clang  16.0.0git
SemaStmt.cpp
Go to the documentation of this file.
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Ownership.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/SmallVector.h"
42 
43 using namespace clang;
44 using namespace sema;
45 
46 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
47  if (FE.isInvalid())
48  return StmtError();
49 
50  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
51  if (FE.isInvalid())
52  return StmtError();
53 
54  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
55  // void expression for its side effects. Conversion to void allows any
56  // operand, even incomplete types.
57 
58  // Same thing in for stmt first clause (when expr) and third clause.
59  return StmtResult(FE.getAs<Stmt>());
60 }
61 
62 
64  DiscardCleanupsInEvaluationContext();
65  return StmtError();
66 }
67 
69  bool HasLeadingEmptyMacro) {
70  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
71 }
72 
74  SourceLocation EndLoc) {
75  DeclGroupRef DG = dg.get();
76 
77  // If we have an invalid decl, just return an error.
78  if (DG.isNull()) return StmtError();
79 
80  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
81 }
82 
84  DeclGroupRef DG = dg.get();
85 
86  // If we don't have a declaration, or we have an invalid declaration,
87  // just return.
88  if (DG.isNull() || !DG.isSingleDecl())
89  return;
90 
91  Decl *decl = DG.getSingleDecl();
92  if (!decl || decl->isInvalidDecl())
93  return;
94 
95  // Only variable declarations are permitted.
96  VarDecl *var = dyn_cast<VarDecl>(decl);
97  if (!var) {
98  Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
99  decl->setInvalidDecl();
100  return;
101  }
102 
103  // foreach variables are never actually initialized in the way that
104  // the parser came up with.
105  var->setInit(nullptr);
106 
107  // In ARC, we don't need to retain the iteration variable of a fast
108  // enumeration loop. Rather than actually trying to catch that
109  // during declaration processing, we remove the consequences here.
110  if (getLangOpts().ObjCAutoRefCount) {
111  QualType type = var->getType();
112 
113  // Only do this if we inferred the lifetime. Inferred lifetime
114  // will show up as a local qualifier because explicit lifetime
115  // should have shown up as an AttributedType instead.
116  if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
117  // Add 'const' and mark the variable as pseudo-strong.
118  var->setType(type.withConst());
119  var->setARCPseudoStrong(true);
120  }
121  }
122 }
123 
124 /// Diagnose unused comparisons, both builtin and overloaded operators.
125 /// For '==' and '!=', suggest fixits for '=' or '|='.
126 ///
127 /// Adding a cast to void (or other expression wrappers) will prevent the
128 /// warning from firing.
129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
130  SourceLocation Loc;
131  bool CanAssign;
132  enum { Equality, Inequality, Relational, ThreeWay } Kind;
133 
134  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
135  if (!Op->isComparisonOp())
136  return false;
137 
138  if (Op->getOpcode() == BO_EQ)
139  Kind = Equality;
140  else if (Op->getOpcode() == BO_NE)
141  Kind = Inequality;
142  else if (Op->getOpcode() == BO_Cmp)
143  Kind = ThreeWay;
144  else {
145  assert(Op->isRelationalOp());
146  Kind = Relational;
147  }
148  Loc = Op->getOperatorLoc();
149  CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
150  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
151  switch (Op->getOperator()) {
152  case OO_EqualEqual:
153  Kind = Equality;
154  break;
155  case OO_ExclaimEqual:
156  Kind = Inequality;
157  break;
158  case OO_Less:
159  case OO_Greater:
160  case OO_GreaterEqual:
161  case OO_LessEqual:
162  Kind = Relational;
163  break;
164  case OO_Spaceship:
165  Kind = ThreeWay;
166  break;
167  default:
168  return false;
169  }
170 
171  Loc = Op->getOperatorLoc();
172  CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
173  } else {
174  // Not a typo-prone comparison.
175  return false;
176  }
177 
178  // Suppress warnings when the operator, suspicious as it may be, comes from
179  // a macro expansion.
180  if (S.SourceMgr.isMacroBodyExpansion(Loc))
181  return false;
182 
183  S.Diag(Loc, diag::warn_unused_comparison)
184  << (unsigned)Kind << E->getSourceRange();
185 
186  // If the LHS is a plausible entity to assign to, provide a fixit hint to
187  // correct common typos.
188  if (CanAssign) {
189  if (Kind == Inequality)
190  S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
191  << FixItHint::CreateReplacement(Loc, "|=");
192  else if (Kind == Equality)
193  S.Diag(Loc, diag::note_equality_comparison_to_assign)
194  << FixItHint::CreateReplacement(Loc, "=");
195  }
196 
197  return true;
198 }
199 
200 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
201  SourceLocation Loc, SourceRange R1,
202  SourceRange R2, bool IsCtor) {
203  if (!A)
204  return false;
205  StringRef Msg = A->getMessage();
206 
207  if (Msg.empty()) {
208  if (IsCtor)
209  return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
210  return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
211  }
212 
213  if (IsCtor)
214  return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
215  << R2;
216  return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
217 }
218 
219 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
220  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
221  return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
222 
223  const Expr *E = dyn_cast_or_null<Expr>(S);
224  if (!E)
225  return;
226 
227  // If we are in an unevaluated expression context, then there can be no unused
228  // results because the results aren't expected to be used in the first place.
229  if (isUnevaluatedContext())
230  return;
231 
233  // In most cases, we don't want to warn if the expression is written in a
234  // macro body, or if the macro comes from a system header. If the offending
235  // expression is a call to a function with the warn_unused_result attribute,
236  // we warn no matter the location. Because of the order in which the various
237  // checks need to happen, we factor out the macro-related test here.
238  bool ShouldSuppress =
239  SourceMgr.isMacroBodyExpansion(ExprLoc) ||
240  SourceMgr.isInSystemMacro(ExprLoc);
241 
242  const Expr *WarnExpr;
243  SourceLocation Loc;
244  SourceRange R1, R2;
245  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
246  return;
247 
248  // If this is a GNU statement expression expanded from a macro, it is probably
249  // unused because it is a function-like macro that can be used as either an
250  // expression or statement. Don't warn, because it is almost certainly a
251  // false positive.
252  if (isa<StmtExpr>(E) && Loc.isMacroID())
253  return;
254 
255  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
256  // That macro is frequently used to suppress "unused parameter" warnings,
257  // but its implementation makes clang's -Wunused-value fire. Prevent this.
258  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
259  SourceLocation SpellLoc = Loc;
260  if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
261  return;
262  }
263 
264  // Okay, we have an unused result. Depending on what the base expression is,
265  // we might want to make a more specific diagnostic. Check for one of these
266  // cases now.
267  if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268  E = Temps->getSubExpr();
269  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270  E = TempExpr->getSubExpr();
271 
272  if (DiagnoseUnusedComparison(*this, E))
273  return;
274 
275  E = WarnExpr;
276  if (const auto *Cast = dyn_cast<CastExpr>(E))
277  if (Cast->getCastKind() == CK_NoOp ||
278  Cast->getCastKind() == CK_ConstructorConversion)
279  E = Cast->getSubExpr()->IgnoreImpCasts();
280 
281  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282  if (E->getType()->isVoidType())
283  return;
284 
285  if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286  CE->getUnusedResultAttr(Context)),
287  Loc, R1, R2, /*isCtor=*/false))
288  return;
289 
290  // If the callee has attribute pure, const, or warn_unused_result, warn with
291  // a more specific message to make it clear what is happening. If the call
292  // is written in a macro body, only warn if it has the warn_unused_result
293  // attribute.
294  if (const Decl *FD = CE->getCalleeDecl()) {
295  if (ShouldSuppress)
296  return;
297  if (FD->hasAttr<PureAttr>()) {
298  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299  return;
300  }
301  if (FD->hasAttr<ConstAttr>()) {
302  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303  return;
304  }
305  }
306  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307  if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308  const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309  A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310  if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311  return;
312  }
313  } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314  if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
315 
316  if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317  R2, /*isCtor=*/false))
318  return;
319  }
320  } else if (ShouldSuppress)
321  return;
322 
323  E = WarnExpr;
324  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325  if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326  Diag(Loc, diag::err_arc_unused_init_message) << R1;
327  return;
328  }
329  const ObjCMethodDecl *MD = ME->getMethodDecl();
330  if (MD) {
331  if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332  R2, /*isCtor=*/false))
333  return;
334  }
335  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336  const Expr *Source = POE->getSyntacticForm();
337  // Handle the actually selected call of an OpenMP specialized call.
338  if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
339  POE->getNumSemanticExprs() == 1 &&
340  isa<CallExpr>(POE->getSemanticExpr(0)))
341  return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
342  if (isa<ObjCSubscriptRefExpr>(Source))
343  DiagID = diag::warn_unused_container_subscript_expr;
344  else if (isa<ObjCPropertyRefExpr>(Source))
345  DiagID = diag::warn_unused_property_expr;
346  } else if (const CXXFunctionalCastExpr *FC
347  = dyn_cast<CXXFunctionalCastExpr>(E)) {
348  const Expr *E = FC->getSubExpr();
349  if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
350  E = TE->getSubExpr();
351  if (isa<CXXTemporaryObjectExpr>(E))
352  return;
353  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
354  if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
355  if (!RD->getAttr<WarnUnusedAttr>())
356  return;
357  }
358  // Diagnose "(void*) blah" as a typo for "(void) blah".
359  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
360  TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
361  QualType T = TI->getType();
362 
363  // We really do want to use the non-canonical type here.
364  if (T == Context.VoidPtrTy) {
366 
367  Diag(Loc, diag::warn_unused_voidptr)
369  return;
370  }
371  }
372 
373  // Tell the user to assign it into a variable to force a volatile load if this
374  // isn't an array.
375  if (E->isGLValue() && E->getType().isVolatileQualified() &&
376  !E->getType()->isArrayType()) {
377  Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
378  return;
379  }
380 
381  // Do not diagnose use of a comma operator in a SFINAE context because the
382  // type of the left operand could be used for SFINAE, so technically it is
383  // *used*.
384  if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
385  DiagIfReachable(Loc, S ? llvm::makeArrayRef(S) : llvm::None,
386  PDiag(DiagID) << R1 << R2);
387 }
388 
389 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
390  PushCompoundScope(IsStmtExpr);
391 }
392 
394  if (getCurFPFeatures().isFPConstrained()) {
395  FunctionScopeInfo *FSI = getCurFunction();
396  assert(FSI);
397  FSI->setUsesFPIntrin();
398  }
399 }
400 
402  PopCompoundScope();
403 }
404 
406  return getCurFunction()->CompoundScopes.back();
407 }
408 
410  ArrayRef<Stmt *> Elts, bool isStmtExpr) {
411  const unsigned NumElts = Elts.size();
412 
413  // If we're in C mode, check that we don't have any decls after stmts. If
414  // so, emit an extension diagnostic in C89 and potentially a warning in later
415  // versions.
416  const unsigned MixedDeclsCodeID = getLangOpts().C99
417  ? diag::warn_mixed_decls_code
418  : diag::ext_mixed_decls_code;
419  if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
420  // Note that __extension__ can be around a decl.
421  unsigned i = 0;
422  // Skip over all declarations.
423  for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
424  /*empty*/;
425 
426  // We found the end of the list or a statement. Scan for another declstmt.
427  for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
428  /*empty*/;
429 
430  if (i != NumElts) {
431  Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
432  Diag(D->getLocation(), MixedDeclsCodeID);
433  }
434  }
435 
436  // Check for suspicious empty body (null statement) in `for' and `while'
437  // statements. Don't do anything for template instantiations, this just adds
438  // noise.
439  if (NumElts != 0 && !CurrentInstantiationScope &&
440  getCurCompoundScope().HasEmptyLoopBodies) {
441  for (unsigned i = 0; i != NumElts - 1; ++i)
442  DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
443  }
444 
445  // Calculate difference between FP options in this compound statement and in
446  // the enclosing one. If this is a function body, take the difference against
447  // default options. In this case the difference will indicate options that are
448  // changed upon entry to the statement.
449  FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
450  ? FPOptions(getLangOpts())
451  : getCurCompoundScope().InitialFPFeatures;
452  FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
453 
454  return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
455 }
456 
459  if (!Val.get())
460  return Val;
461 
462  if (DiagnoseUnexpandedParameterPack(Val.get()))
463  return ExprError();
464 
465  // If we're not inside a switch, let the 'case' statement handling diagnose
466  // this. Just clean up after the expression as best we can.
467  if (getCurFunction()->SwitchStack.empty())
468  return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
469  getLangOpts().CPlusPlus11);
470 
471  Expr *CondExpr =
472  getCurFunction()->SwitchStack.back().getPointer()->getCond();
473  if (!CondExpr)
474  return ExprError();
475  QualType CondType = CondExpr->getType();
476 
477  auto CheckAndFinish = [&](Expr *E) {
478  if (CondType->isDependentType() || E->isTypeDependent())
479  return ExprResult(E);
480 
481  if (getLangOpts().CPlusPlus11) {
482  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
483  // constant expression of the promoted type of the switch condition.
484  llvm::APSInt TempVal;
485  return CheckConvertedConstantExpression(E, CondType, TempVal,
486  CCEK_CaseValue);
487  }
488 
489  ExprResult ER = E;
490  if (!E->isValueDependent())
491  ER = VerifyIntegerConstantExpression(E, AllowFold);
492  if (!ER.isInvalid())
493  ER = DefaultLvalueConversion(ER.get());
494  if (!ER.isInvalid())
495  ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
496  if (!ER.isInvalid())
497  ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
498  return ER;
499  };
500 
501  ExprResult Converted = CorrectDelayedTyposInExpr(
502  Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
503  CheckAndFinish);
504  if (Converted.get() == Val.get())
505  Converted = CheckAndFinish(Val.get());
506  return Converted;
507 }
508 
511  SourceLocation DotDotDotLoc, ExprResult RHSVal,
512  SourceLocation ColonLoc) {
513  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
514  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
515  : RHSVal.isInvalid() || RHSVal.get()) &&
516  "missing RHS value");
517 
518  if (getCurFunction()->SwitchStack.empty()) {
519  Diag(CaseLoc, diag::err_case_not_in_switch);
520  return StmtError();
521  }
522 
523  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
524  getCurFunction()->SwitchStack.back().setInt(true);
525  return StmtError();
526  }
527 
528  auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
529  CaseLoc, DotDotDotLoc, ColonLoc);
530  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
531  return CS;
532 }
533 
534 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
535 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
536  cast<CaseStmt>(S)->setSubStmt(SubStmt);
537 }
538 
541  Stmt *SubStmt, Scope *CurScope) {
542  if (getCurFunction()->SwitchStack.empty()) {
543  Diag(DefaultLoc, diag::err_default_not_in_switch);
544  return SubStmt;
545  }
546 
547  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
548  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
549  return DS;
550 }
551 
554  SourceLocation ColonLoc, Stmt *SubStmt) {
555  // If the label was multiply defined, reject it now.
556  if (TheDecl->getStmt()) {
557  Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
558  Diag(TheDecl->getLocation(), diag::note_previous_definition);
559  return SubStmt;
560  }
561 
562  ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
563  if (isReservedInAllContexts(Status) &&
564  !Context.getSourceManager().isInSystemHeader(IdentLoc))
565  Diag(IdentLoc, diag::warn_reserved_extern_symbol)
566  << TheDecl << static_cast<int>(Status);
567 
568  // Otherwise, things are good. Fill in the declaration and return it.
569  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
570  TheDecl->setStmt(LS);
571  if (!TheDecl->isGnuLocal()) {
572  TheDecl->setLocStart(IdentLoc);
573  if (!TheDecl->isMSAsmLabel()) {
574  // Don't update the location of MS ASM labels. These will result in
575  // a diagnostic, and changing the location here will mess that up.
576  TheDecl->setLocation(IdentLoc);
577  }
578  }
579  return LS;
580 }
581 
584  Stmt *SubStmt) {
585  // FIXME: this code should move when a planned refactoring around statement
586  // attributes lands.
587  for (const auto *A : Attrs) {
588  if (A->getKind() == attr::MustTail) {
589  if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
590  return SubStmt;
591  }
592  setFunctionHasMustTail();
593  }
594  }
595 
596  return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
597 }
598 
600  Stmt *SubStmt) {
601  SmallVector<const Attr *, 1> SemanticAttrs;
602  ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
603  if (!SemanticAttrs.empty())
604  return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
605  // If none of the attributes applied, that's fine, we can recover by
606  // returning the substatement directly instead of making an AttributedStmt
607  // with no attributes on it.
608  return SubStmt;
609 }
610 
612  ReturnStmt *R = cast<ReturnStmt>(St);
613  Expr *E = R->getRetValue();
614 
615  if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
616  // We have to suspend our check until template instantiation time.
617  return true;
618 
619  if (!checkMustTailAttr(St, MTA))
620  return false;
621 
622  // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
623  // Currently it does not skip implicit constructors in an initialization
624  // context.
625  auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
628  };
629 
630  // Now that we have verified that 'musttail' is valid here, rewrite the
631  // return value to remove all implicit nodes, but retain parentheses.
632  R->setRetValue(IgnoreImplicitAsWritten(E));
633  return true;
634 }
635 
636 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
637  assert(!CurContext->isDependentContext() &&
638  "musttail cannot be checked from a dependent context");
639 
640  // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
641  auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
642  return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
645  };
646 
647  const Expr *E = cast<ReturnStmt>(St)->getRetValue();
648  const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
649 
650  if (!CE) {
651  Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
652  return false;
653  }
654 
655  if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
656  if (EWC->cleanupsHaveSideEffects()) {
657  Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
658  return false;
659  }
660  }
661 
662  // We need to determine the full function type (including "this" type, if any)
663  // for both caller and callee.
664  struct FuncType {
665  enum {
666  ft_non_member,
667  ft_static_member,
668  ft_non_static_member,
669  ft_pointer_to_member,
670  } MemberType = ft_non_member;
671 
672  QualType This;
673  const FunctionProtoType *Func;
674  const CXXMethodDecl *Method = nullptr;
675  } CallerType, CalleeType;
676 
677  auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
678  bool IsCallee) -> bool {
679  if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
680  Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
681  << IsCallee << isa<CXXDestructorDecl>(CMD);
682  if (IsCallee)
683  Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
684  << isa<CXXDestructorDecl>(CMD);
685  Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
686  return false;
687  }
688  if (CMD->isStatic())
689  Type.MemberType = FuncType::ft_static_member;
690  else {
691  Type.This = CMD->getThisType()->getPointeeType();
692  Type.MemberType = FuncType::ft_non_static_member;
693  }
694  Type.Func = CMD->getType()->castAs<FunctionProtoType>();
695  return true;
696  };
697 
698  const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
699 
700  // Find caller function signature.
701  if (!CallerDecl) {
702  int ContextType;
703  if (isa<BlockDecl>(CurContext))
704  ContextType = 0;
705  else if (isa<ObjCMethodDecl>(CurContext))
706  ContextType = 1;
707  else
708  ContextType = 2;
709  Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
710  << &MTA << ContextType;
711  return false;
712  } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
713  // Caller is a class/struct method.
714  if (!GetMethodType(CMD, CallerType, false))
715  return false;
716  } else {
717  // Caller is a non-method function.
718  CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
719  }
720 
721  const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
722  const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
723  SourceLocation CalleeLoc = CE->getCalleeDecl()
724  ? CE->getCalleeDecl()->getBeginLoc()
725  : St->getBeginLoc();
726 
727  // Find callee function signature.
728  if (const CXXMethodDecl *CMD =
729  dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
730  // Call is: obj.method(), obj->method(), functor(), etc.
731  if (!GetMethodType(CMD, CalleeType, true))
732  return false;
733  } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
734  // Call is: obj->*method_ptr or obj.*method_ptr
735  const auto *MPT =
736  CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
737  CalleeType.This = QualType(MPT->getClass(), 0);
738  CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
739  CalleeType.MemberType = FuncType::ft_pointer_to_member;
740  } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
741  Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
742  << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
743  Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
744  return false;
745  } else {
746  // Non-method function.
747  CalleeType.Func =
748  CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
749  }
750 
751  // Both caller and callee must have a prototype (no K&R declarations).
752  if (!CalleeType.Func || !CallerType.Func) {
753  Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
754  if (!CalleeType.Func && CE->getDirectCallee()) {
755  Diag(CE->getDirectCallee()->getBeginLoc(),
756  diag::note_musttail_fix_non_prototype);
757  }
758  if (!CallerType.Func)
759  Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
760  return false;
761  }
762 
763  // Caller and callee must have matching calling conventions.
764  //
765  // Some calling conventions are physically capable of supporting tail calls
766  // even if the function types don't perfectly match. LLVM is currently too
767  // strict to allow this, but if LLVM added support for this in the future, we
768  // could exit early here and skip the remaining checks if the functions are
769  // using such a calling convention.
770  if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
771  if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
772  Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
773  << true << ND->getDeclName();
774  else
775  Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
776  Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
777  << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
778  << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
779  Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
780  return false;
781  }
782 
783  if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
784  Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
785  return false;
786  }
787 
788  // Caller and callee must match in whether they have a "this" parameter.
789  if (CallerType.This.isNull() != CalleeType.This.isNull()) {
790  if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
791  Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
792  << CallerType.MemberType << CalleeType.MemberType << true
793  << ND->getDeclName();
794  Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
795  << ND->getDeclName();
796  } else
797  Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
798  << CallerType.MemberType << CalleeType.MemberType << false;
799  Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
800  return false;
801  }
802 
803  auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
804  PartialDiagnostic &PD) -> bool {
805  enum {
810  };
811 
812  auto DoTypesMatch = [this, &PD](QualType A, QualType B,
813  unsigned Select) -> bool {
814  if (!Context.hasSimilarType(A, B)) {
815  PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
816  return false;
817  }
818  return true;
819  };
820 
821  if (!CallerType.This.isNull() &&
822  !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
823  return false;
824 
825  if (!DoTypesMatch(CallerType.Func->getReturnType(),
826  CalleeType.Func->getReturnType(), ft_return_type))
827  return false;
828 
829  if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
830  PD << ft_parameter_arity << CallerType.Func->getNumParams()
831  << CalleeType.Func->getNumParams();
832  return false;
833  }
834 
835  ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
836  ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
837  size_t N = CallerType.Func->getNumParams();
838  for (size_t I = 0; I < N; I++) {
839  if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
841  PD << static_cast<int>(I) + 1;
842  return false;
843  }
844  }
845 
846  return true;
847  };
848 
849  PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
850  if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
851  if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
852  Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
853  << true << ND->getDeclName();
854  else
855  Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
856  Diag(CalleeLoc, PD);
857  Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
858  return false;
859  }
860 
861  return true;
862 }
863 
864 namespace {
865 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
866  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
867  Sema &SemaRef;
868 public:
869  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
870  void VisitBinaryOperator(BinaryOperator *E) {
871  if (E->getOpcode() == BO_Comma)
872  SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
874  }
875 };
876 }
877 
879  IfStatementKind StatementKind,
880  SourceLocation LParenLoc, Stmt *InitStmt,
881  ConditionResult Cond, SourceLocation RParenLoc,
882  Stmt *thenStmt, SourceLocation ElseLoc,
883  Stmt *elseStmt) {
884  if (Cond.isInvalid())
885  return StmtError();
886 
887  bool ConstevalOrNegatedConsteval =
888  StatementKind == IfStatementKind::ConstevalNonNegated ||
889  StatementKind == IfStatementKind::ConstevalNegated;
890 
891  Expr *CondExpr = Cond.get().second;
892  assert((CondExpr || ConstevalOrNegatedConsteval) &&
893  "If statement: missing condition");
894  // Only call the CommaVisitor when not C89 due to differences in scope flags.
895  if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
896  !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
897  CommaVisitor(*this).Visit(CondExpr);
898 
899  if (!ConstevalOrNegatedConsteval && !elseStmt)
900  DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
901 
902  if (ConstevalOrNegatedConsteval ||
903  StatementKind == IfStatementKind::Constexpr) {
904  auto DiagnoseLikelihood = [&](const Stmt *S) {
905  if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
906  Diags.Report(A->getLocation(),
907  diag::warn_attribute_has_no_effect_on_compile_time_if)
908  << A << ConstevalOrNegatedConsteval << A->getRange();
909  Diags.Report(IfLoc,
910  diag::note_attribute_has_no_effect_on_compile_time_if_here)
911  << ConstevalOrNegatedConsteval
912  << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
913  ? thenStmt->getBeginLoc()
914  : LParenLoc)
915  .getLocWithOffset(-1));
916  }
917  };
918  DiagnoseLikelihood(thenStmt);
919  DiagnoseLikelihood(elseStmt);
920  } else {
921  std::tuple<bool, const Attr *, const Attr *> LHC =
922  Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
923  if (std::get<0>(LHC)) {
924  const Attr *ThenAttr = std::get<1>(LHC);
925  const Attr *ElseAttr = std::get<2>(LHC);
926  Diags.Report(ThenAttr->getLocation(),
927  diag::warn_attributes_likelihood_ifstmt_conflict)
928  << ThenAttr << ThenAttr->getRange();
929  Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
930  << ElseAttr << ElseAttr->getRange();
931  }
932  }
933 
934  if (ConstevalOrNegatedConsteval) {
935  bool Immediate = isImmediateFunctionContext();
936  if (CurContext->isFunctionOrMethod()) {
937  const auto *FD =
938  dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
939  if (FD && FD->isConsteval())
940  Immediate = true;
941  }
942  if (isUnevaluatedContext() || Immediate)
943  Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
944  }
945 
946  return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
947  thenStmt, ElseLoc, elseStmt);
948 }
949 
951  IfStatementKind StatementKind,
952  SourceLocation LParenLoc, Stmt *InitStmt,
953  ConditionResult Cond, SourceLocation RParenLoc,
954  Stmt *thenStmt, SourceLocation ElseLoc,
955  Stmt *elseStmt) {
956  if (Cond.isInvalid())
957  return StmtError();
958 
959  if (StatementKind != IfStatementKind::Ordinary ||
960  isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
961  setFunctionHasBranchProtectedScope();
962 
963  return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
964  Cond.get().first, Cond.get().second, LParenLoc,
965  RParenLoc, thenStmt, ElseLoc, elseStmt);
966 }
967 
968 namespace {
969  struct CaseCompareFunctor {
970  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
971  const llvm::APSInt &RHS) {
972  return LHS.first < RHS;
973  }
974  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
975  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
976  return LHS.first < RHS.first;
977  }
978  bool operator()(const llvm::APSInt &LHS,
979  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
980  return LHS < RHS.first;
981  }
982  };
983 }
984 
985 /// CmpCaseVals - Comparison predicate for sorting case values.
986 ///
987 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
988  const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
989  if (lhs.first < rhs.first)
990  return true;
991 
992  if (lhs.first == rhs.first &&
993  lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
994  return true;
995  return false;
996 }
997 
998 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
999 ///
1000 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1001  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1002 {
1003  return lhs.first < rhs.first;
1004 }
1005 
1006 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1007 ///
1008 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1009  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1010 {
1011  return lhs.first == rhs.first;
1012 }
1013 
1014 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1015 /// potentially integral-promoted expression @p expr.
1017  if (const auto *FE = dyn_cast<FullExpr>(E))
1018  E = FE->getSubExpr();
1019  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1020  if (ImpCast->getCastKind() != CK_IntegralCast) break;
1021  E = ImpCast->getSubExpr();
1022  }
1023  return E->getType();
1024 }
1025 
1027  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1028  Expr *Cond;
1029 
1030  public:
1031  SwitchConvertDiagnoser(Expr *Cond)
1032  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1033  Cond(Cond) {}
1034 
1035  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1036  QualType T) override {
1037  return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1038  }
1039 
1040  SemaDiagnosticBuilder diagnoseIncomplete(
1041  Sema &S, SourceLocation Loc, QualType T) override {
1042  return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1043  << T << Cond->getSourceRange();
1044  }
1045 
1046  SemaDiagnosticBuilder diagnoseExplicitConv(
1047  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1048  return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1049  }
1050 
1051  SemaDiagnosticBuilder noteExplicitConv(
1052  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1053  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1054  << ConvTy->isEnumeralType() << ConvTy;
1055  }
1056 
1057  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1058  QualType T) override {
1059  return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1060  }
1061 
1062  SemaDiagnosticBuilder noteAmbiguous(
1063  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1064  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1065  << ConvTy->isEnumeralType() << ConvTy;
1066  }
1067 
1068  SemaDiagnosticBuilder diagnoseConversion(
1069  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1070  llvm_unreachable("conversion functions are permitted");
1071  }
1072  } SwitchDiagnoser(Cond);
1073 
1074  ExprResult CondResult =
1075  PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1076  if (CondResult.isInvalid())
1077  return ExprError();
1078 
1079  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1080  // failed and produced a diagnostic.
1081  Cond = CondResult.get();
1082  if (!Cond->isTypeDependent() &&
1084  return ExprError();
1085 
1086  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1087  return UsualUnaryConversions(Cond);
1088 }
1089 
1091  SourceLocation LParenLoc,
1092  Stmt *InitStmt, ConditionResult Cond,
1093  SourceLocation RParenLoc) {
1094  Expr *CondExpr = Cond.get().second;
1095  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1096 
1097  if (CondExpr && !CondExpr->isTypeDependent()) {
1098  // We have already converted the expression to an integral or enumeration
1099  // type, when we parsed the switch condition. There are cases where we don't
1100  // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1101  // inappropriate-type expr, we just return an error.
1102  if (!CondExpr->getType()->isIntegralOrEnumerationType())
1103  return StmtError();
1104  if (CondExpr->isKnownToHaveBooleanValue()) {
1105  // switch(bool_expr) {...} is often a programmer error, e.g.
1106  // switch(n && mask) { ... } // Doh - should be "n & mask".
1107  // One can always use an if statement instead of switch(bool_expr).
1108  Diag(SwitchLoc, diag::warn_bool_switch_condition)
1109  << CondExpr->getSourceRange();
1110  }
1111  }
1112 
1113  setFunctionHasBranchIntoScope();
1114 
1115  auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1116  LParenLoc, RParenLoc);
1117  getCurFunction()->SwitchStack.push_back(
1118  FunctionScopeInfo::SwitchInfo(SS, false));
1119  return SS;
1120 }
1121 
1122 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1123  Val = Val.extOrTrunc(BitWidth);
1124  Val.setIsSigned(IsSigned);
1125 }
1126 
1127 /// Check the specified case value is in range for the given unpromoted switch
1128 /// type.
1129 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1130  unsigned UnpromotedWidth, bool UnpromotedSign) {
1131  // In C++11 onwards, this is checked by the language rules.
1132  if (S.getLangOpts().CPlusPlus11)
1133  return;
1134 
1135  // If the case value was signed and negative and the switch expression is
1136  // unsigned, don't bother to warn: this is implementation-defined behavior.
1137  // FIXME: Introduce a second, default-ignored warning for this case?
1138  if (UnpromotedWidth < Val.getBitWidth()) {
1139  llvm::APSInt ConvVal(Val);
1140  AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1141  AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1142  // FIXME: Use different diagnostics for overflow in conversion to promoted
1143  // type versus "switch expression cannot have this value". Use proper
1144  // IntRange checking rather than just looking at the unpromoted type here.
1145  if (ConvVal != Val)
1146  S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1147  << toString(ConvVal, 10);
1148  }
1149 }
1150 
1152 
1153 /// Returns true if we should emit a diagnostic about this case expression not
1154 /// being a part of the enum used in the switch controlling expression.
1156  const EnumDecl *ED,
1157  const Expr *CaseExpr,
1158  EnumValsTy::iterator &EI,
1159  EnumValsTy::iterator &EIEnd,
1160  const llvm::APSInt &Val) {
1161  if (!ED->isClosed())
1162  return false;
1163 
1164  if (const DeclRefExpr *DRE =
1165  dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1166  if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1167  QualType VarType = VD->getType();
1169  if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1171  return false;
1172  }
1173  }
1174 
1175  if (ED->hasAttr<FlagEnumAttr>())
1176  return !S.IsValueInFlagEnum(ED, Val, false);
1177 
1178  while (EI != EIEnd && EI->first < Val)
1179  EI++;
1180 
1181  if (EI != EIEnd && EI->first == Val)
1182  return false;
1183 
1184  return true;
1185 }
1186 
1187 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1188  const Expr *Case) {
1189  QualType CondType = Cond->getType();
1190  QualType CaseType = Case->getType();
1191 
1192  const EnumType *CondEnumType = CondType->getAs<EnumType>();
1193  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1194  if (!CondEnumType || !CaseEnumType)
1195  return;
1196 
1197  // Ignore anonymous enums.
1198  if (!CondEnumType->getDecl()->getIdentifier() &&
1199  !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1200  return;
1201  if (!CaseEnumType->getDecl()->getIdentifier() &&
1202  !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1203  return;
1204 
1205  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1206  return;
1207 
1208  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1209  << CondType << CaseType << Cond->getSourceRange()
1210  << Case->getSourceRange();
1211 }
1212 
1213 StmtResult
1215  Stmt *BodyStmt) {
1216  SwitchStmt *SS = cast<SwitchStmt>(Switch);
1217  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1218  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1219  "switch stack missing push/pop!");
1220 
1221  getCurFunction()->SwitchStack.pop_back();
1222 
1223  if (!BodyStmt) return StmtError();
1224  SS->setBody(BodyStmt, SwitchLoc);
1225 
1226  Expr *CondExpr = SS->getCond();
1227  if (!CondExpr) return StmtError();
1228 
1229  QualType CondType = CondExpr->getType();
1230 
1231  // C++ 6.4.2.p2:
1232  // Integral promotions are performed (on the switch condition).
1233  //
1234  // A case value unrepresentable by the original switch condition
1235  // type (before the promotion) doesn't make sense, even when it can
1236  // be represented by the promoted type. Therefore we need to find
1237  // the pre-promotion type of the switch condition.
1238  const Expr *CondExprBeforePromotion = CondExpr;
1239  QualType CondTypeBeforePromotion =
1240  GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1241 
1242  // Get the bitwidth of the switched-on value after promotions. We must
1243  // convert the integer case values to this width before comparison.
1244  bool HasDependentValue
1245  = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1246  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1247  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1248 
1249  // Get the width and signedness that the condition might actually have, for
1250  // warning purposes.
1251  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1252  // type.
1253  unsigned CondWidthBeforePromotion
1254  = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1255  bool CondIsSignedBeforePromotion
1256  = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1257 
1258  // Accumulate all of the case values in a vector so that we can sort them
1259  // and detect duplicates. This vector contains the APInt for the case after
1260  // it has been converted to the condition type.
1261  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1262  CaseValsTy CaseVals;
1263 
1264  // Keep track of any GNU case ranges we see. The APSInt is the low value.
1265  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1266  CaseRangesTy CaseRanges;
1267 
1268  DefaultStmt *TheDefaultStmt = nullptr;
1269 
1270  bool CaseListIsErroneous = false;
1271 
1272  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1273  SC = SC->getNextSwitchCase()) {
1274 
1275  if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1276  if (TheDefaultStmt) {
1277  Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1278  Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1279 
1280  // FIXME: Remove the default statement from the switch block so that
1281  // we'll return a valid AST. This requires recursing down the AST and
1282  // finding it, not something we are set up to do right now. For now,
1283  // just lop the entire switch stmt out of the AST.
1284  CaseListIsErroneous = true;
1285  }
1286  TheDefaultStmt = DS;
1287 
1288  } else {
1289  CaseStmt *CS = cast<CaseStmt>(SC);
1290 
1291  Expr *Lo = CS->getLHS();
1292 
1293  if (Lo->isValueDependent()) {
1294  HasDependentValue = true;
1295  break;
1296  }
1297 
1298  // We already verified that the expression has a constant value;
1299  // get that value (prior to conversions).
1300  const Expr *LoBeforePromotion = Lo;
1301  GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1302  llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1303 
1304  // Check the unconverted value is within the range of possible values of
1305  // the switch expression.
1306  checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1307  CondIsSignedBeforePromotion);
1308 
1309  // FIXME: This duplicates the check performed for warn_not_in_enum below.
1310  checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1311  LoBeforePromotion);
1312 
1313  // Convert the value to the same width/sign as the condition.
1314  AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1315 
1316  // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1317  if (CS->getRHS()) {
1318  if (CS->getRHS()->isValueDependent()) {
1319  HasDependentValue = true;
1320  break;
1321  }
1322  CaseRanges.push_back(std::make_pair(LoVal, CS));
1323  } else
1324  CaseVals.push_back(std::make_pair(LoVal, CS));
1325  }
1326  }
1327 
1328  if (!HasDependentValue) {
1329  // If we don't have a default statement, check whether the
1330  // condition is constant.
1331  llvm::APSInt ConstantCondValue;
1332  bool HasConstantCond = false;
1333  if (!TheDefaultStmt) {
1334  Expr::EvalResult Result;
1335  HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1337  if (Result.Val.isInt())
1338  ConstantCondValue = Result.Val.getInt();
1339  assert(!HasConstantCond ||
1340  (ConstantCondValue.getBitWidth() == CondWidth &&
1341  ConstantCondValue.isSigned() == CondIsSigned));
1342  }
1343  bool ShouldCheckConstantCond = HasConstantCond;
1344 
1345  // Sort all the scalar case values so we can easily detect duplicates.
1346  llvm::stable_sort(CaseVals, CmpCaseVals);
1347 
1348  if (!CaseVals.empty()) {
1349  for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1350  if (ShouldCheckConstantCond &&
1351  CaseVals[i].first == ConstantCondValue)
1352  ShouldCheckConstantCond = false;
1353 
1354  if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1355  // If we have a duplicate, report it.
1356  // First, determine if either case value has a name
1357  StringRef PrevString, CurrString;
1358  Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1359  Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1360  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1361  PrevString = DeclRef->getDecl()->getName();
1362  }
1363  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1364  CurrString = DeclRef->getDecl()->getName();
1365  }
1366  SmallString<16> CaseValStr;
1367  CaseVals[i-1].first.toString(CaseValStr);
1368 
1369  if (PrevString == CurrString)
1370  Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1371  diag::err_duplicate_case)
1372  << (PrevString.empty() ? CaseValStr.str() : PrevString);
1373  else
1374  Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1375  diag::err_duplicate_case_differing_expr)
1376  << (PrevString.empty() ? CaseValStr.str() : PrevString)
1377  << (CurrString.empty() ? CaseValStr.str() : CurrString)
1378  << CaseValStr;
1379 
1380  Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1381  diag::note_duplicate_case_prev);
1382  // FIXME: We really want to remove the bogus case stmt from the
1383  // substmt, but we have no way to do this right now.
1384  CaseListIsErroneous = true;
1385  }
1386  }
1387  }
1388 
1389  // Detect duplicate case ranges, which usually don't exist at all in
1390  // the first place.
1391  if (!CaseRanges.empty()) {
1392  // Sort all the case ranges by their low value so we can easily detect
1393  // overlaps between ranges.
1394  llvm::stable_sort(CaseRanges);
1395 
1396  // Scan the ranges, computing the high values and removing empty ranges.
1397  std::vector<llvm::APSInt> HiVals;
1398  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1399  llvm::APSInt &LoVal = CaseRanges[i].first;
1400  CaseStmt *CR = CaseRanges[i].second;
1401  Expr *Hi = CR->getRHS();
1402 
1403  const Expr *HiBeforePromotion = Hi;
1404  GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1405  llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1406 
1407  // Check the unconverted value is within the range of possible values of
1408  // the switch expression.
1409  checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1410  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1411 
1412  // Convert the value to the same width/sign as the condition.
1413  AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1414 
1415  // If the low value is bigger than the high value, the case is empty.
1416  if (LoVal > HiVal) {
1417  Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1418  << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1419  CaseRanges.erase(CaseRanges.begin()+i);
1420  --i;
1421  --e;
1422  continue;
1423  }
1424 
1425  if (ShouldCheckConstantCond &&
1426  LoVal <= ConstantCondValue &&
1427  ConstantCondValue <= HiVal)
1428  ShouldCheckConstantCond = false;
1429 
1430  HiVals.push_back(HiVal);
1431  }
1432 
1433  // Rescan the ranges, looking for overlap with singleton values and other
1434  // ranges. Since the range list is sorted, we only need to compare case
1435  // ranges with their neighbors.
1436  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1437  llvm::APSInt &CRLo = CaseRanges[i].first;
1438  llvm::APSInt &CRHi = HiVals[i];
1439  CaseStmt *CR = CaseRanges[i].second;
1440 
1441  // Check to see whether the case range overlaps with any
1442  // singleton cases.
1443  CaseStmt *OverlapStmt = nullptr;
1444  llvm::APSInt OverlapVal(32);
1445 
1446  // Find the smallest value >= the lower bound. If I is in the
1447  // case range, then we have overlap.
1448  CaseValsTy::iterator I =
1449  llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1450  if (I != CaseVals.end() && I->first < CRHi) {
1451  OverlapVal = I->first; // Found overlap with scalar.
1452  OverlapStmt = I->second;
1453  }
1454 
1455  // Find the smallest value bigger than the upper bound.
1456  I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1457  if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1458  OverlapVal = (I-1)->first; // Found overlap with scalar.
1459  OverlapStmt = (I-1)->second;
1460  }
1461 
1462  // Check to see if this case stmt overlaps with the subsequent
1463  // case range.
1464  if (i && CRLo <= HiVals[i-1]) {
1465  OverlapVal = HiVals[i-1]; // Found overlap with range.
1466  OverlapStmt = CaseRanges[i-1].second;
1467  }
1468 
1469  if (OverlapStmt) {
1470  // If we have a duplicate, report it.
1471  Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1472  << toString(OverlapVal, 10);
1473  Diag(OverlapStmt->getLHS()->getBeginLoc(),
1474  diag::note_duplicate_case_prev);
1475  // FIXME: We really want to remove the bogus case stmt from the
1476  // substmt, but we have no way to do this right now.
1477  CaseListIsErroneous = true;
1478  }
1479  }
1480  }
1481 
1482  // Complain if we have a constant condition and we didn't find a match.
1483  if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1484  ShouldCheckConstantCond) {
1485  // TODO: it would be nice if we printed enums as enums, chars as
1486  // chars, etc.
1487  Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1488  << toString(ConstantCondValue, 10)
1489  << CondExpr->getSourceRange();
1490  }
1491 
1492  // Check to see if switch is over an Enum and handles all of its
1493  // values. We only issue a warning if there is not 'default:', but
1494  // we still do the analysis to preserve this information in the AST
1495  // (which can be used by flow-based analyes).
1496  //
1497  const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1498 
1499  // If switch has default case, then ignore it.
1500  if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1501  ET && ET->getDecl()->isCompleteDefinition() &&
1502  !ET->getDecl()->enumerators().empty()) {
1503  const EnumDecl *ED = ET->getDecl();
1504  EnumValsTy EnumVals;
1505 
1506  // Gather all enum values, set their type and sort them,
1507  // allowing easier comparison with CaseVals.
1508  for (auto *EDI : ED->enumerators()) {
1509  llvm::APSInt Val = EDI->getInitVal();
1510  AdjustAPSInt(Val, CondWidth, CondIsSigned);
1511  EnumVals.push_back(std::make_pair(Val, EDI));
1512  }
1513  llvm::stable_sort(EnumVals, CmpEnumVals);
1514  auto EI = EnumVals.begin(), EIEnd =
1515  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1516 
1517  // See which case values aren't in enum.
1518  for (CaseValsTy::const_iterator CI = CaseVals.begin();
1519  CI != CaseVals.end(); CI++) {
1520  Expr *CaseExpr = CI->second->getLHS();
1521  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1522  CI->first))
1523  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1524  << CondTypeBeforePromotion;
1525  }
1526 
1527  // See which of case ranges aren't in enum
1528  EI = EnumVals.begin();
1529  for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1530  RI != CaseRanges.end(); RI++) {
1531  Expr *CaseExpr = RI->second->getLHS();
1532  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1533  RI->first))
1534  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1535  << CondTypeBeforePromotion;
1536 
1537  llvm::APSInt Hi =
1538  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1539  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1540 
1541  CaseExpr = RI->second->getRHS();
1542  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1543  Hi))
1544  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1545  << CondTypeBeforePromotion;
1546  }
1547 
1548  // Check which enum vals aren't in switch
1549  auto CI = CaseVals.begin();
1550  auto RI = CaseRanges.begin();
1551  bool hasCasesNotInSwitch = false;
1552 
1553  SmallVector<DeclarationName,8> UnhandledNames;
1554 
1555  for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1556  // Don't warn about omitted unavailable EnumConstantDecls.
1557  switch (EI->second->getAvailability()) {
1558  case AR_Deprecated:
1559  // Omitting a deprecated constant is ok; it should never materialize.
1560  case AR_Unavailable:
1561  continue;
1562 
1563  case AR_NotYetIntroduced:
1564  // Partially available enum constants should be present. Note that we
1565  // suppress -Wunguarded-availability diagnostics for such uses.
1566  case AR_Available:
1567  break;
1568  }
1569 
1570  if (EI->second->hasAttr<UnusedAttr>())
1571  continue;
1572 
1573  // Drop unneeded case values
1574  while (CI != CaseVals.end() && CI->first < EI->first)
1575  CI++;
1576 
1577  if (CI != CaseVals.end() && CI->first == EI->first)
1578  continue;
1579 
1580  // Drop unneeded case ranges
1581  for (; RI != CaseRanges.end(); RI++) {
1582  llvm::APSInt Hi =
1583  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1584  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1585  if (EI->first <= Hi)
1586  break;
1587  }
1588 
1589  if (RI == CaseRanges.end() || EI->first < RI->first) {
1590  hasCasesNotInSwitch = true;
1591  UnhandledNames.push_back(EI->second->getDeclName());
1592  }
1593  }
1594 
1595  if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1596  Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1597 
1598  // Produce a nice diagnostic if multiple values aren't handled.
1599  if (!UnhandledNames.empty()) {
1600  auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1601  ? diag::warn_def_missing_case
1602  : diag::warn_missing_case)
1603  << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1604 
1605  for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1606  I != E; ++I)
1607  DB << UnhandledNames[I];
1608  }
1609 
1610  if (!hasCasesNotInSwitch)
1611  SS->setAllEnumCasesCovered();
1612  }
1613  }
1614 
1615  if (BodyStmt)
1616  DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1617  diag::warn_empty_switch_body);
1618 
1619  // FIXME: If the case list was broken is some way, we don't have a good system
1620  // to patch it up. Instead, just return the whole substmt as broken.
1621  if (CaseListIsErroneous)
1622  return StmtError();
1623 
1624  return SS;
1625 }
1626 
1627 void
1629  Expr *SrcExpr) {
1630  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1631  return;
1632 
1633  if (const EnumType *ET = DstType->getAs<EnumType>())
1634  if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1635  SrcType->isIntegerType()) {
1636  if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1637  SrcExpr->isIntegerConstantExpr(Context)) {
1638  // Get the bitwidth of the enum value before promotions.
1639  unsigned DstWidth = Context.getIntWidth(DstType);
1640  bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1641 
1642  llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1643  AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1644  const EnumDecl *ED = ET->getDecl();
1645 
1646  if (!ED->isClosed())
1647  return;
1648 
1649  if (ED->hasAttr<FlagEnumAttr>()) {
1650  if (!IsValueInFlagEnum(ED, RhsVal, true))
1651  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1652  << DstType.getUnqualifiedType();
1653  } else {
1655  EnumValsTy;
1656  EnumValsTy EnumVals;
1657 
1658  // Gather all enum values, set their type and sort them,
1659  // allowing easier comparison with rhs constant.
1660  for (auto *EDI : ED->enumerators()) {
1661  llvm::APSInt Val = EDI->getInitVal();
1662  AdjustAPSInt(Val, DstWidth, DstIsSigned);
1663  EnumVals.push_back(std::make_pair(Val, EDI));
1664  }
1665  if (EnumVals.empty())
1666  return;
1667  llvm::stable_sort(EnumVals, CmpEnumVals);
1668  EnumValsTy::iterator EIend =
1669  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1670 
1671  // See which values aren't in the enum.
1672  EnumValsTy::const_iterator EI = EnumVals.begin();
1673  while (EI != EIend && EI->first < RhsVal)
1674  EI++;
1675  if (EI == EIend || EI->first != RhsVal) {
1676  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1677  << DstType.getUnqualifiedType();
1678  }
1679  }
1680  }
1681  }
1682 }
1683 
1685  SourceLocation LParenLoc, ConditionResult Cond,
1686  SourceLocation RParenLoc, Stmt *Body) {
1687  if (Cond.isInvalid())
1688  return StmtError();
1689 
1690  auto CondVal = Cond.get();
1691  CheckBreakContinueBinding(CondVal.second);
1692 
1693  if (CondVal.second &&
1694  !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1695  CommaVisitor(*this).Visit(CondVal.second);
1696 
1697  if (isa<NullStmt>(Body))
1698  getCurCompoundScope().setHasEmptyLoopBodies();
1699 
1700  return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1701  WhileLoc, LParenLoc, RParenLoc);
1702 }
1703 
1704 StmtResult
1706  SourceLocation WhileLoc, SourceLocation CondLParen,
1707  Expr *Cond, SourceLocation CondRParen) {
1708  assert(Cond && "ActOnDoStmt(): missing expression");
1709 
1710  CheckBreakContinueBinding(Cond);
1711  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1712  if (CondResult.isInvalid())
1713  return StmtError();
1714  Cond = CondResult.get();
1715 
1716  CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1717  if (CondResult.isInvalid())
1718  return StmtError();
1719  Cond = CondResult.get();
1720 
1721  // Only call the CommaVisitor for C89 due to differences in scope flags.
1722  if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1723  !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1724  CommaVisitor(*this).Visit(Cond);
1725 
1726  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1727 }
1728 
1729 namespace {
1730  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1731  using DeclSetVector =
1732  llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1734 
1735  // This visitor will traverse a conditional statement and store all
1736  // the evaluated decls into a vector. Simple is set to true if none
1737  // of the excluded constructs are used.
1738  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1739  DeclSetVector &Decls;
1741  bool Simple;
1742  public:
1743  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1744 
1745  DeclExtractor(Sema &S, DeclSetVector &Decls,
1746  SmallVectorImpl<SourceRange> &Ranges) :
1747  Inherited(S.Context),
1748  Decls(Decls),
1749  Ranges(Ranges),
1750  Simple(true) {}
1751 
1752  bool isSimple() { return Simple; }
1753 
1754  // Replaces the method in EvaluatedExprVisitor.
1755  void VisitMemberExpr(MemberExpr* E) {
1756  Simple = false;
1757  }
1758 
1759  // Any Stmt not explicitly listed will cause the condition to be marked
1760  // complex.
1761  void VisitStmt(Stmt *S) { Simple = false; }
1762 
1763  void VisitBinaryOperator(BinaryOperator *E) {
1764  Visit(E->getLHS());
1765  Visit(E->getRHS());
1766  }
1767 
1768  void VisitCastExpr(CastExpr *E) {
1769  Visit(E->getSubExpr());
1770  }
1771 
1772  void VisitUnaryOperator(UnaryOperator *E) {
1773  // Skip checking conditionals with derefernces.
1774  if (E->getOpcode() == UO_Deref)
1775  Simple = false;
1776  else
1777  Visit(E->getSubExpr());
1778  }
1779 
1780  void VisitConditionalOperator(ConditionalOperator *E) {
1781  Visit(E->getCond());
1782  Visit(E->getTrueExpr());
1783  Visit(E->getFalseExpr());
1784  }
1785 
1786  void VisitParenExpr(ParenExpr *E) {
1787  Visit(E->getSubExpr());
1788  }
1789 
1790  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1791  Visit(E->getOpaqueValue()->getSourceExpr());
1792  Visit(E->getFalseExpr());
1793  }
1794 
1795  void VisitIntegerLiteral(IntegerLiteral *E) { }
1796  void VisitFloatingLiteral(FloatingLiteral *E) { }
1797  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1798  void VisitCharacterLiteral(CharacterLiteral *E) { }
1799  void VisitGNUNullExpr(GNUNullExpr *E) { }
1800  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1801 
1802  void VisitDeclRefExpr(DeclRefExpr *E) {
1803  VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1804  if (!VD) {
1805  // Don't allow unhandled Decl types.
1806  Simple = false;
1807  return;
1808  }
1809 
1810  Ranges.push_back(E->getSourceRange());
1811 
1812  Decls.insert(VD);
1813  }
1814 
1815  }; // end class DeclExtractor
1816 
1817  // DeclMatcher checks to see if the decls are used in a non-evaluated
1818  // context.
1819  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1820  DeclSetVector &Decls;
1821  bool FoundDecl;
1822 
1823  public:
1824  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1825 
1826  DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1827  Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1828  if (!Statement) return;
1829 
1830  Visit(Statement);
1831  }
1832 
1833  void VisitReturnStmt(ReturnStmt *S) {
1834  FoundDecl = true;
1835  }
1836 
1837  void VisitBreakStmt(BreakStmt *S) {
1838  FoundDecl = true;
1839  }
1840 
1841  void VisitGotoStmt(GotoStmt *S) {
1842  FoundDecl = true;
1843  }
1844 
1845  void VisitCastExpr(CastExpr *E) {
1846  if (E->getCastKind() == CK_LValueToRValue)
1847  CheckLValueToRValueCast(E->getSubExpr());
1848  else
1849  Visit(E->getSubExpr());
1850  }
1851 
1852  void CheckLValueToRValueCast(Expr *E) {
1853  E = E->IgnoreParenImpCasts();
1854 
1855  if (isa<DeclRefExpr>(E)) {
1856  return;
1857  }
1858 
1859  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1860  Visit(CO->getCond());
1861  CheckLValueToRValueCast(CO->getTrueExpr());
1862  CheckLValueToRValueCast(CO->getFalseExpr());
1863  return;
1864  }
1865 
1866  if (BinaryConditionalOperator *BCO =
1867  dyn_cast<BinaryConditionalOperator>(E)) {
1868  CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1869  CheckLValueToRValueCast(BCO->getFalseExpr());
1870  return;
1871  }
1872 
1873  Visit(E);
1874  }
1875 
1876  void VisitDeclRefExpr(DeclRefExpr *E) {
1877  if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1878  if (Decls.count(VD))
1879  FoundDecl = true;
1880  }
1881 
1882  void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1883  // Only need to visit the semantics for POE.
1884  // SyntaticForm doesn't really use the Decal.
1885  for (auto *S : POE->semantics()) {
1886  if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1887  // Look past the OVE into the expression it binds.
1888  Visit(OVE->getSourceExpr());
1889  else
1890  Visit(S);
1891  }
1892  }
1893 
1894  bool FoundDeclInUse() { return FoundDecl; }
1895 
1896  }; // end class DeclMatcher
1897 
1898  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1899  Expr *Third, Stmt *Body) {
1900  // Condition is empty
1901  if (!Second) return;
1902 
1903  if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1904  Second->getBeginLoc()))
1905  return;
1906 
1907  PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1908  DeclSetVector Decls;
1910  DeclExtractor DE(S, Decls, Ranges);
1911  DE.Visit(Second);
1912 
1913  // Don't analyze complex conditionals.
1914  if (!DE.isSimple()) return;
1915 
1916  // No decls found.
1917  if (Decls.size() == 0) return;
1918 
1919  // Don't warn on volatile, static, or global variables.
1920  for (auto *VD : Decls)
1921  if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1922  return;
1923 
1924  if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1925  DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1926  DeclMatcher(S, Decls, Body).FoundDeclInUse())
1927  return;
1928 
1929  // Load decl names into diagnostic.
1930  if (Decls.size() > 4) {
1931  PDiag << 0;
1932  } else {
1933  PDiag << (unsigned)Decls.size();
1934  for (auto *VD : Decls)
1935  PDiag << VD->getDeclName();
1936  }
1937 
1938  for (auto Range : Ranges)
1939  PDiag << Range;
1940 
1941  S.Diag(Ranges.begin()->getBegin(), PDiag);
1942  }
1943 
1944  // If Statement is an incemement or decrement, return true and sets the
1945  // variables Increment and DRE.
1946  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1947  DeclRefExpr *&DRE) {
1948  if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1949  if (!Cleanups->cleanupsHaveSideEffects())
1950  Statement = Cleanups->getSubExpr();
1951 
1952  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1953  switch (UO->getOpcode()) {
1954  default: return false;
1955  case UO_PostInc:
1956  case UO_PreInc:
1957  Increment = true;
1958  break;
1959  case UO_PostDec:
1960  case UO_PreDec:
1961  Increment = false;
1962  break;
1963  }
1964  DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1965  return DRE;
1966  }
1967 
1968  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1969  FunctionDecl *FD = Call->getDirectCallee();
1970  if (!FD || !FD->isOverloadedOperator()) return false;
1971  switch (FD->getOverloadedOperator()) {
1972  default: return false;
1973  case OO_PlusPlus:
1974  Increment = true;
1975  break;
1976  case OO_MinusMinus:
1977  Increment = false;
1978  break;
1979  }
1980  DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1981  return DRE;
1982  }
1983 
1984  return false;
1985  }
1986 
1987  // A visitor to determine if a continue or break statement is a
1988  // subexpression.
1989  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1990  SourceLocation BreakLoc;
1991  SourceLocation ContinueLoc;
1992  bool InSwitch = false;
1993 
1994  public:
1995  BreakContinueFinder(Sema &S, const Stmt* Body) :
1996  Inherited(S.Context) {
1997  Visit(Body);
1998  }
1999 
2001 
2002  void VisitContinueStmt(const ContinueStmt* E) {
2003  ContinueLoc = E->getContinueLoc();
2004  }
2005 
2006  void VisitBreakStmt(const BreakStmt* E) {
2007  if (!InSwitch)
2008  BreakLoc = E->getBreakLoc();
2009  }
2010 
2011  void VisitSwitchStmt(const SwitchStmt* S) {
2012  if (const Stmt *Init = S->getInit())
2013  Visit(Init);
2014  if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2015  Visit(CondVar);
2016  if (const Stmt *Cond = S->getCond())
2017  Visit(Cond);
2018 
2019  // Don't return break statements from the body of a switch.
2020  InSwitch = true;
2021  if (const Stmt *Body = S->getBody())
2022  Visit(Body);
2023  InSwitch = false;
2024  }
2025 
2026  void VisitForStmt(const ForStmt *S) {
2027  // Only visit the init statement of a for loop; the body
2028  // has a different break/continue scope.
2029  if (const Stmt *Init = S->getInit())
2030  Visit(Init);
2031  }
2032 
2033  void VisitWhileStmt(const WhileStmt *) {
2034  // Do nothing; the children of a while loop have a different
2035  // break/continue scope.
2036  }
2037 
2038  void VisitDoStmt(const DoStmt *) {
2039  // Do nothing; the children of a while loop have a different
2040  // break/continue scope.
2041  }
2042 
2043  void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2044  // Only visit the initialization of a for loop; the body
2045  // has a different break/continue scope.
2046  if (const Stmt *Init = S->getInit())
2047  Visit(Init);
2048  if (const Stmt *Range = S->getRangeStmt())
2049  Visit(Range);
2050  if (const Stmt *Begin = S->getBeginStmt())
2051  Visit(Begin);
2052  if (const Stmt *End = S->getEndStmt())
2053  Visit(End);
2054  }
2055 
2056  void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2057  // Only visit the initialization of a for loop; the body
2058  // has a different break/continue scope.
2059  if (const Stmt *Element = S->getElement())
2060  Visit(Element);
2061  if (const Stmt *Collection = S->getCollection())
2062  Visit(Collection);
2063  }
2064 
2065  bool ContinueFound() { return ContinueLoc.isValid(); }
2066  bool BreakFound() { return BreakLoc.isValid(); }
2067  SourceLocation GetContinueLoc() { return ContinueLoc; }
2068  SourceLocation GetBreakLoc() { return BreakLoc; }
2069 
2070  }; // end class BreakContinueFinder
2071 
2072  // Emit a warning when a loop increment/decrement appears twice per loop
2073  // iteration. The conditions which trigger this warning are:
2074  // 1) The last statement in the loop body and the third expression in the
2075  // for loop are both increment or both decrement of the same variable
2076  // 2) No continue statements in the loop body.
2077  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2078  // Return when there is nothing to check.
2079  if (!Body || !Third) return;
2080 
2081  if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2082  Third->getBeginLoc()))
2083  return;
2084 
2085  // Get the last statement from the loop body.
2086  CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2087  if (!CS || CS->body_empty()) return;
2088  Stmt *LastStmt = CS->body_back();
2089  if (!LastStmt) return;
2090 
2091  bool LoopIncrement, LastIncrement;
2092  DeclRefExpr *LoopDRE, *LastDRE;
2093 
2094  if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2095  if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2096 
2097  // Check that the two statements are both increments or both decrements
2098  // on the same variable.
2099  if (LoopIncrement != LastIncrement ||
2100  LoopDRE->getDecl() != LastDRE->getDecl()) return;
2101 
2102  if (BreakContinueFinder(S, Body).ContinueFound()) return;
2103 
2104  S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2105  << LastDRE->getDecl() << LastIncrement;
2106  S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2107  << LoopIncrement;
2108  }
2109 
2110 } // end namespace
2111 
2112 
2113 void Sema::CheckBreakContinueBinding(Expr *E) {
2114  if (!E || getLangOpts().CPlusPlus)
2115  return;
2116  BreakContinueFinder BCFinder(*this, E);
2117  Scope *BreakParent = CurScope->getBreakParent();
2118  if (BCFinder.BreakFound() && BreakParent) {
2119  if (BreakParent->getFlags() & Scope::SwitchScope) {
2120  Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2121  } else {
2122  Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2123  << "break";
2124  }
2125  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2126  Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2127  << "continue";
2128  }
2129 }
2130 
2132  Stmt *First, ConditionResult Second,
2133  FullExprArg third, SourceLocation RParenLoc,
2134  Stmt *Body) {
2135  if (Second.isInvalid())
2136  return StmtError();
2137 
2138  if (!getLangOpts().CPlusPlus) {
2139  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2140  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2141  // declare identifiers for objects having storage class 'auto' or
2142  // 'register'.
2143  const Decl *NonVarSeen = nullptr;
2144  bool VarDeclSeen = false;
2145  for (auto *DI : DS->decls()) {
2146  if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2147  VarDeclSeen = true;
2148  if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2149  Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2150  DI->setInvalidDecl();
2151  }
2152  } else if (!NonVarSeen) {
2153  // Keep track of the first non-variable declaration we saw so that
2154  // we can diagnose if we don't see any variable declarations. This
2155  // covers a case like declaring a typedef, function, or structure
2156  // type rather than a variable.
2157  NonVarSeen = DI;
2158  }
2159  }
2160  // Diagnose if we saw a non-variable declaration but no variable
2161  // declarations.
2162  if (NonVarSeen && !VarDeclSeen)
2163  Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2164  }
2165  }
2166 
2167  CheckBreakContinueBinding(Second.get().second);
2168  CheckBreakContinueBinding(third.get());
2169 
2170  if (!Second.get().first)
2171  CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2172  Body);
2173  CheckForRedundantIteration(*this, third.get(), Body);
2174 
2175  if (Second.get().second &&
2176  !Diags.isIgnored(diag::warn_comma_operator,
2177  Second.get().second->getExprLoc()))
2178  CommaVisitor(*this).Visit(Second.get().second);
2179 
2180  Expr *Third = third.release().getAs<Expr>();
2181  if (isa<NullStmt>(Body))
2182  getCurCompoundScope().setHasEmptyLoopBodies();
2183 
2184  return new (Context)
2185  ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2186  Body, ForLoc, LParenLoc, RParenLoc);
2187 }
2188 
2189 /// In an Objective C collection iteration statement:
2190 /// for (x in y)
2191 /// x can be an arbitrary l-value expression. Bind it up as a
2192 /// full-expression.
2194  // Reduce placeholder expressions here. Note that this rejects the
2195  // use of pseudo-object l-values in this position.
2196  ExprResult result = CheckPlaceholderExpr(E);
2197  if (result.isInvalid()) return StmtError();
2198  E = result.get();
2199 
2200  ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2201  if (FullExpr.isInvalid())
2202  return StmtError();
2203  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2204 }
2205 
2206 ExprResult
2208  if (!collection)
2209  return ExprError();
2210 
2211  ExprResult result = CorrectDelayedTyposInExpr(collection);
2212  if (!result.isUsable())
2213  return ExprError();
2214  collection = result.get();
2215 
2216  // Bail out early if we've got a type-dependent expression.
2217  if (collection->isTypeDependent()) return collection;
2218 
2219  // Perform normal l-value conversion.
2220  result = DefaultFunctionArrayLvalueConversion(collection);
2221  if (result.isInvalid())
2222  return ExprError();
2223  collection = result.get();
2224 
2225  // The operand needs to have object-pointer type.
2226  // TODO: should we do a contextual conversion?
2228  collection->getType()->getAs<ObjCObjectPointerType>();
2229  if (!pointerType)
2230  return Diag(forLoc, diag::err_collection_expr_type)
2231  << collection->getType() << collection->getSourceRange();
2232 
2233  // Check that the operand provides
2234  // - countByEnumeratingWithState:objects:count:
2235  const ObjCObjectType *objectType = pointerType->getObjectType();
2236  ObjCInterfaceDecl *iface = objectType->getInterface();
2237 
2238  // If we have a forward-declared type, we can't do this check.
2239  // Under ARC, it is an error not to have a forward-declared class.
2240  if (iface &&
2241  (getLangOpts().ObjCAutoRefCount
2242  ? RequireCompleteType(forLoc, QualType(objectType, 0),
2243  diag::err_arc_collection_forward, collection)
2244  : !isCompleteType(forLoc, QualType(objectType, 0)))) {
2245  // Otherwise, if we have any useful type information, check that
2246  // the type declares the appropriate method.
2247  } else if (iface || !objectType->qual_empty()) {
2248  IdentifierInfo *selectorIdents[] = {
2249  &Context.Idents.get("countByEnumeratingWithState"),
2250  &Context.Idents.get("objects"),
2251  &Context.Idents.get("count")
2252  };
2253  Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
2254 
2255  ObjCMethodDecl *method = nullptr;
2256 
2257  // If there's an interface, look in both the public and private APIs.
2258  if (iface) {
2259  method = iface->lookupInstanceMethod(selector);
2260  if (!method) method = iface->lookupPrivateMethod(selector);
2261  }
2262 
2263  // Also check protocol qualifiers.
2264  if (!method)
2265  method = LookupMethodInQualifiedType(selector, pointerType,
2266  /*instance*/ true);
2267 
2268  // If we didn't find it anywhere, give up.
2269  if (!method) {
2270  Diag(forLoc, diag::warn_collection_expr_type)
2271  << collection->getType() << selector << collection->getSourceRange();
2272  }
2273 
2274  // TODO: check for an incompatible signature?
2275  }
2276 
2277  // Wrap up any cleanups in the expression.
2278  return collection;
2279 }
2280 
2281 StmtResult
2283  Stmt *First, Expr *collection,
2284  SourceLocation RParenLoc) {
2285  setFunctionHasBranchProtectedScope();
2286 
2287  ExprResult CollectionExprResult =
2288  CheckObjCForCollectionOperand(ForLoc, collection);
2289 
2290  if (First) {
2291  QualType FirstType;
2292  if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
2293  if (!DS->isSingleDecl())
2294  return StmtError(Diag((*DS->decl_begin())->getLocation(),
2295  diag::err_toomany_element_decls));
2296 
2297  VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
2298  if (!D || D->isInvalidDecl())
2299  return StmtError();
2300 
2301  FirstType = D->getType();
2302  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2303  // declare identifiers for objects having storage class 'auto' or
2304  // 'register'.
2305  if (!D->hasLocalStorage())
2306  return StmtError(Diag(D->getLocation(),
2307  diag::err_non_local_variable_decl_in_for));
2308 
2309  // If the type contained 'auto', deduce the 'auto' to 'id'.
2310  if (FirstType->getContainedAutoType()) {
2311  SourceLocation Loc = D->getLocation();
2312  OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue);
2313  Expr *DeducedInit = &OpaqueId;
2314  TemplateDeductionInfo Info(Loc);
2315  FirstType = QualType();
2316  TemplateDeductionResult Result = DeduceAutoType(
2317  D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info);
2318  if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2319  DiagnoseAutoDeductionFailure(D, DeducedInit);
2320  if (FirstType.isNull()) {
2321  D->setInvalidDecl();
2322  return StmtError();
2323  }
2324 
2325  D->setType(FirstType);
2326 
2327  if (!inTemplateInstantiation()) {
2328  SourceLocation Loc =
2330  Diag(Loc, diag::warn_auto_var_is_id)
2331  << D->getDeclName();
2332  }
2333  }
2334 
2335  } else {
2336  Expr *FirstE = cast<Expr>(First);
2337  if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2338  return StmtError(
2339  Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2340  << First->getSourceRange());
2341 
2342  FirstType = static_cast<Expr*>(First)->getType();
2343  if (FirstType.isConstQualified())
2344  Diag(ForLoc, diag::err_selector_element_const_type)
2345  << FirstType << First->getSourceRange();
2346  }
2347  if (!FirstType->isDependentType() &&
2348  !FirstType->isObjCObjectPointerType() &&
2349  !FirstType->isBlockPointerType())
2350  return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2351  << FirstType << First->getSourceRange());
2352  }
2353 
2354  if (CollectionExprResult.isInvalid())
2355  return StmtError();
2356 
2357  CollectionExprResult =
2358  ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2359  if (CollectionExprResult.isInvalid())
2360  return StmtError();
2361 
2362  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2363  nullptr, ForLoc, RParenLoc);
2364 }
2365 
2366 /// Finish building a variable declaration for a for-range statement.
2367 /// \return true if an error occurs.
2368 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2369  SourceLocation Loc, int DiagID) {
2370  if (Decl->getType()->isUndeducedType()) {
2371  ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2372  if (!Res.isUsable()) {
2373  Decl->setInvalidDecl();
2374  return true;
2375  }
2376  Init = Res.get();
2377  }
2378 
2379  // Deduce the type for the iterator variable now rather than leaving it to
2380  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2381  QualType InitType;
2382  if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2383  SemaRef.Diag(Loc, DiagID) << Init->getType();
2384  } else {
2385  TemplateDeductionInfo Info(Init->getExprLoc());
2387  Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2388  if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed)
2389  SemaRef.Diag(Loc, DiagID) << Init->getType();
2390  }
2391 
2392  if (InitType.isNull()) {
2393  Decl->setInvalidDecl();
2394  return true;
2395  }
2396  Decl->setType(InitType);
2397 
2398  // In ARC, infer lifetime.
2399  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2400  // we're doing the equivalent of fast iteration.
2401  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2402  SemaRef.inferObjCARCLifetime(Decl))
2403  Decl->setInvalidDecl();
2404 
2405  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2406  SemaRef.FinalizeDeclaration(Decl);
2407  SemaRef.CurContext->addHiddenDecl(Decl);
2408  return false;
2409 }
2410 
2411 namespace {
2412 // An enum to represent whether something is dealing with a call to begin()
2413 // or a call to end() in a range-based for loop.
2414 enum BeginEndFunction {
2415  BEF_begin,
2416  BEF_end
2417 };
2418 
2419 /// Produce a note indicating which begin/end function was implicitly called
2420 /// by a C++11 for-range statement. This is often not obvious from the code,
2421 /// nor from the diagnostics produced when analysing the implicit expressions
2422 /// required in a for-range statement.
2423 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2424  BeginEndFunction BEF) {
2425  CallExpr *CE = dyn_cast<CallExpr>(E);
2426  if (!CE)
2427  return;
2428  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2429  if (!D)
2430  return;
2431  SourceLocation Loc = D->getLocation();
2432 
2433  std::string Description;
2434  bool IsTemplate = false;
2435  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2436  Description = SemaRef.getTemplateArgumentBindingsText(
2437  FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2438  IsTemplate = true;
2439  }
2440 
2441  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2442  << BEF << IsTemplate << Description << E->getType();
2443 }
2444 
2445 /// Build a variable declaration for a for-range statement.
2446 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2447  QualType Type, StringRef Name) {
2448  DeclContext *DC = SemaRef.CurContext;
2449  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2450  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2451  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2452  TInfo, SC_None);
2453  Decl->setImplicit();
2454  return Decl;
2455 }
2456 
2457 }
2458 
2459 static bool ObjCEnumerationCollection(Expr *Collection) {
2460  return !Collection->isTypeDependent()
2461  && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2462 }
2463 
2464 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2465 ///
2466 /// C++11 [stmt.ranged]:
2467 /// A range-based for statement is equivalent to
2468 ///
2469 /// {
2470 /// auto && __range = range-init;
2471 /// for ( auto __begin = begin-expr,
2472 /// __end = end-expr;
2473 /// __begin != __end;
2474 /// ++__begin ) {
2475 /// for-range-declaration = *__begin;
2476 /// statement
2477 /// }
2478 /// }
2479 ///
2480 /// The body of the loop is not available yet, since it cannot be analysed until
2481 /// we have determined the type of the for-range-declaration.
2483  SourceLocation CoawaitLoc, Stmt *InitStmt,
2484  Stmt *First, SourceLocation ColonLoc,
2485  Expr *Range, SourceLocation RParenLoc,
2487  // FIXME: recover in order to allow the body to be parsed.
2488  if (!First)
2489  return StmtError();
2490 
2491  if (Range && ObjCEnumerationCollection(Range)) {
2492  // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2493  if (InitStmt)
2494  return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2495  << InitStmt->getSourceRange();
2496  return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2497  }
2498 
2499  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2500  assert(DS && "first part of for range not a decl stmt");
2501 
2502  if (!DS->isSingleDecl()) {
2503  Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2504  return StmtError();
2505  }
2506 
2507  // This function is responsible for attaching an initializer to LoopVar. We
2508  // must call ActOnInitializerError if we fail to do so.
2509  Decl *LoopVar = DS->getSingleDecl();
2510  if (LoopVar->isInvalidDecl() || !Range ||
2511  DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2512  ActOnInitializerError(LoopVar);
2513  return StmtError();
2514  }
2515 
2516  // Build the coroutine state immediately and not later during template
2517  // instantiation
2518  if (!CoawaitLoc.isInvalid()) {
2519  if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2520  ActOnInitializerError(LoopVar);
2521  return StmtError();
2522  }
2523  }
2524 
2525  // Build auto && __range = range-init
2526  // Divide by 2, since the variables are in the inner scope (loop body).
2527  const auto DepthStr = std::to_string(S->getDepth() / 2);
2528  SourceLocation RangeLoc = Range->getBeginLoc();
2529  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2530  Context.getAutoRRefDeductType(),
2531  std::string("__range") + DepthStr);
2532  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2533  diag::err_for_range_deduction_failure)) {
2534  ActOnInitializerError(LoopVar);
2535  return StmtError();
2536  }
2537 
2538  // Claim the type doesn't contain auto: we've already done the checking.
2539  DeclGroupPtrTy RangeGroup =
2540  BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2541  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2542  if (RangeDecl.isInvalid()) {
2543  ActOnInitializerError(LoopVar);
2544  return StmtError();
2545  }
2546 
2547  StmtResult R = BuildCXXForRangeStmt(
2548  ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2549  /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2550  /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2551  if (R.isInvalid()) {
2552  ActOnInitializerError(LoopVar);
2553  return StmtError();
2554  }
2555 
2556  return R;
2557 }
2558 
2559 /// Create the initialization, compare, and increment steps for
2560 /// the range-based for loop expression.
2561 /// This function does not handle array-based for loops,
2562 /// which are created in Sema::BuildCXXForRangeStmt.
2563 ///
2564 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2565 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2566 /// CandidateSet and BEF are set and some non-success value is returned on
2567 /// failure.
2568 static Sema::ForRangeStatus
2569 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2570  QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2571  SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2572  OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2573  ExprResult *EndExpr, BeginEndFunction *BEF) {
2574  DeclarationNameInfo BeginNameInfo(
2575  &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2576  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2577  ColonLoc);
2578 
2579  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2581  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2582 
2583  auto BuildBegin = [&] {
2584  *BEF = BEF_begin;
2585  Sema::ForRangeStatus RangeStatus =
2586  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2587  BeginMemberLookup, CandidateSet,
2588  BeginRange, BeginExpr);
2589 
2590  if (RangeStatus != Sema::FRS_Success) {
2591  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2592  SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2593  << ColonLoc << BEF_begin << BeginRange->getType();
2594  return RangeStatus;
2595  }
2596  if (!CoawaitLoc.isInvalid()) {
2597  // FIXME: getCurScope() should not be used during template instantiation.
2598  // We should pick up the set of unqualified lookup results for operator
2599  // co_await during the initial parse.
2600  *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2601  BeginExpr->get());
2602  if (BeginExpr->isInvalid())
2604  }
2605  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2606  diag::err_for_range_iter_deduction_failure)) {
2607  NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2609  }
2610  return Sema::FRS_Success;
2611  };
2612 
2613  auto BuildEnd = [&] {
2614  *BEF = BEF_end;
2615  Sema::ForRangeStatus RangeStatus =
2616  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2617  EndMemberLookup, CandidateSet,
2618  EndRange, EndExpr);
2619  if (RangeStatus != Sema::FRS_Success) {
2620  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2621  SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2622  << ColonLoc << BEF_end << EndRange->getType();
2623  return RangeStatus;
2624  }
2625  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2626  diag::err_for_range_iter_deduction_failure)) {
2627  NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2629  }
2630  return Sema::FRS_Success;
2631  };
2632 
2633  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2634  // - if _RangeT is a class type, the unqualified-ids begin and end are
2635  // looked up in the scope of class _RangeT as if by class member access
2636  // lookup (3.4.5), and if either (or both) finds at least one
2637  // declaration, begin-expr and end-expr are __range.begin() and
2638  // __range.end(), respectively;
2639  SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2640  if (BeginMemberLookup.isAmbiguous())
2642 
2643  SemaRef.LookupQualifiedName(EndMemberLookup, D);
2644  if (EndMemberLookup.isAmbiguous())
2646 
2647  if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2648  // Look up the non-member form of the member we didn't find, first.
2649  // This way we prefer a "no viable 'end'" diagnostic over a "i found
2650  // a 'begin' but ignored it because there was no member 'end'"
2651  // diagnostic.
2652  auto BuildNonmember = [&](
2653  BeginEndFunction BEFFound, LookupResult &Found,
2654  llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2655  llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2656  LookupResult OldFound = std::move(Found);
2657  Found.clear();
2658 
2659  if (Sema::ForRangeStatus Result = BuildNotFound())
2660  return Result;
2661 
2662  switch (BuildFound()) {
2663  case Sema::FRS_Success:
2664  return Sema::FRS_Success;
2665 
2667  CandidateSet->NoteCandidates(
2668  PartialDiagnosticAt(BeginRange->getBeginLoc(),
2669  SemaRef.PDiag(diag::err_for_range_invalid)
2670  << BeginRange->getType() << BEFFound),
2671  SemaRef, OCD_AllCandidates, BeginRange);
2672  [[fallthrough]];
2673 
2675  for (NamedDecl *D : OldFound) {
2676  SemaRef.Diag(D->getLocation(),
2677  diag::note_for_range_member_begin_end_ignored)
2678  << BeginRange->getType() << BEFFound;
2679  }
2681  }
2682  llvm_unreachable("unexpected ForRangeStatus");
2683  };
2684  if (BeginMemberLookup.empty())
2685  return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2686  return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2687  }
2688  } else {
2689  // - otherwise, begin-expr and end-expr are begin(__range) and
2690  // end(__range), respectively, where begin and end are looked up with
2691  // argument-dependent lookup (3.4.2). For the purposes of this name
2692  // lookup, namespace std is an associated namespace.
2693  }
2694 
2695  if (Sema::ForRangeStatus Result = BuildBegin())
2696  return Result;
2697  return BuildEnd();
2698 }
2699 
2700 /// Speculatively attempt to dereference an invalid range expression.
2701 /// If the attempt fails, this function will return a valid, null StmtResult
2702 /// and emit no diagnostics.
2704  SourceLocation ForLoc,
2705  SourceLocation CoawaitLoc,
2706  Stmt *InitStmt,
2707  Stmt *LoopVarDecl,
2708  SourceLocation ColonLoc,
2709  Expr *Range,
2710  SourceLocation RangeLoc,
2711  SourceLocation RParenLoc) {
2712  // Determine whether we can rebuild the for-range statement with a
2713  // dereferenced range expression.
2714  ExprResult AdjustedRange;
2715  {
2716  Sema::SFINAETrap Trap(SemaRef);
2717 
2718  AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2719  if (AdjustedRange.isInvalid())
2720  return StmtResult();
2721 
2722  StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2723  S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2724  AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2725  if (SR.isInvalid())
2726  return StmtResult();
2727  }
2728 
2729  // The attempt to dereference worked well enough that it could produce a valid
2730  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2731  // case there are any other (non-fatal) problems with it.
2732  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2733  << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2734  return SemaRef.ActOnCXXForRangeStmt(
2735  S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2736  AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2737 }
2738 
2739 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2741  SourceLocation CoawaitLoc, Stmt *InitStmt,
2742  SourceLocation ColonLoc, Stmt *RangeDecl,
2743  Stmt *Begin, Stmt *End, Expr *Cond,
2744  Expr *Inc, Stmt *LoopVarDecl,
2745  SourceLocation RParenLoc,
2747  // FIXME: This should not be used during template instantiation. We should
2748  // pick up the set of unqualified lookup results for the != and + operators
2749  // in the initial parse.
2750  //
2751  // Testcase (accepts-invalid):
2752  // template<typename T> void f() { for (auto x : T()) {} }
2753  // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2754  // bool operator!=(N::X, N::X); void operator++(N::X);
2755  // void g() { f<N::X>(); }
2756  Scope *S = getCurScope();
2757 
2758  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2759  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2760  QualType RangeVarType = RangeVar->getType();
2761 
2762  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2763  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2764 
2765  StmtResult BeginDeclStmt = Begin;
2766  StmtResult EndDeclStmt = End;
2767  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2768 
2769  if (RangeVarType->isDependentType()) {
2770  // The range is implicitly used as a placeholder when it is dependent.
2771  RangeVar->markUsed(Context);
2772 
2773  // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2774  // them in properly when we instantiate the loop.
2775  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2776  if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2777  for (auto *Binding : DD->bindings())
2778  Binding->setType(Context.DependentTy);
2779  LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2780  }
2781  } else if (!BeginDeclStmt.get()) {
2782  SourceLocation RangeLoc = RangeVar->getLocation();
2783 
2784  const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2785 
2786  ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2787  VK_LValue, ColonLoc);
2788  if (BeginRangeRef.isInvalid())
2789  return StmtError();
2790 
2791  ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2792  VK_LValue, ColonLoc);
2793  if (EndRangeRef.isInvalid())
2794  return StmtError();
2795 
2796  QualType AutoType = Context.getAutoDeductType();
2797  Expr *Range = RangeVar->getInit();
2798  if (!Range)
2799  return StmtError();
2800  QualType RangeType = Range->getType();
2801 
2802  if (RequireCompleteType(RangeLoc, RangeType,
2803  diag::err_for_range_incomplete_type))
2804  return StmtError();
2805 
2806  // Build auto __begin = begin-expr, __end = end-expr.
2807  // Divide by 2, since the variables are in the inner scope (loop body).
2808  const auto DepthStr = std::to_string(S->getDepth() / 2);
2809  VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2810  std::string("__begin") + DepthStr);
2811  VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2812  std::string("__end") + DepthStr);
2813 
2814  // Build begin-expr and end-expr and attach to __begin and __end variables.
2815  ExprResult BeginExpr, EndExpr;
2816  if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2817  // - if _RangeT is an array type, begin-expr and end-expr are __range and
2818  // __range + __bound, respectively, where __bound is the array bound. If
2819  // _RangeT is an array of unknown size or an array of incomplete type,
2820  // the program is ill-formed;
2821 
2822  // begin-expr is __range.
2823  BeginExpr = BeginRangeRef;
2824  if (!CoawaitLoc.isInvalid()) {
2825  BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2826  if (BeginExpr.isInvalid())
2827  return StmtError();
2828  }
2829  if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2830  diag::err_for_range_iter_deduction_failure)) {
2831  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2832  return StmtError();
2833  }
2834 
2835  // Find the array bound.
2836  ExprResult BoundExpr;
2837  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2838  BoundExpr = IntegerLiteral::Create(
2839  Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2840  else if (const VariableArrayType *VAT =
2841  dyn_cast<VariableArrayType>(UnqAT)) {
2842  // For a variably modified type we can't just use the expression within
2843  // the array bounds, since we don't want that to be re-evaluated here.
2844  // Rather, we need to determine what it was when the array was first
2845  // created - so we resort to using sizeof(vla)/sizeof(element).
2846  // For e.g.
2847  // void f(int b) {
2848  // int vla[b];
2849  // b = -1; <-- This should not affect the num of iterations below
2850  // for (int &c : vla) { .. }
2851  // }
2852 
2853  // FIXME: This results in codegen generating IR that recalculates the
2854  // run-time number of elements (as opposed to just using the IR Value
2855  // that corresponds to the run-time value of each bound that was
2856  // generated when the array was created.) If this proves too embarrassing
2857  // even for unoptimized IR, consider passing a magic-value/cookie to
2858  // codegen that then knows to simply use that initial llvm::Value (that
2859  // corresponds to the bound at time of array creation) within
2860  // getelementptr. But be prepared to pay the price of increasing a
2861  // customized form of coupling between the two components - which could
2862  // be hard to maintain as the codebase evolves.
2863 
2864  ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2865  EndVar->getLocation(), UETT_SizeOf,
2866  /*IsType=*/true,
2867  CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2868  VAT->desugar(), RangeLoc))
2869  .getAsOpaquePtr(),
2870  EndVar->getSourceRange());
2871  if (SizeOfVLAExprR.isInvalid())
2872  return StmtError();
2873 
2874  ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2875  EndVar->getLocation(), UETT_SizeOf,
2876  /*IsType=*/true,
2877  CreateParsedType(VAT->desugar(),
2878  Context.getTrivialTypeSourceInfo(
2879  VAT->getElementType(), RangeLoc))
2880  .getAsOpaquePtr(),
2881  EndVar->getSourceRange());
2882  if (SizeOfEachElementExprR.isInvalid())
2883  return StmtError();
2884 
2885  BoundExpr =
2886  ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2887  SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2888  if (BoundExpr.isInvalid())
2889  return StmtError();
2890 
2891  } else {
2892  // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2893  // UnqAT is not incomplete and Range is not type-dependent.
2894  llvm_unreachable("Unexpected array type in for-range");
2895  }
2896 
2897  // end-expr is __range + __bound.
2898  EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2899  BoundExpr.get());
2900  if (EndExpr.isInvalid())
2901  return StmtError();
2902  if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2903  diag::err_for_range_iter_deduction_failure)) {
2904  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2905  return StmtError();
2906  }
2907  } else {
2908  OverloadCandidateSet CandidateSet(RangeLoc,
2910  BeginEndFunction BEFFailure;
2911  ForRangeStatus RangeStatus = BuildNonArrayForRange(
2912  *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2913  EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2914  &BEFFailure);
2915 
2916  if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2917  BEFFailure == BEF_begin) {
2918  // If the range is being built from an array parameter, emit a
2919  // a diagnostic that it is being treated as a pointer.
2920  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2921  if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2922  QualType ArrayTy = PVD->getOriginalType();
2923  QualType PointerTy = PVD->getType();
2924  if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2925  Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2926  << RangeLoc << PVD << ArrayTy << PointerTy;
2927  Diag(PVD->getLocation(), diag::note_declared_at);
2928  return StmtError();
2929  }
2930  }
2931  }
2932 
2933  // If building the range failed, try dereferencing the range expression
2934  // unless a diagnostic was issued or the end function is problematic.
2935  StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2936  CoawaitLoc, InitStmt,
2937  LoopVarDecl, ColonLoc,
2938  Range, RangeLoc,
2939  RParenLoc);
2940  if (SR.isInvalid() || SR.isUsable())
2941  return SR;
2942  }
2943 
2944  // Otherwise, emit diagnostics if we haven't already.
2945  if (RangeStatus == FRS_NoViableFunction) {
2946  Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2947  CandidateSet.NoteCandidates(
2948  PartialDiagnosticAt(Range->getBeginLoc(),
2949  PDiag(diag::err_for_range_invalid)
2950  << RangeLoc << Range->getType()
2951  << BEFFailure),
2952  *this, OCD_AllCandidates, Range);
2953  }
2954  // Return an error if no fix was discovered.
2955  if (RangeStatus != FRS_Success)
2956  return StmtError();
2957  }
2958 
2959  assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2960  "invalid range expression in for loop");
2961 
2962  // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2963  // C++1z removes this restriction.
2964  QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2965  if (!Context.hasSameType(BeginType, EndType)) {
2966  Diag(RangeLoc, getLangOpts().CPlusPlus17
2967  ? diag::warn_for_range_begin_end_types_differ
2968  : diag::ext_for_range_begin_end_types_differ)
2969  << BeginType << EndType;
2970  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2971  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2972  }
2973 
2974  BeginDeclStmt =
2975  ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2976  EndDeclStmt =
2977  ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2978 
2979  const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2980  ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2981  VK_LValue, ColonLoc);
2982  if (BeginRef.isInvalid())
2983  return StmtError();
2984 
2985  ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2986  VK_LValue, ColonLoc);
2987  if (EndRef.isInvalid())
2988  return StmtError();
2989 
2990  // Build and check __begin != __end expression.
2991  NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2992  BeginRef.get(), EndRef.get());
2993  if (!NotEqExpr.isInvalid())
2994  NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2995  if (!NotEqExpr.isInvalid())
2996  NotEqExpr =
2997  ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2998  if (NotEqExpr.isInvalid()) {
2999  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3000  << RangeLoc << 0 << BeginRangeRef.get()->getType();
3001  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3002  if (!Context.hasSameType(BeginType, EndType))
3003  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
3004  return StmtError();
3005  }
3006 
3007  // Build and check ++__begin expression.
3008  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3009  VK_LValue, ColonLoc);
3010  if (BeginRef.isInvalid())
3011  return StmtError();
3012 
3013  IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
3014  if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
3015  // FIXME: getCurScope() should not be used during template instantiation.
3016  // We should pick up the set of unqualified lookup results for operator
3017  // co_await during the initial parse.
3018  IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
3019  if (!IncrExpr.isInvalid())
3020  IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
3021  if (IncrExpr.isInvalid()) {
3022  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3023  << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
3024  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3025  return StmtError();
3026  }
3027 
3028  // Build and check *__begin expression.
3029  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3030  VK_LValue, ColonLoc);
3031  if (BeginRef.isInvalid())
3032  return StmtError();
3033 
3034  ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
3035  if (DerefExpr.isInvalid()) {
3036  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3037  << RangeLoc << 1 << BeginRangeRef.get()->getType();
3038  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3039  return StmtError();
3040  }
3041 
3042  // Attach *__begin as initializer for VD. Don't touch it if we're just
3043  // trying to determine whether this would be a valid range.
3044  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
3045  AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
3046  if (LoopVar->isInvalidDecl() ||
3047  (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3048  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3049  }
3050  }
3051 
3052  // Don't bother to actually allocate the result if we're just trying to
3053  // determine whether it would be valid.
3054  if (Kind == BFRK_Check)
3055  return StmtResult();
3056 
3057  // In OpenMP loop region loop control variable must be private. Perform
3058  // analysis of first part (if any).
3059  if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3060  ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3061 
3062  return new (Context) CXXForRangeStmt(
3063  InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3064  cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3065  IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3066  ColonLoc, RParenLoc);
3067 }
3068 
3069 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
3070 /// statement.
3072  if (!S || !B)
3073  return StmtError();
3074  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
3075 
3076  ForStmt->setBody(B);
3077  return S;
3078 }
3079 
3080 // Warn when the loop variable is a const reference that creates a copy.
3081 // Suggest using the non-reference type for copies. If a copy can be prevented
3082 // suggest the const reference type that would do so.
3083 // For instance, given "for (const &Foo : Range)", suggest
3084 // "for (const Foo : Range)" to denote a copy is made for the loop. If
3085 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3086 // the copy altogether.
3088  const VarDecl *VD,
3089  QualType RangeInitType) {
3090  const Expr *InitExpr = VD->getInit();
3091  if (!InitExpr)
3092  return;
3093 
3094  QualType VariableType = VD->getType();
3095 
3096  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3097  if (!Cleanups->cleanupsHaveSideEffects())
3098  InitExpr = Cleanups->getSubExpr();
3099 
3100  const MaterializeTemporaryExpr *MTE =
3101  dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3102 
3103  // No copy made.
3104  if (!MTE)
3105  return;
3106 
3107  const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3108 
3109  // Searching for either UnaryOperator for dereference of a pointer or
3110  // CXXOperatorCallExpr for handling iterators.
3111  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3112  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3113  E = CCE->getArg(0);
3114  } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3115  const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3116  E = ME->getBase();
3117  } else {
3118  const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3119  E = MTE->getSubExpr();
3120  }
3121  E = E->IgnoreImpCasts();
3122  }
3123 
3124  QualType ReferenceReturnType;
3125  if (isa<UnaryOperator>(E)) {
3126  ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3127  } else {
3128  const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3129  const FunctionDecl *FD = Call->getDirectCallee();
3130  QualType ReturnType = FD->getReturnType();
3131  if (ReturnType->isReferenceType())
3132  ReferenceReturnType = ReturnType;
3133  }
3134 
3135  if (!ReferenceReturnType.isNull()) {
3136  // Loop variable creates a temporary. Suggest either to go with
3137  // non-reference loop variable to indicate a copy is made, or
3138  // the correct type to bind a const reference.
3139  SemaRef.Diag(VD->getLocation(),
3140  diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3141  << VD << VariableType << ReferenceReturnType;
3142  QualType NonReferenceType = VariableType.getNonReferenceType();
3143  NonReferenceType.removeLocalConst();
3144  QualType NewReferenceType =
3146  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3147  << NonReferenceType << NewReferenceType << VD->getSourceRange()
3149  } else if (!VariableType->isRValueReferenceType()) {
3150  // The range always returns a copy, so a temporary is always created.
3151  // Suggest removing the reference from the loop variable.
3152  // If the type is a rvalue reference do not warn since that changes the
3153  // semantic of the code.
3154  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3155  << VD << RangeInitType;
3156  QualType NonReferenceType = VariableType.getNonReferenceType();
3157  NonReferenceType.removeLocalConst();
3158  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3159  << NonReferenceType << VD->getSourceRange()
3161  }
3162 }
3163 
3164 /// Determines whether the @p VariableType's declaration is a record with the
3165 /// clang::trivial_abi attribute.
3166 static bool hasTrivialABIAttr(QualType VariableType) {
3167  if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3168  return RD->hasAttr<TrivialABIAttr>();
3169 
3170  return false;
3171 }
3172 
3173 // Warns when the loop variable can be changed to a reference type to
3174 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
3175 // "for (const Foo &x : Range)" if this form does not make a copy.
3177  const VarDecl *VD) {
3178  const Expr *InitExpr = VD->getInit();
3179  if (!InitExpr)
3180  return;
3181 
3182  QualType VariableType = VD->getType();
3183 
3184  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3185  if (!CE->getConstructor()->isCopyConstructor())
3186  return;
3187  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3188  if (CE->getCastKind() != CK_LValueToRValue)
3189  return;
3190  } else {
3191  return;
3192  }
3193 
3194  // Small trivially copyable types are cheap to copy. Do not emit the
3195  // diagnostic for these instances. 64 bytes is a common size of a cache line.
3196  // (The function `getTypeSize` returns the size in bits.)
3197  ASTContext &Ctx = SemaRef.Context;
3198  if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3199  (VariableType.isTriviallyCopyableType(Ctx) ||
3200  hasTrivialABIAttr(VariableType)))
3201  return;
3202 
3203  // Suggest changing from a const variable to a const reference variable
3204  // if doing so will prevent a copy.
3205  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3206  << VD << VariableType;
3207  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3208  << SemaRef.Context.getLValueReferenceType(VariableType)
3209  << VD->getSourceRange()
3210  << FixItHint::CreateInsertion(VD->getLocation(), "&");
3211 }
3212 
3213 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3214 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
3215 /// using "const foo x" to show that a copy is made
3216 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3217 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
3218 /// prevent the copy.
3219 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3220 /// Suggest "const foo &x" to prevent the copy.
3222  const CXXForRangeStmt *ForStmt) {
3223  if (SemaRef.inTemplateInstantiation())
3224  return;
3225 
3226  if (SemaRef.Diags.isIgnored(
3227  diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3228  ForStmt->getBeginLoc()) &&
3229  SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3230  ForStmt->getBeginLoc()) &&
3231  SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3232  ForStmt->getBeginLoc())) {
3233  return;
3234  }
3235 
3236  const VarDecl *VD = ForStmt->getLoopVariable();
3237  if (!VD)
3238  return;
3239 
3240  QualType VariableType = VD->getType();
3241 
3242  if (VariableType->isIncompleteType())
3243  return;
3244 
3245  const Expr *InitExpr = VD->getInit();
3246  if (!InitExpr)
3247  return;
3248 
3249  if (InitExpr->getExprLoc().isMacroID())
3250  return;
3251 
3252  if (VariableType->isReferenceType()) {
3254  ForStmt->getRangeInit()->getType());
3255  } else if (VariableType.isConstQualified()) {
3257  }
3258 }
3259 
3260 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
3261 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
3262 /// body cannot be performed until after the type of the range variable is
3263 /// determined.
3265  if (!S || !B)
3266  return StmtError();
3267 
3268  if (isa<ObjCForCollectionStmt>(S))
3269  return FinishObjCForCollectionStmt(S, B);
3270 
3271  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3272  ForStmt->setBody(B);
3273 
3274  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3275  diag::warn_empty_range_based_for_body);
3276 
3278 
3279  return S;
3280 }
3281 
3283  SourceLocation LabelLoc,
3284  LabelDecl *TheDecl) {
3285  setFunctionHasBranchIntoScope();
3286  TheDecl->markUsed(Context);
3287  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3288 }
3289 
3290 StmtResult
3292  Expr *E) {
3293  // Convert operand to void*
3294  if (!E->isTypeDependent()) {
3295  QualType ETy = E->getType();
3296  QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3297  ExprResult ExprRes = E;
3298  AssignConvertType ConvTy =
3299  CheckSingleAssignmentConstraints(DestTy, ExprRes);
3300  if (ExprRes.isInvalid())
3301  return StmtError();
3302  E = ExprRes.get();
3303  if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3304  return StmtError();
3305  }
3306 
3307  ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3308  if (ExprRes.isInvalid())
3309  return StmtError();
3310  E = ExprRes.get();
3311 
3312  setFunctionHasIndirectGoto();
3313 
3314  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3315 }
3316 
3318  const Scope &DestScope) {
3319  if (!S.CurrentSEHFinally.empty() &&
3320  DestScope.Contains(*S.CurrentSEHFinally.back())) {
3321  S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3322  }
3323 }
3324 
3325 StmtResult
3327  Scope *S = CurScope->getContinueParent();
3328  if (!S) {
3329  // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3330  return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3331  }
3332  if (S->isConditionVarScope()) {
3333  // We cannot 'continue;' from within a statement expression in the
3334  // initializer of a condition variable because we would jump past the
3335  // initialization of that variable.
3336  return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3337  }
3338  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3339 
3340  return new (Context) ContinueStmt(ContinueLoc);
3341 }
3342 
3343 StmtResult
3345  Scope *S = CurScope->getBreakParent();
3346  if (!S) {
3347  // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3348  return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3349  }
3350  if (S->isOpenMPLoopScope())
3351  return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3352  << "break");
3353  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3354 
3355  return new (Context) BreakStmt(BreakLoc);
3356 }
3357 
3358 /// Determine whether the given expression might be move-eligible or
3359 /// copy-elidable in either a (co_)return statement or throw expression,
3360 /// without considering function return type, if applicable.
3361 ///
3362 /// \param E The expression being returned from the function or block,
3363 /// being thrown, or being co_returned from a coroutine. This expression
3364 /// might be modified by the implementation.
3365 ///
3366 /// \param Mode Overrides detection of current language mode
3367 /// and uses the rules for C++2b.
3368 ///
3369 /// \returns An aggregate which contains the Candidate and isMoveEligible
3370 /// and isCopyElidable methods. If Candidate is non-null, it means
3371 /// isMoveEligible() would be true under the most permissive language standard.
3373  SimplerImplicitMoveMode Mode) {
3374  if (!E)
3375  return NamedReturnInfo();
3376  // - in a return statement in a function [where] ...
3377  // ... the expression is the name of a non-volatile automatic object ...
3378  const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3379  if (!DR || DR->refersToEnclosingVariableOrCapture())
3380  return NamedReturnInfo();
3381  const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3382  if (!VD)
3383  return NamedReturnInfo();
3384  NamedReturnInfo Res = getNamedReturnInfo(VD);
3385  if (Res.Candidate && !E->isXValue() &&
3386  (Mode == SimplerImplicitMoveMode::ForceOn ||
3387  (Mode != SimplerImplicitMoveMode::ForceOff &&
3388  getLangOpts().CPlusPlus2b))) {
3390  CK_NoOp, E, nullptr, VK_XValue,
3391  FPOptionsOverride());
3392  }
3393  return Res;
3394 }
3395 
3396 /// Determine whether the given NRVO candidate variable is move-eligible or
3397 /// copy-elidable, without considering function return type.
3398 ///
3399 /// \param VD The NRVO candidate variable.
3400 ///
3401 /// \returns An aggregate which contains the Candidate and isMoveEligible
3402 /// and isCopyElidable methods. If Candidate is non-null, it means
3403 /// isMoveEligible() would be true under the most permissive language standard.
3405  NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3406 
3407  // C++20 [class.copy.elision]p3:
3408  // - in a return statement in a function with ...
3409  // (other than a function ... parameter)
3410  if (VD->getKind() == Decl::ParmVar)
3411  Info.S = NamedReturnInfo::MoveEligible;
3412  else if (VD->getKind() != Decl::Var)
3413  return NamedReturnInfo();
3414 
3415  // (other than ... a catch-clause parameter)
3416  if (VD->isExceptionVariable())
3417  Info.S = NamedReturnInfo::MoveEligible;
3418 
3419  // ...automatic...
3420  if (!VD->hasLocalStorage())
3421  return NamedReturnInfo();
3422 
3423  // We don't want to implicitly move out of a __block variable during a return
3424  // because we cannot assume the variable will no longer be used.
3425  if (VD->hasAttr<BlocksAttr>())
3426  return NamedReturnInfo();
3427 
3428  QualType VDType = VD->getType();
3429  if (VDType->isObjectType()) {
3430  // C++17 [class.copy.elision]p3:
3431  // ...non-volatile automatic object...
3432  if (VDType.isVolatileQualified())
3433  return NamedReturnInfo();
3434  } else if (VDType->isRValueReferenceType()) {
3435  // C++20 [class.copy.elision]p3:
3436  // ...either a non-volatile object or an rvalue reference to a non-volatile
3437  // object type...
3438  QualType VDReferencedType = VDType.getNonReferenceType();
3439  if (VDReferencedType.isVolatileQualified() ||
3440  !VDReferencedType->isObjectType())
3441  return NamedReturnInfo();
3442  Info.S = NamedReturnInfo::MoveEligible;
3443  } else {
3444  return NamedReturnInfo();
3445  }
3446 
3447  // Variables with higher required alignment than their type's ABI
3448  // alignment cannot use NRVO.
3449  if (!VD->hasDependentAlignment() &&
3450  Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3451  Info.S = NamedReturnInfo::MoveEligible;
3452 
3453  return Info;
3454 }
3455 
3456 /// Updates given NamedReturnInfo's move-eligible and
3457 /// copy-elidable statuses, considering the function
3458 /// return type criteria as applicable to return statements.
3459 ///
3460 /// \param Info The NamedReturnInfo object to update.
3461 ///
3462 /// \param ReturnType This is the return type of the function.
3463 /// \returns The copy elision candidate, in case the initial return expression
3464 /// was copy elidable, or nullptr otherwise.
3466  QualType ReturnType) {
3467  if (!Info.Candidate)
3468  return nullptr;
3469 
3470  auto invalidNRVO = [&] {
3471  Info = NamedReturnInfo();
3472  return nullptr;
3473  };
3474 
3475  // If we got a non-deduced auto ReturnType, we are in a dependent context and
3476  // there is no point in allowing copy elision since we won't have it deduced
3477  // by the point the VardDecl is instantiated, which is the last chance we have
3478  // of deciding if the candidate is really copy elidable.
3479  if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3480  ReturnType->isCanonicalUnqualified()) ||
3481  ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3482  return invalidNRVO();
3483 
3484  if (!ReturnType->isDependentType()) {
3485  // - in a return statement in a function with ...
3486  // ... a class return type ...
3487  if (!ReturnType->isRecordType())
3488  return invalidNRVO();
3489 
3490  QualType VDType = Info.Candidate->getType();
3491  // ... the same cv-unqualified type as the function return type ...
3492  // When considering moving this expression out, allow dissimilar types.
3493  if (!VDType->isDependentType() &&
3494  !Context.hasSameUnqualifiedType(ReturnType, VDType))
3495  Info.S = NamedReturnInfo::MoveEligible;
3496  }
3497  return Info.isCopyElidable() ? Info.Candidate : nullptr;
3498 }
3499 
3500 /// Verify that the initialization sequence that was picked for the
3501 /// first overload resolution is permissible under C++98.
3502 ///
3503 /// Reject (possibly converting) constructors not taking an rvalue reference,
3504 /// or user conversion operators which are not ref-qualified.
3505 static bool
3507  const InitializationSequence &Seq) {
3508  const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3509  return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3510  Step.Kind == InitializationSequence::SK_UserConversion;
3511  });
3512  if (Step != Seq.step_end()) {
3513  const auto *FD = Step->Function.Function;
3514  if (isa<CXXConstructorDecl>(FD)
3516  : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3517  return false;
3518  }
3519  return true;
3520 }
3521 
3522 /// Perform the initialization of a potentially-movable value, which
3523 /// is the result of return value.
3524 ///
3525 /// This routine implements C++20 [class.copy.elision]p3, which attempts to
3526 /// treat returned lvalues as rvalues in certain cases (to prefer move
3527 /// construction), then falls back to treating them as lvalues if that failed.
3529  const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3530  bool SupressSimplerImplicitMoves) {
3531  if (getLangOpts().CPlusPlus &&
3532  (!getLangOpts().CPlusPlus2b || SupressSimplerImplicitMoves) &&
3533  NRInfo.isMoveEligible()) {
3534  ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3535  CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3536  Expr *InitExpr = &AsRvalue;
3537  auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3538  Value->getBeginLoc());
3539  InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3540  auto Res = Seq.getFailedOverloadResult();
3541  if ((Res == OR_Success || Res == OR_Deleted) &&
3542  (getLangOpts().CPlusPlus11 ||
3543  VerifyInitializationSequenceCXX98(*this, Seq))) {
3544  // Promote "AsRvalue" to the heap, since we now need this
3545  // expression node to persist.
3546  Value =
3547  ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3548  nullptr, VK_XValue, FPOptionsOverride());
3549  // Complete type-checking the initialization of the return type
3550  // using the constructor we found.
3551  return Seq.Perform(*this, Entity, Kind, Value);
3552  }
3553  }
3554  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3555  // above, or overload resolution failed. Either way, we need to try
3556  // (again) now with the return value expression as written.
3557  return PerformCopyInitialization(Entity, SourceLocation(), Value);
3558 }
3559 
3560 /// Determine whether the declared return type of the specified function
3561 /// contains 'auto'.
3563  const FunctionProtoType *FPT =
3565  return FPT->getReturnType()->isUndeducedType();
3566 }
3567 
3568 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3569 /// for capturing scopes.
3570 ///
3572  Expr *RetValExp,
3573  NamedReturnInfo &NRInfo,
3574  bool SupressSimplerImplicitMoves) {
3575  // If this is the first return we've seen, infer the return type.
3576  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3577  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3578  QualType FnRetType = CurCap->ReturnType;
3579  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3580  bool HasDeducedReturnType =
3581  CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3582 
3583  if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3584  (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3585  if (RetValExp) {
3586  ExprResult ER =
3587  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3588  if (ER.isInvalid())
3589  return StmtError();
3590  RetValExp = ER.get();
3591  }
3592  return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3593  /* NRVOCandidate=*/nullptr);
3594  }
3595 
3596  if (HasDeducedReturnType) {
3597  FunctionDecl *FD = CurLambda->CallOperator;
3598  // If we've already decided this lambda is invalid, e.g. because
3599  // we saw a `return` whose expression had an error, don't keep
3600  // trying to deduce its return type.
3601  if (FD->isInvalidDecl())
3602  return StmtError();
3603  // In C++1y, the return type may involve 'auto'.
3604  // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3605  if (CurCap->ReturnType.isNull())
3606  CurCap->ReturnType = FD->getReturnType();
3607 
3608  AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3609  assert(AT && "lost auto type from lambda return type");
3610  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3611  FD->setInvalidDecl();
3612  // FIXME: preserve the ill-formed return expression.
3613  return StmtError();
3614  }
3615  CurCap->ReturnType = FnRetType = FD->getReturnType();
3616  } else if (CurCap->HasImplicitReturnType) {
3617  // For blocks/lambdas with implicit return types, we check each return
3618  // statement individually, and deduce the common return type when the block
3619  // or lambda is completed.
3620  // FIXME: Fold this into the 'auto' codepath above.
3621  if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3622  ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3623  if (Result.isInvalid())
3624  return StmtError();
3625  RetValExp = Result.get();
3626 
3627  // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3628  // when deducing a return type for a lambda-expression (or by extension
3629  // for a block). These rules differ from the stated C++11 rules only in
3630  // that they remove top-level cv-qualifiers.
3631  if (!CurContext->isDependentContext())
3632  FnRetType = RetValExp->getType().getUnqualifiedType();
3633  else
3634  FnRetType = CurCap->ReturnType = Context.DependentTy;
3635  } else {
3636  if (RetValExp) {
3637  // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3638  // initializer list, because it is not an expression (even
3639  // though we represent it as one). We still deduce 'void'.
3640  Diag(ReturnLoc, diag::err_lambda_return_init_list)
3641  << RetValExp->getSourceRange();
3642  }
3643 
3644  FnRetType = Context.VoidTy;
3645  }
3646 
3647  // Although we'll properly infer the type of the block once it's completed,
3648  // make sure we provide a return type now for better error recovery.
3649  if (CurCap->ReturnType.isNull())
3650  CurCap->ReturnType = FnRetType;
3651  }
3652  const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3653 
3654  if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3655  if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3656  Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3657  return StmtError();
3658  }
3659  } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3660  Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3661  return StmtError();
3662  } else {
3663  assert(CurLambda && "unknown kind of captured scope");
3664  if (CurLambda->CallOperator->getType()
3665  ->castAs<FunctionType>()
3666  ->getNoReturnAttr()) {
3667  Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3668  return StmtError();
3669  }
3670  }
3671 
3672  // Otherwise, verify that this result type matches the previous one. We are
3673  // pickier with blocks than for normal functions because we don't have GCC
3674  // compatibility to worry about here.
3675  if (FnRetType->isDependentType()) {
3676  // Delay processing for now. TODO: there are lots of dependent
3677  // types we can conclusively prove aren't void.
3678  } else if (FnRetType->isVoidType()) {
3679  if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3680  !(getLangOpts().CPlusPlus &&
3681  (RetValExp->isTypeDependent() ||
3682  RetValExp->getType()->isVoidType()))) {
3683  if (!getLangOpts().CPlusPlus &&
3684  RetValExp->getType()->isVoidType())
3685  Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3686  else {
3687  Diag(ReturnLoc, diag::err_return_block_has_expr);
3688  RetValExp = nullptr;
3689  }
3690  }
3691  } else if (!RetValExp) {
3692  return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3693  } else if (!RetValExp->isTypeDependent()) {
3694  // we have a non-void block with an expression, continue checking
3695 
3696  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3697  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3698  // function return.
3699 
3700  // In C++ the return statement is handled via a copy initialization.
3701  // the C version of which boils down to CheckSingleAssignmentConstraints.
3702  InitializedEntity Entity =
3703  InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3704  ExprResult Res = PerformMoveOrCopyInitialization(
3705  Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3706  if (Res.isInvalid()) {
3707  // FIXME: Cleanup temporaries here, anyway?
3708  return StmtError();
3709  }
3710  RetValExp = Res.get();
3711  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3712  }
3713 
3714  if (RetValExp) {
3715  ExprResult ER =
3716  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3717  if (ER.isInvalid())
3718  return StmtError();
3719  RetValExp = ER.get();
3720  }
3721  auto *Result =
3722  ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3723 
3724  // If we need to check for the named return value optimization,
3725  // or if we need to infer the return type,
3726  // save the return statement in our scope for later processing.
3727  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3728  FunctionScopes.back()->Returns.push_back(Result);
3729 
3730  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3731  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3732 
3733  return Result;
3734 }
3735 
3736 namespace {
3737 /// Marks all typedefs in all local classes in a type referenced.
3738 ///
3739 /// In a function like
3740 /// auto f() {
3741 /// struct S { typedef int a; };
3742 /// return S();
3743 /// }
3744 ///
3745 /// the local type escapes and could be referenced in some TUs but not in
3746 /// others. Pretend that all local typedefs are always referenced, to not warn
3747 /// on this. This isn't necessary if f has internal linkage, or the typedef
3748 /// is private.
3749 class LocalTypedefNameReferencer
3750  : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3751 public:
3752  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3753  bool VisitRecordType(const RecordType *RT);
3754 private:
3755  Sema &S;
3756 };
3757 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3758  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3759  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3760  R->isDependentType())
3761  return true;
3762  for (auto *TmpD : R->decls())
3763  if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3764  if (T->getAccess() != AS_private || R->hasFriends())
3765  S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3766  return true;
3767 }
3768 }
3769 
3771  return FD->getTypeSourceInfo()
3772  ->getTypeLoc()
3774  .getReturnLoc();
3775 }
3776 
3777 /// Deduce the return type for a function from a returned expression, per
3778 /// C++1y [dcl.spec.auto]p6.
3780  SourceLocation ReturnLoc,
3781  Expr *RetExpr, const AutoType *AT) {
3782  // If this is the conversion function for a lambda, we choose to deduce its
3783  // type from the corresponding call operator, not from the synthesized return
3784  // statement within it. See Sema::DeduceReturnType.
3786  return false;
3787 
3788  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3789  // If the deduction is for a return statement and the initializer is
3790  // a braced-init-list, the program is ill-formed.
3791  Diag(RetExpr->getExprLoc(),
3792  getCurLambda() ? diag::err_lambda_return_init_list
3793  : diag::err_auto_fn_return_init_list)
3794  << RetExpr->getSourceRange();
3795  return true;
3796  }
3797 
3798  if (FD->isDependentContext()) {
3799  // C++1y [dcl.spec.auto]p12:
3800  // Return type deduction [...] occurs when the definition is
3801  // instantiated even if the function body contains a return
3802  // statement with a non-type-dependent operand.
3803  assert(AT->isDeduced() && "should have deduced to dependent type");
3804  return false;
3805  }
3806 
3807  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3808  // In the case of a return with no operand, the initializer is considered
3809  // to be void().
3810  CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3811  if (!RetExpr) {
3812  // For a function with a deduced result type to return with omitted
3813  // expression, the result type as written must be 'auto' or
3814  // 'decltype(auto)', possibly cv-qualified or constrained, but not
3815  // ref-qualified.
3816  if (!OrigResultType.getType()->getAs<AutoType>()) {
3817  Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3818  << OrigResultType.getType();
3819  return true;
3820  }
3821  RetExpr = &VoidVal;
3822  }
3823 
3824  QualType Deduced = AT->getDeducedType();
3825  {
3826  // Otherwise, [...] deduce a value for U using the rules of template
3827  // argument deduction.
3828  TemplateDeductionInfo Info(RetExpr->getExprLoc());
3830  DeduceAutoType(OrigResultType, RetExpr, Deduced, Info);
3831  if (Res != TDK_Success && FD->isInvalidDecl())
3832  return true;
3833  switch (Res) {
3834  case TDK_Success:
3835  break;
3836  case TDK_AlreadyDiagnosed:
3837  return true;
3838  case TDK_Inconsistent: {
3839  // If a function with a declared return type that contains a placeholder
3840  // type has multiple return statements, the return type is deduced for
3841  // each return statement. [...] if the type deduced is not the same in
3842  // each deduction, the program is ill-formed.
3843  const LambdaScopeInfo *LambdaSI = getCurLambda();
3844  if (LambdaSI && LambdaSI->HasImplicitReturnType)
3845  Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3846  << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3847  else
3848  Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3849  << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3850  << Info.FirstArg;
3851  return true;
3852  }
3853  default:
3854  Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3855  << OrigResultType.getType() << RetExpr->getType();
3856  return true;
3857  }
3858  }
3859 
3860  // If a local type is part of the returned type, mark its fields as
3861  // referenced.
3862  LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3863 
3864  // CUDA: Kernel function must have 'void' return type.
3865  if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3866  !Deduced->isVoidType()) {
3867  Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3868  << FD->getType() << FD->getSourceRange();
3869  return true;
3870  }
3871 
3872  if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3873  // Update all declarations of the function to have the deduced return type.
3874  Context.adjustDeducedFunctionResultType(FD, Deduced);
3875 
3876  return false;
3877 }
3878 
3879 StmtResult
3881  Scope *CurScope) {
3882  // Correct typos, in case the containing function returns 'auto' and
3883  // RetValExp should determine the deduced type.
3884  ExprResult RetVal = CorrectDelayedTyposInExpr(
3885  RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3886  if (RetVal.isInvalid())
3887  return StmtError();
3888  StmtResult R =
3889  BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3890  if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3891  return R;
3892 
3893  VarDecl *VD =
3894  const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3895 
3896  CurScope->updateNRVOCandidate(VD);
3897 
3898  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3899 
3900  return R;
3901 }
3902 
3904  const Expr *E) {
3905  if (!E || !S.getLangOpts().CPlusPlus2b || !S.getLangOpts().MSVCCompat)
3906  return false;
3907  const Decl *D = E->getReferencedDeclOfCallee();
3908  if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3909  return false;
3910  for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3911  if (DC->isStdNamespace())
3912  return true;
3913  }
3914  return false;
3915 }
3916 
3918  bool AllowRecovery) {
3919  // Check for unexpanded parameter packs.
3920  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3921  return StmtError();
3922 
3923  // HACK: We suppress simpler implicit move here in msvc compatibility mode
3924  // just as a temporary work around, as the MSVC STL has issues with
3925  // this change.
3926  bool SupressSimplerImplicitMoves =
3927  CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3928  NamedReturnInfo NRInfo = getNamedReturnInfo(
3929  RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3930  : SimplerImplicitMoveMode::Normal);
3931 
3932  if (isa<CapturingScopeInfo>(getCurFunction()))
3933  return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3934  SupressSimplerImplicitMoves);
3935 
3936  QualType FnRetType;
3937  QualType RelatedRetType;
3938  const AttrVec *Attrs = nullptr;
3939  bool isObjCMethod = false;
3940 
3941  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3942  FnRetType = FD->getReturnType();
3943  if (FD->hasAttrs())
3944  Attrs = &FD->getAttrs();
3945  if (FD->isNoReturn())
3946  Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3947  if (FD->isMain() && RetValExp)
3948  if (isa<CXXBoolLiteralExpr>(RetValExp))
3949  Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3950  << RetValExp->getSourceRange();
3951  if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3952  if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3953  if (RT->getDecl()->isOrContainsUnion())
3954  Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3955  }
3956  }
3957  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3958  FnRetType = MD->getReturnType();
3959  isObjCMethod = true;
3960  if (MD->hasAttrs())
3961  Attrs = &MD->getAttrs();
3962  if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3963  // In the implementation of a method with a related return type, the
3964  // type used to type-check the validity of return statements within the
3965  // method body is a pointer to the type of the class being implemented.
3966  RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3967  RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3968  }
3969  } else // If we don't have a function/method context, bail.
3970  return StmtError();
3971 
3972  // C++1z: discarded return statements are not considered when deducing a
3973  // return type.
3974  if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3975  FnRetType->getContainedAutoType()) {
3976  if (RetValExp) {
3977  ExprResult ER =
3978  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3979  if (ER.isInvalid())
3980  return StmtError();
3981  RetValExp = ER.get();
3982  }
3983  return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3984  /* NRVOCandidate=*/nullptr);
3985  }
3986 
3987  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3988  // deduction.
3989  if (getLangOpts().CPlusPlus14) {
3990  if (AutoType *AT = FnRetType->getContainedAutoType()) {
3991  FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3992  // If we've already decided this function is invalid, e.g. because
3993  // we saw a `return` whose expression had an error, don't keep
3994  // trying to deduce its return type.
3995  // (Some return values may be needlessly wrapped in RecoveryExpr).
3996  if (FD->isInvalidDecl() ||
3997  DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3998  FD->setInvalidDecl();
3999  if (!AllowRecovery)
4000  return StmtError();
4001  // The deduction failure is diagnosed and marked, try to recover.
4002  if (RetValExp) {
4003  // Wrap return value with a recovery expression of the previous type.
4004  // If no deduction yet, use DependentTy.
4005  auto Recovery = CreateRecoveryExpr(
4006  RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
4007  AT->isDeduced() ? FnRetType : QualType());
4008  if (Recovery.isInvalid())
4009  return StmtError();
4010  RetValExp = Recovery.get();
4011  } else {
4012  // Nothing to do: a ReturnStmt with no value is fine recovery.
4013  }
4014  } else {
4015  FnRetType = FD->getReturnType();
4016  }
4017  }
4018  }
4019  const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
4020 
4021  bool HasDependentReturnType = FnRetType->isDependentType();
4022 
4023  ReturnStmt *Result = nullptr;
4024  if (FnRetType->isVoidType()) {
4025  if (RetValExp) {
4026  if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4027  // We simply never allow init lists as the return value of void
4028  // functions. This is compatible because this was never allowed before,
4029  // so there's no legacy code to deal with.
4030  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4031  int FunctionKind = 0;
4032  if (isa<ObjCMethodDecl>(CurDecl))
4033  FunctionKind = 1;
4034  else if (isa<CXXConstructorDecl>(CurDecl))
4035  FunctionKind = 2;
4036  else if (isa<CXXDestructorDecl>(CurDecl))
4037  FunctionKind = 3;
4038 
4039  Diag(ReturnLoc, diag::err_return_init_list)
4040  << CurDecl << FunctionKind << RetValExp->getSourceRange();
4041 
4042  // Preserve the initializers in the AST.
4043  RetValExp = AllowRecovery
4044  ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4045  ILE->getRBraceLoc(), ILE->inits())
4046  .get()
4047  : nullptr;
4048  } else if (!RetValExp->isTypeDependent()) {
4049  // C99 6.8.6.4p1 (ext_ since GCC warns)
4050  unsigned D = diag::ext_return_has_expr;
4051  if (RetValExp->getType()->isVoidType()) {
4052  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4053  if (isa<CXXConstructorDecl>(CurDecl) ||
4054  isa<CXXDestructorDecl>(CurDecl))
4055  D = diag::err_ctor_dtor_returns_void;
4056  else
4057  D = diag::ext_return_has_void_expr;
4058  }
4059  else {
4060  ExprResult Result = RetValExp;
4061  Result = IgnoredValueConversions(Result.get());
4062  if (Result.isInvalid())
4063  return StmtError();
4064  RetValExp = Result.get();
4065  RetValExp = ImpCastExprToType(RetValExp,
4066  Context.VoidTy, CK_ToVoid).get();
4067  }
4068  // return of void in constructor/destructor is illegal in C++.
4069  if (D == diag::err_ctor_dtor_returns_void) {
4070  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4071  Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4072  << RetValExp->getSourceRange();
4073  }
4074  // return (some void expression); is legal in C++.
4075  else if (D != diag::ext_return_has_void_expr ||
4076  !getLangOpts().CPlusPlus) {
4077  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4078 
4079  int FunctionKind = 0;
4080  if (isa<ObjCMethodDecl>(CurDecl))
4081  FunctionKind = 1;
4082  else if (isa<CXXConstructorDecl>(CurDecl))
4083  FunctionKind = 2;
4084  else if (isa<CXXDestructorDecl>(CurDecl))
4085  FunctionKind = 3;
4086 
4087  Diag(ReturnLoc, D)
4088  << CurDecl << FunctionKind << RetValExp->getSourceRange();
4089  }
4090  }
4091 
4092  if (RetValExp) {
4093  ExprResult ER =
4094  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4095  if (ER.isInvalid())
4096  return StmtError();
4097  RetValExp = ER.get();
4098  }
4099  }
4100 
4101  Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4102  /* NRVOCandidate=*/nullptr);
4103  } else if (!RetValExp && !HasDependentReturnType) {
4104  FunctionDecl *FD = getCurFunctionDecl();
4105 
4106  if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4107  // The intended return type might have been "void", so don't warn.
4108  } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4109  // C++11 [stmt.return]p2
4110  Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4111  << FD << FD->isConsteval();
4112  FD->setInvalidDecl();
4113  } else {
4114  // C99 6.8.6.4p1 (ext_ since GCC warns)
4115  // C90 6.6.6.4p4
4116  unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4117  : diag::warn_return_missing_expr;
4118  // Note that at this point one of getCurFunctionDecl() or
4119  // getCurMethodDecl() must be non-null (see above).
4120  assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4121  "Not in a FunctionDecl or ObjCMethodDecl?");
4122  bool IsMethod = FD == nullptr;
4123  const NamedDecl *ND =
4124  IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4125  Diag(ReturnLoc, DiagID) << ND << IsMethod;
4126  }
4127 
4128  Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4129  /* NRVOCandidate=*/nullptr);
4130  } else {
4131  assert(RetValExp || HasDependentReturnType);
4132  QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4133 
4134  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4135  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4136  // function return.
4137 
4138  // In C++ the return statement is handled via a copy initialization,
4139  // the C version of which boils down to CheckSingleAssignmentConstraints.
4140  if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4141  // we have a non-void function with an expression, continue checking
4142  InitializedEntity Entity =
4143  InitializedEntity::InitializeResult(ReturnLoc, RetType);
4144  ExprResult Res = PerformMoveOrCopyInitialization(
4145  Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4146  if (Res.isInvalid() && AllowRecovery)
4147  Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4148  RetValExp->getEndLoc(), RetValExp, RetType);
4149  if (Res.isInvalid()) {
4150  // FIXME: Clean up temporaries here anyway?
4151  return StmtError();
4152  }
4153  RetValExp = Res.getAs<Expr>();
4154 
4155  // If we have a related result type, we need to implicitly
4156  // convert back to the formal result type. We can't pretend to
4157  // initialize the result again --- we might end double-retaining
4158  // --- so instead we initialize a notional temporary.
4159  if (!RelatedRetType.isNull()) {
4160  Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4161  FnRetType);
4162  Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4163  if (Res.isInvalid()) {
4164  // FIXME: Clean up temporaries here anyway?
4165  return StmtError();
4166  }
4167  RetValExp = Res.getAs<Expr>();
4168  }
4169 
4170  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4171  getCurFunctionDecl());
4172  }
4173 
4174  if (RetValExp) {
4175  ExprResult ER =
4176  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4177  if (ER.isInvalid())
4178  return StmtError();
4179  RetValExp = ER.get();
4180  }
4181  Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4182  }
4183 
4184  // If we need to check for the named return value optimization, save the
4185  // return statement in our scope for later processing.
4186  if (Result->getNRVOCandidate())
4187  FunctionScopes.back()->Returns.push_back(Result);
4188 
4189  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4190  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4191 
4192  return Result;
4193 }
4194 
4195 StmtResult
4197  SourceLocation RParen, Decl *Parm,
4198  Stmt *Body) {
4199  VarDecl *Var = cast_or_null<VarDecl>(Parm);
4200  if (Var && Var->isInvalidDecl())
4201  return StmtError();
4202 
4203  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
4204 }
4205 
4206 StmtResult
4208  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
4209 }
4210 
4211 StmtResult
4213  MultiStmtArg CatchStmts, Stmt *Finally) {
4214  if (!getLangOpts().ObjCExceptions)
4215  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
4216 
4217  // Objective-C try is incompatible with SEH __try.
4218  sema::FunctionScopeInfo *FSI = getCurFunction();
4219  if (FSI->FirstSEHTryLoc.isValid()) {
4220  Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
4221  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4222  }
4223 
4224  FSI->setHasObjCTry(AtLoc);
4225  unsigned NumCatchStmts = CatchStmts.size();
4226  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
4227  NumCatchStmts, Finally);
4228 }
4229 
4231  if (Throw) {
4232  ExprResult Result = DefaultLvalueConversion(Throw);
4233  if (Result.isInvalid())
4234  return StmtError();
4235 
4236  Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
4237  if (Result.isInvalid())
4238  return StmtError();
4239  Throw = Result.get();
4240 
4241  QualType ThrowType = Throw->getType();
4242  // Make sure the expression type is an ObjC pointer or "void *".
4243  if (!ThrowType->isDependentType() &&
4244  !ThrowType->isObjCObjectPointerType()) {
4245  const PointerType *PT = ThrowType->getAs<PointerType>();
4246  if (!PT || !PT->getPointeeType()->isVoidType())
4247  return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
4248  << Throw->getType() << Throw->getSourceRange());
4249  }
4250  }
4251 
4252  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
4253 }
4254 
4255 StmtResult
4257  Scope *CurScope) {
4258  if (!getLangOpts().ObjCExceptions)
4259  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
4260 
4261  if (!Throw) {
4262  // @throw without an expression designates a rethrow (which must occur
4263  // in the context of an @catch clause).
4264  Scope *AtCatchParent = CurScope;
4265  while (AtCatchParent && !AtCatchParent->isAtCatchScope())
4266  AtCatchParent = AtCatchParent->getParent();
4267  if (!AtCatchParent)
4268  return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
4269  }
4270  return BuildObjCAtThrowStmt(AtLoc, Throw);
4271 }
4272 
4273 ExprResult
4275  ExprResult result = DefaultLvalueConversion(operand);
4276  if (result.isInvalid())
4277  return ExprError();
4278  operand = result.get();
4279 
4280  // Make sure the expression type is an ObjC pointer or "void *".
4281  QualType type = operand->getType();
4282  if (!type->isDependentType() &&
4283  !type->isObjCObjectPointerType()) {
4284  const PointerType *pointerType = type->getAs<PointerType>();
4285  if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
4286  if (getLangOpts().CPlusPlus) {
4287  if (RequireCompleteType(atLoc, type,
4288  diag::err_incomplete_receiver_type))
4289  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4290  << type << operand->getSourceRange();
4291 
4292  ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
4293  if (result.isInvalid())
4294  return ExprError();
4295  if (!result.isUsable())
4296  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4297  << type << operand->getSourceRange();
4298 
4299  operand = result.get();
4300  } else {
4301  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4302  << type << operand->getSourceRange();
4303  }
4304  }
4305  }
4306 
4307  // The operand to @synchronized is a full-expression.
4308  return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4309 }
4310 
4311 StmtResult
4313  Stmt *SyncBody) {
4314  // We can't jump into or indirect-jump out of a @synchronized block.
4315  setFunctionHasBranchProtectedScope();
4316  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4317 }
4318 
4319 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4320 /// and creates a proper catch handler from them.
4321 StmtResult
4323  Stmt *HandlerBlock) {
4324  // There's nothing to test that ActOnExceptionDecl didn't already test.
4325  return new (Context)
4326  CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4327 }
4328 
4329 StmtResult
4331  setFunctionHasBranchProtectedScope();
4332  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4333 }
4334 
4335 namespace {
4336 class CatchHandlerType {
4337  QualType QT;
4338  unsigned IsPointer : 1;
4339 
4340  // This is a special constructor to be used only with DenseMapInfo's
4341  // getEmptyKey() and getTombstoneKey() functions.
4342  friend struct llvm::DenseMapInfo<CatchHandlerType>;
4343  enum Unique { ForDenseMap };
4344  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4345 
4346 public:
4347  /// Used when creating a CatchHandlerType from a handler type; will determine
4348  /// whether the type is a pointer or reference and will strip off the top
4349  /// level pointer and cv-qualifiers.
4350  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4351  if (QT->isPointerType())
4352  IsPointer = true;
4353 
4354  if (IsPointer || QT->isReferenceType())
4355  QT = QT->getPointeeType();
4356  QT = QT.getUnqualifiedType();
4357  }
4358 
4359  /// Used when creating a CatchHandlerType from a base class type; pretends the
4360  /// type passed in had the pointer qualifier, does not need to get an
4361  /// unqualified type.
4362  CatchHandlerType(QualType QT, bool IsPointer)
4363  : QT(QT), IsPointer(IsPointer) {}
4364 
4365  QualType underlying() const { return QT; }
4366  bool isPointer() const { return IsPointer; }
4367 
4368  friend bool operator==(const CatchHandlerType &LHS,
4369  const CatchHandlerType &RHS) {
4370  // If the pointer qualification does not match, we can return early.
4371  if (LHS.IsPointer != RHS.IsPointer)
4372  return false;
4373  // Otherwise, check the underlying type without cv-qualifiers.
4374  return LHS.QT == RHS.QT;
4375  }
4376 };
4377 } // namespace
4378 
4379 namespace llvm {
4380 template <> struct DenseMapInfo<CatchHandlerType> {
4381  static CatchHandlerType getEmptyKey() {
4382  return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4383  CatchHandlerType::ForDenseMap);
4384  }
4385 
4386  static CatchHandlerType getTombstoneKey() {
4387  return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4388  CatchHandlerType::ForDenseMap);
4389  }
4390 
4391  static unsigned getHashValue(const CatchHandlerType &Base) {
4392  return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4393  }
4394 
4395  static bool isEqual(const CatchHandlerType &LHS,
4396  const CatchHandlerType &RHS) {
4397  return LHS == RHS;
4398  }
4399 };
4400 }
4401 
4402 namespace {
4403 class CatchTypePublicBases {
4404  ASTContext &Ctx;
4405  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4406  const bool CheckAgainstPointer;
4407 
4408  CXXCatchStmt *FoundHandler;
4409  CanQualType FoundHandlerType;
4410 
4411 public:
4412  CatchTypePublicBases(
4413  ASTContext &Ctx,
4414  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4415  : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4416  FoundHandler(nullptr) {}
4417 
4418  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4419  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4420 
4421  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4422  if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4423  CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4424  const auto &M = TypesToCheck;
4425  auto I = M.find(Check);
4426  if (I != M.end()) {
4427  FoundHandler = I->second;
4428  FoundHandlerType = Ctx.getCanonicalType(S->getType());
4429  return true;
4430  }
4431  }
4432  return false;
4433  }
4434 };
4435 }
4436 
4437 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4438 /// handlers and creates a try statement from them.
4440  ArrayRef<Stmt *> Handlers) {
4441  // Don't report an error if 'try' is used in system headers.
4442  if (!getLangOpts().CXXExceptions &&
4443  !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4444  // Delay error emission for the OpenMP device code.
4445  targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4446  }
4447 
4448  // Exceptions aren't allowed in CUDA device code.
4449  if (getLangOpts().CUDA)
4450  CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4451  << "try" << CurrentCUDATarget();
4452 
4453  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4454  Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4455 
4456  sema::FunctionScopeInfo *FSI = getCurFunction();
4457 
4458  // C++ try is incompatible with SEH __try.
4459  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4460  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4461  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4462  }
4463 
4464  const unsigned NumHandlers = Handlers.size();
4465  assert(!Handlers.empty() &&
4466  "The parser shouldn't call this if there are no handlers.");
4467 
4468  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4469  for (unsigned i = 0; i < NumHandlers; ++i) {
4470  CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4471 
4472  // Diagnose when the handler is a catch-all handler, but it isn't the last
4473  // handler for the try block. [except.handle]p5. Also, skip exception
4474  // declarations that are invalid, since we can't usefully report on them.
4475  if (!H->getExceptionDecl()) {
4476  if (i < NumHandlers - 1)
4477  return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4478  continue;
4479  } else if (H->getExceptionDecl()->isInvalidDecl())
4480  continue;
4481 
4482  // Walk the type hierarchy to diagnose when this type has already been
4483  // handled (duplication), or cannot be handled (derivation inversion). We
4484  // ignore top-level cv-qualifiers, per [except.handle]p3
4485  CatchHandlerType HandlerCHT =
4486  (QualType)Context.getCanonicalType(H->getCaughtType());
4487 
4488  // We can ignore whether the type is a reference or a pointer; we need the
4489  // underlying declaration type in order to get at the underlying record
4490  // decl, if there is one.
4491  QualType Underlying = HandlerCHT.underlying();
4492  if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4493  if (!RD->hasDefinition())
4494  continue;
4495  // Check that none of the public, unambiguous base classes are in the
4496  // map ([except.handle]p1). Give the base classes the same pointer
4497  // qualification as the original type we are basing off of. This allows
4498  // comparison against the handler type using the same top-level pointer
4499  // as the original type.
4500  CXXBasePaths Paths;
4501  Paths.setOrigin(RD);
4502  CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4503  if (RD->lookupInBases(CTPB, Paths)) {
4504  const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4505  if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4507  diag::warn_exception_caught_by_earlier_handler)
4508  << H->getCaughtType();
4510  diag::note_previous_exception_handler)
4511  << Problem->getCaughtType();
4512  }
4513  }
4514  }
4515 
4516  // Add the type the list of ones we have handled; diagnose if we've already
4517  // handled it.
4518  auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4519  if (!R.second) {
4520  const CXXCatchStmt *Problem = R.first->second;
4522  diag::warn_exception_caught_by_earlier_handler)
4523  << H->getCaughtType();
4525  diag::note_previous_exception_handler)
4526  << Problem->getCaughtType();
4527  }
4528  }
4529 
4530  FSI->setHasCXXTry(TryLoc);
4531 
4532  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4533 }
4534 
4536  Stmt *TryBlock, Stmt *Handler) {
4537  assert(TryBlock && Handler);
4538 
4539  sema::FunctionScopeInfo *FSI = getCurFunction();
4540 
4541  // SEH __try is incompatible with C++ try. Borland appears to support this,
4542  // however.
4543  if (!getLangOpts().Borland) {
4544  if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4545  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4546  Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4548  ? "'try'"
4549  : "'@try'");
4550  }
4551  }
4552 
4553  FSI->setHasSEHTry(TryLoc);
4554 
4555  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4556  // track if they use SEH.
4557  DeclContext *DC = CurContext;
4558  while (DC && !DC->isFunctionOrMethod())
4559  DC = DC->getParent();
4560  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4561  if (FD)
4562  FD->setUsesSEHTry(true);
4563  else
4564  Diag(TryLoc, diag::err_seh_try_outside_functions);
4565 
4566  // Reject __try on unsupported targets.
4567  if (!Context.getTargetInfo().isSEHTrySupported())
4568  Diag(TryLoc, diag::err_seh_try_unsupported);
4569 
4570  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4571 }
4572 
4574  Stmt *Block) {
4575  assert(FilterExpr && Block);
4576  QualType FTy = FilterExpr->getType();
4577  if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4578  return StmtError(
4579  Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4580  << FTy);
4581  }
4582  return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4583 }
4584 
4586  CurrentSEHFinally.push_back(CurScope);
4587 }
4588 
4590  CurrentSEHFinally.pop_back();
4591 }
4592 
4594  assert(Block);
4595  CurrentSEHFinally.pop_back();
4596  return SEHFinallyStmt::Create(Context, Loc, Block);
4597 }
4598 
4599 StmtResult
4601  Scope *SEHTryParent = CurScope;
4602  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4603  SEHTryParent = SEHTryParent->getParent();
4604  if (!SEHTryParent)
4605  return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4606  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4607 
4608  return new (Context) SEHLeaveStmt(Loc);
4609 }
4610 
4612  bool IsIfExists,
4613  NestedNameSpecifierLoc QualifierLoc,
4614  DeclarationNameInfo NameInfo,
4615  Stmt *Nested)
4616 {
4617  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4618  QualifierLoc, NameInfo,
4619  cast<CompoundStmt>(Nested));
4620 }
4621 
4622 
4624  bool IsIfExists,
4625  CXXScopeSpec &SS,
4626  UnqualifiedId &Name,
4627  Stmt *Nested) {
4628  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4629  SS.getWithLocInContext(Context),
4630  GetNameFromUnqualifiedId(Name),
4631  Nested);
4632 }
4633 
4634 RecordDecl*
4636  unsigned NumParams) {
4637  DeclContext *DC = CurContext;
4638  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4639  DC = DC->getParent();
4640 
4641  RecordDecl *RD = nullptr;
4642  if (getLangOpts().CPlusPlus)
4643  RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4644  /*Id=*/nullptr);
4645  else
4646  RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4647 
4648  RD->setCapturedRecord();
4649  DC->addDecl(RD);
4650  RD->setImplicit();
4651  RD->startDefinition();
4652 
4653  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4654  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4655  DC->addDecl(CD);
4656  return RD;
4657 }
4658 
4659 static bool
4662  SmallVectorImpl<Expr *> &CaptureInits) {
4663  for (const sema::Capture &Cap : RSI->Captures) {
4664  if (Cap.isInvalid())
4665  continue;
4666 
4667  // Form the initializer for the capture.
4668  ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4669  RSI->CapRegionKind == CR_OpenMP);
4670 
4671  // FIXME: Bail out now if the capture is not used and the initializer has
4672  // no side-effects.
4673 
4674  // Create a field for this capture.
4675  FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4676 
4677  // Add the capture to our list of captures.
4678  if (Cap.isThisCapture()) {
4679  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4681  } else if (Cap.isVLATypeCapture()) {
4682  Captures.push_back(
4684  } else {
4685  assert(Cap.isVariableCapture() && "unknown kind of capture");
4686 
4687  if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4688  S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4689 
4690  Captures.push_back(CapturedStmt::Capture(
4691  Cap.getLocation(),
4694  cast<VarDecl>(Cap.getVariable())));
4695  }
4696  CaptureInits.push_back(Init.get());
4697  }
4698  return false;
4699 }
4700 
4703  unsigned NumParams) {
4704  CapturedDecl *CD = nullptr;
4705  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4706 
4707  // Build the context parameter
4709  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4710  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4711  auto *Param =
4712  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4714  DC->addDecl(Param);
4715 
4716  CD->setContextParam(0, Param);
4717 
4718  // Enter the capturing scope for this captured region.
4719  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4720 
4721  if (CurScope)
4722  PushDeclContext(CurScope, CD);
4723  else
4724  CurContext = CD;
4725 
4726  PushExpressionEvaluationContext(
4727  ExpressionEvaluationContext::PotentiallyEvaluated);
4728 }
4729 
4733  unsigned OpenMPCaptureLevel) {
4734  CapturedDecl *CD = nullptr;
4735  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4736 
4737  // Build the context parameter
4739  bool ContextIsFound = false;
4740  unsigned ParamNum = 0;
4741  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4742  E = Params.end();
4743  I != E; ++I, ++ParamNum) {
4744  if (I->second.isNull()) {
4745  assert(!ContextIsFound &&
4746  "null type has been found already for '__context' parameter");
4747  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4748  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4749  .withConst()
4750  .withRestrict();
4751  auto *Param =
4752  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4754  DC->addDecl(Param);
4755  CD->setContextParam(ParamNum, Param);
4756  ContextIsFound = true;
4757  } else {
4758  IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4759  auto *Param =
4760  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4762  DC->addDecl(Param);
4763  CD->setParam(ParamNum, Param);
4764  }
4765  }
4766  assert(ContextIsFound && "no null type for '__context' parameter");
4767  if (!ContextIsFound) {
4768  // Add __context implicitly if it is not specified.
4769  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4770  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4771  auto *Param =
4772  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4774  DC->addDecl(Param);
4775  CD->setContextParam(ParamNum, Param);
4776  }
4777  // Enter the capturing scope for this captured region.
4778  PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4779 
4780  if (CurScope)
4781  PushDeclContext(CurScope, CD);
4782  else
4783  CurContext = CD;
4784 
4785  PushExpressionEvaluationContext(
4786  ExpressionEvaluationContext::PotentiallyEvaluated);
4787 }
4788 
4790  DiscardCleanupsInEvaluationContext();
4791  PopExpressionEvaluationContext();
4792  PopDeclContext();
4793  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4794  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4795 
4796  RecordDecl *Record = RSI->TheRecordDecl;
4797  Record->setInvalidDecl();
4798 
4799  SmallVector<Decl*, 4> Fields(Record->fields());
4800  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4802 }
4803 
4805  // Leave the captured scope before we start creating captures in the
4806  // enclosing scope.
4807  DiscardCleanupsInEvaluationContext();
4808  PopExpressionEvaluationContext();
4809  PopDeclContext();
4810  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4811  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4812 
4814  SmallVector<Expr *, 4> CaptureInits;
4815  if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4816  return StmtError();
4817 
4818  CapturedDecl *CD = RSI->TheCapturedDecl;
4819  RecordDecl *RD = RSI->TheRecordDecl;
4820 
4822  getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4823  Captures, CaptureInits, CD, RD);
4824 
4825  CD->setBody(Res->getCapturedStmt());
4826  RD->completeDefinition();
4827 
4828  return Res;
4829 }
clang::FunctionDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4131
clang::CapturedStmt::VCK_VLAType
@ VCK_VLAType
Definition: Stmt.h:3544
clang::ConditionalOperator::getFalseExpr
Expr * getFalseExpr() const
Definition: Expr.h:4182
CmpCaseVals
static bool CmpCaseVals(const std::pair< llvm::APSInt, CaseStmt * > &lhs, const std::pair< llvm::APSInt, CaseStmt * > &rhs)
CmpCaseVals - Comparison predicate for sorting case values.
Definition: SemaStmt.cpp:987
clang::Sema::NamedReturnInfo::isCopyElidable
bool isCopyElidable() const
Definition: Sema.h:5130
clang::Sema::ActOnLabelStmt
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt)
Definition: SemaStmt.cpp:553
clang::IndirectGotoStmt
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2680
clang::CapturedStmt::VCK_ByCopy
@ VCK_ByCopy
Definition: Stmt.h:3543
clang::SourceManager::isMacroBodyExpansion
bool isMacroBodyExpansion(SourceLocation Loc) const
Tests whether the given source location represents the expansion of a macro body.
Definition: SourceManager.cpp:1075
clang::LabelStmt
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1835
clang::Language::CUDA
@ CUDA
clang::IfStatementKind::ConstevalNonNegated
@ ConstevalNonNegated
clang::UnqualifiedId
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:973
clang::ObjCInterfaceDecl
Represents an ObjC class declaration.
Definition: DeclObjC.h:1149
clang::ASTContext::adjustDeducedFunctionResultType
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
Definition: ASTContext.cpp:3204
clang::sema::Capture::isThisCapture
bool isThisCapture() const
Definition: ScopeInfo.h:617
clang::Sema::CurContext
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:421
clang::QualType::removeLocalConst
void removeLocalConst()
Definition: Type.h:6729
clang::CXXCatchStmt::getCaughtType
QualType getCaughtType() const
Definition: StmtCXX.cpp:19
clang::InitializedEntity::InitializeResult
static InitializedEntity InitializeResult(SourceLocation ReturnLoc, QualType Type)
Create the initialization entity for the result of a function.
Definition: Initialization.h:299
clang::PointerTypeLoc::getStarLoc
SourceLocation getStarLoc() const
Definition: TypeLoc.h:1261
clang::Scope::getFnParent
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:248
clang::Type::isRecordType
bool isRecordType() const
Definition: Type.h:6973
clang::CaseStmt
CaseStmt - Represent a case statement.
Definition: Stmt.h:1603
clang::OpaquePtr::get
PtrTy get() const
Definition: Ownership.h:80
clang::Sema::FullExprArg::release
ExprResult release()
Definition: Sema.h:4940
clang::ReturnStmt::getRetValue
Expr * getRetValue()
Definition: Stmt.h:2829
clang::sema::Capture::getLocation
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:654
clang::IfStmt::Create
static IfStmt * Create(const ASTContext &Ctx, SourceLocation IL, IfStatementKind Kind, Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LPL, SourceLocation RPL, Stmt *Then, SourceLocation EL=SourceLocation(), Stmt *Else=nullptr)
Create an IfStmt.
Definition: Stmt.cpp:955
clang::Type::getAsArrayTypeUnsafe
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type.
Definition: Type.h:7439
clang::ImaginaryLiteral
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1....
Definition: Expr.h:1727
clang::ConditionalOperator::getTrueExpr
Expr * getTrueExpr() const
Definition: Expr.h:4177
clang::Sema::TDK_AlreadyDiagnosed
@ TDK_AlreadyDiagnosed
Some error which was already diagnosed.
Definition: Sema.h:8954
clang::Sema::ActOnCapturedRegionEnd
StmtResult ActOnCapturedRegionEnd(Stmt *S)
Definition: SemaStmt.cpp:4804
llvm
YAML serialization mapping.
Definition: Dominators.h:30
clang::CXXConstructorDecl
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2436
clang::ASTContext::getTypeDeclType
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1583
clang::VarDecl::getSourceRange
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:2115
clang::Sema::BuildAttributedStmt
StmtResult BuildAttributedStmt(SourceLocation AttrsLoc, ArrayRef< const Attr * > Attrs, Stmt *SubStmt)
Definition: SemaStmt.cpp:582
clang::CXXBoolLiteralExpr
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:721
clang::ForStmt::setBody
void setBody(Stmt *S)
Definition: Stmt.h:2614
clang::Type::isBlockPointerType
bool isBlockPointerType() const
Definition: Type.h:6891
clang::InitializationSequence::steps
step_range steps() const
Definition: Initialization.h:1222
clang::DeclRefExpr::getLocation
SourceLocation getLocation() const
Definition: Expr.h:1312
clang::Scope::updateNRVOCandidate
void updateNRVOCandidate(VarDecl *VD)
Definition: Scope.cpp:128
clang::TypeSourceInfo::getType
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:6604
clang::FunctionDecl::getReturnType
QualType getReturnType() const
Definition: Decl.h:2625
clang::CXXCatchStmt::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: StmtCXX.h:43
clang::SwitchStmt
SwitchStmt - This represents a 'switch' stmt.
Definition: Stmt.h:2186
clang::DeclaratorDecl::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:810
clang::Sema::ActOnCXXTryBlock
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef< Stmt * > Handlers)
ActOnCXXTryBlock - Takes a try compound-statement and a number of handlers and creates a try statemen...
Definition: SemaStmt.cpp:4439
clang::Expr::isLValue
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:270
clang::CapturedDecl::setBody
void setBody(Stmt *B)
Definition: Decl.cpp:5092
clang::DeclContext::addHiddenDecl
void addHiddenDecl(Decl *D)
Add the declaration D to this context without modifying any lookup tables.
Definition: DeclBase.cpp:1580
clang::SourceRange
A trivial tuple used to represent a source range.
Definition: SourceLocation.h:210
string
string(SUBSTRING ${CMAKE_CURRENT_BINARY_DIR} 0 ${PATH_LIB_START} PATH_HEAD) string(SUBSTRING $
Definition: CMakeLists.txt:22
clang::WhileStmt
WhileStmt - This represents a 'while' stmt.
Definition: Stmt.h:2377
clang::DeclContext
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1389
clang::PointerTypeLoc
Wrapper for source info for pointers.
Definition: TypeLoc.h:1258
clang::NullStmt
NullStmt - This is the null statement ";": C99 6.8.3p3.
Definition: Stmt.h:1375
clang::CXXConversionDecl
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2766
clang::Decl::hasAttr
bool hasAttr() const
Definition: DeclBase.h:560
clang::VarDecl::hasGlobalStorage
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1173
EqEnumVals
static bool EqEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl * > &lhs, const std::pair< llvm::APSInt, EnumConstantDecl * > &rhs)
EqEnumVals - Comparison preficate for uniqing enumeration values.
Definition: SemaStmt.cpp:1008
clang::FixItHint::CreateInsertion
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:97
clang::OverloadCandidateSet::CSK_Normal
@ CSK_Normal
Normal lookup.
Definition: Overload.h:956
clang::EnumDecl::enumerators
enumerator_range enumerators() const
Definition: Decl.h:3838
clang::QualType::isConstQualified
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6694
clang::ConstantArrayType
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3058
clang::Sema::SourceMgr
SourceManager & SourceMgr
Definition: Sema.h:412
clang::DeclaratorDecl::getTypeSpecEndLoc
SourceLocation getTypeSpecEndLoc() const
Definition: Decl.cpp:1919
clang::FunctionDecl::isConstexpr
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2354
Diag
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Definition: LiteralSupport.cpp:79
clang::ImplicitCastExpr::OnStack
@ OnStack
Definition: Expr.h:3649
SemaInternal.h
clang::Sema::DeduceAutoType
TemplateDeductionResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *Initializer, QualType &Result, sema::TemplateDeductionInfo &Info, bool DependentDeduction=false, bool IgnoreConstraints=false)
Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
Definition: SemaTemplateDeduction.cpp:4702
DiagnoseForRangeReferenceVariableCopies
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, const VarDecl *VD, QualType RangeInitType)
Definition: SemaStmt.cpp:3087
clang::ASTContext::VoidTy
CanQualType VoidTy
Definition: ASTContext.h:1107
llvm::SmallVector
Definition: LLVM.h:38
clang::Sema::ActOnBreakStmt
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope)
Definition: SemaStmt.cpp:3344
Lookup.h
clang::IdentifierTable::get
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Definition: IdentifierTable.h:597
clang::AR_Deprecated
@ AR_Deprecated
Definition: DeclBase.h:72
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:86
clang::MaterializeTemporaryExpr::getSubExpr
Expr * getSubExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue.
Definition: ExprCXX.h:4530
clang::sema::Capture::isReferenceCapture
bool isReferenceCapture() const
Definition: ScopeInfo.h:623
clang::sema::FunctionScopeInfo::setUsesFPIntrin
void setUsesFPIntrin()
Definition: ScopeInfo.h:448
clang::sema::FunctionScopeInfo::SwitchInfo
llvm::PointerIntPair< SwitchStmt *, 1, bool > SwitchInfo
A SwitchStmt, along with a flag indicating if its list of case statements is incomplete (because we d...
Definition: ScopeInfo.h:196
clang::ASTContext::getIntWidth
unsigned getIntWidth(QualType T) const
Definition: ASTContext.cpp:10901
clang::ActionResult::getAs
T * getAs()
Definition: Ownership.h:170
clang::DiagnosticsEngine::isIgnored
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:911
clang::SourceLocation::getLocWithOffset
SourceLocation getLocWithOffset(IntTy Offset) const
Return a source location with the specified offset from this SourceLocation.
Definition: SourceLocation.h:134
clang::TTK_Struct
@ TTK_Struct
The "struct" keyword.
Definition: Type.h:5535
clang::NamedDecl
This represents a decl that may have a name.
Definition: Decl.h:247
clang::SourceRange::getBegin
SourceLocation getBegin() const
Definition: SourceLocation.h:219
clang::CompoundStmt::Create
static CompoundStmt * Create(const ASTContext &C, ArrayRef< Stmt * > Stmts, FPOptionsOverride FPFeatures, SourceLocation LB, SourceLocation RB)
Definition: Stmt.cpp:381
clang::AS_private
@ AS_private
Definition: Specifiers.h:114
clang::Attr::getLocation
SourceLocation getLocation() const
Definition: Attr.h:87
clang::OR_Success
@ OR_Success
Overload resolution succeeded.
Definition: Overload.h:53
EvaluatedExprVisitor.h
TargetInfo.h
clang::QualType::getNonReferenceType
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6831
clang::CastExpr::getSubExpr
Expr * getSubExpr()
Definition: Expr.h:3530
CXXInheritance.h
clang::ObjCAtTryStmt::Create
static ObjCAtTryStmt * Create(const ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt)
Definition: StmtObjC.cpp:45
clang::Sema::ActOnFinishSEHFinallyBlock
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block)
Definition: SemaStmt.cpp:4593
clang::Stmt::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:324
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:737
clang::FunctionDecl::getParamDecl
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2594
Ownership.h
AttributeLangSupport::C
@ C
Definition: SemaDeclAttr.cpp:56
clang::codegenoptions::DebugTemplateNamesKind::Simple
@ Simple
clang::QualType::getCanonicalType
QualType getCanonicalType() const
Definition: Type.h:6674
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2930
clang::LookupResult
Represents the results of name lookup.
Definition: Lookup.h:46
clang::Sema::ActOnObjCAtSynchronizedStmt
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody)
Definition: SemaStmt.cpp:4312
clang::ast_matchers::type
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchersInternal.cpp:773
clang::ParmVarDecl
Represents a parameter to a function.
Definition: Decl.h:1712
clang::Sema::Diag
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: Sema.cpp:1881
clang::Sema::NamedReturnInfo::S
Status S
Definition: Sema.h:5127
clang::VK_XValue
@ VK_XValue
An x-value expression is a reference to an object with independent storage but which can be "moved",...
Definition: Specifiers.h:132
int
__device__ int
Definition: __clang_hip_libdevice_declares.h:63
clang::Sema::BuildMSDependentExistsStmt
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested)
Definition: SemaStmt.cpp:4611
clang::DeclGroupRef::isSingleDecl
bool isSingleDecl() const
Definition: DeclGroup.h:80
checkCaseValue
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, unsigned UnpromotedWidth, bool UnpromotedSign)
Check the specified case value is in range for the given unpromoted switch type.
Definition: SemaStmt.cpp:1129
clang::BinaryOperator::getExprLoc
SourceLocation getExprLoc() const
Definition: Expr.h:3852
clang::C99
@ C99
Definition: LangStandard.h:49
clang::Sema::ActOnAttributedStmt
StmtResult ActOnAttributedStmt(const ParsedAttributes &AttrList, Stmt *SubStmt)
Definition: SemaStmt.cpp:599
clang::FunctionDecl::isOverloadedOperator
bool isOverloadedOperator() const
Whether this function declaration represents an C++ overloaded operator, e.g., "operator+".
Definition: Decl.h:2713
clang::Sema::getCopyElisionCandidate
const VarDecl * getCopyElisionCandidate(NamedReturnInfo &Info, QualType ReturnType)
Updates given NamedReturnInfo's move-eligible and copy-elidable statuses, considering the function re...
Definition: SemaStmt.cpp:3465
clang::Sema::BFRK_Rebuild
@ BFRK_Rebuild
Instantiation or recovery rebuild of a for-range statement.
Definition: Sema.h:5077
clang::Sema::LookupQualifiedName
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
Definition: SemaLookup.cpp:2404
clang::CapturedRegionKind
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:16
clang::GotoStmt
GotoStmt - This represents a direct goto.
Definition: Stmt.h:2641
clang::FunctionDecl::getPrimaryTemplate
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3916
clang::CXXRecordDecl::Create
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:132
clang::ComparisonCategoryType::First
@ First
clang::ActionResult::isUnset
bool isUnset() const
Definition: Ownership.h:167
llvm::SmallPtrSet
Definition: ASTContext.h:82
clang::UnaryOperator
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2172
clang::Sema::ConditionResult::isInvalid
bool isInvalid() const
Definition: Sema.h:12703
clang::sema::FunctionScopeInfo::FirstSEHTryLoc
SourceLocation FirstSEHTryLoc
First SEH '__try' statement in the current function.
Definition: ScopeInfo.h:187
clang::ForStmt::getRParenLoc
SourceLocation getRParenLoc() const
Definition: Stmt.h:2620
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:7180
clang::Type::isCanonicalUnqualified
bool isCanonicalUnqualified() const
Determines if this type would be canonical if it had no further qualification.
Definition: Type.h:2010
clang::FunctionDecl::getTemplateSpecializationArgs
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3932
clang::QualType::isVolatileQualified
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6705
clang::TagDecl::getTypedefNameForAnonDecl
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3651
clang::CPlusPlus14
@ CPlusPlus14
Definition: LangStandard.h:55
clang::Decl::getAttr
T * getAttr() const
Definition: DeclBase.h:556
clang::CXXScopeSpec
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:65
clang::CallExpr::getCalleeDecl
Decl * getCalleeDecl()
Definition: Expr.h:2974
clang::ObjCForCollectionStmt
Represents Objective-C's collection statement.
Definition: StmtObjC.h:23
clang::sema::Capture
Definition: ScopeInfo.h:533
clang::BinaryOperator::getOpcode
Opcode getOpcode() const
Definition: Expr.h:3856
ASTLambda.h
clang::Sema::BuildCaptureField
FieldDecl * BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture)
Build a FieldDecl suitable to hold the given capture.
Definition: SemaLambda.cpp:1742
clang::Type::isRValueReferenceType
bool isRValueReferenceType() const
Definition: Type.h:6903
clang::InitializationSequence
Describes the sequence of initializations required to initialize a given object or reference with a s...
Definition: Initialization.h:788
clang::FunctionType
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3675
clang::CompoundStmt::body_empty
bool body_empty() const
Definition: Stmt.h:1454
clang::Scope::SwitchScope
@ SwitchScope
This is a scope that corresponds to a switch statement.
Definition: Scope.h:98
clang::Sema::FinishObjCForCollectionStmt
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body)
FinishObjCForCollectionStmt - Attach the body to a objective-C foreach statement.
Definition: SemaStmt.cpp:3071
clang::CapturedDecl
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4472
clang::SEHExceptStmt::Create
static SEHExceptStmt * Create(const ASTContext &C, SourceLocation ExceptLoc, Expr *FilterExpr, Stmt *Block)
Definition: Stmt.cpp:1264
clang::ObjCObjectType::getInterface
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface.
Definition: Type.h:6249
clang::Expr::IgnoreImpCasts
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3015
clang::ASTContext::getAutoRRefDeductType
QualType getAutoRRefDeductType() const
C++11 deduction pattern for 'auto &&' type.
Definition: ASTContext.cpp:5914
End
SourceLocation End
Definition: USRLocFinder.cpp:167
clang::ASTContext::getSourceManager
SourceManager & getSourceManager()
Definition: ASTContext.h:721
clang::sema::LambdaScopeInfo::CallOperator
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:836
clang::Expr::isXValue
bool isXValue() const
Definition: Expr.h:272
clang::Expr::isGLValue
bool isGLValue() const
Definition: Expr.h:273
clang::Decl::markUsed
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:472
clang::sema::CapturedRegionScopeInfo
Retains information about a captured region.
Definition: ScopeInfo.h:778
clang::Preprocessor::getIdentifierTable
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:1072
CmpEnumVals
static bool CmpEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl * > &lhs, const std::pair< llvm::APSInt, EnumConstantDecl * > &rhs)
CmpEnumVals - Comparison predicate for sorting enumeration values.
Definition: SemaStmt.cpp:1000
clang::Scope::getParent
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:244
clang::FunctionDecl::isConsteval
bool isConsteval() const
Definition: Decl.h:2366
clang::EnumDecl
Represents an enum.
Definition: Decl.h:3705
clang::OpaqueValueExpr
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition: Expr.h:1144
clang::syntax::NodeRole::Statement
@ Statement
clang::sema::TemplateDeductionInfo::FirstArg
TemplateArgument FirstArg
The first template argument to which the template argument deduction failure refers.
Definition: TemplateDeduction.h:214
clang::Sema::Context
ASTContext & Context
Definition: Sema.h:409
clang::Type
The base class of the type hierarchy.
Definition: Type.h:1565
Preprocessor.h
clang::Sema::ActOnDoStmt
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen)
Definition: SemaStmt.cpp:1705
clang::ReturnStmt::setRetValue
void setRetValue(Expr *E)
Definition: Stmt.h:2831
clang::ExprError
ExprResult ExprError()
Definition: Ownership.h:278
clang::ConditionalOperator
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:4150
clang::ObjCObjectType
Represents a class type in Objective C.
Definition: Type.h:6014
clang::FullExpr
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:1013
clang::Type::containsErrors
bool containsErrors() const
Whether this type is an error type.
Definition: Type.h:2298
clang::Sema::SFINAETrap
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:9632
DeclObjC.h
ft_parameter_mismatch
@ ft_parameter_mismatch
Definition: SemaOverload.cpp:2952
clang::CPlusPlus17
@ CPlusPlus17
Definition: LangStandard.h:56
clang::TypeLoc::getBeginLoc
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:191
clang::sema::CapturedRegionScopeInfo::CapRegionKind
unsigned short CapRegionKind
The kind of captured region.
Definition: ScopeInfo.h:793
clang::Sema::getLangOpts
const LangOptions & getLangOpts() const
Definition: Sema.h:1630
clang::Sema::ICEConvertDiagnoser
Definition: Sema.h:3871
clang::InitializedEntity::InitializeRelatedResult
static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD, QualType Type)
Create the initialization entity for a related result.
Definition: Initialization.h:357
clang::ASTContext::getTypeAlignInChars
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
Definition: ASTContext.cpp:2524
APSInt
llvm::APSInt APSInt
Definition: ByteCodeEmitter.cpp:19
clang::CapturedStmt::VCK_ByRef
@ VCK_ByRef
Definition: Stmt.h:3542
clang::LabelDecl::isGnuLocal
bool isGnuLocal() const
Definition: Decl.h:523
clang::Sema::SimplerImplicitMoveMode
SimplerImplicitMoveMode
Definition: Sema.h:5132
clang::Sema::FRS_Success
@ FRS_Success
Definition: Sema.h:4129
clang::ImplicitParamDecl::CapturedContext
@ CapturedContext
Parameter for captured context.
Definition: Decl.h:1666
clang::Sema::LookupMemberName
@ LookupMemberName
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:4255
clang::FunctionTemplateDecl
Declaration of a template function.
Definition: DeclTemplate.h:1006
clang::Expr::isKnownToHaveBooleanValue
bool isKnownToHaveBooleanValue(bool Semantic=true) const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:136
clang::ASTContext::getObjCIdType
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:2046
clang::InitializationSequence::getFailedOverloadResult
OverloadingResult getFailedOverloadResult() const
Get the overloading result, for when the initialization sequence failed due to a bad overload.
Definition: Initialization.h:1384
llvm::MutableArrayRef
Definition: LLVM.h:35
clang::Type::isReferenceType
bool isReferenceType() const
Definition: Type.h:6895
clang::CapturedStmt::getCapturedStmt
Stmt * getCapturedStmt()
Retrieve the statement being captured.
Definition: Stmt.h:3637
clang::DeclStmt::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:1329
clang::IntegerLiteral
Definition: Expr.h:1503
clang::ReturnStmt::Create
static ReturnStmt * Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
Create a return statement.
Definition: Stmt.cpp:1201
clang::ObjCInterfaceDecl::lookupInstanceMethod
ObjCMethodDecl * lookupInstanceMethod(Selector Sel) const
Lookup an instance method for a given selector.
Definition: DeclObjC.h:1823
clang::ObjCAtCatchStmt
Represents Objective-C's @catch statement.
Definition: StmtObjC.h:77
clang::Sema::ActOnObjCAtCatchStmt
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body)
Definition: SemaStmt.cpp:4196
clang::FloatingLiteral
Definition: Expr.h:1648
min
__DEVICE__ int min(int __a, int __b)
Definition: __clang_cuda_math.h:197
clang::Expr::isTypeDependent
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition: Expr.h:185
checkEnumTypesInSwitchStmt
static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, const Expr *Case)
Definition: SemaStmt.cpp:1187
clang::RecordType
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4816
clang::CompoundStmt
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1410
clang::AR_Available
@ AR_Available
Definition: DeclBase.h:70
clang::FunctionType::getNoReturnAttr
bool getNoReturnAttr() const
Determine whether this function type includes the GNU noreturn attribute.
Definition: Type.h:3948
clang::Sema::ActOnGotoStmt
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl)
Definition: SemaStmt.cpp:3282
clang::Sema::inTemplateInstantiation
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition: Sema.h:9588
clang::Type::isSignedIntegerOrEnumerationType
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:2040
clang::Sema::ActOnCapturedRegionError
void ActOnCapturedRegionError()
Definition: SemaStmt.cpp:4789
clang::FunctionDecl::isNoReturn
bool isNoReturn() const
Determines whether this function is known to be 'noreturn', through an attribute on its declaration o...
Definition: Decl.cpp:3336
clang::IgnoreImplicitAsWrittenSingleStep
Expr * IgnoreImplicitAsWrittenSingleStep(Expr *E)
Definition: IgnoreExpr.h:136
clang::SwitchStmt::setAllEnumCasesCovered
void setAllEnumCasesCovered()
Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a switch over an enum value then ...
Definition: Stmt.h:2344
clang::PartialDiagnosticAt
std::pair< SourceLocation, PartialDiagnostic > PartialDiagnosticAt
A partial diagnostic along with the source location where this diagnostic occurs.
Definition: PartialDiagnostic.h:205
clang::Sema::ActOnStartSEHFinallyBlock
void ActOnStartSEHFinallyBlock()
Definition: SemaStmt.cpp:4585
clang::Sema::MarkAnyDeclReferenced
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse)
Perform marking for a reference to an arbitrary declaration.
Definition: SemaExpr.cpp:19787
clang::Sema::ActOnCaseStmtBody
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt)
ActOnCaseStmtBody - This installs a statement as the body of a case.
Definition: SemaStmt.cpp:535
clang::WhileStmt::Create
static WhileStmt * Create(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, Stmt *Body, SourceLocation WL, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a while statement.
Definition: Stmt.cpp:1140
clang::CXXBindTemporaryExpr
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1419
clang::Decl::getKind
Kind getKind() const
Definition: DeclBase.h:435
clang::ParenExpr::getSubExpr
const Expr * getSubExpr() const
Definition: Expr.h:2136
clang::BinaryOperator
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3812
clang::Sema::ForRangeStatus
ForRangeStatus
Definition: Sema.h:4128
clang::Qualifiers::OCL_Strong
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:175
clang::Sema::ActOnCXXForRangeStmt
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind)
ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
Definition: SemaStmt.cpp:2482
clang::Scope
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
buildCapturedStmtCaptureList
static bool buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, SmallVectorImpl< CapturedStmt::Capture > &Captures, SmallVectorImpl< Expr * > &CaptureInits)
Definition: SemaStmt.cpp:4660
clang::ObjCAtThrowStmt
Represents Objective-C's @throw statement.
Definition: StmtObjC.h:357
clang::SelectorTable::getSelector
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
Definition: IdentifierTable.cpp:784
clang::ASTContext::Selectors
SelectorTable & Selectors
Definition: ASTContext.h:661
clang::sema::FunctionScopeInfo::setHasCXXTry
void setHasCXXTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:452
clang::AS_public
@ AS_public
Definition: Specifiers.h:112
clang::Sema::CheckObjCForCollectionOperand
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection)
Definition: SemaStmt.cpp:2207
clang::threadSafety::sx::toString
std::string toString(const til::SExpr *E)
Definition: ThreadSafetyCommon.h:91
clang::ASTContext::DependentTy
CanQualType DependentTy
Definition: ASTContext.h:1135
clang::FPOptionsOverride
Represents difference between two FPOptions values.
Definition: LangOptions.h:803
clang::MaterializeTemporaryExpr
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4513
clang::CXXTryStmt::Create
static CXXTryStmt * Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef< Stmt * > handlers)
Definition: StmtCXX.cpp:25
clang::ASTContext
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:209
clang::Sema::FinalizeDeclaration
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:14070
clang::ExprResult
ActionResult< Expr * > ExprResult
Definition: Ownership.h:262
clang::ObjCInterfaceDecl::lookupPrivateMethod
ObjCMethodDecl * lookupPrivateMethod(const Selector &Sel, bool Instance=true) const
Lookup a method in the classes implementation hierarchy.
Definition: DeclObjC.cpp:747
clang::CPlusPlus
@ CPlusPlus
Definition: LangStandard.h:53
clang::sema::Capture::isInvalid
bool isInvalid() const
Definition: ScopeInfo.h:629
clang::ArrayType
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3012
clang::Sema::ActOnExprStmt
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue=true)
Definition: SemaStmt.cpp:46
clang::EnumDecl::isClosed
bool isClosed() const
Returns true if this enum is either annotated with enum_extensibility(closed) or isn't annotated with...
Definition: Decl.cpp:4578
clang::RecursiveASTVisitor
A class that does preorder or postorder depth-first traversal on the entire Clang AST and visits each...
Definition: RecursiveASTVisitor.h:152
clang::Sema::FullExprArg
Definition: Sema.h:4935
clang::ReservedIdentifierStatus
ReservedIdentifierStatus
Definition: IdentifierTable.h:44
clang::Type::getAs
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:7386
clang::Decl::isInvalidDecl
bool isInvalidDecl() const
Definition: DeclBase.h:571
clang::IfStatementKind::ConstevalNegated
@ ConstevalNegated
clang::Sema::AssignConvertType
AssignConvertType
AssignConvertType - All of the 'assignment' semantic checks return this enum to indicate whether the ...
Definition: Sema.h:12248
clang::CaseStmt::getRHS
Expr * getRHS()
Definition: Stmt.h:1704
clang::FPOptions
Definition: LangOptions.h:654
clang::ForStmt
ForStmt - This represents a 'for (init;cond;inc)' stmt.
Definition: Stmt.h:2570
clang::Sema::AddInitializerToDecl
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:12837
clang::Expr::containsErrors
bool containsErrors() const
Whether this expression contains subexpressions which had errors, e.g.
Definition: Expr.h:238
clang::ASTContext::getObjCInterfaceType
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl.
Definition: ASTContext.cpp:5628
clang::Sema::Diags
DiagnosticsEngine & Diags
Definition: Sema.h:411
clang::Scope::isAtCatchScope
bool isAtCatchScope() const
isAtCatchScope - Return true if this scope is @catch.
Definition: Scope.h:441
clang::LabelDecl
Represents the declaration of a label.
Definition: Decl.h:496
llvm::DenseMapInfo< CatchHandlerType >::getTombstoneKey
static CatchHandlerType getTombstoneKey()
Definition: SemaStmt.cpp:4386
DiagnoseForRangeVariableCopies
static void DiagnoseForRangeVariableCopies(Sema &SemaRef, const CXXForRangeStmt *ForStmt)
DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
Definition: SemaStmt.cpp:3221
clang::PseudoObjectExpr
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:6105
clang::ObjCAtSynchronizedStmt
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:302
clang::CaseStmt::Create
static CaseStmt * Create(const ASTContext &Ctx, Expr *lhs, Expr *rhs, SourceLocation caseLoc, SourceLocation ellipsisLoc, SourceLocation colonLoc)
Build a case statement.
Definition: Stmt.cpp:1217
clang::IntegerLiteral::Create
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value 'V' and type 'type'.
Definition: Expr.cpp:982
clang::BinaryConditionalOperator
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:4212
clang::Sema::PDiag
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:24
clang::ASTContext::getTypeSize
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2302
clang::Stmt::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:348
ft_parameter_arity
@ ft_parameter_arity
Definition: SemaOverload.cpp:2951
clang::ASTContext::getAutoDeductType
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
Definition: ASTContext.cpp:5903
clang::Sema::BFRK_Check
@ BFRK_Check
Determining whether a for-range statement could be built.
Definition: Sema.h:5080
ft_different_class
@ ft_different_class
Definition: SemaOverload.cpp:2950
clang::ImplicitCastExpr::Create
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat, FPOptionsOverride FPO)
Definition: Expr.cpp:2062
clang::Sema::BuildForRangeKind
BuildForRangeKind
Definition: Sema.h:5072
clang::AutoType
Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained by a type-constraint.
Definition: Type.h:5246
clang::DeclRefExpr::getDecl
ValueDecl * getDecl()
Definition: Expr.h:1304
clang::AttributedStmt::Create
static AttributedStmt * Create(const ASTContext &C, SourceLocation Loc, ArrayRef< const Attr * > Attrs, Stmt *SubStmt)
Definition: Stmt.cpp:423
clang::DeclContext::isStdNamespace
bool isStdNamespace() const
Definition: DeclBase.cpp:1157
clang::sema::FunctionScopeInfo::FirstTryType
enum clang::sema::FunctionScopeInfo::@234 FirstTryType
clang::Expr::isInstantiationDependent
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on.
Definition: Expr.h:214
clang::CR_OpenMP
@ CR_OpenMP
Definition: CapturedStmt.h:19
clang::Sema::ActOnContinueStmt
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope)
Definition: SemaStmt.cpp:3326
llvm::SmallString< 16 >
clang::Expr::EvalResult
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:621
clang::Sema::ActOnObjCAtSynchronizedOperand
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand)
Definition: SemaStmt.cpp:4274
clang::Sema::ActOnNullStmt
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:68
clang::Sema::FRS_DiagnosticIssued
@ FRS_DiagnosticIssued
Definition: Sema.h:4131
clang::interp::Cast
bool Cast(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1110
ASTContext.h
clang::Sema::BuildCXXForRangeStmt
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind)
BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
Definition: SemaStmt.cpp:2740
clang::OpaqueValueExpr::getSourceExpr
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1194
clang::VarDecl
Represents a variable declaration or definition.
Definition: Decl.h:906
clang::Type::getPointeeType
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:625
clang::TagDecl
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3423
clang::CapturedDecl::setContextParam
void setContextParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4541
clang::dataflow::var
static constexpr Variable var(Literal L)
Returns the variable of L.
Definition: WatchedLiteralsSolver.cpp:71
clang::CapturedStmt
This captures a statement into a function.
Definition: Stmt.h:3536
clang::ASTContext::getCanonicalType
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2528
clang::ObjCAtFinallyStmt
Represents Objective-C's @finally statement.
Definition: StmtObjC.h:127
clang::Type::getAsCXXRecordDecl
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1760
clang::Expr::EvaluateKnownConstInt
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
Definition: ExprConstant.cpp:15391
clang::VarDecl::isLocalVarDecl
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1200
clang::Sema::ActOnSEHExceptBlock
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
Definition: SemaStmt.cpp:4573
clang::RQ_None
@ RQ_None
No ref-qualifier was provided.
Definition: Type.h:1518
clang::DeclaratorDecl::getTypeSpecStartLoc
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1913
clang::Sema::setOpenMPCaptureKind
void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level)
Sets OpenMP capture kind (