clang 22.0.0git
SemaDeclAttr.cpp
Go to the documentation of this file.
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements decl-related attribute processing.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/APValue.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/Type.h"
28#include "clang/Basic/Cuda.h"
36#include "clang/Sema/Attr.h"
37#include "clang/Sema/DeclSpec.h"
40#include "clang/Sema/Lookup.h"
42#include "clang/Sema/Scope.h"
44#include "clang/Sema/Sema.h"
46#include "clang/Sema/SemaARM.h"
47#include "clang/Sema/SemaAVR.h"
48#include "clang/Sema/SemaBPF.h"
49#include "clang/Sema/SemaCUDA.h"
50#include "clang/Sema/SemaHLSL.h"
51#include "clang/Sema/SemaM68k.h"
52#include "clang/Sema/SemaMIPS.h"
54#include "clang/Sema/SemaObjC.h"
58#include "clang/Sema/SemaSYCL.h"
60#include "clang/Sema/SemaWasm.h"
61#include "clang/Sema/SemaX86.h"
62#include "llvm/ADT/APSInt.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/StringExtras.h"
65#include "llvm/Demangle/Demangle.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/MC/MCSectionMachO.h"
68#include "llvm/Support/Error.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/TargetParser/Triple.h"
73#include <optional>
74
75using namespace clang;
76using namespace sema;
77
79 enum LANG {
83 };
84} // end namespace AttributeLangSupport
85
86static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
87 // FIXME: Include the type in the argument list.
88 return AL.getNumArgs() + AL.hasParsedType();
89}
90
94
95/// Wrapper around checkUInt32Argument, with an extra check to be sure
96/// that the result will fit into a regular (signed) int. All args have the same
97/// purpose as they do in checkUInt32Argument.
98template <typename AttrInfo>
99static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
100 int &Val, unsigned Idx = UINT_MAX) {
101 uint32_t UVal;
102 if (!S.checkUInt32Argument(AI, Expr, UVal, Idx))
103 return false;
104
105 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
106 llvm::APSInt I(32); // for toString
107 I = UVal;
108 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
109 << toString(I, 10, false) << 32 << /* Unsigned */ 0;
110 return false;
111 }
112
113 Val = UVal;
114 return true;
115}
116
118 const Expr *E, StringRef &Str,
119 SourceLocation *ArgLocation) {
120 const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts());
121 if (ArgLocation)
122 *ArgLocation = E->getBeginLoc();
123
124 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
125 Diag(E->getBeginLoc(), diag::err_attribute_argument_type)
126 << CI << AANT_ArgumentString;
127 return false;
128 }
129
130 Str = Literal->getString();
131 return true;
132}
133
134bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
135 StringRef &Str,
136 SourceLocation *ArgLocation) {
137 // Look for identifiers. If we have one emit a hint to fix it to a literal.
138 if (AL.isArgIdent(ArgNum)) {
139 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
140 Diag(Loc->getLoc(), diag::err_attribute_argument_type)
141 << AL << AANT_ArgumentString
142 << FixItHint::CreateInsertion(Loc->getLoc(), "\"")
144 Str = Loc->getIdentifierInfo()->getName();
145 if (ArgLocation)
146 *ArgLocation = Loc->getLoc();
147 return true;
148 }
149
150 // Now check for an actual string literal.
151 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
152 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
153 if (ArgLocation)
154 *ArgLocation = ArgExpr->getBeginLoc();
155
156 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
157 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
158 << AL << AANT_ArgumentString;
159 return false;
160 }
161 Str = Literal->getString();
162 return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation);
163}
164
165/// Check if the passed-in expression is of type int or bool.
166static bool isIntOrBool(Expr *Exp) {
167 QualType QT = Exp->getType();
168 return QT->isBooleanType() || QT->isIntegerType();
169}
170
171
172// Check to see if the type is a smart pointer of some kind. We assume
173// it's a smart pointer if it defines both operator-> and operator*.
175 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
179 return !Result.empty();
180 };
181
182 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
183 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
184 if (foundStarOperator && foundArrowOperator)
185 return true;
186
187 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
188 if (!CXXRecord)
189 return false;
190
191 for (const auto &BaseSpecifier : CXXRecord->bases()) {
192 if (!foundStarOperator)
193 foundStarOperator = IsOverloadedOperatorPresent(
194 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
195 if (!foundArrowOperator)
196 foundArrowOperator = IsOverloadedOperatorPresent(
197 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
198 }
199
200 if (foundStarOperator && foundArrowOperator)
201 return true;
202
203 return false;
204}
205
206/// Check if passed in Decl is a pointer type.
207/// Note that this function may produce an error message.
208/// \return true if the Decl is a pointer type; false otherwise
209static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
210 const ParsedAttr &AL) {
211 const auto *VD = cast<ValueDecl>(D);
212 QualType QT = VD->getType();
213 if (QT->isAnyPointerType())
214 return true;
215
216 if (const auto *RD = QT->getAsRecordDecl()) {
217 // If it's an incomplete type, it could be a smart pointer; skip it.
218 // (We don't want to force template instantiation if we can avoid it,
219 // since that would alter the order in which templates are instantiated.)
220 if (!RD->isCompleteDefinition())
221 return true;
222
224 return true;
225 }
226
227 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
228 return false;
229}
230
231/// Checks that the passed in QualType either is of RecordType or points
232/// to RecordType. Returns the relevant RecordType, null if it does not exit.
234 if (const auto *RD = QT->getAsRecordDecl())
235 return RD;
236
237 // Now check if we point to a record.
238 if (const auto *PT = QT->getAsCanonical<PointerType>())
239 return PT->getPointeeType()->getAsRecordDecl();
240
241 return nullptr;
242}
243
244template <typename AttrType>
245static bool checkRecordDeclForAttr(const RecordDecl *RD) {
246 // Check if the record itself has the attribute.
247 if (RD->hasAttr<AttrType>())
248 return true;
249
250 // Else check if any base classes have the attribute.
251 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
252 if (!CRD->forallBases([](const CXXRecordDecl *Base) {
253 return !Base->hasAttr<AttrType>();
254 }))
255 return true;
256 }
257 return false;
258}
259
261 const auto *RD = getRecordDecl(Ty);
262
263 if (!RD)
264 return false;
265
266 // Don't check for the capability if the class hasn't been defined yet.
267 if (!RD->isCompleteDefinition())
268 return true;
269
270 // Allow smart pointers to be used as capability objects.
271 // FIXME -- Check the type that the smart pointer points to.
273 return true;
274
276}
277
279 const auto *RD = getRecordDecl(Ty);
280
281 if (!RD)
282 return false;
283
284 // Don't check for the capability if the class hasn't been defined yet.
285 if (!RD->isCompleteDefinition())
286 return true;
287
289}
290
292 const auto *TD = Ty->getAs<TypedefType>();
293 if (!TD)
294 return false;
295
296 TypedefNameDecl *TN = TD->getDecl();
297 if (!TN)
298 return false;
299
300 return TN->hasAttr<CapabilityAttr>();
301}
302
303static bool typeHasCapability(Sema &S, QualType Ty) {
305 return true;
306
308 return true;
309
310 return false;
311}
312
313static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
314 // Capability expressions are simple expressions involving the boolean logic
315 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
316 // a DeclRefExpr is found, its type should be checked to determine whether it
317 // is a capability or not.
318
319 if (const auto *E = dyn_cast<CastExpr>(Ex))
320 return isCapabilityExpr(S, E->getSubExpr());
321 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
322 return isCapabilityExpr(S, E->getSubExpr());
323 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
324 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
325 E->getOpcode() == UO_Deref)
326 return isCapabilityExpr(S, E->getSubExpr());
327 return false;
328 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
329 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
330 return isCapabilityExpr(S, E->getLHS()) &&
331 isCapabilityExpr(S, E->getRHS());
332 return false;
333 }
334
335 return typeHasCapability(S, Ex->getType());
336}
337
338/// Checks that all attribute arguments, starting from Sidx, resolve to
339/// a capability object.
340/// \param Sidx The attribute argument index to start checking with.
341/// \param ParamIdxOk Whether an argument can be indexing into a function
342/// parameter list.
344 const ParsedAttr &AL,
346 unsigned Sidx = 0,
347 bool ParamIdxOk = false) {
348 if (Sidx == AL.getNumArgs()) {
349 // If we don't have any capability arguments, the attribute implicitly
350 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
351 // a non-static method, and that the class is a (scoped) capability.
352 const auto *MD = dyn_cast<const CXXMethodDecl>(D);
353 if (MD && !MD->isStatic()) {
354 const CXXRecordDecl *RD = MD->getParent();
355 // FIXME -- need to check this again on template instantiation
358 S.Diag(AL.getLoc(),
359 diag::warn_thread_attribute_not_on_capability_member)
360 << AL << MD->getParent();
361 } else {
362 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
363 << AL;
364 }
365 }
366
367 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
368 Expr *ArgExp = AL.getArgAsExpr(Idx);
369
370 if (ArgExp->isTypeDependent()) {
371 // FIXME -- need to check this again on template instantiation
372 Args.push_back(ArgExp);
373 continue;
374 }
375
376 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
377 if (StrLit->getLength() == 0 ||
378 (StrLit->isOrdinary() && StrLit->getString() == "*")) {
379 // Pass empty strings to the analyzer without warnings.
380 // Treat "*" as the universal lock.
381 Args.push_back(ArgExp);
382 continue;
383 }
384
385 // We allow constant strings to be used as a placeholder for expressions
386 // that are not valid C++ syntax, but warn that they are ignored.
387 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
388 Args.push_back(ArgExp);
389 continue;
390 }
391
392 QualType ArgTy = ArgExp->getType();
393
394 // A pointer to member expression of the form &MyClass::mu is treated
395 // specially -- we need to look at the type of the member.
396 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
397 if (UOp->getOpcode() == UO_AddrOf)
398 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
399 if (DRE->getDecl()->isCXXInstanceMember())
400 ArgTy = DRE->getDecl()->getType();
401
402 // First see if we can just cast to record type, or pointer to record type.
403 const auto *RD = getRecordDecl(ArgTy);
404
405 // Now check if we index into a record type function param.
406 if (!RD && ParamIdxOk) {
407 const auto *FD = dyn_cast<FunctionDecl>(D);
408 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
409 if(FD && IL) {
410 unsigned int NumParams = FD->getNumParams();
411 llvm::APInt ArgValue = IL->getValue();
412 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
413 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
414 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
415 S.Diag(AL.getLoc(),
416 diag::err_attribute_argument_out_of_bounds_extra_info)
417 << AL << Idx + 1 << NumParams;
418 continue;
419 }
420 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
421 }
422 }
423
424 // If the type does not have a capability, see if the components of the
425 // expression have capabilities. This allows for writing C code where the
426 // capability may be on the type, and the expression is a capability
427 // boolean logic expression. Eg) requires_capability(A || B && !C)
428 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
429 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
430 << AL << ArgTy;
431
432 Args.push_back(ArgExp);
433 }
434}
435
437 const ParmVarDecl *ParamDecl,
438 const ParsedAttr &AL) {
439 QualType ParamType = ParamDecl->getType();
440 if (const auto *RefType = ParamType->getAs<ReferenceType>();
441 RefType &&
442 checkRecordTypeForScopedCapability(S, RefType->getPointeeType()))
443 return true;
444 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_scoped_lockable_param)
445 << AL;
446 return false;
447}
448
449//===----------------------------------------------------------------------===//
450// Attribute Implementations
451//===----------------------------------------------------------------------===//
452
453static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
454 if (!threadSafetyCheckIsPointer(S, D, AL))
455 return;
456
457 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
458}
459
460static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
461 Expr *&Arg) {
463 // check that all arguments are lockable objects
464 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
465 unsigned Size = Args.size();
466 if (Size != 1)
467 return false;
468
469 Arg = Args[0];
470
471 return true;
472}
473
474static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
475 Expr *Arg = nullptr;
476 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
477 return;
478
479 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
480}
481
482static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
483 Expr *Arg = nullptr;
484 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
485 return;
486
487 if (!threadSafetyCheckIsPointer(S, D, AL))
488 return;
489
490 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
491}
492
493static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
495 if (!AL.checkAtLeastNumArgs(S, 1))
496 return false;
497
498 // Check that this attribute only applies to lockable types.
499 QualType QT = cast<ValueDecl>(D)->getType();
500 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
501 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
502 return false;
503 }
504
505 // Check that all arguments are lockable objects.
506 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
507 if (Args.empty())
508 return false;
509
510 return true;
511}
512
513static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
515 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
516 return;
517
518 Expr **StartArg = &Args[0];
519 D->addAttr(::new (S.Context)
520 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
521}
522
523static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
525 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
526 return;
527
528 Expr **StartArg = &Args[0];
529 D->addAttr(::new (S.Context)
530 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
531}
532
533static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
535 // zero or more arguments ok
536 // check that all arguments are lockable objects
537 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
538
539 return true;
540}
541
542/// Checks to be sure that the given parameter number is in bounds, and
543/// is an integral type. Will emit appropriate diagnostics if this returns
544/// false.
545///
546/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
547template <typename AttrInfo>
548static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
549 unsigned AttrArgNo) {
550 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
551 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
552 ParamIdx Idx;
553 if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg,
554 Idx))
555 return false;
556
558 if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
559 SourceLocation SrcLoc = AttrArg->getBeginLoc();
560 S.Diag(SrcLoc, diag::err_attribute_integers_only)
562 return false;
563 }
564 return true;
565}
566
567static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
568 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
569 return;
570
572
574 if (!RetTy->isPointerType()) {
575 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
576 return;
577 }
578
579 const Expr *SizeExpr = AL.getArgAsExpr(0);
580 int SizeArgNoVal;
581 // Parameter indices are 1-indexed, hence Index=1
582 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
583 return;
584 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
585 return;
586 ParamIdx SizeArgNo(SizeArgNoVal, D);
587
588 ParamIdx NumberArgNo;
589 if (AL.getNumArgs() == 2) {
590 const Expr *NumberExpr = AL.getArgAsExpr(1);
591 int Val;
592 // Parameter indices are 1-based, hence Index=2
593 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
594 return;
595 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
596 return;
597 NumberArgNo = ParamIdx(Val, D);
598 }
599
600 D->addAttr(::new (S.Context)
601 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
602}
603
604static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
606 if (!AL.checkAtLeastNumArgs(S, 1))
607 return false;
608
609 if (!isIntOrBool(AL.getArgAsExpr(0))) {
610 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
611 << AL << 1 << AANT_ArgumentIntOrBool;
612 return false;
613 }
614
615 // check that all arguments are lockable objects
616 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
617
618 return true;
619}
620
621static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
622 // check that the argument is lockable object
624 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
625 unsigned Size = Args.size();
626 if (Size == 0)
627 return;
628
629 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
630}
631
632static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
633 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
634 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
635 return;
636
637 if (!AL.checkAtLeastNumArgs(S, 1))
638 return;
639
640 // check that all arguments are lockable objects
642 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
643 unsigned Size = Args.size();
644 if (Size == 0)
645 return;
646 Expr **StartArg = &Args[0];
647
648 D->addAttr(::new (S.Context)
649 LocksExcludedAttr(S.Context, AL, StartArg, Size));
650}
651
652static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
653 Expr *&Cond, StringRef &Msg) {
654 Cond = AL.getArgAsExpr(0);
655 if (!Cond->isTypeDependent()) {
657 if (Converted.isInvalid())
658 return false;
659 Cond = Converted.get();
660 }
661
662 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
663 return false;
664
665 if (Msg.empty())
666 Msg = "<no message provided>";
667
669 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
671 Diags)) {
672 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
673 for (const PartialDiagnosticAt &PDiag : Diags)
674 S.Diag(PDiag.first, PDiag.second);
675 return false;
676 }
677 return true;
678}
679
680static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
681 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
682
683 Expr *Cond;
684 StringRef Msg;
685 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
686 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
687}
688
689static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
690 StringRef NewUserDiagnostic;
691 if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
692 return;
693 if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
694 D->addAttr(EA);
695}
696
698 const ParsedAttr &AL) {
699 const auto *PD = isa<CXXRecordDecl>(D)
702 if (const auto *RD = dyn_cast<CXXRecordDecl>(PD); RD && RD->isLocalClass()) {
703 S.Diag(AL.getLoc(),
704 diag::warn_attribute_exclude_from_explicit_instantiation_local_class)
705 << AL << /*IsMember=*/!isa<CXXRecordDecl>(D);
706 return;
707 }
708 D->addAttr(::new (S.Context)
709 ExcludeFromExplicitInstantiationAttr(S.Context, AL));
710}
711
712namespace {
713/// Determines if a given Expr references any of the given function's
714/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
715class ArgumentDependenceChecker : public DynamicRecursiveASTVisitor {
716#ifndef NDEBUG
717 const CXXRecordDecl *ClassType;
718#endif
719 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
720 bool Result;
721
722public:
723 ArgumentDependenceChecker(const FunctionDecl *FD) {
724#ifndef NDEBUG
725 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
726 ClassType = MD->getParent();
727 else
728 ClassType = nullptr;
729#endif
730 Parms.insert(FD->param_begin(), FD->param_end());
731 }
732
733 bool referencesArgs(Expr *E) {
734 Result = false;
735 TraverseStmt(E);
736 return Result;
737 }
738
739 bool VisitCXXThisExpr(CXXThisExpr *E) override {
740 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
741 "`this` doesn't refer to the enclosing class?");
742 Result = true;
743 return false;
744 }
745
746 bool VisitDeclRefExpr(DeclRefExpr *DRE) override {
747 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
748 if (Parms.count(PVD)) {
749 Result = true;
750 return false;
751 }
752 return true;
753 }
754};
755}
756
758 const ParsedAttr &AL) {
759 const auto *DeclFD = cast<FunctionDecl>(D);
760
761 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
762 if (!MethodDecl->isStatic()) {
763 S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
764 return;
765 }
766
767 auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
768 SourceLocation Loc = [&]() {
769 auto Union = AL.getArg(Index - 1);
770 if (auto *E = dyn_cast<Expr *>(Union))
771 return E->getBeginLoc();
772 return cast<IdentifierLoc *>(Union)->getLoc();
773 }();
774
775 S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
776 };
777
778 FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
779 if (!AL.isArgExpr(0))
780 return nullptr;
781 auto *F = dyn_cast_if_present<DeclRefExpr>(AL.getArgAsExpr(0));
782 if (!F)
783 return nullptr;
784 return dyn_cast_if_present<FunctionDecl>(F->getFoundDecl());
785 }();
786
787 if (!AttrFD || !AttrFD->getBuiltinID(true)) {
788 DiagnoseType(1, AANT_ArgumentBuiltinFunction);
789 return;
790 }
791
792 if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
793 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
794 << AL << AttrFD << AttrFD->getNumParams();
795 return;
796 }
797
799
800 for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
801 if (!AL.isArgExpr(I)) {
802 DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
803 return;
804 }
805
806 const Expr *IndexExpr = AL.getArgAsExpr(I);
807 uint32_t Index;
808
809 if (!S.checkUInt32Argument(AL, IndexExpr, Index, I + 1, false))
810 return;
811
812 if (Index > DeclFD->getNumParams()) {
813 S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
814 << AL << Index << DeclFD << DeclFD->getNumParams();
815 return;
816 }
817
818 QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
819 QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
820
823 S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
824 << AL << Index << DeclFD << T2 << I << AttrFD << T1;
825 return;
826 }
827
828 Indices.push_back(Index - 1);
829 }
830
831 D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
832 S.Context, AL, AttrFD, Indices.data(), Indices.size()));
833}
834
835static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
836 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
837
838 Expr *Cond;
839 StringRef Msg;
840 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
841 return;
842
843 StringRef DefaultSevStr;
844 if (!S.checkStringLiteralArgumentAttr(AL, 2, DefaultSevStr))
845 return;
846
847 DiagnoseIfAttr::DefaultSeverity DefaultSev;
848 if (!DiagnoseIfAttr::ConvertStrToDefaultSeverity(DefaultSevStr, DefaultSev)) {
849 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
850 diag::err_diagnose_if_invalid_diagnostic_type);
851 return;
852 }
853
854 StringRef WarningGroup;
855 if (AL.getNumArgs() > 3) {
856 if (!S.checkStringLiteralArgumentAttr(AL, 3, WarningGroup))
857 return;
858 if (WarningGroup.empty() ||
859 !S.getDiagnostics().getDiagnosticIDs()->getGroupForWarningOption(
860 WarningGroup)) {
861 S.Diag(AL.getArgAsExpr(3)->getBeginLoc(),
862 diag::err_diagnose_if_unknown_warning)
863 << WarningGroup;
864 return;
865 }
866 }
867
868 bool ArgDependent = false;
869 if (const auto *FD = dyn_cast<FunctionDecl>(D))
870 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
871 D->addAttr(::new (S.Context) DiagnoseIfAttr(
872 S.Context, AL, Cond, Msg, DefaultSev, WarningGroup, ArgDependent,
873 cast<NamedDecl>(D)));
874}
875
877 const ParsedAttr &Attrs) {
878 if (hasDeclarator(D))
879 return;
880
881 if (!isa<ObjCMethodDecl>(D)) {
882 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
883 << Attrs << Attrs.isRegularKeywordAttribute()
885 return;
886 }
887
888 D->addAttr(::new (S.Context) CFIUncheckedCalleeAttr(S.Context, Attrs));
889}
890
891static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
892 static constexpr const StringRef kWildcard = "*";
893
895 bool HasWildcard = false;
896
897 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
898 if (Name == kWildcard)
899 HasWildcard = true;
900 Names.push_back(Name);
901 };
902
903 // Add previously defined attributes.
904 if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
905 for (StringRef BuiltinName : NBA->builtinNames())
906 AddBuiltinName(BuiltinName);
907
908 // Add current attributes.
909 if (AL.getNumArgs() == 0)
910 AddBuiltinName(kWildcard);
911 else
912 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
913 StringRef BuiltinName;
914 SourceLocation LiteralLoc;
915 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
916 return;
917
918 if (Builtin::Context::isBuiltinFunc(BuiltinName))
919 AddBuiltinName(BuiltinName);
920 else
921 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
922 << BuiltinName << AL;
923 }
924
925 // Repeating the same attribute is fine.
926 llvm::sort(Names);
927 Names.erase(llvm::unique(Names), Names.end());
928
929 // Empty no_builtin must be on its own.
930 if (HasWildcard && Names.size() > 1)
931 S.Diag(D->getLocation(),
932 diag::err_attribute_no_builtin_wildcard_or_builtin_name)
933 << AL;
934
935 if (D->hasAttr<NoBuiltinAttr>())
936 D->dropAttr<NoBuiltinAttr>();
937 D->addAttr(::new (S.Context)
938 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
939}
940
941static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942 if (D->hasAttr<PassObjectSizeAttr>()) {
943 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
944 return;
945 }
946
947 Expr *E = AL.getArgAsExpr(0);
948 uint32_t Type;
949 if (!S.checkUInt32Argument(AL, E, Type, /*Idx=*/1))
950 return;
951
952 // pass_object_size's argument is passed in as the second argument of
953 // __builtin_object_size. So, it has the same constraints as that second
954 // argument; namely, it must be in the range [0, 3].
955 if (Type > 3) {
956 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
957 << AL << 0 << 3 << E->getSourceRange();
958 return;
959 }
960
961 // pass_object_size is only supported on constant pointer parameters; as a
962 // kindness to users, we allow the parameter to be non-const for declarations.
963 // At this point, we have no clue if `D` belongs to a function declaration or
964 // definition, so we defer the constness check until later.
965 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
966 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
967 return;
968 }
969
970 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
971}
972
973static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
974 ConsumableAttr::ConsumedState DefaultState;
975
976 if (AL.isArgIdent(0)) {
977 IdentifierLoc *IL = AL.getArgAsIdent(0);
978 if (!ConsumableAttr::ConvertStrToConsumedState(
979 IL->getIdentifierInfo()->getName(), DefaultState)) {
980 S.Diag(IL->getLoc(), diag::warn_attribute_type_not_supported)
981 << AL << IL->getIdentifierInfo();
982 return;
983 }
984 } else {
985 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
987 return;
988 }
989
990 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
991}
992
994 const ParsedAttr &AL) {
996
997 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
998 if (!RD->hasAttr<ConsumableAttr>()) {
999 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1000
1001 return false;
1002 }
1003 }
1004
1005 return true;
1006}
1007
1008static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1009 if (!AL.checkAtLeastNumArgs(S, 1))
1010 return;
1011
1013 return;
1014
1016 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1017 CallableWhenAttr::ConsumedState CallableState;
1018
1019 StringRef StateString;
1020 SourceLocation Loc;
1021 if (AL.isArgIdent(ArgIndex)) {
1022 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1023 StateString = Ident->getIdentifierInfo()->getName();
1024 Loc = Ident->getLoc();
1025 } else {
1026 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1027 return;
1028 }
1029
1030 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1031 CallableState)) {
1032 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1033 return;
1034 }
1035
1036 States.push_back(CallableState);
1037 }
1038
1039 D->addAttr(::new (S.Context)
1040 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1041}
1042
1043static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1044 ParamTypestateAttr::ConsumedState ParamState;
1045
1046 if (AL.isArgIdent(0)) {
1047 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1048 StringRef StateString = Ident->getIdentifierInfo()->getName();
1049
1050 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1051 ParamState)) {
1052 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1053 << AL << StateString;
1054 return;
1055 }
1056 } else {
1057 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1058 << AL << AANT_ArgumentIdentifier;
1059 return;
1060 }
1061
1062 // FIXME: This check is currently being done in the analysis. It can be
1063 // enabled here only after the parser propagates attributes at
1064 // template specialization definition, not declaration.
1065 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1066 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1067 //
1068 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1069 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1070 // ReturnType.getAsString();
1071 // return;
1072 //}
1073
1074 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1075}
1076
1077static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1078 ReturnTypestateAttr::ConsumedState ReturnState;
1079
1080 if (AL.isArgIdent(0)) {
1081 IdentifierLoc *IL = AL.getArgAsIdent(0);
1082 if (!ReturnTypestateAttr::ConvertStrToConsumedState(
1083 IL->getIdentifierInfo()->getName(), ReturnState)) {
1084 S.Diag(IL->getLoc(), diag::warn_attribute_type_not_supported)
1085 << AL << IL->getIdentifierInfo();
1086 return;
1087 }
1088 } else {
1089 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1090 << AL << AANT_ArgumentIdentifier;
1091 return;
1092 }
1093
1094 // FIXME: This check is currently being done in the analysis. It can be
1095 // enabled here only after the parser propagates attributes at
1096 // template specialization definition, not declaration.
1097 // QualType ReturnType;
1098 //
1099 // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1100 // ReturnType = Param->getType();
1101 //
1102 //} else if (const CXXConstructorDecl *Constructor =
1103 // dyn_cast<CXXConstructorDecl>(D)) {
1104 // ReturnType = Constructor->getFunctionObjectParameterType();
1105 //
1106 //} else {
1107 //
1108 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1109 //}
1110 //
1111 // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1112 //
1113 // if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1114 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1115 // ReturnType.getAsString();
1116 // return;
1117 //}
1118
1119 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1120}
1121
1122static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1124 return;
1125
1126 SetTypestateAttr::ConsumedState NewState;
1127 if (AL.isArgIdent(0)) {
1128 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1129 StringRef Param = Ident->getIdentifierInfo()->getName();
1130 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1131 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1132 << AL << Param;
1133 return;
1134 }
1135 } else {
1136 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1137 << AL << AANT_ArgumentIdentifier;
1138 return;
1139 }
1140
1141 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1142}
1143
1144static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1146 return;
1147
1148 TestTypestateAttr::ConsumedState TestState;
1149 if (AL.isArgIdent(0)) {
1150 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1151 StringRef Param = Ident->getIdentifierInfo()->getName();
1152 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1153 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1154 << AL << Param;
1155 return;
1156 }
1157 } else {
1158 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1159 << AL << AANT_ArgumentIdentifier;
1160 return;
1161 }
1162
1163 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1164}
1165
1166static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1167 // Remember this typedef decl, we will need it later for diagnostics.
1168 if (isa<TypedefNameDecl>(D))
1170}
1171
1172static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1173 if (auto *TD = dyn_cast<TagDecl>(D))
1174 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1175 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1176 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1177 !FD->getType()->isIncompleteType() &&
1178 FD->isBitField() &&
1179 S.Context.getTypeAlign(FD->getType()) <= 8);
1180
1181 if (S.getASTContext().getTargetInfo().getTriple().isPS()) {
1182 if (BitfieldByteAligned)
1183 // The PS4/PS5 targets need to maintain ABI backwards compatibility.
1184 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1185 << AL << FD->getType();
1186 else
1187 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1188 } else {
1189 // Report warning about changed offset in the newer compiler versions.
1190 if (BitfieldByteAligned)
1191 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1192
1193 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1194 }
1195
1196 } else
1197 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1198}
1199
1200static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1201 auto *RD = cast<CXXRecordDecl>(D);
1202 ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1203 assert(CTD && "attribute does not appertain to this declaration");
1204
1205 ParsedType PT = AL.getTypeArg();
1206 TypeSourceInfo *TSI = nullptr;
1207 QualType T = S.GetTypeFromParser(PT, &TSI);
1208 if (!TSI)
1210
1211 if (!T.hasQualifiers() && T->isTypedefNameType()) {
1212 // Find the template name, if this type names a template specialization.
1213 const TemplateDecl *Template = nullptr;
1214 if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>(
1215 T->getAsCXXRecordDecl())) {
1216 Template = CTSD->getSpecializedTemplate();
1217 } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1218 while (TST && TST->isTypeAlias())
1219 TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1220 if (TST)
1221 Template = TST->getTemplateName().getAsTemplateDecl();
1222 }
1223
1224 if (Template && declaresSameEntity(Template, CTD)) {
1225 D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1226 return;
1227 }
1228 }
1229
1230 S.Diag(AL.getLoc(), diag::err_attribute_not_typedef_for_specialization)
1231 << T << AL << CTD;
1232 if (const auto *TT = T->getAs<TypedefType>())
1233 S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1234 << TT->getDecl();
1235}
1236
1237static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL) {
1238 StringRef Message;
1239 if (AL.getNumArgs() != 0)
1240 S.checkStringLiteralArgumentAttr(AL, 0, Message);
1242 NoSpecializationsAttr::Create(S.Context, Message, AL));
1243}
1244
1246 if (T->isDependentType())
1247 return true;
1248 if (RefOkay) {
1249 if (T->isReferenceType())
1250 return true;
1251 } else {
1252 T = T.getNonReferenceType();
1253 }
1254
1255 // The nonnull attribute, and other similar attributes, can be applied to a
1256 // transparent union that contains a pointer type.
1257 if (const RecordType *UT = T->getAsUnionType()) {
1258 RecordDecl *UD = UT->getOriginalDecl()->getDefinitionOrSelf();
1259 if (UD->hasAttr<TransparentUnionAttr>()) {
1260 for (const auto *I : UD->fields()) {
1261 QualType QT = I->getType();
1262 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1263 return true;
1264 }
1265 }
1266 }
1267
1268 return T->isAnyPointerType() || T->isBlockPointerType();
1269}
1270
1271static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1272 SourceRange AttrParmRange,
1273 SourceRange TypeRange,
1274 bool isReturnValue = false) {
1275 if (!S.isValidPointerAttrType(T)) {
1276 if (isReturnValue)
1277 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1278 << AL << AttrParmRange << TypeRange;
1279 else
1280 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1281 << AL << AttrParmRange << TypeRange << 0;
1282 return false;
1283 }
1284 return true;
1285}
1286
1287static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1288 SmallVector<ParamIdx, 8> NonNullArgs;
1289 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1290 Expr *Ex = AL.getArgAsExpr(I);
1291 ParamIdx Idx;
1293 D, AL, I + 1, Ex, Idx,
1294 /*CanIndexImplicitThis=*/false,
1295 /*CanIndexVariadicArguments=*/true))
1296 return;
1297
1298 // Is the function argument a pointer type?
1302 Ex->getSourceRange(),
1304 continue;
1305
1306 NonNullArgs.push_back(Idx);
1307 }
1308
1309 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1310 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1311 // check if the attribute came from a macro expansion or a template
1312 // instantiation.
1313 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1315 bool AnyPointers = isFunctionOrMethodVariadic(D);
1316 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1317 I != E && !AnyPointers; ++I) {
1320 AnyPointers = true;
1321 }
1322
1323 if (!AnyPointers)
1324 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1325 }
1326
1327 ParamIdx *Start = NonNullArgs.data();
1328 unsigned Size = NonNullArgs.size();
1329 llvm::array_pod_sort(Start, Start + Size);
1330 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1331}
1332
1334 const ParsedAttr &AL) {
1335 if (AL.getNumArgs() > 0) {
1336 if (D->getFunctionType()) {
1337 handleNonNullAttr(S, D, AL);
1338 } else {
1339 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1340 << D->getSourceRange();
1341 }
1342 return;
1343 }
1344
1345 // Is the argument a pointer type?
1346 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1347 D->getSourceRange()))
1348 return;
1349
1350 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1351}
1352
1353static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1356 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1357 /* isReturnValue */ true))
1358 return;
1359
1360 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1361}
1362
1363static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1364 if (D->isInvalidDecl())
1365 return;
1366
1367 // noescape only applies to pointer types.
1368 QualType T = cast<ParmVarDecl>(D)->getType();
1369 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1370 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1371 << AL << AL.getRange() << 0;
1372 return;
1373 }
1374
1375 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1376}
1377
1378static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1379 Expr *E = AL.getArgAsExpr(0),
1380 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1381 S.AddAssumeAlignedAttr(D, AL, E, OE);
1382}
1383
1384static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1385 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1386}
1387
1389 Expr *OE) {
1392 SourceLocation AttrLoc = CI.getLoc();
1393
1394 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1395 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1396 << CI << CI.getRange() << SR;
1397 return;
1398 }
1399
1400 if (!E->isValueDependent()) {
1401 std::optional<llvm::APSInt> I = llvm::APSInt(64);
1402 if (!(I = E->getIntegerConstantExpr(Context))) {
1403 if (OE)
1404 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1405 << CI << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
1406 else
1407 Diag(AttrLoc, diag::err_attribute_argument_type)
1409 return;
1410 }
1411
1412 if (!I->isPowerOf2()) {
1413 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1414 << E->getSourceRange();
1415 return;
1416 }
1417
1418 if (*I > Sema::MaximumAlignment)
1419 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1421 }
1422
1423 if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1424 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1425 << CI << 2 << AANT_ArgumentIntegerConstant << OE->getSourceRange();
1426 return;
1427 }
1428
1429 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1430}
1431
1433 Expr *ParamExpr) {
1435 SourceLocation AttrLoc = CI.getLoc();
1436
1437 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1438 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1440 return;
1441 }
1442
1443 ParamIdx Idx;
1444 const auto *FuncDecl = cast<FunctionDecl>(D);
1445 if (!checkFunctionOrMethodParameterIndex(FuncDecl, CI,
1446 /*AttrArgNum=*/1, ParamExpr, Idx))
1447 return;
1448
1450 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1451 !Ty->isAlignValT()) {
1452 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1453 << CI << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1454 return;
1455 }
1456
1457 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1458}
1459
1460/// Normalize the attribute, __foo__ becomes foo.
1461/// Returns true if normalization was applied.
1462static bool normalizeName(StringRef &AttrName) {
1463 if (AttrName.size() > 4 && AttrName.starts_with("__") &&
1464 AttrName.ends_with("__")) {
1465 AttrName = AttrName.drop_front(2).drop_back(2);
1466 return true;
1467 }
1468 return false;
1469}
1470
1471static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1472 // This attribute must be applied to a function declaration. The first
1473 // argument to the attribute must be an identifier, the name of the resource,
1474 // for example: malloc. The following arguments must be argument indexes, the
1475 // arguments must be of integer type for Returns, otherwise of pointer type.
1476 // The difference between Holds and Takes is that a pointer may still be used
1477 // after being held. free() should be __attribute((ownership_takes)), whereas
1478 // a list append function may well be __attribute((ownership_holds)).
1479
1480 if (!AL.isArgIdent(0)) {
1481 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1482 << AL << 1 << AANT_ArgumentIdentifier;
1483 return;
1484 }
1485
1486 // Figure out our Kind.
1487 OwnershipAttr::OwnershipKind K =
1488 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1489
1490 // Check arguments.
1491 switch (K) {
1492 case OwnershipAttr::Takes:
1493 case OwnershipAttr::Holds:
1494 if (AL.getNumArgs() < 2) {
1495 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1496 return;
1497 }
1498 break;
1499 case OwnershipAttr::Returns:
1500 if (AL.getNumArgs() > 2) {
1501 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 2;
1502 return;
1503 }
1504 break;
1505 }
1506
1507 // Allow only pointers to be return type for functions with ownership_returns
1508 // attribute. This matches with current OwnershipAttr::Takes semantics
1509 if (K == OwnershipAttr::Returns &&
1510 !getFunctionOrMethodResultType(D)->isPointerType()) {
1511 S.Diag(AL.getLoc(), diag::err_ownership_takes_return_type) << AL;
1512 return;
1513 }
1514
1516
1517 StringRef ModuleName = Module->getName();
1518 if (normalizeName(ModuleName)) {
1519 Module = &S.PP.getIdentifierTable().get(ModuleName);
1520 }
1521
1522 SmallVector<ParamIdx, 8> OwnershipArgs;
1523 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1524 Expr *Ex = AL.getArgAsExpr(i);
1525 ParamIdx Idx;
1526 if (!S.checkFunctionOrMethodParameterIndex(D, AL, i, Ex, Idx))
1527 return;
1528
1529 // Is the function argument a pointer type?
1531 int Err = -1; // No error
1532 switch (K) {
1533 case OwnershipAttr::Takes:
1534 case OwnershipAttr::Holds:
1535 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1536 Err = 0;
1537 break;
1538 case OwnershipAttr::Returns:
1539 if (!T->isIntegerType())
1540 Err = 1;
1541 break;
1542 }
1543 if (-1 != Err) {
1544 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1545 << Ex->getSourceRange();
1546 return;
1547 }
1548
1549 // Check we don't have a conflict with another ownership attribute.
1550 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1551 // Cannot have two ownership attributes of different kinds for the same
1552 // index.
1553 if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) {
1554 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1555 << AL << I
1556 << (AL.isRegularKeywordAttribute() ||
1557 I->isRegularKeywordAttribute());
1558 return;
1559 } else if (K == OwnershipAttr::Returns &&
1560 I->getOwnKind() == OwnershipAttr::Returns) {
1561 // A returns attribute conflicts with any other returns attribute using
1562 // a different index.
1563 if (!llvm::is_contained(I->args(), Idx)) {
1564 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1565 << I->args_begin()->getSourceIndex();
1566 if (I->args_size())
1567 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1568 << Idx.getSourceIndex() << Ex->getSourceRange();
1569 return;
1570 }
1571 } else if (K == OwnershipAttr::Takes &&
1572 I->getOwnKind() == OwnershipAttr::Takes) {
1573 if (I->getModule()->getName() != ModuleName) {
1574 S.Diag(I->getLocation(), diag::err_ownership_takes_class_mismatch)
1575 << I->getModule()->getName();
1576 S.Diag(AL.getLoc(), diag::note_ownership_takes_class_mismatch)
1577 << ModuleName << Ex->getSourceRange();
1578
1579 return;
1580 }
1581 }
1582 }
1583 OwnershipArgs.push_back(Idx);
1584 }
1585
1586 ParamIdx *Start = OwnershipArgs.data();
1587 unsigned Size = OwnershipArgs.size();
1588 llvm::array_pod_sort(Start, Start + Size);
1589 D->addAttr(::new (S.Context)
1590 OwnershipAttr(S.Context, AL, Module, Start, Size));
1591}
1592
1593static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1594 // Check the attribute arguments.
1595 if (AL.getNumArgs() > 1) {
1596 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1597 return;
1598 }
1599
1600 // gcc rejects
1601 // class c {
1602 // static int a __attribute__((weakref ("v2")));
1603 // static int b() __attribute__((weakref ("f3")));
1604 // };
1605 // and ignores the attributes of
1606 // void f(void) {
1607 // static int a __attribute__((weakref ("v2")));
1608 // }
1609 // we reject them
1610 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1611 if (!Ctx->isFileContext()) {
1612 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1613 << cast<NamedDecl>(D);
1614 return;
1615 }
1616
1617 // The GCC manual says
1618 //
1619 // At present, a declaration to which `weakref' is attached can only
1620 // be `static'.
1621 //
1622 // It also says
1623 //
1624 // Without a TARGET,
1625 // given as an argument to `weakref' or to `alias', `weakref' is
1626 // equivalent to `weak'.
1627 //
1628 // gcc 4.4.1 will accept
1629 // int a7 __attribute__((weakref));
1630 // as
1631 // int a7 __attribute__((weak));
1632 // This looks like a bug in gcc. We reject that for now. We should revisit
1633 // it if this behaviour is actually used.
1634
1635 // GCC rejects
1636 // static ((alias ("y"), weakref)).
1637 // Should we? How to check that weakref is before or after alias?
1638
1639 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1640 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1641 // StringRef parameter it was given anyway.
1642 StringRef Str;
1643 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1644 // GCC will accept anything as the argument of weakref. Should we
1645 // check for an existing decl?
1646 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1647
1648 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1649}
1650
1651// Mark alias/ifunc target as used. Due to name mangling, we look up the
1652// demangled name ignoring parameters (not supported by microsoftDemangle
1653// https://github.com/llvm/llvm-project/issues/88825). This should handle the
1654// majority of use cases while leaving namespace scope names unmarked.
1655static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL,
1656 StringRef Str) {
1657 std::unique_ptr<char, llvm::FreeDeleter> Demangled;
1658 if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft)
1659 Demangled.reset(llvm::itaniumDemangle(Str, /*ParseParams=*/false));
1660 std::unique_ptr<MangleContext> MC(S.Context.createMangleContext());
1661 SmallString<256> Name;
1662
1664 &S.Context.Idents.get(Demangled ? Demangled.get() : Str), AL.getLoc());
1666 if (S.LookupName(LR, S.TUScope)) {
1667 for (NamedDecl *ND : LR) {
1668 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND))
1669 continue;
1670 if (MC->shouldMangleDeclName(ND)) {
1671 llvm::raw_svector_ostream Out(Name);
1672 Name.clear();
1673 MC->mangleName(GlobalDecl(ND), Out);
1674 } else {
1675 Name = ND->getIdentifier()->getName();
1676 }
1677 if (Name == Str)
1678 ND->markUsed(S.Context);
1679 }
1680 }
1681}
1682
1683static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1684 StringRef Str;
1685 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1686 return;
1687
1688 // Aliases should be on declarations, not definitions.
1689 const auto *FD = cast<FunctionDecl>(D);
1690 if (FD->isThisDeclarationADefinition()) {
1691 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1692 return;
1693 }
1694
1695 markUsedForAliasOrIfunc(S, D, AL, Str);
1696 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1697}
1698
1699static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1700 StringRef Str;
1701 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1702 return;
1703
1704 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1705 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1706 return;
1707 }
1708
1709 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1710 CudaVersion Version =
1712 if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100)
1713 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1714 }
1715
1716 // Aliases should be on declarations, not definitions.
1717 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1718 if (FD->isThisDeclarationADefinition()) {
1719 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1720 return;
1721 }
1722 } else {
1723 const auto *VD = cast<VarDecl>(D);
1724 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1725 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1726 return;
1727 }
1728 }
1729
1730 markUsedForAliasOrIfunc(S, D, AL, Str);
1731 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1732}
1733
1734static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1735 StringRef Model;
1736 SourceLocation LiteralLoc;
1737 // Check that it is a string.
1738 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1739 return;
1740
1741 // Check that the value.
1742 if (Model != "global-dynamic" && Model != "local-dynamic"
1743 && Model != "initial-exec" && Model != "local-exec") {
1744 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1745 return;
1746 }
1747
1748 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1749}
1750
1751static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1753 if (!ResultType->isAnyPointerType() && !ResultType->isBlockPointerType()) {
1754 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1756 return;
1757 }
1758
1759 if (AL.getNumArgs() == 0) {
1760 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1761 return;
1762 }
1763
1764 if (AL.getAttributeSpellingListIndex() == RestrictAttr::Declspec_restrict) {
1765 // __declspec(restrict) accepts no arguments
1766 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 0;
1767 return;
1768 }
1769
1770 // [[gnu::malloc(deallocator)]] with args specifies a deallocator function
1771 Expr *DeallocE = AL.getArgAsExpr(0);
1772 SourceLocation DeallocLoc = DeallocE->getExprLoc();
1773 FunctionDecl *DeallocFD = nullptr;
1774 DeclarationNameInfo DeallocNI;
1775
1776 if (auto *DRE = dyn_cast<DeclRefExpr>(DeallocE)) {
1777 DeallocFD = dyn_cast<FunctionDecl>(DRE->getDecl());
1778 DeallocNI = DRE->getNameInfo();
1779 if (!DeallocFD) {
1780 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function)
1781 << 1 << DeallocNI.getName();
1782 return;
1783 }
1784 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(DeallocE)) {
1785 DeallocFD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
1786 DeallocNI = ULE->getNameInfo();
1787 if (!DeallocFD) {
1788 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function)
1789 << 2 << DeallocNI.getName();
1790 if (ULE->getType() == S.Context.OverloadTy)
1792 return;
1793 }
1794 } else {
1795 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function) << 0;
1796 return;
1797 }
1798
1799 // 2nd arg of [[gnu::malloc(deallocator, 2)]] with args specifies the param
1800 // of deallocator that deallocates the pointer (defaults to 1)
1801 ParamIdx DeallocPtrIdx;
1802 if (AL.getNumArgs() == 1) {
1803 DeallocPtrIdx = ParamIdx(1, DeallocFD);
1804
1805 // FIXME: We could probably be better about diagnosing that there IS no
1806 // argument, or that the function doesn't have a prototype, but this is how
1807 // GCC diagnoses this, and is reasonably clear.
1808 if (!DeallocPtrIdx.isValid() || !hasFunctionProto(DeallocFD) ||
1809 getFunctionOrMethodNumParams(DeallocFD) < 1 ||
1810 !getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex())
1812 ->isPointerType()) {
1813 S.Diag(DeallocLoc,
1814 diag::err_attribute_malloc_arg_not_function_with_pointer_arg)
1815 << DeallocNI.getName();
1816 return;
1817 }
1818 } else {
1820 DeallocFD, AL, 2, AL.getArgAsExpr(1), DeallocPtrIdx,
1821 /* CanIndexImplicitThis=*/false))
1822 return;
1823
1824 QualType DeallocPtrArgType =
1825 getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex());
1826 if (!DeallocPtrArgType.getCanonicalType()->isPointerType()) {
1827 S.Diag(DeallocLoc,
1828 diag::err_attribute_malloc_arg_refers_to_non_pointer_type)
1829 << DeallocPtrIdx.getSourceIndex() << DeallocPtrArgType
1830 << DeallocNI.getName();
1831 return;
1832 }
1833 }
1834
1835 // FIXME: we should add this attribute to Clang's AST, so that clang-analyzer
1836 // can use it, see -Wmismatched-dealloc in GCC for what we can do with this.
1837 S.Diag(AL.getLoc(), diag::warn_attribute_form_ignored) << AL;
1838 D->addAttr(::new (S.Context)
1839 RestrictAttr(S.Context, AL, DeallocE, DeallocPtrIdx));
1840}
1841
1842static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1843 // Ensure we don't combine these with themselves, since that causes some
1844 // confusing behavior.
1845 if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
1847 return;
1848
1849 if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
1850 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
1851 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
1852 return;
1853 }
1854 } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
1856 return;
1857
1858 if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
1859 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
1860 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
1861 return;
1862 }
1863 }
1864
1866
1867 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1868 if (MD->getParent()->isLambda()) {
1869 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1870 return;
1871 }
1872 }
1873
1874 if (!AL.checkAtLeastNumArgs(S, 1))
1875 return;
1876
1878 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1879 if (!AL.isArgIdent(ArgNo)) {
1880 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1881 << AL << AANT_ArgumentIdentifier;
1882 return;
1883 }
1884
1885 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1886 StringRef CPUName = CPUArg->getIdentifierInfo()->getName().trim();
1887
1889 S.Diag(CPUArg->getLoc(), diag::err_invalid_cpu_specific_dispatch_value)
1890 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1891 return;
1892 }
1893
1895 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1896 return Target.CPUSpecificManglingCharacter(CPUName) ==
1897 Target.CPUSpecificManglingCharacter(Cur->getName());
1898 })) {
1899 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1900 return;
1901 }
1902 CPUs.push_back(CPUArg->getIdentifierInfo());
1903 }
1904
1905 FD->setIsMultiVersion(true);
1906 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1907 D->addAttr(::new (S.Context)
1908 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1909 else
1910 D->addAttr(::new (S.Context)
1911 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1912}
1913
1914static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1915 if (S.LangOpts.CPlusPlus) {
1916 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1918 return;
1919 }
1920
1921 D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
1922}
1923
1924static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1925 if (AL.isDeclspecAttribute()) {
1926 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
1927 const auto &Arch = Triple.getArch();
1928 if (Arch != llvm::Triple::x86 &&
1929 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
1930 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
1931 << AL << Triple.getArchName();
1932 return;
1933 }
1934
1935 // This form is not allowed to be written on a member function (static or
1936 // nonstatic) when in Microsoft compatibility mode.
1937 if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) {
1938 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
1940 return;
1941 }
1942 }
1943
1944 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
1945}
1946
1947// FIXME: This is a best-effort heuristic.
1948// Currently only handles single throw expressions (optionally with
1949// ExprWithCleanups). We could expand this to perform control-flow analysis for
1950// more complex patterns.
1951static bool isKnownToAlwaysThrow(const FunctionDecl *FD) {
1952 if (!FD->hasBody())
1953 return false;
1954 const Stmt *Body = FD->getBody();
1955 const Stmt *OnlyStmt = nullptr;
1956
1957 if (const auto *Compound = dyn_cast<CompoundStmt>(Body)) {
1958 if (Compound->size() != 1)
1959 return false; // More than one statement, can't be known to always throw.
1960 OnlyStmt = *Compound->body_begin();
1961 } else {
1962 OnlyStmt = Body;
1963 }
1964
1965 // Unwrap ExprWithCleanups if necessary.
1966 if (const auto *EWC = dyn_cast<ExprWithCleanups>(OnlyStmt)) {
1967 OnlyStmt = EWC->getSubExpr();
1968 }
1969 // Check if the only statement is a throw expression.
1970 return isa<CXXThrowExpr>(OnlyStmt);
1971}
1972
1974 auto *FD = dyn_cast<FunctionDecl>(D);
1975 if (!FD)
1976 return;
1977
1978 // Skip explicit specializations here as they may have
1979 // a user-provided definition that may deliberately differ from the primary
1980 // template. If an explicit specialization truly never returns, the user
1981 // should explicitly mark it with [[noreturn]].
1983 return;
1984
1985 auto *NonConstFD = const_cast<FunctionDecl *>(FD);
1986 DiagnosticsEngine &Diags = S.getDiagnostics();
1987 if (Diags.isIgnored(diag::warn_falloff_nonvoid, FD->getLocation()) &&
1988 Diags.isIgnored(diag::warn_suggest_noreturn_function, FD->getLocation()))
1989 return;
1990
1991 if (!FD->isNoReturn() && !FD->hasAttr<InferredNoReturnAttr>() &&
1993 NonConstFD->addAttr(InferredNoReturnAttr::CreateImplicit(S.Context));
1994
1995 // [[noreturn]] can only be added to lambdas since C++23
1996 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD);
1998 return;
1999
2000 // Emit a diagnostic suggesting the function being marked [[noreturn]].
2001 S.Diag(FD->getLocation(), diag::warn_suggest_noreturn_function)
2002 << /*isFunction=*/0 << FD;
2003 }
2004}
2005
2006static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2007 if (hasDeclarator(D)) return;
2008
2009 if (!isa<ObjCMethodDecl>(D)) {
2010 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2011 << Attrs << Attrs.isRegularKeywordAttribute()
2013 return;
2014 }
2015
2016 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2017}
2018
2019static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) {
2020 // The [[_Noreturn]] spelling is deprecated in C23, so if that was used,
2021 // issue an appropriate diagnostic. However, don't issue a diagnostic if the
2022 // attribute name comes from a macro expansion. We don't want to punish users
2023 // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn'
2024 // is defined as a macro which expands to '_Noreturn').
2025 if (!S.getLangOpts().CPlusPlus &&
2026 A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn &&
2027 !(A.getLoc().isMacroID() &&
2029 S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange();
2030
2031 D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A));
2032}
2033
2034static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2035 if (!S.getLangOpts().CFProtectionBranch)
2036 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2037 else
2039}
2040
2042 if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2043 Attrs.setInvalid();
2044 return true;
2045 }
2046
2047 return false;
2048}
2049
2051 // Check whether the attribute is valid on the current target.
2052 if (!AL.existsInTarget(Context.getTargetInfo())) {
2054 Diag(AL.getLoc(), diag::err_keyword_not_supported_on_target)
2055 << AL << AL.getRange();
2056 else
2058 AL.setInvalid();
2059 return true;
2060 }
2061 return false;
2062}
2063
2064static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2065
2066 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2067 // because 'analyzer_noreturn' does not impact the type.
2069 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2070 if (!VD || (!VD->getType()->isBlockPointerType() &&
2071 !VD->getType()->isFunctionPointerType())) {
2073 ? diag::err_attribute_wrong_decl_type
2074 : diag::warn_attribute_wrong_decl_type)
2075 << AL << AL.isRegularKeywordAttribute()
2077 return;
2078 }
2079 }
2080
2081 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2082}
2083
2084// PS3 PPU-specific.
2085static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2086 /*
2087 Returning a Vector Class in Registers
2088
2089 According to the PPU ABI specifications, a class with a single member of
2090 vector type is returned in memory when used as the return value of a
2091 function.
2092 This results in inefficient code when implementing vector classes. To return
2093 the value in a single vector register, add the vecreturn attribute to the
2094 class definition. This attribute is also applicable to struct types.
2095
2096 Example:
2097
2098 struct Vector
2099 {
2100 __vector float xyzw;
2101 } __attribute__((vecreturn));
2102
2103 Vector Add(Vector lhs, Vector rhs)
2104 {
2105 Vector result;
2106 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2107 return result; // This will be returned in a register
2108 }
2109 */
2110 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2111 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2112 return;
2113 }
2114
2115 const auto *R = cast<RecordDecl>(D);
2116 int count = 0;
2117
2118 if (!isa<CXXRecordDecl>(R)) {
2119 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2120 return;
2121 }
2122
2123 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2124 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2125 return;
2126 }
2127
2128 for (const auto *I : R->fields()) {
2129 if ((count == 1) || !I->getType()->isVectorType()) {
2130 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2131 return;
2132 }
2133 count++;
2134 }
2135
2136 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2137}
2138
2140 const ParsedAttr &AL) {
2141 if (isa<ParmVarDecl>(D)) {
2142 // [[carries_dependency]] can only be applied to a parameter if it is a
2143 // parameter of a function declaration or lambda.
2145 S.Diag(AL.getLoc(),
2146 diag::err_carries_dependency_param_not_function_decl);
2147 return;
2148 }
2149 }
2150
2151 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2152}
2153
2154static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2155 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2156
2157 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2158 // about using it as an extension.
2159 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2160 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2161
2162 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2163}
2164
2166 const ParsedAttr &AL) {
2167 // If no Expr node exists on the attribute, return a nullptr result (default
2168 // priority to be used). If Expr node exists but is not valid, return an
2169 // invalid result. Otherwise, return the Expr.
2170 Expr *E = nullptr;
2171 if (AL.getNumArgs() == 1) {
2172 E = AL.getArgAsExpr(0);
2173 if (E->isValueDependent()) {
2174 if (!E->isTypeDependent() && !E->getType()->isIntegerType()) {
2175 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2177 return ExprError();
2178 }
2179 } else {
2180 uint32_t priority;
2181 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) {
2182 return ExprError();
2183 }
2184 return ConstantExpr::Create(S.Context, E,
2185 APValue(llvm::APSInt::getUnsigned(priority)));
2186 }
2187 }
2188 return E;
2189}
2190
2191static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2192 if (S.getLangOpts().HLSL && AL.getNumArgs()) {
2193 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
2194 return;
2195 }
2197 if (E.isInvalid())
2198 return;
2199 S.Diag(D->getLocation(), diag::warn_global_constructor)
2200 << D->getSourceRange();
2201 D->addAttr(ConstructorAttr::Create(S.Context, E.get(), AL));
2202}
2203
2204static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2206 if (E.isInvalid())
2207 return;
2208 S.Diag(D->getLocation(), diag::warn_global_destructor) << D->getSourceRange();
2209 D->addAttr(DestructorAttr::Create(S.Context, E.get(), AL));
2210}
2211
2212template <typename AttrTy>
2213static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2214 // Handle the case where the attribute has a text message.
2215 StringRef Str;
2216 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2217 return;
2218
2219 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2220}
2221
2223 IdentifierInfo *Platform,
2224 VersionTuple Introduced,
2225 VersionTuple Deprecated,
2226 VersionTuple Obsoleted) {
2227 StringRef PlatformName
2228 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2229 if (PlatformName.empty())
2230 PlatformName = Platform->getName();
2231
2232 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2233 // of these steps are needed).
2234 if (!Introduced.empty() && !Deprecated.empty() &&
2235 !(Introduced <= Deprecated)) {
2236 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2237 << 1 << PlatformName << Deprecated.getAsString()
2238 << 0 << Introduced.getAsString();
2239 return true;
2240 }
2241
2242 if (!Introduced.empty() && !Obsoleted.empty() &&
2243 !(Introduced <= Obsoleted)) {
2244 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2245 << 2 << PlatformName << Obsoleted.getAsString()
2246 << 0 << Introduced.getAsString();
2247 return true;
2248 }
2249
2250 if (!Deprecated.empty() && !Obsoleted.empty() &&
2251 !(Deprecated <= Obsoleted)) {
2252 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2253 << 2 << PlatformName << Obsoleted.getAsString()
2254 << 1 << Deprecated.getAsString();
2255 return true;
2256 }
2257
2258 return false;
2259}
2260
2261/// Check whether the two versions match.
2262///
2263/// If either version tuple is empty, then they are assumed to match. If
2264/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2265static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2266 bool BeforeIsOkay) {
2267 if (X.empty() || Y.empty())
2268 return true;
2269
2270 if (X == Y)
2271 return true;
2272
2273 if (BeforeIsOkay && X < Y)
2274 return true;
2275
2276 return false;
2277}
2278
2280 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2281 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2282 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2283 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2284 int Priority, IdentifierInfo *Environment) {
2285 VersionTuple MergedIntroduced = Introduced;
2286 VersionTuple MergedDeprecated = Deprecated;
2287 VersionTuple MergedObsoleted = Obsoleted;
2288 bool FoundAny = false;
2289 bool OverrideOrImpl = false;
2290 switch (AMK) {
2293 OverrideOrImpl = false;
2294 break;
2295
2299 OverrideOrImpl = true;
2300 break;
2301 }
2302
2303 if (D->hasAttrs()) {
2304 AttrVec &Attrs = D->getAttrs();
2305 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2306 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2307 if (!OldAA) {
2308 ++i;
2309 continue;
2310 }
2311
2312 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2313 if (OldPlatform != Platform) {
2314 ++i;
2315 continue;
2316 }
2317
2318 IdentifierInfo *OldEnvironment = OldAA->getEnvironment();
2319 if (OldEnvironment != Environment) {
2320 ++i;
2321 continue;
2322 }
2323
2324 // If there is an existing availability attribute for this platform that
2325 // has a lower priority use the existing one and discard the new
2326 // attribute.
2327 if (OldAA->getPriority() < Priority)
2328 return nullptr;
2329
2330 // If there is an existing attribute for this platform that has a higher
2331 // priority than the new attribute then erase the old one and continue
2332 // processing the attributes.
2333 if (OldAA->getPriority() > Priority) {
2334 Attrs.erase(Attrs.begin() + i);
2335 --e;
2336 continue;
2337 }
2338
2339 FoundAny = true;
2340 VersionTuple OldIntroduced = OldAA->getIntroduced();
2341 VersionTuple OldDeprecated = OldAA->getDeprecated();
2342 VersionTuple OldObsoleted = OldAA->getObsoleted();
2343 bool OldIsUnavailable = OldAA->getUnavailable();
2344
2345 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2346 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2347 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2348 !(OldIsUnavailable == IsUnavailable ||
2349 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2350 if (OverrideOrImpl) {
2351 int Which = -1;
2352 VersionTuple FirstVersion;
2353 VersionTuple SecondVersion;
2354 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2355 Which = 0;
2356 FirstVersion = OldIntroduced;
2357 SecondVersion = Introduced;
2358 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2359 Which = 1;
2360 FirstVersion = Deprecated;
2361 SecondVersion = OldDeprecated;
2362 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2363 Which = 2;
2364 FirstVersion = Obsoleted;
2365 SecondVersion = OldObsoleted;
2366 }
2367
2368 if (Which == -1) {
2369 Diag(OldAA->getLocation(),
2370 diag::warn_mismatched_availability_override_unavail)
2371 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2373 } else if (Which != 1 && AMK == AvailabilityMergeKind::
2375 // Allow different 'introduced' / 'obsoleted' availability versions
2376 // on a method that implements an optional protocol requirement. It
2377 // makes less sense to allow this for 'deprecated' as the user can't
2378 // see if the method is 'deprecated' as 'respondsToSelector' will
2379 // still return true when the method is deprecated.
2380 ++i;
2381 continue;
2382 } else {
2383 Diag(OldAA->getLocation(),
2384 diag::warn_mismatched_availability_override)
2385 << Which
2386 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2387 << FirstVersion.getAsString() << SecondVersion.getAsString()
2389 }
2391 Diag(CI.getLoc(), diag::note_overridden_method);
2392 else
2393 Diag(CI.getLoc(), diag::note_protocol_method);
2394 } else {
2395 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2396 Diag(CI.getLoc(), diag::note_previous_attribute);
2397 }
2398
2399 Attrs.erase(Attrs.begin() + i);
2400 --e;
2401 continue;
2402 }
2403
2404 VersionTuple MergedIntroduced2 = MergedIntroduced;
2405 VersionTuple MergedDeprecated2 = MergedDeprecated;
2406 VersionTuple MergedObsoleted2 = MergedObsoleted;
2407
2408 if (MergedIntroduced2.empty())
2409 MergedIntroduced2 = OldIntroduced;
2410 if (MergedDeprecated2.empty())
2411 MergedDeprecated2 = OldDeprecated;
2412 if (MergedObsoleted2.empty())
2413 MergedObsoleted2 = OldObsoleted;
2414
2415 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2416 MergedIntroduced2, MergedDeprecated2,
2417 MergedObsoleted2)) {
2418 Attrs.erase(Attrs.begin() + i);
2419 --e;
2420 continue;
2421 }
2422
2423 MergedIntroduced = MergedIntroduced2;
2424 MergedDeprecated = MergedDeprecated2;
2425 MergedObsoleted = MergedObsoleted2;
2426 ++i;
2427 }
2428 }
2429
2430 if (FoundAny &&
2431 MergedIntroduced == Introduced &&
2432 MergedDeprecated == Deprecated &&
2433 MergedObsoleted == Obsoleted)
2434 return nullptr;
2435
2436 // Only create a new attribute if !OverrideOrImpl, but we want to do
2437 // the checking.
2438 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2439 MergedDeprecated, MergedObsoleted) &&
2440 !OverrideOrImpl) {
2441 auto *Avail = ::new (Context) AvailabilityAttr(
2442 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2443 Message, IsStrict, Replacement, Priority, Environment);
2444 Avail->setImplicit(Implicit);
2445 return Avail;
2446 }
2447 return nullptr;
2448}
2449
2450static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2452 D)) {
2453 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2454 << AL;
2455 return;
2456 }
2457
2458 if (!AL.checkExactlyNumArgs(S, 1))
2459 return;
2460 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2461
2462 IdentifierInfo *II = Platform->getIdentifierInfo();
2463 StringRef PrettyName = AvailabilityAttr::getPrettyPlatformName(II->getName());
2464 if (PrettyName.empty())
2465 S.Diag(Platform->getLoc(), diag::warn_availability_unknown_platform)
2466 << Platform->getIdentifierInfo();
2467
2468 auto *ND = dyn_cast<NamedDecl>(D);
2469 if (!ND) // We warned about this already, so just return.
2470 return;
2471
2475
2476 const llvm::Triple::OSType PlatformOS = AvailabilityAttr::getOSType(
2477 AvailabilityAttr::canonicalizePlatformName(II->getName()));
2478
2479 auto reportAndUpdateIfInvalidOS = [&](auto &InputVersion) -> void {
2480 const bool IsInValidRange =
2481 llvm::Triple::isValidVersionForOS(PlatformOS, InputVersion);
2482 // Canonicalize availability versions.
2483 auto CanonicalVersion = llvm::Triple::getCanonicalVersionForOS(
2484 PlatformOS, InputVersion, IsInValidRange);
2485 if (!IsInValidRange) {
2486 S.Diag(Platform->getLoc(), diag::warn_availability_invalid_os_version)
2487 << InputVersion.getAsString() << PrettyName;
2488 S.Diag(Platform->getLoc(),
2489 diag::note_availability_invalid_os_version_adjusted)
2490 << CanonicalVersion.getAsString();
2491 }
2492 InputVersion = CanonicalVersion;
2493 };
2494
2495 if (PlatformOS != llvm::Triple::OSType::UnknownOS) {
2496 reportAndUpdateIfInvalidOS(Introduced.Version);
2497 reportAndUpdateIfInvalidOS(Deprecated.Version);
2498 reportAndUpdateIfInvalidOS(Obsoleted.Version);
2499 }
2500
2501 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2502 bool IsStrict = AL.getStrictLoc().isValid();
2503 StringRef Str;
2504 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getMessageExpr()))
2505 Str = SE->getString();
2506 StringRef Replacement;
2507 if (const auto *SE =
2508 dyn_cast_if_present<StringLiteral>(AL.getReplacementExpr()))
2509 Replacement = SE->getString();
2510
2511 if (II->isStr("swift")) {
2512 if (Introduced.isValid() || Obsoleted.isValid() ||
2513 (!IsUnavailable && !Deprecated.isValid())) {
2514 S.Diag(AL.getLoc(),
2515 diag::warn_availability_swift_unavailable_deprecated_only);
2516 return;
2517 }
2518 }
2519
2520 if (II->isStr("fuchsia")) {
2521 std::optional<unsigned> Min, Sub;
2522 if ((Min = Introduced.Version.getMinor()) ||
2523 (Sub = Introduced.Version.getSubminor())) {
2524 S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2525 return;
2526 }
2527 }
2528
2529 if (S.getLangOpts().HLSL && IsStrict)
2530 S.Diag(AL.getStrictLoc(), diag::err_availability_unexpected_parameter)
2531 << "strict" << /* HLSL */ 0;
2532
2533 int PriorityModifier = AL.isPragmaClangAttribute()
2536
2537 const IdentifierLoc *EnvironmentLoc = AL.getEnvironment();
2538 IdentifierInfo *IIEnvironment = nullptr;
2539 if (EnvironmentLoc) {
2540 if (S.getLangOpts().HLSL) {
2541 IIEnvironment = EnvironmentLoc->getIdentifierInfo();
2542 if (AvailabilityAttr::getEnvironmentType(
2543 EnvironmentLoc->getIdentifierInfo()->getName()) ==
2544 llvm::Triple::EnvironmentType::UnknownEnvironment)
2545 S.Diag(EnvironmentLoc->getLoc(),
2546 diag::warn_availability_unknown_environment)
2547 << EnvironmentLoc->getIdentifierInfo();
2548 } else {
2549 S.Diag(EnvironmentLoc->getLoc(),
2550 diag::err_availability_unexpected_parameter)
2551 << "environment" << /* C/C++ */ 1;
2552 }
2553 }
2554
2555 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2556 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2557 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2558 AvailabilityMergeKind::None, PriorityModifier, IIEnvironment);
2559 if (NewAttr)
2560 D->addAttr(NewAttr);
2561
2562 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2563 // matches before the start of the watchOS platform.
2564 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2565 IdentifierInfo *NewII = nullptr;
2566 if (II->getName() == "ios")
2567 NewII = &S.Context.Idents.get("watchos");
2568 else if (II->getName() == "ios_app_extension")
2569 NewII = &S.Context.Idents.get("watchos_app_extension");
2570
2571 if (NewII) {
2572 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2573 const auto *IOSToWatchOSMapping =
2574 SDKInfo ? SDKInfo->getVersionMapping(
2576 : nullptr;
2577
2578 auto adjustWatchOSVersion =
2579 [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2580 if (Version.empty())
2581 return Version;
2582 auto MinimumWatchOSVersion = VersionTuple(2, 0);
2583
2584 if (IOSToWatchOSMapping) {
2585 if (auto MappedVersion = IOSToWatchOSMapping->map(
2586 Version, MinimumWatchOSVersion, std::nullopt)) {
2587 return *MappedVersion;
2588 }
2589 }
2590
2591 auto Major = Version.getMajor();
2592 auto NewMajor = Major;
2593 if (Major < 9)
2594 NewMajor = 0;
2595 else if (Major < 12)
2596 NewMajor = Major - 7;
2597 if (NewMajor >= 2) {
2598 if (Version.getMinor()) {
2599 if (Version.getSubminor())
2600 return VersionTuple(NewMajor, *Version.getMinor(),
2601 *Version.getSubminor());
2602 else
2603 return VersionTuple(NewMajor, *Version.getMinor());
2604 }
2605 return VersionTuple(NewMajor);
2606 }
2607
2608 return MinimumWatchOSVersion;
2609 };
2610
2611 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2612 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2613 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2614
2615 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2616 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2617 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2619 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2620 if (NewAttr)
2621 D->addAttr(NewAttr);
2622 }
2623 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2624 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2625 // matches before the start of the tvOS platform.
2626 IdentifierInfo *NewII = nullptr;
2627 if (II->getName() == "ios")
2628 NewII = &S.Context.Idents.get("tvos");
2629 else if (II->getName() == "ios_app_extension")
2630 NewII = &S.Context.Idents.get("tvos_app_extension");
2631
2632 if (NewII) {
2633 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2634 const auto *IOSToTvOSMapping =
2635 SDKInfo ? SDKInfo->getVersionMapping(
2637 : nullptr;
2638
2639 auto AdjustTvOSVersion =
2640 [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2641 if (Version.empty())
2642 return Version;
2643
2644 if (IOSToTvOSMapping) {
2645 if (auto MappedVersion = IOSToTvOSMapping->map(
2646 Version, VersionTuple(0, 0), std::nullopt)) {
2647 return *MappedVersion;
2648 }
2649 }
2650 return Version;
2651 };
2652
2653 auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2654 auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2655 auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2656
2657 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2658 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2659 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2661 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2662 if (NewAttr)
2663 D->addAttr(NewAttr);
2664 }
2665 } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2666 llvm::Triple::IOS &&
2667 S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2668 auto GetSDKInfo = [&]() {
2670 "macOS");
2671 };
2672
2673 // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2674 IdentifierInfo *NewII = nullptr;
2675 if (II->getName() == "ios")
2676 NewII = &S.Context.Idents.get("maccatalyst");
2677 else if (II->getName() == "ios_app_extension")
2678 NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2679 if (NewII) {
2680 auto MinMacCatalystVersion = [](const VersionTuple &V) {
2681 if (V.empty())
2682 return V;
2683 if (V.getMajor() < 13 ||
2684 (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2685 return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2686 return V;
2687 };
2688 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2689 ND, AL, NewII, true /*Implicit*/,
2690 MinMacCatalystVersion(Introduced.Version),
2691 MinMacCatalystVersion(Deprecated.Version),
2692 MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2693 IsStrict, Replacement, AvailabilityMergeKind::None,
2694 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2695 if (NewAttr)
2696 D->addAttr(NewAttr);
2697 } else if (II->getName() == "macos" && GetSDKInfo() &&
2698 (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2699 !Obsoleted.Version.empty())) {
2700 if (const auto *MacOStoMacCatalystMapping =
2701 GetSDKInfo()->getVersionMapping(
2703 // Infer Mac Catalyst availability from the macOS availability attribute
2704 // if it has versioned availability. Don't infer 'unavailable'. This
2705 // inferred availability has lower priority than the other availability
2706 // attributes that are inferred from 'ios'.
2707 NewII = &S.Context.Idents.get("maccatalyst");
2708 auto RemapMacOSVersion =
2709 [&](const VersionTuple &V) -> std::optional<VersionTuple> {
2710 if (V.empty())
2711 return std::nullopt;
2712 // API_TO_BE_DEPRECATED is 100000.
2713 if (V.getMajor() == 100000)
2714 return VersionTuple(100000);
2715 // The minimum iosmac version is 13.1
2716 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1),
2717 std::nullopt);
2718 };
2719 std::optional<VersionTuple> NewIntroduced =
2720 RemapMacOSVersion(Introduced.Version),
2721 NewDeprecated =
2722 RemapMacOSVersion(Deprecated.Version),
2723 NewObsoleted =
2724 RemapMacOSVersion(Obsoleted.Version);
2725 if (NewIntroduced || NewDeprecated || NewObsoleted) {
2726 auto VersionOrEmptyVersion =
2727 [](const std::optional<VersionTuple> &V) -> VersionTuple {
2728 return V ? *V : VersionTuple();
2729 };
2730 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2731 ND, AL, NewII, true /*Implicit*/,
2732 VersionOrEmptyVersion(NewIntroduced),
2733 VersionOrEmptyVersion(NewDeprecated),
2734 VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2735 IsStrict, Replacement, AvailabilityMergeKind::None,
2736 PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2738 IIEnvironment);
2739 if (NewAttr)
2740 D->addAttr(NewAttr);
2741 }
2742 }
2743 }
2744 }
2745}
2746
2748 const ParsedAttr &AL) {
2749 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 4))
2750 return;
2751
2752 StringRef Language;
2753 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(0)))
2754 Language = SE->getString();
2755 StringRef DefinedIn;
2756 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(1)))
2757 DefinedIn = SE->getString();
2758 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2759 StringRef USR;
2760 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(3)))
2761 USR = SE->getString();
2762
2763 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2764 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR));
2765}
2766
2767template <class T>
2769 typename T::VisibilityType value) {
2770 T *existingAttr = D->getAttr<T>();
2771 if (existingAttr) {
2772 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2773 if (existingValue == value)
2774 return nullptr;
2775 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2776 S.Diag(CI.getLoc(), diag::note_previous_attribute);
2777 D->dropAttr<T>();
2778 }
2779 return ::new (S.Context) T(S.Context, CI, value);
2780}
2781
2783 const AttributeCommonInfo &CI,
2784 VisibilityAttr::VisibilityType Vis) {
2785 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2786}
2787
2788TypeVisibilityAttr *
2790 TypeVisibilityAttr::VisibilityType Vis) {
2791 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2792}
2793
2794static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2795 bool isTypeVisibility) {
2796 // Visibility attributes don't mean anything on a typedef.
2797 if (isa<TypedefNameDecl>(D)) {
2798 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2799 return;
2800 }
2801
2802 // 'type_visibility' can only go on a type or namespace.
2803 if (isTypeVisibility && !(isa<TagDecl>(D) || isa<ObjCInterfaceDecl>(D) ||
2804 isa<NamespaceDecl>(D))) {
2805 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2807 return;
2808 }
2809
2810 // Check that the argument is a string literal.
2811 StringRef TypeStr;
2812 SourceLocation LiteralLoc;
2813 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2814 return;
2815
2816 VisibilityAttr::VisibilityType type;
2817 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2818 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2819 << TypeStr;
2820 return;
2821 }
2822
2823 // Complain about attempts to use protected visibility on targets
2824 // (like Darwin) that don't support it.
2825 if (type == VisibilityAttr::Protected &&
2827 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2828 type = VisibilityAttr::Default;
2829 }
2830
2831 Attr *newAttr;
2832 if (isTypeVisibility) {
2833 newAttr = S.mergeTypeVisibilityAttr(
2834 D, AL, (TypeVisibilityAttr::VisibilityType)type);
2835 } else {
2836 newAttr = S.mergeVisibilityAttr(D, AL, type);
2837 }
2838 if (newAttr)
2839 D->addAttr(newAttr);
2840}
2841
2842static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2843 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2844 if (AL.getNumArgs() > 0) {
2845 Expr *E = AL.getArgAsExpr(0);
2846 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
2847 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2848 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2849 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2850 return;
2851 }
2852
2853 if (Idx->isSigned() && Idx->isNegative()) {
2854 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2855 << E->getSourceRange();
2856 return;
2857 }
2858
2859 sentinel = Idx->getZExtValue();
2860 }
2861
2862 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2863 if (AL.getNumArgs() > 1) {
2864 Expr *E = AL.getArgAsExpr(1);
2865 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
2866 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2867 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2868 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2869 return;
2870 }
2871 nullPos = Idx->getZExtValue();
2872
2873 if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
2874 // FIXME: This error message could be improved, it would be nice
2875 // to say what the bounds actually are.
2876 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2877 << E->getSourceRange();
2878 return;
2879 }
2880 }
2881
2882 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2883 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2884 if (isa<FunctionNoProtoType>(FT)) {
2885 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2886 return;
2887 }
2888
2889 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2890 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2891 return;
2892 }
2893 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2894 if (!MD->isVariadic()) {
2895 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2896 return;
2897 }
2898 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2899 if (!BD->isVariadic()) {
2900 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2901 return;
2902 }
2903 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2904 QualType Ty = V->getType();
2905 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2906 const FunctionType *FT = Ty->isFunctionPointerType()
2907 ? D->getFunctionType()
2908 : Ty->castAs<BlockPointerType>()
2909 ->getPointeeType()
2910 ->castAs<FunctionType>();
2911 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2912 int m = Ty->isFunctionPointerType() ? 0 : 1;
2913 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2914 return;
2915 }
2916 } else {
2917 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2918 << AL << AL.isRegularKeywordAttribute()
2920 return;
2921 }
2922 } else {
2923 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2924 << AL << AL.isRegularKeywordAttribute()
2926 return;
2927 }
2928 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2929}
2930
2931static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2932 if (D->getFunctionType() &&
2935 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2936 return;
2937 }
2938 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2939 if (MD->getReturnType()->isVoidType()) {
2940 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2941 return;
2942 }
2943
2944 StringRef Str;
2945 if (AL.isStandardAttributeSyntax()) {
2946 // If this is spelled [[clang::warn_unused_result]] we look for an optional
2947 // string literal. This is not gated behind any specific version of the
2948 // standard.
2949 if (AL.isClangScope()) {
2950 if (AL.getNumArgs() == 1 &&
2951 !S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2952 return;
2953 } else if (!AL.getScopeName()) {
2954 // The standard attribute cannot be applied to variable declarations such
2955 // as a function pointer.
2956 if (isa<VarDecl>(D))
2957 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2958 << AL << AL.isRegularKeywordAttribute()
2960
2961 // If this is spelled as the standard C++17 attribute, but not in C++17,
2962 // warn about using it as an extension. If there are attribute arguments,
2963 // then claim it's a C++20 extension instead. C23 supports this attribute
2964 // with the message; no extension warning is needed there beyond the one
2965 // already issued for accepting attributes in older modes.
2966 const LangOptions &LO = S.getLangOpts();
2967 if (AL.getNumArgs() == 1) {
2968 if (LO.CPlusPlus && !LO.CPlusPlus20)
2969 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
2970
2971 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2972 return;
2973 } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2974 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2975 }
2976 }
2977
2978 if ((!AL.isGNUAttribute() &&
2979 !(AL.isStandardAttributeSyntax() && AL.isClangScope())) &&
2981 S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling)
2982 << AL.isGNUScope();
2983 return;
2984 }
2985
2986 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2987}
2988
2989static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2990 // weak_import only applies to variable & function declarations.
2991 bool isDef = false;
2992 if (!D->canBeWeakImported(isDef)) {
2993 if (isDef)
2994 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2995 << "weak_import";
2996 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2997 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2999 // Nothing to warn about here.
3000 } else
3001 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3003
3004 return;
3005 }
3006
3007 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3008}
3009
3010// Checks whether an argument of launch_bounds-like attribute is
3011// acceptable, performs implicit conversion to Rvalue, and returns
3012// non-nullptr Expr result on success. Otherwise, it returns nullptr
3013// and may output an error.
3014template <class Attribute>
3015static Expr *makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr,
3016 const unsigned Idx) {
3018 return nullptr;
3019
3020 // Accept template arguments for now as they depend on something else.
3021 // We'll get to check them when they eventually get instantiated.
3022 if (E->isValueDependent())
3023 return E;
3024
3025 std::optional<llvm::APSInt> I = llvm::APSInt(64);
3026 if (!(I = E->getIntegerConstantExpr(S.Context))) {
3027 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
3028 << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
3029 return nullptr;
3030 }
3031 // Make sure we can fit it in 32 bits.
3032 if (!I->isIntN(32)) {
3033 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
3034 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
3035 return nullptr;
3036 }
3037 if (*I < 0)
3038 S.Diag(E->getExprLoc(), diag::err_attribute_requires_positive_integer)
3039 << &Attr << /*non-negative*/ 1 << E->getSourceRange();
3040
3041 // We may need to perform implicit conversion of the argument.
3043 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
3044 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
3045 assert(!ValArg.isInvalid() &&
3046 "Unexpected PerformCopyInitialization() failure.");
3047
3048 return ValArg.getAs<Expr>();
3049}
3050
3051// Handles reqd_work_group_size and work_group_size_hint.
3052template <typename WorkGroupAttr>
3053static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3054 Expr *WGSize[3];
3055 for (unsigned i = 0; i < 3; ++i) {
3056 if (Expr *E = makeAttributeArgExpr(S, AL.getArgAsExpr(i), AL, i))
3057 WGSize[i] = E;
3058 else
3059 return;
3060 }
3061
3062 auto IsZero = [&](Expr *E) {
3063 if (E->isValueDependent())
3064 return false;
3065 std::optional<llvm::APSInt> I = E->getIntegerConstantExpr(S.Context);
3066 assert(I && "Non-integer constant expr");
3067 return I->isZero();
3068 };
3069
3070 if (!llvm::all_of(WGSize, IsZero)) {
3071 for (unsigned i = 0; i < 3; ++i) {
3072 const Expr *E = AL.getArgAsExpr(i);
3073 if (IsZero(WGSize[i])) {
3074 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3075 << AL << E->getSourceRange();
3076 return;
3077 }
3078 }
3079 }
3080
3081 auto Equal = [&](Expr *LHS, Expr *RHS) {
3082 if (LHS->isValueDependent() || RHS->isValueDependent())
3083 return true;
3084 std::optional<llvm::APSInt> L = LHS->getIntegerConstantExpr(S.Context);
3085 assert(L && "Non-integer constant expr");
3086 std::optional<llvm::APSInt> R = RHS->getIntegerConstantExpr(S.Context);
3087 assert(L && "Non-integer constant expr");
3088 return L == R;
3089 };
3090
3091 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3092 if (Existing &&
3093 !llvm::equal(std::initializer_list<Expr *>{Existing->getXDim(),
3094 Existing->getYDim(),
3095 Existing->getZDim()},
3096 WGSize, Equal))
3097 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3098
3099 D->addAttr(::new (S.Context)
3100 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3101}
3102
3103static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3104 if (!AL.hasParsedType()) {
3105 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3106 return;
3107 }
3108
3109 TypeSourceInfo *ParmTSI = nullptr;
3110 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3111 assert(ParmTSI && "no type source info for attribute argument");
3112
3113 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3114 (ParmType->isBooleanType() ||
3115 !ParmType->isIntegralType(S.getASTContext()))) {
3116 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3117 return;
3118 }
3119
3120 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3121 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3122 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3123 return;
3124 }
3125 }
3126
3127 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3128}
3129
3131 StringRef Name) {
3132 // Explicit or partial specializations do not inherit
3133 // the section attribute from the primary template.
3134 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3135 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3137 return nullptr;
3138 }
3139 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3140 if (ExistingAttr->getName() == Name)
3141 return nullptr;
3142 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3143 << 1 /*section*/;
3144 Diag(CI.getLoc(), diag::note_previous_attribute);
3145 return nullptr;
3146 }
3147 return ::new (Context) SectionAttr(Context, CI, Name);
3148}
3149
3150llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3151 if (!Context.getTargetInfo().getTriple().isOSDarwin())
3152 return llvm::Error::success();
3153
3154 // Let MCSectionMachO validate this.
3155 StringRef Segment, Section;
3156 unsigned TAA, StubSize;
3157 bool HasTAA;
3158 return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3159 TAA, HasTAA, StubSize);
3160}
3161
3162bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3163 if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3164 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3165 << toString(std::move(E)) << 1 /*'section'*/;
3166 return false;
3167 }
3168 return true;
3169}
3170
3171static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3172 // Make sure that there is a string literal as the sections's single
3173 // argument.
3174 StringRef Str;
3175 SourceLocation LiteralLoc;
3176 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3177 return;
3178
3179 if (!S.checkSectionName(LiteralLoc, Str))
3180 return;
3181
3182 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3183 if (NewAttr) {
3184 D->addAttr(NewAttr);
3186 ObjCPropertyDecl>(D))
3187 S.UnifySection(NewAttr->getName(),
3189 cast<NamedDecl>(D));
3190 }
3191}
3192
3193static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str) {
3194 if (Triple.isLoongArch()) {
3195 return Str == "normal" || Str == "medium" || Str == "extreme";
3196 } else {
3197 assert(Triple.getArch() == llvm::Triple::x86_64 &&
3198 "only loongarch/x86-64 supported");
3199 return Str == "small" || Str == "large";
3200 }
3201}
3202
3203static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3204 StringRef Str;
3205 SourceLocation LiteralLoc;
3206 auto IsTripleSupported = [](llvm::Triple &Triple) {
3207 return Triple.getArch() == llvm::Triple::ArchType::x86_64 ||
3208 Triple.isLoongArch();
3209 };
3210
3211 // Check that it is a string.
3212 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3213 return;
3214
3217 if (auto *aux = S.Context.getAuxTargetInfo()) {
3218 Triples.push_back(aux->getTriple());
3219 } else if (S.Context.getTargetInfo().getTriple().isNVPTX() ||
3220 S.Context.getTargetInfo().getTriple().isAMDGPU() ||
3221 S.Context.getTargetInfo().getTriple().isSPIRV()) {
3222 // Ignore the attribute for pure GPU device compiles since it only applies
3223 // to host globals.
3224 return;
3225 }
3226
3227 auto SupportedTripleIt = llvm::find_if(Triples, IsTripleSupported);
3228 if (SupportedTripleIt == Triples.end()) {
3229 S.Diag(LiteralLoc, diag::warn_unknown_attribute_ignored) << AL;
3230 return;
3231 }
3232
3233 llvm::CodeModel::Model CM;
3234 if (!CodeModelAttr::ConvertStrToModel(Str, CM) ||
3235 !isValidCodeModelAttr(*SupportedTripleIt, Str)) {
3236 S.Diag(LiteralLoc, diag::err_attr_codemodel_arg) << Str;
3237 return;
3238 }
3239
3240 D->addAttr(::new (S.Context) CodeModelAttr(S.Context, AL, CM));
3241}
3242
3243// This is used for `__declspec(code_seg("segname"))` on a decl.
3244// `#pragma code_seg("segname")` uses checkSectionName() instead.
3245static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3246 StringRef CodeSegName) {
3247 if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3248 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3249 << toString(std::move(E)) << 0 /*'code-seg'*/;
3250 return false;
3251 }
3252
3253 return true;
3254}
3255
3257 StringRef Name) {
3258 // Explicit or partial specializations do not inherit
3259 // the code_seg attribute from the primary template.
3260 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3262 return nullptr;
3263 }
3264 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3265 if (ExistingAttr->getName() == Name)
3266 return nullptr;
3267 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3268 << 0 /*codeseg*/;
3269 Diag(CI.getLoc(), diag::note_previous_attribute);
3270 return nullptr;
3271 }
3272 return ::new (Context) CodeSegAttr(Context, CI, Name);
3273}
3274
3275static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3276 StringRef Str;
3277 SourceLocation LiteralLoc;
3278 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3279 return;
3280 if (!checkCodeSegName(S, LiteralLoc, Str))
3281 return;
3282 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3283 if (!ExistingAttr->isImplicit()) {
3284 S.Diag(AL.getLoc(),
3285 ExistingAttr->getName() == Str
3286 ? diag::warn_duplicate_codeseg_attribute
3287 : diag::err_conflicting_codeseg_attribute);
3288 return;
3289 }
3290 D->dropAttr<CodeSegAttr>();
3291 }
3292 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3293 D->addAttr(CSA);
3294}
3295
3296bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3297 using namespace DiagAttrParams;
3298
3299 if (AttrStr.contains("fpmath="))
3300 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3301 << Unsupported << None << "fpmath=" << Target;
3302
3303 // Diagnose use of tune if target doesn't support it.
3304 if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3305 AttrStr.contains("tune="))
3306 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3307 << Unsupported << None << "tune=" << Target;
3308
3309 ParsedTargetAttr ParsedAttrs =
3310 Context.getTargetInfo().parseTargetAttr(AttrStr);
3311
3312 if (!ParsedAttrs.CPU.empty() &&
3313 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU))
3314 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3315 << Unknown << CPU << ParsedAttrs.CPU << Target;
3316
3317 if (!ParsedAttrs.Tune.empty() &&
3318 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3319 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3320 << Unknown << Tune << ParsedAttrs.Tune << Target;
3321
3322 if (Context.getTargetInfo().getTriple().isRISCV()) {
3323 if (ParsedAttrs.Duplicate != "")
3324 return Diag(LiteralLoc, diag::err_duplicate_target_attribute)
3325 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3326 for (StringRef CurFeature : ParsedAttrs.Features) {
3327 if (!CurFeature.starts_with('+') && !CurFeature.starts_with('-'))
3328 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3329 << Unsupported << None << AttrStr << Target;
3330 }
3331 }
3332
3333 if (Context.getTargetInfo().getTriple().isLoongArch()) {
3334 for (StringRef CurFeature : ParsedAttrs.Features) {
3335 if (CurFeature.starts_with("!arch=")) {
3336 StringRef ArchValue = CurFeature.split("=").second.trim();
3337 return Diag(LiteralLoc, diag::err_attribute_unsupported)
3338 << "target(arch=..)" << ArchValue;
3339 }
3340 }
3341 }
3342
3343 if (ParsedAttrs.Duplicate != "")
3344 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3345 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3346
3347 for (const auto &Feature : ParsedAttrs.Features) {
3348 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3349 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3350 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3351 << Unsupported << None << CurFeature << Target;
3352 }
3353
3355 StringRef DiagMsg;
3356 if (ParsedAttrs.BranchProtection.empty())
3357 return false;
3358 if (!Context.getTargetInfo().validateBranchProtection(
3359 ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI,
3360 Context.getLangOpts(), DiagMsg)) {
3361 if (DiagMsg.empty())
3362 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3363 << Unsupported << None << "branch-protection" << Target;
3364 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3365 << DiagMsg;
3366 }
3367 if (!DiagMsg.empty())
3368 Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3369
3370 return false;
3371}
3372
3373static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3374 StringRef Param;
3375 SourceLocation Loc;
3376 if (!S.checkStringLiteralArgumentAttr(AL, 0, Param, &Loc))
3377 return;
3378
3379 if (S.Context.getTargetInfo().getTriple().isAArch64()) {
3380 if (S.ARM().checkTargetVersionAttr(Param, Loc))
3381 return;
3382 } else if (S.Context.getTargetInfo().getTriple().isRISCV()) {
3383 if (S.RISCV().checkTargetVersionAttr(Param, Loc))
3384 return;
3385 }
3386
3387 TargetVersionAttr *NewAttr =
3388 ::new (S.Context) TargetVersionAttr(S.Context, AL, Param);
3389 D->addAttr(NewAttr);
3390}
3391
3392static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3393 StringRef Str;
3394 SourceLocation LiteralLoc;
3395 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3396 S.checkTargetAttr(LiteralLoc, Str))
3397 return;
3398
3399 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3400 D->addAttr(NewAttr);
3401}
3402
3403static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3404 // Ensure we don't combine these with themselves, since that causes some
3405 // confusing behavior.
3406 if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3407 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3408 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3409 return;
3410 }
3412 return;
3413
3414 // FIXME: We could probably figure out how to get this to work for lambdas
3415 // someday.
3416 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3417 if (MD->getParent()->isLambda()) {
3418 S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3419 << static_cast<unsigned>(MultiVersionKind::TargetClones)
3420 << /*Lambda*/ 9;
3421 return;
3422 }
3423 }
3424
3427 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3428 StringRef Param;
3429 SourceLocation Loc;
3430 if (!S.checkStringLiteralArgumentAttr(AL, I, Param, &Loc))
3431 return;
3432 Params.push_back(Param);
3433 Locations.push_back(Loc);
3434 }
3435
3436 SmallVector<SmallString<64>, 2> NewParams;
3437 if (S.Context.getTargetInfo().getTriple().isAArch64()) {
3438 if (S.ARM().checkTargetClonesAttr(Params, Locations, NewParams))
3439 return;
3440 } else if (S.Context.getTargetInfo().getTriple().isRISCV()) {
3441 if (S.RISCV().checkTargetClonesAttr(Params, Locations, NewParams))
3442 return;
3443 } else if (S.Context.getTargetInfo().getTriple().isX86()) {
3444 if (S.X86().checkTargetClonesAttr(Params, Locations, NewParams))
3445 return;
3446 }
3447 Params.clear();
3448 for (auto &SmallStr : NewParams)
3449 Params.push_back(SmallStr.str());
3450
3451 TargetClonesAttr *NewAttr = ::new (S.Context)
3452 TargetClonesAttr(S.Context, AL, Params.data(), Params.size());
3453 D->addAttr(NewAttr);
3454}
3455
3456static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3457 Expr *E = AL.getArgAsExpr(0);
3458 uint32_t VecWidth;
3459 if (!S.checkUInt32Argument(AL, E, VecWidth)) {
3460 AL.setInvalid();
3461 return;
3462 }
3463
3464 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3465 if (Existing && Existing->getVectorWidth() != VecWidth) {
3466 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3467 return;
3468 }
3469
3470 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3471}
3472
3473static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3474 Expr *E = AL.getArgAsExpr(0);
3475 SourceLocation Loc = E->getExprLoc();
3476 FunctionDecl *FD = nullptr;
3478
3479 // gcc only allows for simple identifiers. Since we support more than gcc, we
3480 // will warn the user.
3481 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3482 if (DRE->hasQualifier())
3483 S.Diag(Loc, diag::warn_cleanup_ext);
3484 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3485 NI = DRE->getNameInfo();
3486 if (!FD) {
3487 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3488 << NI.getName();
3489 return;
3490 }
3491 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3492 if (ULE->hasExplicitTemplateArgs())
3493 S.Diag(Loc, diag::warn_cleanup_ext);
3495 NI = ULE->getNameInfo();
3496 if (!FD) {
3497 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3498 << NI.getName();
3499 if (ULE->getType() == S.Context.OverloadTy)
3501 return;
3502 }
3503 } else {
3504 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3505 return;
3506 }
3507
3508 if (FD->getNumParams() != 1) {
3509 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3510 << NI.getName();
3511 return;
3512 }
3513
3514 // We're currently more strict than GCC about what function types we accept.
3515 // If this ever proves to be a problem it should be easy to fix.
3517 QualType ParamTy = FD->getParamDecl(0)->getType();
3519 FD->getParamDecl(0)->getLocation(), ParamTy, Ty))) {
3520 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3521 << NI.getName() << ParamTy << Ty;
3522 return;
3523 }
3524 VarDecl *VD = cast<VarDecl>(D);
3525 // Create a reference to the variable declaration. This is a fake/dummy
3526 // reference.
3527 DeclRefExpr *VariableReference = DeclRefExpr::Create(
3528 S.Context, NestedNameSpecifierLoc{}, FD->getLocation(), VD, false,
3529 DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, VD->getType(),
3530 VK_LValue);
3531
3532 // Create a unary operator expression that represents taking the address of
3533 // the variable. This is a fake/dummy expression.
3534 Expr *AddressOfVariable = UnaryOperator::Create(
3535 S.Context, VariableReference, UnaryOperatorKind::UO_AddrOf,
3537 +false, FPOptionsOverride{});
3538
3539 // Create a function call expression. This is a fake/dummy call expression.
3540 CallExpr *FunctionCallExpression =
3541 CallExpr::Create(S.Context, E, ArrayRef{AddressOfVariable},
3543
3544 if (S.CheckFunctionCall(FD, FunctionCallExpression,
3545 FD->getType()->getAs<FunctionProtoType>())) {
3546 return;
3547 }
3548
3549 auto *attr = ::new (S.Context) CleanupAttr(S.Context, AL, FD);
3550 attr->setArgLoc(E->getExprLoc());
3551 D->addAttr(attr);
3552}
3553
3555 const ParsedAttr &AL) {
3556 if (!AL.isArgIdent(0)) {
3557 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3558 << AL << 0 << AANT_ArgumentIdentifier;
3559 return;
3560 }
3561
3562 EnumExtensibilityAttr::Kind ExtensibilityKind;
3564 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3565 ExtensibilityKind)) {
3566 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3567 return;
3568 }
3569
3570 D->addAttr(::new (S.Context)
3571 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3572}
3573
3574/// Handle __attribute__((format_arg((idx)))) attribute based on
3575/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3576static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3577 const Expr *IdxExpr = AL.getArgAsExpr(0);
3578 ParamIdx Idx;
3579 if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, IdxExpr, Idx))
3580 return;
3581
3582 // Make sure the format string is really a string.
3584
3585 bool NotNSStringTy = !S.ObjC().isNSStringType(Ty);
3586 if (NotNSStringTy && !S.ObjC().isCFStringType(Ty) &&
3587 (!Ty->isPointerType() ||
3589 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3590 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3591 return;
3592 }
3594 // replace instancetype with the class type
3595 auto *Instancetype = cast<TypedefType>(S.Context.getTypedefType(
3596 ElaboratedTypeKeyword::None, /*Qualifier=*/std::nullopt,
3598 if (Ty->getAs<TypedefType>() == Instancetype)
3599 if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3600 if (auto *Interface = OMD->getClassInterface())
3602 QualType(Interface->getTypeForDecl(), 0));
3603 if (!S.ObjC().isNSStringType(Ty, /*AllowNSAttributedString=*/true) &&
3604 !S.ObjC().isCFStringType(Ty) &&
3605 (!Ty->isPointerType() ||
3607 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3608 << (NotNSStringTy ? "string type" : "NSString")
3609 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3610 return;
3611 }
3612
3613 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3614}
3615
3624
3625/// getFormatAttrKind - Map from format attribute names to supported format
3626/// types.
3627static FormatAttrKind getFormatAttrKind(StringRef Format) {
3628 return llvm::StringSwitch<FormatAttrKind>(Format)
3629 // Check for formats that get handled specially.
3630 .Case("NSString", NSStringFormat)
3631 .Case("CFString", CFStringFormat)
3632 .Case("strftime", StrftimeFormat)
3633
3634 // Otherwise, check for supported formats.
3635 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3636 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3637 .Cases("kprintf", "syslog", SupportedFormat) // OpenBSD.
3638 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3639 .Case("os_trace", SupportedFormat)
3640 .Case("os_log", SupportedFormat)
3641
3642 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3643 .Default(InvalidFormat);
3644}
3645
3646/// Handle __attribute__((init_priority(priority))) attributes based on
3647/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3648static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3649 if (!S.getLangOpts().CPlusPlus) {
3650 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3651 return;
3652 }
3653
3654 if (S.getLangOpts().HLSL) {
3655 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
3656 return;
3657 }
3658
3660 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3661 AL.setInvalid();
3662 return;
3663 }
3664 QualType T = cast<VarDecl>(D)->getType();
3665 if (S.Context.getAsArrayType(T))
3667 if (!T->isRecordType()) {
3668 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3669 AL.setInvalid();
3670 return;
3671 }
3672
3673 Expr *E = AL.getArgAsExpr(0);
3674 uint32_t prioritynum;
3675 if (!S.checkUInt32Argument(AL, E, prioritynum)) {
3676 AL.setInvalid();
3677 return;
3678 }
3679
3680 if (prioritynum > 65535) {
3681 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3682 << E->getSourceRange() << AL << 0 << 65535;
3683 AL.setInvalid();
3684 return;
3685 }
3686
3687 // Values <= 100 are reserved for the implementation, and libc++
3688 // benefits from being able to specify values in that range.
3689 if (prioritynum < 101)
3690 S.Diag(AL.getLoc(), diag::warn_init_priority_reserved)
3691 << E->getSourceRange() << prioritynum;
3692 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3693}
3694
3696 StringRef NewUserDiagnostic) {
3697 if (const auto *EA = D->getAttr<ErrorAttr>()) {
3698 std::string NewAttr = CI.getNormalizedFullName();
3699 assert((NewAttr == "error" || NewAttr == "warning") &&
3700 "unexpected normalized full name");
3701 bool Match = (EA->isError() && NewAttr == "error") ||
3702 (EA->isWarning() && NewAttr == "warning");
3703 if (!Match) {
3704 Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3705 << CI << EA
3706 << (CI.isRegularKeywordAttribute() ||
3707 EA->isRegularKeywordAttribute());
3708 Diag(CI.getLoc(), diag::note_conflicting_attribute);
3709 return nullptr;
3710 }
3711 if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3712 Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3713 Diag(EA->getLoc(), diag::note_previous_attribute);
3714 }
3715 D->dropAttr<ErrorAttr>();
3716 }
3717 return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3718}
3719
3721 IdentifierInfo *Format, int FormatIdx,
3722 int FirstArg) {
3723 // Check whether we already have an equivalent format attribute.
3724 for (auto *F : D->specific_attrs<FormatAttr>()) {
3725 if (F->getType() == Format &&
3726 F->getFormatIdx() == FormatIdx &&
3727 F->getFirstArg() == FirstArg) {
3728 // If we don't have a valid location for this attribute, adopt the
3729 // location.
3730 if (F->getLocation().isInvalid())
3731 F->setRange(CI.getRange());
3732 return nullptr;
3733 }
3734 }
3735
3736 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3737}
3738
3740 const AttributeCommonInfo &CI,
3741 IdentifierInfo *Format,
3742 int FormatIdx,
3743 StringLiteral *FormatStr) {
3744 // Check whether we already have an equivalent FormatMatches attribute.
3745 for (auto *F : D->specific_attrs<FormatMatchesAttr>()) {
3746 if (F->getType() == Format && F->getFormatIdx() == FormatIdx) {
3747 if (!CheckFormatStringsCompatible(GetFormatStringType(Format->getName()),
3748 F->getFormatString(), FormatStr))
3749 return nullptr;
3750
3751 // If we don't have a valid location for this attribute, adopt the
3752 // location.
3753 if (F->getLocation().isInvalid())
3754 F->setRange(CI.getRange());
3755 return nullptr;
3756 }
3757 }
3758
3759 return ::new (Context)
3760 FormatMatchesAttr(Context, CI, Format, FormatIdx, FormatStr);
3761}
3762
3769
3770/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3771/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3772static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
3773 FormatAttrCommon *Info) {
3774 // Checks the first two arguments of the attribute; this is shared between
3775 // Format and FormatMatches attributes.
3776
3777 if (!AL.isArgIdent(0)) {
3778 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3779 << AL << 1 << AANT_ArgumentIdentifier;
3780 return false;
3781 }
3782
3783 // In C++ the implicit 'this' function parameter also counts, and they are
3784 // counted from one.
3785 bool HasImplicitThisParam = isInstanceMethod(D);
3786 Info->NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3787
3789 StringRef Format = Info->Identifier->getName();
3790
3791 if (normalizeName(Format)) {
3792 // If we've modified the string name, we need a new identifier for it.
3793 Info->Identifier = &S.Context.Idents.get(Format);
3794 }
3795
3796 // Check for supported formats.
3797 Info->Kind = getFormatAttrKind(Format);
3798
3799 if (Info->Kind == IgnoredFormat)
3800 return false;
3801
3802 if (Info->Kind == InvalidFormat) {
3803 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3804 << AL << Info->Identifier->getName();
3805 return false;
3806 }
3807
3808 // checks for the 2nd argument
3809 Expr *IdxExpr = AL.getArgAsExpr(1);
3810 if (!S.checkUInt32Argument(AL, IdxExpr, Info->FormatStringIdx, 2))
3811 return false;
3812
3813 if (Info->FormatStringIdx < 1 || Info->FormatStringIdx > Info->NumArgs) {
3814 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3815 << AL << 2 << IdxExpr->getSourceRange();
3816 return false;
3817 }
3818
3819 // FIXME: Do we need to bounds check?
3820 unsigned ArgIdx = Info->FormatStringIdx - 1;
3821
3822 if (HasImplicitThisParam) {
3823 if (ArgIdx == 0) {
3824 S.Diag(AL.getLoc(),
3825 diag::err_format_attribute_implicit_this_format_string)
3826 << IdxExpr->getSourceRange();
3827 return false;
3828 }
3829 ArgIdx--;
3830 }
3831
3832 // make sure the format string is really a string
3833 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3834
3835 if (!S.ObjC().isNSStringType(Ty, true) && !S.ObjC().isCFStringType(Ty) &&
3836 (!Ty->isPointerType() ||
3838 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3839 << IdxExpr->getSourceRange()
3840 << getFunctionOrMethodParamRange(D, ArgIdx);
3841 return false;
3842 }
3843
3844 return true;
3845}
3846
3847static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3848 FormatAttrCommon Info;
3849 if (!handleFormatAttrCommon(S, D, AL, &Info))
3850 return;
3851
3852 // check the 3rd argument
3853 Expr *FirstArgExpr = AL.getArgAsExpr(2);
3854 uint32_t FirstArg;
3855 if (!S.checkUInt32Argument(AL, FirstArgExpr, FirstArg, 3))
3856 return;
3857
3858 // FirstArg == 0 is is always valid.
3859 if (FirstArg != 0) {
3860 if (Info.Kind == StrftimeFormat) {
3861 // If the kind is strftime, FirstArg must be 0 because strftime does not
3862 // use any variadic arguments.
3863 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3864 << FirstArgExpr->getSourceRange()
3865 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0");
3866 return;
3867 } else if (isFunctionOrMethodVariadic(D)) {
3868 // Else, if the function is variadic, then FirstArg must be 0 or the
3869 // "position" of the ... parameter. It's unusual to use 0 with variadic
3870 // functions, so the fixit proposes the latter.
3871 if (FirstArg != Info.NumArgs + 1) {
3872 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3873 << AL << 3 << FirstArgExpr->getSourceRange()
3875 std::to_string(Info.NumArgs + 1));
3876 return;
3877 }
3878 } else {
3879 // Inescapable GCC compatibility diagnostic.
3880 S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL;
3881 if (FirstArg <= Info.FormatStringIdx) {
3882 // Else, the function is not variadic, and FirstArg must be 0 or any
3883 // parameter after the format parameter. We don't offer a fixit because
3884 // there are too many possible good values.
3885 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3886 << AL << 3 << FirstArgExpr->getSourceRange();
3887 return;
3888 }
3889 }
3890 }
3891
3892 FormatAttr *NewAttr =
3893 S.mergeFormatAttr(D, AL, Info.Identifier, Info.FormatStringIdx, FirstArg);
3894 if (NewAttr)
3895 D->addAttr(NewAttr);
3896}
3897
3898static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3899 FormatAttrCommon Info;
3900 if (!handleFormatAttrCommon(S, D, AL, &Info))
3901 return;
3902
3903 Expr *FormatStrExpr = AL.getArgAsExpr(2)->IgnoreParenImpCasts();
3904 if (auto *SL = dyn_cast<StringLiteral>(FormatStrExpr)) {
3906 if (S.ValidateFormatString(FST, SL))
3907 if (auto *NewAttr = S.mergeFormatMatchesAttr(D, AL, Info.Identifier,
3908 Info.FormatStringIdx, SL))
3909 D->addAttr(NewAttr);
3910 return;
3911 }
3912
3913 S.Diag(AL.getLoc(), diag::err_format_nonliteral)
3914 << FormatStrExpr->getSourceRange();
3915}
3916
3917/// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3918static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3919 // The index that identifies the callback callee is mandatory.
3920 if (AL.getNumArgs() == 0) {
3921 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3922 << AL.getRange();
3923 return;
3924 }
3925
3926 bool HasImplicitThisParam = isInstanceMethod(D);
3927 int32_t NumArgs = getFunctionOrMethodNumParams(D);
3928
3929 FunctionDecl *FD = D->getAsFunction();
3930 assert(FD && "Expected a function declaration!");
3931
3932 llvm::StringMap<int> NameIdxMapping;
3933 NameIdxMapping["__"] = -1;
3934
3935 NameIdxMapping["this"] = 0;
3936
3937 int Idx = 1;
3938 for (const ParmVarDecl *PVD : FD->parameters())
3939 NameIdxMapping[PVD->getName()] = Idx++;
3940
3941 auto UnknownName = NameIdxMapping.end();
3942
3943 SmallVector<int, 8> EncodingIndices;
3944 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3945 SourceRange SR;
3946 int32_t ArgIdx;
3947
3948 if (AL.isArgIdent(I)) {
3949 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3950 auto It = NameIdxMapping.find(IdLoc->getIdentifierInfo()->getName());
3951 if (It == UnknownName) {
3952 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3953 << IdLoc->getIdentifierInfo() << IdLoc->getLoc();
3954 return;
3955 }
3956
3957 SR = SourceRange(IdLoc->getLoc());
3958 ArgIdx = It->second;
3959 } else if (AL.isArgExpr(I)) {
3960 Expr *IdxExpr = AL.getArgAsExpr(I);
3961
3962 // If the expression is not parseable as an int32_t we have a problem.
3963 if (!S.checkUInt32Argument(AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3964 false)) {
3965 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3966 << AL << (I + 1) << IdxExpr->getSourceRange();
3967 return;
3968 }
3969
3970 // Check oob, excluding the special values, 0 and -1.
3971 if (ArgIdx < -1 || ArgIdx > NumArgs) {
3972 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3973 << AL << (I + 1) << IdxExpr->getSourceRange();
3974 return;
3975 }
3976
3977 SR = IdxExpr->getSourceRange();
3978 } else {
3979 llvm_unreachable("Unexpected ParsedAttr argument type!");
3980 }
3981
3982 if (ArgIdx == 0 && !HasImplicitThisParam) {
3983 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3984 << (I + 1) << SR;
3985 return;
3986 }
3987
3988 // Adjust for the case we do not have an implicit "this" parameter. In this
3989 // case we decrease all positive values by 1 to get LLVM argument indices.
3990 if (!HasImplicitThisParam && ArgIdx > 0)
3991 ArgIdx -= 1;
3992
3993 EncodingIndices.push_back(ArgIdx);
3994 }
3995
3996 int CalleeIdx = EncodingIndices.front();
3997 // Check if the callee index is proper, thus not "this" and not "unknown".
3998 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3999 // is false and positive if "HasImplicitThisParam" is true.
4000 if (CalleeIdx < (int)HasImplicitThisParam) {
4001 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
4002 << AL.getRange();
4003 return;
4004 }
4005
4006 // Get the callee type, note the index adjustment as the AST doesn't contain
4007 // the this type (which the callee cannot reference anyway!).
4008 const Type *CalleeType =
4009 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
4010 .getTypePtr();
4011 if (!CalleeType || !CalleeType->isFunctionPointerType()) {
4012 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4013 << AL.getRange();
4014 return;
4015 }
4016
4017 const Type *CalleeFnType =
4019
4020 // TODO: Check the type of the callee arguments.
4021
4022 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
4023 if (!CalleeFnProtoType) {
4024 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4025 << AL.getRange();
4026 return;
4027 }
4028
4029 if (CalleeFnProtoType->getNumParams() != EncodingIndices.size() - 1) {
4030 S.Diag(AL.getLoc(), diag::err_attribute_wrong_arg_count_for_func)
4031 << AL << QualType{CalleeFnProtoType, 0}
4032 << CalleeFnProtoType->getNumParams()
4033 << (unsigned)(EncodingIndices.size() - 1);
4034 return;
4035 }
4036
4037 if (CalleeFnProtoType->isVariadic()) {
4038 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4039 return;
4040 }
4041
4042 // Do not allow multiple callback attributes.
4043 if (D->hasAttr<CallbackAttr>()) {
4044 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4045 return;
4046 }
4047
4048 D->addAttr(::new (S.Context) CallbackAttr(
4049 S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4050}
4051
4052LifetimeCaptureByAttr *Sema::ParseLifetimeCaptureByAttr(const ParsedAttr &AL,
4053 StringRef ParamName) {
4054 // Atleast one capture by is required.
4055 if (AL.getNumArgs() == 0) {
4056 Diag(AL.getLoc(), diag::err_capture_by_attribute_no_entity)
4057 << AL.getRange();
4058 return nullptr;
4059 }
4060 unsigned N = AL.getNumArgs();
4061 auto ParamIdents =
4063 auto ParamLocs =
4065 bool IsValid = true;
4066 for (unsigned I = 0; I < N; ++I) {
4067 if (AL.isArgExpr(I)) {
4068 Expr *E = AL.getArgAsExpr(I);
4069 Diag(E->getExprLoc(), diag::err_capture_by_attribute_argument_unknown)
4070 << E << E->getExprLoc();
4071 IsValid = false;
4072 continue;
4073 }
4074 assert(AL.isArgIdent(I));
4075 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4076 if (IdLoc->getIdentifierInfo()->getName() == ParamName) {
4077 Diag(IdLoc->getLoc(), diag::err_capture_by_references_itself)
4078 << IdLoc->getLoc();
4079 IsValid = false;
4080 continue;
4081 }
4082 ParamIdents[I] = IdLoc->getIdentifierInfo();
4083 ParamLocs[I] = IdLoc->getLoc();
4084 }
4085 if (!IsValid)
4086 return nullptr;
4087 SmallVector<int> FakeParamIndices(N, LifetimeCaptureByAttr::Invalid);
4088 auto *CapturedBy =
4089 LifetimeCaptureByAttr::Create(Context, FakeParamIndices.data(), N, AL);
4090 CapturedBy->setArgs(ParamIdents, ParamLocs);
4091 return CapturedBy;
4092}
4093
4095 const ParsedAttr &AL) {
4096 // Do not allow multiple attributes.
4097 if (D->hasAttr<LifetimeCaptureByAttr>()) {
4098 S.Diag(AL.getLoc(), diag::err_capture_by_attribute_multiple)
4099 << AL.getRange();
4100 return;
4101 }
4102 auto *PVD = dyn_cast<ParmVarDecl>(D);
4103 assert(PVD);
4104 auto *CaptureByAttr = S.ParseLifetimeCaptureByAttr(AL, PVD->getName());
4105 if (CaptureByAttr)
4106 D->addAttr(CaptureByAttr);
4107}
4108
4110 bool HasImplicitThisParam = isInstanceMethod(FD);
4112 for (ParmVarDecl *PVD : FD->parameters())
4113 if (auto *A = PVD->getAttr<LifetimeCaptureByAttr>())
4114 Attrs.push_back(A);
4115 if (HasImplicitThisParam) {
4116 TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4117 if (!TSI)
4118 return;
4120 for (TypeLoc TL = TSI->getTypeLoc();
4121 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
4122 TL = ATL.getModifiedLoc()) {
4123 if (auto *A = ATL.getAttrAs<LifetimeCaptureByAttr>())
4124 Attrs.push_back(const_cast<LifetimeCaptureByAttr *>(A));
4125 }
4126 }
4127 if (Attrs.empty())
4128 return;
4129 llvm::StringMap<int> NameIdxMapping = {
4130 {"global", LifetimeCaptureByAttr::Global},
4131 {"unknown", LifetimeCaptureByAttr::Unknown}};
4132 int Idx = 0;
4133 if (HasImplicitThisParam) {
4134 NameIdxMapping["this"] = 0;
4135 Idx++;
4136 }
4137 for (const ParmVarDecl *PVD : FD->parameters())
4138 NameIdxMapping[PVD->getName()] = Idx++;
4139 auto DisallowReservedParams = [&](StringRef Reserved) {
4140 for (const ParmVarDecl *PVD : FD->parameters())
4141 if (PVD->getName() == Reserved)
4142 Diag(PVD->getLocation(), diag::err_capture_by_param_uses_reserved_name)
4143 << (PVD->getName() == "unknown");
4144 };
4145 for (auto *CapturedBy : Attrs) {
4146 const auto &Entities = CapturedBy->getArgIdents();
4147 for (size_t I = 0; I < Entities.size(); ++I) {
4148 StringRef Name = Entities[I]->getName();
4149 auto It = NameIdxMapping.find(Name);
4150 if (It == NameIdxMapping.end()) {
4151 auto Loc = CapturedBy->getArgLocs()[I];
4152 if (!HasImplicitThisParam && Name == "this")
4153 Diag(Loc, diag::err_capture_by_implicit_this_not_available) << Loc;
4154 else
4155 Diag(Loc, diag::err_capture_by_attribute_argument_unknown)
4156 << Entities[I] << Loc;
4157 continue;
4158 }
4159 if (Name == "unknown" || Name == "global")
4160 DisallowReservedParams(Name);
4161 CapturedBy->setParamIdx(I, It->second);
4162 }
4163 }
4164}
4165
4166static bool isFunctionLike(const Type &T) {
4167 // Check for explicit function types.
4168 // 'called_once' is only supported in Objective-C and it has
4169 // function pointers and block pointers.
4170 return T.isFunctionPointerType() || T.isBlockPointerType();
4171}
4172
4173/// Handle 'called_once' attribute.
4174static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4175 // 'called_once' only applies to parameters representing functions.
4176 QualType T = cast<ParmVarDecl>(D)->getType();
4177
4178 if (!isFunctionLike(*T)) {
4179 S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4180 return;
4181 }
4182
4183 D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4184}
4185
4186static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4187 // Try to find the underlying union declaration.
4188 RecordDecl *RD = nullptr;
4189 const auto *TD = dyn_cast<TypedefNameDecl>(D);
4190 if (TD && TD->getUnderlyingType()->isUnionType())
4191 RD = TD->getUnderlyingType()->getAsRecordDecl();
4192 else
4193 RD = dyn_cast<RecordDecl>(D);
4194
4195 if (!RD || !RD->isUnion()) {
4196 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4198 return;
4199 }
4200
4201 if (!RD->isCompleteDefinition()) {
4202 if (!RD->isBeingDefined())
4203 S.Diag(AL.getLoc(),
4204 diag::warn_transparent_union_attribute_not_definition);
4205 return;
4206 }
4207
4209 FieldEnd = RD->field_end();
4210 if (Field == FieldEnd) {
4211 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4212 return;
4213 }
4214
4215 FieldDecl *FirstField = *Field;
4216 QualType FirstType = FirstField->getType();
4217 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4218 S.Diag(FirstField->getLocation(),
4219 diag::warn_transparent_union_attribute_floating)
4220 << FirstType->isVectorType() << FirstType;
4221 return;
4222 }
4223
4224 if (FirstType->isIncompleteType())
4225 return;
4226 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4227 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4228 for (; Field != FieldEnd; ++Field) {
4229 QualType FieldType = Field->getType();
4230 if (FieldType->isIncompleteType())
4231 return;
4232 // FIXME: this isn't fully correct; we also need to test whether the
4233 // members of the union would all have the same calling convention as the
4234 // first member of the union. Checking just the size and alignment isn't
4235 // sufficient (consider structs passed on the stack instead of in registers
4236 // as an example).
4237 if (S.Context.getTypeSize(FieldType) != FirstSize ||
4238 S.Context.getTypeAlign(FieldType) > FirstAlign) {
4239 // Warn if we drop the attribute.
4240 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4241 unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4242 : S.Context.getTypeAlign(FieldType);
4243 S.Diag(Field->getLocation(),
4244 diag::warn_transparent_union_attribute_field_size_align)
4245 << isSize << *Field << FieldBits;
4246 unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4247 S.Diag(FirstField->getLocation(),
4248 diag::note_transparent_union_first_field_size_align)
4249 << isSize << FirstBits;
4250 return;
4251 }
4252 }
4253
4254 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4255}
4256
4257static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4258 auto *Attr = S.CreateAnnotationAttr(AL);
4259 if (Attr) {
4260 D->addAttr(Attr);
4261 }
4262}
4263
4264static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4265 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4266}
4267
4269 SourceLocation AttrLoc = CI.getLoc();
4270
4271 QualType T;
4272 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4273 T = TD->getUnderlyingType();
4274 else if (const auto *VD = dyn_cast<ValueDecl>(D))
4275 T = VD->getType();
4276 else
4277 llvm_unreachable("Unknown decl type for align_value");
4278
4279 if (!T->isDependentType() && !T->isAnyPointerType() &&
4280 !T->isReferenceType() && !T->isMemberPointerType()) {
4281 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4282 << CI << T << D->getSourceRange();
4283 return;
4284 }
4285
4286 if (!E->isValueDependent()) {
4287 llvm::APSInt Alignment;
4289 E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4290 if (ICE.isInvalid())
4291 return;
4292
4293 if (!Alignment.isPowerOf2()) {
4294 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4295 << E->getSourceRange();
4296 return;
4297 }
4298
4299 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4300 return;
4301 }
4302
4303 // Save dependent expressions in the AST to be instantiated.
4304 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4305}
4306
4307static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4308 if (AL.hasParsedType()) {
4309 const ParsedType &TypeArg = AL.getTypeArg();
4310 TypeSourceInfo *TInfo;
4311 (void)S.GetTypeFromParser(
4312 ParsedType::getFromOpaquePtr(TypeArg.getAsOpaquePtr()), &TInfo);
4313 if (AL.isPackExpansion() &&
4315 S.Diag(AL.getEllipsisLoc(),
4316 diag::err_pack_expansion_without_parameter_packs);
4317 return;
4318 }
4319
4320 if (!AL.isPackExpansion() &&
4322 TInfo, Sema::UPPC_Expression))
4323 return;
4324
4325 S.AddAlignedAttr(D, AL, TInfo, AL.isPackExpansion());
4326 return;
4327 }
4328
4329 // check the attribute arguments.
4330 if (AL.getNumArgs() > 1) {
4331 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4332 return;
4333 }
4334
4335 if (AL.getNumArgs() == 0) {
4336 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4337 return;
4338 }
4339
4340 Expr *E = AL.getArgAsExpr(0);
4342 S.Diag(AL.getEllipsisLoc(),
4343 diag::err_pack_expansion_without_parameter_packs);
4344 return;
4345 }
4346
4348 return;
4349
4350 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4351}
4352
4353/// Perform checking of type validity
4354///
4355/// C++11 [dcl.align]p1:
4356/// An alignment-specifier may be applied to a variable or to a class
4357/// data member, but it shall not be applied to a bit-field, a function
4358/// parameter, the formal parameter of a catch clause, or a variable
4359/// declared with the register storage class specifier. An
4360/// alignment-specifier may also be applied to the declaration of a class
4361/// or enumeration type.
4362/// CWG 2354:
4363/// CWG agreed to remove permission for alignas to be applied to
4364/// enumerations.
4365/// C11 6.7.5/2:
4366/// An alignment attribute shall not be specified in a declaration of
4367/// a typedef, or a bit-field, or a function, or a parameter, or an
4368/// object declared with the register storage-class specifier.
4370 const AlignedAttr &Attr,
4371 SourceLocation AttrLoc) {
4372 int DiagKind = -1;
4373 if (isa<ParmVarDecl>(D)) {
4374 DiagKind = 0;
4375 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4376 if (VD->getStorageClass() == SC_Register)
4377 DiagKind = 1;
4378 if (VD->isExceptionVariable())
4379 DiagKind = 2;
4380 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4381 if (FD->isBitField())
4382 DiagKind = 3;
4383 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4384 if (ED->getLangOpts().CPlusPlus)
4385 DiagKind = 4;
4386 } else if (!isa<TagDecl>(D)) {
4387 return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
4389 << (Attr.isC11() ? ExpectedVariableOrField
4391 }
4392 if (DiagKind != -1) {
4393 return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4394 << &Attr << DiagKind;
4395 }
4396 return false;
4397}
4398
4400 bool IsPackExpansion) {
4401 AlignedAttr TmpAttr(Context, CI, true, E);
4402 SourceLocation AttrLoc = CI.getLoc();
4403
4404 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4405 if (TmpAttr.isAlignas() &&
4406 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4407 return;
4408
4409 if (E->isValueDependent()) {
4410 // We can't support a dependent alignment on a non-dependent type,
4411 // because we have no way to model that a type is "alignment-dependent"
4412 // but not dependent in any other way.
4413 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4414 if (!TND->getUnderlyingType()->isDependentType()) {
4415 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4416 << E->getSourceRange();
4417 return;
4418 }
4419 }
4420
4421 // Save dependent expressions in the AST to be instantiated.
4422 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4423 AA->setPackExpansion(IsPackExpansion);
4424 D->addAttr(AA);
4425 return;
4426 }
4427
4428 // FIXME: Cache the number on the AL object?
4429 llvm::APSInt Alignment;
4431 E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4432 if (ICE.isInvalid())
4433 return;
4434
4436 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4437 MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4438 if (Alignment > MaximumAlignment) {
4439 Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4441 return;
4442 }
4443
4444 uint64_t AlignVal = Alignment.getZExtValue();
4445 // C++11 [dcl.align]p2:
4446 // -- if the constant expression evaluates to zero, the alignment
4447 // specifier shall have no effect
4448 // C11 6.7.5p6:
4449 // An alignment specification of zero has no effect.
4450 if (!(TmpAttr.isAlignas() && !Alignment)) {
4451 if (!llvm::isPowerOf2_64(AlignVal)) {
4452 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4453 << E->getSourceRange();
4454 return;
4455 }
4456 }
4457
4458 const auto *VD = dyn_cast<VarDecl>(D);
4459 if (VD) {
4460 unsigned MaxTLSAlign =
4461 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4462 .getQuantity();
4463 if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4464 VD->getTLSKind() != VarDecl::TLS_None) {
4465 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4466 << (unsigned)AlignVal << VD << MaxTLSAlign;
4467 return;
4468 }
4469 }
4470
4471 // On AIX, an aligned attribute can not decrease the alignment when applied
4472 // to a variable declaration with vector type.
4473 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4474 const Type *Ty = VD->getType().getTypePtr();
4475 if (Ty->isVectorType() && AlignVal < 16) {
4476 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4477 << VD->getType() << 16;
4478 return;
4479 }
4480 }
4481
4482 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4483 AA->setPackExpansion(IsPackExpansion);
4484 AA->setCachedAlignmentValue(
4485 static_cast<unsigned>(AlignVal * Context.getCharWidth()));
4486 D->addAttr(AA);
4487}
4488
4490 TypeSourceInfo *TS, bool IsPackExpansion) {
4491 AlignedAttr TmpAttr(Context, CI, false, TS);
4492 SourceLocation AttrLoc = CI.getLoc();
4493
4494 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4495 if (TmpAttr.isAlignas() &&
4496 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4497 return;
4498
4499 if (TS->getType()->isDependentType()) {
4500 // We can't support a dependent alignment on a non-dependent type,
4501 // because we have no way to model that a type is "type-dependent"
4502 // but not dependent in any other way.
4503 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4504 if (!TND->getUnderlyingType()->isDependentType()) {
4505 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4506 << TS->getTypeLoc().getSourceRange();
4507 return;
4508 }
4509 }
4510
4511 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4512 AA->setPackExpansion(IsPackExpansion);
4513 D->addAttr(AA);
4514 return;
4515 }
4516
4517 const auto *VD = dyn_cast<VarDecl>(D);
4518 unsigned AlignVal = TmpAttr.getAlignment(Context);
4519 // On AIX, an aligned attribute can not decrease the alignment when applied
4520 // to a variable declaration with vector type.
4521 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4522 const Type *Ty = VD->getType().getTypePtr();
4523 if (Ty->isVectorType() &&
4524 Context.toCharUnitsFromBits(AlignVal).getQuantity() < 16) {
4525 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4526 << VD->getType() << 16;
4527 return;
4528 }
4529 }
4530
4531 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4532 AA->setPackExpansion(IsPackExpansion);
4533 AA->setCachedAlignmentValue(AlignVal);
4534 D->addAttr(AA);
4535}
4536
4538 assert(D->hasAttrs() && "no attributes on decl");
4539
4540 QualType UnderlyingTy, DiagTy;
4541 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4542 UnderlyingTy = DiagTy = VD->getType();
4543 } else {
4544 UnderlyingTy = DiagTy = Context.getCanonicalTagType(cast<TagDecl>(D));
4545 if (const auto *ED = dyn_cast<EnumDecl>(D))
4546 UnderlyingTy = ED->getIntegerType();
4547 }
4548 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4549 return;
4550
4551 // C++11 [dcl.align]p5, C11 6.7.5/4:
4552 // The combined effect of all alignment attributes in a declaration shall
4553 // not specify an alignment that is less strict than the alignment that
4554 // would otherwise be required for the entity being declared.
4555 AlignedAttr *AlignasAttr = nullptr;
4556 AlignedAttr *LastAlignedAttr = nullptr;
4557 unsigned Align = 0;
4558 for (auto *I : D->specific_attrs<AlignedAttr>()) {
4559 if (I->isAlignmentDependent())
4560 return;
4561 if (I->isAlignas())
4562 AlignasAttr = I;
4563 Align = std::max(Align, I->getAlignment(Context));
4564 LastAlignedAttr = I;
4565 }
4566
4567 if (Align && DiagTy->isSizelessType()) {
4568 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4569 << LastAlignedAttr << DiagTy;
4570 } else if (AlignasAttr && Align) {
4571 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4572 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4573 if (NaturalAlign > RequestedAlign)
4574 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4575 << DiagTy << (unsigned)NaturalAlign.getQuantity();
4576 }
4577}
4578
4580 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4581 MSInheritanceModel ExplicitModel) {
4582 assert(RD->hasDefinition() && "RD has no definition!");
4583
4584 // We may not have seen base specifiers or any virtual methods yet. We will
4585 // have to wait until the record is defined to catch any mismatches.
4586 if (!RD->getDefinition()->isCompleteDefinition())
4587 return false;
4588
4589 // The unspecified model never matches what a definition could need.
4590 if (ExplicitModel == MSInheritanceModel::Unspecified)
4591 return false;
4592
4593 if (BestCase) {
4594 if (RD->calculateInheritanceModel() == ExplicitModel)
4595 return false;
4596 } else {
4597 if (RD->calculateInheritanceModel() <= ExplicitModel)
4598 return false;
4599 }
4600
4601 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4602 << 0 /*definition*/;
4603 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4604 return true;
4605}
4606
4607/// parseModeAttrArg - Parses attribute mode string and returns parsed type
4608/// attribute.
4609static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4610 bool &IntegerMode, bool &ComplexMode,
4611 FloatModeKind &ExplicitType) {
4612 IntegerMode = true;
4613 ComplexMode = false;
4614 ExplicitType = FloatModeKind::NoFloat;
4615 switch (Str.size()) {
4616 case 2:
4617 switch (Str[0]) {
4618 case 'Q':
4619 DestWidth = 8;
4620 break;
4621 case 'H':
4622 DestWidth = 16;
4623 break;
4624 case 'S':
4625 DestWidth = 32;
4626 break;
4627 case 'D':
4628 DestWidth = 64;
4629 break;
4630 case 'X':
4631 DestWidth = 96;
4632 break;
4633 case 'K': // KFmode - IEEE quad precision (__float128)
4634 ExplicitType = FloatModeKind::Float128;
4635 DestWidth = Str[1] == 'I' ? 0 : 128;
4636 break;
4637 case 'T':
4638 ExplicitType = FloatModeKind::LongDouble;
4639 DestWidth = 128;
4640 break;
4641 case 'I':
4642 ExplicitType = FloatModeKind::Ibm128;
4643 DestWidth = Str[1] == 'I' ? 0 : 128;
4644 break;
4645 }
4646 if (Str[1] == 'F') {
4647 IntegerMode = false;
4648 } else if (Str[1] == 'C') {
4649 IntegerMode = false;
4650 ComplexMode = true;
4651 } else if (Str[1] != 'I') {
4652 DestWidth = 0;
4653 }
4654 break;
4655 case 4:
4656 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4657 // pointer on PIC16 and other embedded platforms.
4658 if (Str == "word")
4659 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4660 else if (Str == "byte")
4661 DestWidth = S.Context.getTargetInfo().getCharWidth();
4662 break;
4663 case 7:
4664 if (Str == "pointer")
4666 break;
4667 case 11:
4668 if (Str == "unwind_word")
4669 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4670 break;
4671 }
4672}
4673
4674/// handleModeAttr - This attribute modifies the width of a decl with primitive
4675/// type.
4676///
4677/// Despite what would be logical, the mode attribute is a decl attribute, not a
4678/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4679/// HImode, not an intermediate pointer.
4680static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4681 // This attribute isn't documented, but glibc uses it. It changes
4682 // the width of an int or unsigned int to the specified size.
4683 if (!AL.isArgIdent(0)) {
4684 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4685 << AL << AANT_ArgumentIdentifier;
4686 return;
4687 }
4688
4690
4691 S.AddModeAttr(D, AL, Name);
4692}
4693
4695 IdentifierInfo *Name, bool InInstantiation) {
4696 StringRef Str = Name->getName();
4697 normalizeName(Str);
4698 SourceLocation AttrLoc = CI.getLoc();
4699
4700 unsigned DestWidth = 0;
4701 bool IntegerMode = true;
4702 bool ComplexMode = false;
4704 llvm::APInt VectorSize(64, 0);
4705 if (Str.size() >= 4 && Str[0] == 'V') {
4706 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4707 size_t StrSize = Str.size();
4708 size_t VectorStringLength = 0;
4709 while ((VectorStringLength + 1) < StrSize &&
4710 isdigit(Str[VectorStringLength + 1]))
4711 ++VectorStringLength;
4712 if (VectorStringLength &&
4713 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4714 VectorSize.isPowerOf2()) {
4715 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4716 IntegerMode, ComplexMode, ExplicitType);
4717 // Avoid duplicate warning from template instantiation.
4718 if (!InInstantiation)
4719 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4720 } else {
4721 VectorSize = 0;
4722 }
4723 }
4724
4725 if (!VectorSize)
4726 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4727 ExplicitType);
4728
4729 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4730 // and friends, at least with glibc.
4731 // FIXME: Make sure floating-point mappings are accurate
4732 // FIXME: Support XF and TF types
4733 if (!DestWidth) {
4734 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4735 return;
4736 }
4737
4738 QualType OldTy;
4739 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4740 OldTy = TD->getUnderlyingType();
4741 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4742 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4743 // Try to get type from enum declaration, default to int.
4744 OldTy = ED->getIntegerType();
4745 if (OldTy.isNull())
4746 OldTy = Context.IntTy;
4747 } else
4748 OldTy = cast<ValueDecl>(D)->getType();
4749
4750 if (OldTy->isDependentType()) {
4751 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4752 return;
4753 }
4754
4755 // Base type can also be a vector type (see PR17453).
4756 // Distinguish between base type and base element type.
4757 QualType OldElemTy = OldTy;
4758 if (const auto *VT = OldTy->getAs<VectorType>())
4759 OldElemTy = VT->getElementType();
4760
4761 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4762 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4763 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4764 if ((isa<EnumDecl>(D) || OldElemTy->isEnumeralType()) &&
4765 VectorSize.getBoolValue()) {
4766 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4767 return;
4768 }
4769 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4770 !OldElemTy->isBitIntType()) ||
4771 OldElemTy->isEnumeralType();
4772
4773 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4774 !IntegralOrAnyEnumType)
4775 Diag(AttrLoc, diag::err_mode_not_primitive);
4776 else if (IntegerMode) {
4777 if (!IntegralOrAnyEnumType)
4778 Diag(AttrLoc, diag::err_mode_wrong_type);
4779 } else if (ComplexMode) {
4780 if (!OldElemTy->isComplexType())
4781 Diag(AttrLoc, diag::err_mode_wrong_type);
4782 } else {
4783 if (!OldElemTy->isFloatingType())
4784 Diag(AttrLoc, diag::err_mode_wrong_type);
4785 }
4786
4787 QualType NewElemTy;
4788
4789 if (IntegerMode)
4790 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4791 OldElemTy->isSignedIntegerType());
4792 else
4793 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4794
4795 if (NewElemTy.isNull()) {
4796 // Only emit diagnostic on host for 128-bit mode attribute
4797 if (!(DestWidth == 128 &&
4798 (getLangOpts().CUDAIsDevice || getLangOpts().SYCLIsDevice)))
4799 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4800 return;
4801 }
4802
4803 if (ComplexMode) {
4804 NewElemTy = Context.getComplexType(NewElemTy);
4805 }
4806
4807 QualType NewTy = NewElemTy;
4808 if (VectorSize.getBoolValue()) {
4809 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4811 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4812 // Complex machine mode does not support base vector types.
4813 if (ComplexMode) {
4814 Diag(AttrLoc, diag::err_complex_mode_vector_type);
4815 return;
4816 }
4817 unsigned NumElements = Context.getTypeSize(OldElemTy) *
4818 OldVT->getNumElements() /
4819 Context.getTypeSize(NewElemTy);
4820 NewTy =
4821 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4822 }
4823
4824 if (NewTy.isNull()) {
4825 Diag(AttrLoc, diag::err_mode_wrong_type);
4826 return;
4827 }
4828
4829 // Install the new type.
4830 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4831 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4832 else if (auto *ED = dyn_cast<EnumDecl>(D))
4833 ED->setIntegerType(NewTy);
4834 else
4835 cast<ValueDecl>(D)->setType(NewTy);
4836
4837 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4838}
4839
4840static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4841 // This only applies to fields and variable declarations which have an array
4842 // type or pointer type, with character elements.
4843 QualType QT = cast<ValueDecl>(D)->getType();
4844 if ((!QT->isArrayType() && !QT->isPointerType()) ||
4846 S.Diag(D->getBeginLoc(), diag::warn_attribute_non_character_array)
4847 << AL << AL.isRegularKeywordAttribute() << QT << AL.getRange();
4848 return;
4849 }
4850
4851 D->addAttr(::new (S.Context) NonStringAttr(S.Context, AL));
4852}
4853
4854static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4855 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4856}
4857
4859 const AttributeCommonInfo &CI,
4860 const IdentifierInfo *Ident) {
4861 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4862 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4863 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4864 return nullptr;
4865 }
4866
4867 if (D->hasAttr<AlwaysInlineAttr>())
4868 return nullptr;
4869
4870 return ::new (Context) AlwaysInlineAttr(Context, CI);
4871}
4872
4873InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4874 const ParsedAttr &AL) {
4875 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4876 // Attribute applies to Var but not any subclass of it (like ParmVar,
4877 // ImplicitParm or VarTemplateSpecialization).
4878 if (VD->getKind() != Decl::Var) {
4879 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4880 << AL << AL.isRegularKeywordAttribute()
4883 return nullptr;
4884 }
4885 // Attribute does not apply to non-static local variables.
4886 if (VD->hasLocalStorage()) {
4887 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4888 return nullptr;
4889 }
4890 }
4891
4892 return ::new (Context) InternalLinkageAttr(Context, AL);
4893}
4894InternalLinkageAttr *
4895Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4896 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4897 // Attribute applies to Var but not any subclass of it (like ParmVar,
4898 // ImplicitParm or VarTemplateSpecialization).
4899 if (VD->getKind() != Decl::Var) {
4900 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4901 << &AL << AL.isRegularKeywordAttribute()
4904 return nullptr;
4905 }
4906 // Attribute does not apply to non-static local variables.
4907 if (VD->hasLocalStorage()) {
4908 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4909 return nullptr;
4910 }
4911 }
4912
4913 return ::new (Context) InternalLinkageAttr(Context, AL);
4914}
4915
4917 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4918 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4919 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4920 return nullptr;
4921 }
4922
4923 if (D->hasAttr<MinSizeAttr>())
4924 return nullptr;
4925
4926 return ::new (Context) MinSizeAttr(Context, CI);
4927}
4928
4930 const AttributeCommonInfo &CI) {
4931 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4932 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4933 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4934 D->dropAttr<AlwaysInlineAttr>();
4935 }
4936 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4937 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4938 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4939 D->dropAttr<MinSizeAttr>();
4940 }
4941
4942 if (D->hasAttr<OptimizeNoneAttr>())
4943 return nullptr;
4944
4945 return ::new (Context) OptimizeNoneAttr(Context, CI);
4946}
4947
4948static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4949 if (AlwaysInlineAttr *Inline =
4950 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4951 D->addAttr(Inline);
4952}
4953
4954static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4955 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4956 D->addAttr(MinSize);
4957}
4958
4959static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4960 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4961 D->addAttr(Optnone);
4962}
4963
4964static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4965 const auto *VD = cast<VarDecl>(D);
4966 if (VD->hasLocalStorage()) {
4967 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4968 return;
4969 }
4970 // constexpr variable may already get an implicit constant attr, which should
4971 // be replaced by the explicit constant attr.
4972 if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4973 if (!A->isImplicit())
4974 return;
4975 D->dropAttr<CUDAConstantAttr>();
4976 }
4977 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4978}
4979
4980static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4981 const auto *VD = cast<VarDecl>(D);
4982 // extern __shared__ is only allowed on arrays with no length (e.g.
4983 // "int x[]").
4984 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4985 !isa<IncompleteArrayType>(VD->getType())) {
4986 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4987 return;
4988 }
4989 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4990 S.CUDA().DiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4991 << S.CUDA().CurrentTarget())
4992 return;
4993 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4994}
4995
4996static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4997 const auto *FD = cast<FunctionDecl>(D);
4998 if (!FD->getReturnType()->isVoidType() &&
4999 !FD->getReturnType()->getAs<AutoType>() &&
5001 SourceRange RTRange = FD->getReturnTypeSourceRange();
5002 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
5003 << FD->getType()
5004 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
5005 : FixItHint());
5006 return;
5007 }
5008 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
5009 if (Method->isInstance()) {
5010 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
5011 << Method;
5012 return;
5013 }
5014 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
5015 }
5016 // Only warn for "inline" when compiling for host, to cut down on noise.
5017 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
5018 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
5019
5020 if (AL.getKind() == ParsedAttr::AT_DeviceKernel)
5021 D->addAttr(::new (S.Context) DeviceKernelAttr(S.Context, AL));
5022 else
5023 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
5024 // In host compilation the kernel is emitted as a stub function, which is
5025 // a helper function for launching the kernel. The instructions in the helper
5026 // function has nothing to do with the source code of the kernel. Do not emit
5027 // debug info for the stub function to avoid confusing the debugger.
5028 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
5029 D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
5030}
5031
5032static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5033 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5034 if (VD->hasLocalStorage()) {
5035 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5036 return;
5037 }
5038 }
5039
5040 if (auto *A = D->getAttr<CUDADeviceAttr>()) {
5041 if (!A->isImplicit())
5042 return;
5043 D->dropAttr<CUDADeviceAttr>();
5044 }
5045 D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
5046}
5047
5048static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5049 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5050 if (VD->hasLocalStorage()) {
5051 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5052 return;
5053 }
5054 }
5055 if (!D->hasAttr<HIPManagedAttr>())
5056 D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
5057 if (!D->hasAttr<CUDADeviceAttr>())
5058 D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
5059}
5060
5061static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5062 if (D->isInvalidDecl())
5063 return;
5064 // Whether __grid_constant__ is allowed to be used will be checked in
5065 // Sema::CheckFunctionDeclaration as we need complete function decl to make
5066 // the call.
5067 D->addAttr(::new (S.Context) CUDAGridConstantAttr(S.Context, AL));
5068}
5069
5070static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5071 const auto *Fn = cast<FunctionDecl>(D);
5072 if (!Fn->isInlineSpecified()) {
5073 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
5074 return;
5075 }
5076
5077 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
5078 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
5079
5080 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
5081}
5082
5083static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5084 if (hasDeclarator(D)) return;
5085
5086 // Diagnostic is emitted elsewhere: here we store the (valid) AL
5087 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
5088 CallingConv CC;
5090 AL, CC, /*FD*/ nullptr,
5091 S.CUDA().IdentifyTarget(dyn_cast<FunctionDecl>(D))))
5092 return;
5093
5094 if (!isa<ObjCMethodDecl>(D)) {
5095 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5097 return;
5098 }
5099
5100 switch (AL.getKind()) {
5101 case ParsedAttr::AT_FastCall:
5102 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
5103 return;
5104 case ParsedAttr::AT_StdCall:
5105 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
5106 return;
5107 case ParsedAttr::AT_ThisCall:
5108 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
5109 return;
5110 case ParsedAttr::AT_CDecl:
5111 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
5112 return;
5113 case ParsedAttr::AT_Pascal:
5114 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
5115 return;
5116 case ParsedAttr::AT_SwiftCall:
5117 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
5118 return;
5119 case ParsedAttr::AT_SwiftAsyncCall:
5120 D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
5121 return;
5122 case ParsedAttr::AT_VectorCall:
5123 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
5124 return;
5125 case ParsedAttr::AT_MSABI:
5126 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
5127 return;
5128 case ParsedAttr::AT_SysVABI:
5129 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
5130 return;
5131 case ParsedAttr::AT_RegCall:
5132 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
5133 return;
5134 case ParsedAttr::AT_Pcs: {
5135 PcsAttr::PCSType PCS;
5136 switch (CC) {
5137 case CC_AAPCS:
5138 PCS = PcsAttr::AAPCS;
5139 break;
5140 case CC_AAPCS_VFP:
5141 PCS = PcsAttr::AAPCS_VFP;
5142 break;
5143 default:
5144 llvm_unreachable("unexpected calling convention in pcs attribute");
5145 }
5146
5147 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
5148 return;
5149 }
5150 case ParsedAttr::AT_AArch64VectorPcs:
5151 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
5152 return;
5153 case ParsedAttr::AT_AArch64SVEPcs:
5154 D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL));
5155 return;
5156 case ParsedAttr::AT_DeviceKernel: {
5157 // The attribute should already be applied.
5158 assert(D->hasAttr<DeviceKernelAttr>() && "Expected attribute");
5159 return;
5160 }
5161 case ParsedAttr::AT_IntelOclBicc:
5162 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
5163 return;
5164 case ParsedAttr::AT_PreserveMost:
5165 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
5166 return;
5167 case ParsedAttr::AT_PreserveAll:
5168 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
5169 return;
5170 case ParsedAttr::AT_M68kRTD:
5171 D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL));
5172 return;
5173 case ParsedAttr::AT_PreserveNone:
5174 D->addAttr(::new (S.Context) PreserveNoneAttr(S.Context, AL));
5175 return;
5176 case ParsedAttr::AT_RISCVVectorCC:
5177 D->addAttr(::new (S.Context) RISCVVectorCCAttr(S.Context, AL));
5178 return;
5179 case ParsedAttr::AT_RISCVVLSCC: {
5180 // If the riscv_abi_vlen doesn't have any argument, default ABI_VLEN is 128.
5181 unsigned VectorLength = 128;
5182 if (AL.getNumArgs() &&
5184 return;
5186 S.Diag(AL.getLoc(), diag::err_argument_invalid_range)
5187 << VectorLength << 32 << 65536;
5188 return;
5189 }
5190 if (!llvm::isPowerOf2_64(VectorLength)) {
5191 S.Diag(AL.getLoc(), diag::err_argument_not_power_of_2);
5192 return;
5193 }
5194
5195 D->addAttr(::new (S.Context) RISCVVLSCCAttr(S.Context, AL, VectorLength));
5196 return;
5197 }
5198 default:
5199 llvm_unreachable("unexpected attribute kind");
5200 }
5201}
5202
5203static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5204 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
5205 bool IsFunctionTemplate = FD && FD->getDescribedFunctionTemplate();
5206 if (S.getLangOpts().SYCLIsDevice) {
5207 if (!IsFunctionTemplate) {
5208 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
5209 << AL << AL.isRegularKeywordAttribute() << "function templates";
5210 } else {
5211 S.SYCL().handleKernelAttr(D, AL);
5212 }
5213 } else if (DeviceKernelAttr::isSYCLSpelling(AL)) {
5214 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
5215 } else if (S.getASTContext().getTargetInfo().getTriple().isNVPTX()) {
5216 handleGlobalAttr(S, D, AL);
5217 } else {
5218 // OpenCL C++ will throw a more specific error.
5219 if (!S.getLangOpts().OpenCLCPlusPlus && (!FD || IsFunctionTemplate)) {
5220 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str)
5221 << AL << AL.isRegularKeywordAttribute() << "functions";
5222 }
5224 }
5225 // Make sure we validate the CC with the target
5226 // and warn/error if necessary.
5227 handleCallConvAttr(S, D, AL);
5228}
5229
5230static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5231 if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) {
5232 // Suppression attribute with GSL spelling requires at least 1 argument.
5233 if (!AL.checkAtLeastNumArgs(S, 1))
5234 return;
5235 }
5236
5237 std::vector<StringRef> DiagnosticIdentifiers;
5238 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5239 StringRef RuleName;
5240
5241 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5242 return;
5243
5244 DiagnosticIdentifiers.push_back(RuleName);
5245 }
5246 D->addAttr(::new (S.Context)
5247 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5248 DiagnosticIdentifiers.size()));
5249}
5250
5251static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5252 TypeSourceInfo *DerefTypeLoc = nullptr;
5253 QualType ParmType;
5254 if (AL.hasParsedType()) {
5255 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5256
5257 unsigned SelectIdx = ~0U;
5258 if (ParmType->isReferenceType())
5259 SelectIdx = 0;
5260 else if (ParmType->isArrayType())
5261 SelectIdx = 1;
5262
5263 if (SelectIdx != ~0U) {
5264 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5265 << SelectIdx << AL;
5266 return;
5267 }
5268 }
5269
5270 // To check if earlier decl attributes do not conflict the newly parsed ones
5271 // we always add (and check) the attribute to the canonical decl. We need
5272 // to repeat the check for attribute mutual exclusion because we're attaching
5273 // all of the attributes to the canonical declaration rather than the current
5274 // declaration.
5275 D = D->getCanonicalDecl();
5276 if (AL.getKind() == ParsedAttr::AT_Owner) {
5278 return;
5279 if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5280 const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5281 ? OAttr->getDerefType().getTypePtr()
5282 : nullptr;
5283 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5284 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5285 << AL << OAttr
5286 << (AL.isRegularKeywordAttribute() ||
5287 OAttr->isRegularKeywordAttribute());
5288 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5289 }
5290 return;
5291 }
5292 for (Decl *Redecl : D->redecls()) {
5293 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5294 }
5295 } else {
5297 return;
5298 if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5299 const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5300 ? PAttr->getDerefType().getTypePtr()
5301 : nullptr;
5302 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5303 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5304 << AL << PAttr
5305 << (AL.isRegularKeywordAttribute() ||
5306 PAttr->isRegularKeywordAttribute());
5307 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5308 }
5309 return;
5310 }
5311 for (Decl *Redecl : D->redecls()) {
5312 Redecl->addAttr(::new (S.Context)
5313 PointerAttr(S.Context, AL, DerefTypeLoc));
5314 }
5315 }
5316}
5317
5318static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5320 return;
5321 if (!D->hasAttr<RandomizeLayoutAttr>())
5322 D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL));
5323}
5324
5326 const ParsedAttr &AL) {
5328 return;
5329 if (!D->hasAttr<NoRandomizeLayoutAttr>())
5330 D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL));
5331}
5332
5334 const FunctionDecl *FD,
5335 CUDAFunctionTarget CFT) {
5336 if (Attrs.isInvalid())
5337 return true;
5338
5339 if (Attrs.hasProcessingCache()) {
5340 CC = (CallingConv) Attrs.getProcessingCache();
5341 return false;
5342 }
5343
5344 if (Attrs.getKind() == ParsedAttr::AT_RISCVVLSCC) {
5345 // riscv_vls_cc only accepts 0 or 1 argument.
5346 if (!Attrs.checkAtLeastNumArgs(*this, 0) ||
5347 !Attrs.checkAtMostNumArgs(*this, 1)) {
5348 Attrs.setInvalid();
5349 return true;
5350 }
5351 } else {
5352 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5353 if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5354 Attrs.setInvalid();
5355 return true;
5356 }
5357 }
5358
5359 bool IsTargetDefaultMSABI =
5360 Context.getTargetInfo().getTriple().isOSWindows() ||
5361 Context.getTargetInfo().getTriple().isUEFI();
5362 // TODO: diagnose uses of these conventions on the wrong target.
5363 switch (Attrs.getKind()) {
5364 case ParsedAttr::AT_CDecl:
5365 CC = CC_C;
5366 break;
5367 case ParsedAttr::AT_FastCall:
5368 CC = CC_X86FastCall;
5369 break;
5370 case ParsedAttr::AT_StdCall:
5371 CC = CC_X86StdCall;
5372 break;
5373 case ParsedAttr::AT_ThisCall:
5374 CC = CC_X86ThisCall;
5375 break;
5376 case ParsedAttr::AT_Pascal:
5377 CC = CC_X86Pascal;
5378 break;
5379 case ParsedAttr::AT_SwiftCall:
5380 CC = CC_Swift;
5381 break;
5382 case ParsedAttr::AT_SwiftAsyncCall:
5383 CC = CC_SwiftAsync;
5384 break;
5385 case ParsedAttr::AT_VectorCall:
5386 CC = CC_X86VectorCall;
5387 break;
5388 case ParsedAttr::AT_AArch64VectorPcs:
5390 break;
5391 case ParsedAttr::AT_AArch64SVEPcs:
5392 CC = CC_AArch64SVEPCS;
5393 break;
5394 case ParsedAttr::AT_RegCall:
5395 CC = CC_X86RegCall;
5396 break;
5397 case ParsedAttr::AT_MSABI:
5398 CC = IsTargetDefaultMSABI ? CC_C : CC_Win64;
5399 break;
5400 case ParsedAttr::AT_SysVABI:
5401 CC = IsTargetDefaultMSABI ? CC_X86_64SysV : CC_C;
5402 break;
5403 case ParsedAttr::AT_Pcs: {
5404 StringRef StrRef;
5405 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5406 Attrs.setInvalid();
5407 return true;
5408 }
5409 if (StrRef == "aapcs") {
5410 CC = CC_AAPCS;
5411 break;
5412 } else if (StrRef == "aapcs-vfp") {
5413 CC = CC_AAPCS_VFP;
5414 break;
5415 }
5416
5417 Attrs.setInvalid();
5418 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5419 return true;
5420 }
5421 case ParsedAttr::AT_IntelOclBicc:
5422 CC = CC_IntelOclBicc;
5423 break;
5424 case ParsedAttr::AT_PreserveMost:
5425 CC = CC_PreserveMost;
5426 break;
5427 case ParsedAttr::AT_PreserveAll:
5428 CC = CC_PreserveAll;
5429 break;
5430 case ParsedAttr::AT_M68kRTD:
5431 CC = CC_M68kRTD;
5432 break;
5433 case ParsedAttr::AT_PreserveNone:
5434 CC = CC_PreserveNone;
5435 break;
5436 case ParsedAttr::AT_RISCVVectorCC:
5437 CC = CC_RISCVVectorCall;
5438 break;
5439 case ParsedAttr::AT_RISCVVLSCC: {
5440 // If the riscv_abi_vlen doesn't have any argument, we set set it to default
5441 // value 128.
5442 unsigned ABIVLen = 128;
5443 if (Attrs.getNumArgs() &&
5444 !checkUInt32Argument(Attrs, Attrs.getArgAsExpr(0), ABIVLen)) {
5445 Attrs.setInvalid();
5446 return true;
5447 }
5448 if (Attrs.getNumArgs() && (ABIVLen < 32 || ABIVLen > 65536)) {
5449 Attrs.setInvalid();
5450 Diag(Attrs.getLoc(), diag::err_argument_invalid_range)
5451 << ABIVLen << 32 << 65536;
5452 return true;
5453 }
5454 if (!llvm::isPowerOf2_64(ABIVLen)) {
5455 Attrs.setInvalid();
5456 Diag(Attrs.getLoc(), diag::err_argument_not_power_of_2);
5457 return true;
5458 }
5460 llvm::Log2_64(ABIVLen) - 5);
5461 break;
5462 }
5463 case ParsedAttr::AT_DeviceKernel: {
5464 // Validation was handled in handleDeviceKernelAttr.
5465 CC = CC_DeviceKernel;
5466 break;
5467 }
5468 default: llvm_unreachable("unexpected attribute kind");
5469 }
5470
5472 const TargetInfo &TI = Context.getTargetInfo();
5473 auto *Aux = Context.getAuxTargetInfo();
5474 // CUDA functions may have host and/or device attributes which indicate
5475 // their targeted execution environment, therefore the calling convention
5476 // of functions in CUDA should be checked against the target deduced based
5477 // on their host/device attributes.
5478 if (LangOpts.CUDA) {
5479 assert(FD || CFT != CUDAFunctionTarget::InvalidTarget);
5480 auto CudaTarget = FD ? CUDA().IdentifyTarget(FD) : CFT;
5481 bool CheckHost = false, CheckDevice = false;
5482 switch (CudaTarget) {
5484 CheckHost = true;
5485 CheckDevice = true;
5486 break;
5488 CheckHost = true;
5489 break;
5492 CheckDevice = true;
5493 break;
5495 llvm_unreachable("unexpected cuda target");
5496 }
5497 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5498 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5499 if (CheckHost && HostTI)
5500 A = HostTI->checkCallingConvention(CC);
5501 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5502 A = DeviceTI->checkCallingConvention(CC);
5503 } else if (LangOpts.SYCLIsDevice && TI.getTriple().isAMDGPU() &&
5504 CC == CC_X86VectorCall) {
5505 // Assuming SYCL Device AMDGPU CC_X86VectorCall functions are always to be
5506 // emitted on the host. The MSVC STL has CC-based specializations so we
5507 // cannot change the CC to be the default as that will cause a clash with
5508 // another specialization.
5509 A = TI.checkCallingConvention(CC);
5510 if (Aux && A != TargetInfo::CCCR_OK)
5511 A = Aux->checkCallingConvention(CC);
5512 } else {
5513 A = TI.checkCallingConvention(CC);
5514 }
5515
5516 switch (A) {
5518 break;
5519
5521 // Treat an ignored convention as if it was an explicit C calling convention
5522 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5523 // that command line flags that change the default convention to
5524 // __vectorcall don't affect declarations marked __stdcall.
5525 CC = CC_C;
5526 break;
5527
5529 Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5531 break;
5532
5534 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5536
5537 // This convention is not valid for the target. Use the default function or
5538 // method calling convention.
5539 bool IsCXXMethod = false, IsVariadic = false;
5540 if (FD) {
5541 IsCXXMethod = FD->isCXXInstanceMember();
5542 IsVariadic = FD->isVariadic();
5543 }
5544 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5545 break;
5546 }
5547 }
5548
5549 Attrs.setProcessingCache((unsigned) CC);
5550 return false;
5551}
5552
5553bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5554 if (AL.isInvalid())
5555 return true;
5556
5557 if (!AL.checkExactlyNumArgs(*this, 1)) {
5558 AL.setInvalid();
5559 return true;
5560 }
5561
5562 uint32_t NP;
5563 Expr *NumParamsExpr = AL.getArgAsExpr(0);
5564 if (!checkUInt32Argument(AL, NumParamsExpr, NP)) {
5565 AL.setInvalid();
5566 return true;
5567 }
5568
5569 if (Context.getTargetInfo().getRegParmMax() == 0) {
5570 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5571 << NumParamsExpr->getSourceRange();
5572 AL.setInvalid();
5573 return true;
5574 }
5575
5576 numParams = NP;
5577 if (numParams > Context.getTargetInfo().getRegParmMax()) {
5578 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5579 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5580 AL.setInvalid();
5581 return true;
5582 }
5583
5584 return false;
5585}
5586
5587// Helper to get OffloadArch.
5589 if (!TI.getTriple().isNVPTX())
5590 llvm_unreachable("getOffloadArch is only valid for NVPTX triple");
5591 auto &TO = TI.getTargetOpts();
5592 return StringToOffloadArch(TO.CPU);
5593}
5594
5595// Checks whether an argument of launch_bounds attribute is
5596// acceptable, performs implicit conversion to Rvalue, and returns
5597// non-nullptr Expr result on success. Otherwise, it returns nullptr
5598// and may output an error.
5600 const CUDALaunchBoundsAttr &AL,
5601 const unsigned Idx) {
5603 return nullptr;
5604
5605 // Accept template arguments for now as they depend on something else.
5606 // We'll get to check them when they eventually get instantiated.
5607 if (E->isValueDependent())
5608 return E;
5609
5610 std::optional<llvm::APSInt> I = llvm::APSInt(64);
5611 if (!(I = E->getIntegerConstantExpr(S.Context))) {
5612 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5613 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5614 return nullptr;
5615 }
5616 // Make sure we can fit it in 32 bits.
5617 if (!I->isIntN(32)) {
5618 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5619 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5620 return nullptr;
5621 }
5622 if (*I < 0)
5623 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5624 << &AL << Idx << E->getSourceRange();
5625
5626 // We may need to perform implicit conversion of the argument.
5628 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5629 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5630 assert(!ValArg.isInvalid() &&
5631 "Unexpected PerformCopyInitialization() failure.");
5632
5633 return ValArg.getAs<Expr>();
5634}
5635
5636CUDALaunchBoundsAttr *
5638 Expr *MinBlocks, Expr *MaxBlocks) {
5639 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5640 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5641 if (!MaxThreads)
5642 return nullptr;
5643
5644 if (MinBlocks) {
5645 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5646 if (!MinBlocks)
5647 return nullptr;
5648 }
5649
5650 if (MaxBlocks) {
5651 // '.maxclusterrank' ptx directive requires .target sm_90 or higher.
5652 auto SM = getOffloadArch(Context.getTargetInfo());
5654 Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90)
5655 << OffloadArchToString(SM) << CI << MaxBlocks->getSourceRange();
5656 // Ignore it by setting MaxBlocks to null;
5657 MaxBlocks = nullptr;
5658 } else {
5659 MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2);
5660 if (!MaxBlocks)
5661 return nullptr;
5662 }
5663 }
5664
5665 return ::new (Context)
5666 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5667}
5668
5670 Expr *MaxThreads, Expr *MinBlocks,
5671 Expr *MaxBlocks) {
5672 if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks))
5673 D->addAttr(Attr);
5674}
5675
5676static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5677 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
5678 return;
5679
5680 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5681 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
5682 AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr);
5683}
5684
5686 const ParsedAttr &AL) {
5687 if (!AL.isArgIdent(0)) {
5688 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5689 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5690 return;
5691 }
5692
5693 ParamIdx ArgumentIdx;
5695 D, AL, 2, AL.getArgAsExpr(1), ArgumentIdx,
5696 /*CanIndexImplicitThis=*/false,
5697 /*CanIndexVariadicArguments=*/true))
5698 return;
5699
5700 ParamIdx TypeTagIdx;
5702 D, AL, 3, AL.getArgAsExpr(2), TypeTagIdx,
5703 /*CanIndexImplicitThis=*/false,
5704 /*CanIndexVariadicArguments=*/true))
5705 return;
5706
5707 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5708 if (IsPointer) {
5709 // Ensure that buffer has a pointer type.
5710 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5711 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5712 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5713 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5714 }
5715
5716 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5717 S.Context, AL, AL.getArgAsIdent(0)->getIdentifierInfo(), ArgumentIdx,
5718 TypeTagIdx, IsPointer));
5719}
5720
5722 const ParsedAttr &AL) {
5723 if (!AL.isArgIdent(0)) {
5724 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5725 << AL << 1 << AANT_ArgumentIdentifier;
5726 return;
5727 }
5728
5729 if (!AL.checkExactlyNumArgs(S, 1))
5730 return;
5731
5732 if (!isa<VarDecl>(D)) {
5733 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5735 return;
5736 }
5737
5738 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->getIdentifierInfo();
5739 TypeSourceInfo *MatchingCTypeLoc = nullptr;
5740 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5741 assert(MatchingCTypeLoc && "no type source info for attribute argument");
5742
5743 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5744 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5745 AL.getMustBeNull()));
5746}
5747
5748static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5749 ParamIdx ArgCount;
5750
5752 ArgCount,
5753 true /* CanIndexImplicitThis */))
5754 return;
5755
5756 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5757 D->addAttr(::new (S.Context)
5758 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5759}
5760
5762 const ParsedAttr &AL) {
5763 if (S.Context.getTargetInfo().getTriple().isOSAIX()) {
5764 S.Diag(AL.getLoc(), diag::err_aix_attr_unsupported) << AL;
5765 return;
5766 }
5767 uint32_t Count = 0, Offset = 0;
5768 StringRef Section;
5769 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Count, 0, true))
5770 return;
5771 if (AL.getNumArgs() >= 2) {
5772 Expr *Arg = AL.getArgAsExpr(1);
5773 if (!S.checkUInt32Argument(AL, Arg, Offset, 1, true))
5774 return;
5775 if (Count < Offset) {
5776 S.Diag(S.getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5777 << &AL << 0 << Count << Arg->getBeginLoc();
5778 return;
5779 }
5780 }
5781 if (AL.getNumArgs() == 3) {
5782 SourceLocation LiteralLoc;
5783 if (!S.checkStringLiteralArgumentAttr(AL, 2, Section, &LiteralLoc))
5784 return;
5785 if (llvm::Error E = S.isValidSectionSpecifier(Section)) {
5786 S.Diag(LiteralLoc,
5787 diag::err_attribute_patchable_function_entry_invalid_section)
5788 << toString(std::move(E));
5789 return;
5790 }
5791 if (Section.empty()) {
5792 S.Diag(LiteralLoc,
5793 diag::err_attribute_patchable_function_entry_invalid_section)
5794 << "section must not be empty";
5795 return;
5796 }
5797 }
5798 D->addAttr(::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count,
5799 Offset, Section));
5800}
5801
5802static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5803 if (!AL.isArgIdent(0)) {
5804 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5805 << AL << 1 << AANT_ArgumentIdentifier;
5806 return;
5807 }
5808
5810 unsigned BuiltinID = Ident->getBuiltinID();
5811 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5812
5813 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5814 bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5815 bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5816 bool IsSPIRV = S.Context.getTargetInfo().getTriple().isSPIRV();
5817 bool IsHLSL = S.Context.getLangOpts().HLSL;
5818 if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) ||
5819 (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) &&
5820 !S.ARM().CdeAliasValid(BuiltinID, AliasName)) ||
5821 (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) ||
5822 (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL && !IsSPIRV)) {
5823 S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5824 return;
5825 }
5826
5827 D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5828}
5829
5830static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5831 if (AL.isUsedAsTypeAttr())
5832 return;
5833
5834 if (auto *CRD = dyn_cast<CXXRecordDecl>(D);
5835 !CRD || !(CRD->isClass() || CRD->isStruct())) {
5836 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
5838 return;
5839 }
5840
5842}
5843
5844static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5845 if (!AL.hasParsedType()) {
5846 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
5847 return;
5848 }
5849
5850 TypeSourceInfo *ParmTSI = nullptr;
5851 QualType QT = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
5852 assert(ParmTSI && "no type source info for attribute argument");
5853 S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT,
5854 diag::err_incomplete_type);
5855
5856 D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI));
5857}
5858
5859//===----------------------------------------------------------------------===//
5860// Microsoft specific attribute handlers.
5861//===----------------------------------------------------------------------===//
5862
5864 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
5865 if (const auto *UA = D->getAttr<UuidAttr>()) {
5866 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
5867 return nullptr;
5868 if (!UA->getGuid().empty()) {
5869 Diag(UA->getLocation(), diag::err_mismatched_uuid);
5870 Diag(CI.getLoc(), diag::note_previous_uuid);
5871 D->dropAttr<UuidAttr>();
5872 }
5873 }
5874
5875 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
5876}
5877
5878static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5879 if (!S.LangOpts.CPlusPlus) {
5880 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5881 << AL << AttributeLangSupport::C;
5882 return;
5883 }
5884
5885 StringRef OrigStrRef;
5886 SourceLocation LiteralLoc;
5887 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
5888 return;
5889
5890 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
5891 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
5892 StringRef StrRef = OrigStrRef;
5893 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
5894 StrRef = StrRef.drop_front().drop_back();
5895
5896 // Validate GUID length.
5897 if (StrRef.size() != 36) {
5898 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5899 return;
5900 }
5901
5902 for (unsigned i = 0; i < 36; ++i) {
5903 if (i == 8 || i == 13 || i == 18 || i == 23) {
5904 if (StrRef[i] != '-') {
5905 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5906 return;
5907 }
5908 } else if (!isHexDigit(StrRef[i])) {
5909 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5910 return;
5911 }
5912 }
5913
5914 // Convert to our parsed format and canonicalize.
5915 MSGuidDecl::Parts Parsed;
5916 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
5917 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
5918 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
5919 for (unsigned i = 0; i != 8; ++i)
5920 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
5921 .getAsInteger(16, Parsed.Part4And5[i]);
5922 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
5923
5924 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
5925 // the only thing in the [] list, the [] too), and add an insertion of
5926 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
5927 // separating attributes nor of the [ and the ] are in the AST.
5928 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
5929 // on cfe-dev.
5930 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
5931 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
5932
5933 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
5934 if (UA)
5935 D->addAttr(UA);
5936}
5937
5938static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5939 if (!S.LangOpts.CPlusPlus) {
5940 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5941 << AL << AttributeLangSupport::C;
5942 return;
5943 }
5944 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
5945 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
5946 if (IA) {
5947 D->addAttr(IA);
5949 }
5950}
5951
5952static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5953 const auto *VD = cast<VarDecl>(D);
5955 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
5956 return;
5957 }
5958 if (VD->getTSCSpec() != TSCS_unspecified) {
5959 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
5960 return;
5961 }
5962 if (VD->hasLocalStorage()) {
5963 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
5964 return;
5965 }
5966 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
5967}
5968
5969static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5971 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
5972 << AL << AL.getRange();
5973 return;
5974 }
5975 auto *FD = cast<FunctionDecl>(D);
5976 if (FD->isConstexprSpecified() || FD->isConsteval()) {
5977 S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied)
5978 << FD->isConsteval() << FD;
5979 return;
5980 }
5981 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5982 if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) {
5983 S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied)
5984 << /*virtual*/ 2 << MD;
5985 return;
5986 }
5987 }
5988 D->addAttr(::new (S.Context) MSConstexprAttr(S.Context, AL));
5989}
5990
5991static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5993 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5994 StringRef Tag;
5995 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
5996 return;
5997 Tags.push_back(Tag);
5998 }
5999
6000 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6001 if (!NS->isInline()) {
6002 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6003 return;
6004 }
6005 if (NS->isAnonymousNamespace()) {
6006 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6007 return;
6008 }
6009 if (AL.getNumArgs() == 0)
6010 Tags.push_back(NS->getName());
6011 } else if (!AL.checkAtLeastNumArgs(S, 1))
6012 return;
6013
6014 // Store tags sorted and without duplicates.
6015 llvm::sort(Tags);
6016 Tags.erase(llvm::unique(Tags), Tags.end());
6017
6018 D->addAttr(::new (S.Context)
6019 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6020}
6021
6022static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
6023 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
6024 if (I->getBTFDeclTag() == Tag)
6025 return true;
6026 }
6027 return false;
6028}
6029
6030static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6031 StringRef Str;
6032 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6033 return;
6034 if (hasBTFDeclTagAttr(D, Str))
6035 return;
6036
6037 D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
6038}
6039
6040BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
6041 if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
6042 return nullptr;
6043 return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
6044}
6045
6046static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6047 // Dispatch the interrupt attribute based on the current target.
6048 switch (S.Context.getTargetInfo().getTriple().getArch()) {
6049 case llvm::Triple::msp430:
6050 S.MSP430().handleInterruptAttr(D, AL);
6051 break;
6052 case llvm::Triple::mipsel:
6053 case llvm::Triple::mips:
6054 S.MIPS().handleInterruptAttr(D, AL);
6055 break;
6056 case llvm::Triple::m68k:
6057 S.M68k().handleInterruptAttr(D, AL);
6058 break;
6059 case llvm::Triple::x86:
6060 case llvm::Triple::x86_64:
6061 S.X86().handleAnyInterruptAttr(D, AL);
6062 break;
6063 case llvm::Triple::avr:
6064 S.AVR().handleInterruptAttr(D, AL);
6065 break;
6066 case llvm::Triple::riscv32:
6067 case llvm::Triple::riscv64:
6068 S.RISCV().handleInterruptAttr(D, AL);
6069 break;
6070 default:
6071 S.ARM().handleInterruptAttr(D, AL);
6072 break;
6073 }
6074}
6075
6076static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
6077 uint32_t Version;
6078 Expr *VersionExpr = AL.getArgAsExpr(0);
6079 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Version))
6080 return;
6081
6082 // TODO: Investigate what happens with the next major version of MSVC.
6083 if (Version != LangOptions::MSVC2015 / 100) {
6084 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6085 << AL << Version << VersionExpr->getSourceRange();
6086 return;
6087 }
6088
6089 // The attribute expects a "major" version number like 19, but new versions of
6090 // MSVC have moved to updating the "minor", or less significant numbers, so we
6091 // have to multiply by 100 now.
6092 Version *= 100;
6093
6094 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
6095}
6096
6098 const AttributeCommonInfo &CI) {
6099 if (D->hasAttr<DLLExportAttr>()) {
6100 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
6101 return nullptr;
6102 }
6103
6104 if (D->hasAttr<DLLImportAttr>())
6105 return nullptr;
6106
6107 return ::new (Context) DLLImportAttr(Context, CI);
6108}
6109
6111 const AttributeCommonInfo &CI) {
6112 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
6113 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
6114 D->dropAttr<DLLImportAttr>();
6115 }
6116
6117 if (D->hasAttr<DLLExportAttr>())
6118 return nullptr;
6119
6120 return ::new (Context) DLLExportAttr(Context, CI);
6121}
6122
6123static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6126 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
6127 return;
6128 }
6129
6130 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6131 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
6133 // MinGW doesn't allow dllimport on inline functions.
6134 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
6135 << A;
6136 return;
6137 }
6138 }
6139
6140 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
6142 MD->getParent()->isLambda()) {
6143 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
6144 return;
6145 }
6146 }
6147
6148 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
6149 ? (Attr *)S.mergeDLLExportAttr(D, A)
6150 : (Attr *)S.mergeDLLImportAttr(D, A);
6151 if (NewAttr)
6152 D->addAttr(NewAttr);
6153}
6154
6155MSInheritanceAttr *
6157 bool BestCase,
6158 MSInheritanceModel Model) {
6159 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
6160 if (IA->getInheritanceModel() == Model)
6161 return nullptr;
6162 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
6163 << 1 /*previous declaration*/;
6164 Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
6165 D->dropAttr<MSInheritanceAttr>();
6166 }
6167
6168 auto *RD = cast<CXXRecordDecl>(D);
6169 if (RD->hasDefinition()) {
6170 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
6171 Model)) {
6172 return nullptr;
6173 }
6174 } else {
6176 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6177 << 1 /*partial specialization*/;
6178 return nullptr;
6179 }
6180 if (RD->getDescribedClassTemplate()) {
6181 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6182 << 0 /*primary template*/;
6183 return nullptr;
6184 }
6185 }
6186
6187 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
6188}
6189
6190static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6191 // The capability attributes take a single string parameter for the name of
6192 // the capability they represent. The lockable attribute does not take any
6193 // parameters. However, semantically, both attributes represent the same
6194 // concept, and so they use the same semantic attribute. Eventually, the
6195 // lockable attribute will be removed.
6196 //
6197 // For backward compatibility, any capability which has no specified string
6198 // literal will be considered a "mutex."
6199 StringRef N("mutex");
6200 SourceLocation LiteralLoc;
6201 if (AL.getKind() == ParsedAttr::AT_Capability &&
6202 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
6203 return;
6204
6205 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
6206}
6207
6209 const ParsedAttr &AL) {
6210 // Do not permit 'reentrant_capability' without 'capability(..)'. Note that
6211 // the check here requires 'capability' to be before 'reentrant_capability'.
6212 // This helps enforce a canonical style. Also avoids placing an additional
6213 // branch into ProcessDeclAttributeList().
6214 if (!D->hasAttr<CapabilityAttr>()) {
6215 S.Diag(AL.getLoc(), diag::warn_thread_attribute_requires_preceded)
6216 << AL << cast<NamedDecl>(D) << "'capability'";
6217 return;
6218 }
6219
6220 D->addAttr(::new (S.Context) ReentrantCapabilityAttr(S.Context, AL));
6221}
6222
6223static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6225 if (!checkLockFunAttrCommon(S, D, AL, Args))
6226 return;
6227
6228 D->addAttr(::new (S.Context)
6229 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
6230}
6231
6233 const ParsedAttr &AL) {
6234 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6235 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6236 return;
6237
6239 if (!checkLockFunAttrCommon(S, D, AL, Args))
6240 return;
6241
6242 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
6243 Args.size()));
6244}
6245
6247 const ParsedAttr &AL) {
6249 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
6250 return;
6251
6252 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
6253 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
6254}
6255
6257 const ParsedAttr &AL) {
6258 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6259 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6260 return;
6261 // Check that all arguments are lockable objects.
6263 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
6264
6265 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
6266 Args.size()));
6267}
6268
6270 const ParsedAttr &AL) {
6271 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6272 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6273 return;
6274
6275 if (!AL.checkAtLeastNumArgs(S, 1))
6276 return;
6277
6278 // check that all arguments are lockable objects
6280 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
6281 if (Args.empty())
6282 return;
6283
6284 RequiresCapabilityAttr *RCA = ::new (S.Context)
6285 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
6286
6287 D->addAttr(RCA);
6288}
6289
6290static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6291 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
6292 if (NSD->isAnonymousNamespace()) {
6293 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
6294 // Do not want to attach the attribute to the namespace because that will
6295 // cause confusing diagnostic reports for uses of declarations within the
6296 // namespace.
6297 return;
6298 }
6301 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
6302 << AL;
6303 return;
6304 }
6305
6306 // Handle the cases where the attribute has a text message.
6307 StringRef Str, Replacement;
6308 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
6309 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
6310 return;
6311
6312 // Support a single optional message only for Declspec and [[]] spellings.
6314 AL.checkAtMostNumArgs(S, 1);
6315 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
6316 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
6317 return;
6318
6319 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
6320 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
6321
6322 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
6323}
6324
6325static bool isGlobalVar(const Decl *D) {
6326 if (const auto *S = dyn_cast<VarDecl>(D))
6327 return S->hasGlobalStorage();
6328 return false;
6329}
6330
6331static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) {
6332 return Sanitizer == "address" || Sanitizer == "hwaddress" ||
6333 Sanitizer == "memtag";
6334}
6335
6336static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6337 if (!AL.checkAtLeastNumArgs(S, 1))
6338 return;
6339
6340 std::vector<StringRef> Sanitizers;
6341
6342 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6343 StringRef SanitizerName;
6344 SourceLocation LiteralLoc;
6345
6346 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
6347 return;
6348
6349 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
6350 SanitizerMask() &&
6351 SanitizerName != "coverage")
6352 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
6353 else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName))
6354 S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global)
6355 << AL << SanitizerName;
6356 Sanitizers.push_back(SanitizerName);
6357 }
6358
6359 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
6360 Sanitizers.size()));
6361}
6362
6364 const ParsedAttr &AL) {
6365 StringRef AttrName = AL.getAttrName()->getName();
6366 normalizeName(AttrName);
6367 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
6368 .Case("no_address_safety_analysis", "address")
6369 .Case("no_sanitize_address", "address")
6370 .Case("no_sanitize_thread", "thread")
6371 .Case("no_sanitize_memory", "memory");
6372 if (isGlobalVar(D) && SanitizerName != "address")
6373 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6375
6376 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
6377 // NoSanitizeAttr object; but we need to calculate the correct spelling list
6378 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
6379 // has the same spellings as the index for NoSanitizeAttr. We don't have a
6380 // general way to "translate" between the two, so this hack attempts to work
6381 // around the issue with hard-coded indices. This is critical for calling
6382 // getSpelling() or prettyPrint() on the resulting semantic attribute object
6383 // without failing assertions.
6384 unsigned TranslatedSpellingIndex = 0;
6386 TranslatedSpellingIndex = 1;
6387
6388 AttributeCommonInfo Info = AL;
6389 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
6390 D->addAttr(::new (S.Context)
6391 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6392}
6393
6394static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6395 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
6396 D->addAttr(Internal);
6397}
6398
6399static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6400 // Check that the argument is a string literal.
6401 StringRef KindStr;
6402 SourceLocation LiteralLoc;
6403 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
6404 return;
6405
6406 ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind;
6407 if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) {
6408 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
6409 << AL << KindStr;
6410 return;
6411 }
6412
6413 D->dropAttr<ZeroCallUsedRegsAttr>();
6414 D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL));
6415}
6416
6417static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) {
6418 auto *FD = dyn_cast<FieldDecl>(D);
6419 assert(FD);
6420
6421 auto *CountExpr = AL.getArgAsExpr(0);
6422 if (!CountExpr)
6423 return;
6424
6425 bool CountInBytes;
6426 bool OrNull;
6427 switch (AL.getKind()) {
6428 case ParsedAttr::AT_CountedBy:
6429 CountInBytes = false;
6430 OrNull = false;
6431 break;
6432 case ParsedAttr::AT_CountedByOrNull:
6433 CountInBytes = false;
6434 OrNull = true;
6435 break;
6436 case ParsedAttr::AT_SizedBy:
6437 CountInBytes = true;
6438 OrNull = false;
6439 break;
6440 case ParsedAttr::AT_SizedByOrNull:
6441 CountInBytes = true;
6442 OrNull = true;
6443 break;
6444 default:
6445 llvm_unreachable("unexpected counted_by family attribute");
6446 }
6447
6448 if (S.CheckCountedByAttrOnField(FD, CountExpr, CountInBytes, OrNull))
6449 return;
6450
6452 FD->getType(), CountExpr, CountInBytes, OrNull);
6453 FD->setType(CAT);
6454}
6455
6457 const ParsedAttr &AL) {
6458 StringRef KindStr;
6459 SourceLocation LiteralLoc;
6460 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
6461 return;
6462
6463 FunctionReturnThunksAttr::Kind Kind;
6464 if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) {
6465 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
6466 << AL << KindStr;
6467 return;
6468 }
6469 // FIXME: it would be good to better handle attribute merging rather than
6470 // silently replacing the existing attribute, so long as it does not break
6471 // the expected codegen tests.
6472 D->dropAttr<FunctionReturnThunksAttr>();
6473 D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL));
6474}
6475
6477 const ParsedAttr &AL) {
6478 assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef");
6480}
6481
6482static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6483 auto *VDecl = dyn_cast<VarDecl>(D);
6484 if (VDecl && !VDecl->isFunctionPointerType()) {
6485 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer)
6486 << AL << VDecl;
6487 return;
6488 }
6489 D->addAttr(NoMergeAttr::Create(S.Context, AL));
6490}
6491
6492static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6493 D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL));
6494}
6495
6496static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6497 if (!cast<VarDecl>(D)->hasGlobalStorage()) {
6498 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
6499 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
6500 return;
6501 }
6502
6503 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
6505 else
6507}
6508
6509static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6510 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
6511 "uninitialized is only valid on automatic duration variables");
6512 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
6513}
6514
6515static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6516 // Check that the return type is a `typedef int kern_return_t` or a typedef
6517 // around it, because otherwise MIG convention checks make no sense.
6518 // BlockDecl doesn't store a return type, so it's annoying to check,
6519 // so let's skip it for now.
6520 if (!isa<BlockDecl>(D)) {
6522 bool IsKernReturnT = false;
6523 while (const auto *TT = T->getAs<TypedefType>()) {
6524 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
6525 T = TT->desugar();
6526 }
6527 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
6528 S.Diag(D->getBeginLoc(),
6529 diag::warn_mig_server_routine_does_not_return_kern_return_t);
6530 return;
6531 }
6532 }
6533
6535}
6536
6537static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6538 // Warn if the return type is not a pointer or reference type.
6539 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6540 QualType RetTy = FD->getReturnType();
6541 if (!RetTy->isPointerOrReferenceType()) {
6542 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
6543 << AL.getRange() << RetTy;
6544 return;
6545 }
6546 }
6547
6549}
6550
6551static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6552 if (AL.isUsedAsTypeAttr())
6553 return;
6554 // Warn if the parameter is definitely not an output parameter.
6555 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6556 if (PVD->getType()->isIntegerType()) {
6557 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
6558 << AL.getRange();
6559 return;
6560 }
6561 }
6562 StringRef Argument;
6563 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6564 return;
6565 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
6566}
6567
6568template<typename Attr>
6569static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6570 StringRef Argument;
6571 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6572 return;
6573 D->addAttr(Attr::Create(S.Context, Argument, AL));
6574}
6575
6576template<typename Attr>
6577static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) {
6578 D->addAttr(Attr::Create(S.Context, AL));
6579}
6580
6581static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6582 // The guard attribute takes a single identifier argument.
6583
6584 if (!AL.isArgIdent(0)) {
6585 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6586 << AL << AANT_ArgumentIdentifier;
6587 return;
6588 }
6589
6590 CFGuardAttr::GuardArg Arg;
6592 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
6593 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6594 return;
6595 }
6596
6597 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
6598}
6599
6600
6601template <typename AttrTy>
6602static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
6603 auto Attrs = D->specific_attrs<AttrTy>();
6604 auto I = llvm::find_if(Attrs,
6605 [Name](const AttrTy *A) {
6606 return A->getTCBName() == Name;
6607 });
6608 return I == Attrs.end() ? nullptr : *I;
6609}
6610
6611template <typename AttrTy, typename ConflictingAttrTy>
6612static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6613 StringRef Argument;
6614 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6615 return;
6616
6617 // A function cannot be have both regular and leaf membership in the same TCB.
6618 if (const ConflictingAttrTy *ConflictingAttr =
6620 // We could attach a note to the other attribute but in this case
6621 // there's no need given how the two are very close to each other.
6622 S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
6623 << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
6624 << Argument;
6625
6626 // Error recovery: drop the non-leaf attribute so that to suppress
6627 // all future warnings caused by erroneous attributes. The leaf attribute
6628 // needs to be kept because it can only suppresses warnings, not cause them.
6629 D->dropAttr<EnforceTCBAttr>();
6630 return;
6631 }
6632
6633 D->addAttr(AttrTy::Create(S.Context, Argument, AL));
6634}
6635
6636template <typename AttrTy, typename ConflictingAttrTy>
6637static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
6638 // Check if the new redeclaration has different leaf-ness in the same TCB.
6639 StringRef TCBName = AL.getTCBName();
6640 if (const ConflictingAttrTy *ConflictingAttr =
6642 S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
6643 << ConflictingAttr->getAttrName()->getName()
6644 << AL.getAttrName()->getName() << TCBName;
6645
6646 // Add a note so that the user could easily find the conflicting attribute.
6647 S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
6648
6649 // More error recovery.
6650 D->dropAttr<EnforceTCBAttr>();
6651 return nullptr;
6652 }
6653
6654 ASTContext &Context = S.getASTContext();
6655 return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
6656}
6657
6658EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
6660 *this, D, AL);
6661}
6662
6664 Decl *D, const EnforceTCBLeafAttr &AL) {
6666 *this, D, AL);
6667}
6668
6670 const ParsedAttr &AL) {
6672 const uint32_t NumArgs = AL.getNumArgs();
6673 if (NumArgs > 4) {
6674 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4;
6675 AL.setInvalid();
6676 }
6677
6678 if (NumArgs == 0) {
6679 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL;
6680 AL.setInvalid();
6681 return;
6682 }
6683
6684 if (D->getAttr<VTablePointerAuthenticationAttr>()) {
6685 S.Diag(AL.getLoc(), diag::err_duplicated_vtable_pointer_auth) << Decl;
6686 AL.setInvalid();
6687 }
6688
6689 auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey;
6690 if (AL.isArgIdent(0)) {
6691 IdentifierLoc *IL = AL.getArgAsIdent(0);
6692 if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType(
6693 IL->getIdentifierInfo()->getName(), KeyType)) {
6694 S.Diag(IL->getLoc(), diag::err_invalid_authentication_key)
6695 << IL->getIdentifierInfo();
6696 AL.setInvalid();
6697 }
6698 if (KeyType == VTablePointerAuthenticationAttr::DefaultKey &&
6699 !S.getLangOpts().PointerAuthCalls) {
6700 S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 0;
6701 AL.setInvalid();
6702 }
6703 } else {
6704 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6705 << AL << AANT_ArgumentIdentifier;
6706 return;
6707 }
6708
6709 auto AddressDiversityMode = VTablePointerAuthenticationAttr::
6710 AddressDiscriminationMode::DefaultAddressDiscrimination;
6711 if (AL.getNumArgs() > 1) {
6712 if (AL.isArgIdent(1)) {
6713 IdentifierLoc *IL = AL.getArgAsIdent(1);
6714 if (!VTablePointerAuthenticationAttr::
6715 ConvertStrToAddressDiscriminationMode(
6716 IL->getIdentifierInfo()->getName(), AddressDiversityMode)) {
6717 S.Diag(IL->getLoc(), diag::err_invalid_address_discrimination)
6718 << IL->getIdentifierInfo();
6719 AL.setInvalid();
6720 }
6721 if (AddressDiversityMode ==
6722 VTablePointerAuthenticationAttr::DefaultAddressDiscrimination &&
6723 !S.getLangOpts().PointerAuthCalls) {
6724 S.Diag(IL->getLoc(), diag::err_no_default_vtable_pointer_auth) << 1;
6725 AL.setInvalid();
6726 }
6727 } else {
6728 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6729 << AL << AANT_ArgumentIdentifier;
6730 }
6731 }
6732
6733 auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination::
6734 DefaultExtraDiscrimination;
6735 if (AL.getNumArgs() > 2) {
6736 if (AL.isArgIdent(2)) {
6737 IdentifierLoc *IL = AL.getArgAsIdent(2);
6738 if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination(
6739 IL->getIdentifierInfo()->getName(), ED)) {
6740 S.Diag(IL->getLoc(), diag::err_invalid_extra_discrimination)
6741 << IL->getIdentifierInfo();
6742 AL.setInvalid();
6743 }
6744 if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination &&
6745 !S.getLangOpts().PointerAuthCalls) {
6746 S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 2;
6747 AL.setInvalid();
6748 }
6749 } else {
6750 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6751 << AL << AANT_ArgumentIdentifier;
6752 }
6753 }
6754
6755 uint32_t CustomDiscriminationValue = 0;
6756 if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) {
6757 if (NumArgs < 4) {
6758 S.Diag(AL.getLoc(), diag::err_missing_custom_discrimination) << AL << 4;
6759 AL.setInvalid();
6760 return;
6761 }
6762 if (NumArgs > 4) {
6763 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4;
6764 AL.setInvalid();
6765 }
6766
6767 if (!AL.isArgExpr(3) || !S.checkUInt32Argument(AL, AL.getArgAsExpr(3),
6768 CustomDiscriminationValue)) {
6769 S.Diag(AL.getLoc(), diag::err_invalid_custom_discrimination);
6770 AL.setInvalid();
6771 }
6772 } else if (NumArgs > 3) {
6773 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 3;
6774 AL.setInvalid();
6775 }
6776
6777 Decl->addAttr(::new (S.Context) VTablePointerAuthenticationAttr(
6778 S.Context, AL, KeyType, AddressDiversityMode, ED,
6779 CustomDiscriminationValue));
6780}
6781
6782//===----------------------------------------------------------------------===//
6783// Top Level Sema Entry Points
6784//===----------------------------------------------------------------------===//
6785
6786// Returns true if the attribute must delay setting its arguments until after
6787// template instantiation, and false otherwise.
6789 // Only attributes that accept expression parameter packs can delay arguments.
6790 if (!AL.acceptsExprPack())
6791 return false;
6792
6793 bool AttrHasVariadicArg = AL.hasVariadicArg();
6794 unsigned AttrNumArgs = AL.getNumArgMembers();
6795 for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) {
6796 bool IsLastAttrArg = I == (AttrNumArgs - 1);
6797 // If the argument is the last argument and it is variadic it can contain
6798 // any expression.
6799 if (IsLastAttrArg && AttrHasVariadicArg)
6800 return false;
6801 Expr *E = AL.getArgAsExpr(I);
6802 bool ArgMemberCanHoldExpr = AL.isParamExpr(I);
6803 // If the expression is a pack expansion then arguments must be delayed
6804 // unless the argument is an expression and it is the last argument of the
6805 // attribute.
6807 return !(IsLastAttrArg && ArgMemberCanHoldExpr);
6808 // Last case is if the expression is value dependent then it must delay
6809 // arguments unless the corresponding argument is able to hold the
6810 // expression.
6811 if (E->isValueDependent() && !ArgMemberCanHoldExpr)
6812 return true;
6813 }
6814 return false;
6815}
6816
6817/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
6818/// the attribute applies to decls. If the attribute is a type attribute, just
6819/// silently ignore it if a GNU attribute.
6820static void
6822 const Sema::ProcessDeclAttributeOptions &Options) {
6824 return;
6825
6826 // Ignore C++11 attributes on declarator chunks: they appertain to the type
6827 // instead. Note, isCXX11Attribute() will look at whether the attribute is
6828 // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is
6829 // important for ensuring that alignas in C23 is properly handled on a
6830 // structure member declaration because it is a type-specifier-qualifier in
6831 // C but still applies to the declaration rather than the type.
6832 if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute()
6833 : AL.isC23Attribute()) &&
6834 !Options.IncludeCXX11Attributes)
6835 return;
6836
6837 // Unknown attributes are automatically warned on. Target-specific attributes
6838 // which do not apply to the current target architecture are treated as
6839 // though they were unknown attributes.
6842 if (AL.isRegularKeywordAttribute()) {
6843 S.Diag(AL.getLoc(), diag::err_keyword_not_supported_on_target)
6844 << AL.getAttrName() << AL.getRange();
6845 } else if (AL.isDeclspecAttribute()) {
6846 S.Diag(AL.getLoc(), diag::warn_unhandled_ms_attribute_ignored)
6847 << AL.getAttrName() << AL.getRange();
6848 } else {
6850 }
6851 return;
6852 }
6853
6854 // Check if argument population must delayed to after template instantiation.
6855 bool MustDelayArgs = MustDelayAttributeArguments(AL);
6856
6857 // Argument number check must be skipped if arguments are delayed.
6858 if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs))
6859 return;
6860
6861 if (MustDelayArgs) {
6863 return;
6864 }
6865
6866 switch (AL.getKind()) {
6867 default:
6869 break;
6870 if (!AL.isStmtAttr()) {
6871 assert(AL.isTypeAttr() && "Non-type attribute not handled");
6872 }
6873 if (AL.isTypeAttr()) {
6874 if (Options.IgnoreTypeAttributes)
6875 break;
6877 // Non-[[]] type attributes are handled in processTypeAttrs(); silently
6878 // move on.
6879 break;
6880 }
6881
6882 // According to the C and C++ standards, we should never see a
6883 // [[]] type attribute on a declaration. However, we have in the past
6884 // allowed some type attributes to "slide" to the `DeclSpec`, so we need
6885 // to continue to support this legacy behavior. We only do this, however,
6886 // if
6887 // - we actually have a `DeclSpec`, i.e. if we're looking at a
6888 // `DeclaratorDecl`, or
6889 // - we are looking at an alias-declaration, where historically we have
6890 // allowed type attributes after the identifier to slide to the type.
6893 // Suggest moving the attribute to the type instead, but only for our
6894 // own vendor attributes; moving other vendors' attributes might hurt
6895 // portability.
6896 if (AL.isClangScope()) {
6897 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
6898 << AL << D->getLocation();
6899 }
6900
6901 // Allow this type attribute to be handled in processTypeAttrs();
6902 // silently move on.
6903 break;
6904 }
6905
6906 if (AL.getKind() == ParsedAttr::AT_Regparm) {
6907 // `regparm` is a special case: It's a type attribute but we still want
6908 // to treat it as if it had been written on the declaration because that
6909 // way we'll be able to handle it directly in `processTypeAttr()`.
6910 // If we treated `regparm` it as if it had been written on the
6911 // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()`
6912 // would try to move it to the declarator, but that doesn't work: We
6913 // can't remove the attribute from the list of declaration attributes
6914 // because it might be needed by other declarators in the same
6915 // declaration.
6916 break;
6917 }
6918
6919 if (AL.getKind() == ParsedAttr::AT_VectorSize) {
6920 // `vector_size` is a special case: It's a type attribute semantically,
6921 // but GCC expects the [[]] syntax to be written on the declaration (and
6922 // warns that the attribute has no effect if it is placed on the
6923 // decl-specifier-seq).
6924 // Silently move on and allow the attribute to be handled in
6925 // processTypeAttr().
6926 break;
6927 }
6928
6929 if (AL.getKind() == ParsedAttr::AT_NoDeref) {
6930 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
6931 // See https://github.com/llvm/llvm-project/issues/55790 for details.
6932 // We allow processTypeAttrs() to emit a warning and silently move on.
6933 break;
6934 }
6935 }
6936 // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
6937 // statement attribute is not written on a declaration, but this code is
6938 // needed for type attributes as well as statement attributes in Attr.td
6939 // that do not list any subjects.
6940 S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)
6941 << AL << AL.isRegularKeywordAttribute() << D->getLocation();
6942 break;
6943 case ParsedAttr::AT_Interrupt:
6944 handleInterruptAttr(S, D, AL);
6945 break;
6946 case ParsedAttr::AT_ARMInterruptSaveFP:
6947 S.ARM().handleInterruptSaveFPAttr(D, AL);
6948 break;
6949 case ParsedAttr::AT_X86ForceAlignArgPointer:
6951 break;
6952 case ParsedAttr::AT_ReadOnlyPlacement:
6954 break;
6955 case ParsedAttr::AT_DLLExport:
6956 case ParsedAttr::AT_DLLImport:
6957 handleDLLAttr(S, D, AL);
6958 break;
6959 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
6961 break;
6962 case ParsedAttr::AT_AMDGPUWavesPerEU:
6964 break;
6965 case ParsedAttr::AT_AMDGPUNumSGPR:
6967 break;
6968 case ParsedAttr::AT_AMDGPUNumVGPR:
6970 break;
6971 case ParsedAttr::AT_AMDGPUMaxNumWorkGroups:
6973 break;
6974 case ParsedAttr::AT_AVRSignal:
6975 S.AVR().handleSignalAttr(D, AL);
6976 break;
6977 case ParsedAttr::AT_BPFPreserveAccessIndex:
6979 break;
6980 case ParsedAttr::AT_BPFPreserveStaticOffset:
6982 break;
6983 case ParsedAttr::AT_BTFDeclTag:
6984 handleBTFDeclTagAttr(S, D, AL);
6985 break;
6986 case ParsedAttr::AT_WebAssemblyExportName:
6988 break;
6989 case ParsedAttr::AT_WebAssemblyImportModule:
6991 break;
6992 case ParsedAttr::AT_WebAssemblyImportName:
6994 break;
6995 case ParsedAttr::AT_IBOutlet:
6996 S.ObjC().handleIBOutlet(D, AL);
6997 break;
6998 case ParsedAttr::AT_IBOutletCollection:
6999 S.ObjC().handleIBOutletCollection(D, AL);
7000 break;
7001 case ParsedAttr::AT_IFunc:
7002 handleIFuncAttr(S, D, AL);
7003 break;
7004 case ParsedAttr::AT_Alias:
7005 handleAliasAttr(S, D, AL);
7006 break;
7007 case ParsedAttr::AT_Aligned:
7008 handleAlignedAttr(S, D, AL);
7009 break;
7010 case ParsedAttr::AT_AlignValue:
7011 handleAlignValueAttr(S, D, AL);
7012 break;
7013 case ParsedAttr::AT_AllocSize:
7014 handleAllocSizeAttr(S, D, AL);
7015 break;
7016 case ParsedAttr::AT_AlwaysInline:
7017 handleAlwaysInlineAttr(S, D, AL);
7018 break;
7019 case ParsedAttr::AT_AnalyzerNoReturn:
7021 break;
7022 case ParsedAttr::AT_TLSModel:
7023 handleTLSModelAttr(S, D, AL);
7024 break;
7025 case ParsedAttr::AT_Annotate:
7026 handleAnnotateAttr(S, D, AL);
7027 break;
7028 case ParsedAttr::AT_Availability:
7029 handleAvailabilityAttr(S, D, AL);
7030 break;
7031 case ParsedAttr::AT_CarriesDependency:
7032 handleDependencyAttr(S, scope, D, AL);
7033 break;
7034 case ParsedAttr::AT_CPUDispatch:
7035 case ParsedAttr::AT_CPUSpecific:
7036 handleCPUSpecificAttr(S, D, AL);
7037 break;
7038 case ParsedAttr::AT_Common:
7039 handleCommonAttr(S, D, AL);
7040 break;
7041 case ParsedAttr::AT_CUDAConstant:
7042 handleConstantAttr(S, D, AL);
7043 break;
7044 case ParsedAttr::AT_PassObjectSize:
7045 handlePassObjectSizeAttr(S, D, AL);
7046 break;
7047 case ParsedAttr::AT_Constructor:
7048 handleConstructorAttr(S, D, AL);
7049 break;
7050 case ParsedAttr::AT_Deprecated:
7051 handleDeprecatedAttr(S, D, AL);
7052 break;
7053 case ParsedAttr::AT_Destructor:
7054 handleDestructorAttr(S, D, AL);
7055 break;
7056 case ParsedAttr::AT_EnableIf:
7057 handleEnableIfAttr(S, D, AL);
7058 break;
7059 case ParsedAttr::AT_Error:
7060 handleErrorAttr(S, D, AL);
7061 break;
7062 case ParsedAttr::AT_ExcludeFromExplicitInstantiation:
7064 break;
7065 case ParsedAttr::AT_DiagnoseIf:
7066 handleDiagnoseIfAttr(S, D, AL);
7067 break;
7068 case ParsedAttr::AT_DiagnoseAsBuiltin:
7070 break;
7071 case ParsedAttr::AT_NoBuiltin:
7072 handleNoBuiltinAttr(S, D, AL);
7073 break;
7074 case ParsedAttr::AT_CFIUncheckedCallee:
7076 break;
7077 case ParsedAttr::AT_ExtVectorType:
7078 handleExtVectorTypeAttr(S, D, AL);
7079 break;
7080 case ParsedAttr::AT_ExternalSourceSymbol:
7082 break;
7083 case ParsedAttr::AT_MinSize:
7084 handleMinSizeAttr(S, D, AL);
7085 break;
7086 case ParsedAttr::AT_OptimizeNone:
7087 handleOptimizeNoneAttr(S, D, AL);
7088 break;
7089 case ParsedAttr::AT_EnumExtensibility:
7091 break;
7092 case ParsedAttr::AT_SYCLExternal:
7094 break;
7095 case ParsedAttr::AT_SYCLKernelEntryPoint:
7097 break;
7098 case ParsedAttr::AT_SYCLSpecialClass:
7100 break;
7101 case ParsedAttr::AT_Format:
7102 handleFormatAttr(S, D, AL);
7103 break;
7104 case ParsedAttr::AT_FormatMatches:
7105 handleFormatMatchesAttr(S, D, AL);
7106 break;
7107 case ParsedAttr::AT_FormatArg:
7108 handleFormatArgAttr(S, D, AL);
7109 break;
7110 case ParsedAttr::AT_Callback:
7111 handleCallbackAttr(S, D, AL);
7112 break;
7113 case ParsedAttr::AT_LifetimeCaptureBy:
7115 break;
7116 case ParsedAttr::AT_CalledOnce:
7117 handleCalledOnceAttr(S, D, AL);
7118 break;
7119 case ParsedAttr::AT_CUDAGlobal:
7120 handleGlobalAttr(S, D, AL);
7121 break;
7122 case ParsedAttr::AT_CUDADevice:
7123 handleDeviceAttr(S, D, AL);
7124 break;
7125 case ParsedAttr::AT_CUDAGridConstant:
7126 handleGridConstantAttr(S, D, AL);
7127 break;
7128 case ParsedAttr::AT_HIPManaged:
7129 handleManagedAttr(S, D, AL);
7130 break;
7131 case ParsedAttr::AT_GNUInline:
7132 handleGNUInlineAttr(S, D, AL);
7133 break;
7134 case ParsedAttr::AT_CUDALaunchBounds:
7135 handleLaunchBoundsAttr(S, D, AL);
7136 break;
7137 case ParsedAttr::AT_Restrict:
7138 handleRestrictAttr(S, D, AL);
7139 break;
7140 case ParsedAttr::AT_Mode:
7141 handleModeAttr(S, D, AL);
7142 break;
7143 case ParsedAttr::AT_NonString:
7144 handleNonStringAttr(S, D, AL);
7145 break;
7146 case ParsedAttr::AT_NonNull:
7147 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
7148 handleNonNullAttrParameter(S, PVD, AL);
7149 else
7150 handleNonNullAttr(S, D, AL);
7151 break;
7152 case ParsedAttr::AT_ReturnsNonNull:
7153 handleReturnsNonNullAttr(S, D, AL);
7154 break;
7155 case ParsedAttr::AT_NoEscape:
7156 handleNoEscapeAttr(S, D, AL);
7157 break;
7158 case ParsedAttr::AT_MaybeUndef:
7160 break;
7161 case ParsedAttr::AT_AssumeAligned:
7162 handleAssumeAlignedAttr(S, D, AL);
7163 break;
7164 case ParsedAttr::AT_AllocAlign:
7165 handleAllocAlignAttr(S, D, AL);
7166 break;
7167 case ParsedAttr::AT_Ownership:
7168 handleOwnershipAttr(S, D, AL);
7169 break;
7170 case ParsedAttr::AT_Naked:
7171 handleNakedAttr(S, D, AL);
7172 break;
7173 case ParsedAttr::AT_NoReturn:
7174 handleNoReturnAttr(S, D, AL);
7175 break;
7176 case ParsedAttr::AT_CXX11NoReturn:
7178 break;
7179 case ParsedAttr::AT_AnyX86NoCfCheck:
7180 handleNoCfCheckAttr(S, D, AL);
7181 break;
7182 case ParsedAttr::AT_NoThrow:
7183 if (!AL.isUsedAsTypeAttr())
7185 break;
7186 case ParsedAttr::AT_CUDAShared:
7187 handleSharedAttr(S, D, AL);
7188 break;
7189 case ParsedAttr::AT_VecReturn:
7190 handleVecReturnAttr(S, D, AL);
7191 break;
7192 case ParsedAttr::AT_ObjCOwnership:
7193 S.ObjC().handleOwnershipAttr(D, AL);
7194 break;
7195 case ParsedAttr::AT_ObjCPreciseLifetime:
7197 break;
7198 case ParsedAttr::AT_ObjCReturnsInnerPointer:
7200 break;
7201 case ParsedAttr::AT_ObjCRequiresSuper:
7202 S.ObjC().handleRequiresSuperAttr(D, AL);
7203 break;
7204 case ParsedAttr::AT_ObjCBridge:
7205 S.ObjC().handleBridgeAttr(D, AL);
7206 break;
7207 case ParsedAttr::AT_ObjCBridgeMutable:
7208 S.ObjC().handleBridgeMutableAttr(D, AL);
7209 break;
7210 case ParsedAttr::AT_ObjCBridgeRelated:
7211 S.ObjC().handleBridgeRelatedAttr(D, AL);
7212 break;
7213 case ParsedAttr::AT_ObjCDesignatedInitializer:
7215 break;
7216 case ParsedAttr::AT_ObjCRuntimeName:
7217 S.ObjC().handleRuntimeName(D, AL);
7218 break;
7219 case ParsedAttr::AT_ObjCBoxable:
7220 S.ObjC().handleBoxable(D, AL);
7221 break;
7222 case ParsedAttr::AT_NSErrorDomain:
7223 S.ObjC().handleNSErrorDomain(D, AL);
7224 break;
7225 case ParsedAttr::AT_CFConsumed:
7226 case ParsedAttr::AT_NSConsumed:
7227 case ParsedAttr::AT_OSConsumed:
7228 S.ObjC().AddXConsumedAttr(D, AL,
7230 /*IsTemplateInstantiation=*/false);
7231 break;
7232 case ParsedAttr::AT_OSReturnsRetainedOnZero:
7234 S, D, AL, S.ObjC().isValidOSObjectOutParameter(D),
7235 diag::warn_ns_attribute_wrong_parameter_type,
7236 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
7237 break;
7238 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
7240 S, D, AL, S.ObjC().isValidOSObjectOutParameter(D),
7241 diag::warn_ns_attribute_wrong_parameter_type,
7242 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
7243 break;
7244 case ParsedAttr::AT_NSReturnsAutoreleased:
7245 case ParsedAttr::AT_NSReturnsNotRetained:
7246 case ParsedAttr::AT_NSReturnsRetained:
7247 case ParsedAttr::AT_CFReturnsNotRetained:
7248 case ParsedAttr::AT_CFReturnsRetained:
7249 case ParsedAttr::AT_OSReturnsNotRetained:
7250 case ParsedAttr::AT_OSReturnsRetained:
7252 break;
7253 case ParsedAttr::AT_WorkGroupSizeHint:
7255 break;
7256 case ParsedAttr::AT_ReqdWorkGroupSize:
7258 break;
7259 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
7260 S.OpenCL().handleSubGroupSize(D, AL);
7261 break;
7262 case ParsedAttr::AT_VecTypeHint:
7263 handleVecTypeHint(S, D, AL);
7264 break;
7265 case ParsedAttr::AT_InitPriority:
7266 handleInitPriorityAttr(S, D, AL);
7267 break;
7268 case ParsedAttr::AT_Packed:
7269 handlePackedAttr(S, D, AL);
7270 break;
7271 case ParsedAttr::AT_PreferredName:
7272 handlePreferredName(S, D, AL);
7273 break;
7274 case ParsedAttr::AT_NoSpecializations:
7275 handleNoSpecializations(S, D, AL);
7276 break;
7277 case ParsedAttr::AT_Section:
7278 handleSectionAttr(S, D, AL);
7279 break;
7280 case ParsedAttr::AT_CodeModel:
7281 handleCodeModelAttr(S, D, AL);
7282 break;
7283 case ParsedAttr::AT_RandomizeLayout:
7284 handleRandomizeLayoutAttr(S, D, AL);
7285 break;
7286 case ParsedAttr::AT_NoRandomizeLayout:
7288 break;
7289 case ParsedAttr::AT_CodeSeg:
7290 handleCodeSegAttr(S, D, AL);
7291 break;
7292 case ParsedAttr::AT_Target:
7293 handleTargetAttr(S, D, AL);
7294 break;
7295 case ParsedAttr::AT_TargetVersion:
7296 handleTargetVersionAttr(S, D, AL);
7297 break;
7298 case ParsedAttr::AT_TargetClones:
7299 handleTargetClonesAttr(S, D, AL);
7300 break;
7301 case ParsedAttr::AT_MinVectorWidth:
7302 handleMinVectorWidthAttr(S, D, AL);
7303 break;
7304 case ParsedAttr::AT_Unavailable:
7306 break;
7307 case ParsedAttr::AT_OMPAssume:
7308 S.OpenMP().handleOMPAssumeAttr(D, AL);
7309 break;
7310 case ParsedAttr::AT_ObjCDirect:
7311 S.ObjC().handleDirectAttr(D, AL);
7312 break;
7313 case ParsedAttr::AT_ObjCDirectMembers:
7314 S.ObjC().handleDirectMembersAttr(D, AL);
7316 break;
7317 case ParsedAttr::AT_ObjCExplicitProtocolImpl:
7319 break;
7320 case ParsedAttr::AT_Unused:
7321 handleUnusedAttr(S, D, AL);
7322 break;
7323 case ParsedAttr::AT_Visibility:
7324 handleVisibilityAttr(S, D, AL, false);
7325 break;
7326 case ParsedAttr::AT_TypeVisibility:
7327 handleVisibilityAttr(S, D, AL, true);
7328 break;
7329 case ParsedAttr::AT_WarnUnusedResult:
7330 handleWarnUnusedResult(S, D, AL);
7331 break;
7332 case ParsedAttr::AT_WeakRef:
7333 handleWeakRefAttr(S, D, AL);
7334 break;
7335 case ParsedAttr::AT_WeakImport:
7336 handleWeakImportAttr(S, D, AL);
7337 break;
7338 case ParsedAttr::AT_TransparentUnion:
7340 break;
7341 case ParsedAttr::AT_ObjCMethodFamily:
7342 S.ObjC().handleMethodFamilyAttr(D, AL);
7343 break;
7344 case ParsedAttr::AT_ObjCNSObject:
7345 S.ObjC().handleNSObject(D, AL);
7346 break;
7347 case ParsedAttr::AT_ObjCIndependentClass:
7348 S.ObjC().handleIndependentClass(D, AL);
7349 break;
7350 case ParsedAttr::AT_Blocks:
7351 S.ObjC().handleBlocksAttr(D, AL);
7352 break;
7353 case ParsedAttr::AT_Sentinel:
7354 handleSentinelAttr(S, D, AL);
7355 break;
7356 case ParsedAttr::AT_Cleanup:
7357 handleCleanupAttr(S, D, AL);
7358 break;
7359 case ParsedAttr::AT_NoDebug:
7360 handleNoDebugAttr(S, D, AL);
7361 break;
7362 case ParsedAttr::AT_CmseNSEntry:
7363 S.ARM().handleCmseNSEntryAttr(D, AL);
7364 break;
7365 case ParsedAttr::AT_StdCall:
7366 case ParsedAttr::AT_CDecl:
7367 case ParsedAttr::AT_FastCall:
7368 case ParsedAttr::AT_ThisCall:
7369 case ParsedAttr::AT_Pascal:
7370 case ParsedAttr::AT_RegCall:
7371 case ParsedAttr::AT_SwiftCall:
7372 case ParsedAttr::AT_SwiftAsyncCall:
7373 case ParsedAttr::AT_VectorCall:
7374 case ParsedAttr::AT_MSABI:
7375 case ParsedAttr::AT_SysVABI:
7376 case ParsedAttr::AT_Pcs:
7377 case ParsedAttr::AT_IntelOclBicc:
7378 case ParsedAttr::AT_PreserveMost:
7379 case ParsedAttr::AT_PreserveAll:
7380 case ParsedAttr::AT_AArch64VectorPcs:
7381 case ParsedAttr::AT_AArch64SVEPcs:
7382 case ParsedAttr::AT_M68kRTD:
7383 case ParsedAttr::AT_PreserveNone:
7384 case ParsedAttr::AT_RISCVVectorCC:
7385 case ParsedAttr::AT_RISCVVLSCC:
7386 handleCallConvAttr(S, D, AL);
7387 break;
7388 case ParsedAttr::AT_DeviceKernel:
7389 handleDeviceKernelAttr(S, D, AL);
7390 break;
7391 case ParsedAttr::AT_Suppress:
7392 handleSuppressAttr(S, D, AL);
7393 break;
7394 case ParsedAttr::AT_Owner:
7395 case ParsedAttr::AT_Pointer:
7397 break;
7398 case ParsedAttr::AT_OpenCLAccess:
7399 S.OpenCL().handleAccessAttr(D, AL);
7400 break;
7401 case ParsedAttr::AT_OpenCLNoSVM:
7402 S.OpenCL().handleNoSVMAttr(D, AL);
7403 break;
7404 case ParsedAttr::AT_SwiftContext:
7406 break;
7407 case ParsedAttr::AT_SwiftAsyncContext:
7409 break;
7410 case ParsedAttr::AT_SwiftErrorResult:
7412 break;
7413 case ParsedAttr::AT_SwiftIndirectResult:
7415 break;
7416 case ParsedAttr::AT_InternalLinkage:
7417 handleInternalLinkageAttr(S, D, AL);
7418 break;
7419 case ParsedAttr::AT_ZeroCallUsedRegs:
7421 break;
7422 case ParsedAttr::AT_FunctionReturnThunks:
7424 break;
7425 case ParsedAttr::AT_NoMerge:
7426 handleNoMergeAttr(S, D, AL);
7427 break;
7428 case ParsedAttr::AT_NoUniqueAddress:
7429 handleNoUniqueAddressAttr(S, D, AL);
7430 break;
7431
7432 case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod:
7434 break;
7435
7436 case ParsedAttr::AT_CountedBy:
7437 case ParsedAttr::AT_CountedByOrNull:
7438 case ParsedAttr::AT_SizedBy:
7439 case ParsedAttr::AT_SizedByOrNull:
7440 handleCountedByAttrField(S, D, AL);
7441 break;
7442
7443 // Microsoft attributes:
7444 case ParsedAttr::AT_LayoutVersion:
7445 handleLayoutVersion(S, D, AL);
7446 break;
7447 case ParsedAttr::AT_Uuid:
7448 handleUuidAttr(S, D, AL);
7449 break;
7450 case ParsedAttr::AT_MSInheritance:
7451 handleMSInheritanceAttr(S, D, AL);
7452 break;
7453 case ParsedAttr::AT_Thread:
7454 handleDeclspecThreadAttr(S, D, AL);
7455 break;
7456 case ParsedAttr::AT_MSConstexpr:
7457 handleMSConstexprAttr(S, D, AL);
7458 break;
7459 case ParsedAttr::AT_HybridPatchable:
7461 break;
7462
7463 // HLSL attributes:
7464 case ParsedAttr::AT_RootSignature:
7465 S.HLSL().handleRootSignatureAttr(D, AL);
7466 break;
7467 case ParsedAttr::AT_HLSLNumThreads:
7468 S.HLSL().handleNumThreadsAttr(D, AL);
7469 break;
7470 case ParsedAttr::AT_HLSLWaveSize:
7471 S.HLSL().handleWaveSizeAttr(D, AL);
7472 break;
7473 case ParsedAttr::AT_HLSLVkExtBuiltinInput:
7475 break;
7476 case ParsedAttr::AT_HLSLVkConstantId:
7477 S.HLSL().handleVkConstantIdAttr(D, AL);
7478 break;
7479 case ParsedAttr::AT_HLSLVkBinding:
7480 S.HLSL().handleVkBindingAttr(D, AL);
7481 break;
7482 case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
7484 break;
7485 case ParsedAttr::AT_HLSLPackOffset:
7486 S.HLSL().handlePackOffsetAttr(D, AL);
7487 break;
7488 case ParsedAttr::AT_HLSLShader:
7489 S.HLSL().handleShaderAttr(D, AL);
7490 break;
7491 case ParsedAttr::AT_HLSLResourceBinding:
7493 break;
7494 case ParsedAttr::AT_HLSLParamModifier:
7495 S.HLSL().handleParamModifierAttr(D, AL);
7496 break;
7497 case ParsedAttr::AT_HLSLUnparsedSemantic:
7498 S.HLSL().handleSemanticAttr(D, AL);
7499 break;
7500
7501 case ParsedAttr::AT_AbiTag:
7502 handleAbiTagAttr(S, D, AL);
7503 break;
7504 case ParsedAttr::AT_CFGuard:
7505 handleCFGuardAttr(S, D, AL);
7506 break;
7507
7508 // Thread safety attributes:
7509 case ParsedAttr::AT_PtGuardedVar:
7510 handlePtGuardedVarAttr(S, D, AL);
7511 break;
7512 case ParsedAttr::AT_NoSanitize:
7513 handleNoSanitizeAttr(S, D, AL);
7514 break;
7515 case ParsedAttr::AT_NoSanitizeSpecific:
7517 break;
7518 case ParsedAttr::AT_GuardedBy:
7519 handleGuardedByAttr(S, D, AL);
7520 break;
7521 case ParsedAttr::AT_PtGuardedBy:
7522 handlePtGuardedByAttr(S, D, AL);
7523 break;
7524 case ParsedAttr::AT_LockReturned:
7525 handleLockReturnedAttr(S, D, AL);
7526 break;
7527 case ParsedAttr::AT_LocksExcluded:
7528 handleLocksExcludedAttr(S, D, AL);
7529 break;
7530 case ParsedAttr::AT_AcquiredBefore:
7531 handleAcquiredBeforeAttr(S, D, AL);
7532 break;
7533 case ParsedAttr::AT_AcquiredAfter:
7534 handleAcquiredAfterAttr(S, D, AL);
7535 break;
7536
7537 // Capability analysis attributes.
7538 case ParsedAttr::AT_Capability:
7539 case ParsedAttr::AT_Lockable:
7540 handleCapabilityAttr(S, D, AL);
7541 break;
7542 case ParsedAttr::AT_ReentrantCapability:
7544 break;
7545 case ParsedAttr::AT_RequiresCapability:
7547 break;
7548
7549 case ParsedAttr::AT_AssertCapability:
7551 break;
7552 case ParsedAttr::AT_AcquireCapability:
7554 break;
7555 case ParsedAttr::AT_ReleaseCapability:
7557 break;
7558 case ParsedAttr::AT_TryAcquireCapability:
7560 break;
7561
7562 // Consumed analysis attributes.
7563 case ParsedAttr::AT_Consumable:
7564 handleConsumableAttr(S, D, AL);
7565 break;
7566 case ParsedAttr::AT_CallableWhen:
7567 handleCallableWhenAttr(S, D, AL);
7568 break;
7569 case ParsedAttr::AT_ParamTypestate:
7570 handleParamTypestateAttr(S, D, AL);
7571 break;
7572 case ParsedAttr::AT_ReturnTypestate:
7573 handleReturnTypestateAttr(S, D, AL);
7574 break;
7575 case ParsedAttr::AT_SetTypestate:
7576 handleSetTypestateAttr(S, D, AL);
7577 break;
7578 case ParsedAttr::AT_TestTypestate:
7579 handleTestTypestateAttr(S, D, AL);
7580 break;
7581
7582 // Type safety attributes.
7583 case ParsedAttr::AT_ArgumentWithTypeTag:
7585 break;
7586 case ParsedAttr::AT_TypeTagForDatatype:
7588 break;
7589
7590 // Swift attributes.
7591 case ParsedAttr::AT_SwiftAsyncName:
7592 S.Swift().handleAsyncName(D, AL);
7593 break;
7594 case ParsedAttr::AT_SwiftAttr:
7595 S.Swift().handleAttrAttr(D, AL);
7596 break;
7597 case ParsedAttr::AT_SwiftBridge:
7598 S.Swift().handleBridge(D, AL);
7599 break;
7600 case ParsedAttr::AT_SwiftError:
7601 S.Swift().handleError(D, AL);
7602 break;
7603 case ParsedAttr::AT_SwiftName:
7604 S.Swift().handleName(D, AL);
7605 break;
7606 case ParsedAttr::AT_SwiftNewType:
7607 S.Swift().handleNewType(D, AL);
7608 break;
7609 case ParsedAttr::AT_SwiftAsync:
7610 S.Swift().handleAsyncAttr(D, AL);
7611 break;
7612 case ParsedAttr::AT_SwiftAsyncError:
7613 S.Swift().handleAsyncError(D, AL);
7614 break;
7615
7616 // XRay attributes.
7617 case ParsedAttr::AT_XRayLogArgs:
7618 handleXRayLogArgsAttr(S, D, AL);
7619 break;
7620
7621 case ParsedAttr::AT_PatchableFunctionEntry:
7623 break;
7624
7625 case ParsedAttr::AT_AlwaysDestroy:
7626 case ParsedAttr::AT_NoDestroy:
7627 handleDestroyAttr(S, D, AL);
7628 break;
7629
7630 case ParsedAttr::AT_Uninitialized:
7631 handleUninitializedAttr(S, D, AL);
7632 break;
7633
7634 case ParsedAttr::AT_ObjCExternallyRetained:
7636 break;
7637
7638 case ParsedAttr::AT_MIGServerRoutine:
7640 break;
7641
7642 case ParsedAttr::AT_MSAllocator:
7643 handleMSAllocatorAttr(S, D, AL);
7644 break;
7645
7646 case ParsedAttr::AT_ArmBuiltinAlias:
7647 S.ARM().handleBuiltinAliasAttr(D, AL);
7648 break;
7649
7650 case ParsedAttr::AT_ArmLocallyStreaming:
7652 break;
7653
7654 case ParsedAttr::AT_ArmNew:
7655 S.ARM().handleNewAttr(D, AL);
7656 break;
7657
7658 case ParsedAttr::AT_AcquireHandle:
7659 handleAcquireHandleAttr(S, D, AL);
7660 break;
7661
7662 case ParsedAttr::AT_ReleaseHandle:
7664 break;
7665
7666 case ParsedAttr::AT_UnsafeBufferUsage:
7668 break;
7669
7670 case ParsedAttr::AT_UseHandle:
7672 break;
7673
7674 case ParsedAttr::AT_EnforceTCB:
7676 break;
7677
7678 case ParsedAttr::AT_EnforceTCBLeaf:
7680 break;
7681
7682 case ParsedAttr::AT_BuiltinAlias:
7683 handleBuiltinAliasAttr(S, D, AL);
7684 break;
7685
7686 case ParsedAttr::AT_PreferredType:
7687 handlePreferredTypeAttr(S, D, AL);
7688 break;
7689
7690 case ParsedAttr::AT_UsingIfExists:
7692 break;
7693
7694 case ParsedAttr::AT_TypeNullable:
7695 handleNullableTypeAttr(S, D, AL);
7696 break;
7697
7698 case ParsedAttr::AT_VTablePointerAuthentication:
7700 break;
7701 }
7702}
7703
7704static bool isKernelDecl(Decl *D) {
7705 const FunctionType *FnTy = D->getFunctionType();
7706 return D->hasAttr<DeviceKernelAttr>() ||
7707 (FnTy && FnTy->getCallConv() == CallingConv::CC_DeviceKernel) ||
7708 D->hasAttr<CUDAGlobalAttr>();
7709}
7710
7712 Scope *S, Decl *D, const ParsedAttributesView &AttrList,
7713 const ProcessDeclAttributeOptions &Options) {
7714 if (AttrList.empty())
7715 return;
7716
7717 for (const ParsedAttr &AL : AttrList)
7718 ProcessDeclAttribute(*this, S, D, AL, Options);
7719
7720 // FIXME: We should be able to handle these cases in TableGen.
7721 // GCC accepts
7722 // static int a9 __attribute__((weakref));
7723 // but that looks really pointless. We reject it.
7724 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
7725 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
7726 << cast<NamedDecl>(D);
7727 D->dropAttr<WeakRefAttr>();
7728 return;
7729 }
7730
7731 // FIXME: We should be able to handle this in TableGen as well. It would be
7732 // good to have a way to specify "these attributes must appear as a group",
7733 // for these. Additionally, it would be good to have a way to specify "these
7734 // attribute must never appear as a group" for attributes like cold and hot.
7735 if (!(D->hasAttr<DeviceKernelAttr>() ||
7736 (D->hasAttr<CUDAGlobalAttr>() &&
7737 Context.getTargetInfo().getTriple().isSPIRV()))) {
7738 // These attributes cannot be applied to a non-kernel function.
7739 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
7740 // FIXME: This emits a different error message than
7741 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
7742 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7743 D->setInvalidDecl();
7744 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
7745 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7746 D->setInvalidDecl();
7747 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
7748 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7749 D->setInvalidDecl();
7750 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
7751 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7752 D->setInvalidDecl();
7753 }
7754 }
7755 if (!isKernelDecl(D)) {
7756 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
7757 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7758 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7759 D->setInvalidDecl();
7760 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
7761 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7762 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7763 D->setInvalidDecl();
7764 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
7765 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7766 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7767 D->setInvalidDecl();
7768 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
7769 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7770 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7771 D->setInvalidDecl();
7772 }
7773 }
7774
7775 // Do not permit 'constructor' or 'destructor' attributes on __device__ code.
7776 if (getLangOpts().CUDAIsDevice && D->hasAttr<CUDADeviceAttr>() &&
7777 (D->hasAttr<ConstructorAttr>() || D->hasAttr<DestructorAttr>()) &&
7778 !getLangOpts().GPUAllowDeviceInit) {
7779 Diag(D->getLocation(), diag::err_cuda_ctor_dtor_attrs)
7780 << (D->hasAttr<ConstructorAttr>() ? "constructors" : "destructors");
7781 D->setInvalidDecl();
7782 }
7783
7784 // Do this check after processing D's attributes because the attribute
7785 // objc_method_family can change whether the given method is in the init
7786 // family, and it can be applied after objc_designated_initializer. This is a
7787 // bit of a hack, but we need it to be compatible with versions of clang that
7788 // processed the attribute list in the wrong order.
7789 if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
7790 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
7791 Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
7792 D->dropAttr<ObjCDesignatedInitializerAttr>();
7793 }
7794}
7795
7797 const ParsedAttributesView &AttrList) {
7798 for (const ParsedAttr &AL : AttrList)
7799 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
7800 handleTransparentUnionAttr(*this, D, AL);
7801 break;
7802 }
7803
7804 // For BPFPreserveAccessIndexAttr, we want to populate the attributes
7805 // to fields and inner records as well.
7806 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
7808}
7809
7811 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
7812 for (const ParsedAttr &AL : AttrList) {
7813 if (AL.getKind() == ParsedAttr::AT_Annotate) {
7814 ProcessDeclAttribute(*this, nullptr, ASDecl, AL,
7816 } else {
7817 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
7818 return true;
7819 }
7820 }
7821 return false;
7822}
7823
7824/// checkUnusedDeclAttributes - Check a list of attributes to see if it
7825/// contains any decl attributes that we should warn about.
7827 for (const ParsedAttr &AL : A) {
7828 // Only warn if the attribute is an unignored, non-type attribute.
7829 if (AL.isUsedAsTypeAttr() || AL.isInvalid())
7830 continue;
7831 if (AL.getKind() == ParsedAttr::IgnoredAttribute)
7832 continue;
7833
7834 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
7836 } else {
7837 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
7838 << AL.getRange();
7839 }
7840 }
7841}
7842
7850
7853 StringRef ScopeName = AL.getNormalizedScopeName();
7854 std::optional<StringRef> CorrectedScopeName =
7855 AL.tryGetCorrectedScopeName(ScopeName);
7856 if (CorrectedScopeName) {
7857 ScopeName = *CorrectedScopeName;
7858 }
7859
7860 StringRef AttrName = AL.getNormalizedAttrName(ScopeName);
7861 std::optional<StringRef> CorrectedAttrName = AL.tryGetCorrectedAttrName(
7862 ScopeName, AttrName, Context.getTargetInfo(), getLangOpts());
7863 if (CorrectedAttrName) {
7864 AttrName = *CorrectedAttrName;
7865 }
7866
7867 if (CorrectedScopeName || CorrectedAttrName) {
7868 std::string CorrectedFullName =
7869 AL.getNormalizedFullName(ScopeName, AttrName);
7871 Diag(CorrectedScopeName ? NR.getBegin() : AL.getRange().getBegin(),
7872 diag::warn_unknown_attribute_ignored_suggestion);
7873
7874 D << AL << CorrectedFullName;
7875
7876 if (AL.isExplicitScope()) {
7877 D << FixItHint::CreateReplacement(NR, CorrectedFullName) << NR;
7878 } else {
7879 if (CorrectedScopeName) {
7881 ScopeName);
7882 }
7883 if (CorrectedAttrName) {
7884 D << FixItHint::CreateReplacement(AL.getRange(), AttrName);
7885 }
7886 }
7887 } else {
7888 Diag(NR.getBegin(), diag::warn_unknown_attribute_ignored) << AL << NR;
7889 }
7890}
7891
7893 SourceLocation Loc) {
7894 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
7895 NamedDecl *NewD = nullptr;
7896 if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
7897 FunctionDecl *NewFD;
7898 // FIXME: Missing call to CheckFunctionDeclaration().
7899 // FIXME: Mangling?
7900 // FIXME: Is the qualifier info correct?
7901 // FIXME: Is the DeclContext correct?
7902 NewFD = FunctionDecl::Create(
7903 FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
7905 getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
7908 NewD = NewFD;
7909
7910 if (FD->getQualifier())
7911 NewFD->setQualifierInfo(FD->getQualifierLoc());
7912
7913 // Fake up parameter variables; they are declared as if this were
7914 // a typedef.
7915 QualType FDTy = FD->getType();
7916 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
7918 for (const auto &AI : FT->param_types()) {
7919 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
7920 Param->setScopeInfo(0, Params.size());
7921 Params.push_back(Param);
7922 }
7923 NewFD->setParams(Params);
7924 }
7925 } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
7926 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
7927 VD->getInnerLocStart(), VD->getLocation(), II,
7928 VD->getType(), VD->getTypeSourceInfo(),
7929 VD->getStorageClass());
7930 if (VD->getQualifier())
7931 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
7932 }
7933 return NewD;
7934}
7935
7937 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
7938 IdentifierInfo *NDId = ND->getIdentifier();
7939 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
7940 NewD->addAttr(
7941 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
7942 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
7943 WeakTopLevelDecl.push_back(NewD);
7944 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
7945 // to insert Decl at TU scope, sorry.
7946 DeclContext *SavedContext = CurContext;
7947 CurContext = Context.getTranslationUnitDecl();
7950 PushOnScopeChains(NewD, S);
7951 CurContext = SavedContext;
7952 } else { // just add weak to existing
7953 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
7954 }
7955}
7956
7958 // It's valid to "forward-declare" #pragma weak, in which case we
7959 // have to do this.
7961 if (WeakUndeclaredIdentifiers.empty())
7962 return;
7963 NamedDecl *ND = nullptr;
7964 if (auto *VD = dyn_cast<VarDecl>(D))
7965 if (VD->isExternC())
7966 ND = VD;
7967 if (auto *FD = dyn_cast<FunctionDecl>(D))
7968 if (FD->isExternC())
7969 ND = FD;
7970 if (!ND)
7971 return;
7972 if (IdentifierInfo *Id = ND->getIdentifier()) {
7973 auto I = WeakUndeclaredIdentifiers.find(Id);
7974 if (I != WeakUndeclaredIdentifiers.end()) {
7975 auto &WeakInfos = I->second;
7976 for (const auto &W : WeakInfos)
7977 DeclApplyPragmaWeak(S, ND, W);
7978 std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos;
7979 WeakInfos.swap(EmptyWeakInfos);
7980 }
7981 }
7982}
7983
7984/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
7985/// it, apply them to D. This is a bit tricky because PD can have attributes
7986/// specified in many different places, and we need to find and apply them all.
7988 // Ordering of attributes can be important, so we take care to process
7989 // attributes in the order in which they appeared in the source code.
7990
7991 auto ProcessAttributesWithSliding =
7992 [&](const ParsedAttributesView &Src,
7993 const ProcessDeclAttributeOptions &Options) {
7994 ParsedAttributesView NonSlidingAttrs;
7995 for (ParsedAttr &AL : Src) {
7996 // FIXME: this sliding is specific to standard attributes and should
7997 // eventually be deprecated and removed as those are not intended to
7998 // slide to anything.
7999 if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) &&
8000 AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
8001 // Skip processing the attribute, but do check if it appertains to
8002 // the declaration. This is needed for the `MatrixType` attribute,
8003 // which, despite being a type attribute, defines a `SubjectList`
8004 // that only allows it to be used on typedef declarations.
8005 AL.diagnoseAppertainsTo(*this, D);
8006 } else {
8007 NonSlidingAttrs.addAtEnd(&AL);
8008 }
8009 }
8010 ProcessDeclAttributeList(S, D, NonSlidingAttrs, Options);
8011 };
8012
8013 // First, process attributes that appeared on the declaration itself (but
8014 // only if they don't have the legacy behavior of "sliding" to the DeclSepc).
8015 ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {});
8016
8017 // Apply decl attributes from the DeclSpec if present.
8018 ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(),
8020 .WithIncludeCXX11Attributes(false)
8021 .WithIgnoreTypeAttributes(true));
8022
8023 // Walk the declarator structure, applying decl attributes that were in a type
8024 // position to the decl itself. This handles cases like:
8025 // int *__attr__(x)** D;
8026 // when X is a decl attribute.
8027 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) {
8030 .WithIncludeCXX11Attributes(false)
8031 .WithIgnoreTypeAttributes(true));
8032 }
8033
8034 // Finally, apply any attributes on the decl itself.
8036
8037 // Apply additional attributes specified by '#pragma clang attribute'.
8038 AddPragmaAttributes(S, D);
8039
8040 // Look for API notes that map to attributes.
8041 ProcessAPINotes(D);
8042}
8043
8044/// Is the given declaration allowed to use a forbidden type?
8045/// If so, it'll still be annotated with an attribute that makes it
8046/// illegal to actually use.
8048 const DelayedDiagnostic &diag,
8049 UnavailableAttr::ImplicitReason &reason) {
8050 // Private ivars are always okay. Unfortunately, people don't
8051 // always properly make their ivars private, even in system headers.
8052 // Plus we need to make fields okay, too.
8053 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
8055 return false;
8056
8057 // Silently accept unsupported uses of __weak in both user and system
8058 // declarations when it's been disabled, for ease of integration with
8059 // -fno-objc-arc files. We do have to take some care against attempts
8060 // to define such things; for now, we've only done that for ivars
8061 // and properties.
8063 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
8064 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
8065 reason = UnavailableAttr::IR_ForbiddenWeak;
8066 return true;
8067 }
8068 }
8069
8070 // Allow all sorts of things in system headers.
8072 // Currently, all the failures dealt with this way are due to ARC
8073 // restrictions.
8074 reason = UnavailableAttr::IR_ARCForbiddenType;
8075 return true;
8076 }
8077
8078 return false;
8079}
8080
8081/// Handle a delayed forbidden-type diagnostic.
8083 Decl *D) {
8084 auto Reason = UnavailableAttr::IR_None;
8085 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
8086 assert(Reason && "didn't set reason?");
8087 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
8088 return;
8089 }
8090 if (S.getLangOpts().ObjCAutoRefCount)
8091 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
8092 // FIXME: we may want to suppress diagnostics for all
8093 // kind of forbidden type messages on unavailable functions.
8094 if (FD->hasAttr<UnavailableAttr>() &&
8096 diag::err_arc_array_param_no_ownership) {
8097 DD.Triggered = true;
8098 return;
8099 }
8100 }
8101
8104 DD.Triggered = true;
8105}
8106
8107
8112
8113 // When delaying diagnostics to run in the context of a parsed
8114 // declaration, we only want to actually emit anything if parsing
8115 // succeeds.
8116 if (!decl) return;
8117
8118 // We emit all the active diagnostics in this pool or any of its
8119 // parents. In general, we'll get one pool for the decl spec
8120 // and a child pool for each declarator; in a decl group like:
8121 // deprecated_typedef foo, *bar, baz();
8122 // only the declarator pops will be passed decls. This is correct;
8123 // we really do need to consider delayed diagnostics from the decl spec
8124 // for each of the different declarations.
8125 const DelayedDiagnosticPool *pool = &poppedPool;
8126 do {
8127 bool AnyAccessFailures = false;
8129 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8130 // This const_cast is a bit lame. Really, Triggered should be mutable.
8131 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8132 if (diag.Triggered)
8133 continue;
8134
8135 switch (diag.Kind) {
8137 // Don't bother giving deprecation/unavailable diagnostics if
8138 // the decl is invalid.
8139 if (!decl->isInvalidDecl())
8141 break;
8142
8144 // Only produce one access control diagnostic for a structured binding
8145 // declaration: we don't need to tell the user that all the fields are
8146 // inaccessible one at a time.
8147 if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8148 continue;
8150 if (diag.Triggered)
8151 AnyAccessFailures = true;
8152 break;
8153
8156 break;
8157 }
8158 }
8159 } while ((pool = pool->getParent()));
8160}
8161
8164 assert(curPool && "re-emitting in undelayed context not supported");
8165 curPool->steal(pool);
8166}
Defines the clang::ASTContext interface.
#define V(N, I)
static SmallString< 64 > normalizeName(StringRef AttrName, StringRef ScopeName, AttributeCommonInfo::Syntax SyntaxUsed)
static OffloadArch getOffloadArch(CodeGenModule &CGM)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
This file defines the classes used to store parsed information about declaration-specifiers and decla...
Defines the C++ template declaration subclasses.
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
Defines the clang::Expr interface and subclasses for C++ expressions.
TokenType getType() const
Returns the token's type, e.g.
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
#define X(type, name)
Definition Value.h:97
Defines the clang::LangOptions interface.
llvm::MachO::Target Target
Definition MachO.h:51
llvm::MachO::Record Record
Definition MachO.h:31
#define SM(sm)
static unsigned getNumAttributeArgs(const ParsedAttr &AL)
Defines the clang::Preprocessor interface.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
This file declares semantic analysis functions specific to AMDGPU.
This file declares semantic analysis functions specific to ARM.
This file declares semantic analysis functions specific to AVR.
This file declares semantic analysis functions specific to BPF.
This file declares semantic analysis for CUDA constructs.
static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Arg)
static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static const RecordDecl * getRecordDecl(QualType QT)
Checks that the passed in QualType either is of RecordType or points to RecordType.
static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRequiresCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A)
static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnumExtensibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static T * mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, typename T::VisibilityType value)
static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, const ParsedAttr &AL)
static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A)
static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static Expr * makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr, const unsigned Idx)
static void handleLifetimeCaptureByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL)
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordDecl *Record)
static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A)
checkUnusedDeclAttributes - Check a list of attributes to see if it contains any decl attributes that...
static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVTablePointerAuthentication(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args, unsigned Sidx=0, bool ParamIdxOk=false)
Checks that all attribute arguments, starting from Sidx, resolve to a capability object.
static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, StringRef CodeSegName)
static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((format_arg((idx)))) attribute based on http://gcc.gnu.org/onlinedocs/gcc/Function-A...
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, const Sema::ProcessDeclAttributeOptions &Options)
ProcessDeclAttribute - Apply the specific attribute to the specified decl if the attribute applies to...
static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL)
static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, SourceRange AttrParmRange, SourceRange TypeRange, bool isReturnValue=false)
static void handleAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str)
static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle 'called_once' attribute.
static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Cond, StringRef &Msg)
static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, const ParsedAttr &AL)
static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNo)
Checks to be sure that the given parameter number is in bounds, and is an integral type.
static bool checkFunParamsAreScopedLockable(Sema &S, const ParmVarDecl *ParamDecl, const ParsedAttr &AL)
static bool checkRecordTypeForCapability(Sema &S, QualType Ty)
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static AttrTy * mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL)
static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isKernelDecl(Decl *D)
static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL)
FormatAttrKind
@ CFStringFormat
@ IgnoredFormat
@ InvalidFormat
@ StrftimeFormat
@ SupportedFormat
@ NSStringFormat
static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, bool isTypeVisibility)
static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static FormatAttrKind getFormatAttrKind(StringRef Format)
getFormatAttrKind - Map from format attribute names to supported format types.
static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, bool &IntegerMode, bool &ComplexMode, FloatModeKind &ExplicitType)
parseModeAttrArg - Parses attribute mode string and returns parsed type attribute.
static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCFIUncheckedCalleeAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkAvailabilityAttr(Sema &S, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted)
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, const ParsedAttr &AL)
static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool validateAlignasAppliedType(Sema &S, Decl *D, const AlignedAttr &Attr, SourceLocation AttrLoc)
Perform checking of type validity.
static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static unsigned getNumAttributeArgs(const ParsedAttr &AL)
static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag)
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, Decl *D)
Handle a delayed forbidden-type diagnostic.
static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static Expr * makeLaunchBoundsArgExpr(Sema &S, Expr *E, const CUDALaunchBoundsAttr &AL, const unsigned Idx)
static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((init_priority(priority))) attributes based on http://gcc.gnu.org/onlinedocs/gcc/C_0...
static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkRecordDeclForAttr(const RecordDecl *RD)
static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A)
static bool isKnownToAlwaysThrow(const FunctionDecl *FD)
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, StringRef Str)
static bool isCapabilityExpr(Sema &S, const Expr *Ex)
static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static const AttrTy * findEnforceTCBAttrByName(Decl *D, StringRef Name)
static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, const ParsedAttr &AL)
static bool MustDelayAttributeArguments(const ParsedAttr &AL)
static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkRecordTypeForScopedCapability(Sema &S, QualType Ty)
static bool isIntOrBool(Expr *Exp)
Check if the passed-in expression is of type int or bool.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, bool BeforeIsOkay)
Check whether the two versions match.
static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer)
static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, FormatAttrCommon *Info)
Handle attribute((format(type,idx,firstarg))) attributes based on http://gcc.gnu.org/onlinedocs/gcc/F...
static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static ExprResult sharedGetConstructorDestructorAttrExpr(Sema &S, const ParsedAttr &AL)
static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkTypedefTypeForCapability(QualType Ty)
static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReleaseCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool typeHasCapability(Sema &S, QualType Ty)
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isFunctionLike(const Type &T)
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReentrantCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, const ParsedAttr &AL)
Check if passed in Decl is a pointer type.
static bool isForbiddenTypeAllowed(Sema &S, Decl *D, const DelayedDiagnostic &diag, UnavailableAttr::ImplicitReason &reason)
Is the given declaration allowed to use a forbidden type?
static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
handleModeAttr - This attribute modifies the width of a decl with primitive type.
static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, int &Val, unsigned Idx=UINT_MAX)
Wrapper around checkUInt32Argument, with an extra check to be sure that the result will fit into a re...
static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isGlobalVar(const Decl *D)
static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL)
This file declares semantic analysis for HLSL constructs.
This file declares semantic analysis functions specific to M68k.
This file declares semantic analysis functions specific to MIPS.
This file declares semantic analysis functions specific to MSP430.
This file declares semantic analysis for Objective-C.
This file declares semantic analysis routines for OpenCL.
This file declares semantic analysis for OpenMP constructs and clauses.
This file declares semantic analysis functions specific to RISC-V.
This file declares semantic analysis for SYCL constructs.
This file declares semantic analysis functions specific to Swift.
This file declares semantic analysis functions specific to Wasm.
This file declares semantic analysis functions specific to X86.
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
static QualType getPointeeType(const MemRegion *R)
C Language Family Type Representation.
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition APValue.h:122
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:188
MSGuidDecl * getMSGuidDecl(MSGuidDeclParts Parts) const
Return a declaration for the global GUID object representing the given GUID value.
SourceManager & getSourceManager()
Definition ASTContext.h:798
TypedefDecl * getObjCInstanceTypeDecl()
Retrieve the typedef declaration corresponding to the Objective-C "instancetype" type.
DeclarationNameTable DeclarationNames
Definition ASTContext.h:741
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
IdentifierTable & Idents
Definition ASTContext.h:737
const LangOptions & getLangOpts() const
Definition ASTContext.h:891
QualType getConstType(QualType T) const
Return the uniqued reference to the type for a const qualified type.
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
const TargetInfo * getAuxTargetInfo() const
Definition ASTContext.h:857
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
CanQualType IntTy
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
CanQualType OverloadTy
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
CanQualType VoidTy
QualType getTypedefType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier Qualifier, const TypedefNameDecl *Decl, QualType UnderlyingType=QualType(), std::optional< bool > TypeMatchesDeclOrNone=std::nullopt) const
Return the unique reference to the type for the specified typedef-name decl.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:856
TargetCXXABI::Kind getCXXABIKind() const
Return the C++ ABI kind that should be used.
unsigned getTypeAlign(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in bits.
Represents an access specifier followed by colon ':'.
Definition DeclCXX.h:86
PtrTy get() const
Definition Ownership.h:171
bool isInvalid() const
Definition Ownership.h:167
Attr - This represents one attribute.
Definition Attr.h:44
SourceLocation getScopeLoc() const
void setAttributeSpellingListIndex(unsigned V)
std::string getNormalizedFullName() const
Gets the normalized full name, which consists of both scope and name and with surrounding underscores...
unsigned getAttributeSpellingListIndex() const
const IdentifierInfo * getScopeName() const
StringRef getNormalizedAttrName(StringRef ScopeName) const
std::optional< StringRef > tryGetCorrectedAttrName(StringRef ScopeName, StringRef AttrName, const TargetInfo &Target, const LangOptions &LangOpts) const
SourceRange getNormalizedRange() const
std::optional< StringRef > tryGetCorrectedScopeName(StringRef ScopeName) const
SourceLocation getLoc() const
const IdentifierInfo * getAttrName() const
StringRef getNormalizedScopeName() const
bool isStandardAttributeSyntax() const
The attribute is spelled [[]] in either C or C++ mode, including standard attributes spelled with a k...
Type source information for an attributed type.
Definition TypeLoc.h:1017
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition TypeLoc.h:1031
Pointer to a block type.
Definition TypeBase.h:3540
This class is used for builtin types like 'int'.
Definition TypeBase.h:3164
static bool isBuiltinFunc(llvm::StringRef Name)
Returns true if this is a libc/libm function without the '__builtin_' prefix.
Definition Builtins.cpp:123
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
QualType getFunctionObjectParameterType() const
Definition DeclCXX.h:2279
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
CXXRecordDecl * getDefinition() const
Definition DeclCXX.h:548
bool hasDefinition() const
Definition DeclCXX.h:561
MSInheritanceModel calculateInheritanceModel() const
Calculate what the inheritance model would be for this class.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition Expr.cpp:1513
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
Declaration of a class template.
static ConstantExpr * Create(const ASTContext &Context, Expr *E, const APValue &Result)
Definition Expr.cpp:346
const RelatedTargetVersionMapping * getVersionMapping(OSEnvPair Kind) const
The results of name lookup within a DeclContext.
Definition DeclBase.h:1382
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition DeclBase.h:1449
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
bool isFileContext() const
Definition DeclBase.h:2180
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
A reference to a declared variable, function, enum, etc.
Definition Expr.h:1270
DeclarationNameInfo getNameInfo() const
Definition Expr.h:1342
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr, NonOdrUseReason NOUR=NOUR_None)
Definition Expr.cpp:484
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier,...
Definition Expr.h:1359
ValueDecl * getDecl()
Definition Expr.h:1338
ParsedAttributes & getAttributes()
Definition DeclSpec.h:843
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
TemplateDecl * getDescribedTemplate() const
If this is a declaration that describes some template, this method returns that template declaration.
Definition DeclBase.cpp:263
T * getAttr() const
Definition DeclBase.h:573
bool hasAttrs() const
Definition DeclBase.h:518
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:524
void addAttr(Attr *A)
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition DeclBase.cpp:156
const FunctionType * getFunctionType(bool BlocksToo=true) const
Looks through the Decl's underlying type to extract a FunctionType when possible.
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition DeclBase.cpp:251
bool canBeWeakImported(bool &IsDefinition) const
Determines whether this symbol can be weak-imported, e.g., whether it would be well-formed to add the...
Definition DeclBase.cpp:819
bool isInvalidDecl() const
Definition DeclBase.h:588
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition DeclBase.h:559
SourceLocation getLocation() const
Definition DeclBase.h:439
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition DeclBase.h:1049
DeclContext * getDeclContext()
Definition DeclBase.h:448
SourceLocation getBeginLoc() const LLVM_READONLY
Definition DeclBase.h:431
void dropAttr()
Definition DeclBase.h:556
AttrVec & getAttrs()
Definition DeclBase.h:524
void setDeclContext(DeclContext *DC)
setDeclContext - Set both the semantic and lexical DeclContext to DC.
Definition DeclBase.cpp:360
bool hasAttr() const
Definition DeclBase.h:577
void setLexicalDeclContext(DeclContext *DC)
Definition DeclBase.cpp:364
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition DeclBase.h:978
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition DeclBase.h:427
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
The name of a declaration.
SourceLocation getTypeSpecStartLoc() const
Definition Decl.cpp:1988
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Decl.h:830
const AssociatedConstraint & getTrailingRequiresClause() const
Get the constraint-expression introduced by the trailing requires-clause in the function/member decla...
Definition Decl.h:854
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition Decl.cpp:2000
NestedNameSpecifierLoc getQualifierLoc() const
Retrieve the nested-name-specifier (with source-location information) that qualifies the name of this...
Definition Decl.h:844
NestedNameSpecifier getQualifier() const
Retrieve the nested-name-specifier that qualifies the name of this declaration, if it was present in ...
Definition Decl.h:836
TypeSourceInfo * getTypeSourceInfo() const
Definition Decl.h:808
Information about one declarator, including the parsed type information and the identifier.
Definition DeclSpec.h:1874
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition DeclSpec.h:2372
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition DeclSpec.h:2021
const ParsedAttributes & getAttributes() const
Definition DeclSpec.h:2657
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition DeclSpec.h:2368
const ParsedAttributesView & getDeclarationAttributes() const
Definition DeclSpec.h:2660
Concrete class used by the front-end to report problems and issues.
Definition Diagnostic.h:231
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition Diagnostic.h:950
const IntrusiveRefCntPtr< DiagnosticIDs > & getDiagnosticIDs() const
Definition Diagnostic.h:591
This represents one expression.
Definition Expr.h:112
bool isIntegerConstantExpr(const ASTContext &Ctx) const
static bool isPotentialConstantExprUnevaluated(Expr *E, const FunctionDecl *FD, SmallVectorImpl< PartialDiagnosticAt > &Diags)
isPotentialConstantExprUnevaluated - Return true if this expression might be usable in a constant exp...
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition Expr.cpp:3090
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition Expr.h:177
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition Expr.h:194
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates).
Definition Expr.h:241
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition Expr.cpp:3085
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
QualType getType() const
Definition Expr.h:144
Represents difference between two FPOptions values.
Represents a member of a struct/union/class.
Definition Decl.h:3157
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition Diagnostic.h:78
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition Diagnostic.h:139
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition Diagnostic.h:102
Represents a function declaration or definition.
Definition Decl.h:1999
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, const AssociatedConstraint &TrailingRequiresClause={})
Definition Decl.h:2188
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2794
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition Decl.cpp:3271
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition Decl.cpp:4146
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition Decl.cpp:4134
bool isThisDeclarationADefinition() const
Returns whether this specific declaration of the function is also a definition that does not contain ...
Definition Decl.h:2313
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type.
Definition Decl.cpp:3965
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition Decl.cpp:3703
param_iterator param_end()
Definition Decl.h:2784
bool isInlined() const
Determine whether this function should be inlined, because it is either marked "inline" or "constexpr...
Definition Decl.h:2918
void setIsMultiVersion(bool V=true)
Sets the multiversion state for this declaration and all of its redeclarations.
Definition Decl.h:2692
bool isNoReturn() const
Determines whether this function is known to be 'noreturn', through an attribute on its declaration o...
Definition Decl.cpp:3592
QualType getReturnType() const
Definition Decl.h:2842
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2771
bool hasPrototype() const
Whether this function has a prototype, either because one was explicitly written or because it was "i...
Definition Decl.h:2442
param_iterator param_begin()
Definition Decl.h:2783
bool isVariadic() const
Whether this function is variadic.
Definition Decl.cpp:3125
bool isConstexprSpecified() const
Definition Decl.h:2478
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition Decl.cpp:3559
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template instantiation this function represents.
Definition Decl.cpp:4358
bool isConsteval() const
Definition Decl.h:2481
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition Decl.cpp:3767
bool hasBody(const FunctionDecl *&Definition) const
Returns true if the function has a body.
Definition Decl.cpp:3191
bool isInlineSpecified() const
Determine whether the "inline" keyword was specified for this function.
Definition Decl.h:2896
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5264
Declaration of a template function.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4460
CallingConv getCallConv() const
Definition TypeBase.h:4815
QualType getReturnType() const
Definition TypeBase.h:4800
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
One of these records is kept for each identifier that is lexed.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
StringRef getName() const
Return the actual identifier string.
A simple pair of identifier info and location.
SourceLocation getLoc() const
IdentifierInfo * getIdentifierInfo() const
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Describes an entity that is being initialized.
static InitializedEntity InitializeParameter(ASTContext &Context, ParmVarDecl *Parm)
Create the initialization entity for a parameter.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
void push_back(const T &LocalValue)
Represents the results of name lookup.
Definition Lookup.h:147
A global _GUID constant.
Definition DeclCXX.h:4398
MSGuidDeclParts Parts
Definition DeclCXX.h:4400
Describes a module or submodule.
Definition Module.h:144
This represents a decl that may have a name.
Definition Decl.h:273
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition Decl.h:294
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition Decl.cpp:1962
A C++ nested-name-specifier augmented with source location information.
ObjCMethodDecl - Represents an instance or class method declaration.
Definition DeclObjC.h:140
Represents one property declaration in an Objective-C interface.
Definition DeclObjC.h:731
void * getAsOpaquePtr() const
Definition Ownership.h:91
static OpaquePtr getFromOpaquePtr(void *P)
Definition Ownership.h:92
A single parameter index whose accessors require each use to make explicit the parameter index encodi...
Definition Attr.h:290
bool isValid() const
Is this parameter index valid?
Definition Attr.h:350
unsigned getSourceIndex() const
Get the parameter index as it would normally be encoded for attributes at the source level of represe...
Definition Attr.h:358
unsigned getASTIndex() const
Get the parameter index as it would normally be encoded at the AST level of representation: zero-orig...
Definition Attr.h:369
Represents a parameter to a function.
Definition Decl.h:1789
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition Decl.cpp:2969
ParsedAttr - Represents a syntactic attribute.
Definition ParsedAttr.h:119
bool isPackExpansion() const
Definition ParsedAttr.h:367
const AvailabilityChange & getAvailabilityDeprecated() const
Definition ParsedAttr.h:399
unsigned getSemanticSpelling() const
If the parsed attribute has a semantic equivalent, and it would have a semantic Spelling enumeration ...
bool existsInTarget(const TargetInfo &Target) const
bool checkExactlyNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has exactly as many args as Num.
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition ParsedAttr.h:389
bool hasParsedType() const
Definition ParsedAttr.h:337
const AvailabilityChange & getAvailabilityIntroduced() const
Definition ParsedAttr.h:393
void setInvalid(bool b=true) const
Definition ParsedAttr.h:345
bool hasVariadicArg() const
const ParsedAttrInfo & getInfo() const
Definition ParsedAttr.h:613
void handleAttrWithDelayedArgs(Sema &S, Decl *D) const
const Expr * getReplacementExpr() const
Definition ParsedAttr.h:429
bool hasProcessingCache() const
Definition ParsedAttr.h:347
SourceLocation getUnavailableLoc() const
Definition ParsedAttr.h:417
unsigned getProcessingCache() const
Definition ParsedAttr.h:349
const IdentifierLoc * getEnvironment() const
Definition ParsedAttr.h:435
bool acceptsExprPack() const
const Expr * getMessageExpr() const
Definition ParsedAttr.h:423
const ParsedType & getMatchingCType() const
Definition ParsedAttr.h:441
const ParsedType & getTypeArg() const
Definition ParsedAttr.h:459
SourceLocation getStrictLoc() const
Definition ParsedAttr.h:411
bool isTypeAttr() const
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition ParsedAttr.h:371
bool isArgIdent(unsigned Arg) const
Definition ParsedAttr.h:385
Expr * getArgAsExpr(unsigned Arg) const
Definition ParsedAttr.h:383
bool getMustBeNull() const
Definition ParsedAttr.h:453
bool checkAtLeastNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has at least as many args as Num.
bool isUsedAsTypeAttr() const
Definition ParsedAttr.h:359
unsigned getNumArgMembers() const
bool isStmtAttr() const
bool isPragmaClangAttribute() const
True if the attribute is specified using 'pragma clang attribute'.
Definition ParsedAttr.h:363
bool slidesFromDeclToDeclSpecLegacyBehavior() const
Returns whether a [[]] attribute, if specified ahead of a declaration, should be applied to the decl-...
AttributeCommonInfo::Kind getKind() const
Definition ParsedAttr.h:610
void setProcessingCache(unsigned value) const
Definition ParsedAttr.h:354
bool isParamExpr(size_t N) const
bool isArgExpr(unsigned Arg) const
Definition ParsedAttr.h:379
bool getLayoutCompatible() const
Definition ParsedAttr.h:447
ArgsUnion getArg(unsigned Arg) const
getArg - Return the specified argument.
Definition ParsedAttr.h:374
SourceLocation getEllipsisLoc() const
Definition ParsedAttr.h:368
bool isInvalid() const
Definition ParsedAttr.h:344
bool checkAtMostNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has at most as many args as Num.
const AvailabilityChange & getAvailabilityObsoleted() const
Definition ParsedAttr.h:405
void addAtEnd(ParsedAttr *newAttr)
Definition ParsedAttr.h:827
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
QualType getPointeeType() const
Definition TypeBase.h:3338
IdentifierTable & getIdentifierTable()
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8285
QualType getCanonicalType() const
Definition TypeBase.h:8337
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition TypeBase.h:8379
const Type * getTypePtrOrNull() const
Definition TypeBase.h:8289
Represents a struct/union/class.
Definition Decl.h:4309
field_iterator field_end() const
Definition Decl.h:4515
field_range fields() const
Definition Decl.h:4512
specific_decl_iterator< FieldDecl > field_iterator
Definition Decl.h:4509
RecordDecl * getDefinitionOrSelf() const
Definition Decl.h:4497
field_iterator field_begin() const
Definition Decl.cpp:5154
Base for LValueReferenceType and RValueReferenceType.
Definition TypeBase.h:3571
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition Scope.h:271
@ FunctionDeclarationScope
This is a scope that corresponds to the parameters within a function prototype for a function declara...
Definition Scope.h:91
void handleAMDGPUMaxNumWorkGroupsAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUFlatWorkGroupSizeAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUNumSGPRAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUNumVGPRAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUWavesPerEUAttr(Decl *D, const ParsedAttr &AL)
void handleInterruptSaveFPAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1378
bool checkTargetVersionAttr(const StringRef Str, const SourceLocation Loc)
Definition SemaARM.cpp:1582
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1346
void handleBuiltinAliasAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1231
void handleNewAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1278
bool SveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1217
bool MveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1204
void handleCmseNSEntryAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1331
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
Definition SemaARM.cpp:1599
bool CdeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1212
void handleSignalAttr(Decl *D, const ParsedAttr &AL)
Definition SemaAVR.cpp:48
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaAVR.cpp:23
void handlePreserveAIRecord(RecordDecl *RD)
Definition SemaBPF.cpp:169
void handlePreserveAccessIndexAttr(Decl *D, const ParsedAttr &AL)
Definition SemaBPF.cpp:181
A generic diagnostic builder for errors which may or may not be deferred.
Definition SemaBase.h:111
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition SemaBase.cpp:61
CUDAFunctionTarget IdentifyTarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr=false)
Determines whether the given function is a CUDA device/host/kernel/etc.
Definition SemaCUDA.cpp:134
CUDAFunctionTarget CurrentTarget()
Gets the CUDA target for the current context.
Definition SemaCUDA.h:152
SemaDiagnosticBuilder DiagIfHostCode(SourceLocation Loc, unsigned DiagID)
Creates a SemaDiagnosticBuilder that emits the diagnostic if the current context is "used as host cod...
Definition SemaCUDA.cpp:871
void handleWaveSizeAttr(Decl *D, const ParsedAttr &AL)
void handleSemanticAttr(Decl *D, const ParsedAttr &AL)
void handleShaderAttr(Decl *D, const ParsedAttr &AL)
void handlePackOffsetAttr(Decl *D, const ParsedAttr &AL)
void handleParamModifierAttr(Decl *D, const ParsedAttr &AL)
void handleRootSignatureAttr(Decl *D, const ParsedAttr &AL)
void handleResourceBindingAttr(Decl *D, const ParsedAttr &AL)
void handleNumThreadsAttr(Decl *D, const ParsedAttr &AL)
void handleVkExtBuiltinInputAttr(Decl *D, const ParsedAttr &AL)
void handleVkBindingAttr(Decl *D, const ParsedAttr &AL)
void handleVkConstantIdAttr(Decl *D, const ParsedAttr &AL)
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaM68k.cpp:23
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaMIPS.cpp:243
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
void handleRuntimeName(Decl *D, const ParsedAttr &AL)
void handleNSObject(Decl *D, const ParsedAttr &AL)
bool isValidOSObjectOutParameter(const Decl *D)
void handleNSErrorDomain(Decl *D, const ParsedAttr &Attr)
void handleXReturnsXRetainedAttr(Decl *D, const ParsedAttr &AL)
void handleExternallyRetainedAttr(Decl *D, const ParsedAttr &AL)
void handleMethodFamilyAttr(Decl *D, const ParsedAttr &AL)
void handleIndependentClass(Decl *D, const ParsedAttr &AL)
void handleIBOutlet(Decl *D, const ParsedAttr &AL)
void handleReturnsInnerPointerAttr(Decl *D, const ParsedAttr &Attrs)
void handleSuppresProtocolAttr(Decl *D, const ParsedAttr &AL)
void handleOwnershipAttr(Decl *D, const ParsedAttr &AL)
void handleBlocksAttr(Decl *D, const ParsedAttr &AL)
void handleBridgeMutableAttr(Decl *D, const ParsedAttr &AL)
Sema::RetainOwnershipKind parsedAttrToRetainOwnershipKind(const ParsedAttr &AL)
void handleRequiresSuperAttr(Decl *D, const ParsedAttr &Attrs)
void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, Sema::RetainOwnershipKind K, bool IsTemplateInstantiation)
void handleDesignatedInitializer(Decl *D, const ParsedAttr &AL)
void handleBridgeRelatedAttr(Decl *D, const ParsedAttr &AL)
void handleIBOutletCollection(Decl *D, const ParsedAttr &AL)
bool isCFStringType(QualType T)
void handleDirectAttr(Decl *D, const ParsedAttr &AL)
bool isNSStringType(QualType T, bool AllowNSAttributedString=false)
void handleBoxable(Decl *D, const ParsedAttr &AL)
void handleDirectMembersAttr(Decl *D, const ParsedAttr &AL)
void handleBridgeAttr(Decl *D, const ParsedAttr &AL)
void handlePreciseLifetimeAttr(Decl *D, const ParsedAttr &AL)
void handleSubGroupSize(Decl *D, const ParsedAttr &AL)
void handleNoSVMAttr(Decl *D, const ParsedAttr &AL)
void handleAccessAttr(Decl *D, const ParsedAttr &AL)
void handleOMPAssumeAttr(Decl *D, const ParsedAttr &AL)
bool isAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
bool checkTargetVersionAttr(const StringRef Param, const SourceLocation Loc)
void handleKernelEntryPointAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSYCL.cpp:205
void handleKernelAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSYCL.cpp:166
void handleBridge(Decl *D, const ParsedAttr &AL)
Definition SemaSwift.cpp:99
void handleAsyncAttr(Decl *D, const ParsedAttr &AL)
void handleAsyncName(Decl *D, const ParsedAttr &AL)
void handleNewType(Decl *D, const ParsedAttr &AL)
void handleError(Decl *D, const ParsedAttr &AL)
void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI abi)
void handleAsyncError(Decl *D, const ParsedAttr &AL)
void handleName(Decl *D, const ParsedAttr &AL)
void handleAttrAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSwift.cpp:84
void handleWebAssemblyImportNameAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:370
void handleWebAssemblyImportModuleAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:353
void handleWebAssemblyExportNameAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:386
void handleForceAlignArgPointerAttr(Decl *D, const ParsedAttr &AL)
Definition SemaX86.cpp:1041
void handleAnyInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaX86.cpp:972
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
Definition SemaX86.cpp:1064
A class which encapsulates the logic for delaying diagnostics during parsing and other processing.
Definition Sema.h:1359
sema::DelayedDiagnosticPool * getCurrentPool() const
Returns the current delayed-diagnostics pool.
Definition Sema.h:1374
void popWithoutEmitting(DelayedDiagnosticsState state)
Leave a delayed-diagnostic state that was previously pushed.
Definition Sema.h:1388
Sema - This implements semantic analysis and AST building for C.
Definition Sema.h:854
SemaAMDGPU & AMDGPU()
Definition Sema.h:1420
BTFDeclTagAttr * mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL)
void LoadExternalWeakUndeclaredIdentifiers()
Load weak undeclared identifiers from the external source.
Definition Sema.cpp:1061
@ LookupOrdinaryName
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc....
Definition Sema.h:9291
EnforceTCBAttr * mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL)
SemaM68k & M68k()
Definition Sema.h:1470
DelayedDiagnosticsState ParsingDeclState
Definition Sema.h:1354
bool isValidPointerAttrType(QualType T, bool RefOkay=false)
Determine if type T is a valid subject for a nonnull and similar attributes.
static std::enable_if_t< std::is_base_of_v< Attr, AttrInfo >, SourceLocation > getAttrLoc(const AttrInfo &AL)
A helper function to provide Attribute Location for the Attr types AND the ParsedAttr.
Definition Sema.h:4816
SemaOpenMP & OpenMP()
Definition Sema.h:1505
TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis)
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion)
AddAlignedAttr - Adds an aligned attribute to a particular declaration.
bool checkFunctionOrMethodParameterIndex(const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis=false, bool CanIndexVariadicArguments=false)
Check if IdxExpr is a valid parameter index for a function or instance method D.
Definition Sema.h:5107
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE)
AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular declaration.
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str)
void AddPragmaAttributes(Scope *S, Decl *D)
Adds the attributes that have been specified using the '#pragma clang attribute push' directives to t...
SemaCUDA & CUDA()
Definition Sema.h:1445
bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A, bool SkipArgCountCheck=false)
Handles semantic checking for features that are common to all attributes, such as checking whether a ...
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList)
Annotation attributes are the only attributes allowed after an access specifier.
DLLImportAttr * mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI)
ExtVectorDeclsType ExtVectorDecls
ExtVectorDecls - This is a list all the extended vector types.
Definition Sema.h:4876
void PopParsingDeclaration(ParsingDeclState state, Decl *decl)
ErrorAttr * mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, StringRef NewUserDiagnostic)
bool CheckFormatStringsCompatible(FormatStringType FST, const StringLiteral *AuthoritativeFormatString, const StringLiteral *TestedFormatString, const Expr *FunctionCallArg=nullptr)
Verify that two format strings (as understood by attribute(format) and attribute(format_matches) are ...
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool)
Given a set of delayed diagnostics, re-emit them as if they had been delayed in the current context i...
SemaSYCL & SYCL()
Definition Sema.h:1530
VisibilityAttr * mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis)
SemaX86 & X86()
Definition Sema.h:1550
ParmVarDecl * BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T)
Synthesizes a variable for a parameter arising from a typedef.
ASTContext & Context
Definition Sema.h:1283
void LazyProcessLifetimeCaptureByParams(FunctionDecl *FD)
DiagnosticsEngine & getDiagnostics() const
Definition Sema.h:922
SemaObjC & ObjC()
Definition Sema.h:1490
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext=true)
Add this decl to the scope shadowed decl chains.
ASTContext & getASTContext() const
Definition Sema.h:925
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD=nullptr, CUDAFunctionTarget CFT=CUDAFunctionTarget::InvalidTarget)
Check validaty of calling convention attribute attr.
QualType BuildCountAttributedArrayOrPointerType(QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull)
void ProcessPragmaWeak(Scope *S, Decl *D)
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr)
bool UnifySection(StringRef SectionName, int SectionFlags, NamedDecl *TheDecl)
Definition SemaAttr.cpp:795
FPOptions & getCurFPFeatures()
Definition Sema.h:920
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition Sema.cpp:83
@ UPPC_Expression
An arbitrary expression.
Definition Sema.h:14227
const LangOptions & getLangOpts() const
Definition Sema.h:918
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation=false)
AddModeAttr - Adds a mode attribute to a particular declaration.
SemaBPF & BPF()
Definition Sema.h:1435
Preprocessor & PP
Definition Sema.h:1282
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC)
If the given type contains an unexpanded parameter pack, diagnose the error.
MinSizeAttr * mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI)
SemaMSP430 & MSP430()
Definition Sema.h:1480
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType)
CheckAssignmentConstraints - Perform type checking for assignment, argument passing,...
const LangOptions & LangOpts
Definition Sema.h:1281
static const uint64_t MaximumAlignment
Definition Sema.h:1214
SemaHLSL & HLSL()
Definition Sema.h:1455
AlwaysInlineAttr * mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident)
SemaMIPS & MIPS()
Definition Sema.h:1475
SemaRISCV & RISCV()
Definition Sema.h:1520
bool CheckCountedByAttrOnField(FieldDecl *FD, Expr *E, bool CountInBytes, bool OrNull)
Check if applying the specified attribute variant from the "counted by" family of attributes to Field...
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AttrList, const ProcessDeclAttributeOptions &Options=ProcessDeclAttributeOptions())
ProcessDeclAttributeList - Apply all the decl attributes in the specified attribute list to the speci...
SemaSwift & Swift()
Definition Sema.h:1535
NamedDecl * getCurFunctionOrMethodDecl() const
getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method or C function we're in,...
Definition Sema.cpp:1659
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr)
AddAllocAlignAttr - Adds an alloc_align attribute to a particular declaration.
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value)
Checks a regparm attribute, returning true if it is ill-formed and otherwise setting numParams to the...
void ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList)
Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr attribute.
bool checkUInt32Argument(const AttrInfo &AI, const Expr *Expr, uint32_t &Val, unsigned Idx=UINT_MAX, bool StrictlyUnsigned=false)
If Expr is a valid integer constant, get the value of the integer expression and return success or fa...
Definition Sema.h:4827
MSInheritanceAttr * mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model)
InternalLinkageAttr * mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL)
bool IsAssignConvertCompatible(AssignConvertType ConvTy)
Definition Sema.h:8005
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition Sema.h:1418
SemaOpenCL & OpenCL()
Definition Sema.h:1500
ExprResult PerformContextuallyConvertToBool(Expr *From)
PerformContextuallyConvertToBool - Perform a contextual conversion of the expression From to bool (C+...
FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain=false, DeclAccessPair *Found=nullptr, TemplateSpecCandidateSet *FailedTSC=nullptr, bool ForTypeDeduction=false)
Given an expression that refers to an overloaded function, try to resolve that overloaded function ex...
NamedDecl * DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, SourceLocation Loc)
DeclClonePragmaWeak - clone existing decl (maybe definition), #pragma weak needs a non-definition dec...
DLLExportAttr * mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI)
CodeSegAttr * mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name)
SectionAttr * mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name)
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition Sema.h:13799
SourceManager & getSourceManager() const
Definition Sema.h:923
static FormatStringType GetFormatStringType(StringRef FormatFlavor)
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str)
bool ValidateFormatString(FormatStringType FST, const StringLiteral *Str)
Verify that one format string (as understood by attribute(format)) is self-consistent; for instance,...
llvm::Error isValidSectionSpecifier(StringRef Str)
Used to implement to perform semantic checking on attribute((section("foo"))) specifiers.
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks)
AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular declaration.
void DiagnoseUnknownAttribute(const ParsedAttr &AL)
OptimizeNoneAttr * mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI)
void checkUnusedDeclAttributes(Declarator &D)
checkUnusedDeclAttributes - Given a declarator which is not being used to build a declaration,...
bool CheckAttrTarget(const ParsedAttr &CurrAttr)
EnforceTCBLeafAttr * mergeEnforceTCBLeafAttr(Decl *D, const EnforceTCBLeafAttr &AL)
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, AllowFoldKind CanFold=AllowFoldKind::No)
VerifyIntegerConstantExpression - Verifies that an expression is an ICE, and reports the appropriate ...
ASTConsumer & Consumer
Definition Sema.h:1284
void NoteAllOverloadCandidates(Expr *E, QualType DestType=QualType(), bool TakingAddress=false)
FormatAttr * mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg)
@ AP_PragmaClangAttribute
The availability attribute was applied using 'pragma clang attribute'.
Definition Sema.h:4796
@ AP_InferredFromOtherPlatform
The availability attribute for a specific platform was inferred from an availability attribute for an...
Definition Sema.h:4800
@ AP_Explicit
The availability attribute was specified explicitly next to the declaration.
Definition Sema.h:4793
SmallVector< Decl *, 2 > WeakTopLevelDecl
WeakTopLevelDecl - Translation-unit scoped declarations generated by #pragma weak during processing o...
Definition Sema.h:4864
bool RequireCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition Sema.h:1246
UuidAttr * mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef UuidAsWritten, MSGuidDecl *GuidDecl)
ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList=false, bool AllowExplicit=false)
Attr * CreateAnnotationAttr(const AttributeCommonInfo &CI, StringRef Annot, MutableArrayRef< Expr * > Args)
CreateAnnotationAttr - Creates an annotation Annot with Args arguments.
Definition Sema.cpp:2933
SemaAVR & AVR()
Definition Sema.h:1430
void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx)
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD)
ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in it, apply them to D.
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W)
DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak applied to it,...
FormatMatchesAttr * mergeFormatMatchesAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, StringLiteral *FormatStr)
AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority, IdentifierInfo *IIEnvironment)
llvm::MapVector< IdentifierInfo *, llvm::SetVector< WeakInfo, llvm::SmallVector< WeakInfo, 1u >, llvm::SmallDenseSet< WeakInfo, 2u, WeakInfo::DenseMapInfoByAliasOnly > > > WeakUndeclaredIdentifiers
WeakUndeclaredIdentifiers - Identifiers contained in #pragma weak before declared.
Definition Sema.h:3540
void ProcessAPINotes(Decl *D)
Map any API notes provided for this declaration to attributes on the declaration.
void CheckAlignasUnderalignment(Decl *D)
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx)
DarwinSDKInfo * getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, StringRef Platform)
Definition Sema.cpp:112
CUDALaunchBoundsAttr * CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks)
Create an CUDALaunchBoundsAttr attribute.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false, bool ForceNoCPlusPlus=false)
Perform unqualified name lookup starting from a given scope.
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E)
AddAlignValueAttr - Adds an align_value attribute to a particular declaration.
SemaWasm & Wasm()
Definition Sema.h:1545
LifetimeCaptureByAttr * ParseLifetimeCaptureByAttr(const ParsedAttr &AL, StringRef ParamName)
bool checkMSInheritanceAttrOnDefinition(CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel SemanticSpelling)
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation=nullptr)
Check if the argument E is a ASCII string literal.
SemaARM & ARM()
Definition Sema.h:1425
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto)
CheckFunctionCall - Check a direct function call for various correctness and safety properties not st...
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
bool isInSystemMacro(SourceLocation loc) const
Returns whether Loc is expanded from a macro in a system header.
bool isInSystemHeader(SourceLocation Loc) const
Returns if a SourceLocation is in a system header.
A trivial tuple used to represent a source range.
SourceLocation getBegin() const
Stmt - This represents one statement.
Definition Stmt.h:85
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:334
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Stmt.cpp:346
StringLiteral - This represents a string literal expression, e.g.
Definition Expr.h:1799
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition Decl.h:3829
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition Decl.h:3809
bool isUnion() const
Definition Decl.h:3919
Exposes information about the current target.
Definition TargetInfo.h:226
TargetOptions & getTargetOpts() const
Retrieve the target options.
Definition TargetInfo.h:323
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition TargetInfo.h:486
virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const
Determines whether a given calling convention is valid for the target.
bool isTLSSupported() const
Whether the target supports thread-local storage.
virtual unsigned getRegisterWidth() const
Return the "preferred" register width on this target.
Definition TargetInfo.h:898
virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const
virtual bool hasProtectedVisibility() const
Does this target support "protected" visibility?
virtual unsigned getUnwindWordWidth() const
Definition TargetInfo.h:893
unsigned getCharWidth() const
Definition TargetInfo.h:517
virtual bool shouldDLLImportComdatSymbols() const
Does this target aim for semantic compatibility with Microsoft C++ code using dllimport/export attrib...
const llvm::VersionTuple & getSDKVersion() const
The base class of all kinds of template declarations (e.g., class, function, etc.).
Base wrapper for a particular "section" of type source info.
Definition TypeLoc.h:59
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition TypeLoc.h:154
T getAsAdjusted() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition TypeLoc.h:2715
SourceLocation getBeginLoc() const
Get the begin source location.
Definition TypeLoc.cpp:193
A container of type source information.
Definition TypeBase.h:8256
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition TypeLoc.h:272
QualType getType() const
Return the type wrapped by this type source info.
Definition TypeBase.h:8267
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isSizelessType() const
As an extension, we classify types as one of "sized" or "sizeless"; every type is one or the other.
Definition Type.cpp:2568
bool isBlockPointerType() const
Definition TypeBase.h:8542
bool isVoidType() const
Definition TypeBase.h:8878
bool isBooleanType() const
Definition TypeBase.h:9008
const Type * getPointeeOrArrayElementType() const
If this is a pointer type, return the pointee type.
Definition TypeBase.h:9058
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
bool isComplexType() const
isComplexType() does not include complex integers (a GCC extension).
Definition Type.cpp:724
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition Type.h:41
bool isArrayType() const
Definition TypeBase.h:8621
bool isCharType() const
Definition Type.cpp:2132
bool isFunctionPointerType() const
Definition TypeBase.h:8589
bool isPointerType() const
Definition TypeBase.h:8522
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8922
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9165
bool isReferenceType() const
Definition TypeBase.h:8546
bool isEnumeralType() const
Definition TypeBase.h:8653
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to.
Definition Type.cpp:1909
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition Type.cpp:2103
bool isAlignValT() const
Definition Type.cpp:3180
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition TypeBase.h:8996
bool isExtVectorType() const
Definition TypeBase.h:8665
bool isAnyCharacterType() const
Determine whether this type is any of the built-in character types.
Definition Type.cpp:2168
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition TypeBase.h:2790
bool isBitIntType() const
Definition TypeBase.h:8787
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition TypeBase.h:2782
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition TypeBase.h:2405
bool isPointerOrReferenceType() const
Definition TypeBase.h:8526
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition Type.cpp:2436
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition Type.cpp:2312
bool isVectorType() const
Definition TypeBase.h:8661
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2921
bool isFloatingType() const
Definition Type.cpp:2304
bool isAnyPointerType() const
Definition TypeBase.h:8530
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9098
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs,...
Definition Type.cpp:653
Base class for declarations which introduce a typedef-name.
Definition Decl.h:3559
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition Expr.cpp:5036
Represents a dependent using declaration which was marked with typename.
Definition DeclCXX.h:4037
Represents a dependent using declaration which was not marked with typename.
Definition DeclCXX.h:3940
Represents a C++ using-declaration.
Definition DeclCXX.h:3591
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition Decl.h:711
void setType(QualType newType)
Definition Decl.h:723
QualType getType() const
Definition Decl.h:722
Represents a variable declaration or definition.
Definition Decl.h:925
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition Decl.cpp:2151
@ TLS_None
Not a TLS variable.
Definition Decl.h:945
Represents a GCC generic vector type.
Definition TypeBase.h:4173
Captures information about a #pragma weak directive.
Definition Weak.h:25
const IdentifierInfo * getAlias() const
Definition Weak.h:32
SourceLocation getLocation() const
Definition Weak.h:33
A collection of diagnostics which were delayed.
const DelayedDiagnosticPool * getParent() const
void steal(DelayedDiagnosticPool &pool)
Steal the diagnostics from the given pool.
SmallVectorImpl< DelayedDiagnostic >::const_iterator pool_iterator
A diagnostic message which has been conditionally emitted pending the complete parsing of the current...
unsigned getForbiddenTypeDiagnostic() const
The diagnostic ID to emit.
Defines the clang::TargetInfo interface.
#define UINT_MAX
Definition limits.h:64
Enums for the diagnostics of target, target_version and target_clones.
Definition Sema.h:840
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
@ Match
This is not an overload because the signature exactly matches an existing declaration.
Definition Sema.h:816
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus23
@ ExpectedFunctionMethodOrBlock
@ ExpectedClass
@ ExpectedTypeOrNamespace
@ ExpectedVariableFieldOrTag
@ ExpectedVariableOrField
@ ExpectedUnion
@ ExpectedFunctionOrMethod
@ ExpectedVariable
@ ExpectedFunctionOrClassOrEnum
@ ExpectedVariableOrFunction
@ ExpectedKernelFunction
@ ExpectedFunctionVariableOrClass
@ ExpectedFunction
@ ExpectedNonMemberFunction
void handleSimpleAttributeOrDiagnose(SemaBase &S, Decl *D, const AttributeCommonInfo &CI, bool PassesCheck, unsigned DiagID, DiagnosticArgs &&...ExtraArgs)
Add an attribute AttrType to declaration D, provided that PassesCheck is true.
Definition Attr.h:179
bool hasDeclarator(const Decl *D)
Return true if the given decl has a declarator that should have been processed by Sema::GetTypeForDec...
Definition Attr.h:46
CUDAFunctionTarget
Definition Cuda.h:60
QualType getFunctionOrMethodResultType(const Decl *D)
Definition Attr.h:98
bool isInstanceMethod(const Decl *D)
Definition Attr.h:120
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition Specifiers.h:151
AvailabilityMergeKind
Describes the kind of merge to perform for availability attributes (including "deprecated",...
Definition Sema.h:626
@ None
Don't merge availability attributes at all.
Definition Sema.h:628
@ Override
Merge availability attributes for an override, which requires an exact match or a weakening of constr...
Definition Sema.h:634
@ OptionalProtocolImplementation
Merge availability attributes for an implementation of an optional protocol requirement.
Definition Sema.h:640
@ Redeclaration
Merge availability attributes for a redeclaration, which requires an exact match.
Definition Sema.h:631
@ ProtocolImplementation
Merge availability attributes for an implementation of a protocol requirement.
Definition Sema.h:637
@ VectorLength
'vector_length' clause, allowed on 'parallel', 'kernels', 'parallel loop', and 'kernels loop' constru...
void inferNoReturnAttr(Sema &S, const Decl *D)
CudaVersion ToCudaVersion(llvm::VersionTuple)
Definition Cuda.cpp:69
SmallVector< Attr *, 4 > AttrVec
AttrVec - A vector of Attr, which is how they are stored on the AST.
nullptr
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
bool checkAttrMutualExclusion(SemaBase &S, Decl *D, const ParsedAttr &AL)
Diagnose mutually exclusive attributes when present on a given declaration.
Definition Attr.h:129
@ SC_Extern
Definition Specifiers.h:251
@ SC_Register
Definition Specifiers.h:257
@ SC_None
Definition Specifiers.h:250
@ TSCS_unspecified
Definition Specifiers.h:236
Expr * Cond
};
SourceRange getFunctionOrMethodResultSourceRange(const Decl *D)
Definition Attr.h:104
bool isFunctionOrMethodOrBlockForAttrSubject(const Decl *D)
Return true if the given decl has function type (function or function-typed variable) or an Objective...
Definition Attr.h:40
QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx)
Definition Attr.h:83
@ Internal
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition Linkage.h:35
Language
The language for the input, used to select and validate the language standard and possible actions.
AttributeArgumentNType
These constants match the enumerated choices of err_attribute_argument_n_type and err_attribute_argum...
@ AANT_ArgumentIntegerConstant
@ AANT_ArgumentBuiltinFunction
@ AANT_ArgumentIntOrBool
@ AANT_ArgumentIdentifier
@ AANT_ArgumentString
@ SD_Automatic
Automatic storage duration (most local variables).
Definition Specifiers.h:341
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
@ SwiftAsyncContext
This parameter (which must have pointer type) uses the special Swift asynchronous context-pointer ABI...
Definition Specifiers.h:399
@ SwiftErrorResult
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
Definition Specifiers.h:389
@ SwiftIndirectResult
This parameter (which must have pointer type) is a Swift indirect result parameter.
Definition Specifiers.h:384
@ SwiftContext
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment.
Definition Specifiers.h:394
const FunctionProtoType * T
bool isFunctionOrMethodVariadic(const Decl *D)
Definition Attr.h:112
@ Template
We are parsing a template declaration.
Definition Parser.h:81
bool isFuncOrMethodForAttrSubject(const Decl *D)
isFuncOrMethodForAttrSubject - Return true if the given decl has function type (function or function-...
Definition Attr.h:34
ExprResult ExprError()
Definition Ownership.h:265
OffloadArch StringToOffloadArch(llvm::StringRef S)
CudaVersion
Definition Cuda.h:22
LLVM_READONLY bool isHexDigit(unsigned char c)
Return true if this character is an ASCII hex digit: [0-9a-fA-F].
Definition CharInfo.h:144
FormatStringType
Definition Sema.h:496
SanitizerMask parseSanitizerValue(StringRef Value, bool AllowGroups)
Parse a single value from a -fsanitize= or -fno-sanitize= value list.
const char * OffloadArchToString(OffloadArch A)
void handleSimpleAttribute(SemaBase &S, Decl *D, const AttributeCommonInfo &CI)
Applies the given attribute to the Decl without performing any additional semantic checking.
Definition Attr.h:169
std::pair< SourceLocation, PartialDiagnostic > PartialDiagnosticAt
A partial diagnostic along with the source location where this diagnostic occurs.
FloatModeKind
Definition TargetInfo.h:75
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition Specifiers.h:135
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition Specifiers.h:139
MSInheritanceModel
Assigned inheritance model for a class in the MS C++ ABI.
Definition Specifiers.h:410
bool hasFunctionProto(const Decl *D)
hasFunctionProto - Return true if the given decl has a argument information.
Definition Attr.h:55
unsigned getFunctionOrMethodNumParams(const Decl *D)
getFunctionOrMethodNumParams - Return number of function or method parameters.
Definition Attr.h:64
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
DynamicRecursiveASTVisitorBase< false > DynamicRecursiveASTVisitor
@ TSK_ExplicitSpecialization
This template specialization was declared or defined by an explicit specialization (C++ [temp....
Definition Specifiers.h:198
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition Specifiers.h:278
@ CC_X86Pascal
Definition Specifiers.h:284
@ CC_Swift
Definition Specifiers.h:293
@ CC_IntelOclBicc
Definition Specifiers.h:290
@ CC_PreserveMost
Definition Specifiers.h:295
@ CC_Win64
Definition Specifiers.h:285
@ CC_X86ThisCall
Definition Specifiers.h:282
@ CC_AArch64VectorCall
Definition Specifiers.h:297
@ CC_DeviceKernel
Definition Specifiers.h:292
@ CC_AAPCS
Definition Specifiers.h:288
@ CC_PreserveNone
Definition Specifiers.h:300
@ CC_M68kRTD
Definition Specifiers.h:299
@ CC_SwiftAsync
Definition Specifiers.h:294
@ CC_X86RegCall
Definition Specifiers.h:287
@ CC_RISCVVectorCall
Definition Specifiers.h:301
@ CC_X86VectorCall
Definition Specifiers.h:283
@ CC_AArch64SVEPCS
Definition Specifiers.h:298
@ CC_RISCVVLSCall_32
Definition Specifiers.h:302
@ CC_X86StdCall
Definition Specifiers.h:280
@ CC_X86_64SysV
Definition Specifiers.h:286
@ CC_PreserveAll
Definition Specifiers.h:296
@ CC_X86FastCall
Definition Specifiers.h:281
@ CC_AAPCS_VFP
Definition Specifiers.h:289
@ Generic
not a target-specific vector type
Definition TypeBase.h:4134
U cast(CodeGen::Address addr)
Definition Address.h:327
SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx)
Definition Attr.h:92
OpaquePtr< QualType > ParsedType
An opaque type for threading parsed type information through the parser.
Definition Ownership.h:230
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5868
@ None
No keyword precedes the qualified type name.
Definition TypeBase.h:5884
@ Union
The "union" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5871
ActionResult< Expr * > ExprResult
Definition Ownership.h:249
@ Other
Other implicit parameter.
Definition Decl.h:1745
IdentifierInfo * Identifier
FormatAttrKind Kind
Represents information about a change in availability for an entity, which is part of the encoding of...
Definition ParsedAttr.h:47
VersionTuple Version
The version number at which the change occurred.
Definition ParsedAttr.h:52
bool isValid() const
Determine whether this availability change is valid.
Definition ParsedAttr.h:58
static constexpr OSEnvPair macOStoMacCatalystPair()
Returns the os-environment mapping pair that's used to represent the macOS -> Mac Catalyst version ma...
static constexpr OSEnvPair iOStoWatchOSPair()
Returns the os-environment mapping pair that's used to represent the iOS -> watchOS version mapping.
static constexpr OSEnvPair iOStoTvOSPair()
Returns the os-environment mapping pair that's used to represent the iOS -> tvOS version mapping.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
DeclarationName getName() const
getName - Returns the embedded declaration name.
const ParsedAttributesView & getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition DeclSpec.h:1633
uint16_t Part2
...-89ab-...
Definition DeclCXX.h:4377
uint32_t Part1
{01234567-...
Definition DeclCXX.h:4375
uint16_t Part3
...-cdef-...
Definition DeclCXX.h:4379
uint8_t Part4And5[8]
...-0123-456789abcdef}
Definition DeclCXX.h:4381
virtual AttrHandling handleDeclAttribute(Sema &S, Decl *D, const ParsedAttr &Attr) const
If this ParsedAttrInfo knows how to handle this ParsedAttr applied to this Decl then do so and return...
Contains information gathered from parsing the contents of TargetAttr.
Definition TargetInfo.h:60
std::vector< std::string > Features
Definition TargetInfo.h:61