clang  11.0.0git
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  // Ignore all inner captured regions.
70  unsigned CurScopeIndex = FunctionScopes.size() - 1;
71  while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72  FunctionScopes[CurScopeIndex]))
73  --CurScopeIndex;
74  assert(
75  isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76  "The function on the top of sema's function-info stack must be a lambda");
77 
78  // If VarToCapture is null, we are attempting to capture 'this'.
79  const bool IsCapturingThis = !VarToCapture;
80  const bool IsCapturingVariable = !IsCapturingThis;
81 
82  // Start with the current lambda at the top of the stack (highest index).
83  DeclContext *EnclosingDC =
84  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86  do {
87  const clang::sema::LambdaScopeInfo *LSI =
88  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89  // IF we have climbed down to an intervening enclosing lambda that contains
90  // the variable declaration - it obviously can/must not capture the
91  // variable.
92  // Since its enclosing DC is dependent, all the lambdas between it and the
93  // innermost nested lambda are dependent (otherwise we wouldn't have
94  // arrived here) - so we don't yet have a lambda that can capture the
95  // variable.
96  if (IsCapturingVariable &&
97  VarToCapture->getDeclContext()->Equals(EnclosingDC))
98  return NoLambdaIsCaptureReady;
99 
100  // For an enclosing lambda to be capture ready for an entity, all
101  // intervening lambda's have to be able to capture that entity. If even
102  // one of the intervening lambda's is not capable of capturing the entity
103  // then no enclosing lambda can ever capture that entity.
104  // For e.g.
105  // const int x = 10;
106  // [=](auto a) { #1
107  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
108  // [=](auto c) { #3
109  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
110  // }; }; };
111  // If they do not have a default implicit capture, check to see
112  // if the entity has already been explicitly captured.
113  // If even a single dependent enclosing lambda lacks the capability
114  // to ever capture this variable, there is no further enclosing
115  // non-dependent lambda that can capture this variable.
117  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118  return NoLambdaIsCaptureReady;
119  if (IsCapturingThis && !LSI->isCXXThisCaptured())
120  return NoLambdaIsCaptureReady;
121  }
122  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124  assert(CurScopeIndex);
125  --CurScopeIndex;
126  } while (!EnclosingDC->isTranslationUnit() &&
127  EnclosingDC->isDependentContext() &&
128  isLambdaCallOperator(EnclosingDC));
129 
130  assert(CurScopeIndex < (FunctionScopes.size() - 1));
131  // If the enclosingDC is not dependent, then the immediately nested lambda
132  // (one index above) is capture-ready.
133  if (!EnclosingDC->isDependentContext())
134  return CurScopeIndex + 1;
135  return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 /// - climb down the stack (i.e. starting from the innermost and examining
150 /// each outer lambda step by step) checking if each enclosing
151 /// lambda can either implicitly or explicitly capture the variable.
152 /// Record the first such lambda that is enclosed in a non-dependent
153 /// context. If no such lambda currently exists return failure.
154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 /// capture the variable by checking all its enclosing lambdas:
156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
157 /// identified above in 'a' can also capture the variable (this is done
158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
159 /// 'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable. If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
175  VarDecl *VarToCapture, Sema &S) {
176 
177  const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179  const Optional<unsigned> OptionalStackIndex =
181  VarToCapture);
182  if (!OptionalStackIndex)
183  return NoLambdaIsCaptureCapable;
184 
185  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187  S.getCurGenericLambda()) &&
188  "The capture ready lambda for a potential capture can only be the "
189  "current lambda if it is a generic lambda");
190 
191  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194  // If VarToCapture is null, we are attempting to capture 'this'
195  const bool IsCapturingThis = !VarToCapture;
196  const bool IsCapturingVariable = !IsCapturingThis;
197 
198  if (IsCapturingVariable) {
199  // Check if the capture-ready lambda can truly capture the variable, by
200  // checking whether all enclosing lambdas of the capture-ready lambda allow
201  // the capture - i.e. make sure it is capture-capable.
202  QualType CaptureType, DeclRefType;
203  const bool CanCaptureVariable =
204  !S.tryCaptureVariable(VarToCapture,
205  /*ExprVarIsUsedInLoc*/ SourceLocation(),
207  /*EllipsisLoc*/ SourceLocation(),
208  /*BuildAndDiagnose*/ false, CaptureType,
209  DeclRefType, &IndexOfCaptureReadyLambda);
210  if (!CanCaptureVariable)
211  return NoLambdaIsCaptureCapable;
212  } else {
213  // Check if the capture-ready lambda can truly capture 'this' by checking
214  // whether all enclosing lambdas of the capture-ready lambda can capture
215  // 'this'.
216  const bool CanCaptureThis =
218  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220  &IndexOfCaptureReadyLambda);
221  if (!CanCaptureThis)
222  return NoLambdaIsCaptureCapable;
223  }
224  return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
229  if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
231  SemaRef.Context,
232  /*Template kw loc*/ SourceLocation(),
233  /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234  LSI->TemplateParams,
235  /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236  nullptr);
237  }
238  return LSI->GLTemplateParameterList;
239 }
240 
242  TypeSourceInfo *Info,
243  bool KnownDependent,
244  LambdaCaptureDefault CaptureDefault) {
245  DeclContext *DC = CurContext;
246  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247  DC = DC->getParent();
248  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249  *this);
250  // Start constructing the lambda class.
251  CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252  IntroducerRange.getBegin(),
253  KnownDependent,
254  IsGenericLambda,
255  CaptureDefault);
256  DC->addDecl(Class);
257 
258  return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264  while (!DC->isFileContext()) {
265  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266  if (FD->isInlined())
267  return true;
268 
269  DC = DC->getLexicalParent();
270  }
271 
272  return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
277  // Compute the context for allocating mangling numbers in the current
278  // expression, if the ABI requires them.
279  Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281  enum ContextKind {
282  Normal,
283  DefaultArgument,
284  DataMember,
285  StaticDataMember,
286  InlineVariable,
287  VariableTemplate
288  } Kind = Normal;
289 
290  // Default arguments of member function parameters that appear in a class
291  // definition, as well as the initializers of data members, receive special
292  // treatment. Identify them.
293  if (ManglingContextDecl) {
294  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295  if (const DeclContext *LexicalDC
296  = Param->getDeclContext()->getLexicalParent())
297  if (LexicalDC->isRecord())
298  Kind = DefaultArgument;
299  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300  if (Var->getDeclContext()->isRecord())
301  Kind = StaticDataMember;
302  else if (Var->getMostRecentDecl()->isInline())
303  Kind = InlineVariable;
304  else if (Var->getDescribedVarTemplate())
305  Kind = VariableTemplate;
306  else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307  if (!VTS->isExplicitSpecialization())
308  Kind = VariableTemplate;
309  }
310  } else if (isa<FieldDecl>(ManglingContextDecl)) {
311  Kind = DataMember;
312  }
313  }
314 
315  // Itanium ABI [5.1.7]:
316  // In the following contexts [...] the one-definition rule requires closure
317  // types in different translation units to "correspond":
318  bool IsInNonspecializedTemplate =
319  inTemplateInstantiation() || CurContext->isDependentContext();
320  switch (Kind) {
321  case Normal: {
322  // -- the bodies of non-exported nonspecialized template functions
323  // -- the bodies of inline functions
324  if ((IsInNonspecializedTemplate &&
325  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326  isInInlineFunction(CurContext)) {
327  while (auto *CD = dyn_cast<CapturedDecl>(DC))
328  DC = CD->getParent();
329  return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330  }
331 
332  return std::make_tuple(nullptr, nullptr);
333  }
334 
335  case StaticDataMember:
336  // -- the initializers of nonspecialized static members of template classes
337  if (!IsInNonspecializedTemplate)
338  return std::make_tuple(nullptr, ManglingContextDecl);
339  // Fall through to get the current context.
340  LLVM_FALLTHROUGH;
341 
342  case DataMember:
343  // -- the in-class initializers of class members
344  case DefaultArgument:
345  // -- default arguments appearing in class definitions
346  case InlineVariable:
347  // -- the initializers of inline variables
348  case VariableTemplate:
349  // -- the initializers of templated variables
350  return std::make_tuple(
352  ManglingContextDecl),
353  ManglingContextDecl);
354  }
355 
356  llvm_unreachable("unexpected context");
357 }
358 
360  SourceRange IntroducerRange,
361  TypeSourceInfo *MethodTypeInfo,
362  SourceLocation EndLoc,
364  ConstexprSpecKind ConstexprKind,
365  Expr *TrailingRequiresClause) {
366  QualType MethodType = MethodTypeInfo->getType();
367  TemplateParameterList *TemplateParams =
368  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369  // If a lambda appears in a dependent context or is a generic lambda (has
370  // template parameters) and has an 'auto' return type, deduce it to a
371  // dependent type.
372  if (Class->isDependentContext() || TemplateParams) {
373  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374  QualType Result = FPT->getReturnType();
375  if (Result->isUndeducedType()) {
376  Result = SubstAutoType(Result, Context.DependentTy);
377  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378  FPT->getExtProtoInfo());
379  }
380  }
381 
382  // C++11 [expr.prim.lambda]p5:
383  // The closure type for a lambda-expression has a public inline function
384  // call operator (13.5.4) whose parameters and return type are described by
385  // the lambda-expression's parameter-declaration-clause and
386  // trailing-return-type respectively.
387  DeclarationName MethodName
388  = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389  DeclarationNameLoc MethodNameLoc;
390  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
391  = IntroducerRange.getBegin().getRawEncoding();
392  MethodNameLoc.CXXOperatorName.EndOpNameLoc
393  = IntroducerRange.getEnd().getRawEncoding();
395  Context, Class, EndLoc,
396  DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
397  MethodNameLoc),
398  MethodType, MethodTypeInfo, SC_None,
399  /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
400  Method->setAccess(AS_public);
401  if (!TemplateParams)
402  Class->addDecl(Method);
403 
404  // Temporarily set the lexical declaration context to the current
405  // context, so that the Scope stack matches the lexical nesting.
406  Method->setLexicalDeclContext(CurContext);
407  // Create a function template if we have a template parameter list
408  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
409  FunctionTemplateDecl::Create(Context, Class,
410  Method->getLocation(), MethodName,
411  TemplateParams,
412  Method) : nullptr;
413  if (TemplateMethod) {
414  TemplateMethod->setAccess(AS_public);
415  Method->setDescribedFunctionTemplate(TemplateMethod);
416  Class->addDecl(TemplateMethod);
417  TemplateMethod->setLexicalDeclContext(CurContext);
418  }
419 
420  // Add parameters.
421  if (!Params.empty()) {
422  Method->setParams(Params);
423  CheckParmsForFunctionDef(Params,
424  /*CheckParameterNames=*/false);
425 
426  for (auto P : Method->parameters())
427  P->setOwningFunction(Method);
428  }
429 
430  return Method;
431 }
432 
434  CXXRecordDecl *Class, CXXMethodDecl *Method,
435  Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
436  if (Mangling) {
437  unsigned ManglingNumber;
438  bool HasKnownInternalLinkage;
439  Decl *ManglingContextDecl;
440  std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
441  Mangling.getValue();
442  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
443  HasKnownInternalLinkage);
444  return;
445  }
446 
447  auto getMangleNumberingContext =
448  [this](CXXRecordDecl *Class,
449  Decl *ManglingContextDecl) -> MangleNumberingContext * {
450  // Get mangle numbering context if there's any extra decl context.
451  if (ManglingContextDecl)
452  return &Context.getManglingNumberContext(
453  ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
454  // Otherwise, from that lambda's decl context.
455  auto DC = Class->getDeclContext();
456  while (auto *CD = dyn_cast<CapturedDecl>(DC))
457  DC = CD->getParent();
458  return &Context.getManglingNumberContext(DC);
459  };
460 
462  Decl *ManglingContextDecl;
463  std::tie(MCtx, ManglingContextDecl) =
464  getCurrentMangleNumberContext(Class->getDeclContext());
465  bool HasKnownInternalLinkage = false;
466  if (!MCtx && getLangOpts().CUDA) {
467  // Force lambda numbering in CUDA/HIP as we need to name lambdas following
468  // ODR. Both device- and host-compilation need to have a consistent naming
469  // on kernel functions. As lambdas are potential part of these `__global__`
470  // function names, they needs numbering following ODR.
471  MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472  assert(MCtx && "Retrieving mangle numbering context failed!");
473  HasKnownInternalLinkage = true;
474  }
475  if (MCtx) {
476  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478  HasKnownInternalLinkage);
479  }
480 }
481 
483  CXXMethodDecl *CallOperator,
484  SourceRange IntroducerRange,
485  LambdaCaptureDefault CaptureDefault,
486  SourceLocation CaptureDefaultLoc,
487  bool ExplicitParams,
488  bool ExplicitResultType,
489  bool Mutable) {
490  LSI->CallOperator = CallOperator;
491  CXXRecordDecl *LambdaClass = CallOperator->getParent();
492  LSI->Lambda = LambdaClass;
493  if (CaptureDefault == LCD_ByCopy)
495  else if (CaptureDefault == LCD_ByRef)
497  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
498  LSI->IntroducerRange = IntroducerRange;
499  LSI->ExplicitParams = ExplicitParams;
500  LSI->Mutable = Mutable;
501 
502  if (ExplicitResultType) {
503  LSI->ReturnType = CallOperator->getReturnType();
504 
505  if (!LSI->ReturnType->isDependentType() &&
506  !LSI->ReturnType->isVoidType()) {
507  if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
508  diag::err_lambda_incomplete_result)) {
509  // Do nothing.
510  }
511  }
512  } else {
513  LSI->HasImplicitReturnType = true;
514  }
515 }
516 
519 }
520 
522  ArrayRef<NamedDecl *> TParams,
523  SourceLocation RAngleLoc) {
524  LambdaScopeInfo *LSI = getCurLambda();
525  assert(LSI && "Expected a lambda scope");
526  assert(LSI->NumExplicitTemplateParams == 0 &&
527  "Already acted on explicit template parameters");
528  assert(LSI->TemplateParams.empty() &&
529  "Explicit template parameters should come "
530  "before invented (auto) ones");
531  assert(!TParams.empty() &&
532  "No template parameters to act on");
533  LSI->TemplateParams.append(TParams.begin(), TParams.end());
534  LSI->NumExplicitTemplateParams = TParams.size();
535  LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
536 }
537 
540  CXXMethodDecl *CallOperator, Scope *CurScope) {
541  // Introduce our parameters into the function scope
542  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
543  p < NumParams; ++p) {
544  ParmVarDecl *Param = CallOperator->getParamDecl(p);
545 
546  // If this has an identifier, add it to the scope stack.
547  if (CurScope && Param->getIdentifier()) {
548  bool Error = false;
549  // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
550  // retroactively apply it.
551  for (const auto &Capture : Captures) {
552  if (Capture.Id == Param->getIdentifier()) {
553  Error = true;
554  Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
555  Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
556  << Capture.Id << true;
557  }
558  }
559  if (!Error)
560  CheckShadow(CurScope, Param);
561 
562  PushOnScopeChains(Param, CurScope);
563  }
564  }
565 }
566 
567 /// If this expression is an enumerator-like expression of some type
568 /// T, return the type T; otherwise, return null.
569 ///
570 /// Pointer comparisons on the result here should always work because
571 /// it's derived from either the parent of an EnumConstantDecl
572 /// (i.e. the definition) or the declaration returned by
573 /// EnumType::getDecl() (i.e. the definition).
575  // An expression is an enumerator-like expression of type T if,
576  // ignoring parens and parens-like expressions:
577  E = E->IgnoreParens();
578 
579  // - it is an enumerator whose enum type is T or
580  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
581  if (EnumConstantDecl *D
582  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
583  return cast<EnumDecl>(D->getDeclContext());
584  }
585  return nullptr;
586  }
587 
588  // - it is a comma expression whose RHS is an enumerator-like
589  // expression of type T or
590  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
591  if (BO->getOpcode() == BO_Comma)
592  return findEnumForBlockReturn(BO->getRHS());
593  return nullptr;
594  }
595 
596  // - it is a statement-expression whose value expression is an
597  // enumerator-like expression of type T or
598  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
599  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
600  return findEnumForBlockReturn(last);
601  return nullptr;
602  }
603 
604  // - it is a ternary conditional operator (not the GNU ?:
605  // extension) whose second and third operands are
606  // enumerator-like expressions of type T or
607  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
608  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
609  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
610  return ED;
611  return nullptr;
612  }
613 
614  // (implicitly:)
615  // - it is an implicit integral conversion applied to an
616  // enumerator-like expression of type T or
617  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
618  // We can sometimes see integral conversions in valid
619  // enumerator-like expressions.
620  if (ICE->getCastKind() == CK_IntegralCast)
621  return findEnumForBlockReturn(ICE->getSubExpr());
622 
623  // Otherwise, just rely on the type.
624  }
625 
626  // - it is an expression of that formal enum type.
627  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
628  return ET->getDecl();
629  }
630 
631  // Otherwise, nope.
632  return nullptr;
633 }
634 
635 /// Attempt to find a type T for which the returned expression of the
636 /// given statement is an enumerator-like expression of that type.
638  if (Expr *retValue = ret->getRetValue())
639  return findEnumForBlockReturn(retValue);
640  return nullptr;
641 }
642 
643 /// Attempt to find a common type T for which all of the returned
644 /// expressions in a block are enumerator-like expressions of that
645 /// type.
647  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
648 
649  // Try to find one for the first return.
651  if (!ED) return nullptr;
652 
653  // Check that the rest of the returns have the same enum.
654  for (++i; i != e; ++i) {
655  if (findEnumForBlockReturn(*i) != ED)
656  return nullptr;
657  }
658 
659  // Never infer an anonymous enum type.
660  if (!ED->hasNameForLinkage()) return nullptr;
661 
662  return ED;
663 }
664 
665 /// Adjust the given return statements so that they formally return
666 /// the given type. It should require, at most, an IntegralCast.
668  QualType returnType) {
670  i = returns.begin(), e = returns.end(); i != e; ++i) {
671  ReturnStmt *ret = *i;
672  Expr *retValue = ret->getRetValue();
673  if (S.Context.hasSameType(retValue->getType(), returnType))
674  continue;
675 
676  // Right now we only support integral fixup casts.
677  assert(returnType->isIntegralOrUnscopedEnumerationType());
678  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
679 
680  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
681 
682  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
683  E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
684  E, /*base path*/ nullptr, VK_RValue);
685  if (cleanups) {
686  cleanups->setSubExpr(E);
687  } else {
688  ret->setRetValue(E);
689  }
690  }
691 }
692 
694  assert(CSI.HasImplicitReturnType);
695  // If it was ever a placeholder, it had to been deduced to DependentTy.
696  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
697  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
698  "lambda expressions use auto deduction in C++14 onwards");
699 
700  // C++ core issue 975:
701  // If a lambda-expression does not include a trailing-return-type,
702  // it is as if the trailing-return-type denotes the following type:
703  // - if there are no return statements in the compound-statement,
704  // or all return statements return either an expression of type
705  // void or no expression or braced-init-list, the type void;
706  // - otherwise, if all return statements return an expression
707  // and the types of the returned expressions after
708  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
709  // array-to-pointer conversion (4.2 [conv.array]), and
710  // function-to-pointer conversion (4.3 [conv.func]) are the
711  // same, that common type;
712  // - otherwise, the program is ill-formed.
713  //
714  // C++ core issue 1048 additionally removes top-level cv-qualifiers
715  // from the types of returned expressions to match the C++14 auto
716  // deduction rules.
717  //
718  // In addition, in blocks in non-C++ modes, if all of the return
719  // statements are enumerator-like expressions of some type T, where
720  // T has a name for linkage, then we infer the return type of the
721  // block to be that type.
722 
723  // First case: no return statements, implicit void return type.
724  ASTContext &Ctx = getASTContext();
725  if (CSI.Returns.empty()) {
726  // It's possible there were simply no /valid/ return statements.
727  // In this case, the first one we found may have at least given us a type.
728  if (CSI.ReturnType.isNull())
729  CSI.ReturnType = Ctx.VoidTy;
730  return;
731  }
732 
733  // Second case: at least one return statement has dependent type.
734  // Delay type checking until instantiation.
735  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
736  if (CSI.ReturnType->isDependentType())
737  return;
738 
739  // Try to apply the enum-fuzz rule.
740  if (!getLangOpts().CPlusPlus) {
741  assert(isa<BlockScopeInfo>(CSI));
743  if (ED) {
744  CSI.ReturnType = Context.getTypeDeclType(ED);
746  return;
747  }
748  }
749 
750  // Third case: only one return statement. Don't bother doing extra work!
751  if (CSI.Returns.size() == 1)
752  return;
753 
754  // General case: many return statements.
755  // Check that they all have compatible return types.
756 
757  // We require the return types to strictly match here.
758  // Note that we've already done the required promotions as part of
759  // processing the return statement.
760  for (const ReturnStmt *RS : CSI.Returns) {
761  const Expr *RetE = RS->getRetValue();
762 
763  QualType ReturnType =
764  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
765  if (Context.getCanonicalFunctionResultType(ReturnType) ==
767  // Use the return type with the strictest possible nullability annotation.
768  auto RetTyNullability = ReturnType->getNullability(Ctx);
769  auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
770  if (BlockNullability &&
771  (!RetTyNullability ||
772  hasWeakerNullability(*RetTyNullability, *BlockNullability)))
773  CSI.ReturnType = ReturnType;
774  continue;
775  }
776 
777  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
778  // TODO: It's possible that the *first* return is the divergent one.
779  Diag(RS->getBeginLoc(),
780  diag::err_typecheck_missing_return_type_incompatible)
781  << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
782  // Continue iterating so that we keep emitting diagnostics.
783  }
784 }
785 
787  SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
788  Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
789  Expr *&Init) {
790  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
791  // deduce against.
792  QualType DeductType = Context.getAutoDeductType();
793  TypeLocBuilder TLB;
794  AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
795  TL.setNameLoc(Loc);
796  if (ByRef) {
797  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
798  assert(!DeductType.isNull() && "can't build reference to auto");
799  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
800  }
801  if (EllipsisLoc.isValid()) {
802  if (Init->containsUnexpandedParameterPack()) {
803  Diag(EllipsisLoc, getLangOpts().CPlusPlus20
804  ? diag::warn_cxx17_compat_init_capture_pack
805  : diag::ext_init_capture_pack);
806  DeductType = Context.getPackExpansionType(DeductType, NumExpansions);
807  TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
808  } else {
809  // Just ignore the ellipsis for now and form a non-pack variable. We'll
810  // diagnose this later when we try to capture it.
811  }
812  }
813  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
814 
815  // Deduce the type of the init capture.
816  QualType DeducedType = deduceVarTypeFromInitializer(
817  /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
818  SourceRange(Loc, Loc), IsDirectInit, Init);
819  if (DeducedType.isNull())
820  return QualType();
821 
822  // Are we a non-list direct initialization?
823  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
824 
825  // Perform initialization analysis and ensure any implicit conversions
826  // (such as lvalue-to-rvalue) are enforced.
827  InitializedEntity Entity =
828  InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
830  IsDirectInit
831  ? (CXXDirectInit ? InitializationKind::CreateDirect(
832  Loc, Init->getBeginLoc(), Init->getEndLoc())
835 
836  MultiExprArg Args = Init;
837  if (CXXDirectInit)
838  Args =
839  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
840  QualType DclT;
841  InitializationSequence InitSeq(*this, Entity, Kind, Args);
842  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
843 
844  if (Result.isInvalid())
845  return QualType();
846 
847  Init = Result.getAs<Expr>();
848  return DeducedType;
849 }
850 
852  QualType InitCaptureType,
853  SourceLocation EllipsisLoc,
855  unsigned InitStyle, Expr *Init) {
856  // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
857  // rather than reconstructing it here.
858  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
859  if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
860  PETL.setEllipsisLoc(EllipsisLoc);
861 
862  // Create a dummy variable representing the init-capture. This is not actually
863  // used as a variable, and only exists as a way to name and refer to the
864  // init-capture.
865  // FIXME: Pass in separate source locations for '&' and identifier.
866  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
867  Loc, Id, InitCaptureType, TSI, SC_Auto);
868  NewVD->setInitCapture(true);
869  NewVD->setReferenced(true);
870  // FIXME: Pass in a VarDecl::InitializationStyle.
871  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
872  NewVD->markUsed(Context);
873  NewVD->setInit(Init);
874  if (NewVD->isParameterPack())
875  getCurLambda()->LocalPacks.push_back(NewVD);
876  return NewVD;
877 }
878 
880  assert(Var->isInitCapture() && "init capture flag should be set");
881  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
882  /*isNested*/false, Var->getLocation(), SourceLocation(),
883  Var->getType(), /*Invalid*/false);
884 }
885 
887  Declarator &ParamInfo,
888  Scope *CurScope) {
889  LambdaScopeInfo *const LSI = getCurLambda();
890  assert(LSI && "LambdaScopeInfo should be on stack!");
891 
892  // Determine if we're within a context where we know that the lambda will
893  // be dependent, because there are template parameters in scope.
894  bool KnownDependent;
895  if (LSI->NumExplicitTemplateParams > 0) {
896  auto *TemplateParamScope = CurScope->getTemplateParamParent();
897  assert(TemplateParamScope &&
898  "Lambda with explicit template param list should establish a "
899  "template param scope");
900  assert(TemplateParamScope->getParent());
901  KnownDependent = TemplateParamScope->getParent()
902  ->getTemplateParamParent() != nullptr;
903  } else {
904  KnownDependent = CurScope->getTemplateParamParent() != nullptr;
905  }
906 
907  // Determine the signature of the call operator.
908  TypeSourceInfo *MethodTyInfo;
909  bool ExplicitParams = true;
910  bool ExplicitResultType = true;
911  bool ContainsUnexpandedParameterPack = false;
912  SourceLocation EndLoc;
914  if (ParamInfo.getNumTypeObjects() == 0) {
915  // C++11 [expr.prim.lambda]p4:
916  // If a lambda-expression does not include a lambda-declarator, it is as
917  // if the lambda-declarator were ().
919  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
920  EPI.HasTrailingReturn = true;
921  EPI.TypeQuals.addConst();
922  LangAS AS = getDefaultCXXMethodAddrSpace();
923  if (AS != LangAS::Default)
924  EPI.TypeQuals.addAddressSpace(AS);
925 
926  // C++1y [expr.prim.lambda]:
927  // The lambda return type is 'auto', which is replaced by the
928  // trailing-return type if provided and/or deduced from 'return'
929  // statements
930  // We don't do this before C++1y, because we don't support deduced return
931  // types there.
932  QualType DefaultTypeForNoTrailingReturn =
933  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
934  : Context.DependentTy;
935  QualType MethodTy =
936  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
937  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
938  ExplicitParams = false;
939  ExplicitResultType = false;
940  EndLoc = Intro.Range.getEnd();
941  } else {
942  assert(ParamInfo.isFunctionDeclarator() &&
943  "lambda-declarator is a function");
945 
946  // C++11 [expr.prim.lambda]p5:
947  // This function call operator is declared const (9.3.1) if and only if
948  // the lambda-expression's parameter-declaration-clause is not followed
949  // by mutable. It is neither virtual nor declared volatile. [...]
950  if (!FTI.hasMutableQualifier()) {
952  SourceLocation());
953  }
954 
955  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
956  assert(MethodTyInfo && "no type from lambda-declarator");
957  EndLoc = ParamInfo.getSourceRange().getEnd();
958 
959  ExplicitResultType = FTI.hasTrailingReturnType();
960 
961  if (FTIHasNonVoidParameters(FTI)) {
962  Params.reserve(FTI.NumParams);
963  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
964  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
965  }
966 
967  // Check for unexpanded parameter packs in the method type.
968  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
969  DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
970  UPPC_DeclarationType);
971  }
972 
973  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
974  KnownDependent, Intro.Default);
975  CXXMethodDecl *Method =
976  startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
977  ParamInfo.getDeclSpec().getConstexprSpecifier(),
978  ParamInfo.getTrailingRequiresClause());
979  if (ExplicitParams)
980  CheckCXXDefaultArguments(Method);
981 
982  // This represents the function body for the lambda function, check if we
983  // have to apply optnone due to a pragma.
984  AddRangeBasedOptnone(Method);
985 
986  // code_seg attribute on lambda apply to the method.
987  if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
988  Method->addAttr(A);
989 
990  // Attributes on the lambda apply to the method.
991  ProcessDeclAttributes(CurScope, Method, ParamInfo);
992 
993  // CUDA lambdas get implicit host and device attributes.
994  if (getLangOpts().CUDA)
995  CUDASetLambdaAttrs(Method);
996 
997  // Number the lambda for linkage purposes if necessary.
998  handleLambdaNumbering(Class, Method);
999 
1000  // Introduce the function call operator as the current declaration context.
1001  PushDeclContext(CurScope, Method);
1002 
1003  // Build the lambda scope.
1004  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1005  ExplicitParams, ExplicitResultType, !Method->isConst());
1006 
1007  // C++11 [expr.prim.lambda]p9:
1008  // A lambda-expression whose smallest enclosing scope is a block scope is a
1009  // local lambda expression; any other lambda expression shall not have a
1010  // capture-default or simple-capture in its lambda-introducer.
1011  //
1012  // For simple-captures, this is covered by the check below that any named
1013  // entity is a variable that can be captured.
1014  //
1015  // For DR1632, we also allow a capture-default in any context where we can
1016  // odr-use 'this' (in particular, in a default initializer for a non-static
1017  // data member).
1018  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1019  (getCurrentThisType().isNull() ||
1020  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1021  /*BuildAndDiagnose*/false)))
1022  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1023 
1024  // Distinct capture names, for diagnostics.
1025  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1026 
1027  // Handle explicit captures.
1028  SourceLocation PrevCaptureLoc
1029  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1030  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1031  PrevCaptureLoc = C->Loc, ++C) {
1032  if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1033  if (C->Kind == LCK_StarThis)
1034  Diag(C->Loc, !getLangOpts().CPlusPlus17
1035  ? diag::ext_star_this_lambda_capture_cxx17
1036  : diag::warn_cxx14_compat_star_this_lambda_capture);
1037 
1038  // C++11 [expr.prim.lambda]p8:
1039  // An identifier or this shall not appear more than once in a
1040  // lambda-capture.
1041  if (LSI->isCXXThisCaptured()) {
1042  Diag(C->Loc, diag::err_capture_more_than_once)
1043  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1045  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1046  continue;
1047  }
1048 
1049  // C++2a [expr.prim.lambda]p8:
1050  // If a lambda-capture includes a capture-default that is =,
1051  // each simple-capture of that lambda-capture shall be of the form
1052  // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1053  // redundant but accepted for compatibility with ISO C++14. --end note ]
1054  if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1055  Diag(C->Loc, !getLangOpts().CPlusPlus20
1056  ? diag::ext_equals_this_lambda_capture_cxx20
1057  : diag::warn_cxx17_compat_equals_this_lambda_capture);
1058 
1059  // C++11 [expr.prim.lambda]p12:
1060  // If this is captured by a local lambda expression, its nearest
1061  // enclosing function shall be a non-static member function.
1062  QualType ThisCaptureType = getCurrentThisType();
1063  if (ThisCaptureType.isNull()) {
1064  Diag(C->Loc, diag::err_this_capture) << true;
1065  continue;
1066  }
1067 
1068  CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1069  /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1070  C->Kind == LCK_StarThis);
1071  if (!LSI->Captures.empty())
1072  LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1073  continue;
1074  }
1075 
1076  assert(C->Id && "missing identifier for capture");
1077 
1078  if (C->Init.isInvalid())
1079  continue;
1080 
1081  VarDecl *Var = nullptr;
1082  if (C->Init.isUsable()) {
1083  Diag(C->Loc, getLangOpts().CPlusPlus14
1084  ? diag::warn_cxx11_compat_init_capture
1085  : diag::ext_init_capture);
1086 
1087  // If the initializer expression is usable, but the InitCaptureType
1088  // is not, then an error has occurred - so ignore the capture for now.
1089  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1090  // FIXME: we should create the init capture variable and mark it invalid
1091  // in this case.
1092  if (C->InitCaptureType.get().isNull())
1093  continue;
1094 
1095  if (C->Init.get()->containsUnexpandedParameterPack() &&
1096  !C->InitCaptureType.get()->getAs<PackExpansionType>())
1097  DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1098 
1099  unsigned InitStyle;
1100  switch (C->InitKind) {
1102  llvm_unreachable("not an init-capture?");
1104  InitStyle = VarDecl::CInit;
1105  break;
1107  InitStyle = VarDecl::CallInit;
1108  break;
1110  InitStyle = VarDecl::ListInit;
1111  break;
1112  }
1113  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1114  C->EllipsisLoc, C->Id, InitStyle,
1115  C->Init.get());
1116  // C++1y [expr.prim.lambda]p11:
1117  // An init-capture behaves as if it declares and explicitly
1118  // captures a variable [...] whose declarative region is the
1119  // lambda-expression's compound-statement
1120  if (Var)
1121  PushOnScopeChains(Var, CurScope, false);
1122  } else {
1123  assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1124  "init capture has valid but null init?");
1125 
1126  // C++11 [expr.prim.lambda]p8:
1127  // If a lambda-capture includes a capture-default that is &, the
1128  // identifiers in the lambda-capture shall not be preceded by &.
1129  // If a lambda-capture includes a capture-default that is =, [...]
1130  // each identifier it contains shall be preceded by &.
1131  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1132  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1134  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1135  continue;
1136  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1137  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1139  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1140  continue;
1141  }
1142 
1143  // C++11 [expr.prim.lambda]p10:
1144  // The identifiers in a capture-list are looked up using the usual
1145  // rules for unqualified name lookup (3.4.1)
1146  DeclarationNameInfo Name(C->Id, C->Loc);
1147  LookupResult R(*this, Name, LookupOrdinaryName);
1148  LookupName(R, CurScope);
1149  if (R.isAmbiguous())
1150  continue;
1151  if (R.empty()) {
1152  // FIXME: Disable corrections that would add qualification?
1153  CXXScopeSpec ScopeSpec;
1154  DeclFilterCCC<VarDecl> Validator{};
1155  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1156  continue;
1157  }
1158 
1159  Var = R.getAsSingle<VarDecl>();
1160  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1161  continue;
1162  }
1163 
1164  // C++11 [expr.prim.lambda]p8:
1165  // An identifier or this shall not appear more than once in a
1166  // lambda-capture.
1167  if (!CaptureNames.insert(C->Id).second) {
1168  if (Var && LSI->isCaptured(Var)) {
1169  Diag(C->Loc, diag::err_capture_more_than_once)
1170  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1172  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1173  } else
1174  // Previous capture captured something different (one or both was
1175  // an init-cpature): no fixit.
1176  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1177  continue;
1178  }
1179 
1180  // C++11 [expr.prim.lambda]p10:
1181  // [...] each such lookup shall find a variable with automatic storage
1182  // duration declared in the reaching scope of the local lambda expression.
1183  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1184  if (!Var) {
1185  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1186  continue;
1187  }
1188 
1189  // Ignore invalid decls; they'll just confuse the code later.
1190  if (Var->isInvalidDecl())
1191  continue;
1192 
1193  if (!Var->hasLocalStorage()) {
1194  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1195  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1196  continue;
1197  }
1198 
1199  // C++11 [expr.prim.lambda]p23:
1200  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1201  SourceLocation EllipsisLoc;
1202  if (C->EllipsisLoc.isValid()) {
1203  if (Var->isParameterPack()) {
1204  EllipsisLoc = C->EllipsisLoc;
1205  } else {
1206  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1207  << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1208  : SourceRange(C->Loc));
1209 
1210  // Just ignore the ellipsis.
1211  }
1212  } else if (Var->isParameterPack()) {
1213  ContainsUnexpandedParameterPack = true;
1214  }
1215 
1216  if (C->Init.isUsable()) {
1217  addInitCapture(LSI, Var);
1218  } else {
1219  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1220  TryCapture_ExplicitByVal;
1221  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1222  }
1223  if (!LSI->Captures.empty())
1224  LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1225  }
1226  finishLambdaExplicitCaptures(LSI);
1227 
1228  LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1229 
1230  // Add lambda parameters into scope.
1231  addLambdaParameters(Intro.Captures, Method, CurScope);
1232 
1233  // Enter a new evaluation context to insulate the lambda from any
1234  // cleanups from the enclosing full-expression.
1235  PushExpressionEvaluationContext(
1236  LSI->CallOperator->isConsteval()
1237  ? ExpressionEvaluationContext::ConstantEvaluated
1238  : ExpressionEvaluationContext::PotentiallyEvaluated);
1239 }
1240 
1242  bool IsInstantiation) {
1243  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1244 
1245  // Leave the expression-evaluation context.
1246  DiscardCleanupsInEvaluationContext();
1247  PopExpressionEvaluationContext();
1248 
1249  // Leave the context of the lambda.
1250  if (!IsInstantiation)
1251  PopDeclContext();
1252 
1253  // Finalize the lambda.
1254  CXXRecordDecl *Class = LSI->Lambda;
1255  Class->setInvalidDecl();
1256  SmallVector<Decl*, 4> Fields(Class->fields());
1257  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1259  CheckCompletedCXXClass(nullptr, Class);
1260 
1261  PopFunctionScopeInfo();
1262 }
1263 
1265  const FunctionProtoType *CallOpProto) {
1266  // The function type inside the pointer type is the same as the call
1267  // operator with some tweaks. The calling convention is the default free
1268  // function convention, and the type qualifications are lost.
1269  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1270  CallOpProto->getExtProtoInfo();
1271  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1273  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1274  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1275  InvokerExtInfo.TypeQuals = Qualifiers();
1276  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1277  "Lambda's call operator should not have a reference qualifier");
1278  return Context.getFunctionType(CallOpProto->getReturnType(),
1279  CallOpProto->getParamTypes(), InvokerExtInfo);
1280 }
1281 
1282 /// Add a lambda's conversion to function pointer, as described in
1283 /// C++11 [expr.prim.lambda]p6.
1285  SourceRange IntroducerRange,
1286  CXXRecordDecl *Class,
1287  CXXMethodDecl *CallOperator) {
1288  // This conversion is explicitly disabled if the lambda's function has
1289  // pass_object_size attributes on any of its parameters.
1290  auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1291  return P->hasAttr<PassObjectSizeAttr>();
1292  };
1293  if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1294  return;
1295 
1296  // Add the conversion to function pointer.
1297  QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType(
1298  CallOperator->getType()->castAs<FunctionProtoType>());
1299  QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1300 
1301  // Create the type of the conversion function.
1302  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1304  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1305  // The conversion function is always const and noexcept.
1306  ConvExtInfo.TypeQuals = Qualifiers();
1307  ConvExtInfo.TypeQuals.addConst();
1308  ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1309  QualType ConvTy =
1310  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1311 
1312  SourceLocation Loc = IntroducerRange.getBegin();
1313  DeclarationName ConversionName
1315  S.Context.getCanonicalType(PtrToFunctionTy));
1316  DeclarationNameLoc ConvNameLoc;
1317  // Construct a TypeSourceInfo for the conversion function, and wire
1318  // all the parameters appropriately for the FunctionProtoTypeLoc
1319  // so that everything works during transformation/instantiation of
1320  // generic lambdas.
1321  // The main reason for wiring up the parameters of the conversion
1322  // function with that of the call operator is so that constructs
1323  // like the following work:
1324  // auto L = [](auto b) { <-- 1
1325  // return [](auto a) -> decltype(a) { <-- 2
1326  // return a;
1327  // };
1328  // };
1329  // int (*fp)(int) = L(5);
1330  // Because the trailing return type can contain DeclRefExprs that refer
1331  // to the original call operator's variables, we hijack the call
1332  // operators ParmVarDecls below.
1333  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1334  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1335  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1336 
1337  // The conversion function is a conversion to a pointer-to-function.
1338  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1339  FunctionProtoTypeLoc ConvTL =
1340  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1341  // Get the result of the conversion function which is a pointer-to-function.
1342  PointerTypeLoc PtrToFunctionTL =
1343  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1344  // Do the same for the TypeSourceInfo that is used to name the conversion
1345  // operator.
1346  PointerTypeLoc ConvNamePtrToFunctionTL =
1347  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1348 
1349  // Get the underlying function types that the conversion function will
1350  // be converting to (should match the type of the call operator).
1351  FunctionProtoTypeLoc CallOpConvTL =
1352  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1353  FunctionProtoTypeLoc CallOpConvNameTL =
1354  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1355 
1356  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1357  // These parameter's are essentially used to transform the name and
1358  // the type of the conversion operator. By using the same parameters
1359  // as the call operator's we don't have to fix any back references that
1360  // the trailing return type of the call operator's uses (such as
1361  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1362  // - we can simply use the return type of the call operator, and
1363  // everything should work.
1364  SmallVector<ParmVarDecl *, 4> InvokerParams;
1365  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1366  ParmVarDecl *From = CallOperator->getParamDecl(I);
1367 
1368  InvokerParams.push_back(ParmVarDecl::Create(
1369  S.Context,
1370  // Temporarily add to the TU. This is set to the invoker below.
1372  From->getLocation(), From->getIdentifier(), From->getType(),
1373  From->getTypeSourceInfo(), From->getStorageClass(),
1374  /*DefArg=*/nullptr));
1375  CallOpConvTL.setParam(I, From);
1376  CallOpConvNameTL.setParam(I, From);
1377  }
1378 
1380  S.Context, Class, Loc,
1381  DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1382  /*isInline=*/true, ExplicitSpecifier(),
1383  S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified,
1384  CallOperator->getBody()->getEndLoc());
1385  Conversion->setAccess(AS_public);
1386  Conversion->setImplicit(true);
1387 
1388  if (Class->isGenericLambda()) {
1389  // Create a template version of the conversion operator, using the template
1390  // parameter list of the function call operator.
1391  FunctionTemplateDecl *TemplateCallOperator =
1392  CallOperator->getDescribedFunctionTemplate();
1393  FunctionTemplateDecl *ConversionTemplate =
1395  Loc, ConversionName,
1396  TemplateCallOperator->getTemplateParameters(),
1397  Conversion);
1398  ConversionTemplate->setAccess(AS_public);
1399  ConversionTemplate->setImplicit(true);
1400  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1401  Class->addDecl(ConversionTemplate);
1402  } else
1403  Class->addDecl(Conversion);
1404  // Add a non-static member function that will be the result of
1405  // the conversion with a certain unique ID.
1406  DeclarationName InvokerName = &S.Context.Idents.get(
1408  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1409  // we should get a prebuilt TrivialTypeSourceInfo from Context
1410  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1411  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1412  // loop below and then use its Params to set Invoke->setParams(...) below.
1413  // This would avoid the 'const' qualifier of the calloperator from
1414  // contaminating the type of the invoker, which is currently adjusted
1415  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1416  // trailing return type of the invoker would require a visitor to rebuild
1417  // the trailing return type and adjusting all back DeclRefExpr's to refer
1418  // to the new static invoker parameters - not the call operator's.
1420  S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1421  InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1422  /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc());
1423  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1424  InvokerParams[I]->setOwningFunction(Invoke);
1425  Invoke->setParams(InvokerParams);
1426  Invoke->setAccess(AS_private);
1427  Invoke->setImplicit(true);
1428  if (Class->isGenericLambda()) {
1429  FunctionTemplateDecl *TemplateCallOperator =
1430  CallOperator->getDescribedFunctionTemplate();
1431  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1432  S.Context, Class, Loc, InvokerName,
1433  TemplateCallOperator->getTemplateParameters(),
1434  Invoke);
1435  StaticInvokerTemplate->setAccess(AS_private);
1436  StaticInvokerTemplate->setImplicit(true);
1437  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1438  Class->addDecl(StaticInvokerTemplate);
1439  } else
1440  Class->addDecl(Invoke);
1441 }
1442 
1443 /// Add a lambda's conversion to block pointer.
1445  SourceRange IntroducerRange,
1446  CXXRecordDecl *Class,
1447  CXXMethodDecl *CallOperator) {
1449  CallOperator->getType()->castAs<FunctionProtoType>());
1450  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1451 
1452  FunctionProtoType::ExtProtoInfo ConversionEPI(
1454  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1455  ConversionEPI.TypeQuals = Qualifiers();
1456  ConversionEPI.TypeQuals.addConst();
1457  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1458 
1459  SourceLocation Loc = IntroducerRange.getBegin();
1460  DeclarationName Name
1462  S.Context.getCanonicalType(BlockPtrTy));
1463  DeclarationNameLoc NameLoc;
1464  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1466  S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1467  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1468  /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified,
1469  CallOperator->getBody()->getEndLoc());
1470  Conversion->setAccess(AS_public);
1471  Conversion->setImplicit(true);
1472  Class->addDecl(Conversion);
1473 }
1474 
1476  SourceLocation ImplicitCaptureLoc,
1477  bool IsOpenMPMapping) {
1478  // VLA captures don't have a stored initialization expression.
1479  if (Cap.isVLATypeCapture())
1480  return ExprResult();
1481 
1482  // An init-capture is initialized directly from its stored initializer.
1483  if (Cap.isInitCapture())
1484  return Cap.getVariable()->getInit();
1485 
1486  // For anything else, build an initialization expression. For an implicit
1487  // capture, the capture notionally happens at the capture-default, so use
1488  // that location here.
1489  SourceLocation Loc =
1490  ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1491 
1492  // C++11 [expr.prim.lambda]p21:
1493  // When the lambda-expression is evaluated, the entities that
1494  // are captured by copy are used to direct-initialize each
1495  // corresponding non-static data member of the resulting closure
1496  // object. (For array members, the array elements are
1497  // direct-initialized in increasing subscript order.) These
1498  // initializations are performed in the (unspecified) order in
1499  // which the non-static data members are declared.
1500 
1501  // C++ [expr.prim.lambda]p12:
1502  // An entity captured by a lambda-expression is odr-used (3.2) in
1503  // the scope containing the lambda-expression.
1504  ExprResult Init;
1505  IdentifierInfo *Name = nullptr;
1506  if (Cap.isThisCapture()) {
1507  QualType ThisTy = getCurrentThisType();
1508  Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1509  if (Cap.isCopyCapture())
1510  Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1511  else
1512  Init = This;
1513  } else {
1514  assert(Cap.isVariableCapture() && "unknown kind of capture");
1515  VarDecl *Var = Cap.getVariable();
1516  Name = Var->getIdentifier();
1517  Init = BuildDeclarationNameExpr(
1518  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1519  }
1520 
1521  // In OpenMP, the capture kind doesn't actually describe how to capture:
1522  // variables are "mapped" onto the device in a process that does not formally
1523  // make a copy, even for a "copy capture".
1524  if (IsOpenMPMapping)
1525  return Init;
1526 
1527  if (Init.isInvalid())
1528  return ExprError();
1529 
1530  Expr *InitExpr = Init.get();
1532  Name, Cap.getCaptureType(), Loc);
1533  InitializationKind InitKind =
1534  InitializationKind::CreateDirect(Loc, Loc, Loc);
1535  InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1536  return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1537 }
1538 
1540  Scope *CurScope) {
1541  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1542  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1543  return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1544 }
1545 
1546 static LambdaCaptureDefault
1548  switch (ICS) {
1550  return LCD_None;
1552  return LCD_ByCopy;
1555  return LCD_ByRef;
1557  llvm_unreachable("block capture in lambda");
1558  }
1559  llvm_unreachable("Unknown implicit capture style");
1560 }
1561 
1563  if (From.isInitCapture()) {
1564  Expr *Init = From.getVariable()->getInit();
1565  if (Init && Init->HasSideEffects(Context))
1566  return true;
1567  }
1568 
1569  if (!From.isCopyCapture())
1570  return false;
1571 
1572  const QualType T = From.isThisCapture()
1573  ? getCurrentThisType()->getPointeeType()
1574  : From.getCaptureType();
1575 
1576  if (T.isVolatileQualified())
1577  return true;
1578 
1579  const Type *BaseT = T->getBaseElementTypeUnsafe();
1580  if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1581  return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1582  !RD->hasTrivialDestructor();
1583 
1584  return false;
1585 }
1586 
1588  const Capture &From) {
1589  if (CaptureHasSideEffects(From))
1590  return false;
1591 
1592  if (From.isVLATypeCapture())
1593  return false;
1594 
1595  auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1596  if (From.isThisCapture())
1597  diag << "'this'";
1598  else
1599  diag << From.getVariable();
1600  diag << From.isNonODRUsed();
1601  diag << FixItHint::CreateRemoval(CaptureRange);
1602  return true;
1603 }
1604 
1605 /// Create a field within the lambda class or captured statement record for the
1606 /// given capture.
1608  const sema::Capture &Capture) {
1609  SourceLocation Loc = Capture.getLocation();
1610  QualType FieldType = Capture.getCaptureType();
1611 
1612  TypeSourceInfo *TSI = nullptr;
1613  if (Capture.isVariableCapture()) {
1614  auto *Var = Capture.getVariable();
1615  if (Var->isInitCapture())
1616  TSI = Capture.getVariable()->getTypeSourceInfo();
1617  }
1618 
1619  // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1620  // appropriate, at least for an implicit capture.
1621  if (!TSI)
1622  TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1623 
1624  // Build the non-static data member.
1625  FieldDecl *Field =
1626  FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr,
1627  false, ICIS_NoInit);
1628  // If the variable being captured has an invalid type, mark the class as
1629  // invalid as well.
1630  if (!FieldType->isDependentType()) {
1631  if (RequireCompleteSizedType(Loc, FieldType,
1632  diag::err_field_incomplete_or_sizeless)) {
1633  RD->setInvalidDecl();
1634  Field->setInvalidDecl();
1635  } else {
1636  NamedDecl *Def;
1637  FieldType->isIncompleteType(&Def);
1638  if (Def && Def->isInvalidDecl()) {
1639  RD->setInvalidDecl();
1640  Field->setInvalidDecl();
1641  }
1642  }
1643  }
1644  Field->setImplicit(true);
1645  Field->setAccess(AS_private);
1646  RD->addDecl(Field);
1647 
1648  if (Capture.isVLATypeCapture())
1649  Field->setCapturedVLAType(Capture.getCapturedVLAType());
1650 
1651  return Field;
1652 }
1653 
1655  LambdaScopeInfo *LSI) {
1656  // Collect information from the lambda scope.
1658  SmallVector<Expr *, 4> CaptureInits;
1659  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1660  LambdaCaptureDefault CaptureDefault =
1662  CXXRecordDecl *Class;
1663  CXXMethodDecl *CallOperator;
1664  SourceRange IntroducerRange;
1665  bool ExplicitParams;
1666  bool ExplicitResultType;
1667  CleanupInfo LambdaCleanup;
1668  bool ContainsUnexpandedParameterPack;
1669  bool IsGenericLambda;
1670  {
1671  CallOperator = LSI->CallOperator;
1672  Class = LSI->Lambda;
1673  IntroducerRange = LSI->IntroducerRange;
1674  ExplicitParams = LSI->ExplicitParams;
1675  ExplicitResultType = !LSI->HasImplicitReturnType;
1676  LambdaCleanup = LSI->Cleanup;
1677  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1678  IsGenericLambda = Class->isGenericLambda();
1679 
1680  CallOperator->setLexicalDeclContext(Class);
1681  Decl *TemplateOrNonTemplateCallOperatorDecl =
1682  CallOperator->getDescribedFunctionTemplate()
1683  ? CallOperator->getDescribedFunctionTemplate()
1684  : cast<Decl>(CallOperator);
1685 
1686  // FIXME: Is this really the best choice? Keeping the lexical decl context
1687  // set as CurContext seems more faithful to the source.
1688  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1689 
1690  PopExpressionEvaluationContext();
1691 
1692  // True if the current capture has a used capture or default before it.
1693  bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1694  SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1695  CaptureDefaultLoc : IntroducerRange.getBegin();
1696 
1697  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1698  const Capture &From = LSI->Captures[I];
1699 
1700  if (From.isInvalid())
1701  return ExprError();
1702 
1703  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1704  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1705  SourceLocation ImplicitCaptureLoc =
1706  IsImplicit ? CaptureDefaultLoc : SourceLocation();
1707 
1708  // Use source ranges of explicit captures for fixits where available.
1709  SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1710 
1711  // Warn about unused explicit captures.
1712  bool IsCaptureUsed = true;
1713  if (!CurContext->isDependentContext() && !IsImplicit &&
1714  !From.isODRUsed()) {
1715  // Initialized captures that are non-ODR used may not be eliminated.
1716  // FIXME: Where did the IsGenericLambda here come from?
1717  bool NonODRUsedInitCapture =
1718  IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1719  if (!NonODRUsedInitCapture) {
1720  bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1721  SourceRange FixItRange;
1722  if (CaptureRange.isValid()) {
1723  if (!CurHasPreviousCapture && !IsLast) {
1724  // If there are no captures preceding this capture, remove the
1725  // following comma.
1726  FixItRange = SourceRange(CaptureRange.getBegin(),
1727  getLocForEndOfToken(CaptureRange.getEnd()));
1728  } else {
1729  // Otherwise, remove the comma since the last used capture.
1730  FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1731  CaptureRange.getEnd());
1732  }
1733  }
1734 
1735  IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1736  }
1737  }
1738 
1739  if (CaptureRange.isValid()) {
1740  CurHasPreviousCapture |= IsCaptureUsed;
1741  PrevCaptureLoc = CaptureRange.getEnd();
1742  }
1743 
1744  // Map the capture to our AST representation.
1745  LambdaCapture Capture = [&] {
1746  if (From.isThisCapture()) {
1747  // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1748  // because it results in a reference capture. Don't warn prior to
1749  // C++2a; there's nothing that can be done about it before then.
1750  if (getLangOpts().CPlusPlus20 && IsImplicit &&
1751  CaptureDefault == LCD_ByCopy) {
1752  Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1753  Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1755  getLocForEndOfToken(CaptureDefaultLoc), ", this");
1756  }
1757  return LambdaCapture(From.getLocation(), IsImplicit,
1758  From.isCopyCapture() ? LCK_StarThis : LCK_This);
1759  } else if (From.isVLATypeCapture()) {
1760  return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1761  } else {
1762  assert(From.isVariableCapture() && "unknown kind of capture");
1763  VarDecl *Var = From.getVariable();
1765  From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1766  return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1767  From.getEllipsisLoc());
1768  }
1769  }();
1770 
1771  // Form the initializer for the capture field.
1772  ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1773 
1774  // FIXME: Skip this capture if the capture is not used, the initializer
1775  // has no side-effects, the type of the capture is trivial, and the
1776  // lambda is not externally visible.
1777 
1778  // Add a FieldDecl for the capture and form its initializer.
1779  BuildCaptureField(Class, From);
1780  Captures.push_back(Capture);
1781  CaptureInits.push_back(Init.get());
1782 
1783  if (LangOpts.CUDA)
1784  CUDACheckLambdaCapture(CallOperator, From);
1785  }
1786 
1787  Class->setCaptures(Captures);
1788 
1789  // C++11 [expr.prim.lambda]p6:
1790  // The closure type for a lambda-expression with no lambda-capture
1791  // has a public non-virtual non-explicit const conversion function
1792  // to pointer to function having the same parameter and return
1793  // types as the closure type's function call operator.
1794  if (Captures.empty() && CaptureDefault == LCD_None)
1795  addFunctionPointerConversion(*this, IntroducerRange, Class,
1796  CallOperator);
1797 
1798  // Objective-C++:
1799  // The closure type for a lambda-expression has a public non-virtual
1800  // non-explicit const conversion function to a block pointer having the
1801  // same parameter and return types as the closure type's function call
1802  // operator.
1803  // FIXME: Fix generic lambda to block conversions.
1804  if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1805  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1806 
1807  // Finalize the lambda class.
1808  SmallVector<Decl*, 4> Fields(Class->fields());
1809  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1811  CheckCompletedCXXClass(nullptr, Class);
1812  }
1813 
1814  Cleanup.mergeFrom(LambdaCleanup);
1815 
1816  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1817  CaptureDefault, CaptureDefaultLoc,
1818  ExplicitParams, ExplicitResultType,
1819  CaptureInits, EndLoc,
1820  ContainsUnexpandedParameterPack);
1821  // If the lambda expression's call operator is not explicitly marked constexpr
1822  // and we are not in a dependent context, analyze the call operator to infer
1823  // its constexpr-ness, suppressing diagnostics while doing so.
1824  if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1825  !CallOperator->isConstexpr() &&
1826  !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1827  !Class->getDeclContext()->isDependentContext()) {
1828  CallOperator->setConstexprKind(
1829  CheckConstexprFunctionDefinition(CallOperator,
1830  CheckConstexprKind::CheckValid)
1831  ? CSK_constexpr
1832  : CSK_unspecified);
1833  }
1834 
1835  // Emit delayed shadowing warnings now that the full capture list is known.
1836  DiagnoseShadowingLambdaDecls(LSI);
1837 
1838  if (!CurContext->isDependentContext()) {
1839  switch (ExprEvalContexts.back().Context) {
1840  // C++11 [expr.prim.lambda]p2:
1841  // A lambda-expression shall not appear in an unevaluated operand
1842  // (Clause 5).
1843  case ExpressionEvaluationContext::Unevaluated:
1844  case ExpressionEvaluationContext::UnevaluatedList:
1845  case ExpressionEvaluationContext::UnevaluatedAbstract:
1846  // C++1y [expr.const]p2:
1847  // A conditional-expression e is a core constant expression unless the
1848  // evaluation of e, following the rules of the abstract machine, would
1849  // evaluate [...] a lambda-expression.
1850  //
1851  // This is technically incorrect, there are some constant evaluated contexts
1852  // where this should be allowed. We should probably fix this when DR1607 is
1853  // ratified, it lays out the exact set of conditions where we shouldn't
1854  // allow a lambda-expression.
1855  case ExpressionEvaluationContext::ConstantEvaluated:
1856  // We don't actually diagnose this case immediately, because we
1857  // could be within a context where we might find out later that
1858  // the expression is potentially evaluated (e.g., for typeid).
1859  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1860  break;
1861 
1862  case ExpressionEvaluationContext::DiscardedStatement:
1863  case ExpressionEvaluationContext::PotentiallyEvaluated:
1864  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1865  break;
1866  }
1867  }
1868 
1869  return MaybeBindToTemporary(Lambda);
1870 }
1871 
1873  SourceLocation ConvLocation,
1874  CXXConversionDecl *Conv,
1875  Expr *Src) {
1876  // Make sure that the lambda call operator is marked used.
1877  CXXRecordDecl *Lambda = Conv->getParent();
1878  CXXMethodDecl *CallOperator
1879  = cast<CXXMethodDecl>(
1880  Lambda->lookup(
1881  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1882  CallOperator->setReferenced();
1883  CallOperator->markUsed(Context);
1884 
1885  ExprResult Init = PerformCopyInitialization(
1887  /*NRVO=*/false),
1888  CurrentLocation, Src);
1889  if (!Init.isInvalid())
1890  Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1891 
1892  if (Init.isInvalid())
1893  return ExprError();
1894 
1895  // Create the new block to be returned.
1896  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1897 
1898  // Set the type information.
1899  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1900  Block->setIsVariadic(CallOperator->isVariadic());
1901  Block->setBlockMissingReturnType(false);
1902 
1903  // Add parameters.
1904  SmallVector<ParmVarDecl *, 4> BlockParams;
1905  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1906  ParmVarDecl *From = CallOperator->getParamDecl(I);
1907  BlockParams.push_back(ParmVarDecl::Create(
1908  Context, Block, From->getBeginLoc(), From->getLocation(),
1909  From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1910  From->getStorageClass(),
1911  /*DefArg=*/nullptr));
1912  }
1913  Block->setParams(BlockParams);
1914 
1915  Block->setIsConversionFromLambda(true);
1916 
1917  // Add capture. The capture uses a fake variable, which doesn't correspond
1918  // to any actual memory location. However, the initializer copy-initializes
1919  // the lambda object.
1920  TypeSourceInfo *CapVarTSI =
1921  Context.getTrivialTypeSourceInfo(Src->getType());
1922  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1923  ConvLocation, nullptr,
1924  Src->getType(), CapVarTSI,
1925  SC_None);
1926  BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
1927  /*nested=*/false, /*copy=*/Init.get());
1928  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1929 
1930  // Add a fake function body to the block. IR generation is responsible
1931  // for filling in the actual body, which cannot be expressed as an AST.
1932  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1933 
1934  // Create the block literal expression.
1935  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1936  ExprCleanupObjects.push_back(Block);
1937  Cleanup.setExprNeedsCleanups(true);
1938 
1939  return BuildBlock;
1940 }
void setImplicit(bool I=true)
Definition: DeclBase.h:564
Represents a function declaration or definition.
Definition: Decl.h:1783
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:816
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2312
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
SourceLocation getBeginLoc() const
Definition: Stmt.h:2736
A class which contains all the information about a particular captured value.
Definition: Decl.h:4070
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
A (possibly-)qualified type.
Definition: Type.h:655
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:830
virtual unsigned getManglingNumber(const CXXMethodDecl *CallOperator)=0
Retrieve the mangling number of a new lambda expression with the given call operator within this cont...
TemplateParameterList * GLTemplateParameterList
If this is a generic lambda, and the template parameter list has been created (from the TemplateParam...
Definition: ScopeInfo.h:847
bool SetTypeQual(TQ T, SourceLocation Loc)
Definition: DeclSpec.cpp:957
Stmt - This represents one statement.
Definition: Stmt.h:68
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2961
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:672
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1029
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2198
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
Returns the name of a C++ conversion function for the given Type.
QualType getCaptureType() const
Retrieve the capture type for this capture, which is effectively the type of the non-static data memb...
Definition: ScopeInfo.h:638
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:89
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4218
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:22
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
StringRef P
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
bool isCopyCapture() const
Definition: ScopeInfo.h:597
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
The base class of the type hierarchy.
Definition: Type.h:1472
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4578
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2281
A container of type source information.
Definition: Type.h:6373
SmallVector< NamedDecl *, 4 > TemplateParams
Store the list of the template parameters for a generic lambda or an abbreviated function template...
Definition: DeclSpec.h:2696
Store information needed for an explicit specifier.
Definition: DeclCXX.h:1816
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2781
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1295
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:25
This file provides some common utility functions for processing Lambda related AST Constructs...
bool isODRUsed() const
Definition: ScopeInfo.h:609
Represents a variable declaration or definition.
Definition: Decl.h:820
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, const sema::Capture &From)
Diagnose if an explicit lambda capture is unused.
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1791
QualType getReturnType() const
Definition: Decl.h:2456
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, IdentifierInfo *Id, unsigned InitStyle, Expr *Init)
Create a dummy variable within the declcontext of the lambda&#39;s call operator, for name lookup purpose...
Definition: SemaLambda.cpp:851
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:7153
bool This(InterpState &S, CodePtr OpPC)
Definition: Interp.h:827
Extra information about a function prototype.
Definition: Type.h:3969
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
bool isAmbiguous() const
Definition: Lookup.h:301
bool isInvalidDecl() const
Definition: DeclBase.h:558
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:69
static InitializationKind CreateDirectList(SourceLocation InitLoc)
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:17187
bool CaptureHasSideEffects(const sema::Capture &From)
Does copying/destroying the captured variable have side effects?
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3295
Represents a parameter to a function.
Definition: Decl.h:1595
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:241
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:144
tok::TokenKind ContextKind
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:36
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:244
Represents a struct/union/class.
Definition: Decl.h:3770
Scope * getTemplateParamParent()
Definition: Scope.h:262
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3970
One of these records is kept for each identifier that is lexed.
bool isConst() const
Definition: DeclCXX.h:2002
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:2045
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:174
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:4103
field_range fields() const
Definition: Decl.h:3990
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:275
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:33
Represents a member of a struct/union/class.
Definition: Decl.h:2746
bool isReferenceType() const
Definition: Type.h:6662
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1940
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.h:2433
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:723
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:145
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:836
IdentifierTable & Idents
Definition: ASTContext.h:584
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:127
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2402
DeclClass * getAsSingle() const
Definition: Lookup.h:507
bool isThisCapture() const
Definition: ScopeInfo.h:592
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:527
Represents the results of name lookup.
Definition: Lookup.h:46
PtrTy get() const
Definition: Ownership.h:170
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition: Decl.cpp:2881
< Capturing the *this object by copy
Definition: Lambda.h:36
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
static InitializedEntity InitializeLambdaToBlock(SourceLocation BlockVarLoc, QualType Type, bool NRVO)
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3575
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr, bool ByCopy=false)
Make sure the value of &#39;this&#39; is actually available in the current context, if it is a potentially ev...
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2219
const VariableArrayType * getCapturedVLAType() const
Definition: ScopeInfo.h:623
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1904
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3632
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6472
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:890
llvm::Error Error
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:81
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence...
Definition: SemaInit.cpp:7799
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Add an init-capture to a lambda scope.
Definition: SemaLambda.cpp:879
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause=nullptr)
Definition: DeclCXX.cpp:2123
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt *> returns)
Attempt to find a common type T for which all of the returned expressions in a block are enumerator-l...
Definition: SemaLambda.cpp:646
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl *> Params, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:359
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:3445
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:64
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1822
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1967
const LangOptions & getLangOpts() const
Definition: Sema.h:1430
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
ExprResult BuildCaptureInit(const sema::Capture &Capture, SourceLocation ImplicitCaptureLoc, bool IsOpenMPMapping=false)
Initialize the given capture with a suitable expression.
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:22
QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType)
Get the return type to use for a lambda&#39;s conversion function(s) to function pointer type...
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda&#39;s conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
void addLambdaParameters(ArrayRef< LambdaIntroducer::LambdaCapture > Captures, CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:538
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod, bool IsBuiltin=false) const
Retrieves the default calling convention for the current target.
CleanupInfo Cleanup
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:833
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1661
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3773
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:651
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1933
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3970
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:340
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1364
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:827
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1758
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:193
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3886
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr *> CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:1127
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1887
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:587
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:517
SourceLocation getEllipsisLoc() const
Retrieve the source location of the ellipsis, whose presence indicates that the capture is a pack exp...
Definition: ScopeInfo.h:633
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2660
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:882
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:824
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
bool isVariableCapture() const
Definition: ScopeInfo.h:593
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3392
bool isConsteval() const
Definition: Decl.h:2210
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:421
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1832
CXXMethodDecl * CallOperator
The lambda&#39;s compiler-generated operator().
Definition: ScopeInfo.h:813
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4064
bool isInvalid() const
Definition: ScopeInfo.h:604
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed...
This represents one expression.
Definition: Expr.h:110
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2814
int Id
Definition: ASTDiff.cpp:191
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1045
This file defines the classes used to store parsed information about declaration-specifiers and decla...
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7218
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5784
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:88
void setInit(Expr *I)
Definition: Decl.cpp:2270
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
void setRetValue(Expr *E)
Definition: Stmt.h:2712
bool isFileContext() const
Definition: DeclBase.h:1886
DeclContext * getDeclContext()
Definition: DeclBase.h:439
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:228
llvm::DenseMap< unsigned, SourceRange > ExplicitCaptureRanges
A map of explicit capture indices to their introducer source ranges.
Definition: ScopeInfo.h:871
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:482
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:701
QualType getType() const
Definition: Expr.h:142
bool isFunctionOrMethod() const
Definition: DeclBase.h:1868
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:710
Direct list-initialization (C++11)
Definition: Decl.h:831
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:263
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1816
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:2677
bool isInvalid() const
Definition: Ownership.h:166
SourceLocation getEnd() const
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1360
struct CXXOpName CXXOperatorName
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1140
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4947
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:7076
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2743
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1376
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:629
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:720
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:270
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1435
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl *> Params, SourceLocation RAngleLoc, Expr *RequiresClause)
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:287
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
ConstexprSpecKind getConstexprSpecifier() const
Definition: DeclSpec.h:759
void setIsVariadic(bool value)
Definition: Decl.h:4140
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
QualType getPackExpansionType(QualType Pattern, Optional< unsigned > NumExpansions)
void setIsConversionFromLambda(bool val=true)
Definition: Decl.h:4211
SourceLocation DefaultLoc
Definition: DeclSpec.h:2658
Kind
bool hasWeakerNullability(NullabilityKind L, NullabilityKind R)
Return true if L has a weaker nullability annotation than R.
Definition: Specifiers.h:334
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:153
VarDecl * getVariable() const
Definition: ScopeInfo.h:618
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:4107
unsigned getNumExprs() const
Return the number of expressions in this paren list.
Definition: Expr.h:5377
Encodes a location in the source.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
QualType getReturnType() const
Definition: Type.h:3810
Expr * getRetValue()
Definition: Stmt.h:2710
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4643
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:810
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo *> FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
SourceRange ExplicitTemplateParamsRange
Source range covering the explicit template parameter list (if it exists).
Definition: ScopeInfo.h:842
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:273
void setReferenced(bool R=true)
Definition: DeclBase.h:593
unsigned NumExplicitTemplateParams
The number of parameters in the template parameter list that were explicitly specified by the user...
Definition: DeclSpec.h:2683
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl, bool HasKnownInternalLinkage=false)
Set the mangling number and context declaration for a lambda class.
Definition: DeclCXX.h:1759
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1960
void handleLambdaNumbering(CXXRecordDecl *Class, CXXMethodDecl *Method, Optional< std::tuple< unsigned, bool, Decl *>> Mangling=None)
Number lambda for linkage purposes if necessary.
Definition: SemaLambda.cpp:433
No ref-qualifier was provided.
Definition: Type.h:1425
C-style initialization with assignment.
Definition: Decl.h:825
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2425
bool isVLATypeCapture() const
Definition: ScopeInfo.h:600
CanQualType VoidTy
Definition: ASTContext.h:942
bool isGenericLambda() const
Determine whether this class describes a generic lambda function object (i.e.
Definition: DeclCXX.cpp:1434
Describes the kind of initialization being performed, along with location information for tokens rela...
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:664
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3472
SourceLocation CaptureDefaultLoc
Source location of the &#39;&&#39; or &#39;=&#39; specifying the default capture type, if any.
Definition: ScopeInfo.h:820
Expr ** getExprs()
Definition: Expr.h:5388
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4174
static EnumDecl * findEnumForBlockReturn(Expr *E)
If this expression is an enumerator-like expression of some type T, return the type T; otherwise...
Definition: SemaLambda.cpp:574
Represents a pack expansion of types.
Definition: Type.h:5610
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1929
This file provides some common utility functions for processing Lambdas.
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2659
void setCaptures(ArrayRef< LambdaCapture > Captures)
Set the captures for this lambda closure type.
Definition: DeclCXX.cpp:1386
Dataflow Directional Tag Classes.
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
void setBody(CompoundStmt *B)
Definition: Decl.h:4144
ConstexprSpecKind
Define the kind of constexpr specifier.
Definition: Specifiers.h:32
bool isValid() const
Return true if this is a valid SourceLocation object.
LambdaCaptureDefault Default
Definition: DeclSpec.h:2659
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1303
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda&#39;s return type based on the return statements present in the body...
Definition: SemaLambda.cpp:693
bool isRecord() const
Definition: DeclBase.h:1895
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo *> FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:173
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:122
const Expr * getInit() const
Definition: Decl.h:1229
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda&#39;s conversion to block pointer.
The name of a declaration.
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2076
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
Represents an enum.
Definition: Decl.h:3501
bool isParameterPack() const
Determine whether this variable is actually a function parameter pack or init-capture pack...
Definition: Decl.cpp:2451
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.h:1421
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef< NamedDecl *> TParams, SourceLocation RAngleLoc)
This is called after parsing the explicit template parameter list on a lambda (if it exists) in C++2a...
Definition: SemaLambda.cpp:521
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:7051
void setInitCapture(bool IC)
Definition: Decl.h:1424
Capturing variable-length array type.
Definition: Lambda.h:38
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:886
void setConstexprKind(ConstexprSpecKind CSK)
Definition: Decl.h:2201
CanQualType DependentTy
Definition: ASTContext.h:972
std::tuple< MangleNumberingContext *, Decl * > getCurrentMangleNumberContext(const DeclContext *DC)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:276
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:700
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2275
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:96
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1573
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3957
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause=nullptr)
Definition: DeclCXX.cpp:2726
Capturing the *this object by reference.
Definition: Lambda.h:34
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:458
Capture & getCXXThisCapture()
Retrieve the capture of C++ &#39;this&#39;, if it has been captured.
Definition: ScopeInfo.h:695
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2211
FieldDecl * BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture)
Build a FieldDecl suitable to hold the given capture.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2259
void setSignatureAsWritten(TypeSourceInfo *Sig)
Definition: Decl.h:4146
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:244
bool isInitCapture() const
Determine whether this capture is an init-capture.
Definition: ScopeInfo.cpp:219
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:4756
Call-style initialization (C++98)
Definition: Decl.h:828
Expr * getTrailingRequiresClause()
Sets a trailing requires clause for this declarator.
Definition: DeclSpec.h:2445
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:935
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, bool Invalid)
Definition: ScopeInfo.h:674
Describes the sequence of initializations required to initialize a given object or reference with a s...
ActionResult< Expr * > ExprResult
Definition: Ownership.h:263
Represents a C++ struct/union/class.
Definition: DeclCXX.h:254
bool isValid() const
bool isVoidType() const
Definition: Type.h:6933
Capturing by reference.
Definition: Lambda.h:37
TryCaptureKind
Definition: Sema.h:4687
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1894
bool isCXXThisCaptured() const
Determine whether the C++ &#39;this&#39; is captured.
Definition: ScopeInfo.h:692
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:221
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
void setCapturedVLAType(const VariableArrayType *VLAType)
Set the captured variable length array type for this field.
Definition: Decl.cpp:4120
void addAttr(Attr *A)
Definition: DeclBase.cpp:881
Defines the clang::TargetInfo interface.
Represents a complete lambda introducer.
Definition: DeclSpec.h:2635
ExprResult ExprError()
Definition: Ownership.h:279
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3579
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2185
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1178
bool isNonODRUsed() const
Definition: ScopeInfo.h:610
QualType getType() const
Definition: Decl.h:630
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:339
void setCaptures(ASTContext &Context, ArrayRef< Capture > Captures, bool CapturesCXXThis)
Definition: Decl.cpp:4589
A trivial tuple used to represent a source range.
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:331
ASTContext & Context
Definition: Sema.h:399
This represents a decl that may have a name.
Definition: Decl.h:223
bool isTranslationUnit() const
Definition: DeclBase.h:1891
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:473
void setBlockMissingReturnType(bool val=true)
Definition: Decl.h:4203
Describes an entity that is being initialized.
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, Optional< unsigned > NumExpansions, IdentifierInfo *Id, bool DirectInit, Expr *&Init)
Definition: SemaLambda.cpp:786
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:4023
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3242
Wrapper for source info for pointers.
Definition: TypeLoc.h:1226
SourceLocation getBegin() const
bool isBlockCapture() const
Definition: ScopeInfo.h:599
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt *> returns, QualType returnType)
Adjust the given return statements so that they formally return the given type.
Definition: SemaLambda.cpp:667
No in-class initializer.
Definition: Specifiers.h:264
Declaration of a template function.
Definition: DeclTemplate.h:977
Attr - This represents one attribute.
Definition: Attr.h:46
SourceLocation getLocation() const
Definition: DeclBase.h:430
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:6384
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2943