clang  10.0.0svn
SemaExprCXX.cpp
Go to the documentation of this file.
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
15 #include "TreeTransform.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43 
44 /// Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
49  SourceLocation NameLoc,
50  IdentifierInfo &Name) {
51  NestedNameSpecifier *NNS = SS.getScopeRep();
52 
53  // Convert the nested-name-specifier into a type.
54  QualType Type;
55  switch (NNS->getKind()) {
58  Type = QualType(NNS->getAsType(), 0);
59  break;
60 
62  // Strip off the last layer of the nested-name-specifier and build a
63  // typename type for it.
64  assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65  Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66  NNS->getAsIdentifier());
67  break;
68 
73  llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74  }
75 
76  // This reference to the type is located entirely at the location of the
77  // final identifier in the qualified-id.
78  return CreateParsedType(Type,
79  Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81 
83  SourceLocation NameLoc,
84  Scope *S, CXXScopeSpec &SS,
85  bool EnteringContext) {
86  CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87  assert(CurClass && &II == CurClass->getIdentifier() &&
88  "not a constructor name");
89 
90  // When naming a constructor as a member of a dependent context (eg, in a
91  // friend declaration or an inherited constructor declaration), form an
92  // unresolved "typename" type.
93  if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
94  QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95  return ParsedType::make(T);
96  }
97 
98  if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99  return ParsedType();
100 
101  // Find the injected-class-name declaration. Note that we make no attempt to
102  // diagnose cases where the injected-class-name is shadowed: the only
103  // declaration that can validly shadow the injected-class-name is a
104  // non-static data member, and if the class contains both a non-static data
105  // member and a constructor then it is ill-formed (we check that in
106  // CheckCompletedCXXClass).
107  CXXRecordDecl *InjectedClassName = nullptr;
108  for (NamedDecl *ND : CurClass->lookup(&II)) {
109  auto *RD = dyn_cast<CXXRecordDecl>(ND);
110  if (RD && RD->isInjectedClassName()) {
111  InjectedClassName = RD;
112  break;
113  }
114  }
115  if (!InjectedClassName) {
116  if (!CurClass->isInvalidDecl()) {
117  // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118  // properly. Work around it here for now.
120  diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121  }
122  return ParsedType();
123  }
124 
125  QualType T = Context.getTypeDeclType(InjectedClassName);
126  DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127  MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128 
129  return ParsedType::make(T);
130 }
131 
133  IdentifierInfo &II,
134  SourceLocation NameLoc,
135  Scope *S, CXXScopeSpec &SS,
136  ParsedType ObjectTypePtr,
137  bool EnteringContext) {
138  // Determine where to perform name lookup.
139 
140  // FIXME: This area of the standard is very messy, and the current
141  // wording is rather unclear about which scopes we search for the
142  // destructor name; see core issues 399 and 555. Issue 399 in
143  // particular shows where the current description of destructor name
144  // lookup is completely out of line with existing practice, e.g.,
145  // this appears to be ill-formed:
146  //
147  // namespace N {
148  // template <typename T> struct S {
149  // ~S();
150  // };
151  // }
152  //
153  // void f(N::S<int>* s) {
154  // s->N::S<int>::~S();
155  // }
156  //
157  // See also PR6358 and PR6359.
158  // For this reason, we're currently only doing the C++03 version of this
159  // code; the C++0x version has to wait until we get a proper spec.
160  QualType SearchType;
161  DeclContext *LookupCtx = nullptr;
162  bool isDependent = false;
163  bool LookInScope = false;
164 
165  if (SS.isInvalid())
166  return nullptr;
167 
168  // If we have an object type, it's because we are in a
169  // pseudo-destructor-expression or a member access expression, and
170  // we know what type we're looking for.
171  if (ObjectTypePtr)
172  SearchType = GetTypeFromParser(ObjectTypePtr);
173 
174  if (SS.isSet()) {
175  NestedNameSpecifier *NNS = SS.getScopeRep();
176 
177  bool AlreadySearched = false;
178  bool LookAtPrefix = true;
179  // C++11 [basic.lookup.qual]p6:
180  // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181  // the type-names are looked up as types in the scope designated by the
182  // nested-name-specifier. Similarly, in a qualified-id of the form:
183  //
184  // nested-name-specifier[opt] class-name :: ~ class-name
185  //
186  // the second class-name is looked up in the same scope as the first.
187  //
188  // Here, we determine whether the code below is permitted to look at the
189  // prefix of the nested-name-specifier.
190  DeclContext *DC = computeDeclContext(SS, EnteringContext);
191  if (DC && DC->isFileContext()) {
192  AlreadySearched = true;
193  LookupCtx = DC;
194  isDependent = false;
195  } else if (DC && isa<CXXRecordDecl>(DC)) {
196  LookAtPrefix = false;
197  LookInScope = true;
198  }
199 
200  // The second case from the C++03 rules quoted further above.
201  NestedNameSpecifier *Prefix = nullptr;
202  if (AlreadySearched) {
203  // Nothing left to do.
204  } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205  CXXScopeSpec PrefixSS;
206  PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207  LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208  isDependent = isDependentScopeSpecifier(PrefixSS);
209  } else if (ObjectTypePtr) {
210  LookupCtx = computeDeclContext(SearchType);
211  isDependent = SearchType->isDependentType();
212  } else {
213  LookupCtx = computeDeclContext(SS, EnteringContext);
214  isDependent = LookupCtx && LookupCtx->isDependentContext();
215  }
216  } else if (ObjectTypePtr) {
217  // C++ [basic.lookup.classref]p3:
218  // If the unqualified-id is ~type-name, the type-name is looked up
219  // in the context of the entire postfix-expression. If the type T
220  // of the object expression is of a class type C, the type-name is
221  // also looked up in the scope of class C. At least one of the
222  // lookups shall find a name that refers to (possibly
223  // cv-qualified) T.
224  LookupCtx = computeDeclContext(SearchType);
225  isDependent = SearchType->isDependentType();
226  assert((isDependent || !SearchType->isIncompleteType()) &&
227  "Caller should have completed object type");
228 
229  LookInScope = true;
230  } else {
231  // Perform lookup into the current scope (only).
232  LookInScope = true;
233  }
234 
235  TypeDecl *NonMatchingTypeDecl = nullptr;
236  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237  for (unsigned Step = 0; Step != 2; ++Step) {
238  // Look for the name first in the computed lookup context (if we
239  // have one) and, if that fails to find a match, in the scope (if
240  // we're allowed to look there).
241  Found.clear();
242  if (Step == 0 && LookupCtx) {
243  if (RequireCompleteDeclContext(SS, LookupCtx))
244  return nullptr;
245  LookupQualifiedName(Found, LookupCtx);
246  } else if (Step == 1 && LookInScope && S) {
247  LookupName(Found, S);
248  } else {
249  continue;
250  }
251 
252  // FIXME: Should we be suppressing ambiguities here?
253  if (Found.isAmbiguous())
254  return nullptr;
255 
256  if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257  QualType T = Context.getTypeDeclType(Type);
258  MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259 
260  if (SearchType.isNull() || SearchType->isDependentType() ||
261  Context.hasSameUnqualifiedType(T, SearchType)) {
262  // We found our type!
263 
264  return CreateParsedType(T,
265  Context.getTrivialTypeSourceInfo(T, NameLoc));
266  }
267 
268  if (!SearchType.isNull())
269  NonMatchingTypeDecl = Type;
270  }
271 
272  // If the name that we found is a class template name, and it is
273  // the same name as the template name in the last part of the
274  // nested-name-specifier (if present) or the object type, then
275  // this is the destructor for that class.
276  // FIXME: This is a workaround until we get real drafting for core
277  // issue 399, for which there isn't even an obvious direction.
278  if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279  QualType MemberOfType;
280  if (SS.isSet()) {
281  if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282  // Figure out the type of the context, if it has one.
283  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284  MemberOfType = Context.getTypeDeclType(Record);
285  }
286  }
287  if (MemberOfType.isNull())
288  MemberOfType = SearchType;
289 
290  if (MemberOfType.isNull())
291  continue;
292 
293  // We're referring into a class template specialization. If the
294  // class template we found is the same as the template being
295  // specialized, we found what we are looking for.
296  if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
298  = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299  if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300  Template->getCanonicalDecl())
301  return CreateParsedType(
302  MemberOfType,
303  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304  }
305 
306  continue;
307  }
308 
309  // We're referring to an unresolved class template
310  // specialization. Determine whether we class template we found
311  // is the same as the template being specialized or, if we don't
312  // know which template is being specialized, that it at least
313  // has the same name.
314  if (const TemplateSpecializationType *SpecType
315  = MemberOfType->getAs<TemplateSpecializationType>()) {
316  TemplateName SpecName = SpecType->getTemplateName();
317 
318  // The class template we found is the same template being
319  // specialized.
320  if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321  if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322  return CreateParsedType(
323  MemberOfType,
324  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325 
326  continue;
327  }
328 
329  // The class template we found has the same name as the
330  // (dependent) template name being specialized.
331  if (DependentTemplateName *DepTemplate
332  = SpecName.getAsDependentTemplateName()) {
333  if (DepTemplate->isIdentifier() &&
334  DepTemplate->getIdentifier() == Template->getIdentifier())
335  return CreateParsedType(
336  MemberOfType,
337  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338 
339  continue;
340  }
341  }
342  }
343  }
344 
345  if (isDependent) {
346  // We didn't find our type, but that's okay: it's dependent
347  // anyway.
348 
349  // FIXME: What if we have no nested-name-specifier?
350  QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351  SS.getWithLocInContext(Context),
352  II, NameLoc);
353  return ParsedType::make(T);
354  }
355 
356  if (NonMatchingTypeDecl) {
357  QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358  Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359  << T << SearchType;
360  Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361  << T;
362  } else if (ObjectTypePtr)
363  Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364  << &II;
365  else {
366  SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367  diag::err_destructor_class_name);
368  if (S) {
369  const DeclContext *Ctx = S->getEntity();
370  if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371  DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372  Class->getNameAsString());
373  }
374  }
375 
376  return nullptr;
377 }
378 
380  ParsedType ObjectType) {
382  return nullptr;
383 
385  Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386  return nullptr;
387  }
388 
389  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
390  "unexpected type in getDestructorType");
391  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392 
393  // If we know the type of the object, check that the correct destructor
394  // type was named now; we can give better diagnostics this way.
395  QualType SearchType = GetTypeFromParser(ObjectType);
396  if (!SearchType.isNull() && !SearchType->isDependentType() &&
397  !Context.hasSameUnqualifiedType(T, SearchType)) {
398  Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399  << T << SearchType;
400  return nullptr;
401  }
402 
403  return ParsedType::make(T);
404 }
405 
407  const UnqualifiedId &Name) {
409 
410  if (!SS.isValid())
411  return false;
412 
413  switch (SS.getScopeRep()->getKind()) {
417  // Per C++11 [over.literal]p2, literal operators can only be declared at
418  // namespace scope. Therefore, this unqualified-id cannot name anything.
419  // Reject it early, because we have no AST representation for this in the
420  // case where the scope is dependent.
421  Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422  << SS.getScopeRep();
423  return true;
424 
429  return false;
430  }
431 
432  llvm_unreachable("unknown nested name specifier kind");
433 }
434 
435 /// Build a C++ typeid expression with a type operand.
437  SourceLocation TypeidLoc,
438  TypeSourceInfo *Operand,
439  SourceLocation RParenLoc) {
440  // C++ [expr.typeid]p4:
441  // The top-level cv-qualifiers of the lvalue expression or the type-id
442  // that is the operand of typeid are always ignored.
443  // If the type of the type-id is a class type or a reference to a class
444  // type, the class shall be completely-defined.
445  Qualifiers Quals;
446  QualType T
447  = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448  Quals);
449  if (T->getAs<RecordType>() &&
450  RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451  return ExprError();
452 
453  if (T->isVariablyModifiedType())
454  return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455 
456  if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
457  return ExprError();
458 
459  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
460  SourceRange(TypeidLoc, RParenLoc));
461 }
462 
463 /// Build a C++ typeid expression with an expression operand.
465  SourceLocation TypeidLoc,
466  Expr *E,
467  SourceLocation RParenLoc) {
468  bool WasEvaluated = false;
469  if (E && !E->isTypeDependent()) {
470  if (E->getType()->isPlaceholderType()) {
471  ExprResult result = CheckPlaceholderExpr(E);
472  if (result.isInvalid()) return ExprError();
473  E = result.get();
474  }
475 
476  QualType T = E->getType();
477  if (const RecordType *RecordT = T->getAs<RecordType>()) {
478  CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
479  // C++ [expr.typeid]p3:
480  // [...] If the type of the expression is a class type, the class
481  // shall be completely-defined.
482  if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
483  return ExprError();
484 
485  // C++ [expr.typeid]p3:
486  // When typeid is applied to an expression other than an glvalue of a
487  // polymorphic class type [...] [the] expression is an unevaluated
488  // operand. [...]
489  if (RecordD->isPolymorphic() && E->isGLValue()) {
490  // The subexpression is potentially evaluated; switch the context
491  // and recheck the subexpression.
492  ExprResult Result = TransformToPotentiallyEvaluated(E);
493  if (Result.isInvalid()) return ExprError();
494  E = Result.get();
495 
496  // We require a vtable to query the type at run time.
497  MarkVTableUsed(TypeidLoc, RecordD);
498  WasEvaluated = true;
499  }
500  }
501 
502  ExprResult Result = CheckUnevaluatedOperand(E);
503  if (Result.isInvalid())
504  return ExprError();
505  E = Result.get();
506 
507  // C++ [expr.typeid]p4:
508  // [...] If the type of the type-id is a reference to a possibly
509  // cv-qualified type, the result of the typeid expression refers to a
510  // std::type_info object representing the cv-unqualified referenced
511  // type.
512  Qualifiers Quals;
513  QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
514  if (!Context.hasSameType(T, UnqualT)) {
515  T = UnqualT;
516  E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
517  }
518  }
519 
520  if (E->getType()->isVariablyModifiedType())
521  return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
522  << E->getType());
523  else if (!inTemplateInstantiation() &&
524  E->HasSideEffects(Context, WasEvaluated)) {
525  // The expression operand for typeid is in an unevaluated expression
526  // context, so side effects could result in unintended consequences.
527  Diag(E->getExprLoc(), WasEvaluated
528  ? diag::warn_side_effects_typeid
529  : diag::warn_side_effects_unevaluated_context);
530  }
531 
532  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
533  SourceRange(TypeidLoc, RParenLoc));
534 }
535 
536 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
539  bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
540  // typeid is not supported in OpenCL.
541  if (getLangOpts().OpenCLCPlusPlus) {
542  return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
543  << "typeid");
544  }
545 
546  // Find the std::type_info type.
547  if (!getStdNamespace())
548  return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
549 
550  if (!CXXTypeInfoDecl) {
551  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
552  LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
553  LookupQualifiedName(R, getStdNamespace());
554  CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
555  // Microsoft's typeinfo doesn't have type_info in std but in the global
556  // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
557  if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
558  LookupQualifiedName(R, Context.getTranslationUnitDecl());
559  CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
560  }
561  if (!CXXTypeInfoDecl)
562  return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
563  }
564 
565  if (!getLangOpts().RTTI) {
566  return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
567  }
568 
569  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
570 
571  if (isType) {
572  // The operand is a type; handle it as such.
573  TypeSourceInfo *TInfo = nullptr;
574  QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
575  &TInfo);
576  if (T.isNull())
577  return ExprError();
578 
579  if (!TInfo)
580  TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
581 
582  return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
583  }
584 
585  // The operand is an expression.
586  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
587 }
588 
589 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
590 /// a single GUID.
591 static void
594  // Optionally remove one level of pointer, reference or array indirection.
595  const Type *Ty = QT.getTypePtr();
596  if (QT->isPointerType() || QT->isReferenceType())
597  Ty = QT->getPointeeType().getTypePtr();
598  else if (QT->isArrayType())
599  Ty = Ty->getBaseElementTypeUnsafe();
600 
601  const auto *TD = Ty->getAsTagDecl();
602  if (!TD)
603  return;
604 
605  if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
606  UuidAttrs.insert(Uuid);
607  return;
608  }
609 
610  // __uuidof can grab UUIDs from template arguments.
611  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
612  const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
613  for (const TemplateArgument &TA : TAL.asArray()) {
614  const UuidAttr *UuidForTA = nullptr;
615  if (TA.getKind() == TemplateArgument::Type)
616  getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
617  else if (TA.getKind() == TemplateArgument::Declaration)
618  getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
619 
620  if (UuidForTA)
621  UuidAttrs.insert(UuidForTA);
622  }
623  }
624 }
625 
626 /// Build a Microsoft __uuidof expression with a type operand.
628  SourceLocation TypeidLoc,
629  TypeSourceInfo *Operand,
630  SourceLocation RParenLoc) {
631  StringRef UuidStr;
632  if (!Operand->getType()->isDependentType()) {
634  getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
635  if (UuidAttrs.empty())
636  return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
637  if (UuidAttrs.size() > 1)
638  return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
639  UuidStr = UuidAttrs.back()->getGuid();
640  }
641 
642  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
643  SourceRange(TypeidLoc, RParenLoc));
644 }
645 
646 /// Build a Microsoft __uuidof expression with an expression operand.
648  SourceLocation TypeidLoc,
649  Expr *E,
650  SourceLocation RParenLoc) {
651  StringRef UuidStr;
652  if (!E->getType()->isDependentType()) {
654  UuidStr = "00000000-0000-0000-0000-000000000000";
655  } else {
657  getUuidAttrOfType(*this, E->getType(), UuidAttrs);
658  if (UuidAttrs.empty())
659  return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
660  if (UuidAttrs.size() > 1)
661  return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
662  UuidStr = UuidAttrs.back()->getGuid();
663  }
664  }
665 
666  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
667  SourceRange(TypeidLoc, RParenLoc));
668 }
669 
670 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
673  bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
674  // If MSVCGuidDecl has not been cached, do the lookup.
675  if (!MSVCGuidDecl) {
676  IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
677  LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
678  LookupQualifiedName(R, Context.getTranslationUnitDecl());
679  MSVCGuidDecl = R.getAsSingle<RecordDecl>();
680  if (!MSVCGuidDecl)
681  return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
682  }
683 
684  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
685 
686  if (isType) {
687  // The operand is a type; handle it as such.
688  TypeSourceInfo *TInfo = nullptr;
689  QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
690  &TInfo);
691  if (T.isNull())
692  return ExprError();
693 
694  if (!TInfo)
695  TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
696 
697  return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
698  }
699 
700  // The operand is an expression.
701  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
702 }
703 
704 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
707  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
708  "Unknown C++ Boolean value!");
709  return new (Context)
710  CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
711 }
712 
713 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
716  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
717 }
718 
719 /// ActOnCXXThrow - Parse throw expressions.
722  bool IsThrownVarInScope = false;
723  if (Ex) {
724  // C++0x [class.copymove]p31:
725  // When certain criteria are met, an implementation is allowed to omit the
726  // copy/move construction of a class object [...]
727  //
728  // - in a throw-expression, when the operand is the name of a
729  // non-volatile automatic object (other than a function or catch-
730  // clause parameter) whose scope does not extend beyond the end of the
731  // innermost enclosing try-block (if there is one), the copy/move
732  // operation from the operand to the exception object (15.1) can be
733  // omitted by constructing the automatic object directly into the
734  // exception object
735  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
736  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
737  if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
738  for( ; S; S = S->getParent()) {
739  if (S->isDeclScope(Var)) {
740  IsThrownVarInScope = true;
741  break;
742  }
743 
744  if (S->getFlags() &
748  break;
749  }
750  }
751  }
752  }
753 
754  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
755 }
756 
758  bool IsThrownVarInScope) {
759  // Don't report an error if 'throw' is used in system headers.
760  if (!getLangOpts().CXXExceptions &&
761  !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
762  // Delay error emission for the OpenMP device code.
763  targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
764  }
765 
766  // Exceptions aren't allowed in CUDA device code.
767  if (getLangOpts().CUDA)
768  CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
769  << "throw" << CurrentCUDATarget();
770 
771  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
772  Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
773 
774  if (Ex && !Ex->isTypeDependent()) {
775  QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
776  if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
777  return ExprError();
778 
779  // Initialize the exception result. This implicitly weeds out
780  // abstract types or types with inaccessible copy constructors.
781 
782  // C++0x [class.copymove]p31:
783  // When certain criteria are met, an implementation is allowed to omit the
784  // copy/move construction of a class object [...]
785  //
786  // - in a throw-expression, when the operand is the name of a
787  // non-volatile automatic object (other than a function or
788  // catch-clause
789  // parameter) whose scope does not extend beyond the end of the
790  // innermost enclosing try-block (if there is one), the copy/move
791  // operation from the operand to the exception object (15.1) can be
792  // omitted by constructing the automatic object directly into the
793  // exception object
794  const VarDecl *NRVOVariable = nullptr;
795  if (IsThrownVarInScope)
796  NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
797 
799  OpLoc, ExceptionObjectTy,
800  /*NRVO=*/NRVOVariable != nullptr);
801  ExprResult Res = PerformMoveOrCopyInitialization(
802  Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
803  if (Res.isInvalid())
804  return ExprError();
805  Ex = Res.get();
806  }
807 
808  return new (Context)
809  CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
810 }
811 
812 static void
814  llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
815  llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
816  llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
817  bool ParentIsPublic) {
818  for (const CXXBaseSpecifier &BS : RD->bases()) {
819  CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
820  bool NewSubobject;
821  // Virtual bases constitute the same subobject. Non-virtual bases are
822  // always distinct subobjects.
823  if (BS.isVirtual())
824  NewSubobject = VBases.insert(BaseDecl).second;
825  else
826  NewSubobject = true;
827 
828  if (NewSubobject)
829  ++SubobjectsSeen[BaseDecl];
830 
831  // Only add subobjects which have public access throughout the entire chain.
832  bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
833  if (PublicPath)
834  PublicSubobjectsSeen.insert(BaseDecl);
835 
836  // Recurse on to each base subobject.
837  collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
838  PublicPath);
839  }
840 }
841 
844  llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
845  llvm::SmallSet<CXXRecordDecl *, 2> VBases;
846  llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
847  SubobjectsSeen[RD] = 1;
848  PublicSubobjectsSeen.insert(RD);
849  collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
850  /*ParentIsPublic=*/true);
851 
852  for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
853  // Skip ambiguous objects.
854  if (SubobjectsSeen[PublicSubobject] > 1)
855  continue;
856 
857  Objects.push_back(PublicSubobject);
858  }
859 }
860 
861 /// CheckCXXThrowOperand - Validate the operand of a throw.
863  QualType ExceptionObjectTy, Expr *E) {
864  // If the type of the exception would be an incomplete type or a pointer
865  // to an incomplete type other than (cv) void the program is ill-formed.
866  QualType Ty = ExceptionObjectTy;
867  bool isPointer = false;
868  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
869  Ty = Ptr->getPointeeType();
870  isPointer = true;
871  }
872  if (!isPointer || !Ty->isVoidType()) {
873  if (RequireCompleteType(ThrowLoc, Ty,
874  isPointer ? diag::err_throw_incomplete_ptr
875  : diag::err_throw_incomplete,
876  E->getSourceRange()))
877  return true;
878 
879  if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
880  diag::err_throw_abstract_type, E))
881  return true;
882  }
883 
884  // If the exception has class type, we need additional handling.
885  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
886  if (!RD)
887  return false;
888 
889  // If we are throwing a polymorphic class type or pointer thereof,
890  // exception handling will make use of the vtable.
891  MarkVTableUsed(ThrowLoc, RD);
892 
893  // If a pointer is thrown, the referenced object will not be destroyed.
894  if (isPointer)
895  return false;
896 
897  // If the class has a destructor, we must be able to call it.
898  if (!RD->hasIrrelevantDestructor()) {
899  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
900  MarkFunctionReferenced(E->getExprLoc(), Destructor);
901  CheckDestructorAccess(E->getExprLoc(), Destructor,
902  PDiag(diag::err_access_dtor_exception) << Ty);
903  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
904  return true;
905  }
906  }
907 
908  // The MSVC ABI creates a list of all types which can catch the exception
909  // object. This list also references the appropriate copy constructor to call
910  // if the object is caught by value and has a non-trivial copy constructor.
911  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
912  // We are only interested in the public, unambiguous bases contained within
913  // the exception object. Bases which are ambiguous or otherwise
914  // inaccessible are not catchable types.
915  llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
916  getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
917 
918  for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
919  // Attempt to lookup the copy constructor. Various pieces of machinery
920  // will spring into action, like template instantiation, which means this
921  // cannot be a simple walk of the class's decls. Instead, we must perform
922  // lookup and overload resolution.
923  CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
924  if (!CD)
925  continue;
926 
927  // Mark the constructor referenced as it is used by this throw expression.
928  MarkFunctionReferenced(E->getExprLoc(), CD);
929 
930  // Skip this copy constructor if it is trivial, we don't need to record it
931  // in the catchable type data.
932  if (CD->isTrivial())
933  continue;
934 
935  // The copy constructor is non-trivial, create a mapping from this class
936  // type to this constructor.
937  // N.B. The selection of copy constructor is not sensitive to this
938  // particular throw-site. Lookup will be performed at the catch-site to
939  // ensure that the copy constructor is, in fact, accessible (via
940  // friendship or any other means).
941  Context.addCopyConstructorForExceptionObject(Subobject, CD);
942 
943  // We don't keep the instantiated default argument expressions around so
944  // we must rebuild them here.
945  for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
946  if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
947  return true;
948  }
949  }
950  }
951 
952  // Under the Itanium C++ ABI, memory for the exception object is allocated by
953  // the runtime with no ability for the compiler to request additional
954  // alignment. Warn if the exception type requires alignment beyond the minimum
955  // guaranteed by the target C++ runtime.
956  if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
957  CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
958  CharUnits ExnObjAlign = Context.getExnObjectAlignment();
959  if (ExnObjAlign < TypeAlign) {
960  Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
961  Diag(ThrowLoc, diag::note_throw_underaligned_obj)
962  << Ty << (unsigned)TypeAlign.getQuantity()
963  << (unsigned)ExnObjAlign.getQuantity();
964  }
965  }
966 
967  return false;
968 }
969 
971  ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
972  DeclContext *CurSemaContext, ASTContext &ASTCtx) {
973 
974  QualType ClassType = ThisTy->getPointeeType();
975  LambdaScopeInfo *CurLSI = nullptr;
976  DeclContext *CurDC = CurSemaContext;
977 
978  // Iterate through the stack of lambdas starting from the innermost lambda to
979  // the outermost lambda, checking if '*this' is ever captured by copy - since
980  // that could change the cv-qualifiers of the '*this' object.
981  // The object referred to by '*this' starts out with the cv-qualifiers of its
982  // member function. We then start with the innermost lambda and iterate
983  // outward checking to see if any lambda performs a by-copy capture of '*this'
984  // - and if so, any nested lambda must respect the 'constness' of that
985  // capturing lamdbda's call operator.
986  //
987 
988  // Since the FunctionScopeInfo stack is representative of the lexical
989  // nesting of the lambda expressions during initial parsing (and is the best
990  // place for querying information about captures about lambdas that are
991  // partially processed) and perhaps during instantiation of function templates
992  // that contain lambda expressions that need to be transformed BUT not
993  // necessarily during instantiation of a nested generic lambda's function call
994  // operator (which might even be instantiated at the end of the TU) - at which
995  // time the DeclContext tree is mature enough to query capture information
996  // reliably - we use a two pronged approach to walk through all the lexically
997  // enclosing lambda expressions:
998  //
999  // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1000  // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1001  // enclosed by the call-operator of the LSI below it on the stack (while
1002  // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1003  // the stack represents the innermost lambda.
1004  //
1005  // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1006  // represents a lambda's call operator. If it does, we must be instantiating
1007  // a generic lambda's call operator (represented by the Current LSI, and
1008  // should be the only scenario where an inconsistency between the LSI and the
1009  // DeclContext should occur), so climb out the DeclContexts if they
1010  // represent lambdas, while querying the corresponding closure types
1011  // regarding capture information.
1012 
1013  // 1) Climb down the function scope info stack.
1014  for (int I = FunctionScopes.size();
1015  I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1016  (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1017  cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1018  CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1019  CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1020 
1021  if (!CurLSI->isCXXThisCaptured())
1022  continue;
1023 
1024  auto C = CurLSI->getCXXThisCapture();
1025 
1026  if (C.isCopyCapture()) {
1028  if (CurLSI->CallOperator->isConst())
1029  ClassType.addConst();
1030  return ASTCtx.getPointerType(ClassType);
1031  }
1032  }
1033 
1034  // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1035  // happen during instantiation of its nested generic lambda call operator)
1036  if (isLambdaCallOperator(CurDC)) {
1037  assert(CurLSI && "While computing 'this' capture-type for a generic "
1038  "lambda, we must have a corresponding LambdaScopeInfo");
1040  "While computing 'this' capture-type for a generic lambda, when we "
1041  "run out of enclosing LSI's, yet the enclosing DC is a "
1042  "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1043  "lambda call oeprator");
1044  assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1045 
1046  auto IsThisCaptured =
1047  [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1048  IsConst = false;
1049  IsByCopy = false;
1050  for (auto &&C : Closure->captures()) {
1051  if (C.capturesThis()) {
1052  if (C.getCaptureKind() == LCK_StarThis)
1053  IsByCopy = true;
1054  if (Closure->getLambdaCallOperator()->isConst())
1055  IsConst = true;
1056  return true;
1057  }
1058  }
1059  return false;
1060  };
1061 
1062  bool IsByCopyCapture = false;
1063  bool IsConstCapture = false;
1064  CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1065  while (Closure &&
1066  IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1067  if (IsByCopyCapture) {
1069  if (IsConstCapture)
1070  ClassType.addConst();
1071  return ASTCtx.getPointerType(ClassType);
1072  }
1073  Closure = isLambdaCallOperator(Closure->getParent())
1074  ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1075  : nullptr;
1076  }
1077  }
1078  return ASTCtx.getPointerType(ClassType);
1079 }
1080 
1082  DeclContext *DC = getFunctionLevelDeclContext();
1083  QualType ThisTy = CXXThisTypeOverride;
1084 
1085  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1086  if (method && method->isInstance())
1087  ThisTy = method->getThisType();
1088  }
1089 
1090  if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1091  inTemplateInstantiation()) {
1092 
1093  assert(isa<CXXRecordDecl>(DC) &&
1094  "Trying to get 'this' type from static method?");
1095 
1096  // This is a lambda call operator that is being instantiated as a default
1097  // initializer. DC must point to the enclosing class type, so we can recover
1098  // the 'this' type from it.
1099 
1100  QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1101  // There are no cv-qualifiers for 'this' within default initializers,
1102  // per [expr.prim.general]p4.
1103  ThisTy = Context.getPointerType(ClassTy);
1104  }
1105 
1106  // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1107  // might need to be adjusted if the lambda or any of its enclosing lambda's
1108  // captures '*this' by copy.
1109  if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1110  return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1111  CurContext, Context);
1112  return ThisTy;
1113 }
1114 
1116  Decl *ContextDecl,
1117  Qualifiers CXXThisTypeQuals,
1118  bool Enabled)
1119  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1120 {
1121  if (!Enabled || !ContextDecl)
1122  return;
1123 
1124  CXXRecordDecl *Record = nullptr;
1125  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1126  Record = Template->getTemplatedDecl();
1127  else
1128  Record = cast<CXXRecordDecl>(ContextDecl);
1129 
1130  QualType T = S.Context.getRecordType(Record);
1131  T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1132 
1134 
1135  this->Enabled = true;
1136 }
1137 
1138 
1140  if (Enabled) {
1141  S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1142  }
1143 }
1144 
1145 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1146  bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1147  const bool ByCopy) {
1148  // We don't need to capture this in an unevaluated context.
1149  if (isUnevaluatedContext() && !Explicit)
1150  return true;
1151 
1152  assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1153 
1154  const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1155  ? *FunctionScopeIndexToStopAt
1156  : FunctionScopes.size() - 1;
1157 
1158  // Check that we can capture the *enclosing object* (referred to by '*this')
1159  // by the capturing-entity/closure (lambda/block/etc) at
1160  // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1161 
1162  // Note: The *enclosing object* can only be captured by-value by a
1163  // closure that is a lambda, using the explicit notation:
1164  // [*this] { ... }.
1165  // Every other capture of the *enclosing object* results in its by-reference
1166  // capture.
1167 
1168  // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1169  // stack), we can capture the *enclosing object* only if:
1170  // - 'L' has an explicit byref or byval capture of the *enclosing object*
1171  // - or, 'L' has an implicit capture.
1172  // AND
1173  // -- there is no enclosing closure
1174  // -- or, there is some enclosing closure 'E' that has already captured the
1175  // *enclosing object*, and every intervening closure (if any) between 'E'
1176  // and 'L' can implicitly capture the *enclosing object*.
1177  // -- or, every enclosing closure can implicitly capture the
1178  // *enclosing object*
1179 
1180 
1181  unsigned NumCapturingClosures = 0;
1182  for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1183  if (CapturingScopeInfo *CSI =
1184  dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1185  if (CSI->CXXThisCaptureIndex != 0) {
1186  // 'this' is already being captured; there isn't anything more to do.
1187  CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1188  break;
1189  }
1190  LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1192  // This context can't implicitly capture 'this'; fail out.
1193  if (BuildAndDiagnose)
1194  Diag(Loc, diag::err_this_capture)
1195  << (Explicit && idx == MaxFunctionScopesIndex);
1196  return true;
1197  }
1198  if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1199  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1200  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1201  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1202  (Explicit && idx == MaxFunctionScopesIndex)) {
1203  // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1204  // iteration through can be an explicit capture, all enclosing closures,
1205  // if any, must perform implicit captures.
1206 
1207  // This closure can capture 'this'; continue looking upwards.
1208  NumCapturingClosures++;
1209  continue;
1210  }
1211  // This context can't implicitly capture 'this'; fail out.
1212  if (BuildAndDiagnose)
1213  Diag(Loc, diag::err_this_capture)
1214  << (Explicit && idx == MaxFunctionScopesIndex);
1215  return true;
1216  }
1217  break;
1218  }
1219  if (!BuildAndDiagnose) return false;
1220 
1221  // If we got here, then the closure at MaxFunctionScopesIndex on the
1222  // FunctionScopes stack, can capture the *enclosing object*, so capture it
1223  // (including implicit by-reference captures in any enclosing closures).
1224 
1225  // In the loop below, respect the ByCopy flag only for the closure requesting
1226  // the capture (i.e. first iteration through the loop below). Ignore it for
1227  // all enclosing closure's up to NumCapturingClosures (since they must be
1228  // implicitly capturing the *enclosing object* by reference (see loop
1229  // above)).
1230  assert((!ByCopy ||
1231  dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1232  "Only a lambda can capture the enclosing object (referred to by "
1233  "*this) by copy");
1234  QualType ThisTy = getCurrentThisType();
1235  for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1236  --idx, --NumCapturingClosures) {
1237  CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1238 
1239  // The type of the corresponding data member (not a 'this' pointer if 'by
1240  // copy').
1241  QualType CaptureType = ThisTy;
1242  if (ByCopy) {
1243  // If we are capturing the object referred to by '*this' by copy, ignore
1244  // any cv qualifiers inherited from the type of the member function for
1245  // the type of the closure-type's corresponding data member and any use
1246  // of 'this'.
1247  CaptureType = ThisTy->getPointeeType();
1249  }
1250 
1251  bool isNested = NumCapturingClosures > 1;
1252  CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1253  }
1254  return false;
1255 }
1256 
1258  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1259  /// is a non-lvalue expression whose value is the address of the object for
1260  /// which the function is called.
1261 
1262  QualType ThisTy = getCurrentThisType();
1263  if (ThisTy.isNull())
1264  return Diag(Loc, diag::err_invalid_this_use);
1265  return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1266 }
1267 
1269  bool IsImplicit) {
1270  auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1272  return This;
1273 }
1274 
1277 }
1278 
1280  // If we're outside the body of a member function, then we'll have a specified
1281  // type for 'this'.
1283  return false;
1284 
1285  // Determine whether we're looking into a class that's currently being
1286  // defined.
1287  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1288  return Class && Class->isBeingDefined();
1289 }
1290 
1291 /// Parse construction of a specified type.
1292 /// Can be interpreted either as function-style casting ("int(x)")
1293 /// or class type construction ("ClassType(x,y,z)")
1294 /// or creation of a value-initialized type ("int()").
1295 ExprResult
1297  SourceLocation LParenOrBraceLoc,
1298  MultiExprArg exprs,
1299  SourceLocation RParenOrBraceLoc,
1300  bool ListInitialization) {
1301  if (!TypeRep)
1302  return ExprError();
1303 
1304  TypeSourceInfo *TInfo;
1305  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1306  if (!TInfo)
1308 
1309  auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1310  RParenOrBraceLoc, ListInitialization);
1311  // Avoid creating a non-type-dependent expression that contains typos.
1312  // Non-type-dependent expressions are liable to be discarded without
1313  // checking for embedded typos.
1314  if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1315  !Result.get()->isTypeDependent())
1317  return Result;
1318 }
1319 
1320 ExprResult
1322  SourceLocation LParenOrBraceLoc,
1323  MultiExprArg Exprs,
1324  SourceLocation RParenOrBraceLoc,
1325  bool ListInitialization) {
1326  QualType Ty = TInfo->getType();
1327  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1328 
1330  // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1331  // directly. We work around this by dropping the locations of the braces.
1332  SourceRange Locs = ListInitialization
1333  ? SourceRange()
1334  : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1335  return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1336  Exprs, Locs.getEnd());
1337  }
1338 
1339  assert((!ListInitialization ||
1340  (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1341  "List initialization must have initializer list as expression.");
1342  SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1343 
1346  Exprs.size()
1347  ? ListInitialization
1349  TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1350  : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1351  RParenOrBraceLoc)
1352  : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1353  RParenOrBraceLoc);
1354 
1355  // C++1z [expr.type.conv]p1:
1356  // If the type is a placeholder for a deduced class type, [...perform class
1357  // template argument deduction...]
1358  DeducedType *Deduced = Ty->getContainedDeducedType();
1359  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1361  Kind, Exprs);
1362  if (Ty.isNull())
1363  return ExprError();
1364  Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1365  }
1366 
1367  // C++ [expr.type.conv]p1:
1368  // If the expression list is a parenthesized single expression, the type
1369  // conversion expression is equivalent (in definedness, and if defined in
1370  // meaning) to the corresponding cast expression.
1371  if (Exprs.size() == 1 && !ListInitialization &&
1372  !isa<InitListExpr>(Exprs[0])) {
1373  Expr *Arg = Exprs[0];
1374  return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1375  RParenOrBraceLoc);
1376  }
1377 
1378  // For an expression of the form T(), T shall not be an array type.
1379  QualType ElemTy = Ty;
1380  if (Ty->isArrayType()) {
1381  if (!ListInitialization)
1382  return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1383  << FullRange);
1384  ElemTy = Context.getBaseElementType(Ty);
1385  }
1386 
1387  // There doesn't seem to be an explicit rule against this but sanity demands
1388  // we only construct objects with object types.
1389  if (Ty->isFunctionType())
1390  return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1391  << Ty << FullRange);
1392 
1393  // C++17 [expr.type.conv]p2:
1394  // If the type is cv void and the initializer is (), the expression is a
1395  // prvalue of the specified type that performs no initialization.
1396  if (!Ty->isVoidType() &&
1397  RequireCompleteType(TyBeginLoc, ElemTy,
1398  diag::err_invalid_incomplete_type_use, FullRange))
1399  return ExprError();
1400 
1401  // Otherwise, the expression is a prvalue of the specified type whose
1402  // result object is direct-initialized (11.6) with the initializer.
1403  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1404  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1405 
1406  if (Result.isInvalid())
1407  return Result;
1408 
1409  Expr *Inner = Result.get();
1410  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1411  Inner = BTE->getSubExpr();
1412  if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1413  !isa<CXXScalarValueInitExpr>(Inner)) {
1414  // If we created a CXXTemporaryObjectExpr, that node also represents the
1415  // functional cast. Otherwise, create an explicit cast to represent
1416  // the syntactic form of a functional-style cast that was used here.
1417  //
1418  // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1419  // would give a more consistent AST representation than using a
1420  // CXXTemporaryObjectExpr. It's also weird that the functional cast
1421  // is sometimes handled by initialization and sometimes not.
1422  QualType ResultType = Result.get()->getType();
1423  SourceRange Locs = ListInitialization
1424  ? SourceRange()
1425  : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1427  Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1428  Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1429  }
1430 
1431  return Result;
1432 }
1433 
1435  // [CUDA] Ignore this function, if we can't call it.
1436  const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1437  if (getLangOpts().CUDA &&
1438  IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1439  return false;
1440 
1442  bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1443 
1444  if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1445  return Result;
1446 
1447  // In case of CUDA, return true if none of the 1-argument deallocator
1448  // functions are actually callable.
1449  return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1450  assert(FD->getNumParams() == 1 &&
1451  "Only single-operand functions should be in PreventedBy");
1452  return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1453  });
1454 }
1455 
1456 /// Determine whether the given function is a non-placement
1457 /// deallocation function.
1459  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1460  return S.isUsualDeallocationFunction(Method);
1461 
1462  if (FD->getOverloadedOperator() != OO_Delete &&
1463  FD->getOverloadedOperator() != OO_Array_Delete)
1464  return false;
1465 
1466  unsigned UsualParams = 1;
1467 
1468  if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1470  FD->getParamDecl(UsualParams)->getType(),
1471  S.Context.getSizeType()))
1472  ++UsualParams;
1473 
1474  if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1476  FD->getParamDecl(UsualParams)->getType(),
1478  ++UsualParams;
1479 
1480  return UsualParams == FD->getNumParams();
1481 }
1482 
1483 namespace {
1484  struct UsualDeallocFnInfo {
1485  UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1486  UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1487  : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1488  Destroying(false), HasSizeT(false), HasAlignValT(false),
1489  CUDAPref(Sema::CFP_Native) {
1490  // A function template declaration is never a usual deallocation function.
1491  if (!FD)
1492  return;
1493  unsigned NumBaseParams = 1;
1494  if (FD->isDestroyingOperatorDelete()) {
1495  Destroying = true;
1496  ++NumBaseParams;
1497  }
1498 
1499  if (NumBaseParams < FD->getNumParams() &&
1501  FD->getParamDecl(NumBaseParams)->getType(),
1502  S.Context.getSizeType())) {
1503  ++NumBaseParams;
1504  HasSizeT = true;
1505  }
1506 
1507  if (NumBaseParams < FD->getNumParams() &&
1508  FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1509  ++NumBaseParams;
1510  HasAlignValT = true;
1511  }
1512 
1513  // In CUDA, determine how much we'd like / dislike to call this.
1514  if (S.getLangOpts().CUDA)
1515  if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1516  CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1517  }
1518 
1519  explicit operator bool() const { return FD; }
1520 
1521  bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1522  bool WantAlign) const {
1523  // C++ P0722:
1524  // A destroying operator delete is preferred over a non-destroying
1525  // operator delete.
1526  if (Destroying != Other.Destroying)
1527  return Destroying;
1528 
1529  // C++17 [expr.delete]p10:
1530  // If the type has new-extended alignment, a function with a parameter
1531  // of type std::align_val_t is preferred; otherwise a function without
1532  // such a parameter is preferred
1533  if (HasAlignValT != Other.HasAlignValT)
1534  return HasAlignValT == WantAlign;
1535 
1536  if (HasSizeT != Other.HasSizeT)
1537  return HasSizeT == WantSize;
1538 
1539  // Use CUDA call preference as a tiebreaker.
1540  return CUDAPref > Other.CUDAPref;
1541  }
1542 
1543  DeclAccessPair Found;
1544  FunctionDecl *FD;
1545  bool Destroying, HasSizeT, HasAlignValT;
1547  };
1548 }
1549 
1550 /// Determine whether a type has new-extended alignment. This may be called when
1551 /// the type is incomplete (for a delete-expression with an incomplete pointee
1552 /// type), in which case it will conservatively return false if the alignment is
1553 /// not known.
1554 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1555  return S.getLangOpts().AlignedAllocation &&
1556  S.getASTContext().getTypeAlignIfKnown(AllocType) >
1558 }
1559 
1560 /// Select the correct "usual" deallocation function to use from a selection of
1561 /// deallocation functions (either global or class-scope).
1562 static UsualDeallocFnInfo resolveDeallocationOverload(
1563  Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1564  llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1565  UsualDeallocFnInfo Best;
1566 
1567  for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1568  UsualDeallocFnInfo Info(S, I.getPair());
1569  if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1570  Info.CUDAPref == Sema::CFP_Never)
1571  continue;
1572 
1573  if (!Best) {
1574  Best = Info;
1575  if (BestFns)
1576  BestFns->push_back(Info);
1577  continue;
1578  }
1579 
1580  if (Best.isBetterThan(Info, WantSize, WantAlign))
1581  continue;
1582 
1583  // If more than one preferred function is found, all non-preferred
1584  // functions are eliminated from further consideration.
1585  if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1586  BestFns->clear();
1587 
1588  Best = Info;
1589  if (BestFns)
1590  BestFns->push_back(Info);
1591  }
1592 
1593  return Best;
1594 }
1595 
1596 /// Determine whether a given type is a class for which 'delete[]' would call
1597 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1598 /// we need to store the array size (even if the type is
1599 /// trivially-destructible).
1601  QualType allocType) {
1602  const RecordType *record =
1603  allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1604  if (!record) return false;
1605 
1606  // Try to find an operator delete[] in class scope.
1607 
1608  DeclarationName deleteName =
1609  S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1610  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1611  S.LookupQualifiedName(ops, record->getDecl());
1612 
1613  // We're just doing this for information.
1614  ops.suppressDiagnostics();
1615 
1616  // Very likely: there's no operator delete[].
1617  if (ops.empty()) return false;
1618 
1619  // If it's ambiguous, it should be illegal to call operator delete[]
1620  // on this thing, so it doesn't matter if we allocate extra space or not.
1621  if (ops.isAmbiguous()) return false;
1622 
1623  // C++17 [expr.delete]p10:
1624  // If the deallocation functions have class scope, the one without a
1625  // parameter of type std::size_t is selected.
1626  auto Best = resolveDeallocationOverload(
1627  S, ops, /*WantSize*/false,
1628  /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1629  return Best && Best.HasSizeT;
1630 }
1631 
1632 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1633 ///
1634 /// E.g.:
1635 /// @code new (memory) int[size][4] @endcode
1636 /// or
1637 /// @code ::new Foo(23, "hello") @endcode
1638 ///
1639 /// \param StartLoc The first location of the expression.
1640 /// \param UseGlobal True if 'new' was prefixed with '::'.
1641 /// \param PlacementLParen Opening paren of the placement arguments.
1642 /// \param PlacementArgs Placement new arguments.
1643 /// \param PlacementRParen Closing paren of the placement arguments.
1644 /// \param TypeIdParens If the type is in parens, the source range.
1645 /// \param D The type to be allocated, as well as array dimensions.
1646 /// \param Initializer The initializing expression or initializer-list, or null
1647 /// if there is none.
1648 ExprResult
1649 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1650  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1651  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1652  Declarator &D, Expr *Initializer) {
1653  Optional<Expr *> ArraySize;
1654  // If the specified type is an array, unwrap it and save the expression.
1655  if (D.getNumTypeObjects() > 0 &&
1657  DeclaratorChunk &Chunk = D.getTypeObject(0);
1658  if (D.getDeclSpec().hasAutoTypeSpec())
1659  return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1660  << D.getSourceRange());
1661  if (Chunk.Arr.hasStatic)
1662  return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1663  << D.getSourceRange());
1664  if (!Chunk.Arr.NumElts && !Initializer)
1665  return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1666  << D.getSourceRange());
1667 
1668  ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1669  D.DropFirstTypeObject();
1670  }
1671 
1672  // Every dimension shall be of constant size.
1673  if (ArraySize) {
1674  for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1676  break;
1677 
1679  if (Expr *NumElts = (Expr *)Array.NumElts) {
1680  if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1681  if (getLangOpts().CPlusPlus14) {
1682  // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1683  // shall be a converted constant expression (5.19) of type std::size_t
1684  // and shall evaluate to a strictly positive value.
1685  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1686  assert(IntWidth && "Builtin type of size 0?");
1687  llvm::APSInt Value(IntWidth);
1688  Array.NumElts
1690  CCEK_NewExpr)
1691  .get();
1692  } else {
1693  Array.NumElts
1694  = VerifyIntegerConstantExpression(NumElts, nullptr,
1695  diag::err_new_array_nonconst)
1696  .get();
1697  }
1698  if (!Array.NumElts)
1699  return ExprError();
1700  }
1701  }
1702  }
1703  }
1704 
1705  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1706  QualType AllocType = TInfo->getType();
1707  if (D.isInvalidType())
1708  return ExprError();
1709 
1710  SourceRange DirectInitRange;
1711  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1712  DirectInitRange = List->getSourceRange();
1713 
1714  return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1715  PlacementLParen, PlacementArgs, PlacementRParen,
1716  TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1717  Initializer);
1718 }
1719 
1721  Expr *Init) {
1722  if (!Init)
1723  return true;
1724  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1725  return PLE->getNumExprs() == 0;
1726  if (isa<ImplicitValueInitExpr>(Init))
1727  return true;
1728  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1729  return !CCE->isListInitialization() &&
1730  CCE->getConstructor()->isDefaultConstructor();
1731  else if (Style == CXXNewExpr::ListInit) {
1732  assert(isa<InitListExpr>(Init) &&
1733  "Shouldn't create list CXXConstructExprs for arrays.");
1734  return true;
1735  }
1736  return false;
1737 }
1738 
1739 bool
1741  if (!getLangOpts().AlignedAllocationUnavailable)
1742  return false;
1743  if (FD.isDefined())
1744  return false;
1745  bool IsAligned = false;
1746  if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1747  return true;
1748  return false;
1749 }
1750 
1751 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1752 // implemented in the standard library is selected.
1754  SourceLocation Loc) {
1756  const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1757  StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1758  getASTContext().getTargetInfo().getPlatformName());
1759 
1761  bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1762  Diag(Loc, diag::err_aligned_allocation_unavailable)
1763  << IsDelete << FD.getType().getAsString() << OSName
1764  << alignedAllocMinVersion(T.getOS()).getAsString();
1765  Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1766  }
1767 }
1768 
1769 ExprResult
1770 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1771  SourceLocation PlacementLParen,
1772  MultiExprArg PlacementArgs,
1773  SourceLocation PlacementRParen,
1774  SourceRange TypeIdParens,
1775  QualType AllocType,
1776  TypeSourceInfo *AllocTypeInfo,
1777  Optional<Expr *> ArraySize,
1778  SourceRange DirectInitRange,
1779  Expr *Initializer) {
1780  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1781  SourceLocation StartLoc = Range.getBegin();
1782 
1784  if (DirectInitRange.isValid()) {
1785  assert(Initializer && "Have parens but no initializer.");
1786  initStyle = CXXNewExpr::CallInit;
1787  } else if (Initializer && isa<InitListExpr>(Initializer))
1788  initStyle = CXXNewExpr::ListInit;
1789  else {
1790  assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1791  isa<CXXConstructExpr>(Initializer)) &&
1792  "Initializer expression that cannot have been implicitly created.");
1793  initStyle = CXXNewExpr::NoInit;
1794  }
1795 
1796  Expr **Inits = &Initializer;
1797  unsigned NumInits = Initializer ? 1 : 0;
1798  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1799  assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1800  Inits = List->getExprs();
1801  NumInits = List->getNumExprs();
1802  }
1803 
1804  // C++11 [expr.new]p15:
1805  // A new-expression that creates an object of type T initializes that
1806  // object as follows:
1808  // - If the new-initializer is omitted, the object is default-
1809  // initialized (8.5); if no initialization is performed,
1810  // the object has indeterminate value
1811  = initStyle == CXXNewExpr::NoInit
1813  // - Otherwise, the new-initializer is interpreted according to
1814  // the
1815  // initialization rules of 8.5 for direct-initialization.
1816  : initStyle == CXXNewExpr::ListInit
1818  TypeRange.getBegin(), Initializer->getBeginLoc(),
1819  Initializer->getEndLoc())
1821  DirectInitRange.getBegin(),
1822  DirectInitRange.getEnd());
1823 
1824  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1825  auto *Deduced = AllocType->getContainedDeducedType();
1826  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1827  if (ArraySize)
1828  return ExprError(
1829  Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1830  diag::err_deduced_class_template_compound_type)
1831  << /*array*/ 2
1832  << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1833 
1834  InitializedEntity Entity
1835  = InitializedEntity::InitializeNew(StartLoc, AllocType);
1837  AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1838  if (AllocType.isNull())
1839  return ExprError();
1840  } else if (Deduced) {
1841  bool Braced = (initStyle == CXXNewExpr::ListInit);
1842  if (NumInits == 1) {
1843  if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1844  Inits = p->getInits();
1845  NumInits = p->getNumInits();
1846  Braced = true;
1847  }
1848  }
1849 
1850  if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1851  return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1852  << AllocType << TypeRange);
1853  if (NumInits > 1) {
1854  Expr *FirstBad = Inits[1];
1855  return ExprError(Diag(FirstBad->getBeginLoc(),
1856  diag::err_auto_new_ctor_multiple_expressions)
1857  << AllocType << TypeRange);
1858  }
1859  if (Braced && !getLangOpts().CPlusPlus17)
1860  Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1861  << AllocType << TypeRange;
1862  Expr *Deduce = Inits[0];
1864  if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1865  return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1866  << AllocType << Deduce->getType()
1867  << TypeRange << Deduce->getSourceRange());
1868  if (DeducedType.isNull())
1869  return ExprError();
1870  AllocType = DeducedType;
1871  }
1872 
1873  // Per C++0x [expr.new]p5, the type being constructed may be a
1874  // typedef of an array type.
1875  if (!ArraySize) {
1876  if (const ConstantArrayType *Array
1877  = Context.getAsConstantArrayType(AllocType)) {
1878  ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1879  Context.getSizeType(),
1880  TypeRange.getEnd());
1881  AllocType = Array->getElementType();
1882  }
1883  }
1884 
1885  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1886  return ExprError();
1887 
1888  // In ARC, infer 'retaining' for the allocated
1889  if (getLangOpts().ObjCAutoRefCount &&
1890  AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1891  AllocType->isObjCLifetimeType()) {
1892  AllocType = Context.getLifetimeQualifiedType(AllocType,
1893  AllocType->getObjCARCImplicitLifetime());
1894  }
1895 
1896  QualType ResultType = Context.getPointerType(AllocType);
1897 
1898  if (ArraySize && *ArraySize &&
1899  (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
1900  ExprResult result = CheckPlaceholderExpr(*ArraySize);
1901  if (result.isInvalid()) return ExprError();
1902  ArraySize = result.get();
1903  }
1904  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1905  // integral or enumeration type with a non-negative value."
1906  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1907  // enumeration type, or a class type for which a single non-explicit
1908  // conversion function to integral or unscoped enumeration type exists.
1909  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1910  // std::size_t.
1911  llvm::Optional<uint64_t> KnownArraySize;
1912  if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
1913  ExprResult ConvertedSize;
1914  if (getLangOpts().CPlusPlus14) {
1915  assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1916 
1917  ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
1918  AA_Converting);
1919 
1920  if (!ConvertedSize.isInvalid() &&
1921  (*ArraySize)->getType()->getAs<RecordType>())
1922  // Diagnose the compatibility of this conversion.
1923  Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1924  << (*ArraySize)->getType() << 0 << "'size_t'";
1925  } else {
1926  class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1927  protected:
1928  Expr *ArraySize;
1929 
1930  public:
1931  SizeConvertDiagnoser(Expr *ArraySize)
1932  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1933  ArraySize(ArraySize) {}
1934 
1935  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1936  QualType T) override {
1937  return S.Diag(Loc, diag::err_array_size_not_integral)
1938  << S.getLangOpts().CPlusPlus11 << T;
1939  }
1940 
1941  SemaDiagnosticBuilder diagnoseIncomplete(
1942  Sema &S, SourceLocation Loc, QualType T) override {
1943  return S.Diag(Loc, diag::err_array_size_incomplete_type)
1944  << T << ArraySize->getSourceRange();
1945  }
1946 
1947  SemaDiagnosticBuilder diagnoseExplicitConv(
1948  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1949  return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1950  }
1951 
1952  SemaDiagnosticBuilder noteExplicitConv(
1953  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1954  return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1955  << ConvTy->isEnumeralType() << ConvTy;
1956  }
1957 
1958  SemaDiagnosticBuilder diagnoseAmbiguous(
1959  Sema &S, SourceLocation Loc, QualType T) override {
1960  return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1961  }
1962 
1963  SemaDiagnosticBuilder noteAmbiguous(
1964  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1965  return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1966  << ConvTy->isEnumeralType() << ConvTy;
1967  }
1968 
1969  SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1970  QualType T,
1971  QualType ConvTy) override {
1972  return S.Diag(Loc,
1973  S.getLangOpts().CPlusPlus11
1974  ? diag::warn_cxx98_compat_array_size_conversion
1975  : diag::ext_array_size_conversion)
1976  << T << ConvTy->isEnumeralType() << ConvTy;
1977  }
1978  } SizeDiagnoser(*ArraySize);
1979 
1980  ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
1981  SizeDiagnoser);
1982  }
1983  if (ConvertedSize.isInvalid())
1984  return ExprError();
1985 
1986  ArraySize = ConvertedSize.get();
1987  QualType SizeType = (*ArraySize)->getType();
1988 
1989  if (!SizeType->isIntegralOrUnscopedEnumerationType())
1990  return ExprError();
1991 
1992  // C++98 [expr.new]p7:
1993  // The expression in a direct-new-declarator shall have integral type
1994  // with a non-negative value.
1995  //
1996  // Let's see if this is a constant < 0. If so, we reject it out of hand,
1997  // per CWG1464. Otherwise, if it's not a constant, we must have an
1998  // unparenthesized array type.
1999  if (!(*ArraySize)->isValueDependent()) {
2001  // We've already performed any required implicit conversion to integer or
2002  // unscoped enumeration type.
2003  // FIXME: Per CWG1464, we are required to check the value prior to
2004  // converting to size_t. This will never find a negative array size in
2005  // C++14 onwards, because Value is always unsigned here!
2006  if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) {
2007  if (Value.isSigned() && Value.isNegative()) {
2008  return ExprError(Diag((*ArraySize)->getBeginLoc(),
2009  diag::err_typecheck_negative_array_size)
2010  << (*ArraySize)->getSourceRange());
2011  }
2012 
2013  if (!AllocType->isDependentType()) {
2014  unsigned ActiveSizeBits =
2016  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2017  return ExprError(
2018  Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2019  << Value.toString(10) << (*ArraySize)->getSourceRange());
2020  }
2021 
2022  KnownArraySize = Value.getZExtValue();
2023  } else if (TypeIdParens.isValid()) {
2024  // Can't have dynamic array size when the type-id is in parentheses.
2025  Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2026  << (*ArraySize)->getSourceRange()
2027  << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2028  << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2029 
2030  TypeIdParens = SourceRange();
2031  }
2032  }
2033 
2034  // Note that we do *not* convert the argument in any way. It can
2035  // be signed, larger than size_t, whatever.
2036  }
2037 
2038  FunctionDecl *OperatorNew = nullptr;
2039  FunctionDecl *OperatorDelete = nullptr;
2040  unsigned Alignment =
2041  AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2042  unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2043  bool PassAlignment = getLangOpts().AlignedAllocation &&
2044  Alignment > NewAlignment;
2045 
2047  if (!AllocType->isDependentType() &&
2048  !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2050  StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2051  AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2052  OperatorNew, OperatorDelete))
2053  return ExprError();
2054 
2055  // If this is an array allocation, compute whether the usual array
2056  // deallocation function for the type has a size_t parameter.
2057  bool UsualArrayDeleteWantsSize = false;
2058  if (ArraySize && !AllocType->isDependentType())
2059  UsualArrayDeleteWantsSize =
2060  doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2061 
2062  SmallVector<Expr *, 8> AllPlaceArgs;
2063  if (OperatorNew) {
2064  const FunctionProtoType *Proto =
2065  OperatorNew->getType()->getAs<FunctionProtoType>();
2066  VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2068 
2069  // We've already converted the placement args, just fill in any default
2070  // arguments. Skip the first parameter because we don't have a corresponding
2071  // argument. Skip the second parameter too if we're passing in the
2072  // alignment; we've already filled it in.
2073  if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2074  PassAlignment ? 2 : 1, PlacementArgs,
2075  AllPlaceArgs, CallType))
2076  return ExprError();
2077 
2078  if (!AllPlaceArgs.empty())
2079  PlacementArgs = AllPlaceArgs;
2080 
2081  // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2082  DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2083 
2084  // FIXME: Missing call to CheckFunctionCall or equivalent
2085 
2086  // Warn if the type is over-aligned and is being allocated by (unaligned)
2087  // global operator new.
2088  if (PlacementArgs.empty() && !PassAlignment &&
2089  (OperatorNew->isImplicit() ||
2090  (OperatorNew->getBeginLoc().isValid() &&
2091  getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2092  if (Alignment > NewAlignment)
2093  Diag(StartLoc, diag::warn_overaligned_type)
2094  << AllocType
2095  << unsigned(Alignment / Context.getCharWidth())
2096  << unsigned(NewAlignment / Context.getCharWidth());
2097  }
2098  }
2099 
2100  // Array 'new' can't have any initializers except empty parentheses.
2101  // Initializer lists are also allowed, in C++11. Rely on the parser for the
2102  // dialect distinction.
2103  if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2104  SourceRange InitRange(Inits[0]->getBeginLoc(),
2105  Inits[NumInits - 1]->getEndLoc());
2106  Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2107  return ExprError();
2108  }
2109 
2110  // If we can perform the initialization, and we've not already done so,
2111  // do it now.
2112  if (!AllocType->isDependentType() &&
2114  llvm::makeArrayRef(Inits, NumInits))) {
2115  // The type we initialize is the complete type, including the array bound.
2116  QualType InitType;
2117  if (KnownArraySize)
2118  InitType = Context.getConstantArrayType(
2119  AllocType,
2121  *KnownArraySize),
2122  *ArraySize, ArrayType::Normal, 0);
2123  else if (ArraySize)
2124  InitType =
2125  Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2126  else
2127  InitType = AllocType;
2128 
2129  InitializedEntity Entity
2130  = InitializedEntity::InitializeNew(StartLoc, InitType);
2131  InitializationSequence InitSeq(*this, Entity, Kind,
2132  MultiExprArg(Inits, NumInits));
2133  ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2134  MultiExprArg(Inits, NumInits));
2135  if (FullInit.isInvalid())
2136  return ExprError();
2137 
2138  // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2139  // we don't want the initialized object to be destructed.
2140  // FIXME: We should not create these in the first place.
2141  if (CXXBindTemporaryExpr *Binder =
2142  dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2143  FullInit = Binder->getSubExpr();
2144 
2145  Initializer = FullInit.get();
2146 
2147  // FIXME: If we have a KnownArraySize, check that the array bound of the
2148  // initializer is no greater than that constant value.
2149 
2150  if (ArraySize && !*ArraySize) {
2151  auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2152  if (CAT) {
2153  // FIXME: Track that the array size was inferred rather than explicitly
2154  // specified.
2155  ArraySize = IntegerLiteral::Create(
2156  Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2157  } else {
2158  Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2159  << Initializer->getSourceRange();
2160  }
2161  }
2162  }
2163 
2164  // Mark the new and delete operators as referenced.
2165  if (OperatorNew) {
2166  if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2167  return ExprError();
2168  MarkFunctionReferenced(StartLoc, OperatorNew);
2169  }
2170  if (OperatorDelete) {
2171  if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2172  return ExprError();
2173  MarkFunctionReferenced(StartLoc, OperatorDelete);
2174  }
2175 
2176  return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2177  PassAlignment, UsualArrayDeleteWantsSize,
2178  PlacementArgs, TypeIdParens, ArraySize, initStyle,
2179  Initializer, ResultType, AllocTypeInfo, Range,
2180  DirectInitRange);
2181 }
2182 
2183 /// Checks that a type is suitable as the allocated type
2184 /// in a new-expression.
2186  SourceRange R) {
2187  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2188  // abstract class type or array thereof.
2189  if (AllocType->isFunctionType())
2190  return Diag(Loc, diag::err_bad_new_type)
2191  << AllocType << 0 << R;
2192  else if (AllocType->isReferenceType())
2193  return Diag(Loc, diag::err_bad_new_type)
2194  << AllocType << 1 << R;
2195  else if (!AllocType->isDependentType() &&
2196  RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2197  return true;
2198  else if (RequireNonAbstractType(Loc, AllocType,
2199  diag::err_allocation_of_abstract_type))
2200  return true;
2201  else if (AllocType->isVariablyModifiedType())
2202  return Diag(Loc, diag::err_variably_modified_new_type)
2203  << AllocType;
2204  else if (AllocType.getAddressSpace() != LangAS::Default &&
2205  !getLangOpts().OpenCLCPlusPlus)
2206  return Diag(Loc, diag::err_address_space_qualified_new)
2207  << AllocType.getUnqualifiedType()
2209  else if (getLangOpts().ObjCAutoRefCount) {
2210  if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2211  QualType BaseAllocType = Context.getBaseElementType(AT);
2212  if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2213  BaseAllocType->isObjCLifetimeType())
2214  return Diag(Loc, diag::err_arc_new_array_without_ownership)
2215  << BaseAllocType;
2216  }
2217  }
2218 
2219  return false;
2220 }
2221 
2224  bool &PassAlignment, FunctionDecl *&Operator,
2225  OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2226  OverloadCandidateSet Candidates(R.getNameLoc(),
2228  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2229  Alloc != AllocEnd; ++Alloc) {
2230  // Even member operator new/delete are implicitly treated as
2231  // static, so don't use AddMemberCandidate.
2232  NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2233 
2234  if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2235  S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2236  /*ExplicitTemplateArgs=*/nullptr, Args,
2237  Candidates,
2238  /*SuppressUserConversions=*/false);
2239  continue;
2240  }
2241 
2242  FunctionDecl *Fn = cast<FunctionDecl>(D);
2243  S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2244  /*SuppressUserConversions=*/false);
2245  }
2246 
2247  // Do the resolution.
2249  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2250  case OR_Success: {
2251  // Got one!
2252  FunctionDecl *FnDecl = Best->Function;
2253  if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2254  Best->FoundDecl) == Sema::AR_inaccessible)
2255  return true;
2256 
2257  Operator = FnDecl;
2258  return false;
2259  }
2260 
2261  case OR_No_Viable_Function:
2262  // C++17 [expr.new]p13:
2263  // If no matching function is found and the allocated object type has
2264  // new-extended alignment, the alignment argument is removed from the
2265  // argument list, and overload resolution is performed again.
2266  if (PassAlignment) {
2267  PassAlignment = false;
2268  AlignArg = Args[1];
2269  Args.erase(Args.begin() + 1);
2270  return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2271  Operator, &Candidates, AlignArg,
2272  Diagnose);
2273  }
2274 
2275  // MSVC will fall back on trying to find a matching global operator new
2276  // if operator new[] cannot be found. Also, MSVC will leak by not
2277  // generating a call to operator delete or operator delete[], but we
2278  // will not replicate that bug.
2279  // FIXME: Find out how this interacts with the std::align_val_t fallback
2280  // once MSVC implements it.
2281  if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2282  S.Context.getLangOpts().MSVCCompat) {
2283  R.clear();
2286  // FIXME: This will give bad diagnostics pointing at the wrong functions.
2287  return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2288  Operator, /*Candidates=*/nullptr,
2289  /*AlignArg=*/nullptr, Diagnose);
2290  }
2291 
2292  if (Diagnose) {
2293  PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call)
2294  << R.getLookupName() << Range);
2295 
2296  // If we have aligned candidates, only note the align_val_t candidates
2297  // from AlignedCandidates and the non-align_val_t candidates from
2298  // Candidates.
2299  if (AlignedCandidates) {
2300  auto IsAligned = [](OverloadCandidate &C) {
2301  return C.Function->getNumParams() > 1 &&
2302  C.Function->getParamDecl(1)->getType()->isAlignValT();
2303  };
2304  auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2305 
2306  // This was an overaligned allocation, so list the aligned candidates
2307  // first.
2308  Args.insert(Args.begin() + 1, AlignArg);
2309  AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "",
2310  R.getNameLoc(), IsAligned);
2311  Args.erase(Args.begin() + 1);
2312  Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2313  IsUnaligned);
2314  } else {
2315  Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args);
2316  }
2317  }
2318  return true;
2319 
2320  case OR_Ambiguous:
2321  if (Diagnose) {
2322  Candidates.NoteCandidates(
2324  S.PDiag(diag::err_ovl_ambiguous_call)
2325  << R.getLookupName() << Range),
2326  S, OCD_ViableCandidates, Args);
2327  }
2328  return true;
2329 
2330  case OR_Deleted: {
2331  if (Diagnose) {
2332  Candidates.NoteCandidates(
2334  S.PDiag(diag::err_ovl_deleted_call)
2335  << R.getLookupName() << Range),
2336  S, OCD_AllCandidates, Args);
2337  }
2338  return true;
2339  }
2340  }
2341  llvm_unreachable("Unreachable, bad result from BestViableFunction");
2342 }
2343 
2345  AllocationFunctionScope NewScope,
2346  AllocationFunctionScope DeleteScope,
2347  QualType AllocType, bool IsArray,
2348  bool &PassAlignment, MultiExprArg PlaceArgs,
2349  FunctionDecl *&OperatorNew,
2350  FunctionDecl *&OperatorDelete,
2351  bool Diagnose) {
2352  // --- Choosing an allocation function ---
2353  // C++ 5.3.4p8 - 14 & 18
2354  // 1) If looking in AFS_Global scope for allocation functions, only look in
2355  // the global scope. Else, if AFS_Class, only look in the scope of the
2356  // allocated class. If AFS_Both, look in both.
2357  // 2) If an array size is given, look for operator new[], else look for
2358  // operator new.
2359  // 3) The first argument is always size_t. Append the arguments from the
2360  // placement form.
2361 
2362  SmallVector<Expr*, 8> AllocArgs;
2363  AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2364 
2365  // We don't care about the actual value of these arguments.
2366  // FIXME: Should the Sema create the expression and embed it in the syntax
2367  // tree? Or should the consumer just recalculate the value?
2368  // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2369  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2371  Context.getSizeType(),
2372  SourceLocation());
2373  AllocArgs.push_back(&Size);
2374 
2375  QualType AlignValT = Context.VoidTy;
2376  if (PassAlignment) {
2378  AlignValT = Context.getTypeDeclType(getStdAlignValT());
2379  }
2380  CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2381  if (PassAlignment)
2382  AllocArgs.push_back(&Align);
2383 
2384  AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2385 
2386  // C++ [expr.new]p8:
2387  // If the allocated type is a non-array type, the allocation
2388  // function's name is operator new and the deallocation function's
2389  // name is operator delete. If the allocated type is an array
2390  // type, the allocation function's name is operator new[] and the
2391  // deallocation function's name is operator delete[].
2393  IsArray ? OO_Array_New : OO_New);
2394 
2395  QualType AllocElemType = Context.getBaseElementType(AllocType);
2396 
2397  // Find the allocation function.
2398  {
2399  LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2400 
2401  // C++1z [expr.new]p9:
2402  // If the new-expression begins with a unary :: operator, the allocation
2403  // function's name is looked up in the global scope. Otherwise, if the
2404  // allocated type is a class type T or array thereof, the allocation
2405  // function's name is looked up in the scope of T.
2406  if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2407  LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2408 
2409  // We can see ambiguity here if the allocation function is found in
2410  // multiple base classes.
2411  if (R.isAmbiguous())
2412  return true;
2413 
2414  // If this lookup fails to find the name, or if the allocated type is not
2415  // a class type, the allocation function's name is looked up in the
2416  // global scope.
2417  if (R.empty()) {
2418  if (NewScope == AFS_Class)
2419  return true;
2420 
2422  }
2423 
2424  if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2425  if (PlaceArgs.empty()) {
2426  Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2427  } else {
2428  Diag(StartLoc, diag::err_openclcxx_placement_new);
2429  }
2430  return true;
2431  }
2432 
2433  assert(!R.empty() && "implicitly declared allocation functions not found");
2434  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2435 
2436  // We do our own custom access checks below.
2437  R.suppressDiagnostics();
2438 
2439  if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2440  OperatorNew, /*Candidates=*/nullptr,
2441  /*AlignArg=*/nullptr, Diagnose))
2442  return true;
2443  }
2444 
2445  // We don't need an operator delete if we're running under -fno-exceptions.
2446  if (!getLangOpts().Exceptions) {
2447  OperatorDelete = nullptr;
2448  return false;
2449  }
2450 
2451  // Note, the name of OperatorNew might have been changed from array to
2452  // non-array by resolveAllocationOverload.
2454  OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2455  ? OO_Array_Delete
2456  : OO_Delete);
2457 
2458  // C++ [expr.new]p19:
2459  //
2460  // If the new-expression begins with a unary :: operator, the
2461  // deallocation function's name is looked up in the global
2462  // scope. Otherwise, if the allocated type is a class type T or an
2463  // array thereof, the deallocation function's name is looked up in
2464  // the scope of T. If this lookup fails to find the name, or if
2465  // the allocated type is not a class type or array thereof, the
2466  // deallocation function's name is looked up in the global scope.
2467  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2468  if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2469  auto *RD =
2470  cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2471  LookupQualifiedName(FoundDelete, RD);
2472  }
2473  if (FoundDelete.isAmbiguous())
2474  return true; // FIXME: clean up expressions?
2475 
2476  bool FoundGlobalDelete = FoundDelete.empty();
2477  if (FoundDelete.empty()) {
2478  if (DeleteScope == AFS_Class)
2479  return true;
2480 
2483  }
2484 
2485  FoundDelete.suppressDiagnostics();
2486 
2488 
2489  // Whether we're looking for a placement operator delete is dictated
2490  // by whether we selected a placement operator new, not by whether
2491  // we had explicit placement arguments. This matters for things like
2492  // struct A { void *operator new(size_t, int = 0); ... };
2493  // A *a = new A()
2494  //
2495  // We don't have any definition for what a "placement allocation function"
2496  // is, but we assume it's any allocation function whose
2497  // parameter-declaration-clause is anything other than (size_t).
2498  //
2499  // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2500  // This affects whether an exception from the constructor of an overaligned
2501  // type uses the sized or non-sized form of aligned operator delete.
2502  bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2503  OperatorNew->isVariadic();
2504 
2505  if (isPlacementNew) {
2506  // C++ [expr.new]p20:
2507  // A declaration of a placement deallocation function matches the
2508  // declaration of a placement allocation function if it has the
2509  // same number of parameters and, after parameter transformations
2510  // (8.3.5), all parameter types except the first are
2511  // identical. [...]
2512  //
2513  // To perform this comparison, we compute the function type that
2514  // the deallocation function should have, and use that type both
2515  // for template argument deduction and for comparison purposes.
2516  QualType ExpectedFunctionType;
2517  {
2518  const FunctionProtoType *Proto
2519  = OperatorNew->getType()->getAs<FunctionProtoType>();
2520 
2521  SmallVector<QualType, 4> ArgTypes;
2522  ArgTypes.push_back(Context.VoidPtrTy);
2523  for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2524  ArgTypes.push_back(Proto->getParamType(I));
2525 
2527  // FIXME: This is not part of the standard's rule.
2528  EPI.Variadic = Proto->isVariadic();
2529 
2530  ExpectedFunctionType
2531  = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2532  }
2533 
2534  for (LookupResult::iterator D = FoundDelete.begin(),
2535  DEnd = FoundDelete.end();
2536  D != DEnd; ++D) {
2537  FunctionDecl *Fn = nullptr;
2538  if (FunctionTemplateDecl *FnTmpl =
2539  dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2540  // Perform template argument deduction to try to match the
2541  // expected function type.
2542  TemplateDeductionInfo Info(StartLoc);
2543  if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2544  Info))
2545  continue;
2546  } else
2547  Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2548 
2550  ExpectedFunctionType,
2551  /*AdjustExcpetionSpec*/true),
2552  ExpectedFunctionType))
2553  Matches.push_back(std::make_pair(D.getPair(), Fn));
2554  }
2555 
2556  if (getLangOpts().CUDA)
2557  EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2558  } else {
2559  // C++1y [expr.new]p22:
2560  // For a non-placement allocation function, the normal deallocation
2561  // function lookup is used
2562  //
2563  // Per [expr.delete]p10, this lookup prefers a member operator delete
2564  // without a size_t argument, but prefers a non-member operator delete
2565  // with a size_t where possible (which it always is in this case).
2567  UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2568  *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2569  /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2570  &BestDeallocFns);
2571  if (Selected)
2572  Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2573  else {
2574  // If we failed to select an operator, all remaining functions are viable
2575  // but ambiguous.
2576  for (auto Fn : BestDeallocFns)
2577  Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2578  }
2579  }
2580 
2581  // C++ [expr.new]p20:
2582  // [...] If the lookup finds a single matching deallocation
2583  // function, that function will be called; otherwise, no
2584  // deallocation function will be called.
2585  if (Matches.size() == 1) {
2586  OperatorDelete = Matches[0].second;
2587 
2588  // C++1z [expr.new]p23:
2589  // If the lookup finds a usual deallocation function (3.7.4.2)
2590  // with a parameter of type std::size_t and that function, considered
2591  // as a placement deallocation function, would have been
2592  // selected as a match for the allocation function, the program
2593  // is ill-formed.
2594  if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2595  isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2596  UsualDeallocFnInfo Info(*this,
2597  DeclAccessPair::make(OperatorDelete, AS_public));
2598  // Core issue, per mail to core reflector, 2016-10-09:
2599  // If this is a member operator delete, and there is a corresponding
2600  // non-sized member operator delete, this isn't /really/ a sized
2601  // deallocation function, it just happens to have a size_t parameter.
2602  bool IsSizedDelete = Info.HasSizeT;
2603  if (IsSizedDelete && !FoundGlobalDelete) {
2604  auto NonSizedDelete =
2605  resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2606  /*WantAlign*/Info.HasAlignValT);
2607  if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2608  NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2609  IsSizedDelete = false;
2610  }
2611 
2612  if (IsSizedDelete) {
2613  SourceRange R = PlaceArgs.empty()
2614  ? SourceRange()
2615  : SourceRange(PlaceArgs.front()->getBeginLoc(),
2616  PlaceArgs.back()->getEndLoc());
2617  Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2618  if (!OperatorDelete->isImplicit())
2619  Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2620  << DeleteName;
2621  }
2622  }
2623 
2624  CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2625  Matches[0].first);
2626  } else if (!Matches.empty()) {
2627  // We found multiple suitable operators. Per [expr.new]p20, that means we
2628  // call no 'operator delete' function, but we should at least warn the user.
2629  // FIXME: Suppress this warning if the construction cannot throw.
2630  Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2631  << DeleteName << AllocElemType;
2632 
2633  for (auto &Match : Matches)
2634  Diag(Match.second->getLocation(),
2635  diag::note_member_declared_here) << DeleteName;
2636  }
2637 
2638  return false;
2639 }
2640 
2641 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2642 /// delete. These are:
2643 /// @code
2644 /// // C++03:
2645 /// void* operator new(std::size_t) throw(std::bad_alloc);
2646 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2647 /// void operator delete(void *) throw();
2648 /// void operator delete[](void *) throw();
2649 /// // C++11:
2650 /// void* operator new(std::size_t);
2651 /// void* operator new[](std::size_t);
2652 /// void operator delete(void *) noexcept;
2653 /// void operator delete[](void *) noexcept;
2654 /// // C++1y:
2655 /// void* operator new(std::size_t);
2656 /// void* operator new[](std::size_t);
2657 /// void operator delete(void *) noexcept;
2658 /// void operator delete[](void *) noexcept;
2659 /// void operator delete(void *, std::size_t) noexcept;
2660 /// void operator delete[](void *, std::size_t) noexcept;
2661 /// @endcode
2662 /// Note that the placement and nothrow forms of new are *not* implicitly
2663 /// declared. Their use requires including <new>.
2666  return;
2667 
2668  // The implicitly declared new and delete operators
2669  // are not supported in OpenCL.
2670  if (getLangOpts().OpenCLCPlusPlus)
2671  return;
2672 
2673  // C++ [basic.std.dynamic]p2:
2674  // [...] The following allocation and deallocation functions (18.4) are
2675  // implicitly declared in global scope in each translation unit of a
2676  // program
2677  //
2678  // C++03:
2679  // void* operator new(std::size_t) throw(std::bad_alloc);
2680  // void* operator new[](std::size_t) throw(std::bad_alloc);
2681  // void operator delete(void*) throw();
2682  // void operator delete[](void*) throw();
2683  // C++11:
2684  // void* operator new(std::size_t);
2685  // void* operator new[](std::size_t);
2686  // void operator delete(void*) noexcept;
2687  // void operator delete[](void*) noexcept;
2688  // C++1y:
2689  // void* operator new(std::size_t);
2690  // void* operator new[](std::size_t);
2691  // void operator delete(void*) noexcept;
2692  // void operator delete[](void*) noexcept;
2693  // void operator delete(void*, std::size_t) noexcept;
2694  // void operator delete[](void*, std::size_t) noexcept;
2695  //
2696  // These implicit declarations introduce only the function names operator
2697  // new, operator new[], operator delete, operator delete[].
2698  //
2699  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2700  // "std" or "bad_alloc" as necessary to form the exception specification.
2701  // However, we do not make these implicit declarations visible to name
2702  // lookup.
2703  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2704  // The "std::bad_alloc" class has not yet been declared, so build it
2705  // implicitly.
2709  &PP.getIdentifierTable().get("bad_alloc"),
2710  nullptr);
2711  getStdBadAlloc()->setImplicit(true);
2712  }
2713  if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2714  // The "std::align_val_t" enum class has not yet been declared, so build it
2715  // implicitly.
2716  auto *AlignValT = EnumDecl::Create(
2718  &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2719  AlignValT->setIntegerType(Context.getSizeType());
2720  AlignValT->setPromotionType(Context.getSizeType());
2721  AlignValT->setImplicit(true);
2722  StdAlignValT = AlignValT;
2723  }
2724 
2725  GlobalNewDeleteDeclared = true;
2726 
2728  QualType SizeT = Context.getSizeType();
2729 
2730  auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2731  QualType Return, QualType Param) {
2733  Params.push_back(Param);
2734 
2735  // Create up to four variants of the function (sized/aligned).
2736  bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2737  (Kind == OO_Delete || Kind == OO_Array_Delete);
2738  bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2739 
2740  int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2741  int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2742  for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2743  if (Sized)
2744  Params.push_back(SizeT);
2745 
2746  for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2747  if (Aligned)
2748  Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2749 
2751  Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2752 
2753  if (Aligned)
2754  Params.pop_back();
2755  }
2756  }
2757  };
2758 
2759  DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2760  DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2761  DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2762  DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2763 }
2764 
2765 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2766 /// allocation function if it doesn't already exist.
2768  QualType Return,
2769  ArrayRef<QualType> Params) {
2771 
2772  // Check if this function is already declared.
2773  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2774  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2775  Alloc != AllocEnd; ++Alloc) {
2776  // Only look at non-template functions, as it is the predefined,
2777  // non-templated allocation function we are trying to declare here.
2778  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2779  if (Func->getNumParams() == Params.size()) {
2780  llvm::SmallVector<QualType, 3> FuncParams;
2781  for (auto *P : Func->parameters())
2782  FuncParams.push_back(
2783  Context.getCanonicalType(P->getType().getUnqualifiedType()));
2784  if (llvm::makeArrayRef(FuncParams) == Params) {
2785  // Make the function visible to name lookup, even if we found it in
2786  // an unimported module. It either is an implicitly-declared global
2787  // allocation function, or is suppressing that function.
2788  Func->setVisibleDespiteOwningModule();
2789  return;
2790  }
2791  }
2792  }
2793  }
2794 
2796  /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
2797 
2798  QualType BadAllocType;
2799  bool HasBadAllocExceptionSpec
2800  = (Name.getCXXOverloadedOperator() == OO_New ||
2801  Name.getCXXOverloadedOperator() == OO_Array_New);
2802  if (HasBadAllocExceptionSpec) {
2803  if (!getLangOpts().CPlusPlus11) {
2804  BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2805  assert(StdBadAlloc && "Must have std::bad_alloc declared");
2806  EPI.ExceptionSpec.Type = EST_Dynamic;
2807  EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2808  }
2809  } else {
2810  EPI.ExceptionSpec =
2811  getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2812  }
2813 
2814  auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2815  QualType FnType = Context.getFunctionType(Return, Params, EPI);
2817  Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2818  FnType, /*TInfo=*/nullptr, SC_None, false, true);
2819  Alloc->setImplicit();
2820  // Global allocation functions should always be visible.
2822 
2823  Alloc->addAttr(VisibilityAttr::CreateImplicit(
2824  Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2825  ? VisibilityAttr::Hidden
2827 
2829  for (QualType T : Params) {
2830  ParamDecls.push_back(ParmVarDecl::Create(
2831  Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2832  /*TInfo=*/nullptr, SC_None, nullptr));
2833  ParamDecls.back()->setImplicit();
2834  }
2835  Alloc->setParams(ParamDecls);
2836  if (ExtraAttr)
2837  Alloc->addAttr(ExtraAttr);
2839  IdResolver.tryAddTopLevelDecl(Alloc, Name);
2840  };
2841 
2842  if (!LangOpts.CUDA)
2843  CreateAllocationFunctionDecl(nullptr);
2844  else {
2845  // Host and device get their own declaration so each can be
2846  // defined or re-declared independently.
2847  CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2848  CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2849  }
2850 }
2851 
2853  bool CanProvideSize,
2854  bool Overaligned,
2855  DeclarationName Name) {
2857 
2858  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2860 
2861  // FIXME: It's possible for this to result in ambiguity, through a
2862  // user-declared variadic operator delete or the enable_if attribute. We
2863  // should probably not consider those cases to be usual deallocation
2864  // functions. But for now we just make an arbitrary choice in that case.
2865  auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2866  Overaligned);
2867  assert(Result.FD && "operator delete missing from global scope?");
2868  return Result.FD;
2869 }
2870 
2872  CXXRecordDecl *RD) {
2874 
2875  FunctionDecl *OperatorDelete = nullptr;
2876  if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2877  return nullptr;
2878  if (OperatorDelete)
2879  return OperatorDelete;
2880 
2881  // If there's no class-specific operator delete, look up the global
2882  // non-array delete.
2884  Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2885  Name);
2886 }
2887 
2889  DeclarationName Name,
2890  FunctionDecl *&Operator, bool Diagnose) {
2891  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2892  // Try to find operator delete/operator delete[] in class scope.
2893  LookupQualifiedName(Found, RD);
2894 
2895  if (Found.isAmbiguous())
2896  return true;
2897 
2898  Found.suppressDiagnostics();
2899 
2900  bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2901 
2902  // C++17 [expr.delete]p10:
2903  // If the deallocation functions have class scope, the one without a
2904  // parameter of type std::size_t is selected.
2906  resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2907  /*WantAlign*/ Overaligned, &Matches);
2908 
2909  // If we could find an overload, use it.
2910  if (Matches.size() == 1) {
2911  Operator = cast<CXXMethodDecl>(Matches[0].FD);
2912 
2913  // FIXME: DiagnoseUseOfDecl?
2914  if (Operator->isDeleted()) {
2915  if (Diagnose) {
2916  Diag(StartLoc, diag::err_deleted_function_use);
2917  NoteDeletedFunction(Operator);
2918  }
2919  return true;
2920  }
2921 
2922  if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2923  Matches[0].Found, Diagnose) == AR_inaccessible)
2924  return true;
2925 
2926  return false;
2927  }
2928 
2929  // We found multiple suitable operators; complain about the ambiguity.
2930  // FIXME: The standard doesn't say to do this; it appears that the intent
2931  // is that this should never happen.
2932  if (!Matches.empty()) {
2933  if (Diagnose) {
2934  Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2935  << Name << RD;
2936  for (auto &Match : Matches)
2937  Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2938  }
2939  return true;
2940  }
2941 
2942  // We did find operator delete/operator delete[] declarations, but
2943  // none of them were suitable.
2944  if (!Found.empty()) {
2945  if (Diagnose) {
2946  Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2947  << Name << RD;
2948 
2949  for (NamedDecl *D : Found)
2950  Diag(D->getUnderlyingDecl()->getLocation(),
2951  diag::note_member_declared_here) << Name;
2952  }
2953  return true;
2954  }
2955 
2956  Operator = nullptr;
2957  return false;
2958 }
2959 
2960 namespace {
2961 /// Checks whether delete-expression, and new-expression used for
2962 /// initializing deletee have the same array form.
2963 class MismatchingNewDeleteDetector {
2964 public:
2965  enum MismatchResult {
2966  /// Indicates that there is no mismatch or a mismatch cannot be proven.
2967  NoMismatch,
2968  /// Indicates that variable is initialized with mismatching form of \a new.
2969  VarInitMismatches,
2970  /// Indicates that member is initialized with mismatching form of \a new.
2971  MemberInitMismatches,
2972  /// Indicates that 1 or more constructors' definitions could not been
2973  /// analyzed, and they will be checked again at the end of translation unit.
2974  AnalyzeLater
2975  };
2976 
2977  /// \param EndOfTU True, if this is the final analysis at the end of
2978  /// translation unit. False, if this is the initial analysis at the point
2979  /// delete-expression was encountered.
2980  explicit MismatchingNewDeleteDetector(bool EndOfTU)
2981  : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2982  HasUndefinedConstructors(false) {}
2983 
2984  /// Checks whether pointee of a delete-expression is initialized with
2985  /// matching form of new-expression.
2986  ///
2987  /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2988  /// point where delete-expression is encountered, then a warning will be
2989  /// issued immediately. If return value is \c AnalyzeLater at the point where
2990  /// delete-expression is seen, then member will be analyzed at the end of
2991  /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2992  /// couldn't be analyzed. If at least one constructor initializes the member
2993  /// with matching type of new, the return value is \c NoMismatch.
2994  MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2995  /// Analyzes a class member.
2996  /// \param Field Class member to analyze.
2997  /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2998  /// for deleting the \p Field.
2999  MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3000  FieldDecl *Field;
3001  /// List of mismatching new-expressions used for initialization of the pointee
3003  /// Indicates whether delete-expression was in array form.
3004  bool IsArrayForm;
3005 
3006 private:
3007  const bool EndOfTU;
3008  /// Indicates that there is at least one constructor without body.
3009  bool HasUndefinedConstructors;
3010  /// Returns \c CXXNewExpr from given initialization expression.
3011  /// \param E Expression used for initializing pointee in delete-expression.
3012  /// E can be a single-element \c InitListExpr consisting of new-expression.
3013  const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3014  /// Returns whether member is initialized with mismatching form of
3015  /// \c new either by the member initializer or in-class initialization.
3016  ///
3017  /// If bodies of all constructors are not visible at the end of translation
3018  /// unit or at least one constructor initializes member with the matching
3019  /// form of \c new, mismatch cannot be proven, and this function will return
3020  /// \c NoMismatch.
3021  MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3022  /// Returns whether variable is initialized with mismatching form of
3023  /// \c new.
3024  ///
3025  /// If variable is initialized with matching form of \c new or variable is not
3026  /// initialized with a \c new expression, this function will return true.
3027  /// If variable is initialized with mismatching form of \c new, returns false.
3028  /// \param D Variable to analyze.
3029  bool hasMatchingVarInit(const DeclRefExpr *D);
3030  /// Checks whether the constructor initializes pointee with mismatching
3031  /// form of \c new.
3032  ///
3033  /// Returns true, if member is initialized with matching form of \c new in
3034  /// member initializer list. Returns false, if member is initialized with the
3035  /// matching form of \c new in this constructor's initializer or given
3036  /// constructor isn't defined at the point where delete-expression is seen, or
3037  /// member isn't initialized by the constructor.
3038  bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3039  /// Checks whether member is initialized with matching form of
3040  /// \c new in member initializer list.
3041  bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3042  /// Checks whether member is initialized with mismatching form of \c new by
3043  /// in-class initializer.
3044  MismatchResult analyzeInClassInitializer();
3045 };
3046 }
3047 
3048 MismatchingNewDeleteDetector::MismatchResult
3049 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3050  NewExprs.clear();
3051  assert(DE && "Expected delete-expression");
3052  IsArrayForm = DE->isArrayForm();
3053  const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3054  if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3055  return analyzeMemberExpr(ME);
3056  } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3057  if (!hasMatchingVarInit(D))
3058  return VarInitMismatches;
3059  }
3060  return NoMismatch;
3061 }
3062 
3063 const CXXNewExpr *
3064 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3065  assert(E != nullptr && "Expected a valid initializer expression");
3066  E = E->IgnoreParenImpCasts();
3067  if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3068  if (ILE->getNumInits() == 1)
3069  E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3070  }
3071 
3072  return dyn_cast_or_null<const CXXNewExpr>(E);
3073 }
3074 
3075 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3076  const CXXCtorInitializer *CI) {
3077  const CXXNewExpr *NE = nullptr;
3078  if (Field == CI->getMember() &&
3079  (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3080  if (NE->isArray() == IsArrayForm)
3081  return true;
3082  else
3083  NewExprs.push_back(NE);
3084  }
3085  return false;
3086 }
3087 
3088 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3089  const CXXConstructorDecl *CD) {
3090  if (CD->isImplicit())
3091  return false;
3092  const FunctionDecl *Definition = CD;
3093  if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3094  HasUndefinedConstructors = true;
3095  return EndOfTU;
3096  }
3097  for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3098  if (hasMatchingNewInCtorInit(CI))
3099  return true;
3100  }
3101  return false;
3102 }
3103 
3104 MismatchingNewDeleteDetector::MismatchResult
3105 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3106  assert(Field != nullptr && "This should be called only for members");
3107  const Expr *InitExpr = Field->getInClassInitializer();
3108  if (!InitExpr)
3109  return EndOfTU ? NoMismatch : AnalyzeLater;
3110  if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3111  if (NE->isArray() != IsArrayForm) {
3112  NewExprs.push_back(NE);
3113  return MemberInitMismatches;
3114  }
3115  }
3116  return NoMismatch;
3117 }
3118 
3119 MismatchingNewDeleteDetector::MismatchResult
3120 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3121  bool DeleteWasArrayForm) {
3122  assert(Field != nullptr && "Analysis requires a valid class member.");
3123  this->Field = Field;
3124  IsArrayForm = DeleteWasArrayForm;
3125  const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3126  for (const auto *CD : RD->ctors()) {
3127  if (hasMatchingNewInCtor(CD))
3128  return NoMismatch;
3129  }
3130  if (HasUndefinedConstructors)
3131  return EndOfTU ? NoMismatch : AnalyzeLater;
3132  if (!NewExprs.empty())
3133  return MemberInitMismatches;
3134  return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3135  : NoMismatch;
3136 }
3137 
3138 MismatchingNewDeleteDetector::MismatchResult
3139 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3140  assert(ME != nullptr && "Expected a member expression");
3141  if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3142  return analyzeField(F, IsArrayForm);
3143  return NoMismatch;
3144 }
3145 
3146 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3147  const CXXNewExpr *NE = nullptr;
3148  if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3149  if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3150  NE->isArray() != IsArrayForm) {
3151  NewExprs.push_back(NE);
3152  }
3153  }
3154  return NewExprs.empty();
3155 }
3156 
3157 static void
3159  const MismatchingNewDeleteDetector &Detector) {
3160  SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3161  FixItHint H;
3162  if (!Detector.IsArrayForm)
3163  H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3164  else {
3166  DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3167  SemaRef.getLangOpts(), true);
3168  if (RSquare.isValid())
3169  H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3170  }
3171  SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3172  << Detector.IsArrayForm << H;
3173 
3174  for (const auto *NE : Detector.NewExprs)
3175  SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3176  << Detector.IsArrayForm;
3177 }
3178 
3179 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3180  if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3181  return;
3182  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3183  switch (Detector.analyzeDeleteExpr(DE)) {
3184  case MismatchingNewDeleteDetector::VarInitMismatches:
3185  case MismatchingNewDeleteDetector::MemberInitMismatches: {
3186  DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3187  break;
3188  }
3189  case MismatchingNewDeleteDetector::AnalyzeLater: {
3190  DeleteExprs[Detector.Field].push_back(
3191  std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3192  break;
3193  }
3194  case MismatchingNewDeleteDetector::NoMismatch:
3195  break;
3196  }
3197 }
3198 
3199 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3200  bool DeleteWasArrayForm) {
3201  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3202  switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3203  case MismatchingNewDeleteDetector::VarInitMismatches:
3204  llvm_unreachable("This analysis should have been done for class members.");
3205  case MismatchingNewDeleteDetector::AnalyzeLater:
3206  llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3207  "translation unit.");
3208  case MismatchingNewDeleteDetector::MemberInitMismatches:
3209  DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3210  break;
3211  case MismatchingNewDeleteDetector::NoMismatch:
3212  break;
3213  }
3214 }
3215 
3216 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3217 /// @code ::delete ptr; @endcode
3218 /// or
3219 /// @code delete [] ptr; @endcode
3220 ExprResult
3221 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3222  bool ArrayForm, Expr *ExE) {
3223  // C++ [expr.delete]p1:
3224  // The operand shall have a pointer type, or a class type having a single
3225  // non-explicit conversion function to a pointer type. The result has type
3226  // void.
3227  //
3228  // DR599 amends "pointer type" to "pointer to object type" in both cases.
3229 
3230  ExprResult Ex = ExE;
3231  FunctionDecl *OperatorDelete = nullptr;
3232  bool ArrayFormAsWritten = ArrayForm;
3233  bool UsualArrayDeleteWantsSize = false;
3234 
3235  if (!Ex.get()->isTypeDependent()) {
3236  // Perform lvalue-to-rvalue cast, if needed.
3237  Ex = DefaultLvalueConversion(Ex.get());
3238  if (Ex.isInvalid())
3239  return ExprError();
3240 
3241  QualType Type = Ex.get()->getType();
3242 
3243  class DeleteConverter : public ContextualImplicitConverter {
3244  public:
3245  DeleteConverter() : ContextualImplicitConverter(false, true) {}
3246 
3247  bool match(QualType ConvType) override {
3248  // FIXME: If we have an operator T* and an operator void*, we must pick
3249  // the operator T*.
3250  if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3251  if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3252  return true;
3253  return false;
3254  }
3255 
3256  SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3257  QualType T) override {
3258  return S.Diag(Loc, diag::err_delete_operand) << T;
3259  }
3260 
3261  SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3262  QualType T) override {
3263  return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3264  }
3265 
3266  SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3267  QualType T,
3268  QualType ConvTy) override {
3269  return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3270  }
3271 
3272  SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3273  QualType ConvTy) override {
3274  return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3275  << ConvTy;
3276  }
3277 
3278  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3279  QualType T) override {
3280  return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3281  }
3282 
3283  SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3284  QualType ConvTy) override {
3285  return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3286  << ConvTy;
3287  }
3288 
3289  SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3290  QualType T,
3291  QualType ConvTy) override {
3292  llvm_unreachable("conversion functions are permitted");
3293  }
3294  } Converter;
3295 
3296  Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3297  if (Ex.isInvalid())
3298  return ExprError();
3299  Type = Ex.get()->getType();
3300  if (!Converter.match(Type))
3301  // FIXME: PerformContextualImplicitConversion should return ExprError
3302  // itself in this case.
3303  return ExprError();
3304 
3305  QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3306  QualType PointeeElem = Context.getBaseElementType(Pointee);
3307 
3308  if (Pointee.getAddressSpace() != LangAS::Default &&
3309  !getLangOpts().OpenCLCPlusPlus)
3310  return Diag(Ex.get()->getBeginLoc(),
3311  diag::err_address_space_qualified_delete)
3312  << Pointee.getUnqualifiedType()
3314 
3315  CXXRecordDecl *PointeeRD = nullptr;
3316  if (Pointee->isVoidType() && !isSFINAEContext()) {
3317  // The C++ standard bans deleting a pointer to a non-object type, which
3318  // effectively bans deletion of "void*". However, most compilers support
3319  // this, so we treat it as a warning unless we're in a SFINAE context.
3320  Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3321  << Type << Ex.get()->getSourceRange();
3322  } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3323  return ExprError(Diag(StartLoc, diag::err_delete_operand)
3324  << Type << Ex.get()->getSourceRange());
3325  } else if (!Pointee->isDependentType()) {
3326  // FIXME: This can result in errors if the definition was imported from a
3327  // module but is hidden.
3328  if (!RequireCompleteType(StartLoc, Pointee,
3329  diag::warn_delete_incomplete, Ex.get())) {
3330  if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3331  PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3332  }
3333  }
3334 
3335  if (Pointee->isArrayType() && !ArrayForm) {
3336  Diag(StartLoc, diag::warn_delete_array_type)
3337  << Type << Ex.get()->getSourceRange()
3338  << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3339  ArrayForm = true;
3340  }
3341 
3343  ArrayForm ? OO_Array_Delete : OO_Delete);
3344 
3345  if (PointeeRD) {
3346  if (!UseGlobal &&
3347  FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3348  OperatorDelete))
3349  return ExprError();
3350 
3351  // If we're allocating an array of records, check whether the
3352  // usual operator delete[] has a size_t parameter.
3353  if (ArrayForm) {
3354  // If the user specifically asked to use the global allocator,
3355  // we'll need to do the lookup into the class.
3356  if (UseGlobal)
3357  UsualArrayDeleteWantsSize =
3358  doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3359 
3360  // Otherwise, the usual operator delete[] should be the
3361  // function we just found.
3362  else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3363  UsualArrayDeleteWantsSize =
3364  UsualDeallocFnInfo(*this,
3365  DeclAccessPair::make(OperatorDelete, AS_public))
3366  .HasSizeT;
3367  }
3368 
3369  if (!PointeeRD->hasIrrelevantDestructor())
3370  if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3371  MarkFunctionReferenced(StartLoc,
3372  const_cast<CXXDestructorDecl*>(Dtor));
3373  if (DiagnoseUseOfDecl(Dtor, StartLoc))
3374  return ExprError();
3375  }
3376 
3377  CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3378  /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3379  /*WarnOnNonAbstractTypes=*/!ArrayForm,
3380  SourceLocation());
3381  }
3382 
3383  if (!OperatorDelete) {
3384  if (getLangOpts().OpenCLCPlusPlus) {
3385  Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3386  return ExprError();
3387  }
3388 
3389  bool IsComplete = isCompleteType(StartLoc, Pointee);
3390  bool CanProvideSize =
3391  IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3392  Pointee.isDestructedType());
3393  bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3394 
3395  // Look for a global declaration.
3396  OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3397  Overaligned, DeleteName);
3398  }
3399 
3400  MarkFunctionReferenced(StartLoc, OperatorDelete);
3401 
3402  // Check access and ambiguity of destructor if we're going to call it.
3403  // Note that this is required even for a virtual delete.
3404  bool IsVirtualDelete = false;
3405  if (PointeeRD) {
3406  if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3407  CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3408  PDiag(diag::err_access_dtor) << PointeeElem);
3409  IsVirtualDelete = Dtor->isVirtual();
3410  }
3411  }
3412 
3413  DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3414 
3415  // Convert the operand to the type of the first parameter of operator
3416  // delete. This is only necessary if we selected a destroying operator
3417  // delete that we are going to call (non-virtually); converting to void*
3418  // is trivial and left to AST consumers to handle.
3419  QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3420  if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3421  Qualifiers Qs = Pointee.getQualifiers();
3422  if (Qs.hasCVRQualifiers()) {
3423  // Qualifiers are irrelevant to this conversion; we're only looking
3424  // for access and ambiguity.
3425  Qs.removeCVRQualifiers();
3426  QualType Unqual = Context.getPointerType(
3428  Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3429  }
3430  Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3431  if (Ex.isInvalid())
3432  return ExprError();
3433  }
3434  }
3435 
3437  Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3438  UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3439  AnalyzeDeleteExprMismatch(Result);
3440  return Result;
3441 }
3442 
3444  bool IsDelete,
3445  FunctionDecl *&Operator) {
3446 
3448  IsDelete ? OO_Delete : OO_New);
3449 
3450  LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3452  assert(!R.empty() && "implicitly declared allocation functions not found");
3453  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3454 
3455  // We do our own custom access checks below.
3456  R.suppressDiagnostics();
3457 
3458  SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3459  OverloadCandidateSet Candidates(R.getNameLoc(),
3461  for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3462  FnOvl != FnOvlEnd; ++FnOvl) {
3463  // Even member operator new/delete are implicitly treated as
3464  // static, so don't use AddMemberCandidate.
3465  NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3466 
3467  if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3468  S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3469  /*ExplicitTemplateArgs=*/nullptr, Args,
3470  Candidates,
3471  /*SuppressUserConversions=*/false);
3472  continue;
3473  }
3474 
3475  FunctionDecl *Fn = cast<FunctionDecl>(D);
3476  S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3477  /*SuppressUserConversions=*/false);
3478  }
3479 
3480  SourceRange Range = TheCall->getSourceRange();
3481 
3482  // Do the resolution.
3484  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3485  case OR_Success: {
3486  // Got one!
3487  FunctionDecl *FnDecl = Best->Function;
3488  assert(R.getNamingClass() == nullptr &&
3489  "class members should not be considered");
3490 
3491  if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3492  S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3493  << (IsDelete ? 1 : 0) << Range;
3494  S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3495  << R.getLookupName() << FnDecl->getSourceRange();
3496  return true;
3497  }
3498 
3499  Operator = FnDecl;
3500  return false;
3501  }
3502 
3503  case OR_No_Viable_Function:
3504  Candidates.NoteCandidates(
3505  PartialDiagnosticAt(R.getNameLoc(),
3506  S.PDiag(diag::err_ovl_no_viable_function_in_call)
3507  << R.getLookupName() << Range),
3508  S, OCD_AllCandidates, Args);
3509  return true;
3510 
3511  case OR_Ambiguous:
3512  Candidates.NoteCandidates(
3513  PartialDiagnosticAt(R.getNameLoc(),
3514  S.PDiag(diag::err_ovl_ambiguous_call)
3515  << R.getLookupName() << Range),
3516  S, OCD_ViableCandidates, Args);
3517  return true;
3518 
3519  case OR_Deleted: {
3520  Candidates.NoteCandidates(
3521  PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3522  << R.getLookupName() << Range),
3523  S, OCD_AllCandidates, Args);
3524  return true;
3525  }
3526  }
3527  llvm_unreachable("Unreachable, bad result from BestViableFunction");
3528 }
3529 
3530 ExprResult
3531 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3532  bool IsDelete) {
3533  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3534  if (!getLangOpts().CPlusPlus) {
3535  Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3536  << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3537  << "C++";
3538  return ExprError();
3539  }
3540  // CodeGen assumes it can find the global new and delete to call,
3541  // so ensure that they are declared.
3543 
3544  FunctionDecl *OperatorNewOrDelete = nullptr;
3545  if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3546  OperatorNewOrDelete))
3547  return ExprError();
3548  assert(OperatorNewOrDelete && "should be found");
3549 
3550  DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3551  MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3552 
3553  TheCall->setType(OperatorNewOrDelete->getReturnType());
3554  for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3555  QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3556  InitializedEntity Entity =
3559  Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3560  if (Arg.isInvalid())
3561  return ExprError();
3562  TheCall->setArg(i, Arg.get());
3563  }
3564  auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3565  assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3566  "Callee expected to be implicit cast to a builtin function pointer");
3567  Callee->setType(OperatorNewOrDelete->getType());
3568 
3569  return TheCallResult;
3570 }
3571 
3573  bool IsDelete, bool CallCanBeVirtual,
3574  bool WarnOnNonAbstractTypes,
3575  SourceLocation DtorLoc) {
3576  if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3577  return;
3578 
3579  // C++ [expr.delete]p3:
3580  // In the first alternative (delete object), if the static type of the
3581  // object to be deleted is different from its dynamic type, the static
3582  // type shall be a base class of the dynamic type of the object to be
3583  // deleted and the static type shall have a virtual destructor or the
3584  // behavior is undefined.
3585  //
3586  const CXXRecordDecl *PointeeRD = dtor->getParent();
3587  // Note: a final class cannot be derived from, no issue there
3588  if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3589  return;
3590 
3591  // If the superclass is in a system header, there's nothing that can be done.
3592  // The `delete` (where we emit the warning) can be in a system header,
3593  // what matters for this warning is where the deleted type is defined.
3594  if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3595  return;
3596 
3597  QualType ClassType = dtor->getThisType()->getPointeeType();
3598  if (PointeeRD->isAbstract()) {
3599  // If the class is abstract, we warn by default, because we're
3600  // sure the code has undefined behavior.
3601  Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3602  << ClassType;
3603  } else if (WarnOnNonAbstractTypes) {
3604  // Otherwise, if this is not an array delete, it's a bit suspect,
3605  // but not necessarily wrong.
3606  Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3607  << ClassType;
3608  }
3609  if (!IsDelete) {
3610  std::string TypeStr;
3611  ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3612  Diag(DtorLoc, diag::note_delete_non_virtual)
3613  << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3614  }
3615 }
3616 
3618  SourceLocation StmtLoc,
3619  ConditionKind CK) {
3620  ExprResult E =
3621  CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3622  if (E.isInvalid())
3623  return ConditionError();
3624  return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3626 }
3627 
3628 /// Check the use of the given variable as a C++ condition in an if,
3629 /// while, do-while, or switch statement.
3631  SourceLocation StmtLoc,
3632  ConditionKind CK) {
3633  if (ConditionVar->isInvalidDecl())
3634  return ExprError();
3635 
3636  QualType T = ConditionVar->getType();
3637 
3638  // C++ [stmt.select]p2:
3639  // The declarator shall not specify a function or an array.
3640  if (T->isFunctionType())
3641  return ExprError(Diag(ConditionVar->getLocation(),
3642  diag::err_invalid_use_of_function_type)
3643  << ConditionVar->getSourceRange());
3644  else if (T->isArrayType())
3645  return ExprError(Diag(ConditionVar->getLocation(),
3646  diag::err_invalid_use_of_array_type)
3647  << ConditionVar->getSourceRange());
3648 
3649  ExprResult Condition = BuildDeclRefExpr(
3650  ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3651  ConditionVar->getLocation());
3652 
3653  switch (CK) {
3655  return CheckBooleanCondition(StmtLoc, Condition.get());
3656 
3658  return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3659 
3660  case ConditionKind::Switch:
3661  return CheckSwitchCondition(StmtLoc, Condition.get());
3662  }
3663 
3664  llvm_unreachable("unexpected condition kind");
3665 }
3666 
3667 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3668 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3669  // C++ 6.4p4:
3670  // The value of a condition that is an initialized declaration in a statement
3671  // other than a switch statement is the value of the declared variable
3672  // implicitly converted to type bool. If that conversion is ill-formed, the
3673  // program is ill-formed.
3674  // The value of a condition that is an expression is the value of the
3675  // expression, implicitly converted to bool.
3676  //
3677  // FIXME: Return this value to the caller so they don't need to recompute it.
3678  llvm::APSInt Value(/*BitWidth*/1);
3679  return (IsConstexpr && !CondExpr->isValueDependent())
3680  ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3683 }
3684 
3685 /// Helper function to determine whether this is the (deprecated) C++
3686 /// conversion from a string literal to a pointer to non-const char or
3687 /// non-const wchar_t (for narrow and wide string literals,
3688 /// respectively).
3689 bool
3691  // Look inside the implicit cast, if it exists.
3692  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3693  From = Cast->getSubExpr();
3694 
3695  // A string literal (2.13.4) that is not a wide string literal can
3696  // be converted to an rvalue of type "pointer to char"; a wide
3697  // string literal can be converted to an rvalue of type "pointer
3698  // to wchar_t" (C++ 4.2p2).
3699  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3700  if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3701  if (const BuiltinType *ToPointeeType
3702  = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3703  // This conversion is considered only when there is an
3704  // explicit appropriate pointer target type (C++ 4.2p2).
3705  if (!ToPtrType->getPointeeType().hasQualifiers()) {
3706  switch (StrLit->getKind()) {
3707  case StringLiteral::UTF8:
3708  case StringLiteral::UTF16:
3709  case StringLiteral::UTF32:
3710  // We don't allow UTF literals to be implicitly converted
3711  break;
3712  case StringLiteral::Ascii:
3713  return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3714  ToPointeeType->getKind() == BuiltinType::Char_S);
3715  case StringLiteral::Wide:
3717  QualType(ToPointeeType, 0));
3718  }
3719  }
3720  }
3721 
3722  return false;
3723 }
3724 
3726  SourceLocation CastLoc,
3727  QualType Ty,
3728  CastKind Kind,
3729  CXXMethodDecl *Method,
3730  DeclAccessPair FoundDecl,
3731  bool HadMultipleCandidates,
3732  Expr *From) {
3733  switch (Kind) {
3734  default: llvm_unreachable("Unhandled cast kind!");
3735  case CK_ConstructorConversion: {
3736  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3737  SmallVector<Expr*, 8> ConstructorArgs;
3738 
3739  if (S.RequireNonAbstractType(CastLoc, Ty,
3740  diag::err_allocation_of_abstract_type))
3741  return ExprError();
3742 
3743  if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3744  return ExprError();
3745 
3746  S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3748  if (S.DiagnoseUseOfDecl(Method, CastLoc))
3749  return ExprError();
3750 
3752  CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3753  ConstructorArgs, HadMultipleCandidates,
3754  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3756  if (Result.isInvalid())
3757  return ExprError();
3758 
3759  return S.MaybeBindToTemporary(Result.getAs<Expr>());
3760  }
3761 
3762  case CK_UserDefinedConversion: {
3763  assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3764 
3765  S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3766  if (S.DiagnoseUseOfDecl(Method, CastLoc))
3767  return ExprError();
3768 
3769  // Create an implicit call expr that calls it.
3770  CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3771  ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3772  HadMultipleCandidates);
3773  if (Result.isInvalid())
3774  return ExprError();
3775  // Record usage of conversion in an implicit cast.
3776  Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3777  CK_UserDefinedConversion, Result.get(),
3778  nullptr, Result.get()->getValueKind());
3779 
3780  return S.MaybeBindToTemporary(Result.get());
3781  }
3782  }
3783 }
3784 
3785 /// PerformImplicitConversion - Perform an implicit conversion of the
3786 /// expression From to the type ToType using the pre-computed implicit
3787 /// conversion sequence ICS. Returns the converted
3788 /// expression. Action is the kind of conversion we're performing,
3789 /// used in the error message.
3790 ExprResult
3792  const ImplicitConversionSequence &ICS,
3793  AssignmentAction Action,
3794  CheckedConversionKind CCK) {
3795  // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3796  if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3797  return From;
3798 
3799  switch (ICS.getKind()) {
3801  ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3802  Action, CCK);
3803  if (Res.isInvalid())
3804  return ExprError();
3805  From = Res.get();
3806  break;
3807  }
3808 
3810 
3813  QualType BeforeToType;
3814  assert(FD && "no conversion function for user-defined conversion seq");
3815  if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3816  CastKind = CK_UserDefinedConversion;
3817 
3818  // If the user-defined conversion is specified by a conversion function,
3819  // the initial standard conversion sequence converts the source type to
3820  // the implicit object parameter of the conversion function.
3821  BeforeToType = Context.getTagDeclType(Conv->getParent());
3822  } else {
3823  const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3824  CastKind = CK_ConstructorConversion;
3825  // Do no conversion if dealing with ... for the first conversion.
3826  if (!ICS.UserDefined.EllipsisConversion) {
3827  // If the user-defined conversion is specified by a constructor, the
3828  // initial standard conversion sequence converts the source type to
3829  // the type required by the argument of the constructor
3830  BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3831  }
3832  }
3833  // Watch out for ellipsis conversion.
3834  if (!ICS.UserDefined.EllipsisConversion) {
3835  ExprResult Res =
3836  PerformImplicitConversion(From, BeforeToType,
3838  CCK);
3839  if (Res.isInvalid())
3840  return ExprError();
3841  From = Res.get();
3842  }
3843 
3844  ExprResult CastArg = BuildCXXCastArgument(
3845  *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3846  cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3848 
3849  if (CastArg.isInvalid())
3850  return ExprError();
3851 
3852  From = CastArg.get();
3853 
3854  // C++ [over.match.oper]p7:
3855  // [...] the second standard conversion sequence of a user-defined
3856  // conversion sequence is not applied.
3857  if (CCK == CCK_ForBuiltinOverloadedOp)
3858  return From;
3859 
3860  return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3861  AA_Converting, CCK);
3862  }
3863 
3865  ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3866  PDiag(diag::err_typecheck_ambiguous_condition)
3867  << From->getSourceRange());
3868  return ExprError();
3869 
3871  llvm_unreachable("Cannot perform an ellipsis conversion");
3872 
3874  bool Diagnosed =
3876  From->getType(), From, Action);
3877  assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3878  return ExprError();
3879  }
3880 
3881  // Everything went well.
3882  return From;
3883 }
3884 
3885 /// PerformImplicitConversion - Perform an implicit conversion of the
3886 /// expression From to the type ToType by following the standard
3887 /// conversion sequence SCS. Returns the converted
3888 /// expression. Flavor is the context in which we're performing this
3889 /// conversion, for use in error messages.
3890 ExprResult
3892  const StandardConversionSequence& SCS,
3893  AssignmentAction Action,
3894  CheckedConversionKind CCK) {
3895  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3896 
3897  // Overall FIXME: we are recomputing too many types here and doing far too
3898  // much extra work. What this means is that we need to keep track of more
3899  // information that is computed when we try the implicit conversion initially,
3900  // so that we don't need to recompute anything here.
3901  QualType FromType = From->getType();
3902 
3903  if (SCS.CopyConstructor) {
3904  // FIXME: When can ToType be a reference type?
3905  assert(!ToType->isReferenceType());
3906  if (SCS.Second == ICK_Derived_To_Base) {
3907  SmallVector<Expr*, 8> ConstructorArgs;
3908  if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3909  From, /*FIXME:ConstructLoc*/SourceLocation(),
3910  ConstructorArgs))
3911  return ExprError();
3912  return BuildCXXConstructExpr(
3913  /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3915  ConstructorArgs, /*HadMultipleCandidates*/ false,
3916  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3918  }
3919  return BuildCXXConstructExpr(
3920  /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3922  From, /*HadMultipleCandidates*/ false,
3923  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3925  }
3926 
3927  // Resolve overloaded function references.
3928  if (Context.hasSameType(FromType, Context.OverloadTy)) {
3929  DeclAccessPair Found;
3931  true, Found);
3932  if (!Fn)
3933  return ExprError();
3934 
3935  if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3936  return ExprError();
3937 
3938  From = FixOverloadedFunctionReference(From, Found, Fn);
3939  FromType = From->getType();
3940  }
3941 
3942  // If we're converting to an atomic type, first convert to the corresponding
3943  // non-atomic type.
3944  QualType ToAtomicType;
3945  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3946  ToAtomicType = ToType;
3947  ToType = ToAtomic->getValueType();
3948  }
3949 
3950  QualType InitialFromType = FromType;
3951  // Perform the first implicit conversion.
3952  switch (SCS.First) {
3953  case ICK_Identity:
3954  if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3955  FromType = FromAtomic->getValueType().getUnqualifiedType();
3956  From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3957  From, /*BasePath=*/nullptr, VK_RValue);
3958  }
3959  break;
3960 
3961  case ICK_Lvalue_To_Rvalue: {
3962  assert(From->getObjectKind() != OK_ObjCProperty);
3963  ExprResult FromRes = DefaultLvalueConversion(From);
3964  assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3965  From = FromRes.get();
3966  FromType = From->getType();
3967  break;
3968  }
3969 
3970  case ICK_Array_To_Pointer:
3971  FromType = Context.getArrayDecayedType(FromType);
3972  From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3973  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3974  break;
3975 
3977  FromType = Context.getPointerType(FromType);
3978  From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3979  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3980  break;
3981 
3982  default:
3983  llvm_unreachable("Improper first standard conversion");
3984  }
3985 
3986  // Perform the second implicit conversion
3987  switch (SCS.Second) {
3988  case ICK_Identity:
3989  // C++ [except.spec]p5:
3990  // [For] assignment to and initialization of pointers to functions,
3991  // pointers to member functions, and references to functions: the
3992  // target entity shall allow at least the exceptions allowed by the
3993  // source value in the assignment or initialization.
3994  switch (Action) {
3995  case AA_Assigning:
3996  case AA_Initializing:
3997  // Note, function argument passing and returning are initialization.
3998  case AA_Passing:
3999  case AA_Returning:
4000  case AA_Sending:
4001  case AA_Passing_CFAudited:
4002  if (CheckExceptionSpecCompatibility(From, ToType))
4003  return ExprError();
4004  break;
4005 
4006  case AA_Casting:
4007  case AA_Converting:
4008  // Casts and implicit conversions are not initialization, so are not
4009  // checked for exception specification mismatches.
4010  break;
4011  }
4012  // Nothing else to do.
4013  break;
4014 
4017  if (ToType->isBooleanType()) {
4018  assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4019  SCS.Second == ICK_Integral_Promotion &&
4020  "only enums with fixed underlying type can promote to bool");
4021  From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4022  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4023  } else {
4024  From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4025  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4026  }
4027  break;
4028 
4031  From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4032  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4033  break;
4034 
4035  case ICK_Complex_Promotion:
4036  case ICK_Complex_Conversion: {
4037  QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4038  QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4039  CastKind CK;
4040  if (FromEl->isRealFloatingType()) {
4041  if (ToEl->isRealFloatingType())
4042  CK = CK_FloatingComplexCast;
4043  else
4044  CK = CK_FloatingComplexToIntegralComplex;
4045  } else if (ToEl->isRealFloatingType()) {
4046  CK = CK_IntegralComplexToFloatingComplex;
4047  } else {
4048  CK = CK_IntegralComplexCast;
4049  }
4050  From = ImpCastExprToType(From, ToType, CK,
4051  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4052  break;
4053  }
4054 
4055  case ICK_Floating_Integral:
4056  if (ToType->isRealFloatingType())
4057  From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4058  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4059  else
4060  From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4061  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4062  break;
4063 
4065  From = ImpCastExprToType(From, ToType, CK_NoOp,
4066  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4067  break;
4068 
4070  case ICK_Pointer_Conversion: {
4071  if (SCS.IncompatibleObjC && Action != AA_Casting) {
4072  // Diagnose incompatible Objective-C conversions
4073  if (Action == AA_Initializing || Action == AA_Assigning)
4074  Diag(From->getBeginLoc(),
4075  diag::ext_typecheck_convert_incompatible_pointer)
4076  << ToType << From->getType() << Action << From->getSourceRange()
4077  << 0;
4078  else
4079  Diag(From->getBeginLoc(),
4080  diag::ext_typecheck_convert_incompatible_pointer)
4081  << From->getType() << ToType << Action << From->getSourceRange()
4082  << 0;
4083 
4084  if (From->getType()->isObjCObjectPointerType() &&
4085  ToType->isObjCObjectPointerType())
4089  From->getType())) {
4090  if (Action == AA_Initializing)
4091  Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4092  else
4093  Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4094  << (Action == AA_Casting) << From->getType() << ToType
4095  << From->getSourceRange();
4096  }
4097 
4098  CastKind Kind;
4099  CXXCastPath BasePath;
4100  if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4101  return ExprError();
4102 
4103  // Make sure we extend blocks if necessary.
4104  // FIXME: doing this here is really ugly.
4105  if (Kind == CK_BlockPointerToObjCPointerCast) {
4106  ExprResult E = From;
4108  From = E.get();
4109  }
4110  if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4111  CheckObjCConversion(SourceRange(), ToType, From, CCK);
4112  From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4113  .get();
4114  break;
4115  }
4116 
4117  case ICK_Pointer_Member: {
4118  CastKind Kind;
4119  CXXCastPath BasePath;
4120  if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4121  return ExprError();
4122  if (CheckExceptionSpecCompatibility(From, ToType))
4123  return ExprError();
4124 
4125  // We may not have been able to figure out what this member pointer resolved
4126  // to up until this exact point. Attempt to lock-in it's inheritance model.
4128  (void)isCompleteType(From->getExprLoc(), From->getType());
4129  (void)isCompleteType(From->getExprLoc(), ToType);
4130  }
4131 
4132  From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4133  .get();
4134  break;
4135  }
4136 
4138  // Perform half-to-boolean conversion via float.
4139  if (From->getType()->isHalfType()) {
4140  From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4141  FromType = Context.FloatTy;
4142  }
4143 
4144  From = ImpCastExprToType(From, Context.BoolTy,
4145  ScalarTypeToBooleanCastKind(FromType),
4146  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4147  break;
4148 
4149  case ICK_Derived_To_Base: {
4150  CXXCastPath BasePath;
4152  From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4153  From->getSourceRange(), &BasePath, CStyle))
4154  return ExprError();
4155 
4156  From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4157  CK_DerivedToBase, From->getValueKind(),
4158  &BasePath, CCK).get();
4159  break;
4160  }
4161 
4162  case ICK_Vector_Conversion:
4163  From = ImpCastExprToType(From, ToType, CK_BitCast,
4164  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4165  break;
4166 
4167  case ICK_Vector_Splat: {
4168  // Vector splat from any arithmetic type to a vector.
4169  Expr *Elem = prepareVectorSplat(ToType, From).get();
4170  From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4171  /*BasePath=*/nullptr, CCK).get();
4172  break;
4173  }
4174 
4175  case ICK_Complex_Real:
4176  // Case 1. x -> _Complex y
4177  if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4178  QualType ElType = ToComplex->getElementType();
4179  bool isFloatingComplex = ElType->isRealFloatingType();
4180 
4181  // x -> y
4182  if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4183  // do nothing
4184  } else if (From->getType()->isRealFloatingType()) {
4185  From = ImpCastExprToType(From, ElType,
4186  isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4187  } else {
4188  assert(From->getType()->isIntegerType());
4189  From = ImpCastExprToType(From, ElType,
4190  isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4191  }
4192  // y -> _Complex y
4193  From = ImpCastExprToType(From, ToType,
4194  isFloatingComplex ? CK_FloatingRealToComplex
4195  : CK_IntegralRealToComplex).get();
4196 
4197  // Case 2. _Complex x -> y
4198  } else {
4199  const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4200  assert(FromComplex);
4201 
4202  QualType ElType = FromComplex->getElementType();
4203  bool isFloatingComplex = ElType->isRealFloatingType();
4204 
4205  // _Complex x -> x
4206  From = ImpCastExprToType(From, ElType,
4207  isFloatingComplex ? CK_FloatingComplexToReal
4208  : CK_IntegralComplexToReal,
4209  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4210 
4211  // x -> y
4212  if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4213  // do nothing
4214  } else if (ToType->isRealFloatingType()) {
4215  From = ImpCastExprToType(From, ToType,
4216  isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4217  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4218  } else {
4219  assert(ToType->isIntegerType());
4220  From = ImpCastExprToType(From, ToType,
4221  isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4222  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4223  }
4224  }
4225  break;
4226 
4228  LangAS AddrSpaceL =
4229  ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4230  LangAS AddrSpaceR =
4231  FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4232  assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4233  "Invalid cast");
4234  CastKind Kind =
4235  AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4236  From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4237  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4238  break;
4239  }
4240 
4242  ExprResult FromRes = From;
4243  Sema::AssignConvertType ConvTy =
4245  if (FromRes.isInvalid())
4246  return ExprError();
4247  From = FromRes.get();
4248  assert ((ConvTy == Sema::Compatible) &&
4249  "Improper transparent union conversion");
4250  (void)ConvTy;
4251  break;
4252  }
4253 
4256  From = ImpCastExprToType(From, ToType,
4257  CK_ZeroToOCLOpaqueType,
4258  From->getValueKind()).get();
4259  break;
4260 
4261  case ICK_Lvalue_To_Rvalue:
4262  case ICK_Array_To_Pointer:
4265  case ICK_Qualification:
4267  case ICK_C_Only_Conversion:
4269  llvm_unreachable("Improper second standard conversion");
4270  }
4271 
4272  switch (SCS.Third) {
4273  case ICK_Identity:
4274  // Nothing to do.
4275  break;
4276 
4278  // If both sides are functions (or pointers/references to them), there could
4279  // be incompatible exception declarations.
4280  if (CheckExceptionSpecCompatibility(From, ToType))
4281  return ExprError();
4282 
4283  From = ImpCastExprToType(From, ToType, CK_NoOp,
4284  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4285  break;
4286 
4287  case ICK_Qualification: {
4288  // The qualification keeps the category of the inner expression, unless the
4289  // target type isn't a reference.
4290  ExprValueKind VK =
4291  ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4292 
4293  CastKind CK = CK_NoOp;
4294 
4295  if (ToType->isReferenceType() &&
4296  ToType->getPointeeType().getAddressSpace() !=
4297  From->getType().getAddressSpace())
4298  CK = CK_AddressSpaceConversion;
4299 
4300  if (ToType->isPointerType() &&
4301  ToType->getPointeeType().getAddressSpace() !=
4302  From->getType()->getPointeeType().getAddressSpace())
4303  CK = CK_AddressSpaceConversion;
4304 
4305  From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4306  /*BasePath=*/nullptr, CCK)
4307  .get();
4308 
4310  !getLangOpts().WritableStrings) {
4311  Diag(From->getBeginLoc(),
4312  getLangOpts().CPlusPlus11
4313  ? diag::ext_deprecated_string_literal_conversion
4314  : diag::warn_deprecated_string_literal_conversion)
4315  << ToType.getNonReferenceType();
4316  }
4317 
4318  break;
4319  }
4320 
4321  default:
4322  llvm_unreachable("Improper third standard conversion");
4323  }
4324 
4325  // If this conversion sequence involved a scalar -> atomic conversion, perform
4326  // that conversion now.
4327  if (!ToAtomicType.isNull()) {
4328  assert(Context.hasSameType(
4329  ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4330  From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4331  VK_RValue, nullptr, CCK).get();
4332  }
4333 
4334  // If this conversion sequence succeeded and involved implicitly converting a
4335  // _Nullable type to a _Nonnull one, complain.
4336  if (!isCast(CCK))
4337  diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4338  From->getBeginLoc());
4339 
4340  return From;
4341 }
4342 
4343 /// Check the completeness of a type in a unary type trait.
4344 ///
4345 /// If the particular type trait requires a complete type, tries to complete
4346 /// it. If completing the type fails, a diagnostic is emitted and false
4347 /// returned. If completing the type succeeds or no completion was required,
4348 /// returns true.
4350  SourceLocation Loc,
4351  QualType ArgTy) {
4352  // C++0x [meta.unary.prop]p3:
4353  // For all of the class templates X declared in this Clause, instantiating
4354  // that template with a template argument that is a class template
4355  // specialization may result in the implicit instantiation of the template
4356  // argument if and only if the semantics of X require that the argument
4357  // must be a complete type.
4358  // We apply this rule to all the type trait expressions used to implement
4359  // these class templates. We also try to follow any GCC documented behavior
4360  // in these expressions to ensure portability of standard libraries.
4361  switch (UTT) {
4362  default: llvm_unreachable("not a UTT");
4363  // is_complete_type somewhat obviously cannot require a complete type.
4364  case UTT_IsCompleteType:
4365  // Fall-through
4366 
4367  // These traits are modeled on the type predicates in C++0x
4368  // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4369  // requiring a complete type, as whether or not they return true cannot be
4370  // impacted by the completeness of the type.
4371  case UTT_IsVoid:
4372  case UTT_IsIntegral:
4373  case UTT_IsFloatingPoint:
4374  case UTT_IsArray:
4375  case UTT_IsPointer:
4376  case UTT_IsLvalueReference:
4377  case UTT_IsRvalueReference:
4380  case UTT_IsEnum:
4381  case UTT_IsUnion:
4382  case UTT_IsClass:
4383  case UTT_IsFunction:
4384  case UTT_IsReference:
4385  case UTT_IsArithmetic:
4386  case UTT_IsFundamental:
4387  case UTT_IsObject:
4388  case UTT_IsScalar:
4389  case UTT_IsCompound:
4390  case UTT_IsMemberPointer:
4391  // Fall-through
4392 
4393  // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4394  // which requires some of its traits to have the complete type. However,
4395  // the completeness of the type cannot impact these traits' semantics, and
4396  // so they don't require it. This matches the comments on these traits in
4397  // Table 49.
4398  case UTT_IsConst:
4399  case UTT_IsVolatile:
4400  case UTT_IsSigned:
4401  case UTT_IsUnsigned:
4402 
4403  // This type trait always returns false, checking the type is moot.
4404  case UTT_IsInterfaceClass:
4405  return true;
4406 
4407  // C++14 [meta.unary.prop]:
4408  // If T is a non-union class type, T shall be a complete type.
4409  case UTT_IsEmpty:
4410  case UTT_IsPolymorphic:
4411  case UTT_IsAbstract:
4412  if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4413  if (!RD->isUnion())
4414  return !S.RequireCompleteType(
4415  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4416  return true;
4417 
4418  // C++14 [meta.unary.prop]:
4419  // If T is a class type, T shall be a complete type.
4420  case UTT_IsFinal:
4421  case UTT_IsSealed:
4422  if (ArgTy->getAsCXXRecordDecl())
4423  return !S.RequireCompleteType(
4424  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4425  return true;
4426 
4427  // C++1z [meta.unary.prop]:
4428  // remove_all_extents_t<T> shall be a complete type or cv void.
4429  case UTT_IsAggregate:
4430  case UTT_IsTrivial:
4432  case UTT_IsStandardLayout:
4433  case UTT_IsPOD:
4434  case UTT_IsLiteral:
4435  // Per the GCC type traits documentation, T shall be a complete type, cv void,
4436  // or an array of unknown bound. But GCC actually imposes the same constraints
4437  // as above.
4438  case UTT_HasNothrowAssign:
4441  case UTT_HasNothrowCopy:
4442  case UTT_HasTrivialAssign:
4446  case UTT_HasTrivialCopy:
4449  ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4450  LLVM_FALLTHROUGH;
4451 
4452  // C++1z [meta.unary.prop]:
4453  // T shall be a complete type, cv void, or an array of unknown bound.
4454  case UTT_IsDestructible:
4458  if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4459  return true;
4460 
4461  return !S.RequireCompleteType(
4462  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4463  }
4464 }
4465 
4467  Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4468  bool (CXXRecordDecl::*HasTrivial)() const,
4469  bool (CXXRecordDecl::*HasNonTrivial)() const,
4470  bool (CXXMethodDecl::*IsDesiredOp)() const)
4471 {
4472  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4473  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4474  return true;
4475 
4477  DeclarationNameInfo NameInfo(Name, KeyLoc);
4478  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4479  if (Self.LookupQualifiedName(Res, RD)) {
4480  bool FoundOperator = false;
4481  Res.suppressDiagnostics();
4482  for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4483  Op != OpEnd; ++Op) {
4484  if (isa<FunctionTemplateDecl>(*Op))
4485  continue;
4486 
4487  CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4488  if((Operator->*IsDesiredOp)()) {
4489  FoundOperator = true;
4490  const FunctionProtoType *CPT =
4491  Operator->getType()->getAs<FunctionProtoType>();
4492  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4493  if (!CPT || !CPT->isNothrow())
4494  return false;
4495  }
4496  }
4497  return FoundOperator;
4498  }
4499  return false;
4500 }
4501 
4502 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4503  SourceLocation KeyLoc, QualType T) {
4504  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4505 
4506  ASTContext &C = Self.Context;
4507  switch(UTT) {
4508  default: llvm_unreachable("not a UTT");
4509  // Type trait expressions corresponding to the primary type category
4510  // predicates in C++0x [meta.unary.cat].
4511  case UTT_IsVoid:
4512  return T->isVoidType();
4513  case UTT_IsIntegral:
4514  return T->isIntegralType(C);
4515  case UTT_IsFloatingPoint:
4516  return T->isFloatingType();
4517  case UTT_IsArray:
4518  return T->isArrayType();
4519  case UTT_IsPointer:
4520  return T->isPointerType();
4521  case UTT_IsLvalueReference:
4522  return T->isLValueReferenceType();
4523  case UTT_IsRvalueReference:
4524  return T->isRValueReferenceType();
4526  return T->isMemberFunctionPointerType();
4528  return T->isMemberDataPointerType();
4529  case UTT_IsEnum:
4530  return T->isEnumeralType();
4531  case UTT_IsUnion:
4532  return T->isUnionType();
4533  case UTT_IsClass:
4534  return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4535  case UTT_IsFunction:
4536  return T->isFunctionType();
4537 
4538  // Type trait expressions which correspond to the convenient composition
4539  // predicates in C++0x [meta.unary.comp].
4540  case UTT_IsReference:
4541  return T->isReferenceType();
4542  case UTT_IsArithmetic:
4543  return T->isArithmeticType() && !T->isEnumeralType();
4544  case UTT_IsFundamental:
4545  return T->isFundamentalType();
4546  case UTT_IsObject:
4547  return T->isObjectType();
4548  case UTT_IsScalar:
4549  // Note: semantic analysis depends on Objective-C lifetime types to be
4550  // considered scalar types. However, such types do not actually behave
4551  // like scalar types at run time (since they may require retain/release
4552  // operations), so we report them as non-scalar.
4553  if (T->isObjCLifetimeType()) {
4554  switch (T.getObjCLifetime()) {
4555  case Qualifiers::OCL_None:
4557  return true;
4558 
4560  case Qualifiers::OCL_Weak:
4562  return false;
4563  }
4564  }
4565 
4566  return T->isScalarType();
4567  case UTT_IsCompound:
4568  return T->isCompoundType();
4569  case UTT_IsMemberPointer:
4570  return T->isMemberPointerType();
4571 
4572  // Type trait expressions which correspond to the type property predicates
4573  // in C++0x [meta.unary.prop].
4574  case UTT_IsConst:
4575  return T.isConstQualified();
4576  case UTT_IsVolatile:
4577  return T.isVolatileQualified();
4578  case UTT_IsTrivial:
4579  return T.isTrivialType(C);
4581  return T.isTriviallyCopyableType(C);
4582  case UTT_IsStandardLayout:
4583  return T->isStandardLayoutType();
4584  case UTT_IsPOD:
4585  return T.isPODType(C);
4586  case UTT_IsLiteral:
4587  return T->isLiteralType(C);
4588  case UTT_IsEmpty:
4589  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590  return !RD->isUnion() && RD->isEmpty();
4591  return false;
4592  case UTT_IsPolymorphic:
4593  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4594  return !RD->isUnion() && RD->isPolymorphic();
4595  return false;
4596  case UTT_IsAbstract:
4597  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4598  return !RD->isUnion() && RD->isAbstract();
4599  return false;
4600  case UTT_IsAggregate:
4601  // Report vector extensions and complex types as aggregates because they
4602  // support aggregate initialization. GCC mirrors this behavior for vectors
4603  // but not _Complex.
4604  return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4605  T->isAnyComplexType();
4606  // __is_interface_class only returns true when CL is invoked in /CLR mode and
4607  // even then only when it is used with the 'interface struct ...' syntax
4608  // Clang doesn't support /CLR which makes this type trait moot.
4609  case UTT_IsInterfaceClass:
4610  return false;
4611  case UTT_IsFinal:
4612  case UTT_IsSealed:
4613  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4614  return RD->hasAttr<FinalAttr>();
4615  return false;
4616  case UTT_IsSigned:
4617  // Enum types should always return false.
4618  // Floating points should always return true.
4619  return !T->isEnumeralType() && (T->isFloatingType() || T->isSignedIntegerType());
4620  case UTT_IsUnsigned:
4621  return T->isUnsignedIntegerType();
4622 
4623  // Type trait expressions which query classes regarding their construction,
4624  // destruction, and copying. Rather than being based directly on the
4625  // related type predicates in the standard, they are specified by both
4626  // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4627  // specifications.
4628  //
4629  // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4630  // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4631  //
4632  // Note that these builtins do not behave as documented in g++: if a class
4633  // has both a trivial and a non-trivial special member of a particular kind,
4634  // they return false! For now, we emulate this behavior.
4635  // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4636  // does not correctly compute triviality in the presence of multiple special
4637  // members of the same kind. Revisit this once the g++ bug is fixed.
4639  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4640  // If __is_pod (type) is true then the trait is true, else if type is
4641  // a cv class or union type (or array thereof) with a trivial default
4642  // constructor ([class.ctor]) then the trait is true, else it is false.
4643  if (T.isPODType(C))
4644  return true;
4645  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4646  return RD->hasTrivialDefaultConstructor() &&
4647  !RD->hasNonTrivialDefaultConstructor();
4648  return false;
4650  // This trait is implemented by MSVC 2012 and needed to parse the
4651  // standard library headers. Specifically this is used as the logic
4652  // behind std::is_trivially_move_constructible (20.9.4.3).
4653  if (T.isPODType(C))
4654  return true;
4655  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4656  return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4657  return false;
4658  case UTT_HasTrivialCopy:
4659  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4660  // If __is_pod (type) is true or type is a reference type then
4661  // the trait is true, else if type is a cv class or union type
4662  // with a trivial copy constructor ([class.copy]) then the trait
4663  // is true, else it is false.
4664  if (T.isPODType(C) || T->isReferenceType())
4665  return true;
4666  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4667  return RD->hasTrivialCopyConstructor() &&
4668  !RD->hasNonTrivialCopyConstructor();
4669  return false;
4671  // This trait is implemented by MSVC 2012 and needed to parse the
4672  // standard library headers. Specifically it is used as the logic
4673  // behind std::is_trivially_move_assignable (20.9.4.3)
4674  if (T.isPODType(C))
4675  return true;
4676  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4677  return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4678  return false;
4679  case UTT_HasTrivialAssign:
4680  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4681  // If type is const qualified or is a reference type then the
4682  // trait is false. Otherwise if __is_pod (type) is true then the
4683  // trait is true, else if type is a cv class or union type with
4684  // a trivial copy assignment ([class.copy]) then the trait is
4685  // true, else it is false.
4686  // Note: the const and reference restrictions are interesting,
4687  // given that const and reference members don't prevent a class
4688  // from having a trivial copy assignment operator (but do cause
4689  // errors if the copy assignment operator is actually used, q.v.
4690  // [class.copy]p12).
4691 
4692  if (T.isConstQualified())
4693  return false;
4694  if (T.isPODType(C))
4695  return true;
4696  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4697  return RD->hasTrivialCopyAssignment() &&
4698  !RD->hasNonTrivialCopyAssignment();
4699  return false;
4700  case UTT_IsDestructible:
4703  // C++14 [meta.unary.prop]:
4704  // For reference types, is_destructible<T>::value is true.
4705  if (T->isReferenceType())
4706  return true;
4707 
4708  // Objective-C++ ARC: autorelease types don't require destruction.
4709  if (T->isObjCLifetimeType() &&
4711  return true;
4712 
4713  // C++14 [meta.unary.prop]:
4714  // For incomplete types and function types, is_destructible<T>::value is
4715  // false.
4716  if (T->isIncompleteType() || T->isFunctionType())
4717  return false;
4718 
4719  // A type that requires destruction (via a non-trivial destructor or ARC
4720  // lifetime semantics) is not trivially-destructible.
4722  return false;
4723 
4724  // C++14 [meta.unary.prop]:
4725  // For object types and given U equal to remove_all_extents_t<T>, if the
4726  // expression std::declval<U&>().~U() is well-formed when treated as an
4727  // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4728  if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4729  CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4730  if (!Destructor)
4731  return false;
4732  // C++14 [dcl.fct.def.delete]p2:
4733  // A program that refers to a deleted function implicitly or
4734  // explicitly, other than to declare it, is ill-formed.
4735  if (Destructor->isDeleted())
4736  return false;
4737  if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4738  return false;
4739  if (UTT == UTT_IsNothrowDestructible) {
4740  const FunctionProtoType *CPT =
4741  Destructor->getType()->getAs<FunctionProtoType>();
4742  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4743  if (!CPT || !CPT->isNothrow())
4744  return false;
4745  }
4746  }
4747  return true;
4748 
4750  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4751  // If __is_pod (type) is true or type is a reference type
4752  // then the trait is true, else if type is a cv class or union
4753  // type (or array thereof) with a trivial destructor
4754  // ([class.dtor]) then the trait is true, else it is
4755  // false.
4756  if (T.isPODType(C) || T->isReferenceType())
4757  return true;
4758 
4759  // Objective-C++ ARC: autorelease types don't require destruction.
4760  if (T->isObjCLifetimeType() &&
4762  return true;
4763 
4764  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4765  return RD->hasTrivialDestructor();
4766  return false;
4767  // TODO: Propagate nothrowness for implicitly declared special members.
4768  case UTT_HasNothrowAssign:
4769  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4770  // If type is const qualified or is a reference type then the
4771  // trait is false. Otherwise if __has_trivial_assign (type)
4772  // is true then the trait is true, else if type is a cv class
4773  // or union type with copy assignment operators that are known
4774  // not to throw an exception then the trait is true, else it is
4775  // false.
4776  if (C.getBaseElementType(T).isConstQualified())
4777  return false;
4778  if (T->isReferenceType())
4779  return false;
4780  if (T.isPODType(C) || T->isObjCLifetimeType())
4781  return true;
4782 
4783  if (const RecordType *RT = T->getAs<RecordType>())
4784  return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4788  return false;
4790  // This trait is implemented by MSVC 2012 and needed to parse the
4791  // standard library headers. Specifically this is used as the logic
4792  // behind std::is_nothrow_move_assignable (20.9.4.3).
4793  if (T.isPODType(C))
4794  return true;
4795 
4796  if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4797  return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4801  return false;
4802  case UTT_HasNothrowCopy:
4803  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4804  // If __has_trivial_copy (type) is true then the trait is true, else
4805  // if type is a cv class or union type with copy constructors that are
4806  // known not to throw an exception then the trait is true, else it is
4807  // false.
4808  if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4809  return true;
4810  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4811  if (RD->hasTrivialCopyConstructor() &&
4812  !RD->hasNonTrivialCopyConstructor())
4813  return true;
4814 
4815  bool FoundConstructor = false;
4816  unsigned FoundTQs;
4817  for (const auto *ND : Self.LookupConstructors(RD)) {
4818  // A template constructor is never a copy constructor.
4819  // FIXME: However, it may actually be selected at the actual overload
4820  // resolution point.
4821  if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4822  continue;
4823  // UsingDecl itself is not a constructor
4824  if (isa<UsingDecl>(ND))
4825  continue;
4826  auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4827  if (Constructor->isCopyConstructor(FoundTQs)) {
4828  FoundConstructor = true;
4829  const FunctionProtoType *CPT
4830  = Constructor->getType()->getAs<FunctionProtoType>();
4831  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4832  if (!CPT)
4833  return false;
4834  // TODO: check whether evaluating default arguments can throw.
4835  // For now, we'll be conservative and assume that they can throw.
4836  if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4837  return false;
4838  }
4839  }
4840 
4841  return FoundConstructor;
4842  }
4843  return false;
4845  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4846  // If __has_trivial_constructor (type) is true then the trait is
4847  // true, else if type is a cv class or union type (or array
4848  // thereof) with a default constructor that is known not to
4849  // throw an exception then the trait is true, else it is false.
4850  if (T.isPODType(C) || T->isObjCLifetimeType())
4851  return true;
4852  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4853  if (RD->hasTrivialDefaultConstructor() &&
4854  !RD->hasNonTrivialDefaultConstructor())
4855  return true;
4856 
4857  bool FoundConstructor = false;
4858  for (const auto *ND : Self.LookupConstructors(RD)) {
4859  // FIXME: In C++0x, a constructor template can be a default constructor.
4860  if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4861  continue;
4862  // UsingDecl itself is not a constructor
4863  if (isa<UsingDecl>(ND))
4864  continue;
4865  auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4866  if (Constructor->isDefaultConstructor()) {
4867  FoundConstructor = true;
4868  const FunctionProtoType *CPT
4869  = Constructor->getType()->getAs<FunctionProtoType>();
4870  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4871  if (!CPT)
4872  return false;
4873  // FIXME: check whether evaluating default arguments can throw.
4874  // For now, we'll be conservative and assume that they can throw.
4875  if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4876  return false;
4877  }
4878  }
4879  return FoundConstructor;
4880  }
4881  return false;
4883  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4884  // If type is a class type with a virtual destructor ([class.dtor])
4885  // then the trait is true, else it is false.
4886  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4887  if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4888  return Destructor->isVirtual();
4889  return false;
4890 
4891  // These type trait expressions are modeled on the specifications for the
4892  // Embarcadero C++0x type trait functions:
4893  // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4894  case UTT_IsCompleteType:
4895  // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4896  // Returns True if and only if T is a complete type at the point of the
4897  // function call.
4898  return !T->isIncompleteType();
4900  return C.hasUniqueObjectRepresentations(T);
4901  }
4902 }
4903 
4904 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4905  QualType RhsT, SourceLocation KeyLoc);
4906 
4909  SourceLocation RParenLoc) {
4910  if (Kind <= UTT_Last)
4911  return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4912 
4913  // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4914  // traits to avoid duplication.
4915  if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4916  return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4917  Args[1]->getType(), RParenLoc);
4918 
4919  switch (Kind) {
4924  // C++11 [meta.unary.prop]:
4925  // is_trivially_constructible is defined as:
4926  //
4927  // is_constructible<T, Args...>::value is true and the variable
4928  // definition for is_constructible, as defined below, is known to call
4929  // no operation that is not trivial.
4930  //
4931  // The predicate condition for a template specialization
4932  // is_constructible<T, Args...> shall be satisfied if and only if the
4933  // following variable definition would be well-formed for some invented
4934  // variable t:
4935  //
4936  // T t(create<Args>()...);
4937  assert(!Args.empty());
4938 
4939  // Precondition: T and all types in the parameter pack Args shall be
4940  // complete types, (possibly cv-qualified) void, or arrays of
4941  // unknown bound.
4942  for (const auto *TSI : Args) {
4943  QualType ArgTy = TSI->getType();
4944  if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4945  continue;
4946 
4947  if (S.RequireCompleteType(KWLoc, ArgTy,
4948  diag::err_incomplete_type_used_in_type_trait_expr))
4949  return false;
4950  }
4951 
4952  // Make sure the first argument is not incomplete nor a function type.
4953  QualType T = Args[0]->getType();
4954  if (T->isIncompleteType() || T->isFunctionType())
4955  return false;
4956 
4957  // Make sure the first argument is not an abstract type.
4958  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4959  if (RD && RD->isAbstract())
4960  return false;
4961 
4962  SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4963  SmallVector<Expr *, 2> ArgExprs;
4964  ArgExprs.reserve(Args.size() - 1);
4965  for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4966  QualType ArgTy = Args[I]->getType();
4967  if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4968  ArgTy = S.Context.getRValueReferenceType(ArgTy);
4969  OpaqueArgExprs.push_back(
4970  OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4971  ArgTy.getNonLValueExprType(S.Context),
4972  Expr::getValueKindForType(ArgTy)));
4973  }
4974  for (Expr &E : OpaqueArgExprs)
4975  ArgExprs.push_back(&E);
4976 
4977  // Perform the initialization in an unevaluated context within a SFINAE
4978  // trap at translation unit scope.
4981  Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4985  RParenLoc));
4986  InitializationSequence Init(S, To, InitKind, ArgExprs);
4987  if (Init.Failed())
4988  return false;
4989 
4990  ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4991  if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4992  return false;
4993 
4994  if (Kind == clang::TT_IsConstructible)
4995  return true;
4996 
4998  if (!T->isReferenceType())
4999  return false;
5000 
5001  return !Init.isDirectReferenceBinding();
5002  }
5003 
5005  return S.canThrow(Result.get()) == CT_Cannot;
5006 
5007  if (Kind == clang::TT_IsTriviallyConstructible) {
5008  // Under Objective-C ARC and Weak, if the destination has non-trivial
5009  // Objective-C lifetime, this is a non-trivial construction.
5011  return false;
5012 
5013  // The initialization succeeded; now make sure there are no non-trivial
5014  // calls.
5015  return !Result.get()->hasNonTrivialCall(S.Context);
5016  }
5017 
5018  llvm_unreachable("unhandled type trait");
5019  return false;
5020  }
5021  default: llvm_unreachable("not a TT");
5022  }
5023 
5024  return false;
5025 }
5026 
5029  SourceLocation RParenLoc) {
5030  QualType ResultType = Context.getLogicalOperationType();
5031 
5033  *this, Kind, KWLoc, Args[0]->getType()))
5034  return ExprError();
5035 
5036  bool Dependent = false;
5037  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5038  if (Args[I]->getType()->isDependentType()) {
5039  Dependent = true;
5040  break;
5041  }
5042  }
5043 
5044  bool Result = false;
5045  if (!Dependent)
5046  Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5047 
5048  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5049  RParenLoc, Result);
5050 }
5051 
5053  ArrayRef<ParsedType> Args,
5054  SourceLocation RParenLoc) {
5055  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5056  ConvertedArgs.reserve(Args.size());
5057 
5058  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5059  TypeSourceInfo *TInfo;
5060  QualType T = GetTypeFromParser(Args[I], &TInfo);
5061  if (!TInfo)
5062  TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5063 
5064  ConvertedArgs.push_back(TInfo);
5065  }
5066 
5067  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5068 }
5069 
5070 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5071  QualType RhsT, SourceLocation KeyLoc) {
5072  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5073  "Cannot evaluate traits of dependent types");
5074 
5075  switch(BTT) {
5076  case BTT_IsBaseOf: {
5077  // C++0x [meta.rel]p2
5078  // Base is a base class of Derived without regard to cv-qualifiers or
5079  // Base and Derived are not unions and name the same class type without
5080  // regard to cv-qualifiers.
5081 
5082  const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5083  const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5084  if (!rhsRecord || !lhsRecord) {
5085  const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5086  const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5087  if (!LHSObjTy || !RHSObjTy)
5088  return false;
5089 
5090  ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5091  ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5092  if (!BaseInterface || !DerivedInterface)
5093  return false;
5094 
5095  if (Self.RequireCompleteType(
5096  KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5097  return false;
5098 
5099  return BaseInterface->isSuperClassOf(DerivedInterface);
5100  }
5101 
5102  assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5103  == (lhsRecord == rhsRecord));
5104 
5105  // Unions are never base classes, and never have base classes.
5106  // It doesn't matter if they are complete or not. See PR#41843
5107  if (lhsRecord && lhsRecord->getDecl()->isUnion())
5108  return false;
5109  if (rhsRecord && rhsRecord->getDecl()->isUnion())
5110  return false;
5111 
5112  if (lhsRecord == rhsRecord)
5113  return true;
5114 
5115  // C++0x [meta.rel]p2:
5116  // If Base and Derived are class types and are different types
5117  // (ignoring possible cv-qualifiers) then Derived shall be a
5118  // complete type.
5119  if (Self.RequireCompleteType(KeyLoc, RhsT,
5120  diag::err_incomplete_type_used_in_type_trait_expr))
5121  return false;
5122 
5123  return cast<CXXRecordDecl>(rhsRecord->getDecl())
5124  ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5125  }
5126  case BTT_IsSame:
5127  return Self.Context.hasSameType(LhsT, RhsT);
5128  case BTT_TypeCompatible: {
5129  // GCC ignores cv-qualifiers on arrays for this builtin.
5130  Qualifiers LhsQuals, RhsQuals;
5131  QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5132  QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5133  return Self.Context.typesAreCompatible(Lhs, Rhs);
5134  }
5135  case BTT_IsConvertible:
5136  case BTT_IsConvertibleTo: {
5137  // C++0x [meta.rel]p4:
5138  // Given the following function prototype:
5139  //
5140  // template <class T>
5141  // typename add_rvalue_reference<T>::type create();
5142  //
5143  // the predicate condition for a template specialization
5144  // is_convertible<From, To> shall be satisfied if and only if
5145  // the return expression in the following code would be
5146  // well-formed, including any implicit conversions to the return
5147  // type of the function:
5148  //
5149  // To test() {
5150  // return create<From>();
5151  // }
5152  //
5153  // Access checking is performed as if in a context unrelated to To and
5154  // From. Only the validity of the immediate context of the expression
5155  // of the return-statement (including conversions to the return type)
5156  // is considered.
5157  //
5158  // We model the initialization as a copy-initialization of a temporary
5159  // of the appropriate type, which for this expression is identical to the
5160  // return statement (since NRVO doesn't apply).
5161 
5162  // Functions aren't allowed to return function or array types.
5163  if (RhsT->isFunctionType() || RhsT->isArrayType())
5164  return false;
5165 
5166  // A return statement in a void function must have void type.
5167  if (RhsT->isVoidType())
5168  return LhsT->isVoidType();
5169 
5170  // A function definition requires a complete, non-abstract return type.
5171  if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5172  return false;
5173 
5174  // Compute the result of add_rvalue_reference.
5175  if (LhsT->isObjectType() || LhsT->isFunctionType())
5176  LhsT = Self.Context.getRValueReferenceType(LhsT);
5177 
5178  // Build a fake source and destination for initialization.
5180  OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5182  Expr *FromPtr = &From;
5184  SourceLocation()));
5185 
5186  // Perform the initialization in an unevaluated context within a SFINAE
5187  // trap at translation unit scope.
5190  Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5191  Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5192  InitializationSequence Init(Self, To, Kind, FromPtr);
5193  if (Init.Failed())
5194  return false;
5195 
5196  ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5197  return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5198  }
5199 
5200  case BTT_IsAssignable:
5203  // C++11 [meta.unary.prop]p3:
5204  // is_trivially_assignable is defined as:
5205  // is_assignable<T, U>::value is true and the assignment, as defined by
5206  // is_assignable, is known to call no operation that is not trivial
5207  //
5208  // is_assignable is defined as:
5209  // The expression declval<T>() = declval<U>() is well-formed when
5210  // treated as an unevaluated operand (Clause 5).
5211  //
5212  // For both, T and U shall be complete types, (possibly cv-qualified)
5213  // void, or arrays of unknown bound.
5214  if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5215  Self.RequireCompleteType(KeyLoc, LhsT,
5216  diag::err_incomplete_type_used_in_type_trait_expr))
5217  return false;
5218  if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5219  Self.RequireCompleteType(KeyLoc, RhsT,
5220  diag::err_incomplete_type_used_in_type_trait_expr))
5221  return false;
5222 
5223  // cv void is never assignable.
5224  if (LhsT->isVoidType() || RhsT->isVoidType())
5225  return false;
5226 
5227  // Build expressions that emulate the effect of declval<T>() and
5228  // declval<U>().
5229  if (LhsT->isObjectType() || LhsT->isFunctionType())
5230  LhsT = Self.Context.getRValueReferenceType(LhsT);
5231  if (RhsT->isObjectType() || RhsT->isFunctionType())
5232  RhsT = Self.Context.getRValueReferenceType(RhsT);
5233  OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5235  OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5237 
5238  // Attempt the assignment in an unevaluated context within a SFINAE
5239  // trap at translation unit scope.
5242  Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5243  Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5244  ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5245  &Rhs);
5246  if (Result.isInvalid())
5247  return false;
5248 
5249  // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5250  Self.CheckUnusedVolatileAssignment(Result.get());
5251 
5252  if (SFINAE.hasErrorOccurred())
5253  return false;
5254 
5255  if (BTT == BTT_IsAssignable)
5256  return true;
5257 
5258  if (BTT == BTT_IsNothrowAssignable)
5259  return Self.canThrow(Result.get()) == CT_Cannot;
5260 
5261  if (BTT == BTT_IsTriviallyAssignable) {
5262  // Under Objective-C ARC and Weak, if the destination has non-trivial
5263  // Objective-C lifetime, this is a non-trivial assignment.
5265  return false;
5266 
5267  return !Result.get()->hasNonTrivialCall(Self.Context);
5268  }
5269 
5270  llvm_unreachable("unhandled type trait");
5271  return false;
5272  }
5273  default: llvm_unreachable("not a BTT");
5274  }
5275  llvm_unreachable("Unknown type trait or not implemented");
5276 }
5277 
5279  SourceLocation KWLoc,
5280  ParsedType Ty,
5281  Expr* DimExpr,
5282  SourceLocation RParen) {
5283  TypeSourceInfo *TSInfo;
5284  QualType T = GetTypeFromParser(Ty, &TSInfo);
5285  if (!TSInfo)
5286  TSInfo = Context.getTrivialTypeSourceInfo(T);
5287 
5288  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5289 }
5290 
5291 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5292  QualType T, Expr *DimExpr,
5293  SourceLocation KeyLoc) {
5294  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5295 
5296  switch(ATT) {
5297  case ATT_ArrayRank:
5298  if (T->isArrayType()) {
5299  unsigned Dim = 0;
5300  while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5301  ++Dim;
5302  T = AT->getElementType();
5303  }
5304  return Dim;
5305  }
5306  return 0;
5307 
5308  case ATT_ArrayExtent: {
5310  uint64_t Dim;
5311  if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5312  diag::err_dimension_expr_not_constant_integer,
5313  false).isInvalid())
5314  return 0;
5315  if (Value.isSigned() && Value.isNegative()) {
5316  Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5317  << DimExpr->getSourceRange();
5318  return 0;
5319  }
5320  Dim = Value.getLimitedValue();
5321 
5322  if (T->isArrayType()) {
5323  unsigned D = 0;
5324  bool Matched = false;
5325  while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5326  if (Dim == D) {
5327  Matched = true;
5328  break;
5329  }
5330  ++D;
5331  T = AT->getElementType();
5332  }
5333 
5334  if (Matched && T->isArrayType()) {
5335  if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5336  return CAT->getSize().getLimitedValue();
5337  }
5338  }
5339  return 0;
5340  }
5341  }
5342  llvm_unreachable("Unknown type trait or not implemented");
5343 }
5344 
5346  SourceLocation KWLoc,
5347  TypeSourceInfo *TSInfo,
5348  Expr* DimExpr,
5349  SourceLocation RParen) {
5350  QualType T = TSInfo->getType();
5351 
5352  // FIXME: This should likely be tracked as an APInt to remove any host
5353  // assumptions about the width of size_t on the target.
5354  uint64_t Value = 0;
5355  if (!T->isDependentType())
5356  Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5357 
5358  // While the specification for these traits from the Embarcadero C++
5359  // compiler's documentation says the return type is 'unsigned int', Clang
5360  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5361  // compiler, there is no difference. On several other platforms this is an
5362  // important distinction.
5363  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5364  RParen, Context.getSizeType());
5365 }
5366 
5368  SourceLocation KWLoc,
5369  Expr *Queried,
5370  SourceLocation RParen) {
5371  // If error parsing the expression, ignore.
5372  if (!Queried)
5373  return