteralExpr.
1710 
1711  return None;
1712 }
1713 
1715 RegionStoreManager::getSValFromInitListExpr(const InitListExpr *ILE,
1716  uint64_t Offset, QualType ElemT) {
1717  assert(ILE && "InitListExpr should not be null");
1718 
1719  // C++20 [expr.add] 9.4.17.5 (excerpt):
1720  // i-th array element is value-initialized for each k < i ≤ n,
1721  // where k is an expression-list size and n is an array extent.
1722  if (Offset >= ILE->getNumInits())
1723  return svalBuilder.makeZeroVal(ElemT);
1724 
1725  // Return a constant value, if it is presented.
1726  // FIXME: Support other SVals.
1727  const Expr *E = ILE->getInit(Offset);
1728  return svalBuilder.getConstantVal(E);
1729 }
1730 
1731 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1732  const ElementRegion* R) {
1733  // Check if the region has a binding.
1734  if (const Optional<SVal> &V = B.getDirectBinding(R))
1735  return *V;
1736 
1737  const MemRegion* superR = R->getSuperRegion();
1738 
1739  // Check if the region is an element region of a string literal.
1740  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1741  // FIXME: Handle loads from strings where the literal is treated as
1742  // an integer, e.g., *((unsigned int*)"hello")
1743  QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1744  if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1745  return UnknownVal();
1746 
1747  const StringLiteral *Str = StrR->getStringLiteral();
1748  SVal Idx = R->getIndex();
1749  if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1750  int64_t i = CI->getValue().getSExtValue();
1751  // Abort on string underrun. This can be possible by arbitrary
1752  // clients of getBindingForElement().
1753  if (i < 0)
1754  return UndefinedVal();
1755  int64_t length = Str->getLength();
1756  // Technically, only i == length is guaranteed to be null.
1757  // However, such overflows should be caught before reaching this point;
1758  // the only time such an access would be made is if a string literal was
1759  // used to initialize a larger array.
1760  char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1761  return svalBuilder.makeIntVal(c, T);
1762  }
1763  } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1764  if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, VR, R))
1765  return *V;
1766  }
1767 
1768  // Check for loads from a code text region. For such loads, just give up.
1769  if (isa<CodeTextRegion>(superR))
1770  return UnknownVal();
1771 
1772  // Handle the case where we are indexing into a larger scalar object.
1773  // For example, this handles:
1774  // int x = ...
1775  // char *y = &x;
1776  // return *y;
1777  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1778  const RegionRawOffset &O = R->getAsArrayOffset();
1779 
1780  // If we cannot reason about the offset, return an unknown value.
1781  if (!O.getRegion())
1782  return UnknownVal();
1783 
1784  if (const TypedValueRegion *baseR =
1785  dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1786  QualType baseT = baseR->getValueType();
1787  if (baseT->isScalarType()) {
1788  QualType elemT = R->getElementType();
1789  if (elemT->isScalarType()) {
1790  if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1791  if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1792  if (SymbolRef parentSym = V->getAsSymbol())
1793  return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1794 
1795  if (V->isUnknownOrUndef())
1796  return *V;
1797  // Other cases: give up. We are indexing into a larger object
1798  // that has some value, but we don't know how to handle that yet.
1799  return UnknownVal();
1800  }
1801  }
1802  }
1803  }
1804  }
1805  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1806 }
1807 
1808 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1809  const FieldRegion* R) {
1810 
1811  // Check if the region has a binding.
1812  if (const Optional<SVal> &V = B.getDirectBinding(R))
1813  return *V;
1814 
1815  // Is the field declared constant and has an in-class initializer?
1816  const FieldDecl *FD = R->getDecl();
1817  QualType Ty = FD->getType();
1818  if (Ty.isConstQualified())
1819  if (const Expr *Init = FD->getInClassInitializer())
1820  if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1821  return *V;
1822 
1823  // If the containing record was initialized, try to get its constant value.
1824  const MemRegion* superR = R->getSuperRegion();
1825  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1826  const VarDecl *VD = VR->getDecl();
1827  QualType RecordVarTy = VD->getType();
1828  unsigned Index = FD->getFieldIndex();
1829  // Either the record variable or the field has an initializer that we can
1830  // trust. We trust initializers of constants and, additionally, respect
1831  // initializers of globals when analyzing main().
1832  if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1833  (B.isMainAnalysis() && VD->hasGlobalStorage()))
1834  if (const Expr *Init = VD->getAnyInitializer())
1835  if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1836  if (Index < InitList->getNumInits()) {
1837  if (const Expr *FieldInit = InitList->getInit(Index))
1838  if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1839  return *V;
1840  } else {
1841  return svalBuilder.makeZeroVal(Ty);
1842  }
1843  }
1844  }
1845 
1846  return getBindingForFieldOrElementCommon(B, R, Ty);
1847 }
1848 
1850 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1851  const MemRegion *superR,
1852  const TypedValueRegion *R,
1853  QualType Ty) {
1854 
1855  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1856  const SVal &val = D.getValue();
1857  if (SymbolRef parentSym = val.getAsSymbol())
1858  return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1859 
1860  if (val.isZeroConstant())
1861  return svalBuilder.makeZeroVal(Ty);
1862 
1863  if (val.isUnknownOrUndef())
1864  return val;
1865 
1866  // Lazy bindings are usually handled through getExistingLazyBinding().
1867  // We should unify these two code paths at some point.
1868  if (val.getAs<nonloc::LazyCompoundVal>() ||
1869  val.getAs<nonloc::CompoundVal>())
1870  return val;
1871 
1872  llvm_unreachable("Unknown default value");
1873  }
1874 
1875  return None;
1876 }
1877 
1878 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1879  RegionBindingsRef LazyBinding) {
1880  SVal Result;
1881  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1882  Result = getBindingForElement(LazyBinding, ER);
1883  else
1884  Result = getBindingForField(LazyBinding,
1885  cast<FieldRegion>(LazyBindingRegion));
1886 
1887  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1888  // default value for /part/ of an aggregate from a default value for the
1889  // /entire/ aggregate. The most common case of this is when struct Outer
1890  // has as its first member a struct Inner, which is copied in from a stack
1891  // variable. In this case, even if the Outer's default value is symbolic, 0,
1892  // or unknown, it gets overridden by the Inner's default value of undefined.
1893  //
1894  // This is a general problem -- if the Inner is zero-initialized, the Outer
1895  // will now look zero-initialized. The proper way to solve this is with a
1896  // new version of RegionStore that tracks the extent of a binding as well
1897  // as the offset.
1898  //
1899  // This hack only takes care of the undefined case because that can very
1900  // quickly result in a warning.
1901  if (Result.isUndef())
1902  Result = UnknownVal();
1903 
1904  return Result;
1905 }
1906 
1907 SVal
1908 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1909  const TypedValueRegion *R,
1910  QualType Ty) {
1911 
1912  // At this point we have already checked in either getBindingForElement or
1913  // getBindingForField if 'R' has a direct binding.
1914 
1915  // Lazy binding?
1916  Store lazyBindingStore = nullptr;
1917  const SubRegion *lazyBindingRegion = nullptr;
1918  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1919  if (lazyBindingRegion)
1920  return getLazyBinding(lazyBindingRegion,
1921  getRegionBindings(lazyBindingStore));
1922 
1923  // Record whether or not we see a symbolic index. That can completely
1924  // be out of scope of our lookup.
1925  bool hasSymbolicIndex = false;
1926 
1927  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1928  // default value for /part/ of an aggregate from a default value for the
1929  // /entire/ aggregate. The most common case of this is when struct Outer
1930  // has as its first member a struct Inner, which is copied in from a stack
1931  // variable. In this case, even if the Outer's default value is symbolic, 0,
1932  // or unknown, it gets overridden by the Inner's default value of undefined.
1933  //
1934  // This is a general problem -- if the Inner is zero-initialized, the Outer
1935  // will now look zero-initialized. The proper way to solve this is with a
1936  // new version of RegionStore that tracks the extent of a binding as well
1937  // as the offset.
1938  //
1939  // This hack only takes care of the undefined case because that can very
1940  // quickly result in a warning.
1941  bool hasPartialLazyBinding = false;
1942 
1943  const SubRegion *SR = R;
1944  while (SR) {
1945  const MemRegion *Base = SR->getSuperRegion();
1946  if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1947  if (D->getAs<nonloc::LazyCompoundVal>()) {
1948  hasPartialLazyBinding = true;
1949  break;
1950  }
1951 
1952  return *D;
1953  }
1954 
1955  if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1956  NonLoc index = ER->getIndex();
1957  if (!index.isConstant())
1958  hasSymbolicIndex = true;
1959  }
1960 
1961  // If our super region is a field or element itself, walk up the region
1962  // hierarchy to see if there is a default value installed in an ancestor.
1963  SR = dyn_cast<SubRegion>(Base);
1964  }
1965 
1966  if (R->hasStackNonParametersStorage()) {
1967  if (isa<ElementRegion>(R)) {
1968  // Currently we don't reason specially about Clang-style vectors. Check
1969  // if superR is a vector and if so return Unknown.
1970  if (const TypedValueRegion *typedSuperR =
1971  dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1972  if (typedSuperR->getValueType()->isVectorType())
1973  return UnknownVal();
1974  }
1975  }
1976 
1977  // FIXME: We also need to take ElementRegions with symbolic indexes into
1978  // account. This case handles both directly accessing an ElementRegion
1979  // with a symbolic offset, but also fields within an element with
1980  // a symbolic offset.
1981  if (hasSymbolicIndex)
1982  return UnknownVal();
1983 
1984  // Additionally allow introspection of a block's internal layout.
1985  if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
1986  return UndefinedVal();
1987  }
1988 
1989  // All other values are symbolic.
1990  return svalBuilder.getRegionValueSymbolVal(R);
1991 }
1992 
1993 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1994  const ObjCIvarRegion* R) {
1995  // Check if the region has a binding.
1996  if (const Optional<SVal> &V = B.getDirectBinding(R))
1997  return *V;
1998 
1999  const MemRegion *superR = R->getSuperRegion();
2000 
2001  // Check if the super region has a default binding.
2002  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
2003  if (SymbolRef parentSym = V->getAsSymbol())
2004  return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2005 
2006  // Other cases: give up.
2007  return UnknownVal();
2008  }
2009 
2010  return getBindingForLazySymbol(R);
2011 }
2012 
2013 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2014  const VarRegion *R) {
2015 
2016  // Check if the region has a binding.
2017  if (Optional<SVal> V = B.getDirectBinding(R))
2018  return *V;
2019 
2020  if (Optional<SVal> V = B.getDefaultBinding(R))
2021  return *V;
2022 
2023  // Lazily derive a value for the VarRegion.
2024  const VarDecl *VD = R->getDecl();
2025  const MemSpaceRegion *MS = R->getMemorySpace();
2026 
2027  // Arguments are always symbolic.
2028  if (isa<StackArgumentsSpaceRegion>(MS))
2029  return svalBuilder.getRegionValueSymbolVal(R);
2030 
2031  // Is 'VD' declared constant? If so, retrieve the constant value.
2032  if (VD->getType().isConstQualified()) {
2033  if (const Expr *Init = VD->getAnyInitializer()) {
2034  if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2035  return *V;
2036 
2037  // If the variable is const qualified and has an initializer but
2038  // we couldn't evaluate initializer to a value, treat the value as
2039  // unknown.
2040  return UnknownVal();
2041  }
2042  }
2043 
2044  // This must come after the check for constants because closure-captured
2045  // constant variables may appear in UnknownSpaceRegion.
2046  if (isa<UnknownSpaceRegion>(MS))
2047  return svalBuilder.getRegionValueSymbolVal(R);
2048 
2049  if (isa<GlobalsSpaceRegion>(MS)) {
2050  QualType T = VD->getType();
2051 
2052  // If we're in main(), then global initializers have not become stale yet.
2053  if (B.isMainAnalysis())
2054  if (const Expr *Init = VD->getAnyInitializer())
2055  if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2056  return *V;
2057 
2058  // Function-scoped static variables are default-initialized to 0; if they
2059  // have an initializer, it would have been processed by now.
2060  // FIXME: This is only true when we're starting analysis from main().
2061  // We're losing a lot of coverage here.
2062  if (isa<StaticGlobalSpaceRegion>(MS))
2063  return svalBuilder.makeZeroVal(T);
2064 
2065  if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2066  assert(!V->getAs<nonloc::LazyCompoundVal>());
2067  return V.getValue();
2068  }
2069 
2070  return svalBuilder.getRegionValueSymbolVal(R);
2071  }
2072 
2073  return UndefinedVal();
2074 }
2075 
2076 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2077  // All other values are symbolic.
2078  return svalBuilder.getRegionValueSymbolVal(R);
2079 }
2080 
2081 const RegionStoreManager::SValListTy &
2082 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2083  // First, check the cache.
2084  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2085  if (I != LazyBindingsMap.end())
2086  return I->second;
2087 
2088  // If we don't have a list of values cached, start constructing it.
2089  SValListTy List;
2090 
2091  const SubRegion *LazyR = LCV.getRegion();
2092  RegionBindingsRef B = getRegionBindings(LCV.getStore());
2093 
2094  // If this region had /no/ bindings at the time, there are no interesting
2095  // values to return.
2096  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2097  if (!Cluster)
2098  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2099 
2101  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2102  /*IncludeAllDefaultBindings=*/true);
2104  E = Bindings.end();
2105  I != E; ++I) {
2106  SVal V = I->second;
2107  if (V.isUnknownOrUndef() || V.isConstant())
2108  continue;
2109 
2110  if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2111  V.getAs<nonloc::LazyCompoundVal>()) {
2112  const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2113  List.insert(List.end(), InnerList.begin(), InnerList.end());
2114  continue;
2115  }
2116 
2117  List.push_back(V);
2118  }
2119 
2120  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2121 }
2122 
2123 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2124  const TypedValueRegion *R) {
2126  getExistingLazyBinding(svalBuilder, B, R, false))
2127  return *V;
2128 
2129  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2130 }
2131 
2132 static bool isRecordEmpty(const RecordDecl *RD) {
2133  if (!RD->field_empty())
2134  return false;
2135  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2136  return CRD->getNumBases() == 0;
2137  return true;
2138 }
2139 
2140 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2141  const TypedValueRegion *R) {
2142  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2143  if (!RD->getDefinition() || isRecordEmpty(RD))
2144  return UnknownVal();
2145 
2146  return createLazyBinding(B, R);
2147 }
2148 
2149 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2150  const TypedValueRegion *R) {
2151  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2152  "Only constant array types can have compound bindings.");
2153 
2154  return createLazyBinding(B, R);
2155 }
2156 
2157 bool RegionStoreManager::includedInBindings(Store store,
2158  const MemRegion *region) const {
2159  RegionBindingsRef B = getRegionBindings(store);
2160  region = region->getBaseRegion();
2161 
2162  // Quick path: if the base is the head of a cluster, the region is live.
2163  if (B.lookup(region))
2164  return true;
2165 
2166  // Slow path: if the region is the VALUE of any binding, it is live.
2167  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2168  const ClusterBindings &Cluster = RI.getData();
2169  for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2170  CI != CE; ++CI) {
2171  const SVal &D = CI.getData();
2172  if (const MemRegion *R = D.getAsRegion())
2173  if (R->getBaseRegion() == region)
2174  return true;
2175  }
2176  }
2177 
2178  return false;
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 // Binding values to regions.
2183 //===----------------------------------------------------------------------===//
2184 
2185 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2186  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2187  if (const MemRegion* R = LV->getRegion())
2188  return StoreRef(getRegionBindings(ST).removeBinding(R)
2189  .asImmutableMap()
2190  .getRootWithoutRetain(),
2191  *this);
2192 
2193  return StoreRef(ST, *this);
2194 }
2195 
2196 RegionBindingsRef
2197 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2198  if (L.getAs<loc::ConcreteInt>())
2199  return B;
2200 
2201  // If we get here, the location should be a region.
2202  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2203 
2204  // Check if the region is a struct region.
2205  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2206  QualType Ty = TR->getValueType();
2207  if (Ty->isArrayType())
2208  return bindArray(B, TR, V);
2209  if (Ty->isStructureOrClassType())
2210  return bindStruct(B, TR, V);
2211  if (Ty->isVectorType())
2212  return bindVector(B, TR, V);
2213  if (Ty->isUnionType())
2214  return bindAggregate(B, TR, V);
2215  }
2216 
2217  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2218  // Binding directly to a symbolic region should be treated as binding
2219  // to element 0.
2220  QualType T = SR->getSymbol()->getType();
2221  if (T->isAnyPointerType() || T->isReferenceType())
2222  T = T->getPointeeType();
2223 
2224  R = GetElementZeroRegion(SR, T);
2225  }
2226 
2227  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2228  "'this' pointer is not an l-value and is not assignable");
2229 
2230  // Clear out bindings that may overlap with this binding.
2231  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2232  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2233 }
2234 
2235 RegionBindingsRef
2236 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2237  const MemRegion *R,
2238  QualType T) {
2239  SVal V;
2240 
2241  if (Loc::isLocType(T))
2242  V = svalBuilder.makeNull();
2243  else if (T->isIntegralOrEnumerationType())
2244  V = svalBuilder.makeZeroVal(T);
2245  else if (T->isStructureOrClassType() || T->isArrayType()) {
2246  // Set the default value to a zero constant when it is a structure
2247  // or array. The type doesn't really matter.
2248  V = svalBuilder.makeZeroVal(Ctx.IntTy);
2249  }
2250  else {
2251  // We can't represent values of this type, but we still need to set a value
2252  // to record that the region has been initialized.
2253  // If this assertion ever fires, a new case should be added above -- we
2254  // should know how to default-initialize any value we can symbolicate.
2255  assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2256  V = UnknownVal();
2257  }
2258 
2259  return B.addBinding(R, BindingKey::Default, V);
2260 }
2261 
2262 RegionBindingsRef
2263 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2264  const TypedValueRegion* R,
2265  SVal Init) {
2266 
2267  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2268  QualType ElementTy = AT->getElementType();
2270 
2271  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2272  Size = CAT->getSize().getZExtValue();
2273 
2274  // Check if the init expr is a literal. If so, bind the rvalue instead.
2275  // FIXME: It's not responsibility of the Store to transform this lvalue
2276  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2277  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2278  SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2279  return bindAggregate(B, R, V);
2280  }
2281 
2282  // Handle lazy compound values.
2283  if (Init.getAs<nonloc::LazyCompoundVal>())
2284  return bindAggregate(B, R, Init);
2285 
2286  if (Init.isUnknown())
2287  return bindAggregate(B, R, UnknownVal());
2288 
2289  // Remaining case: explicit compound values.
2290  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2291  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2292  uint64_t i = 0;
2293 
2294  RegionBindingsRef NewB(B);
2295 
2296  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2297  // The init list might be shorter than the array length.
2298  if (VI == VE)
2299  break;
2300 
2301  const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2302  const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2303 
2304  if (ElementTy->isStructureOrClassType())
2305  NewB = bindStruct(NewB, ER, *VI);
2306  else if (ElementTy->isArrayType())
2307  NewB = bindArray(NewB, ER, *VI);
2308  else
2309  NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2310  }
2311 
2312  // If the init list is shorter than the array length (or the array has
2313  // variable length), set the array default value. Values that are already set
2314  // are not overwritten.
2315  if (!Size.hasValue() || i < Size.getValue())
2316  NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2317 
2318  return NewB;
2319 }
2320 
2321 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2322  const TypedValueRegion* R,
2323  SVal V) {
2324  QualType T = R->getValueType();
2325  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2326 
2327  // Handle lazy compound values and symbolic values.
2328  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2329  return bindAggregate(B, R, V);
2330 
2331  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2332  // that we are binding symbolic struct value. Kill the field values, and if
2333  // the value is symbolic go and bind it as a "default" binding.
2334  if (!V.getAs<nonloc::CompoundVal>()) {
2335  return bindAggregate(B, R, UnknownVal());
2336  }
2337 
2338  QualType ElemType = VT->getElementType();
2339  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2340  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2341  unsigned index = 0, numElements = VT->getNumElements();
2342  RegionBindingsRef NewB(B);
2343 
2344  for ( ; index != numElements ; ++index) {
2345  if (VI == VE)
2346  break;
2347 
2348  NonLoc Idx = svalBuilder.makeArrayIndex(index);
2349  const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2350 
2351  if (ElemType->isArrayType())
2352  NewB = bindArray(NewB, ER, *VI);
2353  else if (ElemType->isStructureOrClassType())
2354  NewB = bindStruct(NewB, ER, *VI);
2355  else
2356  NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2357  }
2358  return NewB;
2359 }
2360 
2362 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2363  const TypedValueRegion *R,
2364  const RecordDecl *RD,
2365  nonloc::LazyCompoundVal LCV) {
2366  FieldVector Fields;
2367 
2368  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2369  if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2370  return None;
2371 
2372  for (const auto *FD : RD->fields()) {
2373  if (FD->isUnnamedBitfield())
2374  continue;
2375 
2376  // If there are too many fields, or if any of the fields are aggregates,
2377  // just use the LCV as a default binding.
2378  if (Fields.size() == SmallStructLimit)
2379  return None;
2380 
2381  QualType Ty = FD->getType();
2382  if (!(Ty->isScalarType() || Ty->isReferenceType()))
2383  return None;
2384 
2385  Fields.push_back(FD);
2386  }
2387 
2388  RegionBindingsRef NewB = B;
2389 
2390  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2391  const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2392  SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2393 
2394  const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2395  NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2396  }
2397 
2398  return NewB;
2399 }
2400 
2401 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2402  const TypedValueRegion* R,
2403  SVal V) {
2404  if (!Features.supportsFields())
2405  return B;
2406 
2407  QualType T = R->getValueType();
2408  assert(T->isStructureOrClassType());
2409 
2410  const RecordType* RT = T->castAs<RecordType>();
2411  const RecordDecl *RD = RT->getDecl();
2412 
2413  if (!RD->isCompleteDefinition())
2414  return B;
2415 
2416  // Handle lazy compound values and symbolic values.
2418  V.getAs<nonloc::LazyCompoundVal>()) {
2419  if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2420  return *NewB;
2421  return bindAggregate(B, R, V);
2422  }
2423  if (V.getAs<nonloc::SymbolVal>())
2424  return bindAggregate(B, R, V);
2425 
2426  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2427  // that we are binding symbolic struct value. Kill the field values, and if
2428  // the value is symbolic go and bind it as a "default" binding.
2429  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2430  return bindAggregate(B, R, UnknownVal());
2431 
2432  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2433  // list of other values. It appears pretty much only when there's an actual
2434  // initializer list expression in the program, and the analyzer tries to
2435  // unwrap it as soon as possible.
2436  // This code is where such unwrap happens: when the compound value is put into
2437  // the object that it was supposed to initialize (it's an *initializer* list,
2438  // after all), instead of binding the whole value to the whole object, we bind
2439  // sub-values to sub-objects. Sub-values may themselves be compound values,
2440  // and in this case the procedure becomes recursive.
2441  // FIXME: The annoying part about compound values is that they don't carry
2442  // any sort of information about which value corresponds to which sub-object.
2443  // It's simply a list of values in the middle of nowhere; we expect to match
2444  // them to sub-objects, essentially, "by index": first value binds to
2445  // the first field, second value binds to the second field, etc.
2446  // It would have been much safer to organize non-lazy compound values as
2447  // a mapping from fields/bases to values.
2448  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2449  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2450 
2451  RegionBindingsRef NewB(B);
2452 
2453  // In C++17 aggregates may have base classes, handle those as well.
2454  // They appear before fields in the initializer list / compound value.
2455  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2456  // If the object was constructed with a constructor, its value is a
2457  // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2458  // performing aggregate initialization. The only exception from this
2459  // rule is sending an Objective-C++ message that returns a C++ object
2460  // to a nil receiver; in this case the semantics is to return a
2461  // zero-initialized object even if it's a C++ object that doesn't have
2462  // this sort of constructor; the CompoundVal is empty in this case.
2463  assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2464  "Non-aggregates are constructed with a constructor!");
2465 
2466  for (const auto &B : CRD->bases()) {
2467  // (Multiple inheritance is fine though.)
2468  assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2469 
2470  if (VI == VE)
2471  break;
2472 
2473  QualType BTy = B.getType();
2474  assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2475 
2476  const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2477  assert(BRD && "Base classes must be C++ classes!");
2478 
2479  const CXXBaseObjectRegion *BR =
2480  MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2481 
2482  NewB = bindStruct(NewB, BR, *VI);
2483 
2484  ++VI;
2485  }
2486  }
2487 
2489 
2490  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2491 
2492  if (VI == VE)
2493  break;
2494 
2495  // Skip any unnamed bitfields to stay in sync with the initializers.
2496  if (FI->isUnnamedBitfield())
2497  continue;
2498 
2499  QualType FTy = FI->getType();
2500  const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2501 
2502  if (FTy->isArrayType())
2503  NewB = bindArray(NewB, FR, *VI);
2504  else if (FTy->isStructureOrClassType())
2505  NewB = bindStruct(NewB, FR, *VI);
2506  else
2507  NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2508  ++VI;
2509  }
2510 
2511  // There may be fewer values in the initialize list than the fields of struct.
2512  if (FI != FE) {
2513  NewB = NewB.addBinding(R, BindingKey::Default,
2514  svalBuilder.makeIntVal(0, false));
2515  }
2516 
2517  return NewB;
2518 }
2519 
2520 RegionBindingsRef
2521 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2522  const TypedRegion *R,
2523  SVal Val) {
2524  // Remove the old bindings, using 'R' as the root of all regions
2525  // we will invalidate. Then add the new binding.
2526  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2527 }
2528 
2529 //===----------------------------------------------------------------------===//
2530 // State pruning.
2531 //===----------------------------------------------------------------------===//
2532 
2533 namespace {
2534 class RemoveDeadBindingsWorker
2535  : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2537  SymbolReaper &SymReaper;
2538  const StackFrameContext *CurrentLCtx;
2539 
2540 public:
2541  RemoveDeadBindingsWorker(RegionStoreManager &rm,
2542  ProgramStateManager &stateMgr,
2543  RegionBindingsRef b, SymbolReaper &symReaper,
2544  const StackFrameContext *LCtx)
2545  : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2546  SymReaper(symReaper), CurrentLCtx(LCtx) {}
2547 
2548  // Called by ClusterAnalysis.
2549  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2550  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2551  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2552 
2553  using ClusterAnalysis::AddToWorkList;
2554 
2555  bool AddToWorkList(const MemRegion *R);
2556 
2557  bool UpdatePostponed();
2558  void VisitBinding(SVal V);
2559 };
2560 }
2561 
2562 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2563  const MemRegion *BaseR = R->getBaseRegion();
2564  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2565 }
2566 
2567 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2568  const ClusterBindings &C) {
2569 
2570  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2571  if (SymReaper.isLive(VR))
2572  AddToWorkList(baseR, &C);
2573 
2574  return;
2575  }
2576 
2577  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2578  if (SymReaper.isLive(SR->getSymbol()))
2579  AddToWorkList(SR, &C);
2580  else
2581  Postponed.push_back(SR);
2582 
2583  return;
2584  }
2585 
2586  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2587  AddToWorkList(baseR, &C);
2588  return;
2589  }
2590 
2591  // CXXThisRegion in the current or parent location context is live.
2592  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2593  const auto *StackReg =
2594  cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2595  const StackFrameContext *RegCtx = StackReg->getStackFrame();
2596  if (CurrentLCtx &&
2597  (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2598  AddToWorkList(TR, &C);
2599  }
2600 }
2601 
2602 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2603  const ClusterBindings *C) {
2604  if (!C)
2605  return;
2606 
2607  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2608  // This means we should continue to track that symbol.
2609  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2610  SymReaper.markLive(SymR->getSymbol());
2611 
2612  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2613  // Element index of a binding key is live.
2614  SymReaper.markElementIndicesLive(I.getKey().getRegion());
2615 
2616  VisitBinding(I.getData());
2617  }
2618 }
2619 
2620 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2621  // Is it a LazyCompoundVal? All referenced regions are live as well.
2623  V.getAs<nonloc::LazyCompoundVal>()) {
2624 
2625  const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2626 
2627  for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2628  E = Vals.end();
2629  I != E; ++I)
2630  VisitBinding(*I);
2631 
2632  return;
2633  }
2634 
2635  // If V is a region, then add it to the worklist.
2636  if (const MemRegion *R = V.getAsRegion()) {
2637  AddToWorkList(R);
2638  SymReaper.markLive(R);
2639 
2640  // All regions captured by a block are also live.
2641  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2642  BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2643  E = BR->referenced_vars_end();
2644  for ( ; I != E; ++I)
2645  AddToWorkList(I.getCapturedRegion());
2646  }
2647  }
2648 
2649 
2650  // Update the set of live symbols.
2651  for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2652  SymReaper.markLive(*SI);
2653 }
2654 
2655 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2656  // See if any postponed SymbolicRegions are actually live now, after
2657  // having done a scan.
2658  bool Changed = false;
2659 
2660  for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2661  if (const SymbolicRegion *SR = *I) {
2662  if (SymReaper.isLive(SR->getSymbol())) {
2663  Changed |= AddToWorkList(SR);
2664  *I = nullptr;
2665  }
2666  }
2667  }
2668 
2669  return Changed;
2670 }
2671 
2672 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2673  const StackFrameContext *LCtx,
2674  SymbolReaper& SymReaper) {
2675  RegionBindingsRef B = getRegionBindings(store);
2676  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2677  W.GenerateClusters();
2678 
2679  // Enqueue the region roots onto the worklist.
2680  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2681  E = SymReaper.region_end(); I != E; ++I) {
2682  W.AddToWorkList(*I);
2683  }
2684 
2685  do W.RunWorkList(); while (W.UpdatePostponed());
2686 
2687  // We have now scanned the store, marking reachable regions and symbols
2688  // as live. We now remove all the regions that are dead from the store
2689  // as well as update DSymbols with the set symbols that are now dead.
2690  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2691  const MemRegion *Base = I.getKey();
2692 
2693  // If the cluster has been visited, we know the region has been marked.
2694  // Otherwise, remove the dead entry.
2695  if (!W.isVisited(Base))
2696  B = B.remove(Base);
2697  }
2698 
2699  return StoreRef(B.asStore(), *this);
2700 }
2701 
2702 //===----------------------------------------------------------------------===//
2703 // Utility methods.
2704 //===----------------------------------------------------------------------===//
2705 
2706 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2707  unsigned int Space, bool IsDot) const {
2708  RegionBindingsRef Bindings = getRegionBindings(S);
2709 
2710  Indent(Out, Space, IsDot) << "\"store\": ";
2711 
2712  if (Bindings.isEmpty()) {
2713  Out << "null," << NL;
2714  return;
2715  }
2716 
2717  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2718  Bindings.printJson(Out, NL, Space + 1, IsDot);
2719  Indent(Out, Space, IsDot) << "]}," << NL;
2720 }
clang::ASTContext::getTypeSizeInChars
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
Definition: ASTContext.cpp:2450
clang::ento::Loc::isLocType
static bool isLocType(QualType T)
Definition: SVals.h:336
clang::Type::isRecordType
bool isRecordType() const
Definition: Type.h:6762
clang::ast_matchers::StatementMatcher
internal::Matcher< Stmt > StatementMatcher
Definition: ASTMatchers.h:142
clang::StringLiteral::getCodeUnit
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1859
llvm
Definition: Dominators.h:30
clang::DeclContext::specific_decl_iterator
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2135
clang::index::SymbolKind::Class
@ Class
clang::LocationContext
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
Definition: AnalysisDeclContext.h:215
clang::LocationContext::getStackFrame
const StackFrameContext * getStackFrame() const
Definition: AnalysisDeclContext.cpp:463
clang::ast_matchers::stmt
const internal::VariadicAllOfMatcher< Stmt > stmt
Matches statements.
Definition: ASTMatchersInternal.cpp:809
clang::Type::isVoidPointerType
bool isVoidPointerType() const
Definition: Type.cpp:589
clang::Decl::hasAttr
bool hasAttr() const
Definition: DeclBase.h:547
clang::VarDecl::hasGlobalStorage
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1143
getSymbolicOffsetFields
static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields)
Definition: RegionStore.cpp:817
clang::QualType::isConstQualified
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6483
clang::ConstantArrayType
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2929
clang::FieldDecl::isUnnamedBitfield
bool isUnnamedBitfield() const
Determines whether this is an unnamed bitfield.
Definition: Decl.h:2916
clang::ConstantArrayType::getSize
const llvm::APInt & getSize() const
Definition: Type.h:2952
AnalysisDeclContext.h
llvm::SmallVector
Definition: LLVM.h:38
clang::RecordDecl::field_empty
bool field_empty() const
Definition: Decl.h:4091
clang::ento::SymbolReaper::region_iterator
RegionSetTy::const_iterator region_iterator
Definition: SymbolManager.h:561
TargetInfo.h
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:673
clang::Decl::add
static void add(Kind k)
Definition: DeclBase.cpp:193
Attr.h
clang::Type::isScalarType
bool isScalarType() const
Definition: Type.h:7042
isRecordEmpty
static bool isRecordEmpty(const RecordDecl *RD)
Definition: RegionStore.cpp:2132
AttributeLangSupport::C
@ C
Definition: SemaDeclAttr.cpp:54
ClusterBindings
llvm::ImmutableMap< BindingKey, SVal > ClusterBindings
Definition: RegionStore.cpp:146
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2835
FieldVector
SmallVector< const FieldDecl *, 8 > FieldVector
Definition: RegionStore.cpp:815
clang::FieldDecl::getInClassInitializer
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set.
Definition: Decl.h:2982
getExistingLazyBinding
static Optional< nonloc::LazyCompoundVal > getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, const SubRegion *R, bool AllowSubregionBindings)
Checks to see if store B has a lazy binding for region R.
Definition: RegionStore.cpp:1556
clang::ento::SymbolRef
const SymExpr * SymbolRef
Definition: SymExpr.h:110
clang::InitListExpr
Describes an C or C++ initializer list.
Definition: Expr.h:4786
clang::ento::StoreManager::InvalidatedRegions
SmallVector< const MemRegion *, 8 > InvalidatedRegions
Definition: Store.h:202
llvm::Optional
Definition: LLVM.h:40
clang::RecordDecl::getDefinition
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:4068
llvm::SmallPtrSet
Definition: ASTContext.h:82
clang::StackFrameContext
It represents a stack frame of the call stack (based on CallEvent).
Definition: AnalysisDeclContext.h:295
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:6955
clang::tooling::X
static ToolExecutorPluginRegistry::Add< AllTUsToolExecutorPlugin > X("all-TUs", "Runs FrontendActions on all TUs in the compilation database. " "Tool results are stored in memory.")
ASTMatchFinder.h
clang::index::SymbolRole::Call
@ Call
clang::ento::CreateRegionStoreManager
std::unique_ptr< StoreManager > CreateRegionStoreManager(ProgramStateManager &StMgr)
Definition: RegionStore.cpp:671
clang::ento::Store
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
Bindings
llvm::SmallVector< std::pair< const MemRegion *, SVal >, 4 > Bindings
Definition: RetainCountDiagnostics.cpp:616
b
__device__ __2f16 b
Definition: __clang_hip_libdevice_declares.h:314
RegionBindings
llvm::ImmutableMap< const MemRegion *, ClusterBindings > RegionBindings
Definition: RegionStore.cpp:151
CallEvent.h
Offset
unsigned Offset
Definition: Format.cpp:2335
clang::ento::RegionAndSymbolInvalidationTraits::TK_EntireMemSpace
@ TK_EntireMemSpace
When applied to a MemSpaceRegion, indicates the entire memory space should be invalidated.
Definition: MemRegion.h:1541
APSInt
llvm::APSInt APSInt
Definition: ByteCodeEmitter.cpp:19
clang::StructuralEquivalenceKind::Default
@ Default
clang::DependencyOutputFormat::Make
@ Make
JsonSupport.h
clang::Type::isReferenceType
bool isReferenceType() const
Definition: Type.h:6684
V
#define V(N, I)
Definition: ASTContext.h:3121
clang::RecordType
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4613
clang::ASTContext::getAsConstantArrayType
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2629
RegionBindingsConstRef
const typedef RegionBindingsRef & RegionBindingsConstRef
Definition: RegionStore.cpp:263
clang::ento::CreateFieldsOnlyRegionStoreManager
std::unique_ptr< StoreManager > CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr)
Definition: RegionStore.cpp:677
clang::XRayInstrKind::None
constexpr XRayInstrMask None
Definition: XRayInstr.h:38
LiveVariables.h
clang::ASTContext::getAsArrayType
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
Definition: ASTContext.cpp:6186
clang::VectorType
Represents a GCC generic vector type.
Definition: Type.h:3229
clang::ASTContext
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:212
collectSubRegionBindings
static void collectSubRegionBindings(SmallVectorImpl< BindingPair > &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, BindingKey TopKey, bool IncludeAllDefaultBindings)
Collects all bindings in Cluster that may refer to bindings within Top.
Definition: RegionStore.cpp:861
clang::ArrayType
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2883
clang::LocationContext::isParentOf
bool isParentOf(const LocationContext *LC) const
Definition: AnalysisDeclContext.cpp:477
clang::Type::isVectorType
bool isVectorType() const
Definition: Type.h:6774
clang::ASTContext::getTypeSize
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2245
uintptr_t
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c-base.h:124
clang::VarDecl
Represents a variable declaration or definition.
Definition: Decl.h:876
clang::Type::getPointeeType
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:625
isCompatibleWithFields
static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields)
Definition: RegionStore.cpp:832
clang::StringLiteral
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1761
clang::ASTContext::getCanonicalType
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2468
clang::Type::getAsCXXRecordDecl
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1760
length
float __ovld __cnfn length(float p)
Return the length of vector p, i.e., sqrt(p.x2 + p.y 2 + ...)
clang::Type::isAnyComplexType
bool isAnyComplexType() const
Definition: Type.h:6770
ClusterBindingsRef
llvm::ImmutableMapRef< BindingKey, SVal > ClusterBindingsRef
Definition: RegionStore.cpp:147
Base
clang::ento::MemRegion::Kind
Kind
Definition: MemRegion.h:96
CharUnits.h
clang::FieldDecl::getFieldIndex
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:4239
clang::Type::castAs
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7226
clang::transformer::remove
ASTEdit remove(RangeSelector S)
Removes the source selected by S.
Definition: RewriteRule.cpp:146
clang::CXXRecordDecl
Represents a C++ struct/union/class.
Definition: DeclCXX.h:255
clang::Type::isUnionType
bool isUnionType() const
Definition: Type.cpp:595
clang::Indent
raw_ostream & Indent(raw_ostream &Out, const unsigned int Space, bool IsDot)
Definition: JsonSupport.h:20
P
StringRef P
Definition: ASTMatchersInternal.cpp:563
clang::VarDecl::getAnyInitializer
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to.
Definition: Decl.h:1275
clang::serialized_diags::create
std::unique_ptr< DiagnosticConsumer > create(StringRef OutputFile, DiagnosticOptions *Diags, bool MergeChildRecords=false)
Returns a DiagnosticConsumer that serializes diagnostics to a bitcode file.
Definition: SerializedDiagnosticPrinter.cpp:302
clang::ento::nonloc::CompoundVal::iterator
llvm::ImmutableList< SVal >::iterator iterator
Definition: SVals.h:474
clang::ento::ProgramStateManager
Definition: ProgramState.h:463
clang::syntax::NodeRole::Size
@ Size
false
#define false
Definition: stdbool.h:17
clang::ASTContext::IntTy
CanQualType IntTy
Definition: ASTContext.h:1084
dump
static void dump(llvm::raw_ostream &OS, StringRef FunctionName, ArrayRef< CounterExpression > Expressions, ArrayRef< CounterMappingRegion > Regions)
Definition: CoverageMappingGen.cpp:1519
clang::RecordDecl::fields
field_range fields() const
Definition: Decl.h:4083
clang::QualType::isNull
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:738
llvm::ArrayRef
Definition: LLVM.h:34
getUnderlyingType
static QualType getUnderlyingType(const SubRegion *R)
Definition: RegionStore.cpp:1537
clang::AnalyzerOptions
Stores options for the analyzer from the command line.
Definition: AnalyzerOptions.h:163
clang::ast_matchers::hasDescendant
const internal::ArgumentAdaptingMatcherFunc< internal::HasDescendantMatcher > hasDescendant
Matches AST nodes that have descendant AST nodes that match the provided matcher.
Definition: ASTMatchersInternal.cpp:1009
clang::Type::isStructureOrClassType
bool isStructureOrClassType() const
Definition: Type.cpp:581
clang::ObjCPropertyAttribute::Kind
Kind
Definition: DeclObjCCommon.h:22
ProgramState.h
clang::ast_matchers::declRefExpr
const internal::VariadicDynCastAllOfMatcher< Stmt, DeclRefExpr > declRefExpr
Matches expressions that refer to declarations.
Definition: ASTMatchersInternal.cpp:890
std
Definition: Format.h:4034
ExprEngine.h
clang::ento::RegionAndSymbolInvalidationTraits::TK_PreserveContents
@ TK_PreserveContents
Tells that a region's contents is not changed.
Definition: MemRegion.h:1531
clang::ento::operator<<
raw_ostream & operator<<(raw_ostream &Out, const CheckerBase &Checker)
Dump checker name to stream.
Definition: Checker.cpp:35
clang::Builtin::ID
ID
Definition: Builtins.h:48
clang
Definition: CalledOnceCheck.h:17
clang::Type::isAnyPointerType
bool isAnyPointerType() const
Definition: Type.h:6676
clang::VectorType::getElementType
QualType getElementType() const
Definition: Type.h:3270
clang::Type::isArrayType
bool isArrayType() const
Definition: Type.h:6738
ptrdiff_t
__PTRDIFF_TYPE__ ptrdiff_t
A signed integer type that is the result of subtracting two pointers.
Definition: opencl-c-base.h:110
clang::ento::RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion
@ TK_DoNotInvalidateSuperRegion
Definition: MemRegion.h:1537
clang::ast_matchers::match
SmallVector< BoundNodes, 1 > match(MatcherT Matcher, const NodeT &Node, ASTContext &Context)
Returns the results of matching Matcher on Node.
Definition: ASTMatchFinder.h:312
clang::operator<
bool operator<(DeclarationName LHS, DeclarationName RHS)
Ordering on two declaration names.
Definition: DeclarationName.h:540
MemRegion.h
clang::Type::isConstantArrayType
bool isConstantArrayType() const
Definition: Type.h:6742
clang::StringLiteral::getLength
unsigned getLength() const
Definition: Expr.h:1873
c
__device__ __2f16 float c
Definition: __clang_hip_libdevice_declares.h:315
clang::ast_matchers::BoundNodes
Maps string IDs to AST nodes matched by parts of a matcher.
Definition: ASTMatchers.h:107
clang::RecordType::getDecl
RecordDecl * getDecl() const
Definition: Type.h:4623
clang::InitListExpr::getInit
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4834
clang::VectorType::getNumElements
unsigned getNumElements() const
Definition: Type.h:3271
BindingPair
std::pair< BindingKey, SVal > BindingPair
Definition: RegionStore.cpp:148
llvm::SmallVectorImpl
Definition: LLVM.h:39
clang::ValueDecl::getType
QualType getType() const
Definition: Decl.h:687
true
#define true
Definition: stdbool.h:16
clang::ASTContext::hasSameUnqualifiedType
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2508
ProgramStateTrait.h
clang::ArrayType::getElementType
QualType getElementType() const
Definition: Type.h:2904
clang::Expr
This represents one expression.
Definition: Expr.h:109
isUnionField
static bool isUnionField(const FieldRegion *FR)
Definition: RegionStore.cpp:811
clang::VarDecl::hasLocalStorage
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1101
clang::ento::InvalidatedSymbols
llvm::DenseSet< SymbolRef > InvalidatedSymbols
Definition: Store.h:51
clang::ast_matchers::varDecl
const internal::VariadicDynCastAllOfMatcher< Decl, VarDecl > varDecl
Matches variable declarations.
Definition: ASTMatchersInternal.cpp:801
AnalysisManager.h
clang::LocationContext::getDecl
const Decl * getDecl() const
Definition: AnalysisDeclContext.h:247
clang::RecordDecl
Represents a struct/union/class.
Definition: Decl.h:3863
clang::InitListExpr::getNumInits
unsigned getNumInits() const
Definition: Expr.h:4816
clang::ASTContext::getLangOpts
const LangOptions & getLangOpts() const
Definition: ASTContext.h:765
clang::operator==
bool operator==(const CallGraphNode::CallRecord &LHS, const CallGraphNode::CallRecord &RHS)
Definition: CallGraph.h:207
clang::Type::isIntegralOrEnumerationType
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:7058
clang::ento::SymbolManager::canSymbolicate
static bool canSymbolicate(QualType T)
Definition: SymbolManager.cpp:333