clang 22.0.0git
SemaDeclAttr.cpp
Go to the documentation of this file.
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements decl-related attribute processing.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/APValue.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/Type.h"
28#include "clang/Basic/Cuda.h"
36#include "clang/Sema/Attr.h"
37#include "clang/Sema/DeclSpec.h"
40#include "clang/Sema/Lookup.h"
42#include "clang/Sema/Scope.h"
44#include "clang/Sema/Sema.h"
46#include "clang/Sema/SemaARM.h"
47#include "clang/Sema/SemaAVR.h"
48#include "clang/Sema/SemaBPF.h"
49#include "clang/Sema/SemaCUDA.h"
50#include "clang/Sema/SemaHLSL.h"
51#include "clang/Sema/SemaM68k.h"
52#include "clang/Sema/SemaMIPS.h"
54#include "clang/Sema/SemaObjC.h"
58#include "clang/Sema/SemaSYCL.h"
60#include "clang/Sema/SemaWasm.h"
61#include "clang/Sema/SemaX86.h"
62#include "llvm/ADT/APSInt.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/StringExtras.h"
65#include "llvm/Demangle/Demangle.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/MC/MCSectionMachO.h"
68#include "llvm/Support/Error.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/TargetParser/Triple.h"
73#include <optional>
74
75using namespace clang;
76using namespace sema;
77
79 enum LANG {
83 };
84} // end namespace AttributeLangSupport
85
86static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
87 // FIXME: Include the type in the argument list.
88 return AL.getNumArgs() + AL.hasParsedType();
89}
90
94
95/// Wrapper around checkUInt32Argument, with an extra check to be sure
96/// that the result will fit into a regular (signed) int. All args have the same
97/// purpose as they do in checkUInt32Argument.
98template <typename AttrInfo>
99static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
100 int &Val, unsigned Idx = UINT_MAX) {
101 uint32_t UVal;
102 if (!S.checkUInt32Argument(AI, Expr, UVal, Idx))
103 return false;
104
105 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
106 llvm::APSInt I(32); // for toString
107 I = UVal;
108 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
109 << toString(I, 10, false) << 32 << /* Unsigned */ 0;
110 return false;
111 }
112
113 Val = UVal;
114 return true;
115}
116
118 const Expr *E, StringRef &Str,
119 SourceLocation *ArgLocation) {
120 const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts());
121 if (ArgLocation)
122 *ArgLocation = E->getBeginLoc();
123
124 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
125 Diag(E->getBeginLoc(), diag::err_attribute_argument_type)
126 << CI << AANT_ArgumentString;
127 return false;
128 }
129
130 Str = Literal->getString();
131 return true;
132}
133
134bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
135 StringRef &Str,
136 SourceLocation *ArgLocation) {
137 // Look for identifiers. If we have one emit a hint to fix it to a literal.
138 if (AL.isArgIdent(ArgNum)) {
139 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
140 Diag(Loc->getLoc(), diag::err_attribute_argument_type)
141 << AL << AANT_ArgumentString
142 << FixItHint::CreateInsertion(Loc->getLoc(), "\"")
144 Str = Loc->getIdentifierInfo()->getName();
145 if (ArgLocation)
146 *ArgLocation = Loc->getLoc();
147 return true;
148 }
149
150 // Now check for an actual string literal.
151 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
152 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
153 if (ArgLocation)
154 *ArgLocation = ArgExpr->getBeginLoc();
155
156 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
157 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
158 << AL << AANT_ArgumentString;
159 return false;
160 }
161 Str = Literal->getString();
162 return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation);
163}
164
165/// Check if the passed-in expression is of type int or bool.
166static bool isIntOrBool(Expr *Exp) {
167 QualType QT = Exp->getType();
168 return QT->isBooleanType() || QT->isIntegerType();
169}
170
171
172// Check to see if the type is a smart pointer of some kind. We assume
173// it's a smart pointer if it defines both operator-> and operator*.
175 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
179 return !Result.empty();
180 };
181
182 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
183 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
184 if (foundStarOperator && foundArrowOperator)
185 return true;
186
187 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
188 if (!CXXRecord)
189 return false;
190
191 for (const auto &BaseSpecifier : CXXRecord->bases()) {
192 if (!foundStarOperator)
193 foundStarOperator = IsOverloadedOperatorPresent(
194 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
195 if (!foundArrowOperator)
196 foundArrowOperator = IsOverloadedOperatorPresent(
197 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
198 }
199
200 if (foundStarOperator && foundArrowOperator)
201 return true;
202
203 return false;
204}
205
206/// Check if passed in Decl is a pointer type.
207/// Note that this function may produce an error message.
208/// \return true if the Decl is a pointer type; false otherwise
209static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
210 const ParsedAttr &AL) {
211 const auto *VD = cast<ValueDecl>(D);
212 QualType QT = VD->getType();
213 if (QT->isAnyPointerType())
214 return true;
215
216 if (const auto *RD = QT->getAsRecordDecl()) {
217 // If it's an incomplete type, it could be a smart pointer; skip it.
218 // (We don't want to force template instantiation if we can avoid it,
219 // since that would alter the order in which templates are instantiated.)
220 if (!RD->isCompleteDefinition())
221 return true;
222
224 return true;
225 }
226
227 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
228 return false;
229}
230
231/// Checks that the passed in QualType either is of RecordType or points
232/// to RecordType. Returns the relevant RecordType, null if it does not exit.
234 if (const auto *RD = QT->getAsRecordDecl())
235 return RD;
236
237 // Now check if we point to a record.
238 if (const auto *PT = QT->getAsCanonical<PointerType>())
239 return PT->getPointeeType()->getAsRecordDecl();
240
241 return nullptr;
242}
243
244template <typename AttrType>
245static bool checkRecordDeclForAttr(const RecordDecl *RD) {
246 // Check if the record itself has the attribute.
247 if (RD->hasAttr<AttrType>())
248 return true;
249
250 // Else check if any base classes have the attribute.
251 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
252 if (!CRD->forallBases([](const CXXRecordDecl *Base) {
253 return !Base->hasAttr<AttrType>();
254 }))
255 return true;
256 }
257 return false;
258}
259
261 const auto *RD = getRecordDecl(Ty);
262
263 if (!RD)
264 return false;
265
266 // Don't check for the capability if the class hasn't been defined yet.
267 if (!RD->isCompleteDefinition())
268 return true;
269
270 // Allow smart pointers to be used as capability objects.
271 // FIXME -- Check the type that the smart pointer points to.
273 return true;
274
276}
277
279 const auto *RD = getRecordDecl(Ty);
280
281 if (!RD)
282 return false;
283
284 // Don't check for the capability if the class hasn't been defined yet.
285 if (!RD->isCompleteDefinition())
286 return true;
287
289}
290
292 const auto *TD = Ty->getAs<TypedefType>();
293 if (!TD)
294 return false;
295
296 TypedefNameDecl *TN = TD->getDecl();
297 if (!TN)
298 return false;
299
300 return TN->hasAttr<CapabilityAttr>();
301}
302
303static bool typeHasCapability(Sema &S, QualType Ty) {
305 return true;
306
308 return true;
309
310 return false;
311}
312
313static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
314 // Capability expressions are simple expressions involving the boolean logic
315 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
316 // a DeclRefExpr is found, its type should be checked to determine whether it
317 // is a capability or not.
318
319 if (const auto *E = dyn_cast<CastExpr>(Ex))
320 return isCapabilityExpr(S, E->getSubExpr());
321 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
322 return isCapabilityExpr(S, E->getSubExpr());
323 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
324 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
325 E->getOpcode() == UO_Deref)
326 return isCapabilityExpr(S, E->getSubExpr());
327 return false;
328 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
329 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
330 return isCapabilityExpr(S, E->getLHS()) &&
331 isCapabilityExpr(S, E->getRHS());
332 return false;
333 }
334
335 return typeHasCapability(S, Ex->getType());
336}
337
338/// Checks that all attribute arguments, starting from Sidx, resolve to
339/// a capability object.
340/// \param Sidx The attribute argument index to start checking with.
341/// \param ParamIdxOk Whether an argument can be indexing into a function
342/// parameter list.
344 const ParsedAttr &AL,
346 unsigned Sidx = 0,
347 bool ParamIdxOk = false) {
348 if (Sidx == AL.getNumArgs()) {
349 // If we don't have any capability arguments, the attribute implicitly
350 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
351 // a non-static method, and that the class is a (scoped) capability.
352 const auto *MD = dyn_cast<const CXXMethodDecl>(D);
353 if (MD && !MD->isStatic()) {
354 const CXXRecordDecl *RD = MD->getParent();
355 // FIXME -- need to check this again on template instantiation
358 S.Diag(AL.getLoc(),
359 diag::warn_thread_attribute_not_on_capability_member)
360 << AL << MD->getParent();
361 } else {
362 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
363 << AL;
364 }
365 }
366
367 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
368 Expr *ArgExp = AL.getArgAsExpr(Idx);
369
370 if (ArgExp->isTypeDependent()) {
371 // FIXME -- need to check this again on template instantiation
372 Args.push_back(ArgExp);
373 continue;
374 }
375
376 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
377 if (StrLit->getLength() == 0 ||
378 (StrLit->isOrdinary() && StrLit->getString() == "*")) {
379 // Pass empty strings to the analyzer without warnings.
380 // Treat "*" as the universal lock.
381 Args.push_back(ArgExp);
382 continue;
383 }
384
385 // We allow constant strings to be used as a placeholder for expressions
386 // that are not valid C++ syntax, but warn that they are ignored.
387 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
388 Args.push_back(ArgExp);
389 continue;
390 }
391
392 QualType ArgTy = ArgExp->getType();
393
394 // A pointer to member expression of the form &MyClass::mu is treated
395 // specially -- we need to look at the type of the member.
396 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
397 if (UOp->getOpcode() == UO_AddrOf)
398 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
399 if (DRE->getDecl()->isCXXInstanceMember())
400 ArgTy = DRE->getDecl()->getType();
401
402 // First see if we can just cast to record type, or pointer to record type.
403 const auto *RD = getRecordDecl(ArgTy);
404
405 // Now check if we index into a record type function param.
406 if (!RD && ParamIdxOk) {
407 const auto *FD = dyn_cast<FunctionDecl>(D);
408 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
409 if(FD && IL) {
410 unsigned int NumParams = FD->getNumParams();
411 llvm::APInt ArgValue = IL->getValue();
412 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
413 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
414 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
415 S.Diag(AL.getLoc(),
416 diag::err_attribute_argument_out_of_bounds_extra_info)
417 << AL << Idx + 1 << NumParams;
418 continue;
419 }
420 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
421 }
422 }
423
424 // If the type does not have a capability, see if the components of the
425 // expression have capabilities. This allows for writing C code where the
426 // capability may be on the type, and the expression is a capability
427 // boolean logic expression. Eg) requires_capability(A || B && !C)
428 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
429 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
430 << AL << ArgTy;
431
432 Args.push_back(ArgExp);
433 }
434}
435
437 const ParmVarDecl *ParamDecl,
438 const ParsedAttr &AL) {
439 QualType ParamType = ParamDecl->getType();
440 if (const auto *RefType = ParamType->getAs<ReferenceType>();
441 RefType &&
442 checkRecordTypeForScopedCapability(S, RefType->getPointeeType()))
443 return true;
444 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_scoped_lockable_param)
445 << AL;
446 return false;
447}
448
449//===----------------------------------------------------------------------===//
450// Attribute Implementations
451//===----------------------------------------------------------------------===//
452
453static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
454 if (!threadSafetyCheckIsPointer(S, D, AL))
455 return;
456
457 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
458}
459
460static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
461 Expr *&Arg) {
463 // check that all arguments are lockable objects
464 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
465 unsigned Size = Args.size();
466 if (Size != 1)
467 return false;
468
469 Arg = Args[0];
470
471 return true;
472}
473
474static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
475 Expr *Arg = nullptr;
476 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
477 return;
478
479 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
480}
481
482static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
483 Expr *Arg = nullptr;
484 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
485 return;
486
487 if (!threadSafetyCheckIsPointer(S, D, AL))
488 return;
489
490 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
491}
492
493static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
495 if (!AL.checkAtLeastNumArgs(S, 1))
496 return false;
497
498 // Check that this attribute only applies to lockable types.
499 QualType QT = cast<ValueDecl>(D)->getType();
500 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
501 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
502 return false;
503 }
504
505 // Check that all arguments are lockable objects.
506 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
507 if (Args.empty())
508 return false;
509
510 return true;
511}
512
513static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
515 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
516 return;
517
518 Expr **StartArg = &Args[0];
519 D->addAttr(::new (S.Context)
520 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
521}
522
523static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
525 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
526 return;
527
528 Expr **StartArg = &Args[0];
529 D->addAttr(::new (S.Context)
530 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
531}
532
533static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
535 // zero or more arguments ok
536 // check that all arguments are lockable objects
537 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
538
539 return true;
540}
541
542/// Checks to be sure that the given parameter number is in bounds, and
543/// is an integral type. Will emit appropriate diagnostics if this returns
544/// false.
545///
546/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
547template <typename AttrInfo>
548static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
549 unsigned AttrArgNo) {
550 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
551 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
552 ParamIdx Idx;
553 if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg,
554 Idx))
555 return false;
556
558 if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
559 SourceLocation SrcLoc = AttrArg->getBeginLoc();
560 S.Diag(SrcLoc, diag::err_attribute_integers_only)
562 return false;
563 }
564 return true;
565}
566
567static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
568 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
569 return;
570
572
574 if (!RetTy->isPointerType()) {
575 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
576 return;
577 }
578
579 const Expr *SizeExpr = AL.getArgAsExpr(0);
580 int SizeArgNoVal;
581 // Parameter indices are 1-indexed, hence Index=1
582 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
583 return;
584 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
585 return;
586 ParamIdx SizeArgNo(SizeArgNoVal, D);
587
588 ParamIdx NumberArgNo;
589 if (AL.getNumArgs() == 2) {
590 const Expr *NumberExpr = AL.getArgAsExpr(1);
591 int Val;
592 // Parameter indices are 1-based, hence Index=2
593 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
594 return;
595 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
596 return;
597 NumberArgNo = ParamIdx(Val, D);
598 }
599
600 D->addAttr(::new (S.Context)
601 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
602}
603
604static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
606 if (!AL.checkAtLeastNumArgs(S, 1))
607 return false;
608
609 if (!isIntOrBool(AL.getArgAsExpr(0))) {
610 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
611 << AL << 1 << AANT_ArgumentIntOrBool;
612 return false;
613 }
614
615 // check that all arguments are lockable objects
616 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
617
618 return true;
619}
620
621static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
622 // check that the argument is lockable object
624 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
625 unsigned Size = Args.size();
626 if (Size == 0)
627 return;
628
629 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
630}
631
632static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
633 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
634 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
635 return;
636
637 if (!AL.checkAtLeastNumArgs(S, 1))
638 return;
639
640 // check that all arguments are lockable objects
642 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
643 unsigned Size = Args.size();
644 if (Size == 0)
645 return;
646 Expr **StartArg = &Args[0];
647
648 D->addAttr(::new (S.Context)
649 LocksExcludedAttr(S.Context, AL, StartArg, Size));
650}
651
652static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
653 Expr *&Cond, StringRef &Msg) {
654 Cond = AL.getArgAsExpr(0);
655 if (!Cond->isTypeDependent()) {
657 if (Converted.isInvalid())
658 return false;
659 Cond = Converted.get();
660 }
661
662 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
663 return false;
664
665 if (Msg.empty())
666 Msg = "<no message provided>";
667
669 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
671 Diags)) {
672 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
673 for (const PartialDiagnosticAt &PDiag : Diags)
674 S.Diag(PDiag.first, PDiag.second);
675 return false;
676 }
677 return true;
678}
679
680static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
681 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
682
683 Expr *Cond;
684 StringRef Msg;
685 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
686 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
687}
688
689static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
690 StringRef NewUserDiagnostic;
691 if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
692 return;
693 if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
694 D->addAttr(EA);
695}
696
698 const ParsedAttr &AL) {
699 const auto *PD = isa<CXXRecordDecl>(D)
702 if (const auto *RD = dyn_cast<CXXRecordDecl>(PD); RD && RD->isLocalClass()) {
703 S.Diag(AL.getLoc(),
704 diag::warn_attribute_exclude_from_explicit_instantiation_local_class)
705 << AL << /*IsMember=*/!isa<CXXRecordDecl>(D);
706 return;
707 }
708 D->addAttr(::new (S.Context)
709 ExcludeFromExplicitInstantiationAttr(S.Context, AL));
710}
711
712namespace {
713/// Determines if a given Expr references any of the given function's
714/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
715class ArgumentDependenceChecker : public DynamicRecursiveASTVisitor {
716#ifndef NDEBUG
717 const CXXRecordDecl *ClassType;
718#endif
719 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
720 bool Result;
721
722public:
723 ArgumentDependenceChecker(const FunctionDecl *FD) {
724#ifndef NDEBUG
725 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
726 ClassType = MD->getParent();
727 else
728 ClassType = nullptr;
729#endif
730 Parms.insert(FD->param_begin(), FD->param_end());
731 }
732
733 bool referencesArgs(Expr *E) {
734 Result = false;
735 TraverseStmt(E);
736 return Result;
737 }
738
739 bool VisitCXXThisExpr(CXXThisExpr *E) override {
740 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
741 "`this` doesn't refer to the enclosing class?");
742 Result = true;
743 return false;
744 }
745
746 bool VisitDeclRefExpr(DeclRefExpr *DRE) override {
747 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
748 if (Parms.count(PVD)) {
749 Result = true;
750 return false;
751 }
752 return true;
753 }
754};
755}
756
758 const ParsedAttr &AL) {
759 const auto *DeclFD = cast<FunctionDecl>(D);
760
761 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
762 if (!MethodDecl->isStatic()) {
763 S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
764 return;
765 }
766
767 auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
768 SourceLocation Loc = [&]() {
769 auto Union = AL.getArg(Index - 1);
770 if (auto *E = dyn_cast<Expr *>(Union))
771 return E->getBeginLoc();
772 return cast<IdentifierLoc *>(Union)->getLoc();
773 }();
774
775 S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
776 };
777
778 FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
779 if (!AL.isArgExpr(0))
780 return nullptr;
781 auto *F = dyn_cast_if_present<DeclRefExpr>(AL.getArgAsExpr(0));
782 if (!F)
783 return nullptr;
784 return dyn_cast_if_present<FunctionDecl>(F->getFoundDecl());
785 }();
786
787 if (!AttrFD || !AttrFD->getBuiltinID(true)) {
788 DiagnoseType(1, AANT_ArgumentBuiltinFunction);
789 return;
790 }
791
792 if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
793 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
794 << AL << AttrFD << AttrFD->getNumParams();
795 return;
796 }
797
799
800 for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
801 if (!AL.isArgExpr(I)) {
802 DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
803 return;
804 }
805
806 const Expr *IndexExpr = AL.getArgAsExpr(I);
807 uint32_t Index;
808
809 if (!S.checkUInt32Argument(AL, IndexExpr, Index, I + 1, false))
810 return;
811
812 if (Index > DeclFD->getNumParams()) {
813 S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
814 << AL << Index << DeclFD << DeclFD->getNumParams();
815 return;
816 }
817
818 QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
819 QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
820
823 S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
824 << AL << Index << DeclFD << T2 << I << AttrFD << T1;
825 return;
826 }
827
828 Indices.push_back(Index - 1);
829 }
830
831 D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
832 S.Context, AL, AttrFD, Indices.data(), Indices.size()));
833}
834
835static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
836 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
837
838 Expr *Cond;
839 StringRef Msg;
840 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
841 return;
842
843 StringRef DefaultSevStr;
844 if (!S.checkStringLiteralArgumentAttr(AL, 2, DefaultSevStr))
845 return;
846
847 DiagnoseIfAttr::DefaultSeverity DefaultSev;
848 if (!DiagnoseIfAttr::ConvertStrToDefaultSeverity(DefaultSevStr, DefaultSev)) {
849 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
850 diag::err_diagnose_if_invalid_diagnostic_type);
851 return;
852 }
853
854 StringRef WarningGroup;
855 if (AL.getNumArgs() > 3) {
856 if (!S.checkStringLiteralArgumentAttr(AL, 3, WarningGroup))
857 return;
858 if (WarningGroup.empty() ||
859 !S.getDiagnostics().getDiagnosticIDs()->getGroupForWarningOption(
860 WarningGroup)) {
861 S.Diag(AL.getArgAsExpr(3)->getBeginLoc(),
862 diag::err_diagnose_if_unknown_warning)
863 << WarningGroup;
864 return;
865 }
866 }
867
868 bool ArgDependent = false;
869 if (const auto *FD = dyn_cast<FunctionDecl>(D))
870 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
871 D->addAttr(::new (S.Context) DiagnoseIfAttr(
872 S.Context, AL, Cond, Msg, DefaultSev, WarningGroup, ArgDependent,
873 cast<NamedDecl>(D)));
874}
875
877 const ParsedAttr &Attrs) {
878 if (hasDeclarator(D))
879 return;
880
881 if (!isa<ObjCMethodDecl>(D)) {
882 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
883 << Attrs << Attrs.isRegularKeywordAttribute()
885 return;
886 }
887
888 D->addAttr(::new (S.Context) CFIUncheckedCalleeAttr(S.Context, Attrs));
889}
890
891static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
892 static constexpr const StringRef kWildcard = "*";
893
895 bool HasWildcard = false;
896
897 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
898 if (Name == kWildcard)
899 HasWildcard = true;
900 Names.push_back(Name);
901 };
902
903 // Add previously defined attributes.
904 if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
905 for (StringRef BuiltinName : NBA->builtinNames())
906 AddBuiltinName(BuiltinName);
907
908 // Add current attributes.
909 if (AL.getNumArgs() == 0)
910 AddBuiltinName(kWildcard);
911 else
912 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
913 StringRef BuiltinName;
914 SourceLocation LiteralLoc;
915 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
916 return;
917
918 if (Builtin::Context::isBuiltinFunc(BuiltinName))
919 AddBuiltinName(BuiltinName);
920 else
921 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
922 << BuiltinName << AL;
923 }
924
925 // Repeating the same attribute is fine.
926 llvm::sort(Names);
927 Names.erase(llvm::unique(Names), Names.end());
928
929 // Empty no_builtin must be on its own.
930 if (HasWildcard && Names.size() > 1)
931 S.Diag(D->getLocation(),
932 diag::err_attribute_no_builtin_wildcard_or_builtin_name)
933 << AL;
934
935 if (D->hasAttr<NoBuiltinAttr>())
936 D->dropAttr<NoBuiltinAttr>();
937 D->addAttr(::new (S.Context)
938 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
939}
940
941static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942 if (D->hasAttr<PassObjectSizeAttr>()) {
943 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
944 return;
945 }
946
947 Expr *E = AL.getArgAsExpr(0);
948 uint32_t Type;
949 if (!S.checkUInt32Argument(AL, E, Type, /*Idx=*/1))
950 return;
951
952 // pass_object_size's argument is passed in as the second argument of
953 // __builtin_object_size. So, it has the same constraints as that second
954 // argument; namely, it must be in the range [0, 3].
955 if (Type > 3) {
956 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
957 << AL << 0 << 3 << E->getSourceRange();
958 return;
959 }
960
961 // pass_object_size is only supported on constant pointer parameters; as a
962 // kindness to users, we allow the parameter to be non-const for declarations.
963 // At this point, we have no clue if `D` belongs to a function declaration or
964 // definition, so we defer the constness check until later.
965 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
966 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
967 return;
968 }
969
970 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
971}
972
973static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
974 ConsumableAttr::ConsumedState DefaultState;
975
976 if (AL.isArgIdent(0)) {
977 IdentifierLoc *IL = AL.getArgAsIdent(0);
978 if (!ConsumableAttr::ConvertStrToConsumedState(
979 IL->getIdentifierInfo()->getName(), DefaultState)) {
980 S.Diag(IL->getLoc(), diag::warn_attribute_type_not_supported)
981 << AL << IL->getIdentifierInfo();
982 return;
983 }
984 } else {
985 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
987 return;
988 }
989
990 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
991}
992
994 const ParsedAttr &AL) {
996
997 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
998 if (!RD->hasAttr<ConsumableAttr>()) {
999 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1000
1001 return false;
1002 }
1003 }
1004
1005 return true;
1006}
1007
1008static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1009 if (!AL.checkAtLeastNumArgs(S, 1))
1010 return;
1011
1013 return;
1014
1016 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1017 CallableWhenAttr::ConsumedState CallableState;
1018
1019 StringRef StateString;
1020 SourceLocation Loc;
1021 if (AL.isArgIdent(ArgIndex)) {
1022 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1023 StateString = Ident->getIdentifierInfo()->getName();
1024 Loc = Ident->getLoc();
1025 } else {
1026 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1027 return;
1028 }
1029
1030 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1031 CallableState)) {
1032 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1033 return;
1034 }
1035
1036 States.push_back(CallableState);
1037 }
1038
1039 D->addAttr(::new (S.Context)
1040 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1041}
1042
1043static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1044 ParamTypestateAttr::ConsumedState ParamState;
1045
1046 if (AL.isArgIdent(0)) {
1047 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1048 StringRef StateString = Ident->getIdentifierInfo()->getName();
1049
1050 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1051 ParamState)) {
1052 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1053 << AL << StateString;
1054 return;
1055 }
1056 } else {
1057 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1058 << AL << AANT_ArgumentIdentifier;
1059 return;
1060 }
1061
1062 // FIXME: This check is currently being done in the analysis. It can be
1063 // enabled here only after the parser propagates attributes at
1064 // template specialization definition, not declaration.
1065 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1066 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1067 //
1068 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1069 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1070 // ReturnType.getAsString();
1071 // return;
1072 //}
1073
1074 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1075}
1076
1077static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1078 ReturnTypestateAttr::ConsumedState ReturnState;
1079
1080 if (AL.isArgIdent(0)) {
1081 IdentifierLoc *IL = AL.getArgAsIdent(0);
1082 if (!ReturnTypestateAttr::ConvertStrToConsumedState(
1083 IL->getIdentifierInfo()->getName(), ReturnState)) {
1084 S.Diag(IL->getLoc(), diag::warn_attribute_type_not_supported)
1085 << AL << IL->getIdentifierInfo();
1086 return;
1087 }
1088 } else {
1089 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1090 << AL << AANT_ArgumentIdentifier;
1091 return;
1092 }
1093
1094 // FIXME: This check is currently being done in the analysis. It can be
1095 // enabled here only after the parser propagates attributes at
1096 // template specialization definition, not declaration.
1097 // QualType ReturnType;
1098 //
1099 // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1100 // ReturnType = Param->getType();
1101 //
1102 //} else if (const CXXConstructorDecl *Constructor =
1103 // dyn_cast<CXXConstructorDecl>(D)) {
1104 // ReturnType = Constructor->getFunctionObjectParameterType();
1105 //
1106 //} else {
1107 //
1108 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1109 //}
1110 //
1111 // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1112 //
1113 // if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1114 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1115 // ReturnType.getAsString();
1116 // return;
1117 //}
1118
1119 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1120}
1121
1122static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1124 return;
1125
1126 SetTypestateAttr::ConsumedState NewState;
1127 if (AL.isArgIdent(0)) {
1128 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1129 StringRef Param = Ident->getIdentifierInfo()->getName();
1130 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1131 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1132 << AL << Param;
1133 return;
1134 }
1135 } else {
1136 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1137 << AL << AANT_ArgumentIdentifier;
1138 return;
1139 }
1140
1141 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1142}
1143
1144static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1146 return;
1147
1148 TestTypestateAttr::ConsumedState TestState;
1149 if (AL.isArgIdent(0)) {
1150 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1151 StringRef Param = Ident->getIdentifierInfo()->getName();
1152 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1153 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1154 << AL << Param;
1155 return;
1156 }
1157 } else {
1158 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1159 << AL << AANT_ArgumentIdentifier;
1160 return;
1161 }
1162
1163 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1164}
1165
1166static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1167 // Remember this typedef decl, we will need it later for diagnostics.
1168 if (isa<TypedefNameDecl>(D))
1170}
1171
1172static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1173 if (auto *TD = dyn_cast<TagDecl>(D))
1174 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1175 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1176 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1177 !FD->getType()->isIncompleteType() &&
1178 FD->isBitField() &&
1179 S.Context.getTypeAlign(FD->getType()) <= 8);
1180
1181 if (S.getASTContext().getTargetInfo().getTriple().isPS()) {
1182 if (BitfieldByteAligned)
1183 // The PS4/PS5 targets need to maintain ABI backwards compatibility.
1184 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1185 << AL << FD->getType();
1186 else
1187 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1188 } else {
1189 // Report warning about changed offset in the newer compiler versions.
1190 if (BitfieldByteAligned)
1191 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1192
1193 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1194 }
1195
1196 } else
1197 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1198}
1199
1200static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1201 auto *RD = cast<CXXRecordDecl>(D);
1202 ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1203 assert(CTD && "attribute does not appertain to this declaration");
1204
1205 ParsedType PT = AL.getTypeArg();
1206 TypeSourceInfo *TSI = nullptr;
1207 QualType T = S.GetTypeFromParser(PT, &TSI);
1208 if (!TSI)
1210
1211 if (!T.hasQualifiers() && T->isTypedefNameType()) {
1212 // Find the template name, if this type names a template specialization.
1213 const TemplateDecl *Template = nullptr;
1214 if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>(
1215 T->getAsCXXRecordDecl())) {
1216 Template = CTSD->getSpecializedTemplate();
1217 } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1218 while (TST && TST->isTypeAlias())
1219 TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1220 if (TST)
1221 Template = TST->getTemplateName().getAsTemplateDecl();
1222 }
1223
1224 if (Template && declaresSameEntity(Template, CTD)) {
1225 D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1226 return;
1227 }
1228 }
1229
1230 S.Diag(AL.getLoc(), diag::err_attribute_not_typedef_for_specialization)
1231 << T << AL << CTD;
1232 if (const auto *TT = T->getAs<TypedefType>())
1233 S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1234 << TT->getDecl();
1235}
1236
1237static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL) {
1238 StringRef Message;
1239 if (AL.getNumArgs() != 0)
1240 S.checkStringLiteralArgumentAttr(AL, 0, Message);
1242 NoSpecializationsAttr::Create(S.Context, Message, AL));
1243}
1244
1246 if (T->isDependentType())
1247 return true;
1248 if (RefOkay) {
1249 if (T->isReferenceType())
1250 return true;
1251 } else {
1252 T = T.getNonReferenceType();
1253 }
1254
1255 // The nonnull attribute, and other similar attributes, can be applied to a
1256 // transparent union that contains a pointer type.
1257 if (const RecordType *UT = T->getAsUnionType()) {
1258 RecordDecl *UD = UT->getDecl()->getDefinitionOrSelf();
1259 if (UD->hasAttr<TransparentUnionAttr>()) {
1260 for (const auto *I : UD->fields()) {
1261 QualType QT = I->getType();
1262 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1263 return true;
1264 }
1265 }
1266 }
1267
1268 return T->isAnyPointerType() || T->isBlockPointerType();
1269}
1270
1271static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1272 SourceRange AttrParmRange,
1273 SourceRange TypeRange,
1274 bool isReturnValue = false) {
1275 if (!S.isValidPointerAttrType(T)) {
1276 if (isReturnValue)
1277 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1278 << AL << AttrParmRange << TypeRange;
1279 else
1280 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1281 << AL << AttrParmRange << TypeRange << 0;
1282 return false;
1283 }
1284 return true;
1285}
1286
1287static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1288 SmallVector<ParamIdx, 8> NonNullArgs;
1289 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1290 Expr *Ex = AL.getArgAsExpr(I);
1291 ParamIdx Idx;
1293 D, AL, I + 1, Ex, Idx,
1294 /*CanIndexImplicitThis=*/false,
1295 /*CanIndexVariadicArguments=*/true))
1296 return;
1297
1298 // Is the function argument a pointer type?
1302 Ex->getSourceRange(),
1304 continue;
1305
1306 NonNullArgs.push_back(Idx);
1307 }
1308
1309 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1310 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1311 // check if the attribute came from a macro expansion or a template
1312 // instantiation.
1313 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1315 bool AnyPointers = isFunctionOrMethodVariadic(D);
1316 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1317 I != E && !AnyPointers; ++I) {
1320 AnyPointers = true;
1321 }
1322
1323 if (!AnyPointers)
1324 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1325 }
1326
1327 ParamIdx *Start = NonNullArgs.data();
1328 unsigned Size = NonNullArgs.size();
1329 llvm::array_pod_sort(Start, Start + Size);
1330 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1331}
1332
1334 const ParsedAttr &AL) {
1335 if (AL.getNumArgs() > 0) {
1336 if (D->getFunctionType()) {
1337 handleNonNullAttr(S, D, AL);
1338 } else {
1339 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1340 << D->getSourceRange();
1341 }
1342 return;
1343 }
1344
1345 // Is the argument a pointer type?
1346 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1347 D->getSourceRange()))
1348 return;
1349
1350 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1351}
1352
1353static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1356 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1357 /* isReturnValue */ true))
1358 return;
1359
1360 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1361}
1362
1363static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1364 if (D->isInvalidDecl())
1365 return;
1366
1367 // noescape only applies to pointer types.
1368 QualType T = cast<ParmVarDecl>(D)->getType();
1369 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1370 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1371 << AL << AL.getRange() << 0;
1372 return;
1373 }
1374
1375 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1376}
1377
1378static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1379 Expr *E = AL.getArgAsExpr(0),
1380 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1381 S.AddAssumeAlignedAttr(D, AL, E, OE);
1382}
1383
1384static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1385 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1386}
1387
1389 Expr *OE) {
1392 SourceLocation AttrLoc = CI.getLoc();
1393
1394 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1395 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1396 << CI << CI.getRange() << SR;
1397 return;
1398 }
1399
1400 if (!E->isValueDependent()) {
1401 std::optional<llvm::APSInt> I = llvm::APSInt(64);
1402 if (!(I = E->getIntegerConstantExpr(Context))) {
1403 if (OE)
1404 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1405 << CI << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
1406 else
1407 Diag(AttrLoc, diag::err_attribute_argument_type)
1409 return;
1410 }
1411
1412 if (!I->isPowerOf2()) {
1413 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1414 << E->getSourceRange();
1415 return;
1416 }
1417
1418 if (*I > Sema::MaximumAlignment)
1419 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1421 }
1422
1423 if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1424 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1425 << CI << 2 << AANT_ArgumentIntegerConstant << OE->getSourceRange();
1426 return;
1427 }
1428
1429 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1430}
1431
1433 Expr *ParamExpr) {
1435 SourceLocation AttrLoc = CI.getLoc();
1436
1437 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1438 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1440 return;
1441 }
1442
1443 ParamIdx Idx;
1444 const auto *FuncDecl = cast<FunctionDecl>(D);
1445 if (!checkFunctionOrMethodParameterIndex(FuncDecl, CI,
1446 /*AttrArgNum=*/1, ParamExpr, Idx))
1447 return;
1448
1450 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1451 !Ty->isAlignValT()) {
1452 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1453 << CI << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1454 return;
1455 }
1456
1457 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1458}
1459
1460/// Normalize the attribute, __foo__ becomes foo.
1461/// Returns true if normalization was applied.
1462static bool normalizeName(StringRef &AttrName) {
1463 if (AttrName.size() > 4 && AttrName.starts_with("__") &&
1464 AttrName.ends_with("__")) {
1465 AttrName = AttrName.drop_front(2).drop_back(2);
1466 return true;
1467 }
1468 return false;
1469}
1470
1471static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1472 // This attribute must be applied to a function declaration. The first
1473 // argument to the attribute must be an identifier, the name of the resource,
1474 // for example: malloc. The following arguments must be argument indexes, the
1475 // arguments must be of integer type for Returns, otherwise of pointer type.
1476 // The difference between Holds and Takes is that a pointer may still be used
1477 // after being held. free() should be __attribute((ownership_takes)), whereas
1478 // a list append function may well be __attribute((ownership_holds)).
1479
1480 if (!AL.isArgIdent(0)) {
1481 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1482 << AL << 1 << AANT_ArgumentIdentifier;
1483 return;
1484 }
1485
1486 // Figure out our Kind.
1487 OwnershipAttr::OwnershipKind K =
1488 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1489
1490 // Check arguments.
1491 switch (K) {
1492 case OwnershipAttr::Takes:
1493 case OwnershipAttr::Holds:
1494 if (AL.getNumArgs() < 2) {
1495 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1496 return;
1497 }
1498 break;
1499 case OwnershipAttr::Returns:
1500 if (AL.getNumArgs() > 2) {
1501 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 2;
1502 return;
1503 }
1504 break;
1505 }
1506
1507 // Allow only pointers to be return type for functions with ownership_returns
1508 // attribute. This matches with current OwnershipAttr::Takes semantics
1509 if (K == OwnershipAttr::Returns &&
1510 !getFunctionOrMethodResultType(D)->isPointerType()) {
1511 S.Diag(AL.getLoc(), diag::err_ownership_takes_return_type) << AL;
1512 return;
1513 }
1514
1516
1517 StringRef ModuleName = Module->getName();
1518 if (normalizeName(ModuleName)) {
1519 Module = &S.PP.getIdentifierTable().get(ModuleName);
1520 }
1521
1522 SmallVector<ParamIdx, 8> OwnershipArgs;
1523 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1524 Expr *Ex = AL.getArgAsExpr(i);
1525 ParamIdx Idx;
1526 if (!S.checkFunctionOrMethodParameterIndex(D, AL, i, Ex, Idx))
1527 return;
1528
1529 // Is the function argument a pointer type?
1531 int Err = -1; // No error
1532 switch (K) {
1533 case OwnershipAttr::Takes:
1534 case OwnershipAttr::Holds:
1535 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1536 Err = 0;
1537 break;
1538 case OwnershipAttr::Returns:
1539 if (!T->isIntegerType())
1540 Err = 1;
1541 break;
1542 }
1543 if (-1 != Err) {
1544 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1545 << Ex->getSourceRange();
1546 return;
1547 }
1548
1549 // Check we don't have a conflict with another ownership attribute.
1550 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1551 // Cannot have two ownership attributes of different kinds for the same
1552 // index.
1553 if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) {
1554 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1555 << AL << I
1556 << (AL.isRegularKeywordAttribute() ||
1557 I->isRegularKeywordAttribute());
1558 return;
1559 } else if (K == OwnershipAttr::Returns &&
1560 I->getOwnKind() == OwnershipAttr::Returns) {
1561 // A returns attribute conflicts with any other returns attribute using
1562 // a different index.
1563 if (!llvm::is_contained(I->args(), Idx)) {
1564 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1565 << I->args_begin()->getSourceIndex();
1566 if (I->args_size())
1567 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1568 << Idx.getSourceIndex() << Ex->getSourceRange();
1569 return;
1570 }
1571 } else if (K == OwnershipAttr::Takes &&
1572 I->getOwnKind() == OwnershipAttr::Takes) {
1573 if (I->getModule()->getName() != ModuleName) {
1574 S.Diag(I->getLocation(), diag::err_ownership_takes_class_mismatch)
1575 << I->getModule()->getName();
1576 S.Diag(AL.getLoc(), diag::note_ownership_takes_class_mismatch)
1577 << ModuleName << Ex->getSourceRange();
1578
1579 return;
1580 }
1581 }
1582 }
1583 OwnershipArgs.push_back(Idx);
1584 }
1585
1586 ParamIdx *Start = OwnershipArgs.data();
1587 unsigned Size = OwnershipArgs.size();
1588 llvm::array_pod_sort(Start, Start + Size);
1589 D->addAttr(::new (S.Context)
1590 OwnershipAttr(S.Context, AL, Module, Start, Size));
1591}
1592
1593static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1594 // Check the attribute arguments.
1595 if (AL.getNumArgs() > 1) {
1596 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1597 return;
1598 }
1599
1600 // gcc rejects
1601 // class c {
1602 // static int a __attribute__((weakref ("v2")));
1603 // static int b() __attribute__((weakref ("f3")));
1604 // };
1605 // and ignores the attributes of
1606 // void f(void) {
1607 // static int a __attribute__((weakref ("v2")));
1608 // }
1609 // we reject them
1610 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1611 if (!Ctx->isFileContext()) {
1612 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1613 << cast<NamedDecl>(D);
1614 return;
1615 }
1616
1617 // The GCC manual says
1618 //
1619 // At present, a declaration to which `weakref' is attached can only
1620 // be `static'.
1621 //
1622 // It also says
1623 //
1624 // Without a TARGET,
1625 // given as an argument to `weakref' or to `alias', `weakref' is
1626 // equivalent to `weak'.
1627 //
1628 // gcc 4.4.1 will accept
1629 // int a7 __attribute__((weakref));
1630 // as
1631 // int a7 __attribute__((weak));
1632 // This looks like a bug in gcc. We reject that for now. We should revisit
1633 // it if this behaviour is actually used.
1634
1635 // GCC rejects
1636 // static ((alias ("y"), weakref)).
1637 // Should we? How to check that weakref is before or after alias?
1638
1639 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1640 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1641 // StringRef parameter it was given anyway.
1642 StringRef Str;
1643 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1644 // GCC will accept anything as the argument of weakref. Should we
1645 // check for an existing decl?
1646 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1647
1648 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1649}
1650
1651// Mark alias/ifunc target as used. Due to name mangling, we look up the
1652// demangled name ignoring parameters (not supported by microsoftDemangle
1653// https://github.com/llvm/llvm-project/issues/88825). This should handle the
1654// majority of use cases while leaving namespace scope names unmarked.
1655static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL,
1656 StringRef Str) {
1657 std::unique_ptr<char, llvm::FreeDeleter> Demangled;
1658 if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft)
1659 Demangled.reset(llvm::itaniumDemangle(Str, /*ParseParams=*/false));
1660 std::unique_ptr<MangleContext> MC(S.Context.createMangleContext());
1661 SmallString<256> Name;
1662
1664 &S.Context.Idents.get(Demangled ? Demangled.get() : Str), AL.getLoc());
1666 if (S.LookupName(LR, S.TUScope)) {
1667 for (NamedDecl *ND : LR) {
1668 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND))
1669 continue;
1670 if (MC->shouldMangleDeclName(ND)) {
1671 llvm::raw_svector_ostream Out(Name);
1672 Name.clear();
1673 MC->mangleName(GlobalDecl(ND), Out);
1674 } else {
1675 Name = ND->getIdentifier()->getName();
1676 }
1677 if (Name == Str)
1678 ND->markUsed(S.Context);
1679 }
1680 }
1681}
1682
1683static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1684 StringRef Str;
1685 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1686 return;
1687
1688 // Aliases should be on declarations, not definitions.
1689 const auto *FD = cast<FunctionDecl>(D);
1690 if (FD->isThisDeclarationADefinition()) {
1691 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1692 return;
1693 }
1694
1695 markUsedForAliasOrIfunc(S, D, AL, Str);
1696 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1697}
1698
1699static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1700 StringRef Str;
1701 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1702 return;
1703
1704 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1705 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1706 return;
1707 }
1708
1709 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1710 CudaVersion Version =
1712 if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100)
1713 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1714 }
1715
1716 // Aliases should be on declarations, not definitions.
1717 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1718 if (FD->isThisDeclarationADefinition()) {
1719 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1720 return;
1721 }
1722 } else {
1723 const auto *VD = cast<VarDecl>(D);
1724 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1725 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1726 return;
1727 }
1728 }
1729
1730 markUsedForAliasOrIfunc(S, D, AL, Str);
1731 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1732}
1733
1734static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1735 StringRef Model;
1736 SourceLocation LiteralLoc;
1737 // Check that it is a string.
1738 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1739 return;
1740
1741 // Check that the value.
1742 if (Model != "global-dynamic" && Model != "local-dynamic"
1743 && Model != "initial-exec" && Model != "local-exec") {
1744 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1745 return;
1746 }
1747
1748 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1749}
1750
1751static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1753 if (!ResultType->isAnyPointerType() && !ResultType->isBlockPointerType()) {
1754 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1756 return;
1757 }
1758
1759 if (AL.getNumArgs() == 0) {
1760 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1761 return;
1762 }
1763
1764 if (AL.getAttributeSpellingListIndex() == RestrictAttr::Declspec_restrict) {
1765 // __declspec(restrict) accepts no arguments
1766 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 0;
1767 return;
1768 }
1769
1770 // [[gnu::malloc(deallocator)]] with args specifies a deallocator function
1771 Expr *DeallocE = AL.getArgAsExpr(0);
1772 SourceLocation DeallocLoc = DeallocE->getExprLoc();
1773 FunctionDecl *DeallocFD = nullptr;
1774 DeclarationNameInfo DeallocNI;
1775
1776 if (auto *DRE = dyn_cast<DeclRefExpr>(DeallocE)) {
1777 DeallocFD = dyn_cast<FunctionDecl>(DRE->getDecl());
1778 DeallocNI = DRE->getNameInfo();
1779 if (!DeallocFD) {
1780 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function)
1781 << 1 << DeallocNI.getName();
1782 return;
1783 }
1784 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(DeallocE)) {
1785 DeallocFD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
1786 DeallocNI = ULE->getNameInfo();
1787 if (!DeallocFD) {
1788 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function)
1789 << 2 << DeallocNI.getName();
1790 if (ULE->getType() == S.Context.OverloadTy)
1792 return;
1793 }
1794 } else {
1795 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function) << 0;
1796 return;
1797 }
1798
1799 // 2nd arg of [[gnu::malloc(deallocator, 2)]] with args specifies the param
1800 // of deallocator that deallocates the pointer (defaults to 1)
1801 ParamIdx DeallocPtrIdx;
1802 if (AL.getNumArgs() == 1) {
1803 DeallocPtrIdx = ParamIdx(1, DeallocFD);
1804
1805 // FIXME: We could probably be better about diagnosing that there IS no
1806 // argument, or that the function doesn't have a prototype, but this is how
1807 // GCC diagnoses this, and is reasonably clear.
1808 if (!DeallocPtrIdx.isValid() || !hasFunctionProto(DeallocFD) ||
1809 getFunctionOrMethodNumParams(DeallocFD) < 1 ||
1810 !getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex())
1812 ->isPointerType()) {
1813 S.Diag(DeallocLoc,
1814 diag::err_attribute_malloc_arg_not_function_with_pointer_arg)
1815 << DeallocNI.getName();
1816 return;
1817 }
1818 } else {
1820 DeallocFD, AL, 2, AL.getArgAsExpr(1), DeallocPtrIdx,
1821 /* CanIndexImplicitThis=*/false))
1822 return;
1823
1824 QualType DeallocPtrArgType =
1825 getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex());
1826 if (!DeallocPtrArgType.getCanonicalType()->isPointerType()) {
1827 S.Diag(DeallocLoc,
1828 diag::err_attribute_malloc_arg_refers_to_non_pointer_type)
1829 << DeallocPtrIdx.getSourceIndex() << DeallocPtrArgType
1830 << DeallocNI.getName();
1831 return;
1832 }
1833 }
1834
1835 // FIXME: we should add this attribute to Clang's AST, so that clang-analyzer
1836 // can use it, see -Wmismatched-dealloc in GCC for what we can do with this.
1837 S.Diag(AL.getLoc(), diag::warn_attribute_form_ignored) << AL;
1838 D->addAttr(::new (S.Context)
1839 RestrictAttr(S.Context, AL, DeallocE, DeallocPtrIdx));
1840}
1841
1843 const QualType &Ty) {
1844 // Note that there may also be numerous cases of pointer + integer /
1845 // pointer + pointer / integer + pointer structures not actually exhibiting
1846 // a span-like semantics, so sometimes these heuristics expectedly
1847 // lead to false positive results.
1848 auto emitWarning = [this, &CI](unsigned NoteDiagID) {
1849 Diag(CI.getLoc(), diag::warn_attribute_return_span_only) << CI;
1850 return Diag(CI.getLoc(), NoteDiagID);
1851 };
1852 if (Ty->isDependentType())
1853 return false;
1854 // isCompleteType is used to force template class instantiation.
1855 if (!isCompleteType(CI.getLoc(), Ty))
1856 return emitWarning(diag::note_returned_incomplete_type);
1857 const RecordDecl *RD = Ty->getAsRecordDecl();
1858 if (!RD || RD->isUnion())
1859 return emitWarning(diag::note_returned_not_struct);
1860 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1861 if (CXXRD->getNumBases() > 0) {
1862 return emitWarning(diag::note_type_inherits_from_base);
1863 }
1864 }
1865 auto FieldsBegin = RD->field_begin();
1866 auto FieldsCount = std::distance(FieldsBegin, RD->field_end());
1867 if (FieldsCount != 2)
1868 return emitWarning(diag::note_returned_not_two_field_struct) << FieldsCount;
1869 QualType FirstFieldType = FieldsBegin->getType();
1870 QualType SecondFieldType = std::next(FieldsBegin)->getType();
1871 auto validatePointerType = [](const QualType &T) {
1872 // It must not point to functions.
1873 return T->isPointerType() && !T->isFunctionPointerType();
1874 };
1875 auto checkIntegerType = [this, emitWarning](const QualType &T,
1876 const int FieldNo) -> bool {
1877 const auto *BT = dyn_cast<BuiltinType>(T.getCanonicalType());
1878 if (!BT || !BT->isInteger())
1879 return emitWarning(diag::note_returned_not_integer_field) << FieldNo;
1880 auto IntSize = Context.getTypeSize(Context.IntTy);
1881 if (Context.getTypeSize(BT) < IntSize)
1882 return emitWarning(diag::note_returned_not_wide_enough_field)
1883 << FieldNo << IntSize;
1884 return false;
1885 };
1886 if (validatePointerType(FirstFieldType) &&
1887 validatePointerType(SecondFieldType)) {
1888 // Pointer + pointer.
1889 return false;
1890 } else if (validatePointerType(FirstFieldType)) {
1891 // Pointer + integer?
1892 return checkIntegerType(SecondFieldType, 2);
1893 } else if (validatePointerType(SecondFieldType)) {
1894 // Integer + pointer?
1895 return checkIntegerType(FirstFieldType, 1);
1896 }
1897 return emitWarning(diag::note_returned_not_span_struct);
1898}
1899
1900static void handleMallocSpanAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1902 if (!S.CheckSpanLikeType(AL, ResultType))
1903 D->addAttr(::new (S.Context) MallocSpanAttr(S.Context, AL));
1904}
1905
1906static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1907 // Ensure we don't combine these with themselves, since that causes some
1908 // confusing behavior.
1909 if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
1911 return;
1912
1913 if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
1914 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
1915 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
1916 return;
1917 }
1918 } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
1920 return;
1921
1922 if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
1923 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
1924 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
1925 return;
1926 }
1927 }
1928
1930
1931 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1932 if (MD->getParent()->isLambda()) {
1933 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1934 return;
1935 }
1936 }
1937
1938 if (!AL.checkAtLeastNumArgs(S, 1))
1939 return;
1940
1942 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1943 if (!AL.isArgIdent(ArgNo)) {
1944 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1945 << AL << AANT_ArgumentIdentifier;
1946 return;
1947 }
1948
1949 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1950 StringRef CPUName = CPUArg->getIdentifierInfo()->getName().trim();
1951
1953 S.Diag(CPUArg->getLoc(), diag::err_invalid_cpu_specific_dispatch_value)
1954 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1955 return;
1956 }
1957
1959 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1960 return Target.CPUSpecificManglingCharacter(CPUName) ==
1961 Target.CPUSpecificManglingCharacter(Cur->getName());
1962 })) {
1963 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1964 return;
1965 }
1966 CPUs.push_back(CPUArg->getIdentifierInfo());
1967 }
1968
1969 FD->setIsMultiVersion(true);
1970 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1971 D->addAttr(::new (S.Context)
1972 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1973 else
1974 D->addAttr(::new (S.Context)
1975 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1976}
1977
1978static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1979 if (S.LangOpts.CPlusPlus) {
1980 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1982 return;
1983 }
1984
1985 D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
1986}
1987
1988static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1989 if (AL.isDeclspecAttribute()) {
1990 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
1991 const auto &Arch = Triple.getArch();
1992 if (Arch != llvm::Triple::x86 &&
1993 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
1994 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
1995 << AL << Triple.getArchName();
1996 return;
1997 }
1998
1999 // This form is not allowed to be written on a member function (static or
2000 // nonstatic) when in Microsoft compatibility mode.
2001 if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) {
2002 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
2004 return;
2005 }
2006 }
2007
2008 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2009}
2010
2011// FIXME: This is a best-effort heuristic.
2012// Currently only handles single throw expressions (optionally with
2013// ExprWithCleanups). We could expand this to perform control-flow analysis for
2014// more complex patterns.
2015static bool isKnownToAlwaysThrow(const FunctionDecl *FD) {
2016 if (!FD->hasBody())
2017 return false;
2018 const Stmt *Body = FD->getBody();
2019 const Stmt *OnlyStmt = nullptr;
2020
2021 if (const auto *Compound = dyn_cast<CompoundStmt>(Body)) {
2022 if (Compound->size() != 1)
2023 return false; // More than one statement, can't be known to always throw.
2024 OnlyStmt = *Compound->body_begin();
2025 } else {
2026 OnlyStmt = Body;
2027 }
2028
2029 // Unwrap ExprWithCleanups if necessary.
2030 if (const auto *EWC = dyn_cast<ExprWithCleanups>(OnlyStmt)) {
2031 OnlyStmt = EWC->getSubExpr();
2032 }
2033
2034 if (isa<CXXThrowExpr>(OnlyStmt)) {
2035 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
2036 if (MD && MD->isVirtual()) {
2037 const auto *RD = MD->getParent();
2038 return MD->hasAttr<FinalAttr>() || (RD && RD->isEffectivelyFinal());
2039 }
2040 return true;
2041 }
2042 return false;
2043}
2044
2046 auto *FD = dyn_cast<FunctionDecl>(D);
2047 if (!FD)
2048 return;
2049
2050 // Skip explicit specializations here as they may have
2051 // a user-provided definition that may deliberately differ from the primary
2052 // template. If an explicit specialization truly never returns, the user
2053 // should explicitly mark it with [[noreturn]].
2055 return;
2056
2057 DiagnosticsEngine &Diags = S.getDiagnostics();
2058 if (Diags.isIgnored(diag::warn_falloff_nonvoid, FD->getLocation()) &&
2059 Diags.isIgnored(diag::warn_suggest_noreturn_function, FD->getLocation()))
2060 return;
2061
2062 if (!FD->isNoReturn() && !FD->hasAttr<InferredNoReturnAttr>() &&
2064 FD->addAttr(InferredNoReturnAttr::CreateImplicit(S.Context));
2065
2066 // [[noreturn]] can only be added to lambdas since C++23
2067 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD);
2069 return;
2070
2071 // Emit a diagnostic suggesting the function being marked [[noreturn]].
2072 S.Diag(FD->getLocation(), diag::warn_suggest_noreturn_function)
2073 << /*isFunction=*/0 << FD;
2074 }
2075}
2076
2077static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2078 if (hasDeclarator(D)) return;
2079
2080 if (!isa<ObjCMethodDecl>(D)) {
2081 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2082 << Attrs << Attrs.isRegularKeywordAttribute()
2084 return;
2085 }
2086
2087 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2088}
2089
2090static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) {
2091 // The [[_Noreturn]] spelling is deprecated in C23, so if that was used,
2092 // issue an appropriate diagnostic. However, don't issue a diagnostic if the
2093 // attribute name comes from a macro expansion. We don't want to punish users
2094 // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn'
2095 // is defined as a macro which expands to '_Noreturn').
2096 if (!S.getLangOpts().CPlusPlus &&
2097 A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn &&
2098 !(A.getLoc().isMacroID() &&
2100 S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange();
2101
2102 D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A));
2103}
2104
2105static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2106 if (!S.getLangOpts().CFProtectionBranch)
2107 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2108 else
2110}
2111
2113 if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2114 Attrs.setInvalid();
2115 return true;
2116 }
2117
2118 return false;
2119}
2120
2122 // Check whether the attribute is valid on the current target.
2123 if (!AL.existsInTarget(Context.getTargetInfo())) {
2125 Diag(AL.getLoc(), diag::err_keyword_not_supported_on_target)
2126 << AL << AL.getRange();
2127 else
2129 AL.setInvalid();
2130 return true;
2131 }
2132 return false;
2133}
2134
2135static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2136
2137 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2138 // because 'analyzer_noreturn' does not impact the type.
2140 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2141 if (!VD || (!VD->getType()->isBlockPointerType() &&
2142 !VD->getType()->isFunctionPointerType())) {
2144 ? diag::err_attribute_wrong_decl_type
2145 : diag::warn_attribute_wrong_decl_type)
2146 << AL << AL.isRegularKeywordAttribute()
2148 return;
2149 }
2150 }
2151
2152 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2153}
2154
2155// PS3 PPU-specific.
2156static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2157 /*
2158 Returning a Vector Class in Registers
2159
2160 According to the PPU ABI specifications, a class with a single member of
2161 vector type is returned in memory when used as the return value of a
2162 function.
2163 This results in inefficient code when implementing vector classes. To return
2164 the value in a single vector register, add the vecreturn attribute to the
2165 class definition. This attribute is also applicable to struct types.
2166
2167 Example:
2168
2169 struct Vector
2170 {
2171 __vector float xyzw;
2172 } __attribute__((vecreturn));
2173
2174 Vector Add(Vector lhs, Vector rhs)
2175 {
2176 Vector result;
2177 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2178 return result; // This will be returned in a register
2179 }
2180 */
2181 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2182 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2183 return;
2184 }
2185
2186 const auto *R = cast<RecordDecl>(D);
2187 int count = 0;
2188
2189 if (!isa<CXXRecordDecl>(R)) {
2190 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2191 return;
2192 }
2193
2194 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2195 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2196 return;
2197 }
2198
2199 for (const auto *I : R->fields()) {
2200 if ((count == 1) || !I->getType()->isVectorType()) {
2201 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2202 return;
2203 }
2204 count++;
2205 }
2206
2207 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2208}
2209
2211 const ParsedAttr &AL) {
2212 if (isa<ParmVarDecl>(D)) {
2213 // [[carries_dependency]] can only be applied to a parameter if it is a
2214 // parameter of a function declaration or lambda.
2216 S.Diag(AL.getLoc(),
2217 diag::err_carries_dependency_param_not_function_decl);
2218 return;
2219 }
2220 }
2221
2222 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2223}
2224
2225static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2226 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2227
2228 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2229 // about using it as an extension.
2230 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2231 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2232
2233 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2234}
2235
2237 const ParsedAttr &AL) {
2238 // If no Expr node exists on the attribute, return a nullptr result (default
2239 // priority to be used). If Expr node exists but is not valid, return an
2240 // invalid result. Otherwise, return the Expr.
2241 Expr *E = nullptr;
2242 if (AL.getNumArgs() == 1) {
2243 E = AL.getArgAsExpr(0);
2244 if (E->isValueDependent()) {
2245 if (!E->isTypeDependent() && !E->getType()->isIntegerType()) {
2246 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2248 return ExprError();
2249 }
2250 } else {
2251 uint32_t priority;
2252 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) {
2253 return ExprError();
2254 }
2255 return ConstantExpr::Create(S.Context, E,
2256 APValue(llvm::APSInt::getUnsigned(priority)));
2257 }
2258 }
2259 return E;
2260}
2261
2262static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2263 if (S.getLangOpts().HLSL && AL.getNumArgs()) {
2264 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
2265 return;
2266 }
2268 if (E.isInvalid())
2269 return;
2270 S.Diag(D->getLocation(), diag::warn_global_constructor)
2271 << D->getSourceRange();
2272 D->addAttr(ConstructorAttr::Create(S.Context, E.get(), AL));
2273}
2274
2275static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2277 if (E.isInvalid())
2278 return;
2279 S.Diag(D->getLocation(), diag::warn_global_destructor) << D->getSourceRange();
2280 D->addAttr(DestructorAttr::Create(S.Context, E.get(), AL));
2281}
2282
2283template <typename AttrTy>
2284static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2285 // Handle the case where the attribute has a text message.
2286 StringRef Str;
2287 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2288 return;
2289
2290 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2291}
2292
2294 IdentifierInfo *Platform,
2295 VersionTuple Introduced,
2296 VersionTuple Deprecated,
2297 VersionTuple Obsoleted) {
2298 StringRef PlatformName
2299 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2300 if (PlatformName.empty())
2301 PlatformName = Platform->getName();
2302
2303 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2304 // of these steps are needed).
2305 if (!Introduced.empty() && !Deprecated.empty() &&
2306 !(Introduced <= Deprecated)) {
2307 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2308 << 1 << PlatformName << Deprecated.getAsString()
2309 << 0 << Introduced.getAsString();
2310 return true;
2311 }
2312
2313 if (!Introduced.empty() && !Obsoleted.empty() &&
2314 !(Introduced <= Obsoleted)) {
2315 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2316 << 2 << PlatformName << Obsoleted.getAsString()
2317 << 0 << Introduced.getAsString();
2318 return true;
2319 }
2320
2321 if (!Deprecated.empty() && !Obsoleted.empty() &&
2322 !(Deprecated <= Obsoleted)) {
2323 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2324 << 2 << PlatformName << Obsoleted.getAsString()
2325 << 1 << Deprecated.getAsString();
2326 return true;
2327 }
2328
2329 return false;
2330}
2331
2332/// Check whether the two versions match.
2333///
2334/// If either version tuple is empty, then they are assumed to match. If
2335/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2336static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2337 bool BeforeIsOkay) {
2338 if (X.empty() || Y.empty())
2339 return true;
2340
2341 if (X == Y)
2342 return true;
2343
2344 if (BeforeIsOkay && X < Y)
2345 return true;
2346
2347 return false;
2348}
2349
2351 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2352 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2353 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2354 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2355 int Priority, IdentifierInfo *Environment) {
2356 VersionTuple MergedIntroduced = Introduced;
2357 VersionTuple MergedDeprecated = Deprecated;
2358 VersionTuple MergedObsoleted = Obsoleted;
2359 bool FoundAny = false;
2360 bool OverrideOrImpl = false;
2361 switch (AMK) {
2364 OverrideOrImpl = false;
2365 break;
2366
2370 OverrideOrImpl = true;
2371 break;
2372 }
2373
2374 if (D->hasAttrs()) {
2375 AttrVec &Attrs = D->getAttrs();
2376 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2377 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2378 if (!OldAA) {
2379 ++i;
2380 continue;
2381 }
2382
2383 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2384 if (OldPlatform != Platform) {
2385 ++i;
2386 continue;
2387 }
2388
2389 IdentifierInfo *OldEnvironment = OldAA->getEnvironment();
2390 if (OldEnvironment != Environment) {
2391 ++i;
2392 continue;
2393 }
2394
2395 // If there is an existing availability attribute for this platform that
2396 // has a lower priority use the existing one and discard the new
2397 // attribute.
2398 if (OldAA->getPriority() < Priority)
2399 return nullptr;
2400
2401 // If there is an existing attribute for this platform that has a higher
2402 // priority than the new attribute then erase the old one and continue
2403 // processing the attributes.
2404 if (OldAA->getPriority() > Priority) {
2405 Attrs.erase(Attrs.begin() + i);
2406 --e;
2407 continue;
2408 }
2409
2410 FoundAny = true;
2411 VersionTuple OldIntroduced = OldAA->getIntroduced();
2412 VersionTuple OldDeprecated = OldAA->getDeprecated();
2413 VersionTuple OldObsoleted = OldAA->getObsoleted();
2414 bool OldIsUnavailable = OldAA->getUnavailable();
2415
2416 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2417 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2418 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2419 !(OldIsUnavailable == IsUnavailable ||
2420 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2421 if (OverrideOrImpl) {
2422 int Which = -1;
2423 VersionTuple FirstVersion;
2424 VersionTuple SecondVersion;
2425 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2426 Which = 0;
2427 FirstVersion = OldIntroduced;
2428 SecondVersion = Introduced;
2429 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2430 Which = 1;
2431 FirstVersion = Deprecated;
2432 SecondVersion = OldDeprecated;
2433 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2434 Which = 2;
2435 FirstVersion = Obsoleted;
2436 SecondVersion = OldObsoleted;
2437 }
2438
2439 if (Which == -1) {
2440 Diag(OldAA->getLocation(),
2441 diag::warn_mismatched_availability_override_unavail)
2442 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2444 } else if (Which != 1 && AMK == AvailabilityMergeKind::
2446 // Allow different 'introduced' / 'obsoleted' availability versions
2447 // on a method that implements an optional protocol requirement. It
2448 // makes less sense to allow this for 'deprecated' as the user can't
2449 // see if the method is 'deprecated' as 'respondsToSelector' will
2450 // still return true when the method is deprecated.
2451 ++i;
2452 continue;
2453 } else {
2454 Diag(OldAA->getLocation(),
2455 diag::warn_mismatched_availability_override)
2456 << Which
2457 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2458 << FirstVersion.getAsString() << SecondVersion.getAsString()
2460 }
2462 Diag(CI.getLoc(), diag::note_overridden_method);
2463 else
2464 Diag(CI.getLoc(), diag::note_protocol_method);
2465 } else {
2466 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2467 Diag(CI.getLoc(), diag::note_previous_attribute);
2468 }
2469
2470 Attrs.erase(Attrs.begin() + i);
2471 --e;
2472 continue;
2473 }
2474
2475 VersionTuple MergedIntroduced2 = MergedIntroduced;
2476 VersionTuple MergedDeprecated2 = MergedDeprecated;
2477 VersionTuple MergedObsoleted2 = MergedObsoleted;
2478
2479 if (MergedIntroduced2.empty())
2480 MergedIntroduced2 = OldIntroduced;
2481 if (MergedDeprecated2.empty())
2482 MergedDeprecated2 = OldDeprecated;
2483 if (MergedObsoleted2.empty())
2484 MergedObsoleted2 = OldObsoleted;
2485
2486 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2487 MergedIntroduced2, MergedDeprecated2,
2488 MergedObsoleted2)) {
2489 Attrs.erase(Attrs.begin() + i);
2490 --e;
2491 continue;
2492 }
2493
2494 MergedIntroduced = MergedIntroduced2;
2495 MergedDeprecated = MergedDeprecated2;
2496 MergedObsoleted = MergedObsoleted2;
2497 ++i;
2498 }
2499 }
2500
2501 if (FoundAny &&
2502 MergedIntroduced == Introduced &&
2503 MergedDeprecated == Deprecated &&
2504 MergedObsoleted == Obsoleted)
2505 return nullptr;
2506
2507 // Only create a new attribute if !OverrideOrImpl, but we want to do
2508 // the checking.
2509 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2510 MergedDeprecated, MergedObsoleted) &&
2511 !OverrideOrImpl) {
2512 auto *Avail = ::new (Context) AvailabilityAttr(
2513 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2514 Message, IsStrict, Replacement, Priority, Environment);
2515 Avail->setImplicit(Implicit);
2516 return Avail;
2517 }
2518 return nullptr;
2519}
2520
2521static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2523 D)) {
2524 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2525 << AL;
2526 return;
2527 }
2528
2529 if (!AL.checkExactlyNumArgs(S, 1))
2530 return;
2531 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2532
2533 IdentifierInfo *II = Platform->getIdentifierInfo();
2534 StringRef PrettyName = AvailabilityAttr::getPrettyPlatformName(II->getName());
2535 if (PrettyName.empty())
2536 S.Diag(Platform->getLoc(), diag::warn_availability_unknown_platform)
2537 << Platform->getIdentifierInfo();
2538
2539 auto *ND = dyn_cast<NamedDecl>(D);
2540 if (!ND) // We warned about this already, so just return.
2541 return;
2542
2546
2547 const llvm::Triple::OSType PlatformOS = AvailabilityAttr::getOSType(
2548 AvailabilityAttr::canonicalizePlatformName(II->getName()));
2549
2550 auto reportAndUpdateIfInvalidOS = [&](auto &InputVersion) -> void {
2551 const bool IsInValidRange =
2552 llvm::Triple::isValidVersionForOS(PlatformOS, InputVersion);
2553 // Canonicalize availability versions.
2554 auto CanonicalVersion = llvm::Triple::getCanonicalVersionForOS(
2555 PlatformOS, InputVersion, IsInValidRange);
2556 if (!IsInValidRange) {
2557 S.Diag(Platform->getLoc(), diag::warn_availability_invalid_os_version)
2558 << InputVersion.getAsString() << PrettyName;
2559 S.Diag(Platform->getLoc(),
2560 diag::note_availability_invalid_os_version_adjusted)
2561 << CanonicalVersion.getAsString();
2562 }
2563 InputVersion = CanonicalVersion;
2564 };
2565
2566 if (PlatformOS != llvm::Triple::OSType::UnknownOS) {
2567 reportAndUpdateIfInvalidOS(Introduced.Version);
2568 reportAndUpdateIfInvalidOS(Deprecated.Version);
2569 reportAndUpdateIfInvalidOS(Obsoleted.Version);
2570 }
2571
2572 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2573 bool IsStrict = AL.getStrictLoc().isValid();
2574 StringRef Str;
2575 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getMessageExpr()))
2576 Str = SE->getString();
2577 StringRef Replacement;
2578 if (const auto *SE =
2579 dyn_cast_if_present<StringLiteral>(AL.getReplacementExpr()))
2580 Replacement = SE->getString();
2581
2582 if (II->isStr("swift")) {
2583 if (Introduced.isValid() || Obsoleted.isValid() ||
2584 (!IsUnavailable && !Deprecated.isValid())) {
2585 S.Diag(AL.getLoc(),
2586 diag::warn_availability_swift_unavailable_deprecated_only);
2587 return;
2588 }
2589 }
2590
2591 if (II->isStr("fuchsia")) {
2592 std::optional<unsigned> Min, Sub;
2593 if ((Min = Introduced.Version.getMinor()) ||
2594 (Sub = Introduced.Version.getSubminor())) {
2595 S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2596 return;
2597 }
2598 }
2599
2600 if (S.getLangOpts().HLSL && IsStrict)
2601 S.Diag(AL.getStrictLoc(), diag::err_availability_unexpected_parameter)
2602 << "strict" << /* HLSL */ 0;
2603
2604 int PriorityModifier = AL.isPragmaClangAttribute()
2607
2608 const IdentifierLoc *EnvironmentLoc = AL.getEnvironment();
2609 IdentifierInfo *IIEnvironment = nullptr;
2610 if (EnvironmentLoc) {
2611 if (S.getLangOpts().HLSL) {
2612 IIEnvironment = EnvironmentLoc->getIdentifierInfo();
2613 if (AvailabilityAttr::getEnvironmentType(
2614 EnvironmentLoc->getIdentifierInfo()->getName()) ==
2615 llvm::Triple::EnvironmentType::UnknownEnvironment)
2616 S.Diag(EnvironmentLoc->getLoc(),
2617 diag::warn_availability_unknown_environment)
2618 << EnvironmentLoc->getIdentifierInfo();
2619 } else {
2620 S.Diag(EnvironmentLoc->getLoc(),
2621 diag::err_availability_unexpected_parameter)
2622 << "environment" << /* C/C++ */ 1;
2623 }
2624 }
2625
2626 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2627 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2628 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2629 AvailabilityMergeKind::None, PriorityModifier, IIEnvironment);
2630 if (NewAttr)
2631 D->addAttr(NewAttr);
2632
2633 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2634 // matches before the start of the watchOS platform.
2635 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2636 IdentifierInfo *NewII = nullptr;
2637 if (II->getName() == "ios")
2638 NewII = &S.Context.Idents.get("watchos");
2639 else if (II->getName() == "ios_app_extension")
2640 NewII = &S.Context.Idents.get("watchos_app_extension");
2641
2642 if (NewII) {
2643 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2644 const auto *IOSToWatchOSMapping =
2645 SDKInfo ? SDKInfo->getVersionMapping(
2647 : nullptr;
2648
2649 auto adjustWatchOSVersion =
2650 [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2651 if (Version.empty())
2652 return Version;
2653 auto MinimumWatchOSVersion = VersionTuple(2, 0);
2654
2655 if (IOSToWatchOSMapping) {
2656 if (auto MappedVersion = IOSToWatchOSMapping->map(
2657 Version, MinimumWatchOSVersion, std::nullopt)) {
2658 return *MappedVersion;
2659 }
2660 }
2661
2662 auto Major = Version.getMajor();
2663 auto NewMajor = Major;
2664 if (Major < 9)
2665 NewMajor = 0;
2666 else if (Major < 12)
2667 NewMajor = Major - 7;
2668 if (NewMajor >= 2) {
2669 if (Version.getMinor()) {
2670 if (Version.getSubminor())
2671 return VersionTuple(NewMajor, *Version.getMinor(),
2672 *Version.getSubminor());
2673 else
2674 return VersionTuple(NewMajor, *Version.getMinor());
2675 }
2676 return VersionTuple(NewMajor);
2677 }
2678
2679 return MinimumWatchOSVersion;
2680 };
2681
2682 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2683 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2684 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2685
2686 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2687 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2688 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2690 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2691 if (NewAttr)
2692 D->addAttr(NewAttr);
2693 }
2694 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2695 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2696 // matches before the start of the tvOS platform.
2697 IdentifierInfo *NewII = nullptr;
2698 if (II->getName() == "ios")
2699 NewII = &S.Context.Idents.get("tvos");
2700 else if (II->getName() == "ios_app_extension")
2701 NewII = &S.Context.Idents.get("tvos_app_extension");
2702
2703 if (NewII) {
2704 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2705 const auto *IOSToTvOSMapping =
2706 SDKInfo ? SDKInfo->getVersionMapping(
2708 : nullptr;
2709
2710 auto AdjustTvOSVersion =
2711 [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2712 if (Version.empty())
2713 return Version;
2714
2715 if (IOSToTvOSMapping) {
2716 if (auto MappedVersion = IOSToTvOSMapping->map(
2717 Version, VersionTuple(0, 0), std::nullopt)) {
2718 return *MappedVersion;
2719 }
2720 }
2721 return Version;
2722 };
2723
2724 auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2725 auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2726 auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2727
2728 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2729 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2730 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2732 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2733 if (NewAttr)
2734 D->addAttr(NewAttr);
2735 }
2736 } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2737 llvm::Triple::IOS &&
2738 S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2739 auto GetSDKInfo = [&]() {
2741 "macOS");
2742 };
2743
2744 // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2745 IdentifierInfo *NewII = nullptr;
2746 if (II->getName() == "ios")
2747 NewII = &S.Context.Idents.get("maccatalyst");
2748 else if (II->getName() == "ios_app_extension")
2749 NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2750 if (NewII) {
2751 auto MinMacCatalystVersion = [](const VersionTuple &V) {
2752 if (V.empty())
2753 return V;
2754 if (V.getMajor() < 13 ||
2755 (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2756 return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2757 return V;
2758 };
2759 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2760 ND, AL, NewII, true /*Implicit*/,
2761 MinMacCatalystVersion(Introduced.Version),
2762 MinMacCatalystVersion(Deprecated.Version),
2763 MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2764 IsStrict, Replacement, AvailabilityMergeKind::None,
2765 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2766 if (NewAttr)
2767 D->addAttr(NewAttr);
2768 } else if (II->getName() == "macos" && GetSDKInfo() &&
2769 (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2770 !Obsoleted.Version.empty())) {
2771 if (const auto *MacOStoMacCatalystMapping =
2772 GetSDKInfo()->getVersionMapping(
2774 // Infer Mac Catalyst availability from the macOS availability attribute
2775 // if it has versioned availability. Don't infer 'unavailable'. This
2776 // inferred availability has lower priority than the other availability
2777 // attributes that are inferred from 'ios'.
2778 NewII = &S.Context.Idents.get("maccatalyst");
2779 auto RemapMacOSVersion =
2780 [&](const VersionTuple &V) -> std::optional<VersionTuple> {
2781 if (V.empty())
2782 return std::nullopt;
2783 // API_TO_BE_DEPRECATED is 100000.
2784 if (V.getMajor() == 100000)
2785 return VersionTuple(100000);
2786 // The minimum iosmac version is 13.1
2787 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1),
2788 std::nullopt);
2789 };
2790 std::optional<VersionTuple> NewIntroduced =
2791 RemapMacOSVersion(Introduced.Version),
2792 NewDeprecated =
2793 RemapMacOSVersion(Deprecated.Version),
2794 NewObsoleted =
2795 RemapMacOSVersion(Obsoleted.Version);
2796 if (NewIntroduced || NewDeprecated || NewObsoleted) {
2797 auto VersionOrEmptyVersion =
2798 [](const std::optional<VersionTuple> &V) -> VersionTuple {
2799 return V ? *V : VersionTuple();
2800 };
2801 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2802 ND, AL, NewII, true /*Implicit*/,
2803 VersionOrEmptyVersion(NewIntroduced),
2804 VersionOrEmptyVersion(NewDeprecated),
2805 VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2806 IsStrict, Replacement, AvailabilityMergeKind::None,
2807 PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2809 IIEnvironment);
2810 if (NewAttr)
2811 D->addAttr(NewAttr);
2812 }
2813 }
2814 }
2815 }
2816}
2817
2819 const ParsedAttr &AL) {
2820 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 4))
2821 return;
2822
2823 StringRef Language;
2824 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(0)))
2825 Language = SE->getString();
2826 StringRef DefinedIn;
2827 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(1)))
2828 DefinedIn = SE->getString();
2829 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2830 StringRef USR;
2831 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(3)))
2832 USR = SE->getString();
2833
2834 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2835 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR));
2836}
2837
2838template <class T>
2840 typename T::VisibilityType value) {
2841 T *existingAttr = D->getAttr<T>();
2842 if (existingAttr) {
2843 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2844 if (existingValue == value)
2845 return nullptr;
2846 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2847 S.Diag(CI.getLoc(), diag::note_previous_attribute);
2848 D->dropAttr<T>();
2849 }
2850 return ::new (S.Context) T(S.Context, CI, value);
2851}
2852
2854 const AttributeCommonInfo &CI,
2855 VisibilityAttr::VisibilityType Vis) {
2856 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2857}
2858
2859TypeVisibilityAttr *
2861 TypeVisibilityAttr::VisibilityType Vis) {
2862 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2863}
2864
2865static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2866 bool isTypeVisibility) {
2867 // Visibility attributes don't mean anything on a typedef.
2868 if (isa<TypedefNameDecl>(D)) {
2869 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2870 return;
2871 }
2872
2873 // 'type_visibility' can only go on a type or namespace.
2874 if (isTypeVisibility && !(isa<TagDecl>(D) || isa<ObjCInterfaceDecl>(D) ||
2875 isa<NamespaceDecl>(D))) {
2876 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2878 return;
2879 }
2880
2881 // Check that the argument is a string literal.
2882 StringRef TypeStr;
2883 SourceLocation LiteralLoc;
2884 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2885 return;
2886
2887 VisibilityAttr::VisibilityType type;
2888 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2889 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2890 << TypeStr;
2891 return;
2892 }
2893
2894 // Complain about attempts to use protected visibility on targets
2895 // (like Darwin) that don't support it.
2896 if (type == VisibilityAttr::Protected &&
2898 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2899 type = VisibilityAttr::Default;
2900 }
2901
2902 Attr *newAttr;
2903 if (isTypeVisibility) {
2904 newAttr = S.mergeTypeVisibilityAttr(
2905 D, AL, (TypeVisibilityAttr::VisibilityType)type);
2906 } else {
2907 newAttr = S.mergeVisibilityAttr(D, AL, type);
2908 }
2909 if (newAttr)
2910 D->addAttr(newAttr);
2911}
2912
2913static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2914 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2915 if (AL.getNumArgs() > 0) {
2916 Expr *E = AL.getArgAsExpr(0);
2917 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
2918 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2919 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2920 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2921 return;
2922 }
2923
2924 if (Idx->isSigned() && Idx->isNegative()) {
2925 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2926 << E->getSourceRange();
2927 return;
2928 }
2929
2930 sentinel = Idx->getZExtValue();
2931 }
2932
2933 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2934 if (AL.getNumArgs() > 1) {
2935 Expr *E = AL.getArgAsExpr(1);
2936 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
2937 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2938 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2939 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2940 return;
2941 }
2942 nullPos = Idx->getZExtValue();
2943
2944 if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
2945 // FIXME: This error message could be improved, it would be nice
2946 // to say what the bounds actually are.
2947 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2948 << E->getSourceRange();
2949 return;
2950 }
2951 }
2952
2953 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2954 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2955 if (isa<FunctionNoProtoType>(FT)) {
2956 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2957 return;
2958 }
2959
2960 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2961 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2962 return;
2963 }
2964 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2965 if (!MD->isVariadic()) {
2966 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2967 return;
2968 }
2969 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2970 if (!BD->isVariadic()) {
2971 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2972 return;
2973 }
2974 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2975 QualType Ty = V->getType();
2976 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2977 const FunctionType *FT = Ty->isFunctionPointerType()
2978 ? D->getFunctionType()
2979 : Ty->castAs<BlockPointerType>()
2980 ->getPointeeType()
2981 ->castAs<FunctionType>();
2982 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2983 int m = Ty->isFunctionPointerType() ? 0 : 1;
2984 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2985 return;
2986 }
2987 } else {
2988 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2989 << AL << AL.isRegularKeywordAttribute()
2991 return;
2992 }
2993 } else {
2994 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2995 << AL << AL.isRegularKeywordAttribute()
2997 return;
2998 }
2999 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
3000}
3001
3002static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
3003 if (D->getFunctionType() &&
3006 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
3007 return;
3008 }
3009 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
3010 if (MD->getReturnType()->isVoidType()) {
3011 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
3012 return;
3013 }
3014
3015 StringRef Str;
3016 if (AL.isStandardAttributeSyntax()) {
3017 // If this is spelled [[clang::warn_unused_result]] we look for an optional
3018 // string literal. This is not gated behind any specific version of the
3019 // standard.
3020 if (AL.isClangScope()) {
3021 if (AL.getNumArgs() == 1 &&
3022 !S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3023 return;
3024 } else if (!AL.getScopeName()) {
3025 // The standard attribute cannot be applied to variable declarations such
3026 // as a function pointer.
3027 if (isa<VarDecl>(D))
3028 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3029 << AL << AL.isRegularKeywordAttribute()
3031
3032 // If this is spelled as the standard C++17 attribute, but not in C++17,
3033 // warn about using it as an extension. If there are attribute arguments,
3034 // then claim it's a C++20 extension instead. C23 supports this attribute
3035 // with the message; no extension warning is needed there beyond the one
3036 // already issued for accepting attributes in older modes.
3037 const LangOptions &LO = S.getLangOpts();
3038 if (AL.getNumArgs() == 1) {
3039 if (LO.CPlusPlus && !LO.CPlusPlus20)
3040 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
3041
3042 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3043 return;
3044 } else if (LO.CPlusPlus && !LO.CPlusPlus17)
3045 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
3046 }
3047 }
3048
3049 if ((!AL.isGNUAttribute() &&
3050 !(AL.isStandardAttributeSyntax() && AL.isClangScope())) &&
3052 S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling)
3053 << AL.isGNUScope();
3054 return;
3055 }
3056
3057 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
3058}
3059
3060static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3061 // weak_import only applies to variable & function declarations.
3062 bool isDef = false;
3063 if (!D->canBeWeakImported(isDef)) {
3064 if (isDef)
3065 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
3066 << "weak_import";
3067 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
3068 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
3070 // Nothing to warn about here.
3071 } else
3072 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3074
3075 return;
3076 }
3077
3078 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3079}
3080
3081// Checks whether an argument of launch_bounds-like attribute is
3082// acceptable, performs implicit conversion to Rvalue, and returns
3083// non-nullptr Expr result on success. Otherwise, it returns nullptr
3084// and may output an error.
3085template <class Attribute>
3086static Expr *makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr,
3087 const unsigned Idx) {
3089 return nullptr;
3090
3091 // Accept template arguments for now as they depend on something else.
3092 // We'll get to check them when they eventually get instantiated.
3093 if (E->isValueDependent())
3094 return E;
3095
3096 std::optional<llvm::APSInt> I = llvm::APSInt(64);
3097 if (!(I = E->getIntegerConstantExpr(S.Context))) {
3098 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
3099 << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
3100 return nullptr;
3101 }
3102 // Make sure we can fit it in 32 bits.
3103 if (!I->isIntN(32)) {
3104 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
3105 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
3106 return nullptr;
3107 }
3108 if (*I < 0)
3109 S.Diag(E->getExprLoc(), diag::err_attribute_requires_positive_integer)
3110 << &Attr << /*non-negative*/ 1 << E->getSourceRange();
3111
3112 // We may need to perform implicit conversion of the argument.
3114 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
3115 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
3116 assert(!ValArg.isInvalid() &&
3117 "Unexpected PerformCopyInitialization() failure.");
3118
3119 return ValArg.getAs<Expr>();
3120}
3121
3122// Handles reqd_work_group_size and work_group_size_hint.
3123template <typename WorkGroupAttr>
3124static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3125 Expr *WGSize[3];
3126 for (unsigned i = 0; i < 3; ++i) {
3127 if (Expr *E = makeAttributeArgExpr(S, AL.getArgAsExpr(i), AL, i))
3128 WGSize[i] = E;
3129 else
3130 return;
3131 }
3132
3133 auto IsZero = [&](Expr *E) {
3134 if (E->isValueDependent())
3135 return false;
3136 std::optional<llvm::APSInt> I = E->getIntegerConstantExpr(S.Context);
3137 assert(I && "Non-integer constant expr");
3138 return I->isZero();
3139 };
3140
3141 if (!llvm::all_of(WGSize, IsZero)) {
3142 for (unsigned i = 0; i < 3; ++i) {
3143 const Expr *E = AL.getArgAsExpr(i);
3144 if (IsZero(WGSize[i])) {
3145 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3146 << AL << E->getSourceRange();
3147 return;
3148 }
3149 }
3150 }
3151
3152 auto Equal = [&](Expr *LHS, Expr *RHS) {
3153 if (LHS->isValueDependent() || RHS->isValueDependent())
3154 return true;
3155 std::optional<llvm::APSInt> L = LHS->getIntegerConstantExpr(S.Context);
3156 assert(L && "Non-integer constant expr");
3157 std::optional<llvm::APSInt> R = RHS->getIntegerConstantExpr(S.Context);
3158 assert(L && "Non-integer constant expr");
3159 return L == R;
3160 };
3161
3162 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3163 if (Existing &&
3164 !llvm::equal(std::initializer_list<Expr *>{Existing->getXDim(),
3165 Existing->getYDim(),
3166 Existing->getZDim()},
3167 WGSize, Equal))
3168 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3169
3170 D->addAttr(::new (S.Context)
3171 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3172}
3173
3174static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3175 if (!AL.hasParsedType()) {
3176 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3177 return;
3178 }
3179
3180 TypeSourceInfo *ParmTSI = nullptr;
3181 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3182 assert(ParmTSI && "no type source info for attribute argument");
3183
3184 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3185 (ParmType->isBooleanType() ||
3186 !ParmType->isIntegralType(S.getASTContext()))) {
3187 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3188 return;
3189 }
3190
3191 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3192 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3193 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3194 return;
3195 }
3196 }
3197
3198 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3199}
3200
3202 StringRef Name) {
3203 // Explicit or partial specializations do not inherit
3204 // the section attribute from the primary template.
3205 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3206 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3208 return nullptr;
3209 }
3210 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3211 if (ExistingAttr->getName() == Name)
3212 return nullptr;
3213 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3214 << 1 /*section*/;
3215 Diag(CI.getLoc(), diag::note_previous_attribute);
3216 return nullptr;
3217 }
3218 return ::new (Context) SectionAttr(Context, CI, Name);
3219}
3220
3221llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3222 if (!Context.getTargetInfo().getTriple().isOSDarwin())
3223 return llvm::Error::success();
3224
3225 // Let MCSectionMachO validate this.
3226 StringRef Segment, Section;
3227 unsigned TAA, StubSize;
3228 bool HasTAA;
3229 return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3230 TAA, HasTAA, StubSize);
3231}
3232
3233bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3234 if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3235 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3236 << toString(std::move(E)) << 1 /*'section'*/;
3237 return false;
3238 }
3239 return true;
3240}
3241
3242static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3243 // Make sure that there is a string literal as the sections's single
3244 // argument.
3245 StringRef Str;
3246 SourceLocation LiteralLoc;
3247 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3248 return;
3249
3250 if (!S.checkSectionName(LiteralLoc, Str))
3251 return;
3252
3253 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3254 if (NewAttr) {
3255 D->addAttr(NewAttr);
3257 ObjCPropertyDecl>(D))
3258 S.UnifySection(NewAttr->getName(),
3260 cast<NamedDecl>(D));
3261 }
3262}
3263
3264static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str) {
3265 if (Triple.isLoongArch()) {
3266 return Str == "normal" || Str == "medium" || Str == "extreme";
3267 } else {
3268 assert(Triple.getArch() == llvm::Triple::x86_64 &&
3269 "only loongarch/x86-64 supported");
3270 return Str == "small" || Str == "large";
3271 }
3272}
3273
3274static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3275 StringRef Str;
3276 SourceLocation LiteralLoc;
3277 auto IsTripleSupported = [](llvm::Triple &Triple) {
3278 return Triple.getArch() == llvm::Triple::ArchType::x86_64 ||
3279 Triple.isLoongArch();
3280 };
3281
3282 // Check that it is a string.
3283 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3284 return;
3285
3288 if (auto *aux = S.Context.getAuxTargetInfo()) {
3289 Triples.push_back(aux->getTriple());
3290 } else if (S.Context.getTargetInfo().getTriple().isNVPTX() ||
3291 S.Context.getTargetInfo().getTriple().isAMDGPU() ||
3292 S.Context.getTargetInfo().getTriple().isSPIRV()) {
3293 // Ignore the attribute for pure GPU device compiles since it only applies
3294 // to host globals.
3295 return;
3296 }
3297
3298 auto SupportedTripleIt = llvm::find_if(Triples, IsTripleSupported);
3299 if (SupportedTripleIt == Triples.end()) {
3300 S.Diag(LiteralLoc, diag::warn_unknown_attribute_ignored) << AL;
3301 return;
3302 }
3303
3304 llvm::CodeModel::Model CM;
3305 if (!CodeModelAttr::ConvertStrToModel(Str, CM) ||
3306 !isValidCodeModelAttr(*SupportedTripleIt, Str)) {
3307 S.Diag(LiteralLoc, diag::err_attr_codemodel_arg) << Str;
3308 return;
3309 }
3310
3311 D->addAttr(::new (S.Context) CodeModelAttr(S.Context, AL, CM));
3312}
3313
3314// This is used for `__declspec(code_seg("segname"))` on a decl.
3315// `#pragma code_seg("segname")` uses checkSectionName() instead.
3316static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3317 StringRef CodeSegName) {
3318 if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3319 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3320 << toString(std::move(E)) << 0 /*'code-seg'*/;
3321 return false;
3322 }
3323
3324 return true;
3325}
3326
3328 StringRef Name) {
3329 // Explicit or partial specializations do not inherit
3330 // the code_seg attribute from the primary template.
3331 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3333 return nullptr;
3334 }
3335 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3336 if (ExistingAttr->getName() == Name)
3337 return nullptr;
3338 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3339 << 0 /*codeseg*/;
3340 Diag(CI.getLoc(), diag::note_previous_attribute);
3341 return nullptr;
3342 }
3343 return ::new (Context) CodeSegAttr(Context, CI, Name);
3344}
3345
3346static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3347 StringRef Str;
3348 SourceLocation LiteralLoc;
3349 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3350 return;
3351 if (!checkCodeSegName(S, LiteralLoc, Str))
3352 return;
3353 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3354 if (!ExistingAttr->isImplicit()) {
3355 S.Diag(AL.getLoc(),
3356 ExistingAttr->getName() == Str
3357 ? diag::warn_duplicate_codeseg_attribute
3358 : diag::err_conflicting_codeseg_attribute);
3359 return;
3360 }
3361 D->dropAttr<CodeSegAttr>();
3362 }
3363 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3364 D->addAttr(CSA);
3365}
3366
3367bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3368 using namespace DiagAttrParams;
3369
3370 if (AttrStr.contains("fpmath="))
3371 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3372 << Unsupported << None << "fpmath=" << Target;
3373
3374 // Diagnose use of tune if target doesn't support it.
3375 if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3376 AttrStr.contains("tune="))
3377 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3378 << Unsupported << None << "tune=" << Target;
3379
3380 ParsedTargetAttr ParsedAttrs =
3381 Context.getTargetInfo().parseTargetAttr(AttrStr);
3382
3383 if (!ParsedAttrs.CPU.empty() &&
3384 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU))
3385 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3386 << Unknown << CPU << ParsedAttrs.CPU << Target;
3387
3388 if (!ParsedAttrs.Tune.empty() &&
3389 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3390 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3391 << Unknown << Tune << ParsedAttrs.Tune << Target;
3392
3393 if (Context.getTargetInfo().getTriple().isRISCV()) {
3394 if (ParsedAttrs.Duplicate != "")
3395 return Diag(LiteralLoc, diag::err_duplicate_target_attribute)
3396 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3397 for (StringRef CurFeature : ParsedAttrs.Features) {
3398 if (!CurFeature.starts_with('+') && !CurFeature.starts_with('-'))
3399 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3400 << Unsupported << None << AttrStr << Target;
3401 }
3402 }
3403
3404 if (Context.getTargetInfo().getTriple().isLoongArch()) {
3405 for (StringRef CurFeature : ParsedAttrs.Features) {
3406 if (CurFeature.starts_with("!arch=")) {
3407 StringRef ArchValue = CurFeature.split("=").second.trim();
3408 return Diag(LiteralLoc, diag::err_attribute_unsupported)
3409 << "target(arch=..)" << ArchValue;
3410 }
3411 }
3412 }
3413
3414 if (ParsedAttrs.Duplicate != "")
3415 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3416 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3417
3418 for (const auto &Feature : ParsedAttrs.Features) {
3419 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3420 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3421 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3422 << Unsupported << None << CurFeature << Target;
3423 }
3424
3426 StringRef DiagMsg;
3427 if (ParsedAttrs.BranchProtection.empty())
3428 return false;
3429 if (!Context.getTargetInfo().validateBranchProtection(
3430 ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI,
3431 Context.getLangOpts(), DiagMsg)) {
3432 if (DiagMsg.empty())
3433 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3434 << Unsupported << None << "branch-protection" << Target;
3435 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3436 << DiagMsg;
3437 }
3438 if (!DiagMsg.empty())
3439 Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3440
3441 return false;
3442}
3443
3444static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3445 StringRef Param;
3446 SourceLocation Loc;
3447 SmallString<64> NewParam;
3448 if (!S.checkStringLiteralArgumentAttr(AL, 0, Param, &Loc))
3449 return;
3450
3451 if (S.Context.getTargetInfo().getTriple().isAArch64()) {
3452 if (S.ARM().checkTargetVersionAttr(Param, Loc, NewParam))
3453 return;
3454 } else if (S.Context.getTargetInfo().getTriple().isRISCV()) {
3455 if (S.RISCV().checkTargetVersionAttr(Param, Loc, NewParam))
3456 return;
3457 }
3458
3459 TargetVersionAttr *NewAttr =
3460 ::new (S.Context) TargetVersionAttr(S.Context, AL, NewParam);
3461 D->addAttr(NewAttr);
3462}
3463
3464static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3465 StringRef Str;
3466 SourceLocation LiteralLoc;
3467 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3468 S.checkTargetAttr(LiteralLoc, Str))
3469 return;
3470
3471 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3472 D->addAttr(NewAttr);
3473}
3474
3475static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3476 // Ensure we don't combine these with themselves, since that causes some
3477 // confusing behavior.
3478 if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3479 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3480 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3481 return;
3482 }
3484 return;
3485
3486 // FIXME: We could probably figure out how to get this to work for lambdas
3487 // someday.
3488 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3489 if (MD->getParent()->isLambda()) {
3490 S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3491 << static_cast<unsigned>(MultiVersionKind::TargetClones)
3492 << /*Lambda*/ 9;
3493 return;
3494 }
3495 }
3496
3499 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3500 StringRef Param;
3501 SourceLocation Loc;
3502 if (!S.checkStringLiteralArgumentAttr(AL, I, Param, &Loc))
3503 return;
3504 Params.push_back(Param);
3505 Locations.push_back(Loc);
3506 }
3507
3508 SmallVector<SmallString<64>, 2> NewParams;
3509 if (S.Context.getTargetInfo().getTriple().isAArch64()) {
3510 if (S.ARM().checkTargetClonesAttr(Params, Locations, NewParams))
3511 return;
3512 } else if (S.Context.getTargetInfo().getTriple().isRISCV()) {
3513 if (S.RISCV().checkTargetClonesAttr(Params, Locations, NewParams))
3514 return;
3515 } else if (S.Context.getTargetInfo().getTriple().isX86()) {
3516 if (S.X86().checkTargetClonesAttr(Params, Locations, NewParams))
3517 return;
3518 }
3519 Params.clear();
3520 for (auto &SmallStr : NewParams)
3521 Params.push_back(SmallStr.str());
3522
3523 TargetClonesAttr *NewAttr = ::new (S.Context)
3524 TargetClonesAttr(S.Context, AL, Params.data(), Params.size());
3525 D->addAttr(NewAttr);
3526}
3527
3528static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3529 Expr *E = AL.getArgAsExpr(0);
3530 uint32_t VecWidth;
3531 if (!S.checkUInt32Argument(AL, E, VecWidth)) {
3532 AL.setInvalid();
3533 return;
3534 }
3535
3536 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3537 if (Existing && Existing->getVectorWidth() != VecWidth) {
3538 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3539 return;
3540 }
3541
3542 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3543}
3544
3545static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3546 Expr *E = AL.getArgAsExpr(0);
3547 SourceLocation Loc = E->getExprLoc();
3548 FunctionDecl *FD = nullptr;
3550
3551 // gcc only allows for simple identifiers. Since we support more than gcc, we
3552 // will warn the user.
3553 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3554 if (DRE->hasQualifier())
3555 S.Diag(Loc, diag::warn_cleanup_ext);
3556 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3557 NI = DRE->getNameInfo();
3558 if (!FD) {
3559 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3560 << NI.getName();
3561 return;
3562 }
3563 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3564 if (ULE->hasExplicitTemplateArgs())
3565 S.Diag(Loc, diag::warn_cleanup_ext);
3567 NI = ULE->getNameInfo();
3568 if (!FD) {
3569 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3570 << NI.getName();
3571 if (ULE->getType() == S.Context.OverloadTy)
3573 return;
3574 }
3575 } else {
3576 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3577 return;
3578 }
3579
3580 if (FD->getNumParams() != 1) {
3581 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3582 << NI.getName();
3583 return;
3584 }
3585
3586 VarDecl *VD = cast<VarDecl>(D);
3587 // Create a reference to the variable declaration. This is a fake/dummy
3588 // reference.
3589 DeclRefExpr *VariableReference = DeclRefExpr::Create(
3590 S.Context, NestedNameSpecifierLoc{}, FD->getLocation(), VD, false,
3591 DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, VD->getType(),
3592 VK_LValue);
3593
3594 // Create a unary operator expression that represents taking the address of
3595 // the variable. This is a fake/dummy expression.
3596 Expr *AddressOfVariable = UnaryOperator::Create(
3597 S.Context, VariableReference, UnaryOperatorKind::UO_AddrOf,
3599 +false, FPOptionsOverride{});
3600
3601 // Create a function call expression. This is a fake/dummy call expression.
3602 CallExpr *FunctionCallExpression =
3603 CallExpr::Create(S.Context, E, ArrayRef{AddressOfVariable},
3605
3606 if (S.CheckFunctionCall(FD, FunctionCallExpression,
3607 FD->getType()->getAs<FunctionProtoType>())) {
3608 return;
3609 }
3610
3611 auto *attr = ::new (S.Context) CleanupAttr(S.Context, AL, FD);
3612 attr->setArgLoc(E->getExprLoc());
3613 D->addAttr(attr);
3614}
3615
3617 const ParsedAttr &AL) {
3618 if (!AL.isArgIdent(0)) {
3619 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3620 << AL << 0 << AANT_ArgumentIdentifier;
3621 return;
3622 }
3623
3624 EnumExtensibilityAttr::Kind ExtensibilityKind;
3626 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3627 ExtensibilityKind)) {
3628 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3629 return;
3630 }
3631
3632 D->addAttr(::new (S.Context)
3633 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3634}
3635
3636/// Handle __attribute__((format_arg((idx)))) attribute based on
3637/// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
3638static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3639 const Expr *IdxExpr = AL.getArgAsExpr(0);
3640 ParamIdx Idx;
3641 if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, IdxExpr, Idx))
3642 return;
3643
3644 // Make sure the format string is really a string.
3646
3647 bool NotNSStringTy = !S.ObjC().isNSStringType(Ty);
3648 if (NotNSStringTy && !S.ObjC().isCFStringType(Ty) &&
3649 (!Ty->isPointerType() ||
3651 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3652 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3653 return;
3654 }
3656 // replace instancetype with the class type
3657 auto *Instancetype = cast<TypedefType>(S.Context.getTypedefType(
3658 ElaboratedTypeKeyword::None, /*Qualifier=*/std::nullopt,
3660 if (Ty->getAs<TypedefType>() == Instancetype)
3661 if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3662 if (auto *Interface = OMD->getClassInterface())
3664 QualType(Interface->getTypeForDecl(), 0));
3665 if (!S.ObjC().isNSStringType(Ty, /*AllowNSAttributedString=*/true) &&
3666 !S.ObjC().isCFStringType(Ty) &&
3667 (!Ty->isPointerType() ||
3669 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3670 << (NotNSStringTy ? "string type" : "NSString")
3671 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3672 return;
3673 }
3674
3675 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3676}
3677
3686
3687/// getFormatAttrKind - Map from format attribute names to supported format
3688/// types.
3689static FormatAttrKind getFormatAttrKind(StringRef Format) {
3690 return llvm::StringSwitch<FormatAttrKind>(Format)
3691 // Check for formats that get handled specially.
3692 .Case("NSString", NSStringFormat)
3693 .Case("CFString", CFStringFormat)
3694 .Cases({"gnu_strftime", "strftime"}, StrftimeFormat)
3695
3696 // Otherwise, check for supported formats.
3697 .Cases({"gnu_scanf", "scanf", "gnu_printf", "printf", "printf0",
3698 "gnu_strfmon", "strfmon"},
3700 .Cases({"cmn_err", "vcmn_err", "zcmn_err"}, SupportedFormat)
3701 .Cases({"kprintf", "syslog"}, SupportedFormat) // OpenBSD.
3702 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3703 .Case("os_trace", SupportedFormat)
3704 .Case("os_log", SupportedFormat)
3705
3706 .Cases({"gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag"},
3709}
3710
3711/// Handle __attribute__((init_priority(priority))) attributes based on
3712/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3713static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3714 if (!S.getLangOpts().CPlusPlus) {
3715 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3716 return;
3717 }
3718
3719 if (S.getLangOpts().HLSL) {
3720 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
3721 return;
3722 }
3723
3725 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3726 AL.setInvalid();
3727 return;
3728 }
3729 QualType T = cast<VarDecl>(D)->getType();
3730 if (S.Context.getAsArrayType(T))
3732 if (!T->isRecordType()) {
3733 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3734 AL.setInvalid();
3735 return;
3736 }
3737
3738 Expr *E = AL.getArgAsExpr(0);
3739 uint32_t prioritynum;
3740 if (!S.checkUInt32Argument(AL, E, prioritynum)) {
3741 AL.setInvalid();
3742 return;
3743 }
3744
3745 if (prioritynum > 65535) {
3746 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3747 << E->getSourceRange() << AL << 0 << 65535;
3748 AL.setInvalid();
3749 return;
3750 }
3751
3752 // Values <= 100 are reserved for the implementation, and libc++
3753 // benefits from being able to specify values in that range.
3754 if (prioritynum < 101)
3755 S.Diag(AL.getLoc(), diag::warn_init_priority_reserved)
3756 << E->getSourceRange() << prioritynum;
3757 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3758}
3759
3761 StringRef NewUserDiagnostic) {
3762 if (const auto *EA = D->getAttr<ErrorAttr>()) {
3763 std::string NewAttr = CI.getNormalizedFullName();
3764 assert((NewAttr == "error" || NewAttr == "warning") &&
3765 "unexpected normalized full name");
3766 bool Match = (EA->isError() && NewAttr == "error") ||
3767 (EA->isWarning() && NewAttr == "warning");
3768 if (!Match) {
3769 Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3770 << CI << EA
3771 << (CI.isRegularKeywordAttribute() ||
3772 EA->isRegularKeywordAttribute());
3773 Diag(CI.getLoc(), diag::note_conflicting_attribute);
3774 return nullptr;
3775 }
3776 if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3777 Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3778 Diag(EA->getLoc(), diag::note_previous_attribute);
3779 }
3780 D->dropAttr<ErrorAttr>();
3781 }
3782 return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3783}
3784
3786 IdentifierInfo *Format, int FormatIdx,
3787 int FirstArg) {
3788 // Check whether we already have an equivalent format attribute.
3789 for (auto *F : D->specific_attrs<FormatAttr>()) {
3790 if (F->getType() == Format &&
3791 F->getFormatIdx() == FormatIdx &&
3792 F->getFirstArg() == FirstArg) {
3793 // If we don't have a valid location for this attribute, adopt the
3794 // location.
3795 if (F->getLocation().isInvalid())
3796 F->setRange(CI.getRange());
3797 return nullptr;
3798 }
3799 }
3800
3801 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3802}
3803
3805 const AttributeCommonInfo &CI,
3806 IdentifierInfo *Format,
3807 int FormatIdx,
3808 StringLiteral *FormatStr) {
3809 // Check whether we already have an equivalent FormatMatches attribute.
3810 for (auto *F : D->specific_attrs<FormatMatchesAttr>()) {
3811 if (F->getType() == Format && F->getFormatIdx() == FormatIdx) {
3812 if (!CheckFormatStringsCompatible(GetFormatStringType(Format->getName()),
3813 F->getFormatString(), FormatStr))
3814 return nullptr;
3815
3816 // If we don't have a valid location for this attribute, adopt the
3817 // location.
3818 if (F->getLocation().isInvalid())
3819 F->setRange(CI.getRange());
3820 return nullptr;
3821 }
3822 }
3823
3824 return ::new (Context)
3825 FormatMatchesAttr(Context, CI, Format, FormatIdx, FormatStr);
3826}
3827
3834
3835/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3836/// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
3837static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
3838 FormatAttrCommon *Info) {
3839 // Checks the first two arguments of the attribute; this is shared between
3840 // Format and FormatMatches attributes.
3841
3842 if (!AL.isArgIdent(0)) {
3843 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3844 << AL << 1 << AANT_ArgumentIdentifier;
3845 return false;
3846 }
3847
3848 // In C++ the implicit 'this' function parameter also counts, and they are
3849 // counted from one.
3850 bool HasImplicitThisParam = hasImplicitObjectParameter(D);
3851 Info->NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3852
3854 StringRef Format = Info->Identifier->getName();
3855
3856 if (normalizeName(Format)) {
3857 // If we've modified the string name, we need a new identifier for it.
3858 Info->Identifier = &S.Context.Idents.get(Format);
3859 }
3860
3861 // Check for supported formats.
3862 Info->Kind = getFormatAttrKind(Format);
3863
3864 if (Info->Kind == IgnoredFormat)
3865 return false;
3866
3867 if (Info->Kind == InvalidFormat) {
3868 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3869 << AL << Info->Identifier->getName();
3870 return false;
3871 }
3872
3873 // checks for the 2nd argument
3874 Expr *IdxExpr = AL.getArgAsExpr(1);
3875 if (!S.checkUInt32Argument(AL, IdxExpr, Info->FormatStringIdx, 2))
3876 return false;
3877
3878 if (Info->FormatStringIdx < 1 || Info->FormatStringIdx > Info->NumArgs) {
3879 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3880 << AL << 2 << IdxExpr->getSourceRange();
3881 return false;
3882 }
3883
3884 // FIXME: Do we need to bounds check?
3885 unsigned ArgIdx = Info->FormatStringIdx - 1;
3886
3887 if (HasImplicitThisParam) {
3888 if (ArgIdx == 0) {
3889 S.Diag(AL.getLoc(),
3890 diag::err_format_attribute_implicit_this_format_string)
3891 << IdxExpr->getSourceRange();
3892 return false;
3893 }
3894 ArgIdx--;
3895 }
3896
3897 // make sure the format string is really a string
3898 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3899
3900 if (!S.ObjC().isNSStringType(Ty, true) && !S.ObjC().isCFStringType(Ty) &&
3901 (!Ty->isPointerType() ||
3903 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3904 << IdxExpr->getSourceRange()
3905 << getFunctionOrMethodParamRange(D, ArgIdx);
3906 return false;
3907 }
3908
3909 return true;
3910}
3911
3912static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3913 FormatAttrCommon Info;
3914 if (!handleFormatAttrCommon(S, D, AL, &Info))
3915 return;
3916
3917 // check the 3rd argument
3918 Expr *FirstArgExpr = AL.getArgAsExpr(2);
3919 uint32_t FirstArg;
3920 if (!S.checkUInt32Argument(AL, FirstArgExpr, FirstArg, 3))
3921 return;
3922
3923 // FirstArg == 0 is is always valid.
3924 if (FirstArg != 0) {
3925 if (Info.Kind == StrftimeFormat) {
3926 // If the kind is strftime, FirstArg must be 0 because strftime does not
3927 // use any variadic arguments.
3928 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3929 << FirstArgExpr->getSourceRange()
3930 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0");
3931 return;
3932 } else if (isFunctionOrMethodVariadic(D)) {
3933 // Else, if the function is variadic, then FirstArg must be 0 or the
3934 // "position" of the ... parameter. It's unusual to use 0 with variadic
3935 // functions, so the fixit proposes the latter.
3936 if (FirstArg != Info.NumArgs + 1) {
3937 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3938 << AL << 3 << FirstArgExpr->getSourceRange()
3940 std::to_string(Info.NumArgs + 1));
3941 return;
3942 }
3943 } else {
3944 // Inescapable GCC compatibility diagnostic.
3945 S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL;
3946 if (FirstArg <= Info.FormatStringIdx) {
3947 // Else, the function is not variadic, and FirstArg must be 0 or any
3948 // parameter after the format parameter. We don't offer a fixit because
3949 // there are too many possible good values.
3950 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3951 << AL << 3 << FirstArgExpr->getSourceRange();
3952 return;
3953 }
3954 }
3955 }
3956
3957 FormatAttr *NewAttr =
3958 S.mergeFormatAttr(D, AL, Info.Identifier, Info.FormatStringIdx, FirstArg);
3959 if (NewAttr)
3960 D->addAttr(NewAttr);
3961}
3962
3963static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3964 FormatAttrCommon Info;
3965 if (!handleFormatAttrCommon(S, D, AL, &Info))
3966 return;
3967
3968 Expr *FormatStrExpr = AL.getArgAsExpr(2)->IgnoreParenImpCasts();
3969 if (auto *SL = dyn_cast<StringLiteral>(FormatStrExpr)) {
3971 if (S.ValidateFormatString(FST, SL))
3972 if (auto *NewAttr = S.mergeFormatMatchesAttr(D, AL, Info.Identifier,
3973 Info.FormatStringIdx, SL))
3974 D->addAttr(NewAttr);
3975 return;
3976 }
3977
3978 S.Diag(AL.getLoc(), diag::err_format_nonliteral)
3979 << FormatStrExpr->getSourceRange();
3980}
3981
3982/// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3983static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3984 // The index that identifies the callback callee is mandatory.
3985 if (AL.getNumArgs() == 0) {
3986 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3987 << AL.getRange();
3988 return;
3989 }
3990
3991 bool HasImplicitThisParam = hasImplicitObjectParameter(D);
3992 int32_t NumArgs = getFunctionOrMethodNumParams(D);
3993
3994 FunctionDecl *FD = D->getAsFunction();
3995 assert(FD && "Expected a function declaration!");
3996
3997 llvm::StringMap<int> NameIdxMapping;
3998 NameIdxMapping["__"] = -1;
3999
4000 NameIdxMapping["this"] = 0;
4001
4002 int Idx = 1;
4003 for (const ParmVarDecl *PVD : FD->parameters())
4004 NameIdxMapping[PVD->getName()] = Idx++;
4005
4006 auto UnknownName = NameIdxMapping.end();
4007
4008 SmallVector<int, 8> EncodingIndices;
4009 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
4010 SourceRange SR;
4011 int32_t ArgIdx;
4012
4013 if (AL.isArgIdent(I)) {
4014 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4015 auto It = NameIdxMapping.find(IdLoc->getIdentifierInfo()->getName());
4016 if (It == UnknownName) {
4017 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
4018 << IdLoc->getIdentifierInfo() << IdLoc->getLoc();
4019 return;
4020 }
4021
4022 SR = SourceRange(IdLoc->getLoc());
4023 ArgIdx = It->second;
4024 } else if (AL.isArgExpr(I)) {
4025 Expr *IdxExpr = AL.getArgAsExpr(I);
4026
4027 // If the expression is not parseable as an int32_t we have a problem.
4028 if (!S.checkUInt32Argument(AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
4029 false)) {
4030 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4031 << AL << (I + 1) << IdxExpr->getSourceRange();
4032 return;
4033 }
4034
4035 // Check oob, excluding the special values, 0 and -1.
4036 if (ArgIdx < -1 || ArgIdx > NumArgs) {
4037 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4038 << AL << (I + 1) << IdxExpr->getSourceRange();
4039 return;
4040 }
4041
4042 SR = IdxExpr->getSourceRange();
4043 } else {
4044 llvm_unreachable("Unexpected ParsedAttr argument type!");
4045 }
4046
4047 if (ArgIdx == 0 && !HasImplicitThisParam) {
4048 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
4049 << (I + 1) << SR;
4050 return;
4051 }
4052
4053 // Adjust for the case we do not have an implicit "this" parameter. In this
4054 // case we decrease all positive values by 1 to get LLVM argument indices.
4055 if (!HasImplicitThisParam && ArgIdx > 0)
4056 ArgIdx -= 1;
4057
4058 EncodingIndices.push_back(ArgIdx);
4059 }
4060
4061 int CalleeIdx = EncodingIndices.front();
4062 // Check if the callee index is proper, thus not "this" and not "unknown".
4063 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
4064 // is false and positive if "HasImplicitThisParam" is true.
4065 if (CalleeIdx < (int)HasImplicitThisParam) {
4066 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
4067 << AL.getRange();
4068 return;
4069 }
4070
4071 // Get the callee type, note the index adjustment as the AST doesn't contain
4072 // the this type (which the callee cannot reference anyway!).
4073 const Type *CalleeType =
4074 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
4075 .getTypePtr();
4076 if (!CalleeType || !CalleeType->isFunctionPointerType()) {
4077 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4078 << AL.getRange();
4079 return;
4080 }
4081
4082 const Type *CalleeFnType =
4084
4085 // TODO: Check the type of the callee arguments.
4086
4087 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
4088 if (!CalleeFnProtoType) {
4089 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4090 << AL.getRange();
4091 return;
4092 }
4093
4094 if (CalleeFnProtoType->getNumParams() != EncodingIndices.size() - 1) {
4095 S.Diag(AL.getLoc(), diag::err_attribute_wrong_arg_count_for_func)
4096 << AL << QualType{CalleeFnProtoType, 0}
4097 << CalleeFnProtoType->getNumParams()
4098 << (unsigned)(EncodingIndices.size() - 1);
4099 return;
4100 }
4101
4102 if (CalleeFnProtoType->isVariadic()) {
4103 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4104 return;
4105 }
4106
4107 // Do not allow multiple callback attributes.
4108 if (D->hasAttr<CallbackAttr>()) {
4109 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4110 return;
4111 }
4112
4113 D->addAttr(::new (S.Context) CallbackAttr(
4114 S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4115}
4116
4117LifetimeCaptureByAttr *Sema::ParseLifetimeCaptureByAttr(const ParsedAttr &AL,
4118 StringRef ParamName) {
4119 // Atleast one capture by is required.
4120 if (AL.getNumArgs() == 0) {
4121 Diag(AL.getLoc(), diag::err_capture_by_attribute_no_entity)
4122 << AL.getRange();
4123 return nullptr;
4124 }
4125 unsigned N = AL.getNumArgs();
4126 auto ParamIdents =
4128 auto ParamLocs =
4130 bool IsValid = true;
4131 for (unsigned I = 0; I < N; ++I) {
4132 if (AL.isArgExpr(I)) {
4133 Expr *E = AL.getArgAsExpr(I);
4134 Diag(E->getExprLoc(), diag::err_capture_by_attribute_argument_unknown)
4135 << E << E->getExprLoc();
4136 IsValid = false;
4137 continue;
4138 }
4139 assert(AL.isArgIdent(I));
4140 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4141 if (IdLoc->getIdentifierInfo()->getName() == ParamName) {
4142 Diag(IdLoc->getLoc(), diag::err_capture_by_references_itself)
4143 << IdLoc->getLoc();
4144 IsValid = false;
4145 continue;
4146 }
4147 ParamIdents[I] = IdLoc->getIdentifierInfo();
4148 ParamLocs[I] = IdLoc->getLoc();
4149 }
4150 if (!IsValid)
4151 return nullptr;
4152 SmallVector<int> FakeParamIndices(N, LifetimeCaptureByAttr::Invalid);
4153 auto *CapturedBy =
4154 LifetimeCaptureByAttr::Create(Context, FakeParamIndices.data(), N, AL);
4155 CapturedBy->setArgs(ParamIdents, ParamLocs);
4156 return CapturedBy;
4157}
4158
4160 const ParsedAttr &AL) {
4161 // Do not allow multiple attributes.
4162 if (D->hasAttr<LifetimeCaptureByAttr>()) {
4163 S.Diag(AL.getLoc(), diag::err_capture_by_attribute_multiple)
4164 << AL.getRange();
4165 return;
4166 }
4167 auto *PVD = dyn_cast<ParmVarDecl>(D);
4168 assert(PVD);
4169 auto *CaptureByAttr = S.ParseLifetimeCaptureByAttr(AL, PVD->getName());
4170 if (CaptureByAttr)
4171 D->addAttr(CaptureByAttr);
4172}
4173
4175 bool HasImplicitThisParam = hasImplicitObjectParameter(FD);
4177 for (ParmVarDecl *PVD : FD->parameters())
4178 if (auto *A = PVD->getAttr<LifetimeCaptureByAttr>())
4179 Attrs.push_back(A);
4180 if (HasImplicitThisParam) {
4181 TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4182 if (!TSI)
4183 return;
4185 for (TypeLoc TL = TSI->getTypeLoc();
4186 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
4187 TL = ATL.getModifiedLoc()) {
4188 if (auto *A = ATL.getAttrAs<LifetimeCaptureByAttr>())
4189 Attrs.push_back(const_cast<LifetimeCaptureByAttr *>(A));
4190 }
4191 }
4192 if (Attrs.empty())
4193 return;
4194 llvm::StringMap<int> NameIdxMapping = {
4195 {"global", LifetimeCaptureByAttr::Global},
4196 {"unknown", LifetimeCaptureByAttr::Unknown}};
4197 int Idx = 0;
4198 if (HasImplicitThisParam) {
4199 NameIdxMapping["this"] = 0;
4200 Idx++;
4201 }
4202 for (const ParmVarDecl *PVD : FD->parameters())
4203 NameIdxMapping[PVD->getName()] = Idx++;
4204 auto DisallowReservedParams = [&](StringRef Reserved) {
4205 for (const ParmVarDecl *PVD : FD->parameters())
4206 if (PVD->getName() == Reserved)
4207 Diag(PVD->getLocation(), diag::err_capture_by_param_uses_reserved_name)
4208 << (PVD->getName() == "unknown");
4209 };
4210 for (auto *CapturedBy : Attrs) {
4211 const auto &Entities = CapturedBy->getArgIdents();
4212 for (size_t I = 0; I < Entities.size(); ++I) {
4213 StringRef Name = Entities[I]->getName();
4214 auto It = NameIdxMapping.find(Name);
4215 if (It == NameIdxMapping.end()) {
4216 auto Loc = CapturedBy->getArgLocs()[I];
4217 if (!HasImplicitThisParam && Name == "this")
4218 Diag(Loc, diag::err_capture_by_implicit_this_not_available) << Loc;
4219 else
4220 Diag(Loc, diag::err_capture_by_attribute_argument_unknown)
4221 << Entities[I] << Loc;
4222 continue;
4223 }
4224 if (Name == "unknown" || Name == "global")
4225 DisallowReservedParams(Name);
4226 CapturedBy->setParamIdx(I, It->second);
4227 }
4228 }
4229}
4230
4231static bool isFunctionLike(const Type &T) {
4232 // Check for explicit function types.
4233 // 'called_once' is only supported in Objective-C and it has
4234 // function pointers and block pointers.
4235 return T.isFunctionPointerType() || T.isBlockPointerType();
4236}
4237
4238/// Handle 'called_once' attribute.
4239static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4240 // 'called_once' only applies to parameters representing functions.
4241 QualType T = cast<ParmVarDecl>(D)->getType();
4242
4243 if (!isFunctionLike(*T)) {
4244 S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4245 return;
4246 }
4247
4248 D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4249}
4250
4251static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4252 // Try to find the underlying union declaration.
4253 RecordDecl *RD = nullptr;
4254 const auto *TD = dyn_cast<TypedefNameDecl>(D);
4255 if (TD && TD->getUnderlyingType()->isUnionType())
4256 RD = TD->getUnderlyingType()->getAsRecordDecl();
4257 else
4258 RD = dyn_cast<RecordDecl>(D);
4259
4260 if (!RD || !RD->isUnion()) {
4261 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4263 return;
4264 }
4265
4266 if (!RD->isCompleteDefinition()) {
4267 if (!RD->isBeingDefined())
4268 S.Diag(AL.getLoc(),
4269 diag::warn_transparent_union_attribute_not_definition);
4270 return;
4271 }
4272
4274 FieldEnd = RD->field_end();
4275 if (Field == FieldEnd) {
4276 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4277 return;
4278 }
4279
4280 FieldDecl *FirstField = *Field;
4281 QualType FirstType = FirstField->getType();
4282 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4283 S.Diag(FirstField->getLocation(),
4284 diag::warn_transparent_union_attribute_floating)
4285 << FirstType->isVectorType() << FirstType;
4286 return;
4287 }
4288
4289 if (FirstType->isIncompleteType())
4290 return;
4291 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4292 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4293 for (; Field != FieldEnd; ++Field) {
4294 QualType FieldType = Field->getType();
4295 if (FieldType->isIncompleteType())
4296 return;
4297 // FIXME: this isn't fully correct; we also need to test whether the
4298 // members of the union would all have the same calling convention as the
4299 // first member of the union. Checking just the size and alignment isn't
4300 // sufficient (consider structs passed on the stack instead of in registers
4301 // as an example).
4302 if (S.Context.getTypeSize(FieldType) != FirstSize ||
4303 S.Context.getTypeAlign(FieldType) > FirstAlign) {
4304 // Warn if we drop the attribute.
4305 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4306 unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4307 : S.Context.getTypeAlign(FieldType);
4308 S.Diag(Field->getLocation(),
4309 diag::warn_transparent_union_attribute_field_size_align)
4310 << isSize << *Field << FieldBits;
4311 unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4312 S.Diag(FirstField->getLocation(),
4313 diag::note_transparent_union_first_field_size_align)
4314 << isSize << FirstBits;
4315 return;
4316 }
4317 }
4318
4319 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4320}
4321
4322static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4323 auto *Attr = S.CreateAnnotationAttr(AL);
4324 if (Attr) {
4325 D->addAttr(Attr);
4326 }
4327}
4328
4329static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4330 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4331}
4332
4334 SourceLocation AttrLoc = CI.getLoc();
4335
4336 QualType T;
4337 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4338 T = TD->getUnderlyingType();
4339 else if (const auto *VD = dyn_cast<ValueDecl>(D))
4340 T = VD->getType();
4341 else
4342 llvm_unreachable("Unknown decl type for align_value");
4343
4344 if (!T->isDependentType() && !T->isAnyPointerType() &&
4345 !T->isReferenceType() && !T->isMemberPointerType()) {
4346 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4347 << CI << T << D->getSourceRange();
4348 return;
4349 }
4350
4351 if (!E->isValueDependent()) {
4352 llvm::APSInt Alignment;
4354 E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4355 if (ICE.isInvalid())
4356 return;
4357
4358 if (!Alignment.isPowerOf2()) {
4359 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4360 << E->getSourceRange();
4361 return;
4362 }
4363
4364 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4365 return;
4366 }
4367
4368 // Save dependent expressions in the AST to be instantiated.
4369 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4370}
4371
4372static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4373 if (AL.hasParsedType()) {
4374 const ParsedType &TypeArg = AL.getTypeArg();
4375 TypeSourceInfo *TInfo;
4376 (void)S.GetTypeFromParser(
4377 ParsedType::getFromOpaquePtr(TypeArg.getAsOpaquePtr()), &TInfo);
4378 if (AL.isPackExpansion() &&
4380 S.Diag(AL.getEllipsisLoc(),
4381 diag::err_pack_expansion_without_parameter_packs);
4382 return;
4383 }
4384
4385 if (!AL.isPackExpansion() &&
4387 TInfo, Sema::UPPC_Expression))
4388 return;
4389
4390 S.AddAlignedAttr(D, AL, TInfo, AL.isPackExpansion());
4391 return;
4392 }
4393
4394 // check the attribute arguments.
4395 if (AL.getNumArgs() > 1) {
4396 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4397 return;
4398 }
4399
4400 if (AL.getNumArgs() == 0) {
4401 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4402 return;
4403 }
4404
4405 Expr *E = AL.getArgAsExpr(0);
4407 S.Diag(AL.getEllipsisLoc(),
4408 diag::err_pack_expansion_without_parameter_packs);
4409 return;
4410 }
4411
4413 return;
4414
4415 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4416}
4417
4418/// Perform checking of type validity
4419///
4420/// C++11 [dcl.align]p1:
4421/// An alignment-specifier may be applied to a variable or to a class
4422/// data member, but it shall not be applied to a bit-field, a function
4423/// parameter, the formal parameter of a catch clause, or a variable
4424/// declared with the register storage class specifier. An
4425/// alignment-specifier may also be applied to the declaration of a class
4426/// or enumeration type.
4427/// CWG 2354:
4428/// CWG agreed to remove permission for alignas to be applied to
4429/// enumerations.
4430/// C11 6.7.5/2:
4431/// An alignment attribute shall not be specified in a declaration of
4432/// a typedef, or a bit-field, or a function, or a parameter, or an
4433/// object declared with the register storage-class specifier.
4435 const AlignedAttr &Attr,
4436 SourceLocation AttrLoc) {
4437 int DiagKind = -1;
4438 if (isa<ParmVarDecl>(D)) {
4439 DiagKind = 0;
4440 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4441 if (VD->getStorageClass() == SC_Register)
4442 DiagKind = 1;
4443 if (VD->isExceptionVariable())
4444 DiagKind = 2;
4445 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4446 if (FD->isBitField())
4447 DiagKind = 3;
4448 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4449 if (ED->getLangOpts().CPlusPlus)
4450 DiagKind = 4;
4451 } else if (!isa<TagDecl>(D)) {
4452 return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
4454 << (Attr.isC11() ? ExpectedVariableOrField
4456 }
4457 if (DiagKind != -1) {
4458 return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4459 << &Attr << DiagKind;
4460 }
4461 return false;
4462}
4463
4465 bool IsPackExpansion) {
4466 AlignedAttr TmpAttr(Context, CI, true, E);
4467 SourceLocation AttrLoc = CI.getLoc();
4468
4469 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4470 if (TmpAttr.isAlignas() &&
4471 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4472 return;
4473
4474 if (E->isValueDependent()) {
4475 // We can't support a dependent alignment on a non-dependent type,
4476 // because we have no way to model that a type is "alignment-dependent"
4477 // but not dependent in any other way.
4478 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4479 if (!TND->getUnderlyingType()->isDependentType()) {
4480 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4481 << E->getSourceRange();
4482 return;
4483 }
4484 }
4485
4486 // Save dependent expressions in the AST to be instantiated.
4487 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4488 AA->setPackExpansion(IsPackExpansion);
4489 D->addAttr(AA);
4490 return;
4491 }
4492
4493 // FIXME: Cache the number on the AL object?
4494 llvm::APSInt Alignment;
4496 E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4497 if (ICE.isInvalid())
4498 return;
4499
4501 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4502 MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4503 if (Alignment > MaximumAlignment) {
4504 Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4506 return;
4507 }
4508
4509 uint64_t AlignVal = Alignment.getZExtValue();
4510 // C++11 [dcl.align]p2:
4511 // -- if the constant expression evaluates to zero, the alignment
4512 // specifier shall have no effect
4513 // C11 6.7.5p6:
4514 // An alignment specification of zero has no effect.
4515 if (!(TmpAttr.isAlignas() && !Alignment)) {
4516 if (!llvm::isPowerOf2_64(AlignVal)) {
4517 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4518 << E->getSourceRange();
4519 return;
4520 }
4521 }
4522
4523 const auto *VD = dyn_cast<VarDecl>(D);
4524 if (VD) {
4525 unsigned MaxTLSAlign =
4526 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4527 .getQuantity();
4528 if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4529 VD->getTLSKind() != VarDecl::TLS_None) {
4530 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4531 << (unsigned)AlignVal << VD << MaxTLSAlign;
4532 return;
4533 }
4534 }
4535
4536 // On AIX, an aligned attribute can not decrease the alignment when applied
4537 // to a variable declaration with vector type.
4538 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4539 const Type *Ty = VD->getType().getTypePtr();
4540 if (Ty->isVectorType() && AlignVal < 16) {
4541 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4542 << VD->getType() << 16;
4543 return;
4544 }
4545 }
4546
4547 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4548 AA->setPackExpansion(IsPackExpansion);
4549 AA->setCachedAlignmentValue(
4550 static_cast<unsigned>(AlignVal * Context.getCharWidth()));
4551 D->addAttr(AA);
4552}
4553
4555 TypeSourceInfo *TS, bool IsPackExpansion) {
4556 AlignedAttr TmpAttr(Context, CI, false, TS);
4557 SourceLocation AttrLoc = CI.getLoc();
4558
4559 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4560 if (TmpAttr.isAlignas() &&
4561 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4562 return;
4563
4564 if (TS->getType()->isDependentType()) {
4565 // We can't support a dependent alignment on a non-dependent type,
4566 // because we have no way to model that a type is "type-dependent"
4567 // but not dependent in any other way.
4568 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4569 if (!TND->getUnderlyingType()->isDependentType()) {
4570 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4571 << TS->getTypeLoc().getSourceRange();
4572 return;
4573 }
4574 }
4575
4576 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4577 AA->setPackExpansion(IsPackExpansion);
4578 D->addAttr(AA);
4579 return;
4580 }
4581
4582 const auto *VD = dyn_cast<VarDecl>(D);
4583 unsigned AlignVal = TmpAttr.getAlignment(Context);
4584 // On AIX, an aligned attribute can not decrease the alignment when applied
4585 // to a variable declaration with vector type.
4586 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4587 const Type *Ty = VD->getType().getTypePtr();
4588 if (Ty->isVectorType() &&
4589 Context.toCharUnitsFromBits(AlignVal).getQuantity() < 16) {
4590 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4591 << VD->getType() << 16;
4592 return;
4593 }
4594 }
4595
4596 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4597 AA->setPackExpansion(IsPackExpansion);
4598 AA->setCachedAlignmentValue(AlignVal);
4599 D->addAttr(AA);
4600}
4601
4603 assert(D->hasAttrs() && "no attributes on decl");
4604
4605 QualType UnderlyingTy, DiagTy;
4606 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4607 UnderlyingTy = DiagTy = VD->getType();
4608 } else {
4609 UnderlyingTy = DiagTy = Context.getCanonicalTagType(cast<TagDecl>(D));
4610 if (const auto *ED = dyn_cast<EnumDecl>(D))
4611 UnderlyingTy = ED->getIntegerType();
4612 }
4613 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4614 return;
4615
4616 // C++11 [dcl.align]p5, C11 6.7.5/4:
4617 // The combined effect of all alignment attributes in a declaration shall
4618 // not specify an alignment that is less strict than the alignment that
4619 // would otherwise be required for the entity being declared.
4620 AlignedAttr *AlignasAttr = nullptr;
4621 AlignedAttr *LastAlignedAttr = nullptr;
4622 unsigned Align = 0;
4623 for (auto *I : D->specific_attrs<AlignedAttr>()) {
4624 if (I->isAlignmentDependent())
4625 return;
4626 if (I->isAlignas())
4627 AlignasAttr = I;
4628 Align = std::max(Align, I->getAlignment(Context));
4629 LastAlignedAttr = I;
4630 }
4631
4632 if (Align && DiagTy->isSizelessType()) {
4633 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4634 << LastAlignedAttr << DiagTy;
4635 } else if (AlignasAttr && Align) {
4636 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4637 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4638 if (NaturalAlign > RequestedAlign)
4639 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4640 << DiagTy << (unsigned)NaturalAlign.getQuantity();
4641 }
4642}
4643
4645 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4646 MSInheritanceModel ExplicitModel) {
4647 assert(RD->hasDefinition() && "RD has no definition!");
4648
4649 // We may not have seen base specifiers or any virtual methods yet. We will
4650 // have to wait until the record is defined to catch any mismatches.
4651 if (!RD->getDefinition()->isCompleteDefinition())
4652 return false;
4653
4654 // The unspecified model never matches what a definition could need.
4655 if (ExplicitModel == MSInheritanceModel::Unspecified)
4656 return false;
4657
4658 if (BestCase) {
4659 if (RD->calculateInheritanceModel() == ExplicitModel)
4660 return false;
4661 } else {
4662 if (RD->calculateInheritanceModel() <= ExplicitModel)
4663 return false;
4664 }
4665
4666 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4667 << 0 /*definition*/;
4668 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4669 return true;
4670}
4671
4672/// parseModeAttrArg - Parses attribute mode string and returns parsed type
4673/// attribute.
4674static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4675 bool &IntegerMode, bool &ComplexMode,
4676 FloatModeKind &ExplicitType) {
4677 IntegerMode = true;
4678 ComplexMode = false;
4679 ExplicitType = FloatModeKind::NoFloat;
4680 switch (Str.size()) {
4681 case 2:
4682 switch (Str[0]) {
4683 case 'Q':
4684 DestWidth = 8;
4685 break;
4686 case 'H':
4687 DestWidth = 16;
4688 break;
4689 case 'S':
4690 DestWidth = 32;
4691 break;
4692 case 'D':
4693 DestWidth = 64;
4694 break;
4695 case 'X':
4696 DestWidth = 96;
4697 break;
4698 case 'K': // KFmode - IEEE quad precision (__float128)
4699 ExplicitType = FloatModeKind::Float128;
4700 DestWidth = Str[1] == 'I' ? 0 : 128;
4701 break;
4702 case 'T':
4703 ExplicitType = FloatModeKind::LongDouble;
4704 DestWidth = 128;
4705 break;
4706 case 'I':
4707 ExplicitType = FloatModeKind::Ibm128;
4708 DestWidth = Str[1] == 'I' ? 0 : 128;
4709 break;
4710 }
4711 if (Str[1] == 'F') {
4712 IntegerMode = false;
4713 } else if (Str[1] == 'C') {
4714 IntegerMode = false;
4715 ComplexMode = true;
4716 } else if (Str[1] != 'I') {
4717 DestWidth = 0;
4718 }
4719 break;
4720 case 4:
4721 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4722 // pointer on PIC16 and other embedded platforms.
4723 if (Str == "word")
4724 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4725 else if (Str == "byte")
4726 DestWidth = S.Context.getTargetInfo().getCharWidth();
4727 break;
4728 case 7:
4729 if (Str == "pointer")
4731 break;
4732 case 11:
4733 if (Str == "unwind_word")
4734 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4735 break;
4736 }
4737}
4738
4739/// handleModeAttr - This attribute modifies the width of a decl with primitive
4740/// type.
4741///
4742/// Despite what would be logical, the mode attribute is a decl attribute, not a
4743/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4744/// HImode, not an intermediate pointer.
4745static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4746 // This attribute isn't documented, but glibc uses it. It changes
4747 // the width of an int or unsigned int to the specified size.
4748 if (!AL.isArgIdent(0)) {
4749 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4750 << AL << AANT_ArgumentIdentifier;
4751 return;
4752 }
4753
4755
4756 S.AddModeAttr(D, AL, Name);
4757}
4758
4760 IdentifierInfo *Name, bool InInstantiation) {
4761 StringRef Str = Name->getName();
4762 normalizeName(Str);
4763 SourceLocation AttrLoc = CI.getLoc();
4764
4765 unsigned DestWidth = 0;
4766 bool IntegerMode = true;
4767 bool ComplexMode = false;
4769 llvm::APInt VectorSize(64, 0);
4770 if (Str.size() >= 4 && Str[0] == 'V') {
4771 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4772 size_t StrSize = Str.size();
4773 size_t VectorStringLength = 0;
4774 while ((VectorStringLength + 1) < StrSize &&
4775 isdigit(Str[VectorStringLength + 1]))
4776 ++VectorStringLength;
4777 if (VectorStringLength &&
4778 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4779 VectorSize.isPowerOf2()) {
4780 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4781 IntegerMode, ComplexMode, ExplicitType);
4782 // Avoid duplicate warning from template instantiation.
4783 if (!InInstantiation)
4784 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4785 } else {
4786 VectorSize = 0;
4787 }
4788 }
4789
4790 if (!VectorSize)
4791 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4792 ExplicitType);
4793
4794 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4795 // and friends, at least with glibc.
4796 // FIXME: Make sure floating-point mappings are accurate
4797 // FIXME: Support XF and TF types
4798 if (!DestWidth) {
4799 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4800 return;
4801 }
4802
4803 QualType OldTy;
4804 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4805 OldTy = TD->getUnderlyingType();
4806 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4807 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4808 // Try to get type from enum declaration, default to int.
4809 OldTy = ED->getIntegerType();
4810 if (OldTy.isNull())
4811 OldTy = Context.IntTy;
4812 } else
4813 OldTy = cast<ValueDecl>(D)->getType();
4814
4815 if (OldTy->isDependentType()) {
4816 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4817 return;
4818 }
4819
4820 // Base type can also be a vector type (see PR17453).
4821 // Distinguish between base type and base element type.
4822 QualType OldElemTy = OldTy;
4823 if (const auto *VT = OldTy->getAs<VectorType>())
4824 OldElemTy = VT->getElementType();
4825
4826 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4827 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4828 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4829 if ((isa<EnumDecl>(D) || OldElemTy->isEnumeralType()) &&
4830 VectorSize.getBoolValue()) {
4831 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4832 return;
4833 }
4834 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4835 !OldElemTy->isBitIntType()) ||
4836 OldElemTy->isEnumeralType();
4837
4838 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4839 !IntegralOrAnyEnumType)
4840 Diag(AttrLoc, diag::err_mode_not_primitive);
4841 else if (IntegerMode) {
4842 if (!IntegralOrAnyEnumType)
4843 Diag(AttrLoc, diag::err_mode_wrong_type);
4844 } else if (ComplexMode) {
4845 if (!OldElemTy->isComplexType())
4846 Diag(AttrLoc, diag::err_mode_wrong_type);
4847 } else {
4848 if (!OldElemTy->isFloatingType())
4849 Diag(AttrLoc, diag::err_mode_wrong_type);
4850 }
4851
4852 QualType NewElemTy;
4853
4854 if (IntegerMode)
4855 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4856 OldElemTy->isSignedIntegerType());
4857 else
4858 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4859
4860 if (NewElemTy.isNull()) {
4861 // Only emit diagnostic on host for 128-bit mode attribute
4862 if (!(DestWidth == 128 &&
4863 (getLangOpts().CUDAIsDevice || getLangOpts().SYCLIsDevice)))
4864 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4865 return;
4866 }
4867
4868 if (ComplexMode) {
4869 NewElemTy = Context.getComplexType(NewElemTy);
4870 }
4871
4872 QualType NewTy = NewElemTy;
4873 if (VectorSize.getBoolValue()) {
4874 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4876 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4877 // Complex machine mode does not support base vector types.
4878 if (ComplexMode) {
4879 Diag(AttrLoc, diag::err_complex_mode_vector_type);
4880 return;
4881 }
4882 unsigned NumElements = Context.getTypeSize(OldElemTy) *
4883 OldVT->getNumElements() /
4884 Context.getTypeSize(NewElemTy);
4885 NewTy =
4886 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4887 }
4888
4889 if (NewTy.isNull()) {
4890 Diag(AttrLoc, diag::err_mode_wrong_type);
4891 return;
4892 }
4893
4894 // Install the new type.
4895 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4896 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4897 else if (auto *ED = dyn_cast<EnumDecl>(D))
4898 ED->setIntegerType(NewTy);
4899 else
4900 cast<ValueDecl>(D)->setType(NewTy);
4901
4902 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4903}
4904
4905static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4906 // This only applies to fields and variable declarations which have an array
4907 // type or pointer type, with character elements.
4908 QualType QT = cast<ValueDecl>(D)->getType();
4909 if ((!QT->isArrayType() && !QT->isPointerType()) ||
4911 S.Diag(D->getBeginLoc(), diag::warn_attribute_non_character_array)
4912 << AL << AL.isRegularKeywordAttribute() << QT << AL.getRange();
4913 return;
4914 }
4915
4916 D->addAttr(::new (S.Context) NonStringAttr(S.Context, AL));
4917}
4918
4919static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4920 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4921}
4922
4924 const AttributeCommonInfo &CI,
4925 const IdentifierInfo *Ident) {
4926 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4927 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4928 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4929 return nullptr;
4930 }
4931
4932 if (D->hasAttr<AlwaysInlineAttr>())
4933 return nullptr;
4934
4935 return ::new (Context) AlwaysInlineAttr(Context, CI);
4936}
4937
4938InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4939 const ParsedAttr &AL) {
4940 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4941 // Attribute applies to Var but not any subclass of it (like ParmVar,
4942 // ImplicitParm or VarTemplateSpecialization).
4943 if (VD->getKind() != Decl::Var) {
4944 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4945 << AL << AL.isRegularKeywordAttribute()
4948 return nullptr;
4949 }
4950 // Attribute does not apply to non-static local variables.
4951 if (VD->hasLocalStorage()) {
4952 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4953 return nullptr;
4954 }
4955 }
4956
4957 return ::new (Context) InternalLinkageAttr(Context, AL);
4958}
4959InternalLinkageAttr *
4960Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4961 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4962 // Attribute applies to Var but not any subclass of it (like ParmVar,
4963 // ImplicitParm or VarTemplateSpecialization).
4964 if (VD->getKind() != Decl::Var) {
4965 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4966 << &AL << AL.isRegularKeywordAttribute()
4969 return nullptr;
4970 }
4971 // Attribute does not apply to non-static local variables.
4972 if (VD->hasLocalStorage()) {
4973 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4974 return nullptr;
4975 }
4976 }
4977
4978 return ::new (Context) InternalLinkageAttr(Context, AL);
4979}
4980
4982 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4983 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4984 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4985 return nullptr;
4986 }
4987
4988 if (D->hasAttr<MinSizeAttr>())
4989 return nullptr;
4990
4991 return ::new (Context) MinSizeAttr(Context, CI);
4992}
4993
4995 const AttributeCommonInfo &CI) {
4996 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4997 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4998 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4999 D->dropAttr<AlwaysInlineAttr>();
5000 }
5001 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
5002 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
5003 Diag(CI.getLoc(), diag::note_conflicting_attribute);
5004 D->dropAttr<MinSizeAttr>();
5005 }
5006
5007 if (D->hasAttr<OptimizeNoneAttr>())
5008 return nullptr;
5009
5010 return ::new (Context) OptimizeNoneAttr(Context, CI);
5011}
5012
5013static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5014 if (AlwaysInlineAttr *Inline =
5015 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
5016 D->addAttr(Inline);
5017}
5018
5019static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5020 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
5021 D->addAttr(MinSize);
5022}
5023
5024static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5025 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
5026 D->addAttr(Optnone);
5027}
5028
5029static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5030 const auto *VD = cast<VarDecl>(D);
5031 if (VD->hasLocalStorage()) {
5032 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5033 return;
5034 }
5035 // constexpr variable may already get an implicit constant attr, which should
5036 // be replaced by the explicit constant attr.
5037 if (auto *A = D->getAttr<CUDAConstantAttr>()) {
5038 if (!A->isImplicit())
5039 return;
5040 D->dropAttr<CUDAConstantAttr>();
5041 }
5042 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
5043}
5044
5045static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5046 const auto *VD = cast<VarDecl>(D);
5047 // extern __shared__ is only allowed on arrays with no length (e.g.
5048 // "int x[]").
5049 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
5050 !isa<IncompleteArrayType>(VD->getType())) {
5051 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
5052 return;
5053 }
5054 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
5055 S.CUDA().DiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
5056 << S.CUDA().CurrentTarget())
5057 return;
5058 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
5059}
5060
5061static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5062 const auto *FD = cast<FunctionDecl>(D);
5063 if (!FD->getReturnType()->isVoidType() &&
5064 !FD->getReturnType()->getAs<AutoType>() &&
5066 SourceRange RTRange = FD->getReturnTypeSourceRange();
5067 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
5068 << FD->getType()
5069 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
5070 : FixItHint());
5071 return;
5072 }
5073 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
5074 if (Method->isInstance()) {
5075 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
5076 << Method;
5077 return;
5078 }
5079 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
5080 }
5081 // Only warn for "inline" when compiling for host, to cut down on noise.
5082 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
5083 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
5084
5085 if (AL.getKind() == ParsedAttr::AT_DeviceKernel)
5086 D->addAttr(::new (S.Context) DeviceKernelAttr(S.Context, AL));
5087 else
5088 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
5089 // In host compilation the kernel is emitted as a stub function, which is
5090 // a helper function for launching the kernel. The instructions in the helper
5091 // function has nothing to do with the source code of the kernel. Do not emit
5092 // debug info for the stub function to avoid confusing the debugger.
5093 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
5094 D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
5095}
5096
5097static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5098 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5099 if (VD->hasLocalStorage()) {
5100 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5101 return;
5102 }
5103 }
5104
5105 if (auto *A = D->getAttr<CUDADeviceAttr>()) {
5106 if (!A->isImplicit())
5107 return;
5108 D->dropAttr<CUDADeviceAttr>();
5109 }
5110 D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
5111}
5112
5113static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5114 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5115 if (VD->hasLocalStorage()) {
5116 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5117 return;
5118 }
5119 }
5120 if (!D->hasAttr<HIPManagedAttr>())
5121 D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
5122 if (!D->hasAttr<CUDADeviceAttr>())
5123 D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
5124}
5125
5126static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5127 if (D->isInvalidDecl())
5128 return;
5129 // Whether __grid_constant__ is allowed to be used will be checked in
5130 // Sema::CheckFunctionDeclaration as we need complete function decl to make
5131 // the call.
5132 D->addAttr(::new (S.Context) CUDAGridConstantAttr(S.Context, AL));
5133}
5134
5135static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5136 const auto *Fn = cast<FunctionDecl>(D);
5137 if (!Fn->isInlineSpecified()) {
5138 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
5139 return;
5140 }
5141
5142 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
5143 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
5144
5145 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
5146}
5147
5148static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5149 if (hasDeclarator(D)) return;
5150
5151 // Diagnostic is emitted elsewhere: here we store the (valid) AL
5152 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
5153 CallingConv CC;
5155 AL, CC, /*FD*/ nullptr,
5156 S.CUDA().IdentifyTarget(dyn_cast<FunctionDecl>(D))))
5157 return;
5158
5159 if (!isa<ObjCMethodDecl>(D)) {
5160 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5162 return;
5163 }
5164
5165 switch (AL.getKind()) {
5166 case ParsedAttr::AT_FastCall:
5167 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
5168 return;
5169 case ParsedAttr::AT_StdCall:
5170 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
5171 return;
5172 case ParsedAttr::AT_ThisCall:
5173 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
5174 return;
5175 case ParsedAttr::AT_CDecl:
5176 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
5177 return;
5178 case ParsedAttr::AT_Pascal:
5179 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
5180 return;
5181 case ParsedAttr::AT_SwiftCall:
5182 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
5183 return;
5184 case ParsedAttr::AT_SwiftAsyncCall:
5185 D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
5186 return;
5187 case ParsedAttr::AT_VectorCall:
5188 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
5189 return;
5190 case ParsedAttr::AT_MSABI:
5191 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
5192 return;
5193 case ParsedAttr::AT_SysVABI:
5194 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
5195 return;
5196 case ParsedAttr::AT_RegCall:
5197 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
5198 return;
5199 case ParsedAttr::AT_Pcs: {
5200 PcsAttr::PCSType PCS;
5201 switch (CC) {
5202 case CC_AAPCS:
5203 PCS = PcsAttr::AAPCS;
5204 break;
5205 case CC_AAPCS_VFP:
5206 PCS = PcsAttr::AAPCS_VFP;
5207 break;
5208 default:
5209 llvm_unreachable("unexpected calling convention in pcs attribute");
5210 }
5211
5212 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
5213 return;
5214 }
5215 case ParsedAttr::AT_AArch64VectorPcs:
5216 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
5217 return;
5218 case ParsedAttr::AT_AArch64SVEPcs:
5219 D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL));
5220 return;
5221 case ParsedAttr::AT_DeviceKernel: {
5222 // The attribute should already be applied.
5223 assert(D->hasAttr<DeviceKernelAttr>() && "Expected attribute");
5224 return;
5225 }
5226 case ParsedAttr::AT_IntelOclBicc:
5227 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
5228 return;
5229 case ParsedAttr::AT_PreserveMost:
5230 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
5231 return;
5232 case ParsedAttr::AT_PreserveAll:
5233 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
5234 return;
5235 case ParsedAttr::AT_M68kRTD:
5236 D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL));
5237 return;
5238 case ParsedAttr::AT_PreserveNone:
5239 D->addAttr(::new (S.Context) PreserveNoneAttr(S.Context, AL));
5240 return;
5241 case ParsedAttr::AT_RISCVVectorCC:
5242 D->addAttr(::new (S.Context) RISCVVectorCCAttr(S.Context, AL));
5243 return;
5244 case ParsedAttr::AT_RISCVVLSCC: {
5245 // If the riscv_abi_vlen doesn't have any argument, default ABI_VLEN is 128.
5246 unsigned VectorLength = 128;
5247 if (AL.getNumArgs() &&
5249 return;
5251 S.Diag(AL.getLoc(), diag::err_argument_invalid_range)
5252 << VectorLength << 32 << 65536;
5253 return;
5254 }
5255 if (!llvm::isPowerOf2_64(VectorLength)) {
5256 S.Diag(AL.getLoc(), diag::err_argument_not_power_of_2);
5257 return;
5258 }
5259
5260 D->addAttr(::new (S.Context) RISCVVLSCCAttr(S.Context, AL, VectorLength));
5261 return;
5262 }
5263 default:
5264 llvm_unreachable("unexpected attribute kind");
5265 }
5266}
5267
5268static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5269 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
5270 bool IsFunctionTemplate = FD && FD->getDescribedFunctionTemplate();
5271 llvm::Triple Triple = S.getASTContext().getTargetInfo().getTriple();
5272 const LangOptions &LangOpts = S.getLangOpts();
5273 // OpenCL has its own error messages.
5274 if (!LangOpts.OpenCL && FD && !FD->isExternallyVisible()) {
5275 S.Diag(AL.getLoc(), diag::err_hidden_device_kernel) << FD;
5276 AL.setInvalid();
5277 return;
5278 }
5279 if (Triple.isNVPTX()) {
5280 handleGlobalAttr(S, D, AL);
5281 } else {
5282 // OpenCL C++ will throw a more specific error.
5283 if (!LangOpts.OpenCLCPlusPlus && (!FD || IsFunctionTemplate)) {
5284 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str)
5285 << AL << AL.isRegularKeywordAttribute() << "functions";
5286 AL.setInvalid();
5287 return;
5288 }
5290 }
5291 // TODO: isGPU() should probably return true for SPIR.
5292 bool TargetDeviceEnvironment = Triple.isGPU() || Triple.isSPIR() ||
5293 LangOpts.isTargetDevice() || LangOpts.OpenCL;
5294 if (!TargetDeviceEnvironment) {
5295 S.Diag(AL.getLoc(), diag::warn_cconv_unsupported)
5297 AL.setInvalid();
5298 return;
5299 }
5300
5301 // Make sure we validate the CC with the target
5302 // and warn/error if necessary.
5303 handleCallConvAttr(S, D, AL);
5304}
5305
5306static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5307 if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) {
5308 // Suppression attribute with GSL spelling requires at least 1 argument.
5309 if (!AL.checkAtLeastNumArgs(S, 1))
5310 return;
5311 }
5312
5313 std::vector<StringRef> DiagnosticIdentifiers;
5314 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5315 StringRef RuleName;
5316
5317 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5318 return;
5319
5320 DiagnosticIdentifiers.push_back(RuleName);
5321 }
5322 D->addAttr(::new (S.Context)
5323 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5324 DiagnosticIdentifiers.size()));
5325}
5326
5327static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5328 TypeSourceInfo *DerefTypeLoc = nullptr;
5329 QualType ParmType;
5330 if (AL.hasParsedType()) {
5331 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5332
5333 unsigned SelectIdx = ~0U;
5334 if (ParmType->isReferenceType())
5335 SelectIdx = 0;
5336 else if (ParmType->isArrayType())
5337 SelectIdx = 1;
5338
5339 if (SelectIdx != ~0U) {
5340 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5341 << SelectIdx << AL;
5342 return;
5343 }
5344 }
5345
5346 // To check if earlier decl attributes do not conflict the newly parsed ones
5347 // we always add (and check) the attribute to the canonical decl. We need
5348 // to repeat the check for attribute mutual exclusion because we're attaching
5349 // all of the attributes to the canonical declaration rather than the current
5350 // declaration.
5351 D = D->getCanonicalDecl();
5352 if (AL.getKind() == ParsedAttr::AT_Owner) {
5354 return;
5355 if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5356 const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5357 ? OAttr->getDerefType().getTypePtr()
5358 : nullptr;
5359 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5360 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5361 << AL << OAttr
5362 << (AL.isRegularKeywordAttribute() ||
5363 OAttr->isRegularKeywordAttribute());
5364 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5365 }
5366 return;
5367 }
5368 for (Decl *Redecl : D->redecls()) {
5369 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5370 }
5371 } else {
5373 return;
5374 if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5375 const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5376 ? PAttr->getDerefType().getTypePtr()
5377 : nullptr;
5378 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5379 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5380 << AL << PAttr
5381 << (AL.isRegularKeywordAttribute() ||
5382 PAttr->isRegularKeywordAttribute());
5383 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5384 }
5385 return;
5386 }
5387 for (Decl *Redecl : D->redecls()) {
5388 Redecl->addAttr(::new (S.Context)
5389 PointerAttr(S.Context, AL, DerefTypeLoc));
5390 }
5391 }
5392}
5393
5394static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5396 return;
5397 if (!D->hasAttr<RandomizeLayoutAttr>())
5398 D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL));
5399}
5400
5402 const ParsedAttr &AL) {
5404 return;
5405 if (!D->hasAttr<NoRandomizeLayoutAttr>())
5406 D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL));
5407}
5408
5410 const FunctionDecl *FD,
5411 CUDAFunctionTarget CFT) {
5412 if (Attrs.isInvalid())
5413 return true;
5414
5415 if (Attrs.hasProcessingCache()) {
5416 CC = (CallingConv) Attrs.getProcessingCache();
5417 return false;
5418 }
5419
5420 if (Attrs.getKind() == ParsedAttr::AT_RISCVVLSCC) {
5421 // riscv_vls_cc only accepts 0 or 1 argument.
5422 if (!Attrs.checkAtLeastNumArgs(*this, 0) ||
5423 !Attrs.checkAtMostNumArgs(*this, 1)) {
5424 Attrs.setInvalid();
5425 return true;
5426 }
5427 } else {
5428 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5429 if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5430 Attrs.setInvalid();
5431 return true;
5432 }
5433 }
5434
5435 bool IsTargetDefaultMSABI =
5436 Context.getTargetInfo().getTriple().isOSWindows() ||
5437 Context.getTargetInfo().getTriple().isUEFI();
5438 // TODO: diagnose uses of these conventions on the wrong target.
5439 switch (Attrs.getKind()) {
5440 case ParsedAttr::AT_CDecl:
5441 CC = CC_C;
5442 break;
5443 case ParsedAttr::AT_FastCall:
5444 CC = CC_X86FastCall;
5445 break;
5446 case ParsedAttr::AT_StdCall:
5447 CC = CC_X86StdCall;
5448 break;
5449 case ParsedAttr::AT_ThisCall:
5450 CC = CC_X86ThisCall;
5451 break;
5452 case ParsedAttr::AT_Pascal:
5453 CC = CC_X86Pascal;
5454 break;
5455 case ParsedAttr::AT_SwiftCall:
5456 CC = CC_Swift;
5457 break;
5458 case ParsedAttr::AT_SwiftAsyncCall:
5459 CC = CC_SwiftAsync;
5460 break;
5461 case ParsedAttr::AT_VectorCall:
5462 CC = CC_X86VectorCall;
5463 break;
5464 case ParsedAttr::AT_AArch64VectorPcs:
5466 break;
5467 case ParsedAttr::AT_AArch64SVEPcs:
5468 CC = CC_AArch64SVEPCS;
5469 break;
5470 case ParsedAttr::AT_RegCall:
5471 CC = CC_X86RegCall;
5472 break;
5473 case ParsedAttr::AT_MSABI:
5474 CC = IsTargetDefaultMSABI ? CC_C : CC_Win64;
5475 break;
5476 case ParsedAttr::AT_SysVABI:
5477 CC = IsTargetDefaultMSABI ? CC_X86_64SysV : CC_C;
5478 break;
5479 case ParsedAttr::AT_Pcs: {
5480 StringRef StrRef;
5481 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5482 Attrs.setInvalid();
5483 return true;
5484 }
5485 if (StrRef == "aapcs") {
5486 CC = CC_AAPCS;
5487 break;
5488 } else if (StrRef == "aapcs-vfp") {
5489 CC = CC_AAPCS_VFP;
5490 break;
5491 }
5492
5493 Attrs.setInvalid();
5494 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5495 return true;
5496 }
5497 case ParsedAttr::AT_IntelOclBicc:
5498 CC = CC_IntelOclBicc;
5499 break;
5500 case ParsedAttr::AT_PreserveMost:
5501 CC = CC_PreserveMost;
5502 break;
5503 case ParsedAttr::AT_PreserveAll:
5504 CC = CC_PreserveAll;
5505 break;
5506 case ParsedAttr::AT_M68kRTD:
5507 CC = CC_M68kRTD;
5508 break;
5509 case ParsedAttr::AT_PreserveNone:
5510 CC = CC_PreserveNone;
5511 break;
5512 case ParsedAttr::AT_RISCVVectorCC:
5513 CC = CC_RISCVVectorCall;
5514 break;
5515 case ParsedAttr::AT_RISCVVLSCC: {
5516 // If the riscv_abi_vlen doesn't have any argument, we set set it to default
5517 // value 128.
5518 unsigned ABIVLen = 128;
5519 if (Attrs.getNumArgs() &&
5520 !checkUInt32Argument(Attrs, Attrs.getArgAsExpr(0), ABIVLen)) {
5521 Attrs.setInvalid();
5522 return true;
5523 }
5524 if (Attrs.getNumArgs() && (ABIVLen < 32 || ABIVLen > 65536)) {
5525 Attrs.setInvalid();
5526 Diag(Attrs.getLoc(), diag::err_argument_invalid_range)
5527 << ABIVLen << 32 << 65536;
5528 return true;
5529 }
5530 if (!llvm::isPowerOf2_64(ABIVLen)) {
5531 Attrs.setInvalid();
5532 Diag(Attrs.getLoc(), diag::err_argument_not_power_of_2);
5533 return true;
5534 }
5536 llvm::Log2_64(ABIVLen) - 5);
5537 break;
5538 }
5539 case ParsedAttr::AT_DeviceKernel: {
5540 // Validation was handled in handleDeviceKernelAttr.
5541 CC = CC_DeviceKernel;
5542 break;
5543 }
5544 default: llvm_unreachable("unexpected attribute kind");
5545 }
5546
5548 const TargetInfo &TI = Context.getTargetInfo();
5549 auto *Aux = Context.getAuxTargetInfo();
5550 // CUDA functions may have host and/or device attributes which indicate
5551 // their targeted execution environment, therefore the calling convention
5552 // of functions in CUDA should be checked against the target deduced based
5553 // on their host/device attributes.
5554 if (LangOpts.CUDA) {
5555 assert(FD || CFT != CUDAFunctionTarget::InvalidTarget);
5556 auto CudaTarget = FD ? CUDA().IdentifyTarget(FD) : CFT;
5557 bool CheckHost = false, CheckDevice = false;
5558 switch (CudaTarget) {
5560 CheckHost = true;
5561 CheckDevice = true;
5562 break;
5564 CheckHost = true;
5565 break;
5568 CheckDevice = true;
5569 break;
5571 llvm_unreachable("unexpected cuda target");
5572 }
5573 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5574 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5575 if (CheckHost && HostTI)
5576 A = HostTI->checkCallingConvention(CC);
5577 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5578 A = DeviceTI->checkCallingConvention(CC);
5579 } else if (LangOpts.SYCLIsDevice && TI.getTriple().isAMDGPU() &&
5580 CC == CC_X86VectorCall) {
5581 // Assuming SYCL Device AMDGPU CC_X86VectorCall functions are always to be
5582 // emitted on the host. The MSVC STL has CC-based specializations so we
5583 // cannot change the CC to be the default as that will cause a clash with
5584 // another specialization.
5585 A = TI.checkCallingConvention(CC);
5586 if (Aux && A != TargetInfo::CCCR_OK)
5587 A = Aux->checkCallingConvention(CC);
5588 } else {
5589 A = TI.checkCallingConvention(CC);
5590 }
5591
5592 switch (A) {
5594 break;
5595
5597 // Treat an ignored convention as if it was an explicit C calling convention
5598 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5599 // that command line flags that change the default convention to
5600 // __vectorcall don't affect declarations marked __stdcall.
5601 CC = CC_C;
5602 break;
5603
5605 Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5607 break;
5608
5610 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5612
5613 // This convention is not valid for the target. Use the default function or
5614 // method calling convention.
5615 bool IsCXXMethod = false, IsVariadic = false;
5616 if (FD) {
5617 IsCXXMethod = FD->isCXXInstanceMember();
5618 IsVariadic = FD->isVariadic();
5619 }
5620 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5621 break;
5622 }
5623 }
5624
5625 Attrs.setProcessingCache((unsigned) CC);
5626 return false;
5627}
5628
5629bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5630 if (AL.isInvalid())
5631 return true;
5632
5633 if (!AL.checkExactlyNumArgs(*this, 1)) {
5634 AL.setInvalid();
5635 return true;
5636 }
5637
5638 uint32_t NP;
5639 Expr *NumParamsExpr = AL.getArgAsExpr(0);
5640 if (!checkUInt32Argument(AL, NumParamsExpr, NP)) {
5641 AL.setInvalid();
5642 return true;
5643 }
5644
5645 if (Context.getTargetInfo().getRegParmMax() == 0) {
5646 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5647 << NumParamsExpr->getSourceRange();
5648 AL.setInvalid();
5649 return true;
5650 }
5651
5652 numParams = NP;
5653 if (numParams > Context.getTargetInfo().getRegParmMax()) {
5654 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5655 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5656 AL.setInvalid();
5657 return true;
5658 }
5659
5660 return false;
5661}
5662
5663// Helper to get OffloadArch.
5665 if (!TI.getTriple().isNVPTX())
5666 llvm_unreachable("getOffloadArch is only valid for NVPTX triple");
5667 auto &TO = TI.getTargetOpts();
5668 return StringToOffloadArch(TO.CPU);
5669}
5670
5671// Checks whether an argument of launch_bounds attribute is
5672// acceptable, performs implicit conversion to Rvalue, and returns
5673// non-nullptr Expr result on success. Otherwise, it returns nullptr
5674// and may output an error.
5676 const CUDALaunchBoundsAttr &AL,
5677 const unsigned Idx) {
5679 return nullptr;
5680
5681 // Accept template arguments for now as they depend on something else.
5682 // We'll get to check them when they eventually get instantiated.
5683 if (E->isValueDependent())
5684 return E;
5685
5686 std::optional<llvm::APSInt> I = llvm::APSInt(64);
5687 if (!(I = E->getIntegerConstantExpr(S.Context))) {
5688 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5689 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5690 return nullptr;
5691 }
5692 // Make sure we can fit it in 32 bits.
5693 if (!I->isIntN(32)) {
5694 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5695 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5696 return nullptr;
5697 }
5698 if (*I < 0)
5699 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5700 << &AL << Idx << E->getSourceRange();
5701
5702 // We may need to perform implicit conversion of the argument.
5704 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5705 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5706 assert(!ValArg.isInvalid() &&
5707 "Unexpected PerformCopyInitialization() failure.");
5708
5709 return ValArg.getAs<Expr>();
5710}
5711
5712CUDALaunchBoundsAttr *
5714 Expr *MinBlocks, Expr *MaxBlocks) {
5715 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5716 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5717 if (!MaxThreads)
5718 return nullptr;
5719
5720 if (MinBlocks) {
5721 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5722 if (!MinBlocks)
5723 return nullptr;
5724 }
5725
5726 if (MaxBlocks) {
5727 // '.maxclusterrank' ptx directive requires .target sm_90 or higher.
5728 auto SM = getOffloadArch(Context.getTargetInfo());
5730 Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90)
5731 << OffloadArchToString(SM) << CI << MaxBlocks->getSourceRange();
5732 // Ignore it by setting MaxBlocks to null;
5733 MaxBlocks = nullptr;
5734 } else {
5735 MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2);
5736 if (!MaxBlocks)
5737 return nullptr;
5738 }
5739 }
5740
5741 return ::new (Context)
5742 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5743}
5744
5746 Expr *MaxThreads, Expr *MinBlocks,
5747 Expr *MaxBlocks) {
5748 if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks))
5749 D->addAttr(Attr);
5750}
5751
5752static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5753 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
5754 return;
5755
5756 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5757 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
5758 AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr);
5759}
5760
5761static std::pair<Expr *, int>
5762makeClusterDimsArgExpr(Sema &S, Expr *E, const CUDAClusterDimsAttr &AL,
5763 const unsigned Idx) {
5764 if (!E || S.DiagnoseUnexpandedParameterPack(E))
5765 return {};
5766
5767 // Accept template arguments for now as they depend on something else.
5768 // We'll get to check them when they eventually get instantiated.
5769 if (E->isInstantiationDependent())
5770 return {E, 1};
5771
5772 std::optional<llvm::APSInt> I = E->getIntegerConstantExpr(S.Context);
5773 if (!I) {
5774 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5775 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5776 return {};
5777 }
5778 // Make sure we can fit it in 4 bits.
5779 if (!I->isIntN(4)) {
5780 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5781 << toString(*I, 10, false) << 4 << /*Unsigned=*/1;
5782 return {};
5783 }
5784 if (*I < 0) {
5785 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5786 << &AL << Idx << E->getSourceRange();
5787 }
5788
5789 return {ConstantExpr::Create(S.getASTContext(), E, APValue(*I)),
5790 I->getZExtValue()};
5791}
5792
5794 Expr *X, Expr *Y, Expr *Z) {
5795 CUDAClusterDimsAttr TmpAttr(Context, CI, X, Y, Z);
5796
5797 auto [NewX, ValX] = makeClusterDimsArgExpr(*this, X, TmpAttr, /*Idx=*/0);
5798 auto [NewY, ValY] = makeClusterDimsArgExpr(*this, Y, TmpAttr, /*Idx=*/1);
5799 auto [NewZ, ValZ] = makeClusterDimsArgExpr(*this, Z, TmpAttr, /*Idx=*/2);
5800
5801 if (!NewX || (Y && !NewY) || (Z && !NewZ))
5802 return nullptr;
5803
5804 int FlatDim = ValX * ValY * ValZ;
5805 const llvm::Triple TT =
5806 (!Context.getLangOpts().CUDAIsDevice && Context.getAuxTargetInfo())
5807 ? Context.getAuxTargetInfo()->getTriple()
5808 : Context.getTargetInfo().getTriple();
5809 int MaxDim = 1;
5810 if (TT.isNVPTX())
5811 MaxDim = 8;
5812 else if (TT.isAMDGPU())
5813 MaxDim = 16;
5814 else
5815 return nullptr;
5816
5817 // A maximum of 8 thread blocks in a cluster is supported as a portable
5818 // cluster size in CUDA. The number is 16 for AMDGPU.
5819 if (FlatDim > MaxDim) {
5820 Diag(CI.getLoc(), diag::err_cluster_dims_too_large) << MaxDim << FlatDim;
5821 return nullptr;
5822 }
5823
5824 return CUDAClusterDimsAttr::Create(Context, NewX, NewY, NewZ, CI);
5825}
5826
5828 Expr *Y, Expr *Z) {
5829 if (auto *Attr = createClusterDimsAttr(CI, X, Y, Z))
5830 D->addAttr(Attr);
5831}
5832
5834 D->addAttr(CUDANoClusterAttr::Create(Context, CI));
5835}
5836
5837static void handleClusterDimsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5838 const TargetInfo &TTI = S.Context.getTargetInfo();
5840 if ((TTI.getTriple().isNVPTX() && Arch < clang::OffloadArch::SM_90) ||
5841 (TTI.getTriple().isAMDGPU() &&
5842 !TTI.hasFeatureEnabled(TTI.getTargetOpts().FeatureMap, "clusters"))) {
5843 S.Diag(AL.getLoc(), diag::err_cluster_attr_not_supported) << AL;
5844 return;
5845 }
5846
5847 if (!AL.checkAtLeastNumArgs(S, /*Num=*/1) ||
5848 !AL.checkAtMostNumArgs(S, /*Num=*/3))
5849 return;
5850
5851 S.addClusterDimsAttr(D, AL, AL.getArgAsExpr(0),
5852 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
5853 AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr);
5854}
5855
5856static void handleNoClusterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5857 const TargetInfo &TTI = S.Context.getTargetInfo();
5859 if ((TTI.getTriple().isNVPTX() && Arch < clang::OffloadArch::SM_90) ||
5860 (TTI.getTriple().isAMDGPU() &&
5861 !TTI.hasFeatureEnabled(TTI.getTargetOpts().FeatureMap, "clusters"))) {
5862 S.Diag(AL.getLoc(), diag::err_cluster_attr_not_supported) << AL;
5863 return;
5864 }
5865
5866 S.addNoClusterAttr(D, AL);
5867}
5868
5870 const ParsedAttr &AL) {
5871 if (!AL.isArgIdent(0)) {
5872 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5873 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5874 return;
5875 }
5876
5877 ParamIdx ArgumentIdx;
5879 D, AL, 2, AL.getArgAsExpr(1), ArgumentIdx,
5880 /*CanIndexImplicitThis=*/false,
5881 /*CanIndexVariadicArguments=*/true))
5882 return;
5883
5884 ParamIdx TypeTagIdx;
5886 D, AL, 3, AL.getArgAsExpr(2), TypeTagIdx,
5887 /*CanIndexImplicitThis=*/false,
5888 /*CanIndexVariadicArguments=*/true))
5889 return;
5890
5891 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5892 if (IsPointer) {
5893 // Ensure that buffer has a pointer type.
5894 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5895 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5896 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5897 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5898 }
5899
5900 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5901 S.Context, AL, AL.getArgAsIdent(0)->getIdentifierInfo(), ArgumentIdx,
5902 TypeTagIdx, IsPointer));
5903}
5904
5906 const ParsedAttr &AL) {
5907 if (!AL.isArgIdent(0)) {
5908 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5909 << AL << 1 << AANT_ArgumentIdentifier;
5910 return;
5911 }
5912
5913 if (!AL.checkExactlyNumArgs(S, 1))
5914 return;
5915
5916 if (!isa<VarDecl>(D)) {
5917 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5919 return;
5920 }
5921
5922 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->getIdentifierInfo();
5923 TypeSourceInfo *MatchingCTypeLoc = nullptr;
5924 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5925 assert(MatchingCTypeLoc && "no type source info for attribute argument");
5926
5927 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5928 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5929 AL.getMustBeNull()));
5930}
5931
5932static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5933 ParamIdx ArgCount;
5934
5936 ArgCount,
5937 true /* CanIndexImplicitThis */))
5938 return;
5939
5940 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5941 D->addAttr(::new (S.Context)
5942 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5943}
5944
5946 const ParsedAttr &AL) {
5947 if (S.Context.getTargetInfo().getTriple().isOSAIX()) {
5948 S.Diag(AL.getLoc(), diag::err_aix_attr_unsupported) << AL;
5949 return;
5950 }
5951 uint32_t Count = 0, Offset = 0;
5952 StringRef Section;
5953 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Count, 0, true))
5954 return;
5955 if (AL.getNumArgs() >= 2) {
5956 Expr *Arg = AL.getArgAsExpr(1);
5957 if (!S.checkUInt32Argument(AL, Arg, Offset, 1, true))
5958 return;
5959 if (Count < Offset) {
5960 S.Diag(S.getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5961 << &AL << 0 << Count << Arg->getBeginLoc();
5962 return;
5963 }
5964 }
5965 if (AL.getNumArgs() == 3) {
5966 SourceLocation LiteralLoc;
5967 if (!S.checkStringLiteralArgumentAttr(AL, 2, Section, &LiteralLoc))
5968 return;
5969 if (llvm::Error E = S.isValidSectionSpecifier(Section)) {
5970 S.Diag(LiteralLoc,
5971 diag::err_attribute_patchable_function_entry_invalid_section)
5972 << toString(std::move(E));
5973 return;
5974 }
5975 if (Section.empty()) {
5976 S.Diag(LiteralLoc,
5977 diag::err_attribute_patchable_function_entry_invalid_section)
5978 << "section must not be empty";
5979 return;
5980 }
5981 }
5982 D->addAttr(::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count,
5983 Offset, Section));
5984}
5985
5986static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5987 if (!AL.isArgIdent(0)) {
5988 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5989 << AL << 1 << AANT_ArgumentIdentifier;
5990 return;
5991 }
5992
5994 unsigned BuiltinID = Ident->getBuiltinID();
5995 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5996
5997 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5998 bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5999 bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
6000 bool IsSPIRV = S.Context.getTargetInfo().getTriple().isSPIRV();
6001 bool IsHLSL = S.Context.getLangOpts().HLSL;
6002 if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) ||
6003 (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) &&
6004 !S.ARM().CdeAliasValid(BuiltinID, AliasName)) ||
6005 (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) ||
6006 (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL && !IsSPIRV)) {
6007 S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
6008 return;
6009 }
6010
6011 D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
6012}
6013
6014static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6015 if (AL.isUsedAsTypeAttr())
6016 return;
6017
6018 if (auto *CRD = dyn_cast<CXXRecordDecl>(D);
6019 !CRD || !(CRD->isClass() || CRD->isStruct())) {
6020 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
6022 return;
6023 }
6024
6026}
6027
6028static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6029 if (!AL.hasParsedType()) {
6030 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
6031 return;
6032 }
6033
6034 TypeSourceInfo *ParmTSI = nullptr;
6035 QualType QT = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
6036 assert(ParmTSI && "no type source info for attribute argument");
6037 S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT,
6038 diag::err_incomplete_type);
6039
6040 D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI));
6041}
6042
6043//===----------------------------------------------------------------------===//
6044// Microsoft specific attribute handlers.
6045//===----------------------------------------------------------------------===//
6046
6048 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6049 if (const auto *UA = D->getAttr<UuidAttr>()) {
6050 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6051 return nullptr;
6052 if (!UA->getGuid().empty()) {
6053 Diag(UA->getLocation(), diag::err_mismatched_uuid);
6054 Diag(CI.getLoc(), diag::note_previous_uuid);
6055 D->dropAttr<UuidAttr>();
6056 }
6057 }
6058
6059 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6060}
6061
6062static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6063 if (!S.LangOpts.CPlusPlus) {
6064 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6065 << AL << AttributeLangSupport::C;
6066 return;
6067 }
6068
6069 StringRef OrigStrRef;
6070 SourceLocation LiteralLoc;
6071 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6072 return;
6073
6074 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6075 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6076 StringRef StrRef = OrigStrRef;
6077 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6078 StrRef = StrRef.drop_front().drop_back();
6079
6080 // Validate GUID length.
6081 if (StrRef.size() != 36) {
6082 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6083 return;
6084 }
6085
6086 for (unsigned i = 0; i < 36; ++i) {
6087 if (i == 8 || i == 13 || i == 18 || i == 23) {
6088 if (StrRef[i] != '-') {
6089 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6090 return;
6091 }
6092 } else if (!isHexDigit(StrRef[i])) {
6093 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6094 return;
6095 }
6096 }
6097
6098 // Convert to our parsed format and canonicalize.
6099 MSGuidDecl::Parts Parsed;
6100 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6101 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6102 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6103 for (unsigned i = 0; i != 8; ++i)
6104 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6105 .getAsInteger(16, Parsed.Part4And5[i]);
6106 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6107
6108 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6109 // the only thing in the [] list, the [] too), and add an insertion of
6110 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
6111 // separating attributes nor of the [ and the ] are in the AST.
6112 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6113 // on cfe-dev.
6114 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6115 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6116
6117 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6118 if (UA)
6119 D->addAttr(UA);
6120}
6121
6122static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6123 if (!S.LangOpts.CPlusPlus) {
6124 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6125 << AL << AttributeLangSupport::C;
6126 return;
6127 }
6128 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
6129 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
6130 if (IA) {
6131 D->addAttr(IA);
6133 }
6134}
6135
6136static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6137 const auto *VD = cast<VarDecl>(D);
6139 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
6140 return;
6141 }
6142 if (VD->getTSCSpec() != TSCS_unspecified) {
6143 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
6144 return;
6145 }
6146 if (VD->hasLocalStorage()) {
6147 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
6148 return;
6149 }
6150 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
6151}
6152
6153static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6155 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
6156 << AL << AL.getRange();
6157 return;
6158 }
6159 auto *FD = cast<FunctionDecl>(D);
6160 if (FD->isConstexprSpecified() || FD->isConsteval()) {
6161 S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied)
6162 << FD->isConsteval() << FD;
6163 return;
6164 }
6165 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6166 if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) {
6167 S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied)
6168 << /*virtual*/ 2 << MD;
6169 return;
6170 }
6171 }
6172 D->addAttr(::new (S.Context) MSConstexprAttr(S.Context, AL));
6173}
6174
6175static void handleMSStructAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6176 if (const auto *First = D->getAttr<GCCStructAttr>()) {
6177 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
6178 << AL << First << 0;
6179 S.Diag(First->getLocation(), diag::note_conflicting_attribute);
6180 return;
6181 }
6182 if (const auto *Preexisting = D->getAttr<MSStructAttr>()) {
6183 if (Preexisting->isImplicit())
6184 D->dropAttr<MSStructAttr>();
6185 }
6186
6187 D->addAttr(::new (S.Context) MSStructAttr(S.Context, AL));
6188}
6189
6190static void handleGCCStructAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6191 if (const auto *First = D->getAttr<MSStructAttr>()) {
6192 if (First->isImplicit()) {
6193 D->dropAttr<MSStructAttr>();
6194 } else {
6195 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
6196 << AL << First << 0;
6197 S.Diag(First->getLocation(), diag::note_conflicting_attribute);
6198 return;
6199 }
6200 }
6201
6202 D->addAttr(::new (S.Context) GCCStructAttr(S.Context, AL));
6203}
6204
6205static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6207 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6208 StringRef Tag;
6209 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
6210 return;
6211 Tags.push_back(Tag);
6212 }
6213
6214 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6215 if (!NS->isInline()) {
6216 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6217 return;
6218 }
6219 if (NS->isAnonymousNamespace()) {
6220 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6221 return;
6222 }
6223 if (AL.getNumArgs() == 0)
6224 Tags.push_back(NS->getName());
6225 } else if (!AL.checkAtLeastNumArgs(S, 1))
6226 return;
6227
6228 // Store tags sorted and without duplicates.
6229 llvm::sort(Tags);
6230 Tags.erase(llvm::unique(Tags), Tags.end());
6231
6232 D->addAttr(::new (S.Context)
6233 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6234}
6235
6236static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
6237 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
6238 if (I->getBTFDeclTag() == Tag)
6239 return true;
6240 }
6241 return false;
6242}
6243
6244static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6245 StringRef Str;
6246 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6247 return;
6248 if (hasBTFDeclTagAttr(D, Str))
6249 return;
6250
6251 D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
6252}
6253
6254BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
6255 if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
6256 return nullptr;
6257 return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
6258}
6259
6260static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6261 // Dispatch the interrupt attribute based on the current target.
6262 switch (S.Context.getTargetInfo().getTriple().getArch()) {
6263 case llvm::Triple::msp430:
6264 S.MSP430().handleInterruptAttr(D, AL);
6265 break;
6266 case llvm::Triple::mipsel:
6267 case llvm::Triple::mips:
6268 S.MIPS().handleInterruptAttr(D, AL);
6269 break;
6270 case llvm::Triple::m68k:
6271 S.M68k().handleInterruptAttr(D, AL);
6272 break;
6273 case llvm::Triple::x86:
6274 case llvm::Triple::x86_64:
6275 S.X86().handleAnyInterruptAttr(D, AL);
6276 break;
6277 case llvm::Triple::avr:
6278 S.AVR().handleInterruptAttr(D, AL);
6279 break;
6280 case llvm::Triple::riscv32:
6281 case llvm::Triple::riscv64:
6282 S.RISCV().handleInterruptAttr(D, AL);
6283 break;
6284 default:
6285 S.ARM().handleInterruptAttr(D, AL);
6286 break;
6287 }
6288}
6289
6290static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
6291 uint32_t Version;
6292 Expr *VersionExpr = AL.getArgAsExpr(0);
6293 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Version))
6294 return;
6295
6296 // TODO: Investigate what happens with the next major version of MSVC.
6297 if (Version != LangOptions::MSVC2015 / 100) {
6298 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6299 << AL << Version << VersionExpr->getSourceRange();
6300 return;
6301 }
6302
6303 // The attribute expects a "major" version number like 19, but new versions of
6304 // MSVC have moved to updating the "minor", or less significant numbers, so we
6305 // have to multiply by 100 now.
6306 Version *= 100;
6307
6308 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
6309}
6310
6312 const AttributeCommonInfo &CI) {
6313 if (D->hasAttr<DLLExportAttr>()) {
6314 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
6315 return nullptr;
6316 }
6317
6318 if (D->hasAttr<DLLImportAttr>())
6319 return nullptr;
6320
6321 return ::new (Context) DLLImportAttr(Context, CI);
6322}
6323
6325 const AttributeCommonInfo &CI) {
6326 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
6327 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
6328 D->dropAttr<DLLImportAttr>();
6329 }
6330
6331 if (D->hasAttr<DLLExportAttr>())
6332 return nullptr;
6333
6334 return ::new (Context) DLLExportAttr(Context, CI);
6335}
6336
6337static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6340 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
6341 return;
6342 }
6343
6344 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6345 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
6347 // MinGW doesn't allow dllimport on inline functions.
6348 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
6349 << A;
6350 return;
6351 }
6352 }
6353
6354 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
6356 MD->getParent()->isLambda()) {
6357 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
6358 return;
6359 }
6360 }
6361
6362 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
6363 ? (Attr *)S.mergeDLLExportAttr(D, A)
6364 : (Attr *)S.mergeDLLImportAttr(D, A);
6365 if (NewAttr)
6366 D->addAttr(NewAttr);
6367}
6368
6369MSInheritanceAttr *
6371 bool BestCase,
6372 MSInheritanceModel Model) {
6373 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
6374 if (IA->getInheritanceModel() == Model)
6375 return nullptr;
6376 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
6377 << 1 /*previous declaration*/;
6378 Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
6379 D->dropAttr<MSInheritanceAttr>();
6380 }
6381
6382 auto *RD = cast<CXXRecordDecl>(D);
6383 if (RD->hasDefinition()) {
6384 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
6385 Model)) {
6386 return nullptr;
6387 }
6388 } else {
6390 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6391 << 1 /*partial specialization*/;
6392 return nullptr;
6393 }
6394 if (RD->getDescribedClassTemplate()) {
6395 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6396 << 0 /*primary template*/;
6397 return nullptr;
6398 }
6399 }
6400
6401 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
6402}
6403
6404static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6405 // The capability attributes take a single string parameter for the name of
6406 // the capability they represent. The lockable attribute does not take any
6407 // parameters. However, semantically, both attributes represent the same
6408 // concept, and so they use the same semantic attribute. Eventually, the
6409 // lockable attribute will be removed.
6410 //
6411 // For backward compatibility, any capability which has no specified string
6412 // literal will be considered a "mutex."
6413 StringRef N("mutex");
6414 SourceLocation LiteralLoc;
6415 if (AL.getKind() == ParsedAttr::AT_Capability &&
6416 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
6417 return;
6418
6419 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
6420}
6421
6423 const ParsedAttr &AL) {
6424 // Do not permit 'reentrant_capability' without 'capability(..)'. Note that
6425 // the check here requires 'capability' to be before 'reentrant_capability'.
6426 // This helps enforce a canonical style. Also avoids placing an additional
6427 // branch into ProcessDeclAttributeList().
6428 if (!D->hasAttr<CapabilityAttr>()) {
6429 S.Diag(AL.getLoc(), diag::warn_thread_attribute_requires_preceded)
6430 << AL << cast<NamedDecl>(D) << "'capability'";
6431 return;
6432 }
6433
6434 D->addAttr(::new (S.Context) ReentrantCapabilityAttr(S.Context, AL));
6435}
6436
6437static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6439 if (!checkLockFunAttrCommon(S, D, AL, Args))
6440 return;
6441
6442 D->addAttr(::new (S.Context)
6443 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
6444}
6445
6447 const ParsedAttr &AL) {
6448 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6449 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6450 return;
6451
6453 if (!checkLockFunAttrCommon(S, D, AL, Args))
6454 return;
6455
6456 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
6457 Args.size()));
6458}
6459
6461 const ParsedAttr &AL) {
6463 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
6464 return;
6465
6466 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
6467 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
6468}
6469
6471 const ParsedAttr &AL) {
6472 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6473 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6474 return;
6475 // Check that all arguments are lockable objects.
6477 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
6478
6479 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
6480 Args.size()));
6481}
6482
6484 const ParsedAttr &AL) {
6485 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6486 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6487 return;
6488
6489 if (!AL.checkAtLeastNumArgs(S, 1))
6490 return;
6491
6492 // check that all arguments are lockable objects
6494 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
6495 if (Args.empty())
6496 return;
6497
6498 RequiresCapabilityAttr *RCA = ::new (S.Context)
6499 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
6500
6501 D->addAttr(RCA);
6502}
6503
6504static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6505 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
6506 if (NSD->isAnonymousNamespace()) {
6507 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
6508 // Do not want to attach the attribute to the namespace because that will
6509 // cause confusing diagnostic reports for uses of declarations within the
6510 // namespace.
6511 return;
6512 }
6515 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
6516 << AL;
6517 return;
6518 }
6519
6520 // Handle the cases where the attribute has a text message.
6521 StringRef Str, Replacement;
6522 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
6523 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
6524 return;
6525
6526 // Support a single optional message only for Declspec and [[]] spellings.
6528 AL.checkAtMostNumArgs(S, 1);
6529 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
6530 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
6531 return;
6532
6533 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
6534 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
6535
6536 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
6537}
6538
6539static bool isGlobalVar(const Decl *D) {
6540 if (const auto *S = dyn_cast<VarDecl>(D))
6541 return S->hasGlobalStorage();
6542 return false;
6543}
6544
6545static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) {
6546 return Sanitizer == "address" || Sanitizer == "hwaddress" ||
6547 Sanitizer == "memtag";
6548}
6549
6550static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6551 if (!AL.checkAtLeastNumArgs(S, 1))
6552 return;
6553
6554 std::vector<StringRef> Sanitizers;
6555
6556 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6557 StringRef SanitizerName;
6558 SourceLocation LiteralLoc;
6559
6560 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
6561 return;
6562
6563 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
6564 SanitizerMask() &&
6565 SanitizerName != "coverage")
6566 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
6567 else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName))
6568 S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global)
6569 << AL << SanitizerName;
6570 Sanitizers.push_back(SanitizerName);
6571 }
6572
6573 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
6574 Sanitizers.size()));
6575}
6576
6578getNoSanitizeAttrInfo(const ParsedAttr &NoSanitizeSpecificAttr) {
6579 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
6580 // NoSanitizeAttr object; but we need to calculate the correct spelling list
6581 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
6582 // has the same spellings as the index for NoSanitizeAttr. We don't have a
6583 // general way to "translate" between the two, so this hack attempts to work
6584 // around the issue with hard-coded indices. This is critical for calling
6585 // getSpelling() or prettyPrint() on the resulting semantic attribute object
6586 // without failing assertions.
6587 unsigned TranslatedSpellingIndex = 0;
6588 if (NoSanitizeSpecificAttr.isStandardAttributeSyntax())
6589 TranslatedSpellingIndex = 1;
6590
6591 AttributeCommonInfo Info = NoSanitizeSpecificAttr;
6592 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
6593 return Info;
6594}
6595
6597 const ParsedAttr &AL) {
6598 StringRef SanitizerName = "address";
6600 D->addAttr(::new (S.Context)
6601 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6602}
6603
6604static void handleNoSanitizeThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6605 StringRef SanitizerName = "thread";
6607 D->addAttr(::new (S.Context)
6608 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6609}
6610
6611static void handleNoSanitizeMemoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6612 StringRef SanitizerName = "memory";
6614 D->addAttr(::new (S.Context)
6615 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6616}
6617
6618static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6619 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
6620 D->addAttr(Internal);
6621}
6622
6623static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6624 // Check that the argument is a string literal.
6625 StringRef KindStr;
6626 SourceLocation LiteralLoc;
6627 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
6628 return;
6629
6630 ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind;
6631 if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) {
6632 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
6633 << AL << KindStr;
6634 return;
6635 }
6636
6637 D->dropAttr<ZeroCallUsedRegsAttr>();
6638 D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL));
6639}
6640
6641static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) {
6642 auto *FD = dyn_cast<FieldDecl>(D);
6643 assert(FD);
6644
6645 auto *CountExpr = AL.getArgAsExpr(0);
6646 if (!CountExpr)
6647 return;
6648
6649 bool CountInBytes;
6650 bool OrNull;
6651 switch (AL.getKind()) {
6652 case ParsedAttr::AT_CountedBy:
6653 CountInBytes = false;
6654 OrNull = false;
6655 break;
6656 case ParsedAttr::AT_CountedByOrNull:
6657 CountInBytes = false;
6658 OrNull = true;
6659 break;
6660 case ParsedAttr::AT_SizedBy:
6661 CountInBytes = true;
6662 OrNull = false;
6663 break;
6664 case ParsedAttr::AT_SizedByOrNull:
6665 CountInBytes = true;
6666 OrNull = true;
6667 break;
6668 default:
6669 llvm_unreachable("unexpected counted_by family attribute");
6670 }
6671
6672 if (S.CheckCountedByAttrOnField(FD, CountExpr, CountInBytes, OrNull))
6673 return;
6674
6676 FD->getType(), CountExpr, CountInBytes, OrNull);
6677 FD->setType(CAT);
6678}
6679
6681 const ParsedAttr &AL) {
6682 StringRef KindStr;
6683 SourceLocation LiteralLoc;
6684 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
6685 return;
6686
6687 FunctionReturnThunksAttr::Kind Kind;
6688 if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) {
6689 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
6690 << AL << KindStr;
6691 return;
6692 }
6693 // FIXME: it would be good to better handle attribute merging rather than
6694 // silently replacing the existing attribute, so long as it does not break
6695 // the expected codegen tests.
6696 D->dropAttr<FunctionReturnThunksAttr>();
6697 D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL));
6698}
6699
6701 const ParsedAttr &AL) {
6702 assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef");
6704}
6705
6706static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6707 auto *VDecl = dyn_cast<VarDecl>(D);
6708 if (VDecl && !VDecl->isFunctionPointerType()) {
6709 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer)
6710 << AL << VDecl;
6711 return;
6712 }
6713 D->addAttr(NoMergeAttr::Create(S.Context, AL));
6714}
6715
6716static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6717 D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL));
6718}
6719
6720static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6721 if (!cast<VarDecl>(D)->hasGlobalStorage()) {
6722 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
6723 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
6724 return;
6725 }
6726
6727 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
6729 else
6731}
6732
6733static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6734 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
6735 "uninitialized is only valid on automatic duration variables");
6736 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
6737}
6738
6739static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6740 // Check that the return type is a `typedef int kern_return_t` or a typedef
6741 // around it, because otherwise MIG convention checks make no sense.
6742 // BlockDecl doesn't store a return type, so it's annoying to check,
6743 // so let's skip it for now.
6744 if (!isa<BlockDecl>(D)) {
6746 bool IsKernReturnT = false;
6747 while (const auto *TT = T->getAs<TypedefType>()) {
6748 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
6749 T = TT->desugar();
6750 }
6751 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
6752 S.Diag(D->getBeginLoc(),
6753 diag::warn_mig_server_routine_does_not_return_kern_return_t);
6754 return;
6755 }
6756 }
6757
6759}
6760
6761static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6762 // Warn if the return type is not a pointer or reference type.
6763 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6764 QualType RetTy = FD->getReturnType();
6765 if (!RetTy->isPointerOrReferenceType()) {
6766 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
6767 << AL.getRange() << RetTy;
6768 return;
6769 }
6770 }
6771
6773}
6774
6775static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6776 if (AL.isUsedAsTypeAttr())
6777 return;
6778 // Warn if the parameter is definitely not an output parameter.
6779 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6780 if (PVD->getType()->isIntegerType()) {
6781 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
6782 << AL.getRange();
6783 return;
6784 }
6785 }
6786 StringRef Argument;
6787 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6788 return;
6789 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
6790}
6791
6792template<typename Attr>
6793static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6794 StringRef Argument;
6795 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6796 return;
6797 D->addAttr(Attr::Create(S.Context, Argument, AL));
6798}
6799
6800template<typename Attr>
6801static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) {
6802 D->addAttr(Attr::Create(S.Context, AL));
6803}
6804
6805static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6806 // The guard attribute takes a single identifier argument.
6807
6808 if (!AL.isArgIdent(0)) {
6809 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6810 << AL << AANT_ArgumentIdentifier;
6811 return;
6812 }
6813
6814 CFGuardAttr::GuardArg Arg;
6816 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
6817 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6818 return;
6819 }
6820
6821 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
6822}
6823
6824
6825template <typename AttrTy>
6826static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
6827 auto Attrs = D->specific_attrs<AttrTy>();
6828 auto I = llvm::find_if(Attrs,
6829 [Name](const AttrTy *A) {
6830 return A->getTCBName() == Name;
6831 });
6832 return I == Attrs.end() ? nullptr : *I;
6833}
6834
6835template <typename AttrTy, typename ConflictingAttrTy>
6836static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6837 StringRef Argument;
6838 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6839 return;
6840
6841 // A function cannot be have both regular and leaf membership in the same TCB.
6842 if (const ConflictingAttrTy *ConflictingAttr =
6844 // We could attach a note to the other attribute but in this case
6845 // there's no need given how the two are very close to each other.
6846 S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
6847 << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
6848 << Argument;
6849
6850 // Error recovery: drop the non-leaf attribute so that to suppress
6851 // all future warnings caused by erroneous attributes. The leaf attribute
6852 // needs to be kept because it can only suppresses warnings, not cause them.
6853 D->dropAttr<EnforceTCBAttr>();
6854 return;
6855 }
6856
6857 D->addAttr(AttrTy::Create(S.Context, Argument, AL));
6858}
6859
6860template <typename AttrTy, typename ConflictingAttrTy>
6861static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
6862 // Check if the new redeclaration has different leaf-ness in the same TCB.
6863 StringRef TCBName = AL.getTCBName();
6864 if (const ConflictingAttrTy *ConflictingAttr =
6866 S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
6867 << ConflictingAttr->getAttrName()->getName()
6868 << AL.getAttrName()->getName() << TCBName;
6869
6870 // Add a note so that the user could easily find the conflicting attribute.
6871 S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
6872
6873 // More error recovery.
6874 D->dropAttr<EnforceTCBAttr>();
6875 return nullptr;
6876 }
6877
6878 ASTContext &Context = S.getASTContext();
6879 return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
6880}
6881
6882EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
6884 *this, D, AL);
6885}
6886
6888 Decl *D, const EnforceTCBLeafAttr &AL) {
6890 *this, D, AL);
6891}
6892
6894 const ParsedAttr &AL) {
6896 const uint32_t NumArgs = AL.getNumArgs();
6897 if (NumArgs > 4) {
6898 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4;
6899 AL.setInvalid();
6900 }
6901
6902 if (NumArgs == 0) {
6903 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL;
6904 AL.setInvalid();
6905 return;
6906 }
6907
6908 if (D->getAttr<VTablePointerAuthenticationAttr>()) {
6909 S.Diag(AL.getLoc(), diag::err_duplicated_vtable_pointer_auth) << Decl;
6910 AL.setInvalid();
6911 }
6912
6913 auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey;
6914 if (AL.isArgIdent(0)) {
6915 IdentifierLoc *IL = AL.getArgAsIdent(0);
6916 if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType(
6917 IL->getIdentifierInfo()->getName(), KeyType)) {
6918 S.Diag(IL->getLoc(), diag::err_invalid_authentication_key)
6919 << IL->getIdentifierInfo();
6920 AL.setInvalid();
6921 }
6922 if (KeyType == VTablePointerAuthenticationAttr::DefaultKey &&
6923 !S.getLangOpts().PointerAuthCalls) {
6924 S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 0;
6925 AL.setInvalid();
6926 }
6927 } else {
6928 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6929 << AL << AANT_ArgumentIdentifier;
6930 return;
6931 }
6932
6933 auto AddressDiversityMode = VTablePointerAuthenticationAttr::
6934 AddressDiscriminationMode::DefaultAddressDiscrimination;
6935 if (AL.getNumArgs() > 1) {
6936 if (AL.isArgIdent(1)) {
6937 IdentifierLoc *IL = AL.getArgAsIdent(1);
6938 if (!VTablePointerAuthenticationAttr::
6939 ConvertStrToAddressDiscriminationMode(
6940 IL->getIdentifierInfo()->getName(), AddressDiversityMode)) {
6941 S.Diag(IL->getLoc(), diag::err_invalid_address_discrimination)
6942 << IL->getIdentifierInfo();
6943 AL.setInvalid();
6944 }
6945 if (AddressDiversityMode ==
6946 VTablePointerAuthenticationAttr::DefaultAddressDiscrimination &&
6947 !S.getLangOpts().PointerAuthCalls) {
6948 S.Diag(IL->getLoc(), diag::err_no_default_vtable_pointer_auth) << 1;
6949 AL.setInvalid();
6950 }
6951 } else {
6952 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6953 << AL << AANT_ArgumentIdentifier;
6954 }
6955 }
6956
6957 auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination::
6958 DefaultExtraDiscrimination;
6959 if (AL.getNumArgs() > 2) {
6960 if (AL.isArgIdent(2)) {
6961 IdentifierLoc *IL = AL.getArgAsIdent(2);
6962 if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination(
6963 IL->getIdentifierInfo()->getName(), ED)) {
6964 S.Diag(IL->getLoc(), diag::err_invalid_extra_discrimination)
6965 << IL->getIdentifierInfo();
6966 AL.setInvalid();
6967 }
6968 if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination &&
6969 !S.getLangOpts().PointerAuthCalls) {
6970 S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 2;
6971 AL.setInvalid();
6972 }
6973 } else {
6974 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6975 << AL << AANT_ArgumentIdentifier;
6976 }
6977 }
6978
6979 uint32_t CustomDiscriminationValue = 0;
6980 if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) {
6981 if (NumArgs < 4) {
6982 S.Diag(AL.getLoc(), diag::err_missing_custom_discrimination) << AL << 4;
6983 AL.setInvalid();
6984 return;
6985 }
6986 if (NumArgs > 4) {
6987 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4;
6988 AL.setInvalid();
6989 }
6990
6991 if (!AL.isArgExpr(3) || !S.checkUInt32Argument(AL, AL.getArgAsExpr(3),
6992 CustomDiscriminationValue)) {
6993 S.Diag(AL.getLoc(), diag::err_invalid_custom_discrimination);
6994 AL.setInvalid();
6995 }
6996 } else if (NumArgs > 3) {
6997 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 3;
6998 AL.setInvalid();
6999 }
7000
7001 Decl->addAttr(::new (S.Context) VTablePointerAuthenticationAttr(
7002 S.Context, AL, KeyType, AddressDiversityMode, ED,
7003 CustomDiscriminationValue));
7004}
7005
7006static bool modularFormatAttrsEquiv(const ModularFormatAttr *Existing,
7007 IdentifierInfo *ModularImplFn,
7008 StringRef ImplName,
7009 ArrayRef<StringRef> Aspects) {
7010 return Existing->getModularImplFn() == ModularImplFn &&
7011 Existing->getImplName() == ImplName &&
7012 Existing->aspects_size() == Aspects.size() &&
7013 llvm::equal(Existing->aspects(), Aspects);
7014}
7015
7016ModularFormatAttr *
7018 IdentifierInfo *ModularImplFn, StringRef ImplName,
7020 if (const auto *Existing = D->getAttr<ModularFormatAttr>()) {
7021 if (!modularFormatAttrsEquiv(Existing, ModularImplFn, ImplName, Aspects)) {
7022 Diag(Existing->getLocation(), diag::err_duplicate_attribute) << *Existing;
7023 Diag(CI.getLoc(), diag::note_conflicting_attribute);
7024 }
7025 return nullptr;
7026 }
7027 return ::new (Context) ModularFormatAttr(Context, CI, ModularImplFn, ImplName,
7028 Aspects.data(), Aspects.size());
7029}
7030
7031static void handleModularFormat(Sema &S, Decl *D, const ParsedAttr &AL) {
7032 bool Valid = true;
7033 StringRef ImplName;
7034 if (!S.checkStringLiteralArgumentAttr(AL, 1, ImplName))
7035 Valid = false;
7036 SmallVector<StringRef> Aspects;
7037 llvm::DenseSet<StringRef> SeenAspects;
7038 for (unsigned I = 2, E = AL.getNumArgs(); I != E; ++I) {
7039 StringRef Aspect;
7040 if (!S.checkStringLiteralArgumentAttr(AL, I, Aspect))
7041 return;
7042 if (!SeenAspects.insert(Aspect).second) {
7043 S.Diag(AL.getArgAsExpr(I)->getExprLoc(),
7044 diag::err_modular_format_duplicate_aspect)
7045 << Aspect;
7046 Valid = false;
7047 continue;
7048 }
7049 Aspects.push_back(Aspect);
7050 }
7051 if (!Valid)
7052 return;
7053
7054 // Store aspects sorted.
7055 llvm::sort(Aspects);
7056 IdentifierInfo *ModularImplFn = AL.getArgAsIdent(0)->getIdentifierInfo();
7057
7058 if (const auto *Existing = D->getAttr<ModularFormatAttr>()) {
7059 if (!modularFormatAttrsEquiv(Existing, ModularImplFn, ImplName, Aspects)) {
7060 S.Diag(AL.getLoc(), diag::err_duplicate_attribute) << *Existing;
7061 S.Diag(Existing->getLoc(), diag::note_conflicting_attribute);
7062 }
7063 // Ignore the later declaration in favor of the earlier one.
7064 return;
7065 }
7066
7067 D->addAttr(::new (S.Context) ModularFormatAttr(
7068 S.Context, AL, ModularImplFn, ImplName, Aspects.data(), Aspects.size()));
7069}
7070
7071//===----------------------------------------------------------------------===//
7072// Top Level Sema Entry Points
7073//===----------------------------------------------------------------------===//
7074
7075// Returns true if the attribute must delay setting its arguments until after
7076// template instantiation, and false otherwise.
7078 // Only attributes that accept expression parameter packs can delay arguments.
7079 if (!AL.acceptsExprPack())
7080 return false;
7081
7082 bool AttrHasVariadicArg = AL.hasVariadicArg();
7083 unsigned AttrNumArgs = AL.getNumArgMembers();
7084 for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) {
7085 bool IsLastAttrArg = I == (AttrNumArgs - 1);
7086 // If the argument is the last argument and it is variadic it can contain
7087 // any expression.
7088 if (IsLastAttrArg && AttrHasVariadicArg)
7089 return false;
7090 Expr *E = AL.getArgAsExpr(I);
7091 bool ArgMemberCanHoldExpr = AL.isParamExpr(I);
7092 // If the expression is a pack expansion then arguments must be delayed
7093 // unless the argument is an expression and it is the last argument of the
7094 // attribute.
7096 return !(IsLastAttrArg && ArgMemberCanHoldExpr);
7097 // Last case is if the expression is value dependent then it must delay
7098 // arguments unless the corresponding argument is able to hold the
7099 // expression.
7100 if (E->isValueDependent() && !ArgMemberCanHoldExpr)
7101 return true;
7102 }
7103 return false;
7104}
7105
7106/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
7107/// the attribute applies to decls. If the attribute is a type attribute, just
7108/// silently ignore it if a GNU attribute.
7109static void
7111 const Sema::ProcessDeclAttributeOptions &Options) {
7113 return;
7114
7115 // Ignore C++11 attributes on declarator chunks: they appertain to the type
7116 // instead. Note, isCXX11Attribute() will look at whether the attribute is
7117 // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is
7118 // important for ensuring that alignas in C23 is properly handled on a
7119 // structure member declaration because it is a type-specifier-qualifier in
7120 // C but still applies to the declaration rather than the type.
7121 if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute()
7122 : AL.isC23Attribute()) &&
7123 !Options.IncludeCXX11Attributes)
7124 return;
7125
7126 // Unknown attributes are automatically warned on. Target-specific attributes
7127 // which do not apply to the current target architecture are treated as
7128 // though they were unknown attributes.
7131 if (AL.isRegularKeywordAttribute()) {
7132 S.Diag(AL.getLoc(), diag::err_keyword_not_supported_on_target)
7133 << AL.getAttrName() << AL.getRange();
7134 } else if (AL.isDeclspecAttribute()) {
7135 S.Diag(AL.getLoc(), diag::warn_unhandled_ms_attribute_ignored)
7136 << AL.getAttrName() << AL.getRange();
7137 } else {
7139 }
7140 return;
7141 }
7142
7143 // Check if argument population must delayed to after template instantiation.
7144 bool MustDelayArgs = MustDelayAttributeArguments(AL);
7145
7146 // Argument number check must be skipped if arguments are delayed.
7147 if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs))
7148 return;
7149
7150 if (MustDelayArgs) {
7152 return;
7153 }
7154
7155 switch (AL.getKind()) {
7156 default:
7158 break;
7159 if (!AL.isStmtAttr()) {
7160 assert(AL.isTypeAttr() && "Non-type attribute not handled");
7161 }
7162 if (AL.isTypeAttr()) {
7163 if (Options.IgnoreTypeAttributes)
7164 break;
7166 // Non-[[]] type attributes are handled in processTypeAttrs(); silently
7167 // move on.
7168 break;
7169 }
7170
7171 // According to the C and C++ standards, we should never see a
7172 // [[]] type attribute on a declaration. However, we have in the past
7173 // allowed some type attributes to "slide" to the `DeclSpec`, so we need
7174 // to continue to support this legacy behavior. We only do this, however,
7175 // if
7176 // - we actually have a `DeclSpec`, i.e. if we're looking at a
7177 // `DeclaratorDecl`, or
7178 // - we are looking at an alias-declaration, where historically we have
7179 // allowed type attributes after the identifier to slide to the type.
7182 // Suggest moving the attribute to the type instead, but only for our
7183 // own vendor attributes; moving other vendors' attributes might hurt
7184 // portability.
7185 if (AL.isClangScope()) {
7186 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
7187 << AL << D->getLocation();
7188 }
7189
7190 // Allow this type attribute to be handled in processTypeAttrs();
7191 // silently move on.
7192 break;
7193 }
7194
7195 if (AL.getKind() == ParsedAttr::AT_Regparm) {
7196 // `regparm` is a special case: It's a type attribute but we still want
7197 // to treat it as if it had been written on the declaration because that
7198 // way we'll be able to handle it directly in `processTypeAttr()`.
7199 // If we treated `regparm` it as if it had been written on the
7200 // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()`
7201 // would try to move it to the declarator, but that doesn't work: We
7202 // can't remove the attribute from the list of declaration attributes
7203 // because it might be needed by other declarators in the same
7204 // declaration.
7205 break;
7206 }
7207
7208 if (AL.getKind() == ParsedAttr::AT_VectorSize) {
7209 // `vector_size` is a special case: It's a type attribute semantically,
7210 // but GCC expects the [[]] syntax to be written on the declaration (and
7211 // warns that the attribute has no effect if it is placed on the
7212 // decl-specifier-seq).
7213 // Silently move on and allow the attribute to be handled in
7214 // processTypeAttr().
7215 break;
7216 }
7217
7218 if (AL.getKind() == ParsedAttr::AT_NoDeref) {
7219 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
7220 // See https://github.com/llvm/llvm-project/issues/55790 for details.
7221 // We allow processTypeAttrs() to emit a warning and silently move on.
7222 break;
7223 }
7224 }
7225 // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
7226 // statement attribute is not written on a declaration, but this code is
7227 // needed for type attributes as well as statement attributes in Attr.td
7228 // that do not list any subjects.
7229 S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)
7230 << AL << AL.isRegularKeywordAttribute() << D->getLocation();
7231 break;
7232 case ParsedAttr::AT_Interrupt:
7233 handleInterruptAttr(S, D, AL);
7234 break;
7235 case ParsedAttr::AT_ARMInterruptSaveFP:
7236 S.ARM().handleInterruptSaveFPAttr(D, AL);
7237 break;
7238 case ParsedAttr::AT_X86ForceAlignArgPointer:
7240 break;
7241 case ParsedAttr::AT_ReadOnlyPlacement:
7243 break;
7244 case ParsedAttr::AT_DLLExport:
7245 case ParsedAttr::AT_DLLImport:
7246 handleDLLAttr(S, D, AL);
7247 break;
7248 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
7250 break;
7251 case ParsedAttr::AT_AMDGPUWavesPerEU:
7253 break;
7254 case ParsedAttr::AT_AMDGPUNumSGPR:
7256 break;
7257 case ParsedAttr::AT_AMDGPUNumVGPR:
7259 break;
7260 case ParsedAttr::AT_AMDGPUMaxNumWorkGroups:
7262 break;
7263 case ParsedAttr::AT_AVRSignal:
7264 S.AVR().handleSignalAttr(D, AL);
7265 break;
7266 case ParsedAttr::AT_BPFPreserveAccessIndex:
7268 break;
7269 case ParsedAttr::AT_BPFPreserveStaticOffset:
7271 break;
7272 case ParsedAttr::AT_BTFDeclTag:
7273 handleBTFDeclTagAttr(S, D, AL);
7274 break;
7275 case ParsedAttr::AT_WebAssemblyExportName:
7277 break;
7278 case ParsedAttr::AT_WebAssemblyImportModule:
7280 break;
7281 case ParsedAttr::AT_WebAssemblyImportName:
7283 break;
7284 case ParsedAttr::AT_IBOutlet:
7285 S.ObjC().handleIBOutlet(D, AL);
7286 break;
7287 case ParsedAttr::AT_IBOutletCollection:
7288 S.ObjC().handleIBOutletCollection(D, AL);
7289 break;
7290 case ParsedAttr::AT_IFunc:
7291 handleIFuncAttr(S, D, AL);
7292 break;
7293 case ParsedAttr::AT_Alias:
7294 handleAliasAttr(S, D, AL);
7295 break;
7296 case ParsedAttr::AT_Aligned:
7297 handleAlignedAttr(S, D, AL);
7298 break;
7299 case ParsedAttr::AT_AlignValue:
7300 handleAlignValueAttr(S, D, AL);
7301 break;
7302 case ParsedAttr::AT_AllocSize:
7303 handleAllocSizeAttr(S, D, AL);
7304 break;
7305 case ParsedAttr::AT_AlwaysInline:
7306 handleAlwaysInlineAttr(S, D, AL);
7307 break;
7308 case ParsedAttr::AT_AnalyzerNoReturn:
7310 break;
7311 case ParsedAttr::AT_TLSModel:
7312 handleTLSModelAttr(S, D, AL);
7313 break;
7314 case ParsedAttr::AT_Annotate:
7315 handleAnnotateAttr(S, D, AL);
7316 break;
7317 case ParsedAttr::AT_Availability:
7318 handleAvailabilityAttr(S, D, AL);
7319 break;
7320 case ParsedAttr::AT_CarriesDependency:
7321 handleDependencyAttr(S, scope, D, AL);
7322 break;
7323 case ParsedAttr::AT_CPUDispatch:
7324 case ParsedAttr::AT_CPUSpecific:
7325 handleCPUSpecificAttr(S, D, AL);
7326 break;
7327 case ParsedAttr::AT_Common:
7328 handleCommonAttr(S, D, AL);
7329 break;
7330 case ParsedAttr::AT_CUDAConstant:
7331 handleConstantAttr(S, D, AL);
7332 break;
7333 case ParsedAttr::AT_PassObjectSize:
7334 handlePassObjectSizeAttr(S, D, AL);
7335 break;
7336 case ParsedAttr::AT_Constructor:
7337 handleConstructorAttr(S, D, AL);
7338 break;
7339 case ParsedAttr::AT_Deprecated:
7340 handleDeprecatedAttr(S, D, AL);
7341 break;
7342 case ParsedAttr::AT_Destructor:
7343 handleDestructorAttr(S, D, AL);
7344 break;
7345 case ParsedAttr::AT_EnableIf:
7346 handleEnableIfAttr(S, D, AL);
7347 break;
7348 case ParsedAttr::AT_Error:
7349 handleErrorAttr(S, D, AL);
7350 break;
7351 case ParsedAttr::AT_ExcludeFromExplicitInstantiation:
7353 break;
7354 case ParsedAttr::AT_DiagnoseIf:
7355 handleDiagnoseIfAttr(S, D, AL);
7356 break;
7357 case ParsedAttr::AT_DiagnoseAsBuiltin:
7359 break;
7360 case ParsedAttr::AT_NoBuiltin:
7361 handleNoBuiltinAttr(S, D, AL);
7362 break;
7363 case ParsedAttr::AT_CFIUncheckedCallee:
7365 break;
7366 case ParsedAttr::AT_ExtVectorType:
7367 handleExtVectorTypeAttr(S, D, AL);
7368 break;
7369 case ParsedAttr::AT_ExternalSourceSymbol:
7371 break;
7372 case ParsedAttr::AT_MinSize:
7373 handleMinSizeAttr(S, D, AL);
7374 break;
7375 case ParsedAttr::AT_OptimizeNone:
7376 handleOptimizeNoneAttr(S, D, AL);
7377 break;
7378 case ParsedAttr::AT_EnumExtensibility:
7380 break;
7381 case ParsedAttr::AT_SYCLKernel:
7382 S.SYCL().handleKernelAttr(D, AL);
7383 break;
7384 case ParsedAttr::AT_SYCLExternal:
7386 break;
7387 case ParsedAttr::AT_SYCLKernelEntryPoint:
7389 break;
7390 case ParsedAttr::AT_SYCLSpecialClass:
7392 break;
7393 case ParsedAttr::AT_Format:
7394 handleFormatAttr(S, D, AL);
7395 break;
7396 case ParsedAttr::AT_FormatMatches:
7397 handleFormatMatchesAttr(S, D, AL);
7398 break;
7399 case ParsedAttr::AT_FormatArg:
7400 handleFormatArgAttr(S, D, AL);
7401 break;
7402 case ParsedAttr::AT_Callback:
7403 handleCallbackAttr(S, D, AL);
7404 break;
7405 case ParsedAttr::AT_LifetimeCaptureBy:
7407 break;
7408 case ParsedAttr::AT_CalledOnce:
7409 handleCalledOnceAttr(S, D, AL);
7410 break;
7411 case ParsedAttr::AT_CUDAGlobal:
7412 handleGlobalAttr(S, D, AL);
7413 break;
7414 case ParsedAttr::AT_CUDADevice:
7415 handleDeviceAttr(S, D, AL);
7416 break;
7417 case ParsedAttr::AT_CUDAGridConstant:
7418 handleGridConstantAttr(S, D, AL);
7419 break;
7420 case ParsedAttr::AT_HIPManaged:
7421 handleManagedAttr(S, D, AL);
7422 break;
7423 case ParsedAttr::AT_GNUInline:
7424 handleGNUInlineAttr(S, D, AL);
7425 break;
7426 case ParsedAttr::AT_CUDALaunchBounds:
7427 handleLaunchBoundsAttr(S, D, AL);
7428 break;
7429 case ParsedAttr::AT_CUDAClusterDims:
7430 handleClusterDimsAttr(S, D, AL);
7431 break;
7432 case ParsedAttr::AT_CUDANoCluster:
7433 handleNoClusterAttr(S, D, AL);
7434 break;
7435 case ParsedAttr::AT_Restrict:
7436 handleRestrictAttr(S, D, AL);
7437 break;
7438 case ParsedAttr::AT_MallocSpan:
7439 handleMallocSpanAttr(S, D, AL);
7440 break;
7441 case ParsedAttr::AT_Mode:
7442 handleModeAttr(S, D, AL);
7443 break;
7444 case ParsedAttr::AT_NonString:
7445 handleNonStringAttr(S, D, AL);
7446 break;
7447 case ParsedAttr::AT_NonNull:
7448 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
7449 handleNonNullAttrParameter(S, PVD, AL);
7450 else
7451 handleNonNullAttr(S, D, AL);
7452 break;
7453 case ParsedAttr::AT_ReturnsNonNull:
7454 handleReturnsNonNullAttr(S, D, AL);
7455 break;
7456 case ParsedAttr::AT_NoEscape:
7457 handleNoEscapeAttr(S, D, AL);
7458 break;
7459 case ParsedAttr::AT_MaybeUndef:
7461 break;
7462 case ParsedAttr::AT_AssumeAligned:
7463 handleAssumeAlignedAttr(S, D, AL);
7464 break;
7465 case ParsedAttr::AT_AllocAlign:
7466 handleAllocAlignAttr(S, D, AL);
7467 break;
7468 case ParsedAttr::AT_Ownership:
7469 handleOwnershipAttr(S, D, AL);
7470 break;
7471 case ParsedAttr::AT_Naked:
7472 handleNakedAttr(S, D, AL);
7473 break;
7474 case ParsedAttr::AT_NoReturn:
7475 handleNoReturnAttr(S, D, AL);
7476 break;
7477 case ParsedAttr::AT_CXX11NoReturn:
7479 break;
7480 case ParsedAttr::AT_AnyX86NoCfCheck:
7481 handleNoCfCheckAttr(S, D, AL);
7482 break;
7483 case ParsedAttr::AT_NoThrow:
7484 if (!AL.isUsedAsTypeAttr())
7486 break;
7487 case ParsedAttr::AT_CUDAShared:
7488 handleSharedAttr(S, D, AL);
7489 break;
7490 case ParsedAttr::AT_VecReturn:
7491 handleVecReturnAttr(S, D, AL);
7492 break;
7493 case ParsedAttr::AT_ObjCOwnership:
7494 S.ObjC().handleOwnershipAttr(D, AL);
7495 break;
7496 case ParsedAttr::AT_ObjCPreciseLifetime:
7498 break;
7499 case ParsedAttr::AT_ObjCReturnsInnerPointer:
7501 break;
7502 case ParsedAttr::AT_ObjCRequiresSuper:
7503 S.ObjC().handleRequiresSuperAttr(D, AL);
7504 break;
7505 case ParsedAttr::AT_ObjCBridge:
7506 S.ObjC().handleBridgeAttr(D, AL);
7507 break;
7508 case ParsedAttr::AT_ObjCBridgeMutable:
7509 S.ObjC().handleBridgeMutableAttr(D, AL);
7510 break;
7511 case ParsedAttr::AT_ObjCBridgeRelated:
7512 S.ObjC().handleBridgeRelatedAttr(D, AL);
7513 break;
7514 case ParsedAttr::AT_ObjCDesignatedInitializer:
7516 break;
7517 case ParsedAttr::AT_ObjCRuntimeName:
7518 S.ObjC().handleRuntimeName(D, AL);
7519 break;
7520 case ParsedAttr::AT_ObjCBoxable:
7521 S.ObjC().handleBoxable(D, AL);
7522 break;
7523 case ParsedAttr::AT_NSErrorDomain:
7524 S.ObjC().handleNSErrorDomain(D, AL);
7525 break;
7526 case ParsedAttr::AT_CFConsumed:
7527 case ParsedAttr::AT_NSConsumed:
7528 case ParsedAttr::AT_OSConsumed:
7529 S.ObjC().AddXConsumedAttr(D, AL,
7531 /*IsTemplateInstantiation=*/false);
7532 break;
7533 case ParsedAttr::AT_OSReturnsRetainedOnZero:
7535 S, D, AL, S.ObjC().isValidOSObjectOutParameter(D),
7536 diag::warn_ns_attribute_wrong_parameter_type,
7537 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
7538 break;
7539 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
7541 S, D, AL, S.ObjC().isValidOSObjectOutParameter(D),
7542 diag::warn_ns_attribute_wrong_parameter_type,
7543 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
7544 break;
7545 case ParsedAttr::AT_NSReturnsAutoreleased:
7546 case ParsedAttr::AT_NSReturnsNotRetained:
7547 case ParsedAttr::AT_NSReturnsRetained:
7548 case ParsedAttr::AT_CFReturnsNotRetained:
7549 case ParsedAttr::AT_CFReturnsRetained:
7550 case ParsedAttr::AT_OSReturnsNotRetained:
7551 case ParsedAttr::AT_OSReturnsRetained:
7553 break;
7554 case ParsedAttr::AT_WorkGroupSizeHint:
7556 break;
7557 case ParsedAttr::AT_ReqdWorkGroupSize:
7559 break;
7560 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
7561 S.OpenCL().handleSubGroupSize(D, AL);
7562 break;
7563 case ParsedAttr::AT_VecTypeHint:
7564 handleVecTypeHint(S, D, AL);
7565 break;
7566 case ParsedAttr::AT_InitPriority:
7567 handleInitPriorityAttr(S, D, AL);
7568 break;
7569 case ParsedAttr::AT_Packed:
7570 handlePackedAttr(S, D, AL);
7571 break;
7572 case ParsedAttr::AT_PreferredName:
7573 handlePreferredName(S, D, AL);
7574 break;
7575 case ParsedAttr::AT_NoSpecializations:
7576 handleNoSpecializations(S, D, AL);
7577 break;
7578 case ParsedAttr::AT_Section:
7579 handleSectionAttr(S, D, AL);
7580 break;
7581 case ParsedAttr::AT_CodeModel:
7582 handleCodeModelAttr(S, D, AL);
7583 break;
7584 case ParsedAttr::AT_RandomizeLayout:
7585 handleRandomizeLayoutAttr(S, D, AL);
7586 break;
7587 case ParsedAttr::AT_NoRandomizeLayout:
7589 break;
7590 case ParsedAttr::AT_CodeSeg:
7591 handleCodeSegAttr(S, D, AL);
7592 break;
7593 case ParsedAttr::AT_Target:
7594 handleTargetAttr(S, D, AL);
7595 break;
7596 case ParsedAttr::AT_TargetVersion:
7597 handleTargetVersionAttr(S, D, AL);
7598 break;
7599 case ParsedAttr::AT_TargetClones:
7600 handleTargetClonesAttr(S, D, AL);
7601 break;
7602 case ParsedAttr::AT_MinVectorWidth:
7603 handleMinVectorWidthAttr(S, D, AL);
7604 break;
7605 case ParsedAttr::AT_Unavailable:
7607 break;
7608 case ParsedAttr::AT_OMPAssume:
7609 S.OpenMP().handleOMPAssumeAttr(D, AL);
7610 break;
7611 case ParsedAttr::AT_ObjCDirect:
7612 S.ObjC().handleDirectAttr(D, AL);
7613 break;
7614 case ParsedAttr::AT_ObjCDirectMembers:
7615 S.ObjC().handleDirectMembersAttr(D, AL);
7617 break;
7618 case ParsedAttr::AT_ObjCExplicitProtocolImpl:
7620 break;
7621 case ParsedAttr::AT_Unused:
7622 handleUnusedAttr(S, D, AL);
7623 break;
7624 case ParsedAttr::AT_Visibility:
7625 handleVisibilityAttr(S, D, AL, false);
7626 break;
7627 case ParsedAttr::AT_TypeVisibility:
7628 handleVisibilityAttr(S, D, AL, true);
7629 break;
7630 case ParsedAttr::AT_WarnUnusedResult:
7631 handleWarnUnusedResult(S, D, AL);
7632 break;
7633 case ParsedAttr::AT_WeakRef:
7634 handleWeakRefAttr(S, D, AL);
7635 break;
7636 case ParsedAttr::AT_WeakImport:
7637 handleWeakImportAttr(S, D, AL);
7638 break;
7639 case ParsedAttr::AT_TransparentUnion:
7641 break;
7642 case ParsedAttr::AT_ObjCMethodFamily:
7643 S.ObjC().handleMethodFamilyAttr(D, AL);
7644 break;
7645 case ParsedAttr::AT_ObjCNSObject:
7646 S.ObjC().handleNSObject(D, AL);
7647 break;
7648 case ParsedAttr::AT_ObjCIndependentClass:
7649 S.ObjC().handleIndependentClass(D, AL);
7650 break;
7651 case ParsedAttr::AT_Blocks:
7652 S.ObjC().handleBlocksAttr(D, AL);
7653 break;
7654 case ParsedAttr::AT_Sentinel:
7655 handleSentinelAttr(S, D, AL);
7656 break;
7657 case ParsedAttr::AT_Cleanup:
7658 handleCleanupAttr(S, D, AL);
7659 break;
7660 case ParsedAttr::AT_NoDebug:
7661 handleNoDebugAttr(S, D, AL);
7662 break;
7663 case ParsedAttr::AT_CmseNSEntry:
7664 S.ARM().handleCmseNSEntryAttr(D, AL);
7665 break;
7666 case ParsedAttr::AT_StdCall:
7667 case ParsedAttr::AT_CDecl:
7668 case ParsedAttr::AT_FastCall:
7669 case ParsedAttr::AT_ThisCall:
7670 case ParsedAttr::AT_Pascal:
7671 case ParsedAttr::AT_RegCall:
7672 case ParsedAttr::AT_SwiftCall:
7673 case ParsedAttr::AT_SwiftAsyncCall:
7674 case ParsedAttr::AT_VectorCall:
7675 case ParsedAttr::AT_MSABI:
7676 case ParsedAttr::AT_SysVABI:
7677 case ParsedAttr::AT_Pcs:
7678 case ParsedAttr::AT_IntelOclBicc:
7679 case ParsedAttr::AT_PreserveMost:
7680 case ParsedAttr::AT_PreserveAll:
7681 case ParsedAttr::AT_AArch64VectorPcs:
7682 case ParsedAttr::AT_AArch64SVEPcs:
7683 case ParsedAttr::AT_M68kRTD:
7684 case ParsedAttr::AT_PreserveNone:
7685 case ParsedAttr::AT_RISCVVectorCC:
7686 case ParsedAttr::AT_RISCVVLSCC:
7687 handleCallConvAttr(S, D, AL);
7688 break;
7689 case ParsedAttr::AT_DeviceKernel:
7690 handleDeviceKernelAttr(S, D, AL);
7691 break;
7692 case ParsedAttr::AT_Suppress:
7693 handleSuppressAttr(S, D, AL);
7694 break;
7695 case ParsedAttr::AT_Owner:
7696 case ParsedAttr::AT_Pointer:
7698 break;
7699 case ParsedAttr::AT_OpenCLAccess:
7700 S.OpenCL().handleAccessAttr(D, AL);
7701 break;
7702 case ParsedAttr::AT_OpenCLNoSVM:
7703 S.OpenCL().handleNoSVMAttr(D, AL);
7704 break;
7705 case ParsedAttr::AT_SwiftContext:
7707 break;
7708 case ParsedAttr::AT_SwiftAsyncContext:
7710 break;
7711 case ParsedAttr::AT_SwiftErrorResult:
7713 break;
7714 case ParsedAttr::AT_SwiftIndirectResult:
7716 break;
7717 case ParsedAttr::AT_InternalLinkage:
7718 handleInternalLinkageAttr(S, D, AL);
7719 break;
7720 case ParsedAttr::AT_ZeroCallUsedRegs:
7722 break;
7723 case ParsedAttr::AT_FunctionReturnThunks:
7725 break;
7726 case ParsedAttr::AT_NoMerge:
7727 handleNoMergeAttr(S, D, AL);
7728 break;
7729 case ParsedAttr::AT_NoUniqueAddress:
7730 handleNoUniqueAddressAttr(S, D, AL);
7731 break;
7732
7733 case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod:
7735 break;
7736
7737 case ParsedAttr::AT_CountedBy:
7738 case ParsedAttr::AT_CountedByOrNull:
7739 case ParsedAttr::AT_SizedBy:
7740 case ParsedAttr::AT_SizedByOrNull:
7741 handleCountedByAttrField(S, D, AL);
7742 break;
7743
7744 // Microsoft attributes:
7745 case ParsedAttr::AT_LayoutVersion:
7746 handleLayoutVersion(S, D, AL);
7747 break;
7748 case ParsedAttr::AT_Uuid:
7749 handleUuidAttr(S, D, AL);
7750 break;
7751 case ParsedAttr::AT_MSInheritance:
7752 handleMSInheritanceAttr(S, D, AL);
7753 break;
7754 case ParsedAttr::AT_Thread:
7755 handleDeclspecThreadAttr(S, D, AL);
7756 break;
7757 case ParsedAttr::AT_MSConstexpr:
7758 handleMSConstexprAttr(S, D, AL);
7759 break;
7760 case ParsedAttr::AT_HybridPatchable:
7762 break;
7763
7764 // HLSL attributes:
7765 case ParsedAttr::AT_RootSignature:
7766 S.HLSL().handleRootSignatureAttr(D, AL);
7767 break;
7768 case ParsedAttr::AT_HLSLNumThreads:
7769 S.HLSL().handleNumThreadsAttr(D, AL);
7770 break;
7771 case ParsedAttr::AT_HLSLWaveSize:
7772 S.HLSL().handleWaveSizeAttr(D, AL);
7773 break;
7774 case ParsedAttr::AT_HLSLVkExtBuiltinInput:
7776 break;
7777 case ParsedAttr::AT_HLSLVkPushConstant:
7778 S.HLSL().handleVkPushConstantAttr(D, AL);
7779 break;
7780 case ParsedAttr::AT_HLSLVkConstantId:
7781 S.HLSL().handleVkConstantIdAttr(D, AL);
7782 break;
7783 case ParsedAttr::AT_HLSLVkBinding:
7784 S.HLSL().handleVkBindingAttr(D, AL);
7785 break;
7786 case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
7788 break;
7789 case ParsedAttr::AT_HLSLPackOffset:
7790 S.HLSL().handlePackOffsetAttr(D, AL);
7791 break;
7792 case ParsedAttr::AT_HLSLShader:
7793 S.HLSL().handleShaderAttr(D, AL);
7794 break;
7795 case ParsedAttr::AT_HLSLResourceBinding:
7797 break;
7798 case ParsedAttr::AT_HLSLParamModifier:
7799 S.HLSL().handleParamModifierAttr(D, AL);
7800 break;
7801 case ParsedAttr::AT_HLSLUnparsedSemantic:
7802 S.HLSL().handleSemanticAttr(D, AL);
7803 break;
7804 case ParsedAttr::AT_HLSLVkLocation:
7805 S.HLSL().handleVkLocationAttr(D, AL);
7806 break;
7807
7808 case ParsedAttr::AT_AbiTag:
7809 handleAbiTagAttr(S, D, AL);
7810 break;
7811 case ParsedAttr::AT_CFGuard:
7812 handleCFGuardAttr(S, D, AL);
7813 break;
7814
7815 // Thread safety attributes:
7816 case ParsedAttr::AT_PtGuardedVar:
7817 handlePtGuardedVarAttr(S, D, AL);
7818 break;
7819 case ParsedAttr::AT_NoSanitize:
7820 handleNoSanitizeAttr(S, D, AL);
7821 break;
7822 case ParsedAttr::AT_NoSanitizeAddress:
7824 break;
7825 case ParsedAttr::AT_NoSanitizeThread:
7827 break;
7828 case ParsedAttr::AT_NoSanitizeMemory:
7830 break;
7831 case ParsedAttr::AT_GuardedBy:
7832 handleGuardedByAttr(S, D, AL);
7833 break;
7834 case ParsedAttr::AT_PtGuardedBy:
7835 handlePtGuardedByAttr(S, D, AL);
7836 break;
7837 case ParsedAttr::AT_LockReturned:
7838 handleLockReturnedAttr(S, D, AL);
7839 break;
7840 case ParsedAttr::AT_LocksExcluded:
7841 handleLocksExcludedAttr(S, D, AL);
7842 break;
7843 case ParsedAttr::AT_AcquiredBefore:
7844 handleAcquiredBeforeAttr(S, D, AL);
7845 break;
7846 case ParsedAttr::AT_AcquiredAfter:
7847 handleAcquiredAfterAttr(S, D, AL);
7848 break;
7849
7850 // Capability analysis attributes.
7851 case ParsedAttr::AT_Capability:
7852 case ParsedAttr::AT_Lockable:
7853 handleCapabilityAttr(S, D, AL);
7854 break;
7855 case ParsedAttr::AT_ReentrantCapability:
7857 break;
7858 case ParsedAttr::AT_RequiresCapability:
7860 break;
7861
7862 case ParsedAttr::AT_AssertCapability:
7864 break;
7865 case ParsedAttr::AT_AcquireCapability:
7867 break;
7868 case ParsedAttr::AT_ReleaseCapability:
7870 break;
7871 case ParsedAttr::AT_TryAcquireCapability:
7873 break;
7874
7875 // Consumed analysis attributes.
7876 case ParsedAttr::AT_Consumable:
7877 handleConsumableAttr(S, D, AL);
7878 break;
7879 case ParsedAttr::AT_CallableWhen:
7880 handleCallableWhenAttr(S, D, AL);
7881 break;
7882 case ParsedAttr::AT_ParamTypestate:
7883 handleParamTypestateAttr(S, D, AL);
7884 break;
7885 case ParsedAttr::AT_ReturnTypestate:
7886 handleReturnTypestateAttr(S, D, AL);
7887 break;
7888 case ParsedAttr::AT_SetTypestate:
7889 handleSetTypestateAttr(S, D, AL);
7890 break;
7891 case ParsedAttr::AT_TestTypestate:
7892 handleTestTypestateAttr(S, D, AL);
7893 break;
7894
7895 // Type safety attributes.
7896 case ParsedAttr::AT_ArgumentWithTypeTag:
7898 break;
7899 case ParsedAttr::AT_TypeTagForDatatype:
7901 break;
7902
7903 // Swift attributes.
7904 case ParsedAttr::AT_SwiftAsyncName:
7905 S.Swift().handleAsyncName(D, AL);
7906 break;
7907 case ParsedAttr::AT_SwiftAttr:
7908 S.Swift().handleAttrAttr(D, AL);
7909 break;
7910 case ParsedAttr::AT_SwiftBridge:
7911 S.Swift().handleBridge(D, AL);
7912 break;
7913 case ParsedAttr::AT_SwiftError:
7914 S.Swift().handleError(D, AL);
7915 break;
7916 case ParsedAttr::AT_SwiftName:
7917 S.Swift().handleName(D, AL);
7918 break;
7919 case ParsedAttr::AT_SwiftNewType:
7920 S.Swift().handleNewType(D, AL);
7921 break;
7922 case ParsedAttr::AT_SwiftAsync:
7923 S.Swift().handleAsyncAttr(D, AL);
7924 break;
7925 case ParsedAttr::AT_SwiftAsyncError:
7926 S.Swift().handleAsyncError(D, AL);
7927 break;
7928
7929 // XRay attributes.
7930 case ParsedAttr::AT_XRayLogArgs:
7931 handleXRayLogArgsAttr(S, D, AL);
7932 break;
7933
7934 case ParsedAttr::AT_PatchableFunctionEntry:
7936 break;
7937
7938 case ParsedAttr::AT_AlwaysDestroy:
7939 case ParsedAttr::AT_NoDestroy:
7940 handleDestroyAttr(S, D, AL);
7941 break;
7942
7943 case ParsedAttr::AT_Uninitialized:
7944 handleUninitializedAttr(S, D, AL);
7945 break;
7946
7947 case ParsedAttr::AT_ObjCExternallyRetained:
7949 break;
7950
7951 case ParsedAttr::AT_MIGServerRoutine:
7953 break;
7954
7955 case ParsedAttr::AT_MSAllocator:
7956 handleMSAllocatorAttr(S, D, AL);
7957 break;
7958
7959 case ParsedAttr::AT_ArmBuiltinAlias:
7960 S.ARM().handleBuiltinAliasAttr(D, AL);
7961 break;
7962
7963 case ParsedAttr::AT_ArmLocallyStreaming:
7965 break;
7966
7967 case ParsedAttr::AT_ArmNew:
7968 S.ARM().handleNewAttr(D, AL);
7969 break;
7970
7971 case ParsedAttr::AT_AcquireHandle:
7972 handleAcquireHandleAttr(S, D, AL);
7973 break;
7974
7975 case ParsedAttr::AT_ReleaseHandle:
7977 break;
7978
7979 case ParsedAttr::AT_UnsafeBufferUsage:
7981 break;
7982
7983 case ParsedAttr::AT_UseHandle:
7985 break;
7986
7987 case ParsedAttr::AT_EnforceTCB:
7989 break;
7990
7991 case ParsedAttr::AT_EnforceTCBLeaf:
7993 break;
7994
7995 case ParsedAttr::AT_BuiltinAlias:
7996 handleBuiltinAliasAttr(S, D, AL);
7997 break;
7998
7999 case ParsedAttr::AT_PreferredType:
8000 handlePreferredTypeAttr(S, D, AL);
8001 break;
8002
8003 case ParsedAttr::AT_UsingIfExists:
8005 break;
8006
8007 case ParsedAttr::AT_TypeNullable:
8008 handleNullableTypeAttr(S, D, AL);
8009 break;
8010
8011 case ParsedAttr::AT_VTablePointerAuthentication:
8013 break;
8014
8015 case ParsedAttr::AT_ModularFormat:
8016 handleModularFormat(S, D, AL);
8017 break;
8018
8019 case ParsedAttr::AT_MSStruct:
8020 handleMSStructAttr(S, D, AL);
8021 break;
8022
8023 case ParsedAttr::AT_GCCStruct:
8024 handleGCCStructAttr(S, D, AL);
8025 break;
8026 }
8027}
8028
8029static bool isKernelDecl(Decl *D) {
8030 const FunctionType *FnTy = D->getFunctionType();
8031 return D->hasAttr<DeviceKernelAttr>() ||
8032 (FnTy && FnTy->getCallConv() == CallingConv::CC_DeviceKernel) ||
8033 D->hasAttr<CUDAGlobalAttr>();
8034}
8035
8037 Scope *S, Decl *D, const ParsedAttributesView &AttrList,
8038 const ProcessDeclAttributeOptions &Options) {
8039 if (AttrList.empty())
8040 return;
8041
8042 for (const ParsedAttr &AL : AttrList)
8043 ProcessDeclAttribute(*this, S, D, AL, Options);
8044
8045 // FIXME: We should be able to handle these cases in TableGen.
8046 // GCC accepts
8047 // static int a9 __attribute__((weakref));
8048 // but that looks really pointless. We reject it.
8049 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
8050 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
8051 << cast<NamedDecl>(D);
8052 D->dropAttr<WeakRefAttr>();
8053 return;
8054 }
8055
8056 // FIXME: We should be able to handle this in TableGen as well. It would be
8057 // good to have a way to specify "these attributes must appear as a group",
8058 // for these. Additionally, it would be good to have a way to specify "these
8059 // attribute must never appear as a group" for attributes like cold and hot.
8060 if (!(D->hasAttr<DeviceKernelAttr>() ||
8061 (D->hasAttr<CUDAGlobalAttr>() &&
8062 Context.getTargetInfo().getTriple().isSPIRV()))) {
8063 // These attributes cannot be applied to a non-kernel function.
8064 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
8065 // FIXME: This emits a different error message than
8066 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
8067 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8068 D->setInvalidDecl();
8069 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
8070 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8071 D->setInvalidDecl();
8072 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
8073 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8074 D->setInvalidDecl();
8075 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
8076 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8077 D->setInvalidDecl();
8078 }
8079 }
8080 if (!isKernelDecl(D)) {
8081 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
8082 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8083 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
8084 D->setInvalidDecl();
8085 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
8086 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8087 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
8088 D->setInvalidDecl();
8089 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
8090 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8091 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
8092 D->setInvalidDecl();
8093 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
8094 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8095 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
8096 D->setInvalidDecl();
8097 }
8098 }
8099
8100 // CUDA/HIP: restrict explicit CUDA target attributes on deduction guides.
8101 //
8102 // Deduction guides are not callable functions and never participate in
8103 // codegen; they are always treated as host+device for CUDA/HIP semantic
8104 // checks. We therefore allow either no CUDA target attributes or an explicit
8105 // '__host__ __device__' annotation, but reject guides that are host-only,
8106 // device-only, or marked '__global__'. The use of explicit CUDA/HIP target
8107 // attributes on deduction guides is deprecated and will be rejected in a
8108 // future Clang version.
8109 if (getLangOpts().CUDA)
8110 if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(D)) {
8111 bool HasHost = Guide->hasAttr<CUDAHostAttr>();
8112 bool HasDevice = Guide->hasAttr<CUDADeviceAttr>();
8113 bool HasGlobal = Guide->hasAttr<CUDAGlobalAttr>();
8114
8115 if (HasGlobal || HasHost != HasDevice) {
8116 Diag(Guide->getLocation(), diag::err_deduction_guide_target_attr);
8117 Guide->setInvalidDecl();
8118 } else if (HasHost && HasDevice) {
8119 Diag(Guide->getLocation(),
8120 diag::warn_deduction_guide_target_attr_deprecated);
8121 }
8122 }
8123
8124 // Do not permit 'constructor' or 'destructor' attributes on __device__ code.
8125 if (getLangOpts().CUDAIsDevice && D->hasAttr<CUDADeviceAttr>() &&
8126 (D->hasAttr<ConstructorAttr>() || D->hasAttr<DestructorAttr>()) &&
8127 !getLangOpts().GPUAllowDeviceInit) {
8128 Diag(D->getLocation(), diag::err_cuda_ctor_dtor_attrs)
8129 << (D->hasAttr<ConstructorAttr>() ? "constructors" : "destructors");
8130 D->setInvalidDecl();
8131 }
8132
8133 // Do this check after processing D's attributes because the attribute
8134 // objc_method_family can change whether the given method is in the init
8135 // family, and it can be applied after objc_designated_initializer. This is a
8136 // bit of a hack, but we need it to be compatible with versions of clang that
8137 // processed the attribute list in the wrong order.
8138 if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
8139 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
8140 Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
8141 D->dropAttr<ObjCDesignatedInitializerAttr>();
8142 }
8143}
8144
8146 const ParsedAttributesView &AttrList) {
8147 for (const ParsedAttr &AL : AttrList)
8148 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
8149 handleTransparentUnionAttr(*this, D, AL);
8150 break;
8151 }
8152
8153 // For BPFPreserveAccessIndexAttr, we want to populate the attributes
8154 // to fields and inner records as well.
8155 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
8157}
8158
8160 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
8161 for (const ParsedAttr &AL : AttrList) {
8162 if (AL.getKind() == ParsedAttr::AT_Annotate) {
8163 ProcessDeclAttribute(*this, nullptr, ASDecl, AL,
8165 } else {
8166 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
8167 return true;
8168 }
8169 }
8170 return false;
8171}
8172
8173/// checkUnusedDeclAttributes - Check a list of attributes to see if it
8174/// contains any decl attributes that we should warn about.
8176 for (const ParsedAttr &AL : A) {
8177 // Only warn if the attribute is an unignored, non-type attribute.
8178 if (AL.isUsedAsTypeAttr() || AL.isInvalid())
8179 continue;
8180 if (AL.getKind() == ParsedAttr::IgnoredAttribute)
8181 continue;
8182
8183 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
8185 } else {
8186 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
8187 << AL.getRange();
8188 }
8189 }
8190}
8191
8199
8202 StringRef ScopeName = AL.getNormalizedScopeName();
8203 std::optional<StringRef> CorrectedScopeName =
8204 AL.tryGetCorrectedScopeName(ScopeName);
8205 if (CorrectedScopeName) {
8206 ScopeName = *CorrectedScopeName;
8207 }
8208
8209 StringRef AttrName = AL.getNormalizedAttrName(ScopeName);
8210 std::optional<StringRef> CorrectedAttrName = AL.tryGetCorrectedAttrName(
8211 ScopeName, AttrName, Context.getTargetInfo(), getLangOpts());
8212 if (CorrectedAttrName) {
8213 AttrName = *CorrectedAttrName;
8214 }
8215
8216 if (CorrectedScopeName || CorrectedAttrName) {
8217 std::string CorrectedFullName =
8218 AL.getNormalizedFullName(ScopeName, AttrName);
8220 Diag(CorrectedScopeName ? NR.getBegin() : AL.getRange().getBegin(),
8221 diag::warn_unknown_attribute_ignored_suggestion);
8222
8223 D << AL << CorrectedFullName;
8224
8225 if (AL.isExplicitScope()) {
8226 D << FixItHint::CreateReplacement(NR, CorrectedFullName) << NR;
8227 } else {
8228 if (CorrectedScopeName) {
8230 ScopeName);
8231 }
8232 if (CorrectedAttrName) {
8233 D << FixItHint::CreateReplacement(AL.getRange(), AttrName);
8234 }
8235 }
8236 } else {
8237 Diag(NR.getBegin(), diag::warn_unknown_attribute_ignored) << AL << NR;
8238 }
8239}
8240
8242 SourceLocation Loc) {
8243 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
8244 NamedDecl *NewD = nullptr;
8245 if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
8246 FunctionDecl *NewFD;
8247 // FIXME: Missing call to CheckFunctionDeclaration().
8248 // FIXME: Mangling?
8249 // FIXME: Is the qualifier info correct?
8250 // FIXME: Is the DeclContext correct?
8251 NewFD = FunctionDecl::Create(
8252 FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
8254 getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
8257 NewD = NewFD;
8258
8259 if (FD->getQualifier())
8260 NewFD->setQualifierInfo(FD->getQualifierLoc());
8261
8262 // Fake up parameter variables; they are declared as if this were
8263 // a typedef.
8264 QualType FDTy = FD->getType();
8265 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
8267 for (const auto &AI : FT->param_types()) {
8268 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
8269 Param->setScopeInfo(0, Params.size());
8270 Params.push_back(Param);
8271 }
8272 NewFD->setParams(Params);
8273 }
8274 } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
8275 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
8276 VD->getInnerLocStart(), VD->getLocation(), II,
8277 VD->getType(), VD->getTypeSourceInfo(),
8278 VD->getStorageClass());
8279 if (VD->getQualifier())
8280 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
8281 }
8282 return NewD;
8283}
8284
8286 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
8287 IdentifierInfo *NDId = ND->getIdentifier();
8288 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
8289 NewD->addAttr(
8290 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
8291 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
8292 WeakTopLevelDecl.push_back(NewD);
8293 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
8294 // to insert Decl at TU scope, sorry.
8295 DeclContext *SavedContext = CurContext;
8296 CurContext = Context.getTranslationUnitDecl();
8299 PushOnScopeChains(NewD, S);
8300 CurContext = SavedContext;
8301 } else { // just add weak to existing
8302 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
8303 }
8304}
8305
8307 // It's valid to "forward-declare" #pragma weak, in which case we
8308 // have to do this.
8310 if (WeakUndeclaredIdentifiers.empty())
8311 return;
8312 NamedDecl *ND = nullptr;
8313 if (auto *VD = dyn_cast<VarDecl>(D))
8314 if (VD->isExternC())
8315 ND = VD;
8316 if (auto *FD = dyn_cast<FunctionDecl>(D))
8317 if (FD->isExternC())
8318 ND = FD;
8319 if (!ND)
8320 return;
8321 if (IdentifierInfo *Id = ND->getIdentifier()) {
8322 auto I = WeakUndeclaredIdentifiers.find(Id);
8323 if (I != WeakUndeclaredIdentifiers.end()) {
8324 auto &WeakInfos = I->second;
8325 for (const auto &W : WeakInfos)
8326 DeclApplyPragmaWeak(S, ND, W);
8327 std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos;
8328 WeakInfos.swap(EmptyWeakInfos);
8329 }
8330 }
8331}
8332
8333/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
8334/// it, apply them to D. This is a bit tricky because PD can have attributes
8335/// specified in many different places, and we need to find and apply them all.
8337 // Ordering of attributes can be important, so we take care to process
8338 // attributes in the order in which they appeared in the source code.
8339
8340 auto ProcessAttributesWithSliding =
8341 [&](const ParsedAttributesView &Src,
8342 const ProcessDeclAttributeOptions &Options) {
8343 ParsedAttributesView NonSlidingAttrs;
8344 for (ParsedAttr &AL : Src) {
8345 // FIXME: this sliding is specific to standard attributes and should
8346 // eventually be deprecated and removed as those are not intended to
8347 // slide to anything.
8348 if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) &&
8349 AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
8350 // Skip processing the attribute, but do check if it appertains to
8351 // the declaration. This is needed for the `MatrixType` attribute,
8352 // which, despite being a type attribute, defines a `SubjectList`
8353 // that only allows it to be used on typedef declarations.
8354 AL.diagnoseAppertainsTo(*this, D);
8355 } else {
8356 NonSlidingAttrs.addAtEnd(&AL);
8357 }
8358 }
8359 ProcessDeclAttributeList(S, D, NonSlidingAttrs, Options);
8360 };
8361
8362 // First, process attributes that appeared on the declaration itself (but
8363 // only if they don't have the legacy behavior of "sliding" to the DeclSepc).
8364 ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {});
8365
8366 // Apply decl attributes from the DeclSpec if present.
8367 ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(),
8369 .WithIncludeCXX11Attributes(false)
8370 .WithIgnoreTypeAttributes(true));
8371
8372 // Walk the declarator structure, applying decl attributes that were in a type
8373 // position to the decl itself. This handles cases like:
8374 // int *__attr__(x)** D;
8375 // when X is a decl attribute.
8376 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) {
8379 .WithIncludeCXX11Attributes(false)
8380 .WithIgnoreTypeAttributes(true));
8381 }
8382
8383 // Finally, apply any attributes on the decl itself.
8385
8386 // Apply additional attributes specified by '#pragma clang attribute'.
8387 AddPragmaAttributes(S, D);
8388
8389 // Look for API notes that map to attributes.
8390 ProcessAPINotes(D);
8391}
8392
8393/// Is the given declaration allowed to use a forbidden type?
8394/// If so, it'll still be annotated with an attribute that makes it
8395/// illegal to actually use.
8397 const DelayedDiagnostic &diag,
8398 UnavailableAttr::ImplicitReason &reason) {
8399 // Private ivars are always okay. Unfortunately, people don't
8400 // always properly make their ivars private, even in system headers.
8401 // Plus we need to make fields okay, too.
8402 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
8404 return false;
8405
8406 // Silently accept unsupported uses of __weak in both user and system
8407 // declarations when it's been disabled, for ease of integration with
8408 // -fno-objc-arc files. We do have to take some care against attempts
8409 // to define such things; for now, we've only done that for ivars
8410 // and properties.
8412 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
8413 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
8414 reason = UnavailableAttr::IR_ForbiddenWeak;
8415 return true;
8416 }
8417 }
8418
8419 // Allow all sorts of things in system headers.
8421 // Currently, all the failures dealt with this way are due to ARC
8422 // restrictions.
8423 reason = UnavailableAttr::IR_ARCForbiddenType;
8424 return true;
8425 }
8426
8427 return false;
8428}
8429
8430/// Handle a delayed forbidden-type diagnostic.
8432 Decl *D) {
8433 auto Reason = UnavailableAttr::IR_None;
8434 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
8435 assert(Reason && "didn't set reason?");
8436 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
8437 return;
8438 }
8439 if (S.getLangOpts().ObjCAutoRefCount)
8440 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
8441 // FIXME: we may want to suppress diagnostics for all
8442 // kind of forbidden type messages on unavailable functions.
8443 if (FD->hasAttr<UnavailableAttr>() &&
8445 diag::err_arc_array_param_no_ownership) {
8446 DD.Triggered = true;
8447 return;
8448 }
8449 }
8450
8453 DD.Triggered = true;
8454}
8455
8456
8461
8462 // When delaying diagnostics to run in the context of a parsed
8463 // declaration, we only want to actually emit anything if parsing
8464 // succeeds.
8465 if (!decl) return;
8466
8467 // We emit all the active diagnostics in this pool or any of its
8468 // parents. In general, we'll get one pool for the decl spec
8469 // and a child pool for each declarator; in a decl group like:
8470 // deprecated_typedef foo, *bar, baz();
8471 // only the declarator pops will be passed decls. This is correct;
8472 // we really do need to consider delayed diagnostics from the decl spec
8473 // for each of the different declarations.
8474 const DelayedDiagnosticPool *pool = &poppedPool;
8475 do {
8476 bool AnyAccessFailures = false;
8478 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8479 // This const_cast is a bit lame. Really, Triggered should be mutable.
8480 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8481 if (diag.Triggered)
8482 continue;
8483
8484 switch (diag.Kind) {
8486 // Don't bother giving deprecation/unavailable diagnostics if
8487 // the decl is invalid.
8488 if (!decl->isInvalidDecl())
8490 break;
8491
8493 // Only produce one access control diagnostic for a structured binding
8494 // declaration: we don't need to tell the user that all the fields are
8495 // inaccessible one at a time.
8496 if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8497 continue;
8499 if (diag.Triggered)
8500 AnyAccessFailures = true;
8501 break;
8502
8505 break;
8506 }
8507 }
8508 } while ((pool = pool->getParent()));
8509}
8510
8513 assert(curPool && "re-emitting in undelayed context not supported");
8514 curPool->steal(pool);
8515}
8516
8518 VarDecl *VD = cast<VarDecl>(D);
8519 if (VD->getType()->isDependentType())
8520 return;
8521
8522 // Obtains the FunctionDecl that was found when handling the attribute
8523 // earlier.
8524 CleanupAttr *Attr = D->getAttr<CleanupAttr>();
8525 FunctionDecl *FD = Attr->getFunctionDecl();
8526 DeclarationNameInfo NI = FD->getNameInfo();
8527
8528 // We're currently more strict than GCC about what function types we accept.
8529 // If this ever proves to be a problem it should be easy to fix.
8530 QualType Ty = this->Context.getPointerType(VD->getType());
8531 QualType ParamTy = FD->getParamDecl(0)->getType();
8533 FD->getParamDecl(0)->getLocation(), ParamTy, Ty))) {
8534 this->Diag(Attr->getArgLoc(),
8535 diag::err_attribute_cleanup_func_arg_incompatible_type)
8536 << NI.getName() << ParamTy << Ty;
8537 D->dropAttr<CleanupAttr>();
8538 return;
8539 }
8540}
Defines the clang::ASTContext interface.
#define V(N, I)
static SmallString< 64 > normalizeName(StringRef AttrName, StringRef ScopeName, AttributeCommonInfo::Syntax SyntaxUsed)
static OffloadArch getOffloadArch(CodeGenModule &CGM)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
This file defines the classes used to store parsed information about declaration-specifiers and decla...
Defines the C++ template declaration subclasses.
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
Defines the clang::Expr interface and subclasses for C++ expressions.
TokenType getType() const
Returns the token's type, e.g.
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
#define X(type, name)
Definition Value.h:97
Defines the clang::LangOptions interface.
llvm::MachO::Target Target
Definition MachO.h:51
llvm::MachO::Record Record
Definition MachO.h:31
#define SM(sm)
static unsigned getNumAttributeArgs(const ParsedAttr &AL)
Defines the clang::Preprocessor interface.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
This file declares semantic analysis functions specific to AMDGPU.
This file declares semantic analysis functions specific to ARM.
This file declares semantic analysis functions specific to AVR.
This file declares semantic analysis functions specific to BPF.
This file declares semantic analysis for CUDA constructs.
static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Arg)
static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static const RecordDecl * getRecordDecl(QualType QT)
Checks that the passed in QualType either is of RecordType or points to RecordType.
static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRequiresCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A)
static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnumExtensibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static T * mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, typename T::VisibilityType value)
static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, const ParsedAttr &AL)
static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A)
static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static Expr * makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr, const unsigned Idx)
static void handleLifetimeCaptureByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleMallocSpanAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL)
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordDecl *Record)
static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A)
checkUnusedDeclAttributes - Check a list of attributes to see if it contains any decl attributes that...
static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVTablePointerAuthentication(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args, unsigned Sidx=0, bool ParamIdxOk=false)
Checks that all attribute arguments, starting from Sidx, resolve to a capability object.
static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, StringRef CodeSegName)
static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleModularFormat(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((format_arg((idx)))) attribute based on https://gcc.gnu.org/onlinedocs/gcc/Common-Fu...
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, const Sema::ProcessDeclAttributeOptions &Options)
ProcessDeclAttribute - Apply the specific attribute to the specified decl if the attribute applies to...
static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSStructAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL)
static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, SourceRange AttrParmRange, SourceRange TypeRange, bool isReturnValue=false)
static void handleAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str)
static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle 'called_once' attribute.
static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Cond, StringRef &Msg)
static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, const ParsedAttr &AL)
static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNo)
Checks to be sure that the given parameter number is in bounds, and is an integral type.
static bool checkFunParamsAreScopedLockable(Sema &S, const ParmVarDecl *ParamDecl, const ParsedAttr &AL)
static bool checkRecordTypeForCapability(Sema &S, QualType Ty)
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static AttrTy * mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL)
static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isKernelDecl(Decl *D)
static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL)
FormatAttrKind
@ CFStringFormat
@ IgnoredFormat
@ InvalidFormat
@ StrftimeFormat
@ SupportedFormat
@ NSStringFormat
static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, bool isTypeVisibility)
static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static FormatAttrKind getFormatAttrKind(StringRef Format)
getFormatAttrKind - Map from format attribute names to supported format types.
static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoSanitizeAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, bool &IntegerMode, bool &ComplexMode, FloatModeKind &ExplicitType)
parseModeAttrArg - Parses attribute mode string and returns parsed type attribute.
static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCFIUncheckedCalleeAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkAvailabilityAttr(Sema &S, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted)
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, const ParsedAttr &AL)
static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGCCStructAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool validateAlignasAppliedType(Sema &S, Decl *D, const AlignedAttr &Attr, SourceLocation AttrLoc)
Perform checking of type validity.
static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static unsigned getNumAttributeArgs(const ParsedAttr &AL)
static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag)
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, Decl *D)
Handle a delayed forbidden-type diagnostic.
static void handleNoClusterAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static Expr * makeLaunchBoundsArgExpr(Sema &S, Expr *E, const CUDALaunchBoundsAttr &AL, const unsigned Idx)
static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
static AttributeCommonInfo getNoSanitizeAttrInfo(const ParsedAttr &NoSanitizeSpecificAttr)
static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((init_priority(priority))) attributes based on http://gcc.gnu.org/onlinedocs/gcc/C_0...
static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkRecordDeclForAttr(const RecordDecl *RD)
static void handleNoSanitizeThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A)
static bool isKnownToAlwaysThrow(const FunctionDecl *FD)
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, StringRef Str)
static bool isCapabilityExpr(Sema &S, const Expr *Ex)
static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static std::pair< Expr *, int > makeClusterDimsArgExpr(Sema &S, Expr *E, const CUDAClusterDimsAttr &AL, const unsigned Idx)
static void handleNoSanitizeMemoryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static const AttrTy * findEnforceTCBAttrByName(Decl *D, StringRef Name)
static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, const ParsedAttr &AL)
static bool MustDelayAttributeArguments(const ParsedAttr &AL)
static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkRecordTypeForScopedCapability(Sema &S, QualType Ty)
static bool isIntOrBool(Expr *Exp)
Check if the passed-in expression is of type int or bool.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, bool BeforeIsOkay)
Check whether the two versions match.
static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer)
static void handleClusterDimsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, FormatAttrCommon *Info)
Handle attribute((format(type,idx,firstarg))) attributes based on https://gcc.gnu....
static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static ExprResult sharedGetConstructorDestructorAttrExpr(Sema &S, const ParsedAttr &AL)
static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkTypedefTypeForCapability(QualType Ty)
static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReleaseCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool typeHasCapability(Sema &S, QualType Ty)
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isFunctionLike(const Type &T)
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReentrantCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, const ParsedAttr &AL)
Check if passed in Decl is a pointer type.
static bool isForbiddenTypeAllowed(Sema &S, Decl *D, const DelayedDiagnostic &diag, UnavailableAttr::ImplicitReason &reason)
Is the given declaration allowed to use a forbidden type?
static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
handleModeAttr - This attribute modifies the width of a decl with primitive type.
static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, int &Val, unsigned Idx=UINT_MAX)
Wrapper around checkUInt32Argument, with an extra check to be sure that the result will fit into a re...
static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isGlobalVar(const Decl *D)
static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool modularFormatAttrsEquiv(const ModularFormatAttr *Existing, IdentifierInfo *ModularImplFn, StringRef ImplName, ArrayRef< StringRef > Aspects)
static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL)
This file declares semantic analysis for HLSL constructs.
This file declares semantic analysis functions specific to M68k.
This file declares semantic analysis functions specific to MIPS.
This file declares semantic analysis functions specific to MSP430.
This file declares semantic analysis for Objective-C.
This file declares semantic analysis routines for OpenCL.
This file declares semantic analysis for OpenMP constructs and clauses.
This file declares semantic analysis functions specific to RISC-V.
This file declares semantic analysis for SYCL constructs.
This file declares semantic analysis functions specific to Swift.
This file declares semantic analysis functions specific to Wasm.
This file declares semantic analysis functions specific to X86.
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
static QualType getPointeeType(const MemRegion *R)
C Language Family Type Representation.
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition APValue.h:122
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
MSGuidDecl * getMSGuidDecl(MSGuidDeclParts Parts) const
Return a declaration for the global GUID object representing the given GUID value.
SourceManager & getSourceManager()
Definition ASTContext.h:851
TypedefDecl * getObjCInstanceTypeDecl()
Retrieve the typedef declaration corresponding to the Objective-C "instancetype" type.
DeclarationNameTable DeclarationNames
Definition ASTContext.h:794
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
IdentifierTable & Idents
Definition ASTContext.h:790
const LangOptions & getLangOpts() const
Definition ASTContext.h:944
QualType getConstType(QualType T) const
Return the uniqued reference to the type for a const qualified type.
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
const TargetInfo * getAuxTargetInfo() const
Definition ASTContext.h:910
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
CanQualType IntTy
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
CanQualType OverloadTy
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
CanQualType VoidTy
QualType getTypedefType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier Qualifier, const TypedefNameDecl *Decl, QualType UnderlyingType=QualType(), std::optional< bool > TypeMatchesDeclOrNone=std::nullopt) const
Return the unique reference to the type for the specified typedef-name decl.
static bool hasSameType(QualType T1, QualType T2)
Determine whether the given types T1 and T2 are equivalent.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:909
TargetCXXABI::Kind getCXXABIKind() const
Return the C++ ABI kind that should be used.
unsigned getTypeAlign(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in bits.
Represents an access specifier followed by colon ':'.
Definition DeclCXX.h:86
PtrTy get() const
Definition Ownership.h:171
bool isInvalid() const
Definition Ownership.h:167
Attr - This represents one attribute.
Definition Attr.h:45
SourceLocation getScopeLoc() const
void setAttributeSpellingListIndex(unsigned V)
std::string getNormalizedFullName() const
Gets the normalized full name, which consists of both scope and name and with surrounding underscores...
unsigned getAttributeSpellingListIndex() const
const IdentifierInfo * getScopeName() const
StringRef getNormalizedAttrName(StringRef ScopeName) const
std::optional< StringRef > tryGetCorrectedAttrName(StringRef ScopeName, StringRef AttrName, const TargetInfo &Target, const LangOptions &LangOpts) const
SourceRange getNormalizedRange() const
std::optional< StringRef > tryGetCorrectedScopeName(StringRef ScopeName) const
SourceLocation getLoc() const
const IdentifierInfo * getAttrName() const
StringRef getNormalizedScopeName() const
bool isStandardAttributeSyntax() const
The attribute is spelled [[]] in either C or C++ mode, including standard attributes spelled with a k...
Type source information for an attributed type.
Definition TypeLoc.h:1008
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition TypeLoc.h:1022
Pointer to a block type.
Definition TypeBase.h:3543
This class is used for builtin types like 'int'.
Definition TypeBase.h:3165
static bool isBuiltinFunc(llvm::StringRef Name)
Returns true if this is a libc/libm function without the '__builtin_' prefix.
Definition Builtins.cpp:123
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
QualType getFunctionObjectParameterType() const
Definition DeclCXX.h:2279
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
CXXRecordDecl * getDefinition() const
Definition DeclCXX.h:548
bool hasDefinition() const
Definition DeclCXX.h:561
MSInheritanceModel calculateInheritanceModel() const
Calculate what the inheritance model would be for this class.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2943
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition Expr.cpp:1516
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
Declaration of a class template.
static ConstantExpr * Create(const ASTContext &Context, Expr *E, const APValue &Result)
Definition Expr.cpp:349
const RelatedTargetVersionMapping * getVersionMapping(OSEnvPair Kind) const
The results of name lookup within a DeclContext.
Definition DeclBase.h:1382
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition DeclBase.h:1449
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
bool isFileContext() const
Definition DeclBase.h:2180
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
A reference to a declared variable, function, enum, etc.
Definition Expr.h:1270
DeclarationNameInfo getNameInfo() const
Definition Expr.h:1342
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr, NonOdrUseReason NOUR=NOUR_None)
Definition Expr.cpp:487
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier,...
Definition Expr.h:1359
ValueDecl * getDecl()
Definition Expr.h:1338
ParsedAttributes & getAttributes()
Definition DeclSpec.h:843
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
TemplateDecl * getDescribedTemplate() const
If this is a declaration that describes some template, this method returns that template declaration.
Definition DeclBase.cpp:285
T * getAttr() const
Definition DeclBase.h:573
bool hasAttrs() const
Definition DeclBase.h:518
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:546
void addAttr(Attr *A)
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition DeclBase.cpp:178
const FunctionType * getFunctionType(bool BlocksToo=true) const
Looks through the Decl's underlying type to extract a FunctionType when possible.
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition DeclBase.cpp:273
bool canBeWeakImported(bool &IsDefinition) const
Determines whether this symbol can be weak-imported, e.g., whether it would be well-formed to add the...
Definition DeclBase.cpp:841
bool isInvalidDecl() const
Definition DeclBase.h:588
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition DeclBase.h:559
SourceLocation getLocation() const
Definition DeclBase.h:439
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition DeclBase.h:1049
DeclContext * getDeclContext()
Definition DeclBase.h:448
SourceLocation getBeginLoc() const LLVM_READONLY
Definition DeclBase.h:431
void dropAttr()
Definition DeclBase.h:556
AttrVec & getAttrs()
Definition DeclBase.h:524
void setDeclContext(DeclContext *DC)
setDeclContext - Set both the semantic and lexical DeclContext to DC.
Definition DeclBase.cpp:382
bool hasAttr() const
Definition DeclBase.h:577
void setLexicalDeclContext(DeclContext *DC)
Definition DeclBase.cpp:386
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition DeclBase.h:978
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition DeclBase.h:427
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
The name of a declaration.
SourceLocation getTypeSpecStartLoc() const
Definition Decl.cpp:1995
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Decl.h:831
const AssociatedConstraint & getTrailingRequiresClause() const
Get the constraint-expression introduced by the trailing requires-clause in the function/member decla...
Definition Decl.h:855
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition Decl.cpp:2007
NestedNameSpecifierLoc getQualifierLoc() const
Retrieve the nested-name-specifier (with source-location information) that qualifies the name of this...
Definition Decl.h:845
NestedNameSpecifier getQualifier() const
Retrieve the nested-name-specifier that qualifies the name of this declaration, if it was present in ...
Definition Decl.h:837
TypeSourceInfo * getTypeSourceInfo() const
Definition Decl.h:809
Information about one declarator, including the parsed type information and the identifier.
Definition DeclSpec.h:1874
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition DeclSpec.h:2372
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition DeclSpec.h:2021
const ParsedAttributes & getAttributes() const
Definition DeclSpec.h:2657
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition DeclSpec.h:2368
const ParsedAttributesView & getDeclarationAttributes() const
Definition DeclSpec.h:2660
Concrete class used by the front-end to report problems and issues.
Definition Diagnostic.h:232
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition Diagnostic.h:951
const IntrusiveRefCntPtr< DiagnosticIDs > & getDiagnosticIDs() const
Definition Diagnostic.h:592
This represents one expression.
Definition Expr.h:112
bool isIntegerConstantExpr(const ASTContext &Ctx) const
static bool isPotentialConstantExprUnevaluated(Expr *E, const FunctionDecl *FD, SmallVectorImpl< PartialDiagnosticAt > &Diags)
isPotentialConstantExprUnevaluated - Return true if this expression might be usable in a constant exp...
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition Expr.cpp:3094
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition Expr.h:177
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition Expr.h:194
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates).
Definition Expr.h:241
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition Expr.cpp:3089
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on.
Definition Expr.h:223
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:276
QualType getType() const
Definition Expr.h:144
Represents difference between two FPOptions values.
Represents a member of a struct/union/class.
Definition Decl.h:3160
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition Diagnostic.h:79
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition Diagnostic.h:140
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition Diagnostic.h:103
Represents a function declaration or definition.
Definition Decl.h:2000
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, const AssociatedConstraint &TrailingRequiresClause={})
Definition Decl.h:2189
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2797
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition Decl.cpp:3275
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition Decl.cpp:4201
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition Decl.cpp:4189
bool isThisDeclarationADefinition() const
Returns whether this specific declaration of the function is also a definition that does not contain ...
Definition Decl.h:2314
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type.
Definition Decl.cpp:4020
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition Decl.cpp:3758
param_iterator param_end()
Definition Decl.h:2787
bool isInlined() const
Determine whether this function should be inlined, because it is either marked "inline" or "constexpr...
Definition Decl.h:2921
void setIsMultiVersion(bool V=true)
Sets the multiversion state for this declaration and all of its redeclarations.
Definition Decl.h:2695
bool isNoReturn() const
Determines whether this function is known to be 'noreturn', through an attribute on its declaration o...
Definition Decl.cpp:3647
QualType getReturnType() const
Definition Decl.h:2845
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2774
bool hasPrototype() const
Whether this function has a prototype, either because one was explicitly written or because it was "i...
Definition Decl.h:2443
param_iterator param_begin()
Definition Decl.h:2786
bool isVariadic() const
Whether this function is variadic.
Definition Decl.cpp:3129
bool isConstexprSpecified() const
Definition Decl.h:2479
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition Decl.cpp:3614
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template instantiation this function represents.
Definition Decl.cpp:4413
bool isConsteval() const
Definition Decl.h:2482
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition Decl.cpp:3822
bool hasBody(const FunctionDecl *&Definition) const
Returns true if the function has a body.
Definition Decl.cpp:3195
bool isInlineSpecified() const
Determine whether the "inline" keyword was specified for this function.
Definition Decl.h:2899
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5269
Declaration of a template function.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4465
CallingConv getCallConv() const
Definition TypeBase.h:4820
QualType getReturnType() const
Definition TypeBase.h:4805
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
One of these records is kept for each identifier that is lexed.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
StringRef getName() const
Return the actual identifier string.
A simple pair of identifier info and location.
SourceLocation getLoc() const
IdentifierInfo * getIdentifierInfo() const
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Describes an entity that is being initialized.
static InitializedEntity InitializeParameter(ASTContext &Context, ParmVarDecl *Parm)
Create the initialization entity for a parameter.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
bool isCompatibleWithMSVC() const
bool isTargetDevice() const
True when compiling for an offloading target device.
void push_back(const T &LocalValue)
Represents the results of name lookup.
Definition Lookup.h:147
A global _GUID constant.
Definition DeclCXX.h:4394
MSGuidDeclParts Parts
Definition DeclCXX.h:4396
Describes a module or submodule.
Definition Module.h:144
This represents a decl that may have a name.
Definition Decl.h:274
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition Decl.h:295
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition Decl.cpp:1969
bool isExternallyVisible() const
Definition Decl.h:433
A C++ nested-name-specifier augmented with source location information.
ObjCMethodDecl - Represents an instance or class method declaration.
Definition DeclObjC.h:140
Represents one property declaration in an Objective-C interface.
Definition DeclObjC.h:731
void * getAsOpaquePtr() const
Definition Ownership.h:91
static OpaquePtr getFromOpaquePtr(void *P)
Definition Ownership.h:92
A single parameter index whose accessors require each use to make explicit the parameter index encodi...
Definition Attr.h:273
bool isValid() const
Is this parameter index valid?
Definition Attr.h:333
unsigned getSourceIndex() const
Get the parameter index as it would normally be encoded for attributes at the source level of represe...
Definition Attr.h:341
unsigned getASTIndex() const
Get the parameter index as it would normally be encoded at the AST level of representation: zero-orig...
Definition Attr.h:352
Represents a parameter to a function.
Definition Decl.h:1790
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition Decl.cpp:2976
ParsedAttr - Represents a syntactic attribute.
Definition ParsedAttr.h:119
bool isPackExpansion() const
Definition ParsedAttr.h:367
const AvailabilityChange & getAvailabilityDeprecated() const
Definition ParsedAttr.h:399
unsigned getSemanticSpelling() const
If the parsed attribute has a semantic equivalent, and it would have a semantic Spelling enumeration ...
bool existsInTarget(const TargetInfo &Target) const
bool checkExactlyNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has exactly as many args as Num.
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition ParsedAttr.h:389
bool hasParsedType() const
Definition ParsedAttr.h:337
const AvailabilityChange & getAvailabilityIntroduced() const
Definition ParsedAttr.h:393
void setInvalid(bool b=true) const
Definition ParsedAttr.h:345
bool hasVariadicArg() const
const ParsedAttrInfo & getInfo() const
Definition ParsedAttr.h:613
void handleAttrWithDelayedArgs(Sema &S, Decl *D) const
const Expr * getReplacementExpr() const
Definition ParsedAttr.h:429
bool hasProcessingCache() const
Definition ParsedAttr.h:347
SourceLocation getUnavailableLoc() const
Definition ParsedAttr.h:417
unsigned getProcessingCache() const
Definition ParsedAttr.h:349
const IdentifierLoc * getEnvironment() const
Definition ParsedAttr.h:435
bool acceptsExprPack() const
const Expr * getMessageExpr() const
Definition ParsedAttr.h:423
const ParsedType & getMatchingCType() const
Definition ParsedAttr.h:441
const ParsedType & getTypeArg() const
Definition ParsedAttr.h:459
SourceLocation getStrictLoc() const
Definition ParsedAttr.h:411
bool isTypeAttr() const
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition ParsedAttr.h:371
bool isArgIdent(unsigned Arg) const
Definition ParsedAttr.h:385
Expr * getArgAsExpr(unsigned Arg) const
Definition ParsedAttr.h:383
bool getMustBeNull() const
Definition ParsedAttr.h:453
bool checkAtLeastNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has at least as many args as Num.
bool isUsedAsTypeAttr() const
Definition ParsedAttr.h:359
unsigned getNumArgMembers() const
bool isStmtAttr() const
bool isPragmaClangAttribute() const
True if the attribute is specified using 'pragma clang attribute'.
Definition ParsedAttr.h:363
bool slidesFromDeclToDeclSpecLegacyBehavior() const
Returns whether a [[]] attribute, if specified ahead of a declaration, should be applied to the decl-...
AttributeCommonInfo::Kind getKind() const
Definition ParsedAttr.h:610
void setProcessingCache(unsigned value) const
Definition ParsedAttr.h:354
bool isParamExpr(size_t N) const
bool isArgExpr(unsigned Arg) const
Definition ParsedAttr.h:379
bool getLayoutCompatible() const
Definition ParsedAttr.h:447
ArgsUnion getArg(unsigned Arg) const
getArg - Return the specified argument.
Definition ParsedAttr.h:374
SourceLocation getEllipsisLoc() const
Definition ParsedAttr.h:368
bool isInvalid() const
Definition ParsedAttr.h:344
bool checkAtMostNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has at most as many args as Num.
const AvailabilityChange & getAvailabilityObsoleted() const
Definition ParsedAttr.h:405
void addAtEnd(ParsedAttr *newAttr)
Definition ParsedAttr.h:827
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3329
QualType getPointeeType() const
Definition TypeBase.h:3339
IdentifierTable & getIdentifierTable()
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8293
QualType getCanonicalType() const
Definition TypeBase.h:8345
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition TypeBase.h:8387
const Type * getTypePtrOrNull() const
Definition TypeBase.h:8297
Represents a struct/union/class.
Definition Decl.h:4321
field_iterator field_end() const
Definition Decl.h:4527
field_range fields() const
Definition Decl.h:4524
specific_decl_iterator< FieldDecl > field_iterator
Definition Decl.h:4521
RecordDecl * getDefinitionOrSelf() const
Definition Decl.h:4509
field_iterator field_begin() const
Definition Decl.cpp:5209
Base for LValueReferenceType and RValueReferenceType.
Definition TypeBase.h:3574
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition Scope.h:271
@ FunctionDeclarationScope
This is a scope that corresponds to the parameters within a function prototype for a function declara...
Definition Scope.h:91
void handleAMDGPUMaxNumWorkGroupsAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUFlatWorkGroupSizeAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUNumSGPRAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUNumVGPRAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUWavesPerEUAttr(Decl *D, const ParsedAttr &AL)
void handleInterruptSaveFPAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1392
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1360
void handleBuiltinAliasAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1245
void handleNewAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1292
bool checkTargetVersionAttr(const StringRef Param, const SourceLocation Loc, SmallString< 64 > &NewParam)
Definition SemaARM.cpp:1614
bool SveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1231
bool MveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1218
void handleCmseNSEntryAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1345
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
Definition SemaARM.cpp:1648
bool CdeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1226
void handleSignalAttr(Decl *D, const ParsedAttr &AL)
Definition SemaAVR.cpp:48
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaAVR.cpp:23
void handlePreserveAIRecord(RecordDecl *RD)
Definition SemaBPF.cpp:169
void handlePreserveAccessIndexAttr(Decl *D, const ParsedAttr &AL)
Definition SemaBPF.cpp:181
A generic diagnostic builder for errors which may or may not be deferred.
Definition SemaBase.h:111
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition SemaBase.cpp:61
CUDAFunctionTarget IdentifyTarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr=false)
Determines whether the given function is a CUDA device/host/kernel/etc.
Definition SemaCUDA.cpp:212
CUDAFunctionTarget CurrentTarget()
Gets the CUDA target for the current context.
Definition SemaCUDA.h:152
SemaDiagnosticBuilder DiagIfHostCode(SourceLocation Loc, unsigned DiagID)
Creates a SemaDiagnosticBuilder that emits the diagnostic if the current context is "used as host cod...
Definition SemaCUDA.cpp:956
void handleWaveSizeAttr(Decl *D, const ParsedAttr &AL)
void handleVkLocationAttr(Decl *D, const ParsedAttr &AL)
void handleSemanticAttr(Decl *D, const ParsedAttr &AL)
void handleShaderAttr(Decl *D, const ParsedAttr &AL)
void handlePackOffsetAttr(Decl *D, const ParsedAttr &AL)
void handleParamModifierAttr(Decl *D, const ParsedAttr &AL)
void handleRootSignatureAttr(Decl *D, const ParsedAttr &AL)
void handleResourceBindingAttr(Decl *D, const ParsedAttr &AL)
void handleNumThreadsAttr(Decl *D, const ParsedAttr &AL)
void handleVkExtBuiltinInputAttr(Decl *D, const ParsedAttr &AL)
void handleVkPushConstantAttr(Decl *D, const ParsedAttr &AL)
void handleVkBindingAttr(Decl *D, const ParsedAttr &AL)
void handleVkConstantIdAttr(Decl *D, const ParsedAttr &AL)
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaM68k.cpp:23
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaMIPS.cpp:243
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
void handleRuntimeName(Decl *D, const ParsedAttr &AL)
void handleNSObject(Decl *D, const ParsedAttr &AL)
bool isValidOSObjectOutParameter(const Decl *D)
void handleNSErrorDomain(Decl *D, const ParsedAttr &Attr)
void handleXReturnsXRetainedAttr(Decl *D, const ParsedAttr &AL)
void handleExternallyRetainedAttr(Decl *D, const ParsedAttr &AL)
void handleMethodFamilyAttr(Decl *D, const ParsedAttr &AL)
void handleIndependentClass(Decl *D, const ParsedAttr &AL)
void handleIBOutlet(Decl *D, const ParsedAttr &AL)
void handleReturnsInnerPointerAttr(Decl *D, const ParsedAttr &Attrs)
void handleSuppresProtocolAttr(Decl *D, const ParsedAttr &AL)
void handleOwnershipAttr(Decl *D, const ParsedAttr &AL)
void handleBlocksAttr(Decl *D, const ParsedAttr &AL)
void handleBridgeMutableAttr(Decl *D, const ParsedAttr &AL)
Sema::RetainOwnershipKind parsedAttrToRetainOwnershipKind(const ParsedAttr &AL)
void handleRequiresSuperAttr(Decl *D, const ParsedAttr &Attrs)
void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, Sema::RetainOwnershipKind K, bool IsTemplateInstantiation)
void handleDesignatedInitializer(Decl *D, const ParsedAttr &AL)
void handleBridgeRelatedAttr(Decl *D, const ParsedAttr &AL)
void handleIBOutletCollection(Decl *D, const ParsedAttr &AL)
bool isCFStringType(QualType T)
void handleDirectAttr(Decl *D, const ParsedAttr &AL)
bool isNSStringType(QualType T, bool AllowNSAttributedString=false)
void handleBoxable(Decl *D, const ParsedAttr &AL)
void handleDirectMembersAttr(Decl *D, const ParsedAttr &AL)
void handleBridgeAttr(Decl *D, const ParsedAttr &AL)
void handlePreciseLifetimeAttr(Decl *D, const ParsedAttr &AL)
void handleSubGroupSize(Decl *D, const ParsedAttr &AL)
void handleNoSVMAttr(Decl *D, const ParsedAttr &AL)
void handleAccessAttr(Decl *D, const ParsedAttr &AL)
void handleOMPAssumeAttr(Decl *D, const ParsedAttr &AL)
bool isAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
bool checkTargetVersionAttr(const StringRef Param, const SourceLocation Loc, SmallString< 64 > &NewParam)
void handleKernelEntryPointAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSYCL.cpp:205
void handleKernelAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSYCL.cpp:166
void handleBridge(Decl *D, const ParsedAttr &AL)
Definition SemaSwift.cpp:99
void handleAsyncAttr(Decl *D, const ParsedAttr &AL)
void handleAsyncName(Decl *D, const ParsedAttr &AL)
void handleNewType(Decl *D, const ParsedAttr &AL)
void handleError(Decl *D, const ParsedAttr &AL)
void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI abi)
void handleAsyncError(Decl *D, const ParsedAttr &AL)
void handleName(Decl *D, const ParsedAttr &AL)
void handleAttrAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSwift.cpp:84
void handleWebAssemblyImportNameAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:370
void handleWebAssemblyImportModuleAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:353
void handleWebAssemblyExportNameAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:386
void handleForceAlignArgPointerAttr(Decl *D, const ParsedAttr &AL)
Definition SemaX86.cpp:1024
void handleAnyInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaX86.cpp:955
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
Definition SemaX86.cpp:1047
A class which encapsulates the logic for delaying diagnostics during parsing and other processing.
Definition Sema.h:1355
sema::DelayedDiagnosticPool * getCurrentPool() const
Returns the current delayed-diagnostics pool.
Definition Sema.h:1370
void popWithoutEmitting(DelayedDiagnosticsState state)
Leave a delayed-diagnostic state that was previously pushed.
Definition Sema.h:1384
Sema - This implements semantic analysis and AST building for C.
Definition Sema.h:855
SemaAMDGPU & AMDGPU()
Definition Sema.h:1416
BTFDeclTagAttr * mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL)
void LoadExternalWeakUndeclaredIdentifiers()
Load weak undeclared identifiers from the external source.
Definition Sema.cpp:1061
@ LookupOrdinaryName
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc....
Definition Sema.h:9315
EnforceTCBAttr * mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL)
SemaM68k & M68k()
Definition Sema.h:1466
DelayedDiagnosticsState ParsingDeclState
Definition Sema.h:1350
bool isValidPointerAttrType(QualType T, bool RefOkay=false)
Determine if type T is a valid subject for a nonnull and similar attributes.
static std::enable_if_t< std::is_base_of_v< Attr, AttrInfo >, SourceLocation > getAttrLoc(const AttrInfo &AL)
A helper function to provide Attribute Location for the Attr types AND the ParsedAttr.
Definition Sema.h:4819
SemaOpenMP & OpenMP()
Definition Sema.h:1501
TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis)
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion)
AddAlignedAttr - Adds an aligned attribute to a particular declaration.
bool checkFunctionOrMethodParameterIndex(const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis=false, bool CanIndexVariadicArguments=false)
Check if IdxExpr is a valid parameter index for a function or instance method D.
Definition Sema.h:5128
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE)
AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular declaration.
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str)
void AddPragmaAttributes(Scope *S, Decl *D)
Adds the attributes that have been specified using the '#pragma clang attribute push' directives to t...
SemaCUDA & CUDA()
Definition Sema.h:1441
bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A, bool SkipArgCountCheck=false)
Handles semantic checking for features that are common to all attributes, such as checking whether a ...
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList)
Annotation attributes are the only attributes allowed after an access specifier.
DLLImportAttr * mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI)
ExtVectorDeclsType ExtVectorDecls
ExtVectorDecls - This is a list all the extended vector types.
Definition Sema.h:4879
void PopParsingDeclaration(ParsingDeclState state, Decl *decl)
ErrorAttr * mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, StringRef NewUserDiagnostic)
bool CheckFormatStringsCompatible(FormatStringType FST, const StringLiteral *AuthoritativeFormatString, const StringLiteral *TestedFormatString, const Expr *FunctionCallArg=nullptr)
Verify that two format strings (as understood by attribute(format) and attribute(format_matches) are ...
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool)
Given a set of delayed diagnostics, re-emit them as if they had been delayed in the current context i...
SemaSYCL & SYCL()
Definition Sema.h:1526
VisibilityAttr * mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis)
SemaX86 & X86()
Definition Sema.h:1546
ParmVarDecl * BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T)
Synthesizes a variable for a parameter arising from a typedef.
ASTContext & Context
Definition Sema.h:1283
void LazyProcessLifetimeCaptureByParams(FunctionDecl *FD)
DiagnosticsEngine & getDiagnostics() const
Definition Sema.h:923
SemaObjC & ObjC()
Definition Sema.h:1486
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext=true)
Add this decl to the scope shadowed decl chains.
ASTContext & getASTContext() const
Definition Sema.h:926
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD=nullptr, CUDAFunctionTarget CFT=CUDAFunctionTarget::InvalidTarget)
Check validaty of calling convention attribute attr.
QualType BuildCountAttributedArrayOrPointerType(QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull)
void ProcessPragmaWeak(Scope *S, Decl *D)
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr)
bool UnifySection(StringRef SectionName, int SectionFlags, NamedDecl *TheDecl)
Definition SemaAttr.cpp:795
void addNoClusterAttr(Decl *D, const AttributeCommonInfo &CI)
Add a no_cluster attribute to a particular declaration.
FPOptions & getCurFPFeatures()
Definition Sema.h:921
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition Sema.cpp:83
@ UPPC_Expression
An arbitrary expression.
Definition Sema.h:14339
const LangOptions & getLangOpts() const
Definition Sema.h:919
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation=false)
AddModeAttr - Adds a mode attribute to a particular declaration.
SemaBPF & BPF()
Definition Sema.h:1431
Preprocessor & PP
Definition Sema.h:1282
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC)
If the given type contains an unexpanded parameter pack, diagnose the error.
MinSizeAttr * mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI)
SemaMSP430 & MSP430()
Definition Sema.h:1476
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType)
CheckAssignmentConstraints - Perform type checking for assignment, argument passing,...
const LangOptions & LangOpts
Definition Sema.h:1281
static const uint64_t MaximumAlignment
Definition Sema.h:1214
CUDAClusterDimsAttr * createClusterDimsAttr(const AttributeCommonInfo &CI, Expr *X, Expr *Y, Expr *Z)
Add a cluster_dims attribute to a particular declaration.
SemaHLSL & HLSL()
Definition Sema.h:1451
AlwaysInlineAttr * mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident)
SemaMIPS & MIPS()
Definition Sema.h:1471
SemaRISCV & RISCV()
Definition Sema.h:1516
bool CheckCountedByAttrOnField(FieldDecl *FD, Expr *E, bool CountInBytes, bool OrNull)
Check if applying the specified attribute variant from the "counted by" family of attributes to Field...
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AttrList, const ProcessDeclAttributeOptions &Options=ProcessDeclAttributeOptions())
ProcessDeclAttributeList - Apply all the decl attributes in the specified attribute list to the speci...
SemaSwift & Swift()
Definition Sema.h:1531
NamedDecl * getCurFunctionOrMethodDecl() const
getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method or C function we're in,...
Definition Sema.cpp:1666
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr)
AddAllocAlignAttr - Adds an alloc_align attribute to a particular declaration.
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value)
Checks a regparm attribute, returning true if it is ill-formed and otherwise setting numParams to the...
void ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList)
Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr attribute.
bool checkUInt32Argument(const AttrInfo &AI, const Expr *Expr, uint32_t &Val, unsigned Idx=UINT_MAX, bool StrictlyUnsigned=false)
If Expr is a valid integer constant, get the value of the integer expression and return success or fa...
Definition Sema.h:4830
MSInheritanceAttr * mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model)
InternalLinkageAttr * mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL)
bool IsAssignConvertCompatible(AssignConvertType ConvTy)
Definition Sema.h:8038
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition Sema.h:1414
SemaOpenCL & OpenCL()
Definition Sema.h:1496
ExprResult PerformContextuallyConvertToBool(Expr *From)
PerformContextuallyConvertToBool - Perform a contextual conversion of the expression From to bool (C+...
FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain=false, DeclAccessPair *Found=nullptr, TemplateSpecCandidateSet *FailedTSC=nullptr, bool ForTypeDeduction=false)
Given an expression that refers to an overloaded function, try to resolve that overloaded function ex...
NamedDecl * DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, SourceLocation Loc)
DeclClonePragmaWeak - clone existing decl (maybe definition), #pragma weak needs a non-definition dec...
DLLExportAttr * mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI)
CodeSegAttr * mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name)
SectionAttr * mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name)
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition Sema.h:13905
SourceManager & getSourceManager() const
Definition Sema.h:924
void ActOnCleanupAttr(Decl *D, const Attr *A)
static FormatStringType GetFormatStringType(StringRef FormatFlavor)
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str)
bool ValidateFormatString(FormatStringType FST, const StringLiteral *Str)
Verify that one format string (as understood by attribute(format)) is self-consistent; for instance,...
llvm::Error isValidSectionSpecifier(StringRef Str)
Used to implement to perform semantic checking on attribute((section("foo"))) specifiers.
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks)
AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular declaration.
void DiagnoseUnknownAttribute(const ParsedAttr &AL)
bool isCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind=CompleteTypeKind::Default)
Definition Sema.h:15384
OptimizeNoneAttr * mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI)
void checkUnusedDeclAttributes(Declarator &D)
checkUnusedDeclAttributes - Given a declarator which is not being used to build a declaration,...
bool CheckAttrTarget(const ParsedAttr &CurrAttr)
EnforceTCBLeafAttr * mergeEnforceTCBLeafAttr(Decl *D, const EnforceTCBLeafAttr &AL)
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, AllowFoldKind CanFold=AllowFoldKind::No)
VerifyIntegerConstantExpression - Verifies that an expression is an ICE, and reports the appropriate ...
ASTConsumer & Consumer
Definition Sema.h:1284
void NoteAllOverloadCandidates(Expr *E, QualType DestType=QualType(), bool TakingAddress=false)
ModularFormatAttr * mergeModularFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *ModularImplFn, StringRef ImplName, MutableArrayRef< StringRef > Aspects)
void addClusterDimsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *X, Expr *Y, Expr *Z)
FormatAttr * mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg)
@ AP_PragmaClangAttribute
The availability attribute was applied using 'pragma clang attribute'.
Definition Sema.h:4799
@ AP_InferredFromOtherPlatform
The availability attribute for a specific platform was inferred from an availability attribute for an...
Definition Sema.h:4803
@ AP_Explicit
The availability attribute was specified explicitly next to the declaration.
Definition Sema.h:4796
SmallVector< Decl *, 2 > WeakTopLevelDecl
WeakTopLevelDecl - Translation-unit scoped declarations generated by #pragma weak during processing o...
Definition Sema.h:4867
bool RequireCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition Sema.h:1246
UuidAttr * mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef UuidAsWritten, MSGuidDecl *GuidDecl)
ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList=false, bool AllowExplicit=false)
Attr * CreateAnnotationAttr(const AttributeCommonInfo &CI, StringRef Annot, MutableArrayRef< Expr * > Args)
CreateAnnotationAttr - Creates an annotation Annot with Args arguments.
Definition Sema.cpp:2934
SemaAVR & AVR()
Definition Sema.h:1426
void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx)
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD)
ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in it, apply them to D.
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W)
DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak applied to it,...
bool CheckSpanLikeType(const AttributeCommonInfo &CI, const QualType &Ty)
Check that the type is a plain record with one field being a pointer type and the other field being a...
FormatMatchesAttr * mergeFormatMatchesAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, StringLiteral *FormatStr)
AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority, IdentifierInfo *IIEnvironment)
llvm::MapVector< IdentifierInfo *, llvm::SetVector< WeakInfo, llvm::SmallVector< WeakInfo, 1u >, llvm::SmallDenseSet< WeakInfo, 2u, WeakInfo::DenseMapInfoByAliasOnly > > > WeakUndeclaredIdentifiers
WeakUndeclaredIdentifiers - Identifiers contained in #pragma weak before declared.
Definition Sema.h:3531
void ProcessAPINotes(Decl *D)
Map any API notes provided for this declaration to attributes on the declaration.
void CheckAlignasUnderalignment(Decl *D)
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx)
DarwinSDKInfo * getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, StringRef Platform)
Definition Sema.cpp:112
CUDALaunchBoundsAttr * CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks)
Create an CUDALaunchBoundsAttr attribute.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false, bool ForceNoCPlusPlus=false)
Perform unqualified name lookup starting from a given scope.
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E)
AddAlignValueAttr - Adds an align_value attribute to a particular declaration.
SemaWasm & Wasm()
Definition Sema.h:1541
LifetimeCaptureByAttr * ParseLifetimeCaptureByAttr(const ParsedAttr &AL, StringRef ParamName)
bool checkMSInheritanceAttrOnDefinition(CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel SemanticSpelling)
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation=nullptr)
Check if the argument E is a ASCII string literal.
SemaARM & ARM()
Definition Sema.h:1421
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto)
CheckFunctionCall - Check a direct function call for various correctness and safety properties not st...
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
bool isInSystemMacro(SourceLocation loc) const
Returns whether Loc is expanded from a macro in a system header.
bool isInSystemHeader(SourceLocation Loc) const
Returns if a SourceLocation is in a system header.
A trivial tuple used to represent a source range.
SourceLocation getBegin() const
Stmt - This represents one statement.
Definition Stmt.h:85
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:338
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Stmt.cpp:350
StringLiteral - This represents a string literal expression, e.g.
Definition Expr.h:1799
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition Decl.h:3832
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition Decl.h:3812
bool isUnion() const
Definition Decl.h:3922
Exposes information about the current target.
Definition TargetInfo.h:226
TargetOptions & getTargetOpts() const
Retrieve the target options.
Definition TargetInfo.h:326
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
virtual bool hasFeatureEnabled(const llvm::StringMap< bool > &Features, StringRef Name) const
Check if target has a given feature enabled.
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition TargetInfo.h:489
virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const
Determines whether a given calling convention is valid for the target.
bool isTLSSupported() const
Whether the target supports thread-local storage.
virtual unsigned getRegisterWidth() const
Return the "preferred" register width on this target.
Definition TargetInfo.h:903
virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const
virtual bool hasProtectedVisibility() const
Does this target support "protected" visibility?
virtual unsigned getUnwindWordWidth() const
Definition TargetInfo.h:898
unsigned getCharWidth() const
Definition TargetInfo.h:520
virtual bool shouldDLLImportComdatSymbols() const
Does this target aim for semantic compatibility with Microsoft C++ code using dllimport/export attrib...
const llvm::VersionTuple & getSDKVersion() const
std::string CPU
If given, the name of the target CPU to generate code for.
llvm::StringMap< bool > FeatureMap
The map of which features have been enabled disabled based on the command line.
The base class of all kinds of template declarations (e.g., class, function, etc.).
Base wrapper for a particular "section" of type source info.
Definition TypeLoc.h:59
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition TypeLoc.h:154
T getAsAdjusted() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition TypeLoc.h:2706
SourceLocation getBeginLoc() const
Get the begin source location.
Definition TypeLoc.cpp:193
A container of type source information.
Definition TypeBase.h:8264
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition TypeLoc.h:267
QualType getType() const
Return the type wrapped by this type source info.
Definition TypeBase.h:8275
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isSizelessType() const
As an extension, we classify types as one of "sized" or "sizeless"; every type is one or the other.
Definition Type.cpp:2568
bool isBlockPointerType() const
Definition TypeBase.h:8550
bool isVoidType() const
Definition TypeBase.h:8892
bool isBooleanType() const
Definition TypeBase.h:9022
const Type * getPointeeOrArrayElementType() const
If this is a pointer type, return the pointee type.
Definition TypeBase.h:9072
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2206
bool isComplexType() const
isComplexType() does not include complex integers (a GCC extension).
Definition Type.cpp:725
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition Type.h:41
bool isArrayType() const
Definition TypeBase.h:8629
bool isCharType() const
Definition Type.cpp:2133
bool isFunctionPointerType() const
Definition TypeBase.h:8597
bool isPointerType() const
Definition TypeBase.h:8530
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8936
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9179
bool isReferenceType() const
Definition TypeBase.h:8554
bool isEnumeralType() const
Definition TypeBase.h:8661
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to.
Definition Type.cpp:1910
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition Type.cpp:2104
bool isAlignValT() const
Definition Type.cpp:3180
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:753
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition TypeBase.h:9010
bool isExtVectorType() const
Definition TypeBase.h:8673
bool isAnyCharacterType() const
Determine whether this type is any of the built-in character types.
Definition Type.cpp:2169
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition TypeBase.h:2791
bool isBitIntType() const
Definition TypeBase.h:8801
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition TypeBase.h:2783
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition TypeBase.h:2405
bool isPointerOrReferenceType() const
Definition TypeBase.h:8534
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition Type.cpp:2436
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition Type.cpp:2313
bool isVectorType() const
Definition TypeBase.h:8669
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2922
bool isFloatingType() const
Definition Type.cpp:2305
bool isAnyPointerType() const
Definition TypeBase.h:8538
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9112
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs,...
Definition Type.cpp:654
Base class for declarations which introduce a typedef-name.
Definition Decl.h:3562
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition Expr.cpp:5039
Represents a dependent using declaration which was marked with typename.
Definition DeclCXX.h:4033
Represents a dependent using declaration which was not marked with typename.
Definition DeclCXX.h:3936
Represents a C++ using-declaration.
Definition DeclCXX.h:3587
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition Decl.h:712
void setType(QualType newType)
Definition Decl.h:724
QualType getType() const
Definition Decl.h:723
Represents a variable declaration or definition.
Definition Decl.h:926
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition Decl.cpp:2158
@ TLS_None
Not a TLS variable.
Definition Decl.h:946
Represents a GCC generic vector type.
Definition TypeBase.h:4176
Captures information about a #pragma weak directive.
Definition Weak.h:25
const IdentifierInfo * getAlias() const
Definition Weak.h:32
SourceLocation getLocation() const
Definition Weak.h:33
A collection of diagnostics which were delayed.
const DelayedDiagnosticPool * getParent() const
void steal(DelayedDiagnosticPool &pool)
Steal the diagnostics from the given pool.
SmallVectorImpl< DelayedDiagnostic >::const_iterator pool_iterator
A diagnostic message which has been conditionally emitted pending the complete parsing of the current...
unsigned getForbiddenTypeDiagnostic() const
The diagnostic ID to emit.
Defines the clang::TargetInfo interface.
#define UINT_MAX
Definition limits.h:64
Enums for the diagnostics of target, target_version and target_clones.
Definition Sema.h:841
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
@ Match
This is not an overload because the signature exactly matches an existing declaration.
Definition Sema.h:817
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus23
@ ExpectedFunctionMethodOrBlock
@ ExpectedClass
@ ExpectedTypeOrNamespace
@ ExpectedVariableFieldOrTag
@ ExpectedVariableOrField
@ ExpectedUnion
@ ExpectedFunctionOrMethod
@ ExpectedVariable
@ ExpectedFunctionOrClassOrEnum
@ ExpectedVariableOrFunction
@ ExpectedKernelFunction
@ ExpectedFunctionVariableOrClass
@ ExpectedNonMemberFunction
void handleSimpleAttributeOrDiagnose(SemaBase &S, Decl *D, const AttributeCommonInfo &CI, bool PassesCheck, unsigned DiagID, DiagnosticArgs &&...ExtraArgs)
Add an attribute AttrType to declaration D, provided that PassesCheck is true.
Definition Attr.h:185
bool hasDeclarator(const Decl *D)
Return true if the given decl has a declarator that should have been processed by Sema::GetTypeForDec...
Definition Attr.h:46
CUDAFunctionTarget
Definition Cuda.h:61
QualType getFunctionOrMethodResultType(const Decl *D)
Definition Attr.h:98
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition Specifiers.h:151
AvailabilityMergeKind
Describes the kind of merge to perform for availability attributes (including "deprecated",...
Definition Sema.h:627
@ None
Don't merge availability attributes at all.
Definition Sema.h:629
@ Override
Merge availability attributes for an override, which requires an exact match or a weakening of constr...
Definition Sema.h:635
@ OptionalProtocolImplementation
Merge availability attributes for an implementation of an optional protocol requirement.
Definition Sema.h:641
@ Redeclaration
Merge availability attributes for a redeclaration, which requires an exact match.
Definition Sema.h:632
@ ProtocolImplementation
Merge availability attributes for an implementation of a protocol requirement.
Definition Sema.h:638
@ VectorLength
'vector_length' clause, allowed on 'parallel', 'kernels', 'parallel loop', and 'kernels loop' constru...
CudaVersion ToCudaVersion(llvm::VersionTuple)
Definition Cuda.cpp:70
SmallVector< Attr *, 4 > AttrVec
AttrVec - A vector of Attr, which is how they are stored on the AST.
nullptr
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
bool checkAttrMutualExclusion(SemaBase &S, Decl *D, const ParsedAttr &AL)
Diagnose mutually exclusive attributes when present on a given declaration.
Definition Attr.h:135
@ SC_Extern
Definition Specifiers.h:251
@ SC_Register
Definition Specifiers.h:257
@ SC_None
Definition Specifiers.h:250
@ TSCS_unspecified
Definition Specifiers.h:236
void inferNoReturnAttr(Sema &S, Decl *D)
Expr * Cond
};
SourceRange getFunctionOrMethodResultSourceRange(const Decl *D)
Definition Attr.h:104
bool isFunctionOrMethodOrBlockForAttrSubject(const Decl *D)
Return true if the given decl has function type (function or function-typed variable) or an Objective...
Definition Attr.h:40
QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx)
Definition Attr.h:83
@ Internal
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition Linkage.h:35
Language
The language for the input, used to select and validate the language standard and possible actions.
AttributeArgumentNType
These constants match the enumerated choices of err_attribute_argument_n_type and err_attribute_argum...
@ AANT_ArgumentIntegerConstant
@ AANT_ArgumentBuiltinFunction
@ AANT_ArgumentIntOrBool
@ AANT_ArgumentIdentifier
@ AANT_ArgumentString
@ SD_Automatic
Automatic storage duration (most local variables).
Definition Specifiers.h:341
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
@ SwiftAsyncContext
This parameter (which must have pointer type) uses the special Swift asynchronous context-pointer ABI...
Definition Specifiers.h:399
@ SwiftErrorResult
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
Definition Specifiers.h:389
@ SwiftIndirectResult
This parameter (which must have pointer type) is a Swift indirect result parameter.
Definition Specifiers.h:384
@ SwiftContext
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment.
Definition Specifiers.h:394
const FunctionProtoType * T
bool isFunctionOrMethodVariadic(const Decl *D)
Definition Attr.h:112
@ Template
We are parsing a template declaration.
Definition Parser.h:81
bool isFuncOrMethodForAttrSubject(const Decl *D)
isFuncOrMethodForAttrSubject - Return true if the given decl has function type (function or function-...
Definition Attr.h:34
ExprResult ExprError()
Definition Ownership.h:265
OffloadArch StringToOffloadArch(llvm::StringRef S)
CudaVersion
Definition Cuda.h:22
LLVM_READONLY bool isHexDigit(unsigned char c)
Return true if this character is an ASCII hex digit: [0-9a-fA-F].
Definition CharInfo.h:144
FormatStringType
Definition Sema.h:498
SanitizerMask parseSanitizerValue(StringRef Value, bool AllowGroups)
Parse a single value from a -fsanitize= or -fno-sanitize= value list.
const char * OffloadArchToString(OffloadArch A)
void handleSimpleAttribute(SemaBase &S, Decl *D, const AttributeCommonInfo &CI)
Applies the given attribute to the Decl without performing any additional semantic checking.
Definition Attr.h:175
std::pair< SourceLocation, PartialDiagnostic > PartialDiagnosticAt
A partial diagnostic along with the source location where this diagnostic occurs.
bool hasImplicitObjectParameter(const Decl *D)
Definition Attr.h:126
FloatModeKind
Definition TargetInfo.h:75
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition Specifiers.h:135
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition Specifiers.h:139
MSInheritanceModel
Assigned inheritance model for a class in the MS C++ ABI.
Definition Specifiers.h:410
bool hasFunctionProto(const Decl *D)
hasFunctionProto - Return true if the given decl has a argument information.
Definition Attr.h:55
unsigned getFunctionOrMethodNumParams(const Decl *D)
getFunctionOrMethodNumParams - Return number of function or method parameters.
Definition Attr.h:64
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
DynamicRecursiveASTVisitorBase< false > DynamicRecursiveASTVisitor
@ TSK_ExplicitSpecialization
This template specialization was declared or defined by an explicit specialization (C++ [temp....
Definition Specifiers.h:198
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition Specifiers.h:278
@ CC_X86Pascal
Definition Specifiers.h:284
@ CC_Swift
Definition Specifiers.h:293
@ CC_IntelOclBicc
Definition Specifiers.h:290
@ CC_PreserveMost
Definition Specifiers.h:295
@ CC_Win64
Definition Specifiers.h:285
@ CC_X86ThisCall
Definition Specifiers.h:282
@ CC_AArch64VectorCall
Definition Specifiers.h:297
@ CC_DeviceKernel
Definition Specifiers.h:292
@ CC_AAPCS
Definition Specifiers.h:288
@ CC_PreserveNone
Definition Specifiers.h:300
@ CC_M68kRTD
Definition Specifiers.h:299
@ CC_SwiftAsync
Definition Specifiers.h:294
@ CC_X86RegCall
Definition Specifiers.h:287
@ CC_RISCVVectorCall
Definition Specifiers.h:301
@ CC_X86VectorCall
Definition Specifiers.h:283
@ CC_AArch64SVEPCS
Definition Specifiers.h:298
@ CC_RISCVVLSCall_32
Definition Specifiers.h:302
@ CC_X86StdCall
Definition Specifiers.h:280
@ CC_X86_64SysV
Definition Specifiers.h:286
@ CC_PreserveAll
Definition Specifiers.h:296
@ CC_X86FastCall
Definition Specifiers.h:281
@ CC_AAPCS_VFP
Definition Specifiers.h:289
@ Generic
not a target-specific vector type
Definition TypeBase.h:4137
U cast(CodeGen::Address addr)
Definition Address.h:327
SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx)
Definition Attr.h:92
OpaquePtr< QualType > ParsedType
An opaque type for threading parsed type information through the parser.
Definition Ownership.h:230
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5873
@ None
No keyword precedes the qualified type name.
Definition TypeBase.h:5889
@ Union
The "union" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5876
ActionResult< Expr * > ExprResult
Definition Ownership.h:249
@ Other
Other implicit parameter.
Definition Decl.h:1746
IdentifierInfo * Identifier
FormatAttrKind Kind
Represents information about a change in availability for an entity, which is part of the encoding of...
Definition ParsedAttr.h:47
VersionTuple Version
The version number at which the change occurred.
Definition ParsedAttr.h:52
bool isValid() const
Determine whether this availability change is valid.
Definition ParsedAttr.h:58
static constexpr OSEnvPair macOStoMacCatalystPair()
Returns the os-environment mapping pair that's used to represent the macOS -> Mac Catalyst version ma...
static constexpr OSEnvPair iOStoWatchOSPair()
Returns the os-environment mapping pair that's used to represent the iOS -> watchOS version mapping.
static constexpr OSEnvPair iOStoTvOSPair()
Returns the os-environment mapping pair that's used to represent the iOS -> tvOS version mapping.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
DeclarationName getName() const
getName - Returns the embedded declaration name.
const ParsedAttributesView & getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition DeclSpec.h:1633
uint16_t Part2
...-89ab-...
Definition DeclCXX.h:4373
uint32_t Part1
{01234567-...
Definition DeclCXX.h:4371
uint16_t Part3
...-cdef-...
Definition DeclCXX.h:4375
uint8_t Part4And5[8]
...-0123-456789abcdef}
Definition DeclCXX.h:4377
virtual AttrHandling handleDeclAttribute(Sema &S, Decl *D, const ParsedAttr &Attr) const
If this ParsedAttrInfo knows how to handle this ParsedAttr applied to this Decl then do so and return...
Contains information gathered from parsing the contents of TargetAttr.
Definition TargetInfo.h:60
std::vector< std::string > Features
Definition TargetInfo.h:61