clang  9.0.0svn
SemaExprCXX.cpp
Go to the documentation of this file.
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
15 #include "TreeTransform.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43 
44 /// Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
49  SourceLocation NameLoc,
50  IdentifierInfo &Name) {
51  NestedNameSpecifier *NNS = SS.getScopeRep();
52 
53  // Convert the nested-name-specifier into a type.
54  QualType Type;
55  switch (NNS->getKind()) {
58  Type = QualType(NNS->getAsType(), 0);
59  break;
60 
62  // Strip off the last layer of the nested-name-specifier and build a
63  // typename type for it.
64  assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65  Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66  NNS->getAsIdentifier());
67  break;
68 
73  llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74  }
75 
76  // This reference to the type is located entirely at the location of the
77  // final identifier in the qualified-id.
78  return CreateParsedType(Type,
79  Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81 
83  SourceLocation NameLoc,
84  Scope *S, CXXScopeSpec &SS,
85  bool EnteringContext) {
86  CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87  assert(CurClass && &II == CurClass->getIdentifier() &&
88  "not a constructor name");
89 
90  // When naming a constructor as a member of a dependent context (eg, in a
91  // friend declaration or an inherited constructor declaration), form an
92  // unresolved "typename" type.
93  if (CurClass->isDependentContext() && !EnteringContext) {
94  QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95  return ParsedType::make(T);
96  }
97 
98  if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99  return ParsedType();
100 
101  // Find the injected-class-name declaration. Note that we make no attempt to
102  // diagnose cases where the injected-class-name is shadowed: the only
103  // declaration that can validly shadow the injected-class-name is a
104  // non-static data member, and if the class contains both a non-static data
105  // member and a constructor then it is ill-formed (we check that in
106  // CheckCompletedCXXClass).
107  CXXRecordDecl *InjectedClassName = nullptr;
108  for (NamedDecl *ND : CurClass->lookup(&II)) {
109  auto *RD = dyn_cast<CXXRecordDecl>(ND);
110  if (RD && RD->isInjectedClassName()) {
111  InjectedClassName = RD;
112  break;
113  }
114  }
115  if (!InjectedClassName) {
116  if (!CurClass->isInvalidDecl()) {
117  // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118  // properly. Work around it here for now.
120  diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121  }
122  return ParsedType();
123  }
124 
125  QualType T = Context.getTypeDeclType(InjectedClassName);
126  DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127  MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128 
129  return ParsedType::make(T);
130 }
131 
133  IdentifierInfo &II,
134  SourceLocation NameLoc,
135  Scope *S, CXXScopeSpec &SS,
136  ParsedType ObjectTypePtr,
137  bool EnteringContext) {
138  // Determine where to perform name lookup.
139 
140  // FIXME: This area of the standard is very messy, and the current
141  // wording is rather unclear about which scopes we search for the
142  // destructor name; see core issues 399 and 555. Issue 399 in
143  // particular shows where the current description of destructor name
144  // lookup is completely out of line with existing practice, e.g.,
145  // this appears to be ill-formed:
146  //
147  // namespace N {
148  // template <typename T> struct S {
149  // ~S();
150  // };
151  // }
152  //
153  // void f(N::S<int>* s) {
154  // s->N::S<int>::~S();
155  // }
156  //
157  // See also PR6358 and PR6359.
158  // For this reason, we're currently only doing the C++03 version of this
159  // code; the C++0x version has to wait until we get a proper spec.
160  QualType SearchType;
161  DeclContext *LookupCtx = nullptr;
162  bool isDependent = false;
163  bool LookInScope = false;
164 
165  if (SS.isInvalid())
166  return nullptr;
167 
168  // If we have an object type, it's because we are in a
169  // pseudo-destructor-expression or a member access expression, and
170  // we know what type we're looking for.
171  if (ObjectTypePtr)
172  SearchType = GetTypeFromParser(ObjectTypePtr);
173 
174  if (SS.isSet()) {
175  NestedNameSpecifier *NNS = SS.getScopeRep();
176 
177  bool AlreadySearched = false;
178  bool LookAtPrefix = true;
179  // C++11 [basic.lookup.qual]p6:
180  // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181  // the type-names are looked up as types in the scope designated by the
182  // nested-name-specifier. Similarly, in a qualified-id of the form:
183  //
184  // nested-name-specifier[opt] class-name :: ~ class-name
185  //
186  // the second class-name is looked up in the same scope as the first.
187  //
188  // Here, we determine whether the code below is permitted to look at the
189  // prefix of the nested-name-specifier.
190  DeclContext *DC = computeDeclContext(SS, EnteringContext);
191  if (DC && DC->isFileContext()) {
192  AlreadySearched = true;
193  LookupCtx = DC;
194  isDependent = false;
195  } else if (DC && isa<CXXRecordDecl>(DC)) {
196  LookAtPrefix = false;
197  LookInScope = true;
198  }
199 
200  // The second case from the C++03 rules quoted further above.
201  NestedNameSpecifier *Prefix = nullptr;
202  if (AlreadySearched) {
203  // Nothing left to do.
204  } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205  CXXScopeSpec PrefixSS;
206  PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207  LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208  isDependent = isDependentScopeSpecifier(PrefixSS);
209  } else if (ObjectTypePtr) {
210  LookupCtx = computeDeclContext(SearchType);
211  isDependent = SearchType->isDependentType();
212  } else {
213  LookupCtx = computeDeclContext(SS, EnteringContext);
214  isDependent = LookupCtx && LookupCtx->isDependentContext();
215  }
216  } else if (ObjectTypePtr) {
217  // C++ [basic.lookup.classref]p3:
218  // If the unqualified-id is ~type-name, the type-name is looked up
219  // in the context of the entire postfix-expression. If the type T
220  // of the object expression is of a class type C, the type-name is
221  // also looked up in the scope of class C. At least one of the
222  // lookups shall find a name that refers to (possibly
223  // cv-qualified) T.
224  LookupCtx = computeDeclContext(SearchType);
225  isDependent = SearchType->isDependentType();
226  assert((isDependent || !SearchType->isIncompleteType()) &&
227  "Caller should have completed object type");
228 
229  LookInScope = true;
230  } else {
231  // Perform lookup into the current scope (only).
232  LookInScope = true;
233  }
234 
235  TypeDecl *NonMatchingTypeDecl = nullptr;
236  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237  for (unsigned Step = 0; Step != 2; ++Step) {
238  // Look for the name first in the computed lookup context (if we
239  // have one) and, if that fails to find a match, in the scope (if
240  // we're allowed to look there).
241  Found.clear();
242  if (Step == 0 && LookupCtx) {
243  if (RequireCompleteDeclContext(SS, LookupCtx))
244  return nullptr;
245  LookupQualifiedName(Found, LookupCtx);
246  } else if (Step == 1 && LookInScope && S) {
247  LookupName(Found, S);
248  } else {
249  continue;
250  }
251 
252  // FIXME: Should we be suppressing ambiguities here?
253  if (Found.isAmbiguous())
254  return nullptr;
255 
256  if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257  QualType T = Context.getTypeDeclType(Type);
258  MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259 
260  if (SearchType.isNull() || SearchType->isDependentType() ||
261  Context.hasSameUnqualifiedType(T, SearchType)) {
262  // We found our type!
263 
264  return CreateParsedType(T,
265  Context.getTrivialTypeSourceInfo(T, NameLoc));
266  }
267 
268  if (!SearchType.isNull())
269  NonMatchingTypeDecl = Type;
270  }
271 
272  // If the name that we found is a class template name, and it is
273  // the same name as the template name in the last part of the
274  // nested-name-specifier (if present) or the object type, then
275  // this is the destructor for that class.
276  // FIXME: This is a workaround until we get real drafting for core
277  // issue 399, for which there isn't even an obvious direction.
278  if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279  QualType MemberOfType;
280  if (SS.isSet()) {
281  if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282  // Figure out the type of the context, if it has one.
283  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284  MemberOfType = Context.getTypeDeclType(Record);
285  }
286  }
287  if (MemberOfType.isNull())
288  MemberOfType = SearchType;
289 
290  if (MemberOfType.isNull())
291  continue;
292 
293  // We're referring into a class template specialization. If the
294  // class template we found is the same as the template being
295  // specialized, we found what we are looking for.
296  if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
298  = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299  if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300  Template->getCanonicalDecl())
301  return CreateParsedType(
302  MemberOfType,
303  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304  }
305 
306  continue;
307  }
308 
309  // We're referring to an unresolved class template
310  // specialization. Determine whether we class template we found
311  // is the same as the template being specialized or, if we don't
312  // know which template is being specialized, that it at least
313  // has the same name.
314  if (const TemplateSpecializationType *SpecType
315  = MemberOfType->getAs<TemplateSpecializationType>()) {
316  TemplateName SpecName = SpecType->getTemplateName();
317 
318  // The class template we found is the same template being
319  // specialized.
320  if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321  if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322  return CreateParsedType(
323  MemberOfType,
324  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325 
326  continue;
327  }
328 
329  // The class template we found has the same name as the
330  // (dependent) template name being specialized.
331  if (DependentTemplateName *DepTemplate
332  = SpecName.getAsDependentTemplateName()) {
333  if (DepTemplate->isIdentifier() &&
334  DepTemplate->getIdentifier() == Template->getIdentifier())
335  return CreateParsedType(
336  MemberOfType,
337  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338 
339  continue;
340  }
341  }
342  }
343  }
344 
345  if (isDependent) {
346  // We didn't find our type, but that's okay: it's dependent
347  // anyway.
348 
349  // FIXME: What if we have no nested-name-specifier?
350  QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351  SS.getWithLocInContext(Context),
352  II, NameLoc);
353  return ParsedType::make(T);
354  }
355 
356  if (NonMatchingTypeDecl) {
357  QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358  Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359  << T << SearchType;
360  Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361  << T;
362  } else if (ObjectTypePtr)
363  Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364  << &II;
365  else {
366  SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367  diag::err_destructor_class_name);
368  if (S) {
369  const DeclContext *Ctx = S->getEntity();
370  if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371  DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372  Class->getNameAsString());
373  }
374  }
375 
376  return nullptr;
377 }
378 
380  ParsedType ObjectType) {
382  return nullptr;
383 
385  Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386  return nullptr;
387  }
388 
389  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
390  "unexpected type in getDestructorType");
391  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392 
393  // If we know the type of the object, check that the correct destructor
394  // type was named now; we can give better diagnostics this way.
395  QualType SearchType = GetTypeFromParser(ObjectType);
396  if (!SearchType.isNull() && !SearchType->isDependentType() &&
397  !Context.hasSameUnqualifiedType(T, SearchType)) {
398  Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399  << T << SearchType;
400  return nullptr;
401  }
402 
403  return ParsedType::make(T);
404 }
405 
407  const UnqualifiedId &Name) {
409 
410  if (!SS.isValid())
411  return false;
412 
413  switch (SS.getScopeRep()->getKind()) {
417  // Per C++11 [over.literal]p2, literal operators can only be declared at
418  // namespace scope. Therefore, this unqualified-id cannot name anything.
419  // Reject it early, because we have no AST representation for this in the
420  // case where the scope is dependent.
421  Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422  << SS.getScopeRep();
423  return true;
424 
429  return false;
430  }
431 
432  llvm_unreachable("unknown nested name specifier kind");
433 }
434 
435 /// Build a C++ typeid expression with a type operand.
437  SourceLocation TypeidLoc,
438  TypeSourceInfo *Operand,
439  SourceLocation RParenLoc) {
440  // C++ [expr.typeid]p4:
441  // The top-level cv-qualifiers of the lvalue expression or the type-id
442  // that is the operand of typeid are always ignored.
443  // If the type of the type-id is a class type or a reference to a class
444  // type, the class shall be completely-defined.
445  Qualifiers Quals;
446  QualType T
447  = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448  Quals);
449  if (T->getAs<RecordType>() &&
450  RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451  return ExprError();
452 
453  if (T->isVariablyModifiedType())
454  return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455 
456  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
457  SourceRange(TypeidLoc, RParenLoc));
458 }
459 
460 /// Build a C++ typeid expression with an expression operand.
462  SourceLocation TypeidLoc,
463  Expr *E,
464  SourceLocation RParenLoc) {
465  bool WasEvaluated = false;
466  if (E && !E->isTypeDependent()) {
467  if (E->getType()->isPlaceholderType()) {
468  ExprResult result = CheckPlaceholderExpr(E);
469  if (result.isInvalid()) return ExprError();
470  E = result.get();
471  }
472 
473  QualType T = E->getType();
474  if (const RecordType *RecordT = T->getAs<RecordType>()) {
475  CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
476  // C++ [expr.typeid]p3:
477  // [...] If the type of the expression is a class type, the class
478  // shall be completely-defined.
479  if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
480  return ExprError();
481 
482  // C++ [expr.typeid]p3:
483  // When typeid is applied to an expression other than an glvalue of a
484  // polymorphic class type [...] [the] expression is an unevaluated
485  // operand. [...]
486  if (RecordD->isPolymorphic() && E->isGLValue()) {
487  // The subexpression is potentially evaluated; switch the context
488  // and recheck the subexpression.
489  ExprResult Result = TransformToPotentiallyEvaluated(E);
490  if (Result.isInvalid()) return ExprError();
491  E = Result.get();
492 
493  // We require a vtable to query the type at run time.
494  MarkVTableUsed(TypeidLoc, RecordD);
495  WasEvaluated = true;
496  }
497  }
498 
499  // C++ [expr.typeid]p4:
500  // [...] If the type of the type-id is a reference to a possibly
501  // cv-qualified type, the result of the typeid expression refers to a
502  // std::type_info object representing the cv-unqualified referenced
503  // type.
504  Qualifiers Quals;
505  QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
506  if (!Context.hasSameType(T, UnqualT)) {
507  T = UnqualT;
508  E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
509  }
510  }
511 
512  if (E->getType()->isVariablyModifiedType())
513  return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
514  << E->getType());
515  else if (!inTemplateInstantiation() &&
516  E->HasSideEffects(Context, WasEvaluated)) {
517  // The expression operand for typeid is in an unevaluated expression
518  // context, so side effects could result in unintended consequences.
519  Diag(E->getExprLoc(), WasEvaluated
520  ? diag::warn_side_effects_typeid
521  : diag::warn_side_effects_unevaluated_context);
522  }
523 
524  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
525  SourceRange(TypeidLoc, RParenLoc));
526 }
527 
528 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
531  bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
532  // OpenCL C++ 1.0 s2.9: typeid is not supported.
533  if (getLangOpts().OpenCLCPlusPlus) {
534  return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
535  << "typeid");
536  }
537 
538  // Find the std::type_info type.
539  if (!getStdNamespace())
540  return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
541 
542  if (!CXXTypeInfoDecl) {
543  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
544  LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
545  LookupQualifiedName(R, getStdNamespace());
546  CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
547  // Microsoft's typeinfo doesn't have type_info in std but in the global
548  // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
549  if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
550  LookupQualifiedName(R, Context.getTranslationUnitDecl());
551  CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
552  }
553  if (!CXXTypeInfoDecl)
554  return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
555  }
556 
557  if (!getLangOpts().RTTI) {
558  return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
559  }
560 
561  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
562 
563  if (isType) {
564  // The operand is a type; handle it as such.
565  TypeSourceInfo *TInfo = nullptr;
566  QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
567  &TInfo);
568  if (T.isNull())
569  return ExprError();
570 
571  if (!TInfo)
572  TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
573 
574  return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
575  }
576 
577  // The operand is an expression.
578  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
579 }
580 
581 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
582 /// a single GUID.
583 static void
586  // Optionally remove one level of pointer, reference or array indirection.
587  const Type *Ty = QT.getTypePtr();
588  if (QT->isPointerType() || QT->isReferenceType())
589  Ty = QT->getPointeeType().getTypePtr();
590  else if (QT->isArrayType())
591  Ty = Ty->getBaseElementTypeUnsafe();
592 
593  const auto *TD = Ty->getAsTagDecl();
594  if (!TD)
595  return;
596 
597  if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
598  UuidAttrs.insert(Uuid);
599  return;
600  }
601 
602  // __uuidof can grab UUIDs from template arguments.
603  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
604  const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
605  for (const TemplateArgument &TA : TAL.asArray()) {
606  const UuidAttr *UuidForTA = nullptr;
607  if (TA.getKind() == TemplateArgument::Type)
608  getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
609  else if (TA.getKind() == TemplateArgument::Declaration)
610  getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
611 
612  if (UuidForTA)
613  UuidAttrs.insert(UuidForTA);
614  }
615  }
616 }
617 
618 /// Build a Microsoft __uuidof expression with a type operand.
620  SourceLocation TypeidLoc,
621  TypeSourceInfo *Operand,
622  SourceLocation RParenLoc) {
623  StringRef UuidStr;
624  if (!Operand->getType()->isDependentType()) {
626  getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
627  if (UuidAttrs.empty())
628  return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
629  if (UuidAttrs.size() > 1)
630  return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
631  UuidStr = UuidAttrs.back()->getGuid();
632  }
633 
634  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
635  SourceRange(TypeidLoc, RParenLoc));
636 }
637 
638 /// Build a Microsoft __uuidof expression with an expression operand.
640  SourceLocation TypeidLoc,
641  Expr *E,
642  SourceLocation RParenLoc) {
643  StringRef UuidStr;
644  if (!E->getType()->isDependentType()) {
646  UuidStr = "00000000-0000-0000-0000-000000000000";
647  } else {
649  getUuidAttrOfType(*this, E->getType(), UuidAttrs);
650  if (UuidAttrs.empty())
651  return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
652  if (UuidAttrs.size() > 1)
653  return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
654  UuidStr = UuidAttrs.back()->getGuid();
655  }
656  }
657 
658  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
659  SourceRange(TypeidLoc, RParenLoc));
660 }
661 
662 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
665  bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
666  // If MSVCGuidDecl has not been cached, do the lookup.
667  if (!MSVCGuidDecl) {
668  IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
669  LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
670  LookupQualifiedName(R, Context.getTranslationUnitDecl());
671  MSVCGuidDecl = R.getAsSingle<RecordDecl>();
672  if (!MSVCGuidDecl)
673  return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
674  }
675 
676  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
677 
678  if (isType) {
679  // The operand is a type; handle it as such.
680  TypeSourceInfo *TInfo = nullptr;
681  QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
682  &TInfo);
683  if (T.isNull())
684  return ExprError();
685 
686  if (!TInfo)
687  TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
688 
689  return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
690  }
691 
692  // The operand is an expression.
693  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
694 }
695 
696 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
699  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
700  "Unknown C++ Boolean value!");
701  return new (Context)
702  CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
703 }
704 
705 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
708  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
709 }
710 
711 /// ActOnCXXThrow - Parse throw expressions.
714  bool IsThrownVarInScope = false;
715  if (Ex) {
716  // C++0x [class.copymove]p31:
717  // When certain criteria are met, an implementation is allowed to omit the
718  // copy/move construction of a class object [...]
719  //
720  // - in a throw-expression, when the operand is the name of a
721  // non-volatile automatic object (other than a function or catch-
722  // clause parameter) whose scope does not extend beyond the end of the
723  // innermost enclosing try-block (if there is one), the copy/move
724  // operation from the operand to the exception object (15.1) can be
725  // omitted by constructing the automatic object directly into the
726  // exception object
727  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
728  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
729  if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
730  for( ; S; S = S->getParent()) {
731  if (S->isDeclScope(Var)) {
732  IsThrownVarInScope = true;
733  break;
734  }
735 
736  if (S->getFlags() &
740  break;
741  }
742  }
743  }
744  }
745 
746  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
747 }
748 
750  bool IsThrownVarInScope) {
751  // Don't report an error if 'throw' is used in system headers.
752  if (!getLangOpts().CXXExceptions &&
753  !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
754  // Delay error emission for the OpenMP device code.
755  targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
756  }
757 
758  // Exceptions aren't allowed in CUDA device code.
759  if (getLangOpts().CUDA)
760  CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
761  << "throw" << CurrentCUDATarget();
762 
763  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
764  Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
765 
766  if (Ex && !Ex->isTypeDependent()) {
767  QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
768  if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
769  return ExprError();
770 
771  // Initialize the exception result. This implicitly weeds out
772  // abstract types or types with inaccessible copy constructors.
773 
774  // C++0x [class.copymove]p31:
775  // When certain criteria are met, an implementation is allowed to omit the
776  // copy/move construction of a class object [...]
777  //
778  // - in a throw-expression, when the operand is the name of a
779  // non-volatile automatic object (other than a function or
780  // catch-clause
781  // parameter) whose scope does not extend beyond the end of the
782  // innermost enclosing try-block (if there is one), the copy/move
783  // operation from the operand to the exception object (15.1) can be
784  // omitted by constructing the automatic object directly into the
785  // exception object
786  const VarDecl *NRVOVariable = nullptr;
787  if (IsThrownVarInScope)
788  NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
789 
791  OpLoc, ExceptionObjectTy,
792  /*NRVO=*/NRVOVariable != nullptr);
793  ExprResult Res = PerformMoveOrCopyInitialization(
794  Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
795  if (Res.isInvalid())
796  return ExprError();
797  Ex = Res.get();
798  }
799 
800  return new (Context)
801  CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
802 }
803 
804 static void
806  llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
807  llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
808  llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
809  bool ParentIsPublic) {
810  for (const CXXBaseSpecifier &BS : RD->bases()) {
811  CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
812  bool NewSubobject;
813  // Virtual bases constitute the same subobject. Non-virtual bases are
814  // always distinct subobjects.
815  if (BS.isVirtual())
816  NewSubobject = VBases.insert(BaseDecl).second;
817  else
818  NewSubobject = true;
819 
820  if (NewSubobject)
821  ++SubobjectsSeen[BaseDecl];
822 
823  // Only add subobjects which have public access throughout the entire chain.
824  bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
825  if (PublicPath)
826  PublicSubobjectsSeen.insert(BaseDecl);
827 
828  // Recurse on to each base subobject.
829  collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
830  PublicPath);
831  }
832 }
833 
836  llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
837  llvm::SmallSet<CXXRecordDecl *, 2> VBases;
838  llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
839  SubobjectsSeen[RD] = 1;
840  PublicSubobjectsSeen.insert(RD);
841  collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
842  /*ParentIsPublic=*/true);
843 
844  for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
845  // Skip ambiguous objects.
846  if (SubobjectsSeen[PublicSubobject] > 1)
847  continue;
848 
849  Objects.push_back(PublicSubobject);
850  }
851 }
852 
853 /// CheckCXXThrowOperand - Validate the operand of a throw.
855  QualType ExceptionObjectTy, Expr *E) {
856  // If the type of the exception would be an incomplete type or a pointer
857  // to an incomplete type other than (cv) void the program is ill-formed.
858  QualType Ty = ExceptionObjectTy;
859  bool isPointer = false;
860  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
861  Ty = Ptr->getPointeeType();
862  isPointer = true;
863  }
864  if (!isPointer || !Ty->isVoidType()) {
865  if (RequireCompleteType(ThrowLoc, Ty,
866  isPointer ? diag::err_throw_incomplete_ptr
867  : diag::err_throw_incomplete,
868  E->getSourceRange()))
869  return true;
870 
871  if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
872  diag::err_throw_abstract_type, E))
873  return true;
874  }
875 
876  // If the exception has class type, we need additional handling.
877  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
878  if (!RD)
879  return false;
880 
881  // If we are throwing a polymorphic class type or pointer thereof,
882  // exception handling will make use of the vtable.
883  MarkVTableUsed(ThrowLoc, RD);
884 
885  // If a pointer is thrown, the referenced object will not be destroyed.
886  if (isPointer)
887  return false;
888 
889  // If the class has a destructor, we must be able to call it.
890  if (!RD->hasIrrelevantDestructor()) {
891  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
892  MarkFunctionReferenced(E->getExprLoc(), Destructor);
893  CheckDestructorAccess(E->getExprLoc(), Destructor,
894  PDiag(diag::err_access_dtor_exception) << Ty);
895  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
896  return true;
897  }
898  }
899 
900  // The MSVC ABI creates a list of all types which can catch the exception
901  // object. This list also references the appropriate copy constructor to call
902  // if the object is caught by value and has a non-trivial copy constructor.
903  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
904  // We are only interested in the public, unambiguous bases contained within
905  // the exception object. Bases which are ambiguous or otherwise
906  // inaccessible are not catchable types.
907  llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
908  getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
909 
910  for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
911  // Attempt to lookup the copy constructor. Various pieces of machinery
912  // will spring into action, like template instantiation, which means this
913  // cannot be a simple walk of the class's decls. Instead, we must perform
914  // lookup and overload resolution.
915  CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
916  if (!CD)
917  continue;
918 
919  // Mark the constructor referenced as it is used by this throw expression.
920  MarkFunctionReferenced(E->getExprLoc(), CD);
921 
922  // Skip this copy constructor if it is trivial, we don't need to record it
923  // in the catchable type data.
924  if (CD->isTrivial())
925  continue;
926 
927  // The copy constructor is non-trivial, create a mapping from this class
928  // type to this constructor.
929  // N.B. The selection of copy constructor is not sensitive to this
930  // particular throw-site. Lookup will be performed at the catch-site to
931  // ensure that the copy constructor is, in fact, accessible (via
932  // friendship or any other means).
933  Context.addCopyConstructorForExceptionObject(Subobject, CD);
934 
935  // We don't keep the instantiated default argument expressions around so
936  // we must rebuild them here.
937  for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
938  if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
939  return true;
940  }
941  }
942  }
943 
944  return false;
945 }
946 
948  ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
949  DeclContext *CurSemaContext, ASTContext &ASTCtx) {
950 
951  QualType ClassType = ThisTy->getPointeeType();
952  LambdaScopeInfo *CurLSI = nullptr;
953  DeclContext *CurDC = CurSemaContext;
954 
955  // Iterate through the stack of lambdas starting from the innermost lambda to
956  // the outermost lambda, checking if '*this' is ever captured by copy - since
957  // that could change the cv-qualifiers of the '*this' object.
958  // The object referred to by '*this' starts out with the cv-qualifiers of its
959  // member function. We then start with the innermost lambda and iterate
960  // outward checking to see if any lambda performs a by-copy capture of '*this'
961  // - and if so, any nested lambda must respect the 'constness' of that
962  // capturing lamdbda's call operator.
963  //
964 
965  // Since the FunctionScopeInfo stack is representative of the lexical
966  // nesting of the lambda expressions during initial parsing (and is the best
967  // place for querying information about captures about lambdas that are
968  // partially processed) and perhaps during instantiation of function templates
969  // that contain lambda expressions that need to be transformed BUT not
970  // necessarily during instantiation of a nested generic lambda's function call
971  // operator (which might even be instantiated at the end of the TU) - at which
972  // time the DeclContext tree is mature enough to query capture information
973  // reliably - we use a two pronged approach to walk through all the lexically
974  // enclosing lambda expressions:
975  //
976  // 1) Climb down the FunctionScopeInfo stack as long as each item represents
977  // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
978  // enclosed by the call-operator of the LSI below it on the stack (while
979  // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
980  // the stack represents the innermost lambda.
981  //
982  // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
983  // represents a lambda's call operator. If it does, we must be instantiating
984  // a generic lambda's call operator (represented by the Current LSI, and
985  // should be the only scenario where an inconsistency between the LSI and the
986  // DeclContext should occur), so climb out the DeclContexts if they
987  // represent lambdas, while querying the corresponding closure types
988  // regarding capture information.
989 
990  // 1) Climb down the function scope info stack.
991  for (int I = FunctionScopes.size();
992  I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
993  (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
994  cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
995  CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
996  CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
997 
998  if (!CurLSI->isCXXThisCaptured())
999  continue;
1000 
1001  auto C = CurLSI->getCXXThisCapture();
1002 
1003  if (C.isCopyCapture()) {
1005  if (CurLSI->CallOperator->isConst())
1006  ClassType.addConst();
1007  return ASTCtx.getPointerType(ClassType);
1008  }
1009  }
1010 
1011  // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1012  // happen during instantiation of its nested generic lambda call operator)
1013  if (isLambdaCallOperator(CurDC)) {
1014  assert(CurLSI && "While computing 'this' capture-type for a generic "
1015  "lambda, we must have a corresponding LambdaScopeInfo");
1017  "While computing 'this' capture-type for a generic lambda, when we "
1018  "run out of enclosing LSI's, yet the enclosing DC is a "
1019  "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1020  "lambda call oeprator");
1021  assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1022 
1023  auto IsThisCaptured =
1024  [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1025  IsConst = false;
1026  IsByCopy = false;
1027  for (auto &&C : Closure->captures()) {
1028  if (C.capturesThis()) {
1029  if (C.getCaptureKind() == LCK_StarThis)
1030  IsByCopy = true;
1031  if (Closure->getLambdaCallOperator()->isConst())
1032  IsConst = true;
1033  return true;
1034  }
1035  }
1036  return false;
1037  };
1038 
1039  bool IsByCopyCapture = false;
1040  bool IsConstCapture = false;
1041  CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1042  while (Closure &&
1043  IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1044  if (IsByCopyCapture) {
1046  if (IsConstCapture)
1047  ClassType.addConst();
1048  return ASTCtx.getPointerType(ClassType);
1049  }
1050  Closure = isLambdaCallOperator(Closure->getParent())
1051  ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1052  : nullptr;
1053  }
1054  }
1055  return ASTCtx.getPointerType(ClassType);
1056 }
1057 
1059  DeclContext *DC = getFunctionLevelDeclContext();
1060  QualType ThisTy = CXXThisTypeOverride;
1061 
1062  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1063  if (method && method->isInstance())
1064  ThisTy = method->getThisType();
1065  }
1066 
1067  if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1068  inTemplateInstantiation()) {
1069 
1070  assert(isa<CXXRecordDecl>(DC) &&
1071  "Trying to get 'this' type from static method?");
1072 
1073  // This is a lambda call operator that is being instantiated as a default
1074  // initializer. DC must point to the enclosing class type, so we can recover
1075  // the 'this' type from it.
1076 
1077  QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1078  // There are no cv-qualifiers for 'this' within default initializers,
1079  // per [expr.prim.general]p4.
1080  ThisTy = Context.getPointerType(ClassTy);
1081  }
1082 
1083  // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1084  // might need to be adjusted if the lambda or any of its enclosing lambda's
1085  // captures '*this' by copy.
1086  if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1087  return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1088  CurContext, Context);
1089  return ThisTy;
1090 }
1091 
1093  Decl *ContextDecl,
1094  Qualifiers CXXThisTypeQuals,
1095  bool Enabled)
1096  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1097 {
1098  if (!Enabled || !ContextDecl)
1099  return;
1100 
1101  CXXRecordDecl *Record = nullptr;
1102  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1103  Record = Template->getTemplatedDecl();
1104  else
1105  Record = cast<CXXRecordDecl>(ContextDecl);
1106 
1107  QualType T = S.Context.getRecordType(Record);
1108  T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1109 
1111 
1112  this->Enabled = true;
1113 }
1114 
1115 
1117  if (Enabled) {
1118  S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1119  }
1120 }
1121 
1123  QualType ThisTy, SourceLocation Loc,
1124  const bool ByCopy) {
1125 
1126  QualType AdjustedThisTy = ThisTy;
1127  // The type of the corresponding data member (not a 'this' pointer if 'by
1128  // copy').
1129  QualType CaptureThisFieldTy = ThisTy;
1130  if (ByCopy) {
1131  // If we are capturing the object referred to by '*this' by copy, ignore any
1132  // cv qualifiers inherited from the type of the member function for the type
1133  // of the closure-type's corresponding data member and any use of 'this'.
1134  CaptureThisFieldTy = ThisTy->getPointeeType();
1135  CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1136  AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1137  }
1138 
1139  FieldDecl *Field = FieldDecl::Create(
1140  Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1141  Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1142  ICIS_NoInit);
1143 
1144  Field->setImplicit(true);
1145  Field->setAccess(AS_private);
1146  RD->addDecl(Field);
1147  Expr *This =
1148  new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1149  if (ByCopy) {
1150  Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
1151  UO_Deref,
1152  This).get();
1154  nullptr, CaptureThisFieldTy, Loc);
1155  InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1156  InitializationSequence Init(S, Entity, InitKind, StarThis);
1157  ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1158  if (ER.isInvalid()) return nullptr;
1159  return ER.get();
1160  }
1161  return This;
1162 }
1163 
1164 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1165  bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1166  const bool ByCopy) {
1167  // We don't need to capture this in an unevaluated context.
1168  if (isUnevaluatedContext() && !Explicit)
1169  return true;
1170 
1171  assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1172 
1173  const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1174  ? *FunctionScopeIndexToStopAt
1175  : FunctionScopes.size() - 1;
1176 
1177  // Check that we can capture the *enclosing object* (referred to by '*this')
1178  // by the capturing-entity/closure (lambda/block/etc) at
1179  // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1180 
1181  // Note: The *enclosing object* can only be captured by-value by a
1182  // closure that is a lambda, using the explicit notation:
1183  // [*this] { ... }.
1184  // Every other capture of the *enclosing object* results in its by-reference
1185  // capture.
1186 
1187  // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1188  // stack), we can capture the *enclosing object* only if:
1189  // - 'L' has an explicit byref or byval capture of the *enclosing object*
1190  // - or, 'L' has an implicit capture.
1191  // AND
1192  // -- there is no enclosing closure
1193  // -- or, there is some enclosing closure 'E' that has already captured the
1194  // *enclosing object*, and every intervening closure (if any) between 'E'
1195  // and 'L' can implicitly capture the *enclosing object*.
1196  // -- or, every enclosing closure can implicitly capture the
1197  // *enclosing object*
1198 
1199 
1200  unsigned NumCapturingClosures = 0;
1201  for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1202  if (CapturingScopeInfo *CSI =
1203  dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1204  if (CSI->CXXThisCaptureIndex != 0) {
1205  // 'this' is already being captured; there isn't anything more to do.
1206  CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1207  break;
1208  }
1209  LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1211  // This context can't implicitly capture 'this'; fail out.
1212  if (BuildAndDiagnose)
1213  Diag(Loc, diag::err_this_capture)
1214  << (Explicit && idx == MaxFunctionScopesIndex);
1215  return true;
1216  }
1217  if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1218  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1219  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1220  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1221  (Explicit && idx == MaxFunctionScopesIndex)) {
1222  // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1223  // iteration through can be an explicit capture, all enclosing closures,
1224  // if any, must perform implicit captures.
1225 
1226  // This closure can capture 'this'; continue looking upwards.
1227  NumCapturingClosures++;
1228  continue;
1229  }
1230  // This context can't implicitly capture 'this'; fail out.
1231  if (BuildAndDiagnose)
1232  Diag(Loc, diag::err_this_capture)
1233  << (Explicit && idx == MaxFunctionScopesIndex);
1234  return true;
1235  }
1236  break;
1237  }
1238  if (!BuildAndDiagnose) return false;
1239 
1240  // If we got here, then the closure at MaxFunctionScopesIndex on the
1241  // FunctionScopes stack, can capture the *enclosing object*, so capture it
1242  // (including implicit by-reference captures in any enclosing closures).
1243 
1244  // In the loop below, respect the ByCopy flag only for the closure requesting
1245  // the capture (i.e. first iteration through the loop below). Ignore it for
1246  // all enclosing closure's up to NumCapturingClosures (since they must be
1247  // implicitly capturing the *enclosing object* by reference (see loop
1248  // above)).
1249  assert((!ByCopy ||
1250  dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1251  "Only a lambda can capture the enclosing object (referred to by "
1252  "*this) by copy");
1253  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1254  // contexts.
1255  QualType ThisTy = getCurrentThisType();
1256  for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1257  --idx, --NumCapturingClosures) {
1258  CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1259  Expr *ThisExpr = nullptr;
1260 
1261  if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1262  // For lambda expressions, build a field and an initializing expression,
1263  // and capture the *enclosing object* by copy only if this is the first
1264  // iteration.
1265  ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1266  ByCopy && idx == MaxFunctionScopesIndex);
1267 
1268  } else if (CapturedRegionScopeInfo *RSI
1269  = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1270  ThisExpr =
1271  captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1272  false/*ByCopy*/);
1273 
1274  bool isNested = NumCapturingClosures > 1;
1275  CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1276  }
1277  return false;
1278 }
1279 
1281  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1282  /// is a non-lvalue expression whose value is the address of the object for
1283  /// which the function is called.
1284 
1285  QualType ThisTy = getCurrentThisType();
1286  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1287 
1288  CheckCXXThisCapture(Loc);
1289  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1290 }
1291 
1293  // If we're outside the body of a member function, then we'll have a specified
1294  // type for 'this'.
1296  return false;
1297 
1298  // Determine whether we're looking into a class that's currently being
1299  // defined.
1300  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1301  return Class && Class->isBeingDefined();
1302 }
1303 
1304 /// Parse construction of a specified type.
1305 /// Can be interpreted either as function-style casting ("int(x)")
1306 /// or class type construction ("ClassType(x,y,z)")
1307 /// or creation of a value-initialized type ("int()").
1308 ExprResult
1310  SourceLocation LParenOrBraceLoc,
1311  MultiExprArg exprs,
1312  SourceLocation RParenOrBraceLoc,
1313  bool ListInitialization) {
1314  if (!TypeRep)
1315  return ExprError();
1316 
1317  TypeSourceInfo *TInfo;
1318  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1319  if (!TInfo)
1321 
1322  auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1323  RParenOrBraceLoc, ListInitialization);
1324  // Avoid creating a non-type-dependent expression that contains typos.
1325  // Non-type-dependent expressions are liable to be discarded without
1326  // checking for embedded typos.
1327  if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1328  !Result.get()->isTypeDependent())
1330  return Result;
1331 }
1332 
1333 ExprResult
1335  SourceLocation LParenOrBraceLoc,
1336  MultiExprArg Exprs,
1337  SourceLocation RParenOrBraceLoc,
1338  bool ListInitialization) {
1339  QualType Ty = TInfo->getType();
1340  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1341 
1343  // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1344  // directly. We work around this by dropping the locations of the braces.
1345  SourceRange Locs = ListInitialization
1346  ? SourceRange()
1347  : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1348  return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1349  Exprs, Locs.getEnd());
1350  }
1351 
1352  assert((!ListInitialization ||
1353  (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1354  "List initialization must have initializer list as expression.");
1355  SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1356 
1359  Exprs.size()
1360  ? ListInitialization
1362  TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1363  : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1364  RParenOrBraceLoc)
1365  : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1366  RParenOrBraceLoc);
1367 
1368  // C++1z [expr.type.conv]p1:
1369  // If the type is a placeholder for a deduced class type, [...perform class
1370  // template argument deduction...]
1371  DeducedType *Deduced = Ty->getContainedDeducedType();
1372  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1374  Kind, Exprs);
1375  if (Ty.isNull())
1376  return ExprError();
1377  Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1378  }
1379 
1380  // C++ [expr.type.conv]p1:
1381  // If the expression list is a parenthesized single expression, the type
1382  // conversion expression is equivalent (in definedness, and if defined in
1383  // meaning) to the corresponding cast expression.
1384  if (Exprs.size() == 1 && !ListInitialization &&
1385  !isa<InitListExpr>(Exprs[0])) {
1386  Expr *Arg = Exprs[0];
1387  return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1388  RParenOrBraceLoc);
1389  }
1390 
1391  // For an expression of the form T(), T shall not be an array type.
1392  QualType ElemTy = Ty;
1393  if (Ty->isArrayType()) {
1394  if (!ListInitialization)
1395  return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1396  << FullRange);
1397  ElemTy = Context.getBaseElementType(Ty);
1398  }
1399 
1400  // There doesn't seem to be an explicit rule against this but sanity demands
1401  // we only construct objects with object types.
1402  if (Ty->isFunctionType())
1403  return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1404  << Ty << FullRange);
1405 
1406  // C++17 [expr.type.conv]p2:
1407  // If the type is cv void and the initializer is (), the expression is a
1408  // prvalue of the specified type that performs no initialization.
1409  if (!Ty->isVoidType() &&
1410  RequireCompleteType(TyBeginLoc, ElemTy,
1411  diag::err_invalid_incomplete_type_use, FullRange))
1412  return ExprError();
1413 
1414  // Otherwise, the expression is a prvalue of the specified type whose
1415  // result object is direct-initialized (11.6) with the initializer.
1416  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1417  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1418 
1419  if (Result.isInvalid())
1420  return Result;
1421 
1422  Expr *Inner = Result.get();
1423  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1424  Inner = BTE->getSubExpr();
1425  if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1426  !isa<CXXScalarValueInitExpr>(Inner)) {
1427  // If we created a CXXTemporaryObjectExpr, that node also represents the
1428  // functional cast. Otherwise, create an explicit cast to represent
1429  // the syntactic form of a functional-style cast that was used here.
1430  //
1431  // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1432  // would give a more consistent AST representation than using a
1433  // CXXTemporaryObjectExpr. It's also weird that the functional cast
1434  // is sometimes handled by initialization and sometimes not.
1435  QualType ResultType = Result.get()->getType();
1436  SourceRange Locs = ListInitialization
1437  ? SourceRange()
1438  : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1440  Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1441  Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1442  }
1443 
1444  return Result;
1445 }
1446 
1448  // [CUDA] Ignore this function, if we can't call it.
1449  const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1450  if (getLangOpts().CUDA &&
1451  IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1452  return false;
1453 
1455  bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1456 
1457  if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1458  return Result;
1459 
1460  // In case of CUDA, return true if none of the 1-argument deallocator
1461  // functions are actually callable.
1462  return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1463  assert(FD->getNumParams() == 1 &&
1464  "Only single-operand functions should be in PreventedBy");
1465  return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1466  });
1467 }
1468 
1469 /// Determine whether the given function is a non-placement
1470 /// deallocation function.
1472  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1473  return S.isUsualDeallocationFunction(Method);
1474 
1475  if (FD->getOverloadedOperator() != OO_Delete &&
1476  FD->getOverloadedOperator() != OO_Array_Delete)
1477  return false;
1478 
1479  unsigned UsualParams = 1;
1480 
1481  if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1483  FD->getParamDecl(UsualParams)->getType(),
1484  S.Context.getSizeType()))
1485  ++UsualParams;
1486 
1487  if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1489  FD->getParamDecl(UsualParams)->getType(),
1491  ++UsualParams;
1492 
1493  return UsualParams == FD->getNumParams();
1494 }
1495 
1496 namespace {
1497  struct UsualDeallocFnInfo {
1498  UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1499  UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1500  : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1501  Destroying(false), HasSizeT(false), HasAlignValT(false),
1502  CUDAPref(Sema::CFP_Native) {
1503  // A function template declaration is never a usual deallocation function.
1504  if (!FD)
1505  return;
1506  unsigned NumBaseParams = 1;
1507  if (FD->isDestroyingOperatorDelete()) {
1508  Destroying = true;
1509  ++NumBaseParams;
1510  }
1511 
1512  if (NumBaseParams < FD->getNumParams() &&
1514  FD->getParamDecl(NumBaseParams)->getType(),
1515  S.Context.getSizeType())) {
1516  ++NumBaseParams;
1517  HasSizeT = true;
1518  }
1519 
1520  if (NumBaseParams < FD->getNumParams() &&
1521  FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1522  ++NumBaseParams;
1523  HasAlignValT = true;
1524  }
1525 
1526  // In CUDA, determine how much we'd like / dislike to call this.
1527  if (S.getLangOpts().CUDA)
1528  if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1529  CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1530  }
1531 
1532  explicit operator bool() const { return FD; }
1533 
1534  bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1535  bool WantAlign) const {
1536  // C++ P0722:
1537  // A destroying operator delete is preferred over a non-destroying
1538  // operator delete.
1539  if (Destroying != Other.Destroying)
1540  return Destroying;
1541 
1542  // C++17 [expr.delete]p10:
1543  // If the type has new-extended alignment, a function with a parameter
1544  // of type std::align_val_t is preferred; otherwise a function without
1545  // such a parameter is preferred
1546  if (HasAlignValT != Other.HasAlignValT)
1547  return HasAlignValT == WantAlign;
1548 
1549  if (HasSizeT != Other.HasSizeT)
1550  return HasSizeT == WantSize;
1551 
1552  // Use CUDA call preference as a tiebreaker.
1553  return CUDAPref > Other.CUDAPref;
1554  }
1555 
1556  DeclAccessPair Found;
1557  FunctionDecl *FD;
1558  bool Destroying, HasSizeT, HasAlignValT;
1560  };
1561 }
1562 
1563 /// Determine whether a type has new-extended alignment. This may be called when
1564 /// the type is incomplete (for a delete-expression with an incomplete pointee
1565 /// type), in which case it will conservatively return false if the alignment is
1566 /// not known.
1567 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1568  return S.getLangOpts().AlignedAllocation &&
1569  S.getASTContext().getTypeAlignIfKnown(AllocType) >
1571 }
1572 
1573 /// Select the correct "usual" deallocation function to use from a selection of
1574 /// deallocation functions (either global or class-scope).
1575 static UsualDeallocFnInfo resolveDeallocationOverload(
1576  Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1577  llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1578  UsualDeallocFnInfo Best;
1579 
1580  for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1581  UsualDeallocFnInfo Info(S, I.getPair());
1582  if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1583  Info.CUDAPref == Sema::CFP_Never)
1584  continue;
1585 
1586  if (!Best) {
1587  Best = Info;
1588  if (BestFns)
1589  BestFns->push_back(Info);
1590  continue;
1591  }
1592 
1593  if (Best.isBetterThan(Info, WantSize, WantAlign))
1594  continue;
1595 
1596  // If more than one preferred function is found, all non-preferred
1597  // functions are eliminated from further consideration.
1598  if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1599  BestFns->clear();
1600 
1601  Best = Info;
1602  if (BestFns)
1603  BestFns->push_back(Info);
1604  }
1605 
1606  return Best;
1607 }
1608 
1609 /// Determine whether a given type is a class for which 'delete[]' would call
1610 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1611 /// we need to store the array size (even if the type is
1612 /// trivially-destructible).
1614  QualType allocType) {
1615  const RecordType *record =
1616  allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1617  if (!record) return false;
1618 
1619  // Try to find an operator delete[] in class scope.
1620 
1621  DeclarationName deleteName =
1622  S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1623  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1624  S.LookupQualifiedName(ops, record->getDecl());
1625 
1626  // We're just doing this for information.
1627  ops.suppressDiagnostics();
1628 
1629  // Very likely: there's no operator delete[].
1630  if (ops.empty()) return false;
1631 
1632  // If it's ambiguous, it should be illegal to call operator delete[]
1633  // on this thing, so it doesn't matter if we allocate extra space or not.
1634  if (ops.isAmbiguous()) return false;
1635 
1636  // C++17 [expr.delete]p10:
1637  // If the deallocation functions have class scope, the one without a
1638  // parameter of type std::size_t is selected.
1639  auto Best = resolveDeallocationOverload(
1640  S, ops, /*WantSize*/false,
1641  /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1642  return Best && Best.HasSizeT;
1643 }
1644 
1645 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1646 ///
1647 /// E.g.:
1648 /// @code new (memory) int[size][4] @endcode
1649 /// or
1650 /// @code ::new Foo(23, "hello") @endcode
1651 ///
1652 /// \param StartLoc The first location of the expression.
1653 /// \param UseGlobal True if 'new' was prefixed with '::'.
1654 /// \param PlacementLParen Opening paren of the placement arguments.
1655 /// \param PlacementArgs Placement new arguments.
1656 /// \param PlacementRParen Closing paren of the placement arguments.
1657 /// \param TypeIdParens If the type is in parens, the source range.
1658 /// \param D The type to be allocated, as well as array dimensions.
1659 /// \param Initializer The initializing expression or initializer-list, or null
1660 /// if there is none.
1661 ExprResult
1662 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1663  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1664  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1665  Declarator &D, Expr *Initializer) {
1666  Expr *ArraySize = nullptr;
1667  // If the specified type is an array, unwrap it and save the expression.
1668  if (D.getNumTypeObjects() > 0 &&
1670  DeclaratorChunk &Chunk = D.getTypeObject(0);
1671  if (D.getDeclSpec().hasAutoTypeSpec())
1672  return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1673  << D.getSourceRange());
1674  if (Chunk.Arr.hasStatic)
1675  return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1676  << D.getSourceRange());
1677  if (!Chunk.Arr.NumElts)
1678  return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1679  << D.getSourceRange());
1680 
1681  ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1682  D.DropFirstTypeObject();
1683  }
1684 
1685  // Every dimension shall be of constant size.
1686  if (ArraySize) {
1687  for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1689  break;
1690 
1692  if (Expr *NumElts = (Expr *)Array.NumElts) {
1693  if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1694  if (getLangOpts().CPlusPlus14) {
1695  // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1696  // shall be a converted constant expression (5.19) of type std::size_t
1697  // and shall evaluate to a strictly positive value.
1698  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1699  assert(IntWidth && "Builtin type of size 0?");
1700  llvm::APSInt Value(IntWidth);
1701  Array.NumElts
1703  CCEK_NewExpr)
1704  .get();
1705  } else {
1706  Array.NumElts
1707  = VerifyIntegerConstantExpression(NumElts, nullptr,
1708  diag::err_new_array_nonconst)
1709  .get();
1710  }
1711  if (!Array.NumElts)
1712  return ExprError();
1713  }
1714  }
1715  }
1716  }
1717 
1718  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1719  QualType AllocType = TInfo->getType();
1720  if (D.isInvalidType())
1721  return ExprError();
1722 
1723  SourceRange DirectInitRange;
1724  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1725  DirectInitRange = List->getSourceRange();
1726 
1727  return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1728  PlacementLParen, PlacementArgs, PlacementRParen,
1729  TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1730  Initializer);
1731 }
1732 
1734  Expr *Init) {
1735  if (!Init)
1736  return true;
1737  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1738  return PLE->getNumExprs() == 0;
1739  if (isa<ImplicitValueInitExpr>(Init))
1740  return true;
1741  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1742  return !CCE->isListInitialization() &&
1743  CCE->getConstructor()->isDefaultConstructor();
1744  else if (Style == CXXNewExpr::ListInit) {
1745  assert(isa<InitListExpr>(Init) &&
1746  "Shouldn't create list CXXConstructExprs for arrays.");
1747  return true;
1748  }
1749  return false;
1750 }
1751 
1752 bool
1754  if (!getLangOpts().AlignedAllocationUnavailable)
1755  return false;
1756  if (FD.isDefined())
1757  return false;
1758  bool IsAligned = false;
1759  if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1760  return true;
1761  return false;
1762 }
1763 
1764 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1765 // implemented in the standard library is selected.
1767  SourceLocation Loc) {
1769  const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1770  StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1771  getASTContext().getTargetInfo().getPlatformName());
1772 
1774  bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1775  Diag(Loc, diag::err_aligned_allocation_unavailable)
1776  << IsDelete << FD.getType().getAsString() << OSName
1777  << alignedAllocMinVersion(T.getOS()).getAsString();
1778  Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1779  }
1780 }
1781 
1782 ExprResult
1783 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1784  SourceLocation PlacementLParen,
1785  MultiExprArg PlacementArgs,
1786  SourceLocation PlacementRParen,
1787  SourceRange TypeIdParens,
1788  QualType AllocType,
1789  TypeSourceInfo *AllocTypeInfo,
1790  Expr *ArraySize,
1791  SourceRange DirectInitRange,
1792  Expr *Initializer) {
1793  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1794  SourceLocation StartLoc = Range.getBegin();
1795 
1797  if (DirectInitRange.isValid()) {
1798  assert(Initializer && "Have parens but no initializer.");
1799  initStyle = CXXNewExpr::CallInit;
1800  } else if (Initializer && isa<InitListExpr>(Initializer))
1801  initStyle = CXXNewExpr::ListInit;
1802  else {
1803  assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1804  isa<CXXConstructExpr>(Initializer)) &&
1805  "Initializer expression that cannot have been implicitly created.");
1806  initStyle = CXXNewExpr::NoInit;
1807  }
1808 
1809  Expr **Inits = &Initializer;
1810  unsigned NumInits = Initializer ? 1 : 0;
1811  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1812  assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1813  Inits = List->getExprs();
1814  NumInits = List->getNumExprs();
1815  }
1816 
1817  // C++11 [expr.new]p15:
1818  // A new-expression that creates an object of type T initializes that
1819  // object as follows:
1821  // - If the new-initializer is omitted, the object is default-
1822  // initialized (8.5); if no initialization is performed,
1823  // the object has indeterminate value
1824  = initStyle == CXXNewExpr::NoInit
1826  // - Otherwise, the new-initializer is interpreted according to
1827  // the
1828  // initialization rules of 8.5 for direct-initialization.
1829  : initStyle == CXXNewExpr::ListInit
1831  TypeRange.getBegin(), Initializer->getBeginLoc(),
1832  Initializer->getEndLoc())
1834  DirectInitRange.getBegin(),
1835  DirectInitRange.getEnd());
1836 
1837  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1838  auto *Deduced = AllocType->getContainedDeducedType();
1839  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1840  if (ArraySize)
1841  return ExprError(Diag(ArraySize->getExprLoc(),
1842  diag::err_deduced_class_template_compound_type)
1843  << /*array*/ 2 << ArraySize->getSourceRange());
1844 
1845  InitializedEntity Entity
1846  = InitializedEntity::InitializeNew(StartLoc, AllocType);
1848  AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1849  if (AllocType.isNull())
1850  return ExprError();
1851  } else if (Deduced) {
1852  bool Braced = (initStyle == CXXNewExpr::ListInit);
1853  if (NumInits == 1) {
1854  if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1855  Inits = p->getInits();
1856  NumInits = p->getNumInits();
1857  Braced = true;
1858  }
1859  }
1860 
1861  if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1862  return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1863  << AllocType << TypeRange);
1864  if (NumInits > 1) {
1865  Expr *FirstBad = Inits[1];
1866  return ExprError(Diag(FirstBad->getBeginLoc(),
1867  diag::err_auto_new_ctor_multiple_expressions)
1868  << AllocType << TypeRange);
1869  }
1870  if (Braced && !getLangOpts().CPlusPlus17)
1871  Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1872  << AllocType << TypeRange;
1874  if (DeduceAutoType(AllocTypeInfo, Inits[0], DeducedType) == DAR_Failed)
1875  return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1876  << AllocType << Inits[0]->getType()
1877  << TypeRange << Inits[0]->getSourceRange());
1878  if (DeducedType.isNull())
1879  return ExprError();
1880  AllocType = DeducedType;
1881  }
1882 
1883  // Per C++0x [expr.new]p5, the type being constructed may be a
1884  // typedef of an array type.
1885  if (!ArraySize) {
1886  if (const ConstantArrayType *Array
1887  = Context.getAsConstantArrayType(AllocType)) {
1888  ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1889  Context.getSizeType(),
1890  TypeRange.getEnd());
1891  AllocType = Array->getElementType();
1892  }
1893  }
1894 
1895  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1896  return ExprError();
1897 
1898  // In ARC, infer 'retaining' for the allocated
1899  if (getLangOpts().ObjCAutoRefCount &&
1900  AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1901  AllocType->isObjCLifetimeType()) {
1902  AllocType = Context.getLifetimeQualifiedType(AllocType,
1903  AllocType->getObjCARCImplicitLifetime());
1904  }
1905 
1906  QualType ResultType = Context.getPointerType(AllocType);
1907 
1908  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1909  ExprResult result = CheckPlaceholderExpr(ArraySize);
1910  if (result.isInvalid()) return ExprError();
1911  ArraySize = result.get();
1912  }
1913  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1914  // integral or enumeration type with a non-negative value."
1915  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1916  // enumeration type, or a class type for which a single non-explicit
1917  // conversion function to integral or unscoped enumeration type exists.
1918  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1919  // std::size_t.
1920  llvm::Optional<uint64_t> KnownArraySize;
1921  if (ArraySize && !ArraySize->isTypeDependent()) {
1922  ExprResult ConvertedSize;
1923  if (getLangOpts().CPlusPlus14) {
1924  assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1925 
1926  ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1927  AA_Converting);
1928 
1929  if (!ConvertedSize.isInvalid() &&
1930  ArraySize->getType()->getAs<RecordType>())
1931  // Diagnose the compatibility of this conversion.
1932  Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1933  << ArraySize->getType() << 0 << "'size_t'";
1934  } else {
1935  class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1936  protected:
1937  Expr *ArraySize;
1938 
1939  public:
1940  SizeConvertDiagnoser(Expr *ArraySize)
1941  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1942  ArraySize(ArraySize) {}
1943 
1944  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1945  QualType T) override {
1946  return S.Diag(Loc, diag::err_array_size_not_integral)
1947  << S.getLangOpts().CPlusPlus11 << T;
1948  }
1949 
1950  SemaDiagnosticBuilder diagnoseIncomplete(
1951  Sema &S, SourceLocation Loc, QualType T) override {
1952  return S.Diag(Loc, diag::err_array_size_incomplete_type)
1953  << T << ArraySize->getSourceRange();
1954  }
1955 
1956  SemaDiagnosticBuilder diagnoseExplicitConv(
1957  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1958  return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1959  }
1960 
1961  SemaDiagnosticBuilder noteExplicitConv(
1962  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1963  return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1964  << ConvTy->isEnumeralType() << ConvTy;
1965  }
1966 
1967  SemaDiagnosticBuilder diagnoseAmbiguous(
1968  Sema &S, SourceLocation Loc, QualType T) override {
1969  return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1970  }
1971 
1972  SemaDiagnosticBuilder noteAmbiguous(
1973  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1974  return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1975  << ConvTy->isEnumeralType() << ConvTy;
1976  }
1977 
1978  SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1979  QualType T,
1980  QualType ConvTy) override {
1981  return S.Diag(Loc,
1982  S.getLangOpts().CPlusPlus11
1983  ? diag::warn_cxx98_compat_array_size_conversion
1984  : diag::ext_array_size_conversion)
1985  << T << ConvTy->isEnumeralType() << ConvTy;
1986  }
1987  } SizeDiagnoser(ArraySize);
1988 
1989  ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1990  SizeDiagnoser);
1991  }
1992  if (ConvertedSize.isInvalid())
1993  return ExprError();
1994 
1995  ArraySize = ConvertedSize.get();
1996  QualType SizeType = ArraySize->getType();
1997 
1998  if (!SizeType->isIntegralOrUnscopedEnumerationType())
1999  return ExprError();
2000 
2001  // C++98 [expr.new]p7:
2002  // The expression in a direct-new-declarator shall have integral type
2003  // with a non-negative value.
2004  //
2005  // Let's see if this is a constant < 0. If so, we reject it out of hand,
2006  // per CWG1464. Otherwise, if it's not a constant, we must have an
2007  // unparenthesized array type.
2008  if (!ArraySize->isValueDependent()) {
2009  llvm::APSInt Value;
2010  // We've already performed any required implicit conversion to integer or
2011  // unscoped enumeration type.
2012  // FIXME: Per CWG1464, we are required to check the value prior to
2013  // converting to size_t. This will never find a negative array size in
2014  // C++14 onwards, because Value is always unsigned here!
2015  if (ArraySize->isIntegerConstantExpr(Value, Context)) {
2016  if (Value.isSigned() && Value.isNegative()) {
2017  return ExprError(Diag(ArraySize->getBeginLoc(),
2018  diag::err_typecheck_negative_array_size)
2019  << ArraySize->getSourceRange());
2020  }
2021 
2022  if (!AllocType->isDependentType()) {
2023  unsigned ActiveSizeBits =
2025  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2026  return ExprError(
2027  Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2028  << Value.toString(10) << ArraySize->getSourceRange());
2029  }
2030 
2031  KnownArraySize = Value.getZExtValue();
2032  } else if (TypeIdParens.isValid()) {
2033  // Can't have dynamic array size when the type-id is in parentheses.
2034  Diag(ArraySize->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2035  << ArraySize->getSourceRange()
2036  << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2037  << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2038 
2039  TypeIdParens = SourceRange();
2040  }
2041  }
2042 
2043  // Note that we do *not* convert the argument in any way. It can
2044  // be signed, larger than size_t, whatever.
2045  }
2046 
2047  FunctionDecl *OperatorNew = nullptr;
2048  FunctionDecl *OperatorDelete = nullptr;
2049  unsigned Alignment =
2050  AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2051  unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2052  bool PassAlignment = getLangOpts().AlignedAllocation &&
2053  Alignment > NewAlignment;
2054 
2056  if (!AllocType->isDependentType() &&
2057  !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2058  FindAllocationFunctions(StartLoc,
2059  SourceRange(PlacementLParen, PlacementRParen),
2060  Scope, Scope, AllocType, ArraySize, PassAlignment,
2061  PlacementArgs, OperatorNew, OperatorDelete))
2062  return ExprError();
2063 
2064  // If this is an array allocation, compute whether the usual array
2065  // deallocation function for the type has a size_t parameter.
2066  bool UsualArrayDeleteWantsSize = false;
2067  if (ArraySize && !AllocType->isDependentType())
2068  UsualArrayDeleteWantsSize =
2069  doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2070 
2071  SmallVector<Expr *, 8> AllPlaceArgs;
2072  if (OperatorNew) {
2073  const FunctionProtoType *Proto =
2074  OperatorNew->getType()->getAs<FunctionProtoType>();
2075  VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2077 
2078  // We've already converted the placement args, just fill in any default
2079  // arguments. Skip the first parameter because we don't have a corresponding
2080  // argument. Skip the second parameter too if we're passing in the
2081  // alignment; we've already filled it in.
2082  if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2083  PassAlignment ? 2 : 1, PlacementArgs,
2084  AllPlaceArgs, CallType))
2085  return ExprError();
2086 
2087  if (!AllPlaceArgs.empty())
2088  PlacementArgs = AllPlaceArgs;
2089 
2090  // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2091  DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2092 
2093  // FIXME: Missing call to CheckFunctionCall or equivalent
2094 
2095  // Warn if the type is over-aligned and is being allocated by (unaligned)
2096  // global operator new.
2097  if (PlacementArgs.empty() && !PassAlignment &&
2098  (OperatorNew->isImplicit() ||
2099  (OperatorNew->getBeginLoc().isValid() &&
2100  getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2101  if (Alignment > NewAlignment)
2102  Diag(StartLoc, diag::warn_overaligned_type)
2103  << AllocType
2104  << unsigned(Alignment / Context.getCharWidth())
2105  << unsigned(NewAlignment / Context.getCharWidth());
2106  }
2107  }
2108 
2109  // Array 'new' can't have any initializers except empty parentheses.
2110  // Initializer lists are also allowed, in C++11. Rely on the parser for the
2111  // dialect distinction.
2112  if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2113  SourceRange InitRange(Inits[0]->getBeginLoc(),
2114  Inits[NumInits - 1]->getEndLoc());
2115  Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2116  return ExprError();
2117  }
2118 
2119  // If we can perform the initialization, and we've not already done so,
2120  // do it now.
2121  if (!AllocType->isDependentType() &&
2123  llvm::makeArrayRef(Inits, NumInits))) {
2124  // The type we initialize is the complete type, including the array bound.
2125  QualType InitType;
2126  if (KnownArraySize)
2127  InitType = Context.getConstantArrayType(
2128  AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2129  *KnownArraySize),
2130  ArrayType::Normal, 0);
2131  else if (ArraySize)
2132  InitType =
2134  else
2135  InitType = AllocType;
2136 
2137  InitializedEntity Entity
2138  = InitializedEntity::InitializeNew(StartLoc, InitType);
2139  InitializationSequence InitSeq(*this, Entity, Kind,
2140  MultiExprArg(Inits, NumInits));
2141  ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2142  MultiExprArg(Inits, NumInits));
2143  if (FullInit.isInvalid())
2144  return ExprError();
2145 
2146  // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2147  // we don't want the initialized object to be destructed.
2148  // FIXME: We should not create these in the first place.
2149  if (CXXBindTemporaryExpr *Binder =
2150  dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2151  FullInit = Binder->getSubExpr();
2152 
2153  Initializer = FullInit.get();
2154  }
2155 
2156  // Mark the new and delete operators as referenced.
2157  if (OperatorNew) {
2158  if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2159  return ExprError();
2160  MarkFunctionReferenced(StartLoc, OperatorNew);
2161  }
2162  if (OperatorDelete) {
2163  if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2164  return ExprError();
2165  MarkFunctionReferenced(StartLoc, OperatorDelete);
2166  }
2167 
2168  // C++0x [expr.new]p17:
2169  // If the new expression creates an array of objects of class type,
2170  // access and ambiguity control are done for the destructor.
2171  QualType BaseAllocType = Context.getBaseElementType(AllocType);
2172  if (ArraySize && !BaseAllocType->isDependentType()) {
2173  if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2174  if (CXXDestructorDecl *dtor = LookupDestructor(
2175  cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2176  MarkFunctionReferenced(StartLoc, dtor);
2177  CheckDestructorAccess(StartLoc, dtor,
2178  PDiag(diag::err_access_dtor)
2179  << BaseAllocType);
2180  if (DiagnoseUseOfDecl(dtor, StartLoc))
2181  return ExprError();
2182  }
2183  }
2184  }
2185 
2186  return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2187  PassAlignment, UsualArrayDeleteWantsSize,
2188  PlacementArgs, TypeIdParens, ArraySize, initStyle,
2189  Initializer, ResultType, AllocTypeInfo, Range,
2190  DirectInitRange);
2191 }
2192 
2193 /// Checks that a type is suitable as the allocated type
2194 /// in a new-expression.
2196  SourceRange R) {
2197  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2198  // abstract class type or array thereof.
2199  if (AllocType->isFunctionType())
2200  return Diag(Loc, diag::err_bad_new_type)
2201  << AllocType << 0 << R;
2202  else if (AllocType->isReferenceType())
2203  return Diag(Loc, diag::err_bad_new_type)
2204  << AllocType << 1 << R;
2205  else if (!AllocType->isDependentType() &&
2206  RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2207  return true;
2208  else if (RequireNonAbstractType(Loc, AllocType,
2209  diag::err_allocation_of_abstract_type))
2210  return true;
2211  else if (AllocType->isVariablyModifiedType())
2212  return Diag(Loc, diag::err_variably_modified_new_type)
2213  << AllocType;
2214  else if (AllocType.getAddressSpace() != LangAS::Default &&
2215  !getLangOpts().OpenCLCPlusPlus)
2216  return Diag(Loc, diag::err_address_space_qualified_new)
2217  << AllocType.getUnqualifiedType()
2219  else if (getLangOpts().ObjCAutoRefCount) {
2220  if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2221  QualType BaseAllocType = Context.getBaseElementType(AT);
2222  if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2223  BaseAllocType->isObjCLifetimeType())
2224  return Diag(Loc, diag::err_arc_new_array_without_ownership)
2225  << BaseAllocType;
2226  }
2227  }
2228 
2229  return false;
2230 }
2231 
2234  bool &PassAlignment, FunctionDecl *&Operator,
2235  OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2236  OverloadCandidateSet Candidates(R.getNameLoc(),
2238  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2239  Alloc != AllocEnd; ++Alloc) {
2240  // Even member operator new/delete are implicitly treated as
2241  // static, so don't use AddMemberCandidate.
2242  NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2243 
2244  if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2245  S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2246  /*ExplicitTemplateArgs=*/nullptr, Args,
2247  Candidates,
2248  /*SuppressUserConversions=*/false);
2249  continue;
2250  }
2251 
2252  FunctionDecl *Fn = cast<FunctionDecl>(D);
2253  S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2254  /*SuppressUserConversions=*/false);
2255  }
2256 
2257  // Do the resolution.
2259  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2260  case OR_Success: {
2261  // Got one!
2262  FunctionDecl *FnDecl = Best->Function;
2263  if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2264  Best->FoundDecl) == Sema::AR_inaccessible)
2265  return true;
2266 
2267  Operator = FnDecl;
2268  return false;
2269  }
2270 
2271  case OR_No_Viable_Function:
2272  // C++17 [expr.new]p13:
2273  // If no matching function is found and the allocated object type has
2274  // new-extended alignment, the alignment argument is removed from the
2275  // argument list, and overload resolution is performed again.
2276  if (PassAlignment) {
2277  PassAlignment = false;
2278  AlignArg = Args[1];
2279  Args.erase(Args.begin() + 1);
2280  return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2281  Operator, &Candidates, AlignArg,
2282  Diagnose);
2283  }
2284 
2285  // MSVC will fall back on trying to find a matching global operator new
2286  // if operator new[] cannot be found. Also, MSVC will leak by not
2287  // generating a call to operator delete or operator delete[], but we
2288  // will not replicate that bug.
2289  // FIXME: Find out how this interacts with the std::align_val_t fallback
2290  // once MSVC implements it.
2291  if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2292  S.Context.getLangOpts().MSVCCompat) {
2293  R.clear();
2296  // FIXME: This will give bad diagnostics pointing at the wrong functions.
2297  return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2298  Operator, /*Candidates=*/nullptr,
2299  /*AlignArg=*/nullptr, Diagnose);
2300  }
2301 
2302  if (Diagnose) {
2303  S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2304  << R.getLookupName() << Range;
2305 
2306  // If we have aligned candidates, only note the align_val_t candidates
2307  // from AlignedCandidates and the non-align_val_t candidates from
2308  // Candidates.
2309  if (AlignedCandidates) {
2310  auto IsAligned = [](OverloadCandidate &C) {
2311  return C.Function->getNumParams() > 1 &&
2312  C.Function->getParamDecl(1)->getType()->isAlignValT();
2313  };
2314  auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2315 
2316  // This was an overaligned allocation, so list the aligned candidates
2317  // first.
2318  Args.insert(Args.begin() + 1, AlignArg);
2319  AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2320  R.getNameLoc(), IsAligned);
2321  Args.erase(Args.begin() + 1);
2322  Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2323  IsUnaligned);
2324  } else {
2325  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2326  }
2327  }
2328  return true;
2329 
2330  case OR_Ambiguous:
2331  if (Diagnose) {
2332  S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2333  << R.getLookupName() << Range;
2334  Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2335  }
2336  return true;
2337 
2338  case OR_Deleted: {
2339  if (Diagnose) {
2340  S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2341  << R.getLookupName() << Range;
2342  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2343  }
2344  return true;
2345  }
2346  }
2347  llvm_unreachable("Unreachable, bad result from BestViableFunction");
2348 }
2349 
2351  AllocationFunctionScope NewScope,
2352  AllocationFunctionScope DeleteScope,
2353  QualType AllocType, bool IsArray,
2354  bool &PassAlignment, MultiExprArg PlaceArgs,
2355  FunctionDecl *&OperatorNew,
2356  FunctionDecl *&OperatorDelete,
2357  bool Diagnose) {
2358  // --- Choosing an allocation function ---
2359  // C++ 5.3.4p8 - 14 & 18
2360  // 1) If looking in AFS_Global scope for allocation functions, only look in
2361  // the global scope. Else, if AFS_Class, only look in the scope of the
2362  // allocated class. If AFS_Both, look in both.
2363  // 2) If an array size is given, look for operator new[], else look for
2364  // operator new.
2365  // 3) The first argument is always size_t. Append the arguments from the
2366  // placement form.
2367 
2368  SmallVector<Expr*, 8> AllocArgs;
2369  AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2370 
2371  // We don't care about the actual value of these arguments.
2372  // FIXME: Should the Sema create the expression and embed it in the syntax
2373  // tree? Or should the consumer just recalculate the value?
2374  // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2375  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2377  Context.getSizeType(),
2378  SourceLocation());
2379  AllocArgs.push_back(&Size);
2380 
2381  QualType AlignValT = Context.VoidTy;
2382  if (PassAlignment) {
2384  AlignValT = Context.getTypeDeclType(getStdAlignValT());
2385  }
2386  CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2387  if (PassAlignment)
2388  AllocArgs.push_back(&Align);
2389 
2390  AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2391 
2392  // C++ [expr.new]p8:
2393  // If the allocated type is a non-array type, the allocation
2394  // function's name is operator new and the deallocation function's
2395  // name is operator delete. If the allocated type is an array
2396  // type, the allocation function's name is operator new[] and the
2397  // deallocation function's name is operator delete[].
2399  IsArray ? OO_Array_New : OO_New);
2400 
2401  QualType AllocElemType = Context.getBaseElementType(AllocType);
2402 
2403  // Find the allocation function.
2404  {
2405  LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2406 
2407  // C++1z [expr.new]p9:
2408  // If the new-expression begins with a unary :: operator, the allocation
2409  // function's name is looked up in the global scope. Otherwise, if the
2410  // allocated type is a class type T or array thereof, the allocation
2411  // function's name is looked up in the scope of T.
2412  if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2413  LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2414 
2415  // We can see ambiguity here if the allocation function is found in
2416  // multiple base classes.
2417  if (R.isAmbiguous())
2418  return true;
2419 
2420  // If this lookup fails to find the name, or if the allocated type is not
2421  // a class type, the allocation function's name is looked up in the
2422  // global scope.
2423  if (R.empty()) {
2424  if (NewScope == AFS_Class)
2425  return true;
2426 
2428  }
2429 
2430  if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2431  Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2432  return true;
2433  }
2434 
2435  assert(!R.empty() && "implicitly declared allocation functions not found");
2436  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2437 
2438  // We do our own custom access checks below.
2439  R.suppressDiagnostics();
2440 
2441  if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2442  OperatorNew, /*Candidates=*/nullptr,
2443  /*AlignArg=*/nullptr, Diagnose))
2444  return true;
2445  }
2446 
2447  // We don't need an operator delete if we're running under -fno-exceptions.
2448  if (!getLangOpts().Exceptions) {
2449  OperatorDelete = nullptr;
2450  return false;
2451  }
2452 
2453  // Note, the name of OperatorNew might have been changed from array to
2454  // non-array by resolveAllocationOverload.
2456  OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2457  ? OO_Array_Delete
2458  : OO_Delete);
2459 
2460  // C++ [expr.new]p19:
2461  //
2462  // If the new-expression begins with a unary :: operator, the
2463  // deallocation function's name is looked up in the global
2464  // scope. Otherwise, if the allocated type is a class type T or an
2465  // array thereof, the deallocation function's name is looked up in
2466  // the scope of T. If this lookup fails to find the name, or if
2467  // the allocated type is not a class type or array thereof, the
2468  // deallocation function's name is looked up in the global scope.
2469  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2470  if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2471  CXXRecordDecl *RD
2472  = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2473  LookupQualifiedName(FoundDelete, RD);
2474  }
2475  if (FoundDelete.isAmbiguous())
2476  return true; // FIXME: clean up expressions?
2477 
2478  bool FoundGlobalDelete = FoundDelete.empty();
2479  if (FoundDelete.empty()) {
2480  if (DeleteScope == AFS_Class)
2481  return true;
2482 
2485  }
2486 
2487  FoundDelete.suppressDiagnostics();
2488 
2490 
2491  // Whether we're looking for a placement operator delete is dictated
2492  // by whether we selected a placement operator new, not by whether
2493  // we had explicit placement arguments. This matters for things like
2494  // struct A { void *operator new(size_t, int = 0); ... };
2495  // A *a = new A()
2496  //
2497  // We don't have any definition for what a "placement allocation function"
2498  // is, but we assume it's any allocation function whose
2499  // parameter-declaration-clause is anything other than (size_t).
2500  //
2501  // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2502  // This affects whether an exception from the constructor of an overaligned
2503  // type uses the sized or non-sized form of aligned operator delete.
2504  bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2505  OperatorNew->isVariadic();
2506 
2507  if (isPlacementNew) {
2508  // C++ [expr.new]p20:
2509  // A declaration of a placement deallocation function matches the
2510  // declaration of a placement allocation function if it has the
2511  // same number of parameters and, after parameter transformations
2512  // (8.3.5), all parameter types except the first are
2513  // identical. [...]
2514  //
2515  // To perform this comparison, we compute the function type that
2516  // the deallocation function should have, and use that type both
2517  // for template argument deduction and for comparison purposes.
2518  QualType ExpectedFunctionType;
2519  {
2520  const FunctionProtoType *Proto
2521  = OperatorNew->getType()->getAs<FunctionProtoType>();
2522 
2523  SmallVector<QualType, 4> ArgTypes;
2524  ArgTypes.push_back(Context.VoidPtrTy);
2525  for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2526  ArgTypes.push_back(Proto->getParamType(I));
2527 
2529  // FIXME: This is not part of the standard's rule.
2530  EPI.Variadic = Proto->isVariadic();
2531 
2532  ExpectedFunctionType
2533  = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2534  }
2535 
2536  for (LookupResult::iterator D = FoundDelete.begin(),
2537  DEnd = FoundDelete.end();
2538  D != DEnd; ++D) {
2539  FunctionDecl *Fn = nullptr;
2540  if (FunctionTemplateDecl *FnTmpl =
2541  dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2542  // Perform template argument deduction to try to match the
2543  // expected function type.
2544  TemplateDeductionInfo Info(StartLoc);
2545  if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2546  Info))
2547  continue;
2548  } else
2549  Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2550 
2552  ExpectedFunctionType,
2553  /*AdjustExcpetionSpec*/true),
2554  ExpectedFunctionType))
2555  Matches.push_back(std::make_pair(D.getPair(), Fn));
2556  }
2557 
2558  if (getLangOpts().CUDA)
2559  EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2560  } else {
2561  // C++1y [expr.new]p22:
2562  // For a non-placement allocation function, the normal deallocation
2563  // function lookup is used
2564  //
2565  // Per [expr.delete]p10, this lookup prefers a member operator delete
2566  // without a size_t argument, but prefers a non-member operator delete
2567  // with a size_t where possible (which it always is in this case).
2569  UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2570  *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2571  /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2572  &BestDeallocFns);
2573  if (Selected)
2574  Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2575  else {
2576  // If we failed to select an operator, all remaining functions are viable
2577  // but ambiguous.
2578  for (auto Fn : BestDeallocFns)
2579  Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2580  }
2581  }
2582 
2583  // C++ [expr.new]p20:
2584  // [...] If the lookup finds a single matching deallocation
2585  // function, that function will be called; otherwise, no
2586  // deallocation function will be called.
2587  if (Matches.size() == 1) {
2588  OperatorDelete = Matches[0].second;
2589 
2590  // C++1z [expr.new]p23:
2591  // If the lookup finds a usual deallocation function (3.7.4.2)
2592  // with a parameter of type std::size_t and that function, considered
2593  // as a placement deallocation function, would have been
2594  // selected as a match for the allocation function, the program
2595  // is ill-formed.
2596  if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2597  isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2598  UsualDeallocFnInfo Info(*this,
2599  DeclAccessPair::make(OperatorDelete, AS_public));
2600  // Core issue, per mail to core reflector, 2016-10-09:
2601  // If this is a member operator delete, and there is a corresponding
2602  // non-sized member operator delete, this isn't /really/ a sized
2603  // deallocation function, it just happens to have a size_t parameter.
2604  bool IsSizedDelete = Info.HasSizeT;
2605  if (IsSizedDelete && !FoundGlobalDelete) {
2606  auto NonSizedDelete =
2607  resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2608  /*WantAlign*/Info.HasAlignValT);
2609  if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2610  NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2611  IsSizedDelete = false;
2612  }
2613 
2614  if (IsSizedDelete) {
2615  SourceRange R = PlaceArgs.empty()
2616  ? SourceRange()
2617  : SourceRange(PlaceArgs.front()->getBeginLoc(),
2618  PlaceArgs.back()->getEndLoc());
2619  Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2620  if (!OperatorDelete->isImplicit())
2621  Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2622  << DeleteName;
2623  }
2624  }
2625 
2626  CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2627  Matches[0].first);
2628  } else if (!Matches.empty()) {
2629  // We found multiple suitable operators. Per [expr.new]p20, that means we
2630  // call no 'operator delete' function, but we should at least warn the user.
2631  // FIXME: Suppress this warning if the construction cannot throw.
2632  Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2633  << DeleteName << AllocElemType;
2634 
2635  for (auto &Match : Matches)
2636  Diag(Match.second->getLocation(),
2637  diag::note_member_declared_here) << DeleteName;
2638  }
2639 
2640  return false;
2641 }
2642 
2643 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2644 /// delete. These are:
2645 /// @code
2646 /// // C++03:
2647 /// void* operator new(std::size_t) throw(std::bad_alloc);
2648 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2649 /// void operator delete(void *) throw();
2650 /// void operator delete[](void *) throw();
2651 /// // C++11:
2652 /// void* operator new(std::size_t);
2653 /// void* operator new[](std::size_t);
2654 /// void operator delete(void *) noexcept;
2655 /// void operator delete[](void *) noexcept;
2656 /// // C++1y:
2657 /// void* operator new(std::size_t);
2658 /// void* operator new[](std::size_t);
2659 /// void operator delete(void *) noexcept;
2660 /// void operator delete[](void *) noexcept;
2661 /// void operator delete(void *, std::size_t) noexcept;
2662 /// void operator delete[](void *, std::size_t) noexcept;
2663 /// @endcode
2664 /// Note that the placement and nothrow forms of new are *not* implicitly
2665 /// declared. Their use requires including <new>.
2668  return;
2669 
2670  // OpenCL C++ 1.0 s2.9: the implicitly declared new and delete operators
2671  // are not supported.
2672  if (getLangOpts().OpenCLCPlusPlus)
2673  return;
2674 
2675  // C++ [basic.std.dynamic]p2:
2676  // [...] The following allocation and deallocation functions (18.4) are
2677  // implicitly declared in global scope in each translation unit of a
2678  // program
2679  //
2680  // C++03:
2681  // void* operator new(std::size_t) throw(std::bad_alloc);
2682  // void* operator new[](std::size_t) throw(std::bad_alloc);
2683  // void operator delete(void*) throw();
2684  // void operator delete[](void*) throw();
2685  // C++11:
2686  // void* operator new(std::size_t);
2687  // void* operator new[](std::size_t);
2688  // void operator delete(void*) noexcept;
2689  // void operator delete[](void*) noexcept;
2690  // C++1y:
2691  // void* operator new(std::size_t);
2692  // void* operator new[](std::size_t);
2693  // void operator delete(void*) noexcept;
2694  // void operator delete[](void*) noexcept;
2695  // void operator delete(void*, std::size_t) noexcept;
2696  // void operator delete[](void*, std::size_t) noexcept;
2697  //
2698  // These implicit declarations introduce only the function names operator
2699  // new, operator new[], operator delete, operator delete[].
2700  //
2701  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2702  // "std" or "bad_alloc" as necessary to form the exception specification.
2703  // However, we do not make these implicit declarations visible to name
2704  // lookup.
2705  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2706  // The "std::bad_alloc" class has not yet been declared, so build it
2707  // implicitly.
2711  &PP.getIdentifierTable().get("bad_alloc"),
2712  nullptr);
2713  getStdBadAlloc()->setImplicit(true);
2714  }
2715  if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2716  // The "std::align_val_t" enum class has not yet been declared, so build it
2717  // implicitly.
2718  auto *AlignValT = EnumDecl::Create(
2720  &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2721  AlignValT->setIntegerType(Context.getSizeType());
2722  AlignValT->setPromotionType(Context.getSizeType());
2723  AlignValT->setImplicit(true);
2724  StdAlignValT = AlignValT;
2725  }
2726 
2727  GlobalNewDeleteDeclared = true;
2728 
2730  QualType SizeT = Context.getSizeType();
2731 
2732  auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2733  QualType Return, QualType Param) {
2735  Params.push_back(Param);
2736 
2737  // Create up to four variants of the function (sized/aligned).
2738  bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2739  (Kind == OO_Delete || Kind == OO_Array_Delete);
2740  bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2741 
2742  int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2743  int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2744  for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2745  if (Sized)
2746  Params.push_back(SizeT);
2747 
2748  for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2749  if (Aligned)
2750  Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2751 
2753  Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2754 
2755  if (Aligned)
2756  Params.pop_back();
2757  }
2758  }
2759  };
2760 
2761  DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2762  DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2763  DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2764  DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2765 }
2766 
2767 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2768 /// allocation function if it doesn't already exist.
2770  QualType Return,
2771  ArrayRef<QualType> Params) {
2773 
2774  // Check if this function is already declared.
2775  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2776  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2777  Alloc != AllocEnd; ++Alloc) {
2778  // Only look at non-template functions, as it is the predefined,
2779  // non-templated allocation function we are trying to declare here.
2780  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2781  if (Func->getNumParams() == Params.size()) {
2782  llvm::SmallVector<QualType, 3> FuncParams;
2783  for (auto *P : Func->parameters())
2784  FuncParams.push_back(
2785  Context.getCanonicalType(P->getType().getUnqualifiedType()));
2786  if (llvm::makeArrayRef(FuncParams) == Params) {
2787  // Make the function visible to name lookup, even if we found it in
2788  // an unimported module. It either is an implicitly-declared global
2789  // allocation function, or is suppressing that function.
2790  Func->setVisibleDespiteOwningModule();
2791  return;
2792  }
2793  }
2794  }
2795  }
2796 
2798  /*IsVariadic=*/false, /*IsCXXMethod=*/false));
2799 
2800  QualType BadAllocType;
2801  bool HasBadAllocExceptionSpec
2802  = (Name.getCXXOverloadedOperator() == OO_New ||
2803  Name.getCXXOverloadedOperator() == OO_Array_New);
2804  if (HasBadAllocExceptionSpec) {
2805  if (!getLangOpts().CPlusPlus11) {
2806  BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2807  assert(StdBadAlloc && "Must have std::bad_alloc declared");
2808  EPI.ExceptionSpec.Type = EST_Dynamic;
2809  EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2810  }
2811  } else {
2812  EPI.ExceptionSpec =
2813  getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2814  }
2815 
2816  auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2817  QualType FnType = Context.getFunctionType(Return, Params, EPI);
2819  Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2820  FnType, /*TInfo=*/nullptr, SC_None, false, true);
2821  Alloc->setImplicit();
2822  // Global allocation functions should always be visible.
2824 
2825  Alloc->addAttr(VisibilityAttr::CreateImplicit(
2826  Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2827  ? VisibilityAttr::Hidden
2829 
2831  for (QualType T : Params) {
2832  ParamDecls.push_back(ParmVarDecl::Create(
2833  Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2834  /*TInfo=*/nullptr, SC_None, nullptr));
2835  ParamDecls.back()->setImplicit();
2836  }
2837  Alloc->setParams(ParamDecls);
2838  if (ExtraAttr)
2839  Alloc->addAttr(ExtraAttr);
2841  IdResolver.tryAddTopLevelDecl(Alloc, Name);
2842  };
2843 
2844  if (!LangOpts.CUDA)
2845  CreateAllocationFunctionDecl(nullptr);
2846  else {
2847  // Host and device get their own declaration so each can be
2848  // defined or re-declared independently.
2849  CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2850  CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2851  }
2852 }
2853 
2855  bool CanProvideSize,
2856  bool Overaligned,
2857  DeclarationName Name) {
2859 
2860  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2862 
2863  // FIXME: It's possible for this to result in ambiguity, through a
2864  // user-declared variadic operator delete or the enable_if attribute. We
2865  // should probably not consider those cases to be usual deallocation
2866  // functions. But for now we just make an arbitrary choice in that case.
2867  auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2868  Overaligned);
2869  assert(Result.FD && "operator delete missing from global scope?");
2870  return Result.FD;
2871 }
2872 
2874  CXXRecordDecl *RD) {
2876 
2877  FunctionDecl *OperatorDelete = nullptr;
2878  if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2879  return nullptr;
2880  if (OperatorDelete)
2881  return OperatorDelete;
2882 
2883  // If there's no class-specific operator delete, look up the global
2884  // non-array delete.
2886  Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2887  Name);
2888 }
2889 
2891  DeclarationName Name,
2892  FunctionDecl *&Operator, bool Diagnose) {
2893  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2894  // Try to find operator delete/operator delete[] in class scope.
2895  LookupQualifiedName(Found, RD);
2896 
2897  if (Found.isAmbiguous())
2898  return true;
2899 
2900  Found.suppressDiagnostics();
2901 
2902  bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2903 
2904  // C++17 [expr.delete]p10:
2905  // If the deallocation functions have class scope, the one without a
2906  // parameter of type std::size_t is selected.
2908  resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2909  /*WantAlign*/ Overaligned, &Matches);
2910 
2911  // If we could find an overload, use it.
2912  if (Matches.size() == 1) {
2913  Operator = cast<CXXMethodDecl>(Matches[0].FD);
2914 
2915  // FIXME: DiagnoseUseOfDecl?
2916  if (Operator->isDeleted()) {
2917  if (Diagnose) {
2918  Diag(StartLoc, diag::err_deleted_function_use);
2919  NoteDeletedFunction(Operator);
2920  }
2921  return true;
2922  }
2923 
2924  if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2925  Matches[0].Found, Diagnose) == AR_inaccessible)
2926  return true;
2927 
2928  return false;
2929  }
2930 
2931  // We found multiple suitable operators; complain about the ambiguity.
2932  // FIXME: The standard doesn't say to do this; it appears that the intent
2933  // is that this should never happen.
2934  if (!Matches.empty()) {
2935  if (Diagnose) {
2936  Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2937  << Name << RD;
2938  for (auto &Match : Matches)
2939  Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2940  }
2941  return true;
2942  }
2943 
2944  // We did find operator delete/operator delete[] declarations, but
2945  // none of them were suitable.
2946  if (!Found.empty()) {
2947  if (Diagnose) {
2948  Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2949  << Name << RD;
2950 
2951  for (NamedDecl *D : Found)
2952  Diag(D->getUnderlyingDecl()->getLocation(),
2953  diag::note_member_declared_here) << Name;
2954  }
2955  return true;
2956  }
2957 
2958  Operator = nullptr;
2959  return false;
2960 }
2961 
2962 namespace {
2963 /// Checks whether delete-expression, and new-expression used for
2964 /// initializing deletee have the same array form.
2965 class MismatchingNewDeleteDetector {
2966 public:
2967  enum MismatchResult {
2968  /// Indicates that there is no mismatch or a mismatch cannot be proven.
2969  NoMismatch,
2970  /// Indicates that variable is initialized with mismatching form of \a new.
2971  VarInitMismatches,
2972  /// Indicates that member is initialized with mismatching form of \a new.
2973  MemberInitMismatches,
2974  /// Indicates that 1 or more constructors' definitions could not been
2975  /// analyzed, and they will be checked again at the end of translation unit.
2976  AnalyzeLater
2977  };
2978 
2979  /// \param EndOfTU True, if this is the final analysis at the end of
2980  /// translation unit. False, if this is the initial analysis at the point
2981  /// delete-expression was encountered.
2982  explicit MismatchingNewDeleteDetector(bool EndOfTU)
2983  : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2984  HasUndefinedConstructors(false) {}
2985 
2986  /// Checks whether pointee of a delete-expression is initialized with
2987  /// matching form of new-expression.
2988  ///
2989  /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2990  /// point where delete-expression is encountered, then a warning will be
2991  /// issued immediately. If return value is \c AnalyzeLater at the point where
2992  /// delete-expression is seen, then member will be analyzed at the end of
2993  /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2994  /// couldn't be analyzed. If at least one constructor initializes the member
2995  /// with matching type of new, the return value is \c NoMismatch.
2996  MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2997  /// Analyzes a class member.
2998  /// \param Field Class member to analyze.
2999  /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3000  /// for deleting the \p Field.
3001  MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3002  FieldDecl *Field;
3003  /// List of mismatching new-expressions used for initialization of the pointee
3005  /// Indicates whether delete-expression was in array form.
3006  bool IsArrayForm;
3007 
3008 private:
3009  const bool EndOfTU;
3010  /// Indicates that there is at least one constructor without body.
3011  bool HasUndefinedConstructors;
3012  /// Returns \c CXXNewExpr from given initialization expression.
3013  /// \param E Expression used for initializing pointee in delete-expression.
3014  /// E can be a single-element \c InitListExpr consisting of new-expression.
3015  const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3016  /// Returns whether member is initialized with mismatching form of
3017  /// \c new either by the member initializer or in-class initialization.
3018  ///
3019  /// If bodies of all constructors are not visible at the end of translation
3020  /// unit or at least one constructor initializes member with the matching
3021  /// form of \c new, mismatch cannot be proven, and this function will return
3022  /// \c NoMismatch.
3023  MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3024  /// Returns whether variable is initialized with mismatching form of
3025  /// \c new.
3026  ///
3027  /// If variable is initialized with matching form of \c new or variable is not
3028  /// initialized with a \c new expression, this function will return true.
3029  /// If variable is initialized with mismatching form of \c new, returns false.
3030  /// \param D Variable to analyze.
3031  bool hasMatchingVarInit(const DeclRefExpr *D);
3032  /// Checks whether the constructor initializes pointee with mismatching
3033  /// form of \c new.
3034  ///
3035  /// Returns true, if member is initialized with matching form of \c new in
3036  /// member initializer list. Returns false, if member is initialized with the
3037  /// matching form of \c new in this constructor's initializer or given
3038  /// constructor isn't defined at the point where delete-expression is seen, or
3039  /// member isn't initialized by the constructor.
3040  bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3041  /// Checks whether member is initialized with matching form of
3042  /// \c new in member initializer list.
3043  bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3044  /// Checks whether member is initialized with mismatching form of \c new by
3045  /// in-class initializer.
3046  MismatchResult analyzeInClassInitializer();
3047 };
3048 }
3049 
3050 MismatchingNewDeleteDetector::MismatchResult
3051 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3052  NewExprs.clear();
3053  assert(DE && "Expected delete-expression");
3054  IsArrayForm = DE->isArrayForm();
3055  const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3056  if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3057  return analyzeMemberExpr(ME);
3058  } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3059  if (!hasMatchingVarInit(D))
3060  return VarInitMismatches;
3061  }
3062  return NoMismatch;
3063 }
3064 
3065 const CXXNewExpr *
3066 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3067  assert(E != nullptr && "Expected a valid initializer expression");
3068  E = E->IgnoreParenImpCasts();
3069  if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3070  if (ILE->getNumInits() == 1)
3071  E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3072  }
3073 
3074  return dyn_cast_or_null<const CXXNewExpr>(E);
3075 }
3076 
3077 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3078  const CXXCtorInitializer *CI) {
3079  const CXXNewExpr *NE = nullptr;
3080  if (Field == CI->getMember() &&
3081  (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3082  if (NE->isArray() == IsArrayForm)
3083  return true;
3084  else
3085  NewExprs.push_back(NE);
3086  }
3087  return false;
3088 }
3089 
3090 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3091  const CXXConstructorDecl *CD) {
3092  if (CD->isImplicit())
3093  return false;
3094  const FunctionDecl *Definition = CD;
3095  if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3096  HasUndefinedConstructors = true;
3097  return EndOfTU;
3098  }
3099  for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3100  if (hasMatchingNewInCtorInit(CI))
3101  return true;
3102  }
3103  return false;
3104 }
3105 
3106 MismatchingNewDeleteDetector::MismatchResult
3107 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3108  assert(Field != nullptr && "This should be called only for members");
3109  const Expr *InitExpr = Field->getInClassInitializer();
3110  if (!InitExpr)
3111  return EndOfTU ? NoMismatch : AnalyzeLater;
3112  if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3113  if (NE->isArray() != IsArrayForm) {
3114  NewExprs.push_back(NE);
3115  return MemberInitMismatches;
3116  }
3117  }
3118  return NoMismatch;
3119 }
3120 
3121 MismatchingNewDeleteDetector::MismatchResult
3122 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3123  bool DeleteWasArrayForm) {
3124  assert(Field != nullptr && "Analysis requires a valid class member.");
3125  this->Field = Field;
3126  IsArrayForm = DeleteWasArrayForm;
3127  const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3128  for (const auto *CD : RD->ctors()) {
3129  if (hasMatchingNewInCtor(CD))
3130  return NoMismatch;
3131  }
3132  if (HasUndefinedConstructors)
3133  return EndOfTU ? NoMismatch : AnalyzeLater;
3134  if (!NewExprs.empty())
3135  return MemberInitMismatches;
3136  return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3137  : NoMismatch;
3138 }
3139 
3140 MismatchingNewDeleteDetector::MismatchResult
3141 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3142  assert(ME != nullptr && "Expected a member expression");
3143  if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3144  return analyzeField(F, IsArrayForm);
3145  return NoMismatch;
3146 }
3147 
3148 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3149  const CXXNewExpr *NE = nullptr;
3150  if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3151  if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3152  NE->isArray() != IsArrayForm) {
3153  NewExprs.push_back(NE);
3154  }
3155  }
3156  return NewExprs.empty();
3157 }
3158 
3159 static void
3161  const MismatchingNewDeleteDetector &Detector) {
3162  SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3163  FixItHint H;
3164  if (!Detector.IsArrayForm)
3165  H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3166  else {
3168  DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3169  SemaRef.getLangOpts(), true);
3170  if (RSquare.isValid())
3171  H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3172  }
3173  SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3174  << Detector.IsArrayForm << H;
3175 
3176  for (const auto *NE : Detector.NewExprs)
3177  SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3178  << Detector.IsArrayForm;
3179 }
3180 
3181 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3182  if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3183  return;
3184  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3185  switch (Detector.analyzeDeleteExpr(DE)) {
3186  case MismatchingNewDeleteDetector::VarInitMismatches:
3187  case MismatchingNewDeleteDetector::MemberInitMismatches: {
3188  DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3189  break;
3190  }
3191  case MismatchingNewDeleteDetector::AnalyzeLater: {
3192  DeleteExprs[Detector.Field].push_back(
3193  std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3194  break;
3195  }
3196  case MismatchingNewDeleteDetector::NoMismatch:
3197  break;
3198  }
3199 }
3200 
3201 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3202  bool DeleteWasArrayForm) {
3203  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3204  switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3205  case MismatchingNewDeleteDetector::VarInitMismatches:
3206  llvm_unreachable("This analysis should have been done for class members.");
3207  case MismatchingNewDeleteDetector::AnalyzeLater:
3208  llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3209  "translation unit.");
3210  case MismatchingNewDeleteDetector::MemberInitMismatches:
3211  DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3212  break;
3213  case MismatchingNewDeleteDetector::NoMismatch:
3214  break;
3215  }
3216 }
3217 
3218 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3219 /// @code ::delete ptr; @endcode
3220 /// or
3221 /// @code delete [] ptr; @endcode
3222 ExprResult
3223 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3224  bool ArrayForm, Expr *ExE) {
3225  // C++ [expr.delete]p1:
3226  // The operand shall have a pointer type, or a class type having a single
3227  // non-explicit conversion function to a pointer type. The result has type
3228  // void.
3229  //
3230  // DR599 amends "pointer type" to "pointer to object type" in both cases.
3231 
3232  ExprResult Ex = ExE;
3233  FunctionDecl *OperatorDelete = nullptr;
3234  bool ArrayFormAsWritten = ArrayForm;
3235  bool UsualArrayDeleteWantsSize = false;
3236 
3237  if (!Ex.get()->isTypeDependent()) {
3238  // Perform lvalue-to-rvalue cast, if needed.
3239  Ex = DefaultLvalueConversion(Ex.get());
3240  if (Ex.isInvalid())
3241  return ExprError();
3242 
3243  QualType Type = Ex.get()->getType();
3244 
3245  class DeleteConverter : public ContextualImplicitConverter {
3246  public:
3247  DeleteConverter() : ContextualImplicitConverter(false, true) {}
3248 
3249  bool match(QualType ConvType) override {
3250  // FIXME: If we have an operator T* and an operator void*, we must pick
3251  // the operator T*.
3252  if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3253  if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3254  return true;
3255  return false;
3256  }
3257 
3258  SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3259  QualType T) override {
3260  return S.Diag(Loc, diag::err_delete_operand) << T;
3261  }
3262 
3263  SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3264  QualType T) override {
3265  return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3266  }
3267 
3268  SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3269  QualType T,
3270  QualType ConvTy) override {
3271  return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3272  }
3273 
3274  SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3275  QualType ConvTy) override {
3276  return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3277  << ConvTy;
3278  }
3279 
3280  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3281  QualType T) override {
3282  return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3283  }
3284 
3285  SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3286  QualType ConvTy) override {
3287  return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3288  << ConvTy;
3289  }
3290 
3291  SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3292  QualType T,
3293  QualType ConvTy) override {
3294  llvm_unreachable("conversion functions are permitted");
3295  }
3296  } Converter;
3297 
3298  Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3299  if (Ex.isInvalid())
3300  return ExprError();
3301  Type = Ex.get()->getType();
3302  if (!Converter.match(Type))
3303  // FIXME: PerformContextualImplicitConversion should return ExprError
3304  // itself in this case.
3305  return ExprError();
3306 
3307  QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3308  QualType PointeeElem = Context.getBaseElementType(Pointee);
3309 
3310  if (Pointee.getAddressSpace() != LangAS::Default &&
3311  !getLangOpts().OpenCLCPlusPlus)
3312  return Diag(Ex.get()->getBeginLoc(),
3313  diag::err_address_space_qualified_delete)
3314  << Pointee.getUnqualifiedType()
3316 
3317  CXXRecordDecl *PointeeRD = nullptr;
3318  if (Pointee->isVoidType() && !isSFINAEContext()) {
3319  // The C++ standard bans deleting a pointer to a non-object type, which
3320  // effectively bans deletion of "void*". However, most compilers support
3321  // this, so we treat it as a warning unless we're in a SFINAE context.
3322  Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3323  << Type << Ex.get()->getSourceRange();
3324  } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3325  return ExprError(Diag(StartLoc, diag::err_delete_operand)
3326  << Type << Ex.get()->getSourceRange());
3327  } else if (!Pointee->isDependentType()) {
3328  // FIXME: This can result in errors if the definition was imported from a
3329  // module but is hidden.
3330  if (!RequireCompleteType(StartLoc, Pointee,
3331  diag::warn_delete_incomplete, Ex.get())) {
3332  if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3333  PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3334  }
3335  }
3336 
3337  if (Pointee->isArrayType() && !ArrayForm) {
3338  Diag(StartLoc, diag::warn_delete_array_type)
3339  << Type << Ex.get()->getSourceRange()
3340  << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3341  ArrayForm = true;
3342  }
3343 
3345  ArrayForm ? OO_Array_Delete : OO_Delete);
3346 
3347  if (PointeeRD) {
3348  if (!UseGlobal &&
3349  FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3350  OperatorDelete))
3351  return ExprError();
3352 
3353  // If we're allocating an array of records, check whether the
3354  // usual operator delete[] has a size_t parameter.
3355  if (ArrayForm) {
3356  // If the user specifically asked to use the global allocator,
3357  // we'll need to do the lookup into the class.
3358  if (UseGlobal)
3359  UsualArrayDeleteWantsSize =
3360  doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3361 
3362  // Otherwise, the usual operator delete[] should be the
3363  // function we just found.
3364  else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3365  UsualArrayDeleteWantsSize =
3366  UsualDeallocFnInfo(*this,
3367  DeclAccessPair::make(OperatorDelete, AS_public))
3368  .HasSizeT;
3369  }
3370 
3371  if (!PointeeRD->hasIrrelevantDestructor())
3372  if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3373  MarkFunctionReferenced(StartLoc,
3374  const_cast<CXXDestructorDecl*>(Dtor));
3375  if (DiagnoseUseOfDecl(Dtor, StartLoc))
3376  return ExprError();
3377  }
3378 
3379  CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3380  /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3381  /*WarnOnNonAbstractTypes=*/!ArrayForm,
3382  SourceLocation());
3383  }
3384 
3385  if (!OperatorDelete) {
3386  if (getLangOpts().OpenCLCPlusPlus) {
3387  Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3388  return ExprError();
3389  }
3390 
3391  bool IsComplete = isCompleteType(StartLoc, Pointee);
3392  bool CanProvideSize =
3393  IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3394  Pointee.isDestructedType());
3395  bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3396 
3397  // Look for a global declaration.
3398  OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3399  Overaligned, DeleteName);
3400  }
3401 
3402  MarkFunctionReferenced(StartLoc, OperatorDelete);
3403 
3404  // Check access and ambiguity of destructor if we're going to call it.
3405  // Note that this is required even for a virtual delete.
3406  bool IsVirtualDelete = false;
3407  if (PointeeRD) {
3408  if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3409  CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3410  PDiag(diag::err_access_dtor) << PointeeElem);
3411  IsVirtualDelete = Dtor->isVirtual();
3412  }
3413  }
3414 
3415  DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3416 
3417  // Convert the operand to the type of the first parameter of operator
3418  // delete. This is only necessary if we selected a destroying operator
3419  // delete that we are going to call (non-virtually); converting to void*
3420  // is trivial and left to AST consumers to handle.
3421  QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3422  if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3423  Qualifiers Qs = Pointee.getQualifiers();
3424  if (Qs.hasCVRQualifiers()) {
3425  // Qualifiers are irrelevant to this conversion; we're only looking
3426  // for access and ambiguity.
3427  Qs.removeCVRQualifiers();
3428  QualType Unqual = Context.getPointerType(
3430  Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3431  }
3432  Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3433  if (Ex.isInvalid())
3434  return ExprError();
3435  }
3436  }
3437 
3439  Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3440  UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3441  AnalyzeDeleteExprMismatch(Result);
3442  return Result;
3443 }
3444 
3446  bool IsDelete,
3447  FunctionDecl *&Operator) {
3448 
3450  IsDelete ? OO_Delete : OO_New);
3451 
3452  LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3454  assert(!R.empty() && "implicitly declared allocation functions not found");
3455  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3456 
3457  // We do our own custom access checks below.
3458  R.suppressDiagnostics();
3459 
3460  SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3461  OverloadCandidateSet Candidates(R.getNameLoc(),
3463  for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3464  FnOvl != FnOvlEnd; ++FnOvl) {
3465  // Even member operator new/delete are implicitly treated as
3466  // static, so don't use AddMemberCandidate.
3467  NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3468 
3469  if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3470  S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3471  /*ExplicitTemplateArgs=*/nullptr, Args,
3472  Candidates,
3473  /*SuppressUserConversions=*/false);
3474  continue;
3475  }
3476 
3477  FunctionDecl *Fn = cast<FunctionDecl>(D);
3478  S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3479  /*SuppressUserConversions=*/false);
3480  }
3481 
3482  SourceRange Range = TheCall->getSourceRange();
3483 
3484  // Do the resolution.
3486  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3487  case OR_Success: {
3488  // Got one!
3489  FunctionDecl *FnDecl = Best->Function;
3490  assert(R.getNamingClass() == nullptr &&
3491  "class members should not be considered");
3492 
3493  if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3494  S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3495  << (IsDelete ? 1 : 0) << Range;
3496  S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3497  << R.getLookupName() << FnDecl->getSourceRange();
3498  return true;
3499  }
3500 
3501  Operator = FnDecl;
3502  return false;
3503  }
3504 
3505  case OR_No_Viable_Function:
3506  S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
3507  << R.getLookupName() << Range;
3508  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3509  return true;
3510 
3511  case OR_Ambiguous:
3512  S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
3513  << R.getLookupName() << Range;
3514  Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
3515  return true;
3516 
3517  case OR_Deleted: {
3518  S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
3519  << R.getLookupName() << Range;
3520  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3521  return true;
3522  }
3523  }
3524  llvm_unreachable("Unreachable, bad result from BestViableFunction");
3525 }
3526 
3527 ExprResult
3528 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3529  bool IsDelete) {
3530  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3531  if (!getLangOpts().CPlusPlus) {
3532  Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3533  << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3534  << "C++";
3535  return ExprError();
3536  }
3537  // CodeGen assumes it can find the global new and delete to call,
3538  // so ensure that they are declared.
3540 
3541  FunctionDecl *OperatorNewOrDelete = nullptr;
3542  if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3543  OperatorNewOrDelete))
3544  return ExprError();
3545  assert(OperatorNewOrDelete && "should be found");
3546 
3547  DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3548  MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3549 
3550  TheCall->setType(OperatorNewOrDelete->getReturnType());
3551  for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3552  QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3553  InitializedEntity Entity =
3556  Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3557  if (Arg.isInvalid())
3558  return ExprError();
3559  TheCall->setArg(i, Arg.get());
3560  }
3561  auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3562  assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3563  "Callee expected to be implicit cast to a builtin function pointer");
3564  Callee->setType(OperatorNewOrDelete->getType());
3565 
3566  return TheCallResult;
3567 }
3568 
3570  bool IsDelete, bool CallCanBeVirtual,
3571  bool WarnOnNonAbstractTypes,
3572  SourceLocation DtorLoc) {
3573  if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3574  return;
3575 
3576  // C++ [expr.delete]p3:
3577  // In the first alternative (delete object), if the static type of the
3578  // object to be deleted is different from its dynamic type, the static
3579  // type shall be a base class of the dynamic type of the object to be
3580  // deleted and the static type shall have a virtual destructor or the
3581  // behavior is undefined.
3582  //
3583  const CXXRecordDecl *PointeeRD = dtor->getParent();
3584  // Note: a final class cannot be derived from, no issue there
3585  if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3586  return;
3587 
3588  // If the superclass is in a system header, there's nothing that can be done.
3589  // The `delete` (where we emit the warning) can be in a system header,
3590  // what matters for this warning is where the deleted type is defined.
3591  if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3592  return;
3593 
3594  QualType ClassType = dtor->getThisType()->getPointeeType();
3595  if (PointeeRD->isAbstract()) {
3596  // If the class is abstract, we warn by default, because we're
3597  // sure the code has undefined behavior.
3598  Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3599  << ClassType;
3600  } else if (WarnOnNonAbstractTypes) {
3601  // Otherwise, if this is not an array delete, it's a bit suspect,
3602  // but not necessarily wrong.
3603  Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3604  << ClassType;
3605  }
3606  if (!IsDelete) {
3607  std::string TypeStr;
3608  ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3609  Diag(DtorLoc, diag::note_delete_non_virtual)
3610  << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3611  }
3612 }
3613 
3615  SourceLocation StmtLoc,
3616  ConditionKind CK) {
3617  ExprResult E =
3618  CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3619  if (E.isInvalid())
3620  return ConditionError();
3621  return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3623 }
3624 
3625 /// Check the use of the given variable as a C++ condition in an if,
3626 /// while, do-while, or switch statement.
3628  SourceLocation StmtLoc,
3629  ConditionKind CK) {
3630  if (ConditionVar->isInvalidDecl())
3631  return ExprError();
3632 
3633  QualType T = ConditionVar->getType();
3634 
3635  // C++ [stmt.select]p2:
3636  // The declarator shall not specify a function or an array.
3637  if (T->isFunctionType())
3638  return ExprError(Diag(ConditionVar->getLocation(),
3639  diag::err_invalid_use_of_function_type)
3640  << ConditionVar->getSourceRange());
3641  else if (T->isArrayType())
3642  return ExprError(Diag(ConditionVar->getLocation(),
3643  diag::err_invalid_use_of_array_type)
3644  << ConditionVar->getSourceRange());
3645 
3646  ExprResult Condition = DeclRefExpr::Create(
3647  Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3648  /*enclosing*/ false, ConditionVar->getLocation(),
3649  ConditionVar->getType().getNonReferenceType(), VK_LValue);
3650 
3651  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3652 
3653  switch (CK) {
3655  return CheckBooleanCondition(StmtLoc, Condition.get());
3656 
3658  return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3659 
3660  case ConditionKind::Switch:
3661  return CheckSwitchCondition(StmtLoc, Condition.get());
3662  }
3663 
3664  llvm_unreachable("unexpected condition kind");
3665 }
3666 
3667 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3668 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3669  // C++ 6.4p4:
3670  // The value of a condition that is an initialized declaration in a statement
3671  // other than a switch statement is the value of the declared variable
3672  // implicitly converted to type bool. If that conversion is ill-formed, the
3673  // program is ill-formed.
3674  // The value of a condition that is an expression is the value of the
3675  // expression, implicitly converted to bool.
3676  //
3677  // FIXME: Return this value to the caller so they don't need to recompute it.
3678  llvm::APSInt Value(/*BitWidth*/1);
3679  return (IsConstexpr && !CondExpr->isValueDependent())
3680  ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3683 }
3684 
3685 /// Helper function to determine whether this is the (deprecated) C++
3686 /// conversion from a string literal to a pointer to non-const char or
3687 /// non-const wchar_t (for narrow and wide string literals,
3688 /// respectively).
3689 bool
3691  // Look inside the implicit cast, if it exists.
3692  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3693  From = Cast->getSubExpr();
3694 
3695  // A string literal (2.13.4) that is not a wide string literal can
3696  // be converted to an rvalue of type "pointer to char"; a wide
3697  // string literal can be converted to an rvalue of type "pointer
3698  // to wchar_t" (C++ 4.2p2).
3699  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3700  if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3701  if (const BuiltinType *ToPointeeType
3702  = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3703  // This conversion is considered only when there is an
3704  // explicit appropriate pointer target type (C++ 4.2p2).
3705  if (!ToPtrType->getPointeeType().hasQualifiers()) {
3706  switch (StrLit->getKind()) {
3707  case StringLiteral::UTF8:
3708  case StringLiteral::UTF16:
3709  case StringLiteral::UTF32:
3710  // We don't allow UTF literals to be implicitly converted
3711  break;
3712  case StringLiteral::Ascii:
3713  return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3714  ToPointeeType->getKind() == BuiltinType::Char_S);
3715  case StringLiteral::Wide:
3717  QualType(ToPointeeType, 0));
3718  }
3719  }
3720  }
3721 
3722  return false;
3723 }
3724 
3726  SourceLocation CastLoc,
3727  QualType Ty,
3728  CastKind Kind,
3729  CXXMethodDecl *Method,
3730  DeclAccessPair FoundDecl,
3731  bool HadMultipleCandidates,
3732  Expr *From) {
3733  switch (Kind) {
3734  default: llvm_unreachable("Unhandled cast kind!");
3735  case CK_ConstructorConversion: {
3736  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3737  SmallVector<Expr*, 8> ConstructorArgs;
3738 
3739  if (S.RequireNonAbstractType(CastLoc, Ty,
3740  diag::err_allocation_of_abstract_type))
3741  return ExprError();
3742 
3743  if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3744  return ExprError();
3745 
3746  S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3748  if (S.DiagnoseUseOfDecl(Method, CastLoc))
3749  return ExprError();
3750 
3752  CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3753  ConstructorArgs, HadMultipleCandidates,
3754  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3756  if (Result.isInvalid())
3757  return ExprError();
3758 
3759  return S.MaybeBindToTemporary(Result.getAs<Expr>());
3760  }
3761 
3762  case CK_UserDefinedConversion: {
3763  assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3764 
3765  S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3766  if (S.DiagnoseUseOfDecl(Method, CastLoc))
3767  return ExprError();
3768 
3769  // Create an implicit call expr that calls it.
3770  CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3771  ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3772  HadMultipleCandidates);
3773  if (Result.isInvalid())
3774  return ExprError();
3775  // Record usage of conversion in an implicit cast.
3776  Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3777  CK_UserDefinedConversion, Result.get(),
3778  nullptr, Result.get()->getValueKind());
3779 
3780  return S.MaybeBindToTemporary(Result.get());
3781  }
3782  }
3783 }
3784 
3785 /// PerformImplicitConversion - Perform an implicit conversion of the
3786 /// expression From to the type ToType using the pre-computed implicit
3787 /// conversion sequence ICS. Returns the converted
3788 /// expression. Action is the kind of conversion we're performing,
3789 /// used in the error message.
3790 ExprResult
3792  const ImplicitConversionSequence &ICS,
3793  AssignmentAction Action,
3794  CheckedConversionKind CCK) {
3795  // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3796  if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3797  return From;
3798 
3799  switch (ICS.getKind()) {
3801  ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3802  Action, CCK);
3803  if (Res.isInvalid())
3804  return ExprError();
3805  From = Res.get();
3806  break;
3807  }
3808 
3810 
3813  QualType BeforeToType;
3814  assert(FD && "no conversion function for user-defined conversion seq");
3815  if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3816  CastKind = CK_UserDefinedConversion;
3817 
3818  // If the user-defined conversion is specified by a conversion function,
3819  // the initial standard conversion sequence converts the source type to
3820  // the implicit object parameter of the conversion function.
3821  BeforeToType = Context.getTagDeclType(Conv->getParent());
3822  } else {
3823  const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3824  CastKind = CK_ConstructorConversion;
3825  // Do no conversion if dealing with ... for the first conversion.
3826  if (!ICS.UserDefined.EllipsisConversion) {
3827  // If the user-defined conversion is specified by a constructor, the
3828  // initial standard conversion sequence converts the source type to
3829  // the type required by the argument of the constructor
3830  BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3831  }
3832  }
3833  // Watch out for ellipsis conversion.
3834  if (!ICS.UserDefined.EllipsisConversion) {
3835  ExprResult Res =
3836  PerformImplicitConversion(From, BeforeToType,
3838  CCK);
3839  if (Res.isInvalid())
3840  return ExprError();
3841  From = Res.get();
3842  }
3843 
3844  ExprResult CastArg = BuildCXXCastArgument(
3845  *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3846  cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3848 
3849  if (CastArg.isInvalid())
3850  return ExprError();
3851 
3852  From = CastArg.get();
3853 
3854  // C++ [over.match.oper]p7:
3855  // [...] the second standard conversion sequence of a user-defined
3856  // conversion sequence is not applied.
3857  if (CCK == CCK_ForBuiltinOverloadedOp)
3858  return From;
3859 
3860  return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3861  AA_Converting, CCK);
3862  }
3863 
3865  ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3866  PDiag(diag::err_typecheck_ambiguous_condition)
3867  << From->getSourceRange());
3868  return ExprError();
3869 
3871  llvm_unreachable("Cannot perform an ellipsis conversion");
3872 
3874  bool Diagnosed =
3876  From->getType(), From, Action);
3877  assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3878  return ExprError();
3879  }
3880 
3881  // Everything went well.
3882  return From;
3883 }
3884 
3885 /// PerformImplicitConversion - Perform an implicit conversion of the
3886 /// expression From to the type ToType by following the standard
3887 /// conversion sequence SCS. Returns the converted
3888 /// expression. Flavor is the context in which we're performing this
3889 /// conversion, for use in error messages.
3890 ExprResult
3892  const StandardConversionSequence& SCS,
3893  AssignmentAction Action,
3894  CheckedConversionKind CCK) {
3895  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3896 
3897  // Overall FIXME: we are recomputing too many types here and doing far too
3898  // much extra work. What this means is that we need to keep track of more
3899  // information that is computed when we try the implicit conversion initially,
3900  // so that we don't need to recompute anything here.
3901  QualType FromType = From->getType();
3902 
3903  if (SCS.CopyConstructor) {
3904  // FIXME: When can ToType be a reference type?
3905  assert(!ToType->isReferenceType());
3906  if (SCS.Second == ICK_Derived_To_Base) {
3907  SmallVector<Expr*, 8> ConstructorArgs;
3908  if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3909  From, /*FIXME:ConstructLoc*/SourceLocation(),
3910  ConstructorArgs))
3911  return ExprError();
3912  return BuildCXXConstructExpr(
3913  /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3915  ConstructorArgs, /*HadMultipleCandidates*/ false,
3916  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3918  }
3919  return BuildCXXConstructExpr(
3920  /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3922  From, /*HadMultipleCandidates*/ false,
3923  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3925  }
3926 
3927  // Resolve overloaded function references.
3928  if (Context.hasSameType(FromType, Context.OverloadTy)) {
3929  DeclAccessPair Found;
3931  true, Found);
3932  if (!Fn)
3933  return ExprError();
3934 
3935  if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3936  return ExprError();
3937 
3938  From = FixOverloadedFunctionReference(From, Found, Fn);
3939  FromType = From->getType();
3940  }
3941 
3942  // If we're converting to an atomic type, first convert to the corresponding
3943  // non-atomic type.
3944  QualType ToAtomicType;
3945  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3946  ToAtomicType = ToType;
3947  ToType = ToAtomic->getValueType();
3948  }
3949 
3950  QualType InitialFromType = FromType;
3951  // Perform the first implicit conversion.
3952  switch (SCS.First) {
3953  case ICK_Identity:
3954  if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3955  FromType = FromAtomic->getValueType().getUnqualifiedType();
3956  From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3957  From, /*BasePath=*/nullptr, VK_RValue);
3958  }
3959  break;
3960 
3961  case ICK_Lvalue_To_Rvalue: {
3962  assert(From->getObjectKind() != OK_ObjCProperty);
3963  ExprResult FromRes = DefaultLvalueConversion(From);
3964  assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3965  From = FromRes.get();
3966  FromType = From->getType();
3967  break;
3968  }
3969 
3970  case ICK_Array_To_Pointer:
3971  FromType = Context.getArrayDecayedType(FromType);
3972  From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3973  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3974  break;
3975 
3977  FromType = Context.getPointerType(FromType);
3978  From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3979  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3980  break;
3981 
3982  default:
3983  llvm_unreachable("Improper first standard conversion");
3984  }
3985 
3986  // Perform the second implicit conversion
3987  switch (SCS.Second) {
3988  case ICK_Identity:
3989  // C++ [except.spec]p5:
3990  // [For] assignment to and initialization of pointers to functions,
3991  // pointers to member functions, and references to functions: the
3992  // target entity shall allow at least the exceptions allowed by the
3993  // source value in the assignment or initialization.
3994  switch (Action) {
3995  case AA_Assigning:
3996  case AA_Initializing:
3997  // Note, function argument passing and returning are initialization.
3998  case AA_Passing:
3999  case AA_Returning:
4000  case AA_Sending:
4001  case AA_Passing_CFAudited:
4002  if (CheckExceptionSpecCompatibility(From, ToType))
4003  return ExprError();
4004  break;
4005 
4006  case AA_Casting:
4007  case AA_Converting:
4008  // Casts and implicit conversions are not initialization, so are not
4009  // checked for exception specification mismatches.
4010  break;
4011  }
4012  // Nothing else to do.
4013  break;
4014 
4017  if (ToType->isBooleanType()) {
4018  assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4019  SCS.Second == ICK_Integral_Promotion &&
4020  "only enums with fixed underlying type can promote to bool");
4021  From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4022  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4023  } else {
4024  From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4025  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4026  }
4027  break;
4028 
4031  From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4032  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4033  break;
4034 
4035  case ICK_Complex_Promotion:
4036  case ICK_Complex_Conversion: {
4037  QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4038  QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4039  CastKind CK;
4040  if (FromEl->isRealFloatingType()) {
4041  if (ToEl->isRealFloatingType())
4042  CK = CK_FloatingComplexCast;
4043  else
4044  CK = CK_FloatingComplexToIntegralComplex;
4045  } else if (ToEl->isRealFloatingType()) {
4046  CK = CK_IntegralComplexToFloatingComplex;
4047  } else {
4048  CK = CK_IntegralComplexCast;
4049  }
4050  From = ImpCastExprToType(From, ToType, CK,
4051  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4052  break;
4053  }
4054 
4055  case ICK_Floating_Integral:
4056  if (ToType->isRealFloatingType())
4057  From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4058  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4059  else
4060  From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4061  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4062  break;
4063 
4065  From = ImpCastExprToType(From, ToType, CK_NoOp,
4066  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4067  break;
4068 
4070  case ICK_Pointer_Conversion: {
4071  if (SCS.IncompatibleObjC && Action != AA_Casting) {
4072  // Diagnose incompatible Objective-C conversions
4073  if (Action == AA_Initializing || Action == AA_Assigning)
4074  Diag(From->getBeginLoc(),
4075  diag::ext_typecheck_convert_incompatible_pointer)
4076  << ToType << From->getType() << Action << From->getSourceRange()
4077  << 0;
4078  else
4079  Diag(From->getBeginLoc(),
4080  diag::ext_typecheck_convert_incompatible_pointer)
4081  << From->getType() << ToType << Action << From->getSourceRange()
4082  << 0;
4083 
4084  if (From->getType()->isObjCObjectPointerType() &&
4085  ToType->isObjCObjectPointerType())
4089  From->getType())) {
4090  if (Action == AA_Initializing)
4091  Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4092  else
4093  Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4094  << (Action == AA_Casting) << From->getType() << ToType
4095  << From->getSourceRange();
4096  }
4097 
4098  CastKind Kind;
4099  CXXCastPath BasePath;
4100  if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4101  return ExprError();
4102 
4103  // Make sure we extend blocks if necessary.
4104  // FIXME: doing this here is really ugly.
4105  if (Kind == CK_BlockPointerToObjCPointerCast) {
4106  ExprResult E = From;
4108  From = E.get();
4109  }
4110  if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4111  CheckObjCConversion(SourceRange(), ToType, From, CCK);
4112  From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4113  .get();
4114  break;
4115  }
4116 
4117  case ICK_Pointer_Member: {
4118  CastKind Kind;
4119  CXXCastPath BasePath;
4120  if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4121  return ExprError();
4122  if (CheckExceptionSpecCompatibility(From, ToType))
4123  return ExprError();
4124 
4125  // We may not have been able to figure out what this member pointer resolved
4126  // to up until this exact point. Attempt to lock-in it's inheritance model.
4128  (void)isCompleteType(From->getExprLoc(), From->getType());
4129  (void)isCompleteType(From->getExprLoc(), ToType);
4130  }
4131 
4132  From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4133  .get();
4134  break;
4135  }
4136 
4138  // Perform half-to-boolean conversion via float.
4139  if (From->getType()->isHalfType()) {
4140  From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4141  FromType = Context.FloatTy;
4142  }
4143 
4144  From = ImpCastExprToType(From, Context.BoolTy,
4145  ScalarTypeToBooleanCastKind(FromType),
4146  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4147  break;
4148 
4149  case ICK_Derived_To_Base: {
4150  CXXCastPath BasePath;
4152  From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4153  From->getSourceRange(), &BasePath, CStyle))
4154  return ExprError();
4155 
4156  From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4157  CK_DerivedToBase, From->getValueKind(),
4158  &BasePath, CCK).get();
4159  break;
4160  }
4161 
4162  case ICK_Vector_Conversion:
4163  From = ImpCastExprToType(From, ToType, CK_BitCast,
4164  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4165  break;
4166 
4167  case ICK_Vector_Splat: {
4168  // Vector splat from any arithmetic type to a vector.
4169  Expr *Elem = prepareVectorSplat(ToType, From).get();
4170  From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4171  /*BasePath=*/nullptr, CCK).get();
4172  break;
4173  }
4174 
4175  case ICK_Complex_Real:
4176  // Case 1. x -> _Complex y
4177  if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4178  QualType ElType = ToComplex->getElementType();
4179  bool isFloatingComplex = ElType->isRealFloatingType();
4180 
4181  // x -> y
4182  if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4183  // do nothing
4184  } else if (From->getType()->isRealFloatingType()) {
4185  From = ImpCastExprToType(From, ElType,
4186  isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4187  } else {
4188  assert(From->getType()->isIntegerType());
4189  From = ImpCastExprToType(From, ElType,
4190  isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4191  }
4192  // y -> _Complex y
4193  From = ImpCastExprToType(From, ToType,
4194  isFloatingComplex ? CK_FloatingRealToComplex
4195  : CK_IntegralRealToComplex).get();
4196 
4197  // Case 2. _Complex x -> y
4198  } else {
4199  const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4200  assert(FromComplex);
4201 
4202  QualType ElType = FromComplex->getElementType();
4203  bool isFloatingComplex = ElType->isRealFloatingType();
4204 
4205  // _Complex x -> x
4206  From = ImpCastExprToType(From, ElType,
4207  isFloatingComplex ? CK_FloatingComplexToReal
4208  : CK_IntegralComplexToReal,
4209  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4210 
4211  // x -> y
4212  if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4213  // do nothing
4214  } else if (ToType->isRealFloatingType()) {
4215  From = ImpCastExprToType(From, ToType,
4216  isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4217  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4218  } else {
4219  assert(ToType->isIntegerType());
4220  From = ImpCastExprToType(From, ToType,
4221  isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4222  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4223  }
4224  }
4225  break;
4226 
4228  From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4229  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4230  break;
4231  }
4232 
4234  ExprResult FromRes = From;
4235  Sema::AssignConvertType ConvTy =
4237  if (FromRes.isInvalid())
4238  return ExprError();
4239  From = FromRes.get();
4240  assert ((ConvTy == Sema::Compatible) &&
4241  "Improper transparent union conversion");
4242  (void)ConvTy;
4243  break;
4244  }
4245 
4248  From = ImpCastExprToType(From, ToType,
4249  CK_ZeroToOCLOpaqueType,
4250  From->getValueKind()).get();
4251  break;
4252 
4253  case ICK_Lvalue_To_Rvalue:
4254  case ICK_Array_To_Pointer:
4257  case ICK_Qualification:
4259  case ICK_C_Only_Conversion:
4261  llvm_unreachable("Improper second standard conversion");
4262  }
4263 
4264  switch (SCS.Third) {
4265  case ICK_Identity:
4266  // Nothing to do.
4267  break;
4268 
4270  // If both sides are functions (or pointers/references to them), there could
4271  // be incompatible exception declarations.
4272  if (CheckExceptionSpecCompatibility(From, ToType))
4273  return ExprError();
4274 
4275  From = ImpCastExprToType(From, ToType, CK_NoOp,
4276  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4277  break;
4278 
4279  case ICK_Qualification: {
4280  // The qualification keeps the category of the inner expression, unless the
4281  // target type isn't a reference.
4282  ExprValueKind VK =
4283  ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4284 
4285  CastKind CK = CK_NoOp;
4286 
4287  if (ToType->isReferenceType() &&
4288  ToType->getPointeeType().getAddressSpace() !=
4289  From->getType().getAddressSpace())
4290  CK = CK_AddressSpaceConversion;
4291 
4292  if (ToType->isPointerType() &&
4293  ToType->getPointeeType().getAddressSpace() !=
4294  From->getType()->getPointeeType().getAddressSpace())
4295  CK = CK_AddressSpaceConversion;
4296 
4297  From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4298  /*BasePath=*/nullptr, CCK)
4299  .get();
4300 
4302  !getLangOpts().WritableStrings) {
4303  Diag(From->getBeginLoc(),
4304  getLangOpts().CPlusPlus11
4305  ? diag::ext_deprecated_string_literal_conversion
4306  : diag::warn_deprecated_string_literal_conversion)
4307  << ToType.getNonReferenceType();
4308  }
4309 
4310  break;
4311  }
4312 
4313  default:
4314  llvm_unreachable("Improper third standard conversion");
4315  }
4316 
4317  // If this conversion sequence involved a scalar -> atomic conversion, perform
4318  // that conversion now.
4319  if (!ToAtomicType.isNull()) {
4320  assert(Context.hasSameType(
4321  ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4322  From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4323  VK_RValue, nullptr, CCK).get();
4324  }
4325 
4326  // If this conversion sequence succeeded and involved implicitly converting a
4327  // _Nullable type to a _Nonnull one, complain.
4328  if (!isCast(CCK))
4329  diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4330  From->getBeginLoc());
4331 
4332  return From;
4333 }
4334 
4335 /// Check the completeness of a type in a unary type trait.
4336 ///
4337 /// If the particular type trait requires a complete type, tries to complete
4338 /// it. If completing the type fails, a diagnostic is emitted and false
4339 /// returned. If completing the type succeeds or no completion was required,
4340 /// returns true.
4342  SourceLocation Loc,
4343  QualType ArgTy) {
4344  // C++0x [meta.unary.prop]p3:
4345  // For all of the class templates X declared in this Clause, instantiating
4346  // that template with a template argument that is a class template
4347  // specialization may result in the implicit instantiation of the template
4348  // argument if and only if the semantics of X require that the argument
4349  // must be a complete type.
4350  // We apply this rule to all the type trait expressions used to implement
4351  // these class templates. We also try to follow any GCC documented behavior
4352  // in these expressions to ensure portability of standard libraries.
4353  switch (UTT) {
4354  default: llvm_unreachable("not a UTT");
4355  // is_complete_type somewhat obviously cannot require a complete type.
4356  case UTT_IsCompleteType:
4357  // Fall-through
4358 
4359  // These traits are modeled on the type predicates in C++0x
4360  // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4361  // requiring a complete type, as whether or not they return true cannot be
4362  // impacted by the completeness of the type.
4363  case UTT_IsVoid:
4364  case UTT_IsIntegral:
4365  case UTT_IsFloatingPoint:
4366  case UTT_IsArray:
4367  case UTT_IsPointer:
4368  case UTT_IsLvalueReference:
4369  case UTT_IsRvalueReference:
4372  case UTT_IsEnum:
4373  case UTT_IsUnion:
4374  case UTT_IsClass:
4375  case UTT_IsFunction:
4376  case UTT_IsReference:
4377  case UTT_IsArithmetic:
4378  case UTT_IsFundamental:
4379  case UTT_IsObject:
4380  case UTT_IsScalar:
4381  case UTT_IsCompound:
4382  case UTT_IsMemberPointer:
4383  // Fall-through
4384 
4385  // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4386  // which requires some of its traits to have the complete type. However,
4387  // the completeness of the type cannot impact these traits' semantics, and
4388  // so they don't require it. This matches the comments on these traits in
4389  // Table 49.
4390  case UTT_IsConst:
4391  case UTT_IsVolatile:
4392  case UTT_IsSigned:
4393  case UTT_IsUnsigned:
4394 
4395  // This type trait always returns false, checking the type is moot.
4396  case UTT_IsInterfaceClass:
4397  return true;
4398 
4399  // C++14 [meta.unary.prop]:
4400  // If T is a non-union class type, T shall be a complete type.
4401  case UTT_IsEmpty:
4402  case UTT_IsPolymorphic:
4403  case UTT_IsAbstract:
4404  if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4405  if (!RD->isUnion())
4406  return !S.RequireCompleteType(
4407  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4408  return true;
4409 
4410  // C++14 [meta.unary.prop]:
4411  // If T is a class type, T shall be a complete type.
4412  case UTT_IsFinal:
4413  case UTT_IsSealed:
4414  if (ArgTy->getAsCXXRecordDecl())
4415  return !S.RequireCompleteType(
4416  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4417  return true;
4418 
4419  // C++1z [meta.unary.prop]:
4420  // remove_all_extents_t<T> shall be a complete type or cv void.
4421  case UTT_IsAggregate:
4422  case UTT_IsTrivial:
4424  case UTT_IsStandardLayout:
4425  case UTT_IsPOD:
4426  case UTT_IsLiteral:
4427  // Per the GCC type traits documentation, T shall be a complete type, cv void,
4428  // or an array of unknown bound. But GCC actually imposes the same constraints
4429  // as above.
4430  case UTT_HasNothrowAssign:
4433  case UTT_HasNothrowCopy:
4434  case UTT_HasTrivialAssign:
4438  case UTT_HasTrivialCopy:
4441  ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4442  LLVM_FALLTHROUGH;
4443 
4444  // C++1z [meta.unary.prop]:
4445  // T shall be a complete type, cv void, or an array of unknown bound.
4446  case UTT_IsDestructible:
4450  if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4451  return true;
4452 
4453  return !S.RequireCompleteType(
4454  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4455  }
4456 }
4457 
4459  Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4460  bool (CXXRecordDecl::*HasTrivial)() const,
4461  bool (CXXRecordDecl::*HasNonTrivial)() const,
4462  bool (CXXMethodDecl::*IsDesiredOp)() const)
4463 {
4464  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4465  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4466  return true;
4467 
4469  DeclarationNameInfo NameInfo(Name, KeyLoc);
4470  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4471  if (Self.LookupQualifiedName(Res, RD)) {
4472  bool FoundOperator = false;
4473  Res.suppressDiagnostics();
4474  for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4475  Op != OpEnd; ++Op) {
4476  if (isa<FunctionTemplateDecl>(*Op))
4477  continue;
4478 
4479  CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4480  if((Operator->*IsDesiredOp)()) {
4481  FoundOperator = true;
4482  const FunctionProtoType *CPT =
4483  Operator->getType()->getAs<FunctionProtoType>();
4484  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4485  if (!CPT || !CPT->isNothrow())
4486  return false;
4487  }
4488  }
4489  return FoundOperator;
4490  }
4491  return false;
4492 }
4493 
4494 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4495  SourceLocation KeyLoc, QualType T) {
4496  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4497 
4498  ASTContext &C = Self.Context;
4499  switch(UTT) {
4500  default: llvm_unreachable("not a UTT");
4501  // Type trait expressions corresponding to the primary type category
4502  // predicates in C++0x [meta.unary.cat].
4503  case UTT_IsVoid:
4504  return T->isVoidType();
4505  case UTT_IsIntegral:
4506  return T->isIntegralType(C);
4507  case UTT_IsFloatingPoint:
4508  return T->isFloatingType();
4509  case UTT_IsArray:
4510  return T->isArrayType();
4511  case UTT_IsPointer:
4512  return T->isPointerType();
4513  case UTT_IsLvalueReference:
4514  return T->isLValueReferenceType();
4515  case UTT_IsRvalueReference:
4516  return T->isRValueReferenceType();
4518  return T->isMemberFunctionPointerType();
4520  return T->isMemberDataPointerType();
4521  case UTT_IsEnum:
4522  return T->isEnumeralType();
4523  case UTT_IsUnion:
4524  return T->isUnionType();
4525  case UTT_IsClass:
4526  return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4527  case UTT_IsFunction:
4528  return T->isFunctionType();
4529 
4530  // Type trait expressions which correspond to the convenient composition
4531  // predicates in C++0x [meta.unary.comp].
4532  case UTT_IsReference:
4533  return T->isReferenceType();
4534  case UTT_IsArithmetic:
4535  return T->isArithmeticType() && !T->isEnumeralType();
4536  case UTT_IsFundamental:
4537  return T->isFundamentalType();
4538  case UTT_IsObject:
4539  return T->isObjectType();
4540  case UTT_IsScalar:
4541  // Note: semantic analysis depends on Objective-C lifetime types to be
4542  // considered scalar types. However, such types do not actually behave
4543  // like scalar types at run time (since they may require retain/release
4544  // operations), so we report them as non-scalar.
4545  if (T->isObjCLifetimeType()) {
4546  switch (T.getObjCLifetime()) {
4547  case Qualifiers::OCL_None:
4549  return true;
4550 
4552  case Qualifiers::OCL_Weak:
4554  return false;
4555  }
4556  }
4557 
4558  return T->isScalarType();
4559  case UTT_IsCompound:
4560  return T->isCompoundType();
4561  case UTT_IsMemberPointer:
4562  return T->isMemberPointerType();
4563 
4564  // Type trait expressions which correspond to the type property predicates
4565  // in C++0x [meta.unary.prop].
4566  case UTT_IsConst:
4567  return T.isConstQualified();
4568  case UTT_IsVolatile:
4569  return T.isVolatileQualified();
4570  case UTT_IsTrivial:
4571  return T.isTrivialType(C);
4573  return T.isTriviallyCopyableType(C);
4574  case UTT_IsStandardLayout:
4575  return T->isStandardLayoutType();
4576  case UTT_IsPOD:
4577  return T.isPODType(C);
4578  case UTT_IsLiteral:
4579  return T->isLiteralType(C);
4580  case UTT_IsEmpty:
4581  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4582  return !RD->isUnion() && RD->isEmpty();
4583  return false;
4584  case UTT_IsPolymorphic:
4585  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4586  return !RD->isUnion() && RD->isPolymorphic();
4587  return false;
4588  case UTT_IsAbstract:
4589  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590  return !RD->isUnion() && RD->isAbstract();
4591  return false;
4592  case UTT_IsAggregate:
4593  // Report vector extensions and complex types as aggregates because they
4594  // support aggregate initialization. GCC mirrors this behavior for vectors
4595  // but not _Complex.
4596  return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4597  T->isAnyComplexType();
4598  // __is_interface_class only returns true when CL is invoked in /CLR mode and
4599  // even then only when it is used with the 'interface struct ...' syntax
4600  // Clang doesn't support /CLR which makes this type trait moot.
4601  case UTT_IsInterfaceClass:
4602  return false;
4603  case UTT_IsFinal:
4604  case UTT_IsSealed:
4605  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4606  return RD->hasAttr<FinalAttr>();
4607  return false;
4608  case UTT_IsSigned:
4609  return T->isSignedIntegerType();
4610  case UTT_IsUnsigned:
4611  return T->isUnsignedIntegerType();
4612 
4613  // Type trait expressions which query classes regarding their construction,
4614  // destruction, and copying. Rather than being based directly on the
4615  // related type predicates in the standard, they are specified by both
4616  // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4617  // specifications.
4618  //
4619  // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4620  // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4621  //
4622  // Note that these builtins do not behave as documented in g++: if a class
4623  // has both a trivial and a non-trivial special member of a particular kind,
4624  // they return false! For now, we emulate this behavior.
4625  // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4626  // does not correctly compute triviality in the presence of multiple special
4627  // members of the same kind. Revisit this once the g++ bug is fixed.
4629  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4630  // If __is_pod (type) is true then the trait is true, else if type is
4631  // a cv class or union type (or array thereof) with a trivial default
4632  // constructor ([class.ctor]) then the trait is true, else it is false.
4633  if (T.isPODType(C))
4634  return true;
4635  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4636  return RD->hasTrivialDefaultConstructor() &&
4637  !RD->hasNonTrivialDefaultConstructor();
4638  return false;
4640  // This trait is implemented by MSVC 2012 and needed to parse the
4641  // standard library headers. Specifically this is used as the logic
4642  // behind std::is_trivially_move_constructible (20.9.4.3).
4643  if (T.isPODType(C))
4644  return true;
4645  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4646  return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4647  return false;
4648  case UTT_HasTrivialCopy:
4649  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4650  // If __is_pod (type) is true or type is a reference type then
4651  // the trait is true, else if type is a cv class or union type
4652  // with a trivial copy constructor ([class.copy]) then the trait
4653  // is true, else it is false.
4654  if (T.isPODType(C) || T->isReferenceType())
4655  return true;
4656  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4657  return RD->hasTrivialCopyConstructor() &&
4658  !RD->hasNonTrivialCopyConstructor();
4659  return false;
4661  // This trait is implemented by MSVC 2012 and needed to parse the
4662  // standard library headers. Specifically it is used as the logic
4663  // behind std::is_trivially_move_assignable (20.9.4.3)
4664  if (T.isPODType(C))
4665  return true;
4666  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4667  return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4668  return false;
4669  case UTT_HasTrivialAssign:
4670  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4671  // If type is const qualified or is a reference type then the
4672  // trait is false. Otherwise if __is_pod (type) is true then the
4673  // trait is true, else if type is a cv class or union type with
4674  // a trivial copy assignment ([class.copy]) then the trait is
4675  // true, else it is false.
4676  // Note: the const and reference restrictions are interesting,
4677  // given that const and reference members don't prevent a class
4678  // from having a trivial copy assignment operator (but do cause
4679  // errors if the copy assignment operator is actually used, q.v.
4680  // [class.copy]p12).
4681 
4682  if (T.isConstQualified())
4683  return false;
4684  if (T.isPODType(C))
4685  return true;
4686  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4687  return RD->hasTrivialCopyAssignment() &&
4688  !RD->hasNonTrivialCopyAssignment();
4689  return false;
4690  case UTT_IsDestructible:
4693  // C++14 [meta.unary.prop]:
4694  // For reference types, is_destructible<T>::value is true.
4695  if (T->isReferenceType())
4696  return true;
4697 
4698  // Objective-C++ ARC: autorelease types don't require destruction.
4699  if (T->isObjCLifetimeType() &&
4701  return true;
4702 
4703  // C++14 [meta.unary.prop]:
4704  // For incomplete types and function types, is_destructible<T>::value is
4705  // false.
4706  if (T->isIncompleteType() || T->isFunctionType())
4707  return false;
4708 
4709  // A type that requires destruction (via a non-trivial destructor or ARC
4710  // lifetime semantics) is not trivially-destructible.
4712  return false;
4713 
4714  // C++14 [meta.unary.prop]:
4715  // For object types and given U equal to remove_all_extents_t<T>, if the
4716  // expression std::declval<U&>().~U() is well-formed when treated as an
4717  // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4718  if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4719  CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4720  if (!Destructor)
4721  return false;
4722  // C++14 [dcl.fct.def.delete]p2:
4723  // A program that refers to a deleted function implicitly or
4724  // explicitly, other than to declare it, is ill-formed.
4725  if (Destructor->isDeleted())
4726  return false;
4727  if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4728  return false;
4729  if (UTT == UTT_IsNothrowDestructible) {
4730  const FunctionProtoType *CPT =
4731  Destructor->getType()->getAs<FunctionProtoType>();
4732  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4733  if (!CPT || !CPT->isNothrow())
4734  return false;
4735  }
4736  }
4737  return true;
4738 
4740  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4741  // If __is_pod (type) is true or type is a reference type
4742  // then the trait is true, else if type is a cv class or union
4743  // type (or array thereof) with a trivial destructor
4744  // ([class.dtor]) then the trait is true, else it is
4745  // false.
4746  if (T.isPODType(C) || T->isReferenceType())
4747  return true;
4748 
4749  // Objective-C++ ARC: autorelease types don't require destruction.
4750  if (T->isObjCLifetimeType() &&
4752  return true;
4753 
4754  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4755  return RD->hasTrivialDestructor();
4756  return false;
4757  // TODO: Propagate nothrowness for implicitly declared special members.
4758  case UTT_HasNothrowAssign:
4759  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4760  // If type is const qualified or is a reference type then the
4761  // trait is false. Otherwise if __has_trivial_assign (type)
4762  // is true then the trait is true, else if type is a cv class
4763  // or union type with copy assignment operators that are known
4764  // not to throw an exception then the trait is true, else it is
4765  // false.
4766  if (C.getBaseElementType(T).isConstQualified())
4767  return false;
4768  if (T->isReferenceType())
4769  return false;
4770  if (T.isPODType(C) || T->isObjCLifetimeType())
4771  return true;
4772 
4773  if (const RecordType *RT = T->getAs<RecordType>())
4774  return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4778  return false;
4780  // This trait is implemented by MSVC 2012 and needed to parse the
4781  // standard library headers. Specifically this is used as the logic
4782  // behind std::is_nothrow_move_assignable (20.9.4.3).
4783  if (T.isPODType(C))
4784  return true;
4785 
4786  if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4787  return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4791  return false;
4792  case UTT_HasNothrowCopy:
4793  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4794  // If __has_trivial_copy (type) is true then the trait is true, else
4795  // if type is a cv class or union type with copy constructors that are
4796  // known not to throw an exception then the trait is true, else it is
4797  // false.
4798  if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4799  return true;
4800  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4801  if (RD->hasTrivialCopyConstructor() &&
4802  !RD->hasNonTrivialCopyConstructor())
4803  return true;
4804 
4805  bool FoundConstructor = false;
4806  unsigned FoundTQs;
4807  for (const auto *ND : Self.LookupConstructors(RD)) {
4808  // A template constructor is never a copy constructor.
4809  // FIXME: However, it may actually be selected at the actual overload
4810  // resolution point.
4811  if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4812  continue;
4813  // UsingDecl itself is not a constructor
4814  if (isa<UsingDecl>(ND))
4815  continue;
4816  auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4817  if (Constructor->isCopyConstructor(FoundTQs)) {
4818  FoundConstructor = true;
4819  const FunctionProtoType *CPT
4820  = Constructor->getType()->getAs<FunctionProtoType>();
4821  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4822  if (!CPT)
4823  return false;
4824  // TODO: check whether evaluating default arguments can throw.
4825  // For now, we'll be conservative and assume that they can throw.
4826  if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4827  return false;
4828  }
4829  }
4830 
4831  return FoundConstructor;
4832  }
4833  return false;
4835  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4836  // If __has_trivial_constructor (type) is true then the trait is
4837  // true, else if type is a cv class or union type (or array
4838  // thereof) with a default constructor that is known not to
4839  // throw an exception then the trait is true, else it is false.
4840  if (T.isPODType(C) || T->isObjCLifetimeType())
4841  return true;
4842  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4843  if (RD->hasTrivialDefaultConstructor() &&
4844  !RD->hasNonTrivialDefaultConstructor())
4845  return true;
4846 
4847  bool FoundConstructor = false;
4848  for (const auto *ND : Self.LookupConstructors(RD)) {
4849  // FIXME: In C++0x, a constructor template can be a default constructor.
4850  if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4851  continue;
4852  // UsingDecl itself is not a constructor
4853  if (isa<UsingDecl>(ND))
4854  continue;
4855  auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4856  if (Constructor->isDefaultConstructor()) {
4857  FoundConstructor = true;
4858  const FunctionProtoType *CPT
4859  = Constructor->getType()->getAs<FunctionProtoType>();
4860  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4861  if (!CPT)
4862  return false;
4863  // FIXME: check whether evaluating default arguments can throw.
4864  // For now, we'll be conservative and assume that they can throw.
4865  if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4866  return false;
4867  }
4868  }
4869  return FoundConstructor;
4870  }
4871  return false;
4873  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4874  // If type is a class type with a virtual destructor ([class.dtor])
4875  // then the trait is true, else it is false.
4876  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4877  if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4878  return Destructor->isVirtual();
4879  return false;
4880 
4881  // These type trait expressions are modeled on the specifications for the
4882  // Embarcadero C++0x type trait functions:
4883  // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4884  case UTT_IsCompleteType:
4885  // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4886  // Returns True if and only if T is a complete type at the point of the
4887  // function call.
4888  return !T->isIncompleteType();
4890  return C.hasUniqueObjectRepresentations(T);
4891  }
4892 }
4893 
4894 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4895  QualType RhsT, SourceLocation KeyLoc);
4896 
4899  SourceLocation RParenLoc) {
4900  if (Kind <= UTT_Last)
4901  return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4902 
4903  // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4904  // traits to avoid duplication.
4905  if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4906  return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4907  Args[1]->getType(), RParenLoc);
4908 
4909  switch (Kind) {
4914  // C++11 [meta.unary.prop]:
4915  // is_trivially_constructible is defined as:
4916  //
4917  // is_constructible<T, Args...>::value is true and the variable
4918  // definition for is_constructible, as defined below, is known to call
4919  // no operation that is not trivial.
4920  //
4921  // The predicate condition for a template specialization
4922  // is_constructible<T, Args...> shall be satisfied if and only if the
4923  // following variable definition would be well-formed for some invented
4924  // variable t:
4925  //
4926  // T t(create<Args>()...);
4927  assert(!Args.empty());
4928 
4929  // Precondition: T and all types in the parameter pack Args shall be
4930  // complete types, (possibly cv-qualified) void, or arrays of
4931  // unknown bound.
4932  for (const auto *TSI : Args) {
4933  QualType ArgTy = TSI->getType();
4934  if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4935  continue;
4936 
4937  if (S.RequireCompleteType(KWLoc, ArgTy,
4938  diag::err_incomplete_type_used_in_type_trait_expr))
4939  return false;
4940  }
4941 
4942  // Make sure the first argument is not incomplete nor a function type.
4943  QualType T = Args[0]->getType();
4944  if (T->isIncompleteType() || T->isFunctionType())
4945  return false;
4946 
4947  // Make sure the first argument is not an abstract type.
4948  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4949  if (RD && RD->isAbstract())
4950  return false;
4951 
4952  SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4953  SmallVector<Expr *, 2> ArgExprs;
4954  ArgExprs.reserve(Args.size() - 1);
4955  for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4956  QualType ArgTy = Args[I]->getType();
4957  if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4958  ArgTy = S.Context.getRValueReferenceType(ArgTy);
4959  OpaqueArgExprs.push_back(
4960  OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4961  ArgTy.getNonLValueExprType(S.Context),
4962  Expr::getValueKindForType(ArgTy)));
4963  }
4964  for (Expr &E : OpaqueArgExprs)
4965  ArgExprs.push_back(&E);
4966 
4967  // Perform the initialization in an unevaluated context within a SFINAE
4968  // trap at translation unit scope.
4971  Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4975  RParenLoc));
4976  InitializationSequence Init(S, To, InitKind, ArgExprs);
4977  if (Init.Failed())
4978  return false;
4979 
4980  ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4981  if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4982  return false;
4983 
4984  if (Kind == clang::TT_IsConstructible)
4985  return true;
4986 
4988  if (!T->isReferenceType())
4989  return false;
4990 
4991  return !Init.isDirectReferenceBinding();
4992  }
4993 
4995  return S.canThrow(Result.get()) == CT_Cannot;
4996 
4997  if (Kind == clang::TT_IsTriviallyConstructible) {
4998  // Under Objective-C ARC and Weak, if the destination has non-trivial
4999  // Objective-C lifetime, this is a non-trivial construction.
5001  return false;
5002 
5003  // The initialization succeeded; now make sure there are no non-trivial
5004  // calls.
5005  return !Result.get()->hasNonTrivialCall(S.Context);
5006  }
5007 
5008  llvm_unreachable("unhandled type trait");
5009  return false;
5010  }
5011  default: llvm_unreachable("not a TT");
5012  }
5013 
5014  return false;
5015 }
5016 
5019  SourceLocation RParenLoc) {
5020  QualType ResultType = Context.getLogicalOperationType();
5021 
5023  *this, Kind, KWLoc, Args[0]->getType()))
5024  return ExprError();
5025 
5026  bool Dependent = false;
5027  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5028  if (Args[I]->getType()->isDependentType()) {
5029  Dependent = true;
5030  break;
5031  }
5032  }
5033 
5034  bool Result = false;
5035  if (!Dependent)
5036  Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5037 
5038  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5039  RParenLoc, Result);
5040 }
5041 
5043  ArrayRef<ParsedType> Args,
5044  SourceLocation RParenLoc) {
5045  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5046  ConvertedArgs.reserve(Args.size());
5047 
5048  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5049  TypeSourceInfo *TInfo;
5050  QualType T = GetTypeFromParser(Args[I], &TInfo);
5051  if (!TInfo)
5052  TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5053 
5054  ConvertedArgs.push_back(TInfo);
5055  }
5056 
5057  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5058 }
5059 
5060 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5061  QualType RhsT, SourceLocation KeyLoc) {
5062  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5063  "Cannot evaluate traits of dependent types");
5064 
5065  switch(BTT) {
5066  case BTT_IsBaseOf: {
5067  // C++0x [meta.rel]p2
5068  // Base is a base class of Derived without regard to cv-qualifiers or
5069  // Base and Derived are not unions and name the same class type without
5070  // regard to cv-qualifiers.
5071 
5072  const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5073  const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5074  if (!rhsRecord || !lhsRecord) {
5075  const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5076  const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5077  if (!LHSObjTy || !RHSObjTy)
5078  return false;
5079 
5080  ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5081  ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5082  if (!BaseInterface || !DerivedInterface)
5083  return false;
5084 
5085  if (Self.RequireCompleteType(
5086  KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5087  return false;
5088 
5089  return BaseInterface->isSuperClassOf(DerivedInterface);
5090  }
5091 
5092  assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5093  == (lhsRecord == rhsRecord));
5094 
5095  if (lhsRecord == rhsRecord)
5096  return !lhsRecord->getDecl()->isUnion();
5097 
5098  // C++0x [meta.rel]p2:
5099  // If Base and Derived are class types and are different types
5100  // (ignoring possible cv-qualifiers) then Derived shall be a
5101  // complete type.
5102  if (Self.RequireCompleteType(KeyLoc, RhsT,
5103  diag::err_incomplete_type_used_in_type_trait_expr))
5104  return false;
5105 
5106  return cast<CXXRecordDecl>(rhsRecord->getDecl())
5107  ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5108  }
5109  case BTT_IsSame:
5110  return Self.Context.hasSameType(LhsT, RhsT);
5111  case BTT_TypeCompatible: {
5112  // GCC ignores cv-qualifiers on arrays for this builtin.
5113  Qualifiers LhsQuals, RhsQuals;
5114  QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5115  QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5116  return Self.Context.typesAreCompatible(Lhs, Rhs);
5117  }
5118  case BTT_IsConvertible:
5119  case BTT_IsConvertibleTo: {
5120  // C++0x [meta.rel]p4:
5121  // Given the following function prototype:
5122  //
5123  // template <class T>
5124  // typename add_rvalue_reference<T>::type create();
5125  //
5126  // the predicate condition for a template specialization
5127  // is_convertible<From, To> shall be satisfied if and only if
5128  // the return expression in the following code would be
5129  // well-formed, including any implicit conversions to the return
5130  // type of the function:
5131  //
5132  // To test() {
5133  // return create<From>();
5134  // }
5135  //
5136  // Access checking is performed as if in a context unrelated to To and
5137  // From. Only the validity of the immediate context of the expression
5138  // of the return-statement (including conversions to the return type)
5139  // is considered.
5140  //
5141  // We model the initialization as a copy-initialization of a temporary
5142  // of the appropriate type, which for this expression is identical to the
5143  // return statement (since NRVO doesn't apply).
5144 
5145  // Functions aren't allowed to return function or array types.
5146  if (RhsT->isFunctionType() || RhsT->isArrayType())
5147  return false;
5148 
5149  // A return statement in a void function must have void type.
5150  if (RhsT->isVoidType())
5151  return LhsT->isVoidType();
5152 
5153  // A function definition requires a complete, non-abstract return type.
5154  if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5155  return false;
5156 
5157  // Compute the result of add_rvalue_reference.
5158  if (LhsT->isObjectType() || LhsT->isFunctionType())
5159  LhsT = Self.Context.getRValueReferenceType(LhsT);
5160 
5161  // Build a fake source and destination for initialization.
5163  OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5165  Expr *FromPtr = &From;
5167  SourceLocation()));
5168 
5169  // Perform the initialization in an unevaluated context within a SFINAE
5170  // trap at translation unit scope.
5173  Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5174  Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5175  InitializationSequence Init(Self, To, Kind, FromPtr);
5176  if (Init.Failed())
5177  return false;
5178 
5179  ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5180  return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5181  }
5182 
5183  case BTT_IsAssignable:
5186  // C++11 [meta.unary.prop]p3:
5187  // is_trivially_assignable is defined as:
5188  // is_assignable<T, U>::value is true and the assignment, as defined by
5189  // is_assignable, is known to call no operation that is not trivial
5190  //
5191  // is_assignable is defined as:
5192  // The expression declval<T>() = declval<U>() is well-formed when
5193  // treated as an unevaluated operand (Clause 5).
5194  //
5195  // For both, T and U shall be complete types, (possibly cv-qualified)
5196  // void, or arrays of unknown bound.
5197  if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5198  Self.RequireCompleteType(KeyLoc, LhsT,
5199  diag::err_incomplete_type_used_in_type_trait_expr))
5200  return false;
5201  if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5202  Self.RequireCompleteType(KeyLoc, RhsT,
5203  diag::err_incomplete_type_used_in_type_trait_expr))
5204  return false;
5205 
5206  // cv void is never assignable.
5207  if (LhsT->isVoidType() || RhsT->isVoidType())
5208  return false;
5209 
5210  // Build expressions that emulate the effect of declval<T>() and
5211  // declval<U>().
5212  if (LhsT->isObjectType() || LhsT->isFunctionType())
5213  LhsT = Self.Context.getRValueReferenceType(LhsT);
5214  if (RhsT->isObjectType() || RhsT->isFunctionType())
5215  RhsT = Self.Context.getRValueReferenceType(RhsT);
5216  OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5218  OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5220 
5221  // Attempt the assignment in an unevaluated context within a SFINAE
5222  // trap at translation unit scope.
5225  Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5226  Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5227  ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5228  &Rhs);
5229  if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5230  return false;
5231 
5232  if (BTT == BTT_IsAssignable)
5233  return true;
5234 
5235  if (BTT == BTT_IsNothrowAssignable)
5236  return Self.canThrow(Result.get()) == CT_Cannot;
5237 
5238  if (BTT == BTT_IsTriviallyAssignable) {
5239  // Under Objective-C ARC and Weak, if the destination has non-trivial
5240  // Objective-C lifetime, this is a non-trivial assignment.
5242  return false;
5243 
5244  return !Result.get()->hasNonTrivialCall(Self.Context);
5245  }
5246 
5247  llvm_unreachable("unhandled type trait");
5248  return false;
5249  }
5250  default: llvm_unreachable("not a BTT");
5251  }
5252  llvm_unreachable("Unknown type trait or not implemented");
5253 }
5254 
5256  SourceLocation KWLoc,
5257  ParsedType Ty,
5258  Expr* DimExpr,
5259  SourceLocation RParen) {
5260  TypeSourceInfo *TSInfo;
5261  QualType T = GetTypeFromParser(Ty, &TSInfo);
5262  if (!TSInfo)
5263  TSInfo = Context.getTrivialTypeSourceInfo(T);
5264 
5265  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5266 }
5267 
5268 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5269  QualType T, Expr *DimExpr,
5270  SourceLocation KeyLoc) {
5271  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5272 
5273  switch(ATT) {
5274  case ATT_ArrayRank:
5275  if (T->isArrayType()) {
5276  unsigned Dim = 0;
5277  while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5278  ++Dim;
5279  T = AT->getElementType();
5280  }
5281  return Dim;
5282  }
5283  return 0;
5284 
5285  case ATT_ArrayExtent: {
5286  llvm::APSInt Value;
5287  uint64_t Dim;
5288  if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5289  diag::err_dimension_expr_not_constant_integer,
5290  false).isInvalid())
5291  return 0;
5292  if (Value.isSigned() && Value.isNegative()) {
5293  Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5294  << DimExpr->getSourceRange();
5295  return 0;
5296  }
5297  Dim = Value.getLimitedValue();
5298 
5299  if (T->isArrayType()) {
5300  unsigned D = 0;
5301  bool Matched = false;
5302  while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5303  if (Dim == D) {
5304  Matched = true;
5305  break;
5306  }
5307  ++D;
5308  T = AT->getElementType();
5309  }
5310 
5311  if (Matched && T->isArrayType()) {
5312  if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5313  return CAT->getSize().getLimitedValue();
5314  }
5315  }
5316  return 0;
5317  }
5318  }
5319  llvm_unreachable("Unknown type trait or not implemented");
5320 }
5321 
5323  SourceLocation KWLoc,
5324  TypeSourceInfo *TSInfo,
5325  Expr* DimExpr,
5326  SourceLocation RParen) {
5327  QualType T = TSInfo->getType();
5328 
5329  // FIXME: This should likely be tracked as an APInt to remove any host
5330  // assumptions about the width of size_t on the target.
5331  uint64_t Value = 0;
5332  if (!T->isDependentType())
5333  Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5334 
5335  // While the specification for these traits from the Embarcadero C++
5336  // compiler's documentation says the return type is 'unsigned int', Clang
5337  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5338  // compiler, there is no difference. On several other platforms this is an
5339  // important distinction.
5340  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5341  RParen, Context.getSizeType());
5342 }
5343 
5345  SourceLocation KWLoc,
5346  Expr *Queried,
5347  SourceLocation RParen) {
5348  // If error parsing the expression, ignore.
5349  if (!Queried)
5350  return ExprError();
5351 
5352  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5353 
5354  return Result;
5355 }
5356 
5358  switch (ET) {
5359  case ET_IsLValueExpr: return E->isLValue();
5360  case ET_IsRValueExpr: return E->isRValue();
5361  }
5362  llvm_unreachable("Expression trait not covered by switch");
5363 }
5364