clang  14.0.0git
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  // Ignore all inner captured regions.
70  unsigned CurScopeIndex = FunctionScopes.size() - 1;
71  while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72  FunctionScopes[CurScopeIndex]))
73  --CurScopeIndex;
74  assert(
75  isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76  "The function on the top of sema's function-info stack must be a lambda");
77 
78  // If VarToCapture is null, we are attempting to capture 'this'.
79  const bool IsCapturingThis = !VarToCapture;
80  const bool IsCapturingVariable = !IsCapturingThis;
81 
82  // Start with the current lambda at the top of the stack (highest index).
83  DeclContext *EnclosingDC =
84  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86  do {
87  const clang::sema::LambdaScopeInfo *LSI =
88  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89  // IF we have climbed down to an intervening enclosing lambda that contains
90  // the variable declaration - it obviously can/must not capture the
91  // variable.
92  // Since its enclosing DC is dependent, all the lambdas between it and the
93  // innermost nested lambda are dependent (otherwise we wouldn't have
94  // arrived here) - so we don't yet have a lambda that can capture the
95  // variable.
96  if (IsCapturingVariable &&
97  VarToCapture->getDeclContext()->Equals(EnclosingDC))
98  return NoLambdaIsCaptureReady;
99 
100  // For an enclosing lambda to be capture ready for an entity, all
101  // intervening lambda's have to be able to capture that entity. If even
102  // one of the intervening lambda's is not capable of capturing the entity
103  // then no enclosing lambda can ever capture that entity.
104  // For e.g.
105  // const int x = 10;
106  // [=](auto a) { #1
107  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
108  // [=](auto c) { #3
109  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
110  // }; }; };
111  // If they do not have a default implicit capture, check to see
112  // if the entity has already been explicitly captured.
113  // If even a single dependent enclosing lambda lacks the capability
114  // to ever capture this variable, there is no further enclosing
115  // non-dependent lambda that can capture this variable.
117  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118  return NoLambdaIsCaptureReady;
119  if (IsCapturingThis && !LSI->isCXXThisCaptured())
120  return NoLambdaIsCaptureReady;
121  }
122  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124  assert(CurScopeIndex);
125  --CurScopeIndex;
126  } while (!EnclosingDC->isTranslationUnit() &&
127  EnclosingDC->isDependentContext() &&
128  isLambdaCallOperator(EnclosingDC));
129 
130  assert(CurScopeIndex < (FunctionScopes.size() - 1));
131  // If the enclosingDC is not dependent, then the immediately nested lambda
132  // (one index above) is capture-ready.
133  if (!EnclosingDC->isDependentContext())
134  return CurScopeIndex + 1;
135  return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 /// - climb down the stack (i.e. starting from the innermost and examining
150 /// each outer lambda step by step) checking if each enclosing
151 /// lambda can either implicitly or explicitly capture the variable.
152 /// Record the first such lambda that is enclosed in a non-dependent
153 /// context. If no such lambda currently exists return failure.
154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 /// capture the variable by checking all its enclosing lambdas:
156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
157 /// identified above in 'a' can also capture the variable (this is done
158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
159 /// 'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable. If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
175  VarDecl *VarToCapture, Sema &S) {
176 
177  const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179  const Optional<unsigned> OptionalStackIndex =
181  VarToCapture);
182  if (!OptionalStackIndex)
183  return NoLambdaIsCaptureCapable;
184 
185  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187  S.getCurGenericLambda()) &&
188  "The capture ready lambda for a potential capture can only be the "
189  "current lambda if it is a generic lambda");
190 
191  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194  // If VarToCapture is null, we are attempting to capture 'this'
195  const bool IsCapturingThis = !VarToCapture;
196  const bool IsCapturingVariable = !IsCapturingThis;
197 
198  if (IsCapturingVariable) {
199  // Check if the capture-ready lambda can truly capture the variable, by
200  // checking whether all enclosing lambdas of the capture-ready lambda allow
201  // the capture - i.e. make sure it is capture-capable.
202  QualType CaptureType, DeclRefType;
203  const bool CanCaptureVariable =
204  !S.tryCaptureVariable(VarToCapture,
205  /*ExprVarIsUsedInLoc*/ SourceLocation(),
207  /*EllipsisLoc*/ SourceLocation(),
208  /*BuildAndDiagnose*/ false, CaptureType,
209  DeclRefType, &IndexOfCaptureReadyLambda);
210  if (!CanCaptureVariable)
211  return NoLambdaIsCaptureCapable;
212  } else {
213  // Check if the capture-ready lambda can truly capture 'this' by checking
214  // whether all enclosing lambdas of the capture-ready lambda can capture
215  // 'this'.
216  const bool CanCaptureThis =
218  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220  &IndexOfCaptureReadyLambda);
221  if (!CanCaptureThis)
222  return NoLambdaIsCaptureCapable;
223  }
224  return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
229  if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
231  SemaRef.Context,
232  /*Template kw loc*/ SourceLocation(),
233  /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234  LSI->TemplateParams,
235  /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236  LSI->RequiresClause.get());
237  }
238  return LSI->GLTemplateParameterList;
239 }
240 
242  TypeSourceInfo *Info,
243  bool KnownDependent,
244  LambdaCaptureDefault CaptureDefault) {
245  DeclContext *DC = CurContext;
246  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247  DC = DC->getParent();
248  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249  *this);
250  // Start constructing the lambda class.
251  CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252  IntroducerRange.getBegin(),
253  KnownDependent,
254  IsGenericLambda,
255  CaptureDefault);
256  DC->addDecl(Class);
257 
258  return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264  while (!DC->isFileContext()) {
265  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266  if (FD->isInlined())
267  return true;
268 
269  DC = DC->getLexicalParent();
270  }
271 
272  return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
277  // Compute the context for allocating mangling numbers in the current
278  // expression, if the ABI requires them.
279  Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281  enum ContextKind {
282  Normal,
283  DefaultArgument,
284  DataMember,
285  StaticDataMember,
286  InlineVariable,
287  VariableTemplate
288  } Kind = Normal;
289 
290  // Default arguments of member function parameters that appear in a class
291  // definition, as well as the initializers of data members, receive special
292  // treatment. Identify them.
293  if (ManglingContextDecl) {
294  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295  if (const DeclContext *LexicalDC
296  = Param->getDeclContext()->getLexicalParent())
297  if (LexicalDC->isRecord())
298  Kind = DefaultArgument;
299  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300  if (Var->getDeclContext()->isRecord())
301  Kind = StaticDataMember;
302  else if (Var->getMostRecentDecl()->isInline())
303  Kind = InlineVariable;
304  else if (Var->getDescribedVarTemplate())
305  Kind = VariableTemplate;
306  else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307  if (!VTS->isExplicitSpecialization())
308  Kind = VariableTemplate;
309  }
310  } else if (isa<FieldDecl>(ManglingContextDecl)) {
311  Kind = DataMember;
312  }
313  }
314 
315  // Itanium ABI [5.1.7]:
316  // In the following contexts [...] the one-definition rule requires closure
317  // types in different translation units to "correspond":
318  bool IsInNonspecializedTemplate =
319  inTemplateInstantiation() || CurContext->isDependentContext();
320  switch (Kind) {
321  case Normal: {
322  // -- the bodies of non-exported nonspecialized template functions
323  // -- the bodies of inline functions
324  if ((IsInNonspecializedTemplate &&
325  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326  isInInlineFunction(CurContext)) {
327  while (auto *CD = dyn_cast<CapturedDecl>(DC))
328  DC = CD->getParent();
329  return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330  }
331 
332  return std::make_tuple(nullptr, nullptr);
333  }
334 
335  case StaticDataMember:
336  // -- the initializers of nonspecialized static members of template classes
337  if (!IsInNonspecializedTemplate)
338  return std::make_tuple(nullptr, ManglingContextDecl);
339  // Fall through to get the current context.
340  LLVM_FALLTHROUGH;
341 
342  case DataMember:
343  // -- the in-class initializers of class members
344  case DefaultArgument:
345  // -- default arguments appearing in class definitions
346  case InlineVariable:
347  // -- the initializers of inline variables
348  case VariableTemplate:
349  // -- the initializers of templated variables
350  return std::make_tuple(
352  ManglingContextDecl),
353  ManglingContextDecl);
354  }
355 
356  llvm_unreachable("unexpected context");
357 }
358 
360  SourceRange IntroducerRange,
361  TypeSourceInfo *MethodTypeInfo,
362  SourceLocation EndLoc,
364  ConstexprSpecKind ConstexprKind,
365  Expr *TrailingRequiresClause) {
366  QualType MethodType = MethodTypeInfo->getType();
367  TemplateParameterList *TemplateParams =
368  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369  // If a lambda appears in a dependent context or is a generic lambda (has
370  // template parameters) and has an 'auto' return type, deduce it to a
371  // dependent type.
372  if (Class->isDependentContext() || TemplateParams) {
373  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374  QualType Result = FPT->getReturnType();
375  if (Result->isUndeducedType()) {
376  Result = SubstAutoType(Result, Context.DependentTy);
377  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378  FPT->getExtProtoInfo());
379  }
380  }
381 
382  // C++11 [expr.prim.lambda]p5:
383  // The closure type for a lambda-expression has a public inline function
384  // call operator (13.5.4) whose parameters and return type are described by
385  // the lambda-expression's parameter-declaration-clause and
386  // trailing-return-type respectively.
387  DeclarationName MethodName
388  = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389  DeclarationNameLoc MethodNameLoc =
392  Context, Class, EndLoc,
393  DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
394  MethodNameLoc),
395  MethodType, MethodTypeInfo, SC_None, getCurFPFeatures().isFPConstrained(),
396  /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
397  Method->setAccess(AS_public);
398  if (!TemplateParams)
399  Class->addDecl(Method);
400 
401  // Temporarily set the lexical declaration context to the current
402  // context, so that the Scope stack matches the lexical nesting.
403  Method->setLexicalDeclContext(CurContext);
404  // Create a function template if we have a template parameter list
405  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
406  FunctionTemplateDecl::Create(Context, Class,
407  Method->getLocation(), MethodName,
408  TemplateParams,
409  Method) : nullptr;
410  if (TemplateMethod) {
411  TemplateMethod->setAccess(AS_public);
412  Method->setDescribedFunctionTemplate(TemplateMethod);
413  Class->addDecl(TemplateMethod);
414  TemplateMethod->setLexicalDeclContext(CurContext);
415  }
416 
417  // Add parameters.
418  if (!Params.empty()) {
419  Method->setParams(Params);
420  CheckParmsForFunctionDef(Params,
421  /*CheckParameterNames=*/false);
422 
423  for (auto P : Method->parameters())
424  P->setOwningFunction(Method);
425  }
426 
427  return Method;
428 }
429 
431  CXXRecordDecl *Class, CXXMethodDecl *Method,
432  Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
433  if (Mangling) {
434  bool HasKnownInternalLinkage;
435  unsigned ManglingNumber, DeviceManglingNumber;
436  Decl *ManglingContextDecl;
437  std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
438  ManglingContextDecl) = Mangling.getValue();
439  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
440  HasKnownInternalLinkage);
441  Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
442  return;
443  }
444 
445  auto getMangleNumberingContext =
446  [this](CXXRecordDecl *Class,
447  Decl *ManglingContextDecl) -> MangleNumberingContext * {
448  // Get mangle numbering context if there's any extra decl context.
449  if (ManglingContextDecl)
450  return &Context.getManglingNumberContext(
451  ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
452  // Otherwise, from that lambda's decl context.
453  auto DC = Class->getDeclContext();
454  while (auto *CD = dyn_cast<CapturedDecl>(DC))
455  DC = CD->getParent();
456  return &Context.getManglingNumberContext(DC);
457  };
458 
460  Decl *ManglingContextDecl;
461  std::tie(MCtx, ManglingContextDecl) =
462  getCurrentMangleNumberContext(Class->getDeclContext());
463  bool HasKnownInternalLinkage = false;
464  if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
465  getLangOpts().SYCLIsHost)) {
466  // Force lambda numbering in CUDA/HIP as we need to name lambdas following
467  // ODR. Both device- and host-compilation need to have a consistent naming
468  // on kernel functions. As lambdas are potential part of these `__global__`
469  // function names, they needs numbering following ODR.
470  // Also force for SYCL, since we need this for the
471  // __builtin_sycl_unique_stable_name implementation, which depends on lambda
472  // mangling.
473  MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
474  assert(MCtx && "Retrieving mangle numbering context failed!");
475  HasKnownInternalLinkage = true;
476  }
477  if (MCtx) {
478  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
479  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
480  HasKnownInternalLinkage);
481  Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
482  }
483 }
484 
486  CXXMethodDecl *CallOperator,
487  SourceRange IntroducerRange,
488  LambdaCaptureDefault CaptureDefault,
489  SourceLocation CaptureDefaultLoc,
490  bool ExplicitParams,
491  bool ExplicitResultType,
492  bool Mutable) {
493  LSI->CallOperator = CallOperator;
494  CXXRecordDecl *LambdaClass = CallOperator->getParent();
495  LSI->Lambda = LambdaClass;
496  if (CaptureDefault == LCD_ByCopy)
498  else if (CaptureDefault == LCD_ByRef)
500  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
501  LSI->IntroducerRange = IntroducerRange;
502  LSI->ExplicitParams = ExplicitParams;
503  LSI->Mutable = Mutable;
504 
505  if (ExplicitResultType) {
506  LSI->ReturnType = CallOperator->getReturnType();
507 
508  if (!LSI->ReturnType->isDependentType() &&
509  !LSI->ReturnType->isVoidType()) {
510  if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
511  diag::err_lambda_incomplete_result)) {
512  // Do nothing.
513  }
514  }
515  } else {
516  LSI->HasImplicitReturnType = true;
517  }
518 }
519 
522 }
523 
525  ArrayRef<NamedDecl *> TParams,
526  SourceLocation RAngleLoc,
527  ExprResult RequiresClause) {
528  LambdaScopeInfo *LSI = getCurLambda();
529  assert(LSI && "Expected a lambda scope");
530  assert(LSI->NumExplicitTemplateParams == 0 &&
531  "Already acted on explicit template parameters");
532  assert(LSI->TemplateParams.empty() &&
533  "Explicit template parameters should come "
534  "before invented (auto) ones");
535  assert(!TParams.empty() &&
536  "No template parameters to act on");
537  LSI->TemplateParams.append(TParams.begin(), TParams.end());
538  LSI->NumExplicitTemplateParams = TParams.size();
539  LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
540  LSI->RequiresClause = RequiresClause;
541 }
542 
545  CXXMethodDecl *CallOperator, Scope *CurScope) {
546  // Introduce our parameters into the function scope
547  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
548  p < NumParams; ++p) {
549  ParmVarDecl *Param = CallOperator->getParamDecl(p);
550 
551  // If this has an identifier, add it to the scope stack.
552  if (CurScope && Param->getIdentifier()) {
553  bool Error = false;
554  // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
555  // retroactively apply it.
556  for (const auto &Capture : Captures) {
557  if (Capture.Id == Param->getIdentifier()) {
558  Error = true;
559  Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
560  Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
561  << Capture.Id << true;
562  }
563  }
564  if (!Error)
565  CheckShadow(CurScope, Param);
566 
567  PushOnScopeChains(Param, CurScope);
568  }
569  }
570 }
571 
572 /// If this expression is an enumerator-like expression of some type
573 /// T, return the type T; otherwise, return null.
574 ///
575 /// Pointer comparisons on the result here should always work because
576 /// it's derived from either the parent of an EnumConstantDecl
577 /// (i.e. the definition) or the declaration returned by
578 /// EnumType::getDecl() (i.e. the definition).
580  // An expression is an enumerator-like expression of type T if,
581  // ignoring parens and parens-like expressions:
582  E = E->IgnoreParens();
583 
584  // - it is an enumerator whose enum type is T or
585  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
586  if (EnumConstantDecl *D
587  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
588  return cast<EnumDecl>(D->getDeclContext());
589  }
590  return nullptr;
591  }
592 
593  // - it is a comma expression whose RHS is an enumerator-like
594  // expression of type T or
595  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
596  if (BO->getOpcode() == BO_Comma)
597  return findEnumForBlockReturn(BO->getRHS());
598  return nullptr;
599  }
600 
601  // - it is a statement-expression whose value expression is an
602  // enumerator-like expression of type T or
603  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
604  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
605  return findEnumForBlockReturn(last);
606  return nullptr;
607  }
608 
609  // - it is a ternary conditional operator (not the GNU ?:
610  // extension) whose second and third operands are
611  // enumerator-like expressions of type T or
612  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
613  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
614  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
615  return ED;
616  return nullptr;
617  }
618 
619  // (implicitly:)
620  // - it is an implicit integral conversion applied to an
621  // enumerator-like expression of type T or
622  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
623  // We can sometimes see integral conversions in valid
624  // enumerator-like expressions.
625  if (ICE->getCastKind() == CK_IntegralCast)
626  return findEnumForBlockReturn(ICE->getSubExpr());
627 
628  // Otherwise, just rely on the type.
629  }
630 
631  // - it is an expression of that formal enum type.
632  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
633  return ET->getDecl();
634  }
635 
636  // Otherwise, nope.
637  return nullptr;
638 }
639 
640 /// Attempt to find a type T for which the returned expression of the
641 /// given statement is an enumerator-like expression of that type.
643  if (Expr *retValue = ret->getRetValue())
644  return findEnumForBlockReturn(retValue);
645  return nullptr;
646 }
647 
648 /// Attempt to find a common type T for which all of the returned
649 /// expressions in a block are enumerator-like expressions of that
650 /// type.
652  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
653 
654  // Try to find one for the first return.
656  if (!ED) return nullptr;
657 
658  // Check that the rest of the returns have the same enum.
659  for (++i; i != e; ++i) {
660  if (findEnumForBlockReturn(*i) != ED)
661  return nullptr;
662  }
663 
664  // Never infer an anonymous enum type.
665  if (!ED->hasNameForLinkage()) return nullptr;
666 
667  return ED;
668 }
669 
670 /// Adjust the given return statements so that they formally return
671 /// the given type. It should require, at most, an IntegralCast.
673  QualType returnType) {
675  i = returns.begin(), e = returns.end(); i != e; ++i) {
676  ReturnStmt *ret = *i;
677  Expr *retValue = ret->getRetValue();
678  if (S.Context.hasSameType(retValue->getType(), returnType))
679  continue;
680 
681  // Right now we only support integral fixup casts.
682  assert(returnType->isIntegralOrUnscopedEnumerationType());
683  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
684 
685  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
686 
687  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
688  E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
689  /*base path*/ nullptr, VK_PRValue,
691  if (cleanups) {
692  cleanups->setSubExpr(E);
693  } else {
694  ret->setRetValue(E);
695  }
696  }
697 }
698 
700  assert(CSI.HasImplicitReturnType);
701  // If it was ever a placeholder, it had to been deduced to DependentTy.
702  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
703  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
704  "lambda expressions use auto deduction in C++14 onwards");
705 
706  // C++ core issue 975:
707  // If a lambda-expression does not include a trailing-return-type,
708  // it is as if the trailing-return-type denotes the following type:
709  // - if there are no return statements in the compound-statement,
710  // or all return statements return either an expression of type
711  // void or no expression or braced-init-list, the type void;
712  // - otherwise, if all return statements return an expression
713  // and the types of the returned expressions after
714  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
715  // array-to-pointer conversion (4.2 [conv.array]), and
716  // function-to-pointer conversion (4.3 [conv.func]) are the
717  // same, that common type;
718  // - otherwise, the program is ill-formed.
719  //
720  // C++ core issue 1048 additionally removes top-level cv-qualifiers
721  // from the types of returned expressions to match the C++14 auto
722  // deduction rules.
723  //
724  // In addition, in blocks in non-C++ modes, if all of the return
725  // statements are enumerator-like expressions of some type T, where
726  // T has a name for linkage, then we infer the return type of the
727  // block to be that type.
728 
729  // First case: no return statements, implicit void return type.
730  ASTContext &Ctx = getASTContext();
731  if (CSI.Returns.empty()) {
732  // It's possible there were simply no /valid/ return statements.
733  // In this case, the first one we found may have at least given us a type.
734  if (CSI.ReturnType.isNull())
735  CSI.ReturnType = Ctx.VoidTy;
736  return;
737  }
738 
739  // Second case: at least one return statement has dependent type.
740  // Delay type checking until instantiation.
741  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
742  if (CSI.ReturnType->isDependentType())
743  return;
744 
745  // Try to apply the enum-fuzz rule.
746  if (!getLangOpts().CPlusPlus) {
747  assert(isa<BlockScopeInfo>(CSI));
749  if (ED) {
750  CSI.ReturnType = Context.getTypeDeclType(ED);
752  return;
753  }
754  }
755 
756  // Third case: only one return statement. Don't bother doing extra work!
757  if (CSI.Returns.size() == 1)
758  return;
759 
760  // General case: many return statements.
761  // Check that they all have compatible return types.
762 
763  // We require the return types to strictly match here.
764  // Note that we've already done the required promotions as part of
765  // processing the return statement.
766  for (const ReturnStmt *RS : CSI.Returns) {
767  const Expr *RetE = RS->getRetValue();
768 
769  QualType ReturnType =
770  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
771  if (Context.getCanonicalFunctionResultType(ReturnType) ==
773  // Use the return type with the strictest possible nullability annotation.
774  auto RetTyNullability = ReturnType->getNullability(Ctx);
775  auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
776  if (BlockNullability &&
777  (!RetTyNullability ||
778  hasWeakerNullability(*RetTyNullability, *BlockNullability)))
779  CSI.ReturnType = ReturnType;
780  continue;
781  }
782 
783  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
784  // TODO: It's possible that the *first* return is the divergent one.
785  Diag(RS->getBeginLoc(),
786  diag::err_typecheck_missing_return_type_incompatible)
787  << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
788  // Continue iterating so that we keep emitting diagnostics.
789  }
790 }
791 
793  SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
794  Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
795  Expr *&Init) {
796  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
797  // deduce against.
798  QualType DeductType = Context.getAutoDeductType();
799  TypeLocBuilder TLB;
800  AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
801  TL.setNameLoc(Loc);
802  if (ByRef) {
803  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
804  assert(!DeductType.isNull() && "can't build reference to auto");
805  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
806  }
807  if (EllipsisLoc.isValid()) {
808  if (Init->containsUnexpandedParameterPack()) {
809  Diag(EllipsisLoc, getLangOpts().CPlusPlus20
810  ? diag::warn_cxx17_compat_init_capture_pack
811  : diag::ext_init_capture_pack);
812  DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
813  /*ExpectPackInType=*/false);
814  TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
815  } else {
816  // Just ignore the ellipsis for now and form a non-pack variable. We'll
817  // diagnose this later when we try to capture it.
818  }
819  }
820  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
821 
822  // Deduce the type of the init capture.
823  QualType DeducedType = deduceVarTypeFromInitializer(
824  /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
825  SourceRange(Loc, Loc), IsDirectInit, Init);
826  if (DeducedType.isNull())
827  return QualType();
828 
829  // Are we a non-list direct initialization?
830  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
831 
832  // Perform initialization analysis and ensure any implicit conversions
833  // (such as lvalue-to-rvalue) are enforced.
834  InitializedEntity Entity =
837  IsDirectInit
838  ? (CXXDirectInit ? InitializationKind::CreateDirect(
839  Loc, Init->getBeginLoc(), Init->getEndLoc())
841  : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
842 
843  MultiExprArg Args = Init;
844  if (CXXDirectInit)
845  Args =
846  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
847  QualType DclT;
848  InitializationSequence InitSeq(*this, Entity, Kind, Args);
849  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
850 
851  if (Result.isInvalid())
852  return QualType();
853 
854  Init = Result.getAs<Expr>();
855  return DeducedType;
856 }
857 
859  QualType InitCaptureType,
860  SourceLocation EllipsisLoc,
862  unsigned InitStyle, Expr *Init) {
863  // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
864  // rather than reconstructing it here.
865  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
866  if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
867  PETL.setEllipsisLoc(EllipsisLoc);
868 
869  // Create a dummy variable representing the init-capture. This is not actually
870  // used as a variable, and only exists as a way to name and refer to the
871  // init-capture.
872  // FIXME: Pass in separate source locations for '&' and identifier.
873  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
874  Loc, Id, InitCaptureType, TSI, SC_Auto);
875  NewVD->setInitCapture(true);
876  NewVD->setReferenced(true);
877  // FIXME: Pass in a VarDecl::InitializationStyle.
878  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
879  NewVD->markUsed(Context);
880  NewVD->setInit(Init);
881  if (NewVD->isParameterPack())
882  getCurLambda()->LocalPacks.push_back(NewVD);
883  return NewVD;
884 }
885 
887  assert(Var->isInitCapture() && "init capture flag should be set");
888  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
889  /*isNested*/false, Var->getLocation(), SourceLocation(),
890  Var->getType(), /*Invalid*/false);
891 }
892 
894  Declarator &ParamInfo,
895  Scope *CurScope) {
896  LambdaScopeInfo *const LSI = getCurLambda();
897  assert(LSI && "LambdaScopeInfo should be on stack!");
898 
899  // Determine if we're within a context where we know that the lambda will
900  // be dependent, because there are template parameters in scope.
901  bool KnownDependent;
902  if (LSI->NumExplicitTemplateParams > 0) {
903  auto *TemplateParamScope = CurScope->getTemplateParamParent();
904  assert(TemplateParamScope &&
905  "Lambda with explicit template param list should establish a "
906  "template param scope");
907  assert(TemplateParamScope->getParent());
908  KnownDependent = TemplateParamScope->getParent()
909  ->getTemplateParamParent() != nullptr;
910  } else {
911  KnownDependent = CurScope->getTemplateParamParent() != nullptr;
912  }
913 
914  // Determine the signature of the call operator.
915  TypeSourceInfo *MethodTyInfo;
916  bool ExplicitParams = true;
917  bool ExplicitResultType = true;
918  bool ContainsUnexpandedParameterPack = false;
919  SourceLocation EndLoc;
921  if (ParamInfo.getNumTypeObjects() == 0) {
922  // C++11 [expr.prim.lambda]p4:
923  // If a lambda-expression does not include a lambda-declarator, it is as
924  // if the lambda-declarator were ().
926  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
927  EPI.HasTrailingReturn = true;
928  EPI.TypeQuals.addConst();
929  LangAS AS = getDefaultCXXMethodAddrSpace();
930  if (AS != LangAS::Default)
931  EPI.TypeQuals.addAddressSpace(AS);
932 
933  // C++1y [expr.prim.lambda]:
934  // The lambda return type is 'auto', which is replaced by the
935  // trailing-return type if provided and/or deduced from 'return'
936  // statements
937  // We don't do this before C++1y, because we don't support deduced return
938  // types there.
939  QualType DefaultTypeForNoTrailingReturn =
940  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
941  : Context.DependentTy;
942  QualType MethodTy =
943  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
944  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
945  ExplicitParams = false;
946  ExplicitResultType = false;
947  EndLoc = Intro.Range.getEnd();
948  } else {
949  assert(ParamInfo.isFunctionDeclarator() &&
950  "lambda-declarator is a function");
952 
953  // C++11 [expr.prim.lambda]p5:
954  // This function call operator is declared const (9.3.1) if and only if
955  // the lambda-expression's parameter-declaration-clause is not followed
956  // by mutable. It is neither virtual nor declared volatile. [...]
957  if (!FTI.hasMutableQualifier()) {
959  SourceLocation());
960  }
961 
962  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
963  assert(MethodTyInfo && "no type from lambda-declarator");
964  EndLoc = ParamInfo.getSourceRange().getEnd();
965 
966  ExplicitResultType = FTI.hasTrailingReturnType();
967 
968  if (FTIHasNonVoidParameters(FTI)) {
969  Params.reserve(FTI.NumParams);
970  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
971  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
972  }
973 
974  // Check for unexpanded parameter packs in the method type.
975  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
976  DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
977  UPPC_DeclarationType);
978  }
979 
980  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
981  KnownDependent, Intro.Default);
982  CXXMethodDecl *Method =
983  startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
984  ParamInfo.getDeclSpec().getConstexprSpecifier(),
985  ParamInfo.getTrailingRequiresClause());
986  if (ExplicitParams)
987  CheckCXXDefaultArguments(Method);
988 
989  // This represents the function body for the lambda function, check if we
990  // have to apply optnone due to a pragma.
991  AddRangeBasedOptnone(Method);
992 
993  // code_seg attribute on lambda apply to the method.
994  if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
995  Method->addAttr(A);
996 
997  // Attributes on the lambda apply to the method.
998  ProcessDeclAttributes(CurScope, Method, ParamInfo);
999 
1000  // CUDA lambdas get implicit host and device attributes.
1001  if (getLangOpts().CUDA)
1002  CUDASetLambdaAttrs(Method);
1003 
1004  // OpenMP lambdas might get assumumption attributes.
1005  if (LangOpts.OpenMP)
1006  ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1007 
1008  // Number the lambda for linkage purposes if necessary.
1009  handleLambdaNumbering(Class, Method);
1010 
1011  // Introduce the function call operator as the current declaration context.
1012  PushDeclContext(CurScope, Method);
1013 
1014  // Build the lambda scope.
1015  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1016  ExplicitParams, ExplicitResultType, !Method->isConst());
1017 
1018  // C++11 [expr.prim.lambda]p9:
1019  // A lambda-expression whose smallest enclosing scope is a block scope is a
1020  // local lambda expression; any other lambda expression shall not have a
1021  // capture-default or simple-capture in its lambda-introducer.
1022  //
1023  // For simple-captures, this is covered by the check below that any named
1024  // entity is a variable that can be captured.
1025  //
1026  // For DR1632, we also allow a capture-default in any context where we can
1027  // odr-use 'this' (in particular, in a default initializer for a non-static
1028  // data member).
1029  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1030  (getCurrentThisType().isNull() ||
1031  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1032  /*BuildAndDiagnose*/false)))
1033  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1034 
1035  // Distinct capture names, for diagnostics.
1036  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1037 
1038  // Handle explicit captures.
1039  SourceLocation PrevCaptureLoc
1040  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1041  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1042  PrevCaptureLoc = C->Loc, ++C) {
1043  if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1044  if (C->Kind == LCK_StarThis)
1045  Diag(C->Loc, !getLangOpts().CPlusPlus17
1046  ? diag::ext_star_this_lambda_capture_cxx17
1047  : diag::warn_cxx14_compat_star_this_lambda_capture);
1048 
1049  // C++11 [expr.prim.lambda]p8:
1050  // An identifier or this shall not appear more than once in a
1051  // lambda-capture.
1052  if (LSI->isCXXThisCaptured()) {
1053  Diag(C->Loc, diag::err_capture_more_than_once)
1054  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1056  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1057  continue;
1058  }
1059 
1060  // C++2a [expr.prim.lambda]p8:
1061  // If a lambda-capture includes a capture-default that is =,
1062  // each simple-capture of that lambda-capture shall be of the form
1063  // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1064  // redundant but accepted for compatibility with ISO C++14. --end note ]
1065  if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1066  Diag(C->Loc, !getLangOpts().CPlusPlus20
1067  ? diag::ext_equals_this_lambda_capture_cxx20
1068  : diag::warn_cxx17_compat_equals_this_lambda_capture);
1069 
1070  // C++11 [expr.prim.lambda]p12:
1071  // If this is captured by a local lambda expression, its nearest
1072  // enclosing function shall be a non-static member function.
1073  QualType ThisCaptureType = getCurrentThisType();
1074  if (ThisCaptureType.isNull()) {
1075  Diag(C->Loc, diag::err_this_capture) << true;
1076  continue;
1077  }
1078 
1079  CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1080  /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1081  C->Kind == LCK_StarThis);
1082  if (!LSI->Captures.empty())
1083  LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1084  continue;
1085  }
1086 
1087  assert(C->Id && "missing identifier for capture");
1088 
1089  if (C->Init.isInvalid())
1090  continue;
1091 
1092  VarDecl *Var = nullptr;
1093  if (C->Init.isUsable()) {
1094  Diag(C->Loc, getLangOpts().CPlusPlus14
1095  ? diag::warn_cxx11_compat_init_capture
1096  : diag::ext_init_capture);
1097 
1098  // If the initializer expression is usable, but the InitCaptureType
1099  // is not, then an error has occurred - so ignore the capture for now.
1100  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1101  // FIXME: we should create the init capture variable and mark it invalid
1102  // in this case.
1103  if (C->InitCaptureType.get().isNull())
1104  continue;
1105 
1106  if (C->Init.get()->containsUnexpandedParameterPack() &&
1107  !C->InitCaptureType.get()->getAs<PackExpansionType>())
1108  DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1109 
1110  unsigned InitStyle;
1111  switch (C->InitKind) {
1113  llvm_unreachable("not an init-capture?");
1115  InitStyle = VarDecl::CInit;
1116  break;
1118  InitStyle = VarDecl::CallInit;
1119  break;
1121  InitStyle = VarDecl::ListInit;
1122  break;
1123  }
1124  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1125  C->EllipsisLoc, C->Id, InitStyle,
1126  C->Init.get());
1127  // C++1y [expr.prim.lambda]p11:
1128  // An init-capture behaves as if it declares and explicitly
1129  // captures a variable [...] whose declarative region is the
1130  // lambda-expression's compound-statement
1131  if (Var)
1132  PushOnScopeChains(Var, CurScope, false);
1133  } else {
1134  assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1135  "init capture has valid but null init?");
1136 
1137  // C++11 [expr.prim.lambda]p8:
1138  // If a lambda-capture includes a capture-default that is &, the
1139  // identifiers in the lambda-capture shall not be preceded by &.
1140  // If a lambda-capture includes a capture-default that is =, [...]
1141  // each identifier it contains shall be preceded by &.
1142  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1143  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1145  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1146  continue;
1147  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1148  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1150  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1151  continue;
1152  }
1153 
1154  // C++11 [expr.prim.lambda]p10:
1155  // The identifiers in a capture-list are looked up using the usual
1156  // rules for unqualified name lookup (3.4.1)
1157  DeclarationNameInfo Name(C->Id, C->Loc);
1158  LookupResult R(*this, Name, LookupOrdinaryName);
1159  LookupName(R, CurScope);
1160  if (R.isAmbiguous())
1161  continue;
1162  if (R.empty()) {
1163  // FIXME: Disable corrections that would add qualification?
1164  CXXScopeSpec ScopeSpec;
1165  DeclFilterCCC<VarDecl> Validator{};
1166  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1167  continue;
1168  }
1169 
1170  Var = R.getAsSingle<VarDecl>();
1171  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1172  continue;
1173  }
1174 
1175  // C++11 [expr.prim.lambda]p8:
1176  // An identifier or this shall not appear more than once in a
1177  // lambda-capture.
1178  if (!CaptureNames.insert(C->Id).second) {
1179  if (Var && LSI->isCaptured(Var)) {
1180  Diag(C->Loc, diag::err_capture_more_than_once)
1181  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1183  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1184  } else
1185  // Previous capture captured something different (one or both was
1186  // an init-cpature): no fixit.
1187  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1188  continue;
1189  }
1190 
1191  // C++11 [expr.prim.lambda]p10:
1192  // [...] each such lookup shall find a variable with automatic storage
1193  // duration declared in the reaching scope of the local lambda expression.
1194  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1195  if (!Var) {
1196  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1197  continue;
1198  }
1199 
1200  // Ignore invalid decls; they'll just confuse the code later.
1201  if (Var->isInvalidDecl())
1202  continue;
1203 
1204  if (!Var->hasLocalStorage()) {
1205  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1206  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1207  continue;
1208  }
1209 
1210  // C++11 [expr.prim.lambda]p23:
1211  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1212  SourceLocation EllipsisLoc;
1213  if (C->EllipsisLoc.isValid()) {
1214  if (Var->isParameterPack()) {
1215  EllipsisLoc = C->EllipsisLoc;
1216  } else {
1217  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1218  << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1219  : SourceRange(C->Loc));
1220 
1221  // Just ignore the ellipsis.
1222  }
1223  } else if (Var->isParameterPack()) {
1224  ContainsUnexpandedParameterPack = true;
1225  }
1226 
1227  if (C->Init.isUsable()) {
1228  addInitCapture(LSI, Var);
1229  } else {
1230  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1231  TryCapture_ExplicitByVal;
1232  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1233  }
1234  if (!LSI->Captures.empty())
1235  LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1236  }
1237  finishLambdaExplicitCaptures(LSI);
1238 
1239  LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1240 
1241  // Add lambda parameters into scope.
1242  addLambdaParameters(Intro.Captures, Method, CurScope);
1243 
1244  // Enter a new evaluation context to insulate the lambda from any
1245  // cleanups from the enclosing full-expression.
1246  PushExpressionEvaluationContext(
1247  LSI->CallOperator->isConsteval()
1248  ? ExpressionEvaluationContext::ConstantEvaluated
1249  : ExpressionEvaluationContext::PotentiallyEvaluated);
1250 }
1251 
1253  bool IsInstantiation) {
1254  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1255 
1256  // Leave the expression-evaluation context.
1257  DiscardCleanupsInEvaluationContext();
1258  PopExpressionEvaluationContext();
1259 
1260  // Leave the context of the lambda.
1261  if (!IsInstantiation)
1262  PopDeclContext();
1263 
1264  // Finalize the lambda.
1265  CXXRecordDecl *Class = LSI->Lambda;
1266  Class->setInvalidDecl();
1267  SmallVector<Decl*, 4> Fields(Class->fields());
1268  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1270  CheckCompletedCXXClass(nullptr, Class);
1271 
1272  PopFunctionScopeInfo();
1273 }
1274 
1275 template <typename Func>
1277  Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1279  CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1281  CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1282  CallingConv CallOpCC = CallOpProto.getCallConv();
1283 
1284  /// Implement emitting a version of the operator for many of the calling
1285  /// conventions for MSVC, as described here:
1286  /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1287  /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1288  /// vectorcall are generated by MSVC when it is supported by the target.
1289  /// Additionally, we are ensuring that the default-free/default-member and
1290  /// call-operator calling convention are generated as well.
1291  /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1292  /// 'member default', despite MSVC not doing so. We do this in order to ensure
1293  /// that someone who intentionally places 'thiscall' on the lambda call
1294  /// operator will still get that overload, since we don't have the a way of
1295  /// detecting the attribute by the time we get here.
1296  if (S.getLangOpts().MSVCCompat) {
1297  CallingConv Convs[] = {
1299  DefaultFree, DefaultMember, CallOpCC};
1300  llvm::sort(Convs);
1301  llvm::iterator_range<CallingConv *> Range(
1302  std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1303  const TargetInfo &TI = S.getASTContext().getTargetInfo();
1304 
1305  for (CallingConv C : Range) {
1307  F(C);
1308  }
1309  return;
1310  }
1311 
1312  if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1313  F(DefaultFree);
1314  F(DefaultMember);
1315  } else {
1316  F(CallOpCC);
1317  }
1318 }
1319 
1320 // Returns the 'standard' calling convention to be used for the lambda
1321 // conversion function, that is, the 'free' function calling convention unless
1322 // it is overridden by a non-default calling convention attribute.
1323 static CallingConv
1325  const FunctionProtoType *CallOpProto) {
1327  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1329  CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1330  CallingConv CallOpCC = CallOpProto->getCallConv();
1331 
1332  // If the call-operator hasn't been changed, return both the 'free' and
1333  // 'member' function calling convention.
1334  if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1335  return DefaultFree;
1336  return CallOpCC;
1337 }
1338 
1340  const FunctionProtoType *CallOpProto, CallingConv CC) {
1341  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1342  CallOpProto->getExtProtoInfo();
1343  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1344  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1345  InvokerExtInfo.TypeQuals = Qualifiers();
1346  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1347  "Lambda's call operator should not have a reference qualifier");
1348  return Context.getFunctionType(CallOpProto->getReturnType(),
1349  CallOpProto->getParamTypes(), InvokerExtInfo);
1350 }
1351 
1352 /// Add a lambda's conversion to function pointer, as described in
1353 /// C++11 [expr.prim.lambda]p6.
1354 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1355  CXXRecordDecl *Class,
1356  CXXMethodDecl *CallOperator,
1357  QualType InvokerFunctionTy) {
1358  // This conversion is explicitly disabled if the lambda's function has
1359  // pass_object_size attributes on any of its parameters.
1360  auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1361  return P->hasAttr<PassObjectSizeAttr>();
1362  };
1363  if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1364  return;
1365 
1366  // Add the conversion to function pointer.
1367  QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1368 
1369  // Create the type of the conversion function.
1370  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1372  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1373  // The conversion function is always const and noexcept.
1374  ConvExtInfo.TypeQuals = Qualifiers();
1375  ConvExtInfo.TypeQuals.addConst();
1376  ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1377  QualType ConvTy =
1378  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1379 
1380  SourceLocation Loc = IntroducerRange.getBegin();
1381  DeclarationName ConversionName
1383  S.Context.getCanonicalType(PtrToFunctionTy));
1384  // Construct a TypeSourceInfo for the conversion function, and wire
1385  // all the parameters appropriately for the FunctionProtoTypeLoc
1386  // so that everything works during transformation/instantiation of
1387  // generic lambdas.
1388  // The main reason for wiring up the parameters of the conversion
1389  // function with that of the call operator is so that constructs
1390  // like the following work:
1391  // auto L = [](auto b) { <-- 1
1392  // return [](auto a) -> decltype(a) { <-- 2
1393  // return a;
1394  // };
1395  // };
1396  // int (*fp)(int) = L(5);
1397  // Because the trailing return type can contain DeclRefExprs that refer
1398  // to the original call operator's variables, we hijack the call
1399  // operators ParmVarDecls below.
1400  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1401  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1402  DeclarationNameLoc ConvNameLoc =
1403  DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1404 
1405  // The conversion function is a conversion to a pointer-to-function.
1406  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1407  FunctionProtoTypeLoc ConvTL =
1408  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1409  // Get the result of the conversion function which is a pointer-to-function.
1410  PointerTypeLoc PtrToFunctionTL =
1411  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1412  // Do the same for the TypeSourceInfo that is used to name the conversion
1413  // operator.
1414  PointerTypeLoc ConvNamePtrToFunctionTL =
1415  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1416 
1417  // Get the underlying function types that the conversion function will
1418  // be converting to (should match the type of the call operator).
1419  FunctionProtoTypeLoc CallOpConvTL =
1420  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1421  FunctionProtoTypeLoc CallOpConvNameTL =
1422  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1423 
1424  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1425  // These parameter's are essentially used to transform the name and
1426  // the type of the conversion operator. By using the same parameters
1427  // as the call operator's we don't have to fix any back references that
1428  // the trailing return type of the call operator's uses (such as
1429  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1430  // - we can simply use the return type of the call operator, and
1431  // everything should work.
1432  SmallVector<ParmVarDecl *, 4> InvokerParams;
1433  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1434  ParmVarDecl *From = CallOperator->getParamDecl(I);
1435 
1436  InvokerParams.push_back(ParmVarDecl::Create(
1437  S.Context,
1438  // Temporarily add to the TU. This is set to the invoker below.
1440  From->getLocation(), From->getIdentifier(), From->getType(),
1441  From->getTypeSourceInfo(), From->getStorageClass(),
1442  /*DefArg=*/nullptr));
1443  CallOpConvTL.setParam(I, From);
1444  CallOpConvNameTL.setParam(I, From);
1445  }
1446 
1448  S.Context, Class, Loc,
1449  DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1451  /*isInline=*/true, ExplicitSpecifier(),
1452  S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1454  CallOperator->getBody()->getEndLoc());
1455  Conversion->setAccess(AS_public);
1456  Conversion->setImplicit(true);
1457 
1458  if (Class->isGenericLambda()) {
1459  // Create a template version of the conversion operator, using the template
1460  // parameter list of the function call operator.
1461  FunctionTemplateDecl *TemplateCallOperator =
1462  CallOperator->getDescribedFunctionTemplate();
1463  FunctionTemplateDecl *ConversionTemplate =
1465  Loc, ConversionName,
1466  TemplateCallOperator->getTemplateParameters(),
1467  Conversion);
1468  ConversionTemplate->setAccess(AS_public);
1469  ConversionTemplate->setImplicit(true);
1470  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1471  Class->addDecl(ConversionTemplate);
1472  } else
1473  Class->addDecl(Conversion);
1474  // Add a non-static member function that will be the result of
1475  // the conversion with a certain unique ID.
1476  DeclarationName InvokerName = &S.Context.Idents.get(
1478  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1479  // we should get a prebuilt TrivialTypeSourceInfo from Context
1480  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1481  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1482  // loop below and then use its Params to set Invoke->setParams(...) below.
1483  // This would avoid the 'const' qualifier of the calloperator from
1484  // contaminating the type of the invoker, which is currently adjusted
1485  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1486  // trailing return type of the invoker would require a visitor to rebuild
1487  // the trailing return type and adjusting all back DeclRefExpr's to refer
1488  // to the new static invoker parameters - not the call operator's.
1490  S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1491  InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1493  /*isInline=*/true, ConstexprSpecKind::Unspecified,
1494  CallOperator->getBody()->getEndLoc());
1495  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1496  InvokerParams[I]->setOwningFunction(Invoke);
1497  Invoke->setParams(InvokerParams);
1498  Invoke->setAccess(AS_private);
1499  Invoke->setImplicit(true);
1500  if (Class->isGenericLambda()) {
1501  FunctionTemplateDecl *TemplateCallOperator =
1502  CallOperator->getDescribedFunctionTemplate();
1503  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1504  S.Context, Class, Loc, InvokerName,
1505  TemplateCallOperator->getTemplateParameters(),
1506  Invoke);
1507  StaticInvokerTemplate->setAccess(AS_private);
1508  StaticInvokerTemplate->setImplicit(true);
1509  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1510  Class->addDecl(StaticInvokerTemplate);
1511  } else
1512  Class->addDecl(Invoke);
1513 }
1514 
1515 /// Add a lambda's conversion to function pointers, as described in
1516 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1517 /// single pointer conversion. In the event that the default calling convention
1518 /// for free and member functions is different, it will emit both conventions.
1519 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1520  CXXRecordDecl *Class,
1521  CXXMethodDecl *CallOperator) {
1522  const FunctionProtoType *CallOpProto =
1523  CallOperator->getType()->castAs<FunctionProtoType>();
1524 
1526  S, *CallOpProto, [&](CallingConv CC) {
1527  QualType InvokerFunctionTy =
1528  S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1529  addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1530  InvokerFunctionTy);
1531  });
1532 }
1533 
1534 /// Add a lambda's conversion to block pointer.
1536  SourceRange IntroducerRange,
1537  CXXRecordDecl *Class,
1538  CXXMethodDecl *CallOperator) {
1539  const FunctionProtoType *CallOpProto =
1540  CallOperator->getType()->castAs<FunctionProtoType>();
1542  CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1543  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1544 
1545  FunctionProtoType::ExtProtoInfo ConversionEPI(
1547  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1548  ConversionEPI.TypeQuals = Qualifiers();
1549  ConversionEPI.TypeQuals.addConst();
1550  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1551 
1552  SourceLocation Loc = IntroducerRange.getBegin();
1553  DeclarationName Name
1555  S.Context.getCanonicalType(BlockPtrTy));
1557  S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1559  S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1560  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1562  /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1563  CallOperator->getBody()->getEndLoc());
1564  Conversion->setAccess(AS_public);
1565  Conversion->setImplicit(true);
1566  Class->addDecl(Conversion);
1567 }
1568 
1570  SourceLocation ImplicitCaptureLoc,
1571  bool IsOpenMPMapping) {
1572  // VLA captures don't have a stored initialization expression.
1573  if (Cap.isVLATypeCapture())
1574  return ExprResult();
1575 
1576  // An init-capture is initialized directly from its stored initializer.
1577  if (Cap.isInitCapture())
1578  return Cap.getVariable()->getInit();
1579 
1580  // For anything else, build an initialization expression. For an implicit
1581  // capture, the capture notionally happens at the capture-default, so use
1582  // that location here.
1583  SourceLocation Loc =
1584  ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1585 
1586  // C++11 [expr.prim.lambda]p21:
1587  // When the lambda-expression is evaluated, the entities that
1588  // are captured by copy are used to direct-initialize each
1589  // corresponding non-static data member of the resulting closure
1590  // object. (For array members, the array elements are
1591  // direct-initialized in increasing subscript order.) These
1592  // initializations are performed in the (unspecified) order in
1593  // which the non-static data members are declared.
1594 
1595  // C++ [expr.prim.lambda]p12:
1596  // An entity captured by a lambda-expression is odr-used (3.2) in
1597  // the scope containing the lambda-expression.
1598  ExprResult Init;
1599  IdentifierInfo *Name = nullptr;
1600  if (Cap.isThisCapture()) {
1601  QualType ThisTy = getCurrentThisType();
1602  Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1603  if (Cap.isCopyCapture())
1604  Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1605  else
1606  Init = This;
1607  } else {
1608  assert(Cap.isVariableCapture() && "unknown kind of capture");
1609  VarDecl *Var = Cap.getVariable();
1610  Name = Var->getIdentifier();
1611  Init = BuildDeclarationNameExpr(
1612  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1613  }
1614 
1615  // In OpenMP, the capture kind doesn't actually describe how to capture:
1616  // variables are "mapped" onto the device in a process that does not formally
1617  // make a copy, even for a "copy capture".
1618  if (IsOpenMPMapping)
1619  return Init;
1620 
1621  if (Init.isInvalid())
1622  return ExprError();
1623 
1624  Expr *InitExpr = Init.get();
1626  Name, Cap.getCaptureType(), Loc);
1627  InitializationKind InitKind =
1628  InitializationKind::CreateDirect(Loc, Loc, Loc);
1629  InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1630  return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1631 }
1632 
1634  Scope *CurScope) {
1635  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1636  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1637  return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1638 }
1639 
1640 static LambdaCaptureDefault
1642  switch (ICS) {
1644  return LCD_None;
1646  return LCD_ByCopy;
1649  return LCD_ByRef;
1651  llvm_unreachable("block capture in lambda");
1652  }
1653  llvm_unreachable("Unknown implicit capture style");
1654 }
1655 
1657  if (From.isInitCapture()) {
1658  Expr *Init = From.getVariable()->getInit();
1659  if (Init && Init->HasSideEffects(Context))
1660  return true;
1661  }
1662 
1663  if (!From.isCopyCapture())
1664  return false;
1665 
1666  const QualType T = From.isThisCapture()
1667  ? getCurrentThisType()->getPointeeType()
1668  : From.getCaptureType();
1669 
1670  if (T.isVolatileQualified())
1671  return true;
1672 
1673  const Type *BaseT = T->getBaseElementTypeUnsafe();
1674  if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1675  return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1676  !RD->hasTrivialDestructor();
1677 
1678  return false;
1679 }
1680 
1682  const Capture &From) {
1683  if (CaptureHasSideEffects(From))
1684  return false;
1685 
1686  if (From.isVLATypeCapture())
1687  return false;
1688 
1689  auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1690  if (From.isThisCapture())
1691  diag << "'this'";
1692  else
1693  diag << From.getVariable();
1694  diag << From.isNonODRUsed();
1695  diag << FixItHint::CreateRemoval(CaptureRange);
1696  return true;
1697 }
1698 
1699 /// Create a field within the lambda class or captured statement record for the
1700 /// given capture.
1702  const sema::Capture &Capture) {
1704  QualType FieldType = Capture.getCaptureType();
1705 
1706  TypeSourceInfo *TSI = nullptr;
1707  if (Capture.isVariableCapture()) {
1708  auto *Var = Capture.getVariable();
1709  if (Var->isInitCapture())
1711  }
1712 
1713  // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1714  // appropriate, at least for an implicit capture.
1715  if (!TSI)
1716  TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1717 
1718  // Build the non-static data member.
1719  FieldDecl *Field =
1720  FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1721  /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1722  /*Mutable=*/false, ICIS_NoInit);
1723  // If the variable being captured has an invalid type, mark the class as
1724  // invalid as well.
1725  if (!FieldType->isDependentType()) {
1726  if (RequireCompleteSizedType(Loc, FieldType,
1727  diag::err_field_incomplete_or_sizeless)) {
1728  RD->setInvalidDecl();
1729  Field->setInvalidDecl();
1730  } else {
1731  NamedDecl *Def;
1732  FieldType->isIncompleteType(&Def);
1733  if (Def && Def->isInvalidDecl()) {
1734  RD->setInvalidDecl();
1735  Field->setInvalidDecl();
1736  }
1737  }
1738  }
1739  Field->setImplicit(true);
1740  Field->setAccess(AS_private);
1741  RD->addDecl(Field);
1742 
1743  if (Capture.isVLATypeCapture())
1744  Field->setCapturedVLAType(Capture.getCapturedVLAType());
1745 
1746  return Field;
1747 }
1748 
1750  LambdaScopeInfo *LSI) {
1751  // Collect information from the lambda scope.
1753  SmallVector<Expr *, 4> CaptureInits;
1754  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1755  LambdaCaptureDefault CaptureDefault =
1757  CXXRecordDecl *Class;
1758  CXXMethodDecl *CallOperator;
1759  SourceRange IntroducerRange;
1760  bool ExplicitParams;
1761  bool ExplicitResultType;
1762  CleanupInfo LambdaCleanup;
1763  bool ContainsUnexpandedParameterPack;
1764  bool IsGenericLambda;
1765  {
1766  CallOperator = LSI->CallOperator;
1767  Class = LSI->Lambda;
1768  IntroducerRange = LSI->IntroducerRange;
1769  ExplicitParams = LSI->ExplicitParams;
1770  ExplicitResultType = !LSI->HasImplicitReturnType;
1771  LambdaCleanup = LSI->Cleanup;
1772  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1773  IsGenericLambda = Class->isGenericLambda();
1774 
1775  CallOperator->setLexicalDeclContext(Class);
1776  Decl *TemplateOrNonTemplateCallOperatorDecl =
1777  CallOperator->getDescribedFunctionTemplate()
1778  ? CallOperator->getDescribedFunctionTemplate()
1779  : cast<Decl>(CallOperator);
1780 
1781  // FIXME: Is this really the best choice? Keeping the lexical decl context
1782  // set as CurContext seems more faithful to the source.
1783  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1784 
1785  PopExpressionEvaluationContext();
1786 
1787  // True if the current capture has a used capture or default before it.
1788  bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1789  SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1790  CaptureDefaultLoc : IntroducerRange.getBegin();
1791 
1792  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1793  const Capture &From = LSI->Captures[I];
1794 
1795  if (From.isInvalid())
1796  return ExprError();
1797 
1798  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1799  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1800  SourceLocation ImplicitCaptureLoc =
1801  IsImplicit ? CaptureDefaultLoc : SourceLocation();
1802 
1803  // Use source ranges of explicit captures for fixits where available.
1804  SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1805 
1806  // Warn about unused explicit captures.
1807  bool IsCaptureUsed = true;
1808  if (!CurContext->isDependentContext() && !IsImplicit &&
1809  !From.isODRUsed()) {
1810  // Initialized captures that are non-ODR used may not be eliminated.
1811  // FIXME: Where did the IsGenericLambda here come from?
1812  bool NonODRUsedInitCapture =
1813  IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1814  if (!NonODRUsedInitCapture) {
1815  bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1816  SourceRange FixItRange;
1817  if (CaptureRange.isValid()) {
1818  if (!CurHasPreviousCapture && !IsLast) {
1819  // If there are no captures preceding this capture, remove the
1820  // following comma.
1821  FixItRange = SourceRange(CaptureRange.getBegin(),
1822  getLocForEndOfToken(CaptureRange.getEnd()));
1823  } else {
1824  // Otherwise, remove the comma since the last used capture.
1825  FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1826  CaptureRange.getEnd());
1827  }
1828  }
1829 
1830  IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1831  }
1832  }
1833 
1834  if (CaptureRange.isValid()) {
1835  CurHasPreviousCapture |= IsCaptureUsed;
1836  PrevCaptureLoc = CaptureRange.getEnd();
1837  }
1838 
1839  // Map the capture to our AST representation.
1840  LambdaCapture Capture = [&] {
1841  if (From.isThisCapture()) {
1842  // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1843  // because it results in a reference capture. Don't warn prior to
1844  // C++2a; there's nothing that can be done about it before then.
1845  if (getLangOpts().CPlusPlus20 && IsImplicit &&
1846  CaptureDefault == LCD_ByCopy) {
1847  Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1848  Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1850  getLocForEndOfToken(CaptureDefaultLoc), ", this");
1851  }
1852  return LambdaCapture(From.getLocation(), IsImplicit,
1853  From.isCopyCapture() ? LCK_StarThis : LCK_This);
1854  } else if (From.isVLATypeCapture()) {
1855  return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1856  } else {
1857  assert(From.isVariableCapture() && "unknown kind of capture");
1858  VarDecl *Var = From.getVariable();
1860  From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1861  return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1862  From.getEllipsisLoc());
1863  }
1864  }();
1865 
1866  // Form the initializer for the capture field.
1867  ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1868 
1869  // FIXME: Skip this capture if the capture is not used, the initializer
1870  // has no side-effects, the type of the capture is trivial, and the
1871  // lambda is not externally visible.
1872 
1873  // Add a FieldDecl for the capture and form its initializer.
1874  BuildCaptureField(Class, From);
1875  Captures.push_back(Capture);
1876  CaptureInits.push_back(Init.get());
1877 
1878  if (LangOpts.CUDA)
1879  CUDACheckLambdaCapture(CallOperator, From);
1880  }
1881 
1882  Class->setCaptures(Context, Captures);
1883 
1884  // C++11 [expr.prim.lambda]p6:
1885  // The closure type for a lambda-expression with no lambda-capture
1886  // has a public non-virtual non-explicit const conversion function
1887  // to pointer to function having the same parameter and return
1888  // types as the closure type's function call operator.
1889  if (Captures.empty() && CaptureDefault == LCD_None)
1890  addFunctionPointerConversions(*this, IntroducerRange, Class,
1891  CallOperator);
1892 
1893  // Objective-C++:
1894  // The closure type for a lambda-expression has a public non-virtual
1895  // non-explicit const conversion function to a block pointer having the
1896  // same parameter and return types as the closure type's function call
1897  // operator.
1898  // FIXME: Fix generic lambda to block conversions.
1899  if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1900  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1901 
1902  // Finalize the lambda class.
1903  SmallVector<Decl*, 4> Fields(Class->fields());
1904  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1906  CheckCompletedCXXClass(nullptr, Class);
1907  }
1908 
1909  Cleanup.mergeFrom(LambdaCleanup);
1910 
1911  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1912  CaptureDefault, CaptureDefaultLoc,
1913  ExplicitParams, ExplicitResultType,
1914  CaptureInits, EndLoc,
1915  ContainsUnexpandedParameterPack);
1916  // If the lambda expression's call operator is not explicitly marked constexpr
1917  // and we are not in a dependent context, analyze the call operator to infer
1918  // its constexpr-ness, suppressing diagnostics while doing so.
1919  if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1920  !CallOperator->isConstexpr() &&
1921  !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1922  !Class->getDeclContext()->isDependentContext()) {
1923  CallOperator->setConstexprKind(
1924  CheckConstexprFunctionDefinition(CallOperator,
1925  CheckConstexprKind::CheckValid)
1928  }
1929 
1930  // Emit delayed shadowing warnings now that the full capture list is known.
1931  DiagnoseShadowingLambdaDecls(LSI);
1932 
1933  if (!CurContext->isDependentContext()) {
1934  switch (ExprEvalContexts.back().Context) {
1935  // C++11 [expr.prim.lambda]p2:
1936  // A lambda-expression shall not appear in an unevaluated operand
1937  // (Clause 5).
1938  case ExpressionEvaluationContext::Unevaluated:
1939  case ExpressionEvaluationContext::UnevaluatedList:
1940  case ExpressionEvaluationContext::UnevaluatedAbstract:
1941  // C++1y [expr.const]p2:
1942  // A conditional-expression e is a core constant expression unless the
1943  // evaluation of e, following the rules of the abstract machine, would
1944  // evaluate [...] a lambda-expression.
1945  //
1946  // This is technically incorrect, there are some constant evaluated contexts
1947  // where this should be allowed. We should probably fix this when DR1607 is
1948  // ratified, it lays out the exact set of conditions where we shouldn't
1949  // allow a lambda-expression.
1950  case ExpressionEvaluationContext::ConstantEvaluated:
1951  // We don't actually diagnose this case immediately, because we
1952  // could be within a context where we might find out later that
1953  // the expression is potentially evaluated (e.g., for typeid).
1954  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1955  break;
1956 
1957  case ExpressionEvaluationContext::DiscardedStatement:
1958  case ExpressionEvaluationContext::PotentiallyEvaluated:
1959  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1960  break;
1961  }
1962  }
1963 
1964  return MaybeBindToTemporary(Lambda);
1965 }
1966 
1968  SourceLocation ConvLocation,
1969  CXXConversionDecl *Conv,
1970  Expr *Src) {
1971  // Make sure that the lambda call operator is marked used.
1972  CXXRecordDecl *Lambda = Conv->getParent();
1973  CXXMethodDecl *CallOperator
1974  = cast<CXXMethodDecl>(
1975  Lambda->lookup(
1976  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1977  CallOperator->setReferenced();
1978  CallOperator->markUsed(Context);
1979 
1980  ExprResult Init = PerformCopyInitialization(
1982  CurrentLocation, Src);
1983  if (!Init.isInvalid())
1984  Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1985 
1986  if (Init.isInvalid())
1987  return ExprError();
1988 
1989  // Create the new block to be returned.
1990  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1991 
1992  // Set the type information.
1993  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1994  Block->setIsVariadic(CallOperator->isVariadic());
1995  Block->setBlockMissingReturnType(false);
1996 
1997  // Add parameters.
1998  SmallVector<ParmVarDecl *, 4> BlockParams;
1999  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2000  ParmVarDecl *From = CallOperator->getParamDecl(I);
2001  BlockParams.push_back(ParmVarDecl::Create(
2002  Context, Block, From->getBeginLoc(), From->getLocation(),
2003  From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2004  From->getStorageClass(),
2005  /*DefArg=*/nullptr));
2006  }
2007  Block->setParams(BlockParams);
2008 
2009  Block->setIsConversionFromLambda(true);
2010 
2011  // Add capture. The capture uses a fake variable, which doesn't correspond
2012  // to any actual memory location. However, the initializer copy-initializes
2013  // the lambda object.
2014  TypeSourceInfo *CapVarTSI =
2015  Context.getTrivialTypeSourceInfo(Src->getType());
2016  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2017  ConvLocation, nullptr,
2018  Src->getType(), CapVarTSI,
2019  SC_None);
2020  BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2021  /*nested=*/false, /*copy=*/Init.get());
2022  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2023 
2024  // Add a fake function body to the block. IR generation is responsible
2025  // for filling in the actual body, which cannot be expressed as an AST.
2026  Block->setBody(new (Context) CompoundStmt(ConvLocation));
2027 
2028  // Create the block literal expression.
2029  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2030  ExprCleanupObjects.push_back(Block);
2031  Cleanup.setExprNeedsCleanups(true);
2032 
2033  return BuildBlock;
2034 }
clang::Decl::setLexicalDeclContext
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:331
clang::DeclarationNameLoc::makeCXXOperatorNameLoc
static DeclarationNameLoc makeCXXOperatorNameLoc(SourceLocation BeginLoc, SourceLocation EndLoc)
Construct location information for a non-literal C++ operator.
Definition: DeclarationName.h:736
clang::Sema::finishLambdaExplicitCaptures
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:520
clang::ExplicitSpecifier
Store information needed for an explicit specifier.
Definition: DeclCXX.h:1795
clang::TagDecl::hasNameForLinkage
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type?
Definition: Decl.h:3534
clang::Language::CUDA
@ CUDA
clang::DeclaratorChunk::FunctionTypeInfo::NumParams
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1316
clang::sema::CapturingScopeInfo::addCapture
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, bool Invalid)
Definition: ScopeInfo.h:686
clang::sema::Capture::isThisCapture
bool isThisCapture() const
Definition: ScopeInfo.h:604
clang::sema::LambdaScopeInfo::ExplicitTemplateParamsRange
SourceRange ExplicitTemplateParamsRange
Source range covering the explicit template parameter list (if it exists).
Definition: ScopeInfo.h:854
clang::DeclSpec::SetTypeQual
bool SetTypeQual(TQ T, SourceLocation Loc)
Definition: DeclSpec.cpp:972
clang::Type::getNullability
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:4032
clang::MangleNumberingContext::getManglingNumber
virtual unsigned getManglingNumber(const CXXMethodDecl *CallOperator)=0
Retrieve the mangling number of a new lambda expression with the given call operator within this cont...
clang::ReturnStmt::getRetValue
Expr * getRetValue()
Definition: Stmt.h:2764
clang::sema::Capture::getLocation
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:641
clang::isLambdaCallOperator
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
repeatForLambdaConversionFunctionCallingConvs
static void repeatForLambdaConversionFunctionCallingConvs(Sema &S, const FunctionProtoType &CallOpProto, Func F)
Definition: SemaLambda.cpp:1276
clang::TemplateParameterList::Create
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl * > Params, SourceLocation RAngleLoc, Expr *RequiresClause)
Definition: DeclTemplate.cpp:118
clang::ASTContext::getTypeDeclType
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1532
clang::CC_X86FastCall
@ CC_X86FastCall
Definition: Specifiers.h:257
TypeLocBuilder.h
clang::FunctionDecl::getNumParams
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3358
clang::DeclaratorChunk::FunctionTypeInfo::hasTrailingReturnType
bool hasTrailingReturnType() const
Determine whether this function declarator had a trailing-return-type.
Definition: DeclSpec.h:1499
clang::FPOptions::isFPConstrained
bool isFPConstrained() const
Definition: LangOptions.h:556
clang::Sema::deduceClosureReturnType
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda's return type based on the return statements present in the body.
Definition: SemaLambda.cpp:699
clang::TypeSourceInfo::getType
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:6407
getStackIndexOfNearestEnclosingCaptureReadyLambda
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
clang::LambdaIntroducer
Represents a complete lambda introducer.
Definition: DeclSpec.h:2668
clang::FunctionDecl::getReturnType
QualType getReturnType() const
Definition: Decl.h:2537
clang::DeclaratorDecl::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:780
clang::DeclarationNameLoc
DeclarationNameLoc - Additional source/type location info for a declaration name.
Definition: DeclarationName.h:650
clang::sema::Capture::isODRUsed
bool isODRUsed() const
Definition: ScopeInfo.h:621
Error
llvm::Error Error
Definition: ByteCodeEmitter.cpp:20
clang::SourceRange
A trivial tuple used to represent a source range.
Definition: SourceLocation.h:212
clang::DeclContext
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1347
clang::sema::LambdaScopeInfo::ExplicitParams
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:842
clang::PointerTypeLoc
Wrapper for source info for pointers.
Definition: TypeLoc.h:1225
clang::LambdaCapture
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:25
clang::CXXConversionDecl
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2731
clang::Sema::ActOnLambdaExplicitTemplateParameterList
void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef< NamedDecl * > TParams, SourceLocation RAngleLoc, ExprResult RequiresClause)
This is called after parsing the explicit template parameter list on a lambda (if it exists) in C++2a...
Definition: SemaLambda.cpp:524
clang::TargetInfo::checkCallingConvention
virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const
Determines whether a given calling convention is valid for the target.
Definition: TargetInfo.h:1469
clang::FixItHint::CreateInsertion
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:96
clang::Sema::getASTContext
ASTContext & getASTContext() const
Definition: Sema.h:1569
clang::ReferenceTypeLoc
Definition: TypeLoc.h:1306
clang::Declarator::getNumTypeObjects
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2237
clang::FunctionDecl::isConstexpr
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2283
Diag
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Definition: LiteralSupport.cpp:78
clang::DeclaratorChunk::FunctionTypeInfo::hasMutableQualifier
bool hasMutableQualifier() const
Determine whether this lambda-declarator contains a 'mutable' qualifier.
Definition: DeclSpec.h:1471
SemaInternal.h
clang::sema::Capture::isInitCapture
bool isInitCapture() const
Determine whether this capture is an init-capture.
Definition: ScopeInfo.cpp:220
clang::ASTContext::VoidTy
CanQualType VoidTy
Definition: ASTContext.h:1067
clang::sema::Capture::getVariable
VarDecl * getVariable() const
Definition: ScopeInfo.h:630
clang::sema::LambdaScopeInfo::Mutable
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:839
llvm::SmallVector
Definition: LLVM.h:38
Lookup.h
clang::IdentifierTable::get
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Definition: IdentifierTable.h:564
clang::Declarator::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1946
clang::if
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
Definition: RecursiveASTVisitor.h:1002
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:88
clang::ASTContext::getManglingNumberContext
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
Definition: ASTContext.cpp:11306
clang::VarDecl::isInitCapture
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.h:1488
clang::NamedDecl
This represents a decl that may have a name.
Definition: Decl.h:249
clang::ParenListExpr
Definition: Expr.h:5532
clang::SourceRange::getBegin
SourceLocation getBegin() const
Definition: SourceLocation.h:221
clang::AS_private
@ AS_private
Definition: Specifiers.h:102
clang::VarDecl::setInit
void setInit(Expr *I)
Definition: Decl.cpp:2322
TargetInfo.h
clang::LambdaIntroducer::Captures
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2693
clang::sema::LambdaScopeInfo::NumExplicitCaptures
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:836
clang::ASTContext::DeclarationNames
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:651
clang::TypeLocBuilder::getTypeSourceInfo
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
Definition: TypeLocBuilder.h:101
clang::MultiExprArg
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:272
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:673
clang::FunctionDecl::getParamDecl
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2506
clang::InitializedEntity::InitializeLambdaCapture
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
Definition: Initialization.h:413
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2835
clang::FunctionProtoType::ExtProtoInfo::RefQualifier
RefQualifierKind RefQualifier
Definition: Type.h:3973
clang::LookupResult
Represents the results of name lookup.
Definition: Lookup.h:46
clang::Qualifiers
The collection of all-type qualifiers we support.
Definition: Type.h:145
clang::ParmVarDecl
Represents a parameter to a function.
Definition: Decl.h:1665
clang::TargetInfo
Exposes information about the current target.
Definition: TargetInfo.h:189
SemaLambda.h
clang::sema::LambdaScopeInfo::GLTemplateParameterList
TemplateParameterList * GLTemplateParameterList
If this is a generic lambda, and the template parameter list has been created (from the TemplateParam...
Definition: ScopeInfo.h:864
clang::DeclarationNameTable::getCXXConversionFunctionName
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
Returns the name of a C++ conversion function for the given Type.
Definition: DeclarationName.cpp:343
clang::ASTContext::getFunctionType
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1516
clang::Type::containsUnexpandedParameterPack
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1878
clang::SourceRange::isValid
bool isValid() const
Definition: SourceLocation.h:227
clang::sema::CapturingScopeInfo::ImplicitCaptureStyle
ImplicitCaptureStyle
Definition: ScopeInfo.h:658
llvm::Optional< unsigned >
clang::getLambdaAwareParentOfDeclContext
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:81
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:6956
clang::InitializationKind::CreateDirect
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
Definition: Initialization.h:628
clang::QualType::isVolatileQualified
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6495
clang::CPlusPlus14
@ CPlusPlus14
Definition: LangStandard.h:50
DeclSpec.h
clang::CXXScopeSpec
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:64
clang::Sema::ActOnStartOfLambdaDefinition
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:893
clang::sema::Capture
Definition: ScopeInfo.h:521
ASTLambda.h
clang::Sema::BuildCaptureField
FieldDecl * BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture)
Build a FieldDecl suitable to hold the given capture.
Definition: SemaLambda.cpp:1701
clang::DeclContext::getLexicalParent
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1876
clang::InitializationSequence
Describes the sequence of initializations required to initialize a given object or reference with a s...
Definition: Initialization.h:789
clang::ASTContext::getPackExpansionType
QualType getPackExpansionType(QualType Pattern, Optional< unsigned > NumExpansions, bool ExpectPackInType=true)
Form a pack expansion type with the given pattern.
Definition: ASTContext.cpp:5069
clang::FunctionTemplateDecl::Create
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
Definition: DeclTemplate.cpp:342
clang::sema::LambdaScopeInfo::RequiresClause
ExprResult RequiresClause
The requires-clause immediately following the explicit template parameter list, if any.
Definition: ScopeInfo.h:859
clang::sema::LambdaScopeInfo::finishedExplicitCaptures
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:907
clang::MangleNumberingContext::getDeviceManglingNumber
virtual unsigned getDeviceManglingNumber(const CXXMethodDecl *)
Retrieve the mangling number of a new lambda expression with the given call operator within the devic...
Definition: MangleNumberingContext.h:59
clang::Sema::BuildLambdaExpr
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
Definition: SemaLambda.cpp:1749
clang::DeclarationName
The name of a declaration.
Definition: DeclarationName.h:145
clang::sema::FunctionScopeInfo::Returns
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:200
clang::ASTContext::getTranslationUnitDecl
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1049
clang::sema::LambdaScopeInfo::CallOperator
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:825
clang::sema::Capture::isCopyCapture
bool isCopyCapture() const
Definition: ScopeInfo.h:609
clang::Decl::markUsed
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:458
clang::LambdaCaptureInitKind::DirectInit
@ DirectInit
[a(b)]
clang::CC_X86StdCall
@ CC_X86StdCall
Definition: Specifiers.h:256
clang::FunctionDecl::isConsteval
bool isConsteval() const
Definition: Decl.h:2295
clang::EnumDecl
Represents an enum.
Definition: Decl.h:3590
clang::FunctionProtoType::isVariadic
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4217
clang::ASTContext::getCanonicalFunctionResultType
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Definition: ASTContext.cpp:4259
clang::Declarator::getTrailingRequiresClause
Expr * getTrailingRequiresClause()
Sets a trailing requires clause for this declarator.
Definition: DeclSpec.h:2474
clang::Sema::Context
ASTContext & Context
Definition: Sema.h:411
clang::Type
The base class of the type hierarchy.
Definition: Type.h:1490
clang::FieldDecl::Create
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:4149
clang::ReturnStmt::setRetValue
void setRetValue(Expr *E)
Definition: Stmt.h:2766
clang::ExprError
ExprResult ExprError()
Definition: Ownership.h:278
clang::ConditionalOperator
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:4141
clang::CXXMethodDecl::Create
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause=nullptr)
Definition: DeclCXX.cpp:2182
clang::sema::CapturingScopeInfo::ImpCap_Block
@ ImpCap_Block
Definition: ScopeInfo.h:659
clang::CPlusPlus17
@ CPlusPlus17
Definition: LangStandard.h:51
clang::ASTContext::getBlockPointerType
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
Definition: ASTContext.cpp:3339
clang::Sema::getLangOpts
const LangOptions & getLangOpts() const
Definition: Sema.h:1562
clang::DeclarationNameLoc::makeNamedTypeLoc
static DeclarationNameLoc makeNamedTypeLoc(TypeSourceInfo *TInfo)
Construct location information for a constructor, destructor or conversion operator.
Definition: DeclarationName.h:729
clang::sema::LambdaScopeInfo::Lambda
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:822
clang::Declarator::getDeclSpec
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1911
clang::VarDecl::isParameterPack
bool isParameterPack() const
Determine whether this variable is actually a function parameter pack or init-capture pack.
Definition: Decl.cpp:2521
clang::FunctionTemplateDecl
Declaration of a template function.
Definition: DeclTemplate.h:974
llvm::MutableArrayRef
Definition: LLVM.h:35
clang::Type::isReferenceType
bool isReferenceType() const
Definition: Type.h:6685
clang::TypeLocBuilder::push
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
Definition: TypeLocBuilder.h:93
clang::FunctionDecl::setConstexprKind
void setConstexprKind(ConstexprSpecKind CSK)
Definition: Decl.h:2286
clang::PackExpansionTypeLoc
Definition: TypeLoc.h:2436
clang::Sema::ActOnLambdaError
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
Definition: SemaLambda.cpp:1252
getLambdaConversionFunctionCallConv
static CallingConv getLambdaConversionFunctionCallConv(Sema &S, const FunctionProtoType *CallOpProto)
Definition: SemaLambda.cpp:1324
clang::CompoundStmt
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1398
clang::PackExpansionType
Represents a pack expansion of types.
Definition: Type.h:5632
clang::FTIHasNonVoidParameters
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:36
clang::InitializedEntity::InitializeLambdaToBlock
static InitializedEntity InitializeLambdaToBlock(SourceLocation BlockVarLoc, QualType Type)
Definition: Initialization.h:315
clang::Scope::getTemplateParamParent
Scope * getTemplateParamParent()
Definition: Scope.h:279
clang::Sema::startLambdaDefinition
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl * > Params, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:359
clang::BlockDecl
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4153
clang::ASTContext::getDefaultCallingConvention
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod, bool IsBuiltin=false) const
Retrieves the default calling convention for the current target.
Definition: ASTContext.cpp:11123
clang::BinaryOperator
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3803
clang::Decl::setAccess
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:473
Id
int Id
Definition: ASTDiff.cpp:191
clang::LambdaExpr
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1865
clang::Scope
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
clang::sema::Capture::getCapturedVLAType
const VariableArrayType * getCapturedVLAType() const
Definition: ScopeInfo.h:635
clang::sema::LambdaScopeInfo::PotentialThisCaptureLocation
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:899
clang::SourceRange::getEnd
SourceLocation getEnd() const
Definition: SourceLocation.h:222
clang::sema::Capture::getCaptureType
QualType getCaptureType() const
Retrieve the capture type for this capture, which is effectively the type of the non-static data memb...
Definition: ScopeInfo.h:650
clang::AS_public
@ AS_public
Definition: Specifiers.h:100
clang::sema::CapturingScopeInfo::ImpCap_None
@ ImpCap_None
Definition: ScopeInfo.h:659
clang::ASTContext::DependentTy
CanQualType DependentTy
Definition: ASTContext.h:1097
clang::FPOptionsOverride
Represents difference between two FPOptions values.
Definition: LangOptions.h:600
clang::ASTContext
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:211
clang::ExprResult
ActionResult< Expr * > ExprResult
Definition: Ownership.h:262
clang::DeclContextLookupResult::front
reference front() const
Definition: DeclBase.h:1315
clang::CPlusPlus
@ CPlusPlus
Definition: LangStandard.h:48
clang::sema::Capture::isInvalid
bool isInvalid() const
Definition: ScopeInfo.h:616
clang::DeclarationNameTable::getCXXOperatorName
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
Definition: DeclarationName.h:639
clang::Sema::getLambdaConversionFunctionResultType
QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType, CallingConv CC)
Get the return type to use for a lambda's conversion function(s) to function pointer type,...
Definition: SemaLambda.cpp:1339
clang::Sema::TryCapture_Implicit
@ TryCapture_Implicit
Definition: Sema.h:5045
clang::DeclaratorChunk::FunctionTypeInfo::getOrCreateMethodQualifiers
DeclSpec & getOrCreateMethodQualifiers()
Definition: DeclSpec.h:1410
clang::Sema::createLambdaClosureType
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:241
clang::sema::Capture::isNonODRUsed
bool isNonODRUsed() const
Definition: ScopeInfo.h:622
clang::FunctionDecl::getBody
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition: Decl.cpp:3015
clang::DeclaratorChunk::FunctionTypeInfo
Definition: DeclSpec.h:1277
clang::Type::getAs
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:7162
clang::Decl::isInvalidDecl
bool isInvalidDecl() const
Definition: DeclBase.h:558
clang::FunctionType::getCallConv
CallingConv getCallConv() const
Definition: Type.h:3820
clang::TargetInfo::CCCR_OK
@ CCCR_OK
Definition: TargetInfo.h:1459
clang::VarDecl::setInitCapture
void setInitCapture(bool IC)
Definition: Decl.h:1491
clang::LambdaCaptureDefault
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:22
clang::Sema::tryCaptureVariable
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:17849
getGenericLambdaTemplateParameterList
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:228
clang::Stmt::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:348
clang::ASTContext::getAutoDeductType
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
Definition: ASTContext.cpp:5684
clang::ParenListExpr::getNumExprs
unsigned getNumExprs() const
Return the number of expressions in this paren list.
Definition: Expr.h:5558
clang::ImplicitCastExpr::Create
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat, FPOptionsOverride FPO)
Definition: Expr.cpp:2006
clang::DeclContext::isTranslationUnit
bool isTranslationUnit() const
Definition: DeclBase.h:1935
clang::FunctionProtoType::ExtProtoInfo::ExtInfo
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3969
clang::sema::CapturingScopeInfo::ImpCap_CapturedRegion
@ ImpCap_CapturedRegion
Definition: ScopeInfo.h:660
clang::Sema::CheckCXXThisCapture
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr, bool ByCopy=false)
Make sure the value of 'this' is actually available in the current context, if it is a potentially ev...
Definition: SemaExprCXX.cpp:1257
clang::CPlusPlus20
@ CPlusPlus20
Definition: LangStandard.h:52
clang::LCD_ByCopy
@ LCD_ByCopy
Definition: Lambda.h:24
clang::CallingConv
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:254
clang::VarDecl
Represents a variable declaration or definition.
Definition: Decl.h:876
clang::FunctionProtoType::getParamTypes
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:4102
clang::sema::CapturingScopeInfo::getCapture
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:722
clang::ConstexprSpecKind::Constexpr
@ Constexpr
clang::LambdaIntroducer::Default
LambdaCaptureDefault Default
Definition: DeclSpec.h:2692
clang::TemplateParameterList
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:69
clang::ExprWithCleanups
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3342
clang::ASTContext::getCanonicalType
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2462
clang::Type::getAsCXXRecordDecl
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1753
clang::RQ_None
@ RQ_None
No ref-qualifier was provided.
Definition: Type.h:1443
clang::Sema::getCurFPFeatures
FPOptions & getCurFPFeatures()
Definition: Sema.h:1564
clang::FunctionType::ExtInfo::withCallingConv
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3772
clang::EnumConstantDecl
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:3050
clang::FunctionDecl::setParams
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.h:2514
ExprCXX.h
clang::LCD_None
@ LCD_None
Definition: Lambda.h:23
clang::DeclContext::isRecord
bool isRecord() const
Definition: DeclBase.h:1939
clang::getStackIndexOfNearestEnclosingCaptureCapableLambda
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:173
clang::DeclaratorChunk::FunctionTypeInfo::Params
ParamInfo * Params
Params - This is a pointer to a new[]'d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1341
clang::Decl::setImplicit
void setImplicit(bool I=true)
Definition: DeclBase.h:564
clang::sema::CapturingScopeInfo::ImpCaptureStyle
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:663
clang::Declarator::isFunctionDeclarator
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2299
clang::TypeLocBuilder
Definition: TypeLocBuilder.h:22
clang::DeclaratorChunk::ParamInfo::Param
Decl * Param
Definition: DeclSpec.h:1255
clang::AutoTypeLoc
Definition: TypeLoc.h:2053
clang::SC_Static
@ SC_Static
Definition: Specifiers.h:228
clang::sema::CapturingScopeInfo::ImpCap_LambdaByval
@ ImpCap_LambdaByval
Definition: ScopeInfo.h:659
clang::TemplateDecl::getTemplateParameters
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:418
clang::BlockDecl::Create
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:4884
clang::CC_C
@ CC_C
Definition: Specifiers.h:255
clang::FullExpr::getSubExpr
const Expr * getSubExpr() const
Definition: Expr.h:1011
clang::LangAS
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
clang::Sema::getCurGenericLambda
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:2233
clang::Type::castAs
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7227
clang::ConstexprSpecKind
ConstexprSpecKind
Define the kind of constexpr specifier.
Definition: Specifiers.h:32
clang::Sema::addInitCapture
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Add an init-capture to a lambda scope.
Definition: SemaLambda.cpp:886
clang::VarDecl::ListInit
@ ListInit
Direct list-initialization (C++11)
Definition: Decl.h:887
clang::InitializationSequence::Perform
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence.
Definition: SemaInit.cpp:7987
clang::CXXRecordDecl
Represents a C++ struct/union/class.
Definition: DeclCXX.h:255
P
StringRef P
Definition: ASTMatchersInternal.cpp:563
clang::Type::isDependentType
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2174
clang::VK_PRValue
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:111
clang::LambdaCaptureKind
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:33
clang::LCD_ByRef
@ LCD_ByRef
Definition: Lambda.h:25
clang::sema::CapturingScopeInfo::Captures
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:676
clang::LookupResult::empty
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:339
clang::LambdaCaptureInitKind::ListInit
@ ListInit
[a{b}]
clang::Declarator::getFunctionTypeInfo
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2330
clang::sema::LambdaScopeInfo::Cleanup
CleanupInfo Cleanup
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:845
clang::ActionResult::get
PtrTy get() const
Definition: Ownership.h:169
clang::LCK_ByRef
@ LCK_ByRef
Capturing by reference.
Definition: Lambda.h:37
clang::NamedDecl::getIdentifier
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:270
clang::InventedTemplateParameterInfo::TemplateParams
SmallVector< NamedDecl *, 4 > TemplateParams
Store the list of the template parameters for a generic lambda or an abbreviated function template.
Definition: DeclSpec.h:2729
clang::VarDecl::getStorageClass
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1085
clang::DeclContext::addDecl
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1559
isInInlineFunction
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:263
clang::FunctionProtoType
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3885
clang::ASTContext::Idents
IdentifierTable & Idents
Definition: ASTContext.h:647
clang::DeclContext::getParent
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1860
clang::CXXConversionDecl::getConversionType
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2771
clang::TypeLoc::getAs
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:88
clang::sema::Capture::isVLATypeCapture
bool isVLATypeCapture() const
Definition: ScopeInfo.h:612
clang::QualType::isNull
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:738
clang::Sema::BuildCaptureInit
ExprResult BuildCaptureInit(const sema::Capture &Capture, SourceLocation ImplicitCaptureLoc, bool IsOpenMPMapping=false)
Initialize the given capture with a suitable expression.
Definition: SemaLambda.cpp:1569
clang::BlockExpr
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5965
clang::StmtExpr
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4345
llvm::ArrayRef
Definition: LLVM.h:34
clang::Decl
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:89
Scope.h
clang::LCK_StarThis
@ LCK_StarThis
Definition: Lambda.h:35
clang::Sema
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:355
addBlockPointerConversion
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to block pointer.
Definition: SemaLambda.cpp:1535
clang::VarDecl::setInitStyle
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1362
clang::Qualifiers::addConst
void addConst()
Definition: Type.h:265
clang::hasWeakerNullability
bool hasWeakerNullability(NullabilityKind L, NullabilityKind R)
Return true if L has a weaker nullability annotation than R.
Definition: Specifiers.h:325
clang::DeclSpec::getConstexprSpecifier
ConstexprSpecKind getConstexprSpecifier() const
Definition: DeclSpec.h:755
clang::DeclContext::isFileContext
bool isFileContext() const
Definition: DeclBase.h:1930
clang::CC_X86VectorCall
@ CC_X86VectorCall
Definition: Specifiers.h:259
clang::sema::LambdaScopeInfo::IntroducerRange
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:828
clang::sema::CapturingScopeInfo::isCaptured
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:713
clang::VarDecl::getInit
const Expr * getInit() const
Definition: Decl.h:1285
clang::IdentifierInfo
One of these records is kept for each identifier that is lexed.
Definition: IdentifierTable.h:67
clang::Sema::DiagnoseUnusedLambdaCapture
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, const sema::Capture &From)
Diagnose if an explicit lambda capture is unused.
Definition: SemaLambda.cpp:1681
clang::ASTContext::getTargetInfo
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:740
findEnumForBlockReturn
static EnumDecl * findEnumForBlockReturn(Expr *E)
If this expression is an enumerator-like expression of some type T, return the type T; otherwise,...
Definition: SemaLambda.cpp:579
clang::Sema::addLambdaParameters
void addLambdaParameters(ArrayRef< LambdaIntroducer::LambdaCapture > Captures, CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:543
clang::CXXRecordDecl::CreateLambda
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:148
clang::ObjCPropertyAttribute::Kind
Kind
Definition: DeclObjCCommon.h:22
clang::InitializationKind
Describes the kind of initialization being performed, along with location information for tokens rela...
Definition: Initialization.h:567
clang::ActionResult< Expr * >
clang::LCK_ByCopy
@ LCK_ByCopy
< Capturing the *this object by copy
Definition: Lambda.h:36
clang::FunctionProtoType::ExceptionSpecInfo::Type
ExceptionSpecificationType Type
The kind of exception specification this is.
Definition: Type.h:3944
clang::LCK_VLAType
@ LCK_VLAType
Capturing variable-length array type.
Definition: Lambda.h:38
clang::MangleNumberingContext
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
Definition: MangleNumberingContext.h:31
clang::LambdaCaptureInitKind::NoInit
@ NoInit
[a]
clang::FunctionProtoType::ExtProtoInfo::ExceptionSpec
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3974
clang::DeclFilterCCC
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
Definition: TypoCorrection.h:366
clang::InitializationKind::CreateDirectList
static InitializationKind CreateDirectList(SourceLocation InitLoc)
Definition: Initialization.h:635
clang::VarDecl::InitializationStyle
InitializationStyle
Initialization styles.
Definition: Decl.h:879
clang::sema::LambdaScopeInfo
Definition: ScopeInfo.h:818
ScopeInfo.h
clang::LangAS::Default
@ Default
clang::Type::getBaseElementTypeUnsafe
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:7112
clang::sema::LambdaScopeInfo::ContainsUnexpandedParameterPack
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:848
clang::LambdaIntroducer::DefaultLoc
SourceLocation DefaultLoc
Definition: DeclSpec.h:2691
clang::sema::CapturingScopeInfo::ImpCap_LambdaByref
@ ImpCap_LambdaByref
Definition: ScopeInfo.h:659
clang::interp::This
bool This(InterpState &S, CodePtr OpPC)
Definition: Interp.h:829
clang::VarDecl::CInit
@ CInit
C-style initialization with assignment.
Definition: Decl.h:881
clang::FunctionProtoType::ExtProtoInfo
Extra information about a function prototype.
Definition: Type.h:3968
clang::CXXMethodDecl::isConst
bool isConst() const
Definition: DeclCXX.h:1989
clang::Expr::IgnoreParens
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:2924
clang
Definition: CalledOnceCheck.h:17
clang::DeclContext::lookup
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1645
clang::FunctionProtoType::ExtProtoInfo::HasTrailingReturn
bool HasTrailingReturn
Definition: Type.h:3971
clang::Type::isIntegralOrUnscopedEnumerationType
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1931
clang::FunctionDecl::setDescribedFunctionTemplate
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3693
clang::Sema::createLambdaInitCaptureVarDecl
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, IdentifierInfo *Id, unsigned InitStyle, Expr *Init)
Create a dummy variable within the declcontext of the lambda's call operator, for name lookup purpose...
Definition: SemaLambda.cpp:858
clang::sema::LambdaScopeInfo::ExplicitCaptureRanges
llvm::DenseMap< unsigned, SourceRange > ExplicitCaptureRanges
A map of explicit capture indices to their introducer source ranges.
Definition: ScopeInfo.h:888
clang::DeclaratorContext::Block
@ Block
clang::Stmt
Stmt - This represents one statement.
Definition: Stmt.h:68
clang::EST_BasicNoexcept
@ EST_BasicNoexcept
noexcept
Definition: ExceptionSpecificationType.h:26
clang::Sema::buildLambdaScope
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:485
clang::Declarator
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1804
clang::Sema::handleLambdaNumbering
void handleLambdaNumbering(CXXRecordDecl *Class, CXXMethodDecl *Method, Optional< std::tuple< bool, unsigned, unsigned, Decl * >> Mangling=None)
Number lambda for linkage purposes if necessary.
Definition: SemaLambda.cpp:430
clang::LambdaCaptureInitKind::CopyInit
@ CopyInit
[a = b], [a = {b}]
clang::ReturnStmt::getBeginLoc
SourceLocation getBeginLoc() const
Definition: Stmt.h:2790
clang::Sema::CaptureHasSideEffects
bool CaptureHasSideEffects(const sema::Capture &From)
Does copying/destroying the captured variable have side effects?
Definition: SemaLambda.cpp:1656
clang::Expr::getType
QualType getType() const
Definition: Expr.h:141
clang::SourceLocation::isValid
bool isValid() const
Return true if this is a valid SourceLocation object.
Definition: SourceLocation.h:112
findCommonEnumForBlockReturns
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt * > returns)
Attempt to find a common type T for which all of the returned expressions in a block are enumerator-l...
Definition: SemaLambda.cpp:651
clang::Attr
Attr - This represents one attribute.
Definition: Attr.h:46
clang::Qualifiers::addAddressSpace
void addAddressSpace(LangAS space)
Definition: Type.h:387
clang::TypeSourceInfo
A container of type source information.
Definition: Type.h:6396
clang::FunctionType::getReturnType
QualType getReturnType() const
Definition: Type.h:3809
clang::OverloadCandidateParamOrder::Normal
@ Normal
clang::NamedDecl::getDeclName
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:313
clang::FixItHint::CreateRemoval
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:122
clang::sema::CapturingScopeInfo::HasImplicitReturnType
bool HasImplicitReturnType
Definition: ScopeInfo.h:680
clang::DeclContext::isDependentContext
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1142
addFunctionPointerConversions
static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to function pointers, as described in C++11 [expr.prim.lambda]p6.
Definition: SemaLambda.cpp:1519
clang::SC_Auto
@ SC_Auto
Definition: Specifiers.h:232
clang::FunctionProtoType::ExtProtoInfo::TypeQuals
Qualifiers TypeQuals
Definition: Type.h:3972
clang::LCK_This
@ LCK_This
Capturing the *this object by reference.
Definition: Lambda.h:34
clang::sema::CapturingScopeInfo
Definition: ScopeInfo.h:653
clang::InitializedEntity
Describes an entity that is being initialized.
Definition: Initialization.h:48
clang::FunctionDecl::isVariadic
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2903
clang::ParenListExpr::getExprs
Expr ** getExprs()
Definition: Expr.h:5569
clang::LookupResult::getAsSingle
DeclClass * getAsSingle() const
Definition: Lookup.h:507
clang::FunctionTypeLoc::getReturnLoc
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1434
mapImplicitCaptureStyle
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
Definition: SemaLambda.cpp:1641
clang::TypeSpecTypeLoc::setNameLoc
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:527
clang::ImplicitCastExpr
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3618
clang::sema::Capture::isBlockCapture
bool isBlockCapture() const
Definition: ScopeInfo.h:611
clang::ASTContext::getTrivialTypeSourceInfo
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
Definition: ASTContext.cpp:2952
clang::ASTContext::getPointerType
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Definition: ASTContext.cpp:3251
clang::DeclSpec::TQ_const
@ TQ_const
Definition: DeclSpec.h:306
clang::sema::CapturingScopeInfo::getCXXThisCapture
Capture & getCXXThisCapture()
Retrieve the capture of C++ 'this', if it has been captured.
Definition: ScopeInfo.h:707
clang::FunctionProtoTypeLoc
Definition: TypeLoc.h:1465
clang::Decl::setInvalidDecl
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
clang::ASTContext::hasSameType
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2478
clang::InventedTemplateParameterInfo::NumExplicitTemplateParams
unsigned NumExplicitTemplateParams
The number of parameters in the template parameter list that were explicitly specified by the user,...
Definition: DeclSpec.h:2716
clang::ValueDecl::getType
QualType getType() const
Definition: Decl.h:687
clang::SC_None
@ SC_None
Definition: Specifiers.h:226
clang::DeducedType
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4946
clang::VarDecl::Create
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:2017
clang::ParsedAttributesView
Definition: ParsedAttr.h:869
clang::Expr
This represents one expression.
Definition: Expr.h:109
clang::Sema::getCurrentMangleNumberContext
std::tuple< MangleNumberingContext *, Decl * > getCurrentMangleNumberContext(const DeclContext *DC)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:276
clang::FunctionDecl::getDescribedFunctionTemplate
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3689
clang::ParmVarDecl::Create
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2737
clang::Sema::buildLambdaInitCaptureInitialization
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, Optional< unsigned > NumExpansions, IdentifierInfo *Id, bool DirectInit, Expr *&Init)
Definition: SemaLambda.cpp:792
clang::VarDecl::hasLocalStorage
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1101
clang::sema::Capture::isVariableCapture
bool isVariableCapture() const
Definition: ScopeInfo.h:605
clang::CleanupInfo
Definition: CleanupInfo.h:19
clang::BlockDecl::Capture
A class which contains all the information about a particular captured value.
Definition: Decl.h:4159
clang::EnumType
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums.
Definition: Type.h:4639
clang::DeclContext::isFunctionOrMethod
bool isFunctionOrMethod() const
Definition: DeclBase.h:1912
clang::FunctionProtoType::getExtProtoInfo
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:4106
clang::Sema::ActOnLambdaExpr
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed.
Definition: SemaLambda.cpp:1633
addFunctionPointerConversion
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator, QualType InvokerFunctionTy)
Add a lambda's conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
Definition: SemaLambda.cpp:1354
clang::Sema::TryCaptureKind
TryCaptureKind
Definition: Sema.h:5044
clang::DeclarationNameInfo
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
Definition: DeclarationName.h:758
clang::Type::isIncompleteType
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition: Type.cpp:2210
clang::FullExpr::setSubExpr
void setSubExpr(Expr *E)
As with any mutator of the AST, be very careful when modifying an existing AST to preserve its invari...
Definition: Expr.h:1016
clang::InitializationKind::CreateCopy
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
Definition: Initialization.h:674
clang::FunctionDecl::parameters
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2483
clang::Sema::BuildBlockForLambdaConversion
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
Definition: SemaLambda.cpp:1967
clang::Decl::getLocation
SourceLocation getLocation() const
Definition: DeclBase.h:430
clang::sema::CapturingScopeInfo::ReturnType
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:684
clang::Decl::addAttr
void addAttr(Attr *A)
Definition: DeclBase.cpp:885
clang::Decl::setReferenced
void setReferenced(bool R=true)
Definition: DeclBase.h:593
clang::sema::Capture::getEllipsisLoc
SourceLocation getEllipsisLoc() const
Retrieve the source location of the ellipsis, whose presence indicates that the capture is a pack exp...
Definition: ScopeInfo.h:645
clang::LambdaExpr::Create
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr * > CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:1163
clang::DeclRefExpr
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1217
clang::FunctionDecl
Represents a function declaration or definition.
Definition: Decl.h:1856
clang::RecordDecl
Represents a struct/union/class.
Definition: Decl.h:3859
clang::DeclContext::Equals
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC.
Definition: DeclBase.h:1984
clang::ASTContext::NeedExtraManglingDecl
@ NeedExtraManglingDecl
Definition: ASTContext.h:2995
clang::CXXConversionDecl::Create
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause=nullptr)
Definition: DeclCXX.cpp:2773
clang::getLambdaStaticInvokerName
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:22
adjustBlockReturnsToEnum
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt * > returns, QualType returnType)
Adjust the given return statements so that they formally return the given type.
Definition: SemaLambda.cpp:672
clang::DeclaratorDecl::getTypeSourceInfo
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:757
clang::ICIS_NoInit
@ ICIS_NoInit
No in-class initializer.
Definition: Specifiers.h:248
ContextKind
tok::TokenKind ContextKind
Definition: TokenAnnotator.cpp:1446
clang::ReturnStmt
ReturnStmt - This represents a return, optionally of an expression: return; return 4;.
Definition: Stmt.h:2731
clang::VarDecl::CallInit
@ CallInit
Call-style initialization (C++98)
Definition: Decl.h:884
clang::TypeSourceInfo::getTypeLoc
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:244
Initialization.h
clang::CXXMethodDecl::getParent
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition: DeclCXX.h:2063
clang::CXXMethodDecl
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1948
clang::LambdaIntroducer::Range
SourceRange Range
Definition: DeclSpec.h:2690
clang::Type::isUndeducedType
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:7078
clang::LookupResult::isAmbiguous
bool isAmbiguous() const
Definition: Lookup.h:301
clang::ConstexprSpecKind::Unspecified
@ Unspecified
clang::Decl::getDeclContext
DeclContext * getDeclContext()
Definition: DeclBase.h:439
clang::sema::LambdaScopeInfo::CaptureDefaultLoc
SourceLocation CaptureDefaultLoc
Source location of the '&' or '=' specifying the default capture type, if any.
Definition: ScopeInfo.h:832
clang::sema::CapturingScopeInfo::isCXXThisCaptured
bool isCXXThisCaptured() const
Determine whether the C++ 'this' is captured.
Definition: ScopeInfo.h:704