clang  6.0.0svn
SemaStmt.cpp
Go to the documentation of this file.
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/SmallVector.h"
40 
41 using namespace clang;
42 using namespace sema;
43 
45  if (FE.isInvalid())
46  return StmtError();
47 
48  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
49  /*DiscardedValue*/ true);
50  if (FE.isInvalid())
51  return StmtError();
52 
53  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54  // void expression for its side effects. Conversion to void allows any
55  // operand, even incomplete types.
56 
57  // Same thing in for stmt first clause (when expr) and third clause.
58  return StmtResult(FE.getAs<Stmt>());
59 }
60 
61 
63  DiscardCleanupsInEvaluationContext();
64  return StmtError();
65 }
66 
68  bool HasLeadingEmptyMacro) {
69  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70 }
71 
73  SourceLocation EndLoc) {
74  DeclGroupRef DG = dg.get();
75 
76  // If we have an invalid decl, just return an error.
77  if (DG.isNull()) return StmtError();
78 
79  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80 }
81 
83  DeclGroupRef DG = dg.get();
84 
85  // If we don't have a declaration, or we have an invalid declaration,
86  // just return.
87  if (DG.isNull() || !DG.isSingleDecl())
88  return;
89 
90  Decl *decl = DG.getSingleDecl();
91  if (!decl || decl->isInvalidDecl())
92  return;
93 
94  // Only variable declarations are permitted.
95  VarDecl *var = dyn_cast<VarDecl>(decl);
96  if (!var) {
97  Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98  decl->setInvalidDecl();
99  return;
100  }
101 
102  // foreach variables are never actually initialized in the way that
103  // the parser came up with.
104  var->setInit(nullptr);
105 
106  // In ARC, we don't need to retain the iteration variable of a fast
107  // enumeration loop. Rather than actually trying to catch that
108  // during declaration processing, we remove the consequences here.
109  if (getLangOpts().ObjCAutoRefCount) {
110  QualType type = var->getType();
111 
112  // Only do this if we inferred the lifetime. Inferred lifetime
113  // will show up as a local qualifier because explicit lifetime
114  // should have shown up as an AttributedType instead.
116  // Add 'const' and mark the variable as pseudo-strong.
117  var->setType(type.withConst());
118  var->setARCPseudoStrong(true);
119  }
120  }
121 }
122 
123 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
124 /// For '==' and '!=', suggest fixits for '=' or '|='.
125 ///
126 /// Adding a cast to void (or other expression wrappers) will prevent the
127 /// warning from firing.
128 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129  SourceLocation Loc;
130  bool IsNotEqual, CanAssign, IsRelational;
131 
132  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
133  if (!Op->isComparisonOp())
134  return false;
135 
136  IsRelational = Op->isRelationalOp();
137  Loc = Op->getOperatorLoc();
138  IsNotEqual = Op->getOpcode() == BO_NE;
139  CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
140  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
141  switch (Op->getOperator()) {
142  default:
143  return false;
144  case OO_EqualEqual:
145  case OO_ExclaimEqual:
146  IsRelational = false;
147  break;
148  case OO_Less:
149  case OO_Greater:
150  case OO_GreaterEqual:
151  case OO_LessEqual:
152  IsRelational = true;
153  break;
154  }
155 
156  Loc = Op->getOperatorLoc();
157  IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
158  CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
159  } else {
160  // Not a typo-prone comparison.
161  return false;
162  }
163 
164  // Suppress warnings when the operator, suspicious as it may be, comes from
165  // a macro expansion.
166  if (S.SourceMgr.isMacroBodyExpansion(Loc))
167  return false;
168 
169  S.Diag(Loc, diag::warn_unused_comparison)
170  << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
171 
172  // If the LHS is a plausible entity to assign to, provide a fixit hint to
173  // correct common typos.
174  if (!IsRelational && CanAssign) {
175  if (IsNotEqual)
176  S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
177  << FixItHint::CreateReplacement(Loc, "|=");
178  else
179  S.Diag(Loc, diag::note_equality_comparison_to_assign)
180  << FixItHint::CreateReplacement(Loc, "=");
181  }
182 
183  return true;
184 }
185 
187  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
188  return DiagnoseUnusedExprResult(Label->getSubStmt());
189 
190  const Expr *E = dyn_cast_or_null<Expr>(S);
191  if (!E)
192  return;
193 
194  // If we are in an unevaluated expression context, then there can be no unused
195  // results because the results aren't expected to be used in the first place.
196  if (isUnevaluatedContext())
197  return;
198 
199  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
200  // In most cases, we don't want to warn if the expression is written in a
201  // macro body, or if the macro comes from a system header. If the offending
202  // expression is a call to a function with the warn_unused_result attribute,
203  // we warn no matter the location. Because of the order in which the various
204  // checks need to happen, we factor out the macro-related test here.
205  bool ShouldSuppress =
206  SourceMgr.isMacroBodyExpansion(ExprLoc) ||
207  SourceMgr.isInSystemMacro(ExprLoc);
208 
209  const Expr *WarnExpr;
210  SourceLocation Loc;
211  SourceRange R1, R2;
212  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
213  return;
214 
215  // If this is a GNU statement expression expanded from a macro, it is probably
216  // unused because it is a function-like macro that can be used as either an
217  // expression or statement. Don't warn, because it is almost certainly a
218  // false positive.
219  if (isa<StmtExpr>(E) && Loc.isMacroID())
220  return;
221 
222  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
223  // That macro is frequently used to suppress "unused parameter" warnings,
224  // but its implementation makes clang's -Wunused-value fire. Prevent this.
225  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
226  SourceLocation SpellLoc = Loc;
227  if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
228  return;
229  }
230 
231  // Okay, we have an unused result. Depending on what the base expression is,
232  // we might want to make a more specific diagnostic. Check for one of these
233  // cases now.
234  unsigned DiagID = diag::warn_unused_expr;
235  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
236  E = Temps->getSubExpr();
237  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
238  E = TempExpr->getSubExpr();
239 
240  if (DiagnoseUnusedComparison(*this, E))
241  return;
242 
243  E = WarnExpr;
244  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
245  if (E->getType()->isVoidType())
246  return;
247 
248  // If the callee has attribute pure, const, or warn_unused_result, warn with
249  // a more specific message to make it clear what is happening. If the call
250  // is written in a macro body, only warn if it has the warn_unused_result
251  // attribute.
252  if (const Decl *FD = CE->getCalleeDecl()) {
253  if (const Attr *A = isa<FunctionDecl>(FD)
254  ? cast<FunctionDecl>(FD)->getUnusedResultAttr()
255  : FD->getAttr<WarnUnusedResultAttr>()) {
256  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
257  return;
258  }
259  if (ShouldSuppress)
260  return;
261  if (FD->hasAttr<PureAttr>()) {
262  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
263  return;
264  }
265  if (FD->hasAttr<ConstAttr>()) {
266  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
267  return;
268  }
269  }
270  } else if (ShouldSuppress)
271  return;
272 
273  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
274  if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
275  Diag(Loc, diag::err_arc_unused_init_message) << R1;
276  return;
277  }
278  const ObjCMethodDecl *MD = ME->getMethodDecl();
279  if (MD) {
280  if (const auto *A = MD->getAttr<WarnUnusedResultAttr>()) {
281  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
282  return;
283  }
284  }
285  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
286  const Expr *Source = POE->getSyntacticForm();
287  if (isa<ObjCSubscriptRefExpr>(Source))
288  DiagID = diag::warn_unused_container_subscript_expr;
289  else
290  DiagID = diag::warn_unused_property_expr;
291  } else if (const CXXFunctionalCastExpr *FC
292  = dyn_cast<CXXFunctionalCastExpr>(E)) {
293  const Expr *E = FC->getSubExpr();
294  if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
295  E = TE->getSubExpr();
296  if (isa<CXXTemporaryObjectExpr>(E))
297  return;
298  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
299  if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
300  if (!RD->getAttr<WarnUnusedAttr>())
301  return;
302  }
303  // Diagnose "(void*) blah" as a typo for "(void) blah".
304  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
305  TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
306  QualType T = TI->getType();
307 
308  // We really do want to use the non-canonical type here.
309  if (T == Context.VoidPtrTy) {
311 
312  Diag(Loc, diag::warn_unused_voidptr)
314  return;
315  }
316  }
317 
318  if (E->isGLValue() && E->getType().isVolatileQualified()) {
319  Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
320  return;
321  }
322 
323  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
324 }
325 
327  PushCompoundScope();
328 }
329 
331  PopCompoundScope();
332 }
333 
335  return getCurFunction()->CompoundScopes.back();
336 }
337 
339  ArrayRef<Stmt *> Elts, bool isStmtExpr) {
340  const unsigned NumElts = Elts.size();
341 
342  // If we're in C89 mode, check that we don't have any decls after stmts. If
343  // so, emit an extension diagnostic.
344  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
345  // Note that __extension__ can be around a decl.
346  unsigned i = 0;
347  // Skip over all declarations.
348  for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
349  /*empty*/;
350 
351  // We found the end of the list or a statement. Scan for another declstmt.
352  for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
353  /*empty*/;
354 
355  if (i != NumElts) {
356  Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
357  Diag(D->getLocation(), diag::ext_mixed_decls_code);
358  }
359  }
360  // Warn about unused expressions in statements.
361  for (unsigned i = 0; i != NumElts; ++i) {
362  // Ignore statements that are last in a statement expression.
363  if (isStmtExpr && i == NumElts - 1)
364  continue;
365 
366  DiagnoseUnusedExprResult(Elts[i]);
367  }
368 
369  // Check for suspicious empty body (null statement) in `for' and `while'
370  // statements. Don't do anything for template instantiations, this just adds
371  // noise.
372  if (NumElts != 0 && !CurrentInstantiationScope &&
373  getCurCompoundScope().HasEmptyLoopBodies) {
374  for (unsigned i = 0; i != NumElts - 1; ++i)
375  DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
376  }
377 
378  return new (Context) CompoundStmt(Context, Elts, L, R);
379 }
380 
383  SourceLocation DotDotDotLoc, Expr *RHSVal,
385  assert(LHSVal && "missing expression in case statement");
386 
387  if (getCurFunction()->SwitchStack.empty()) {
388  Diag(CaseLoc, diag::err_case_not_in_switch);
389  return StmtError();
390  }
391 
392  ExprResult LHS =
393  CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
394  if (!getLangOpts().CPlusPlus11)
395  return VerifyIntegerConstantExpression(E);
396  if (Expr *CondExpr =
397  getCurFunction()->SwitchStack.back()->getCond()) {
398  QualType CondType = CondExpr->getType();
399  llvm::APSInt TempVal;
400  return CheckConvertedConstantExpression(E, CondType, TempVal,
401  CCEK_CaseValue);
402  }
403  return ExprError();
404  });
405  if (LHS.isInvalid())
406  return StmtError();
407  LHSVal = LHS.get();
408 
409  if (!getLangOpts().CPlusPlus11) {
410  // C99 6.8.4.2p3: The expression shall be an integer constant.
411  // However, GCC allows any evaluatable integer expression.
412  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
413  LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
414  if (!LHSVal)
415  return StmtError();
416  }
417 
418  // GCC extension: The expression shall be an integer constant.
419 
420  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
421  RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
422  // Recover from an error by just forgetting about it.
423  }
424  }
425 
426  LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
427  getLangOpts().CPlusPlus11);
428  if (LHS.isInvalid())
429  return StmtError();
430 
431  auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
432  getLangOpts().CPlusPlus11)
433  : ExprResult();
434  if (RHS.isInvalid())
435  return StmtError();
436 
437  CaseStmt *CS = new (Context)
438  CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
439  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
440  return CS;
441 }
442 
443 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
445  DiagnoseUnusedExprResult(SubStmt);
446 
447  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
448  CS->setSubStmt(SubStmt);
449 }
450 
453  Stmt *SubStmt, Scope *CurScope) {
454  DiagnoseUnusedExprResult(SubStmt);
455 
456  if (getCurFunction()->SwitchStack.empty()) {
457  Diag(DefaultLoc, diag::err_default_not_in_switch);
458  return SubStmt;
459  }
460 
461  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
462  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
463  return DS;
464 }
465 
468  SourceLocation ColonLoc, Stmt *SubStmt) {
469  // If the label was multiply defined, reject it now.
470  if (TheDecl->getStmt()) {
471  Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
472  Diag(TheDecl->getLocation(), diag::note_previous_definition);
473  return SubStmt;
474  }
475 
476  // Otherwise, things are good. Fill in the declaration and return it.
477  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
478  TheDecl->setStmt(LS);
479  if (!TheDecl->isGnuLocal()) {
480  TheDecl->setLocStart(IdentLoc);
481  if (!TheDecl->isMSAsmLabel()) {
482  // Don't update the location of MS ASM labels. These will result in
483  // a diagnostic, and changing the location here will mess that up.
484  TheDecl->setLocation(IdentLoc);
485  }
486  }
487  return LS;
488 }
489 
491  ArrayRef<const Attr*> Attrs,
492  Stmt *SubStmt) {
493  // Fill in the declaration and return it.
494  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
495  return LS;
496 }
497 
498 namespace {
499 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
500  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
501  Sema &SemaRef;
502 public:
503  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
504  void VisitBinaryOperator(BinaryOperator *E) {
505  if (E->getOpcode() == BO_Comma)
506  SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
508  }
509 };
510 }
511 
513 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
514  ConditionResult Cond,
515  Stmt *thenStmt, SourceLocation ElseLoc,
516  Stmt *elseStmt) {
517  if (Cond.isInvalid())
518  Cond = ConditionResult(
519  *this, nullptr,
520  MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
521  Context.BoolTy, VK_RValue),
522  IfLoc),
523  false);
524 
525  Expr *CondExpr = Cond.get().second;
526  if (!Diags.isIgnored(diag::warn_comma_operator,
527  CondExpr->getExprLoc()))
528  CommaVisitor(*this).Visit(CondExpr);
529 
530  if (!elseStmt)
531  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), thenStmt,
532  diag::warn_empty_if_body);
533 
534  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
535  elseStmt);
536 }
537 
539  Stmt *InitStmt, ConditionResult Cond,
540  Stmt *thenStmt, SourceLocation ElseLoc,
541  Stmt *elseStmt) {
542  if (Cond.isInvalid())
543  return StmtError();
544 
545  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
546  getCurFunction()->setHasBranchProtectedScope();
547 
548  DiagnoseUnusedExprResult(thenStmt);
549  DiagnoseUnusedExprResult(elseStmt);
550 
551  return new (Context)
552  IfStmt(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
553  Cond.get().second, thenStmt, ElseLoc, elseStmt);
554 }
555 
556 namespace {
557  struct CaseCompareFunctor {
558  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
559  const llvm::APSInt &RHS) {
560  return LHS.first < RHS;
561  }
562  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
563  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
564  return LHS.first < RHS.first;
565  }
566  bool operator()(const llvm::APSInt &LHS,
567  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
568  return LHS < RHS.first;
569  }
570  };
571 }
572 
573 /// CmpCaseVals - Comparison predicate for sorting case values.
574 ///
575 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
576  const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
577  if (lhs.first < rhs.first)
578  return true;
579 
580  if (lhs.first == rhs.first &&
581  lhs.second->getCaseLoc().getRawEncoding()
582  < rhs.second->getCaseLoc().getRawEncoding())
583  return true;
584  return false;
585 }
586 
587 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
588 ///
589 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
590  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
591 {
592  return lhs.first < rhs.first;
593 }
594 
595 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
596 ///
597 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
598  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
599 {
600  return lhs.first == rhs.first;
601 }
602 
603 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
604 /// potentially integral-promoted expression @p expr.
606  if (const auto *CleanUps = dyn_cast<ExprWithCleanups>(E))
607  E = CleanUps->getSubExpr();
608  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
609  if (ImpCast->getCastKind() != CK_IntegralCast) break;
610  E = ImpCast->getSubExpr();
611  }
612  return E->getType();
613 }
614 
616  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
617  Expr *Cond;
618 
619  public:
620  SwitchConvertDiagnoser(Expr *Cond)
621  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
622  Cond(Cond) {}
623 
624  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
625  QualType T) override {
626  return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
627  }
628 
629  SemaDiagnosticBuilder diagnoseIncomplete(
630  Sema &S, SourceLocation Loc, QualType T) override {
631  return S.Diag(Loc, diag::err_switch_incomplete_class_type)
632  << T << Cond->getSourceRange();
633  }
634 
635  SemaDiagnosticBuilder diagnoseExplicitConv(
636  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
637  return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
638  }
639 
640  SemaDiagnosticBuilder noteExplicitConv(
641  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
642  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
643  << ConvTy->isEnumeralType() << ConvTy;
644  }
645 
646  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
647  QualType T) override {
648  return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
649  }
650 
651  SemaDiagnosticBuilder noteAmbiguous(
652  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
653  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
654  << ConvTy->isEnumeralType() << ConvTy;
655  }
656 
657  SemaDiagnosticBuilder diagnoseConversion(
658  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
659  llvm_unreachable("conversion functions are permitted");
660  }
661  } SwitchDiagnoser(Cond);
662 
663  ExprResult CondResult =
664  PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
665  if (CondResult.isInvalid())
666  return ExprError();
667 
668  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
669  return UsualUnaryConversions(CondResult.get());
670 }
671 
673  Stmt *InitStmt, ConditionResult Cond) {
674  if (Cond.isInvalid())
675  return StmtError();
676 
677  getCurFunction()->setHasBranchIntoScope();
678 
679  SwitchStmt *SS = new (Context)
680  SwitchStmt(Context, InitStmt, Cond.get().first, Cond.get().second);
681  getCurFunction()->SwitchStack.push_back(SS);
682  return SS;
683 }
684 
685 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
686  Val = Val.extOrTrunc(BitWidth);
687  Val.setIsSigned(IsSigned);
688 }
689 
690 /// Check the specified case value is in range for the given unpromoted switch
691 /// type.
692 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
693  unsigned UnpromotedWidth, bool UnpromotedSign) {
694  // If the case value was signed and negative and the switch expression is
695  // unsigned, don't bother to warn: this is implementation-defined behavior.
696  // FIXME: Introduce a second, default-ignored warning for this case?
697  if (UnpromotedWidth < Val.getBitWidth()) {
698  llvm::APSInt ConvVal(Val);
699  AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
700  AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
701  // FIXME: Use different diagnostics for overflow in conversion to promoted
702  // type versus "switch expression cannot have this value". Use proper
703  // IntRange checking rather than just looking at the unpromoted type here.
704  if (ConvVal != Val)
705  S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
706  << ConvVal.toString(10);
707  }
708 }
709 
711 
712 /// Returns true if we should emit a diagnostic about this case expression not
713 /// being a part of the enum used in the switch controlling expression.
715  const EnumDecl *ED,
716  const Expr *CaseExpr,
717  EnumValsTy::iterator &EI,
718  EnumValsTy::iterator &EIEnd,
719  const llvm::APSInt &Val) {
720  if (!ED->isClosed())
721  return false;
722 
723  if (const DeclRefExpr *DRE =
724  dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
725  if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
726  QualType VarType = VD->getType();
728  if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
729  S.Context.hasSameUnqualifiedType(EnumType, VarType))
730  return false;
731  }
732  }
733 
734  if (ED->hasAttr<FlagEnumAttr>())
735  return !S.IsValueInFlagEnum(ED, Val, false);
736 
737  while (EI != EIEnd && EI->first < Val)
738  EI++;
739 
740  if (EI != EIEnd && EI->first == Val)
741  return false;
742 
743  return true;
744 }
745 
746 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
747  const Expr *Case) {
748  QualType CondType = GetTypeBeforeIntegralPromotion(Cond);
749  QualType CaseType = Case->getType();
750 
751  const EnumType *CondEnumType = CondType->getAs<EnumType>();
752  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
753  if (!CondEnumType || !CaseEnumType)
754  return;
755 
756  // Ignore anonymous enums.
757  if (!CondEnumType->getDecl()->getIdentifier() &&
758  !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
759  return;
760  if (!CaseEnumType->getDecl()->getIdentifier() &&
761  !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
762  return;
763 
764  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
765  return;
766 
767  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
768  << CondType << CaseType << Cond->getSourceRange()
769  << Case->getSourceRange();
770 }
771 
774  Stmt *BodyStmt) {
775  SwitchStmt *SS = cast<SwitchStmt>(Switch);
776  assert(SS == getCurFunction()->SwitchStack.back() &&
777  "switch stack missing push/pop!");
778 
779  getCurFunction()->SwitchStack.pop_back();
780 
781  if (!BodyStmt) return StmtError();
782  SS->setBody(BodyStmt, SwitchLoc);
783 
784  Expr *CondExpr = SS->getCond();
785  if (!CondExpr) return StmtError();
786 
787  QualType CondType = CondExpr->getType();
788 
789  const Expr *CondExprBeforePromotion = CondExpr;
790  QualType CondTypeBeforePromotion =
791  GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
792 
793  // C++ 6.4.2.p2:
794  // Integral promotions are performed (on the switch condition).
795  //
796  // A case value unrepresentable by the original switch condition
797  // type (before the promotion) doesn't make sense, even when it can
798  // be represented by the promoted type. Therefore we need to find
799  // the pre-promotion type of the switch condition.
800  if (!CondExpr->isTypeDependent()) {
801  // We have already converted the expression to an integral or enumeration
802  // type, when we started the switch statement. If we don't have an
803  // appropriate type now, just return an error.
804  if (!CondType->isIntegralOrEnumerationType())
805  return StmtError();
806 
807  if (CondExpr->isKnownToHaveBooleanValue()) {
808  // switch(bool_expr) {...} is often a programmer error, e.g.
809  // switch(n && mask) { ... } // Doh - should be "n & mask".
810  // One can always use an if statement instead of switch(bool_expr).
811  Diag(SwitchLoc, diag::warn_bool_switch_condition)
812  << CondExpr->getSourceRange();
813  }
814  }
815 
816  // Get the bitwidth of the switched-on value after promotions. We must
817  // convert the integer case values to this width before comparison.
818  bool HasDependentValue
819  = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
820  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
821  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
822 
823  // Get the width and signedness that the condition might actually have, for
824  // warning purposes.
825  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
826  // type.
827  unsigned CondWidthBeforePromotion
828  = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
829  bool CondIsSignedBeforePromotion
830  = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
831 
832  // Accumulate all of the case values in a vector so that we can sort them
833  // and detect duplicates. This vector contains the APInt for the case after
834  // it has been converted to the condition type.
835  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
836  CaseValsTy CaseVals;
837 
838  // Keep track of any GNU case ranges we see. The APSInt is the low value.
839  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
840  CaseRangesTy CaseRanges;
841 
842  DefaultStmt *TheDefaultStmt = nullptr;
843 
844  bool CaseListIsErroneous = false;
845 
846  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
847  SC = SC->getNextSwitchCase()) {
848 
849  if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
850  if (TheDefaultStmt) {
851  Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
852  Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
853 
854  // FIXME: Remove the default statement from the switch block so that
855  // we'll return a valid AST. This requires recursing down the AST and
856  // finding it, not something we are set up to do right now. For now,
857  // just lop the entire switch stmt out of the AST.
858  CaseListIsErroneous = true;
859  }
860  TheDefaultStmt = DS;
861 
862  } else {
863  CaseStmt *CS = cast<CaseStmt>(SC);
864 
865  Expr *Lo = CS->getLHS();
866 
867  if (Lo->isTypeDependent() || Lo->isValueDependent()) {
868  HasDependentValue = true;
869  break;
870  }
871 
872  checkEnumTypesInSwitchStmt(*this, CondExpr, Lo);
873 
874  llvm::APSInt LoVal;
875 
876  if (getLangOpts().CPlusPlus11) {
877  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
878  // constant expression of the promoted type of the switch condition.
879  ExprResult ConvLo =
880  CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
881  if (ConvLo.isInvalid()) {
882  CaseListIsErroneous = true;
883  continue;
884  }
885  Lo = ConvLo.get();
886  } else {
887  // We already verified that the expression has a i-c-e value (C99
888  // 6.8.4.2p3) - get that value now.
889  LoVal = Lo->EvaluateKnownConstInt(Context);
890 
891  // If the LHS is not the same type as the condition, insert an implicit
892  // cast.
893  Lo = DefaultLvalueConversion(Lo).get();
894  Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
895  }
896 
897  // Check the unconverted value is within the range of possible values of
898  // the switch expression.
899  checkCaseValue(*this, Lo->getLocStart(), LoVal,
900  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
901 
902  // Convert the value to the same width/sign as the condition.
903  AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
904 
905  CS->setLHS(Lo);
906 
907  // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
908  if (CS->getRHS()) {
909  if (CS->getRHS()->isTypeDependent() ||
910  CS->getRHS()->isValueDependent()) {
911  HasDependentValue = true;
912  break;
913  }
914  CaseRanges.push_back(std::make_pair(LoVal, CS));
915  } else
916  CaseVals.push_back(std::make_pair(LoVal, CS));
917  }
918  }
919 
920  if (!HasDependentValue) {
921  // If we don't have a default statement, check whether the
922  // condition is constant.
923  llvm::APSInt ConstantCondValue;
924  bool HasConstantCond = false;
925  if (!HasDependentValue && !TheDefaultStmt) {
926  HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
928  assert(!HasConstantCond ||
929  (ConstantCondValue.getBitWidth() == CondWidth &&
930  ConstantCondValue.isSigned() == CondIsSigned));
931  }
932  bool ShouldCheckConstantCond = HasConstantCond;
933 
934  // Sort all the scalar case values so we can easily detect duplicates.
935  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
936 
937  if (!CaseVals.empty()) {
938  for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
939  if (ShouldCheckConstantCond &&
940  CaseVals[i].first == ConstantCondValue)
941  ShouldCheckConstantCond = false;
942 
943  if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
944  // If we have a duplicate, report it.
945  // First, determine if either case value has a name
946  StringRef PrevString, CurrString;
947  Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
948  Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
949  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
950  PrevString = DeclRef->getDecl()->getName();
951  }
952  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
953  CurrString = DeclRef->getDecl()->getName();
954  }
955  SmallString<16> CaseValStr;
956  CaseVals[i-1].first.toString(CaseValStr);
957 
958  if (PrevString == CurrString)
959  Diag(CaseVals[i].second->getLHS()->getLocStart(),
960  diag::err_duplicate_case) <<
961  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
962  else
963  Diag(CaseVals[i].second->getLHS()->getLocStart(),
964  diag::err_duplicate_case_differing_expr) <<
965  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
966  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
967  CaseValStr;
968 
969  Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
970  diag::note_duplicate_case_prev);
971  // FIXME: We really want to remove the bogus case stmt from the
972  // substmt, but we have no way to do this right now.
973  CaseListIsErroneous = true;
974  }
975  }
976  }
977 
978  // Detect duplicate case ranges, which usually don't exist at all in
979  // the first place.
980  if (!CaseRanges.empty()) {
981  // Sort all the case ranges by their low value so we can easily detect
982  // overlaps between ranges.
983  std::stable_sort(CaseRanges.begin(), CaseRanges.end());
984 
985  // Scan the ranges, computing the high values and removing empty ranges.
986  std::vector<llvm::APSInt> HiVals;
987  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
988  llvm::APSInt &LoVal = CaseRanges[i].first;
989  CaseStmt *CR = CaseRanges[i].second;
990  Expr *Hi = CR->getRHS();
991  llvm::APSInt HiVal;
992 
993  if (getLangOpts().CPlusPlus11) {
994  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
995  // constant expression of the promoted type of the switch condition.
996  ExprResult ConvHi =
997  CheckConvertedConstantExpression(Hi, CondType, HiVal,
998  CCEK_CaseValue);
999  if (ConvHi.isInvalid()) {
1000  CaseListIsErroneous = true;
1001  continue;
1002  }
1003  Hi = ConvHi.get();
1004  } else {
1005  HiVal = Hi->EvaluateKnownConstInt(Context);
1006 
1007  // If the RHS is not the same type as the condition, insert an
1008  // implicit cast.
1009  Hi = DefaultLvalueConversion(Hi).get();
1010  Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
1011  }
1012 
1013  // Check the unconverted value is within the range of possible values of
1014  // the switch expression.
1015  checkCaseValue(*this, Hi->getLocStart(), HiVal,
1016  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1017 
1018  // Convert the value to the same width/sign as the condition.
1019  AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1020 
1021  CR->setRHS(Hi);
1022 
1023  // If the low value is bigger than the high value, the case is empty.
1024  if (LoVal > HiVal) {
1025  Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
1026  << SourceRange(CR->getLHS()->getLocStart(),
1027  Hi->getLocEnd());
1028  CaseRanges.erase(CaseRanges.begin()+i);
1029  --i;
1030  --e;
1031  continue;
1032  }
1033 
1034  if (ShouldCheckConstantCond &&
1035  LoVal <= ConstantCondValue &&
1036  ConstantCondValue <= HiVal)
1037  ShouldCheckConstantCond = false;
1038 
1039  HiVals.push_back(HiVal);
1040  }
1041 
1042  // Rescan the ranges, looking for overlap with singleton values and other
1043  // ranges. Since the range list is sorted, we only need to compare case
1044  // ranges with their neighbors.
1045  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1046  llvm::APSInt &CRLo = CaseRanges[i].first;
1047  llvm::APSInt &CRHi = HiVals[i];
1048  CaseStmt *CR = CaseRanges[i].second;
1049 
1050  // Check to see whether the case range overlaps with any
1051  // singleton cases.
1052  CaseStmt *OverlapStmt = nullptr;
1053  llvm::APSInt OverlapVal(32);
1054 
1055  // Find the smallest value >= the lower bound. If I is in the
1056  // case range, then we have overlap.
1057  CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1058  CaseVals.end(), CRLo,
1059  CaseCompareFunctor());
1060  if (I != CaseVals.end() && I->first < CRHi) {
1061  OverlapVal = I->first; // Found overlap with scalar.
1062  OverlapStmt = I->second;
1063  }
1064 
1065  // Find the smallest value bigger than the upper bound.
1066  I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1067  if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1068  OverlapVal = (I-1)->first; // Found overlap with scalar.
1069  OverlapStmt = (I-1)->second;
1070  }
1071 
1072  // Check to see if this case stmt overlaps with the subsequent
1073  // case range.
1074  if (i && CRLo <= HiVals[i-1]) {
1075  OverlapVal = HiVals[i-1]; // Found overlap with range.
1076  OverlapStmt = CaseRanges[i-1].second;
1077  }
1078 
1079  if (OverlapStmt) {
1080  // If we have a duplicate, report it.
1081  Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1082  << OverlapVal.toString(10);
1083  Diag(OverlapStmt->getLHS()->getLocStart(),
1084  diag::note_duplicate_case_prev);
1085  // FIXME: We really want to remove the bogus case stmt from the
1086  // substmt, but we have no way to do this right now.
1087  CaseListIsErroneous = true;
1088  }
1089  }
1090  }
1091 
1092  // Complain if we have a constant condition and we didn't find a match.
1093  if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1094  // TODO: it would be nice if we printed enums as enums, chars as
1095  // chars, etc.
1096  Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1097  << ConstantCondValue.toString(10)
1098  << CondExpr->getSourceRange();
1099  }
1100 
1101  // Check to see if switch is over an Enum and handles all of its
1102  // values. We only issue a warning if there is not 'default:', but
1103  // we still do the analysis to preserve this information in the AST
1104  // (which can be used by flow-based analyes).
1105  //
1106  const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1107 
1108  // If switch has default case, then ignore it.
1109  if (!CaseListIsErroneous && !HasConstantCond && ET &&
1110  ET->getDecl()->isCompleteDefinition()) {
1111  const EnumDecl *ED = ET->getDecl();
1112  EnumValsTy EnumVals;
1113 
1114  // Gather all enum values, set their type and sort them,
1115  // allowing easier comparison with CaseVals.
1116  for (auto *EDI : ED->enumerators()) {
1117  llvm::APSInt Val = EDI->getInitVal();
1118  AdjustAPSInt(Val, CondWidth, CondIsSigned);
1119  EnumVals.push_back(std::make_pair(Val, EDI));
1120  }
1121  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1122  auto EI = EnumVals.begin(), EIEnd =
1123  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1124 
1125  // See which case values aren't in enum.
1126  for (CaseValsTy::const_iterator CI = CaseVals.begin();
1127  CI != CaseVals.end(); CI++) {
1128  Expr *CaseExpr = CI->second->getLHS();
1129  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1130  CI->first))
1131  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1132  << CondTypeBeforePromotion;
1133  }
1134 
1135  // See which of case ranges aren't in enum
1136  EI = EnumVals.begin();
1137  for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1138  RI != CaseRanges.end(); RI++) {
1139  Expr *CaseExpr = RI->second->getLHS();
1140  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1141  RI->first))
1142  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1143  << CondTypeBeforePromotion;
1144 
1145  llvm::APSInt Hi =
1146  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1147  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1148 
1149  CaseExpr = RI->second->getRHS();
1150  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1151  Hi))
1152  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1153  << CondTypeBeforePromotion;
1154  }
1155 
1156  // Check which enum vals aren't in switch
1157  auto CI = CaseVals.begin();
1158  auto RI = CaseRanges.begin();
1159  bool hasCasesNotInSwitch = false;
1160 
1161  SmallVector<DeclarationName,8> UnhandledNames;
1162 
1163  for (EI = EnumVals.begin(); EI != EIEnd; EI++){
1164  // Drop unneeded case values
1165  while (CI != CaseVals.end() && CI->first < EI->first)
1166  CI++;
1167 
1168  if (CI != CaseVals.end() && CI->first == EI->first)
1169  continue;
1170 
1171  // Drop unneeded case ranges
1172  for (; RI != CaseRanges.end(); RI++) {
1173  llvm::APSInt Hi =
1174  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1175  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1176  if (EI->first <= Hi)
1177  break;
1178  }
1179 
1180  if (RI == CaseRanges.end() || EI->first < RI->first) {
1181  hasCasesNotInSwitch = true;
1182  UnhandledNames.push_back(EI->second->getDeclName());
1183  }
1184  }
1185 
1186  if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1187  Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1188 
1189  // Produce a nice diagnostic if multiple values aren't handled.
1190  if (!UnhandledNames.empty()) {
1191  DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1192  TheDefaultStmt ? diag::warn_def_missing_case
1193  : diag::warn_missing_case)
1194  << (int)UnhandledNames.size();
1195 
1196  for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1197  I != E; ++I)
1198  DB << UnhandledNames[I];
1199  }
1200 
1201  if (!hasCasesNotInSwitch)
1202  SS->setAllEnumCasesCovered();
1203  }
1204  }
1205 
1206  if (BodyStmt)
1207  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1208  diag::warn_empty_switch_body);
1209 
1210  // FIXME: If the case list was broken is some way, we don't have a good system
1211  // to patch it up. Instead, just return the whole substmt as broken.
1212  if (CaseListIsErroneous)
1213  return StmtError();
1214 
1215  return SS;
1216 }
1217 
1218 void
1220  Expr *SrcExpr) {
1221  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1222  return;
1223 
1224  if (const EnumType *ET = DstType->getAs<EnumType>())
1225  if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1226  SrcType->isIntegerType()) {
1227  if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1228  SrcExpr->isIntegerConstantExpr(Context)) {
1229  // Get the bitwidth of the enum value before promotions.
1230  unsigned DstWidth = Context.getIntWidth(DstType);
1231  bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1232 
1233  llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1234  AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1235  const EnumDecl *ED = ET->getDecl();
1236 
1237  if (!ED->isClosed())
1238  return;
1239 
1240  if (ED->hasAttr<FlagEnumAttr>()) {
1241  if (!IsValueInFlagEnum(ED, RhsVal, true))
1242  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1243  << DstType.getUnqualifiedType();
1244  } else {
1246  EnumValsTy;
1247  EnumValsTy EnumVals;
1248 
1249  // Gather all enum values, set their type and sort them,
1250  // allowing easier comparison with rhs constant.
1251  for (auto *EDI : ED->enumerators()) {
1252  llvm::APSInt Val = EDI->getInitVal();
1253  AdjustAPSInt(Val, DstWidth, DstIsSigned);
1254  EnumVals.push_back(std::make_pair(Val, EDI));
1255  }
1256  if (EnumVals.empty())
1257  return;
1258  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1259  EnumValsTy::iterator EIend =
1260  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1261 
1262  // See which values aren't in the enum.
1263  EnumValsTy::const_iterator EI = EnumVals.begin();
1264  while (EI != EIend && EI->first < RhsVal)
1265  EI++;
1266  if (EI == EIend || EI->first != RhsVal) {
1267  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1268  << DstType.getUnqualifiedType();
1269  }
1270  }
1271  }
1272  }
1273 }
1274 
1276  Stmt *Body) {
1277  if (Cond.isInvalid())
1278  return StmtError();
1279 
1280  auto CondVal = Cond.get();
1281  CheckBreakContinueBinding(CondVal.second);
1282 
1283  if (CondVal.second &&
1284  !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1285  CommaVisitor(*this).Visit(CondVal.second);
1286 
1287  DiagnoseUnusedExprResult(Body);
1288 
1289  if (isa<NullStmt>(Body))
1290  getCurCompoundScope().setHasEmptyLoopBodies();
1291 
1292  return new (Context)
1293  WhileStmt(Context, CondVal.first, CondVal.second, Body, WhileLoc);
1294 }
1295 
1296 StmtResult
1298  SourceLocation WhileLoc, SourceLocation CondLParen,
1299  Expr *Cond, SourceLocation CondRParen) {
1300  assert(Cond && "ActOnDoStmt(): missing expression");
1301 
1302  CheckBreakContinueBinding(Cond);
1303  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1304  if (CondResult.isInvalid())
1305  return StmtError();
1306  Cond = CondResult.get();
1307 
1308  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1309  if (CondResult.isInvalid())
1310  return StmtError();
1311  Cond = CondResult.get();
1312 
1313  DiagnoseUnusedExprResult(Body);
1314 
1315  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1316 }
1317 
1318 namespace {
1319  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1320  using DeclSetVector =
1321  llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1322  llvm::SmallPtrSet<VarDecl *, 8>>;
1323 
1324  // This visitor will traverse a conditional statement and store all
1325  // the evaluated decls into a vector. Simple is set to true if none
1326  // of the excluded constructs are used.
1327  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1328  DeclSetVector &Decls;
1330  bool Simple;
1331  public:
1332  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1333 
1334  DeclExtractor(Sema &S, DeclSetVector &Decls,
1335  SmallVectorImpl<SourceRange> &Ranges) :
1336  Inherited(S.Context),
1337  Decls(Decls),
1338  Ranges(Ranges),
1339  Simple(true) {}
1340 
1341  bool isSimple() { return Simple; }
1342 
1343  // Replaces the method in EvaluatedExprVisitor.
1344  void VisitMemberExpr(MemberExpr* E) {
1345  Simple = false;
1346  }
1347 
1348  // Any Stmt not whitelisted will cause the condition to be marked complex.
1349  void VisitStmt(Stmt *S) {
1350  Simple = false;
1351  }
1352 
1353  void VisitBinaryOperator(BinaryOperator *E) {
1354  Visit(E->getLHS());
1355  Visit(E->getRHS());
1356  }
1357 
1358  void VisitCastExpr(CastExpr *E) {
1359  Visit(E->getSubExpr());
1360  }
1361 
1362  void VisitUnaryOperator(UnaryOperator *E) {
1363  // Skip checking conditionals with derefernces.
1364  if (E->getOpcode() == UO_Deref)
1365  Simple = false;
1366  else
1367  Visit(E->getSubExpr());
1368  }
1369 
1370  void VisitConditionalOperator(ConditionalOperator *E) {
1371  Visit(E->getCond());
1372  Visit(E->getTrueExpr());
1373  Visit(E->getFalseExpr());
1374  }
1375 
1376  void VisitParenExpr(ParenExpr *E) {
1377  Visit(E->getSubExpr());
1378  }
1379 
1380  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1381  Visit(E->getOpaqueValue()->getSourceExpr());
1382  Visit(E->getFalseExpr());
1383  }
1384 
1385  void VisitIntegerLiteral(IntegerLiteral *E) { }
1386  void VisitFloatingLiteral(FloatingLiteral *E) { }
1387  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1388  void VisitCharacterLiteral(CharacterLiteral *E) { }
1389  void VisitGNUNullExpr(GNUNullExpr *E) { }
1390  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1391 
1392  void VisitDeclRefExpr(DeclRefExpr *E) {
1393  VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1394  if (!VD) return;
1395 
1396  Ranges.push_back(E->getSourceRange());
1397 
1398  Decls.insert(VD);
1399  }
1400 
1401  }; // end class DeclExtractor
1402 
1403  // DeclMatcher checks to see if the decls are used in a non-evaluated
1404  // context.
1405  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1406  DeclSetVector &Decls;
1407  bool FoundDecl;
1408 
1409  public:
1410  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1411 
1412  DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1413  Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1414  if (!Statement) return;
1415 
1416  Visit(Statement);
1417  }
1418 
1419  void VisitReturnStmt(ReturnStmt *S) {
1420  FoundDecl = true;
1421  }
1422 
1423  void VisitBreakStmt(BreakStmt *S) {
1424  FoundDecl = true;
1425  }
1426 
1427  void VisitGotoStmt(GotoStmt *S) {
1428  FoundDecl = true;
1429  }
1430 
1431  void VisitCastExpr(CastExpr *E) {
1432  if (E->getCastKind() == CK_LValueToRValue)
1433  CheckLValueToRValueCast(E->getSubExpr());
1434  else
1435  Visit(E->getSubExpr());
1436  }
1437 
1438  void CheckLValueToRValueCast(Expr *E) {
1439  E = E->IgnoreParenImpCasts();
1440 
1441  if (isa<DeclRefExpr>(E)) {
1442  return;
1443  }
1444 
1445  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1446  Visit(CO->getCond());
1447  CheckLValueToRValueCast(CO->getTrueExpr());
1448  CheckLValueToRValueCast(CO->getFalseExpr());
1449  return;
1450  }
1451 
1452  if (BinaryConditionalOperator *BCO =
1453  dyn_cast<BinaryConditionalOperator>(E)) {
1454  CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1455  CheckLValueToRValueCast(BCO->getFalseExpr());
1456  return;
1457  }
1458 
1459  Visit(E);
1460  }
1461 
1462  void VisitDeclRefExpr(DeclRefExpr *E) {
1463  if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1464  if (Decls.count(VD))
1465  FoundDecl = true;
1466  }
1467 
1468  void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1469  // Only need to visit the semantics for POE.
1470  // SyntaticForm doesn't really use the Decal.
1471  for (auto *S : POE->semantics()) {
1472  if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1473  // Look past the OVE into the expression it binds.
1474  Visit(OVE->getSourceExpr());
1475  else
1476  Visit(S);
1477  }
1478  }
1479 
1480  bool FoundDeclInUse() { return FoundDecl; }
1481 
1482  }; // end class DeclMatcher
1483 
1484  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1485  Expr *Third, Stmt *Body) {
1486  // Condition is empty
1487  if (!Second) return;
1488 
1489  if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1490  Second->getLocStart()))
1491  return;
1492 
1493  PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1494  DeclSetVector Decls;
1496  DeclExtractor DE(S, Decls, Ranges);
1497  DE.Visit(Second);
1498 
1499  // Don't analyze complex conditionals.
1500  if (!DE.isSimple()) return;
1501 
1502  // No decls found.
1503  if (Decls.size() == 0) return;
1504 
1505  // Don't warn on volatile, static, or global variables.
1506  for (auto *VD : Decls)
1507  if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1508  return;
1509 
1510  if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1511  DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1512  DeclMatcher(S, Decls, Body).FoundDeclInUse())
1513  return;
1514 
1515  // Load decl names into diagnostic.
1516  if (Decls.size() > 4) {
1517  PDiag << 0;
1518  } else {
1519  PDiag << (unsigned)Decls.size();
1520  for (auto *VD : Decls)
1521  PDiag << VD->getDeclName();
1522  }
1523 
1524  for (auto Range : Ranges)
1525  PDiag << Range;
1526 
1527  S.Diag(Ranges.begin()->getBegin(), PDiag);
1528  }
1529 
1530  // If Statement is an incemement or decrement, return true and sets the
1531  // variables Increment and DRE.
1532  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1533  DeclRefExpr *&DRE) {
1534  if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1535  if (!Cleanups->cleanupsHaveSideEffects())
1536  Statement = Cleanups->getSubExpr();
1537 
1538  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1539  switch (UO->getOpcode()) {
1540  default: return false;
1541  case UO_PostInc:
1542  case UO_PreInc:
1543  Increment = true;
1544  break;
1545  case UO_PostDec:
1546  case UO_PreDec:
1547  Increment = false;
1548  break;
1549  }
1550  DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1551  return DRE;
1552  }
1553 
1554  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1555  FunctionDecl *FD = Call->getDirectCallee();
1556  if (!FD || !FD->isOverloadedOperator()) return false;
1557  switch (FD->getOverloadedOperator()) {
1558  default: return false;
1559  case OO_PlusPlus:
1560  Increment = true;
1561  break;
1562  case OO_MinusMinus:
1563  Increment = false;
1564  break;
1565  }
1566  DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1567  return DRE;
1568  }
1569 
1570  return false;
1571  }
1572 
1573  // A visitor to determine if a continue or break statement is a
1574  // subexpression.
1575  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1576  SourceLocation BreakLoc;
1577  SourceLocation ContinueLoc;
1578  bool InSwitch = false;
1579 
1580  public:
1581  BreakContinueFinder(Sema &S, const Stmt* Body) :
1582  Inherited(S.Context) {
1583  Visit(Body);
1584  }
1585 
1587 
1588  void VisitContinueStmt(const ContinueStmt* E) {
1589  ContinueLoc = E->getContinueLoc();
1590  }
1591 
1592  void VisitBreakStmt(const BreakStmt* E) {
1593  if (!InSwitch)
1594  BreakLoc = E->getBreakLoc();
1595  }
1596 
1597  void VisitSwitchStmt(const SwitchStmt* S) {
1598  if (const Stmt *Init = S->getInit())
1599  Visit(Init);
1600  if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1601  Visit(CondVar);
1602  if (const Stmt *Cond = S->getCond())
1603  Visit(Cond);
1604 
1605  // Don't return break statements from the body of a switch.
1606  InSwitch = true;
1607  if (const Stmt *Body = S->getBody())
1608  Visit(Body);
1609  InSwitch = false;
1610  }
1611 
1612  void VisitForStmt(const ForStmt *S) {
1613  // Only visit the init statement of a for loop; the body
1614  // has a different break/continue scope.
1615  if (const Stmt *Init = S->getInit())
1616  Visit(Init);
1617  }
1618 
1619  void VisitWhileStmt(const WhileStmt *) {
1620  // Do nothing; the children of a while loop have a different
1621  // break/continue scope.
1622  }
1623 
1624  void VisitDoStmt(const DoStmt *) {
1625  // Do nothing; the children of a while loop have a different
1626  // break/continue scope.
1627  }
1628 
1629  void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1630  // Only visit the initialization of a for loop; the body
1631  // has a different break/continue scope.
1632  if (const Stmt *Range = S->getRangeStmt())
1633  Visit(Range);
1634  if (const Stmt *Begin = S->getBeginStmt())
1635  Visit(Begin);
1636  if (const Stmt *End = S->getEndStmt())
1637  Visit(End);
1638  }
1639 
1640  void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1641  // Only visit the initialization of a for loop; the body
1642  // has a different break/continue scope.
1643  if (const Stmt *Element = S->getElement())
1644  Visit(Element);
1645  if (const Stmt *Collection = S->getCollection())
1646  Visit(Collection);
1647  }
1648 
1649  bool ContinueFound() { return ContinueLoc.isValid(); }
1650  bool BreakFound() { return BreakLoc.isValid(); }
1651  SourceLocation GetContinueLoc() { return ContinueLoc; }
1652  SourceLocation GetBreakLoc() { return BreakLoc; }
1653 
1654  }; // end class BreakContinueFinder
1655 
1656  // Emit a warning when a loop increment/decrement appears twice per loop
1657  // iteration. The conditions which trigger this warning are:
1658  // 1) The last statement in the loop body and the third expression in the
1659  // for loop are both increment or both decrement of the same variable
1660  // 2) No continue statements in the loop body.
1661  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1662  // Return when there is nothing to check.
1663  if (!Body || !Third) return;
1664 
1665  if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1666  Third->getLocStart()))
1667  return;
1668 
1669  // Get the last statement from the loop body.
1670  CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1671  if (!CS || CS->body_empty()) return;
1672  Stmt *LastStmt = CS->body_back();
1673  if (!LastStmt) return;
1674 
1675  bool LoopIncrement, LastIncrement;
1676  DeclRefExpr *LoopDRE, *LastDRE;
1677 
1678  if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1679  if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1680 
1681  // Check that the two statements are both increments or both decrements
1682  // on the same variable.
1683  if (LoopIncrement != LastIncrement ||
1684  LoopDRE->getDecl() != LastDRE->getDecl()) return;
1685 
1686  if (BreakContinueFinder(S, Body).ContinueFound()) return;
1687 
1688  S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1689  << LastDRE->getDecl() << LastIncrement;
1690  S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1691  << LoopIncrement;
1692  }
1693 
1694 } // end namespace
1695 
1696 
1697 void Sema::CheckBreakContinueBinding(Expr *E) {
1698  if (!E || getLangOpts().CPlusPlus)
1699  return;
1700  BreakContinueFinder BCFinder(*this, E);
1701  Scope *BreakParent = CurScope->getBreakParent();
1702  if (BCFinder.BreakFound() && BreakParent) {
1703  if (BreakParent->getFlags() & Scope::SwitchScope) {
1704  Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1705  } else {
1706  Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1707  << "break";
1708  }
1709  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1710  Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1711  << "continue";
1712  }
1713 }
1714 
1716  Stmt *First, ConditionResult Second,
1717  FullExprArg third, SourceLocation RParenLoc,
1718  Stmt *Body) {
1719  if (Second.isInvalid())
1720  return StmtError();
1721 
1722  if (!getLangOpts().CPlusPlus) {
1723  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1724  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1725  // declare identifiers for objects having storage class 'auto' or
1726  // 'register'.
1727  for (auto *DI : DS->decls()) {
1728  VarDecl *VD = dyn_cast<VarDecl>(DI);
1729  if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1730  VD = nullptr;
1731  if (!VD) {
1732  Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1733  DI->setInvalidDecl();
1734  }
1735  }
1736  }
1737  }
1738 
1739  CheckBreakContinueBinding(Second.get().second);
1740  CheckBreakContinueBinding(third.get());
1741 
1742  if (!Second.get().first)
1743  CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1744  Body);
1745  CheckForRedundantIteration(*this, third.get(), Body);
1746 
1747  if (Second.get().second &&
1748  !Diags.isIgnored(diag::warn_comma_operator,
1749  Second.get().second->getExprLoc()))
1750  CommaVisitor(*this).Visit(Second.get().second);
1751 
1752  Expr *Third = third.release().getAs<Expr>();
1753 
1754  DiagnoseUnusedExprResult(First);
1755  DiagnoseUnusedExprResult(Third);
1756  DiagnoseUnusedExprResult(Body);
1757 
1758  if (isa<NullStmt>(Body))
1759  getCurCompoundScope().setHasEmptyLoopBodies();
1760 
1761  return new (Context)
1762  ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1763  Body, ForLoc, LParenLoc, RParenLoc);
1764 }
1765 
1766 /// In an Objective C collection iteration statement:
1767 /// for (x in y)
1768 /// x can be an arbitrary l-value expression. Bind it up as a
1769 /// full-expression.
1771  // Reduce placeholder expressions here. Note that this rejects the
1772  // use of pseudo-object l-values in this position.
1773  ExprResult result = CheckPlaceholderExpr(E);
1774  if (result.isInvalid()) return StmtError();
1775  E = result.get();
1776 
1777  ExprResult FullExpr = ActOnFinishFullExpr(E);
1778  if (FullExpr.isInvalid())
1779  return StmtError();
1780  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1781 }
1782 
1783 ExprResult
1785  if (!collection)
1786  return ExprError();
1787 
1788  ExprResult result = CorrectDelayedTyposInExpr(collection);
1789  if (!result.isUsable())
1790  return ExprError();
1791  collection = result.get();
1792 
1793  // Bail out early if we've got a type-dependent expression.
1794  if (collection->isTypeDependent()) return collection;
1795 
1796  // Perform normal l-value conversion.
1797  result = DefaultFunctionArrayLvalueConversion(collection);
1798  if (result.isInvalid())
1799  return ExprError();
1800  collection = result.get();
1801 
1802  // The operand needs to have object-pointer type.
1803  // TODO: should we do a contextual conversion?
1805  collection->getType()->getAs<ObjCObjectPointerType>();
1806  if (!pointerType)
1807  return Diag(forLoc, diag::err_collection_expr_type)
1808  << collection->getType() << collection->getSourceRange();
1809 
1810  // Check that the operand provides
1811  // - countByEnumeratingWithState:objects:count:
1812  const ObjCObjectType *objectType = pointerType->getObjectType();
1813  ObjCInterfaceDecl *iface = objectType->getInterface();
1814 
1815  // If we have a forward-declared type, we can't do this check.
1816  // Under ARC, it is an error not to have a forward-declared class.
1817  if (iface &&
1818  (getLangOpts().ObjCAutoRefCount
1819  ? RequireCompleteType(forLoc, QualType(objectType, 0),
1820  diag::err_arc_collection_forward, collection)
1821  : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1822  // Otherwise, if we have any useful type information, check that
1823  // the type declares the appropriate method.
1824  } else if (iface || !objectType->qual_empty()) {
1825  IdentifierInfo *selectorIdents[] = {
1826  &Context.Idents.get("countByEnumeratingWithState"),
1827  &Context.Idents.get("objects"),
1828  &Context.Idents.get("count")
1829  };
1830  Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1831 
1832  ObjCMethodDecl *method = nullptr;
1833 
1834  // If there's an interface, look in both the public and private APIs.
1835  if (iface) {
1836  method = iface->lookupInstanceMethod(selector);
1837  if (!method) method = iface->lookupPrivateMethod(selector);
1838  }
1839 
1840  // Also check protocol qualifiers.
1841  if (!method)
1842  method = LookupMethodInQualifiedType(selector, pointerType,
1843  /*instance*/ true);
1844 
1845  // If we didn't find it anywhere, give up.
1846  if (!method) {
1847  Diag(forLoc, diag::warn_collection_expr_type)
1848  << collection->getType() << selector << collection->getSourceRange();
1849  }
1850 
1851  // TODO: check for an incompatible signature?
1852  }
1853 
1854  // Wrap up any cleanups in the expression.
1855  return collection;
1856 }
1857 
1858 StmtResult
1860  Stmt *First, Expr *collection,
1861  SourceLocation RParenLoc) {
1862  getCurFunction()->setHasBranchProtectedScope();
1863 
1864  ExprResult CollectionExprResult =
1865  CheckObjCForCollectionOperand(ForLoc, collection);
1866 
1867  if (First) {
1868  QualType FirstType;
1869  if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1870  if (!DS->isSingleDecl())
1871  return StmtError(Diag((*DS->decl_begin())->getLocation(),
1872  diag::err_toomany_element_decls));
1873 
1874  VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1875  if (!D || D->isInvalidDecl())
1876  return StmtError();
1877 
1878  FirstType = D->getType();
1879  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1880  // declare identifiers for objects having storage class 'auto' or
1881  // 'register'.
1882  if (!D->hasLocalStorage())
1883  return StmtError(Diag(D->getLocation(),
1884  diag::err_non_local_variable_decl_in_for));
1885 
1886  // If the type contained 'auto', deduce the 'auto' to 'id'.
1887  if (FirstType->getContainedAutoType()) {
1888  OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1889  VK_RValue);
1890  Expr *DeducedInit = &OpaqueId;
1891  if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1892  DAR_Failed)
1893  DiagnoseAutoDeductionFailure(D, DeducedInit);
1894  if (FirstType.isNull()) {
1895  D->setInvalidDecl();
1896  return StmtError();
1897  }
1898 
1899  D->setType(FirstType);
1900 
1901  if (!inTemplateInstantiation()) {
1902  SourceLocation Loc =
1904  Diag(Loc, diag::warn_auto_var_is_id)
1905  << D->getDeclName();
1906  }
1907  }
1908 
1909  } else {
1910  Expr *FirstE = cast<Expr>(First);
1911  if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1912  return StmtError(Diag(First->getLocStart(),
1913  diag::err_selector_element_not_lvalue)
1914  << First->getSourceRange());
1915 
1916  FirstType = static_cast<Expr*>(First)->getType();
1917  if (FirstType.isConstQualified())
1918  Diag(ForLoc, diag::err_selector_element_const_type)
1919  << FirstType << First->getSourceRange();
1920  }
1921  if (!FirstType->isDependentType() &&
1922  !FirstType->isObjCObjectPointerType() &&
1923  !FirstType->isBlockPointerType())
1924  return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1925  << FirstType << First->getSourceRange());
1926  }
1927 
1928  if (CollectionExprResult.isInvalid())
1929  return StmtError();
1930 
1931  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1932  if (CollectionExprResult.isInvalid())
1933  return StmtError();
1934 
1935  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1936  nullptr, ForLoc, RParenLoc);
1937 }
1938 
1939 /// Finish building a variable declaration for a for-range statement.
1940 /// \return true if an error occurs.
1941 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1942  SourceLocation Loc, int DiagID) {
1943  if (Decl->getType()->isUndeducedType()) {
1944  ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1945  if (!Res.isUsable()) {
1946  Decl->setInvalidDecl();
1947  return true;
1948  }
1949  Init = Res.get();
1950  }
1951 
1952  // Deduce the type for the iterator variable now rather than leaving it to
1953  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1954  QualType InitType;
1955  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1956  SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1958  SemaRef.Diag(Loc, DiagID) << Init->getType();
1959  if (InitType.isNull()) {
1960  Decl->setInvalidDecl();
1961  return true;
1962  }
1963  Decl->setType(InitType);
1964 
1965  // In ARC, infer lifetime.
1966  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1967  // we're doing the equivalent of fast iteration.
1968  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1969  SemaRef.inferObjCARCLifetime(Decl))
1970  Decl->setInvalidDecl();
1971 
1972  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
1973  SemaRef.FinalizeDeclaration(Decl);
1974  SemaRef.CurContext->addHiddenDecl(Decl);
1975  return false;
1976 }
1977 
1978 namespace {
1979 // An enum to represent whether something is dealing with a call to begin()
1980 // or a call to end() in a range-based for loop.
1982  BEF_begin,
1983  BEF_end
1984 };
1985 
1986 /// Produce a note indicating which begin/end function was implicitly called
1987 /// by a C++11 for-range statement. This is often not obvious from the code,
1988 /// nor from the diagnostics produced when analysing the implicit expressions
1989 /// required in a for-range statement.
1990 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1991  BeginEndFunction BEF) {
1992  CallExpr *CE = dyn_cast<CallExpr>(E);
1993  if (!CE)
1994  return;
1995  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1996  if (!D)
1997  return;
1998  SourceLocation Loc = D->getLocation();
1999 
2000  std::string Description;
2001  bool IsTemplate = false;
2002  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2003  Description = SemaRef.getTemplateArgumentBindingsText(
2004  FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2005  IsTemplate = true;
2006  }
2007 
2008  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2009  << BEF << IsTemplate << Description << E->getType();
2010 }
2011 
2012 /// Build a variable declaration for a for-range statement.
2013 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2014  QualType Type, const char *Name) {
2015  DeclContext *DC = SemaRef.CurContext;
2016  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2017  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2018  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2019  TInfo, SC_None);
2020  Decl->setImplicit();
2021  return Decl;
2022 }
2023 
2024 }
2025 
2026 static bool ObjCEnumerationCollection(Expr *Collection) {
2027  return !Collection->isTypeDependent()
2028  && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2029 }
2030 
2031 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2032 ///
2033 /// C++11 [stmt.ranged]:
2034 /// A range-based for statement is equivalent to
2035 ///
2036 /// {
2037 /// auto && __range = range-init;
2038 /// for ( auto __begin = begin-expr,
2039 /// __end = end-expr;
2040 /// __begin != __end;
2041 /// ++__begin ) {
2042 /// for-range-declaration = *__begin;
2043 /// statement
2044 /// }
2045 /// }
2046 ///
2047 /// The body of the loop is not available yet, since it cannot be analysed until
2048 /// we have determined the type of the for-range-declaration.
2050  SourceLocation CoawaitLoc, Stmt *First,
2051  SourceLocation ColonLoc, Expr *Range,
2052  SourceLocation RParenLoc,
2054  if (!First)
2055  return StmtError();
2056 
2057  if (Range && ObjCEnumerationCollection(Range))
2058  return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2059 
2060  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2061  assert(DS && "first part of for range not a decl stmt");
2062 
2063  if (!DS->isSingleDecl()) {
2064  Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
2065  return StmtError();
2066  }
2067 
2068  Decl *LoopVar = DS->getSingleDecl();
2069  if (LoopVar->isInvalidDecl() || !Range ||
2070  DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2071  LoopVar->setInvalidDecl();
2072  return StmtError();
2073  }
2074 
2075  // Build the coroutine state immediately and not later during template
2076  // instantiation
2077  if (!CoawaitLoc.isInvalid()) {
2078  if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2079  return StmtError();
2080  }
2081 
2082  // Build auto && __range = range-init
2083  SourceLocation RangeLoc = Range->getLocStart();
2084  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2085  Context.getAutoRRefDeductType(),
2086  "__range");
2087  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2088  diag::err_for_range_deduction_failure)) {
2089  LoopVar->setInvalidDecl();
2090  return StmtError();
2091  }
2092 
2093  // Claim the type doesn't contain auto: we've already done the checking.
2094  DeclGroupPtrTy RangeGroup =
2095  BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2096  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2097  if (RangeDecl.isInvalid()) {
2098  LoopVar->setInvalidDecl();
2099  return StmtError();
2100  }
2101 
2102  return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
2103  /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2104  /*Cond=*/nullptr, /*Inc=*/nullptr,
2105  DS, RParenLoc, Kind);
2106 }
2107 
2108 /// \brief Create the initialization, compare, and increment steps for
2109 /// the range-based for loop expression.
2110 /// This function does not handle array-based for loops,
2111 /// which are created in Sema::BuildCXXForRangeStmt.
2112 ///
2113 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2114 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2115 /// CandidateSet and BEF are set and some non-success value is returned on
2116 /// failure.
2117 static Sema::ForRangeStatus
2118 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2119  QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2121  OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2122  ExprResult *EndExpr, BeginEndFunction *BEF) {
2123  DeclarationNameInfo BeginNameInfo(
2124  &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2125  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2126  ColonLoc);
2127 
2128  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2130  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2131 
2132  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2133  // - if _RangeT is a class type, the unqualified-ids begin and end are
2134  // looked up in the scope of class _RangeT as if by class member access
2135  // lookup (3.4.5), and if either (or both) finds at least one
2136  // declaration, begin-expr and end-expr are __range.begin() and
2137  // __range.end(), respectively;
2138  SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2139  SemaRef.LookupQualifiedName(EndMemberLookup, D);
2140 
2141  if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2142  SourceLocation RangeLoc = BeginVar->getLocation();
2143  *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
2144 
2145  SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2146  << RangeLoc << BeginRange->getType() << *BEF;
2148  }
2149  } else {
2150  // - otherwise, begin-expr and end-expr are begin(__range) and
2151  // end(__range), respectively, where begin and end are looked up with
2152  // argument-dependent lookup (3.4.2). For the purposes of this name
2153  // lookup, namespace std is an associated namespace.
2154 
2155  }
2156 
2157  *BEF = BEF_begin;
2158  Sema::ForRangeStatus RangeStatus =
2159  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2160  BeginMemberLookup, CandidateSet,
2161  BeginRange, BeginExpr);
2162 
2163  if (RangeStatus != Sema::FRS_Success) {
2164  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2165  SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
2166  << ColonLoc << BEF_begin << BeginRange->getType();
2167  return RangeStatus;
2168  }
2169  if (!CoawaitLoc.isInvalid()) {
2170  // FIXME: getCurScope() should not be used during template instantiation.
2171  // We should pick up the set of unqualified lookup results for operator
2172  // co_await during the initial parse.
2173  *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2174  BeginExpr->get());
2175  if (BeginExpr->isInvalid())
2177  }
2178  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2179  diag::err_for_range_iter_deduction_failure)) {
2180  NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2182  }
2183 
2184  *BEF = BEF_end;
2185  RangeStatus =
2186  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2187  EndMemberLookup, CandidateSet,
2188  EndRange, EndExpr);
2189  if (RangeStatus != Sema::FRS_Success) {
2190  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2191  SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
2192  << ColonLoc << BEF_end << EndRange->getType();
2193  return RangeStatus;
2194  }
2195  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2196  diag::err_for_range_iter_deduction_failure)) {
2197  NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2199  }
2200  return Sema::FRS_Success;
2201 }
2202 
2203 /// Speculatively attempt to dereference an invalid range expression.
2204 /// If the attempt fails, this function will return a valid, null StmtResult
2205 /// and emit no diagnostics.
2207  SourceLocation ForLoc,
2208  SourceLocation CoawaitLoc,
2209  Stmt *LoopVarDecl,
2211  Expr *Range,
2212  SourceLocation RangeLoc,
2213  SourceLocation RParenLoc) {
2214  // Determine whether we can rebuild the for-range statement with a
2215  // dereferenced range expression.
2216  ExprResult AdjustedRange;
2217  {
2218  Sema::SFINAETrap Trap(SemaRef);
2219 
2220  AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2221  if (AdjustedRange.isInvalid())
2222  return StmtResult();
2223 
2224  StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2225  S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
2226  RParenLoc, Sema::BFRK_Check);
2227  if (SR.isInvalid())
2228  return StmtResult();
2229  }
2230 
2231  // The attempt to dereference worked well enough that it could produce a valid
2232  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2233  // case there are any other (non-fatal) problems with it.
2234  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2235  << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2236  return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
2237  ColonLoc, AdjustedRange.get(), RParenLoc,
2239 }
2240 
2241 namespace {
2242 /// RAII object to automatically invalidate a declaration if an error occurs.
2243 struct InvalidateOnErrorScope {
2244  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2245  : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2246  ~InvalidateOnErrorScope() {
2247  if (Enabled && Trap.hasErrorOccurred())
2248  D->setInvalidDecl();
2249  }
2250 
2251  DiagnosticErrorTrap Trap;
2252  Decl *D;
2253  bool Enabled;
2254 };
2255 }
2256 
2257 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2258 StmtResult
2260  SourceLocation ColonLoc, Stmt *RangeDecl,
2261  Stmt *Begin, Stmt *End, Expr *Cond,
2262  Expr *Inc, Stmt *LoopVarDecl,
2263  SourceLocation RParenLoc, BuildForRangeKind Kind) {
2264  // FIXME: This should not be used during template instantiation. We should
2265  // pick up the set of unqualified lookup results for the != and + operators
2266  // in the initial parse.
2267  //
2268  // Testcase (accepts-invalid):
2269  // template<typename T> void f() { for (auto x : T()) {} }
2270  // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2271  // bool operator!=(N::X, N::X); void operator++(N::X);
2272  // void g() { f<N::X>(); }
2273  Scope *S = getCurScope();
2274 
2275  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2276  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2277  QualType RangeVarType = RangeVar->getType();
2278 
2279  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2280  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2281 
2282  // If we hit any errors, mark the loop variable as invalid if its type
2283  // contains 'auto'.
2284  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2285  LoopVar->getType()->isUndeducedType());
2286 
2287  StmtResult BeginDeclStmt = Begin;
2288  StmtResult EndDeclStmt = End;
2289  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2290 
2291  if (RangeVarType->isDependentType()) {
2292  // The range is implicitly used as a placeholder when it is dependent.
2293  RangeVar->markUsed(Context);
2294 
2295  // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2296  // them in properly when we instantiate the loop.
2297  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2298  if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2299  for (auto *Binding : DD->bindings())
2300  Binding->setType(Context.DependentTy);
2301  LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2302  }
2303  } else if (!BeginDeclStmt.get()) {
2304  SourceLocation RangeLoc = RangeVar->getLocation();
2305 
2306  const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2307 
2308  ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2309  VK_LValue, ColonLoc);
2310  if (BeginRangeRef.isInvalid())
2311  return StmtError();
2312 
2313  ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2314  VK_LValue, ColonLoc);
2315  if (EndRangeRef.isInvalid())
2316  return StmtError();
2317 
2318  QualType AutoType = Context.getAutoDeductType();
2319  Expr *Range = RangeVar->getInit();
2320  if (!Range)
2321  return StmtError();
2322  QualType RangeType = Range->getType();
2323 
2324  if (RequireCompleteType(RangeLoc, RangeType,
2325  diag::err_for_range_incomplete_type))
2326  return StmtError();
2327 
2328  // Build auto __begin = begin-expr, __end = end-expr.
2329  VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2330  "__begin");
2331  VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2332  "__end");
2333 
2334  // Build begin-expr and end-expr and attach to __begin and __end variables.
2335  ExprResult BeginExpr, EndExpr;
2336  if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2337  // - if _RangeT is an array type, begin-expr and end-expr are __range and
2338  // __range + __bound, respectively, where __bound is the array bound. If
2339  // _RangeT is an array of unknown size or an array of incomplete type,
2340  // the program is ill-formed;
2341 
2342  // begin-expr is __range.
2343  BeginExpr = BeginRangeRef;
2344  if (!CoawaitLoc.isInvalid()) {
2345  BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2346  if (BeginExpr.isInvalid())
2347  return StmtError();
2348  }
2349  if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2350  diag::err_for_range_iter_deduction_failure)) {
2351  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2352  return StmtError();
2353  }
2354 
2355  // Find the array bound.
2356  ExprResult BoundExpr;
2357  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2358  BoundExpr = IntegerLiteral::Create(
2359  Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2360  else if (const VariableArrayType *VAT =
2361  dyn_cast<VariableArrayType>(UnqAT)) {
2362  // For a variably modified type we can't just use the expression within
2363  // the array bounds, since we don't want that to be re-evaluated here.
2364  // Rather, we need to determine what it was when the array was first
2365  // created - so we resort to using sizeof(vla)/sizeof(element).
2366  // For e.g.
2367  // void f(int b) {
2368  // int vla[b];
2369  // b = -1; <-- This should not affect the num of iterations below
2370  // for (int &c : vla) { .. }
2371  // }
2372 
2373  // FIXME: This results in codegen generating IR that recalculates the
2374  // run-time number of elements (as opposed to just using the IR Value
2375  // that corresponds to the run-time value of each bound that was
2376  // generated when the array was created.) If this proves too embarassing
2377  // even for unoptimized IR, consider passing a magic-value/cookie to
2378  // codegen that then knows to simply use that initial llvm::Value (that
2379  // corresponds to the bound at time of array creation) within
2380  // getelementptr. But be prepared to pay the price of increasing a
2381  // customized form of coupling between the two components - which could
2382  // be hard to maintain as the codebase evolves.
2383 
2384  ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2385  EndVar->getLocation(), UETT_SizeOf,
2386  /*isType=*/true,
2387  CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2388  VAT->desugar(), RangeLoc))
2389  .getAsOpaquePtr(),
2390  EndVar->getSourceRange());
2391  if (SizeOfVLAExprR.isInvalid())
2392  return StmtError();
2393 
2394  ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2395  EndVar->getLocation(), UETT_SizeOf,
2396  /*isType=*/true,
2397  CreateParsedType(VAT->desugar(),
2398  Context.getTrivialTypeSourceInfo(
2399  VAT->getElementType(), RangeLoc))
2400  .getAsOpaquePtr(),
2401  EndVar->getSourceRange());
2402  if (SizeOfEachElementExprR.isInvalid())
2403  return StmtError();
2404 
2405  BoundExpr =
2406  ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2407  SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2408  if (BoundExpr.isInvalid())
2409  return StmtError();
2410 
2411  } else {
2412  // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2413  // UnqAT is not incomplete and Range is not type-dependent.
2414  llvm_unreachable("Unexpected array type in for-range");
2415  }
2416 
2417  // end-expr is __range + __bound.
2418  EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2419  BoundExpr.get());
2420  if (EndExpr.isInvalid())
2421  return StmtError();
2422  if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2423  diag::err_for_range_iter_deduction_failure)) {
2424  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2425  return StmtError();
2426  }
2427  } else {
2428  OverloadCandidateSet CandidateSet(RangeLoc,
2430  BeginEndFunction BEFFailure;
2431  ForRangeStatus RangeStatus = BuildNonArrayForRange(
2432  *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2433  EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2434  &BEFFailure);
2435 
2436  if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2437  BEFFailure == BEF_begin) {
2438  // If the range is being built from an array parameter, emit a
2439  // a diagnostic that it is being treated as a pointer.
2440  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2441  if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2442  QualType ArrayTy = PVD->getOriginalType();
2443  QualType PointerTy = PVD->getType();
2444  if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2445  Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2446  << RangeLoc << PVD << ArrayTy << PointerTy;
2447  Diag(PVD->getLocation(), diag::note_declared_at);
2448  return StmtError();
2449  }
2450  }
2451  }
2452 
2453  // If building the range failed, try dereferencing the range expression
2454  // unless a diagnostic was issued or the end function is problematic.
2455  StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2456  CoawaitLoc,
2457  LoopVarDecl, ColonLoc,
2458  Range, RangeLoc,
2459  RParenLoc);
2460  if (SR.isInvalid() || SR.isUsable())
2461  return SR;
2462  }
2463 
2464  // Otherwise, emit diagnostics if we haven't already.
2465  if (RangeStatus == FRS_NoViableFunction) {
2466  Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2467  Diag(Range->getLocStart(), diag::err_for_range_invalid)
2468  << RangeLoc << Range->getType() << BEFFailure;
2469  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2470  }
2471  // Return an error if no fix was discovered.
2472  if (RangeStatus != FRS_Success)
2473  return StmtError();
2474  }
2475 
2476  assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2477  "invalid range expression in for loop");
2478 
2479  // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2480  // C++1z removes this restriction.
2481  QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2482  if (!Context.hasSameType(BeginType, EndType)) {
2483  Diag(RangeLoc, getLangOpts().CPlusPlus17
2484  ? diag::warn_for_range_begin_end_types_differ
2485  : diag::ext_for_range_begin_end_types_differ)
2486  << BeginType << EndType;
2487  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2488  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2489  }
2490 
2491  BeginDeclStmt =
2492  ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2493  EndDeclStmt =
2494  ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2495 
2496  const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2497  ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2498  VK_LValue, ColonLoc);
2499  if (BeginRef.isInvalid())
2500  return StmtError();
2501 
2502  ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2503  VK_LValue, ColonLoc);
2504  if (EndRef.isInvalid())
2505  return StmtError();
2506 
2507  // Build and check __begin != __end expression.
2508  NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2509  BeginRef.get(), EndRef.get());
2510  if (!NotEqExpr.isInvalid())
2511  NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2512  if (!NotEqExpr.isInvalid())
2513  NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2514  if (NotEqExpr.isInvalid()) {
2515  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2516  << RangeLoc << 0 << BeginRangeRef.get()->getType();
2517  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2518  if (!Context.hasSameType(BeginType, EndType))
2519  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2520  return StmtError();
2521  }
2522 
2523  // Build and check ++__begin expression.
2524  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2525  VK_LValue, ColonLoc);
2526  if (BeginRef.isInvalid())
2527  return StmtError();
2528 
2529  IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2530  if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2531  // FIXME: getCurScope() should not be used during template instantiation.
2532  // We should pick up the set of unqualified lookup results for operator
2533  // co_await during the initial parse.
2534  IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2535  if (!IncrExpr.isInvalid())
2536  IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2537  if (IncrExpr.isInvalid()) {
2538  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2539  << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2540  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2541  return StmtError();
2542  }
2543 
2544  // Build and check *__begin expression.
2545  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2546  VK_LValue, ColonLoc);
2547  if (BeginRef.isInvalid())
2548  return StmtError();
2549 
2550  ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2551  if (DerefExpr.isInvalid()) {
2552  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2553  << RangeLoc << 1 << BeginRangeRef.get()->getType();
2554  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2555  return StmtError();
2556  }
2557 
2558  // Attach *__begin as initializer for VD. Don't touch it if we're just
2559  // trying to determine whether this would be a valid range.
2560  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2561  AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2562  if (LoopVar->isInvalidDecl())
2563  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2564  }
2565  }
2566 
2567  // Don't bother to actually allocate the result if we're just trying to
2568  // determine whether it would be valid.
2569  if (Kind == BFRK_Check)
2570  return StmtResult();
2571 
2572  return new (Context) CXXForRangeStmt(
2573  RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2574  cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2575  IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2576  ColonLoc, RParenLoc);
2577 }
2578 
2579 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2580 /// statement.
2582  if (!S || !B)
2583  return StmtError();
2584  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2585 
2586  ForStmt->setBody(B);
2587  return S;
2588 }
2589 
2590 // Warn when the loop variable is a const reference that creates a copy.
2591 // Suggest using the non-reference type for copies. If a copy can be prevented
2592 // suggest the const reference type that would do so.
2593 // For instance, given "for (const &Foo : Range)", suggest
2594 // "for (const Foo : Range)" to denote a copy is made for the loop. If
2595 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2596 // the copy altogether.
2598  const VarDecl *VD,
2599  QualType RangeInitType) {
2600  const Expr *InitExpr = VD->getInit();
2601  if (!InitExpr)
2602  return;
2603 
2604  QualType VariableType = VD->getType();
2605 
2606  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2607  if (!Cleanups->cleanupsHaveSideEffects())
2608  InitExpr = Cleanups->getSubExpr();
2609 
2610  const MaterializeTemporaryExpr *MTE =
2611  dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2612 
2613  // No copy made.
2614  if (!MTE)
2615  return;
2616 
2617  const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2618 
2619  // Searching for either UnaryOperator for dereference of a pointer or
2620  // CXXOperatorCallExpr for handling iterators.
2621  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2622  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2623  E = CCE->getArg(0);
2624  } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2625  const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2626  E = ME->getBase();
2627  } else {
2628  const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2629  E = MTE->GetTemporaryExpr();
2630  }
2631  E = E->IgnoreImpCasts();
2632  }
2633 
2634  bool ReturnsReference = false;
2635  if (isa<UnaryOperator>(E)) {
2636  ReturnsReference = true;
2637  } else {
2638  const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2639  const FunctionDecl *FD = Call->getDirectCallee();
2640  QualType ReturnType = FD->getReturnType();
2641  ReturnsReference = ReturnType->isReferenceType();
2642  }
2643 
2644  if (ReturnsReference) {
2645  // Loop variable creates a temporary. Suggest either to go with
2646  // non-reference loop variable to indiciate a copy is made, or
2647  // the correct time to bind a const reference.
2648  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2649  << VD << VariableType << E->getType();
2650  QualType NonReferenceType = VariableType.getNonReferenceType();
2651  NonReferenceType.removeLocalConst();
2652  QualType NewReferenceType =
2654  SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
2655  << NonReferenceType << NewReferenceType << VD->getSourceRange();
2656  } else {
2657  // The range always returns a copy, so a temporary is always created.
2658  // Suggest removing the reference from the loop variable.
2659  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2660  << VD << RangeInitType;
2661  QualType NonReferenceType = VariableType.getNonReferenceType();
2662  NonReferenceType.removeLocalConst();
2663  SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
2664  << NonReferenceType << VD->getSourceRange();
2665  }
2666 }
2667 
2668 // Warns when the loop variable can be changed to a reference type to
2669 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
2670 // "for (const Foo &x : Range)" if this form does not make a copy.
2672  const VarDecl *VD) {
2673  const Expr *InitExpr = VD->getInit();
2674  if (!InitExpr)
2675  return;
2676 
2677  QualType VariableType = VD->getType();
2678 
2679  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2680  if (!CE->getConstructor()->isCopyConstructor())
2681  return;
2682  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2683  if (CE->getCastKind() != CK_LValueToRValue)
2684  return;
2685  } else {
2686  return;
2687  }
2688 
2689  // TODO: Determine a maximum size that a POD type can be before a diagnostic
2690  // should be emitted. Also, only ignore POD types with trivial copy
2691  // constructors.
2692  if (VariableType.isPODType(SemaRef.Context))
2693  return;
2694 
2695  // Suggest changing from a const variable to a const reference variable
2696  // if doing so will prevent a copy.
2697  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2698  << VD << VariableType << InitExpr->getType();
2699  SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
2700  << SemaRef.Context.getLValueReferenceType(VariableType)
2701  << VD->getSourceRange();
2702 }
2703 
2704 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2705 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
2706 /// using "const foo x" to show that a copy is made
2707 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
2708 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
2709 /// prevent the copy.
2710 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2711 /// Suggest "const foo &x" to prevent the copy.
2713  const CXXForRangeStmt *ForStmt) {
2714  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2715  ForStmt->getLocStart()) &&
2716  SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2717  ForStmt->getLocStart()) &&
2718  SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2719  ForStmt->getLocStart())) {
2720  return;
2721  }
2722 
2723  const VarDecl *VD = ForStmt->getLoopVariable();
2724  if (!VD)
2725  return;
2726 
2727  QualType VariableType = VD->getType();
2728 
2729  if (VariableType->isIncompleteType())
2730  return;
2731 
2732  const Expr *InitExpr = VD->getInit();
2733  if (!InitExpr)
2734  return;
2735 
2736  if (VariableType->isReferenceType()) {
2738  ForStmt->getRangeInit()->getType());
2739  } else if (VariableType.isConstQualified()) {
2741  }
2742 }
2743 
2744 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2745 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2746 /// body cannot be performed until after the type of the range variable is
2747 /// determined.
2749  if (!S || !B)
2750  return StmtError();
2751 
2752  if (isa<ObjCForCollectionStmt>(S))
2753  return FinishObjCForCollectionStmt(S, B);
2754 
2755  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2756  ForStmt->setBody(B);
2757 
2758  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2759  diag::warn_empty_range_based_for_body);
2760 
2761  DiagnoseForRangeVariableCopies(*this, ForStmt);
2762 
2763  return S;
2764 }
2765 
2767  SourceLocation LabelLoc,
2768  LabelDecl *TheDecl) {
2769  getCurFunction()->setHasBranchIntoScope();
2770  TheDecl->markUsed(Context);
2771  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2772 }
2773 
2774 StmtResult
2776  Expr *E) {
2777  // Convert operand to void*
2778  if (!E->isTypeDependent()) {
2779  QualType ETy = E->getType();
2780  QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2781  ExprResult ExprRes = E;
2782  AssignConvertType ConvTy =
2783  CheckSingleAssignmentConstraints(DestTy, ExprRes);
2784  if (ExprRes.isInvalid())
2785  return StmtError();
2786  E = ExprRes.get();
2787  if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2788  return StmtError();
2789  }
2790 
2791  ExprResult ExprRes = ActOnFinishFullExpr(E);
2792  if (ExprRes.isInvalid())
2793  return StmtError();
2794  E = ExprRes.get();
2795 
2796  getCurFunction()->setHasIndirectGoto();
2797 
2798  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2799 }
2800 
2802  const Scope &DestScope) {
2803  if (!S.CurrentSEHFinally.empty() &&
2804  DestScope.Contains(*S.CurrentSEHFinally.back())) {
2805  S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2806  }
2807 }
2808 
2809 StmtResult
2811  Scope *S = CurScope->getContinueParent();
2812  if (!S) {
2813  // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2814  return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2815  }
2816  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2817 
2818  return new (Context) ContinueStmt(ContinueLoc);
2819 }
2820 
2821 StmtResult
2823  Scope *S = CurScope->getBreakParent();
2824  if (!S) {
2825  // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2826  return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2827  }
2828  if (S->isOpenMPLoopScope())
2829  return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2830  << "break");
2831  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2832 
2833  return new (Context) BreakStmt(BreakLoc);
2834 }
2835 
2836 /// \brief Determine whether the given expression is a candidate for
2837 /// copy elision in either a return statement or a throw expression.
2838 ///
2839 /// \param ReturnType If we're determining the copy elision candidate for
2840 /// a return statement, this is the return type of the function. If we're
2841 /// determining the copy elision candidate for a throw expression, this will
2842 /// be a NULL type.
2843 ///
2844 /// \param E The expression being returned from the function or block, or
2845 /// being thrown.
2846 ///
2847 /// \param AllowParamOrMoveConstructible Whether we allow function parameters or
2848 /// id-expressions that could be moved out of the function to be considered NRVO
2849 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2850 /// determine whether we should try to move as part of a return or throw (which
2851 /// does allow function parameters).
2852 ///
2853 /// \returns The NRVO candidate variable, if the return statement may use the
2854 /// NRVO, or NULL if there is no such candidate.
2856  bool AllowParamOrMoveConstructible) {
2857  if (!getLangOpts().CPlusPlus)
2858  return nullptr;
2859 
2860  // - in a return statement in a function [where] ...
2861  // ... the expression is the name of a non-volatile automatic object ...
2862  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2863  if (!DR || DR->refersToEnclosingVariableOrCapture())
2864  return nullptr;
2865  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2866  if (!VD)
2867  return nullptr;
2868 
2869  if (isCopyElisionCandidate(ReturnType, VD, AllowParamOrMoveConstructible))
2870  return VD;
2871  return nullptr;
2872 }
2873 
2874 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2875  bool AllowParamOrMoveConstructible) {
2876  QualType VDType = VD->getType();
2877  // - in a return statement in a function with ...
2878  // ... a class return type ...
2879  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2880  if (!ReturnType->isRecordType())
2881  return false;
2882  // ... the same cv-unqualified type as the function return type ...
2883  // When considering moving this expression out, allow dissimilar types.
2884  if (!AllowParamOrMoveConstructible && !VDType->isDependentType() &&
2885  !Context.hasSameUnqualifiedType(ReturnType, VDType))
2886  return false;
2887  }
2888 
2889  // ...object (other than a function or catch-clause parameter)...
2890  if (VD->getKind() != Decl::Var &&
2891  !(AllowParamOrMoveConstructible && VD->getKind() == Decl::ParmVar))
2892  return false;
2893  if (VD->isExceptionVariable()) return false;
2894 
2895  // ...automatic...
2896  if (!VD->hasLocalStorage()) return false;
2897 
2898  // Return false if VD is a __block variable. We don't want to implicitly move
2899  // out of a __block variable during a return because we cannot assume the
2900  // variable will no longer be used.
2901  if (VD->hasAttr<BlocksAttr>()) return false;
2902 
2903  if (AllowParamOrMoveConstructible)
2904  return true;
2905 
2906  // ...non-volatile...
2907  if (VD->getType().isVolatileQualified()) return false;
2908 
2909  // Variables with higher required alignment than their type's ABI
2910  // alignment cannot use NRVO.
2911  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2912  Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2913  return false;
2914 
2915  return true;
2916 }
2917 
2918 /// \brief Perform the initialization of a potentially-movable value, which
2919 /// is the result of return value.
2920 ///
2921 /// This routine implements C++14 [class.copy]p32, which attempts to treat
2922 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2923 /// then falls back to treating them as lvalues if that failed.
2924 ExprResult
2926  const VarDecl *NRVOCandidate,
2927  QualType ResultType,
2928  Expr *Value,
2929  bool AllowNRVO) {
2930  // C++14 [class.copy]p32:
2931  // When the criteria for elision of a copy/move operation are met, but not for
2932  // an exception-declaration, and the object to be copied is designated by an
2933  // lvalue, or when the expression in a return statement is a (possibly
2934  // parenthesized) id-expression that names an object with automatic storage
2935  // duration declared in the body or parameter-declaration-clause of the
2936  // innermost enclosing function or lambda-expression, overload resolution to
2937  // select the constructor for the copy is first performed as if the object
2938  // were designated by an rvalue.
2939  ExprResult Res = ExprError();
2940 
2941  if (AllowNRVO && !NRVOCandidate)
2942  NRVOCandidate = getCopyElisionCandidate(ResultType, Value, true);
2943 
2944  if (AllowNRVO && NRVOCandidate) {
2946  CK_NoOp, Value, VK_XValue);
2947 
2948  Expr *InitExpr = &AsRvalue;
2949 
2951  Value->getLocStart(), Value->getLocStart());
2952 
2953  InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2954  if (Seq) {
2955  for (const InitializationSequence::Step &Step : Seq.steps()) {
2956  if (!(Step.Kind ==
2959  isa<CXXConstructorDecl>(Step.Function.Function))))
2960  continue;
2961 
2962  CXXConstructorDecl *Constructor =
2963  cast<CXXConstructorDecl>(Step.Function.Function);
2964 
2965  const RValueReferenceType *RRefType
2966  = Constructor->getParamDecl(0)->getType()
2968 
2969  // [...] If the first overload resolution fails or was not performed, or
2970  // if the type of the first parameter of the selected constructor is not
2971  // an rvalue reference to the object's type (possibly cv-qualified),
2972  // overload resolution is performed again, considering the object as an
2973  // lvalue.
2974  if (!RRefType ||
2975  !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2976  NRVOCandidate->getType()))
2977  break;
2978 
2979  // Promote "AsRvalue" to the heap, since we now need this
2980  // expression node to persist.
2981  Value = ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp,
2982  Value, nullptr, VK_XValue);
2983 
2984  // Complete type-checking the initialization of the return type
2985  // using the constructor we found.
2986  Res = Seq.Perform(*this, Entity, Kind, Value);
2987  }
2988  }
2989  }
2990 
2991  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2992  // above, or overload resolution failed. Either way, we need to try
2993  // (again) now with the return value expression as written.
2994  if (Res.isInvalid())
2995  Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2996 
2997  return Res;
2998 }
2999 
3000 /// \brief Determine whether the declared return type of the specified function
3001 /// contains 'auto'.
3003  const FunctionProtoType *FPT =
3005  return FPT->getReturnType()->isUndeducedType();
3006 }
3007 
3008 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3009 /// for capturing scopes.
3010 ///
3011 StmtResult
3013  // If this is the first return we've seen, infer the return type.
3014  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3015  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3016  QualType FnRetType = CurCap->ReturnType;
3017  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3018  bool HasDeducedReturnType =
3019  CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3020 
3021  if (ExprEvalContexts.back().Context ==
3022  ExpressionEvaluationContext::DiscardedStatement &&
3023  (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3024  if (RetValExp) {
3025  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3026  if (ER.isInvalid())
3027  return StmtError();
3028  RetValExp = ER.get();
3029  }
3030  return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3031  }
3032 
3033  if (HasDeducedReturnType) {
3034  // In C++1y, the return type may involve 'auto'.
3035  // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3036  FunctionDecl *FD = CurLambda->CallOperator;
3037  if (CurCap->ReturnType.isNull())
3038  CurCap->ReturnType = FD->getReturnType();
3039 
3040  AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3041  assert(AT && "lost auto type from lambda return type");
3042  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3043  FD->setInvalidDecl();
3044  return StmtError();
3045  }
3046  CurCap->ReturnType = FnRetType = FD->getReturnType();
3047  } else if (CurCap->HasImplicitReturnType) {
3048  // For blocks/lambdas with implicit return types, we check each return
3049  // statement individually, and deduce the common return type when the block
3050  // or lambda is completed.
3051  // FIXME: Fold this into the 'auto' codepath above.
3052  if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3053  ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3054  if (Result.isInvalid())
3055  return StmtError();
3056  RetValExp = Result.get();
3057 
3058  // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3059  // when deducing a return type for a lambda-expression (or by extension
3060  // for a block). These rules differ from the stated C++11 rules only in
3061  // that they remove top-level cv-qualifiers.
3062  if (!CurContext->isDependentContext())
3063  FnRetType = RetValExp->getType().getUnqualifiedType();
3064  else
3065  FnRetType = CurCap->ReturnType = Context.DependentTy;
3066  } else {
3067  if (RetValExp) {
3068  // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3069  // initializer list, because it is not an expression (even
3070  // though we represent it as one). We still deduce 'void'.
3071  Diag(ReturnLoc, diag::err_lambda_return_init_list)
3072  << RetValExp->getSourceRange();
3073  }
3074 
3075  FnRetType = Context.VoidTy;
3076  }
3077 
3078  // Although we'll properly infer the type of the block once it's completed,
3079  // make sure we provide a return type now for better error recovery.
3080  if (CurCap->ReturnType.isNull())
3081  CurCap->ReturnType = FnRetType;
3082  }
3083  assert(!FnRetType.isNull());
3084 
3085  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3086  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
3087  Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3088  return StmtError();
3089  }
3090  } else if (CapturedRegionScopeInfo *CurRegion =
3091  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3092  Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3093  return StmtError();
3094  } else {
3095  assert(CurLambda && "unknown kind of captured scope");
3096  if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
3097  ->getNoReturnAttr()) {
3098  Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3099  return StmtError();
3100  }
3101  }
3102 
3103  // Otherwise, verify that this result type matches the previous one. We are
3104  // pickier with blocks than for normal functions because we don't have GCC
3105  // compatibility to worry about here.
3106  const VarDecl *NRVOCandidate = nullptr;
3107  if (FnRetType->isDependentType()) {
3108  // Delay processing for now. TODO: there are lots of dependent
3109  // types we can conclusively prove aren't void.
3110  } else if (FnRetType->isVoidType()) {
3111  if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3112  !(getLangOpts().CPlusPlus &&
3113  (RetValExp->isTypeDependent() ||
3114  RetValExp->getType()->isVoidType()))) {
3115  if (!getLangOpts().CPlusPlus &&
3116  RetValExp->getType()->isVoidType())
3117  Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3118  else {
3119  Diag(ReturnLoc, diag::err_return_block_has_expr);
3120  RetValExp = nullptr;
3121  }
3122  }
3123  } else if (!RetValExp) {
3124  return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3125  } else if (!RetValExp->isTypeDependent()) {
3126  // we have a non-void block with an expression, continue checking
3127 
3128  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3129  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3130  // function return.
3131 
3132  // In C++ the return statement is handled via a copy initialization.
3133  // the C version of which boils down to CheckSingleAssignmentConstraints.
3134  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3136  FnRetType,
3137  NRVOCandidate != nullptr);
3138  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3139  FnRetType, RetValExp);
3140  if (Res.isInvalid()) {
3141  // FIXME: Cleanup temporaries here, anyway?
3142  return StmtError();
3143  }
3144  RetValExp = Res.get();
3145  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3146  } else {
3147  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3148  }
3149 
3150  if (RetValExp) {
3151  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3152  if (ER.isInvalid())
3153  return StmtError();
3154  RetValExp = ER.get();
3155  }
3156  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
3157  NRVOCandidate);
3158 
3159  // If we need to check for the named return value optimization,
3160  // or if we need to infer the return type,
3161  // save the return statement in our scope for later processing.
3162  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3163  FunctionScopes.back()->Returns.push_back(Result);
3164 
3165  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3166  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3167 
3168  return Result;
3169 }
3170 
3171 namespace {
3172 /// \brief Marks all typedefs in all local classes in a type referenced.
3173 ///
3174 /// In a function like
3175 /// auto f() {
3176 /// struct S { typedef int a; };
3177 /// return S();
3178 /// }
3179 ///
3180 /// the local type escapes and could be referenced in some TUs but not in
3181 /// others. Pretend that all local typedefs are always referenced, to not warn
3182 /// on this. This isn't necessary if f has internal linkage, or the typedef
3183 /// is private.
3184 class LocalTypedefNameReferencer
3185  : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3186 public:
3187  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3188  bool VisitRecordType(const RecordType *RT);
3189 private:
3190  Sema &S;
3191 };
3192 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3193  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3194  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3195  R->isDependentType())
3196  return true;
3197  for (auto *TmpD : R->decls())
3198  if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3199  if (T->getAccess() != AS_private || R->hasFriends())
3200  S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3201  return true;
3202 }
3203 }
3204 
3207  while (auto ATL = TL.getAs<AttributedTypeLoc>())
3208  TL = ATL.getModifiedLoc().IgnoreParens();
3209  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3210 }
3211 
3212 /// Deduce the return type for a function from a returned expression, per
3213 /// C++1y [dcl.spec.auto]p6.
3215  SourceLocation ReturnLoc,
3216  Expr *&RetExpr,
3217  AutoType *AT) {
3218  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3219  QualType Deduced;
3220 
3221  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3222  // If the deduction is for a return statement and the initializer is
3223  // a braced-init-list, the program is ill-formed.
3224  Diag(RetExpr->getExprLoc(),
3225  getCurLambda() ? diag::err_lambda_return_init_list
3226  : diag::err_auto_fn_return_init_list)
3227  << RetExpr->getSourceRange();
3228  return true;
3229  }
3230 
3231  if (FD->isDependentContext()) {
3232  // C++1y [dcl.spec.auto]p12:
3233  // Return type deduction [...] occurs when the definition is
3234  // instantiated even if the function body contains a return
3235  // statement with a non-type-dependent operand.
3236  assert(AT->isDeduced() && "should have deduced to dependent type");
3237  return false;
3238  }
3239 
3240  if (RetExpr) {
3241  // Otherwise, [...] deduce a value for U using the rules of template
3242  // argument deduction.
3243  DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3244 
3245  if (DAR == DAR_Failed && !FD->isInvalidDecl())
3246  Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3247  << OrigResultType.getType() << RetExpr->getType();
3248 
3249  if (DAR != DAR_Succeeded)
3250  return true;
3251 
3252  // If a local type is part of the returned type, mark its fields as
3253  // referenced.
3254  LocalTypedefNameReferencer Referencer(*this);
3255  Referencer.TraverseType(RetExpr->getType());
3256  } else {
3257  // In the case of a return with no operand, the initializer is considered
3258  // to be void().
3259  //
3260  // Deduction here can only succeed if the return type is exactly 'cv auto'
3261  // or 'decltype(auto)', so just check for that case directly.
3262  if (!OrigResultType.getType()->getAs<AutoType>()) {
3263  Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3264  << OrigResultType.getType();
3265  return true;
3266  }
3267  // We always deduce U = void in this case.
3268  Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3269  if (Deduced.isNull())
3270  return true;
3271  }
3272 
3273  // If a function with a declared return type that contains a placeholder type
3274  // has multiple return statements, the return type is deduced for each return
3275  // statement. [...] if the type deduced is not the same in each deduction,
3276  // the program is ill-formed.
3277  QualType DeducedT = AT->getDeducedType();
3278  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3279  AutoType *NewAT = Deduced->getContainedAutoType();
3280  // It is possible that NewAT->getDeducedType() is null. When that happens,
3281  // we should not crash, instead we ignore this deduction.
3282  if (NewAT->getDeducedType().isNull())
3283  return false;
3284 
3285  CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3286  DeducedT);
3287  CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3288  NewAT->getDeducedType());
3289  if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3290  const LambdaScopeInfo *LambdaSI = getCurLambda();
3291  if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3292  Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3293  << NewAT->getDeducedType() << DeducedT
3294  << true /*IsLambda*/;
3295  } else {
3296  Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3297  << (AT->isDecltypeAuto() ? 1 : 0)
3298  << NewAT->getDeducedType() << DeducedT;
3299  }
3300  return true;
3301  }
3302  } else if (!FD->isInvalidDecl()) {
3303  // Update all declarations of the function to have the deduced return type.
3304  Context.adjustDeducedFunctionResultType(FD, Deduced);
3305  }
3306 
3307  return false;
3308 }
3309 
3310 StmtResult
3312  Scope *CurScope) {
3313  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3314  if (R.isInvalid() || ExprEvalContexts.back().Context ==
3315  ExpressionEvaluationContext::DiscardedStatement)
3316  return R;
3317 
3318  if (VarDecl *VD =
3319  const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3320  CurScope->addNRVOCandidate(VD);
3321  } else {
3322  CurScope->setNoNRVO();
3323  }
3324 
3325  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3326 
3327  return R;
3328 }
3329 
3331  // Check for unexpanded parameter packs.
3332  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3333  return StmtError();
3334 
3335  if (isa<CapturingScopeInfo>(getCurFunction()))
3336  return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3337 
3338  QualType FnRetType;
3339  QualType RelatedRetType;
3340  const AttrVec *Attrs = nullptr;
3341  bool isObjCMethod = false;
3342 
3343  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3344  FnRetType = FD->getReturnType();
3345  if (FD->hasAttrs())
3346  Attrs = &FD->getAttrs();
3347  if (FD->isNoReturn())
3348  Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3349  << FD->getDeclName();
3350  if (FD->isMain() && RetValExp)
3351  if (isa<CXXBoolLiteralExpr>(RetValExp))
3352  Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3353  << RetValExp->getSourceRange();
3354  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3355  FnRetType = MD->getReturnType();
3356  isObjCMethod = true;
3357  if (MD->hasAttrs())
3358  Attrs = &MD->getAttrs();
3359  if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3360  // In the implementation of a method with a related return type, the
3361  // type used to type-check the validity of return statements within the
3362  // method body is a pointer to the type of the class being implemented.
3363  RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3364  RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3365  }
3366  } else // If we don't have a function/method context, bail.
3367  return StmtError();
3368 
3369  // C++1z: discarded return statements are not considered when deducing a
3370  // return type.
3371  if (ExprEvalContexts.back().Context ==
3372  ExpressionEvaluationContext::DiscardedStatement &&
3373  FnRetType->getContainedAutoType()) {
3374  if (RetValExp) {
3375  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3376  if (ER.isInvalid())
3377  return StmtError();
3378  RetValExp = ER.get();
3379  }
3380  return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3381  }
3382 
3383  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3384  // deduction.
3385  if (getLangOpts().CPlusPlus14) {
3386  if (AutoType *AT = FnRetType->getContainedAutoType()) {
3387  FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3388  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3389  FD->setInvalidDecl();
3390  return StmtError();
3391  } else {
3392  FnRetType = FD->getReturnType();
3393  }
3394  }
3395  }
3396 
3397  bool HasDependentReturnType = FnRetType->isDependentType();
3398 
3399  ReturnStmt *Result = nullptr;
3400  if (FnRetType->isVoidType()) {
3401  if (RetValExp) {
3402  if (isa<InitListExpr>(RetValExp)) {
3403  // We simply never allow init lists as the return value of void
3404  // functions. This is compatible because this was never allowed before,
3405  // so there's no legacy code to deal with.
3406  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3407  int FunctionKind = 0;
3408  if (isa<ObjCMethodDecl>(CurDecl))
3409  FunctionKind = 1;
3410  else if (isa<CXXConstructorDecl>(CurDecl))
3411  FunctionKind = 2;
3412  else if (isa<CXXDestructorDecl>(CurDecl))
3413  FunctionKind = 3;
3414 
3415  Diag(ReturnLoc, diag::err_return_init_list)
3416  << CurDecl->getDeclName() << FunctionKind
3417  << RetValExp->getSourceRange();
3418 
3419  // Drop the expression.
3420  RetValExp = nullptr;
3421  } else if (!RetValExp->isTypeDependent()) {
3422  // C99 6.8.6.4p1 (ext_ since GCC warns)
3423  unsigned D = diag::ext_return_has_expr;
3424  if (RetValExp->getType()->isVoidType()) {
3425  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3426  if (isa<CXXConstructorDecl>(CurDecl) ||
3427  isa<CXXDestructorDecl>(CurDecl))
3428  D = diag::err_ctor_dtor_returns_void;
3429  else
3430  D = diag::ext_return_has_void_expr;
3431  }
3432  else {
3433  ExprResult Result = RetValExp;
3434  Result = IgnoredValueConversions(Result.get());
3435  if (Result.isInvalid())
3436  return StmtError();
3437  RetValExp = Result.get();
3438  RetValExp = ImpCastExprToType(RetValExp,
3439  Context.VoidTy, CK_ToVoid).get();
3440  }
3441  // return of void in constructor/destructor is illegal in C++.
3442  if (D == diag::err_ctor_dtor_returns_void) {
3443  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3444  Diag(ReturnLoc, D)
3445  << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3446  << RetValExp->getSourceRange();
3447  }
3448  // return (some void expression); is legal in C++.
3449  else if (D != diag::ext_return_has_void_expr ||
3450  !getLangOpts().CPlusPlus) {
3451  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3452 
3453  int FunctionKind = 0;
3454  if (isa<ObjCMethodDecl>(CurDecl))
3455  FunctionKind = 1;
3456  else if (isa<CXXConstructorDecl>(CurDecl))
3457  FunctionKind = 2;
3458  else if (isa<CXXDestructorDecl>(CurDecl))
3459  FunctionKind = 3;
3460 
3461  Diag(ReturnLoc, D)
3462  << CurDecl->getDeclName() << FunctionKind
3463  << RetValExp->getSourceRange();
3464  }
3465  }
3466 
3467  if (RetValExp) {
3468  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3469  if (ER.isInvalid())
3470  return StmtError();
3471  RetValExp = ER.get();
3472  }
3473  }
3474 
3475  Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3476  } else if (!RetValExp && !HasDependentReturnType) {
3477  FunctionDecl *FD = getCurFunctionDecl();
3478 
3479  unsigned DiagID;
3480  if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3481  // C++11 [stmt.return]p2
3482  DiagID = diag::err_constexpr_return_missing_expr;
3483  FD->setInvalidDecl();
3484  } else if (getLangOpts().C99) {
3485  // C99 6.8.6.4p1 (ext_ since GCC warns)
3486  DiagID = diag::ext_return_missing_expr;
3487  } else {
3488  // C90 6.6.6.4p4
3489  DiagID = diag::warn_return_missing_expr;
3490  }
3491 
3492  if (FD)
3493  Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3494  else
3495  Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3496 
3497  Result = new (Context) ReturnStmt(ReturnLoc);
3498  } else {
3499  assert(RetValExp || HasDependentReturnType);
3500  const VarDecl *NRVOCandidate = nullptr;
3501 
3502  QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3503 
3504  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3505  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3506  // function return.
3507 
3508  // In C++ the return statement is handled via a copy initialization,
3509  // the C version of which boils down to CheckSingleAssignmentConstraints.
3510  if (RetValExp)
3511  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3512  if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3513  // we have a non-void function with an expression, continue checking
3515  RetType,
3516  NRVOCandidate != nullptr);
3517  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3518  RetType, RetValExp);
3519  if (Res.isInvalid()) {
3520  // FIXME: Clean up temporaries here anyway?
3521  return StmtError();
3522  }
3523  RetValExp = Res.getAs<Expr>();
3524 
3525  // If we have a related result type, we need to implicitly
3526  // convert back to the formal result type. We can't pretend to
3527  // initialize the result again --- we might end double-retaining
3528  // --- so instead we initialize a notional temporary.
3529  if (!RelatedRetType.isNull()) {
3530  Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3531  FnRetType);
3532  Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3533  if (Res.isInvalid()) {
3534  // FIXME: Clean up temporaries here anyway?
3535  return StmtError();
3536  }
3537  RetValExp = Res.getAs<Expr>();
3538  }
3539 
3540  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3541  getCurFunctionDecl());
3542  }
3543 
3544  if (RetValExp) {
3545  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3546  if (ER.isInvalid())
3547  return StmtError();
3548  RetValExp = ER.get();
3549  }
3550  Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3551  }
3552 
3553  // If we need to check for the named return value optimization, save the
3554  // return statement in our scope for later processing.
3555  if (Result->getNRVOCandidate())
3556  FunctionScopes.back()->Returns.push_back(Result);
3557 
3558  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3559  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3560 
3561  return Result;
3562 }
3563 
3564 StmtResult
3566  SourceLocation RParen, Decl *Parm,
3567  Stmt *Body) {
3568  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3569  if (Var && Var->isInvalidDecl())
3570  return StmtError();
3571 
3572  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3573 }
3574 
3575 StmtResult
3577  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3578 }
3579 
3580 StmtResult
3582  MultiStmtArg CatchStmts, Stmt *Finally) {
3583  if (!getLangOpts().ObjCExceptions)
3584  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3585 
3586  getCurFunction()->setHasBranchProtectedScope();
3587  unsigned NumCatchStmts = CatchStmts.size();
3588  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3589  NumCatchStmts, Finally);
3590 }
3591 
3593  if (Throw) {
3594  ExprResult Result = DefaultLvalueConversion(Throw);
3595  if (Result.isInvalid())
3596  return StmtError();
3597 
3598  Result = ActOnFinishFullExpr(Result.get());
3599  if (Result.isInvalid())
3600  return StmtError();
3601  Throw = Result.get();
3602 
3603  QualType ThrowType = Throw->getType();
3604  // Make sure the expression type is an ObjC pointer or "void *".
3605  if (!ThrowType->isDependentType() &&
3606  !ThrowType->isObjCObjectPointerType()) {
3607  const PointerType *PT = ThrowType->getAs<PointerType>();
3608  if (!PT || !PT->getPointeeType()->isVoidType())
3609  return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3610  << Throw->getType() << Throw->getSourceRange());
3611  }
3612  }
3613 
3614  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3615 }
3616 
3617 StmtResult
3619  Scope *CurScope) {
3620  if (!getLangOpts().ObjCExceptions)
3621  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3622 
3623  if (!Throw) {
3624  // @throw without an expression designates a rethrow (which must occur
3625  // in the context of an @catch clause).
3626  Scope *AtCatchParent = CurScope;
3627  while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3628  AtCatchParent = AtCatchParent->getParent();
3629  if (!AtCatchParent)
3630  return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3631  }
3632  return BuildObjCAtThrowStmt(AtLoc, Throw);
3633 }
3634 
3635 ExprResult
3637  ExprResult result = DefaultLvalueConversion(operand);
3638  if (result.isInvalid())
3639  return ExprError();
3640  operand = result.get();
3641 
3642  // Make sure the expression type is an ObjC pointer or "void *".
3643  QualType type = operand->getType();
3644  if (!type->isDependentType() &&
3645  !type->isObjCObjectPointerType()) {
3646  const PointerType *pointerType = type->getAs<PointerType>();
3647  if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3648  if (getLangOpts().CPlusPlus) {
3649  if (RequireCompleteType(atLoc, type,
3650  diag::err_incomplete_receiver_type))
3651  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3652  << type << operand->getSourceRange();
3653 
3654  ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3655  if (result.isInvalid())
3656  return ExprError();
3657  if (!result.isUsable())
3658  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3659  << type << operand->getSourceRange();
3660 
3661  operand = result.get();
3662  } else {
3663  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3664  << type << operand->getSourceRange();
3665  }
3666  }
3667  }
3668 
3669  // The operand to @synchronized is a full-expression.
3670  return ActOnFinishFullExpr(operand);
3671 }
3672 
3673 StmtResult
3675  Stmt *SyncBody) {
3676  // We can't jump into or indirect-jump out of a @synchronized block.
3677  getCurFunction()->setHasBranchProtectedScope();
3678  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3679 }
3680 
3681 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3682 /// and creates a proper catch handler from them.
3683 StmtResult
3685  Stmt *HandlerBlock) {
3686  // There's nothing to test that ActOnExceptionDecl didn't already test.
3687  return new (Context)
3688  CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3689 }
3690 
3691 StmtResult
3693  getCurFunction()->setHasBranchProtectedScope();
3694  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3695 }
3696 
3697 namespace {
3698 class CatchHandlerType {
3699  QualType QT;
3700  unsigned IsPointer : 1;
3701 
3702  // This is a special constructor to be used only with DenseMapInfo's
3703  // getEmptyKey() and getTombstoneKey() functions.
3704  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3705  enum Unique { ForDenseMap };
3706  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3707 
3708 public:
3709  /// Used when creating a CatchHandlerType from a handler type; will determine
3710  /// whether the type is a pointer or reference and will strip off the top
3711  /// level pointer and cv-qualifiers.
3712  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3713  if (QT->isPointerType())
3714  IsPointer = true;
3715 
3716  if (IsPointer || QT->isReferenceType())
3717  QT = QT->getPointeeType();
3718  QT = QT.getUnqualifiedType();
3719  }
3720 
3721  /// Used when creating a CatchHandlerType from a base class type; pretends the
3722  /// type passed in had the pointer qualifier, does not need to get an
3723  /// unqualified type.
3724  CatchHandlerType(QualType QT, bool IsPointer)
3725  : QT(QT), IsPointer(IsPointer) {}
3726 
3727  QualType underlying() const { return QT; }
3728  bool isPointer() const { return IsPointer; }
3729 
3730  friend bool operator==(const CatchHandlerType &LHS,
3731  const CatchHandlerType &RHS) {
3732  // If the pointer qualification does not match, we can return early.
3733  if (LHS.IsPointer != RHS.IsPointer)
3734  return false;
3735  // Otherwise, check the underlying type without cv-qualifiers.
3736  return LHS.QT == RHS.QT;
3737  }
3738 };
3739 } // namespace
3740 
3741 namespace llvm {
3742 template <> struct DenseMapInfo<CatchHandlerType> {
3743  static CatchHandlerType getEmptyKey() {
3744  return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3745  CatchHandlerType::ForDenseMap);
3746  }
3747 
3748  static CatchHandlerType getTombstoneKey() {
3749  return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3750  CatchHandlerType::ForDenseMap);
3751  }
3752 
3753  static unsigned getHashValue(const CatchHandlerType &Base) {
3754  return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3755  }
3756 
3757  static bool isEqual(const CatchHandlerType &LHS,
3758  const CatchHandlerType &RHS) {
3759  return LHS == RHS;
3760  }
3761 };
3762 }
3763 
3764 namespace {
3765 class CatchTypePublicBases {
3766  ASTContext &Ctx;
3767  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3768  const bool CheckAgainstPointer;
3769 
3770  CXXCatchStmt *FoundHandler;
3771  CanQualType FoundHandlerType;
3772 
3773 public:
3774  CatchTypePublicBases(
3775  ASTContext &Ctx,
3776  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3777  : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3778  FoundHandler(nullptr) {}
3779 
3780  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3781  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3782 
3783  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3785  CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3786  const auto &M = TypesToCheck;
3787  auto I = M.find(Check);
3788  if (I != M.end()) {
3789  FoundHandler = I->second;
3790  FoundHandlerType = Ctx.getCanonicalType(S->getType());
3791  return true;
3792  }
3793  }
3794  return false;
3795  }
3796 };
3797 }
3798 
3799 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3800 /// handlers and creates a try statement from them.
3802  ArrayRef<Stmt *> Handlers) {
3803  // Don't report an error if 'try' is used in system headers.
3804  if (!getLangOpts().CXXExceptions &&
3805  !getSourceManager().isInSystemHeader(TryLoc))
3806  Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3807 
3808  // Exceptions aren't allowed in CUDA device code.
3809  if (getLangOpts().CUDA)
3810  CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
3811  << "try" << CurrentCUDATarget();
3812 
3813  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3814  Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3815 
3816  sema::FunctionScopeInfo *FSI = getCurFunction();
3817 
3818  // C++ try is incompatible with SEH __try.
3819  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
3820  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3821  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
3822  }
3823 
3824  const unsigned NumHandlers = Handlers.size();
3825  assert(!Handlers.empty() &&
3826  "The parser shouldn't call this if there are no handlers.");
3827 
3828  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
3829  for (unsigned i = 0; i < NumHandlers; ++i) {
3830  CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
3831 
3832  // Diagnose when the handler is a catch-all handler, but it isn't the last
3833  // handler for the try block. [except.handle]p5. Also, skip exception
3834  // declarations that are invalid, since we can't usefully report on them.
3835  if (!H->getExceptionDecl()) {
3836  if (i < NumHandlers - 1)
3837  return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
3838  continue;
3839  } else if (H->getExceptionDecl()->isInvalidDecl())
3840  continue;
3841 
3842  // Walk the type hierarchy to diagnose when this type has already been
3843  // handled (duplication), or cannot be handled (derivation inversion). We
3844  // ignore top-level cv-qualifiers, per [except.handle]p3
3845  CatchHandlerType HandlerCHT =
3846  (QualType)Context.getCanonicalType(H->getCaughtType());
3847 
3848  // We can ignore whether the type is a reference or a pointer; we need the
3849  // underlying declaration type in order to get at the underlying record
3850  // decl, if there is one.
3851  QualType Underlying = HandlerCHT.underlying();
3852  if (auto *RD = Underlying->getAsCXXRecordDecl()) {
3853  if (!RD->hasDefinition())
3854  continue;
3855  // Check that none of the public, unambiguous base classes are in the
3856  // map ([except.handle]p1). Give the base classes the same pointer
3857  // qualification as the original type we are basing off of. This allows
3858  // comparison against the handler type using the same top-level pointer
3859  // as the original type.
3860  CXXBasePaths Paths;
3861  Paths.setOrigin(RD);
3862  CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
3863  if (RD->lookupInBases(CTPB, Paths)) {
3864  const CXXCatchStmt *Problem = CTPB.getFoundHandler();
3865  if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
3867  diag::warn_exception_caught_by_earlier_handler)
3868  << H->getCaughtType();
3870  diag::note_previous_exception_handler)
3871  << Problem->getCaughtType();
3872  }
3873  }
3874  }
3875 
3876  // Add the type the list of ones we have handled; diagnose if we've already
3877  // handled it.
3878  auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
3879  if (!R.second) {
3880  const CXXCatchStmt *Problem = R.first->second;
3882  diag::warn_exception_caught_by_earlier_handler)
3883  << H->getCaughtType();
3885  diag::note_previous_exception_handler)
3886  << Problem->getCaughtType();
3887  }
3888  }
3889 
3890  FSI->setHasCXXTry(TryLoc);
3891 
3892  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3893 }
3894 
3896  Stmt *TryBlock, Stmt *Handler) {
3897  assert(TryBlock && Handler);
3898 
3899  sema::FunctionScopeInfo *FSI = getCurFunction();
3900 
3901  // SEH __try is incompatible with C++ try. Borland appears to support this,
3902  // however.
3903  if (!getLangOpts().Borland) {
3904  if (FSI->FirstCXXTryLoc.isValid()) {
3905  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3906  Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
3907  }
3908  }
3909 
3910  FSI->setHasSEHTry(TryLoc);
3911 
3912  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
3913  // track if they use SEH.
3914  DeclContext *DC = CurContext;
3915  while (DC && !DC->isFunctionOrMethod())
3916  DC = DC->getParent();
3917  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
3918  if (FD)
3919  FD->setUsesSEHTry(true);
3920  else
3921  Diag(TryLoc, diag::err_seh_try_outside_functions);
3922 
3923  // Reject __try on unsupported targets.
3924  if (!Context.getTargetInfo().isSEHTrySupported())
3925  Diag(TryLoc, diag::err_seh_try_unsupported);
3926 
3927  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
3928 }
3929 
3930 StmtResult
3932  Expr *FilterExpr,
3933  Stmt *Block) {
3934  assert(FilterExpr && Block);
3935 
3936  if(!FilterExpr->getType()->isIntegerType()) {
3937  return StmtError(Diag(FilterExpr->getExprLoc(),
3938  diag::err_filter_expression_integral)
3939  << FilterExpr->getType());
3940  }
3941 
3942  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3943 }
3944 
3946  CurrentSEHFinally.push_back(CurScope);
3947 }
3948 
3950  CurrentSEHFinally.pop_back();
3951 }
3952 
3954  assert(Block);
3955  CurrentSEHFinally.pop_back();
3956  return SEHFinallyStmt::Create(Context, Loc, Block);
3957 }
3958 
3959 StmtResult
3961  Scope *SEHTryParent = CurScope;
3962  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3963  SEHTryParent = SEHTryParent->getParent();
3964  if (!SEHTryParent)
3965  return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3966  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
3967 
3968  return new (Context) SEHLeaveStmt(Loc);
3969 }
3970 
3972  bool IsIfExists,
3973  NestedNameSpecifierLoc QualifierLoc,
3974  DeclarationNameInfo NameInfo,
3975  Stmt *Nested)
3976 {
3977  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3978  QualifierLoc, NameInfo,
3979  cast<CompoundStmt>(Nested));
3980 }
3981 
3982 
3984  bool IsIfExists,
3985  CXXScopeSpec &SS,
3986  UnqualifiedId &Name,
3987  Stmt *Nested) {
3988  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3989  SS.getWithLocInContext(Context),
3990  GetNameFromUnqualifiedId(Name),
3991  Nested);
3992 }
3993 
3994 RecordDecl*
3996  unsigned NumParams) {
3997  DeclContext *DC = CurContext;
3998  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3999  DC = DC->getParent();
4000 
4001  RecordDecl *RD = nullptr;
4002  if (getLangOpts().CPlusPlus)
4003  RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4004  /*Id=*/nullptr);
4005  else
4006  RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4007 
4008  RD->setCapturedRecord();
4009  DC->addDecl(RD);
4010  RD->setImplicit();
4011  RD->startDefinition();
4012 
4013  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4014  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4015  DC->addDecl(CD);
4016  return RD;
4017 }
4018 
4021  SmallVectorImpl<Expr *> &CaptureInits,
4023 
4025  for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
4026 
4027  if (Cap->isThisCapture()) {
4028  Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
4030  CaptureInits.push_back(Cap->getInitExpr());
4031  continue;
4032  } else if (Cap->isVLATypeCapture()) {
4033  Captures.push_back(
4034  CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
4035  CaptureInits.push_back(nullptr);
4036  continue;
4037  }
4038 
4039  Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
4040  Cap->isReferenceCapture()
4043  Cap->getVariable()));
4044  CaptureInits.push_back(Cap->getInitExpr());
4045  }
4046 }
4047 
4050  unsigned NumParams) {
4051  CapturedDecl *CD = nullptr;
4052  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4053 
4054  // Build the context parameter
4056  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4057  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4058  auto *Param =
4059  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4061  DC->addDecl(Param);
4062 
4063  CD->setContextParam(0, Param);
4064 
4065  // Enter the capturing scope for this captured region.
4066  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4067 
4068  if (CurScope)
4069  PushDeclContext(CurScope, CD);
4070  else
4071  CurContext = CD;
4072 
4073  PushExpressionEvaluationContext(
4074  ExpressionEvaluationContext::PotentiallyEvaluated);
4075 }
4076 
4080  CapturedDecl *CD = nullptr;
4081  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4082 
4083  // Build the context parameter
4085  bool ContextIsFound = false;
4086  unsigned ParamNum = 0;
4087  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4088  E = Params.end();
4089  I != E; ++I, ++ParamNum) {
4090  if (I->second.isNull()) {
4091  assert(!ContextIsFound &&
4092  "null type has been found already for '__context' parameter");
4093  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4094  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4095  auto *Param =
4096  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4098  DC->addDecl(Param);
4099  CD->setContextParam(ParamNum, Param);
4100  ContextIsFound = true;
4101  } else {
4102  IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4103  auto *Param =
4104  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4106  DC->addDecl(Param);
4107  CD->setParam(ParamNum, Param);
4108  }
4109  }
4110  assert(ContextIsFound && "no null type for '__context' parameter");
4111  if (!ContextIsFound) {
4112  // Add __context implicitly if it is not specified.
4113  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4114  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4115  auto *Param =
4116  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4118  DC->addDecl(Param);
4119  CD->setContextParam(ParamNum, Param);
4120  }
4121  // Enter the capturing scope for this captured region.
4122  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4123 
4124  if (CurScope)
4125  PushDeclContext(CurScope, CD);
4126  else
4127  CurContext = CD;
4128 
4129  PushExpressionEvaluationContext(
4130  ExpressionEvaluationContext::PotentiallyEvaluated);
4131 }
4132 
4134  DiscardCleanupsInEvaluationContext();
4135  PopExpressionEvaluationContext();
4136 
4137  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4138  RecordDecl *Record = RSI->TheRecordDecl;
4139  Record->setInvalidDecl();
4140 
4141  SmallVector<Decl*, 4> Fields(Record->fields());
4142  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4143  SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
4144 
4145  PopDeclContext();
4146  PopFunctionScopeInfo();
4147 }
4148 
4150  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4151 
4153  SmallVector<Expr *, 4> CaptureInits;
4154  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
4155 
4156  CapturedDecl *CD = RSI->TheCapturedDecl;
4157  RecordDecl *RD = RSI->TheRecordDecl;
4158 
4160  getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4161  Captures, CaptureInits, CD, RD);
4162 
4163  CD->setBody(Res->getCapturedStmt());
4164  RD->completeDefinition();
4165 
4166  DiscardCleanupsInEvaluationContext();
4167  PopExpressionEvaluationContext();
4168 
4169  PopDeclContext();
4170  PopFunctionScopeInfo();
4171 
4172  return Res;
4173 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
SourceLocation getStartLoc() const
Definition: Stmt.h:511
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4389
QualType withConst() const
Retrieves a version of this type with const applied.
void setImplicit(bool I=true)
Definition: DeclBase.h:552
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1698
Stmt * body_back()
Definition: Stmt.h:628
SourceLocation getLocStart() const LLVM_READONLY
Definition: StmtCXX.h:198
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
void setOrigin(CXXRecordDecl *Rec)
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:3834
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1800
PtrTy get() const
Definition: Ownership.h:74
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2285
EvaluatedExprVisitor - This class visits &#39;Expr *&#39;s.
QualType getPointeeType() const
Definition: Type.h:2298
CanQualType VoidPtrTy
Definition: ASTContext.h:1012
A (possibly-)qualified type.
Definition: Type.h:653
bool isBlockPointerType() const
Definition: Type.h:5952
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2061
bool isArrayType() const
Definition: Type.h:5993
bool isOverloadedOperator() const
isOverloadedOperator - Whether this function declaration represents an C++ overloaded operator...
Definition: Decl.h:2265
Instantiation or recovery rebuild of a for-range statement.
Definition: Sema.h:3758
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned)
Definition: SemaStmt.cpp:685
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams)
Definition: SemaStmt.cpp:4048
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock)
ActOnCXXCatchBlock - Takes an exception declaration and a handler block and creates a proper catch ha...
Definition: SemaStmt.cpp:3684
bool operator==(CanQual< T > x, CanQual< U > y)
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:60
static unsigned getHashValue(const CatchHandlerType &Base)
Definition: SemaStmt.cpp:3753
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:26
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
Stmt - This represents one statement.
Definition: Stmt.h:66
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3058
IfStmt - This represents an if/then/else.
Definition: Stmt.h:929
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef< Stmt *> Elts, bool isStmtExpr)
Definition: SemaStmt.cpp:338
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:609
StmtResult ActOnExprStmt(ExprResult Arg)
Definition: SemaStmt.cpp:44
void setParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:3911
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc)
Definition: SemaStmt.cpp:1859
ActionResult< Expr * > ExprResult
Definition: Ownership.h:251
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2039
bool isRecordType() const
Definition: Type.h:6017
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Stmt *InitStmt, ConditionResult Cond)
Definition: SemaStmt.cpp:672
Expr * getBase() const
Definition: Expr.h:2477
SmallVector< Scope *, 2 > CurrentSEHFinally
Stack of active SEH __finally scopes. Can be empty.
Definition: Sema.h:345
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments...
bool isDecltypeAuto() const
Definition: Type.h:4414
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1270
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void setType(QualType t)
Definition: Expr.h:129
AssignConvertType
AssignConvertType - All of the &#39;assignment&#39; semantic checks return this enum to indicate whether the ...
Definition: Sema.h:9345
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Opcode getOpcode() const
Definition: Expr.h:3026
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4403
Represents an attribute applied to a statement.
Definition: Stmt.h:878
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1665
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:5893
The base class of the type hierarchy.
Definition: Type.h:1353
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2560
ForRangeStatus
Definition: Sema.h:2893
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body)
Definition: SemaStmt.cpp:3565
virtual void completeDefinition()
completeDefinition - Notes that the definition of this type is now complete.
Definition: Decl.cpp:3946
QualType withConst() const
Definition: Type.h:818
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:671
bool getNoReturnAttr() const
Determine whether this function type includes the GNU noreturn attribute.
Definition: Type.h:3211
A container of type source information.
Definition: Decl.h:86
Wrapper for void* pointer.
Definition: Ownership.h:45
static AttributedStmt * Create(const ASTContext &C, SourceLocation Loc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: Stmt.cpp:333
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2810
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:239
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4035
Determining whether a for-range statement could be built.
Definition: Sema.h:3761
bool isCompleteDefinition() const
isCompleteDefinition - Return true if this decl has its body fully specified.
Definition: Decl.h:3091
Retains information about a function, method, or block that is currently being parsed.
Definition: ScopeInfo.h:82
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen)
Definition: SemaStmt.cpp:1297
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
enumerator_range enumerators() const
Definition: Decl.h:3330
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:1440
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally)
Definition: SemaStmt.cpp:3581
QualType getReturnType() const
Definition: Decl.h:2205
DiagnosticsEngine & Diags
Definition: Sema.h:318
bool isEnumeralType() const
Definition: Type.h:6021
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6307
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl)
Definition: SemaStmt.cpp:82
SourceLocation getLocStart() const LLVM_READONLY
Definition: StmtCXX.h:44
static bool ObjCEnumerationCollection(Expr *Collection)
Definition: SemaStmt.cpp:2026
SourceLocation getStarLoc() const
Definition: TypeLoc.h:1274
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:911
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
bool isInvalidDecl() const
Definition: DeclBase.h:546
static InitializedEntity InitializeResult(SourceLocation ReturnLoc, QualType Type, bool NRVO)
Create the initialization entity for the result of a function.
Defines the Objective-C statement AST node classes.
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body)
FinishObjCForCollectionStmt - Attach the body to a objective-C foreach statement. ...
Definition: SemaStmt.cpp:2581
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input)
Definition: SemaExpr.cpp:12397
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1514
Defines the clang::Expr interface and subclasses for C++ expressions.
CapturedDecl * TheCapturedDecl
The CapturedDecl for this statement.
Definition: ScopeInfo.h:700
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, unsigned UnpromotedWidth, bool UnpromotedSign)
Check the specified case value is in range for the given unpromoted switch type.
Definition: SemaStmt.cpp:692
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:265
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:839
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:2865
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:291
One of these records is kept for each identifier that is lexed.
bool isAtCatchScope() const
isAtCatchScope - Return true if this scope is @catch.
Definition: Scope.h:382
Expr * GetTemporaryExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue...
Definition: ExprCXX.h:4076
Expr * getFalseExpr() const
Definition: Expr.h:3312
Step
Definition: OpenMPClause.h:137
void DiagnoseUnusedExprResult(const Stmt *S)
DiagnoseUnusedExprResult - If the statement passed in is an expression whose result is unused...
Definition: SemaStmt.cpp:186
Represents a class type in Objective C.
Definition: Type.h:5186
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:3899
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *LoopVarDecl, SourceLocation ColonLoc, Expr *Range, SourceLocation RangeLoc, SourceLocation RParenLoc)
Speculatively attempt to dereference an invalid range expression.
Definition: SemaStmt.cpp:2206
ObjCMethodDecl * lookupInstanceMethod(Selector Sel) const
Lookup an instance method for a given selector.
Definition: DeclObjC.h:1866
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
A C++ nested-name-specifier augmented with source location information.
QualType getCaughtType() const
Definition: StmtCXX.cpp:20
field_range fields() const
Definition: Decl.h:3613
void setLocStart(SourceLocation L)
Definition: Decl.h:488
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection)
Definition: SemaStmt.cpp:1784
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3702
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3744
bool isReferenceType() const
Definition: Type.h:5956
StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:538
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:926
bool isInvalid() const
Definition: Sema.h:9727
VarDecl * getCopyElisionCandidate(QualType ReturnType, Expr *E, bool AllowParamOrMoveConstructible)
Determine whether the given expression is a candidate for copy elision in either a return statement o...
Definition: SemaStmt.cpp:2855
void setNoNRVO()
Definition: Scope.h:476
std::pair< VarDecl *, Expr * > get() const
Definition: Sema.h:9728
Expr * getSubExpr()
Definition: Expr.h:2761
bool isGnuLocal() const
Definition: Decl.h:487
void setSubStmt(Stmt *S)
Definition: Stmt.h:775
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6221
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:249
IdentifierTable & Idents
Definition: ASTContext.h:537
SourceLocation FirstSEHTryLoc
First SEH &#39;__try&#39; statement in the current function.
Definition: ScopeInfo.h:158
void ActOnAbortSEHFinallyBlock()
Definition: SemaStmt.cpp:3949
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5739
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:107
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: SemaStmt.cpp:490
Represents Objective-C&#39;s @catch statement.
Definition: StmtObjC.h:74
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested)
Definition: SemaStmt.cpp:3971
void setBody(Stmt *S)
Definition: Stmt.h:1052
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1308
static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, SourceLocation ColonLoc, SourceLocation CoawaitLoc, OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, ExprResult *EndExpr, BeginEndFunction *BEF)
Create the initialization, compare, and increment steps for the range-based for loop expression...
Definition: SemaStmt.cpp:2118
static CapturedStmt * Create(const ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef< Capture > Captures, ArrayRef< Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD)
Definition: Stmt.cpp:1051
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:886
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2486
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt)
CheckConvertedConstantExpression - Check that the expression From is a converted constant expression ...
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1203
Represents the results of name lookup.
Definition: Lookup.h:32
PtrTy get() const
Definition: Ownership.h:162
Decl * getSingleDecl()
Definition: DeclGroup.h:84
This is a scope that corresponds to a switch statement.
Definition: Scope.h:97
void ActOnStartSEHFinallyBlock()
Definition: SemaStmt.cpp:3945
AccessSpecifier getAccessSpecifier() const
Returns the access specifier for this base specifier.
Definition: DeclCXX.h:271
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6356
Parameter for captured context.
Definition: Decl.h:1471
SourceLocation getRParenLoc() const
Definition: StmtCXX.h:196
static void buildCapturedStmtCaptureList(SmallVectorImpl< CapturedStmt::Capture > &Captures, SmallVectorImpl< Expr *> &CaptureInits, ArrayRef< CapturingScopeInfo::Capture > Candidates)
Definition: SemaStmt.cpp:4019
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:116
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
RecordDecl * CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams)
Definition: SemaStmt.cpp:3995
StmtResult StmtError()
Definition: Ownership.h:268
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2985
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5790
Stmt * getInit()
Definition: Stmt.h:1217
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2822
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
SmallVector< std::pair< llvm::APSInt, EnumConstantDecl * >, 64 > EnumValsTy
Definition: SemaStmt.cpp:710
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl)
Definition: SemaStmt.cpp:2766
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2463
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, const Expr *Case)
Definition: SemaStmt.cpp:746
bool isNull() const
Definition: DeclGroup.h:80
SourceLocation getContinueLoc() const
Definition: Stmt.h:1360
void setLHS(Expr *Val)
Definition: Stmt.h:776
bool isMacroBodyExpansion(SourceLocation Loc) const
Tests whether the given source location represents the expansion of a macro body. ...
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2710
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const
IsValueInFlagEnum - Determine if a value is allowed as part of a flag enum.
Definition: SemaDecl.cpp:15698
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond)
Definition: SemaStmt.cpp:615
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1196
Preprocessor & PP
Definition: Sema.h:315
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1865
const LangOptions & getLangOpts() const
Definition: Sema.h:1193
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:748
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
static CatchHandlerType getTombstoneKey()
Definition: SemaStmt.cpp:3748
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block)
Definition: SemaStmt.cpp:3953
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope)
Definition: SemaStmt.cpp:3960
Perform initialization via a constructor.
Perform a user-defined conversion, either via a conversion function or via a constructor.
A class that does preorder or postorder depth-first traversal on the entire Clang AST and visits each...
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr)
Build a call to &#39;begin&#39; or &#39;end&#39; for a C++11 for-range statement.
This represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:3860
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3002
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5421
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1712
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind)
BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
Definition: SemaStmt.cpp:2259
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope)
Definition: SemaStmt.cpp:3618
void setStmt(LabelStmt *T)
Definition: Decl.h:485
static SEHTryStmt * Create(const ASTContext &C, bool isCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: Stmt.cpp:939
bool isSEHTrySupported() const
Whether the target supports SEH __try.
Definition: TargetInfo.h:954
Contains information about the compound statement currently being parsed.
Definition: ScopeInfo.h:55
SourceLocation FirstCXXTryLoc
First C++ &#39;try&#39; statement in the current function.
Definition: ScopeInfo.h:155
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3323
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:7426
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:4187
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:216
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind)
ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
Definition: SemaStmt.cpp:2049
const internal::VariadicDynCastAllOfMatcher< Stmt, CaseStmt > caseStmt
Matches case statements inside switch statements.
bool hasAttr() const
Definition: DeclBase.h:535
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3269
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:274
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:955
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc)
Definition: SemaStmt.cpp:72
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:595
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3270
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse)
Perform marking for a reference to an arbitrary declaration.
Definition: SemaExpr.cpp:15015
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2067
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3168
Retains information about a captured region.
Definition: ScopeInfo.h:697
bool inferObjCARCLifetime(ValueDecl *decl)
Definition: SemaDecl.cpp:5839
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1718
SourceLocation getLocEnd() const LLVM_READONLY
Definition: Stmt.cpp:290
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
Definition: SemaStmt.cpp:3330
SourceLocation getLocation() const
Definition: Expr.h:1049
void ActOnFinishOfCompoundStmt()
Definition: SemaStmt.cpp:330
bool isClosed() const
Returns true if this enum is either annotated with enum_extensibility(closed) or isn&#39;t annotated with...
Definition: Decl.cpp:3824
QualType getAutoRRefDeductType() const
C++11 deduction pattern for &#39;auto &&&#39; type.
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3576
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:10516
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:190
Allows QualTypes to be sorted and hence used in maps and sets.
Retains information about a block that is currently being parsed.
Definition: ScopeInfo.h:670
CXXMethodDecl * CallOperator
The lambda&#39;s compiler-generated operator().
Definition: ScopeInfo.h:745
Expr * getCond() const
Definition: Expr.h:3303
Type source information for an attributed type.
Definition: TypeLoc.h:859
Expr - This represents one expression.
Definition: Expr.h:106
DeclStmt * getEndStmt()
Definition: StmtCXX.h:158
SourceLocation End
Allow any unmodeled side effect.
Definition: Expr.h:598
std::string Label
bool hasLocalStorage() const
hasLocalStorage - Returns true if a variable with function scope is a non-static local variable...
Definition: Decl.h:1026
const FunctionProtoType * T
SourceLocation getDefaultLoc() const
Definition: Stmt.h:815
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const
Definition: SemaStmt.cpp:3205
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope)
Definition: SemaStmt.cpp:452
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6370
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:86
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
void setInit(Expr *I)
Definition: Decl.cpp:2152
VarDecl * getExceptionDecl() const
Definition: StmtCXX.h:50
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, const VarDecl *VD)
Definition: SemaStmt.cpp:2671
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1300
void setContextParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:3929
bool isSEHTryScope() const
Determine whether this scope is a SEH &#39;__try&#39; block.
Definition: Scope.h:433
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3343
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Defines the clang::Preprocessor interface.
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, bool AllowParamOrMoveConstructible)
Definition: SemaStmt.cpp:2874
ObjCLifetime getObjCLifetime() const
Definition: Type.h:341
bool isFileContext() const
Definition: DeclBase.h:1397
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
Expr * getRHS()
Definition: Stmt.h:762
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
SourceLocation Begin
bool refersToEnclosingVariableOrCapture() const
Does this DeclRefExpr refer to an enclosing local or a captured variable?
Definition: Expr.h:1165
void removeLocalConst()
Definition: Type.h:5814
char __ovld __cnfn min(char x, char y)
Returns y if y < x, otherwise it returns x.
Defines the clang::TypeLoc interface and its subclasses.
static DeclContext * castToDeclContext(const CapturedDecl *D)
Definition: Decl.h:3947
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:1958
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1380
static CapturedDecl * Create(ASTContext &C, DeclContext *DC, unsigned NumParams)
Definition: Decl.cpp:4237
static bool isEqual(const CatchHandlerType &LHS, const CatchHandlerType &RHS)
Definition: SemaStmt.cpp:3757
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1331
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1413
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:67
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
bool isInvalid() const
Definition: Ownership.h:158
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
void setLocation(SourceLocation L)
Definition: DeclBase.h:417
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1026
void setHasCXXTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:375
ValueDecl * getDecl()
Definition: Expr.h:1041
bool isUsable() const
Definition: Ownership.h:159
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2682
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1347
const Expr * getSubExpr() const
Definition: Expr.h:1681
unsigned short CapRegionKind
The kind of captured region.
Definition: ScopeInfo.h:708
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:2922
llvm::iterator_range< semantics_iterator > semantics()
Definition: Expr.h:5050
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:719
bool Contains(const Scope &rhs) const
Returns if rhs has a higher scope depth than this.
Definition: Scope.h:447
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1463
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:122
static SEHFinallyStmt * Create(const ASTContext &C, SourceLocation FinallyLoc, Stmt *Block)
Definition: Stmt.cpp:967
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1154
void setBody(Stmt *S)
Definition: StmtCXX.h:191
BuildForRangeKind
Definition: Sema.h:3753
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:5779
RecordDecl * getDecl() const
Definition: Type.h:3988
static CatchHandlerType getEmptyKey()
Definition: SemaStmt.cpp:3743
void ActOnStartOfCompoundStmt()
Definition: SemaStmt.cpp:326
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
The "struct" keyword.
Definition: Type.h:4690
SelectorTable & Selectors
Definition: ASTContext.h:538
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:180
Kind
This captures a statement into a function.
Definition: Stmt.h:2054
static bool EqEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
EqEnumVals - Comparison preficate for uniqing enumeration values.
Definition: SemaStmt.cpp:597
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:144
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4969
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1196
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt)
ActOnCaseStmtBody - This installs a statement as the body of a case.
Definition: SemaStmt.cpp:444
void setHasSEHTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:380
bool isOpenMPLoopScope() const
Determine whether this scope is a loop having OpenMP loop directive attached.
Definition: Scope.h:424
DeduceAutoResult
Result type of DeduceAutoType.
Definition: Sema.h:6960
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3203
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4004
Expr * getSubExpr() const
Definition: Expr.h:1744
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr)
DiagnoseAssignmentEnum - Warn if assignment to enum is a constant integer not in the range of enum va...
Definition: SemaStmt.cpp:1219
CastKind getCastKind() const
Definition: Expr.h:2757
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:11157
const SwitchCase * getSwitchCaseList() const
Definition: Stmt.h:1047
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope)
Definition: SemaStmt.cpp:3311
Expr * getLHS()
Definition: Stmt.h:761
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt)
Definition: SemaStmt.cpp:467
StmtResult ActOnForEachLValueExpr(Expr *E)
In an Objective C collection iteration statement: for (x in y) x can be an arbitrary l-value expressi...
Definition: SemaStmt.cpp:1770
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:819
LabelDecl - Represents the declaration of a label.
Definition: Decl.h:460
StmtResult ActOnCapturedRegionEnd(Stmt *S)
Definition: SemaStmt.cpp:4149
void setAllEnumCasesCovered()
Set a flag in the SwitchStmt indicating that if the &#39;switch (X)&#39; is a switch over an enum value then ...
Definition: Stmt.h:1075
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT)
Deduce the return type for a function from a returned expression, per C++1y [dcl.spec.auto]p6.
Definition: SemaStmt.cpp:3214
static QualType GetTypeBeforeIntegralPromotion(const Expr *&E)
GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of potentially integral-promoted expr...
Definition: SemaStmt.cpp:605
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw)
Definition: SemaStmt.cpp:3592
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef< Stmt *> Handlers)
ActOnCXXTryBlock - Takes a try compound-statement and a number of handlers and creates a try statemen...
Definition: SemaStmt.cpp:3801
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2187
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
Definition: SemaStmt.cpp:3931
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1816
CanQualType VoidTy
Definition: ASTContext.h:996
Describes the kind of initialization being performed, along with location information for tokens rela...
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:135
bool isObjCObjectPointerType() const
Definition: Type.h:6041
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:601
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body)
Definition: SemaStmt.cpp:773
bool isMSAsmLabel() const
Definition: Decl.h:494
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2822
Stmt * getCapturedStmt()
Retrieve the statement being captured.
Definition: Stmt.h:2155
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language...
Definition: Expr.h:249
sema::CompoundScopeInfo & getCurCompoundScope() const
Definition: SemaStmt.cpp:334
Requests that all candidates be shown.
Definition: Overload.h:50
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1905
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, Stmt *Body)
Definition: SemaStmt.cpp:1275
EnumDecl * getDecl() const
Definition: Type.h:4011
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13...
Definition: Overload.h:724
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody)
Definition: SemaStmt.cpp:3674
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2214
Representation of a Microsoft __if_exists or __if_not_exists statement with a dependent name...
Definition: StmtCXX.h:240
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, const VarDecl *VD, QualType RangeInitType)
Definition: SemaStmt.cpp:2597
Expr * getLHS() const
Definition: Expr.h:3029
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3385
LabelStmt * getStmt() const
Definition: Decl.h:484
void setCapturedRecord()
Mark the record as a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:3933
bool isDeduced() const
Definition: Type.h:4392
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3401
NullStmt - This is the null statement ";": C99 6.8.3p3.
Definition: Stmt.h:556
Dataflow Directional Tag Classes.
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3692
bool isValid() const
Return true if this is a valid SourceLocation object.
ObjCMethodDecl * lookupPrivateMethod(const Selector &Sel, bool Instance=true) const
Lookup a method in the classes implementation hierarchy.
Definition: DeclObjC.cpp:733
A single step in the initialization sequence.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1252
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:224
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1216
QualType getType() const
Get the type for which this source info wrapper provides information.
Definition: TypeLoc.h:130
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body)
Definition: SemaStmt.cpp:1715
void ActOnCapturedRegionError()
Definition: SemaStmt.cpp:4133
bool isRecord() const
Definition: DeclBase.h:1405
void addNRVOCandidate(VarDecl *VD)
Definition: Scope.h:465
void setARCPseudoStrong(bool ps)
Definition: Decl.h:1343
StmtResult ActOnExprStmtError()
Definition: SemaStmt.cpp:62
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:116
const Expr * getInit() const
Definition: Decl.h:1213
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp)
Definition: SemaStmt.cpp:2775
Kind getKind() const
Definition: DeclBase.h:419
bool isSingleDecl() const
Definition: DeclGroup.h:81
static void DiagnoseForRangeVariableCopies(Sema &SemaRef, const CXXForRangeStmt *ForStmt)
DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
Definition: SemaStmt.cpp:2712
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5483
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:732
EnumDecl - Represents an enum.
Definition: Decl.h:3233
const Decl * getSingleDecl() const
Definition: Stmt.h:504
bool isAmbiguous(CanQualType BaseType)
Determine whether the path from the most-derived type to the given base type is ambiguous (i...
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
Expr * get() const
Definition: Sema.h:3632
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
bool isSingleDecl() const
isSingleDecl - This method returns true if this DeclStmt refers to a single Decl. ...
Definition: Stmt.h:500
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:10158
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6240
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2550
const Stmt * getBody() const
Definition: Stmt.h:1046
bool isMacroID() const
Represents a __leave statement.
Definition: Stmt.h:2019
Decl * getCalleeDecl()
Definition: Expr.cpp:1220
Represents a pointer to an Objective C object.
Definition: Type.h:5442
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1007
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested)
Definition: SemaStmt.cpp:3983
unsigned getIntWidth(QualType T) const
RecordDecl * TheRecordDecl
The captured record type.
Definition: ScopeInfo.h:702
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal, SourceLocation DotDotDotLoc, Expr *RHSVal, SourceLocation ColonLoc)
Definition: SemaStmt.cpp:382
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3978
bool body_empty() const
Definition: Stmt.h:618
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E)
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6193
void setRHS(Expr *Val)
Definition: Stmt.h:777
T * getAttr() const
Definition: DeclBase.h:531
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
CanQualType DependentTy
Definition: ASTContext.h:1013
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, const EnumDecl *ED, const Expr *CaseExpr, EnumValsTy::iterator &EI, EnumValsTy::iterator &EIEnd, const llvm::APSInt &Val)
Returns true if we should emit a diagnostic about this case expression not being a part of the enum u...
Definition: SemaStmt.cpp:714
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:708
Stmt * getInit()
Definition: Stmt.h:1042
void setUsesSEHTry(bool UST)
Definition: Decl.h:2053
static bool CmpEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
CmpEnumVals - Comparison predicate for sorting enumeration values.
Definition: SemaStmt.cpp:589
Opcode getOpcode() const
Definition: Expr.h:1741
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2190
ActionResult< Stmt * > StmtResult
Definition: Ownership.h:252
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional< unsigned > DependentDeductionDepth=None)
Represents Objective-C&#39;s @finally statement.
Definition: StmtObjC.h:120
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:90
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1410
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:3022
Represents a base class of a C++ class.
Definition: DeclCXX.h:191
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E)
Diagnose unused comparisons, both builtin and overloaded operators.
Definition: SemaStmt.cpp:128
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:401
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:1986
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:154
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2174
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1274
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:239
static bool CmpCaseVals(const std::pair< llvm::APSInt, CaseStmt *> &lhs, const std::pair< llvm::APSInt, CaseStmt *> &rhs)
CmpCaseVals - Comparison predicate for sorting case values.
Definition: SemaStmt.cpp:575
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:710
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO=true)
Perform the initialization of a potentially-movable value, which is the result of return value...
Definition: SemaStmt.cpp:2925
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD, QualType Type)
Create the initialization entity for a related result.
Describes the sequence of initializations required to initialize a given object or reference with a s...
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5800
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3181
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
ActOnCapScopeReturnStmt - Utility routine to type-check return statements for capturing scopes...
Definition: SemaStmt.cpp:3012
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
ContinueStmt - This represents a continue.
Definition: Stmt.h:1351
Expr * getTrueExpr() const
Definition: Expr.h:3307
bool isVoidType() const
Definition: Type.h:6171
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, SourceLocation Loc, int DiagID)
Finish building a variable declaration for a for-range statement.
Definition: SemaStmt.cpp:1941
static CXXTryStmt * Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef< Stmt *> handlers)
Definition: StmtCXX.cpp:26
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3342
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:29
VarDecl * getLoopVariable()
Definition: StmtCXX.cpp:80
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1471
void addHiddenDecl(Decl *D)
Add the declaration D to this context without modifying any lookup tables.
Definition: DeclBase.cpp:1384
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:1098
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:328
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:127
SourceLocation getBreakLoc() const
Definition: Stmt.h:1389
bool qual_empty() const
Definition: Type.h:5090
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:265
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc)
Definition: SemaExpr.cpp:10816
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body)
FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
Definition: SemaStmt.cpp:2748
bool HasImplicitReturnType
Whether the target type of return statements in this context is deduced (e.g.
Definition: ScopeInfo.h:605
ExprResult ExprError()
Definition: Ownership.h:267
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand)
Definition: SemaStmt.cpp:3636
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1860
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:956
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:229
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:734
Expr * getRHS() const
Definition: Expr.h:3031
bool isPointerType() const
Definition: Type.h:5944
BreakStmt - This represents a break.
Definition: Stmt.h:1377
SourceManager & SourceMgr
Definition: Sema.h:319
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
bool isLocalVarDecl() const
isLocalVarDecl - Returns true for local variable declarations other than parameters.
Definition: Decl.h:1096
QualType getType() const
Definition: Decl.h:639
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:111
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:342
static bool hasDeducedReturnType(FunctionDecl *FD)
Determine whether the declared return type of the specified function contains &#39;auto&#39;.
Definition: SemaStmt.cpp:3002
A trivial tuple used to represent a source range.
ASTContext & Context
Definition: Sema.h:316
NamedDecl - This represents a decl with a name.
Definition: Decl.h:245
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:530
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:75
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2719
CanQualType BoolTy
Definition: ASTContext.h:997
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:155
Describes an entity that is being initialized.
const Expr * getCond() const
Definition: Stmt.h:1045
BeginEndFunction
Definition: SemaStmt.cpp:1981
ExprResult release()
Definition: Sema.h:3628
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:277
void setType(QualType newType)
Definition: Decl.h:640
Wrapper for source info for pointers.
Definition: TypeLoc.h:1271
StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:513
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:93
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:345
static SEHExceptStmt * Create(const ASTContext &C, SourceLocation ExceptLoc, Expr *FilterExpr, Stmt *Block)
Definition: Stmt.cpp:959
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2620
Declaration of a template function.
Definition: DeclTemplate.h:958
static ObjCAtTryStmt * Create(const ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt)
Definition: StmtObjC.cpp:46
void setBody(Stmt *B)
Definition: Decl.cpp:4250
Attr - This represents one attribute.
Definition: Attr.h:43
SourceLocation getLocation() const
Definition: DeclBase.h:416
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
StmtResult ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: SemaStmt.cpp:3895
static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, const Scope &DestScope)
Definition: SemaStmt.cpp:2801
Helper class that creates diagnostics with optional template instantiation stacks.
Definition: Sema.h:1223
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2432
const DeclStmt * getConditionVariableDeclStmt() const
If this SwitchStmt has a condition variable, return the faux DeclStmt associated with the creation of...
Definition: Stmt.h:1038
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:290