clang  15.0.0git
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  // Ignore all inner captured regions.
70  unsigned CurScopeIndex = FunctionScopes.size() - 1;
71  while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72  FunctionScopes[CurScopeIndex]))
73  --CurScopeIndex;
74  assert(
75  isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76  "The function on the top of sema's function-info stack must be a lambda");
77 
78  // If VarToCapture is null, we are attempting to capture 'this'.
79  const bool IsCapturingThis = !VarToCapture;
80  const bool IsCapturingVariable = !IsCapturingThis;
81 
82  // Start with the current lambda at the top of the stack (highest index).
83  DeclContext *EnclosingDC =
84  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86  do {
87  const clang::sema::LambdaScopeInfo *LSI =
88  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89  // IF we have climbed down to an intervening enclosing lambda that contains
90  // the variable declaration - it obviously can/must not capture the
91  // variable.
92  // Since its enclosing DC is dependent, all the lambdas between it and the
93  // innermost nested lambda are dependent (otherwise we wouldn't have
94  // arrived here) - so we don't yet have a lambda that can capture the
95  // variable.
96  if (IsCapturingVariable &&
97  VarToCapture->getDeclContext()->Equals(EnclosingDC))
98  return NoLambdaIsCaptureReady;
99 
100  // For an enclosing lambda to be capture ready for an entity, all
101  // intervening lambda's have to be able to capture that entity. If even
102  // one of the intervening lambda's is not capable of capturing the entity
103  // then no enclosing lambda can ever capture that entity.
104  // For e.g.
105  // const int x = 10;
106  // [=](auto a) { #1
107  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
108  // [=](auto c) { #3
109  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
110  // }; }; };
111  // If they do not have a default implicit capture, check to see
112  // if the entity has already been explicitly captured.
113  // If even a single dependent enclosing lambda lacks the capability
114  // to ever capture this variable, there is no further enclosing
115  // non-dependent lambda that can capture this variable.
117  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118  return NoLambdaIsCaptureReady;
119  if (IsCapturingThis && !LSI->isCXXThisCaptured())
120  return NoLambdaIsCaptureReady;
121  }
122  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124  assert(CurScopeIndex);
125  --CurScopeIndex;
126  } while (!EnclosingDC->isTranslationUnit() &&
127  EnclosingDC->isDependentContext() &&
128  isLambdaCallOperator(EnclosingDC));
129 
130  assert(CurScopeIndex < (FunctionScopes.size() - 1));
131  // If the enclosingDC is not dependent, then the immediately nested lambda
132  // (one index above) is capture-ready.
133  if (!EnclosingDC->isDependentContext())
134  return CurScopeIndex + 1;
135  return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 /// - climb down the stack (i.e. starting from the innermost and examining
150 /// each outer lambda step by step) checking if each enclosing
151 /// lambda can either implicitly or explicitly capture the variable.
152 /// Record the first such lambda that is enclosed in a non-dependent
153 /// context. If no such lambda currently exists return failure.
154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 /// capture the variable by checking all its enclosing lambdas:
156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
157 /// identified above in 'a' can also capture the variable (this is done
158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
159 /// 'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable. If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
175  VarDecl *VarToCapture, Sema &S) {
176 
177  const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179  const Optional<unsigned> OptionalStackIndex =
181  VarToCapture);
182  if (!OptionalStackIndex)
183  return NoLambdaIsCaptureCapable;
184 
185  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187  S.getCurGenericLambda()) &&
188  "The capture ready lambda for a potential capture can only be the "
189  "current lambda if it is a generic lambda");
190 
191  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194  // If VarToCapture is null, we are attempting to capture 'this'
195  const bool IsCapturingThis = !VarToCapture;
196  const bool IsCapturingVariable = !IsCapturingThis;
197 
198  if (IsCapturingVariable) {
199  // Check if the capture-ready lambda can truly capture the variable, by
200  // checking whether all enclosing lambdas of the capture-ready lambda allow
201  // the capture - i.e. make sure it is capture-capable.
202  QualType CaptureType, DeclRefType;
203  const bool CanCaptureVariable =
204  !S.tryCaptureVariable(VarToCapture,
205  /*ExprVarIsUsedInLoc*/ SourceLocation(),
207  /*EllipsisLoc*/ SourceLocation(),
208  /*BuildAndDiagnose*/ false, CaptureType,
209  DeclRefType, &IndexOfCaptureReadyLambda);
210  if (!CanCaptureVariable)
211  return NoLambdaIsCaptureCapable;
212  } else {
213  // Check if the capture-ready lambda can truly capture 'this' by checking
214  // whether all enclosing lambdas of the capture-ready lambda can capture
215  // 'this'.
216  const bool CanCaptureThis =
218  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220  &IndexOfCaptureReadyLambda);
221  if (!CanCaptureThis)
222  return NoLambdaIsCaptureCapable;
223  }
224  return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
229  if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
231  SemaRef.Context,
232  /*Template kw loc*/ SourceLocation(),
233  /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234  LSI->TemplateParams,
235  /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236  LSI->RequiresClause.get());
237  }
238  return LSI->GLTemplateParameterList;
239 }
240 
243  unsigned LambdaDependencyKind,
244  LambdaCaptureDefault CaptureDefault) {
245  DeclContext *DC = CurContext;
246  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247  DC = DC->getParent();
248  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249  *this);
250  // Start constructing the lambda class.
252  Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind,
253  IsGenericLambda, CaptureDefault);
254  DC->addDecl(Class);
255 
256  return Class;
257 }
258 
259 /// Determine whether the given context is or is enclosed in an inline
260 /// function.
261 static bool isInInlineFunction(const DeclContext *DC) {
262  while (!DC->isFileContext()) {
263  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
264  if (FD->isInlined())
265  return true;
266 
267  DC = DC->getLexicalParent();
268  }
269 
270  return false;
271 }
272 
273 std::tuple<MangleNumberingContext *, Decl *>
275  // Compute the context for allocating mangling numbers in the current
276  // expression, if the ABI requires them.
277  Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
278 
279  enum ContextKind {
280  Normal,
281  DefaultArgument,
282  DataMember,
283  StaticDataMember,
284  InlineVariable,
285  VariableTemplate
286  } Kind = Normal;
287 
288  // Default arguments of member function parameters that appear in a class
289  // definition, as well as the initializers of data members, receive special
290  // treatment. Identify them.
291  if (ManglingContextDecl) {
292  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
293  if (const DeclContext *LexicalDC
294  = Param->getDeclContext()->getLexicalParent())
295  if (LexicalDC->isRecord())
296  Kind = DefaultArgument;
297  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
298  if (Var->getDeclContext()->isRecord())
299  Kind = StaticDataMember;
300  else if (Var->getMostRecentDecl()->isInline())
301  Kind = InlineVariable;
302  else if (Var->getDescribedVarTemplate())
303  Kind = VariableTemplate;
304  else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
305  if (!VTS->isExplicitSpecialization())
306  Kind = VariableTemplate;
307  }
308  } else if (isa<FieldDecl>(ManglingContextDecl)) {
309  Kind = DataMember;
310  }
311  }
312 
313  // Itanium ABI [5.1.7]:
314  // In the following contexts [...] the one-definition rule requires closure
315  // types in different translation units to "correspond":
316  bool IsInNonspecializedTemplate =
317  inTemplateInstantiation() || CurContext->isDependentContext();
318  switch (Kind) {
319  case Normal: {
320  // -- the bodies of non-exported nonspecialized template functions
321  // -- the bodies of inline functions
322  if ((IsInNonspecializedTemplate &&
323  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
324  isInInlineFunction(CurContext)) {
325  while (auto *CD = dyn_cast<CapturedDecl>(DC))
326  DC = CD->getParent();
327  return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
328  }
329 
330  return std::make_tuple(nullptr, nullptr);
331  }
332 
333  case StaticDataMember:
334  // -- the initializers of nonspecialized static members of template classes
335  if (!IsInNonspecializedTemplate)
336  return std::make_tuple(nullptr, ManglingContextDecl);
337  // Fall through to get the current context.
338  LLVM_FALLTHROUGH;
339 
340  case DataMember:
341  // -- the in-class initializers of class members
342  case DefaultArgument:
343  // -- default arguments appearing in class definitions
344  case InlineVariable:
345  // -- the initializers of inline variables
346  case VariableTemplate:
347  // -- the initializers of templated variables
348  return std::make_tuple(
350  ManglingContextDecl),
351  ManglingContextDecl);
352  }
353 
354  llvm_unreachable("unexpected context");
355 }
356 
358  SourceRange IntroducerRange,
359  TypeSourceInfo *MethodTypeInfo,
360  SourceLocation EndLoc,
362  ConstexprSpecKind ConstexprKind,
363  Expr *TrailingRequiresClause) {
364  QualType MethodType = MethodTypeInfo->getType();
365  TemplateParameterList *TemplateParams =
366  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
367  // If a lambda appears in a dependent context or is a generic lambda (has
368  // template parameters) and has an 'auto' return type, deduce it to a
369  // dependent type.
370  if (Class->isDependentContext() || TemplateParams) {
371  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
372  QualType Result = FPT->getReturnType();
373  if (Result->isUndeducedType()) {
374  Result = SubstAutoTypeDependent(Result);
375  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
376  FPT->getExtProtoInfo());
377  }
378  }
379 
380  // C++11 [expr.prim.lambda]p5:
381  // The closure type for a lambda-expression has a public inline function
382  // call operator (13.5.4) whose parameters and return type are described by
383  // the lambda-expression's parameter-declaration-clause and
384  // trailing-return-type respectively.
385  DeclarationName MethodName
386  = Context.DeclarationNames.getCXXOperatorName(OO_Call);
387  DeclarationNameLoc MethodNameLoc =
390  Context, Class, EndLoc,
391  DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
392  MethodNameLoc),
393  MethodType, MethodTypeInfo, SC_None, getCurFPFeatures().isFPConstrained(),
394  /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
395  Method->setAccess(AS_public);
396  if (!TemplateParams)
397  Class->addDecl(Method);
398 
399  // Temporarily set the lexical declaration context to the current
400  // context, so that the Scope stack matches the lexical nesting.
401  Method->setLexicalDeclContext(CurContext);
402  // Create a function template if we have a template parameter list
403  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
404  FunctionTemplateDecl::Create(Context, Class,
405  Method->getLocation(), MethodName,
406  TemplateParams,
407  Method) : nullptr;
408  if (TemplateMethod) {
409  TemplateMethod->setAccess(AS_public);
410  Method->setDescribedFunctionTemplate(TemplateMethod);
411  Class->addDecl(TemplateMethod);
412  TemplateMethod->setLexicalDeclContext(CurContext);
413  }
414 
415  // Add parameters.
416  if (!Params.empty()) {
417  Method->setParams(Params);
418  CheckParmsForFunctionDef(Params,
419  /*CheckParameterNames=*/false);
420 
421  for (auto P : Method->parameters())
422  P->setOwningFunction(Method);
423  }
424 
425  return Method;
426 }
427 
429  CXXRecordDecl *Class, CXXMethodDecl *Method,
430  Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
431  if (Mangling) {
432  bool HasKnownInternalLinkage;
433  unsigned ManglingNumber, DeviceManglingNumber;
434  Decl *ManglingContextDecl;
435  std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
436  ManglingContextDecl) = Mangling.getValue();
437  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
438  HasKnownInternalLinkage);
439  Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
440  return;
441  }
442 
443  auto getMangleNumberingContext =
444  [this](CXXRecordDecl *Class,
445  Decl *ManglingContextDecl) -> MangleNumberingContext * {
446  // Get mangle numbering context if there's any extra decl context.
447  if (ManglingContextDecl)
448  return &Context.getManglingNumberContext(
449  ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
450  // Otherwise, from that lambda's decl context.
451  auto DC = Class->getDeclContext();
452  while (auto *CD = dyn_cast<CapturedDecl>(DC))
453  DC = CD->getParent();
454  return &Context.getManglingNumberContext(DC);
455  };
456 
458  Decl *ManglingContextDecl;
459  std::tie(MCtx, ManglingContextDecl) =
460  getCurrentMangleNumberContext(Class->getDeclContext());
461  bool HasKnownInternalLinkage = false;
462  if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
463  getLangOpts().SYCLIsHost)) {
464  // Force lambda numbering in CUDA/HIP as we need to name lambdas following
465  // ODR. Both device- and host-compilation need to have a consistent naming
466  // on kernel functions. As lambdas are potential part of these `__global__`
467  // function names, they needs numbering following ODR.
468  // Also force for SYCL, since we need this for the
469  // __builtin_sycl_unique_stable_name implementation, which depends on lambda
470  // mangling.
471  MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472  assert(MCtx && "Retrieving mangle numbering context failed!");
473  HasKnownInternalLinkage = true;
474  }
475  if (MCtx) {
476  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478  HasKnownInternalLinkage);
479  Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
480  }
481 }
482 
484  CXXMethodDecl *CallOperator,
485  SourceRange IntroducerRange,
486  LambdaCaptureDefault CaptureDefault,
487  SourceLocation CaptureDefaultLoc,
488  bool ExplicitParams,
489  bool ExplicitResultType,
490  bool Mutable) {
491  LSI->CallOperator = CallOperator;
492  CXXRecordDecl *LambdaClass = CallOperator->getParent();
493  LSI->Lambda = LambdaClass;
494  if (CaptureDefault == LCD_ByCopy)
496  else if (CaptureDefault == LCD_ByRef)
498  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
499  LSI->IntroducerRange = IntroducerRange;
500  LSI->ExplicitParams = ExplicitParams;
501  LSI->Mutable = Mutable;
502 
503  if (ExplicitResultType) {
504  LSI->ReturnType = CallOperator->getReturnType();
505 
506  if (!LSI->ReturnType->isDependentType() &&
507  !LSI->ReturnType->isVoidType()) {
508  if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
509  diag::err_lambda_incomplete_result)) {
510  // Do nothing.
511  }
512  }
513  } else {
514  LSI->HasImplicitReturnType = true;
515  }
516 }
517 
520 }
521 
523  ArrayRef<NamedDecl *> TParams,
524  SourceLocation RAngleLoc,
525  ExprResult RequiresClause) {
526  LambdaScopeInfo *LSI = getCurLambda();
527  assert(LSI && "Expected a lambda scope");
528  assert(LSI->NumExplicitTemplateParams == 0 &&
529  "Already acted on explicit template parameters");
530  assert(LSI->TemplateParams.empty() &&
531  "Explicit template parameters should come "
532  "before invented (auto) ones");
533  assert(!TParams.empty() &&
534  "No template parameters to act on");
535  LSI->TemplateParams.append(TParams.begin(), TParams.end());
536  LSI->NumExplicitTemplateParams = TParams.size();
537  LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
538  LSI->RequiresClause = RequiresClause;
539 }
540 
543  CXXMethodDecl *CallOperator, Scope *CurScope) {
544  // Introduce our parameters into the function scope
545  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
546  p < NumParams; ++p) {
547  ParmVarDecl *Param = CallOperator->getParamDecl(p);
548 
549  // If this has an identifier, add it to the scope stack.
550  if (CurScope && Param->getIdentifier()) {
551  bool Error = false;
552  // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
553  // retroactively apply it.
554  for (const auto &Capture : Captures) {
555  if (Capture.Id == Param->getIdentifier()) {
556  Error = true;
557  Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
558  Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
559  << Capture.Id << true;
560  }
561  }
562  if (!Error)
563  CheckShadow(CurScope, Param);
564 
565  PushOnScopeChains(Param, CurScope);
566  }
567  }
568 }
569 
570 /// If this expression is an enumerator-like expression of some type
571 /// T, return the type T; otherwise, return null.
572 ///
573 /// Pointer comparisons on the result here should always work because
574 /// it's derived from either the parent of an EnumConstantDecl
575 /// (i.e. the definition) or the declaration returned by
576 /// EnumType::getDecl() (i.e. the definition).
578  // An expression is an enumerator-like expression of type T if,
579  // ignoring parens and parens-like expressions:
580  E = E->IgnoreParens();
581 
582  // - it is an enumerator whose enum type is T or
583  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
584  if (EnumConstantDecl *D
585  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
586  return cast<EnumDecl>(D->getDeclContext());
587  }
588  return nullptr;
589  }
590 
591  // - it is a comma expression whose RHS is an enumerator-like
592  // expression of type T or
593  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
594  if (BO->getOpcode() == BO_Comma)
595  return findEnumForBlockReturn(BO->getRHS());
596  return nullptr;
597  }
598 
599  // - it is a statement-expression whose value expression is an
600  // enumerator-like expression of type T or
601  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
602  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
603  return findEnumForBlockReturn(last);
604  return nullptr;
605  }
606 
607  // - it is a ternary conditional operator (not the GNU ?:
608  // extension) whose second and third operands are
609  // enumerator-like expressions of type T or
610  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
611  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
612  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
613  return ED;
614  return nullptr;
615  }
616 
617  // (implicitly:)
618  // - it is an implicit integral conversion applied to an
619  // enumerator-like expression of type T or
620  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
621  // We can sometimes see integral conversions in valid
622  // enumerator-like expressions.
623  if (ICE->getCastKind() == CK_IntegralCast)
624  return findEnumForBlockReturn(ICE->getSubExpr());
625 
626  // Otherwise, just rely on the type.
627  }
628 
629  // - it is an expression of that formal enum type.
630  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
631  return ET->getDecl();
632  }
633 
634  // Otherwise, nope.
635  return nullptr;
636 }
637 
638 /// Attempt to find a type T for which the returned expression of the
639 /// given statement is an enumerator-like expression of that type.
641  if (Expr *retValue = ret->getRetValue())
642  return findEnumForBlockReturn(retValue);
643  return nullptr;
644 }
645 
646 /// Attempt to find a common type T for which all of the returned
647 /// expressions in a block are enumerator-like expressions of that
648 /// type.
650  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
651 
652  // Try to find one for the first return.
654  if (!ED) return nullptr;
655 
656  // Check that the rest of the returns have the same enum.
657  for (++i; i != e; ++i) {
658  if (findEnumForBlockReturn(*i) != ED)
659  return nullptr;
660  }
661 
662  // Never infer an anonymous enum type.
663  if (!ED->hasNameForLinkage()) return nullptr;
664 
665  return ED;
666 }
667 
668 /// Adjust the given return statements so that they formally return
669 /// the given type. It should require, at most, an IntegralCast.
671  QualType returnType) {
673  i = returns.begin(), e = returns.end(); i != e; ++i) {
674  ReturnStmt *ret = *i;
675  Expr *retValue = ret->getRetValue();
676  if (S.Context.hasSameType(retValue->getType(), returnType))
677  continue;
678 
679  // Right now we only support integral fixup casts.
680  assert(returnType->isIntegralOrUnscopedEnumerationType());
681  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
682 
683  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
684 
685  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
686  E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
687  /*base path*/ nullptr, VK_PRValue,
689  if (cleanups) {
690  cleanups->setSubExpr(E);
691  } else {
692  ret->setRetValue(E);
693  }
694  }
695 }
696 
698  assert(CSI.HasImplicitReturnType);
699  // If it was ever a placeholder, it had to been deduced to DependentTy.
700  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
701  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
702  "lambda expressions use auto deduction in C++14 onwards");
703 
704  // C++ core issue 975:
705  // If a lambda-expression does not include a trailing-return-type,
706  // it is as if the trailing-return-type denotes the following type:
707  // - if there are no return statements in the compound-statement,
708  // or all return statements return either an expression of type
709  // void or no expression or braced-init-list, the type void;
710  // - otherwise, if all return statements return an expression
711  // and the types of the returned expressions after
712  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
713  // array-to-pointer conversion (4.2 [conv.array]), and
714  // function-to-pointer conversion (4.3 [conv.func]) are the
715  // same, that common type;
716  // - otherwise, the program is ill-formed.
717  //
718  // C++ core issue 1048 additionally removes top-level cv-qualifiers
719  // from the types of returned expressions to match the C++14 auto
720  // deduction rules.
721  //
722  // In addition, in blocks in non-C++ modes, if all of the return
723  // statements are enumerator-like expressions of some type T, where
724  // T has a name for linkage, then we infer the return type of the
725  // block to be that type.
726 
727  // First case: no return statements, implicit void return type.
728  ASTContext &Ctx = getASTContext();
729  if (CSI.Returns.empty()) {
730  // It's possible there were simply no /valid/ return statements.
731  // In this case, the first one we found may have at least given us a type.
732  if (CSI.ReturnType.isNull())
733  CSI.ReturnType = Ctx.VoidTy;
734  return;
735  }
736 
737  // Second case: at least one return statement has dependent type.
738  // Delay type checking until instantiation.
739  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
740  if (CSI.ReturnType->isDependentType())
741  return;
742 
743  // Try to apply the enum-fuzz rule.
744  if (!getLangOpts().CPlusPlus) {
745  assert(isa<BlockScopeInfo>(CSI));
747  if (ED) {
748  CSI.ReturnType = Context.getTypeDeclType(ED);
750  return;
751  }
752  }
753 
754  // Third case: only one return statement. Don't bother doing extra work!
755  if (CSI.Returns.size() == 1)
756  return;
757 
758  // General case: many return statements.
759  // Check that they all have compatible return types.
760 
761  // We require the return types to strictly match here.
762  // Note that we've already done the required promotions as part of
763  // processing the return statement.
764  for (const ReturnStmt *RS : CSI.Returns) {
765  const Expr *RetE = RS->getRetValue();
766 
767  QualType ReturnType =
768  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
769  if (Context.getCanonicalFunctionResultType(ReturnType) ==
771  // Use the return type with the strictest possible nullability annotation.
772  auto RetTyNullability = ReturnType->getNullability(Ctx);
773  auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
774  if (BlockNullability &&
775  (!RetTyNullability ||
776  hasWeakerNullability(*RetTyNullability, *BlockNullability)))
777  CSI.ReturnType = ReturnType;
778  continue;
779  }
780 
781  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
782  // TODO: It's possible that the *first* return is the divergent one.
783  Diag(RS->getBeginLoc(),
784  diag::err_typecheck_missing_return_type_incompatible)
785  << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
786  // Continue iterating so that we keep emitting diagnostics.
787  }
788 }
789 
791  SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
792  Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
793  Expr *&Init) {
794  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
795  // deduce against.
796  QualType DeductType = Context.getAutoDeductType();
797  TypeLocBuilder TLB;
798  AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
799  TL.setNameLoc(Loc);
800  if (ByRef) {
801  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
802  assert(!DeductType.isNull() && "can't build reference to auto");
803  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
804  }
805  if (EllipsisLoc.isValid()) {
806  if (Init->containsUnexpandedParameterPack()) {
807  Diag(EllipsisLoc, getLangOpts().CPlusPlus20
808  ? diag::warn_cxx17_compat_init_capture_pack
809  : diag::ext_init_capture_pack);
810  DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
811  /*ExpectPackInType=*/false);
812  TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
813  } else {
814  // Just ignore the ellipsis for now and form a non-pack variable. We'll
815  // diagnose this later when we try to capture it.
816  }
817  }
818  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
819 
820  // Deduce the type of the init capture.
821  QualType DeducedType = deduceVarTypeFromInitializer(
822  /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
823  SourceRange(Loc, Loc), IsDirectInit, Init);
824  if (DeducedType.isNull())
825  return QualType();
826 
827  // Are we a non-list direct initialization?
828  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
829 
830  // Perform initialization analysis and ensure any implicit conversions
831  // (such as lvalue-to-rvalue) are enforced.
832  InitializedEntity Entity =
835  IsDirectInit
836  ? (CXXDirectInit ? InitializationKind::CreateDirect(
837  Loc, Init->getBeginLoc(), Init->getEndLoc())
839  : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
840 
841  MultiExprArg Args = Init;
842  if (CXXDirectInit)
843  Args =
844  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
845  QualType DclT;
846  InitializationSequence InitSeq(*this, Entity, Kind, Args);
847  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
848 
849  if (Result.isInvalid())
850  return QualType();
851 
852  Init = Result.getAs<Expr>();
853  return DeducedType;
854 }
855 
857  QualType InitCaptureType,
858  SourceLocation EllipsisLoc,
860  unsigned InitStyle, Expr *Init) {
861  // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
862  // rather than reconstructing it here.
863  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
864  if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
865  PETL.setEllipsisLoc(EllipsisLoc);
866 
867  // Create a dummy variable representing the init-capture. This is not actually
868  // used as a variable, and only exists as a way to name and refer to the
869  // init-capture.
870  // FIXME: Pass in separate source locations for '&' and identifier.
871  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
872  Loc, Id, InitCaptureType, TSI, SC_Auto);
873  NewVD->setInitCapture(true);
874  NewVD->setReferenced(true);
875  // FIXME: Pass in a VarDecl::InitializationStyle.
876  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
877  NewVD->markUsed(Context);
878  NewVD->setInit(Init);
879  if (NewVD->isParameterPack())
880  getCurLambda()->LocalPacks.push_back(NewVD);
881  return NewVD;
882 }
883 
885  assert(Var->isInitCapture() && "init capture flag should be set");
886  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
887  /*isNested*/false, Var->getLocation(), SourceLocation(),
888  Var->getType(), /*Invalid*/false);
889 }
890 
892  Declarator &ParamInfo,
893  Scope *CurScope) {
894  LambdaScopeInfo *const LSI = getCurLambda();
895  assert(LSI && "LambdaScopeInfo should be on stack!");
896 
897  // Determine if we're within a context where we know that the lambda will
898  // be dependent, because there are template parameters in scope.
899  CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind =
901  if (LSI->NumExplicitTemplateParams > 0) {
902  auto *TemplateParamScope = CurScope->getTemplateParamParent();
903  assert(TemplateParamScope &&
904  "Lambda with explicit template param list should establish a "
905  "template param scope");
906  assert(TemplateParamScope->getParent());
907  if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr)
908  LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
909  } else if (CurScope->getTemplateParamParent() != nullptr) {
910  LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
911  }
912 
913  // Determine the signature of the call operator.
914  TypeSourceInfo *MethodTyInfo;
915  bool ExplicitParams = true;
916  bool ExplicitResultType = true;
917  bool ContainsUnexpandedParameterPack = false;
918  SourceLocation EndLoc;
920  if (ParamInfo.getNumTypeObjects() == 0) {
921  // C++11 [expr.prim.lambda]p4:
922  // If a lambda-expression does not include a lambda-declarator, it is as
923  // if the lambda-declarator were ().
925  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
926  EPI.HasTrailingReturn = true;
927  EPI.TypeQuals.addConst();
928  LangAS AS = getDefaultCXXMethodAddrSpace();
929  if (AS != LangAS::Default)
930  EPI.TypeQuals.addAddressSpace(AS);
931 
932  // C++1y [expr.prim.lambda]:
933  // The lambda return type is 'auto', which is replaced by the
934  // trailing-return type if provided and/or deduced from 'return'
935  // statements
936  // We don't do this before C++1y, because we don't support deduced return
937  // types there.
938  QualType DefaultTypeForNoTrailingReturn =
939  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
940  : Context.DependentTy;
941  QualType MethodTy =
942  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
943  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
944  ExplicitParams = false;
945  ExplicitResultType = false;
946  EndLoc = Intro.Range.getEnd();
947  } else {
948  assert(ParamInfo.isFunctionDeclarator() &&
949  "lambda-declarator is a function");
951 
952  // C++11 [expr.prim.lambda]p5:
953  // This function call operator is declared const (9.3.1) if and only if
954  // the lambda-expression's parameter-declaration-clause is not followed
955  // by mutable. It is neither virtual nor declared volatile. [...]
956  if (!FTI.hasMutableQualifier()) {
958  SourceLocation());
959  }
960 
961  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
962  assert(MethodTyInfo && "no type from lambda-declarator");
963  EndLoc = ParamInfo.getSourceRange().getEnd();
964 
965  ExplicitResultType = FTI.hasTrailingReturnType();
966 
967  if (FTIHasNonVoidParameters(FTI)) {
968  Params.reserve(FTI.NumParams);
969  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
970  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
971  }
972 
973  // Check for unexpanded parameter packs in the method type.
974  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
975  DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
976  UPPC_DeclarationType);
977  }
978 
979  CXXRecordDecl *Class = createLambdaClosureType(
980  Intro.Range, MethodTyInfo, LambdaDependencyKind, Intro.Default);
981  CXXMethodDecl *Method =
982  startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
983  ParamInfo.getDeclSpec().getConstexprSpecifier(),
984  ParamInfo.getTrailingRequiresClause());
985  if (ExplicitParams)
986  CheckCXXDefaultArguments(Method);
987 
988  // This represents the function body for the lambda function, check if we
989  // have to apply optnone due to a pragma.
990  AddRangeBasedOptnone(Method);
991 
992  // code_seg attribute on lambda apply to the method.
993  if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
994  Method->addAttr(A);
995 
996  // Attributes on the lambda apply to the method.
997  ProcessDeclAttributes(CurScope, Method, ParamInfo);
998 
999  // CUDA lambdas get implicit host and device attributes.
1000  if (getLangOpts().CUDA)
1001  CUDASetLambdaAttrs(Method);
1002 
1003  // OpenMP lambdas might get assumumption attributes.
1004  if (LangOpts.OpenMP)
1005  ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1006 
1007  // Number the lambda for linkage purposes if necessary.
1008  handleLambdaNumbering(Class, Method);
1009 
1010  // Introduce the function call operator as the current declaration context.
1011  PushDeclContext(CurScope, Method);
1012 
1013  // Build the lambda scope.
1014  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1015  ExplicitParams, ExplicitResultType, !Method->isConst());
1016 
1017  // C++11 [expr.prim.lambda]p9:
1018  // A lambda-expression whose smallest enclosing scope is a block scope is a
1019  // local lambda expression; any other lambda expression shall not have a
1020  // capture-default or simple-capture in its lambda-introducer.
1021  //
1022  // For simple-captures, this is covered by the check below that any named
1023  // entity is a variable that can be captured.
1024  //
1025  // For DR1632, we also allow a capture-default in any context where we can
1026  // odr-use 'this' (in particular, in a default initializer for a non-static
1027  // data member).
1028  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1029  (getCurrentThisType().isNull() ||
1030  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1031  /*BuildAndDiagnose*/false)))
1032  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1033 
1034  // Distinct capture names, for diagnostics.
1035  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1036 
1037  // Handle explicit captures.
1038  SourceLocation PrevCaptureLoc
1039  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1040  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1041  PrevCaptureLoc = C->Loc, ++C) {
1042  if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1043  if (C->Kind == LCK_StarThis)
1044  Diag(C->Loc, !getLangOpts().CPlusPlus17
1045  ? diag::ext_star_this_lambda_capture_cxx17
1046  : diag::warn_cxx14_compat_star_this_lambda_capture);
1047 
1048  // C++11 [expr.prim.lambda]p8:
1049  // An identifier or this shall not appear more than once in a
1050  // lambda-capture.
1051  if (LSI->isCXXThisCaptured()) {
1052  Diag(C->Loc, diag::err_capture_more_than_once)
1053  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1055  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1056  continue;
1057  }
1058 
1059  // C++2a [expr.prim.lambda]p8:
1060  // If a lambda-capture includes a capture-default that is =,
1061  // each simple-capture of that lambda-capture shall be of the form
1062  // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1063  // redundant but accepted for compatibility with ISO C++14. --end note ]
1064  if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1065  Diag(C->Loc, !getLangOpts().CPlusPlus20
1066  ? diag::ext_equals_this_lambda_capture_cxx20
1067  : diag::warn_cxx17_compat_equals_this_lambda_capture);
1068 
1069  // C++11 [expr.prim.lambda]p12:
1070  // If this is captured by a local lambda expression, its nearest
1071  // enclosing function shall be a non-static member function.
1072  QualType ThisCaptureType = getCurrentThisType();
1073  if (ThisCaptureType.isNull()) {
1074  Diag(C->Loc, diag::err_this_capture) << true;
1075  continue;
1076  }
1077 
1078  CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1079  /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1080  C->Kind == LCK_StarThis);
1081  if (!LSI->Captures.empty())
1082  LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1083  continue;
1084  }
1085 
1086  assert(C->Id && "missing identifier for capture");
1087 
1088  if (C->Init.isInvalid())
1089  continue;
1090 
1091  VarDecl *Var = nullptr;
1092  if (C->Init.isUsable()) {
1093  Diag(C->Loc, getLangOpts().CPlusPlus14
1094  ? diag::warn_cxx11_compat_init_capture
1095  : diag::ext_init_capture);
1096 
1097  // If the initializer expression is usable, but the InitCaptureType
1098  // is not, then an error has occurred - so ignore the capture for now.
1099  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1100  // FIXME: we should create the init capture variable and mark it invalid
1101  // in this case.
1102  if (C->InitCaptureType.get().isNull())
1103  continue;
1104 
1105  if (C->Init.get()->containsUnexpandedParameterPack() &&
1106  !C->InitCaptureType.get()->getAs<PackExpansionType>())
1107  DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1108 
1109  unsigned InitStyle;
1110  switch (C->InitKind) {
1112  llvm_unreachable("not an init-capture?");
1114  InitStyle = VarDecl::CInit;
1115  break;
1117  InitStyle = VarDecl::CallInit;
1118  break;
1120  InitStyle = VarDecl::ListInit;
1121  break;
1122  }
1123  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1124  C->EllipsisLoc, C->Id, InitStyle,
1125  C->Init.get());
1126  // C++1y [expr.prim.lambda]p11:
1127  // An init-capture behaves as if it declares and explicitly
1128  // captures a variable [...] whose declarative region is the
1129  // lambda-expression's compound-statement
1130  if (Var)
1131  PushOnScopeChains(Var, CurScope, false);
1132  } else {
1133  assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1134  "init capture has valid but null init?");
1135 
1136  // C++11 [expr.prim.lambda]p8:
1137  // If a lambda-capture includes a capture-default that is &, the
1138  // identifiers in the lambda-capture shall not be preceded by &.
1139  // If a lambda-capture includes a capture-default that is =, [...]
1140  // each identifier it contains shall be preceded by &.
1141  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1142  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1144  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1145  continue;
1146  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1147  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1149  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1150  continue;
1151  }
1152 
1153  // C++11 [expr.prim.lambda]p10:
1154  // The identifiers in a capture-list are looked up using the usual
1155  // rules for unqualified name lookup (3.4.1)
1156  DeclarationNameInfo Name(C->Id, C->Loc);
1157  LookupResult R(*this, Name, LookupOrdinaryName);
1158  LookupName(R, CurScope);
1159  if (R.isAmbiguous())
1160  continue;
1161  if (R.empty()) {
1162  // FIXME: Disable corrections that would add qualification?
1163  CXXScopeSpec ScopeSpec;
1164  DeclFilterCCC<VarDecl> Validator{};
1165  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1166  continue;
1167  }
1168 
1169  Var = R.getAsSingle<VarDecl>();
1170  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1171  continue;
1172  }
1173 
1174  // C++11 [expr.prim.lambda]p8:
1175  // An identifier or this shall not appear more than once in a
1176  // lambda-capture.
1177  if (!CaptureNames.insert(C->Id).second) {
1178  if (Var && LSI->isCaptured(Var)) {
1179  Diag(C->Loc, diag::err_capture_more_than_once)
1180  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1182  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1183  } else
1184  // Previous capture captured something different (one or both was
1185  // an init-cpature): no fixit.
1186  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1187  continue;
1188  }
1189 
1190  // C++11 [expr.prim.lambda]p10:
1191  // [...] each such lookup shall find a variable with automatic storage
1192  // duration declared in the reaching scope of the local lambda expression.
1193  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1194  if (!Var) {
1195  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1196  continue;
1197  }
1198 
1199  // Ignore invalid decls; they'll just confuse the code later.
1200  if (Var->isInvalidDecl())
1201  continue;
1202 
1203  if (!Var->hasLocalStorage()) {
1204  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1205  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1206  continue;
1207  }
1208 
1209  // C++11 [expr.prim.lambda]p23:
1210  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1211  SourceLocation EllipsisLoc;
1212  if (C->EllipsisLoc.isValid()) {
1213  if (Var->isParameterPack()) {
1214  EllipsisLoc = C->EllipsisLoc;
1215  } else {
1216  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1217  << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1218  : SourceRange(C->Loc));
1219 
1220  // Just ignore the ellipsis.
1221  }
1222  } else if (Var->isParameterPack()) {
1223  ContainsUnexpandedParameterPack = true;
1224  }
1225 
1226  if (C->Init.isUsable()) {
1227  addInitCapture(LSI, Var);
1228  } else {
1229  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1230  TryCapture_ExplicitByVal;
1231  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1232  }
1233  if (!LSI->Captures.empty())
1234  LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1235  }
1236  finishLambdaExplicitCaptures(LSI);
1237 
1238  LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1239 
1240  // Add lambda parameters into scope.
1241  addLambdaParameters(Intro.Captures, Method, CurScope);
1242 
1243  // Enter a new evaluation context to insulate the lambda from any
1244  // cleanups from the enclosing full-expression.
1245  PushExpressionEvaluationContext(
1246  LSI->CallOperator->isConsteval()
1247  ? ExpressionEvaluationContext::ImmediateFunctionContext
1248  : ExpressionEvaluationContext::PotentiallyEvaluated);
1249 }
1250 
1252  bool IsInstantiation) {
1253  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1254 
1255  // Leave the expression-evaluation context.
1256  DiscardCleanupsInEvaluationContext();
1257  PopExpressionEvaluationContext();
1258 
1259  // Leave the context of the lambda.
1260  if (!IsInstantiation)
1261  PopDeclContext();
1262 
1263  // Finalize the lambda.
1264  CXXRecordDecl *Class = LSI->Lambda;
1265  Class->setInvalidDecl();
1266  SmallVector<Decl*, 4> Fields(Class->fields());
1267  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1269  CheckCompletedCXXClass(nullptr, Class);
1270 
1271  PopFunctionScopeInfo();
1272 }
1273 
1274 template <typename Func>
1276  Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1278  CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1280  CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1281  CallingConv CallOpCC = CallOpProto.getCallConv();
1282 
1283  /// Implement emitting a version of the operator for many of the calling
1284  /// conventions for MSVC, as described here:
1285  /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1286  /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1287  /// vectorcall are generated by MSVC when it is supported by the target.
1288  /// Additionally, we are ensuring that the default-free/default-member and
1289  /// call-operator calling convention are generated as well.
1290  /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1291  /// 'member default', despite MSVC not doing so. We do this in order to ensure
1292  /// that someone who intentionally places 'thiscall' on the lambda call
1293  /// operator will still get that overload, since we don't have the a way of
1294  /// detecting the attribute by the time we get here.
1295  if (S.getLangOpts().MSVCCompat) {
1296  CallingConv Convs[] = {
1298  DefaultFree, DefaultMember, CallOpCC};
1299  llvm::sort(Convs);
1300  llvm::iterator_range<CallingConv *> Range(
1301  std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1302  const TargetInfo &TI = S.getASTContext().getTargetInfo();
1303 
1304  for (CallingConv C : Range) {
1306  F(C);
1307  }
1308  return;
1309  }
1310 
1311  if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1312  F(DefaultFree);
1313  F(DefaultMember);
1314  } else {
1315  F(CallOpCC);
1316  }
1317 }
1318 
1319 // Returns the 'standard' calling convention to be used for the lambda
1320 // conversion function, that is, the 'free' function calling convention unless
1321 // it is overridden by a non-default calling convention attribute.
1322 static CallingConv
1324  const FunctionProtoType *CallOpProto) {
1326  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1328  CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1329  CallingConv CallOpCC = CallOpProto->getCallConv();
1330 
1331  // If the call-operator hasn't been changed, return both the 'free' and
1332  // 'member' function calling convention.
1333  if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1334  return DefaultFree;
1335  return CallOpCC;
1336 }
1337 
1339  const FunctionProtoType *CallOpProto, CallingConv CC) {
1340  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1341  CallOpProto->getExtProtoInfo();
1342  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1343  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1344  InvokerExtInfo.TypeQuals = Qualifiers();
1345  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1346  "Lambda's call operator should not have a reference qualifier");
1347  return Context.getFunctionType(CallOpProto->getReturnType(),
1348  CallOpProto->getParamTypes(), InvokerExtInfo);
1349 }
1350 
1351 /// Add a lambda's conversion to function pointer, as described in
1352 /// C++11 [expr.prim.lambda]p6.
1353 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1354  CXXRecordDecl *Class,
1355  CXXMethodDecl *CallOperator,
1356  QualType InvokerFunctionTy) {
1357  // This conversion is explicitly disabled if the lambda's function has
1358  // pass_object_size attributes on any of its parameters.
1359  auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1360  return P->hasAttr<PassObjectSizeAttr>();
1361  };
1362  if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1363  return;
1364 
1365  // Add the conversion to function pointer.
1366  QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1367 
1368  // Create the type of the conversion function.
1369  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1371  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1372  // The conversion function is always const and noexcept.
1373  ConvExtInfo.TypeQuals = Qualifiers();
1374  ConvExtInfo.TypeQuals.addConst();
1375  ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1376  QualType ConvTy =
1377  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1378 
1379  SourceLocation Loc = IntroducerRange.getBegin();
1380  DeclarationName ConversionName
1382  S.Context.getCanonicalType(PtrToFunctionTy));
1383  // Construct a TypeSourceInfo for the conversion function, and wire
1384  // all the parameters appropriately for the FunctionProtoTypeLoc
1385  // so that everything works during transformation/instantiation of
1386  // generic lambdas.
1387  // The main reason for wiring up the parameters of the conversion
1388  // function with that of the call operator is so that constructs
1389  // like the following work:
1390  // auto L = [](auto b) { <-- 1
1391  // return [](auto a) -> decltype(a) { <-- 2
1392  // return a;
1393  // };
1394  // };
1395  // int (*fp)(int) = L(5);
1396  // Because the trailing return type can contain DeclRefExprs that refer
1397  // to the original call operator's variables, we hijack the call
1398  // operators ParmVarDecls below.
1399  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1400  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1401  DeclarationNameLoc ConvNameLoc =
1402  DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1403 
1404  // The conversion function is a conversion to a pointer-to-function.
1405  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1406  FunctionProtoTypeLoc ConvTL =
1407  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1408  // Get the result of the conversion function which is a pointer-to-function.
1409  PointerTypeLoc PtrToFunctionTL =
1410  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1411  // Do the same for the TypeSourceInfo that is used to name the conversion
1412  // operator.
1413  PointerTypeLoc ConvNamePtrToFunctionTL =
1414  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1415 
1416  // Get the underlying function types that the conversion function will
1417  // be converting to (should match the type of the call operator).
1418  FunctionProtoTypeLoc CallOpConvTL =
1419  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1420  FunctionProtoTypeLoc CallOpConvNameTL =
1421  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1422 
1423  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1424  // These parameter's are essentially used to transform the name and
1425  // the type of the conversion operator. By using the same parameters
1426  // as the call operator's we don't have to fix any back references that
1427  // the trailing return type of the call operator's uses (such as
1428  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1429  // - we can simply use the return type of the call operator, and
1430  // everything should work.
1431  SmallVector<ParmVarDecl *, 4> InvokerParams;
1432  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1433  ParmVarDecl *From = CallOperator->getParamDecl(I);
1434 
1435  InvokerParams.push_back(ParmVarDecl::Create(
1436  S.Context,
1437  // Temporarily add to the TU. This is set to the invoker below.
1439  From->getLocation(), From->getIdentifier(), From->getType(),
1440  From->getTypeSourceInfo(), From->getStorageClass(),
1441  /*DefArg=*/nullptr));
1442  CallOpConvTL.setParam(I, From);
1443  CallOpConvNameTL.setParam(I, From);
1444  }
1445 
1447  S.Context, Class, Loc,
1448  DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1450  /*isInline=*/true, ExplicitSpecifier(),
1451  S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1453  CallOperator->getBody()->getEndLoc());
1454  Conversion->setAccess(AS_public);
1455  Conversion->setImplicit(true);
1456 
1457  if (Class->isGenericLambda()) {
1458  // Create a template version of the conversion operator, using the template
1459  // parameter list of the function call operator.
1460  FunctionTemplateDecl *TemplateCallOperator =
1461  CallOperator->getDescribedFunctionTemplate();
1462  FunctionTemplateDecl *ConversionTemplate =
1464  Loc, ConversionName,
1465  TemplateCallOperator->getTemplateParameters(),
1466  Conversion);
1467  ConversionTemplate->setAccess(AS_public);
1468  ConversionTemplate->setImplicit(true);
1469  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1470  Class->addDecl(ConversionTemplate);
1471  } else
1472  Class->addDecl(Conversion);
1473  // Add a non-static member function that will be the result of
1474  // the conversion with a certain unique ID.
1475  DeclarationName InvokerName = &S.Context.Idents.get(
1477  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1478  // we should get a prebuilt TrivialTypeSourceInfo from Context
1479  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1480  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1481  // loop below and then use its Params to set Invoke->setParams(...) below.
1482  // This would avoid the 'const' qualifier of the calloperator from
1483  // contaminating the type of the invoker, which is currently adjusted
1484  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1485  // trailing return type of the invoker would require a visitor to rebuild
1486  // the trailing return type and adjusting all back DeclRefExpr's to refer
1487  // to the new static invoker parameters - not the call operator's.
1489  S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1490  InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1492  /*isInline=*/true, ConstexprSpecKind::Unspecified,
1493  CallOperator->getBody()->getEndLoc());
1494  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1495  InvokerParams[I]->setOwningFunction(Invoke);
1496  Invoke->setParams(InvokerParams);
1497  Invoke->setAccess(AS_private);
1498  Invoke->setImplicit(true);
1499  if (Class->isGenericLambda()) {
1500  FunctionTemplateDecl *TemplateCallOperator =
1501  CallOperator->getDescribedFunctionTemplate();
1502  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1503  S.Context, Class, Loc, InvokerName,
1504  TemplateCallOperator->getTemplateParameters(),
1505  Invoke);
1506  StaticInvokerTemplate->setAccess(AS_private);
1507  StaticInvokerTemplate->setImplicit(true);
1508  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1509  Class->addDecl(StaticInvokerTemplate);
1510  } else
1511  Class->addDecl(Invoke);
1512 }
1513 
1514 /// Add a lambda's conversion to function pointers, as described in
1515 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1516 /// single pointer conversion. In the event that the default calling convention
1517 /// for free and member functions is different, it will emit both conventions.
1518 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1519  CXXRecordDecl *Class,
1520  CXXMethodDecl *CallOperator) {
1521  const FunctionProtoType *CallOpProto =
1522  CallOperator->getType()->castAs<FunctionProtoType>();
1523 
1525  S, *CallOpProto, [&](CallingConv CC) {
1526  QualType InvokerFunctionTy =
1527  S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1528  addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1529  InvokerFunctionTy);
1530  });
1531 }
1532 
1533 /// Add a lambda's conversion to block pointer.
1535  SourceRange IntroducerRange,
1536  CXXRecordDecl *Class,
1537  CXXMethodDecl *CallOperator) {
1538  const FunctionProtoType *CallOpProto =
1539  CallOperator->getType()->castAs<FunctionProtoType>();
1541  CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1542  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1543 
1544  FunctionProtoType::ExtProtoInfo ConversionEPI(
1546  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1547  ConversionEPI.TypeQuals = Qualifiers();
1548  ConversionEPI.TypeQuals.addConst();
1549  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1550 
1551  SourceLocation Loc = IntroducerRange.getBegin();
1552  DeclarationName Name
1554  S.Context.getCanonicalType(BlockPtrTy));
1556  S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1558  S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1559  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1561  /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1562  CallOperator->getBody()->getEndLoc());
1563  Conversion->setAccess(AS_public);
1564  Conversion->setImplicit(true);
1565  Class->addDecl(Conversion);
1566 }
1567 
1569  SourceLocation ImplicitCaptureLoc,
1570  bool IsOpenMPMapping) {
1571  // VLA captures don't have a stored initialization expression.
1572  if (Cap.isVLATypeCapture())
1573  return ExprResult();
1574 
1575  // An init-capture is initialized directly from its stored initializer.
1576  if (Cap.isInitCapture())
1577  return Cap.getVariable()->getInit();
1578 
1579  // For anything else, build an initialization expression. For an implicit
1580  // capture, the capture notionally happens at the capture-default, so use
1581  // that location here.
1582  SourceLocation Loc =
1583  ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1584 
1585  // C++11 [expr.prim.lambda]p21:
1586  // When the lambda-expression is evaluated, the entities that
1587  // are captured by copy are used to direct-initialize each
1588  // corresponding non-static data member of the resulting closure
1589  // object. (For array members, the array elements are
1590  // direct-initialized in increasing subscript order.) These
1591  // initializations are performed in the (unspecified) order in
1592  // which the non-static data members are declared.
1593 
1594  // C++ [expr.prim.lambda]p12:
1595  // An entity captured by a lambda-expression is odr-used (3.2) in
1596  // the scope containing the lambda-expression.
1597  ExprResult Init;
1598  IdentifierInfo *Name = nullptr;
1599  if (Cap.isThisCapture()) {
1600  QualType ThisTy = getCurrentThisType();
1601  Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1602  if (Cap.isCopyCapture())
1603  Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1604  else
1605  Init = This;
1606  } else {
1607  assert(Cap.isVariableCapture() && "unknown kind of capture");
1608  VarDecl *Var = Cap.getVariable();
1609  Name = Var->getIdentifier();
1610  Init = BuildDeclarationNameExpr(
1611  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1612  }
1613 
1614  // In OpenMP, the capture kind doesn't actually describe how to capture:
1615  // variables are "mapped" onto the device in a process that does not formally
1616  // make a copy, even for a "copy capture".
1617  if (IsOpenMPMapping)
1618  return Init;
1619 
1620  if (Init.isInvalid())
1621  return ExprError();
1622 
1623  Expr *InitExpr = Init.get();
1625  Name, Cap.getCaptureType(), Loc);
1626  InitializationKind InitKind =
1627  InitializationKind::CreateDirect(Loc, Loc, Loc);
1628  InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1629  return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1630 }
1631 
1633  Scope *CurScope) {
1634  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1635  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1636  return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1637 }
1638 
1639 static LambdaCaptureDefault
1641  switch (ICS) {
1643  return LCD_None;
1645  return LCD_ByCopy;
1648  return LCD_ByRef;
1650  llvm_unreachable("block capture in lambda");
1651  }
1652  llvm_unreachable("Unknown implicit capture style");
1653 }
1654 
1656  if (From.isInitCapture()) {
1657  Expr *Init = From.getVariable()->getInit();
1658  if (Init && Init->HasSideEffects(Context))
1659  return true;
1660  }
1661 
1662  if (!From.isCopyCapture())
1663  return false;
1664 
1665  const QualType T = From.isThisCapture()
1666  ? getCurrentThisType()->getPointeeType()
1667  : From.getCaptureType();
1668 
1669  if (T.isVolatileQualified())
1670  return true;
1671 
1672  const Type *BaseT = T->getBaseElementTypeUnsafe();
1673  if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1674  return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1675  !RD->hasTrivialDestructor();
1676 
1677  return false;
1678 }
1679 
1681  const Capture &From) {
1682  if (CaptureHasSideEffects(From))
1683  return false;
1684 
1685  if (From.isVLATypeCapture())
1686  return false;
1687 
1688  auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1689  if (From.isThisCapture())
1690  diag << "'this'";
1691  else
1692  diag << From.getVariable();
1693  diag << From.isNonODRUsed();
1694  diag << FixItHint::CreateRemoval(CaptureRange);
1695  return true;
1696 }
1697 
1698 /// Create a field within the lambda class or captured statement record for the
1699 /// given capture.
1701  const sema::Capture &Capture) {
1703  QualType FieldType = Capture.getCaptureType();
1704 
1705  TypeSourceInfo *TSI = nullptr;
1706  if (Capture.isVariableCapture()) {
1707  auto *Var = Capture.getVariable();
1708  if (Var->isInitCapture())
1710  }
1711 
1712  // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1713  // appropriate, at least for an implicit capture.
1714  if (!TSI)
1715  TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1716 
1717  // Build the non-static data member.
1718  FieldDecl *Field =
1719  FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1720  /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1721  /*Mutable=*/false, ICIS_NoInit);
1722  // If the variable being captured has an invalid type, mark the class as
1723  // invalid as well.
1724  if (!FieldType->isDependentType()) {
1725  if (RequireCompleteSizedType(Loc, FieldType,
1726  diag::err_field_incomplete_or_sizeless)) {
1727  RD->setInvalidDecl();
1728  Field->setInvalidDecl();
1729  } else {
1730  NamedDecl *Def;
1731  FieldType->isIncompleteType(&Def);
1732  if (Def && Def->isInvalidDecl()) {
1733  RD->setInvalidDecl();
1734  Field->setInvalidDecl();
1735  }
1736  }
1737  }
1738  Field->setImplicit(true);
1739  Field->setAccess(AS_private);
1740  RD->addDecl(Field);
1741 
1742  if (Capture.isVLATypeCapture())
1743  Field->setCapturedVLAType(Capture.getCapturedVLAType());
1744 
1745  return Field;
1746 }
1747 
1749  LambdaScopeInfo *LSI) {
1750  // Collect information from the lambda scope.
1752  SmallVector<Expr *, 4> CaptureInits;
1753  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1754  LambdaCaptureDefault CaptureDefault =
1756  CXXRecordDecl *Class;
1757  CXXMethodDecl *CallOperator;
1758  SourceRange IntroducerRange;
1759  bool ExplicitParams;
1760  bool ExplicitResultType;
1761  CleanupInfo LambdaCleanup;
1762  bool ContainsUnexpandedParameterPack;
1763  bool IsGenericLambda;
1764  {
1765  CallOperator = LSI->CallOperator;
1766  Class = LSI->Lambda;
1767  IntroducerRange = LSI->IntroducerRange;
1768  ExplicitParams = LSI->ExplicitParams;
1769  ExplicitResultType = !LSI->HasImplicitReturnType;
1770  LambdaCleanup = LSI->Cleanup;
1771  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1772  IsGenericLambda = Class->isGenericLambda();
1773 
1774  CallOperator->setLexicalDeclContext(Class);
1775  Decl *TemplateOrNonTemplateCallOperatorDecl =
1776  CallOperator->getDescribedFunctionTemplate()
1777  ? CallOperator->getDescribedFunctionTemplate()
1778  : cast<Decl>(CallOperator);
1779 
1780  // FIXME: Is this really the best choice? Keeping the lexical decl context
1781  // set as CurContext seems more faithful to the source.
1782  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1783 
1784  PopExpressionEvaluationContext();
1785 
1786  // True if the current capture has a used capture or default before it.
1787  bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1788  SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1789  CaptureDefaultLoc : IntroducerRange.getBegin();
1790 
1791  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1792  const Capture &From = LSI->Captures[I];
1793 
1794  if (From.isInvalid())
1795  return ExprError();
1796 
1797  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1798  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1799  SourceLocation ImplicitCaptureLoc =
1800  IsImplicit ? CaptureDefaultLoc : SourceLocation();
1801 
1802  // Use source ranges of explicit captures for fixits where available.
1803  SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1804 
1805  // Warn about unused explicit captures.
1806  bool IsCaptureUsed = true;
1807  if (!CurContext->isDependentContext() && !IsImplicit &&
1808  !From.isODRUsed()) {
1809  // Initialized captures that are non-ODR used may not be eliminated.
1810  // FIXME: Where did the IsGenericLambda here come from?
1811  bool NonODRUsedInitCapture =
1812  IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1813  if (!NonODRUsedInitCapture) {
1814  bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1815  SourceRange FixItRange;
1816  if (CaptureRange.isValid()) {
1817  if (!CurHasPreviousCapture && !IsLast) {
1818  // If there are no captures preceding this capture, remove the
1819  // following comma.
1820  FixItRange = SourceRange(CaptureRange.getBegin(),
1821  getLocForEndOfToken(CaptureRange.getEnd()));
1822  } else {
1823  // Otherwise, remove the comma since the last used capture.
1824  FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1825  CaptureRange.getEnd());
1826  }
1827  }
1828 
1829  IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1830  }
1831  }
1832 
1833  if (CaptureRange.isValid()) {
1834  CurHasPreviousCapture |= IsCaptureUsed;
1835  PrevCaptureLoc = CaptureRange.getEnd();
1836  }
1837 
1838  // Map the capture to our AST representation.
1839  LambdaCapture Capture = [&] {
1840  if (From.isThisCapture()) {
1841  // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1842  // because it results in a reference capture. Don't warn prior to
1843  // C++2a; there's nothing that can be done about it before then.
1844  if (getLangOpts().CPlusPlus20 && IsImplicit &&
1845  CaptureDefault == LCD_ByCopy) {
1846  Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1847  Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1849  getLocForEndOfToken(CaptureDefaultLoc), ", this");
1850  }
1851  return LambdaCapture(From.getLocation(), IsImplicit,
1852  From.isCopyCapture() ? LCK_StarThis : LCK_This);
1853  } else if (From.isVLATypeCapture()) {
1854  return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1855  } else {
1856  assert(From.isVariableCapture() && "unknown kind of capture");
1857  VarDecl *Var = From.getVariable();
1859  From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1860  return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1861  From.getEllipsisLoc());
1862  }
1863  }();
1864 
1865  // Form the initializer for the capture field.
1866  ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1867 
1868  // FIXME: Skip this capture if the capture is not used, the initializer
1869  // has no side-effects, the type of the capture is trivial, and the
1870  // lambda is not externally visible.
1871 
1872  // Add a FieldDecl for the capture and form its initializer.
1873  BuildCaptureField(Class, From);
1874  Captures.push_back(Capture);
1875  CaptureInits.push_back(Init.get());
1876 
1877  if (LangOpts.CUDA)
1878  CUDACheckLambdaCapture(CallOperator, From);
1879  }
1880 
1881  Class->setCaptures(Context, Captures);
1882 
1883  // C++11 [expr.prim.lambda]p6:
1884  // The closure type for a lambda-expression with no lambda-capture
1885  // has a public non-virtual non-explicit const conversion function
1886  // to pointer to function having the same parameter and return
1887  // types as the closure type's function call operator.
1888  if (Captures.empty() && CaptureDefault == LCD_None)
1889  addFunctionPointerConversions(*this, IntroducerRange, Class,
1890  CallOperator);
1891 
1892  // Objective-C++:
1893  // The closure type for a lambda-expression has a public non-virtual
1894  // non-explicit const conversion function to a block pointer having the
1895  // same parameter and return types as the closure type's function call
1896  // operator.
1897  // FIXME: Fix generic lambda to block conversions.
1898  if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1899  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1900 
1901  // Finalize the lambda class.
1902  SmallVector<Decl*, 4> Fields(Class->fields());
1903  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1905  CheckCompletedCXXClass(nullptr, Class);
1906  }
1907 
1908  Cleanup.mergeFrom(LambdaCleanup);
1909 
1910  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1911  CaptureDefault, CaptureDefaultLoc,
1912  ExplicitParams, ExplicitResultType,
1913  CaptureInits, EndLoc,
1914  ContainsUnexpandedParameterPack);
1915  // If the lambda expression's call operator is not explicitly marked constexpr
1916  // and we are not in a dependent context, analyze the call operator to infer
1917  // its constexpr-ness, suppressing diagnostics while doing so.
1918  if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1919  !CallOperator->isConstexpr() &&
1920  !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1921  !Class->getDeclContext()->isDependentContext()) {
1922  CallOperator->setConstexprKind(
1923  CheckConstexprFunctionDefinition(CallOperator,
1924  CheckConstexprKind::CheckValid)
1927  }
1928 
1929  // Emit delayed shadowing warnings now that the full capture list is known.
1930  DiagnoseShadowingLambdaDecls(LSI);
1931 
1932  if (!CurContext->isDependentContext()) {
1933  switch (ExprEvalContexts.back().Context) {
1934  // C++11 [expr.prim.lambda]p2:
1935  // A lambda-expression shall not appear in an unevaluated operand
1936  // (Clause 5).
1937  case ExpressionEvaluationContext::Unevaluated:
1938  case ExpressionEvaluationContext::UnevaluatedList:
1939  case ExpressionEvaluationContext::UnevaluatedAbstract:
1940  // C++1y [expr.const]p2:
1941  // A conditional-expression e is a core constant expression unless the
1942  // evaluation of e, following the rules of the abstract machine, would
1943  // evaluate [...] a lambda-expression.
1944  //
1945  // This is technically incorrect, there are some constant evaluated contexts
1946  // where this should be allowed. We should probably fix this when DR1607 is
1947  // ratified, it lays out the exact set of conditions where we shouldn't
1948  // allow a lambda-expression.
1949  case ExpressionEvaluationContext::ConstantEvaluated:
1950  case ExpressionEvaluationContext::ImmediateFunctionContext:
1951  // We don't actually diagnose this case immediately, because we
1952  // could be within a context where we might find out later that
1953  // the expression is potentially evaluated (e.g., for typeid).
1954  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1955  break;
1956 
1957  case ExpressionEvaluationContext::DiscardedStatement:
1958  case ExpressionEvaluationContext::PotentiallyEvaluated:
1959  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1960  break;
1961  }
1962  }
1963 
1964  return MaybeBindToTemporary(Lambda);
1965 }
1966 
1968  SourceLocation ConvLocation,
1969  CXXConversionDecl *Conv,
1970  Expr *Src) {
1971  // Make sure that the lambda call operator is marked used.
1972  CXXRecordDecl *Lambda = Conv->getParent();
1973  CXXMethodDecl *CallOperator
1974  = cast<CXXMethodDecl>(
1975  Lambda->lookup(
1976  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1977  CallOperator->setReferenced();
1978  CallOperator->markUsed(Context);
1979 
1980  ExprResult Init = PerformCopyInitialization(
1982  CurrentLocation, Src);
1983  if (!Init.isInvalid())
1984  Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1985 
1986  if (Init.isInvalid())
1987  return ExprError();
1988 
1989  // Create the new block to be returned.
1990  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1991 
1992  // Set the type information.
1993  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1994  Block->setIsVariadic(CallOperator->isVariadic());
1995  Block->setBlockMissingReturnType(false);
1996 
1997  // Add parameters.
1998  SmallVector<ParmVarDecl *, 4> BlockParams;
1999  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2000  ParmVarDecl *From = CallOperator->getParamDecl(I);
2001  BlockParams.push_back(ParmVarDecl::Create(
2002  Context, Block, From->getBeginLoc(), From->getLocation(),
2003  From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2004  From->getStorageClass(),
2005  /*DefArg=*/nullptr));
2006  }
2007  Block->setParams(BlockParams);
2008 
2009  Block->setIsConversionFromLambda(true);
2010 
2011  // Add capture. The capture uses a fake variable, which doesn't correspond
2012  // to any actual memory location. However, the initializer copy-initializes
2013  // the lambda object.
2014  TypeSourceInfo *CapVarTSI =
2015  Context.getTrivialTypeSourceInfo(Src->getType());
2016  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2017  ConvLocation, nullptr,
2018  Src->getType(), CapVarTSI,
2019  SC_None);
2020  BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2021  /*nested=*/false, /*copy=*/Init.get());
2022  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2023 
2024  // Add a fake function body to the block. IR generation is responsible
2025  // for filling in the actual body, which cannot be expressed as an AST.
2026  Block->setBody(new (Context) CompoundStmt(ConvLocation));
2027 
2028  // Create the block literal expression.
2029  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2030  ExprCleanupObjects.push_back(Block);
2031  Cleanup.setExprNeedsCleanups(true);
2032 
2033  return BuildBlock;
2034 }
clang::Decl::setLexicalDeclContext
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:331
clang::DeclarationNameLoc::makeCXXOperatorNameLoc
static DeclarationNameLoc makeCXXOperatorNameLoc(SourceLocation BeginLoc, SourceLocation EndLoc)
Construct location information for a non-literal C++ operator.
Definition: DeclarationName.h:745
clang::Sema::finishLambdaExplicitCaptures
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:518
clang::ExplicitSpecifier
Store information needed for an explicit specifier.
Definition: DeclCXX.h:1815
clang::TagDecl::hasNameForLinkage
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type?
Definition: Decl.h:3572
clang::Language::CUDA
@ CUDA
clang::DeclaratorChunk::FunctionTypeInfo::NumParams
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1315
clang::sema::CapturingScopeInfo::addCapture
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, bool Invalid)
Definition: ScopeInfo.h:693
clang::sema::Capture::isThisCapture
bool isThisCapture() const
Definition: ScopeInfo.h:611
clang::sema::LambdaScopeInfo::ExplicitTemplateParamsRange
SourceRange ExplicitTemplateParamsRange
Source range covering the explicit template parameter list (if it exists).
Definition: ScopeInfo.h:861
clang::DeclSpec::SetTypeQual
bool SetTypeQual(TQ T, SourceLocation Loc)
Definition: DeclSpec.cpp:972
clang::Type::getNullability
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:4089
clang::MangleNumberingContext::getManglingNumber
virtual unsigned getManglingNumber(const CXXMethodDecl *CallOperator)=0
Retrieve the mangling number of a new lambda expression with the given call operator within this cont...
clang::ReturnStmt::getRetValue
Expr * getRetValue()
Definition: Stmt.h:2797
clang::sema::Capture::getLocation
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:648
clang::isLambdaCallOperator
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
repeatForLambdaConversionFunctionCallingConvs
static void repeatForLambdaConversionFunctionCallingConvs(Sema &S, const FunctionProtoType &CallOpProto, Func F)
Definition: SemaLambda.cpp:1275
clang::TemplateParameterList::Create
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl * > Params, SourceLocation RAngleLoc, Expr *RequiresClause)
Definition: DeclTemplate.cpp:119
clang::ASTContext::getTypeDeclType
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1569
clang::CC_X86FastCall
@ CC_X86FastCall
Definition: Specifiers.h:266
TypeLocBuilder.h
clang::FunctionDecl::getNumParams
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3442
clang::DeclaratorChunk::FunctionTypeInfo::hasTrailingReturnType
bool hasTrailingReturnType() const
Determine whether this function declarator had a trailing-return-type.
Definition: DeclSpec.h:1498
clang::FPOptions::isFPConstrained
bool isFPConstrained() const
Definition: LangOptions.h:669
clang::Sema::deduceClosureReturnType
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda's return type based on the return statements present in the body.
Definition: SemaLambda.cpp:697
clang::TypeSourceInfo::getType
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:6482
getStackIndexOfNearestEnclosingCaptureReadyLambda
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
clang::LambdaIntroducer
Represents a complete lambda introducer.
Definition: DeclSpec.h:2667
clang::FunctionDecl::getReturnType
QualType getReturnType() const
Definition: Decl.h:2557
clang::DeclaratorDecl::getBeginLoc
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:778
clang::DeclarationNameLoc
DeclarationNameLoc - Additional source/type location info for a declaration name.
Definition: DeclarationName.h:659
clang::sema::Capture::isODRUsed
bool isODRUsed() const
Definition: ScopeInfo.h:628
Error
llvm::Error Error
Definition: ByteCodeEmitter.cpp:20
clang::SourceRange
A trivial tuple used to represent a source range.
Definition: SourceLocation.h:210
clang::DeclContext
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1356
clang::sema::LambdaScopeInfo::ExplicitParams
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:849
clang::PointerTypeLoc
Wrapper for source info for pointers.
Definition: TypeLoc.h:1258
clang::LambdaCapture
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:25
clang::CXXConversionDecl
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2751
clang::Sema::ActOnLambdaExplicitTemplateParameterList
void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef< NamedDecl * > TParams, SourceLocation RAngleLoc, ExprResult RequiresClause)
This is called after parsing the explicit template parameter list on a lambda (if it exists) in C++2a...
Definition: SemaLambda.cpp:522
clang::TargetInfo::checkCallingConvention
virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const
Determines whether a given calling convention is valid for the target.
Definition: TargetInfo.h:1513
clang::FixItHint::CreateInsertion
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:97
clang::Sema::getASTContext
ASTContext & getASTContext() const
Definition: Sema.h:1614
clang::ReferenceTypeLoc
Definition: TypeLoc.h:1339
clang::Declarator::getNumTypeObjects
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2236
clang::FunctionDecl::isConstexpr
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2299
Diag
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Definition: LiteralSupport.cpp:78
clang::DeclaratorChunk::FunctionTypeInfo::hasMutableQualifier
bool hasMutableQualifier() const
Determine whether this lambda-declarator contains a 'mutable' qualifier.
Definition: DeclSpec.h:1470
SemaInternal.h
clang::sema::Capture::isInitCapture
bool isInitCapture() const
Determine whether this capture is an init-capture.
Definition: ScopeInfo.cpp:220
clang::ASTContext::VoidTy
CanQualType VoidTy
Definition: ASTContext.h:1096
clang::sema::Capture::getVariable
VarDecl * getVariable() const
Definition: ScopeInfo.h:637
clang::sema::LambdaScopeInfo::Mutable
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:846
llvm::SmallVector
Definition: LLVM.h:38
Lookup.h
clang::IdentifierTable::get
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Definition: IdentifierTable.h:596
clang::Declarator::getSourceRange
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1945
clang::if
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
Definition: RecursiveASTVisitor.h:1098
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:86
clang::ASTContext::getManglingNumberContext
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
Definition: ASTContext.cpp:11793
clang::VarDecl::isInitCapture
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.h:1486
clang::NamedDecl
This represents a decl that may have a name.
Definition: Decl.h:247
clang::ParenListExpr
Definition: Expr.h:5537
clang::SourceRange::getBegin
SourceLocation getBegin() const
Definition: SourceLocation.h:219
clang::AS_private
@ AS_private
Definition: Specifiers.h:111
clang::VarDecl::setInit
void setInit(Expr *I)
Definition: Decl.cpp:2359
TargetInfo.h
clang::LambdaIntroducer::Captures
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2692
clang::sema::LambdaScopeInfo::NumExplicitCaptures
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:843
clang::ASTContext::DeclarationNames
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:659
clang::TypeLocBuilder::getTypeSourceInfo
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
Definition: TypeLocBuilder.h:101
clang::MultiExprArg
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:272
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:675
clang::FunctionDecl::getParamDecl
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2526
clang::InitializedEntity::InitializeLambdaCapture
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
Definition: Initialization.h:412
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2855
clang::FunctionProtoType::ExtProtoInfo::RefQualifier
RefQualifierKind RefQualifier
Definition: Type.h:3986
clang::LookupResult
Represents the results of name lookup.
Definition: Lookup.h:46
clang::Qualifiers
The collection of all-type qualifiers we support.
Definition: Type.h:147
clang::ParmVarDecl
Represents a parameter to a function.
Definition: Decl.h:1680
clang::TargetInfo
Exposes information about the current target.
Definition: TargetInfo.h:186
SemaLambda.h
clang::sema::LambdaScopeInfo::GLTemplateParameterList
TemplateParameterList * GLTemplateParameterList
If this is a generic lambda, and the template parameter list has been created (from the TemplateParam...
Definition: ScopeInfo.h:871
clang::DeclarationNameTable::getCXXConversionFunctionName
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
Returns the name of a C++ conversion function for the given Type.
Definition: DeclarationName.cpp:343
clang::ASTContext::getFunctionType
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1547
clang::Type::containsUnexpandedParameterPack
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1888
clang::SourceRange::isValid
bool isValid() const
Definition: SourceLocation.h:225
clang::sema::CapturingScopeInfo::ImplicitCaptureStyle
ImplicitCaptureStyle
Definition: ScopeInfo.h:665
clang::Sema::createLambdaClosureType
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, unsigned LambdaDependencyKind, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:242
llvm::Optional< unsigned >
clang::getLambdaAwareParentOfDeclContext
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:80
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:7037
clang::InitializationKind::CreateDirect
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
Definition: Initialization.h:627
clang::QualType::isVolatileQualified
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6570
clang::CPlusPlus14
@ CPlusPlus14
Definition: LangStandard.h:55
DeclSpec.h
clang::CXXScopeSpec
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:64
clang::Sema::ActOnStartOfLambdaDefinition
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:891
clang::sema::Capture
Definition: ScopeInfo.h:528
ASTLambda.h
clang::Sema::BuildCaptureField
FieldDecl * BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture)
Build a FieldDecl suitable to hold the given capture.
Definition: SemaLambda.cpp:1700
clang::CXXRecordDecl::LambdaDependencyKind
LambdaDependencyKind
Definition: DeclCXX.h:279
clang::DeclContext::getLexicalParent
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1892
clang::InitializationSequence
Describes the sequence of initializations required to initialize a given object or reference with a s...
Definition: Initialization.h:788
clang::ASTContext::getPackExpansionType
QualType getPackExpansionType(QualType Pattern, Optional< unsigned > NumExpansions, bool ExpectPackInType=true)
Form a pack expansion type with the given pattern.
Definition: ASTContext.cpp:5153
clang::FunctionTemplateDecl::Create
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
Definition: DeclTemplate.cpp:351
clang::sema::LambdaScopeInfo::RequiresClause
ExprResult RequiresClause
The requires-clause immediately following the explicit template parameter list, if any.
Definition: ScopeInfo.h:866
clang::sema::LambdaScopeInfo::finishedExplicitCaptures
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:914
clang::MangleNumberingContext::getDeviceManglingNumber
virtual unsigned getDeviceManglingNumber(const CXXMethodDecl *)
Retrieve the mangling number of a new lambda expression with the given call operator within the devic...
Definition: MangleNumberingContext.h:57
clang::Sema::BuildLambdaExpr
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
Definition: SemaLambda.cpp:1748
clang::DeclarationName
The name of a declaration.
Definition: DeclarationName.h:144
clang::sema::FunctionScopeInfo::Returns
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:200
clang::ASTContext::getTranslationUnitDecl
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1078
clang::sema::LambdaScopeInfo::CallOperator
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:832
clang::sema::Capture::isCopyCapture
bool isCopyCapture() const
Definition: ScopeInfo.h:616
clang::Decl::markUsed
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:458
clang::LambdaCaptureInitKind::DirectInit
@ DirectInit
[a(b)]
clang::CC_X86StdCall
@ CC_X86StdCall
Definition: Specifiers.h:265
clang::FunctionDecl::isConsteval
bool isConsteval() const
Definition: Decl.h:2311
clang::EnumDecl
Represents an enum.
Definition: Decl.h:3628
clang::FunctionProtoType::isVariadic
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4230
clang::ASTContext::getCanonicalFunctionResultType
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Definition: ASTContext.cpp:4280
clang::Declarator::getTrailingRequiresClause
Expr * getTrailingRequiresClause()
Sets a trailing requires clause for this declarator.
Definition: DeclSpec.h:2473
clang::Sema::Context
ASTContext & Context
Definition: Sema.h:410
clang::Type
The base class of the type hierarchy.
Definition: Type.h:1500
clang::FieldDecl::Create
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:4233
clang::ReturnStmt::setRetValue
void setRetValue(Expr *E)
Definition: Stmt.h:2799
clang::ExprError
ExprResult ExprError()
Definition: Ownership.h:278
clang::ConditionalOperator
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:4145
clang::CXXMethodDecl::Create
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause=nullptr)
Definition: DeclCXX.cpp:2180
clang::sema::CapturingScopeInfo::ImpCap_Block
@ ImpCap_Block
Definition: ScopeInfo.h:666
clang::CPlusPlus17
@ CPlusPlus17
Definition: LangStandard.h:56
clang::ASTContext::getBlockPointerType
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
Definition: ASTContext.cpp:3348
clang::Sema::getLangOpts
const LangOptions & getLangOpts() const
Definition: Sema.h:1607
clang::DeclarationNameLoc::makeNamedTypeLoc
static DeclarationNameLoc makeNamedTypeLoc(TypeSourceInfo *TInfo)
Construct location information for a constructor, destructor or conversion operator.
Definition: DeclarationName.h:738
clang::sema::LambdaScopeInfo::Lambda
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:829
clang::Declarator::getDeclSpec
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1910
clang::CXXRecordDecl::CreateLambda
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, unsigned DependencyKind, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:147
clang::VarDecl::isParameterPack
bool isParameterPack() const
Determine whether this variable is actually a function parameter pack or init-capture pack.
Definition: Decl.cpp:2558
clang::CXXRecordDecl::LDK_Unknown
@ LDK_Unknown
Definition: DeclCXX.h:280
clang::FunctionTemplateDecl
Declaration of a template function.
Definition: DeclTemplate.h:979
llvm::MutableArrayRef
Definition: LLVM.h:35
clang::Type::isReferenceType
bool isReferenceType() const
Definition: Type.h:6760
clang::TypeLocBuilder::push
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
Definition: TypeLocBuilder.h:93
clang::FunctionDecl::setConstexprKind
void setConstexprKind(ConstexprSpecKind CSK)
Definition: Decl.h:2302
clang::PackExpansionTypeLoc
Definition: TypeLoc.h:2498
clang::Sema::ActOnLambdaError
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
Definition: SemaLambda.cpp:1251
getLambdaConversionFunctionCallConv
static CallingConv getLambdaConversionFunctionCallConv(Sema &S, const FunctionProtoType *CallOpProto)
Definition: SemaLambda.cpp:1323
clang::CompoundStmt
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1401
clang::PackExpansionType
Represents a pack expansion of types.
Definition: Type.h:5708
clang::FTIHasNonVoidParameters
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:36
clang::InitializedEntity::InitializeLambdaToBlock
static InitializedEntity InitializeLambdaToBlock(SourceLocation BlockVarLoc, QualType Type)
Definition: Initialization.h:314
clang::Scope::getTemplateParamParent
Scope * getTemplateParamParent()
Definition: Scope.h:279
clang::Sema::startLambdaDefinition
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl * > Params, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:357
clang::BlockDecl
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4201
clang::ASTContext::getDefaultCallingConvention
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod, bool IsBuiltin=false) const
Retrieves the default calling convention for the current target.
Definition: ASTContext.cpp:11598
clang::BinaryOperator
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3807
clang::Decl::setAccess
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:468
Id
int Id
Definition: ASTDiff.cpp:191
clang::LambdaExpr
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1865
clang::Scope
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
clang::sema::Capture::getCapturedVLAType
const VariableArrayType * getCapturedVLAType() const
Definition: ScopeInfo.h:642
clang::sema::LambdaScopeInfo::PotentialThisCaptureLocation
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:906
clang::SourceRange::getEnd
SourceLocation getEnd() const
Definition: SourceLocation.h:220
clang::sema::Capture::getCaptureType
QualType getCaptureType() const
Retrieve the capture type for this capture, which is effectively the type of the non-static data memb...
Definition: ScopeInfo.h:657
clang::AS_public
@ AS_public
Definition: Specifiers.h:109
clang::sema::CapturingScopeInfo::ImpCap_None
@ ImpCap_None
Definition: ScopeInfo.h:666
clang::ASTContext::DependentTy
CanQualType DependentTy
Definition: ASTContext.h:1124
clang::FPOptionsOverride
Represents difference between two FPOptions values.
Definition: LangOptions.h:713
clang::ASTContext
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:208
clang::ExprResult
ActionResult< Expr * > ExprResult
Definition: Ownership.h:262
clang::DeclContextLookupResult::front
reference front() const
Definition: DeclBase.h:1324
clang::CPlusPlus
@ CPlusPlus
Definition: LangStandard.h:53
clang::sema::Capture::isInvalid
bool isInvalid() const
Definition: ScopeInfo.h:623
clang::DeclarationNameTable::getCXXOperatorName
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
Definition: DeclarationName.h:648
clang::Sema::getLambdaConversionFunctionResultType
QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType, CallingConv CC)
Get the return type to use for a lambda's conversion function(s) to function pointer type,...
Definition: SemaLambda.cpp:1338
clang::Sema::TryCapture_Implicit
@ TryCapture_Implicit
Definition: Sema.h:5177
clang::DeclaratorChunk::FunctionTypeInfo::getOrCreateMethodQualifiers
DeclSpec & getOrCreateMethodQualifiers()
Definition: DeclSpec.h:1409
clang::sema::Capture::isNonODRUsed
bool isNonODRUsed() const
Definition: ScopeInfo.h:629
clang::FunctionDecl::getBody
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition: Decl.cpp:3092
clang::DeclaratorChunk::FunctionTypeInfo
Definition: DeclSpec.h:1276
clang::Type::getAs
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:7243
clang::Decl::isInvalidDecl
bool isInvalidDecl() const
Definition: DeclBase.h:553
clang::FunctionType::getCallConv
CallingConv getCallConv() const
Definition: Type.h:3833
clang::TargetInfo::CCCR_OK
@ CCCR_OK
Definition: TargetInfo.h:1503
clang::VarDecl::setInitCapture
void setInitCapture(bool IC)
Definition: Decl.h:1489
clang::LambdaCaptureDefault
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:22
clang::Sema::tryCaptureVariable
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:18579
getGenericLambdaTemplateParameterList
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:228
clang::Stmt::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:348
clang::ASTContext::getAutoDeductType
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
Definition: ASTContext.cpp:5793
clang::ParenListExpr::getNumExprs
unsigned getNumExprs() const
Return the number of expressions in this paren list.
Definition: Expr.h:5563
clang::ImplicitCastExpr::Create
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat, FPOptionsOverride FPO)
Definition: Expr.cpp:1974
clang::DeclContext::isTranslationUnit
bool isTranslationUnit() const
Definition: DeclBase.h:1951
clang::FunctionProtoType::ExtProtoInfo::ExtInfo
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3982
clang::sema::CapturingScopeInfo::ImpCap_CapturedRegion
@ ImpCap_CapturedRegion
Definition: ScopeInfo.h:667
clang::Sema::CheckCXXThisCapture
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr, bool ByCopy=false)
Make sure the value of 'this' is actually available in the current context, if it is a potentially ev...
Definition: SemaExprCXX.cpp:1260
clang::CPlusPlus20
@ CPlusPlus20
Definition: LangStandard.h:57
clang::LCD_ByCopy
@ LCD_ByCopy
Definition: Lambda.h:24
clang::CallingConv
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:263
clang::VarDecl
Represents a variable declaration or definition.
Definition: Decl.h:874
clang::FunctionProtoType::getParamTypes
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:4115
clang::sema::CapturingScopeInfo::getCapture
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:729
clang::ConstexprSpecKind::Constexpr
@ Constexpr
clang::LambdaIntroducer::Default
LambdaCaptureDefault Default
Definition: DeclSpec.h:2691
clang::TemplateParameterList
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:69
clang::ExprWithCleanups
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3359
clang::ASTContext::getCanonicalType
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2508
clang::Type::getAsCXXRecordDecl
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1759
clang::RQ_None
@ RQ_None
No ref-qualifier was provided.
Definition: Type.h:1453
clang::Sema::getCurFPFeatures
FPOptions & getCurFPFeatures()
Definition: Sema.h:1609
clang::FunctionType::ExtInfo::withCallingConv
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3785
clang::EnumConstantDecl
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:3070
clang::FunctionDecl::setParams
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.h:2534
ExprCXX.h
clang::LCD_None
@ LCD_None
Definition: Lambda.h:23
clang::DeclContext::isRecord
bool isRecord() const
Definition: DeclBase.h:1955
clang::getStackIndexOfNearestEnclosingCaptureCapableLambda
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:173
clang::DeclaratorChunk::FunctionTypeInfo::Params
ParamInfo * Params
Params - This is a pointer to a new[]'d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1340
clang::Decl::setImplicit
void setImplicit(bool I=true)
Definition: DeclBase.h:559
clang::sema::CapturingScopeInfo::ImpCaptureStyle
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:670
clang::Declarator::isFunctionDeclarator
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2298
clang::VarDecl::Create
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:2055
clang::TypeLocBuilder
Definition: TypeLocBuilder.h:22
clang::DeclaratorChunk::ParamInfo::Param
Decl * Param
Definition: DeclSpec.h:1254
clang::AutoTypeLoc
Definition: TypeLoc.h:2114
clang::SC_Static
@ SC_Static
Definition: Specifiers.h:237
clang::sema::CapturingScopeInfo::ImpCap_LambdaByval
@ ImpCap_LambdaByval
Definition: ScopeInfo.h:666
clang::TemplateDecl::getTemplateParameters
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:419
clang::BlockDecl::Create
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:4987
clang::CC_C
@ CC_C
Definition: Specifiers.h:264
clang::FullExpr::getSubExpr
const Expr * getSubExpr() const
Definition: Expr.h:1017
clang::LangAS
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
clang::Sema::getCurGenericLambda
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:2338
clang::Type::castAs
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7310
clang::ConstexprSpecKind
ConstexprSpecKind
Define the kind of constexpr specifier.
Definition: Specifiers.h:32
clang::Sema::addInitCapture
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Add an init-capture to a lambda scope.
Definition: SemaLambda.cpp:884
clang::VarDecl::ListInit
@ ListInit
Direct list-initialization (C++11)
Definition: Decl.h:885
clang::InitializationSequence::Perform
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence.
Definition: SemaInit.cpp:8015
clang::CXXRecordDecl
Represents a C++ struct/union/class.
Definition: DeclCXX.h:254
P
StringRef P
Definition: ASTMatchersInternal.cpp:563
clang::Type::isDependentType
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2185
clang::VK_PRValue
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:120
clang::LambdaCaptureKind
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:33
clang::LCD_ByRef
@ LCD_ByRef
Definition: Lambda.h:25
clang::sema::CapturingScopeInfo::Captures
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:683
clang::LookupResult::empty
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:339
clang::LambdaCaptureInitKind::ListInit
@ ListInit
[a{b}]
clang::Declarator::getFunctionTypeInfo
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2329
clang::sema::LambdaScopeInfo::Cleanup
CleanupInfo Cleanup
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:852
clang::ActionResult::get
PtrTy get() const
Definition: Ownership.h:169
clang::LCK_ByRef
@ LCK_ByRef
Capturing by reference.
Definition: Lambda.h:37
clang::NamedDecl::getIdentifier
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:268
clang::InventedTemplateParameterInfo::TemplateParams
SmallVector< NamedDecl *, 4 > TemplateParams
Store the list of the template parameters for a generic lambda or an abbreviated function template.
Definition: DeclSpec.h:2728
clang::VarDecl::getStorageClass
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1083
clang::DeclContext::addDecl
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1572
isInInlineFunction
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:261
clang::FunctionProtoType
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3898
clang::ASTContext::Idents
IdentifierTable & Idents
Definition: ASTContext.h:655
clang::DeclContext::getParent
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1876
clang::CXXConversionDecl::getConversionType
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2791
clang::TypeLoc::getAs
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:88
clang::sema::Capture::isVLATypeCapture
bool isVLATypeCapture() const
Definition: ScopeInfo.h:619
clang::QualType::isNull
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:740
clang::Sema::BuildCaptureInit
ExprResult BuildCaptureInit(const sema::Capture &Capture, SourceLocation ImplicitCaptureLoc, bool IsOpenMPMapping=false)
Initialize the given capture with a suitable expression.
Definition: SemaLambda.cpp:1568
clang::BlockExpr
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5970
clang::StmtExpr
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4349
llvm::ArrayRef
Definition: LLVM.h:34
clang::Decl
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:83
Scope.h
clang::LCK_StarThis
@ LCK_StarThis
Capturing the *this object by copy.
Definition: Lambda.h:35
clang::Sema
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:354
addBlockPointerConversion
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to block pointer.
Definition: SemaLambda.cpp:1534
clang::VarDecl::setInitStyle
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1360
clang::Qualifiers::addConst
void addConst()
Definition: Type.h:267
clang::hasWeakerNullability
bool hasWeakerNullability(NullabilityKind L, NullabilityKind R)
Return true if L has a weaker nullability annotation than R.
Definition: Specifiers.h:336
clang::DeclSpec::getConstexprSpecifier
ConstexprSpecKind getConstexprSpecifier() const
Definition: DeclSpec.h:754
clang::DeclContext::isFileContext
bool isFileContext() const
Definition: DeclBase.h:1946
clang::CC_X86VectorCall
@ CC_X86VectorCall
Definition: Specifiers.h:268
clang::sema::LambdaScopeInfo::IntroducerRange
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:835
clang::sema::CapturingScopeInfo::isCaptured
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:720
clang::VarDecl::getInit
const Expr * getInit() const
Definition: Decl.h:1283
clang::IdentifierInfo
One of these records is kept for each identifier that is lexed.
Definition: IdentifierTable.h:84
clang::Sema::DiagnoseUnusedLambdaCapture
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, const sema::Capture &From)
Diagnose if an explicit lambda capture is unused.
Definition: SemaLambda.cpp:1680
clang::ASTContext::getTargetInfo
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:768
findEnumForBlockReturn
static EnumDecl * findEnumForBlockReturn(Expr *E)
If this expression is an enumerator-like expression of some type T, return the type T; otherwise,...
Definition: SemaLambda.cpp:577
clang::Sema::addLambdaParameters
void addLambdaParameters(ArrayRef< LambdaIntroducer::LambdaCapture > Captures, CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:541
clang::ObjCPropertyAttribute::Kind
Kind
Definition: DeclObjCCommon.h:22
clang::InitializationKind
Describes the kind of initialization being performed, along with location information for tokens rela...
Definition: Initialization.h:566
clang::ActionResult< Expr * >
clang::LCK_ByCopy
@ LCK_ByCopy
Capturing by copy (a.k.a., by value)
Definition: Lambda.h:36
clang::FunctionProtoType::ExceptionSpecInfo::Type
ExceptionSpecificationType Type
The kind of exception specification this is.
Definition: Type.h:3957
clang::LCK_VLAType
@ LCK_VLAType
Capturing variable-length array type.
Definition: Lambda.h:38
clang::MangleNumberingContext
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
Definition: MangleNumberingContext.h:29
clang::LambdaCaptureInitKind::NoInit
@ NoInit
[a]
clang::FunctionProtoType::ExtProtoInfo::ExceptionSpec
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3987
clang::DeclFilterCCC
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
Definition: TypoCorrection.h:366
clang::InitializationKind::CreateDirectList
static InitializationKind CreateDirectList(SourceLocation InitLoc)
Definition: Initialization.h:634
clang::VarDecl::InitializationStyle
InitializationStyle
Initialization styles.
Definition: Decl.h:877
clang::sema::LambdaScopeInfo
Definition: ScopeInfo.h:825
ScopeInfo.h
clang::LangAS::Default
@ Default
clang::Type::getBaseElementTypeUnsafe
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:7193
clang::sema::LambdaScopeInfo::ContainsUnexpandedParameterPack
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:855
clang::LambdaIntroducer::DefaultLoc
SourceLocation DefaultLoc
Definition: DeclSpec.h:2690
clang::sema::CapturingScopeInfo::ImpCap_LambdaByref
@ ImpCap_LambdaByref
Definition: ScopeInfo.h:666
clang::interp::This
bool This(InterpState &S, CodePtr OpPC)
Definition: Interp.h:829
clang::VarDecl::CInit
@ CInit
C-style initialization with assignment.
Definition: Decl.h:879
clang::FunctionProtoType::ExtProtoInfo
Extra information about a function prototype.
Definition: Type.h:3981
clang::CXXMethodDecl::isConst
bool isConst() const
Definition: DeclCXX.h:2009
clang::Expr::IgnoreParens
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:2943
clang
Definition: CalledOnceCheck.h:17
clang::DeclContext::lookup
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1658
clang::FunctionProtoType::ExtProtoInfo::HasTrailingReturn
bool HasTrailingReturn
Definition: Type.h:3984
clang::Type::isIntegralOrUnscopedEnumerationType
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1943
clang::FunctionDecl::setDescribedFunctionTemplate
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3777
clang::Sema::createLambdaInitCaptureVarDecl
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, IdentifierInfo *Id, unsigned InitStyle, Expr *Init)
Create a dummy variable within the declcontext of the lambda's call operator, for name lookup purpose...
Definition: SemaLambda.cpp:856
clang::sema::LambdaScopeInfo::ExplicitCaptureRanges
llvm::DenseMap< unsigned, SourceRange > ExplicitCaptureRanges
A map of explicit capture indices to their introducer source ranges.
Definition: ScopeInfo.h:895
clang::DeclaratorContext::Block
@ Block
clang::Stmt
Stmt - This represents one statement.
Definition: Stmt.h:69
clang::EST_BasicNoexcept
@ EST_BasicNoexcept
noexcept
Definition: ExceptionSpecificationType.h:26
clang::Sema::buildLambdaScope
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:483
clang::Declarator
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1803
clang::Sema::handleLambdaNumbering
void handleLambdaNumbering(CXXRecordDecl *Class, CXXMethodDecl *Method, Optional< std::tuple< bool, unsigned, unsigned, Decl * >> Mangling=None)
Number lambda for linkage purposes if necessary.
Definition: SemaLambda.cpp:428
clang::LambdaCaptureInitKind::CopyInit
@ CopyInit
[a = b], [a = {b}]
clang::ReturnStmt::getBeginLoc
SourceLocation getBeginLoc() const
Definition: Stmt.h:2823
clang::Sema::CaptureHasSideEffects
bool CaptureHasSideEffects(const sema::Capture &From)
Does copying/destroying the captured variable have side effects?
Definition: SemaLambda.cpp:1655
clang::Expr::getType
QualType getType() const
Definition: Expr.h:141
clang::SourceLocation::isValid
bool isValid() const
Return true if this is a valid SourceLocation object.
Definition: SourceLocation.h:110
findCommonEnumForBlockReturns
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt * > returns)
Attempt to find a common type T for which all of the returned expressions in a block are enumerator-l...
Definition: SemaLambda.cpp:649
clang::Attr
Attr - This represents one attribute.
Definition: Attr.h:41
clang::Qualifiers::addAddressSpace
void addAddressSpace(LangAS space)
Definition: Type.h:389
clang::TypeSourceInfo
A container of type source information.
Definition: Type.h:6471
clang::FunctionType::getReturnType
QualType getReturnType() const
Definition: Type.h:3822
clang::OverloadCandidateParamOrder::Normal
@ Normal
clang::NamedDecl::getDeclName
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:311
clang::CXXRecordDecl::LDK_AlwaysDependent
@ LDK_AlwaysDependent
Definition: DeclCXX.h:281
clang::FixItHint::CreateRemoval
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:123
clang::sema::CapturingScopeInfo::HasImplicitReturnType
bool HasImplicitReturnType
Definition: ScopeInfo.h:687
clang::DeclContext::isDependentContext
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1152
addFunctionPointerConversions
static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to function pointers, as described in C++11 [expr.prim.lambda]p6.
Definition: SemaLambda.cpp:1518
clang::SC_Auto
@ SC_Auto
Definition: Specifiers.h:241
clang::FunctionProtoType::ExtProtoInfo::TypeQuals
Qualifiers TypeQuals
Definition: Type.h:3985
clang::LCK_This
@ LCK_This
Capturing the *this object by reference.
Definition: Lambda.h:34
clang::sema::CapturingScopeInfo
Definition: ScopeInfo.h:660
clang::InitializedEntity
Describes an entity that is being initialized.
Definition: Initialization.h:47
clang::FunctionDecl::isVariadic
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2980
clang::ParenListExpr::getExprs
Expr ** getExprs()
Definition: Expr.h:5574
clang::LookupResult::getAsSingle
DeclClass * getAsSingle() const
Definition: Lookup.h:507
clang::FunctionTypeLoc::getReturnLoc
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1467
mapImplicitCaptureStyle
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
Definition: SemaLambda.cpp:1640
clang::TypeSpecTypeLoc::setNameLoc
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:527
clang::ImplicitCastExpr
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3619
clang::sema::Capture::isBlockCapture
bool isBlockCapture() const
Definition: ScopeInfo.h:618
clang::ASTContext::getTrivialTypeSourceInfo
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
Definition: ASTContext.cpp:2961
clang::ASTContext::getPointerType
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Definition: ASTContext.cpp:3260
clang::DeclSpec::TQ_const
@ TQ_const
Definition: DeclSpec.h:306
clang::sema::CapturingScopeInfo::getCXXThisCapture
Capture & getCXXThisCapture()
Retrieve the capture of C++ 'this', if it has been captured.
Definition: ScopeInfo.h:714
clang::FunctionProtoTypeLoc
Definition: TypeLoc.h:1498
clang::Decl::setInvalidDecl
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
clang::ASTContext::hasSameType
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2524
clang::InventedTemplateParameterInfo::NumExplicitTemplateParams
unsigned NumExplicitTemplateParams
The number of parameters in the template parameter list that were explicitly specified by the user,...
Definition: DeclSpec.h:2715
clang::ValueDecl::getType
QualType getType() const
Definition: Decl.h:685
clang::SC_None
@ SC_None
Definition: Specifiers.h:235
clang::DeducedType
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:5014
clang::ParsedAttributesView
Definition: ParsedAttr.h:898
clang::Expr
This represents one expression.
Definition: Expr.h:109
clang::Sema::getCurrentMangleNumberContext
std::tuple< MangleNumberingContext *, Decl * > getCurrentMangleNumberContext(const DeclContext *DC)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:274
clang::FunctionDecl::getDescribedFunctionTemplate
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3773
clang::ParmVarDecl::Create
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2810
clang::Sema::buildLambdaInitCaptureInitialization
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, Optional< unsigned > NumExpansions, IdentifierInfo *Id, bool DirectInit, Expr *&Init)
Definition: SemaLambda.cpp:790
clang::VarDecl::hasLocalStorage
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1099
clang::sema::Capture::isVariableCapture
bool isVariableCapture() const
Definition: ScopeInfo.h:612
clang::CleanupInfo
Definition: CleanupInfo.h:19
clang::BlockDecl::Capture
A class which contains all the information about a particular captured value.
Definition: Decl.h:4207
clang::EnumType
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums.
Definition: Type.h:4673
clang::DeclContext::isFunctionOrMethod
bool isFunctionOrMethod() const
Definition: DeclBase.h:1928
clang::FunctionProtoType::getExtProtoInfo
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:4119
clang::Sema::ActOnLambdaExpr
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed.
Definition: SemaLambda.cpp:1632
addFunctionPointerConversion
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator, QualType InvokerFunctionTy)
Add a lambda's conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
Definition: SemaLambda.cpp:1353
clang::Sema::TryCaptureKind
TryCaptureKind
Definition: Sema.h:5176
clang::DeclarationNameInfo
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
Definition: DeclarationName.h:767
clang::Type::isIncompleteType
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition: Type.cpp:2234
clang::FullExpr::setSubExpr
void setSubExpr(Expr *E)
As with any mutator of the AST, be very careful when modifying an existing AST to preserve its invari...
Definition: Expr.h:1022
clang::InitializationKind::CreateCopy
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
Definition: Initialization.h:673
clang::FunctionDecl::parameters
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2503
clang::Sema::BuildBlockForLambdaConversion
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
Definition: SemaLambda.cpp:1967
clang::Decl::getLocation
SourceLocation getLocation() const
Definition: DeclBase.h:425
clang::sema::CapturingScopeInfo::ReturnType
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:691
clang::Decl::addAttr
void addAttr(Attr *A)
Definition: DeclBase.cpp:886
clang::Decl::setReferenced
void setReferenced(bool R=true)
Definition: DeclBase.h:588
clang::sema::Capture::getEllipsisLoc
SourceLocation getEllipsisLoc() const
Retrieve the source location of the ellipsis, whose presence indicates that the capture is a pack exp...
Definition: ScopeInfo.h:652
clang::LambdaExpr::Create
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr * > CaptureInits, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:1167
clang::DeclRefExpr
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1223
clang::FunctionDecl
Represents a function declaration or definition.
Definition: Decl.h:1872
clang::RecordDecl
Represents a struct/union/class.
Definition: Decl.h:3901
clang::DeclContext::Equals
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC.
Definition: DeclBase.h:2000
clang::ASTContext::NeedExtraManglingDecl
@ NeedExtraManglingDecl
Definition: ASTContext.h:3053
clang::CXXConversionDecl::Create
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause=nullptr)
Definition: DeclCXX.cpp:2771
clang::getLambdaStaticInvokerName
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:22
adjustBlockReturnsToEnum
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt * > returns, QualType returnType)
Adjust the given return statements so that they formally return the given type.
Definition: SemaLambda.cpp:670
clang::DeclaratorDecl::getTypeSourceInfo
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:755
clang::ICIS_NoInit
@ ICIS_NoInit
No in-class initializer.
Definition: Specifiers.h:257
ContextKind
tok::TokenKind ContextKind
Definition: TokenAnnotator.cpp:1486
clang::ReturnStmt
ReturnStmt - This represents a return, optionally of an expression: return; return 4;.
Definition: Stmt.h:2764
clang::VarDecl::CallInit
@ CallInit
Call-style initialization (C++98)
Definition: Decl.h:882
clang::TypeSourceInfo::getTypeLoc
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:244
Initialization.h
clang::CXXMethodDecl::getParent
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition: DeclCXX.h:2083
clang::CXXMethodDecl
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1968
clang::LambdaIntroducer::Range
SourceRange Range
Definition: DeclSpec.h:2689
clang::Type::isUndeducedType
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:7159
clang::LookupResult::isAmbiguous
bool isAmbiguous() const
Definition: Lookup.h:301
clang::ConstexprSpecKind::Unspecified
@ Unspecified
clang::Decl::getDeclContext
DeclContext * getDeclContext()
Definition: DeclBase.h:434
clang::sema::LambdaScopeInfo::CaptureDefaultLoc
SourceLocation CaptureDefaultLoc
Source location of the '&' or '=' specifying the default capture type, if any.
Definition: ScopeInfo.h:839
clang::sema::CapturingScopeInfo::isCXXThisCaptured
bool isCXXThisCaptured() const
Determine whether the C++ 'this' is captured.
Definition: ScopeInfo.h:711