clang 22.0.0git
SemaTemplateDeduction.cpp
Go to the documentation of this file.
1//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "TypeLocBuilder.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/Decl.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/TypeLoc.h"
35#include "clang/Basic/LLVM.h"
43#include "clang/Sema/Sema.h"
44#include "clang/Sema/Template.h"
46#include "llvm/ADT/APInt.h"
47#include "llvm/ADT/APSInt.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/FoldingSet.h"
51#include "llvm/ADT/SmallBitVector.h"
52#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/Support/Casting.h"
55#include "llvm/Support/Compiler.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/SaveAndRestore.h"
58#include <algorithm>
59#include <cassert>
60#include <optional>
61#include <tuple>
62#include <type_traits>
63#include <utility>
64
65namespace clang {
66
67 /// Various flags that control template argument deduction.
68 ///
69 /// These flags can be bitwise-OR'd together.
71 /// No template argument deduction flags, which indicates the
72 /// strictest results for template argument deduction (as used for, e.g.,
73 /// matching class template partial specializations).
75
76 /// Within template argument deduction from a function call, we are
77 /// matching with a parameter type for which the original parameter was
78 /// a reference.
80
81 /// Within template argument deduction from a function call, we
82 /// are matching in a case where we ignore cv-qualifiers.
84
85 /// Within template argument deduction from a function call,
86 /// we are matching in a case where we can perform template argument
87 /// deduction from a template-id of a derived class of the argument type.
89
90 /// Allow non-dependent types to differ, e.g., when performing
91 /// template argument deduction from a function call where conversions
92 /// may apply.
94
95 /// Whether we are performing template argument deduction for
96 /// parameters and arguments in a top-level template argument
98
99 /// Within template argument deduction from overload resolution per
100 /// C++ [over.over] allow matching function types that are compatible in
101 /// terms of noreturn and default calling convention adjustments, or
102 /// similarly matching a declared template specialization against a
103 /// possible template, per C++ [temp.deduct.decl]. In either case, permit
104 /// deduction where the parameter is a function type that can be converted
105 /// to the argument type.
107
108 /// Within template argument deduction for a conversion function, we are
109 /// matching with an argument type for which the original argument was
110 /// a reference.
112 };
113}
114
115using namespace clang;
116using namespace sema;
117
118/// The kind of PartialOrdering we're performing template argument deduction
119/// for (C++11 [temp.deduct.partial]).
121
123 Sema &S, TemplateParameterList *TemplateParams, QualType Param,
125 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
126 PartialOrderingKind POK, bool DeducedFromArrayBound,
127 bool *HasDeducedAnyParam);
128
129/// What directions packs are allowed to match non-packs.
131
138 bool NumberOfArgumentsMustMatch, bool PartialOrdering,
139 PackFold PackFold, bool *HasDeducedAnyParam);
140
143 bool OnlyDeduced, unsigned Depth,
144 llvm::SmallBitVector &Used);
145
147 bool OnlyDeduced, unsigned Level,
148 llvm::SmallBitVector &Deduced);
149
150static const Expr *unwrapExpressionForDeduction(const Expr *E) {
151 // If we are within an alias template, the expression may have undergone
152 // any number of parameter substitutions already.
153 while (true) {
154 if (const auto *IC = dyn_cast<ImplicitCastExpr>(E))
155 E = IC->getSubExpr();
156 else if (const auto *CE = dyn_cast<ConstantExpr>(E))
157 E = CE->getSubExpr();
158 else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
159 E = Subst->getReplacement();
160 else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
161 // Look through implicit copy construction from an lvalue of the same type.
162 if (CCE->getParenOrBraceRange().isValid())
163 break;
164 // Note, there could be default arguments.
165 assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg");
166 E = CCE->getArg(0);
167 } else
168 break;
169 }
170 return E;
171}
172
174public:
175 NonTypeOrVarTemplateParmDecl(const NamedDecl *Template) : Template(Template) {
176 assert(
177 !Template || isa<NonTypeTemplateParmDecl>(Template) ||
179 (cast<TemplateTemplateParmDecl>(Template)->templateParameterKind() ==
181 cast<TemplateTemplateParmDecl>(Template)->templateParameterKind() ==
183 }
184
186 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
187 return NTTP->getType();
191 }
192
193 unsigned getDepth() const {
194 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
195 return NTTP->getDepth();
196 return getTemplate()->getDepth();
197 }
198
199 unsigned getIndex() const {
200 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
201 return NTTP->getIndex();
202 return getTemplate()->getIndex();
203 }
204
206 return cast<TemplateTemplateParmDecl>(Template);
207 }
208
210 return cast<NonTypeTemplateParmDecl>(Template);
211 }
212
214 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
215 return const_cast<NonTypeTemplateParmDecl *>(NTTP);
216 return const_cast<TemplateTemplateParmDecl *>(getTemplate());
217 }
218
220 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
221 return NTTP->isExpandedParameterPack();
223 }
224
226 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
227 return NTTP->getLocation();
228 return getTemplate()->getLocation();
229 }
230
231 operator bool() const { return Template; }
232
233private:
234 const NamedDecl *Template;
235};
236
237/// If the given expression is of a form that permits the deduction
238/// of a non-type template parameter, return the declaration of that
239/// non-type template parameter.
241getDeducedNTTParameterFromExpr(const Expr *E, unsigned Depth) {
242 // If we are within an alias template, the expression may have undergone
243 // any number of parameter substitutions already.
245 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
246 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
247 if (NTTP->getDepth() == Depth)
248 return NTTP;
249
250 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E);
251 ULE && (ULE->isConceptReference() || ULE->isVarDeclReference())) {
252 if (auto *TTP = ULE->getTemplateTemplateDecl()) {
253
254 if (TTP->getDepth() == Depth)
255 return TTP;
256 }
257 }
258 return nullptr;
259}
260
265
266/// Determine whether two declaration pointers refer to the same
267/// declaration.
268static bool isSameDeclaration(Decl *X, Decl *Y) {
269 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
270 X = NX->getUnderlyingDecl();
271 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
272 Y = NY->getUnderlyingDecl();
273
274 return X->getCanonicalDecl() == Y->getCanonicalDecl();
275}
276
277/// Verify that the given, deduced template arguments are compatible.
278///
279/// \returns The deduced template argument, or a NULL template argument if
280/// the deduced template arguments were incompatible.
285 bool AggregateCandidateDeduction = false) {
286 // We have no deduction for one or both of the arguments; they're compatible.
287 if (X.isNull())
288 return Y;
289 if (Y.isNull())
290 return X;
291
292 // If we have two non-type template argument values deduced for the same
293 // parameter, they must both match the type of the parameter, and thus must
294 // match each other's type. As we're only keeping one of them, we must check
295 // for that now. The exception is that if either was deduced from an array
296 // bound, the type is permitted to differ.
297 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
298 QualType XType = X.getNonTypeTemplateArgumentType();
299 if (!XType.isNull()) {
301 if (YType.isNull() || !Context.hasSameType(XType, YType))
303 }
304 }
305
306 switch (X.getKind()) {
308 llvm_unreachable("Non-deduced template arguments handled above");
309
311 // If two template type arguments have the same type, they're compatible.
312 QualType TX = X.getAsType(), TY = Y.getAsType();
313 if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY))
314 return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY),
315 X.wasDeducedFromArrayBound() ||
317
318 // If one of the two arguments was deduced from an array bound, the other
319 // supersedes it.
320 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
321 return X.wasDeducedFromArrayBound() ? Y : X;
322
323 // The arguments are not compatible.
325 }
326
328 // If we deduced a constant in one case and either a dependent expression or
329 // declaration in another case, keep the integral constant.
330 // If both are integral constants with the same value, keep that value.
334 llvm::APSInt::isSameValue(X.getAsIntegral(), Y.getAsIntegral())))
335 return X.wasDeducedFromArrayBound() ? Y : X;
336
337 // All other combinations are incompatible.
339
341 // If we deduced a value and a dependent expression, keep the value.
344 X.structurallyEquals(Y)))
345 return X;
346
347 // All other combinations are incompatible.
349
352 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
353 return X;
354
355 // All other combinations are incompatible.
357
360 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
362 return X;
363
364 // All other combinations are incompatible.
366
369 return checkDeducedTemplateArguments(Context, Y, X);
370
371 // Compare the expressions for equality
372 llvm::FoldingSetNodeID ID1, ID2;
373 X.getAsExpr()->Profile(ID1, Context, true);
374 Y.getAsExpr()->Profile(ID2, Context, true);
375 if (ID1 == ID2)
376 return X.wasDeducedFromArrayBound() ? Y : X;
377
378 // Differing dependent expressions are incompatible.
380 }
381
383 assert(!X.wasDeducedFromArrayBound());
384
385 // If we deduced a declaration and a dependent expression, keep the
386 // declaration.
388 return X;
389
390 // If we deduced a declaration and an integral constant, keep the
391 // integral constant and whichever type did not come from an array
392 // bound.
395 return TemplateArgument(Context, Y.getAsIntegral(),
396 X.getParamTypeForDecl());
397 return Y;
398 }
399
400 // If we deduced two declarations, make sure that they refer to the
401 // same declaration.
403 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
404 return X;
405
406 // All other combinations are incompatible.
408
410 // If we deduced a null pointer and a dependent expression, keep the
411 // null pointer.
413 return TemplateArgument(Context.getCommonSugaredType(
414 X.getNullPtrType(), Y.getAsExpr()->getType()),
415 true);
416
417 // If we deduced a null pointer and an integral constant, keep the
418 // integral constant.
420 return Y;
421
422 // If we deduced two null pointers, they are the same.
424 return TemplateArgument(
425 Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
426 true);
427
428 // All other combinations are incompatible.
430
432 if (Y.getKind() != TemplateArgument::Pack ||
433 (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size()))
435
438 XA = X.pack_begin(),
439 XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end();
440 XA != XAEnd; ++XA) {
441 if (YA != YAEnd) {
443 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
445 if (Merged.isNull() && !(XA->isNull() && YA->isNull()))
447 NewPack.push_back(Merged);
448 ++YA;
449 } else {
450 NewPack.push_back(*XA);
451 }
452 }
453
455 TemplateArgument::CreatePackCopy(Context, NewPack),
456 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
457 }
458 }
459
460 llvm_unreachable("Invalid TemplateArgument Kind!");
461}
462
463/// Deduce the value of the given non-type template parameter
464/// as the given deduced template argument. All non-type template parameter
465/// deduction is funneled through here.
469 const DeducedTemplateArgument &NewDeduced,
470 QualType ValueType, TemplateDeductionInfo &Info,
471 bool PartialOrdering,
473 bool *HasDeducedAnyParam) {
474 assert(NTTP.getDepth() == Info.getDeducedDepth() &&
475 "deducing non-type template argument with wrong depth");
476
478 S.Context, Deduced[NTTP.getIndex()], NewDeduced);
479 if (Result.isNull()) {
480 Info.Param = NTTP.asTemplateParam();
481 Info.FirstArg = Deduced[NTTP.getIndex()];
482 Info.SecondArg = NewDeduced;
484 }
485 Deduced[NTTP.getIndex()] = Result;
486 if (!S.getLangOpts().CPlusPlus17 && !PartialOrdering)
488
489 if (NTTP.isExpandedParameterPack())
490 // FIXME: We may still need to deduce parts of the type here! But we
491 // don't have any way to find which slice of the type to use, and the
492 // type stored on the NTTP itself is nonsense. Perhaps the type of an
493 // expanded NTTP should be a pack expansion type?
495
496 // Get the type of the parameter for deduction. If it's a (dependent) array
497 // or function type, we will not have decayed it yet, so do that now.
498 QualType ParamType = S.Context.getAdjustedParameterType(NTTP.getType());
499 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
500 ParamType = Expansion->getPattern();
501
502 // FIXME: It's not clear how deduction of a parameter of reference
503 // type from an argument (of non-reference type) should be performed.
504 // For now, we just make the argument have same reference type as the
505 // parameter.
506 if (ParamType->isReferenceType() && !ValueType->isReferenceType()) {
507 if (ParamType->isRValueReferenceType())
508 ValueType = S.Context.getRValueReferenceType(ValueType);
509 else
510 ValueType = S.Context.getLValueReferenceType(ValueType);
511 }
512
514 S, TemplateParams, ParamType, ValueType, Info, Deduced,
518 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound(), HasDeducedAnyParam);
519}
520
521/// Deduce the value of the given non-type template parameter
522/// from the given integral constant.
524 Sema &S, TemplateParameterList *TemplateParams,
525 NonTypeOrVarTemplateParmDecl NTTP, const llvm::APSInt &Value,
526 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
528 bool *HasDeducedAnyParam) {
530 S, TemplateParams, NTTP,
532 DeducedFromArrayBound),
533 ValueType, Info, PartialOrdering, Deduced, HasDeducedAnyParam);
534}
535
536/// Deduce the value of the given non-type template parameter
537/// from the given null pointer template argument type.
541 QualType NullPtrType, TemplateDeductionInfo &Info,
542 bool PartialOrdering,
544 bool *HasDeducedAnyParam) {
547 NTTP.getLocation()),
548 NullPtrType,
549 NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer
550 : CK_NullToPointer)
551 .get();
553 S, TemplateParams, NTTP, TemplateArgument(Value, /*IsCanonical=*/false),
554 Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam);
555}
556
557/// Deduce the value of the given non-type template parameter
558/// from the given type- or value-dependent expression.
559///
560/// \returns true if deduction succeeded, false otherwise.
566 bool *HasDeducedAnyParam) {
568 S, TemplateParams, NTTP, TemplateArgument(Value, /*IsCanonical=*/false),
569 Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam);
570}
571
572/// Deduce the value of the given non-type template parameter
573/// from the given declaration.
574///
575/// \returns true if deduction succeeded, false otherwise.
580 bool PartialOrdering,
582 bool *HasDeducedAnyParam) {
585 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info,
586 PartialOrdering, Deduced, HasDeducedAnyParam);
587}
588
590 Sema &S, TemplateParameterList *TemplateParams, TemplateName Param,
594 bool *HasDeducedAnyParam) {
595 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
596 if (!ParamDecl) {
597 // The parameter type is dependent and is not a template template parameter,
598 // so there is nothing that we can deduce.
600 }
601
602 if (auto *TempParam = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
603 // If we're not deducing at this depth, there's nothing to deduce.
604 if (TempParam->getDepth() != Info.getDeducedDepth())
606
607 ArrayRef<NamedDecl *> Params =
608 ParamDecl->getTemplateParameters()->asArray();
609 unsigned StartPos = 0;
610 for (unsigned I = 0, E = std::min(Params.size(), DefaultArguments.size());
611 I < E; ++I) {
612 if (Params[I]->isParameterPack()) {
613 StartPos = DefaultArguments.size();
614 break;
615 }
616 StartPos = I + 1;
617 }
618
619 // Provisional resolution for CWG2398: If Arg names a template
620 // specialization, then we deduce a synthesized template name
621 // based on A, but using the TS's extra arguments, relative to P, as
622 // defaults.
623 DeducedTemplateArgument NewDeduced =
626 Arg, {StartPos, DefaultArguments.drop_front(StartPos)}))
627 : Arg;
628
630 S.Context, Deduced[TempParam->getIndex()], NewDeduced);
631 if (Result.isNull()) {
632 Info.Param = TempParam;
633 Info.FirstArg = Deduced[TempParam->getIndex()];
634 Info.SecondArg = NewDeduced;
636 }
637
638 Deduced[TempParam->getIndex()] = Result;
639 if (HasDeducedAnyParam)
640 *HasDeducedAnyParam = true;
642 }
643
644 // Verify that the two template names are equivalent.
646 Param, Arg, /*IgnoreDeduced=*/DefaultArguments.size() != 0))
648
649 // Mismatch of non-dependent template parameter to argument.
650 Info.FirstArg = TemplateArgument(Param);
651 Info.SecondArg = TemplateArgument(Arg);
653}
654
655/// Deduce the template arguments by comparing the template parameter
656/// type (which is a template-id) with the template argument type.
657///
658/// \param S the Sema
659///
660/// \param TemplateParams the template parameters that we are deducing
661///
662/// \param P the parameter type
663///
664/// \param A the argument type
665///
666/// \param Info information about the template argument deduction itself
667///
668/// \param Deduced the deduced template arguments
669///
670/// \returns the result of template argument deduction so far. Note that a
671/// "success" result means that template argument deduction has not yet failed,
672/// but it may still fail, later, for other reasons.
673
674static const TemplateSpecializationType *getLastTemplateSpecType(QualType QT) {
675 const TemplateSpecializationType *LastTST = nullptr;
676 for (const Type *T = QT.getTypePtr(); /**/; /**/) {
677 const TemplateSpecializationType *TST =
678 T->getAs<TemplateSpecializationType>();
679 if (!TST)
680 return LastTST;
681 if (!TST->isSugared())
682 return TST;
683 LastTST = TST;
684 T = TST->desugar().getTypePtr();
685 }
686}
687
690 const QualType P, QualType A,
693 bool *HasDeducedAnyParam) {
694 TemplateName TNP;
697 const TemplateSpecializationType *TP = ::getLastTemplateSpecType(P);
698 TNP = TP->getTemplateName();
699
700 // No deduction for specializations of dependent template names.
703
704 // FIXME: To preserve sugar, the TST needs to carry sugared resolved
705 // arguments.
706 PResolved =
707 TP->castAsCanonical<TemplateSpecializationType>()->template_arguments();
708 } else {
709 const auto *TT = P->castAs<InjectedClassNameType>();
710 TNP = TT->getTemplateName(S.Context);
711 PResolved = TT->getTemplateArgs(S.Context);
712 }
713
714 // If the parameter is an alias template, there is nothing to deduce.
715 if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias())
717 // Pack-producing templates can only be matched after substitution.
720
721 // Check whether the template argument is a dependent template-id.
723 const TemplateSpecializationType *SA = ::getLastTemplateSpecType(A);
724 TemplateName TNA = SA->getTemplateName();
725
726 // If the argument is an alias template, there is nothing to deduce.
727 if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias())
729
730 // FIXME: To preserve sugar, the TST needs to carry sugared resolved
731 // arguments.
733 SA->getCanonicalTypeInternal()
734 ->castAs<TemplateSpecializationType>()
735 ->template_arguments();
736
737 // Perform template argument deduction for the template name.
738 if (auto Result = DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info,
739 /*DefaultArguments=*/AResolved,
740 PartialOrdering, Deduced,
741 HasDeducedAnyParam);
743 return Result;
744
745 // Perform template argument deduction on each template
746 // argument. Ignore any missing/extra arguments, since they could be
747 // filled in by default arguments.
749 S, TemplateParams, PResolved, AResolved, Info, Deduced,
750 /*NumberOfArgumentsMustMatch=*/false, PartialOrdering,
751 PackFold::ParameterToArgument, HasDeducedAnyParam);
752 }
753
754 // If the argument type is a class template specialization, we
755 // perform template argument deduction using its template
756 // arguments.
757 const auto *TA = A->getAs<TagType>();
758 TemplateName TNA;
759 if (TA) {
760 // FIXME: Can't use the template arguments from this TST, as they are not
761 // resolved.
762 if (const auto *TST = A->getAsNonAliasTemplateSpecializationType())
763 TNA = TST->getTemplateName();
764 else
765 TNA = TA->getTemplateName(S.Context);
766 }
767 if (TNA.isNull()) {
768 Info.FirstArg = TemplateArgument(P);
769 Info.SecondArg = TemplateArgument(A);
771 }
772
773 ArrayRef<TemplateArgument> AResolved = TA->getTemplateArgs(S.Context);
774 // Perform template argument deduction for the template name.
775 if (auto Result =
776 DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info,
777 /*DefaultArguments=*/AResolved,
778 PartialOrdering, Deduced, HasDeducedAnyParam);
780 return Result;
781
782 // Perform template argument deduction for the template arguments.
784 S, TemplateParams, PResolved, AResolved, Info, Deduced,
785 /*NumberOfArgumentsMustMatch=*/true, PartialOrdering,
786 PackFold::ParameterToArgument, HasDeducedAnyParam);
787}
788
790 assert(T->isCanonicalUnqualified());
791
792 switch (T->getTypeClass()) {
793 case Type::TypeOfExpr:
794 case Type::TypeOf:
795 case Type::DependentName:
796 case Type::Decltype:
797 case Type::PackIndexing:
798 case Type::UnresolvedUsing:
799 case Type::TemplateTypeParm:
800 case Type::Auto:
801 return true;
802
803 case Type::ConstantArray:
804 case Type::IncompleteArray:
805 case Type::VariableArray:
806 case Type::DependentSizedArray:
808 cast<ArrayType>(T)->getElementType().getTypePtr());
809
810 default:
811 return false;
812 }
813}
814
815/// Determines whether the given type is an opaque type that
816/// might be more qualified when instantiated.
819 T->getCanonicalTypeInternal().getTypePtr());
820}
821
822/// Helper function to build a TemplateParameter when we don't
823/// know its type statically.
825 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
826 return TemplateParameter(TTP);
827 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
828 return TemplateParameter(NTTP);
829
831}
832
833/// A pack that we're currently deducing.
835 // The index of the pack.
836 unsigned Index;
837
838 // The old value of the pack before we started deducing it.
840
841 // A deferred value of this pack from an inner deduction, that couldn't be
842 // deduced because this deduction hadn't happened yet.
844
845 // The new value of the pack.
847
848 // The outer deduction for this pack, if any.
849 DeducedPack *Outer = nullptr;
850
851 DeducedPack(unsigned Index) : Index(Index) {}
852};
853
854namespace {
855
856/// A scope in which we're performing pack deduction.
857class PackDeductionScope {
858public:
859 /// Prepare to deduce the packs named within Pattern.
860 /// \param FinishingDeduction Don't attempt to deduce the pack. Useful when
861 /// just checking a previous deduction of the pack.
862 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
865 bool DeducePackIfNotAlreadyDeduced = false,
866 bool FinishingDeduction = false)
867 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info),
868 DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced),
869 FinishingDeduction(FinishingDeduction) {
870 unsigned NumNamedPacks = addPacks(Pattern);
871 finishConstruction(NumNamedPacks);
872 }
873
874 /// Prepare to directly deduce arguments of the parameter with index \p Index.
875 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
876 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
877 TemplateDeductionInfo &Info, unsigned Index)
878 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
879 addPack(Index);
880 finishConstruction(1);
881 }
882
883private:
884 void addPack(unsigned Index) {
885 // Save the deduced template argument for the parameter pack expanded
886 // by this pack expansion, then clear out the deduction.
887 DeducedFromEarlierParameter = !Deduced[Index].isNull();
888 DeducedPack Pack(Index);
889 if (!FinishingDeduction) {
890 Pack.Saved = Deduced[Index];
891 Deduced[Index] = TemplateArgument();
892 }
893
894 // FIXME: What if we encounter multiple packs with different numbers of
895 // pre-expanded expansions? (This should already have been diagnosed
896 // during substitution.)
897 if (UnsignedOrNone ExpandedPackExpansions =
898 getExpandedPackSize(TemplateParams->getParam(Index)))
899 FixedNumExpansions = ExpandedPackExpansions;
900
901 Packs.push_back(Pack);
902 }
903
904 unsigned addPacks(TemplateArgument Pattern) {
905 // Compute the set of template parameter indices that correspond to
906 // parameter packs expanded by the pack expansion.
907 llvm::SmallBitVector SawIndices(TemplateParams->size());
908 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
909
910 auto AddPack = [&](unsigned Index) {
911 if (SawIndices[Index])
912 return;
913 SawIndices[Index] = true;
914 addPack(Index);
915
916 // Deducing a parameter pack that is a pack expansion also constrains the
917 // packs appearing in that parameter to have the same deduced arity. Also,
918 // in C++17 onwards, deducing a non-type template parameter deduces its
919 // type, so we need to collect the pending deduced values for those packs.
920 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
921 TemplateParams->getParam(Index))) {
922 if (!NTTP->isExpandedParameterPack())
923 // FIXME: CWG2982 suggests a type-constraint forms a non-deduced
924 // context, however it is not yet resolved.
925 if (auto *Expansion = dyn_cast<PackExpansionType>(
926 S.Context.getUnconstrainedType(NTTP->getType())))
927 ExtraDeductions.push_back(Expansion->getPattern());
928 }
929 // FIXME: Also collect the unexpanded packs in any type and template
930 // parameter packs that are pack expansions.
931 };
932
933 auto Collect = [&](TemplateArgument Pattern) {
934 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
935 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
936 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
937 unsigned Depth, Index;
938 if (auto DI = getDepthAndIndex(Unexpanded[I]))
939 std::tie(Depth, Index) = *DI;
940 else
941 continue;
942
943 if (Depth == Info.getDeducedDepth())
944 AddPack(Index);
945 }
946 };
947
948 // Look for unexpanded packs in the pattern.
949 Collect(Pattern);
950
951 unsigned NumNamedPacks = Packs.size();
952
953 // Also look for unexpanded packs that are indirectly deduced by deducing
954 // the sizes of the packs in this pattern.
955 while (!ExtraDeductions.empty())
956 Collect(ExtraDeductions.pop_back_val());
957
958 return NumNamedPacks;
959 }
960
961 void finishConstruction(unsigned NumNamedPacks) {
962 // Dig out the partially-substituted pack, if there is one.
963 const TemplateArgument *PartialPackArgs = nullptr;
964 unsigned NumPartialPackArgs = 0;
965 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
966 if (auto *Scope = S.CurrentInstantiationScope)
967 if (auto *Partial = Scope->getPartiallySubstitutedPack(
968 &PartialPackArgs, &NumPartialPackArgs))
969 PartialPackDepthIndex = getDepthAndIndex(Partial);
970
971 // This pack expansion will have been partially or fully expanded if
972 // it only names explicitly-specified parameter packs (including the
973 // partially-substituted one, if any).
974 bool IsExpanded = true;
975 for (unsigned I = 0; I != NumNamedPacks; ++I) {
976 if (Packs[I].Index >= Info.getNumExplicitArgs()) {
977 IsExpanded = false;
978 IsPartiallyExpanded = false;
979 break;
980 }
981 if (PartialPackDepthIndex ==
982 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
983 IsPartiallyExpanded = true;
984 }
985 }
986
987 // Skip over the pack elements that were expanded into separate arguments.
988 // If we partially expanded, this is the number of partial arguments.
989 // FIXME: `&& FixedNumExpansions` is a workaround for UB described in
990 // https://github.com/llvm/llvm-project/issues/100095
991 if (IsPartiallyExpanded)
992 PackElements += NumPartialPackArgs;
993 else if (IsExpanded && FixedNumExpansions)
994 PackElements += *FixedNumExpansions;
995
996 for (auto &Pack : Packs) {
997 if (Info.PendingDeducedPacks.size() > Pack.Index)
998 Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
999 else
1000 Info.PendingDeducedPacks.resize(Pack.Index + 1);
1001 Info.PendingDeducedPacks[Pack.Index] = &Pack;
1002
1003 if (PartialPackDepthIndex ==
1004 std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
1005 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
1006 // We pre-populate the deduced value of the partially-substituted
1007 // pack with the specified value. This is not entirely correct: the
1008 // value is supposed to have been substituted, not deduced, but the
1009 // cases where this is observable require an exact type match anyway.
1010 //
1011 // FIXME: If we could represent a "depth i, index j, pack elem k"
1012 // parameter, we could substitute the partially-substituted pack
1013 // everywhere and avoid this.
1014 if (!FinishingDeduction && !IsPartiallyExpanded)
1015 Deduced[Pack.Index] = Pack.New[PackElements];
1016 }
1017 }
1018 }
1019
1020public:
1021 ~PackDeductionScope() {
1022 for (auto &Pack : Packs)
1023 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
1024 }
1025
1026 // Return the size of the saved packs if all of them has the same size.
1027 UnsignedOrNone getSavedPackSizeIfAllEqual() const {
1028 unsigned PackSize = Packs[0].Saved.pack_size();
1029
1030 if (std::all_of(Packs.begin() + 1, Packs.end(), [&PackSize](const auto &P) {
1031 return P.Saved.pack_size() == PackSize;
1032 }))
1033 return PackSize;
1034 return std::nullopt;
1035 }
1036
1037 /// Determine whether this pack has already been deduced from a previous
1038 /// argument.
1039 bool isDeducedFromEarlierParameter() const {
1040 return DeducedFromEarlierParameter;
1041 }
1042
1043 /// Determine whether this pack has already been partially expanded into a
1044 /// sequence of (prior) function parameters / template arguments.
1045 bool isPartiallyExpanded() { return IsPartiallyExpanded; }
1046
1047 /// Determine whether this pack expansion scope has a known, fixed arity.
1048 /// This happens if it involves a pack from an outer template that has
1049 /// (notionally) already been expanded.
1050 bool hasFixedArity() { return static_cast<bool>(FixedNumExpansions); }
1051
1052 /// Determine whether the next element of the argument is still part of this
1053 /// pack. This is the case unless the pack is already expanded to a fixed
1054 /// length.
1055 bool hasNextElement() {
1056 return !FixedNumExpansions || *FixedNumExpansions > PackElements;
1057 }
1058
1059 /// Move to deducing the next element in each pack that is being deduced.
1060 void nextPackElement() {
1061 // Capture the deduced template arguments for each parameter pack expanded
1062 // by this pack expansion, add them to the list of arguments we've deduced
1063 // for that pack, then clear out the deduced argument.
1064 if (!FinishingDeduction) {
1065 for (auto &Pack : Packs) {
1066 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
1067 if (!Pack.New.empty() || !DeducedArg.isNull()) {
1068 while (Pack.New.size() < PackElements)
1069 Pack.New.push_back(DeducedTemplateArgument());
1070 if (Pack.New.size() == PackElements)
1071 Pack.New.push_back(DeducedArg);
1072 else
1073 Pack.New[PackElements] = DeducedArg;
1074 DeducedArg = Pack.New.size() > PackElements + 1
1075 ? Pack.New[PackElements + 1]
1076 : DeducedTemplateArgument();
1077 }
1078 }
1079 }
1080 ++PackElements;
1081 }
1082
1083 /// Finish template argument deduction for a set of argument packs,
1084 /// producing the argument packs and checking for consistency with prior
1085 /// deductions.
1086 TemplateDeductionResult finish() {
1087 if (FinishingDeduction)
1088 return TemplateDeductionResult::Success;
1089 // Build argument packs for each of the parameter packs expanded by this
1090 // pack expansion.
1091 for (auto &Pack : Packs) {
1092 // Put back the old value for this pack.
1093 if (!FinishingDeduction)
1094 Deduced[Pack.Index] = Pack.Saved;
1095
1096 // Always make sure the size of this pack is correct, even if we didn't
1097 // deduce any values for it.
1098 //
1099 // FIXME: This isn't required by the normative wording, but substitution
1100 // and post-substitution checking will always fail if the arity of any
1101 // pack is not equal to the number of elements we processed. (Either that
1102 // or something else has gone *very* wrong.) We're permitted to skip any
1103 // hard errors from those follow-on steps by the intent (but not the
1104 // wording) of C++ [temp.inst]p8:
1105 //
1106 // If the function selected by overload resolution can be determined
1107 // without instantiating a class template definition, it is unspecified
1108 // whether that instantiation actually takes place
1109 Pack.New.resize(PackElements);
1110
1111 // Build or find a new value for this pack.
1112 DeducedTemplateArgument NewPack;
1113 if (Pack.New.empty()) {
1114 // If we deduced an empty argument pack, create it now.
1115 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
1116 } else {
1117 TemplateArgument *ArgumentPack =
1118 new (S.Context) TemplateArgument[Pack.New.size()];
1119 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
1120 NewPack = DeducedTemplateArgument(
1121 TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())),
1122 // FIXME: This is wrong, it's possible that some pack elements are
1123 // deduced from an array bound and others are not:
1124 // template<typename ...T, T ...V> void g(const T (&...p)[V]);
1125 // g({1, 2, 3}, {{}, {}});
1126 // ... should deduce T = {int, size_t (from array bound)}.
1127 Pack.New[0].wasDeducedFromArrayBound());
1128 }
1129
1130 // Pick where we're going to put the merged pack.
1131 DeducedTemplateArgument *Loc;
1132 if (Pack.Outer) {
1133 if (Pack.Outer->DeferredDeduction.isNull()) {
1134 // Defer checking this pack until we have a complete pack to compare
1135 // it against.
1136 Pack.Outer->DeferredDeduction = NewPack;
1137 continue;
1138 }
1139 Loc = &Pack.Outer->DeferredDeduction;
1140 } else {
1141 Loc = &Deduced[Pack.Index];
1142 }
1143
1144 // Check the new pack matches any previous value.
1145 DeducedTemplateArgument OldPack = *Loc;
1146 DeducedTemplateArgument Result = checkDeducedTemplateArguments(
1147 S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced);
1148
1149 Info.AggregateDeductionCandidateHasMismatchedArity =
1150 OldPack.getKind() == TemplateArgument::Pack &&
1151 NewPack.getKind() == TemplateArgument::Pack &&
1152 OldPack.pack_size() != NewPack.pack_size() && !Result.isNull();
1153
1154 // If we deferred a deduction of this pack, check that one now too.
1155 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
1156 OldPack = Result;
1157 NewPack = Pack.DeferredDeduction;
1158 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
1159 }
1160
1161 NamedDecl *Param = TemplateParams->getParam(Pack.Index);
1162 if (Result.isNull()) {
1163 Info.Param = makeTemplateParameter(Param);
1164 Info.FirstArg = OldPack;
1165 Info.SecondArg = NewPack;
1166 return TemplateDeductionResult::Inconsistent;
1167 }
1168
1169 // If we have a pre-expanded pack and we didn't deduce enough elements
1170 // for it, fail deduction.
1171 if (UnsignedOrNone Expansions = getExpandedPackSize(Param)) {
1172 if (*Expansions != PackElements) {
1173 Info.Param = makeTemplateParameter(Param);
1174 Info.FirstArg = Result;
1175 return TemplateDeductionResult::IncompletePack;
1176 }
1177 }
1178
1179 *Loc = Result;
1180 }
1181
1182 return TemplateDeductionResult::Success;
1183 }
1184
1185private:
1186 Sema &S;
1187 TemplateParameterList *TemplateParams;
1188 SmallVectorImpl<DeducedTemplateArgument> &Deduced;
1189 TemplateDeductionInfo &Info;
1190 unsigned PackElements = 0;
1191 bool IsPartiallyExpanded = false;
1192 bool DeducePackIfNotAlreadyDeduced = false;
1193 bool DeducedFromEarlierParameter = false;
1194 bool FinishingDeduction = false;
1195 /// The number of expansions, if we have a fully-expanded pack in this scope.
1196 UnsignedOrNone FixedNumExpansions = std::nullopt;
1197
1198 SmallVector<DeducedPack, 2> Packs;
1199};
1200
1201} // namespace
1202
1203template <class T>
1205 Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
1208 bool FinishingDeduction, T &&DeductFunc) {
1209 // C++0x [temp.deduct.type]p10:
1210 // Similarly, if P has a form that contains (T), then each parameter type
1211 // Pi of the respective parameter-type- list of P is compared with the
1212 // corresponding parameter type Ai of the corresponding parameter-type-list
1213 // of A. [...]
1214 unsigned ArgIdx = 0, ParamIdx = 0;
1215 for (; ParamIdx != Params.size(); ++ParamIdx) {
1216 // Check argument types.
1217 const PackExpansionType *Expansion
1218 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1219 if (!Expansion) {
1220 // Simple case: compare the parameter and argument types at this point.
1221
1222 // Make sure we have an argument.
1223 if (ArgIdx >= Args.size())
1225
1226 if (isa<PackExpansionType>(Args[ArgIdx])) {
1227 // C++0x [temp.deduct.type]p22:
1228 // If the original function parameter associated with A is a function
1229 // parameter pack and the function parameter associated with P is not
1230 // a function parameter pack, then template argument deduction fails.
1232 }
1233
1234 if (TemplateDeductionResult Result =
1235 DeductFunc(S, TemplateParams, ParamIdx, ArgIdx,
1236 Params[ParamIdx].getUnqualifiedType(),
1237 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, POK);
1239 return Result;
1240
1241 ++ArgIdx;
1242 continue;
1243 }
1244
1245 // C++0x [temp.deduct.type]p10:
1246 // If the parameter-declaration corresponding to Pi is a function
1247 // parameter pack, then the type of its declarator- id is compared with
1248 // each remaining parameter type in the parameter-type-list of A. Each
1249 // comparison deduces template arguments for subsequent positions in the
1250 // template parameter packs expanded by the function parameter pack.
1251
1252 QualType Pattern = Expansion->getPattern();
1253 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern,
1254 /*DeducePackIfNotAlreadyDeduced=*/false,
1255 FinishingDeduction);
1256
1257 // A pack scope with fixed arity is not really a pack any more, so is not
1258 // a non-deduced context.
1259 if (ParamIdx + 1 == Params.size() || PackScope.hasFixedArity()) {
1260 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); ++ArgIdx) {
1261 // Deduce template arguments from the pattern.
1262 if (TemplateDeductionResult Result = DeductFunc(
1263 S, TemplateParams, ParamIdx, ArgIdx,
1264 Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(),
1265 Info, Deduced, POK);
1267 return Result;
1268 PackScope.nextPackElement();
1269 }
1270 } else {
1271 // C++0x [temp.deduct.type]p5:
1272 // The non-deduced contexts are:
1273 // - A function parameter pack that does not occur at the end of the
1274 // parameter-declaration-clause.
1275 //
1276 // FIXME: There is no wording to say what we should do in this case. We
1277 // choose to resolve this by applying the same rule that is applied for a
1278 // function call: that is, deduce all contained packs to their
1279 // explicitly-specified values (or to <> if there is no such value).
1280 //
1281 // This is seemingly-arbitrarily different from the case of a template-id
1282 // with a non-trailing pack-expansion in its arguments, which renders the
1283 // entire template-argument-list a non-deduced context.
1284
1285 // If the parameter type contains an explicitly-specified pack that we
1286 // could not expand, skip the number of parameters notionally created
1287 // by the expansion.
1288 UnsignedOrNone NumExpansions = Expansion->getNumExpansions();
1289 if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1290 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
1291 ++I, ++ArgIdx)
1292 PackScope.nextPackElement();
1293 }
1294 }
1295
1296 // Build argument packs for each of the parameter packs expanded by this
1297 // pack expansion.
1298 if (auto Result = PackScope.finish();
1300 return Result;
1301 }
1302
1303 // DR692, DR1395
1304 // C++0x [temp.deduct.type]p10:
1305 // If the parameter-declaration corresponding to P_i ...
1306 // During partial ordering, if Ai was originally a function parameter pack:
1307 // - if P does not contain a function parameter type corresponding to Ai then
1308 // Ai is ignored;
1309 if (POK == PartialOrderingKind::Call && ArgIdx + 1 == Args.size() &&
1310 isa<PackExpansionType>(Args[ArgIdx]))
1312
1313 // Make sure we don't have any extra arguments.
1314 if (ArgIdx < Args.size())
1316
1318}
1319
1320/// Deduce the template arguments by comparing the list of parameter
1321/// types to the list of argument types, as in the parameter-type-lists of
1322/// function types (C++ [temp.deduct.type]p10).
1323///
1324/// \param S The semantic analysis object within which we are deducing
1325///
1326/// \param TemplateParams The template parameters that we are deducing
1327///
1328/// \param Params The list of parameter types
1329///
1330/// \param Args The list of argument types
1331///
1332/// \param Info information about the template argument deduction itself
1333///
1334/// \param Deduced the deduced template arguments
1335///
1336/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1337/// how template argument deduction is performed.
1338///
1339/// \param PartialOrdering If true, we are performing template argument
1340/// deduction for during partial ordering for a call
1341/// (C++0x [temp.deduct.partial]).
1342///
1343/// \param HasDeducedAnyParam If set, the object pointed at will indicate
1344/// whether any template parameter was deduced.
1345///
1346/// \param HasDeducedParam If set, the bit vector will be used to represent
1347/// which template parameters were deduced, in order.
1348///
1349/// \returns the result of template argument deduction so far. Note that a
1350/// "success" result means that template argument deduction has not yet failed,
1351/// but it may still fail, later, for other reasons.
1353 Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
1355 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
1356 PartialOrderingKind POK, bool *HasDeducedAnyParam,
1357 llvm::SmallBitVector *HasDeducedParam) {
1358 return ::DeduceForEachType(
1359 S, TemplateParams, Params, Args, Info, Deduced, POK,
1360 /*FinishingDeduction=*/false,
1361 [&](Sema &S, TemplateParameterList *TemplateParams, int ParamIdx,
1362 int ArgIdx, QualType P, QualType A, TemplateDeductionInfo &Info,
1364 PartialOrderingKind POK) {
1365 bool HasDeducedAnyParamCopy = false;
1367 S, TemplateParams, P, A, Info, Deduced, TDF, POK,
1368 /*DeducedFromArrayBound=*/false, &HasDeducedAnyParamCopy);
1369 if (HasDeducedAnyParam && HasDeducedAnyParamCopy)
1370 *HasDeducedAnyParam = true;
1371 if (HasDeducedParam && HasDeducedAnyParamCopy)
1372 (*HasDeducedParam)[ParamIdx] = true;
1373 return TDR;
1374 });
1375}
1376
1377/// Determine whether the parameter has qualifiers that the argument
1378/// lacks. Put another way, determine whether there is no way to add
1379/// a deduced set of qualifiers to the ParamType that would result in
1380/// its qualifiers matching those of the ArgType.
1382 QualType ArgType) {
1383 Qualifiers ParamQs = ParamType.getQualifiers();
1384 Qualifiers ArgQs = ArgType.getQualifiers();
1385
1386 if (ParamQs == ArgQs)
1387 return false;
1388
1389 // Mismatched (but not missing) Objective-C GC attributes.
1390 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1391 ParamQs.hasObjCGCAttr())
1392 return true;
1393
1394 // Mismatched (but not missing) address spaces.
1395 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1396 ParamQs.hasAddressSpace())
1397 return true;
1398
1399 // Mismatched (but not missing) Objective-C lifetime qualifiers.
1400 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1401 ParamQs.hasObjCLifetime())
1402 return true;
1403
1404 // CVR qualifiers inconsistent or a superset.
1405 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1406}
1407
1409 const FunctionType *PF = P->getAs<FunctionType>(),
1410 *AF = A->getAs<FunctionType>();
1411
1412 // Just compare if not functions.
1413 if (!PF || !AF)
1414 return Context.hasSameType(P, A);
1415
1416 // Noreturn and noexcept adjustment.
1417 if (QualType AdjustedParam; TryFunctionConversion(P, A, AdjustedParam))
1418 P = AdjustedParam;
1419
1420 // FIXME: Compatible calling conventions.
1421 return Context.hasSameFunctionTypeIgnoringExceptionSpec(P, A);
1422}
1423
1424/// Get the index of the first template parameter that was originally from the
1425/// innermost template-parameter-list. This is 0 except when we concatenate
1426/// the template parameter lists of a class template and a constructor template
1427/// when forming an implicit deduction guide.
1429 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1430 if (!Guide || !Guide->isImplicit())
1431 return 0;
1432 return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1433}
1434
1435/// Determine whether a type denotes a forwarding reference.
1436static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1437 // C++1z [temp.deduct.call]p3:
1438 // A forwarding reference is an rvalue reference to a cv-unqualified
1439 // template parameter that does not represent a template parameter of a
1440 // class template.
1441 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1442 if (ParamRef->getPointeeType().getQualifiers())
1443 return false;
1444 auto *TypeParm =
1445 ParamRef->getPointeeType()->getAsCanonical<TemplateTypeParmType>();
1446 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1447 }
1448 return false;
1449}
1450
1451/// Attempt to deduce the template arguments by checking the base types
1452/// according to (C++20 [temp.deduct.call] p4b3.
1453///
1454/// \param S the semantic analysis object within which we are deducing.
1455///
1456/// \param RD the top level record object we are deducing against.
1457///
1458/// \param TemplateParams the template parameters that we are deducing.
1459///
1460/// \param P the template specialization parameter type.
1461///
1462/// \param Info information about the template argument deduction itself.
1463///
1464/// \param Deduced the deduced template arguments.
1465///
1466/// \returns the result of template argument deduction with the bases. "invalid"
1467/// means no matches, "success" found a single item, and the
1468/// "MiscellaneousDeductionFailure" result happens when the match is ambiguous.
1471 TemplateParameterList *TemplateParams, QualType P,
1474 bool *HasDeducedAnyParam) {
1475 // C++14 [temp.deduct.call] p4b3:
1476 // If P is a class and P has the form simple-template-id, then the
1477 // transformed A can be a derived class of the deduced A. Likewise if
1478 // P is a pointer to a class of the form simple-template-id, the
1479 // transformed A can be a pointer to a derived class pointed to by the
1480 // deduced A. However, if there is a class C that is a (direct or
1481 // indirect) base class of D and derived (directly or indirectly) from a
1482 // class B and that would be a valid deduced A, the deduced A cannot be
1483 // B or pointer to B, respectively.
1484 //
1485 // These alternatives are considered only if type deduction would
1486 // otherwise fail. If they yield more than one possible deduced A, the
1487 // type deduction fails.
1488
1489 // Use a breadth-first search through the bases to collect the set of
1490 // successful matches. Visited contains the set of nodes we have already
1491 // visited, while ToVisit is our stack of records that we still need to
1492 // visit. Matches contains a list of matches that have yet to be
1493 // disqualified.
1496 // We iterate over this later, so we have to use MapVector to ensure
1497 // determinism.
1498 struct MatchValue {
1500 bool HasDeducedAnyParam;
1501 };
1502 llvm::MapVector<const CXXRecordDecl *, MatchValue> Matches;
1503
1504 auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) {
1505 for (const auto &Base : RD->bases()) {
1506 QualType T = Base.getType();
1507 assert(T->isRecordType() && "Base class that isn't a record?");
1508 if (Visited.insert(T->getAsCXXRecordDecl()).second)
1509 ToVisit.push_back(T);
1510 }
1511 };
1512
1513 // Set up the loop by adding all the bases.
1514 AddBases(RD);
1515
1516 // Search each path of bases until we either run into a successful match
1517 // (where all bases of it are invalid), or we run out of bases.
1518 while (!ToVisit.empty()) {
1519 QualType NextT = ToVisit.pop_back_val();
1520
1521 SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(),
1522 Deduced.end());
1524 bool HasDeducedAnyParamCopy = false;
1526 S, TemplateParams, P, NextT, BaseInfo, PartialOrdering, DeducedCopy,
1527 &HasDeducedAnyParamCopy);
1528
1529 // If this was a successful deduction, add it to the list of matches,
1530 // otherwise we need to continue searching its bases.
1531 const CXXRecordDecl *RD = NextT->getAsCXXRecordDecl();
1533 Matches.insert({RD, {DeducedCopy, HasDeducedAnyParamCopy}});
1534 else
1535 AddBases(RD);
1536 }
1537
1538 // At this point, 'Matches' contains a list of seemingly valid bases, however
1539 // in the event that we have more than 1 match, it is possible that the base
1540 // of one of the matches might be disqualified for being a base of another
1541 // valid match. We can count on cyclical instantiations being invalid to
1542 // simplify the disqualifications. That is, if A & B are both matches, and B
1543 // inherits from A (disqualifying A), we know that A cannot inherit from B.
1544 if (Matches.size() > 1) {
1545 Visited.clear();
1546 for (const auto &Match : Matches)
1547 AddBases(Match.first);
1548
1549 // We can give up once we have a single item (or have run out of things to
1550 // search) since cyclical inheritance isn't valid.
1551 while (Matches.size() > 1 && !ToVisit.empty()) {
1552 const CXXRecordDecl *RD = ToVisit.pop_back_val()->getAsCXXRecordDecl();
1553 Matches.erase(RD);
1554
1555 // Always add all bases, since the inheritance tree can contain
1556 // disqualifications for multiple matches.
1557 AddBases(RD);
1558 }
1559 }
1560
1561 if (Matches.empty())
1563 if (Matches.size() > 1)
1565
1566 std::swap(Matches.front().second.Deduced, Deduced);
1567 if (bool HasDeducedAnyParamCopy = Matches.front().second.HasDeducedAnyParam;
1568 HasDeducedAnyParamCopy && HasDeducedAnyParam)
1569 *HasDeducedAnyParam = HasDeducedAnyParamCopy;
1571}
1572
1573/// When propagating a partial ordering kind into a NonCall context,
1574/// this is used to downgrade a 'Call' into a 'NonCall', so that
1575/// the kind still reflects whether we are in a partial ordering context.
1580
1581/// Deduce the template arguments by comparing the parameter type and
1582/// the argument type (C++ [temp.deduct.type]).
1583///
1584/// \param S the semantic analysis object within which we are deducing
1585///
1586/// \param TemplateParams the template parameters that we are deducing
1587///
1588/// \param P the parameter type
1589///
1590/// \param A the argument type
1591///
1592/// \param Info information about the template argument deduction itself
1593///
1594/// \param Deduced the deduced template arguments
1595///
1596/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1597/// how template argument deduction is performed.
1598///
1599/// \param PartialOrdering Whether we're performing template argument deduction
1600/// in the context of partial ordering (C++0x [temp.deduct.partial]).
1601///
1602/// \returns the result of template argument deduction so far. Note that a
1603/// "success" result means that template argument deduction has not yet failed,
1604/// but it may still fail, later, for other reasons.
1606 Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A,
1608 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
1609 PartialOrderingKind POK, bool DeducedFromArrayBound,
1610 bool *HasDeducedAnyParam) {
1611
1612 // If the argument type is a pack expansion, look at its pattern.
1613 // This isn't explicitly called out
1614 if (const auto *AExp = dyn_cast<PackExpansionType>(A))
1615 A = AExp->getPattern();
1617
1618 if (POK == PartialOrderingKind::Call) {
1619 // C++11 [temp.deduct.partial]p5:
1620 // Before the partial ordering is done, certain transformations are
1621 // performed on the types used for partial ordering:
1622 // - If P is a reference type, P is replaced by the type referred to.
1623 const ReferenceType *PRef = P->getAs<ReferenceType>();
1624 if (PRef)
1625 P = PRef->getPointeeType();
1626
1627 // - If A is a reference type, A is replaced by the type referred to.
1628 const ReferenceType *ARef = A->getAs<ReferenceType>();
1629 if (ARef)
1630 A = A->getPointeeType();
1631
1632 if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) {
1633 // C++11 [temp.deduct.partial]p9:
1634 // If, for a given type, deduction succeeds in both directions (i.e.,
1635 // the types are identical after the transformations above) and both
1636 // P and A were reference types [...]:
1637 // - if [one type] was an lvalue reference and [the other type] was
1638 // not, [the other type] is not considered to be at least as
1639 // specialized as [the first type]
1640 // - if [one type] is more cv-qualified than [the other type],
1641 // [the other type] is not considered to be at least as specialized
1642 // as [the first type]
1643 // Objective-C ARC adds:
1644 // - [one type] has non-trivial lifetime, [the other type] has
1645 // __unsafe_unretained lifetime, and the types are otherwise
1646 // identical
1647 //
1648 // A is "considered to be at least as specialized" as P iff deduction
1649 // succeeds, so we model this as a deduction failure. Note that
1650 // [the first type] is P and [the other type] is A here; the standard
1651 // gets this backwards.
1652 Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers();
1653 if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) ||
1654 PQuals.isStrictSupersetOf(AQuals) ||
1655 (PQuals.hasNonTrivialObjCLifetime() &&
1656 AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1657 PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) {
1658 Info.FirstArg = TemplateArgument(P);
1659 Info.SecondArg = TemplateArgument(A);
1661 }
1662 }
1663 Qualifiers DiscardedQuals;
1664 // C++11 [temp.deduct.partial]p7:
1665 // Remove any top-level cv-qualifiers:
1666 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
1667 // version of P.
1668 P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals);
1669 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
1670 // version of A.
1671 A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals);
1672 } else {
1673 // C++0x [temp.deduct.call]p4 bullet 1:
1674 // - If the original P is a reference type, the deduced A (i.e., the type
1675 // referred to by the reference) can be more cv-qualified than the
1676 // transformed A.
1677 if (TDF & TDF_ParamWithReferenceType) {
1678 Qualifiers Quals;
1679 QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals);
1681 P = S.Context.getQualifiedType(UnqualP, Quals);
1682 }
1683
1684 if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) {
1685 // C++0x [temp.deduct.type]p10:
1686 // If P and A are function types that originated from deduction when
1687 // taking the address of a function template (14.8.2.2) or when deducing
1688 // template arguments from a function declaration (14.8.2.6) and Pi and
1689 // Ai are parameters of the top-level parameter-type-list of P and A,
1690 // respectively, Pi is adjusted if it is a forwarding reference and Ai
1691 // is an lvalue reference, in
1692 // which case the type of Pi is changed to be the template parameter
1693 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
1694 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1695 // deduced as X&. - end note ]
1697 if (isForwardingReference(P, /*FirstInnerIndex=*/0) &&
1699 P = P->getPointeeType();
1700 }
1701 }
1702
1703 // C++ [temp.deduct.type]p9:
1704 // A template type argument T, a template template argument TT or a
1705 // template non-type argument i can be deduced if P and A have one of
1706 // the following forms:
1707 //
1708 // T
1709 // cv-list T
1710 if (const auto *TTP = P->getAsCanonical<TemplateTypeParmType>()) {
1711 // Just skip any attempts to deduce from a placeholder type or a parameter
1712 // at a different depth.
1713 if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth())
1715
1716 unsigned Index = TTP->getIndex();
1717
1718 // If the argument type is an array type, move the qualifiers up to the
1719 // top level, so they can be matched with the qualifiers on the parameter.
1720 if (A->isArrayType()) {
1721 Qualifiers Quals;
1722 A = S.Context.getUnqualifiedArrayType(A, Quals);
1723 if (Quals)
1724 A = S.Context.getQualifiedType(A, Quals);
1725 }
1726
1727 // The argument type can not be less qualified than the parameter
1728 // type.
1729 if (!(TDF & TDF_IgnoreQualifiers) &&
1731 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1732 Info.FirstArg = TemplateArgument(P);
1733 Info.SecondArg = TemplateArgument(A);
1735 }
1736
1737 // Do not match a function type with a cv-qualified type.
1738 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1739 if (A->isFunctionType() && P.hasQualifiers())
1741
1742 assert(TTP->getDepth() == Info.getDeducedDepth() &&
1743 "saw template type parameter with wrong depth");
1744 assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy &&
1745 "Unresolved overloaded function");
1746 QualType DeducedType = A;
1747
1748 // Remove any qualifiers on the parameter from the deduced type.
1749 // We checked the qualifiers for consistency above.
1750 Qualifiers DeducedQs = DeducedType.getQualifiers();
1751 Qualifiers ParamQs = P.getQualifiers();
1752 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1753 if (ParamQs.hasObjCGCAttr())
1754 DeducedQs.removeObjCGCAttr();
1755 if (ParamQs.hasAddressSpace())
1756 DeducedQs.removeAddressSpace();
1757 if (ParamQs.hasObjCLifetime())
1758 DeducedQs.removeObjCLifetime();
1759
1760 // Objective-C ARC:
1761 // If template deduction would produce a lifetime qualifier on a type
1762 // that is not a lifetime type, template argument deduction fails.
1763 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1764 !DeducedType->isDependentType()) {
1765 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1766 Info.FirstArg = TemplateArgument(P);
1767 Info.SecondArg = TemplateArgument(A);
1769 }
1770
1771 // Objective-C ARC:
1772 // If template deduction would produce an argument type with lifetime type
1773 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1774 if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() &&
1775 !DeducedQs.hasObjCLifetime())
1777
1778 DeducedType =
1779 S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs);
1780
1781 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1783 checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced);
1784 if (Result.isNull()) {
1785 // We can also get inconsistencies when matching NTTP type.
1786 switch (NamedDecl *Param = TemplateParams->getParam(Index);
1787 Param->getKind()) {
1788 case Decl::TemplateTypeParm:
1789 Info.Param = cast<TemplateTypeParmDecl>(Param);
1790 break;
1791 case Decl::NonTypeTemplateParm:
1793 break;
1794 case Decl::TemplateTemplateParm:
1796 break;
1797 default:
1798 llvm_unreachable("unexpected kind");
1799 }
1800 Info.FirstArg = Deduced[Index];
1801 Info.SecondArg = NewDeduced;
1803 }
1804
1805 Deduced[Index] = Result;
1806 if (HasDeducedAnyParam)
1807 *HasDeducedAnyParam = true;
1809 }
1810
1811 // Set up the template argument deduction information for a failure.
1812 Info.FirstArg = TemplateArgument(P);
1813 Info.SecondArg = TemplateArgument(A);
1814
1815 // If the parameter is an already-substituted template parameter
1816 // pack, do nothing: we don't know which of its arguments to look
1817 // at, so we have to wait until all of the parameter packs in this
1818 // expansion have arguments.
1819 if (P->getAs<SubstTemplateTypeParmPackType>())
1821
1822 // Check the cv-qualifiers on the parameter and argument types.
1823 if (!(TDF & TDF_IgnoreQualifiers)) {
1824 if (TDF & TDF_ParamWithReferenceType) {
1827 } else if (TDF & TDF_ArgWithReferenceType) {
1828 // C++ [temp.deduct.conv]p4:
1829 // If the original A is a reference type, A can be more cv-qualified
1830 // than the deduced A
1832 S.getASTContext()))
1834
1835 // Strip out all extra qualifiers from the argument to figure out the
1836 // type we're converting to, prior to the qualification conversion.
1837 Qualifiers Quals;
1838 A = S.Context.getUnqualifiedArrayType(A, Quals);
1840 } else if (!IsPossiblyOpaquelyQualifiedType(P)) {
1841 if (P.getCVRQualifiers() != A.getCVRQualifiers())
1843 }
1844 }
1845
1846 // If the parameter type is not dependent, there is nothing to deduce.
1847 if (!P->isDependentType()) {
1848 if (TDF & TDF_SkipNonDependent)
1851 : S.Context.hasSameType(P, A))
1856 if (!(TDF & TDF_IgnoreQualifiers))
1858 // Otherwise, when ignoring qualifiers, the types not having the same
1859 // unqualified type does not mean they do not match, so in this case we
1860 // must keep going and analyze with a non-dependent parameter type.
1861 }
1862
1863 switch (P.getCanonicalType()->getTypeClass()) {
1864 // Non-canonical types cannot appear here.
1865#define NON_CANONICAL_TYPE(Class, Base) \
1866 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1867#define TYPE(Class, Base)
1868#include "clang/AST/TypeNodes.inc"
1869
1870 case Type::TemplateTypeParm:
1871 case Type::SubstTemplateTypeParmPack:
1872 case Type::SubstBuiltinTemplatePack:
1873 llvm_unreachable("Type nodes handled above");
1874
1875 case Type::Auto:
1876 // C++23 [temp.deduct.funcaddr]/3:
1877 // A placeholder type in the return type of a function template is a
1878 // non-deduced context.
1879 // There's no corresponding wording for [temp.deduct.decl], but we treat
1880 // it the same to match other compilers.
1881 if (P->isDependentType())
1883 [[fallthrough]];
1884 case Type::Builtin:
1885 case Type::VariableArray:
1886 case Type::Vector:
1887 case Type::FunctionNoProto:
1888 case Type::Record:
1889 case Type::Enum:
1890 case Type::ObjCObject:
1891 case Type::ObjCInterface:
1892 case Type::ObjCObjectPointer:
1893 case Type::BitInt:
1894 return (TDF & TDF_SkipNonDependent) ||
1895 ((TDF & TDF_IgnoreQualifiers)
1897 : S.Context.hasSameType(P, A))
1900
1901 // _Complex T [placeholder extension]
1902 case Type::Complex: {
1903 const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>();
1904 if (!CA)
1907 S, TemplateParams, CP->getElementType(), CA->getElementType(), Info,
1908 Deduced, TDF, degradeCallPartialOrderingKind(POK),
1909 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1910 }
1911
1912 // _Atomic T [extension]
1913 case Type::Atomic: {
1914 const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>();
1915 if (!AA)
1918 S, TemplateParams, PA->getValueType(), AA->getValueType(), Info,
1919 Deduced, TDF, degradeCallPartialOrderingKind(POK),
1920 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1921 }
1922
1923 // T *
1924 case Type::Pointer: {
1925 QualType PointeeType;
1926 if (const auto *PA = A->getAs<PointerType>()) {
1927 PointeeType = PA->getPointeeType();
1928 } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) {
1929 PointeeType = PA->getPointeeType();
1930 } else {
1932 }
1934 S, TemplateParams, P->castAs<PointerType>()->getPointeeType(),
1935 PointeeType, Info, Deduced,
1938 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1939 }
1940
1941 // T &
1942 case Type::LValueReference: {
1943 const auto *RP = P->castAs<LValueReferenceType>(),
1944 *RA = A->getAs<LValueReferenceType>();
1945 if (!RA)
1947
1949 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
1950 Deduced, 0, degradeCallPartialOrderingKind(POK),
1951 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1952 }
1953
1954 // T && [C++0x]
1955 case Type::RValueReference: {
1956 const auto *RP = P->castAs<RValueReferenceType>(),
1957 *RA = A->getAs<RValueReferenceType>();
1958 if (!RA)
1960
1962 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
1963 Deduced, 0, degradeCallPartialOrderingKind(POK),
1964 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1965 }
1966
1967 // T [] (implied, but not stated explicitly)
1968 case Type::IncompleteArray: {
1969 const auto *IAA = S.Context.getAsIncompleteArrayType(A);
1970 if (!IAA)
1972
1973 const auto *IAP = S.Context.getAsIncompleteArrayType(P);
1974 assert(IAP && "Template parameter not of incomplete array type");
1975
1977 S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info,
1978 Deduced, TDF & TDF_IgnoreQualifiers,
1980 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1981 }
1982
1983 // T [integer-constant]
1984 case Type::ConstantArray: {
1985 const auto *CAA = S.Context.getAsConstantArrayType(A),
1986 *CAP = S.Context.getAsConstantArrayType(P);
1987 assert(CAP);
1988 if (!CAA || CAA->getSize() != CAP->getSize())
1990
1992 S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info,
1993 Deduced, TDF & TDF_IgnoreQualifiers,
1995 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1996 }
1997
1998 // type [i]
1999 case Type::DependentSizedArray: {
2000 const auto *AA = S.Context.getAsArrayType(A);
2001 if (!AA)
2003
2004 // Check the element type of the arrays
2005 const auto *DAP = S.Context.getAsDependentSizedArrayType(P);
2006 assert(DAP);
2007 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2008 S, TemplateParams, DAP->getElementType(), AA->getElementType(),
2009 Info, Deduced, TDF & TDF_IgnoreQualifiers,
2011 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2013 return Result;
2014
2015 // Determine the array bound is something we can deduce.
2017 getDeducedNTTParameterFromExpr(Info, DAP->getSizeExpr());
2018 if (!NTTP)
2020
2021 // We can perform template argument deduction for the given non-type
2022 // template parameter.
2023 assert(NTTP.getDepth() == Info.getDeducedDepth() &&
2024 "saw non-type template parameter with wrong depth");
2025 if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) {
2026 llvm::APSInt Size(CAA->getSize());
2028 S, TemplateParams, NTTP, Size, S.Context.getSizeType(),
2029 /*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
2030 Deduced, HasDeducedAnyParam);
2031 }
2032 if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA))
2033 if (DAA->getSizeExpr())
2035 S, TemplateParams, NTTP, DAA->getSizeExpr(), Info,
2036 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2037
2038 // Incomplete type does not match a dependently-sized array type
2040 }
2041
2042 // type(*)(T)
2043 // T(*)()
2044 // T(*)(T)
2045 case Type::FunctionProto: {
2046 const auto *FPP = P->castAs<FunctionProtoType>(),
2047 *FPA = A->getAs<FunctionProtoType>();
2048 if (!FPA)
2050
2051 if (FPP->getMethodQuals() != FPA->getMethodQuals() ||
2052 FPP->getRefQualifier() != FPA->getRefQualifier() ||
2053 FPP->isVariadic() != FPA->isVariadic())
2055
2056 // Check return types.
2057 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2058 S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(),
2059 Info, Deduced, 0, degradeCallPartialOrderingKind(POK),
2060 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2062 return Result;
2063
2064 // Check parameter types.
2065 if (auto Result = DeduceTemplateArguments(
2066 S, TemplateParams, FPP->param_types(), FPA->param_types(), Info,
2067 Deduced, TDF & TDF_TopLevelParameterTypeList, POK,
2068 HasDeducedAnyParam,
2069 /*HasDeducedParam=*/nullptr);
2071 return Result;
2072
2075
2076 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
2077 // deducing through the noexcept-specifier if it's part of the canonical
2078 // type. libstdc++ relies on this.
2079 Expr *NoexceptExpr = FPP->getNoexceptExpr();
2081 NoexceptExpr ? getDeducedNTTParameterFromExpr(Info, NoexceptExpr)
2082 : nullptr) {
2083 assert(NTTP.getDepth() == Info.getDeducedDepth() &&
2084 "saw non-type template parameter with wrong depth");
2085
2086 llvm::APSInt Noexcept(1);
2087 switch (FPA->canThrow()) {
2088 case CT_Cannot:
2089 Noexcept = 1;
2090 [[fallthrough]];
2091
2092 case CT_Can:
2093 // We give E in noexcept(E) the "deduced from array bound" treatment.
2094 // FIXME: Should we?
2096 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
2097 /*DeducedFromArrayBound=*/true, Info,
2098 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2099
2100 case CT_Dependent:
2101 if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr())
2103 S, TemplateParams, NTTP, ArgNoexceptExpr, Info,
2104 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2105 // Can't deduce anything from throw(T...).
2106 break;
2107 }
2108 }
2109 // FIXME: Detect non-deduced exception specification mismatches?
2110 //
2111 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
2112 // top-level differences in noexcept-specifications.
2113
2115 }
2116
2117 case Type::InjectedClassName:
2118 // Treat a template's injected-class-name as if the template
2119 // specialization type had been used.
2120
2121 // template-name<T> (where template-name refers to a class template)
2122 // template-name<i>
2123 // TT<T>
2124 // TT<i>
2125 // TT<>
2126 case Type::TemplateSpecialization: {
2127 // When Arg cannot be a derived class, we can just try to deduce template
2128 // arguments from the template-id.
2129 if (!(TDF & TDF_DerivedClass) || !A->isRecordType())
2130 return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info,
2132 Deduced, HasDeducedAnyParam);
2133
2134 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
2135 Deduced.end());
2136
2137 auto Result = DeduceTemplateSpecArguments(
2138 S, TemplateParams, P, A, Info, POK != PartialOrderingKind::None,
2139 Deduced, HasDeducedAnyParam);
2141 return Result;
2142
2143 // We cannot inspect base classes as part of deduction when the type
2144 // is incomplete, so either instantiate any templates necessary to
2145 // complete the type, or skip over it if it cannot be completed.
2146 if (!S.isCompleteType(Info.getLocation(), A))
2147 return Result;
2148
2149 const CXXRecordDecl *RD = A->getAsCXXRecordDecl();
2150 if (RD->isInvalidDecl())
2151 return Result;
2152
2153 // Reset the incorrectly deduced argument from above.
2154 Deduced = DeducedOrig;
2155
2156 // Check bases according to C++14 [temp.deduct.call] p4b3:
2157 auto BaseResult = DeduceTemplateBases(S, RD, TemplateParams, P, Info,
2159 Deduced, HasDeducedAnyParam);
2161 : Result;
2162 }
2163
2164 // T type::*
2165 // T T::*
2166 // T (type::*)()
2167 // type (T::*)()
2168 // type (type::*)(T)
2169 // type (T::*)(T)
2170 // T (type::*)(T)
2171 // T (T::*)()
2172 // T (T::*)(T)
2173 case Type::MemberPointer: {
2174 const auto *MPP = P->castAs<MemberPointerType>(),
2175 *MPA = A->getAs<MemberPointerType>();
2176 if (!MPA)
2178
2179 QualType PPT = MPP->getPointeeType();
2180 if (PPT->isFunctionType())
2181 S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false,
2182 /*IsCtorOrDtor=*/false, Info.getLocation());
2183 QualType APT = MPA->getPointeeType();
2184 if (APT->isFunctionType())
2185 S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false,
2186 /*IsCtorOrDtor=*/false, Info.getLocation());
2187
2188 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
2189 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2190 S, TemplateParams, PPT, APT, Info, Deduced, SubTDF,
2192 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2194 return Result;
2195
2196 QualType TP =
2197 MPP->isSugared()
2198 ? S.Context.getCanonicalTagType(MPP->getMostRecentCXXRecordDecl())
2199 : QualType(MPP->getQualifier().getAsType(), 0);
2200 assert(!TP.isNull() && "member pointer with non-type class");
2201
2202 QualType TA =
2203 MPA->isSugared()
2204 ? S.Context.getCanonicalTagType(MPA->getMostRecentCXXRecordDecl())
2205 : QualType(MPA->getQualifier().getAsType(), 0)
2207 assert(!TA.isNull() && "member pointer with non-type class");
2208
2210 S, TemplateParams, TP, TA, Info, Deduced, SubTDF,
2212 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2213 }
2214
2215 // (clang extension)
2216 //
2217 // type(^)(T)
2218 // T(^)()
2219 // T(^)(T)
2220 case Type::BlockPointer: {
2221 const auto *BPP = P->castAs<BlockPointerType>(),
2222 *BPA = A->getAs<BlockPointerType>();
2223 if (!BPA)
2226 S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info,
2227 Deduced, 0, degradeCallPartialOrderingKind(POK),
2228 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2229 }
2230
2231 // (clang extension)
2232 //
2233 // T __attribute__(((ext_vector_type(<integral constant>))))
2234 case Type::ExtVector: {
2235 const auto *VP = P->castAs<ExtVectorType>();
2236 QualType ElementType;
2237 if (const auto *VA = A->getAs<ExtVectorType>()) {
2238 // Make sure that the vectors have the same number of elements.
2239 if (VP->getNumElements() != VA->getNumElements())
2241 ElementType = VA->getElementType();
2242 } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
2243 // We can't check the number of elements, since the argument has a
2244 // dependent number of elements. This can only occur during partial
2245 // ordering.
2246 ElementType = VA->getElementType();
2247 } else {
2249 }
2250 // Perform deduction on the element types.
2252 S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced,
2254 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2255 }
2256
2257 case Type::DependentVector: {
2258 const auto *VP = P->castAs<DependentVectorType>();
2259
2260 if (const auto *VA = A->getAs<VectorType>()) {
2261 // Perform deduction on the element types.
2262 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2263 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2264 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2265 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2267 return Result;
2268
2269 // Perform deduction on the vector size, if we can.
2271 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2272 if (!NTTP)
2274
2275 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2276 ArgSize = VA->getNumElements();
2277 // Note that we use the "array bound" rules here; just like in that
2278 // case, we don't have any particular type for the vector size, but
2279 // we can provide one if necessary.
2281 S, TemplateParams, NTTP, ArgSize, S.Context.UnsignedIntTy, true,
2282 Info, POK != PartialOrderingKind::None, Deduced,
2283 HasDeducedAnyParam);
2284 }
2285
2286 if (const auto *VA = A->getAs<DependentVectorType>()) {
2287 // Perform deduction on the element types.
2288 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2289 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2290 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2291 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2293 return Result;
2294
2295 // Perform deduction on the vector size, if we can.
2297 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2298 if (!NTTP)
2300
2302 S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
2303 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2304 }
2305
2307 }
2308
2309 // (clang extension)
2310 //
2311 // T __attribute__(((ext_vector_type(N))))
2312 case Type::DependentSizedExtVector: {
2313 const auto *VP = P->castAs<DependentSizedExtVectorType>();
2314
2315 if (const auto *VA = A->getAs<ExtVectorType>()) {
2316 // Perform deduction on the element types.
2317 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2318 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2319 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2320 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2322 return Result;
2323
2324 // Perform deduction on the vector size, if we can.
2326 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2327 if (!NTTP)
2329
2330 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2331 ArgSize = VA->getNumElements();
2332 // Note that we use the "array bound" rules here; just like in that
2333 // case, we don't have any particular type for the vector size, but
2334 // we can provide one if necessary.
2336 S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
2337 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2338 }
2339
2340 if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
2341 // Perform deduction on the element types.
2342 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2343 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2344 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2345 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2347 return Result;
2348
2349 // Perform deduction on the vector size, if we can.
2351 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2352 if (!NTTP)
2354
2356 S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
2357 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2358 }
2359
2361 }
2362
2363 // (clang extension)
2364 //
2365 // T __attribute__((matrix_type(<integral constant>,
2366 // <integral constant>)))
2367 case Type::ConstantMatrix: {
2368 const auto *MP = P->castAs<ConstantMatrixType>(),
2369 *MA = A->getAs<ConstantMatrixType>();
2370 if (!MA)
2372
2373 // Check that the dimensions are the same
2374 if (MP->getNumRows() != MA->getNumRows() ||
2375 MP->getNumColumns() != MA->getNumColumns()) {
2377 }
2378 // Perform deduction on element types.
2380 S, TemplateParams, MP->getElementType(), MA->getElementType(), Info,
2381 Deduced, TDF, degradeCallPartialOrderingKind(POK),
2382 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2383 }
2384
2385 case Type::DependentSizedMatrix: {
2386 const auto *MP = P->castAs<DependentSizedMatrixType>();
2387 const auto *MA = A->getAs<MatrixType>();
2388 if (!MA)
2390
2391 // Check the element type of the matrixes.
2392 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2393 S, TemplateParams, MP->getElementType(), MA->getElementType(),
2394 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2395 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2397 return Result;
2398
2399 // Try to deduce a matrix dimension.
2400 auto DeduceMatrixArg =
2401 [&S, &Info, &Deduced, &TemplateParams, &HasDeducedAnyParam, POK](
2402 Expr *ParamExpr, const MatrixType *A,
2403 unsigned (ConstantMatrixType::*GetArgDimension)() const,
2404 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) {
2405 const auto *ACM = dyn_cast<ConstantMatrixType>(A);
2406 const auto *ADM = dyn_cast<DependentSizedMatrixType>(A);
2407 if (!ParamExpr->isValueDependent()) {
2408 std::optional<llvm::APSInt> ParamConst =
2409 ParamExpr->getIntegerConstantExpr(S.Context);
2410 if (!ParamConst)
2412
2413 if (ACM) {
2414 if ((ACM->*GetArgDimension)() == *ParamConst)
2417 }
2418
2419 Expr *ArgExpr = (ADM->*GetArgDimensionExpr)();
2420 if (std::optional<llvm::APSInt> ArgConst =
2421 ArgExpr->getIntegerConstantExpr(S.Context))
2422 if (*ArgConst == *ParamConst)
2425 }
2426
2428 getDeducedNTTParameterFromExpr(Info, ParamExpr);
2429 if (!NTTP)
2431
2432 if (ACM) {
2433 llvm::APSInt ArgConst(
2435 ArgConst = (ACM->*GetArgDimension)();
2437 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(),
2438 /*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
2439 Deduced, HasDeducedAnyParam);
2440 }
2441
2443 S, TemplateParams, NTTP, (ADM->*GetArgDimensionExpr)(), Info,
2444 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2445 };
2446
2447 if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA,
2451 return Result;
2452
2453 return DeduceMatrixArg(MP->getColumnExpr(), MA,
2456 }
2457
2458 // (clang extension)
2459 //
2460 // T __attribute__(((address_space(N))))
2461 case Type::DependentAddressSpace: {
2462 const auto *ASP = P->castAs<DependentAddressSpaceType>();
2463
2464 if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) {
2465 // Perform deduction on the pointer type.
2466 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2467 S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(),
2468 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2469 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2471 return Result;
2472
2473 // Perform deduction on the address space, if we can.
2475 getDeducedNTTParameterFromExpr(Info, ASP->getAddrSpaceExpr());
2476 if (!NTTP)
2478
2480 S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info,
2481 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2482 }
2483
2485 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2486 false);
2487 ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace());
2488
2489 // Perform deduction on the pointer types.
2490 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2491 S, TemplateParams, ASP->getPointeeType(),
2492 S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF,
2494 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2496 return Result;
2497
2498 // Perform deduction on the address space, if we can.
2500 getDeducedNTTParameterFromExpr(Info, ASP->getAddrSpaceExpr());
2501 if (!NTTP)
2503
2505 S, TemplateParams, NTTP, ArgAddressSpace, S.Context.IntTy, true,
2506 Info, POK != PartialOrderingKind::None, Deduced,
2507 HasDeducedAnyParam);
2508 }
2509
2511 }
2512 case Type::DependentBitInt: {
2513 const auto *IP = P->castAs<DependentBitIntType>();
2514
2515 if (const auto *IA = A->getAs<BitIntType>()) {
2516 if (IP->isUnsigned() != IA->isUnsigned())
2518
2520 getDeducedNTTParameterFromExpr(Info, IP->getNumBitsExpr());
2521 if (!NTTP)
2523
2524 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2525 ArgSize = IA->getNumBits();
2526
2528 S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
2529 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2530 }
2531
2532 if (const auto *IA = A->getAs<DependentBitIntType>()) {
2533 if (IP->isUnsigned() != IA->isUnsigned())
2536 }
2537
2539 }
2540
2541 case Type::TypeOfExpr:
2542 case Type::TypeOf:
2543 case Type::DependentName:
2544 case Type::UnresolvedUsing:
2545 case Type::Decltype:
2546 case Type::UnaryTransform:
2547 case Type::DeducedTemplateSpecialization:
2548 case Type::PackExpansion:
2549 case Type::Pipe:
2550 case Type::ArrayParameter:
2551 case Type::HLSLAttributedResource:
2552 case Type::HLSLInlineSpirv:
2553 // No template argument deduction for these types
2555
2556 case Type::PackIndexing: {
2557 const PackIndexingType *PIT = P->getAs<PackIndexingType>();
2558 if (PIT->hasSelectedType()) {
2560 S, TemplateParams, PIT->getSelectedType(), A, Info, Deduced, TDF,
2562 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2563 }
2565 }
2566 }
2567
2568 llvm_unreachable("Invalid Type Class!");
2569}
2570
2576 bool *HasDeducedAnyParam) {
2577 // If the template argument is a pack expansion, perform template argument
2578 // deduction against the pattern of that expansion. This only occurs during
2579 // partial ordering.
2580 if (A.isPackExpansion())
2582
2583 switch (P.getKind()) {
2585 llvm_unreachable("Null template argument in parameter list");
2586
2590 S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0,
2593 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2594 Info.FirstArg = P;
2595 Info.SecondArg = A;
2597
2599 // PartialOrdering does not matter here, since template specializations are
2600 // not being deduced.
2603 S, TemplateParams, P.getAsTemplate(), A.getAsTemplate(), Info,
2604 /*DefaultArguments=*/{}, /*PartialOrdering=*/false, Deduced,
2605 HasDeducedAnyParam);
2606 Info.FirstArg = P;
2607 Info.SecondArg = A;
2609
2611 llvm_unreachable("caller should handle pack expansions");
2612
2617
2618 Info.FirstArg = P;
2619 Info.SecondArg = A;
2621
2623 // 'nullptr' has only one possible value, so it always matches.
2626 Info.FirstArg = P;
2627 Info.SecondArg = A;
2629
2632 if (llvm::APSInt::isSameValue(P.getAsIntegral(), A.getAsIntegral()))
2634 }
2635 Info.FirstArg = P;
2636 Info.SecondArg = A;
2638
2640 // FIXME: structural equality will also compare types,
2641 // but they should match iff they have the same value.
2643 A.structurallyEquals(P))
2645
2646 Info.FirstArg = P;
2647 Info.SecondArg = A;
2649
2653 switch (A.getKind()) {
2655 // The type of the value is the type of the expression as written.
2657 S, TemplateParams, NTTP, DeducedTemplateArgument(A),
2659 PartialOrdering, Deduced, HasDeducedAnyParam);
2660 }
2664 S, TemplateParams, NTTP, DeducedTemplateArgument(A),
2666 HasDeducedAnyParam);
2667
2670 S, TemplateParams, NTTP, A.getNullPtrType(), Info, PartialOrdering,
2671 Deduced, HasDeducedAnyParam);
2672
2675 S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(),
2676 Info, PartialOrdering, Deduced, HasDeducedAnyParam);
2677
2683 Info.FirstArg = P;
2684 Info.SecondArg = A;
2686 }
2687 llvm_unreachable("Unknown template argument kind");
2688 }
2689 // Can't deduce anything, but that's okay.
2692 llvm_unreachable("Argument packs should be expanded by the caller!");
2693 }
2694
2695 llvm_unreachable("Invalid TemplateArgument Kind!");
2696}
2697
2698/// Determine whether there is a template argument to be used for
2699/// deduction.
2700///
2701/// This routine "expands" argument packs in-place, overriding its input
2702/// parameters so that \c Args[ArgIdx] will be the available template argument.
2703///
2704/// \returns true if there is another template argument (which will be at
2705/// \c Args[ArgIdx]), false otherwise.
2707 unsigned &ArgIdx) {
2708 if (ArgIdx == Args.size())
2709 return false;
2710
2711 const TemplateArgument &Arg = Args[ArgIdx];
2712 if (Arg.getKind() != TemplateArgument::Pack)
2713 return true;
2714
2715 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2716 Args = Arg.pack_elements();
2717 ArgIdx = 0;
2718 return ArgIdx < Args.size();
2719}
2720
2721/// Determine whether the given set of template arguments has a pack
2722/// expansion that is not the last template argument.
2724 bool FoundPackExpansion = false;
2725 for (const auto &A : Args) {
2726 if (FoundPackExpansion)
2727 return true;
2728
2729 if (A.getKind() == TemplateArgument::Pack)
2730 return hasPackExpansionBeforeEnd(A.pack_elements());
2731
2732 // FIXME: If this is a fixed-arity pack expansion from an outer level of
2733 // templates, it should not be treated as a pack expansion.
2734 if (A.isPackExpansion())
2735 FoundPackExpansion = true;
2736 }
2737
2738 return false;
2739}
2740
2747 bool NumberOfArgumentsMustMatch, bool PartialOrdering,
2748 PackFold PackFold, bool *HasDeducedAnyParam) {
2749 bool FoldPackParameter = PackFold == PackFold::ParameterToArgument ||
2751 FoldPackArgument = PackFold == PackFold::ArgumentToParameter ||
2753
2754 // C++0x [temp.deduct.type]p9:
2755 // If the template argument list of P contains a pack expansion that is not
2756 // the last template argument, the entire template argument list is a
2757 // non-deduced context.
2758 if (FoldPackParameter && hasPackExpansionBeforeEnd(Ps))
2760
2761 // C++0x [temp.deduct.type]p9:
2762 // If P has a form that contains <T> or <i>, then each argument Pi of the
2763 // respective template argument list P is compared with the corresponding
2764 // argument Ai of the corresponding template argument list of A.
2765 for (unsigned ArgIdx = 0, ParamIdx = 0; /**/; /**/) {
2767 return !FoldPackParameter && hasTemplateArgumentForDeduction(As, ArgIdx)
2770
2771 if (!Ps[ParamIdx].isPackExpansion()) {
2772 // The simple case: deduce template arguments by matching Pi and Ai.
2773
2774 // Check whether we have enough arguments.
2775 if (!hasTemplateArgumentForDeduction(As, ArgIdx))
2776 return !FoldPackArgument && NumberOfArgumentsMustMatch
2779
2780 if (As[ArgIdx].isPackExpansion()) {
2781 // C++1z [temp.deduct.type]p9:
2782 // During partial ordering, if Ai was originally a pack expansion
2783 // [and] Pi is not a pack expansion, template argument deduction
2784 // fails.
2785 if (!FoldPackArgument)
2787
2788 TemplateArgument Pattern = As[ArgIdx].getPackExpansionPattern();
2789 for (;;) {
2790 // Deduce template parameters from the pattern.
2791 if (auto Result = DeduceTemplateArguments(
2792 S, TemplateParams, Ps[ParamIdx], Pattern, Info,
2793 PartialOrdering, Deduced, HasDeducedAnyParam);
2795 return Result;
2796
2797 ++ParamIdx;
2800 if (Ps[ParamIdx].isPackExpansion())
2801 break;
2802 }
2803 } else {
2804 // Perform deduction for this Pi/Ai pair.
2805 if (auto Result = DeduceTemplateArguments(
2806 S, TemplateParams, Ps[ParamIdx], As[ArgIdx], Info,
2807 PartialOrdering, Deduced, HasDeducedAnyParam);
2809 return Result;
2810
2811 ++ArgIdx;
2812 ++ParamIdx;
2813 continue;
2814 }
2815 }
2816
2817 // The parameter is a pack expansion.
2818
2819 // C++0x [temp.deduct.type]p9:
2820 // If Pi is a pack expansion, then the pattern of Pi is compared with
2821 // each remaining argument in the template argument list of A. Each
2822 // comparison deduces template arguments for subsequent positions in the
2823 // template parameter packs expanded by Pi.
2824 TemplateArgument Pattern = Ps[ParamIdx].getPackExpansionPattern();
2825
2826 // Prepare to deduce the packs within the pattern.
2827 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2828
2829 // Keep track of the deduced template arguments for each parameter pack
2830 // expanded by this pack expansion (the outer index) and for each
2831 // template argument (the inner SmallVectors).
2832 for (; hasTemplateArgumentForDeduction(As, ArgIdx) &&
2833 PackScope.hasNextElement();
2834 ++ArgIdx) {
2835 if (!As[ArgIdx].isPackExpansion()) {
2836 if (!FoldPackParameter)
2838 if (FoldPackArgument)
2839 Info.setStrictPackMatch();
2840 }
2841 // Deduce template arguments from the pattern.
2842 if (auto Result = DeduceTemplateArguments(
2843 S, TemplateParams, Pattern, As[ArgIdx], Info, PartialOrdering,
2844 Deduced, HasDeducedAnyParam);
2846 return Result;
2847
2848 PackScope.nextPackElement();
2849 }
2850
2851 // Build argument packs for each of the parameter packs expanded by this
2852 // pack expansion.
2853 return PackScope.finish();
2854 }
2855}
2856
2861 bool NumberOfArgumentsMustMatch) {
2862 return ::DeduceTemplateArguments(
2863 *this, TemplateParams, Ps, As, Info, Deduced, NumberOfArgumentsMustMatch,
2864 /*PartialOrdering=*/false, PackFold::ParameterToArgument,
2865 /*HasDeducedAnyParam=*/nullptr);
2866}
2867
2870 QualType NTTPType, SourceLocation Loc,
2872 switch (Arg.getKind()) {
2874 llvm_unreachable("Can't get a NULL template argument here");
2875
2877 return TemplateArgumentLoc(
2878 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2879
2881 if (NTTPType.isNull())
2882 NTTPType = Arg.getParamTypeForDecl();
2883 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc,
2885 .getAs<Expr>();
2886 return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
2887 }
2888
2890 if (NTTPType.isNull())
2891 NTTPType = Arg.getNullPtrType();
2892 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2893 .getAs<Expr>();
2894 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2895 E);
2896 }
2897
2901 return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
2902 }
2903
2908 Builder.MakeTrivial(Context, Template.getQualifier(), Loc);
2909 return TemplateArgumentLoc(
2910 Context, Arg, Loc, Builder.getWithLocInContext(Context), Loc,
2911 /*EllipsisLoc=*/Arg.getKind() == TemplateArgument::TemplateExpansion
2912 ? Loc
2913 : SourceLocation());
2914 }
2915
2917 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2918
2921 }
2922
2923 llvm_unreachable("Invalid TemplateArgument Kind!");
2924}
2925
2928 SourceLocation Location) {
2930 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
2931}
2932
2933/// Convert the given deduced template argument and add it to the set of
2934/// fully-converted template arguments.
2935static bool
2938 TemplateDeductionInfo &Info, bool IsDeduced,
2940 auto ConvertArg = [&](DeducedTemplateArgument Arg,
2941 unsigned ArgumentPackIndex) {
2942 // Convert the deduced template argument into a template
2943 // argument that we can check, almost as if the user had written
2944 // the template argument explicitly.
2946 Arg, QualType(), Info.getLocation(), Param);
2947
2948 SaveAndRestore _1(CTAI.MatchingTTP, false);
2949 SaveAndRestore _2(CTAI.StrictPackMatch, false);
2950 // Check the template argument, converting it as necessary.
2951 auto Res = S.CheckTemplateArgument(
2952 Param, ArgLoc, Template, Template->getLocation(),
2953 Template->getSourceRange().getEnd(), ArgumentPackIndex, CTAI,
2954 IsDeduced
2958 if (CTAI.StrictPackMatch)
2959 Info.setStrictPackMatch();
2960 return Res;
2961 };
2962
2963 if (Arg.getKind() == TemplateArgument::Pack) {
2964 // This is a template argument pack, so check each of its arguments against
2965 // the template parameter.
2966 SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder,
2967 CanonicalPackedArgsBuilder;
2968 for (const auto &P : Arg.pack_elements()) {
2969 // When converting the deduced template argument, append it to the
2970 // general output list. We need to do this so that the template argument
2971 // checking logic has all of the prior template arguments available.
2972 DeducedTemplateArgument InnerArg(P);
2974 assert(InnerArg.getKind() != TemplateArgument::Pack &&
2975 "deduced nested pack");
2976 if (P.isNull()) {
2977 // We deduced arguments for some elements of this pack, but not for
2978 // all of them. This happens if we get a conditionally-non-deduced
2979 // context in a pack expansion (such as an overload set in one of the
2980 // arguments).
2981 S.Diag(Param->getLocation(),
2982 diag::err_template_arg_deduced_incomplete_pack)
2983 << Arg << Param;
2984 return true;
2985 }
2986 if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size()))
2987 return true;
2988
2989 // Move the converted template argument into our argument pack.
2990 SugaredPackedArgsBuilder.push_back(CTAI.SugaredConverted.pop_back_val());
2991 CanonicalPackedArgsBuilder.push_back(
2992 CTAI.CanonicalConverted.pop_back_val());
2993 }
2994
2995 // If the pack is empty, we still need to substitute into the parameter
2996 // itself, in case that substitution fails.
2997 if (SugaredPackedArgsBuilder.empty()) {
3000 /*Final=*/true);
3001 Sema::ArgPackSubstIndexRAII OnlySubstNonPackExpansion(S, std::nullopt);
3002
3003 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3004 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
3005 NTTP, CTAI.SugaredConverted,
3006 Template->getSourceRange());
3007 if (Inst.isInvalid() ||
3008 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
3009 NTTP->getDeclName()).isNull())
3010 return true;
3011 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3012 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
3013 TTP, CTAI.SugaredConverted,
3014 Template->getSourceRange());
3015 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
3016 return true;
3017 }
3018 // For type parameters, no substitution is ever required.
3019 }
3020
3021 // Create the resulting argument pack.
3022 CTAI.SugaredConverted.push_back(
3023 TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder));
3025 S.Context, CanonicalPackedArgsBuilder));
3026 return false;
3027 }
3028
3029 return ConvertArg(Arg, 0);
3030}
3031
3032/// \param IsIncomplete When used, we only consider template parameters that
3033/// were deduced, disregarding any default arguments. After the function
3034/// finishes, the object pointed at will contain a value indicating if the
3035/// conversion was actually incomplete.
3037 Sema &S, NamedDecl *Template, TemplateParameterList *TemplateParams,
3038 bool IsDeduced, SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3040 LocalInstantiationScope *CurrentInstantiationScope,
3041 unsigned NumAlreadyConverted, bool *IsIncomplete) {
3042 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3043 NamedDecl *Param = TemplateParams->getParam(I);
3044
3045 // C++0x [temp.arg.explicit]p3:
3046 // A trailing template parameter pack (14.5.3) not otherwise deduced will
3047 // be deduced to an empty sequence of template arguments.
3048 // FIXME: Where did the word "trailing" come from?
3049 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
3050 if (auto Result =
3051 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish();
3053 return Result;
3054 }
3055
3056 if (!Deduced[I].isNull()) {
3057 if (I < NumAlreadyConverted) {
3058 // We may have had explicitly-specified template arguments for a
3059 // template parameter pack (that may or may not have been extended
3060 // via additional deduced arguments).
3061 if (Param->isParameterPack() && CurrentInstantiationScope &&
3062 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
3063 // Forget the partially-substituted pack; its substitution is now
3064 // complete.
3065 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
3066 // We still need to check the argument in case it was extended by
3067 // deduction.
3068 } else {
3069 // We have already fully type-checked and converted this
3070 // argument, because it was explicitly-specified. Just record the
3071 // presence of this argument.
3072 CTAI.SugaredConverted.push_back(Deduced[I]);
3073 CTAI.CanonicalConverted.push_back(
3075 continue;
3076 }
3077 }
3078
3079 // We may have deduced this argument, so it still needs to be
3080 // checked and converted.
3081 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
3082 IsDeduced, CTAI)) {
3083 Info.Param = makeTemplateParameter(Param);
3084 // FIXME: These template arguments are temporary. Free them!
3085 Info.reset(
3088 CTAI.CanonicalConverted));
3090 }
3091
3092 continue;
3093 }
3094
3095 // [C++26][temp.deduct.partial]p12 - When partial ordering, it's ok for
3096 // template parameters to remain not deduced. As a provisional fix for a
3097 // core issue that does not exist yet, which may be related to CWG2160, only
3098 // consider template parameters that were deduced, disregarding any default
3099 // arguments.
3100 if (IsIncomplete) {
3101 *IsIncomplete = true;
3102 CTAI.SugaredConverted.push_back({});
3103 CTAI.CanonicalConverted.push_back({});
3104 continue;
3105 }
3106
3107 // Substitute into the default template argument, if available.
3108 bool HasDefaultArg = false;
3109 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
3110 if (!TD) {
3114 }
3115
3116 TemplateArgumentLoc DefArg;
3117 {
3118 Qualifiers ThisTypeQuals;
3119 CXXRecordDecl *ThisContext = nullptr;
3120 if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext()))
3121 if (Rec->isLambda())
3122 if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) {
3123 ThisContext = Method->getParent();
3124 ThisTypeQuals = Method->getMethodQualifiers();
3125 }
3126
3127 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals,
3128 S.getLangOpts().CPlusPlus17);
3129
3131 TD, /*TemplateKWLoc=*/SourceLocation(), TD->getLocation(),
3132 TD->getSourceRange().getEnd(), Param, CTAI.SugaredConverted,
3133 CTAI.CanonicalConverted, HasDefaultArg);
3134 }
3135
3136 // If there was no default argument, deduction is incomplete.
3137 if (DefArg.getArgument().isNull()) {
3138 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3139 Info.reset(
3142
3145 }
3146
3147 SaveAndRestore _1(CTAI.PartialOrdering, false);
3148 SaveAndRestore _2(CTAI.MatchingTTP, false);
3149 SaveAndRestore _3(CTAI.StrictPackMatch, false);
3150 // Check whether we can actually use the default argument.
3152 Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(),
3153 /*ArgumentPackIndex=*/0, CTAI, Sema::CTAK_Specified)) {
3154 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3155 // FIXME: These template arguments are temporary. Free them!
3156 Info.reset(
3160 }
3161
3162 // If we get here, we successfully used the default template argument.
3163 }
3164
3166}
3167
3169 if (auto *DC = dyn_cast<DeclContext>(D))
3170 return DC;
3171 return D->getDeclContext();
3172}
3173
3174template<typename T> struct IsPartialSpecialization {
3175 static constexpr bool value = false;
3176};
3177template<>
3181template<>
3183 static constexpr bool value = true;
3184};
3185
3188 ArrayRef<TemplateArgument> SugaredDeducedArgs,
3189 ArrayRef<TemplateArgument> CanonicalDeducedArgs,
3190 TemplateDeductionInfo &Info) {
3191 llvm::SmallVector<AssociatedConstraint, 3> AssociatedConstraints;
3192 bool DeducedArgsNeedReplacement = false;
3193 if (auto *TD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Template)) {
3194 TD->getAssociatedConstraints(AssociatedConstraints);
3195 DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization();
3196 } else if (auto *TD =
3197 dyn_cast<VarTemplatePartialSpecializationDecl>(Template)) {
3198 TD->getAssociatedConstraints(AssociatedConstraints);
3199 DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization();
3200 } else {
3201 cast<TemplateDecl>(Template)->getAssociatedConstraints(
3202 AssociatedConstraints);
3203 }
3204
3205 std::optional<ArrayRef<TemplateArgument>> Innermost;
3206 // If we don't need to replace the deduced template arguments,
3207 // we can add them immediately as the inner-most argument list.
3208 if (!DeducedArgsNeedReplacement)
3209 Innermost = SugaredDeducedArgs;
3210
3212 Template, Template->getDeclContext(), /*Final=*/false, Innermost,
3213 /*RelativeToPrimary=*/true, /*Pattern=*/
3214 nullptr, /*ForConstraintInstantiation=*/true);
3215
3216 // getTemplateInstantiationArgs picks up the non-deduced version of the
3217 // template args when this is a variable template partial specialization and
3218 // not class-scope explicit specialization, so replace with Deduced Args
3219 // instead of adding to inner-most.
3220 if (!Innermost)
3221 MLTAL.replaceInnermostTemplateArguments(Template, SugaredDeducedArgs);
3222
3223 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL,
3224 Info.getLocation(),
3227 Info.reset(
3228 TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs),
3229 TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs));
3231 }
3233}
3234
3235/// Complete template argument deduction.
3237 Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL,
3241 TemplateDeductionInfo &Info, bool CopyDeducedArgs) {
3242 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Entity));
3243
3244 // C++ [temp.deduct.type]p2:
3245 // [...] or if any template argument remains neither deduced nor
3246 // explicitly specified, template argument deduction fails.
3248 if (auto Result = ConvertDeducedTemplateArguments(
3249 S, Entity, EntityTPL, /*IsDeduced=*/PartialOrdering, Deduced, Info,
3250 CTAI,
3251 /*CurrentInstantiationScope=*/nullptr,
3252 /*NumAlreadyConverted=*/0U, /*IsIncomplete=*/nullptr);
3254 return Result;
3255
3256 if (CopyDeducedArgs) {
3257 // Form the template argument list from the deduced template arguments.
3258 TemplateArgumentList *SugaredDeducedArgumentList =
3260 TemplateArgumentList *CanonicalDeducedArgumentList =
3262 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
3263 }
3264
3265 TemplateParameterList *TPL = Template->getTemplateParameters();
3266 TemplateArgumentListInfo InstArgs(TPL->getLAngleLoc(), TPL->getRAngleLoc());
3268 /*Final=*/true);
3269 MLTAL.addOuterRetainedLevels(TPL->getDepth());
3270
3271 if (S.SubstTemplateArguments(Ps, MLTAL, InstArgs)) {
3272 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
3273 if (ParamIdx >= TPL->size())
3274 ParamIdx = TPL->size() - 1;
3275
3276 Decl *Param = TPL->getParam(ParamIdx);
3277 Info.Param = makeTemplateParameter(Param);
3278 Info.FirstArg = Ps[ArgIdx].getArgument();
3280 }
3281
3284 if (S.CheckTemplateArgumentList(Template, Template->getLocation(), InstArgs,
3285 /*DefaultArgs=*/{}, false, InstCTAI,
3286 /*UpdateArgsWithConversions=*/true,
3291
3292 // Check that we produced the correct argument list.
3294 AsStack{As};
3295 for (;;) {
3296 auto take = [](SmallVectorImpl<ArrayRef<TemplateArgument>> &Stack)
3298 while (!Stack.empty()) {
3299 auto &Xs = Stack.back();
3300 if (Xs.empty()) {
3301 Stack.pop_back();
3302 continue;
3303 }
3304 auto &X = Xs.front();
3305 if (X.getKind() == TemplateArgument::Pack) {
3306 Stack.emplace_back(X.getPackAsArray());
3307 Xs = Xs.drop_front();
3308 continue;
3309 }
3310 assert(!X.isNull());
3311 return {Xs, X};
3312 }
3313 static constexpr ArrayRef<TemplateArgument> None;
3314 return {const_cast<ArrayRef<TemplateArgument> &>(None),
3316 };
3317 auto [Ps, P] = take(PsStack);
3318 auto [As, A] = take(AsStack);
3319 if (P.isNull() && A.isNull())
3320 break;
3321 TemplateArgument PP = P.isPackExpansion() ? P.getPackExpansionPattern() : P,
3322 PA = A.isPackExpansion() ? A.getPackExpansionPattern() : A;
3323 if (!S.Context.isSameTemplateArgument(PP, PA)) {
3324 if (!P.isPackExpansion() && !A.isPackExpansion()) {
3326 (AsStack.empty() ? As.end() : AsStack.back().begin()) -
3327 As.begin()));
3328 Info.FirstArg = P;
3329 Info.SecondArg = A;
3331 }
3332 if (P.isPackExpansion()) {
3333 Ps = Ps.drop_front();
3334 continue;
3335 }
3336 if (A.isPackExpansion()) {
3337 As = As.drop_front();
3338 continue;
3339 }
3340 }
3341 Ps = Ps.drop_front(P.isPackExpansion() ? 0 : 1);
3342 As = As.drop_front(A.isPackExpansion() && !P.isPackExpansion() ? 0 : 1);
3343 }
3344 assert(PsStack.empty());
3345 assert(AsStack.empty());
3346
3347 if (!PartialOrdering) {
3348 if (auto Result = CheckDeducedArgumentConstraints(
3349 S, Entity, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info);
3351 return Result;
3352 }
3353
3355}
3357 Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL,
3361 TemplateDeductionInfo &Info, bool CopyDeducedArgs) {
3362 TemplateParameterList *TPL = Template->getTemplateParameters();
3363 SmallVector<TemplateArgumentLoc, 8> PsLoc(Ps.size());
3364 for (unsigned I = 0, N = Ps.size(); I != N; ++I)
3365 PsLoc[I] = S.getTrivialTemplateArgumentLoc(Ps[I], QualType(),
3366 TPL->getParam(I)->getLocation());
3367 return FinishTemplateArgumentDeduction(S, Entity, EntityTPL, Template,
3368 PartialOrdering, PsLoc, As, Deduced,
3369 Info, CopyDeducedArgs);
3370}
3371
3372/// Complete template argument deduction for DeduceTemplateArgumentsFromType.
3373/// FIXME: this is mostly duplicated with the above two versions. Deduplicate
3374/// the three implementations.
3376 Sema &S, TemplateDecl *TD,
3378 TemplateDeductionInfo &Info) {
3380
3381 // C++ [temp.deduct.type]p2:
3382 // [...] or if any template argument remains neither deduced nor
3383 // explicitly specified, template argument deduction fails.
3385 if (auto Result = ConvertDeducedTemplateArguments(
3386 S, TD, TD->getTemplateParameters(), /*IsDeduced=*/false, Deduced,
3387 Info, CTAI,
3388 /*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0,
3389 /*IsIncomplete=*/nullptr);
3391 return Result;
3392
3393 return ::CheckDeducedArgumentConstraints(S, TD, CTAI.SugaredConverted,
3394 CTAI.CanonicalConverted, Info);
3395}
3396
3397/// Perform template argument deduction to determine whether the given template
3398/// arguments match the given class or variable template partial specialization
3399/// per C++ [temp.class.spec.match].
3400template <typename T>
3401static std::enable_if_t<IsPartialSpecialization<T>::value,
3404 ArrayRef<TemplateArgument> TemplateArgs,
3405 TemplateDeductionInfo &Info) {
3406 if (Partial->isInvalidDecl())
3408
3409 // C++ [temp.class.spec.match]p2:
3410 // A partial specialization matches a given actual template
3411 // argument list if the template arguments of the partial
3412 // specialization can be deduced from the actual template argument
3413 // list (14.8.2).
3414
3415 // Unevaluated SFINAE context.
3418 Sema::SFINAETrap Trap(S, Info);
3419
3420 // This deduction has no relation to any outer instantiation we might be
3421 // performing.
3422 LocalInstantiationScope InstantiationScope(S);
3423
3425 Deduced.resize(Partial->getTemplateParameters()->size());
3427 S, Partial->getTemplateParameters(),
3428 Partial->getTemplateArgs().asArray(), TemplateArgs, Info, Deduced,
3429 /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/false,
3431 /*HasDeducedAnyParam=*/nullptr);
3433 return Result;
3434
3435 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3436 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), Partial, DeducedArgs);
3437 if (Inst.isInvalid())
3439
3442 Result = ::FinishTemplateArgumentDeduction(
3443 S, Partial, Partial->getTemplateParameters(),
3444 Partial->getSpecializedTemplate(),
3445 /*IsPartialOrdering=*/false,
3446 Partial->getTemplateArgsAsWritten()->arguments(), TemplateArgs, Deduced,
3447 Info, /*CopyDeducedArgs=*/true);
3448 });
3449
3451 return Result;
3452
3453 if (Trap.hasErrorOccurred())
3455
3457}
3458
3461 ArrayRef<TemplateArgument> TemplateArgs,
3462 TemplateDeductionInfo &Info) {
3463 return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
3464}
3467 ArrayRef<TemplateArgument> TemplateArgs,
3468 TemplateDeductionInfo &Info) {
3469 return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
3470}
3471
3475 if (TD->isInvalidDecl())
3477
3478 QualType PType;
3479 if (const auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
3480 // Use the InjectedClassNameType.
3481 PType = Context.getCanonicalTagType(CTD->getTemplatedDecl());
3482 } else if (const auto *AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(TD)) {
3483 PType = AliasTemplate->getTemplatedDecl()->getUnderlyingType();
3484 } else {
3485 assert(false && "Expected a class or alias template");
3486 }
3487
3488 // Unevaluated SFINAE context.
3491 SFINAETrap Trap(*this, Info);
3492
3493 // This deduction has no relation to any outer instantiation we might be
3494 // performing.
3495 LocalInstantiationScope InstantiationScope(*this);
3496
3498 TD->getTemplateParameters()->size());
3501 if (auto DeducedResult = DeduceTemplateArguments(
3502 TD->getTemplateParameters(), PArgs, AArgs, Info, Deduced, false);
3503 DeducedResult != TemplateDeductionResult::Success) {
3504 return DeducedResult;
3505 }
3506
3507 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3508 InstantiatingTemplate Inst(*this, Info.getLocation(), TD, DeducedArgs);
3509 if (Inst.isInvalid())
3511
3514 Result = ::FinishTemplateArgumentDeduction(*this, TD, Deduced, Info);
3515 });
3516
3518 return Result;
3519
3520 if (Trap.hasErrorOccurred())
3522
3524}
3525
3526/// Determine whether the given type T is a simple-template-id type.
3528 if (const TemplateSpecializationType *Spec
3529 = T->getAs<TemplateSpecializationType>())
3530 return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
3531
3532 // C++17 [temp.local]p2:
3533 // the injected-class-name [...] is equivalent to the template-name followed
3534 // by the template-arguments of the class template specialization or partial
3535 // specialization enclosed in <>
3536 // ... which means it's equivalent to a simple-template-id.
3537 //
3538 // This only arises during class template argument deduction for a copy
3539 // deduction candidate, where it permits slicing.
3540 if (isa<InjectedClassNameType>(T.getCanonicalType()))
3541 return true;
3542
3543 return false;
3544}
3545
3548 TemplateArgumentListInfo &ExplicitTemplateArgs,
3551 TemplateDeductionInfo &Info) {
3552 assert(isSFINAEContext());
3553 assert(isUnevaluatedContext());
3554
3555 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3556 TemplateParameterList *TemplateParams
3557 = FunctionTemplate->getTemplateParameters();
3558
3559 if (ExplicitTemplateArgs.size() == 0) {
3560 // No arguments to substitute; just copy over the parameter types and
3561 // fill in the function type.
3562 for (auto *P : Function->parameters())
3563 ParamTypes.push_back(P->getType());
3564
3565 if (FunctionType)
3566 *FunctionType = Function->getType();
3568 }
3569
3570 // C++ [temp.arg.explicit]p3:
3571 // Template arguments that are present shall be specified in the
3572 // declaration order of their corresponding template-parameters. The
3573 // template argument list shall not specify more template-arguments than
3574 // there are corresponding template-parameters.
3575
3576 // Enter a new template instantiation context where we check the
3577 // explicitly-specified template arguments against this function template,
3578 // and then substitute them into the function parameter types.
3581 *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3583 if (Inst.isInvalid())
3585
3588 ExplicitTemplateArgs, /*DefaultArgs=*/{},
3589 /*PartialTemplateArgs=*/true, CTAI,
3590 /*UpdateArgsWithConversions=*/false)) {
3591 unsigned Index = CTAI.SugaredConverted.size();
3592 if (Index >= TemplateParams->size())
3594 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3596 }
3597
3598 // Form the template argument list from the explicitly-specified
3599 // template arguments.
3600 TemplateArgumentList *SugaredExplicitArgumentList =
3602 TemplateArgumentList *CanonicalExplicitArgumentList =
3604 Info.setExplicitArgs(SugaredExplicitArgumentList,
3605 CanonicalExplicitArgumentList);
3606
3607 // Template argument deduction and the final substitution should be
3608 // done in the context of the templated declaration. Explicit
3609 // argument substitution, on the other hand, needs to happen in the
3610 // calling context.
3611 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3612
3613 // If we deduced template arguments for a template parameter pack,
3614 // note that the template argument pack is partially substituted and record
3615 // the explicit template arguments. They'll be used as part of deduction
3616 // for this template parameter pack.
3617 unsigned PartiallySubstitutedPackIndex = -1u;
3618 if (!CTAI.SugaredConverted.empty()) {
3619 const TemplateArgument &Arg = CTAI.SugaredConverted.back();
3620 if (Arg.getKind() == TemplateArgument::Pack) {
3621 auto *Param = TemplateParams->getParam(CTAI.SugaredConverted.size() - 1);
3622 // If this is a fully-saturated fixed-size pack, it should be
3623 // fully-substituted, not partially-substituted.
3624 UnsignedOrNone Expansions = getExpandedPackSize(Param);
3625 if (!Expansions || Arg.pack_size() < *Expansions) {
3626 PartiallySubstitutedPackIndex = CTAI.SugaredConverted.size() - 1;
3627 CurrentInstantiationScope->SetPartiallySubstitutedPack(
3628 Param, Arg.pack_begin(), Arg.pack_size());
3629 }
3630 }
3631 }
3632
3633 const FunctionProtoType *Proto
3634 = Function->getType()->getAs<FunctionProtoType>();
3635 assert(Proto && "Function template does not have a prototype?");
3636
3637 // Isolate our substituted parameters from our caller.
3638 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3639
3640 ExtParameterInfoBuilder ExtParamInfos;
3641
3643 SugaredExplicitArgumentList->asArray(),
3644 /*Final=*/true);
3645
3646 // Instantiate the types of each of the function parameters given the
3647 // explicitly-specified template arguments. If the function has a trailing
3648 // return type, substitute it after the arguments to ensure we substitute
3649 // in lexical order.
3650 if (Proto->hasTrailingReturn()) {
3651 if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3652 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
3653 /*params=*/nullptr, ExtParamInfos))
3655 }
3656
3657 // Instantiate the return type.
3658 QualType ResultType;
3659 {
3660 // C++11 [expr.prim.general]p3:
3661 // If a declaration declares a member function or member function
3662 // template of a class X, the expression this is a prvalue of type
3663 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3664 // and the end of the function-definition, member-declarator, or
3665 // declarator.
3666 Qualifiers ThisTypeQuals;
3667 CXXRecordDecl *ThisContext = nullptr;
3668 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3669 ThisContext = Method->getParent();
3670 ThisTypeQuals = Method->getMethodQualifiers();
3671 }
3672
3673 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3675
3676 ResultType =
3677 SubstType(Proto->getReturnType(), MLTAL,
3678 Function->getTypeSpecStartLoc(), Function->getDeclName());
3679 if (ResultType.isNull())
3681 // CUDA: Kernel function must have 'void' return type.
3682 if (getLangOpts().CUDA)
3683 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3684 Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3685 << Function->getType() << Function->getSourceRange();
3687 }
3688 }
3689
3690 // Instantiate the types of each of the function parameters given the
3691 // explicitly-specified template arguments if we didn't do so earlier.
3692 if (!Proto->hasTrailingReturn() &&
3693 SubstParmTypes(Function->getLocation(), Function->parameters(),
3694 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
3695 /*params*/ nullptr, ExtParamInfos))
3697
3698 if (FunctionType) {
3699 auto EPI = Proto->getExtProtoInfo();
3700 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3701 *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3702 Function->getLocation(),
3703 Function->getDeclName(),
3704 EPI);
3705 if (FunctionType->isNull())
3707 }
3708
3709 // C++ [temp.arg.explicit]p2:
3710 // Trailing template arguments that can be deduced (14.8.2) may be
3711 // omitted from the list of explicit template-arguments. If all of the
3712 // template arguments can be deduced, they may all be omitted; in this
3713 // case, the empty template argument list <> itself may also be omitted.
3714 //
3715 // Take all of the explicitly-specified arguments and put them into
3716 // the set of deduced template arguments. The partially-substituted
3717 // parameter pack, however, will be set to NULL since the deduction
3718 // mechanism handles the partially-substituted argument pack directly.
3719 Deduced.reserve(TemplateParams->size());
3720 for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) {
3721 const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I);
3722 if (I == PartiallySubstitutedPackIndex)
3723 Deduced.push_back(DeducedTemplateArgument());
3724 else
3725 Deduced.push_back(Arg);
3726 }
3727
3729}
3730
3731/// Check whether the deduced argument type for a call to a function
3732/// template matches the actual argument type per C++ [temp.deduct.call]p4.
3735 Sema::OriginalCallArg OriginalArg,
3736 QualType DeducedA) {
3737 ASTContext &Context = S.Context;
3738
3739 auto Failed = [&]() -> TemplateDeductionResult {
3740 Info.FirstArg = TemplateArgument(DeducedA);
3741 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3742 Info.CallArgIndex = OriginalArg.ArgIdx;
3743 return OriginalArg.DecomposedParam
3746 };
3747
3748 QualType A = OriginalArg.OriginalArgType;
3749 QualType OriginalParamType = OriginalArg.OriginalParamType;
3750
3751 // Check for type equality (top-level cv-qualifiers are ignored).
3752 if (Context.hasSameUnqualifiedType(A, DeducedA))
3754
3755 // Strip off references on the argument types; they aren't needed for
3756 // the following checks.
3757 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3758 DeducedA = DeducedARef->getPointeeType();
3759 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3760 A = ARef->getPointeeType();
3761
3762 // C++ [temp.deduct.call]p4:
3763 // [...] However, there are three cases that allow a difference:
3764 // - If the original P is a reference type, the deduced A (i.e., the
3765 // type referred to by the reference) can be more cv-qualified than
3766 // the transformed A.
3767 if (const ReferenceType *OriginalParamRef
3768 = OriginalParamType->getAs<ReferenceType>()) {
3769 // We don't want to keep the reference around any more.
3770 OriginalParamType = OriginalParamRef->getPointeeType();
3771
3772 // FIXME: Resolve core issue (no number yet): if the original P is a
3773 // reference type and the transformed A is function type "noexcept F",
3774 // the deduced A can be F.
3775 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA))
3777
3778 Qualifiers AQuals = A.getQualifiers();
3779 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3780
3781 // Under Objective-C++ ARC, the deduced type may have implicitly
3782 // been given strong or (when dealing with a const reference)
3783 // unsafe_unretained lifetime. If so, update the original
3784 // qualifiers to include this lifetime.
3785 if (S.getLangOpts().ObjCAutoRefCount &&
3786 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3788 (DeducedAQuals.hasConst() &&
3789 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3790 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3791 }
3792
3793 if (AQuals == DeducedAQuals) {
3794 // Qualifiers match; there's nothing to do.
3795 } else if (!DeducedAQuals.compatiblyIncludes(AQuals, S.getASTContext())) {
3796 return Failed();
3797 } else {
3798 // Qualifiers are compatible, so have the argument type adopt the
3799 // deduced argument type's qualifiers as if we had performed the
3800 // qualification conversion.
3801 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3802 }
3803 }
3804
3805 // - The transformed A can be another pointer or pointer to member
3806 // type that can be converted to the deduced A via a function pointer
3807 // conversion and/or a qualification conversion.
3808 //
3809 // Also allow conversions which merely strip __attribute__((noreturn)) from
3810 // function types (recursively).
3811 bool ObjCLifetimeConversion = false;
3812 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3813 (S.IsQualificationConversion(A, DeducedA, false,
3814 ObjCLifetimeConversion) ||
3815 S.IsFunctionConversion(A, DeducedA)))
3817
3818 // - If P is a class and P has the form simple-template-id, then the
3819 // transformed A can be a derived class of the deduced A. [...]
3820 // [...] Likewise, if P is a pointer to a class of the form
3821 // simple-template-id, the transformed A can be a pointer to a
3822 // derived class pointed to by the deduced A.
3823 if (const PointerType *OriginalParamPtr
3824 = OriginalParamType->getAs<PointerType>()) {
3825 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3826 if (const PointerType *APtr = A->getAs<PointerType>()) {
3827 if (A->getPointeeType()->isRecordType()) {
3828 OriginalParamType = OriginalParamPtr->getPointeeType();
3829 DeducedA = DeducedAPtr->getPointeeType();
3830 A = APtr->getPointeeType();
3831 }
3832 }
3833 }
3834 }
3835
3836 if (Context.hasSameUnqualifiedType(A, DeducedA))
3838
3839 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3840 S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3842
3843 return Failed();
3844}
3845
3846/// Find the pack index for a particular parameter index in an instantiation of
3847/// a function template with specific arguments.
3848///
3849/// \return The pack index for whichever pack produced this parameter, or -1
3850/// if this was not produced by a parameter. Intended to be used as the
3851/// ArgumentPackSubstitutionIndex for further substitutions.
3852// FIXME: We should track this in OriginalCallArgs so we don't need to
3853// reconstruct it here.
3854static UnsignedOrNone
3857 unsigned ParamIdx) {
3858 unsigned Idx = 0;
3859 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3860 if (PD->isParameterPack()) {
3861 UnsignedOrNone NumArgs =
3862 S.getNumArgumentsInExpansion(PD->getType(), Args);
3863 unsigned NumExpansions = NumArgs ? *NumArgs : 1;
3864 if (Idx + NumExpansions > ParamIdx)
3865 return ParamIdx - Idx;
3866 Idx += NumExpansions;
3867 } else {
3868 if (Idx == ParamIdx)
3869 return std::nullopt; // Not a pack expansion
3870 ++Idx;
3871 }
3872 }
3873
3874 llvm_unreachable("parameter index would not be produced from template");
3875}
3876
3877// if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`,
3878// we'll try to instantiate and update its explicit specifier after constraint
3879// checking.
3882 const MultiLevelTemplateArgumentList &SubstArgs,
3884 ArrayRef<TemplateArgument> DeducedArgs) {
3885 auto GetExplicitSpecifier = [](FunctionDecl *D) {
3886 return isa<CXXConstructorDecl>(D)
3887 ? cast<CXXConstructorDecl>(D)->getExplicitSpecifier()
3888 : cast<CXXConversionDecl>(D)->getExplicitSpecifier();
3889 };
3890 auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) {
3892 ? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES)
3893 : cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES);
3894 };
3895
3896 ExplicitSpecifier ES = GetExplicitSpecifier(Specialization);
3897 Expr *ExplicitExpr = ES.getExpr();
3898 if (!ExplicitExpr)
3900 if (!ExplicitExpr->isValueDependent())
3902
3903 // By this point, FinishTemplateArgumentDeduction will have been reverted back
3904 // to a regular non-SFINAE template instantiation context, so setup a new
3905 // SFINAE context.
3907 S, Info.getLocation(), FunctionTemplate, DeducedArgs,
3909 if (Inst.isInvalid())
3911 Sema::SFINAETrap Trap(S, Info);
3912 const ExplicitSpecifier InstantiatedES =
3913 S.instantiateExplicitSpecifier(SubstArgs, ES);
3914 if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) {
3915 Specialization->setInvalidDecl(true);
3917 }
3918 SetExplicitSpecifier(Specialization, InstantiatedES);
3920}
3921
3925 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3927 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3928 bool PartialOverloading, bool PartialOrdering,
3929 bool ForOverloadSetAddressResolution,
3930 llvm::function_ref<bool(bool)> CheckNonDependent) {
3931 // Enter a new template instantiation context while we instantiate the
3932 // actual function declaration.
3933 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3935 *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3937 if (Inst.isInvalid())
3939
3940 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3941
3942 // C++ [temp.deduct.type]p2:
3943 // [...] or if any template argument remains neither deduced nor
3944 // explicitly specified, template argument deduction fails.
3945 bool IsIncomplete = false;
3948 *this, FunctionTemplate, FunctionTemplate->getTemplateParameters(),
3949 /*IsDeduced=*/true, Deduced, Info, CTAI, CurrentInstantiationScope,
3950 NumExplicitlySpecified, PartialOverloading ? &IsIncomplete : nullptr);
3952 return Result;
3953
3954 // Form the template argument list from the deduced template arguments.
3955 TemplateArgumentList *SugaredDeducedArgumentList =
3957 TemplateArgumentList *CanonicalDeducedArgumentList =
3959 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
3960
3961 // Substitute the deduced template arguments into the function template
3962 // declaration to produce the function template specialization.
3963 DeclContext *Owner = FunctionTemplate->getDeclContext();
3964 if (FunctionTemplate->getFriendObjectKind())
3965 Owner = FunctionTemplate->getLexicalDeclContext();
3966 FunctionDecl *FD = FunctionTemplate->getTemplatedDecl();
3967
3968 if (CheckNonDependent(/*OnlyInitializeNonUserDefinedConversions=*/true))
3970
3971 // C++20 [temp.deduct.general]p5: [CWG2369]
3972 // If the function template has associated constraints, those constraints
3973 // are checked for satisfaction. If the constraints are not satisfied, type
3974 // deduction fails.
3975 //
3976 // FIXME: We haven't implemented CWG2369 for lambdas yet, because we need
3977 // to figure out how to instantiate lambda captures to the scope without
3978 // first instantiating the lambda.
3979 bool IsLambda = isLambdaCallOperator(FD) || isLambdaConversionOperator(FD);
3980 if (!IsLambda && !IsIncomplete) {
3982 Info.getLocation(),
3983 FunctionTemplate->getCanonicalDecl()->getTemplatedDecl(),
3987 Info.reset(
3989 Info.takeCanonical());
3991 }
3992 }
3993 // C++ [temp.deduct.call]p10: [CWG1391]
3994 // If deduction succeeds for all parameters that contain
3995 // template-parameters that participate in template argument deduction,
3996 // and all template arguments are explicitly specified, deduced, or
3997 // obtained from default template arguments, remaining parameters are then
3998 // compared with the corresponding arguments. For each remaining parameter
3999 // P with a type that was non-dependent before substitution of any
4000 // explicitly-specified template arguments, if the corresponding argument
4001 // A cannot be implicitly converted to P, deduction fails.
4002 if (CheckNonDependent(/*OnlyInitializeNonUserDefinedConversions=*/false))
4004
4006 FunctionTemplate, CanonicalDeducedArgumentList->asArray(),
4007 /*Final=*/false);
4008 Specialization = cast_or_null<FunctionDecl>(
4009 SubstDecl(FD, Owner, SubstArgs));
4010 if (!Specialization || Specialization->isInvalidDecl())
4012
4013 assert(isSameDeclaration(Specialization->getPrimaryTemplate(),
4015
4016 // If the template argument list is owned by the function template
4017 // specialization, release it.
4018 if (Specialization->getTemplateSpecializationArgs() ==
4019 CanonicalDeducedArgumentList)
4020 Info.takeCanonical();
4021
4022 // C++2a [temp.deduct]p5
4023 // [...] When all template arguments have been deduced [...] all uses of
4024 // template parameters [...] are replaced with the corresponding deduced
4025 // or default argument values.
4026 // [...] If the function template has associated constraints
4027 // ([temp.constr.decl]), those constraints are checked for satisfaction
4028 // ([temp.constr.constr]). If the constraints are not satisfied, type
4029 // deduction fails.
4030 if (IsLambda && !IsIncomplete) {
4035
4040 }
4041 }
4042
4043 // We skipped the instantiation of the explicit-specifier during the
4044 // substitution of `FD` before. So, we try to instantiate it back if
4045 // `Specialization` is either a constructor or a conversion function.
4049 Info, FunctionTemplate,
4050 DeducedArgs)) {
4052 }
4053 }
4054
4055 if (OriginalCallArgs) {
4056 // C++ [temp.deduct.call]p4:
4057 // In general, the deduction process attempts to find template argument
4058 // values that will make the deduced A identical to A (after the type A
4059 // is transformed as described above). [...]
4060 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
4061 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
4062 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
4063
4064 auto ParamIdx = OriginalArg.ArgIdx;
4065 unsigned ExplicitOffset =
4066 (Specialization->hasCXXExplicitFunctionObjectParameter() &&
4067 !ForOverloadSetAddressResolution)
4068 ? 1
4069 : 0;
4070 if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset)
4071 // FIXME: This presumably means a pack ended up smaller than we
4072 // expected while deducing. Should this not result in deduction
4073 // failure? Can it even happen?
4074 continue;
4075
4076 QualType DeducedA;
4077 if (!OriginalArg.DecomposedParam) {
4078 // P is one of the function parameters, just look up its substituted
4079 // type.
4080 DeducedA =
4081 Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType();
4082 } else {
4083 // P is a decomposed element of a parameter corresponding to a
4084 // braced-init-list argument. Substitute back into P to find the
4085 // deduced A.
4086 QualType &CacheEntry =
4087 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
4088 if (CacheEntry.isNull()) {
4089 ArgPackSubstIndexRAII PackIndex(
4090 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
4091 ParamIdx));
4092 CacheEntry =
4093 SubstType(OriginalArg.OriginalParamType, SubstArgs,
4094 Specialization->getTypeSpecStartLoc(),
4095 Specialization->getDeclName());
4096 }
4097 DeducedA = CacheEntry;
4098 }
4099
4100 if (auto TDK =
4101 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
4103 return TDK;
4104 }
4105 }
4106
4107 // If we suppressed any diagnostics while performing template argument
4108 // deduction, and if we haven't already instantiated this declaration,
4109 // keep track of these diagnostics. They'll be emitted if this specialization
4110 // is actually used.
4111 if (Info.diag_begin() != Info.diag_end()) {
4112 auto [Pos, Inserted] =
4113 SuppressedDiagnostics.try_emplace(Specialization->getCanonicalDecl());
4114 if (Inserted)
4115 Pos->second.append(Info.diag_begin(), Info.diag_end());
4116 }
4117
4119}
4120
4121/// Gets the type of a function for template-argument-deducton
4122/// purposes when it's considered as part of an overload set.
4124 FunctionDecl *Fn) {
4125 // We may need to deduce the return type of the function now.
4126 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
4127 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
4128 return {};
4129
4130 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
4131 if (Method->isImplicitObjectMemberFunction()) {
4132 // An instance method that's referenced in a form that doesn't
4133 // look like a member pointer is just invalid.
4135 return {};
4136
4138 Fn->getType(), /*Qualifier=*/std::nullopt, Method->getParent());
4139 }
4140
4141 if (!R.IsAddressOfOperand) return Fn->getType();
4142 return S.Context.getPointerType(Fn->getType());
4143}
4144
4145/// Apply the deduction rules for overload sets.
4146///
4147/// \return the null type if this argument should be treated as an
4148/// undeduced context
4149static QualType
4151 Expr *Arg, QualType ParamType,
4152 bool ParamWasReference,
4153 TemplateSpecCandidateSet *FailedTSC = nullptr) {
4154
4156
4157 OverloadExpr *Ovl = R.Expression;
4158
4159 // C++0x [temp.deduct.call]p4
4160 unsigned TDF = 0;
4161 if (ParamWasReference)
4163 if (R.IsAddressOfOperand)
4164 TDF |= TDF_IgnoreQualifiers;
4165
4166 // C++0x [temp.deduct.call]p6:
4167 // When P is a function type, pointer to function type, or pointer
4168 // to member function type:
4169
4170 if (!ParamType->isFunctionType() &&
4171 !ParamType->isFunctionPointerType() &&
4172 !ParamType->isMemberFunctionPointerType()) {
4173 if (Ovl->hasExplicitTemplateArgs()) {
4174 // But we can still look for an explicit specialization.
4175 if (FunctionDecl *ExplicitSpec =
4177 Ovl, /*Complain=*/false,
4178 /*Found=*/nullptr, FailedTSC,
4179 /*ForTypeDeduction=*/true))
4180 return GetTypeOfFunction(S, R, ExplicitSpec);
4181 }
4182
4183 DeclAccessPair DAP;
4184 if (FunctionDecl *Viable =
4186 return GetTypeOfFunction(S, R, Viable);
4187
4188 return {};
4189 }
4190
4191 // Gather the explicit template arguments, if any.
4192 TemplateArgumentListInfo ExplicitTemplateArgs;
4193 if (Ovl->hasExplicitTemplateArgs())
4194 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4196 for (UnresolvedSetIterator I = Ovl->decls_begin(),
4197 E = Ovl->decls_end(); I != E; ++I) {
4198 NamedDecl *D = (*I)->getUnderlyingDecl();
4199
4200 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
4201 // - If the argument is an overload set containing one or more
4202 // function templates, the parameter is treated as a
4203 // non-deduced context.
4204 if (!Ovl->hasExplicitTemplateArgs())
4205 return {};
4206
4207 // Otherwise, see if we can resolve a function type
4208 FunctionDecl *Specialization = nullptr;
4209 TemplateDeductionInfo Info(Ovl->getNameLoc());
4210 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
4213 continue;
4214
4215 D = Specialization;
4216 }
4217
4219 QualType ArgType = GetTypeOfFunction(S, R, Fn);
4220 if (ArgType.isNull()) continue;
4221
4222 // Function-to-pointer conversion.
4223 if (!ParamWasReference && ParamType->isPointerType() &&
4224 ArgType->isFunctionType())
4225 ArgType = S.Context.getPointerType(ArgType);
4226
4227 // - If the argument is an overload set (not containing function
4228 // templates), trial argument deduction is attempted using each
4229 // of the members of the set. If deduction succeeds for only one
4230 // of the overload set members, that member is used as the
4231 // argument value for the deduction. If deduction succeeds for
4232 // more than one member of the overload set the parameter is
4233 // treated as a non-deduced context.
4234
4235 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
4236 // Type deduction is done independently for each P/A pair, and
4237 // the deduced template argument values are then combined.
4238 // So we do not reject deductions which were made elsewhere.
4240 Deduced(TemplateParams->size());
4241 TemplateDeductionInfo Info(Ovl->getNameLoc());
4243 S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
4244 PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
4245 /*HasDeducedAnyParam=*/nullptr);
4247 continue;
4248 // C++ [temp.deduct.call]p6:
4249 // [...] If all successful deductions yield the same deduced A, that
4250 // deduced A is the result of deduction; otherwise, the parameter is
4251 // treated as a non-deduced context. [...]
4252 if (!Match.isNull() && !S.isSameOrCompatibleFunctionType(Match, ArgType))
4253 return {};
4254 Match = ArgType;
4255 }
4256
4257 return Match;
4258}
4259
4260/// Perform the adjustments to the parameter and argument types
4261/// described in C++ [temp.deduct.call].
4262///
4263/// \returns true if the caller should not attempt to perform any template
4264/// argument deduction based on this P/A pair because the argument is an
4265/// overloaded function set that could not be resolved.
4267 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4268 QualType &ParamType, QualType &ArgType,
4269 Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF,
4270 TemplateSpecCandidateSet *FailedTSC = nullptr) {
4271 // C++0x [temp.deduct.call]p3:
4272 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
4273 // are ignored for type deduction.
4274 if (ParamType.hasQualifiers())
4275 ParamType = ParamType.getUnqualifiedType();
4276
4277 // [...] If P is a reference type, the type referred to by P is
4278 // used for type deduction.
4279 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
4280 if (ParamRefType)
4281 ParamType = ParamRefType->getPointeeType();
4282
4283 // Overload sets usually make this parameter an undeduced context,
4284 // but there are sometimes special circumstances. Typically
4285 // involving a template-id-expr.
4286 if (ArgType == S.Context.OverloadTy) {
4287 assert(Arg && "expected a non-null arg expression");
4288 ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType,
4289 ParamRefType != nullptr, FailedTSC);
4290 if (ArgType.isNull())
4291 return true;
4292 }
4293
4294 if (ParamRefType) {
4295 // If the argument has incomplete array type, try to complete its type.
4296 if (ArgType->isIncompleteArrayType()) {
4297 assert(Arg && "expected a non-null arg expression");
4298 ArgType = S.getCompletedType(Arg);
4299 }
4300
4301 // C++1z [temp.deduct.call]p3:
4302 // If P is a forwarding reference and the argument is an lvalue, the type
4303 // "lvalue reference to A" is used in place of A for type deduction.
4304 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
4305 ArgClassification.isLValue()) {
4306 if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace())
4307 ArgType = S.Context.getAddrSpaceQualType(
4309 ArgType = S.Context.getLValueReferenceType(ArgType);
4310 }
4311 } else {
4312 // C++ [temp.deduct.call]p2:
4313 // If P is not a reference type:
4314 // - If A is an array type, the pointer type produced by the
4315 // array-to-pointer standard conversion (4.2) is used in place of
4316 // A for type deduction; otherwise,
4317 // - If A is a function type, the pointer type produced by the
4318 // function-to-pointer standard conversion (4.3) is used in place
4319 // of A for type deduction; otherwise,
4320 if (ArgType->canDecayToPointerType())
4321 ArgType = S.Context.getDecayedType(ArgType);
4322 else {
4323 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
4324 // type are ignored for type deduction.
4325 ArgType = ArgType.getUnqualifiedType();
4326 }
4327 }
4328
4329 // C++0x [temp.deduct.call]p4:
4330 // In general, the deduction process attempts to find template argument
4331 // values that will make the deduced A identical to A (after the type A
4332 // is transformed as described above). [...]
4334
4335 // - If the original P is a reference type, the deduced A (i.e., the
4336 // type referred to by the reference) can be more cv-qualified than
4337 // the transformed A.
4338 if (ParamRefType)
4340 // - The transformed A can be another pointer or pointer to member
4341 // type that can be converted to the deduced A via a qualification
4342 // conversion (4.4).
4343 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
4344 ArgType->isObjCObjectPointerType())
4345 TDF |= TDF_IgnoreQualifiers;
4346 // - If P is a class and P has the form simple-template-id, then the
4347 // transformed A can be a derived class of the deduced A. Likewise,
4348 // if P is a pointer to a class of the form simple-template-id, the
4349 // transformed A can be a pointer to a derived class pointed to by
4350 // the deduced A.
4351 if (isSimpleTemplateIdType(ParamType) ||
4352 (ParamType->getAs<PointerType>() &&
4354 ParamType->castAs<PointerType>()->getPointeeType())))
4355 TDF |= TDF_DerivedClass;
4356
4357 return false;
4358}
4359
4360static bool
4362 QualType T);
4363
4365 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4366 QualType ParamType, QualType ArgType,
4367 Expr::Classification ArgClassification, Expr *Arg,
4371 bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
4372 TemplateSpecCandidateSet *FailedTSC = nullptr);
4373
4374/// Attempt template argument deduction from an initializer list
4375/// deemed to be an argument in a function call.
4377 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
4380 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
4381 unsigned TDF) {
4382 // C++ [temp.deduct.call]p1: (CWG 1591)
4383 // If removing references and cv-qualifiers from P gives
4384 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
4385 // a non-empty initializer list, then deduction is performed instead for
4386 // each element of the initializer list, taking P0 as a function template
4387 // parameter type and the initializer element as its argument
4388 //
4389 // We've already removed references and cv-qualifiers here.
4390 if (!ILE->getNumInits())
4392
4393 QualType ElTy;
4394 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
4395 if (ArrTy)
4396 ElTy = ArrTy->getElementType();
4397 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
4398 // Otherwise, an initializer list argument causes the parameter to be
4399 // considered a non-deduced context
4401 }
4402
4403 // Resolving a core issue: a braced-init-list containing any designators is
4404 // a non-deduced context.
4405 for (Expr *E : ILE->inits())
4408
4409 // Deduction only needs to be done for dependent types.
4410 if (ElTy->isDependentType()) {
4411 for (Expr *E : ILE->inits()) {
4413 S, TemplateParams, 0, ElTy, E->getType(),
4414 E->Classify(S.getASTContext()), E, Info, Deduced,
4415 OriginalCallArgs, true, ArgIdx, TDF);
4417 return Result;
4418 }
4419 }
4420
4421 // in the P0[N] case, if N is a non-type template parameter, N is deduced
4422 // from the length of the initializer list.
4423 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
4424 // Determine the array bound is something we can deduce.
4426 Info, DependentArrTy->getSizeExpr())) {
4427 // We can perform template argument deduction for the given non-type
4428 // template parameter.
4429 // C++ [temp.deduct.type]p13:
4430 // The type of N in the type T[N] is std::size_t.
4432 llvm::APInt Size(S.Context.getIntWidth(T),
4434 if (auto Result = DeduceNonTypeTemplateArgument(
4435 S, TemplateParams, NTTP, llvm::APSInt(Size), T,
4436 /*ArrayBound=*/true, Info, /*PartialOrdering=*/false, Deduced,
4437 /*HasDeducedAnyParam=*/nullptr);
4439 return Result;
4440 }
4441 }
4442
4444}
4445
4446/// Perform template argument deduction per [temp.deduct.call] for a
4447/// single parameter / argument pair.
4449 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4450 QualType ParamType, QualType ArgType,
4451 Expr::Classification ArgClassification, Expr *Arg,
4455 bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
4456 TemplateSpecCandidateSet *FailedTSC) {
4457
4458 QualType OrigParamType = ParamType;
4459
4460 // If P is a reference type [...]
4461 // If P is a cv-qualified type [...]
4463 S, TemplateParams, FirstInnerIndex, ParamType, ArgType,
4464 ArgClassification, Arg, TDF, FailedTSC))
4466
4467 // If [...] the argument is a non-empty initializer list [...]
4468 if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg))
4469 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
4470 Deduced, OriginalCallArgs, ArgIdx, TDF);
4471
4472 // [...] the deduction process attempts to find template argument values
4473 // that will make the deduced A identical to A
4474 //
4475 // Keep track of the argument type and corresponding parameter index,
4476 // so we can check for compatibility between the deduced A and A.
4477 if (Arg)
4478 OriginalCallArgs.push_back(
4479 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
4481 S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
4482 PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
4483 /*HasDeducedAnyParam=*/nullptr);
4484}
4485
4488 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
4490 bool PartialOverloading, bool AggregateDeductionCandidate,
4491 bool PartialOrdering, QualType ObjectType,
4492 Expr::Classification ObjectClassification,
4493 bool ForOverloadSetAddressResolution,
4494 llvm::function_ref<bool(ArrayRef<QualType>, bool)> CheckNonDependent) {
4495 if (FunctionTemplate->isInvalidDecl())
4497
4498 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4499 unsigned NumParams = Function->getNumParams();
4500 bool HasExplicitObject = false;
4501 int ExplicitObjectOffset = 0;
4502
4503 // [C++26] [over.call.func]p3
4504 // If the primary-expression is the address of an overload set,
4505 // the argument list is the same as the expression-list in the call.
4506 // Otherwise, the argument list is the expression-list in the call augmented
4507 // by the addition of an implied object argument as in a qualified function
4508 // call.
4509 if (!ForOverloadSetAddressResolution &&
4510 Function->hasCXXExplicitFunctionObjectParameter()) {
4511 HasExplicitObject = true;
4512 ExplicitObjectOffset = 1;
4513 }
4514
4515 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
4516
4517 // C++ [temp.deduct.call]p1:
4518 // Template argument deduction is done by comparing each function template
4519 // parameter type (call it P) with the type of the corresponding argument
4520 // of the call (call it A) as described below.
4521 if (Args.size() < Function->getMinRequiredExplicitArguments() &&
4522 !PartialOverloading)
4524 else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset,
4525 PartialOverloading)) {
4526 const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
4527 if (Proto->isTemplateVariadic())
4528 /* Do nothing */;
4529 else if (!Proto->isVariadic())
4531 }
4532
4535 Sema::SFINAETrap Trap(*this, Info);
4536
4537 // The types of the parameters from which we will perform template argument
4538 // deduction.
4539 LocalInstantiationScope InstScope(*this);
4540 TemplateParameterList *TemplateParams
4541 = FunctionTemplate->getTemplateParameters();
4543 SmallVector<QualType, 8> ParamTypes;
4544 unsigned NumExplicitlySpecified = 0;
4545 if (ExplicitTemplateArgs) {
4548 Result = SubstituteExplicitTemplateArguments(
4549 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr,
4550 Info);
4551 });
4553 return Result;
4554 if (Trap.hasErrorOccurred())
4556
4557 NumExplicitlySpecified = Deduced.size();
4558 } else {
4559 // Just fill in the parameter types from the function declaration.
4560 for (unsigned I = 0; I != NumParams; ++I)
4561 ParamTypes.push_back(Function->getParamDecl(I)->getType());
4562 }
4563
4564 SmallVector<OriginalCallArg, 8> OriginalCallArgs;
4565
4566 // Deduce an argument of type ParamType from an expression with index ArgIdx.
4567 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx,
4568 bool ExplicitObjectArgument) {
4569 // C++ [demp.deduct.call]p1: (DR1391)
4570 // Template argument deduction is done by comparing each function template
4571 // parameter that contains template-parameters that participate in
4572 // template argument deduction ...
4573 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
4575
4576 if (ExplicitObjectArgument) {
4577 // ... with the type of the corresponding argument
4579 *this, TemplateParams, FirstInnerIndex, ParamType, ObjectType,
4580 ObjectClassification,
4581 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
4582 /*Decomposed*/ false, ArgIdx, /*TDF*/ 0);
4583 }
4584
4585 // ... with the type of the corresponding argument
4587 *this, TemplateParams, FirstInnerIndex, ParamType,
4588 Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()),
4589 Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false,
4590 ArgIdx, /*TDF*/ 0);
4591 };
4592
4593 // Deduce template arguments from the function parameters.
4594 Deduced.resize(TemplateParams->size());
4595 SmallVector<QualType, 8> ParamTypesForArgChecking;
4596 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
4597 ParamIdx != NumParamTypes; ++ParamIdx) {
4598 QualType ParamType = ParamTypes[ParamIdx];
4599
4600 const PackExpansionType *ParamExpansion =
4601 dyn_cast<PackExpansionType>(ParamType);
4602 if (!ParamExpansion) {
4603 // Simple case: matching a function parameter to a function argument.
4604 if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0))
4605 break;
4606
4607 ParamTypesForArgChecking.push_back(ParamType);
4608
4609 if (ParamIdx == 0 && HasExplicitObject) {
4610 if (ObjectType.isNull())
4612
4613 if (auto Result = DeduceCallArgument(ParamType, 0,
4614 /*ExplicitObjectArgument=*/true);
4616 return Result;
4617 continue;
4618 }
4619
4620 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++,
4621 /*ExplicitObjectArgument=*/false);
4623 return Result;
4624
4625 continue;
4626 }
4627
4628 bool IsTrailingPack = ParamIdx + 1 == NumParamTypes;
4629
4630 QualType ParamPattern = ParamExpansion->getPattern();
4631 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
4632 ParamPattern,
4633 AggregateDeductionCandidate && IsTrailingPack);
4634
4635 // C++0x [temp.deduct.call]p1:
4636 // For a function parameter pack that occurs at the end of the
4637 // parameter-declaration-list, the type A of each remaining argument of
4638 // the call is compared with the type P of the declarator-id of the
4639 // function parameter pack. Each comparison deduces template arguments
4640 // for subsequent positions in the template parameter packs expanded by
4641 // the function parameter pack. When a function parameter pack appears
4642 // in a non-deduced context [not at the end of the list], the type of
4643 // that parameter pack is never deduced.
4644 //
4645 // FIXME: The above rule allows the size of the parameter pack to change
4646 // after we skip it (in the non-deduced case). That makes no sense, so
4647 // we instead notionally deduce the pack against N arguments, where N is
4648 // the length of the explicitly-specified pack if it's expanded by the
4649 // parameter pack and 0 otherwise, and we treat each deduction as a
4650 // non-deduced context.
4651 if (IsTrailingPack || PackScope.hasFixedArity()) {
4652 for (; ArgIdx < Args.size() && PackScope.hasNextElement();
4653 PackScope.nextPackElement(), ++ArgIdx) {
4654 ParamTypesForArgChecking.push_back(ParamPattern);
4655 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx,
4656 /*ExplicitObjectArgument=*/false);
4658 return Result;
4659 }
4660 } else {
4661 // If the parameter type contains an explicitly-specified pack that we
4662 // could not expand, skip the number of parameters notionally created
4663 // by the expansion.
4664 UnsignedOrNone NumExpansions = ParamExpansion->getNumExpansions();
4665 if (NumExpansions && !PackScope.isPartiallyExpanded()) {
4666 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4667 ++I, ++ArgIdx) {
4668 ParamTypesForArgChecking.push_back(ParamPattern);
4669 // FIXME: Should we add OriginalCallArgs for these? What if the
4670 // corresponding argument is a list?
4671 PackScope.nextPackElement();
4672 }
4673 } else if (!IsTrailingPack && !PackScope.isPartiallyExpanded() &&
4674 PackScope.isDeducedFromEarlierParameter()) {
4675 // [temp.deduct.general#3]
4676 // When all template arguments have been deduced
4677 // or obtained from default template arguments, all uses of template
4678 // parameters in the template parameter list of the template are
4679 // replaced with the corresponding deduced or default argument values
4680 //
4681 // If we have a trailing parameter pack, that has been deduced
4682 // previously we substitute the pack here in a similar fashion as
4683 // above with the trailing parameter packs. The main difference here is
4684 // that, in this case we are not processing all of the remaining
4685 // arguments. We are only process as many arguments as we have in
4686 // the already deduced parameter.
4687 UnsignedOrNone ArgPosAfterSubstitution =
4688 PackScope.getSavedPackSizeIfAllEqual();
4689 if (!ArgPosAfterSubstitution)
4690 continue;
4691
4692 unsigned PackArgEnd = ArgIdx + *ArgPosAfterSubstitution;
4693 for (; ArgIdx < PackArgEnd && ArgIdx < Args.size(); ArgIdx++) {
4694 ParamTypesForArgChecking.push_back(ParamPattern);
4695 if (auto Result =
4696 DeduceCallArgument(ParamPattern, ArgIdx,
4697 /*ExplicitObjectArgument=*/false);
4699 return Result;
4700
4701 PackScope.nextPackElement();
4702 }
4703 }
4704 }
4705
4706 // Build argument packs for each of the parameter packs expanded by this
4707 // pack expansion.
4708 if (auto Result = PackScope.finish();
4710 return Result;
4711 }
4712
4713 // Capture the context in which the function call is made. This is the context
4714 // that is needed when the accessibility of template arguments is checked.
4715 DeclContext *CallingCtx = CurContext;
4716
4719 Result = FinishTemplateArgumentDeduction(
4720 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4721 &OriginalCallArgs, PartialOverloading, PartialOrdering,
4722 ForOverloadSetAddressResolution,
4723 [&, CallingCtx](bool OnlyInitializeNonUserDefinedConversions) {
4724 ContextRAII SavedContext(*this, CallingCtx);
4725 return CheckNonDependent(ParamTypesForArgChecking,
4726 OnlyInitializeNonUserDefinedConversions);
4727 });
4728 });
4729 if (Trap.hasErrorOccurred()) {
4730 if (Specialization)
4731 Specialization->setInvalidDecl(true);
4733 }
4734 return Result;
4735}
4736
4739 bool AdjustExceptionSpec) {
4740 if (ArgFunctionType.isNull())
4741 return ArgFunctionType;
4742
4743 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4744 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4745 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4746 bool Rebuild = false;
4747
4748 CallingConv CC = FunctionTypeP->getCallConv();
4749 if (EPI.ExtInfo.getCC() != CC) {
4750 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4751 Rebuild = true;
4752 }
4753
4754 bool NoReturn = FunctionTypeP->getNoReturnAttr();
4755 if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4756 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4757 Rebuild = true;
4758 }
4759
4760 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4761 ArgFunctionTypeP->hasExceptionSpec())) {
4762 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4763 Rebuild = true;
4764 }
4765
4766 if (!Rebuild)
4767 return ArgFunctionType;
4768
4769 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4770 ArgFunctionTypeP->getParamTypes(), EPI);
4771}
4772
4775 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4777 bool IsAddressOfFunction) {
4778 if (FunctionTemplate->isInvalidDecl())
4780
4781 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4782 TemplateParameterList *TemplateParams
4783 = FunctionTemplate->getTemplateParameters();
4784 QualType FunctionType = Function->getType();
4785
4788
4789 // Unevaluated SFINAE context.
4792 SFINAETrap Trap(*this, Info);
4793
4794 // Substitute any explicit template arguments.
4795 LocalInstantiationScope InstScope(*this);
4797 unsigned NumExplicitlySpecified = 0;
4798 SmallVector<QualType, 4> ParamTypes;
4799 if (ExplicitTemplateArgs) {
4802 Result = SubstituteExplicitTemplateArguments(
4803 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes,
4804 &FunctionType, Info);
4805 });
4807 return Result;
4808 if (Trap.hasErrorOccurred())
4810
4811 NumExplicitlySpecified = Deduced.size();
4812 }
4813
4814 // When taking the address of a function, we require convertibility of
4815 // the resulting function type. Otherwise, we allow arbitrary mismatches
4816 // of calling convention and noreturn.
4817 if (!IsAddressOfFunction)
4818 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4819 /*AdjustExceptionSpec*/false);
4820
4821 Deduced.resize(TemplateParams->size());
4822
4823 // If the function has a deduced return type, substitute it for a dependent
4824 // type so that we treat it as a non-deduced context in what follows.
4825 bool HasDeducedReturnType = false;
4826 if (getLangOpts().CPlusPlus14 &&
4827 Function->getReturnType()->getContainedAutoType()) {
4829 HasDeducedReturnType = true;
4830 }
4831
4832 if (!ArgFunctionType.isNull() && !FunctionType.isNull()) {
4833 unsigned TDF =
4835 // Deduce template arguments from the function type.
4837 *this, TemplateParams, FunctionType, ArgFunctionType, Info, Deduced,
4838 TDF, PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
4839 /*HasDeducedAnyParam=*/nullptr);
4841 return Result;
4842 }
4843
4846 Result = FinishTemplateArgumentDeduction(
4847 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4848 /*OriginalCallArgs=*/nullptr, /*PartialOverloading=*/false,
4849 /*PartialOrdering=*/true, IsAddressOfFunction);
4850 });
4852 return Result;
4853
4854 // If the function has a deduced return type, deduce it now, so we can check
4855 // that the deduced function type matches the requested type.
4856 if (HasDeducedReturnType && IsAddressOfFunction &&
4857 Specialization->getReturnType()->isUndeducedType() &&
4860
4861 // [C++26][expr.const]/p17
4862 // An expression or conversion is immediate-escalating if it is not initially
4863 // in an immediate function context and it is [...]
4864 // a potentially-evaluated id-expression that denotes an immediate function.
4865 if (IsAddressOfFunction && getLangOpts().CPlusPlus20 &&
4866 Specialization->isImmediateEscalating() && PotentiallyEvaluated &&
4868 Info.getLocation()))
4870
4871 // Adjust the exception specification of the argument to match the
4872 // substituted and resolved type we just formed. (Calling convention and
4873 // noreturn can't be dependent, so we don't actually need this for them
4874 // right now.)
4875 QualType SpecializationType = Specialization->getType();
4876 if (!IsAddressOfFunction) {
4877 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4878 /*AdjustExceptionSpec*/true);
4879
4880 // Revert placeholder types in the return type back to undeduced types so
4881 // that the comparison below compares the declared return types.
4882 if (HasDeducedReturnType) {
4883 SpecializationType = SubstAutoType(SpecializationType, QualType());
4884 ArgFunctionType = SubstAutoType(ArgFunctionType, QualType());
4885 }
4886 }
4887
4888 // If the requested function type does not match the actual type of the
4889 // specialization with respect to arguments of compatible pointer to function
4890 // types, template argument deduction fails.
4891 if (!ArgFunctionType.isNull()) {
4892 if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType(
4893 SpecializationType, ArgFunctionType)
4894 : !Context.hasSameFunctionTypeIgnoringExceptionSpec(
4895 SpecializationType, ArgFunctionType)) {
4896 Info.FirstArg = TemplateArgument(SpecializationType);
4897 Info.SecondArg = TemplateArgument(ArgFunctionType);
4899 }
4900 }
4901
4903}
4904
4906 FunctionTemplateDecl *ConversionTemplate, QualType ObjectType,
4907 Expr::Classification ObjectClassification, QualType A,
4909 if (ConversionTemplate->isInvalidDecl())
4911
4912 CXXConversionDecl *ConversionGeneric
4913 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4914
4915 QualType P = ConversionGeneric->getConversionType();
4916 bool IsReferenceP = P->isReferenceType();
4917 bool IsReferenceA = A->isReferenceType();
4918
4919 // C++0x [temp.deduct.conv]p2:
4920 // If P is a reference type, the type referred to by P is used for
4921 // type deduction.
4922 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4923 P = PRef->getPointeeType();
4924
4925 // C++0x [temp.deduct.conv]p4:
4926 // [...] If A is a reference type, the type referred to by A is used
4927 // for type deduction.
4928 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4929 A = ARef->getPointeeType();
4930 // We work around a defect in the standard here: cv-qualifiers are also
4931 // removed from P and A in this case, unless P was a reference type. This
4932 // seems to mostly match what other compilers are doing.
4933 if (!IsReferenceP) {
4934 A = A.getUnqualifiedType();
4935 P = P.getUnqualifiedType();
4936 }
4937
4938 // C++ [temp.deduct.conv]p3:
4939 //
4940 // If A is not a reference type:
4941 } else {
4942 assert(!A->isReferenceType() && "Reference types were handled above");
4943
4944 // - If P is an array type, the pointer type produced by the
4945 // array-to-pointer standard conversion (4.2) is used in place
4946 // of P for type deduction; otherwise,
4947 if (P->isArrayType())
4948 P = Context.getArrayDecayedType(P);
4949 // - If P is a function type, the pointer type produced by the
4950 // function-to-pointer standard conversion (4.3) is used in
4951 // place of P for type deduction; otherwise,
4952 else if (P->isFunctionType())
4953 P = Context.getPointerType(P);
4954 // - If P is a cv-qualified type, the top level cv-qualifiers of
4955 // P's type are ignored for type deduction.
4956 else
4957 P = P.getUnqualifiedType();
4958
4959 // C++0x [temp.deduct.conv]p4:
4960 // If A is a cv-qualified type, the top level cv-qualifiers of A's
4961 // type are ignored for type deduction. If A is a reference type, the type
4962 // referred to by A is used for type deduction.
4963 A = A.getUnqualifiedType();
4964 }
4965
4966 // Unevaluated SFINAE context.
4969 SFINAETrap Trap(*this, Info);
4970
4971 // C++ [temp.deduct.conv]p1:
4972 // Template argument deduction is done by comparing the return
4973 // type of the template conversion function (call it P) with the
4974 // type that is required as the result of the conversion (call it
4975 // A) as described in 14.8.2.4.
4976 TemplateParameterList *TemplateParams
4977 = ConversionTemplate->getTemplateParameters();
4979 Deduced.resize(TemplateParams->size());
4980
4981 // C++0x [temp.deduct.conv]p4:
4982 // In general, the deduction process attempts to find template
4983 // argument values that will make the deduced A identical to
4984 // A. However, there are two cases that allow a difference:
4985 unsigned TDF = 0;
4986 // - If the original A is a reference type, A can be more
4987 // cv-qualified than the deduced A (i.e., the type referred to
4988 // by the reference)
4989 if (IsReferenceA)
4991 // - The deduced A can be another pointer or pointer to member
4992 // type that can be converted to A via a qualification
4993 // conversion.
4994 //
4995 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4996 // both P and A are pointers or member pointers. In this case, we
4997 // just ignore cv-qualifiers completely).
4998 if ((P->isPointerType() && A->isPointerType()) ||
5000 TDF |= TDF_IgnoreQualifiers;
5001
5003 if (ConversionGeneric->isExplicitObjectMemberFunction()) {
5004 QualType ParamType = ConversionGeneric->getParamDecl(0)->getType();
5007 *this, TemplateParams, getFirstInnerIndex(ConversionTemplate),
5008 ParamType, ObjectType, ObjectClassification,
5009 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
5010 /*Decomposed*/ false, 0, /*TDF*/ 0);
5012 return Result;
5013 }
5014
5016 *this, TemplateParams, P, A, Info, Deduced, TDF,
5017 PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
5018 /*HasDeducedAnyParam=*/nullptr);
5020 return Result;
5021
5022 // Create an Instantiation Scope for finalizing the operator.
5023 LocalInstantiationScope InstScope(*this);
5024 // Finish template argument deduction.
5025 FunctionDecl *ConversionSpecialized = nullptr;
5028 Result = FinishTemplateArgumentDeduction(
5029 ConversionTemplate, Deduced, 0, ConversionSpecialized, Info,
5030 &OriginalCallArgs, /*PartialOverloading=*/false,
5031 /*PartialOrdering=*/false, /*ForOverloadSetAddressResolution*/ false);
5032 });
5033 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
5034 return Result;
5035}
5036
5039 TemplateArgumentListInfo *ExplicitTemplateArgs,
5042 bool IsAddressOfFunction) {
5043 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5044 QualType(), Specialization, Info,
5045 IsAddressOfFunction);
5046}
5047
5048namespace {
5049 struct DependentAuto { bool IsPack; };
5050
5051 /// Substitute the 'auto' specifier or deduced template specialization type
5052 /// specifier within a type for a given replacement type.
5053 class SubstituteDeducedTypeTransform :
5054 public TreeTransform<SubstituteDeducedTypeTransform> {
5055 QualType Replacement;
5056 bool ReplacementIsPack;
5057 bool UseTypeSugar;
5059
5060 public:
5061 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
5062 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
5063 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
5064
5065 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
5066 bool UseTypeSugar = true)
5067 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
5068 Replacement(Replacement), ReplacementIsPack(false),
5069 UseTypeSugar(UseTypeSugar) {}
5070
5071 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
5072 assert(isa<TemplateTypeParmType>(Replacement) &&
5073 "unexpected unsugared replacement kind");
5074 QualType Result = Replacement;
5075 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
5076 NewTL.setNameLoc(TL.getNameLoc());
5077 return Result;
5078 }
5079
5080 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
5081 // If we're building the type pattern to deduce against, don't wrap the
5082 // substituted type in an AutoType. Certain template deduction rules
5083 // apply only when a template type parameter appears directly (and not if
5084 // the parameter is found through desugaring). For instance:
5085 // auto &&lref = lvalue;
5086 // must transform into "rvalue reference to T" not "rvalue reference to
5087 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
5088 //
5089 // FIXME: Is this still necessary?
5090 if (!UseTypeSugar)
5091 return TransformDesugared(TLB, TL);
5092
5093 QualType Result = SemaRef.Context.getAutoType(
5094 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
5095 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
5096 TL.getTypePtr()->getTypeConstraintArguments());
5097 auto NewTL = TLB.push<AutoTypeLoc>(Result);
5098 NewTL.copy(TL);
5099 return Result;
5100 }
5101
5102 QualType TransformDeducedTemplateSpecializationType(
5103 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
5104 if (!UseTypeSugar)
5105 return TransformDesugared(TLB, TL);
5106
5107 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
5108 TL.getTypePtr()->getKeyword(), TL.getTypePtr()->getTemplateName(),
5109 Replacement, Replacement.isNull());
5110 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
5111 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5112 NewTL.setNameLoc(TL.getNameLoc());
5113 NewTL.setQualifierLoc(TL.getQualifierLoc());
5114 return Result;
5115 }
5116
5117 ExprResult TransformLambdaExpr(LambdaExpr *E) {
5118 // Lambdas never need to be transformed.
5119 return E;
5120 }
5121 bool TransformExceptionSpec(SourceLocation Loc,
5122 FunctionProtoType::ExceptionSpecInfo &ESI,
5123 SmallVectorImpl<QualType> &Exceptions,
5124 bool &Changed) {
5125 if (ESI.Type == EST_Uninstantiated) {
5126 ESI.instantiate();
5127 Changed = true;
5128 }
5129 return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed);
5130 }
5131
5132 QualType Apply(TypeLoc TL) {
5133 // Create some scratch storage for the transformed type locations.
5134 // FIXME: We're just going to throw this information away. Don't build it.
5135 TypeLocBuilder TLB;
5136 TLB.reserve(TL.getFullDataSize());
5137 return TransformType(TLB, TL);
5138 }
5139 };
5140
5141} // namespace
5142
5143static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
5145 QualType Deduced) {
5146 ConstraintSatisfaction Satisfaction;
5147 ConceptDecl *Concept = cast<ConceptDecl>(Type.getTypeConstraintConcept());
5148 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
5149 TypeLoc.getRAngleLoc());
5150 TemplateArgs.addArgument(
5153 Deduced, TypeLoc.getNameLoc())));
5154 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
5155 TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
5156
5158 if (S.CheckTemplateArgumentList(Concept, TypeLoc.getNameLoc(), TemplateArgs,
5159 /*DefaultArgs=*/{},
5160 /*PartialTemplateArgs=*/false, CTAI))
5161 return true;
5163 /*Final=*/true);
5164 // Build up an EvaluationContext with an ImplicitConceptSpecializationDecl so
5165 // that the template arguments of the constraint can be preserved. For
5166 // example:
5167 //
5168 // template <class T>
5169 // concept C = []<D U = void>() { return true; }();
5170 //
5171 // We need the argument for T while evaluating type constraint D in
5172 // building the CallExpr to the lambda.
5176 S.getASTContext(), Concept->getDeclContext(), Concept->getLocation(),
5177 CTAI.SugaredConverted));
5179 Concept, AssociatedConstraint(Concept->getConstraintExpr()), MLTAL,
5180 TypeLoc.getLocalSourceRange(), Satisfaction))
5181 return true;
5182 if (!Satisfaction.IsSatisfied) {
5183 std::string Buf;
5184 llvm::raw_string_ostream OS(Buf);
5185 OS << "'" << Concept->getName();
5186 if (TypeLoc.hasExplicitTemplateArgs()) {
5187 printTemplateArgumentList(
5188 OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(),
5189 Type.getTypeConstraintConcept()->getTemplateParameters());
5190 }
5191 OS << "'";
5192 S.Diag(TypeLoc.getConceptNameLoc(),
5193 diag::err_placeholder_constraints_not_satisfied)
5194 << Deduced << Buf << TypeLoc.getLocalSourceRange();
5195 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
5196 return true;
5197 }
5198 return false;
5199}
5200
5203 TemplateDeductionInfo &Info, bool DependentDeduction,
5204 bool IgnoreConstraints,
5205 TemplateSpecCandidateSet *FailedTSC) {
5206 assert(DependentDeduction || Info.getDeducedDepth() == 0);
5207 if (Init->containsErrors())
5209
5210 const AutoType *AT = Type.getType()->getContainedAutoType();
5211 assert(AT);
5212
5213 if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) {
5214 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
5215 if (NonPlaceholder.isInvalid())
5217 Init = NonPlaceholder.get();
5218 }
5219
5220 DependentAuto DependentResult = {
5221 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
5222
5223 if (!DependentDeduction &&
5224 (Type.getType()->isDependentType() || Init->isTypeDependent() ||
5225 Init->containsUnexpandedParameterPack())) {
5226 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
5227 assert(!Result.isNull() && "substituting DependentTy can't fail");
5229 }
5230
5231 // Make sure that we treat 'char[]' equaly as 'char*' in C23 mode.
5232 auto *String = dyn_cast<StringLiteral>(Init);
5233 if (getLangOpts().C23 && String && Type.getType()->isArrayType()) {
5234 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
5235 TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData());
5236 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL);
5237 assert(!Result.isNull() && "substituting DependentTy can't fail");
5239 }
5240
5241 // Emit a warning if 'auto*' is used in pedantic and in C23 mode.
5242 if (getLangOpts().C23 && Type.getType()->isPointerType()) {
5243 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
5244 }
5245
5246 auto *InitList = dyn_cast<InitListExpr>(Init);
5247 if (!getLangOpts().CPlusPlus && InitList) {
5248 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c)
5249 << (int)AT->getKeyword() << getLangOpts().C23;
5251 }
5252
5253 // Deduce type of TemplParam in Func(Init)
5255 Deduced.resize(1);
5256
5257 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
5258
5259 QualType DeducedType;
5260 // If this is a 'decltype(auto)' specifier, do the decltype dance.
5261 if (AT->isDecltypeAuto()) {
5262 if (InitList) {
5263 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
5265 }
5266
5267 DeducedType = getDecltypeForExpr(Init);
5268 assert(!DeducedType.isNull());
5269 } else {
5270 LocalInstantiationScope InstScope(*this);
5271
5272 // Build template<class TemplParam> void Func(FuncParam);
5273 SourceLocation Loc = Init->getExprLoc();
5275 Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0,
5276 nullptr, false, false, false);
5277 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
5278 NamedDecl *TemplParamPtr = TemplParam;
5280 Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
5281
5282 if (InitList) {
5283 // Notionally, we substitute std::initializer_list<T> for 'auto' and
5284 // deduce against that. Such deduction only succeeds if removing
5285 // cv-qualifiers and references results in std::initializer_list<T>.
5286 if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
5288
5289 SourceRange DeducedFromInitRange;
5290 for (Expr *Init : InitList->inits()) {
5291 // Resolving a core issue: a braced-init-list containing any designators
5292 // is a non-deduced context.
5296 *this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(),
5297 Init->Classify(getASTContext()), Init, Info, Deduced,
5298 OriginalCallArgs,
5299 /*Decomposed=*/true,
5300 /*ArgIdx=*/0, /*TDF=*/0);
5303 Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction)
5304 << Info.FirstArg << Info.SecondArg << DeducedFromInitRange
5305 << Init->getSourceRange();
5307 }
5308 return TDK;
5309 }
5310
5311 if (DeducedFromInitRange.isInvalid() &&
5312 Deduced[0].getKind() != TemplateArgument::Null)
5313 DeducedFromInitRange = Init->getSourceRange();
5314 }
5315 } else {
5316 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
5317 Diag(Loc, diag::err_auto_bitfield);
5319 }
5320 QualType FuncParam =
5321 SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type);
5322 assert(!FuncParam.isNull() &&
5323 "substituting template parameter for 'auto' failed");
5325 *this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(),
5326 Init->Classify(getASTContext()), Init, Info, Deduced,
5327 OriginalCallArgs,
5328 /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC);
5330 return TDK;
5331 }
5332
5333 // Could be null if somehow 'auto' appears in a non-deduced context.
5334 if (Deduced[0].getKind() != TemplateArgument::Type)
5336 DeducedType = Deduced[0].getAsType();
5337
5338 if (InitList) {
5339 DeducedType = BuildStdInitializerList(DeducedType, Loc);
5340 if (DeducedType.isNull())
5342 }
5343 }
5344
5345 if (!Result.isNull()) {
5346 if (!Context.hasSameType(DeducedType, Result)) {
5347 Info.FirstArg = Result;
5348 Info.SecondArg = DeducedType;
5350 }
5351 DeducedType = Context.getCommonSugaredType(Result, DeducedType);
5352 }
5353
5354 if (AT->isConstrained() && !IgnoreConstraints &&
5356 *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType))
5358
5359 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
5360 if (Result.isNull())
5362
5363 // Check that the deduced argument type is compatible with the original
5364 // argument type per C++ [temp.deduct.call]p4.
5365 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
5366 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
5367 assert((bool)InitList == OriginalArg.DecomposedParam &&
5368 "decomposed non-init-list in auto deduction?");
5369 if (auto TDK =
5370 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
5372 Result = QualType();
5373 return TDK;
5374 }
5375 }
5376
5378}
5379
5381 QualType TypeToReplaceAuto) {
5382 assert(TypeToReplaceAuto != Context.DependentTy);
5383 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
5384 .TransformType(TypeWithAuto);
5385}
5386
5388 QualType TypeToReplaceAuto) {
5389 assert(TypeToReplaceAuto != Context.DependentTy);
5390 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
5391 .TransformType(TypeWithAuto);
5392}
5393
5395 return SubstituteDeducedTypeTransform(
5396 *this,
5397 DependentAuto{/*IsPack=*/isa<PackExpansionType>(TypeWithAuto)})
5398 .TransformType(TypeWithAuto);
5399}
5400
5403 return SubstituteDeducedTypeTransform(
5404 *this, DependentAuto{/*IsPack=*/isa<PackExpansionType>(
5405 TypeWithAuto->getType())})
5406 .TransformType(TypeWithAuto);
5407}
5408
5410 QualType TypeToReplaceAuto) {
5411 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
5412 /*UseTypeSugar*/ false)
5413 .TransformType(TypeWithAuto);
5414}
5415
5417 QualType TypeToReplaceAuto) {
5418 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
5419 /*UseTypeSugar*/ false)
5420 .TransformType(TypeWithAuto);
5421}
5422
5424 const Expr *Init) {
5426 Diag(VDecl->getLocation(),
5427 VDecl->isInitCapture()
5428 ? diag::err_init_capture_deduction_failure_from_init_list
5429 : diag::err_auto_var_deduction_failure_from_init_list)
5430 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
5431 else
5432 Diag(VDecl->getLocation(),
5433 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
5434 : diag::err_auto_var_deduction_failure)
5435 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5436 << Init->getSourceRange();
5437}
5438
5440 bool Diagnose) {
5441 assert(FD->getReturnType()->isUndeducedType());
5442
5443 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
5444 // within the return type from the call operator's type.
5446 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
5447 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
5448
5449 // For a generic lambda, instantiate the call operator if needed.
5450 if (auto *Args = FD->getTemplateSpecializationArgs()) {
5452 CallOp->getDescribedFunctionTemplate(), Args, Loc);
5453 if (!CallOp || CallOp->isInvalidDecl())
5454 return true;
5455
5456 // We might need to deduce the return type by instantiating the definition
5457 // of the operator() function.
5458 if (CallOp->getReturnType()->isUndeducedType()) {
5460 InstantiateFunctionDefinition(Loc, CallOp);
5461 });
5462 }
5463 }
5464
5465 if (CallOp->isInvalidDecl())
5466 return true;
5467 assert(!CallOp->getReturnType()->isUndeducedType() &&
5468 "failed to deduce lambda return type");
5469
5470 // Build the new return type from scratch.
5471 CallingConv RetTyCC = FD->getReturnType()
5472 ->getPointeeType()
5473 ->castAs<FunctionType>()
5474 ->getCallConv();
5476 CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC);
5477 if (FD->getReturnType()->getAs<PointerType>())
5478 RetType = Context.getPointerType(RetType);
5479 else {
5480 assert(FD->getReturnType()->getAs<BlockPointerType>());
5481 RetType = Context.getBlockPointerType(RetType);
5482 }
5483 Context.adjustDeducedFunctionResultType(FD, RetType);
5484 return false;
5485 }
5486
5490 });
5491 }
5492
5493 bool StillUndeduced = FD->getReturnType()->isUndeducedType();
5494 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
5495 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
5496 Diag(FD->getLocation(), diag::note_callee_decl) << FD;
5497 }
5498
5499 return StillUndeduced;
5500}
5501
5503 SourceLocation Loc) {
5504 assert(FD->isImmediateEscalating());
5505
5507 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
5508 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
5509
5510 // For a generic lambda, instantiate the call operator if needed.
5511 if (auto *Args = FD->getTemplateSpecializationArgs()) {
5513 CallOp->getDescribedFunctionTemplate(), Args, Loc);
5514 if (!CallOp || CallOp->isInvalidDecl())
5515 return true;
5517 Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); });
5518 }
5519 return CallOp->isInvalidDecl();
5520 }
5521
5524 Loc, [&] { InstantiateFunctionDefinition(Loc, FD); });
5525 }
5526 return false;
5527}
5528
5530 const CXXMethodDecl *Method,
5531 QualType RawType,
5532 bool IsOtherRvr) {
5533 // C++20 [temp.func.order]p3.1, p3.2:
5534 // - The type X(M) is "rvalue reference to cv A" if the optional
5535 // ref-qualifier of M is && or if M has no ref-qualifier and the
5536 // positionally-corresponding parameter of the other transformed template
5537 // has rvalue reference type; if this determination depends recursively
5538 // upon whether X(M) is an rvalue reference type, it is not considered to
5539 // have rvalue reference type.
5540 //
5541 // - Otherwise, X(M) is "lvalue reference to cv A".
5542 assert(Method && !Method->isExplicitObjectMemberFunction() &&
5543 "expected a member function with no explicit object parameter");
5544
5545 RawType = Context.getQualifiedType(RawType, Method->getMethodQualifiers());
5546 if (Method->getRefQualifier() == RQ_RValue ||
5547 (IsOtherRvr && Method->getRefQualifier() == RQ_None))
5548 return Context.getRValueReferenceType(RawType);
5549 return Context.getLValueReferenceType(RawType);
5550}
5551
5554 QualType A, ArrayRef<TemplateArgument> DeducedArgs, bool CheckConsistency) {
5555 MultiLevelTemplateArgumentList MLTAL(FTD, DeducedArgs,
5556 /*Final=*/true);
5558 S,
5559 ArgIdx ? ::getPackIndexForParam(S, FTD, MLTAL, *ArgIdx) : std::nullopt);
5560 bool IsIncompleteSubstitution = false;
5561 // FIXME: A substitution can be incomplete on a non-structural part of the
5562 // type. Use the canonical type for now, until the TemplateInstantiator can
5563 // deal with that.
5564
5565 // Workaround: Implicit deduction guides use InjectedClassNameTypes, whereas
5566 // the explicit guides don't. The substitution doesn't transform these types,
5567 // so let it transform their specializations instead.
5568 bool IsDeductionGuide = isa<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
5569 if (IsDeductionGuide) {
5570 if (auto *Injected = P->getAsCanonical<InjectedClassNameType>())
5571 P = Injected->getDecl()->getCanonicalTemplateSpecializationType(
5572 S.Context);
5573 }
5574 QualType InstP = S.SubstType(P.getCanonicalType(), MLTAL, FTD->getLocation(),
5575 FTD->getDeclName(), &IsIncompleteSubstitution);
5576 if (InstP.isNull() && !IsIncompleteSubstitution)
5578 if (!CheckConsistency)
5580 if (IsIncompleteSubstitution)
5582
5583 // [temp.deduct.call]/4 - Check we produced a consistent deduction.
5584 // This handles just the cases that can appear when partial ordering.
5585 if (auto *PA = dyn_cast<PackExpansionType>(A);
5586 PA && !isa<PackExpansionType>(InstP))
5587 A = PA->getPattern();
5590 if (IsDeductionGuide) {
5591 if (auto *Injected = T1->getAsCanonical<InjectedClassNameType>())
5592 T1 = Injected->getDecl()->getCanonicalTemplateSpecializationType(
5593 S.Context);
5594 if (auto *Injected = T2->getAsCanonical<InjectedClassNameType>())
5595 T2 = Injected->getDecl()->getCanonicalTemplateSpecializationType(
5596 S.Context);
5597 }
5598 if (!S.Context.hasSameType(T1, T2))
5601}
5602
5603template <class T>
5605 Sema &S, FunctionTemplateDecl *FTD,
5608 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(FTD));
5609
5610 // C++26 [temp.deduct.type]p2:
5611 // [...] or if any template argument remains neither deduced nor
5612 // explicitly specified, template argument deduction fails.
5613 bool IsIncomplete = false;
5614 Sema::CheckTemplateArgumentInfo CTAI(/*PartialOrdering=*/true);
5615 if (auto Result = ConvertDeducedTemplateArguments(
5616 S, FTD, FTD->getTemplateParameters(), /*IsDeduced=*/true, Deduced,
5617 Info, CTAI,
5618 /*CurrentInstantiationScope=*/nullptr,
5619 /*NumAlreadyConverted=*/0, &IsIncomplete);
5621 return Result;
5622
5623 // Form the template argument list from the deduced template arguments.
5624 TemplateArgumentList *SugaredDeducedArgumentList =
5626 TemplateArgumentList *CanonicalDeducedArgumentList =
5628
5629 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
5630
5631 // Substitute the deduced template arguments into the argument
5632 // and verify that the instantiated argument is both valid
5633 // and equivalent to the parameter.
5634 LocalInstantiationScope InstScope(S);
5635 return CheckDeductionConsistency(S, FTD, CTAI.SugaredConverted);
5636}
5637
5638/// Determine whether the function template \p FT1 is at least as
5639/// specialized as \p FT2.
5643 ArrayRef<QualType> Args1, ArrayRef<QualType> Args2, bool Args1Offset) {
5644 FunctionDecl *FD1 = FT1->getTemplatedDecl();
5645 FunctionDecl *FD2 = FT2->getTemplatedDecl();
5646 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
5647 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
5648 assert(Proto1 && Proto2 && "Function templates must have prototypes");
5649
5650 // C++26 [temp.deduct.partial]p3:
5651 // The types used to determine the ordering depend on the context in which
5652 // the partial ordering is done:
5653 // - In the context of a function call, the types used are those function
5654 // parameter types for which the function call has arguments.
5655 // - In the context of a call to a conversion operator, the return types
5656 // of the conversion function templates are used.
5657 // - In other contexts (14.6.6.2) the function template's function type
5658 // is used.
5659
5660 if (TPOC == TPOC_Other) {
5661 // We wouldn't be partial ordering these candidates if these didn't match.
5662 assert(Proto1->getMethodQuals() == Proto2->getMethodQuals() &&
5663 Proto1->getRefQualifier() == Proto2->getRefQualifier() &&
5664 Proto1->isVariadic() == Proto2->isVariadic() &&
5665 "shouldn't partial order functions with different qualifiers in a "
5666 "context where the function type is used");
5667
5668 assert(Args1.empty() && Args2.empty() &&
5669 "Only call context should have arguments");
5670 Args1 = Proto1->getParamTypes();
5671 Args2 = Proto2->getParamTypes();
5672 }
5673
5674 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
5675 SmallVector<DeducedTemplateArgument, 4> Deduced(TemplateParams->size());
5676 TemplateDeductionInfo Info(Loc);
5677
5678 bool HasDeducedAnyParamFromReturnType = false;
5679 if (TPOC != TPOC_Call) {
5681 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
5682 Info, Deduced, TDF_None, PartialOrderingKind::Call,
5683 /*DeducedFromArrayBound=*/false,
5684 &HasDeducedAnyParamFromReturnType) !=
5686 return false;
5687 }
5688
5689 llvm::SmallBitVector HasDeducedParam;
5690 if (TPOC != TPOC_Conversion) {
5691 HasDeducedParam.resize(Args2.size());
5692 if (DeduceTemplateArguments(S, TemplateParams, Args2, Args1, Info, Deduced,
5694 /*HasDeducedAnyParam=*/nullptr,
5695 &HasDeducedParam) !=
5697 return false;
5698 }
5699
5700 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
5703 Sema::SFINAETrap Trap(S, Info);
5705 S, Info.getLocation(), FT2, DeducedArgs,
5707 if (Inst.isInvalid())
5708 return false;
5709
5710 bool AtLeastAsSpecialized;
5712 AtLeastAsSpecialized =
5713 ::FinishTemplateArgumentDeduction(
5714 S, FT2, Deduced, Info,
5715 [&](Sema &S, FunctionTemplateDecl *FTD,
5716 ArrayRef<TemplateArgument> DeducedArgs) {
5717 // As a provisional fix for a core issue that does not
5718 // exist yet, which may be related to CWG2160, only check the
5719 // consistency of parameters and return types which participated
5720 // in deduction. We will still try to substitute them though.
5721 if (TPOC != TPOC_Call) {
5722 if (auto TDR = ::CheckDeductionConsistency(
5723 S, FTD, /*ArgIdx=*/std::nullopt,
5724 Proto2->getReturnType(), Proto1->getReturnType(),
5725 DeducedArgs,
5726 /*CheckConsistency=*/HasDeducedAnyParamFromReturnType);
5727 TDR != TemplateDeductionResult::Success)
5728 return TDR;
5729 }
5730
5731 if (TPOC == TPOC_Conversion)
5732 return TemplateDeductionResult::Success;
5733
5734 return ::DeduceForEachType(
5735 S, TemplateParams, Args2, Args1, Info, Deduced,
5736 PartialOrderingKind::Call, /*FinishingDeduction=*/true,
5737 [&](Sema &S, TemplateParameterList *, int ParamIdx,
5738 UnsignedOrNone ArgIdx, QualType P, QualType A,
5739 TemplateDeductionInfo &Info,
5740 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
5741 PartialOrderingKind) {
5742 if (ArgIdx && *ArgIdx >= static_cast<unsigned>(Args1Offset))
5743 ArgIdx = *ArgIdx - Args1Offset;
5744 else
5745 ArgIdx = std::nullopt;
5746 return ::CheckDeductionConsistency(
5747 S, FTD, ArgIdx, P, A, DeducedArgs,
5748 /*CheckConsistency=*/HasDeducedParam[ParamIdx]);
5749 });
5751 });
5752 if (!AtLeastAsSpecialized || Trap.hasErrorOccurred())
5753 return false;
5754
5755 // C++0x [temp.deduct.partial]p11:
5756 // In most cases, all template parameters must have values in order for
5757 // deduction to succeed, but for partial ordering purposes a template
5758 // parameter may remain without a value provided it is not used in the
5759 // types being used for partial ordering. [ Note: a template parameter used
5760 // in a non-deduced context is considered used. -end note]
5761 unsigned ArgIdx = 0, NumArgs = Deduced.size();
5762 for (; ArgIdx != NumArgs; ++ArgIdx)
5763 if (Deduced[ArgIdx].isNull())
5764 break;
5765
5766 if (ArgIdx == NumArgs) {
5767 // All template arguments were deduced. FT1 is at least as specialized
5768 // as FT2.
5769 return true;
5770 }
5771
5772 // Figure out which template parameters were used.
5773 llvm::SmallBitVector UsedParameters(TemplateParams->size());
5774 switch (TPOC) {
5775 case TPOC_Call:
5776 for (unsigned I = 0, N = Args2.size(); I != N; ++I)
5777 ::MarkUsedTemplateParameters(S.Context, Args2[I], /*OnlyDeduced=*/false,
5778 TemplateParams->getDepth(), UsedParameters);
5779 break;
5780
5781 case TPOC_Conversion:
5782 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(),
5783 /*OnlyDeduced=*/false,
5784 TemplateParams->getDepth(), UsedParameters);
5785 break;
5786
5787 case TPOC_Other:
5788 // We do not deduce template arguments from the exception specification
5789 // when determining the primary template of a function template
5790 // specialization or when taking the address of a function template.
5791 // Therefore, we do not mark template parameters in the exception
5792 // specification as used during partial ordering to prevent the following
5793 // from being ambiguous:
5794 //
5795 // template<typename T, typename U>
5796 // void f(U) noexcept(noexcept(T())); // #1
5797 //
5798 // template<typename T>
5799 // void f(T*) noexcept; // #2
5800 //
5801 // template<>
5802 // void f<int>(int*) noexcept; // explicit specialization of #2
5803 //
5804 // Although there is no corresponding wording in the standard, this seems
5805 // to be the intended behavior given the definition of
5806 // 'deduction substitution loci' in [temp.deduct].
5808 S.Context,
5809 S.Context.getFunctionTypeWithExceptionSpec(FD2->getType(), EST_None),
5810 /*OnlyDeduced=*/false, TemplateParams->getDepth(), UsedParameters);
5811 break;
5812 }
5813
5814 for (; ArgIdx != NumArgs; ++ArgIdx)
5815 // If this argument had no value deduced but was used in one of the types
5816 // used for partial ordering, then deduction fails.
5817 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
5818 return false;
5819
5820 return true;
5821}
5822
5824
5825// This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that
5826// there is no wording or even resolution for this issue.
5829 const TemplateSpecializationType *TST1,
5830 const TemplateSpecializationType *TST2) {
5831 ArrayRef<TemplateArgument> As1 = TST1->template_arguments(),
5832 As2 = TST2->template_arguments();
5833 const TemplateArgument &TA1 = As1.back(), &TA2 = As2.back();
5834 bool IsPack = TA1.getKind() == TemplateArgument::Pack;
5835 assert(IsPack == (TA2.getKind() == TemplateArgument::Pack));
5836 if (!IsPack)
5838 assert(As1.size() == As2.size());
5839
5840 unsigned PackSize1 = TA1.pack_size(), PackSize2 = TA2.pack_size();
5841 bool IsPackExpansion1 =
5842 PackSize1 && TA1.pack_elements().back().isPackExpansion();
5843 bool IsPackExpansion2 =
5844 PackSize2 && TA2.pack_elements().back().isPackExpansion();
5845 if (PackSize1 == PackSize2 && IsPackExpansion1 == IsPackExpansion2)
5847 if (PackSize1 > PackSize2 && IsPackExpansion1)
5849 if (PackSize1 < PackSize2 && IsPackExpansion2)
5852}
5853
5856 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
5857 QualType RawObj1Ty, QualType RawObj2Ty, bool Reversed,
5858 bool PartialOverloading) {
5861 const FunctionDecl *FD1 = FT1->getTemplatedDecl();
5862 const FunctionDecl *FD2 = FT2->getTemplatedDecl();
5863 bool ShouldConvert1 = false;
5864 bool ShouldConvert2 = false;
5865 bool Args1Offset = false;
5866 bool Args2Offset = false;
5867 QualType Obj1Ty;
5868 QualType Obj2Ty;
5869 if (TPOC == TPOC_Call) {
5870 const FunctionProtoType *Proto1 =
5871 FD1->getType()->castAs<FunctionProtoType>();
5872 const FunctionProtoType *Proto2 =
5873 FD2->getType()->castAs<FunctionProtoType>();
5874
5875 // - In the context of a function call, the function parameter types are
5876 // used.
5877 const CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
5878 const CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
5879 // C++20 [temp.func.order]p3
5880 // [...] Each function template M that is a member function is
5881 // considered to have a new first parameter of type
5882 // X(M), described below, inserted in its function parameter list.
5883 //
5884 // Note that we interpret "that is a member function" as
5885 // "that is a member function with no expicit object argument".
5886 // Otherwise the ordering rules for methods with expicit objet arguments
5887 // against anything else make no sense.
5888
5889 bool NonStaticMethod1 = Method1 && !Method1->isStatic(),
5890 NonStaticMethod2 = Method2 && !Method2->isStatic();
5891
5892 auto Params1Begin = Proto1->param_type_begin(),
5893 Params2Begin = Proto2->param_type_begin();
5894
5895 size_t NumComparedArguments = NumCallArguments1;
5896
5897 if (auto OO = FD1->getOverloadedOperator();
5898 (NonStaticMethod1 && NonStaticMethod2) ||
5899 (OO != OO_None && OO != OO_Call && OO != OO_Subscript)) {
5900 ShouldConvert1 =
5901 NonStaticMethod1 && !Method1->hasCXXExplicitFunctionObjectParameter();
5902 ShouldConvert2 =
5903 NonStaticMethod2 && !Method2->hasCXXExplicitFunctionObjectParameter();
5904 NumComparedArguments += 1;
5905
5906 if (ShouldConvert1) {
5907 bool IsRValRef2 =
5908 ShouldConvert2
5909 ? Method2->getRefQualifier() == RQ_RValue
5910 : Proto2->param_type_begin()[0]->isRValueReferenceType();
5911 // Compare 'this' from Method1 against first parameter from Method2.
5912 Obj1Ty = GetImplicitObjectParameterType(this->Context, Method1,
5913 RawObj1Ty, IsRValRef2);
5914 Args1.push_back(Obj1Ty);
5915 Args1Offset = true;
5916 }
5917 if (ShouldConvert2) {
5918 bool IsRValRef1 =
5919 ShouldConvert1
5920 ? Method1->getRefQualifier() == RQ_RValue
5921 : Proto1->param_type_begin()[0]->isRValueReferenceType();
5922 // Compare 'this' from Method2 against first parameter from Method1.
5923 Obj2Ty = GetImplicitObjectParameterType(this->Context, Method2,
5924 RawObj2Ty, IsRValRef1);
5925 Args2.push_back(Obj2Ty);
5926 Args2Offset = true;
5927 }
5928 } else {
5929 if (NonStaticMethod1 && Method1->hasCXXExplicitFunctionObjectParameter())
5930 Params1Begin += 1;
5931 if (NonStaticMethod2 && Method2->hasCXXExplicitFunctionObjectParameter())
5932 Params2Begin += 1;
5933 }
5934 Args1.insert(Args1.end(), Params1Begin, Proto1->param_type_end());
5935 Args2.insert(Args2.end(), Params2Begin, Proto2->param_type_end());
5936
5937 // C++ [temp.func.order]p5:
5938 // The presence of unused ellipsis and default arguments has no effect on
5939 // the partial ordering of function templates.
5940 Args1.resize(std::min(Args1.size(), NumComparedArguments));
5941 Args2.resize(std::min(Args2.size(), NumComparedArguments));
5942
5943 if (Reversed)
5944 std::reverse(Args2.begin(), Args2.end());
5945 } else {
5946 assert(!Reversed && "Only call context could have reversed arguments");
5947 }
5948 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, Args1,
5949 Args2, Args2Offset);
5950 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, Args2,
5951 Args1, Args1Offset);
5952 // C++ [temp.deduct.partial]p10:
5953 // F is more specialized than G if F is at least as specialized as G and G
5954 // is not at least as specialized as F.
5955 if (Better1 != Better2) // We have a clear winner
5956 return Better1 ? FT1 : FT2;
5957
5958 if (!Better1 && !Better2) // Neither is better than the other
5959 return nullptr;
5960
5961 // C++ [temp.deduct.partial]p11:
5962 // ... and if G has a trailing function parameter pack for which F does not
5963 // have a corresponding parameter, and if F does not have a trailing
5964 // function parameter pack, then F is more specialized than G.
5965
5966 SmallVector<QualType> Param1;
5967 Param1.reserve(FD1->param_size() + ShouldConvert1);
5968 if (ShouldConvert1)
5969 Param1.push_back(Obj1Ty);
5970 for (const auto &P : FD1->parameters())
5971 Param1.push_back(P->getType());
5972
5973 SmallVector<QualType> Param2;
5974 Param2.reserve(FD2->param_size() + ShouldConvert2);
5975 if (ShouldConvert2)
5976 Param2.push_back(Obj2Ty);
5977 for (const auto &P : FD2->parameters())
5978 Param2.push_back(P->getType());
5979
5980 unsigned NumParams1 = Param1.size();
5981 unsigned NumParams2 = Param2.size();
5982
5983 bool Variadic1 =
5984 FD1->param_size() && FD1->parameters().back()->isParameterPack();
5985 bool Variadic2 =
5986 FD2->param_size() && FD2->parameters().back()->isParameterPack();
5987 if (Variadic1 != Variadic2) {
5988 if (Variadic1 && NumParams1 > NumParams2)
5989 return FT2;
5990 if (Variadic2 && NumParams2 > NumParams1)
5991 return FT1;
5992 }
5993
5994 // Skip this tie breaker if we are performing overload resolution with partial
5995 // arguments, as this breaks some assumptions about how closely related the
5996 // candidates are.
5997 for (int i = 0, e = std::min(NumParams1, NumParams2);
5998 !PartialOverloading && i < e; ++i) {
5999 QualType T1 = Param1[i].getCanonicalType();
6000 QualType T2 = Param2[i].getCanonicalType();
6001 auto *TST1 = dyn_cast<TemplateSpecializationType>(T1);
6002 auto *TST2 = dyn_cast<TemplateSpecializationType>(T2);
6003 if (!TST1 || !TST2)
6004 continue;
6005 switch (getMoreSpecializedTrailingPackTieBreaker(TST1, TST2)) {
6007 return FT1;
6009 return FT2;
6011 continue;
6012 }
6013 llvm_unreachable(
6014 "unknown MoreSpecializedTrailingPackTieBreakerResult value");
6015 }
6016
6017 if (!Context.getLangOpts().CPlusPlus20)
6018 return nullptr;
6019
6020 // Match GCC on not implementing [temp.func.order]p6.2.1.
6021
6022 // C++20 [temp.func.order]p6:
6023 // If deduction against the other template succeeds for both transformed
6024 // templates, constraints can be considered as follows:
6025
6026 // C++20 [temp.func.order]p6.1:
6027 // If their template-parameter-lists (possibly including template-parameters
6028 // invented for an abbreviated function template ([dcl.fct])) or function
6029 // parameter lists differ in length, neither template is more specialized
6030 // than the other.
6033 if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2)
6034 return nullptr;
6035
6036 // C++20 [temp.func.order]p6.2.2:
6037 // Otherwise, if the corresponding template-parameters of the
6038 // template-parameter-lists are not equivalent ([temp.over.link]) or if the
6039 // function parameters that positionally correspond between the two
6040 // templates are not of the same type, neither template is more specialized
6041 // than the other.
6042 if (!TemplateParameterListsAreEqual(TPL1, TPL2, false,
6044 return nullptr;
6045
6046 // [dcl.fct]p5:
6047 // Any top-level cv-qualifiers modifying a parameter type are deleted when
6048 // forming the function type.
6049 for (unsigned i = 0; i < NumParams1; ++i)
6050 if (!Context.hasSameUnqualifiedType(Param1[i], Param2[i]))
6051 return nullptr;
6052
6053 // C++20 [temp.func.order]p6.3:
6054 // Otherwise, if the context in which the partial ordering is done is
6055 // that of a call to a conversion function and the return types of the
6056 // templates are not the same, then neither template is more specialized
6057 // than the other.
6058 if (TPOC == TPOC_Conversion &&
6059 !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType()))
6060 return nullptr;
6061
6063 FT1->getAssociatedConstraints(AC1);
6064 FT2->getAssociatedConstraints(AC2);
6065 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
6066 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
6067 return nullptr;
6068 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
6069 return nullptr;
6070 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
6071 return nullptr;
6072 return AtLeastAsConstrained1 ? FT1 : FT2;
6073}
6074
6077 TemplateSpecCandidateSet &FailedCandidates,
6078 SourceLocation Loc, const PartialDiagnostic &NoneDiag,
6079 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
6080 bool Complain, QualType TargetType) {
6081 if (SpecBegin == SpecEnd) {
6082 if (Complain) {
6083 Diag(Loc, NoneDiag);
6084 FailedCandidates.NoteCandidates(*this, Loc);
6085 }
6086 return SpecEnd;
6087 }
6088
6089 if (SpecBegin + 1 == SpecEnd)
6090 return SpecBegin;
6091
6092 // Find the function template that is better than all of the templates it
6093 // has been compared to.
6094 UnresolvedSetIterator Best = SpecBegin;
6095 FunctionTemplateDecl *BestTemplate
6096 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
6097 assert(BestTemplate && "Not a function template specialization?");
6098 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
6099 FunctionTemplateDecl *Challenger
6100 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
6101 assert(Challenger && "Not a function template specialization?");
6102 if (declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
6103 Loc, TPOC_Other, 0),
6104 Challenger)) {
6105 Best = I;
6106 BestTemplate = Challenger;
6107 }
6108 }
6109
6110 // Make sure that the "best" function template is more specialized than all
6111 // of the others.
6112 bool Ambiguous = false;
6113 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
6114 FunctionTemplateDecl *Challenger
6115 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
6116 if (I != Best &&
6117 !declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
6118 Loc, TPOC_Other, 0),
6119 BestTemplate)) {
6120 Ambiguous = true;
6121 break;
6122 }
6123 }
6124
6125 if (!Ambiguous) {
6126 // We found an answer. Return it.
6127 return Best;
6128 }
6129
6130 // Diagnose the ambiguity.
6131 if (Complain) {
6132 Diag(Loc, AmbigDiag);
6133
6134 // FIXME: Can we order the candidates in some sane way?
6135 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
6136 PartialDiagnostic PD = CandidateDiag;
6137 const auto *FD = cast<FunctionDecl>(*I);
6139 FD->getPrimaryTemplate()->getTemplateParameters(),
6140 *FD->getTemplateSpecializationArgs());
6141 if (!TargetType.isNull())
6142 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
6143 Diag((*I)->getLocation(), PD);
6144 }
6145 }
6146
6147 return SpecEnd;
6148}
6149
6151 FunctionDecl *FD2) {
6152 assert(!FD1->getDescribedTemplate() && !FD2->getDescribedTemplate() &&
6153 "not for function templates");
6154 assert(!FD1->isFunctionTemplateSpecialization() ||
6156 assert(!FD2->isFunctionTemplateSpecialization() ||
6158
6159 FunctionDecl *F1 = FD1;
6160 if (FunctionDecl *P = FD1->getTemplateInstantiationPattern(false))
6161 F1 = P;
6162
6163 FunctionDecl *F2 = FD2;
6164 if (FunctionDecl *P = FD2->getTemplateInstantiationPattern(false))
6165 F2 = P;
6166
6168 F1->getAssociatedConstraints(AC1);
6169 F2->getAssociatedConstraints(AC2);
6170 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
6171 if (IsAtLeastAsConstrained(F1, AC1, F2, AC2, AtLeastAsConstrained1))
6172 return nullptr;
6173 if (IsAtLeastAsConstrained(F2, AC2, F1, AC1, AtLeastAsConstrained2))
6174 return nullptr;
6175 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
6176 return nullptr;
6177 return AtLeastAsConstrained1 ? FD1 : FD2;
6178}
6179
6180/// Determine whether one template specialization, P1, is at least as
6181/// specialized than another, P2.
6182///
6183/// \tparam TemplateLikeDecl The kind of P2, which must be a
6184/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
6185/// \param T1 The injected-class-name of P1 (faked for a variable template).
6186/// \param T2 The injected-class-name of P2 (faked for a variable template).
6187/// \param Template The primary template of P2, in case it is a partial
6188/// specialization, the same as P2 otherwise.
6189template <typename TemplateLikeDecl>
6191 TemplateLikeDecl *P2,
6193 TemplateDeductionInfo &Info) {
6194 // C++ [temp.class.order]p1:
6195 // For two class template partial specializations, the first is at least as
6196 // specialized as the second if, given the following rewrite to two
6197 // function templates, the first function template is at least as
6198 // specialized as the second according to the ordering rules for function
6199 // templates (14.6.6.2):
6200 // - the first function template has the same template parameters as the
6201 // first partial specialization and has a single function parameter
6202 // whose type is a class template specialization with the template
6203 // arguments of the first partial specialization, and
6204 // - the second function template has the same template parameters as the
6205 // second partial specialization and has a single function parameter
6206 // whose type is a class template specialization with the template
6207 // arguments of the second partial specialization.
6208 //
6209 // Rather than synthesize function templates, we merely perform the
6210 // equivalent partial ordering by performing deduction directly on
6211 // the template arguments of the class template partial
6212 // specializations. This computation is slightly simpler than the
6213 // general problem of function template partial ordering, because
6214 // class template partial specializations are more constrained. We
6215 // know that every template parameter is deducible from the class
6216 // template partial specialization's template arguments, for
6217 // example.
6219
6220 // Determine whether P1 is at least as specialized as P2.
6221 Deduced.resize(P2->getTemplateParameters()->size());
6223 S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None,
6224 PartialOrderingKind::Call, /*DeducedFromArrayBound=*/false,
6225 /*HasDeducedAnyParam=*/nullptr) != TemplateDeductionResult::Success)
6226 return false;
6227
6228 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
6231 Sema::SFINAETrap Trap(S, Info);
6232 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs);
6233 if (Inst.isInvalid())
6234 return false;
6235
6237 Ps = cast<TemplateSpecializationType>(T2)->template_arguments(),
6238 As = cast<TemplateSpecializationType>(T1)->template_arguments();
6239
6242 Result = ::FinishTemplateArgumentDeduction(
6243 S, P2, P2->getTemplateParameters(), Template,
6244 /*IsPartialOrdering=*/true, Ps, As, Deduced, Info,
6245 /*CopyDeducedArgs=*/false);
6246 });
6247 return Result == TemplateDeductionResult::Success && !Trap.hasErrorOccurred();
6248}
6249
6250namespace {
6251// A dummy class to return nullptr instead of P2 when performing "more
6252// specialized than primary" check.
6253struct GetP2 {
6254 template <typename T1, typename T2,
6255 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
6256 T2 *operator()(T1 *, T2 *P2) {
6257 return P2;
6258 }
6259 template <typename T1, typename T2,
6260 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
6261 T1 *operator()(T1 *, T2 *) {
6262 return nullptr;
6263 }
6264};
6265
6266// The assumption is that two template argument lists have the same size.
6267struct TemplateArgumentListAreEqual {
6268 ASTContext &Ctx;
6269 TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {}
6270
6271 template <typename T1, typename T2,
6272 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
6273 bool operator()(T1 *PS1, T2 *PS2) {
6274 ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(),
6275 Args2 = PS2->getTemplateArgs().asArray();
6276
6277 for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
6278 // We use profile, instead of structural comparison of the arguments,
6279 // because canonicalization can't do the right thing for dependent
6280 // expressions.
6281 llvm::FoldingSetNodeID IDA, IDB;
6282 Args1[I].Profile(IDA, Ctx);
6283 Args2[I].Profile(IDB, Ctx);
6284 if (IDA != IDB)
6285 return false;
6286 }
6287 return true;
6288 }
6289
6290 template <typename T1, typename T2,
6291 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
6292 bool operator()(T1 *Spec, T2 *Primary) {
6293 ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(),
6294 Args2 = Primary->getInjectedTemplateArgs(Ctx);
6295
6296 for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
6297 // We use profile, instead of structural comparison of the arguments,
6298 // because canonicalization can't do the right thing for dependent
6299 // expressions.
6300 llvm::FoldingSetNodeID IDA, IDB;
6301 Args1[I].Profile(IDA, Ctx);
6302 // Unlike the specialization arguments, the injected arguments are not
6303 // always canonical.
6304 Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx);
6305 if (IDA != IDB)
6306 return false;
6307 }
6308 return true;
6309 }
6310};
6311} // namespace
6312
6313/// Returns the more specialized template specialization between T1/P1 and
6314/// T2/P2.
6315/// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial
6316/// specialization and T2/P2 is the primary template.
6317/// - otherwise, both T1/P1 and T2/P2 are the partial specialization.
6318///
6319/// \param T1 the type of the first template partial specialization
6320///
6321/// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second
6322/// template partial specialization; otherwise, the type of the
6323/// primary template.
6324///
6325/// \param P1 the first template partial specialization
6326///
6327/// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template
6328/// partial specialization; otherwise, the primary template.
6329///
6330/// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is
6331/// more specialized, returns nullptr if P1 is not more specialized.
6332/// - otherwise, returns the more specialized template partial
6333/// specialization. If neither partial specialization is more
6334/// specialized, returns NULL.
6335template <typename TemplateLikeDecl, typename PrimaryDel>
6336static TemplateLikeDecl *
6337getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1,
6338 PrimaryDel *P2, TemplateDeductionInfo &Info) {
6339 constexpr bool IsMoreSpecialThanPrimaryCheck =
6340 !std::is_same_v<TemplateLikeDecl, PrimaryDel>;
6341
6342 TemplateDecl *P2T;
6343 if constexpr (IsMoreSpecialThanPrimaryCheck)
6344 P2T = P2;
6345 else
6346 P2T = P2->getSpecializedTemplate();
6347
6348 bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, P2T, Info);
6349 if (IsMoreSpecialThanPrimaryCheck && !Better1)
6350 return nullptr;
6351
6352 bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1,
6353 P1->getSpecializedTemplate(), Info);
6354 if (IsMoreSpecialThanPrimaryCheck && !Better2)
6355 return P1;
6356
6357 // C++ [temp.deduct.partial]p10:
6358 // F is more specialized than G if F is at least as specialized as G and G
6359 // is not at least as specialized as F.
6360 if (Better1 != Better2) // We have a clear winner
6361 return Better1 ? P1 : GetP2()(P1, P2);
6362
6363 if (!Better1 && !Better2)
6364 return nullptr;
6365
6370 return P1;
6372 return GetP2()(P1, P2);
6374 break;
6375 }
6376
6377 if (!S.Context.getLangOpts().CPlusPlus20)
6378 return nullptr;
6379
6380 // Match GCC on not implementing [temp.func.order]p6.2.1.
6381
6382 // C++20 [temp.func.order]p6:
6383 // If deduction against the other template succeeds for both transformed
6384 // templates, constraints can be considered as follows:
6385
6386 TemplateParameterList *TPL1 = P1->getTemplateParameters();
6387 TemplateParameterList *TPL2 = P2->getTemplateParameters();
6388 if (TPL1->size() != TPL2->size())
6389 return nullptr;
6390
6391 // C++20 [temp.func.order]p6.2.2:
6392 // Otherwise, if the corresponding template-parameters of the
6393 // template-parameter-lists are not equivalent ([temp.over.link]) or if the
6394 // function parameters that positionally correspond between the two
6395 // templates are not of the same type, neither template is more specialized
6396 // than the other.
6397 if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false,
6399 return nullptr;
6400
6401 if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2))
6402 return nullptr;
6403
6405 P1->getAssociatedConstraints(AC1);
6406 P2->getAssociatedConstraints(AC2);
6407 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
6408 if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) ||
6409 (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1))
6410 return nullptr;
6411 if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2))
6412 return nullptr;
6413 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
6414 return nullptr;
6415 return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2);
6416}
6417
6429
6432 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
6435
6437 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
6438 if (MaybeSpec)
6439 Info.clearSFINAEDiagnostic();
6440 return MaybeSpec;
6441}
6442
6447 // Pretend the variable template specializations are class template
6448 // specializations and form a fake injected class name type for comparison.
6449 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
6450 "the partial specializations being compared should specialize"
6451 " the same template.");
6453 QualType PT1 = Context.getCanonicalTemplateSpecializationType(
6455 QualType PT2 = Context.getCanonicalTemplateSpecializationType(
6457
6458 TemplateDeductionInfo Info(Loc);
6459 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
6460}
6461
6464 VarTemplateDecl *Primary = Spec->getSpecializedTemplate();
6465 TemplateName Name(Primary->getCanonicalDecl());
6466
6467 SmallVector<TemplateArgument, 8> PrimaryCanonArgs(
6469 Context.canonicalizeTemplateArguments(PrimaryCanonArgs);
6470
6471 QualType PrimaryT = Context.getCanonicalTemplateSpecializationType(
6472 ElaboratedTypeKeyword::None, Name, PrimaryCanonArgs);
6473 QualType PartialT = Context.getCanonicalTemplateSpecializationType(
6475
6477 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
6478 if (MaybeSpec)
6479 Info.clearSFINAEDiagnostic();
6480 return MaybeSpec;
6481}
6482
6485 const DefaultArguments &DefaultArgs, SourceLocation ArgLoc,
6486 bool PartialOrdering, bool *StrictPackMatch) {
6487 // C++1z [temp.arg.template]p4: (DR 150)
6488 // A template template-parameter P is at least as specialized as a
6489 // template template-argument A if, given the following rewrite to two
6490 // function templates...
6491
6492 // Rather than synthesize function templates, we merely perform the
6493 // equivalent partial ordering by performing deduction directly on
6494 // the template parameter lists of the template template parameters.
6495 //
6497
6501 if (Inst.isInvalid())
6502 return false;
6503
6504 // Given an invented class template X with the template parameter list of
6505 // A (including default arguments):
6506 // - Each function template has a single function parameter whose type is
6507 // a specialization of X with template arguments corresponding to the
6508 // template parameters from the respective function template
6510
6511 // Check P's arguments against A's parameter list. This will fill in default
6512 // template arguments as needed. AArgs are already correct by construction.
6513 // We can't just use CheckTemplateIdType because that will expand alias
6514 // templates.
6516 {
6518 P->getRAngleLoc());
6519 for (unsigned I = 0, N = P->size(); I != N; ++I) {
6520 // Unwrap packs that getInjectedTemplateArgs wrapped around pack
6521 // expansions, to form an "as written" argument list.
6522 TemplateArgument Arg = PArgs[I];
6523 if (Arg.getKind() == TemplateArgument::Pack) {
6524 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
6525 Arg = *Arg.pack_begin();
6526 }
6528 Arg, QualType(), P->getParam(I)->getLocation()));
6529 }
6530 PArgs.clear();
6531
6532 // C++1z [temp.arg.template]p3:
6533 // If the rewrite produces an invalid type, then P is not at least as
6534 // specialized as A.
6536 /*PartialOrdering=*/false, /*MatchingTTP=*/true);
6537 CTAI.SugaredConverted = std::move(PArgs);
6538 if (CheckTemplateArgumentList(AArg, ArgLoc, PArgList, DefaultArgs,
6539 /*PartialTemplateArgs=*/false, CTAI,
6540 /*UpdateArgsWithConversions=*/true,
6541 /*ConstraintsNotSatisfied=*/nullptr))
6542 return false;
6543 PArgs = std::move(CTAI.SugaredConverted);
6544 if (StrictPackMatch)
6545 *StrictPackMatch |= CTAI.StrictPackMatch;
6546 }
6547
6548 // Determine whether P1 is at least as specialized as P2.
6549 TemplateDeductionInfo Info(ArgLoc, A->getDepth());
6551 Deduced.resize(A->size());
6552
6553 // ... the function template corresponding to P is at least as specialized
6554 // as the function template corresponding to A according to the partial
6555 // ordering rules for function templates.
6556
6557 // Provisional resolution for CWG2398: Regarding temp.arg.template]p4, when
6558 // applying the partial ordering rules for function templates on
6559 // the rewritten template template parameters:
6560 // - In a deduced context, the matching of packs versus fixed-size needs to
6561 // be inverted between Ps and As. On non-deduced context, matching needs to
6562 // happen both ways, according to [temp.arg.template]p3, but this is
6563 // currently implemented as a special case elsewhere.
6565 *this, A, AArgs, PArgs, Info, Deduced,
6566 /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/true,
6568 /*HasDeducedAnyParam=*/nullptr)) {
6570 if (StrictPackMatch && Info.hasStrictPackMatch())
6571 *StrictPackMatch = true;
6572 break;
6573
6575 Diag(AArg->getLocation(), diag::err_template_param_list_different_arity)
6576 << (A->size() > P->size()) << /*isTemplateTemplateParameter=*/true
6578 return false;
6580 Diag(AArg->getLocation(), diag::err_non_deduced_mismatch)
6581 << Info.FirstArg << Info.SecondArg;
6582 return false;
6585 diag::err_inconsistent_deduction)
6586 << Info.FirstArg << Info.SecondArg;
6587 return false;
6589 return false;
6590
6591 // None of these should happen for a plain deduction.
6606 llvm_unreachable("Unexpected Result");
6607 }
6608
6611 TDK = ::FinishTemplateArgumentDeduction(
6612 *this, AArg, AArg->getTemplateParameters(), AArg, PartialOrdering,
6613 AArgs, PArgs, Deduced, Info, /*CopyDeducedArgs=*/false);
6614 });
6615 switch (TDK) {
6617 return true;
6618
6619 // It doesn't seem possible to get a non-deduced mismatch when partial
6620 // ordering TTPs, except with an invalid template parameter list which has
6621 // a parameter after a pack.
6623 assert(PArg->isInvalidDecl() && "Unexpected NonDeducedMismatch");
6624 return false;
6625
6626 // Substitution failures should have already been diagnosed.
6630 return false;
6631
6632 // None of these should happen when just converting deduced arguments.
6647 llvm_unreachable("Unexpected Result");
6648 }
6649 llvm_unreachable("Unexpected TDK");
6650}
6651
6652namespace {
6653struct MarkUsedTemplateParameterVisitor : DynamicRecursiveASTVisitor {
6654 llvm::SmallBitVector &Used;
6655 unsigned Depth;
6656 bool VisitDeclRefTypes = true;
6657
6658 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, unsigned Depth,
6659 bool VisitDeclRefTypes = true)
6660 : Used(Used), Depth(Depth), VisitDeclRefTypes(VisitDeclRefTypes) {}
6661
6662 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override {
6663 if (T->getDepth() == Depth)
6664 Used[T->getIndex()] = true;
6665 return true;
6666 }
6667
6668 bool TraverseTemplateName(TemplateName Template) override {
6669 if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
6670 Template.getAsTemplateDecl()))
6671 if (TTP->getDepth() == Depth)
6672 Used[TTP->getIndex()] = true;
6674 return true;
6675 }
6676
6677 bool VisitDeclRefExpr(DeclRefExpr *E) override {
6678 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
6679 if (NTTP->getDepth() == Depth)
6680 Used[NTTP->getIndex()] = true;
6681 if (VisitDeclRefTypes)
6683 return true;
6684 }
6685
6686 bool VisitUnresolvedLookupExpr(UnresolvedLookupExpr *ULE) override {
6687 if (ULE->isConceptReference() || ULE->isVarDeclReference()) {
6688 if (auto *TTP = ULE->getTemplateTemplateDecl()) {
6689 if (TTP->getDepth() == Depth)
6690 Used[TTP->getIndex()] = true;
6691 }
6692 for (auto &TLoc : ULE->template_arguments())
6694 }
6695 return true;
6696 }
6697
6698 bool TraverseSizeOfPackExpr(SizeOfPackExpr *SOPE) override {
6699 return TraverseDecl(SOPE->getPack());
6700 }
6701};
6702}
6703
6704/// Mark the template parameters that are used by the given
6705/// expression.
6706static void
6708 const Expr *E,
6709 bool OnlyDeduced,
6710 unsigned Depth,
6711 llvm::SmallBitVector &Used) {
6712 if (!OnlyDeduced) {
6713 MarkUsedTemplateParameterVisitor(Used, Depth)
6714 .TraverseStmt(const_cast<Expr *>(E));
6715 return;
6716 }
6717
6718 // We can deduce from a pack expansion.
6719 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
6720 E = Expansion->getPattern();
6721
6723 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E);
6724 ULE && (ULE->isConceptReference() || ULE->isVarDeclReference())) {
6725 if (const auto *TTP = ULE->getTemplateTemplateDecl())
6726 Used[TTP->getIndex()] = true;
6727 for (auto &TLoc : ULE->template_arguments())
6728 MarkUsedTemplateParameters(Ctx, TLoc.getArgument(), OnlyDeduced, Depth,
6729 Used);
6730 return;
6731 }
6732
6733 const NonTypeOrVarTemplateParmDecl NTTP =
6735 if (!NTTP)
6736 return;
6737 if (NTTP.getDepth() == Depth)
6738 Used[NTTP.getIndex()] = true;
6739
6740 // In C++17 mode, additional arguments may be deduced from the type of a
6741 // non-type argument.
6742 if (Ctx.getLangOpts().CPlusPlus17)
6743 MarkUsedTemplateParameters(Ctx, NTTP.getType(), OnlyDeduced, Depth, Used);
6744}
6745
6746/// Mark the template parameters that are used by the given
6747/// nested name specifier.
6749 bool OnlyDeduced, unsigned Depth,
6750 llvm::SmallBitVector &Used) {
6752 return;
6753 MarkUsedTemplateParameters(Ctx, QualType(NNS.getAsType(), 0), OnlyDeduced,
6754 Depth, Used);
6755}
6756
6757/// Mark the template parameters that are used by the given
6758/// template name.
6759static void
6761 TemplateName Name,
6762 bool OnlyDeduced,
6763 unsigned Depth,
6764 llvm::SmallBitVector &Used) {
6765 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
6767 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
6768 if (TTP->getDepth() == Depth)
6769 Used[TTP->getIndex()] = true;
6770 }
6771 return;
6772 }
6773
6775 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
6776 Depth, Used);
6778 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
6779 Depth, Used);
6780}
6781
6782/// Mark the template parameters that are used by the given
6783/// type.
6784static void
6786 bool OnlyDeduced,
6787 unsigned Depth,
6788 llvm::SmallBitVector &Used) {
6789 if (T.isNull())
6790 return;
6791
6792 // Non-dependent types have nothing deducible
6793 if (!T->isDependentType())
6794 return;
6795
6796 T = Ctx.getCanonicalType(T);
6797 switch (T->getTypeClass()) {
6798 case Type::Pointer:
6801 OnlyDeduced,
6802 Depth,
6803 Used);
6804 break;
6805
6806 case Type::BlockPointer:
6809 OnlyDeduced,
6810 Depth,
6811 Used);
6812 break;
6813
6814 case Type::LValueReference:
6815 case Type::RValueReference:
6818 OnlyDeduced,
6819 Depth,
6820 Used);
6821 break;
6822
6823 case Type::MemberPointer: {
6824 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
6825 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
6826 Depth, Used);
6828 QualType(MemPtr->getQualifier().getAsType(), 0),
6829 OnlyDeduced, Depth, Used);
6830 break;
6831 }
6832
6833 case Type::DependentSizedArray:
6835 cast<DependentSizedArrayType>(T)->getSizeExpr(),
6836 OnlyDeduced, Depth, Used);
6837 // Fall through to check the element type
6838 [[fallthrough]];
6839
6840 case Type::ConstantArray:
6841 case Type::IncompleteArray:
6842 case Type::ArrayParameter:
6844 cast<ArrayType>(T)->getElementType(),
6845 OnlyDeduced, Depth, Used);
6846 break;
6847 case Type::Vector:
6848 case Type::ExtVector:
6850 cast<VectorType>(T)->getElementType(),
6851 OnlyDeduced, Depth, Used);
6852 break;
6853
6854 case Type::DependentVector: {
6855 const auto *VecType = cast<DependentVectorType>(T);
6856 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
6857 Depth, Used);
6858 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
6859 Used);
6860 break;
6861 }
6862 case Type::DependentSizedExtVector: {
6863 const DependentSizedExtVectorType *VecType
6865 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
6866 Depth, Used);
6867 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
6868 Depth, Used);
6869 break;
6870 }
6871
6872 case Type::DependentAddressSpace: {
6873 const DependentAddressSpaceType *DependentASType =
6875 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
6876 OnlyDeduced, Depth, Used);
6878 DependentASType->getAddrSpaceExpr(),
6879 OnlyDeduced, Depth, Used);
6880 break;
6881 }
6882
6883 case Type::ConstantMatrix: {
6885 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
6886 Depth, Used);
6887 break;
6888 }
6889
6890 case Type::DependentSizedMatrix: {
6892 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
6893 Depth, Used);
6894 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth,
6895 Used);
6896 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced,
6897 Depth, Used);
6898 break;
6899 }
6900
6901 case Type::FunctionProto: {
6903 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
6904 Used);
6905 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
6906 // C++17 [temp.deduct.type]p5:
6907 // The non-deduced contexts are: [...]
6908 // -- A function parameter pack that does not occur at the end of the
6909 // parameter-declaration-list.
6910 if (!OnlyDeduced || I + 1 == N ||
6911 !Proto->getParamType(I)->getAs<PackExpansionType>()) {
6912 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
6913 Depth, Used);
6914 } else {
6915 // FIXME: C++17 [temp.deduct.call]p1:
6916 // When a function parameter pack appears in a non-deduced context,
6917 // the type of that pack is never deduced.
6918 //
6919 // We should also track a set of "never deduced" parameters, and
6920 // subtract that from the list of deduced parameters after marking.
6921 }
6922 }
6923 if (auto *E = Proto->getNoexceptExpr())
6924 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
6925 break;
6926 }
6927
6928 case Type::TemplateTypeParm: {
6929 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
6930 if (TTP->getDepth() == Depth)
6931 Used[TTP->getIndex()] = true;
6932 break;
6933 }
6934
6935 case Type::SubstTemplateTypeParmPack: {
6936 const SubstTemplateTypeParmPackType *Subst
6938 if (Subst->getReplacedParameter()->getDepth() == Depth)
6939 Used[Subst->getIndex()] = true;
6940 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), OnlyDeduced,
6941 Depth, Used);
6942 break;
6943 }
6944 case Type::SubstBuiltinTemplatePack: {
6945 MarkUsedTemplateParameters(Ctx, cast<SubstPackType>(T)->getArgumentPack(),
6946 OnlyDeduced, Depth, Used);
6947 break;
6948 }
6949
6950 case Type::InjectedClassName:
6952 ->getDecl()
6953 ->getCanonicalTemplateSpecializationType(Ctx);
6954 [[fallthrough]];
6955
6956 case Type::TemplateSpecialization: {
6957 const TemplateSpecializationType *Spec
6959
6960 TemplateName Name = Spec->getTemplateName();
6961 if (OnlyDeduced && Name.getAsDependentTemplateName())
6962 break;
6963
6964 MarkUsedTemplateParameters(Ctx, Name, OnlyDeduced, Depth, Used);
6965
6966 // C++0x [temp.deduct.type]p9:
6967 // If the template argument list of P contains a pack expansion that is
6968 // not the last template argument, the entire template argument list is a
6969 // non-deduced context.
6970 if (OnlyDeduced &&
6971 hasPackExpansionBeforeEnd(Spec->template_arguments()))
6972 break;
6973
6974 for (const auto &Arg : Spec->template_arguments())
6975 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
6976 break;
6977 }
6978
6979 case Type::Complex:
6980 if (!OnlyDeduced)
6982 cast<ComplexType>(T)->getElementType(),
6983 OnlyDeduced, Depth, Used);
6984 break;
6985
6986 case Type::Atomic:
6987 if (!OnlyDeduced)
6989 cast<AtomicType>(T)->getValueType(),
6990 OnlyDeduced, Depth, Used);
6991 break;
6992
6993 case Type::DependentName:
6994 if (!OnlyDeduced)
6996 cast<DependentNameType>(T)->getQualifier(),
6997 OnlyDeduced, Depth, Used);
6998 break;
6999
7000 case Type::TypeOf:
7001 if (!OnlyDeduced)
7002 MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(),
7003 OnlyDeduced, Depth, Used);
7004 break;
7005
7006 case Type::TypeOfExpr:
7007 if (!OnlyDeduced)
7009 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
7010 OnlyDeduced, Depth, Used);
7011 break;
7012
7013 case Type::Decltype:
7014 if (!OnlyDeduced)
7016 cast<DecltypeType>(T)->getUnderlyingExpr(),
7017 OnlyDeduced, Depth, Used);
7018 break;
7019
7020 case Type::PackIndexing:
7021 if (!OnlyDeduced) {
7023 OnlyDeduced, Depth, Used);
7025 OnlyDeduced, Depth, Used);
7026 }
7027 break;
7028
7029 case Type::UnaryTransform:
7030 if (!OnlyDeduced) {
7031 auto *UTT = cast<UnaryTransformType>(T);
7032 auto Next = UTT->getUnderlyingType();
7033 if (Next.isNull())
7034 Next = UTT->getBaseType();
7035 MarkUsedTemplateParameters(Ctx, Next, OnlyDeduced, Depth, Used);
7036 }
7037 break;
7038
7039 case Type::PackExpansion:
7041 cast<PackExpansionType>(T)->getPattern(),
7042 OnlyDeduced, Depth, Used);
7043 break;
7044
7045 case Type::Auto:
7046 case Type::DeducedTemplateSpecialization:
7048 cast<DeducedType>(T)->getDeducedType(),
7049 OnlyDeduced, Depth, Used);
7050 break;
7051 case Type::DependentBitInt:
7053 cast<DependentBitIntType>(T)->getNumBitsExpr(),
7054 OnlyDeduced, Depth, Used);
7055 break;
7056
7057 case Type::HLSLAttributedResource:
7059 Ctx, cast<HLSLAttributedResourceType>(T)->getWrappedType(), OnlyDeduced,
7060 Depth, Used);
7061 if (cast<HLSLAttributedResourceType>(T)->hasContainedType())
7063 Ctx, cast<HLSLAttributedResourceType>(T)->getContainedType(),
7064 OnlyDeduced, Depth, Used);
7065 break;
7066
7067 // None of these types have any template parameters in them.
7068 case Type::Builtin:
7069 case Type::VariableArray:
7070 case Type::FunctionNoProto:
7071 case Type::Record:
7072 case Type::Enum:
7073 case Type::ObjCInterface:
7074 case Type::ObjCObject:
7075 case Type::ObjCObjectPointer:
7076 case Type::UnresolvedUsing:
7077 case Type::Pipe:
7078 case Type::BitInt:
7079 case Type::HLSLInlineSpirv:
7080#define TYPE(Class, Base)
7081#define ABSTRACT_TYPE(Class, Base)
7082#define DEPENDENT_TYPE(Class, Base)
7083#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7084#include "clang/AST/TypeNodes.inc"
7085 break;
7086 }
7087}
7088
7089/// Mark the template parameters that are used by this
7090/// template argument.
7091static void
7094 bool OnlyDeduced,
7095 unsigned Depth,
7096 llvm::SmallBitVector &Used) {
7097 switch (TemplateArg.getKind()) {
7103 break;
7104
7106 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
7107 Depth, Used);
7108 break;
7109
7113 TemplateArg.getAsTemplateOrTemplatePattern(),
7114 OnlyDeduced, Depth, Used);
7115 break;
7116
7118 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
7119 Depth, Used);
7120 break;
7121
7123 for (const auto &P : TemplateArg.pack_elements())
7124 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
7125 break;
7126 }
7127}
7128
7129void
7130Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
7131 unsigned Depth,
7132 llvm::SmallBitVector &Used) {
7133 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
7134}
7135
7137 const Expr *E, unsigned Depth, llvm::SmallBitVector &Used) {
7138 MarkUsedTemplateParameterVisitor(Used, Depth, /*VisitDeclRefTypes=*/false)
7139 .TraverseStmt(const_cast<Expr *>(E));
7140}
7141
7142void
7144 bool OnlyDeduced, unsigned Depth,
7145 llvm::SmallBitVector &Used) {
7146 // C++0x [temp.deduct.type]p9:
7147 // If the template argument list of P contains a pack expansion that is not
7148 // the last template argument, the entire template argument list is a
7149 // non-deduced context.
7150 if (OnlyDeduced &&
7151 hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
7152 return;
7153
7154 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7155 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
7156 Depth, Used);
7157}
7158
7160 unsigned Depth,
7161 llvm::SmallBitVector &Used) {
7162 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7163 ::MarkUsedTemplateParameters(Context, TemplateArgs[I],
7164 /*OnlyDeduced=*/false, Depth, Used);
7165}
7166
7168 ArrayRef<TemplateArgumentLoc> TemplateArgs, unsigned Depth,
7169 llvm::SmallBitVector &Used) {
7170 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7172 /*OnlyDeduced=*/false, Depth, Used);
7173}
7174
7177 llvm::SmallBitVector &Deduced) {
7178 TemplateParameterList *TemplateParams
7179 = FunctionTemplate->getTemplateParameters();
7180 Deduced.clear();
7181 Deduced.resize(TemplateParams->size());
7182
7183 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
7184 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
7185 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
7186 true, TemplateParams->getDepth(), Deduced);
7187}
7188
7191 QualType T) {
7192 if (!T->isDependentType())
7193 return false;
7194
7195 TemplateParameterList *TemplateParams
7196 = FunctionTemplate->getTemplateParameters();
7197 llvm::SmallBitVector Deduced(TemplateParams->size());
7198 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
7199 Deduced);
7200
7201 return Deduced.any();
7202}
Defines the clang::ASTContext interface.
This file provides some common utility functions for processing Lambda related AST Constructs.
Provides definitions for the various language-specific address spaces.
static Decl::Kind getKind(const Decl *D)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
Defines the ExceptionSpecificationType enumeration and various utility functions.
Defines the clang::Expr interface and subclasses for C++ expressions.
TokenType getType() const
Returns the token's type, e.g.
FormatToken * Next
The next token in the unwrapped line.
#define X(type, name)
Definition Value.h:97
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines the clang::LangOptions interface.
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream.
static TemplateDeductionResult DeduceNullPtrTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, NonTypeOrVarTemplateParmDecl NTTP, QualType NullPtrType, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
Deduce the value of the given non-type template parameter from the given null pointer template argume...
static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template, TemplateDeductionInfo &Info, bool IsDeduced, Sema::CheckTemplateArgumentInfo &CTAI)
Convert the given deduced template argument and add it to the set of fully-converted template argumen...
static TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, ArrayRef< TemplateArgument > Ps, ArrayRef< TemplateArgument > As, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool NumberOfArgumentsMustMatch, bool PartialOrdering, PackFold PackFold, bool *HasDeducedAnyParam)
static TemplateDeductionResult DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, const QualType P, QualType A, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(Sema &S, TemplateParameterList *TemplateParams, QualType Param, QualType Arg, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, unsigned TDF, PartialOrderingKind POK, bool DeducedFromArrayBound, bool *HasDeducedAnyParam)
Deduce the template arguments by comparing the parameter type and the argument type (C++ [temp....
static TemplateDeductionResult CheckDeductionConsistency(Sema &S, FunctionTemplateDecl *FTD, UnsignedOrNone ArgIdx, QualType P, QualType A, ArrayRef< TemplateArgument > DeducedArgs, bool CheckConsistency)
static PartialOrderingKind degradeCallPartialOrderingKind(PartialOrderingKind POK)
When propagating a partial ordering kind into a NonCall context, this is used to downgrade a 'Call' i...
static MoreSpecializedTrailingPackTieBreakerResult getMoreSpecializedTrailingPackTieBreaker(const TemplateSpecializationType *TST1, const TemplateSpecializationType *TST2)
static TemplateLikeDecl * getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, PrimaryDel *P2, TemplateDeductionInfo &Info)
Returns the more specialized template specialization between T1/P1 and T2/P2.
static DeducedTemplateArgument checkDeducedTemplateArguments(ASTContext &Context, const DeducedTemplateArgument &X, const DeducedTemplateArgument &Y, bool AggregateCandidateDeduction=false)
Verify that the given, deduced template arguments are compatible.
static const Expr * unwrapExpressionForDeduction(const Expr *E)
static bool isSameDeclaration(Decl *X, Decl *Y)
Determine whether two declaration pointers refer to the same declaration.
static NonTypeOrVarTemplateParmDecl getDeducedNTTParameterFromExpr(const Expr *E, unsigned Depth)
If the given expression is of a form that permits the deduction of a non-type template parameter,...
static TemplateDeductionResult DeduceForEachType(Sema &S, TemplateParameterList *TemplateParams, ArrayRef< QualType > Params, ArrayRef< QualType > Args, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, PartialOrderingKind POK, bool FinishingDeduction, T &&DeductFunc)
static TemplateDeductionResult DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, TemplateParameterList *TemplateParams, QualType P, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
Attempt to deduce the template arguments by checking the base types according to (C++20 [temp....
static bool hasTemplateArgumentForDeduction(ArrayRef< TemplateArgument > &Args, unsigned &ArgIdx)
Determine whether there is a template argument to be used for deduction.
static DeclContext * getAsDeclContextOrEnclosing(Decl *D)
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, QualType ArgType)
Determine whether the parameter has qualifiers that the argument lacks.
static void MarkUsedTemplateParameters(ASTContext &Ctx, const TemplateArgument &TemplateArg, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used)
Mark the template parameters that are used by this template argument.
static UnsignedOrNone getPackIndexForParam(Sema &S, FunctionTemplateDecl *FunctionTemplate, const MultiLevelTemplateArgumentList &Args, unsigned ParamIdx)
Find the pack index for a particular parameter index in an instantiation of a function template with ...
static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, FunctionDecl *Fn)
Gets the type of a function for template-argument-deducton purposes when it's considered as part of a...
static bool hasPackExpansionBeforeEnd(ArrayRef< TemplateArgument > Args)
Determine whether the given set of template arguments has a pack expansion that is not the last templ...
static bool isSimpleTemplateIdType(QualType T)
Determine whether the given type T is a simple-template-id type.
PartialOrderingKind
The kind of PartialOrdering we're performing template argument deduction for (C++11 [temp....
MoreSpecializedTrailingPackTieBreakerResult
static TemplateParameter makeTemplateParameter(Decl *D)
Helper function to build a TemplateParameter when we don't know its type statically.
static TemplateDeductionResult CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, Sema::OriginalCallArg OriginalArg, QualType DeducedA)
Check whether the deduced argument type for a call to a function template matches the actual argument...
static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType &ParamType, QualType &ArgType, Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF, TemplateSpecCandidateSet *FailedTSC=nullptr)
Perform the adjustments to the parameter and argument types described in C++ [temp....
static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType ParamType, QualType ArgType, Expr::Classification ArgClassification, Expr *Arg, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, SmallVectorImpl< Sema::OriginalCallArg > &OriginalCallArgs, bool DecomposedParam, unsigned ArgIdx, unsigned TDF, TemplateSpecCandidateSet *FailedTSC=nullptr)
Perform template argument deduction per [temp.deduct.call] for a single parameter / argument pair.
static bool isAtLeastAsSpecializedAs(Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC, ArrayRef< QualType > Args1, ArrayRef< QualType > Args2, bool Args1Offset)
Determine whether the function template FT1 is at least as specialized as FT2.
static QualType GetImplicitObjectParameterType(ASTContext &Context, const CXXMethodDecl *Method, QualType RawType, bool IsOtherRvr)
static TemplateDeductionResult DeduceFromInitializerList(Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, InitListExpr *ILE, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, SmallVectorImpl< Sema::OriginalCallArg > &OriginalCallArgs, unsigned ArgIdx, unsigned TDF)
Attempt template argument deduction from an initializer list deemed to be an argument in a function c...
static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD)
Get the index of the first template parameter that was originally from the innermost template-paramet...
PackFold
What directions packs are allowed to match non-packs.
static TemplateDeductionResult ConvertDeducedTemplateArguments(Sema &S, NamedDecl *Template, TemplateParameterList *TemplateParams, bool IsDeduced, SmallVectorImpl< DeducedTemplateArgument > &Deduced, TemplateDeductionInfo &Info, Sema::CheckTemplateArgumentInfo &CTAI, LocalInstantiationScope *CurrentInstantiationScope, unsigned NumAlreadyConverted, bool *IsIncomplete)
static QualType ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, Expr *Arg, QualType ParamType, bool ParamWasReference, TemplateSpecCandidateSet *FailedTSC=nullptr)
Apply the deduction rules for overload sets.
static bool IsPossiblyOpaquelyQualifiedType(QualType T)
Determines whether the given type is an opaque type that might be more qualified when instantiated.
static TemplateDeductionResult CheckDeducedArgumentConstraints(Sema &S, NamedDecl *Template, ArrayRef< TemplateArgument > SugaredDeducedArgs, ArrayRef< TemplateArgument > CanonicalDeducedArgs, TemplateDeductionInfo &Info)
static const TemplateSpecializationType * getLastTemplateSpecType(QualType QT)
Deduce the template arguments by comparing the template parameter type (which is a template-id) with ...
static TemplateDeductionResult instantiateExplicitSpecifierDeferred(Sema &S, FunctionDecl *Specialization, const MultiLevelTemplateArgumentList &SubstArgs, TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate, ArrayRef< TemplateArgument > DeducedArgs)
static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, AutoTypeLoc TypeLoc, QualType Deduced)
static TemplateDeductionResult DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, const NonTypeOrVarTemplateParmDecl NTTP, const DeducedTemplateArgument &NewDeduced, QualType ValueType, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
Deduce the value of the given non-type template parameter as the given deduced template argument.
static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T)
static bool hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, QualType T)
static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex)
Determine whether a type denotes a forwarding reference.
static TemplateDeductionResult FinishTemplateArgumentDeduction(Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL, TemplateDecl *Template, bool PartialOrdering, ArrayRef< TemplateArgumentLoc > Ps, ArrayRef< TemplateArgument > As, SmallVectorImpl< DeducedTemplateArgument > &Deduced, TemplateDeductionInfo &Info, bool CopyDeducedArgs)
Complete template argument deduction.
static bool isParameterPack(Expr *PackExpression)
Defines the clang::SourceLocation class and associated facilities.
Defines various enumerations that describe declaration and type specifiers.
static QualType getPointeeType(const MemRegion *R)
Defines the clang::TemplateNameKind enum.
Defines the clang::TypeLoc interface and its subclasses.
Allows QualTypes to be sorted and hence used in maps and sets.
static const TemplateArgument & getArgument(const TemplateArgument &A)
C Language Family Type Representation.
const TemplateTemplateParmDecl * getTemplate() const
const NonTypeTemplateParmDecl * getNTTP() const
NonTypeOrVarTemplateParmDecl(const NamedDecl *Template)
TemplateParameter asTemplateParam() const
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
const ConstantArrayType * getAsConstantArrayType(QualType T) const
QualType getRValueReferenceType(QualType T) const
Return the uniqued reference to the type for an rvalue reference to the specified type.
unsigned getIntWidth(QualType T) const
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg) const
Retrieve the "canonical" template argument.
static CanQualType getCanonicalType(QualType T)
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
const IncompleteArrayType * getAsIncompleteArrayType(QualType T) const
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type.
CanQualType DependentTy
CanQualType NullPtrTy
const LangOptions & getLangOpts() const
Definition ASTContext.h:926
QualType getDecayedType(QualType T) const
Return the uniqued reference to the decayed version of the given type.
CanQualType BoolTy
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
QualType removeAddrSpaceQualType(QualType T) const
Remove any existing address space on the type and returns the type with qualifiers intact (or that's ...
CanQualType IntTy
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
LangAS getDefaultOpenCLPointeeAddrSpace()
Returns default address space based on OpenCL version and enabled features.
CanQualType OverloadTy
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
CanQualType UnsignedIntTy
QualType getMemberPointerType(QualType T, NestedNameSpecifier Qualifier, const CXXRecordDecl *Cls) const
Return the uniqued reference to the type for a member pointer to the specified type in the specified ...
static bool hasSameType(QualType T1, QualType T2)
Determine whether the given types T1 and T2 are equivalent.
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y, bool IgnoreDeduced=false) const
Determine whether the given template names refer to the same template.
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const
Return the uniqued reference to the type for an address space qualified type with the specified type ...
CanQualType getCanonicalTagType(const TagDecl *TD) const
bool isSameTemplateArgument(const TemplateArgument &Arg1, const TemplateArgument &Arg2) const
Determine whether the given template arguments Arg1 and Arg2 are equivalent.
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals) const
Return this type as a completely-unqualified array type, capturing the qualifiers in Quals.
TemplateName getDeducedTemplateName(TemplateName Underlying, DefaultArguments DefaultArgs) const
Represents a TemplateName which had some of its default arguments deduced.
const DependentSizedArrayType * getAsDependentSizedArrayType(QualType T) const
PtrTy get() const
Definition Ownership.h:171
bool isInvalid() const
Definition Ownership.h:167
A fixed int type of a specified bitwidth.
Definition TypeBase.h:8130
Pointer to a block type.
Definition TypeBase.h:3542
Represents a C++ conversion function within a class.
Definition DeclCXX.h:2943
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition DeclCXX.h:2983
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
bool isExplicitObjectMemberFunction() const
[C++2b][dcl.fct]/p7 An explicit object member function is a non-static member function with an explic...
Definition DeclCXX.cpp:2703
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this method.
Definition DeclCXX.h:2305
bool isStatic() const
Definition DeclCXX.cpp:2401
The null pointer literal (C++11 [lex.nullptr])
Definition ExprCXX.h:768
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
base_class_range bases()
Definition DeclCXX.h:608
CXXMethodDecl * getLambdaCallOperator() const
Retrieve the lambda call operator of the closure type if this is a closure type.
Definition DeclCXX.cpp:1736
Declaration of a class template.
CanQualType getCanonicalInjectedSpecializationType(const ASTContext &Ctx) const
Retrieve the canonical template specialization type of the injected-class-name for this class templat...
CanQualType getCanonicalInjectedSpecializationType(const ASTContext &Ctx) const
Retrieves the canonical injected specialization type for this partial specialization.
ClassTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
Complex values, per C99 6.2.5p11.
Definition TypeBase.h:3275
Declaration of a C++20 concept.
const TypeClass * getTypePtr() const
Definition TypeLoc.h:433
Represents a concrete matrix type with constant number of rows and columns.
Definition TypeBase.h:4373
unsigned getNumColumns() const
Returns the number of columns in the matrix.
Definition TypeBase.h:4392
unsigned getNumRows() const
Returns the number of rows in the matrix.
Definition TypeBase.h:4389
The result of a constraint satisfaction check, containing the necessary information to diagnose an un...
Definition ASTConcept.h:47
A POD class for pairing a NamedDecl* with an access specifier.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition DeclBase.h:1449
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
ValueDecl * getDecl()
Definition Expr.h:1338
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
TemplateDecl * getDescribedTemplate() const
If this is a declaration that describes some template, this method returns that template declaration.
Definition DeclBase.cpp:285
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:546
bool isInvalidDecl() const
Definition DeclBase.h:588
SourceLocation getLocation() const
Definition DeclBase.h:439
DeclContext * getDeclContext()
Definition DeclBase.h:448
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition DeclBase.h:978
Kind getKind() const
Definition DeclBase.h:442
Captures a template argument whose value has been deduced via c++ template argument deduction.
Definition Template.h:331
void setDeducedFromArrayBound(bool Deduced)
Specify whether the given non-type template argument was deduced from an array bound.
Definition Template.h:358
bool wasDeducedFromArrayBound() const
For a non-type template argument, determine whether the template argument was deduced from an array b...
Definition Template.h:354
SourceLocation getElaboratedKeywordLoc() const
Definition TypeLoc.h:2480
NestedNameSpecifierLoc getQualifierLoc() const
Definition TypeLoc.h:2492
Represents an extended address space qualifier where the input address space value is dependent.
Definition TypeBase.h:4061
QualType getPointeeType() const
Definition TypeBase.h:4073
Represents an extended vector type where either the type or size is dependent.
Definition TypeBase.h:4101
Represents a matrix type where the type and the number of rows and columns is dependent on a template...
Definition TypeBase.h:4420
Represents a vector type where either the type or size is dependent.
Definition TypeBase.h:4227
virtual bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc)
virtual bool TraverseTemplateName(TemplateName Template)
virtual bool TraverseType(QualType T, bool TraverseQualifier=true)
RAII object that enters a new expression evaluation context.
Store information needed for an explicit specifier.
Definition DeclCXX.h:1924
bool isInvalid() const
Determine if the explicit specifier is invalid.
Definition DeclCXX.h:1953
const Expr * getExpr() const
Definition DeclCXX.h:1933
The return type of classify().
Definition Expr.h:337
bool isLValue() const
Definition Expr.h:387
This represents one expression.
Definition Expr.h:112
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition Expr.h:177
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
Expr * IgnoreImplicitAsWritten() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3077
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
QualType getType() const
Definition Expr.h:144
ExtVectorType - Extended vector type.
Definition TypeBase.h:4267
Stores a list of template parameters and the associated requires-clause (if any) for a TemplateDecl a...
Represents a function declaration or definition.
Definition Decl.h:2000
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2797
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition Decl.cpp:4197
bool hasCXXExplicitFunctionObjectParameter() const
Definition Decl.cpp:3857
QualType getReturnType() const
Definition Decl.h:2845
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2774
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition Decl.cpp:4256
void getAssociatedConstraints(SmallVectorImpl< AssociatedConstraint > &ACs) const
Get the associated-constraints of this function declaration.
Definition Decl.h:2752
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition Decl.cpp:4321
bool isImmediateEscalating() const
Definition Decl.cpp:3303
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any.
Definition Decl.cpp:4122
size_t param_size() const
Definition Decl.h:2790
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5254
param_type_iterator param_type_begin() const
Definition TypeBase.h:5698
const ExtParameterInfo * getExtParameterInfosOrNull() const
Return a pointer to the beginning of the array of extra parameter information, if present,...
Definition TypeBase.h:5736
unsigned getNumParams() const
Definition TypeBase.h:5532
bool hasTrailingReturn() const
Whether this function prototype has a trailing return type.
Definition TypeBase.h:5674
Qualifiers getMethodQuals() const
Definition TypeBase.h:5680
QualType getParamType(unsigned i) const
Definition TypeBase.h:5534
bool hasExceptionSpec() const
Return whether this function has any kind of exception spec.
Definition TypeBase.h:5567
bool isVariadic() const
Whether this function prototype is variadic.
Definition TypeBase.h:5658
ExtProtoInfo getExtProtoInfo() const
Definition TypeBase.h:5543
Expr * getNoexceptExpr() const
Return the expression inside noexcept(expression), or a null pointer if there is none (because the ex...
Definition TypeBase.h:5619
param_type_iterator param_type_end() const
Definition TypeBase.h:5702
ArrayRef< QualType > getParamTypes() const
Definition TypeBase.h:5539
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition TypeBase.h:5688
Declaration of a template function.
FunctionDecl * getTemplatedDecl() const
Get the underlying function declaration of the template.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4450
QualType getReturnType() const
Definition TypeBase.h:4790
static ImplicitConceptSpecializationDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation SL, ArrayRef< TemplateArgument > ConvertedArgs)
Describes an C or C++ initializer list.
Definition Expr.h:5233
unsigned getNumInits() const
Definition Expr.h:5263
unsigned getNumInitsWithEmbedExpanded() const
getNumInits but if the list has an EmbedExpr inside includes full length of embedded data.
Definition Expr.h:5267
ArrayRef< Expr * > inits()
Definition Expr.h:5283
An lvalue reference type, per C++11 [dcl.ref].
Definition TypeBase.h:3617
A stack-allocated class that identifies which local variable declaration instantiations are present i...
Definition Template.h:369
NamedDecl * getPartiallySubstitutedPack(const TemplateArgument **ExplicitArgs=nullptr, unsigned *NumExplicitArgs=nullptr) const
Retrieve the partially-substitued template parameter pack.
void ResetPartiallySubstitutedPack()
Reset the partially-substituted pack when it is no longer of interest.
Definition Template.h:557
Represents a matrix type, as defined in the Matrix Types clang extensions.
Definition TypeBase.h:4337
QualType getElementType() const
Returns type of the elements being stored in the matrix.
Definition TypeBase.h:4351
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition TypeBase.h:3653
NestedNameSpecifier getQualifier() const
Definition TypeBase.h:3685
QualType getPointeeType() const
Definition TypeBase.h:3671
Data structure that captures multiple levels of template argument lists for use in template instantia...
Definition Template.h:76
void addOuterRetainedLevels(unsigned Num)
Definition Template.h:264
void replaceInnermostTemplateArguments(Decl *AssociatedDecl, ArgList Args, bool Final=false)
Replaces the current 'innermost' level with the provided argument list.
Definition Template.h:237
This represents a decl that may have a name.
Definition Decl.h:274
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition Decl.h:487
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition Decl.h:340
Class that aids in the construction of nested-name-specifiers along with source-location information ...
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a pointer to an Objective C object.
Definition TypeBase.h:7896
A reference to an overloaded function set, either an UnresolvedLookupExpr or an UnresolvedMemberExpr.
Definition ExprCXX.h:3128
bool isVarDeclReference() const
Definition ExprCXX.h:3302
bool hasExplicitTemplateArgs() const
Determines whether this expression had explicit template arguments.
Definition ExprCXX.h:3280
static FindResult find(Expr *E)
Finds the overloaded expression in the given expression E of OverloadTy.
Definition ExprCXX.h:3189
SourceLocation getNameLoc() const
Gets the location of the name.
Definition ExprCXX.h:3241
decls_iterator decls_begin() const
Definition ExprCXX.h:3221
TemplateTemplateParmDecl * getTemplateTemplateDecl() const
Definition ExprCXX.h:3318
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const
Copies the template arguments into the given structure.
Definition ExprCXX.h:3342
bool isConceptReference() const
Definition ExprCXX.h:3291
decls_iterator decls_end() const
Definition ExprCXX.h:3224
ArrayRef< TemplateArgumentLoc > template_arguments() const
Definition ExprCXX.h:3337
Represents a C++11 pack expansion that produces a sequence of expressions.
Definition ExprCXX.h:4363
A single parameter index whose accessors require each use to make explicit the parameter index encodi...
Definition Attr.h:273
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
QualType getPointeeType() const
Definition TypeBase.h:3338
A (possibly-)qualified type.
Definition TypeBase.h:937
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition TypeBase.h:8367
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8278
LangAS getAddressSpace() const
Return the address space of this type.
Definition TypeBase.h:8404
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition TypeBase.h:8318
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition TypeBase.h:8463
QualType getCanonicalType() const
Definition TypeBase.h:8330
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition TypeBase.h:8372
unsigned getCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers applied to this type.
Definition TypeBase.h:8324
Represents a template name as written in source code.
The collection of all-type qualifiers we support.
Definition TypeBase.h:331
unsigned getCVRQualifiers() const
Definition TypeBase.h:488
void removeCVRQualifiers(unsigned mask)
Definition TypeBase.h:495
GC getObjCGCAttr() const
Definition TypeBase.h:519
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition TypeBase.h:361
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition TypeBase.h:354
@ OCL_None
There is no lifetime qualification on this type.
Definition TypeBase.h:350
void removeObjCLifetime()
Definition TypeBase.h:551
bool isStrictSupersetOf(Qualifiers Other) const
Determine whether this set of qualifiers is a strict superset of another set of qualifiers,...
Definition Type.cpp:57
bool hasConst() const
Definition TypeBase.h:457
bool hasNonTrivialObjCLifetime() const
True if the lifetime is neither None or ExplicitNone.
Definition TypeBase.h:559
bool compatiblyIncludes(Qualifiers other, const ASTContext &Ctx) const
Determines if these qualifiers compatibly include another set.
Definition TypeBase.h:727
bool hasAddressSpace() const
Definition TypeBase.h:570
void removeObjCGCAttr()
Definition TypeBase.h:523
void removeAddressSpace()
Definition TypeBase.h:596
bool hasObjCGCAttr() const
Definition TypeBase.h:518
void setCVRQualifiers(unsigned mask)
Definition TypeBase.h:491
bool hasObjCLifetime() const
Definition TypeBase.h:544
ObjCLifetime getObjCLifetime() const
Definition TypeBase.h:545
Qualifiers withoutObjCLifetime() const
Definition TypeBase.h:533
LangAS getAddressSpace() const
Definition TypeBase.h:571
void setObjCLifetime(ObjCLifetime type)
Definition TypeBase.h:548
An rvalue reference type, per C++11 [dcl.ref].
Definition TypeBase.h:3635
ArrayRef< TemplateArgument > getInjectedTemplateArgs(const ASTContext &Context) const
Retrieve the "injected" template arguments that correspond to the template parameters of this templat...
Base for LValueReferenceType and RValueReferenceType.
Definition TypeBase.h:3573
QualType getPointeeType() const
Definition TypeBase.h:3591
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition SemaBase.cpp:61
RAII object used to change the argument pack substitution index within a Sema object.
Definition Sema.h:13594
RAII object used to temporarily allow the C++ 'this' expression to be used, with the given qualifiers...
Definition Sema.h:8423
A RAII object to temporarily push a declaration context.
Definition Sema.h:3467
A helper class for building up ExtParameterInfos.
Definition Sema.h:12987
const FunctionProtoType::ExtParameterInfo * getPointerOrNull(unsigned numParams)
Return a pointer (suitable for setting in an ExtProtoInfo) to the ExtParameterInfo array we've built ...
Definition Sema.h:13006
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition Sema.h:12422
bool hasErrorOccurred() const
Determine whether any SFINAE errors have been trapped.
Definition Sema.h:12456
Sema - This implements semantic analysis and AST building for C.
Definition Sema.h:854
bool TryFunctionConversion(QualType FromType, QualType ToType, QualType &ResultTy) const
Same as IsFunctionConversion, but if this would return true, it sets ResultTy to ToType.
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement)
Substitute Replacement for auto in TypeWithAuto.
LocalInstantiationScope * CurrentInstantiationScope
The current instantiation scope used to store local variables.
Definition Sema.h:13016
TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType, SourceLocation Loc, NamedDecl *TemplateParam=nullptr)
Allocate a TemplateArgumentLoc where all locations have been initialized to the given location.
TemplateDeductionResult DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType, sema::TemplateDeductionInfo &Info)
Deduce the template arguments of the given template from FromType.
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement)
Completely replace the auto in TypeWithAuto by Replacement.
SemaCUDA & CUDA()
Definition Sema.h:1441
bool TemplateParameterListsAreEqual(const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc=SourceLocation())
Determine whether the given template parameter lists are equivalent.
ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc)
Returns the more specialized class template partial specialization according to the rules of partial ...
const ExpressionEvaluationContextRecord & currentEvaluationContext() const
Definition Sema.h:6912
FunctionDecl * getMoreConstrainedFunction(FunctionDecl *FD1, FunctionDecl *FD2)
Returns the more constrained function according to the rules of partial ordering by constraints (C++ ...
FunctionDecl * InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, SourceLocation Loc, CodeSynthesisContext::SynthesisKind CSC=CodeSynthesisContext::ExplicitTemplateArgumentSubstitution)
Instantiate (or find existing instantiation of) a function template with a given set of template argu...
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc)
Looks for the std::initializer_list template and instantiates it with Element, or emits an error if i...
TemplateDeductionResult FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl< DeducedTemplateArgument > &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, SmallVectorImpl< OriginalCallArg > const *OriginalCallArgs, bool PartialOverloading, bool PartialOrdering, bool ForOverloadSetAddressResolution, llvm::function_ref< bool(bool)> CheckNonDependent=[](bool) { return false;})
Finish template argument deduction for a function template, checking the deduced template arguments f...
@ CTAK_DeducedFromArrayBound
The template argument was deduced from an array bound via template argument deduction.
Definition Sema.h:11945
@ CTAK_Specified
The template argument was specified in the code or was instantiated with some deduced template argume...
Definition Sema.h:11937
@ CTAK_Deduced
The template argument was deduced via template argument deduction.
Definition Sema.h:11941
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, bool Diagnose=true)
ASTContext & Context
Definition Sema.h:1283
bool IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion)
IsQualificationConversion - Determines whether the conversion from an rvalue of type FromType to ToTy...
void MarkUsedTemplateParametersForSubsumptionParameterMapping(const Expr *E, unsigned Depth, llvm::SmallBitVector &Used)
Mark which template parameters are named in a given expression.
QualType BuildFunctionType(QualType T, MutableArrayRef< QualType > ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI)
Build a function type.
ExprResult BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, SourceLocation Loc)
ASTContext & getASTContext() const
Definition Sema.h:925
UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, TemplateSpecCandidateSet &FailedCandidates, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain=true, QualType TargetType=QualType())
Retrieve the most specialized of the given function template specializations.
TypeSourceInfo * SubstType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, bool AllowDeducedTST=false)
Perform substitution on the type T with a given set of template arguments.
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK=VK_PRValue, const CXXCastPath *BasePath=nullptr, CheckedConversionKind CCK=CheckedConversionKind::Implicit)
ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
Definition Sema.cpp:756
bool isTemplateTemplateParameterAtLeastAsSpecializedAs(TemplateParameterList *PParam, TemplateDecl *PArg, TemplateDecl *AArg, const DefaultArguments &DefaultArgs, SourceLocation ArgLoc, bool PartialOrdering, bool *StrictPackMatch)
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition Sema.h:1191
bool SubstTemplateArguments(ArrayRef< TemplateArgumentLoc > Args, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateArgumentListInfo &Outputs)
bool CheckConstraintSatisfaction(ConstrainedDeclOrNestedRequirement Entity, ArrayRef< AssociatedConstraint > AssociatedConstraints, const MultiLevelTemplateArgumentList &TemplateArgLists, SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction, const ConceptReference *TopLevelConceptId=nullptr, Expr **ConvertedExpr=nullptr)
Check whether the given list of constraint expressions are satisfied (as if in a 'conjunction') given...
@ TPL_TemplateParamsEquivalent
We are determining whether the template-parameters are equivalent according to C++ [temp....
Definition Sema.h:12142
bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, CheckTemplateArgumentInfo &CTAI, CheckTemplateArgumentKind CTAK)
Check that the given template argument corresponds to the given template parameter.
bool isSameOrCompatibleFunctionType(QualType Param, QualType Arg)
Compare types for equality with respect to possibly compatible function types (noreturn adjustment,...
const LangOptions & getLangOpts() const
Definition Sema.h:918
UnsignedOrNone getNumArgumentsInExpansion(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs)
Determine the number of arguments in the given pack expansion type.
ExplicitSpecifier instantiateExplicitSpecifier(const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES)
TemplateDeductionResult SubstituteExplicitTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl< DeducedTemplateArgument > &Deduced, SmallVectorImpl< QualType > &ParamTypes, QualType *FunctionType, sema::TemplateDeductionInfo &Info)
Substitute the explicitly-provided template arguments into the given function template according to C...
bool SubstParmTypes(SourceLocation Loc, ArrayRef< ParmVarDecl * > Params, const FunctionProtoType::ExtParameterInfo *ExtParamInfos, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl< QualType > &ParamTypes, SmallVectorImpl< ParmVarDecl * > *OutParams, ExtParameterInfoBuilder &ParamInfos)
Substitute the given template arguments into the given set of parameters, producing the set of parame...
FunctionDecl * resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult)
Given an expression that refers to an overloaded function, try to resolve that function to a single f...
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition Sema.h:1414
MultiLevelTemplateArgumentList getTemplateInstantiationArgs(const NamedDecl *D, const DeclContext *DC=nullptr, bool Final=false, std::optional< ArrayRef< TemplateArgument > > Innermost=std::nullopt, bool RelativeToPrimary=false, const FunctionDecl *Pattern=nullptr, bool ForConstraintInstantiation=false, bool SkipForSpecialization=false, bool ForDefaultArgumentSubstitution=false)
Retrieve the template argument list(s) that should be used to instantiate the definition of the given...
SuppressedDiagnosticsMap SuppressedDiagnostics
Definition Sema.h:12490
void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction, SourceLocation Loc={}, bool First=true)
Emit diagnostics explaining why a constraint expression was deemed unsatisfied.
bool IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived, CXXRecordDecl *Base, CXXBasePaths &Paths)
Determine whether the type Derived is a C++ class that is derived from the type Base.
bool isUnevaluatedContext() const
Determines whether we are currently in a context that is not evaluated as per C++ [expr] p5.
Definition Sema.h:8152
FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain=false, DeclAccessPair *Found=nullptr, TemplateSpecCandidateSet *FailedTSC=nullptr, bool ForTypeDeduction=false)
Given an expression that refers to an overloaded function, try to resolve that overloaded function ex...
QualType getDecltypeForExpr(Expr *E)
getDecltypeForExpr - Given an expr, will return the decltype for that expression, according to the ru...
ExprResult CheckPlaceholderExpr(Expr *E)
Check for operands with placeholder types and complain if found.
Decl * SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs)
TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, SourceLocation TemplateKWLoc, SourceLocation TemplateNameLoc, SourceLocation RAngleLoc, Decl *Param, ArrayRef< TemplateArgument > SugaredConverted, ArrayRef< TemplateArgument > CanonicalConverted, bool &HasDefaultArg)
If the given template parameter has a default template argument, substitute into that default templat...
TypeSourceInfo * SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto)
TypeSourceInfo * ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement)
bool isSFINAEContext() const
Definition Sema.h:13630
bool isCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind=CompleteTypeKind::Default)
Definition Sema.h:15374
bool isStdInitializerList(QualType Ty, QualType *Element)
Tests whether Ty is an instance of std::initializer_list and, if it is and Element is not NULL,...
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive=false, bool DefinitionRequired=false, bool AtEndOfTU=false)
Instantiate the definition of the given function from its template.
void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used)
Mark which template parameters are used in a given expression.
@ PotentiallyEvaluated
The current expression is potentially evaluated at run time, which means that code may be generated t...
Definition Sema.h:6723
@ Unevaluated
The current expression and its subexpressions occur within an unevaluated operand (C++11 [expr]p7),...
Definition Sema.h:6692
QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType, CallingConv CC)
Get the return type to use for a lambda's conversion function(s) to function pointer type,...
QualType getCompletedType(Expr *E)
Get the type of expression E, triggering instantiation to complete the type if necessary – that is,...
TypeSourceInfo * SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement)
Substitute Replacement for auto in TypeWithAuto.
bool IsAtLeastAsConstrained(const NamedDecl *D1, MutableArrayRef< AssociatedConstraint > AC1, const NamedDecl *D2, MutableArrayRef< AssociatedConstraint > AC2, bool &Result)
Check whether the given declaration's associated constraints are at least as constrained than another...
void DiagnoseAutoDeductionFailure(const VarDecl *VDecl, const Expr *Init)
TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param, SourceLocation Location)
Get a template argument mapping the given template parameter to itself, e.g.
bool CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, SourceLocation Loc)
QualType SubstAutoTypeDependent(QualType TypeWithAuto)
TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, ArrayRef< TemplateArgument > TemplateArgs, sema::TemplateDeductionInfo &Info)
bool CheckFunctionTemplateConstraints(SourceLocation PointOfInstantiation, FunctionDecl *Decl, ArrayRef< TemplateArgument > TemplateArgs, ConstraintSatisfaction &Satisfaction)
void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref< void()> Fn)
Run some code with "sufficient" stack space.
Definition Sema.cpp:625
bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info)
bool IsFunctionConversion(QualType FromType, QualType ToType) const
Determine whether the conversion from FromType to ToType is a valid conversion of ExtInfo/ExtProtoInf...
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments.
bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs, const DefaultArguments &DefaultArgs, bool PartialTemplateArgs, CheckTemplateArgumentInfo &CTAI, bool UpdateArgsWithConversions=true, bool *ConstraintsNotSatisfied=nullptr)
Check that the given template arguments can be provided to the given template, converting the argumen...
void adjustMemberFunctionCC(QualType &T, bool HasThisPointer, bool IsCtorOrDtor, SourceLocation Loc)
Adjust the calling convention of a method to be the ABI default if it wasn't specified explicitly.
@ Diagnose
Diagnose issues that are non-constant or that are extensions.
Definition Sema.h:6400
ExprResult BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc, NamedDecl *TemplateParam=nullptr)
Given a non-type template argument that refers to a declaration and the type of its corresponding non...
TemplateDeductionResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *Initializer, QualType &Result, sema::TemplateDeductionInfo &Info, bool DependentDeduction=false, bool IgnoreConstraints=false, TemplateSpecCandidateSet *FailedTSC=nullptr)
Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, bool AdjustExceptionSpec=false)
Adjust the type ArgFunctionType to match the calling convention, noreturn, and optionally the excepti...
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType)
HandleFunctionTypeMismatch - Gives diagnostic information for differeing function types.
FunctionTemplateDecl * getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, QualType RawObj1Ty={}, QualType RawObj2Ty={}, bool Reversed=false, bool PartialOverloading=false)
Returns the more specialized function template according to the rules of function template partial or...
void MarkDeducedTemplateParameters(const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced)
Definition Sema.h:12859
NamedDecl * getPack() const
Retrieve the parameter pack.
Definition ExprCXX.h:4509
Encodes a location in the source.
A trivial tuple used to represent a source range.
bool isInvalid() const
SourceLocation getEnd() const
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, bool Canonical, bool ProfileLambdaExpr=false) const
Produce a unique representation of the given statement.
A convenient class for passing around template argument information.
void addArgument(const TemplateArgumentLoc &Loc)
A template argument list.
static TemplateArgumentList * CreateCopy(ASTContext &Context, ArrayRef< TemplateArgument > Args)
Create a new template argument list that copies the given set of template arguments.
unsigned size() const
Retrieve the number of template arguments in this template argument list.
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
Location wrapper for a TemplateArgument.
const TemplateArgument & getArgument() const
Represents a template argument.
QualType getParamTypeForDecl() const
Expr * getAsExpr() const
Retrieve the template argument as an expression.
pack_iterator pack_end() const
Iterator referencing one past the last argument of a template argument pack.
const TemplateArgument * pack_iterator
Iterator that traverses the elements of a template argument pack.
pack_iterator pack_begin() const
Iterator referencing the first argument of a template argument pack.
QualType getNonTypeTemplateArgumentType() const
If this is a non-type template argument, get its type.
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) const
Used to insert TemplateArguments into FoldingSets.
QualType getAsType() const
Retrieve the type for a type template argument.
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
static TemplateArgument CreatePackCopy(ASTContext &Context, ArrayRef< TemplateArgument > Args)
Create a new template argument pack by copying the given set of template arguments.
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
TemplateArgument getPackExpansionPattern() const
When the template argument is a pack expansion, returns the pattern of the pack expansion.
bool isNull() const
Determine whether this template argument has no value.
static TemplateArgument getEmptyPack()
unsigned pack_size() const
The number of template arguments in the given template argument pack.
bool structurallyEquals(const TemplateArgument &Other) const
Determines whether two template arguments are superficially the same.
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
@ Declaration
The template argument is a declaration that was provided for a pointer, reference,...
@ Template
The template argument is a template name that was provided for a template template parameter.
@ StructuralValue
The template argument is a non-type template argument that can't be represented by the special-case D...
@ Pack
The template argument is actually a parameter pack.
@ TemplateExpansion
The template argument is a pack expansion of a template name that was provided for a template templat...
@ NullPtr
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
@ Type
The template argument is a type.
@ Null
Represents an empty template argument, e.g., one that has not been deduced.
@ Integral
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
@ Expression
The template argument is an expression, and we've not resolved it to one of the other forms yet,...
ArgKind getKind() const
Return the kind of stored template argument.
bool isPackExpansion() const
Determine whether this template argument is a pack expansion.
TemplateName getAsTemplateOrTemplatePattern() const
Retrieve the template argument as a template name; if the argument is a pack expansion,...
The base class of all kinds of template declarations (e.g., class, function, etc.).
void getAssociatedConstraints(llvm::SmallVectorImpl< AssociatedConstraint > &AC) const
Get the total constraint-expression associated with this template, including constraint-expressions d...
bool isTypeAlias() const
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Represents a C++ template name within the type system.
TemplateDecl * getAsTemplateDecl(bool IgnoreDeduced=false) const
Retrieve the underlying template declaration that this template name refers to, if known.
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
Stores a list of template parameters for a TemplateDecl and its derived classes.
NamedDecl * getParam(unsigned Idx)
ArrayRef< TemplateArgument > getInjectedTemplateArgs(const ASTContext &Context)
Get the template argument list of the template parameter list.
unsigned getDepth() const
Get the depth of this template parameter list in the set of template parameter lists.
SourceLocation getRAngleLoc() const
SourceLocation getLAngleLoc() const
ArrayRef< NamedDecl * > asArray()
SourceLocation getTemplateLoc() const
TemplateSpecCandidateSet - A set of generalized overload candidates, used in template specializations...
void NoteCandidates(Sema &S, SourceLocation Loc)
NoteCandidates - When no template specialization match is found, prints diagnostic messages containin...
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
TemplateNameKind templateParameterKind() const
unsigned getIndex() const
Get the index of the template parameter within its parameter list.
unsigned getDepth() const
Get the nesting depth of the template parameter.
bool isExpandedParameterPack() const
Whether this parameter is a template template parameter pack that has a known list of different templ...
Declaration of a template type parameter.
static TemplateTypeParmDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation KeyLoc, SourceLocation NameLoc, unsigned D, unsigned P, IdentifierInfo *Id, bool Typename, bool ParameterPack, bool HasTypeConstraint=false, UnsignedOrNone NumExpanded=std::nullopt)
A semantic tree transformation that allows one to transform one abstract syntax tree into another.
const Type * getTypeForDecl() const
Definition Decl.h:3538
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
void reserve(size_t Requested)
Ensures that this buffer has at least as much capacity as described.
Base wrapper for a particular "section" of type source info.
Definition TypeLoc.h:59
SourceRange getLocalSourceRange() const
Get the local source range.
Definition TypeLoc.h:160
unsigned getFullDataSize() const
Returns the size of the type source info data block.
Definition TypeLoc.h:165
void copy(TypeLoc other)
Copies the other type loc into this one.
Definition TypeLoc.cpp:169
A container of type source information.
Definition TypeBase.h:8249
QualType getType() const
Return the type wrapped by this type source info.
Definition TypeBase.h:8260
SourceLocation getNameLoc() const
Definition TypeLoc.h:547
void setNameLoc(SourceLocation Loc)
Definition TypeLoc.h:551
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isVoidType() const
Definition TypeBase.h:8871
const TemplateSpecializationType * getAsNonAliasTemplateSpecializationType() const
Look through sugar for an instance of TemplateSpecializationType which is not a type alias,...
Definition Type.cpp:1921
bool isPlaceholderType() const
Test for a type which does not represent an actual type-system type but is instead used as a placehol...
Definition TypeBase.h:8847
bool isRValueReferenceType() const
Definition TypeBase.h:8547
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
bool isArrayType() const
Definition TypeBase.h:8614
bool isFunctionPointerType() const
Definition TypeBase.h:8582
bool isPointerType() const
Definition TypeBase.h:8515
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
bool isReferenceType() const
Definition TypeBase.h:8539
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type.
Definition TypeBase.h:2899
bool isLValueReferenceType() const
Definition TypeBase.h:8543
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition TypeBase.h:2782
QualType getCanonicalTypeInternal() const
Definition TypeBase.h:3119
bool isMemberPointerType() const
Definition TypeBase.h:8596
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition Type.cpp:5302
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition TypeBase.h:9007
bool isFunctionType() const
Definition TypeBase.h:8511
bool isMemberFunctionPointerType() const
Definition TypeBase.h:8600
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2921
bool isAnyPointerType() const
Definition TypeBase.h:8523
TypeClass getTypeClass() const
Definition TypeBase.h:2385
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
bool isRecordType() const
Definition TypeBase.h:8642
The iterator over UnresolvedSets.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition Decl.h:712
QualType getType() const
Definition Decl.h:723
QualType getType() const
Definition Value.cpp:237
Represents a variable declaration or definition.
Definition Decl.h:926
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition Decl.h:1578
Declaration of a variable template.
VarTemplateDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this template.
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
Represents a GCC generic vector type.
Definition TypeBase.h:4175
Provides information about an attempted template argument deduction, whose success or failure was des...
void setExplicitArgs(TemplateArgumentList *NewDeducedSugared, TemplateArgumentList *NewDeducedCanonical)
Provide an initial template argument list that contains the explicitly-specified arguments.
TemplateArgumentList * takeCanonical()
TemplateArgumentList * takeSugared()
Take ownership of the deduced template argument lists.
SourceLocation getLocation() const
Returns the location at which template argument is occurring.
void clearSFINAEDiagnostic()
Discard any SFINAE diagnostics.
TemplateArgument SecondArg
The second template argument to which the template argument deduction failure refers.
TemplateParameter Param
The template parameter to which a template argument deduction failure refers.
diag_iterator diag_end() const
Returns an iterator at the end of the sequence of suppressed diagnostics.
void reset(TemplateArgumentList *NewDeducedSugared, TemplateArgumentList *NewDeducedCanonical)
Provide a new template argument list that contains the results of template argument deduction.
unsigned getDeducedDepth() const
The depth of template parameters for which deduction is being performed.
diag_iterator diag_begin() const
Returns an iterator at the beginning of the sequence of suppressed diagnostics.
TemplateArgument FirstArg
The first template argument to which the template argument deduction failure refers.
ConstraintSatisfaction AssociatedConstraintsSatisfaction
The constraint satisfaction details resulting from the associated constraints satisfaction tests.
unsigned CallArgIndex
The index of the function argument that caused a deduction failure.
#define bool
Definition gpuintrin.h:32
__inline void unsigned int _2
The JSON file list parser is used to communicate input to InstallAPI.
@ OO_None
Not an overloaded operator.
@ Match
This is not an overload because the signature exactly matches an existing declaration.
Definition Sema.h:816
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus20
@ CPlusPlus
@ CPlusPlus11
@ CPlusPlus14
bool isTargetAddressSpace(LangAS AS)
@ Specialization
We are substituting template parameters for template arguments in order to form a template specializa...
Definition Template.h:50
@ Both
Look for allocation functions in both the global scope and in the scope of the allocated class.
Definition Sema.h:785
@ RQ_None
No ref-qualifier was provided.
Definition TypeBase.h:1782
@ RQ_RValue
An rvalue ref-qualifier was provided (&&).
Definition TypeBase.h:1788
@ TemplateName
The identifier is a template name. FIXME: Add an annotation for that.
Definition Parser.h:61
NamedDecl * getAsNamedDecl(TemplateParameter P)
bool isPackProducingBuiltinTemplateName(TemplateName N)
UnsignedOrNone getExpandedPackSize(const NamedDecl *Param)
Check whether the template parameter is a pack expansion, and if so, determine the number of paramete...
unsigned toTargetAddressSpace(LangAS AS)
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
std::pair< unsigned, unsigned > getDepthAndIndex(const NamedDecl *ND)
Retrieve the depth and index of a template parameter.
const FunctionProtoType * T
@ Template
We are parsing a template declaration.
Definition Parser.h:81
ActionResult< CXXBaseSpecifier * > BaseResult
Definition Ownership.h:252
@ FunctionTemplate
The name was classified as a function template name.
Definition Sema.h:585
@ Concept
The name was classified as a concept name.
Definition Sema.h:589
bool isLambdaConversionOperator(CXXConversionDecl *C)
Definition ASTLambda.h:69
@ TNK_Var_template
The name refers to a variable template whose specialization produces a variable.
@ TNK_Concept_template
The name refers to a concept.
llvm::PointerUnion< TemplateTypeParmDecl *, NonTypeTemplateParmDecl *, TemplateTemplateParmDecl * > TemplateParameter
Stores a template parameter of any kind.
TPOC
The context in which partial ordering of function templates occurs.
Definition Template.h:302
@ TPOC_Conversion
Partial ordering of function templates for a call to a conversion function.
Definition Template.h:308
@ TPOC_Other
Partial ordering of function templates in other contexts, e.g., taking the address of a function temp...
Definition Template.h:313
@ TPOC_Call
Partial ordering of function templates for a function call.
Definition Template.h:304
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
DynamicRecursiveASTVisitorBase< false > DynamicRecursiveASTVisitor
TemplateDeductionResult
Describes the result of template argument deduction.
Definition Sema.h:367
@ MiscellaneousDeductionFailure
Deduction failed; that's all we know.
Definition Sema.h:417
@ NonDependentConversionFailure
Checking non-dependent argument conversions failed.
Definition Sema.h:412
@ ConstraintsNotSatisfied
The deduced arguments did not satisfy the constraints associated with the template.
Definition Sema.h:415
@ Underqualified
Template argument deduction failed due to inconsistent cv-qualifiers on a template parameter type tha...
Definition Sema.h:388
@ InstantiationDepth
Template argument deduction exceeded the maximum template instantiation depth (which has already been...
Definition Sema.h:374
@ InvalidExplicitArguments
The explicitly-specified template arguments were not valid template arguments for the given template.
Definition Sema.h:410
@ CUDATargetMismatch
CUDA Target attributes do not match.
Definition Sema.h:419
@ TooFewArguments
When performing template argument deduction for a function template, there were too few call argument...
Definition Sema.h:407
@ Incomplete
Template argument deduction did not deduce a value for every template parameter.
Definition Sema.h:377
@ Invalid
The declaration was invalid; do nothing.
Definition Sema.h:371
@ Success
Template argument deduction was successful.
Definition Sema.h:369
@ SubstitutionFailure
Substitution of the deduced template argument values resulted in an error.
Definition Sema.h:391
@ IncompletePack
Template argument deduction did not deduce a value for every expansion of an expanded template parame...
Definition Sema.h:380
@ DeducedMismatch
After substituting deduced template arguments, a dependent parameter type did not match the correspon...
Definition Sema.h:394
@ Inconsistent
Template argument deduction produced inconsistent deduced values for the given template parameter.
Definition Sema.h:383
@ TooManyArguments
When performing template argument deduction for a function template, there were too many call argumen...
Definition Sema.h:404
@ AlreadyDiagnosed
Some error which was already diagnosed.
Definition Sema.h:421
@ DeducedMismatchNested
After substituting deduced template arguments, an element of a dependent parameter type did not match...
Definition Sema.h:398
@ NonDeducedMismatch
A non-depnedent component of the parameter did not match the corresponding component of the argument.
Definition Sema.h:401
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition Specifiers.h:278
U cast(CodeGen::Address addr)
Definition Address.h:327
@ None
The alignment was not explicit in code.
Definition ASTContext.h:178
@ Noexcept
Condition in a noexcept(bool) specifier.
Definition Sema.h:832
@ None
No keyword precedes the qualified type name.
Definition TypeBase.h:5874
ActionResult< Expr * > ExprResult
Definition Ownership.h:249
@ EST_Uninstantiated
not instantiated yet
@ EST_None
no exception specification
TemplateDeductionFlags
Various flags that control template argument deduction.
@ TDF_None
No template argument deduction flags, which indicates the strictest results for template argument ded...
@ TDF_DerivedClass
Within template argument deduction from a function call, we are matching in a case where we can perfo...
@ TDF_TopLevelParameterTypeList
Whether we are performing template argument deduction for parameters and arguments in a top-level tem...
@ TDF_IgnoreQualifiers
Within template argument deduction from a function call, we are matching in a case where we ignore cv...
@ TDF_ParamWithReferenceType
Within template argument deduction from a function call, we are matching with a parameter type for wh...
@ TDF_SkipNonDependent
Allow non-dependent types to differ, e.g., when performing template argument deduction from a functio...
@ TDF_AllowCompatibleFunctionType
Within template argument deduction from overload resolution per C++ [over.over] allow matching functi...
@ TDF_ArgWithReferenceType
Within template argument deduction for a conversion function, we are matching with an argument type f...
#define false
Definition stdbool.h:26
#define true
Definition stdbool.h:25
A pack that we're currently deducing.
SmallVector< DeducedTemplateArgument, 4 > New
DeducedTemplateArgument Saved
DeducedTemplateArgument DeferredDeduction
ExceptionSpecificationType Type
The kind of exception specification this is.
Definition TypeBase.h:5313
Extra information about a function prototype.
Definition TypeBase.h:5339
const ExtParameterInfo * ExtParameterInfos
Definition TypeBase.h:5344
bool StrictPackMatch
Is set to true when, in the context of TTP matching, a pack parameter matches non-pack arguments.
Definition Sema.h:11972
bool MatchingTTP
If true, assume these template arguments are the injected template arguments for a template template ...
Definition Sema.h:11968
bool PartialOrdering
The check is being performed in the context of partial ordering.
Definition Sema.h:11961
SmallVector< TemplateArgument, 4 > SugaredConverted
The checked, converted argument will be added to the end of these vectors.
Definition Sema.h:11958
SmallVector< TemplateArgument, 4 > CanonicalConverted
Definition Sema.h:11958
@ ExplicitTemplateArgumentSubstitution
We are substituting explicit template arguments provided for a function template.
Definition Sema.h:13085
@ DeducedTemplateArgumentSubstitution
We are substituting template argument determined as part of template argument deduction for either a ...
Definition Sema.h:13092
A stack object to be created when performing template instantiation.
Definition Sema.h:13250
bool isInvalid() const
Determines whether we have exceeded the maximum recursive template instantiations.
Definition Sema.h:13403
brief A function argument from which we performed template argument
Definition Sema.h:12590
Location information for a TemplateArgument.