clang 22.0.0git
SemaTemplateDeduction.cpp
Go to the documentation of this file.
1//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "TypeLocBuilder.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/Decl.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/TypeLoc.h"
35#include "clang/Basic/LLVM.h"
43#include "clang/Sema/Sema.h"
44#include "clang/Sema/Template.h"
46#include "llvm/ADT/APInt.h"
47#include "llvm/ADT/APSInt.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/FoldingSet.h"
51#include "llvm/ADT/SmallBitVector.h"
52#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/Support/Casting.h"
55#include "llvm/Support/Compiler.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/SaveAndRestore.h"
58#include <algorithm>
59#include <cassert>
60#include <optional>
61#include <tuple>
62#include <type_traits>
63#include <utility>
64
65namespace clang {
66
67 /// Various flags that control template argument deduction.
68 ///
69 /// These flags can be bitwise-OR'd together.
71 /// No template argument deduction flags, which indicates the
72 /// strictest results for template argument deduction (as used for, e.g.,
73 /// matching class template partial specializations).
75
76 /// Within template argument deduction from a function call, we are
77 /// matching with a parameter type for which the original parameter was
78 /// a reference.
80
81 /// Within template argument deduction from a function call, we
82 /// are matching in a case where we ignore cv-qualifiers.
84
85 /// Within template argument deduction from a function call,
86 /// we are matching in a case where we can perform template argument
87 /// deduction from a template-id of a derived class of the argument type.
89
90 /// Allow non-dependent types to differ, e.g., when performing
91 /// template argument deduction from a function call where conversions
92 /// may apply.
94
95 /// Whether we are performing template argument deduction for
96 /// parameters and arguments in a top-level template argument
98
99 /// Within template argument deduction from overload resolution per
100 /// C++ [over.over] allow matching function types that are compatible in
101 /// terms of noreturn and default calling convention adjustments, or
102 /// similarly matching a declared template specialization against a
103 /// possible template, per C++ [temp.deduct.decl]. In either case, permit
104 /// deduction where the parameter is a function type that can be converted
105 /// to the argument type.
107
108 /// Within template argument deduction for a conversion function, we are
109 /// matching with an argument type for which the original argument was
110 /// a reference.
112 };
113}
114
115using namespace clang;
116using namespace sema;
117
118/// The kind of PartialOrdering we're performing template argument deduction
119/// for (C++11 [temp.deduct.partial]).
121
123 Sema &S, TemplateParameterList *TemplateParams, QualType Param,
125 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
126 PartialOrderingKind POK, bool DeducedFromArrayBound,
127 bool *HasDeducedAnyParam);
128
129/// What directions packs are allowed to match non-packs.
131
138 bool NumberOfArgumentsMustMatch, bool PartialOrdering,
139 PackFold PackFold, bool *HasDeducedAnyParam);
140
143 bool OnlyDeduced, unsigned Depth,
144 llvm::SmallBitVector &Used);
145
147 bool OnlyDeduced, unsigned Level,
148 llvm::SmallBitVector &Deduced);
149
150static const Expr *unwrapExpressionForDeduction(const Expr *E) {
151 // If we are within an alias template, the expression may have undergone
152 // any number of parameter substitutions already.
153 while (true) {
154 if (const auto *IC = dyn_cast<ImplicitCastExpr>(E))
155 E = IC->getSubExpr();
156 else if (const auto *CE = dyn_cast<ConstantExpr>(E))
157 E = CE->getSubExpr();
158 else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
159 E = Subst->getReplacement();
160 else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
161 // Look through implicit copy construction from an lvalue of the same type.
162 if (CCE->getParenOrBraceRange().isValid())
163 break;
164 // Note, there could be default arguments.
165 assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg");
166 E = CCE->getArg(0);
167 } else
168 break;
169 }
170 return E;
171}
172
174public:
175 NonTypeOrVarTemplateParmDecl(const NamedDecl *Template) : Template(Template) {
176 assert(
177 !Template || isa<NonTypeTemplateParmDecl>(Template) ||
179 (cast<TemplateTemplateParmDecl>(Template)->templateParameterKind() ==
181 cast<TemplateTemplateParmDecl>(Template)->templateParameterKind() ==
183 }
184
186 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
187 return NTTP->getType();
191 }
192
193 unsigned getDepth() const {
194 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
195 return NTTP->getDepth();
196 return getTemplate()->getDepth();
197 }
198
199 unsigned getIndex() const {
200 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
201 return NTTP->getIndex();
202 return getTemplate()->getIndex();
203 }
204
206 return cast<TemplateTemplateParmDecl>(Template);
207 }
208
210 return cast<NonTypeTemplateParmDecl>(Template);
211 }
212
214 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
215 return const_cast<NonTypeTemplateParmDecl *>(NTTP);
216 return const_cast<TemplateTemplateParmDecl *>(getTemplate());
217 }
218
220 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
221 return NTTP->isExpandedParameterPack();
223 }
224
226 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Template))
227 return NTTP->getLocation();
228 return getTemplate()->getLocation();
229 }
230
231 operator bool() const { return Template; }
232
233private:
234 const NamedDecl *Template;
235};
236
237/// If the given expression is of a form that permits the deduction
238/// of a non-type template parameter, return the declaration of that
239/// non-type template parameter.
241getDeducedNTTParameterFromExpr(const Expr *E, unsigned Depth) {
242 // If we are within an alias template, the expression may have undergone
243 // any number of parameter substitutions already.
245 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
246 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
247 if (NTTP->getDepth() == Depth)
248 return NTTP;
249
250 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E);
251 ULE && (ULE->isConceptReference() || ULE->isVarDeclReference())) {
252 if (auto *TTP = ULE->getTemplateTemplateDecl()) {
253
254 if (TTP->getDepth() == Depth)
255 return TTP;
256 }
257 }
258 return nullptr;
259}
260
265
266/// Determine whether two declaration pointers refer to the same
267/// declaration.
268static bool isSameDeclaration(Decl *X, Decl *Y) {
269 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
270 X = NX->getUnderlyingDecl();
271 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
272 Y = NY->getUnderlyingDecl();
273
274 return X->getCanonicalDecl() == Y->getCanonicalDecl();
275}
276
277/// Verify that the given, deduced template arguments are compatible.
278///
279/// \returns The deduced template argument, or a NULL template argument if
280/// the deduced template arguments were incompatible.
285 bool AggregateCandidateDeduction = false) {
286 // We have no deduction for one or both of the arguments; they're compatible.
287 if (X.isNull())
288 return Y;
289 if (Y.isNull())
290 return X;
291
292 // If we have two non-type template argument values deduced for the same
293 // parameter, they must both match the type of the parameter, and thus must
294 // match each other's type. As we're only keeping one of them, we must check
295 // for that now. The exception is that if either was deduced from an array
296 // bound, the type is permitted to differ.
297 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
298 QualType XType = X.getNonTypeTemplateArgumentType();
299 if (!XType.isNull()) {
301 if (YType.isNull() || !Context.hasSameType(XType, YType))
303 }
304 }
305
306 switch (X.getKind()) {
308 llvm_unreachable("Non-deduced template arguments handled above");
309
311 // If two template type arguments have the same type, they're compatible.
312 QualType TX = X.getAsType(), TY = Y.getAsType();
313 if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY))
314 return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY),
315 X.wasDeducedFromArrayBound() ||
317
318 // If one of the two arguments was deduced from an array bound, the other
319 // supersedes it.
320 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
321 return X.wasDeducedFromArrayBound() ? Y : X;
322
323 // The arguments are not compatible.
325 }
326
328 // If we deduced a constant in one case and either a dependent expression or
329 // declaration in another case, keep the integral constant.
330 // If both are integral constants with the same value, keep that value.
334 llvm::APSInt::isSameValue(X.getAsIntegral(), Y.getAsIntegral())))
335 return X.wasDeducedFromArrayBound() ? Y : X;
336
337 // All other combinations are incompatible.
339
341 // If we deduced a value and a dependent expression, keep the value.
344 X.structurallyEquals(Y)))
345 return X;
346
347 // All other combinations are incompatible.
349
352 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
353 return X;
354
355 // All other combinations are incompatible.
357
360 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
362 return X;
363
364 // All other combinations are incompatible.
366
369 return checkDeducedTemplateArguments(Context, Y, X);
370
371 // Compare the expressions for equality
372 llvm::FoldingSetNodeID ID1, ID2;
373 X.getAsExpr()->Profile(ID1, Context, true);
374 Y.getAsExpr()->Profile(ID2, Context, true);
375 if (ID1 == ID2)
376 return X.wasDeducedFromArrayBound() ? Y : X;
377
378 // Differing dependent expressions are incompatible.
380 }
381
383 assert(!X.wasDeducedFromArrayBound());
384
385 // If we deduced a declaration and a dependent expression, keep the
386 // declaration.
388 return X;
389
390 // If we deduced a declaration and an integral constant, keep the
391 // integral constant and whichever type did not come from an array
392 // bound.
395 return TemplateArgument(Context, Y.getAsIntegral(),
396 X.getParamTypeForDecl());
397 return Y;
398 }
399
400 // If we deduced two declarations, make sure that they refer to the
401 // same declaration.
403 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
404 return X;
405
406 // All other combinations are incompatible.
408
410 // If we deduced a null pointer and a dependent expression, keep the
411 // null pointer.
413 return TemplateArgument(Context.getCommonSugaredType(
414 X.getNullPtrType(), Y.getAsExpr()->getType()),
415 true);
416
417 // If we deduced a null pointer and an integral constant, keep the
418 // integral constant.
420 return Y;
421
422 // If we deduced two null pointers, they are the same.
424 return TemplateArgument(
425 Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
426 true);
427
428 // All other combinations are incompatible.
430
432 if (Y.getKind() != TemplateArgument::Pack ||
433 (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size()))
435
438 XA = X.pack_begin(),
439 XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end();
440 XA != XAEnd; ++XA) {
441 if (YA != YAEnd) {
443 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
445 if (Merged.isNull() && !(XA->isNull() && YA->isNull()))
447 NewPack.push_back(Merged);
448 ++YA;
449 } else {
450 NewPack.push_back(*XA);
451 }
452 }
453
455 TemplateArgument::CreatePackCopy(Context, NewPack),
456 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
457 }
458 }
459
460 llvm_unreachable("Invalid TemplateArgument Kind!");
461}
462
463/// Deduce the value of the given non-type template parameter
464/// as the given deduced template argument. All non-type template parameter
465/// deduction is funneled through here.
469 const DeducedTemplateArgument &NewDeduced,
470 QualType ValueType, TemplateDeductionInfo &Info,
471 bool PartialOrdering,
473 bool *HasDeducedAnyParam) {
474 assert(NTTP.getDepth() == Info.getDeducedDepth() &&
475 "deducing non-type template argument with wrong depth");
476
478 S.Context, Deduced[NTTP.getIndex()], NewDeduced);
479 if (Result.isNull()) {
480 Info.Param = NTTP.asTemplateParam();
481 Info.FirstArg = Deduced[NTTP.getIndex()];
482 Info.SecondArg = NewDeduced;
484 }
485 Deduced[NTTP.getIndex()] = Result;
486 if (!S.getLangOpts().CPlusPlus17)
488
489 if (NTTP.isExpandedParameterPack())
490 // FIXME: We may still need to deduce parts of the type here! But we
491 // don't have any way to find which slice of the type to use, and the
492 // type stored on the NTTP itself is nonsense. Perhaps the type of an
493 // expanded NTTP should be a pack expansion type?
495
496 // Get the type of the parameter for deduction. If it's a (dependent) array
497 // or function type, we will not have decayed it yet, so do that now.
498 QualType ParamType = S.Context.getAdjustedParameterType(NTTP.getType());
499 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
500 ParamType = Expansion->getPattern();
501
502 // FIXME: It's not clear how deduction of a parameter of reference
503 // type from an argument (of non-reference type) should be performed.
504 // For now, we just make the argument have same reference type as the
505 // parameter.
506 if (ParamType->isReferenceType() && !ValueType->isReferenceType()) {
507 if (ParamType->isRValueReferenceType())
508 ValueType = S.Context.getRValueReferenceType(ValueType);
509 else
510 ValueType = S.Context.getLValueReferenceType(ValueType);
511 }
512
514 S, TemplateParams, ParamType, ValueType, Info, Deduced,
518 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound(), HasDeducedAnyParam);
519}
520
521/// Deduce the value of the given non-type template parameter
522/// from the given integral constant.
524 Sema &S, TemplateParameterList *TemplateParams,
525 NonTypeOrVarTemplateParmDecl NTTP, const llvm::APSInt &Value,
526 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
528 bool *HasDeducedAnyParam) {
530 S, TemplateParams, NTTP,
532 DeducedFromArrayBound),
533 ValueType, Info, PartialOrdering, Deduced, HasDeducedAnyParam);
534}
535
536/// Deduce the value of the given non-type template parameter
537/// from the given null pointer template argument type.
541 QualType NullPtrType, TemplateDeductionInfo &Info,
542 bool PartialOrdering,
544 bool *HasDeducedAnyParam) {
547 NTTP.getLocation()),
548 NullPtrType,
549 NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer
550 : CK_NullToPointer)
551 .get();
553 S, TemplateParams, NTTP, TemplateArgument(Value, /*IsCanonical=*/false),
554 Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam);
555}
556
557/// Deduce the value of the given non-type template parameter
558/// from the given type- or value-dependent expression.
559///
560/// \returns true if deduction succeeded, false otherwise.
566 bool *HasDeducedAnyParam) {
568 S, TemplateParams, NTTP, TemplateArgument(Value, /*IsCanonical=*/false),
569 Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam);
570}
571
572/// Deduce the value of the given non-type template parameter
573/// from the given declaration.
574///
575/// \returns true if deduction succeeded, false otherwise.
580 bool PartialOrdering,
582 bool *HasDeducedAnyParam) {
585 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info,
586 PartialOrdering, Deduced, HasDeducedAnyParam);
587}
588
590 Sema &S, TemplateParameterList *TemplateParams, TemplateName Param,
594 bool *HasDeducedAnyParam) {
595 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
596 if (!ParamDecl) {
597 // The parameter type is dependent and is not a template template parameter,
598 // so there is nothing that we can deduce.
600 }
601
602 if (auto *TempParam = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
603 // If we're not deducing at this depth, there's nothing to deduce.
604 if (TempParam->getDepth() != Info.getDeducedDepth())
606
607 ArrayRef<NamedDecl *> Params =
608 ParamDecl->getTemplateParameters()->asArray();
609 unsigned StartPos = 0;
610 for (unsigned I = 0, E = std::min(Params.size(), DefaultArguments.size());
611 I < E; ++I) {
612 if (Params[I]->isParameterPack()) {
613 StartPos = DefaultArguments.size();
614 break;
615 }
616 StartPos = I + 1;
617 }
618
619 // Provisional resolution for CWG2398: If Arg names a template
620 // specialization, then we deduce a synthesized template name
621 // based on A, but using the TS's extra arguments, relative to P, as
622 // defaults.
623 DeducedTemplateArgument NewDeduced =
626 Arg, {StartPos, DefaultArguments.drop_front(StartPos)}))
627 : Arg;
628
630 S.Context, Deduced[TempParam->getIndex()], NewDeduced);
631 if (Result.isNull()) {
632 Info.Param = TempParam;
633 Info.FirstArg = Deduced[TempParam->getIndex()];
634 Info.SecondArg = NewDeduced;
636 }
637
638 Deduced[TempParam->getIndex()] = Result;
639 if (HasDeducedAnyParam)
640 *HasDeducedAnyParam = true;
642 }
643
644 // Verify that the two template names are equivalent.
646 Param, Arg, /*IgnoreDeduced=*/DefaultArguments.size() != 0))
648
649 // Mismatch of non-dependent template parameter to argument.
650 Info.FirstArg = TemplateArgument(Param);
651 Info.SecondArg = TemplateArgument(Arg);
653}
654
655/// Deduce the template arguments by comparing the template parameter
656/// type (which is a template-id) with the template argument type.
657///
658/// \param S the Sema
659///
660/// \param TemplateParams the template parameters that we are deducing
661///
662/// \param P the parameter type
663///
664/// \param A the argument type
665///
666/// \param Info information about the template argument deduction itself
667///
668/// \param Deduced the deduced template arguments
669///
670/// \returns the result of template argument deduction so far. Note that a
671/// "success" result means that template argument deduction has not yet failed,
672/// but it may still fail, later, for other reasons.
673
674static const TemplateSpecializationType *getLastTemplateSpecType(QualType QT) {
675 const TemplateSpecializationType *LastTST = nullptr;
676 for (const Type *T = QT.getTypePtr(); /**/; /**/) {
677 const TemplateSpecializationType *TST =
678 T->getAs<TemplateSpecializationType>();
679 if (!TST)
680 return LastTST;
681 if (!TST->isSugared())
682 return TST;
683 LastTST = TST;
684 T = TST->desugar().getTypePtr();
685 }
686}
687
690 const QualType P, QualType A,
693 bool *HasDeducedAnyParam) {
694 TemplateName TNP;
697 const TemplateSpecializationType *TP = ::getLastTemplateSpecType(P);
698 TNP = TP->getTemplateName();
699
700 // No deduction for specializations of dependent template names.
703
704 // FIXME: To preserve sugar, the TST needs to carry sugared resolved
705 // arguments.
706 PResolved =
707 TP->castAsCanonical<TemplateSpecializationType>()->template_arguments();
708 } else {
709 const auto *TT = P->castAs<InjectedClassNameType>();
710 TNP = TT->getTemplateName(S.Context);
711 PResolved = TT->getTemplateArgs(S.Context);
712 }
713
714 // If the parameter is an alias template, there is nothing to deduce.
715 if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias())
717 // Pack-producing templates can only be matched after substitution.
720
721 // Check whether the template argument is a dependent template-id.
723 const TemplateSpecializationType *SA = ::getLastTemplateSpecType(A);
724 TemplateName TNA = SA->getTemplateName();
725
726 // If the argument is an alias template, there is nothing to deduce.
727 if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias())
729
730 // FIXME: To preserve sugar, the TST needs to carry sugared resolved
731 // arguments.
733 SA->getCanonicalTypeInternal()
734 ->castAs<TemplateSpecializationType>()
735 ->template_arguments();
736
737 // Perform template argument deduction for the template name.
738 if (auto Result = DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info,
739 /*DefaultArguments=*/AResolved,
740 PartialOrdering, Deduced,
741 HasDeducedAnyParam);
743 return Result;
744
745 // Perform template argument deduction on each template
746 // argument. Ignore any missing/extra arguments, since they could be
747 // filled in by default arguments.
749 S, TemplateParams, PResolved, AResolved, Info, Deduced,
750 /*NumberOfArgumentsMustMatch=*/false, PartialOrdering,
751 PackFold::ParameterToArgument, HasDeducedAnyParam);
752 }
753
754 // If the argument type is a class template specialization, we
755 // perform template argument deduction using its template
756 // arguments.
757 const auto *TA = A->getAs<TagType>();
758 TemplateName TNA;
759 if (TA) {
760 // FIXME: Can't use the template arguments from this TST, as they are not
761 // resolved.
762 if (const auto *TST = A->getAsNonAliasTemplateSpecializationType())
763 TNA = TST->getTemplateName();
764 else
765 TNA = TA->getTemplateName(S.Context);
766 }
767 if (TNA.isNull()) {
768 Info.FirstArg = TemplateArgument(P);
769 Info.SecondArg = TemplateArgument(A);
771 }
772
773 ArrayRef<TemplateArgument> AResolved = TA->getTemplateArgs(S.Context);
774 // Perform template argument deduction for the template name.
775 if (auto Result =
776 DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info,
777 /*DefaultArguments=*/AResolved,
778 PartialOrdering, Deduced, HasDeducedAnyParam);
780 return Result;
781
782 // Perform template argument deduction for the template arguments.
784 S, TemplateParams, PResolved, AResolved, Info, Deduced,
785 /*NumberOfArgumentsMustMatch=*/true, PartialOrdering,
786 PackFold::ParameterToArgument, HasDeducedAnyParam);
787}
788
790 assert(T->isCanonicalUnqualified());
791
792 switch (T->getTypeClass()) {
793 case Type::TypeOfExpr:
794 case Type::TypeOf:
795 case Type::DependentName:
796 case Type::Decltype:
797 case Type::PackIndexing:
798 case Type::UnresolvedUsing:
799 case Type::TemplateTypeParm:
800 case Type::Auto:
801 return true;
802
803 case Type::ConstantArray:
804 case Type::IncompleteArray:
805 case Type::VariableArray:
806 case Type::DependentSizedArray:
808 cast<ArrayType>(T)->getElementType().getTypePtr());
809
810 default:
811 return false;
812 }
813}
814
815/// Determines whether the given type is an opaque type that
816/// might be more qualified when instantiated.
819 T->getCanonicalTypeInternal().getTypePtr());
820}
821
822/// Helper function to build a TemplateParameter when we don't
823/// know its type statically.
825 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
826 return TemplateParameter(TTP);
827 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
828 return TemplateParameter(NTTP);
829
831}
832
833/// A pack that we're currently deducing.
835 // The index of the pack.
836 unsigned Index;
837
838 // The old value of the pack before we started deducing it.
840
841 // A deferred value of this pack from an inner deduction, that couldn't be
842 // deduced because this deduction hadn't happened yet.
844
845 // The new value of the pack.
847
848 // The outer deduction for this pack, if any.
849 DeducedPack *Outer = nullptr;
850
851 DeducedPack(unsigned Index) : Index(Index) {}
852};
853
854namespace {
855
856/// A scope in which we're performing pack deduction.
857class PackDeductionScope {
858public:
859 /// Prepare to deduce the packs named within Pattern.
860 /// \param FinishingDeduction Don't attempt to deduce the pack. Useful when
861 /// just checking a previous deduction of the pack.
862 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
865 bool DeducePackIfNotAlreadyDeduced = false,
866 bool FinishingDeduction = false)
867 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info),
868 DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced),
869 FinishingDeduction(FinishingDeduction) {
870 unsigned NumNamedPacks = addPacks(Pattern);
871 finishConstruction(NumNamedPacks);
872 }
873
874 /// Prepare to directly deduce arguments of the parameter with index \p Index.
875 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
876 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
877 TemplateDeductionInfo &Info, unsigned Index)
878 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
879 addPack(Index);
880 finishConstruction(1);
881 }
882
883private:
884 void addPack(unsigned Index) {
885 // Save the deduced template argument for the parameter pack expanded
886 // by this pack expansion, then clear out the deduction.
887 DeducedFromEarlierParameter = !Deduced[Index].isNull();
888 DeducedPack Pack(Index);
889 if (!FinishingDeduction) {
890 Pack.Saved = Deduced[Index];
891 Deduced[Index] = TemplateArgument();
892 }
893
894 // FIXME: What if we encounter multiple packs with different numbers of
895 // pre-expanded expansions? (This should already have been diagnosed
896 // during substitution.)
897 if (UnsignedOrNone ExpandedPackExpansions =
898 getExpandedPackSize(TemplateParams->getParam(Index)))
899 FixedNumExpansions = ExpandedPackExpansions;
900
901 Packs.push_back(Pack);
902 }
903
904 unsigned addPacks(TemplateArgument Pattern) {
905 // Compute the set of template parameter indices that correspond to
906 // parameter packs expanded by the pack expansion.
907 llvm::SmallBitVector SawIndices(TemplateParams->size());
908 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
909
910 auto AddPack = [&](unsigned Index) {
911 if (SawIndices[Index])
912 return;
913 SawIndices[Index] = true;
914 addPack(Index);
915
916 // Deducing a parameter pack that is a pack expansion also constrains the
917 // packs appearing in that parameter to have the same deduced arity. Also,
918 // in C++17 onwards, deducing a non-type template parameter deduces its
919 // type, so we need to collect the pending deduced values for those packs.
920 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
921 TemplateParams->getParam(Index))) {
922 if (!NTTP->isExpandedParameterPack())
923 // FIXME: CWG2982 suggests a type-constraint forms a non-deduced
924 // context, however it is not yet resolved.
925 if (auto *Expansion = dyn_cast<PackExpansionType>(
926 S.Context.getUnconstrainedType(NTTP->getType())))
927 ExtraDeductions.push_back(Expansion->getPattern());
928 }
929 // FIXME: Also collect the unexpanded packs in any type and template
930 // parameter packs that are pack expansions.
931 };
932
933 auto Collect = [&](TemplateArgument Pattern) {
934 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
935 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
936 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
937 unsigned Depth, Index;
938 if (auto DI = getDepthAndIndex(Unexpanded[I]))
939 std::tie(Depth, Index) = *DI;
940 else
941 continue;
942
943 if (Depth == Info.getDeducedDepth())
944 AddPack(Index);
945 }
946 };
947
948 // Look for unexpanded packs in the pattern.
949 Collect(Pattern);
950
951 unsigned NumNamedPacks = Packs.size();
952
953 // Also look for unexpanded packs that are indirectly deduced by deducing
954 // the sizes of the packs in this pattern.
955 while (!ExtraDeductions.empty())
956 Collect(ExtraDeductions.pop_back_val());
957
958 return NumNamedPacks;
959 }
960
961 void finishConstruction(unsigned NumNamedPacks) {
962 // Dig out the partially-substituted pack, if there is one.
963 const TemplateArgument *PartialPackArgs = nullptr;
964 unsigned NumPartialPackArgs = 0;
965 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
966 if (auto *Scope = S.CurrentInstantiationScope)
967 if (auto *Partial = Scope->getPartiallySubstitutedPack(
968 &PartialPackArgs, &NumPartialPackArgs))
969 PartialPackDepthIndex = getDepthAndIndex(Partial);
970
971 // This pack expansion will have been partially or fully expanded if
972 // it only names explicitly-specified parameter packs (including the
973 // partially-substituted one, if any).
974 bool IsExpanded = true;
975 for (unsigned I = 0; I != NumNamedPacks; ++I) {
976 if (Packs[I].Index >= Info.getNumExplicitArgs()) {
977 IsExpanded = false;
978 IsPartiallyExpanded = false;
979 break;
980 }
981 if (PartialPackDepthIndex ==
982 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
983 IsPartiallyExpanded = true;
984 }
985 }
986
987 // Skip over the pack elements that were expanded into separate arguments.
988 // If we partially expanded, this is the number of partial arguments.
989 // FIXME: `&& FixedNumExpansions` is a workaround for UB described in
990 // https://github.com/llvm/llvm-project/issues/100095
991 if (IsPartiallyExpanded)
992 PackElements += NumPartialPackArgs;
993 else if (IsExpanded && FixedNumExpansions)
994 PackElements += *FixedNumExpansions;
995
996 for (auto &Pack : Packs) {
997 if (Info.PendingDeducedPacks.size() > Pack.Index)
998 Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
999 else
1000 Info.PendingDeducedPacks.resize(Pack.Index + 1);
1001 Info.PendingDeducedPacks[Pack.Index] = &Pack;
1002
1003 if (PartialPackDepthIndex ==
1004 std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
1005 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
1006 // We pre-populate the deduced value of the partially-substituted
1007 // pack with the specified value. This is not entirely correct: the
1008 // value is supposed to have been substituted, not deduced, but the
1009 // cases where this is observable require an exact type match anyway.
1010 //
1011 // FIXME: If we could represent a "depth i, index j, pack elem k"
1012 // parameter, we could substitute the partially-substituted pack
1013 // everywhere and avoid this.
1014 if (!FinishingDeduction && !IsPartiallyExpanded)
1015 Deduced[Pack.Index] = Pack.New[PackElements];
1016 }
1017 }
1018 }
1019
1020public:
1021 ~PackDeductionScope() {
1022 for (auto &Pack : Packs)
1023 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
1024 }
1025
1026 // Return the size of the saved packs if all of them has the same size.
1027 UnsignedOrNone getSavedPackSizeIfAllEqual() const {
1028 unsigned PackSize = Packs[0].Saved.pack_size();
1029
1030 if (std::all_of(Packs.begin() + 1, Packs.end(), [&PackSize](const auto &P) {
1031 return P.Saved.pack_size() == PackSize;
1032 }))
1033 return PackSize;
1034 return std::nullopt;
1035 }
1036
1037 /// Determine whether this pack has already been deduced from a previous
1038 /// argument.
1039 bool isDeducedFromEarlierParameter() const {
1040 return DeducedFromEarlierParameter;
1041 }
1042
1043 /// Determine whether this pack has already been partially expanded into a
1044 /// sequence of (prior) function parameters / template arguments.
1045 bool isPartiallyExpanded() { return IsPartiallyExpanded; }
1046
1047 /// Determine whether this pack expansion scope has a known, fixed arity.
1048 /// This happens if it involves a pack from an outer template that has
1049 /// (notionally) already been expanded.
1050 bool hasFixedArity() { return static_cast<bool>(FixedNumExpansions); }
1051
1052 /// Determine whether the next element of the argument is still part of this
1053 /// pack. This is the case unless the pack is already expanded to a fixed
1054 /// length.
1055 bool hasNextElement() {
1056 return !FixedNumExpansions || *FixedNumExpansions > PackElements;
1057 }
1058
1059 /// Move to deducing the next element in each pack that is being deduced.
1060 void nextPackElement() {
1061 // Capture the deduced template arguments for each parameter pack expanded
1062 // by this pack expansion, add them to the list of arguments we've deduced
1063 // for that pack, then clear out the deduced argument.
1064 if (!FinishingDeduction) {
1065 for (auto &Pack : Packs) {
1066 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
1067 if (!Pack.New.empty() || !DeducedArg.isNull()) {
1068 while (Pack.New.size() < PackElements)
1069 Pack.New.push_back(DeducedTemplateArgument());
1070 if (Pack.New.size() == PackElements)
1071 Pack.New.push_back(DeducedArg);
1072 else
1073 Pack.New[PackElements] = DeducedArg;
1074 DeducedArg = Pack.New.size() > PackElements + 1
1075 ? Pack.New[PackElements + 1]
1076 : DeducedTemplateArgument();
1077 }
1078 }
1079 }
1080 ++PackElements;
1081 }
1082
1083 /// Finish template argument deduction for a set of argument packs,
1084 /// producing the argument packs and checking for consistency with prior
1085 /// deductions.
1086 TemplateDeductionResult finish() {
1087 if (FinishingDeduction)
1088 return TemplateDeductionResult::Success;
1089 // Build argument packs for each of the parameter packs expanded by this
1090 // pack expansion.
1091 for (auto &Pack : Packs) {
1092 // Put back the old value for this pack.
1093 if (!FinishingDeduction)
1094 Deduced[Pack.Index] = Pack.Saved;
1095
1096 // Always make sure the size of this pack is correct, even if we didn't
1097 // deduce any values for it.
1098 //
1099 // FIXME: This isn't required by the normative wording, but substitution
1100 // and post-substitution checking will always fail if the arity of any
1101 // pack is not equal to the number of elements we processed. (Either that
1102 // or something else has gone *very* wrong.) We're permitted to skip any
1103 // hard errors from those follow-on steps by the intent (but not the
1104 // wording) of C++ [temp.inst]p8:
1105 //
1106 // If the function selected by overload resolution can be determined
1107 // without instantiating a class template definition, it is unspecified
1108 // whether that instantiation actually takes place
1109 Pack.New.resize(PackElements);
1110
1111 // Build or find a new value for this pack.
1112 DeducedTemplateArgument NewPack;
1113 if (Pack.New.empty()) {
1114 // If we deduced an empty argument pack, create it now.
1115 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
1116 } else {
1117 TemplateArgument *ArgumentPack =
1118 new (S.Context) TemplateArgument[Pack.New.size()];
1119 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
1120 NewPack = DeducedTemplateArgument(
1121 TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())),
1122 // FIXME: This is wrong, it's possible that some pack elements are
1123 // deduced from an array bound and others are not:
1124 // template<typename ...T, T ...V> void g(const T (&...p)[V]);
1125 // g({1, 2, 3}, {{}, {}});
1126 // ... should deduce T = {int, size_t (from array bound)}.
1127 Pack.New[0].wasDeducedFromArrayBound());
1128 }
1129
1130 // Pick where we're going to put the merged pack.
1131 DeducedTemplateArgument *Loc;
1132 if (Pack.Outer) {
1133 if (Pack.Outer->DeferredDeduction.isNull()) {
1134 // Defer checking this pack until we have a complete pack to compare
1135 // it against.
1136 Pack.Outer->DeferredDeduction = NewPack;
1137 continue;
1138 }
1139 Loc = &Pack.Outer->DeferredDeduction;
1140 } else {
1141 Loc = &Deduced[Pack.Index];
1142 }
1143
1144 // Check the new pack matches any previous value.
1145 DeducedTemplateArgument OldPack = *Loc;
1146 DeducedTemplateArgument Result = checkDeducedTemplateArguments(
1147 S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced);
1148
1149 Info.AggregateDeductionCandidateHasMismatchedArity =
1150 OldPack.getKind() == TemplateArgument::Pack &&
1151 NewPack.getKind() == TemplateArgument::Pack &&
1152 OldPack.pack_size() != NewPack.pack_size() && !Result.isNull();
1153
1154 // If we deferred a deduction of this pack, check that one now too.
1155 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
1156 OldPack = Result;
1157 NewPack = Pack.DeferredDeduction;
1158 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
1159 }
1160
1161 NamedDecl *Param = TemplateParams->getParam(Pack.Index);
1162 if (Result.isNull()) {
1163 Info.Param = makeTemplateParameter(Param);
1164 Info.FirstArg = OldPack;
1165 Info.SecondArg = NewPack;
1166 return TemplateDeductionResult::Inconsistent;
1167 }
1168
1169 // If we have a pre-expanded pack and we didn't deduce enough elements
1170 // for it, fail deduction.
1171 if (UnsignedOrNone Expansions = getExpandedPackSize(Param)) {
1172 if (*Expansions != PackElements) {
1173 Info.Param = makeTemplateParameter(Param);
1174 Info.FirstArg = Result;
1175 return TemplateDeductionResult::IncompletePack;
1176 }
1177 }
1178
1179 *Loc = Result;
1180 }
1181
1182 return TemplateDeductionResult::Success;
1183 }
1184
1185private:
1186 Sema &S;
1187 TemplateParameterList *TemplateParams;
1188 SmallVectorImpl<DeducedTemplateArgument> &Deduced;
1189 TemplateDeductionInfo &Info;
1190 unsigned PackElements = 0;
1191 bool IsPartiallyExpanded = false;
1192 bool DeducePackIfNotAlreadyDeduced = false;
1193 bool DeducedFromEarlierParameter = false;
1194 bool FinishingDeduction = false;
1195 /// The number of expansions, if we have a fully-expanded pack in this scope.
1196 UnsignedOrNone FixedNumExpansions = std::nullopt;
1197
1198 SmallVector<DeducedPack, 2> Packs;
1199};
1200
1201} // namespace
1202
1203template <class T>
1205 Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
1208 bool FinishingDeduction, T &&DeductFunc) {
1209 // C++0x [temp.deduct.type]p10:
1210 // Similarly, if P has a form that contains (T), then each parameter type
1211 // Pi of the respective parameter-type- list of P is compared with the
1212 // corresponding parameter type Ai of the corresponding parameter-type-list
1213 // of A. [...]
1214 unsigned ArgIdx = 0, ParamIdx = 0;
1215 for (; ParamIdx != Params.size(); ++ParamIdx) {
1216 // Check argument types.
1217 const PackExpansionType *Expansion
1218 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1219 if (!Expansion) {
1220 // Simple case: compare the parameter and argument types at this point.
1221
1222 // Make sure we have an argument.
1223 if (ArgIdx >= Args.size())
1225
1226 if (isa<PackExpansionType>(Args[ArgIdx])) {
1227 // C++0x [temp.deduct.type]p22:
1228 // If the original function parameter associated with A is a function
1229 // parameter pack and the function parameter associated with P is not
1230 // a function parameter pack, then template argument deduction fails.
1232 }
1233
1234 if (TemplateDeductionResult Result =
1235 DeductFunc(S, TemplateParams, ParamIdx, ArgIdx,
1236 Params[ParamIdx].getUnqualifiedType(),
1237 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, POK);
1239 return Result;
1240
1241 ++ArgIdx;
1242 continue;
1243 }
1244
1245 // C++0x [temp.deduct.type]p10:
1246 // If the parameter-declaration corresponding to Pi is a function
1247 // parameter pack, then the type of its declarator- id is compared with
1248 // each remaining parameter type in the parameter-type-list of A. Each
1249 // comparison deduces template arguments for subsequent positions in the
1250 // template parameter packs expanded by the function parameter pack.
1251
1252 QualType Pattern = Expansion->getPattern();
1253 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern,
1254 /*DeducePackIfNotAlreadyDeduced=*/false,
1255 FinishingDeduction);
1256
1257 // A pack scope with fixed arity is not really a pack any more, so is not
1258 // a non-deduced context.
1259 if (ParamIdx + 1 == Params.size() || PackScope.hasFixedArity()) {
1260 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); ++ArgIdx) {
1261 // Deduce template arguments from the pattern.
1262 if (TemplateDeductionResult Result = DeductFunc(
1263 S, TemplateParams, ParamIdx, ArgIdx,
1264 Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(),
1265 Info, Deduced, POK);
1267 return Result;
1268 PackScope.nextPackElement();
1269 }
1270 } else {
1271 // C++0x [temp.deduct.type]p5:
1272 // The non-deduced contexts are:
1273 // - A function parameter pack that does not occur at the end of the
1274 // parameter-declaration-clause.
1275 //
1276 // FIXME: There is no wording to say what we should do in this case. We
1277 // choose to resolve this by applying the same rule that is applied for a
1278 // function call: that is, deduce all contained packs to their
1279 // explicitly-specified values (or to <> if there is no such value).
1280 //
1281 // This is seemingly-arbitrarily different from the case of a template-id
1282 // with a non-trailing pack-expansion in its arguments, which renders the
1283 // entire template-argument-list a non-deduced context.
1284
1285 // If the parameter type contains an explicitly-specified pack that we
1286 // could not expand, skip the number of parameters notionally created
1287 // by the expansion.
1288 UnsignedOrNone NumExpansions = Expansion->getNumExpansions();
1289 if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1290 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
1291 ++I, ++ArgIdx)
1292 PackScope.nextPackElement();
1293 }
1294 }
1295
1296 // Build argument packs for each of the parameter packs expanded by this
1297 // pack expansion.
1298 if (auto Result = PackScope.finish();
1300 return Result;
1301 }
1302
1303 // DR692, DR1395
1304 // C++0x [temp.deduct.type]p10:
1305 // If the parameter-declaration corresponding to P_i ...
1306 // During partial ordering, if Ai was originally a function parameter pack:
1307 // - if P does not contain a function parameter type corresponding to Ai then
1308 // Ai is ignored;
1309 if (POK == PartialOrderingKind::Call && ArgIdx + 1 == Args.size() &&
1310 isa<PackExpansionType>(Args[ArgIdx]))
1312
1313 // Make sure we don't have any extra arguments.
1314 if (ArgIdx < Args.size())
1316
1318}
1319
1320/// Deduce the template arguments by comparing the list of parameter
1321/// types to the list of argument types, as in the parameter-type-lists of
1322/// function types (C++ [temp.deduct.type]p10).
1323///
1324/// \param S The semantic analysis object within which we are deducing
1325///
1326/// \param TemplateParams The template parameters that we are deducing
1327///
1328/// \param Params The list of parameter types
1329///
1330/// \param Args The list of argument types
1331///
1332/// \param Info information about the template argument deduction itself
1333///
1334/// \param Deduced the deduced template arguments
1335///
1336/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1337/// how template argument deduction is performed.
1338///
1339/// \param PartialOrdering If true, we are performing template argument
1340/// deduction for during partial ordering for a call
1341/// (C++0x [temp.deduct.partial]).
1342///
1343/// \param HasDeducedAnyParam If set, the object pointed at will indicate
1344/// whether any template parameter was deduced.
1345///
1346/// \param HasDeducedParam If set, the bit vector will be used to represent
1347/// which template parameters were deduced, in order.
1348///
1349/// \returns the result of template argument deduction so far. Note that a
1350/// "success" result means that template argument deduction has not yet failed,
1351/// but it may still fail, later, for other reasons.
1353 Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
1355 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
1356 PartialOrderingKind POK, bool *HasDeducedAnyParam,
1357 llvm::SmallBitVector *HasDeducedParam) {
1358 return ::DeduceForEachType(
1359 S, TemplateParams, Params, Args, Info, Deduced, POK,
1360 /*FinishingDeduction=*/false,
1361 [&](Sema &S, TemplateParameterList *TemplateParams, int ParamIdx,
1362 int ArgIdx, QualType P, QualType A, TemplateDeductionInfo &Info,
1364 PartialOrderingKind POK) {
1365 bool HasDeducedAnyParamCopy = false;
1367 S, TemplateParams, P, A, Info, Deduced, TDF, POK,
1368 /*DeducedFromArrayBound=*/false, &HasDeducedAnyParamCopy);
1369 if (HasDeducedAnyParam && HasDeducedAnyParamCopy)
1370 *HasDeducedAnyParam = true;
1371 if (HasDeducedParam && HasDeducedAnyParamCopy)
1372 (*HasDeducedParam)[ParamIdx] = true;
1373 return TDR;
1374 });
1375}
1376
1377/// Determine whether the parameter has qualifiers that the argument
1378/// lacks. Put another way, determine whether there is no way to add
1379/// a deduced set of qualifiers to the ParamType that would result in
1380/// its qualifiers matching those of the ArgType.
1382 QualType ArgType) {
1383 Qualifiers ParamQs = ParamType.getQualifiers();
1384 Qualifiers ArgQs = ArgType.getQualifiers();
1385
1386 if (ParamQs == ArgQs)
1387 return false;
1388
1389 // Mismatched (but not missing) Objective-C GC attributes.
1390 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1391 ParamQs.hasObjCGCAttr())
1392 return true;
1393
1394 // Mismatched (but not missing) address spaces.
1395 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1396 ParamQs.hasAddressSpace())
1397 return true;
1398
1399 // Mismatched (but not missing) Objective-C lifetime qualifiers.
1400 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1401 ParamQs.hasObjCLifetime())
1402 return true;
1403
1404 // CVR qualifiers inconsistent or a superset.
1405 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1406}
1407
1409 const FunctionType *PF = P->getAs<FunctionType>(),
1410 *AF = A->getAs<FunctionType>();
1411
1412 // Just compare if not functions.
1413 if (!PF || !AF)
1414 return Context.hasSameType(P, A);
1415
1416 // Noreturn and noexcept adjustment.
1417 if (QualType AdjustedParam; TryFunctionConversion(P, A, AdjustedParam))
1418 P = AdjustedParam;
1419
1420 // FIXME: Compatible calling conventions.
1421 return Context.hasSameFunctionTypeIgnoringExceptionSpec(P, A);
1422}
1423
1424/// Get the index of the first template parameter that was originally from the
1425/// innermost template-parameter-list. This is 0 except when we concatenate
1426/// the template parameter lists of a class template and a constructor template
1427/// when forming an implicit deduction guide.
1429 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1430 if (!Guide || !Guide->isImplicit())
1431 return 0;
1432 return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1433}
1434
1435/// Determine whether a type denotes a forwarding reference.
1436static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1437 // C++1z [temp.deduct.call]p3:
1438 // A forwarding reference is an rvalue reference to a cv-unqualified
1439 // template parameter that does not represent a template parameter of a
1440 // class template.
1441 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1442 if (ParamRef->getPointeeType().getQualifiers())
1443 return false;
1444 auto *TypeParm =
1445 ParamRef->getPointeeType()->getAsCanonical<TemplateTypeParmType>();
1446 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1447 }
1448 return false;
1449}
1450
1451/// Attempt to deduce the template arguments by checking the base types
1452/// according to (C++20 [temp.deduct.call] p4b3.
1453///
1454/// \param S the semantic analysis object within which we are deducing.
1455///
1456/// \param RD the top level record object we are deducing against.
1457///
1458/// \param TemplateParams the template parameters that we are deducing.
1459///
1460/// \param P the template specialization parameter type.
1461///
1462/// \param Info information about the template argument deduction itself.
1463///
1464/// \param Deduced the deduced template arguments.
1465///
1466/// \returns the result of template argument deduction with the bases. "invalid"
1467/// means no matches, "success" found a single item, and the
1468/// "MiscellaneousDeductionFailure" result happens when the match is ambiguous.
1471 TemplateParameterList *TemplateParams, QualType P,
1474 bool *HasDeducedAnyParam) {
1475 // C++14 [temp.deduct.call] p4b3:
1476 // If P is a class and P has the form simple-template-id, then the
1477 // transformed A can be a derived class of the deduced A. Likewise if
1478 // P is a pointer to a class of the form simple-template-id, the
1479 // transformed A can be a pointer to a derived class pointed to by the
1480 // deduced A. However, if there is a class C that is a (direct or
1481 // indirect) base class of D and derived (directly or indirectly) from a
1482 // class B and that would be a valid deduced A, the deduced A cannot be
1483 // B or pointer to B, respectively.
1484 //
1485 // These alternatives are considered only if type deduction would
1486 // otherwise fail. If they yield more than one possible deduced A, the
1487 // type deduction fails.
1488
1489 // Use a breadth-first search through the bases to collect the set of
1490 // successful matches. Visited contains the set of nodes we have already
1491 // visited, while ToVisit is our stack of records that we still need to
1492 // visit. Matches contains a list of matches that have yet to be
1493 // disqualified.
1496 // We iterate over this later, so we have to use MapVector to ensure
1497 // determinism.
1498 struct MatchValue {
1500 bool HasDeducedAnyParam;
1501 };
1502 llvm::MapVector<const CXXRecordDecl *, MatchValue> Matches;
1503
1504 auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) {
1505 for (const auto &Base : RD->bases()) {
1506 QualType T = Base.getType();
1507 assert(T->isRecordType() && "Base class that isn't a record?");
1508 if (Visited.insert(T->getAsCXXRecordDecl()).second)
1509 ToVisit.push_back(T);
1510 }
1511 };
1512
1513 // Set up the loop by adding all the bases.
1514 AddBases(RD);
1515
1516 // Search each path of bases until we either run into a successful match
1517 // (where all bases of it are invalid), or we run out of bases.
1518 while (!ToVisit.empty()) {
1519 QualType NextT = ToVisit.pop_back_val();
1520
1521 SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(),
1522 Deduced.end());
1524 bool HasDeducedAnyParamCopy = false;
1526 S, TemplateParams, P, NextT, BaseInfo, PartialOrdering, DeducedCopy,
1527 &HasDeducedAnyParamCopy);
1528
1529 // If this was a successful deduction, add it to the list of matches,
1530 // otherwise we need to continue searching its bases.
1531 const CXXRecordDecl *RD = NextT->getAsCXXRecordDecl();
1533 Matches.insert({RD, {DeducedCopy, HasDeducedAnyParamCopy}});
1534 else
1535 AddBases(RD);
1536 }
1537
1538 // At this point, 'Matches' contains a list of seemingly valid bases, however
1539 // in the event that we have more than 1 match, it is possible that the base
1540 // of one of the matches might be disqualified for being a base of another
1541 // valid match. We can count on cyclical instantiations being invalid to
1542 // simplify the disqualifications. That is, if A & B are both matches, and B
1543 // inherits from A (disqualifying A), we know that A cannot inherit from B.
1544 if (Matches.size() > 1) {
1545 Visited.clear();
1546 for (const auto &Match : Matches)
1547 AddBases(Match.first);
1548
1549 // We can give up once we have a single item (or have run out of things to
1550 // search) since cyclical inheritance isn't valid.
1551 while (Matches.size() > 1 && !ToVisit.empty()) {
1552 const CXXRecordDecl *RD = ToVisit.pop_back_val()->getAsCXXRecordDecl();
1553 Matches.erase(RD);
1554
1555 // Always add all bases, since the inheritance tree can contain
1556 // disqualifications for multiple matches.
1557 AddBases(RD);
1558 }
1559 }
1560
1561 if (Matches.empty())
1563 if (Matches.size() > 1)
1565
1566 std::swap(Matches.front().second.Deduced, Deduced);
1567 if (bool HasDeducedAnyParamCopy = Matches.front().second.HasDeducedAnyParam;
1568 HasDeducedAnyParamCopy && HasDeducedAnyParam)
1569 *HasDeducedAnyParam = HasDeducedAnyParamCopy;
1571}
1572
1573/// When propagating a partial ordering kind into a NonCall context,
1574/// this is used to downgrade a 'Call' into a 'NonCall', so that
1575/// the kind still reflects whether we are in a partial ordering context.
1580
1581/// Deduce the template arguments by comparing the parameter type and
1582/// the argument type (C++ [temp.deduct.type]).
1583///
1584/// \param S the semantic analysis object within which we are deducing
1585///
1586/// \param TemplateParams the template parameters that we are deducing
1587///
1588/// \param P the parameter type
1589///
1590/// \param A the argument type
1591///
1592/// \param Info information about the template argument deduction itself
1593///
1594/// \param Deduced the deduced template arguments
1595///
1596/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1597/// how template argument deduction is performed.
1598///
1599/// \param PartialOrdering Whether we're performing template argument deduction
1600/// in the context of partial ordering (C++0x [temp.deduct.partial]).
1601///
1602/// \returns the result of template argument deduction so far. Note that a
1603/// "success" result means that template argument deduction has not yet failed,
1604/// but it may still fail, later, for other reasons.
1606 Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A,
1608 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
1609 PartialOrderingKind POK, bool DeducedFromArrayBound,
1610 bool *HasDeducedAnyParam) {
1611
1612 // If the argument type is a pack expansion, look at its pattern.
1613 // This isn't explicitly called out
1614 if (const auto *AExp = dyn_cast<PackExpansionType>(A))
1615 A = AExp->getPattern();
1617
1618 if (POK == PartialOrderingKind::Call) {
1619 // C++11 [temp.deduct.partial]p5:
1620 // Before the partial ordering is done, certain transformations are
1621 // performed on the types used for partial ordering:
1622 // - If P is a reference type, P is replaced by the type referred to.
1623 const ReferenceType *PRef = P->getAs<ReferenceType>();
1624 if (PRef)
1625 P = PRef->getPointeeType();
1626
1627 // - If A is a reference type, A is replaced by the type referred to.
1628 const ReferenceType *ARef = A->getAs<ReferenceType>();
1629 if (ARef)
1630 A = A->getPointeeType();
1631
1632 if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) {
1633 // C++11 [temp.deduct.partial]p9:
1634 // If, for a given type, deduction succeeds in both directions (i.e.,
1635 // the types are identical after the transformations above) and both
1636 // P and A were reference types [...]:
1637 // - if [one type] was an lvalue reference and [the other type] was
1638 // not, [the other type] is not considered to be at least as
1639 // specialized as [the first type]
1640 // - if [one type] is more cv-qualified than [the other type],
1641 // [the other type] is not considered to be at least as specialized
1642 // as [the first type]
1643 // Objective-C ARC adds:
1644 // - [one type] has non-trivial lifetime, [the other type] has
1645 // __unsafe_unretained lifetime, and the types are otherwise
1646 // identical
1647 //
1648 // A is "considered to be at least as specialized" as P iff deduction
1649 // succeeds, so we model this as a deduction failure. Note that
1650 // [the first type] is P and [the other type] is A here; the standard
1651 // gets this backwards.
1652 Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers();
1653 if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) ||
1654 PQuals.isStrictSupersetOf(AQuals) ||
1655 (PQuals.hasNonTrivialObjCLifetime() &&
1656 AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1657 PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) {
1658 Info.FirstArg = TemplateArgument(P);
1659 Info.SecondArg = TemplateArgument(A);
1661 }
1662 }
1663 Qualifiers DiscardedQuals;
1664 // C++11 [temp.deduct.partial]p7:
1665 // Remove any top-level cv-qualifiers:
1666 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
1667 // version of P.
1668 P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals);
1669 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
1670 // version of A.
1671 A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals);
1672 } else {
1673 // C++0x [temp.deduct.call]p4 bullet 1:
1674 // - If the original P is a reference type, the deduced A (i.e., the type
1675 // referred to by the reference) can be more cv-qualified than the
1676 // transformed A.
1677 if (TDF & TDF_ParamWithReferenceType) {
1678 Qualifiers Quals;
1679 QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals);
1681 P = S.Context.getQualifiedType(UnqualP, Quals);
1682 }
1683
1684 if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) {
1685 // C++0x [temp.deduct.type]p10:
1686 // If P and A are function types that originated from deduction when
1687 // taking the address of a function template (14.8.2.2) or when deducing
1688 // template arguments from a function declaration (14.8.2.6) and Pi and
1689 // Ai are parameters of the top-level parameter-type-list of P and A,
1690 // respectively, Pi is adjusted if it is a forwarding reference and Ai
1691 // is an lvalue reference, in
1692 // which case the type of Pi is changed to be the template parameter
1693 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
1694 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1695 // deduced as X&. - end note ]
1697 if (isForwardingReference(P, /*FirstInnerIndex=*/0) &&
1699 P = P->getPointeeType();
1700 }
1701 }
1702
1703 // C++ [temp.deduct.type]p9:
1704 // A template type argument T, a template template argument TT or a
1705 // template non-type argument i can be deduced if P and A have one of
1706 // the following forms:
1707 //
1708 // T
1709 // cv-list T
1710 if (const auto *TTP = P->getAsCanonical<TemplateTypeParmType>()) {
1711 // Just skip any attempts to deduce from a placeholder type or a parameter
1712 // at a different depth.
1713 if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth())
1715
1716 unsigned Index = TTP->getIndex();
1717
1718 // If the argument type is an array type, move the qualifiers up to the
1719 // top level, so they can be matched with the qualifiers on the parameter.
1720 if (A->isArrayType()) {
1721 Qualifiers Quals;
1722 A = S.Context.getUnqualifiedArrayType(A, Quals);
1723 if (Quals)
1724 A = S.Context.getQualifiedType(A, Quals);
1725 }
1726
1727 // The argument type can not be less qualified than the parameter
1728 // type.
1729 if (!(TDF & TDF_IgnoreQualifiers) &&
1731 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1732 Info.FirstArg = TemplateArgument(P);
1733 Info.SecondArg = TemplateArgument(A);
1735 }
1736
1737 // Do not match a function type with a cv-qualified type.
1738 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1739 if (A->isFunctionType() && P.hasQualifiers())
1741
1742 assert(TTP->getDepth() == Info.getDeducedDepth() &&
1743 "saw template type parameter with wrong depth");
1744 assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy &&
1745 "Unresolved overloaded function");
1746 QualType DeducedType = A;
1747
1748 // Remove any qualifiers on the parameter from the deduced type.
1749 // We checked the qualifiers for consistency above.
1750 Qualifiers DeducedQs = DeducedType.getQualifiers();
1751 Qualifiers ParamQs = P.getQualifiers();
1752 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1753 if (ParamQs.hasObjCGCAttr())
1754 DeducedQs.removeObjCGCAttr();
1755 if (ParamQs.hasAddressSpace())
1756 DeducedQs.removeAddressSpace();
1757 if (ParamQs.hasObjCLifetime())
1758 DeducedQs.removeObjCLifetime();
1759
1760 // Objective-C ARC:
1761 // If template deduction would produce a lifetime qualifier on a type
1762 // that is not a lifetime type, template argument deduction fails.
1763 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1764 !DeducedType->isDependentType()) {
1765 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1766 Info.FirstArg = TemplateArgument(P);
1767 Info.SecondArg = TemplateArgument(A);
1769 }
1770
1771 // Objective-C ARC:
1772 // If template deduction would produce an argument type with lifetime type
1773 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1774 if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() &&
1775 !DeducedQs.hasObjCLifetime())
1777
1778 DeducedType =
1779 S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs);
1780
1781 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1783 checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced);
1784 if (Result.isNull()) {
1785 // We can also get inconsistencies when matching NTTP type.
1786 switch (NamedDecl *Param = TemplateParams->getParam(Index);
1787 Param->getKind()) {
1788 case Decl::TemplateTypeParm:
1789 Info.Param = cast<TemplateTypeParmDecl>(Param);
1790 break;
1791 case Decl::NonTypeTemplateParm:
1793 break;
1794 case Decl::TemplateTemplateParm:
1796 break;
1797 default:
1798 llvm_unreachable("unexpected kind");
1799 }
1800 Info.FirstArg = Deduced[Index];
1801 Info.SecondArg = NewDeduced;
1803 }
1804
1805 Deduced[Index] = Result;
1806 if (HasDeducedAnyParam)
1807 *HasDeducedAnyParam = true;
1809 }
1810
1811 // Set up the template argument deduction information for a failure.
1812 Info.FirstArg = TemplateArgument(P);
1813 Info.SecondArg = TemplateArgument(A);
1814
1815 // If the parameter is an already-substituted template parameter
1816 // pack, do nothing: we don't know which of its arguments to look
1817 // at, so we have to wait until all of the parameter packs in this
1818 // expansion have arguments.
1819 if (P->getAs<SubstTemplateTypeParmPackType>())
1821
1822 // Check the cv-qualifiers on the parameter and argument types.
1823 if (!(TDF & TDF_IgnoreQualifiers)) {
1824 if (TDF & TDF_ParamWithReferenceType) {
1827 } else if (TDF & TDF_ArgWithReferenceType) {
1828 // C++ [temp.deduct.conv]p4:
1829 // If the original A is a reference type, A can be more cv-qualified
1830 // than the deduced A
1832 S.getASTContext()))
1834
1835 // Strip out all extra qualifiers from the argument to figure out the
1836 // type we're converting to, prior to the qualification conversion.
1837 Qualifiers Quals;
1838 A = S.Context.getUnqualifiedArrayType(A, Quals);
1840 } else if (!IsPossiblyOpaquelyQualifiedType(P)) {
1841 if (P.getCVRQualifiers() != A.getCVRQualifiers())
1843 }
1844 }
1845
1846 // If the parameter type is not dependent, there is nothing to deduce.
1847 if (!P->isDependentType()) {
1848 if (TDF & TDF_SkipNonDependent)
1851 : S.Context.hasSameType(P, A))
1856 if (!(TDF & TDF_IgnoreQualifiers))
1858 // Otherwise, when ignoring qualifiers, the types not having the same
1859 // unqualified type does not mean they do not match, so in this case we
1860 // must keep going and analyze with a non-dependent parameter type.
1861 }
1862
1863 switch (P.getCanonicalType()->getTypeClass()) {
1864 // Non-canonical types cannot appear here.
1865#define NON_CANONICAL_TYPE(Class, Base) \
1866 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1867#define TYPE(Class, Base)
1868#include "clang/AST/TypeNodes.inc"
1869
1870 case Type::TemplateTypeParm:
1871 case Type::SubstTemplateTypeParmPack:
1872 case Type::SubstBuiltinTemplatePack:
1873 llvm_unreachable("Type nodes handled above");
1874
1875 case Type::Auto:
1876 // C++23 [temp.deduct.funcaddr]/3:
1877 // A placeholder type in the return type of a function template is a
1878 // non-deduced context.
1879 // There's no corresponding wording for [temp.deduct.decl], but we treat
1880 // it the same to match other compilers.
1881 if (P->isDependentType())
1883 [[fallthrough]];
1884 case Type::Builtin:
1885 case Type::VariableArray:
1886 case Type::Vector:
1887 case Type::FunctionNoProto:
1888 case Type::Record:
1889 case Type::Enum:
1890 case Type::ObjCObject:
1891 case Type::ObjCInterface:
1892 case Type::ObjCObjectPointer:
1893 case Type::BitInt:
1894 return (TDF & TDF_SkipNonDependent) ||
1895 ((TDF & TDF_IgnoreQualifiers)
1897 : S.Context.hasSameType(P, A))
1900
1901 // _Complex T [placeholder extension]
1902 case Type::Complex: {
1903 const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>();
1904 if (!CA)
1907 S, TemplateParams, CP->getElementType(), CA->getElementType(), Info,
1908 Deduced, TDF, degradeCallPartialOrderingKind(POK),
1909 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1910 }
1911
1912 // _Atomic T [extension]
1913 case Type::Atomic: {
1914 const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>();
1915 if (!AA)
1918 S, TemplateParams, PA->getValueType(), AA->getValueType(), Info,
1919 Deduced, TDF, degradeCallPartialOrderingKind(POK),
1920 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1921 }
1922
1923 // T *
1924 case Type::Pointer: {
1925 QualType PointeeType;
1926 if (const auto *PA = A->getAs<PointerType>()) {
1927 PointeeType = PA->getPointeeType();
1928 } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) {
1929 PointeeType = PA->getPointeeType();
1930 } else {
1932 }
1934 S, TemplateParams, P->castAs<PointerType>()->getPointeeType(),
1935 PointeeType, Info, Deduced,
1938 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1939 }
1940
1941 // T &
1942 case Type::LValueReference: {
1943 const auto *RP = P->castAs<LValueReferenceType>(),
1944 *RA = A->getAs<LValueReferenceType>();
1945 if (!RA)
1947
1949 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
1950 Deduced, 0, degradeCallPartialOrderingKind(POK),
1951 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1952 }
1953
1954 // T && [C++0x]
1955 case Type::RValueReference: {
1956 const auto *RP = P->castAs<RValueReferenceType>(),
1957 *RA = A->getAs<RValueReferenceType>();
1958 if (!RA)
1960
1962 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
1963 Deduced, 0, degradeCallPartialOrderingKind(POK),
1964 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1965 }
1966
1967 // T [] (implied, but not stated explicitly)
1968 case Type::IncompleteArray: {
1969 const auto *IAA = S.Context.getAsIncompleteArrayType(A);
1970 if (!IAA)
1972
1973 const auto *IAP = S.Context.getAsIncompleteArrayType(P);
1974 assert(IAP && "Template parameter not of incomplete array type");
1975
1977 S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info,
1978 Deduced, TDF & TDF_IgnoreQualifiers,
1980 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1981 }
1982
1983 // T [integer-constant]
1984 case Type::ConstantArray: {
1985 const auto *CAA = S.Context.getAsConstantArrayType(A),
1986 *CAP = S.Context.getAsConstantArrayType(P);
1987 assert(CAP);
1988 if (!CAA || CAA->getSize() != CAP->getSize())
1990
1992 S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info,
1993 Deduced, TDF & TDF_IgnoreQualifiers,
1995 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
1996 }
1997
1998 // type [i]
1999 case Type::DependentSizedArray: {
2000 const auto *AA = S.Context.getAsArrayType(A);
2001 if (!AA)
2003
2004 // Check the element type of the arrays
2005 const auto *DAP = S.Context.getAsDependentSizedArrayType(P);
2006 assert(DAP);
2007 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2008 S, TemplateParams, DAP->getElementType(), AA->getElementType(),
2009 Info, Deduced, TDF & TDF_IgnoreQualifiers,
2011 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2013 return Result;
2014
2015 // Determine the array bound is something we can deduce.
2017 getDeducedNTTParameterFromExpr(Info, DAP->getSizeExpr());
2018 if (!NTTP)
2020
2021 // We can perform template argument deduction for the given non-type
2022 // template parameter.
2023 assert(NTTP.getDepth() == Info.getDeducedDepth() &&
2024 "saw non-type template parameter with wrong depth");
2025 if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) {
2026 llvm::APSInt Size(CAA->getSize());
2028 S, TemplateParams, NTTP, Size, S.Context.getSizeType(),
2029 /*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
2030 Deduced, HasDeducedAnyParam);
2031 }
2032 if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA))
2033 if (DAA->getSizeExpr())
2035 S, TemplateParams, NTTP, DAA->getSizeExpr(), Info,
2036 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2037
2038 // Incomplete type does not match a dependently-sized array type
2040 }
2041
2042 // type(*)(T)
2043 // T(*)()
2044 // T(*)(T)
2045 case Type::FunctionProto: {
2046 const auto *FPP = P->castAs<FunctionProtoType>(),
2047 *FPA = A->getAs<FunctionProtoType>();
2048 if (!FPA)
2050
2051 if (FPP->getMethodQuals() != FPA->getMethodQuals() ||
2052 FPP->getRefQualifier() != FPA->getRefQualifier() ||
2053 FPP->isVariadic() != FPA->isVariadic())
2055
2056 // Check return types.
2057 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2058 S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(),
2059 Info, Deduced, 0, degradeCallPartialOrderingKind(POK),
2060 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2062 return Result;
2063
2064 // Check parameter types.
2065 if (auto Result = DeduceTemplateArguments(
2066 S, TemplateParams, FPP->param_types(), FPA->param_types(), Info,
2067 Deduced, TDF & TDF_TopLevelParameterTypeList, POK,
2068 HasDeducedAnyParam,
2069 /*HasDeducedParam=*/nullptr);
2071 return Result;
2072
2075
2076 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
2077 // deducing through the noexcept-specifier if it's part of the canonical
2078 // type. libstdc++ relies on this.
2079 Expr *NoexceptExpr = FPP->getNoexceptExpr();
2081 NoexceptExpr ? getDeducedNTTParameterFromExpr(Info, NoexceptExpr)
2082 : nullptr) {
2083 assert(NTTP.getDepth() == Info.getDeducedDepth() &&
2084 "saw non-type template parameter with wrong depth");
2085
2086 llvm::APSInt Noexcept(1);
2087 switch (FPA->canThrow()) {
2088 case CT_Cannot:
2089 Noexcept = 1;
2090 [[fallthrough]];
2091
2092 case CT_Can:
2093 // We give E in noexcept(E) the "deduced from array bound" treatment.
2094 // FIXME: Should we?
2096 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
2097 /*DeducedFromArrayBound=*/true, Info,
2098 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2099
2100 case CT_Dependent:
2101 if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr())
2103 S, TemplateParams, NTTP, ArgNoexceptExpr, Info,
2104 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2105 // Can't deduce anything from throw(T...).
2106 break;
2107 }
2108 }
2109 // FIXME: Detect non-deduced exception specification mismatches?
2110 //
2111 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
2112 // top-level differences in noexcept-specifications.
2113
2115 }
2116
2117 case Type::InjectedClassName:
2118 // Treat a template's injected-class-name as if the template
2119 // specialization type had been used.
2120
2121 // template-name<T> (where template-name refers to a class template)
2122 // template-name<i>
2123 // TT<T>
2124 // TT<i>
2125 // TT<>
2126 case Type::TemplateSpecialization: {
2127 // When Arg cannot be a derived class, we can just try to deduce template
2128 // arguments from the template-id.
2129 if (!(TDF & TDF_DerivedClass) || !A->isRecordType())
2130 return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info,
2132 Deduced, HasDeducedAnyParam);
2133
2134 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
2135 Deduced.end());
2136
2137 auto Result = DeduceTemplateSpecArguments(
2138 S, TemplateParams, P, A, Info, POK != PartialOrderingKind::None,
2139 Deduced, HasDeducedAnyParam);
2141 return Result;
2142
2143 // We cannot inspect base classes as part of deduction when the type
2144 // is incomplete, so either instantiate any templates necessary to
2145 // complete the type, or skip over it if it cannot be completed.
2146 if (!S.isCompleteType(Info.getLocation(), A))
2147 return Result;
2148
2149 const CXXRecordDecl *RD = A->getAsCXXRecordDecl();
2150 if (RD->isInvalidDecl())
2151 return Result;
2152
2153 // Reset the incorrectly deduced argument from above.
2154 Deduced = DeducedOrig;
2155
2156 // Check bases according to C++14 [temp.deduct.call] p4b3:
2157 auto BaseResult = DeduceTemplateBases(S, RD, TemplateParams, P, Info,
2159 Deduced, HasDeducedAnyParam);
2161 : Result;
2162 }
2163
2164 // T type::*
2165 // T T::*
2166 // T (type::*)()
2167 // type (T::*)()
2168 // type (type::*)(T)
2169 // type (T::*)(T)
2170 // T (type::*)(T)
2171 // T (T::*)()
2172 // T (T::*)(T)
2173 case Type::MemberPointer: {
2174 const auto *MPP = P->castAs<MemberPointerType>(),
2175 *MPA = A->getAs<MemberPointerType>();
2176 if (!MPA)
2178
2179 QualType PPT = MPP->getPointeeType();
2180 if (PPT->isFunctionType())
2181 S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false,
2182 /*IsCtorOrDtor=*/false, Info.getLocation());
2183 QualType APT = MPA->getPointeeType();
2184 if (APT->isFunctionType())
2185 S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false,
2186 /*IsCtorOrDtor=*/false, Info.getLocation());
2187
2188 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
2189 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2190 S, TemplateParams, PPT, APT, Info, Deduced, SubTDF,
2192 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2194 return Result;
2195
2196 QualType TP =
2197 MPP->isSugared()
2198 ? S.Context.getCanonicalTagType(MPP->getMostRecentCXXRecordDecl())
2199 : QualType(MPP->getQualifier().getAsType(), 0);
2200 assert(!TP.isNull() && "member pointer with non-type class");
2201
2202 QualType TA =
2203 MPA->isSugared()
2204 ? S.Context.getCanonicalTagType(MPA->getMostRecentCXXRecordDecl())
2205 : QualType(MPA->getQualifier().getAsType(), 0)
2207 assert(!TA.isNull() && "member pointer with non-type class");
2208
2210 S, TemplateParams, TP, TA, Info, Deduced, SubTDF,
2212 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2213 }
2214
2215 // (clang extension)
2216 //
2217 // type(^)(T)
2218 // T(^)()
2219 // T(^)(T)
2220 case Type::BlockPointer: {
2221 const auto *BPP = P->castAs<BlockPointerType>(),
2222 *BPA = A->getAs<BlockPointerType>();
2223 if (!BPA)
2226 S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info,
2227 Deduced, 0, degradeCallPartialOrderingKind(POK),
2228 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2229 }
2230
2231 // (clang extension)
2232 //
2233 // T __attribute__(((ext_vector_type(<integral constant>))))
2234 case Type::ExtVector: {
2235 const auto *VP = P->castAs<ExtVectorType>();
2236 QualType ElementType;
2237 if (const auto *VA = A->getAs<ExtVectorType>()) {
2238 // Make sure that the vectors have the same number of elements.
2239 if (VP->getNumElements() != VA->getNumElements())
2241 ElementType = VA->getElementType();
2242 } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
2243 // We can't check the number of elements, since the argument has a
2244 // dependent number of elements. This can only occur during partial
2245 // ordering.
2246 ElementType = VA->getElementType();
2247 } else {
2249 }
2250 // Perform deduction on the element types.
2252 S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced,
2254 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2255 }
2256
2257 case Type::DependentVector: {
2258 const auto *VP = P->castAs<DependentVectorType>();
2259
2260 if (const auto *VA = A->getAs<VectorType>()) {
2261 // Perform deduction on the element types.
2262 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2263 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2264 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2265 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2267 return Result;
2268
2269 // Perform deduction on the vector size, if we can.
2271 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2272 if (!NTTP)
2274
2275 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2276 ArgSize = VA->getNumElements();
2277 // Note that we use the "array bound" rules here; just like in that
2278 // case, we don't have any particular type for the vector size, but
2279 // we can provide one if necessary.
2281 S, TemplateParams, NTTP, ArgSize, S.Context.UnsignedIntTy, true,
2282 Info, POK != PartialOrderingKind::None, Deduced,
2283 HasDeducedAnyParam);
2284 }
2285
2286 if (const auto *VA = A->getAs<DependentVectorType>()) {
2287 // Perform deduction on the element types.
2288 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2289 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2290 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2291 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2293 return Result;
2294
2295 // Perform deduction on the vector size, if we can.
2297 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2298 if (!NTTP)
2300
2302 S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
2303 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2304 }
2305
2307 }
2308
2309 // (clang extension)
2310 //
2311 // T __attribute__(((ext_vector_type(N))))
2312 case Type::DependentSizedExtVector: {
2313 const auto *VP = P->castAs<DependentSizedExtVectorType>();
2314
2315 if (const auto *VA = A->getAs<ExtVectorType>()) {
2316 // Perform deduction on the element types.
2317 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2318 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2319 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2320 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2322 return Result;
2323
2324 // Perform deduction on the vector size, if we can.
2326 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2327 if (!NTTP)
2329
2330 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2331 ArgSize = VA->getNumElements();
2332 // Note that we use the "array bound" rules here; just like in that
2333 // case, we don't have any particular type for the vector size, but
2334 // we can provide one if necessary.
2336 S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
2337 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2338 }
2339
2340 if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
2341 // Perform deduction on the element types.
2342 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2343 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2344 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2345 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2347 return Result;
2348
2349 // Perform deduction on the vector size, if we can.
2351 getDeducedNTTParameterFromExpr(Info, VP->getSizeExpr());
2352 if (!NTTP)
2354
2356 S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
2357 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2358 }
2359
2361 }
2362
2363 // (clang extension)
2364 //
2365 // T __attribute__((matrix_type(<integral constant>,
2366 // <integral constant>)))
2367 case Type::ConstantMatrix: {
2368 const auto *MP = P->castAs<ConstantMatrixType>(),
2369 *MA = A->getAs<ConstantMatrixType>();
2370 if (!MA)
2372
2373 // Check that the dimensions are the same
2374 if (MP->getNumRows() != MA->getNumRows() ||
2375 MP->getNumColumns() != MA->getNumColumns()) {
2377 }
2378 // Perform deduction on element types.
2380 S, TemplateParams, MP->getElementType(), MA->getElementType(), Info,
2381 Deduced, TDF, degradeCallPartialOrderingKind(POK),
2382 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2383 }
2384
2385 case Type::DependentSizedMatrix: {
2386 const auto *MP = P->castAs<DependentSizedMatrixType>();
2387 const auto *MA = A->getAs<MatrixType>();
2388 if (!MA)
2390
2391 // Check the element type of the matrixes.
2392 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2393 S, TemplateParams, MP->getElementType(), MA->getElementType(),
2394 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2395 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2397 return Result;
2398
2399 // Try to deduce a matrix dimension.
2400 auto DeduceMatrixArg =
2401 [&S, &Info, &Deduced, &TemplateParams, &HasDeducedAnyParam, POK](
2402 Expr *ParamExpr, const MatrixType *A,
2403 unsigned (ConstantMatrixType::*GetArgDimension)() const,
2404 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) {
2405 const auto *ACM = dyn_cast<ConstantMatrixType>(A);
2406 const auto *ADM = dyn_cast<DependentSizedMatrixType>(A);
2407 if (!ParamExpr->isValueDependent()) {
2408 std::optional<llvm::APSInt> ParamConst =
2409 ParamExpr->getIntegerConstantExpr(S.Context);
2410 if (!ParamConst)
2412
2413 if (ACM) {
2414 if ((ACM->*GetArgDimension)() == *ParamConst)
2417 }
2418
2419 Expr *ArgExpr = (ADM->*GetArgDimensionExpr)();
2420 if (std::optional<llvm::APSInt> ArgConst =
2421 ArgExpr->getIntegerConstantExpr(S.Context))
2422 if (*ArgConst == *ParamConst)
2425 }
2426
2428 getDeducedNTTParameterFromExpr(Info, ParamExpr);
2429 if (!NTTP)
2431
2432 if (ACM) {
2433 llvm::APSInt ArgConst(
2435 ArgConst = (ACM->*GetArgDimension)();
2437 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(),
2438 /*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
2439 Deduced, HasDeducedAnyParam);
2440 }
2441
2443 S, TemplateParams, NTTP, (ADM->*GetArgDimensionExpr)(), Info,
2444 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2445 };
2446
2447 if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA,
2451 return Result;
2452
2453 return DeduceMatrixArg(MP->getColumnExpr(), MA,
2456 }
2457
2458 // (clang extension)
2459 //
2460 // T __attribute__(((address_space(N))))
2461 case Type::DependentAddressSpace: {
2462 const auto *ASP = P->castAs<DependentAddressSpaceType>();
2463
2464 if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) {
2465 // Perform deduction on the pointer type.
2466 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2467 S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(),
2468 Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
2469 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2471 return Result;
2472
2473 // Perform deduction on the address space, if we can.
2475 getDeducedNTTParameterFromExpr(Info, ASP->getAddrSpaceExpr());
2476 if (!NTTP)
2478
2480 S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info,
2481 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2482 }
2483
2485 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2486 false);
2487 ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace());
2488
2489 // Perform deduction on the pointer types.
2490 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2491 S, TemplateParams, ASP->getPointeeType(),
2492 S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF,
2494 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2496 return Result;
2497
2498 // Perform deduction on the address space, if we can.
2500 getDeducedNTTParameterFromExpr(Info, ASP->getAddrSpaceExpr());
2501 if (!NTTP)
2503
2505 S, TemplateParams, NTTP, ArgAddressSpace, S.Context.IntTy, true,
2506 Info, POK != PartialOrderingKind::None, Deduced,
2507 HasDeducedAnyParam);
2508 }
2509
2511 }
2512 case Type::DependentBitInt: {
2513 const auto *IP = P->castAs<DependentBitIntType>();
2514
2515 if (const auto *IA = A->getAs<BitIntType>()) {
2516 if (IP->isUnsigned() != IA->isUnsigned())
2518
2520 getDeducedNTTParameterFromExpr(Info, IP->getNumBitsExpr());
2521 if (!NTTP)
2523
2524 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2525 ArgSize = IA->getNumBits();
2526
2528 S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
2529 POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
2530 }
2531
2532 if (const auto *IA = A->getAs<DependentBitIntType>()) {
2533 if (IP->isUnsigned() != IA->isUnsigned())
2536 }
2537
2539 }
2540
2541 case Type::TypeOfExpr:
2542 case Type::TypeOf:
2543 case Type::DependentName:
2544 case Type::UnresolvedUsing:
2545 case Type::Decltype:
2546 case Type::UnaryTransform:
2547 case Type::DeducedTemplateSpecialization:
2548 case Type::PackExpansion:
2549 case Type::Pipe:
2550 case Type::ArrayParameter:
2551 case Type::HLSLAttributedResource:
2552 case Type::HLSLInlineSpirv:
2553 // No template argument deduction for these types
2555
2556 case Type::PackIndexing: {
2557 const PackIndexingType *PIT = P->getAs<PackIndexingType>();
2558 if (PIT->hasSelectedType()) {
2560 S, TemplateParams, PIT->getSelectedType(), A, Info, Deduced, TDF,
2562 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2563 }
2565 }
2566 }
2567
2568 llvm_unreachable("Invalid Type Class!");
2569}
2570
2576 bool *HasDeducedAnyParam) {
2577 // If the template argument is a pack expansion, perform template argument
2578 // deduction against the pattern of that expansion. This only occurs during
2579 // partial ordering.
2580 if (A.isPackExpansion())
2582
2583 switch (P.getKind()) {
2585 llvm_unreachable("Null template argument in parameter list");
2586
2590 S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0,
2593 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2594 Info.FirstArg = P;
2595 Info.SecondArg = A;
2597
2599 // PartialOrdering does not matter here, since template specializations are
2600 // not being deduced.
2603 S, TemplateParams, P.getAsTemplate(), A.getAsTemplate(), Info,
2604 /*DefaultArguments=*/{}, /*PartialOrdering=*/false, Deduced,
2605 HasDeducedAnyParam);
2606 Info.FirstArg = P;
2607 Info.SecondArg = A;
2609
2611 llvm_unreachable("caller should handle pack expansions");
2612
2617
2618 Info.FirstArg = P;
2619 Info.SecondArg = A;
2621
2623 // 'nullptr' has only one possible value, so it always matches.
2626 Info.FirstArg = P;
2627 Info.SecondArg = A;
2629
2632 if (llvm::APSInt::isSameValue(P.getAsIntegral(), A.getAsIntegral()))
2634 }
2635 Info.FirstArg = P;
2636 Info.SecondArg = A;
2638
2640 // FIXME: structural equality will also compare types,
2641 // but they should match iff they have the same value.
2643 A.structurallyEquals(P))
2645
2646 Info.FirstArg = P;
2647 Info.SecondArg = A;
2649
2653 switch (A.getKind()) {
2655 const Expr *E = A.getAsExpr();
2656 // When checking NTTP, if either the parameter or the argument is
2657 // dependent, as there would be otherwise nothing to deduce, we force
2658 // the argument to the parameter type using this dependent implicit
2659 // cast, in order to maintain invariants. Now we can deduce the
2660 // resulting type from the original type, and deduce the original type
2661 // against the parameter we are checking.
2662 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
2663 ICE && ICE->getCastKind() == clang::CK_Dependent) {
2664 E = ICE->getSubExpr();
2665 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2666 S, TemplateParams, ICE->getType(), E->getType(), Info,
2667 Deduced, TDF_SkipNonDependent,
2670 /*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
2672 return Result;
2673 }
2675 S, TemplateParams, NTTP, DeducedTemplateArgument(A), E->getType(),
2676 Info, PartialOrdering, Deduced, HasDeducedAnyParam);
2677 }
2681 S, TemplateParams, NTTP, DeducedTemplateArgument(A),
2683 HasDeducedAnyParam);
2684
2687 S, TemplateParams, NTTP, A.getNullPtrType(), Info, PartialOrdering,
2688 Deduced, HasDeducedAnyParam);
2689
2692 S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(),
2693 Info, PartialOrdering, Deduced, HasDeducedAnyParam);
2694
2700 Info.FirstArg = P;
2701 Info.SecondArg = A;
2703 }
2704 llvm_unreachable("Unknown template argument kind");
2705 }
2706 // Can't deduce anything, but that's okay.
2709 llvm_unreachable("Argument packs should be expanded by the caller!");
2710 }
2711
2712 llvm_unreachable("Invalid TemplateArgument Kind!");
2713}
2714
2715/// Determine whether there is a template argument to be used for
2716/// deduction.
2717///
2718/// This routine "expands" argument packs in-place, overriding its input
2719/// parameters so that \c Args[ArgIdx] will be the available template argument.
2720///
2721/// \returns true if there is another template argument (which will be at
2722/// \c Args[ArgIdx]), false otherwise.
2724 unsigned &ArgIdx) {
2725 if (ArgIdx == Args.size())
2726 return false;
2727
2728 const TemplateArgument &Arg = Args[ArgIdx];
2729 if (Arg.getKind() != TemplateArgument::Pack)
2730 return true;
2731
2732 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2733 Args = Arg.pack_elements();
2734 ArgIdx = 0;
2735 return ArgIdx < Args.size();
2736}
2737
2738/// Determine whether the given set of template arguments has a pack
2739/// expansion that is not the last template argument.
2741 bool FoundPackExpansion = false;
2742 for (const auto &A : Args) {
2743 if (FoundPackExpansion)
2744 return true;
2745
2746 if (A.getKind() == TemplateArgument::Pack)
2747 return hasPackExpansionBeforeEnd(A.pack_elements());
2748
2749 // FIXME: If this is a fixed-arity pack expansion from an outer level of
2750 // templates, it should not be treated as a pack expansion.
2751 if (A.isPackExpansion())
2752 FoundPackExpansion = true;
2753 }
2754
2755 return false;
2756}
2757
2764 bool NumberOfArgumentsMustMatch, bool PartialOrdering,
2765 PackFold PackFold, bool *HasDeducedAnyParam) {
2766 bool FoldPackParameter = PackFold == PackFold::ParameterToArgument ||
2768 FoldPackArgument = PackFold == PackFold::ArgumentToParameter ||
2770
2771 // C++0x [temp.deduct.type]p9:
2772 // If the template argument list of P contains a pack expansion that is not
2773 // the last template argument, the entire template argument list is a
2774 // non-deduced context.
2775 if (FoldPackParameter && hasPackExpansionBeforeEnd(Ps))
2777
2778 // C++0x [temp.deduct.type]p9:
2779 // If P has a form that contains <T> or <i>, then each argument Pi of the
2780 // respective template argument list P is compared with the corresponding
2781 // argument Ai of the corresponding template argument list of A.
2782 for (unsigned ArgIdx = 0, ParamIdx = 0; /**/; /**/) {
2784 return !FoldPackParameter && hasTemplateArgumentForDeduction(As, ArgIdx)
2787
2788 if (!Ps[ParamIdx].isPackExpansion()) {
2789 // The simple case: deduce template arguments by matching Pi and Ai.
2790
2791 // Check whether we have enough arguments.
2792 if (!hasTemplateArgumentForDeduction(As, ArgIdx))
2793 return !FoldPackArgument && NumberOfArgumentsMustMatch
2796
2797 if (As[ArgIdx].isPackExpansion()) {
2798 // C++1z [temp.deduct.type]p9:
2799 // During partial ordering, if Ai was originally a pack expansion
2800 // [and] Pi is not a pack expansion, template argument deduction
2801 // fails.
2802 if (!FoldPackArgument)
2804
2805 TemplateArgument Pattern = As[ArgIdx].getPackExpansionPattern();
2806 for (;;) {
2807 // Deduce template parameters from the pattern.
2808 if (auto Result = DeduceTemplateArguments(
2809 S, TemplateParams, Ps[ParamIdx], Pattern, Info,
2810 PartialOrdering, Deduced, HasDeducedAnyParam);
2812 return Result;
2813
2814 ++ParamIdx;
2817 if (Ps[ParamIdx].isPackExpansion())
2818 break;
2819 }
2820 } else {
2821 // Perform deduction for this Pi/Ai pair.
2822 if (auto Result = DeduceTemplateArguments(
2823 S, TemplateParams, Ps[ParamIdx], As[ArgIdx], Info,
2824 PartialOrdering, Deduced, HasDeducedAnyParam);
2826 return Result;
2827
2828 ++ArgIdx;
2829 ++ParamIdx;
2830 continue;
2831 }
2832 }
2833
2834 // The parameter is a pack expansion.
2835
2836 // C++0x [temp.deduct.type]p9:
2837 // If Pi is a pack expansion, then the pattern of Pi is compared with
2838 // each remaining argument in the template argument list of A. Each
2839 // comparison deduces template arguments for subsequent positions in the
2840 // template parameter packs expanded by Pi.
2841 TemplateArgument Pattern = Ps[ParamIdx].getPackExpansionPattern();
2842
2843 // Prepare to deduce the packs within the pattern.
2844 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2845
2846 // Keep track of the deduced template arguments for each parameter pack
2847 // expanded by this pack expansion (the outer index) and for each
2848 // template argument (the inner SmallVectors).
2849 for (; hasTemplateArgumentForDeduction(As, ArgIdx) &&
2850 PackScope.hasNextElement();
2851 ++ArgIdx) {
2852 if (!As[ArgIdx].isPackExpansion()) {
2853 if (!FoldPackParameter)
2855 if (FoldPackArgument)
2856 Info.setStrictPackMatch();
2857 }
2858 // Deduce template arguments from the pattern.
2859 if (auto Result = DeduceTemplateArguments(
2860 S, TemplateParams, Pattern, As[ArgIdx], Info, PartialOrdering,
2861 Deduced, HasDeducedAnyParam);
2863 return Result;
2864
2865 PackScope.nextPackElement();
2866 }
2867
2868 // Build argument packs for each of the parameter packs expanded by this
2869 // pack expansion.
2870 return PackScope.finish();
2871 }
2872}
2873
2878 bool NumberOfArgumentsMustMatch) {
2879 return ::DeduceTemplateArguments(
2880 *this, TemplateParams, Ps, As, Info, Deduced, NumberOfArgumentsMustMatch,
2881 /*PartialOrdering=*/false, PackFold::ParameterToArgument,
2882 /*HasDeducedAnyParam=*/nullptr);
2883}
2884
2887 QualType NTTPType, SourceLocation Loc,
2889 switch (Arg.getKind()) {
2891 llvm_unreachable("Can't get a NULL template argument here");
2892
2894 return TemplateArgumentLoc(
2895 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2896
2898 if (NTTPType.isNull())
2899 NTTPType = Arg.getParamTypeForDecl();
2900 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc,
2902 .getAs<Expr>();
2903 return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
2904 }
2905
2907 if (NTTPType.isNull())
2908 NTTPType = Arg.getNullPtrType();
2909 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2910 .getAs<Expr>();
2911 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2912 E);
2913 }
2914
2918 return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
2919 }
2920
2925 Builder.MakeTrivial(Context, Template.getQualifier(), Loc);
2926 return TemplateArgumentLoc(
2927 Context, Arg, Loc, Builder.getWithLocInContext(Context), Loc,
2928 /*EllipsisLoc=*/Arg.getKind() == TemplateArgument::TemplateExpansion
2929 ? Loc
2930 : SourceLocation());
2931 }
2932
2934 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2935
2938 }
2939
2940 llvm_unreachable("Invalid TemplateArgument Kind!");
2941}
2942
2945 SourceLocation Location) {
2947 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
2948}
2949
2950/// Convert the given deduced template argument and add it to the set of
2951/// fully-converted template arguments.
2952static bool
2955 TemplateDeductionInfo &Info, bool IsDeduced,
2957 auto ConvertArg = [&](DeducedTemplateArgument Arg,
2958 unsigned ArgumentPackIndex) {
2959 // Convert the deduced template argument into a template
2960 // argument that we can check, almost as if the user had written
2961 // the template argument explicitly.
2963 Arg, QualType(), Info.getLocation(), Param);
2964
2965 SaveAndRestore _1(CTAI.MatchingTTP, false);
2966 SaveAndRestore _2(CTAI.StrictPackMatch, false);
2967 // Check the template argument, converting it as necessary.
2968 auto Res = S.CheckTemplateArgument(
2969 Param, ArgLoc, Template, Template->getLocation(),
2970 Template->getSourceRange().getEnd(), ArgumentPackIndex, CTAI,
2971 IsDeduced
2975 if (CTAI.StrictPackMatch)
2976 Info.setStrictPackMatch();
2977 return Res;
2978 };
2979
2980 if (Arg.getKind() == TemplateArgument::Pack) {
2981 // This is a template argument pack, so check each of its arguments against
2982 // the template parameter.
2983 SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder,
2984 CanonicalPackedArgsBuilder;
2985 for (const auto &P : Arg.pack_elements()) {
2986 // When converting the deduced template argument, append it to the
2987 // general output list. We need to do this so that the template argument
2988 // checking logic has all of the prior template arguments available.
2989 DeducedTemplateArgument InnerArg(P);
2991 assert(InnerArg.getKind() != TemplateArgument::Pack &&
2992 "deduced nested pack");
2993 if (P.isNull()) {
2994 // We deduced arguments for some elements of this pack, but not for
2995 // all of them. This happens if we get a conditionally-non-deduced
2996 // context in a pack expansion (such as an overload set in one of the
2997 // arguments).
2998 S.Diag(Param->getLocation(),
2999 diag::err_template_arg_deduced_incomplete_pack)
3000 << Arg << Param;
3001 return true;
3002 }
3003 if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size()))
3004 return true;
3005
3006 // Move the converted template argument into our argument pack.
3007 SugaredPackedArgsBuilder.push_back(CTAI.SugaredConverted.pop_back_val());
3008 CanonicalPackedArgsBuilder.push_back(
3009 CTAI.CanonicalConverted.pop_back_val());
3010 }
3011
3012 // If the pack is empty, we still need to substitute into the parameter
3013 // itself, in case that substitution fails.
3014 if (SugaredPackedArgsBuilder.empty()) {
3017 /*Final=*/true);
3018 Sema::ArgPackSubstIndexRAII OnlySubstNonPackExpansion(S, std::nullopt);
3019
3020 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3021 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
3022 NTTP, CTAI.SugaredConverted,
3023 Template->getSourceRange());
3024 if (Inst.isInvalid() ||
3025 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
3026 NTTP->getDeclName()).isNull())
3027 return true;
3028 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3029 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
3030 TTP, CTAI.SugaredConverted,
3031 Template->getSourceRange());
3032 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
3033 return true;
3034 }
3035 // For type parameters, no substitution is ever required.
3036 }
3037
3038 // Create the resulting argument pack.
3039 CTAI.SugaredConverted.push_back(
3040 TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder));
3042 S.Context, CanonicalPackedArgsBuilder));
3043 return false;
3044 }
3045
3046 return ConvertArg(Arg, 0);
3047}
3048
3049/// \param IsIncomplete When used, we only consider template parameters that
3050/// were deduced, disregarding any default arguments. After the function
3051/// finishes, the object pointed at will contain a value indicating if the
3052/// conversion was actually incomplete.
3054 Sema &S, NamedDecl *Template, TemplateParameterList *TemplateParams,
3055 bool IsDeduced, SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3057 LocalInstantiationScope *CurrentInstantiationScope,
3058 unsigned NumAlreadyConverted, bool *IsIncomplete) {
3059 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3060 NamedDecl *Param = TemplateParams->getParam(I);
3061
3062 // C++0x [temp.arg.explicit]p3:
3063 // A trailing template parameter pack (14.5.3) not otherwise deduced will
3064 // be deduced to an empty sequence of template arguments.
3065 // FIXME: Where did the word "trailing" come from?
3066 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
3067 if (auto Result =
3068 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish();
3070 return Result;
3071 }
3072
3073 if (!Deduced[I].isNull()) {
3074 if (I < NumAlreadyConverted) {
3075 // We may have had explicitly-specified template arguments for a
3076 // template parameter pack (that may or may not have been extended
3077 // via additional deduced arguments).
3078 if (Param->isParameterPack() && CurrentInstantiationScope &&
3079 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
3080 // Forget the partially-substituted pack; its substitution is now
3081 // complete.
3082 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
3083 // We still need to check the argument in case it was extended by
3084 // deduction.
3085 } else {
3086 // We have already fully type-checked and converted this
3087 // argument, because it was explicitly-specified. Just record the
3088 // presence of this argument.
3089 CTAI.SugaredConverted.push_back(Deduced[I]);
3090 CTAI.CanonicalConverted.push_back(
3092 continue;
3093 }
3094 }
3095
3096 // We may have deduced this argument, so it still needs to be
3097 // checked and converted.
3098 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
3099 IsDeduced, CTAI)) {
3100 Info.Param = makeTemplateParameter(Param);
3101 // FIXME: These template arguments are temporary. Free them!
3102 Info.reset(
3105 CTAI.CanonicalConverted));
3107 }
3108
3109 continue;
3110 }
3111
3112 // [C++26][temp.deduct.partial]p12 - When partial ordering, it's ok for
3113 // template parameters to remain not deduced. As a provisional fix for a
3114 // core issue that does not exist yet, which may be related to CWG2160, only
3115 // consider template parameters that were deduced, disregarding any default
3116 // arguments.
3117 if (IsIncomplete) {
3118 *IsIncomplete = true;
3119 CTAI.SugaredConverted.push_back({});
3120 CTAI.CanonicalConverted.push_back({});
3121 continue;
3122 }
3123
3124 // Substitute into the default template argument, if available.
3125 bool HasDefaultArg = false;
3126 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
3127 if (!TD) {
3131 }
3132
3133 TemplateArgumentLoc DefArg;
3134 {
3135 Qualifiers ThisTypeQuals;
3136 CXXRecordDecl *ThisContext = nullptr;
3137 if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext()))
3138 if (Rec->isLambda())
3139 if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) {
3140 ThisContext = Method->getParent();
3141 ThisTypeQuals = Method->getMethodQualifiers();
3142 }
3143
3144 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals,
3145 S.getLangOpts().CPlusPlus17);
3146
3148 TD, /*TemplateKWLoc=*/SourceLocation(), TD->getLocation(),
3149 TD->getSourceRange().getEnd(), Param, CTAI.SugaredConverted,
3150 CTAI.CanonicalConverted, HasDefaultArg);
3151 }
3152
3153 // If there was no default argument, deduction is incomplete.
3154 if (DefArg.getArgument().isNull()) {
3155 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3156 Info.reset(
3159
3162 }
3163
3164 SaveAndRestore _1(CTAI.PartialOrdering, false);
3165 SaveAndRestore _2(CTAI.MatchingTTP, false);
3166 SaveAndRestore _3(CTAI.StrictPackMatch, false);
3167 // Check whether we can actually use the default argument.
3169 Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(),
3170 /*ArgumentPackIndex=*/0, CTAI, Sema::CTAK_Specified)) {
3171 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3172 // FIXME: These template arguments are temporary. Free them!
3173 Info.reset(
3177 }
3178
3179 // If we get here, we successfully used the default template argument.
3180 }
3181
3183}
3184
3186 if (auto *DC = dyn_cast<DeclContext>(D))
3187 return DC;
3188 return D->getDeclContext();
3189}
3190
3191template<typename T> struct IsPartialSpecialization {
3192 static constexpr bool value = false;
3193};
3194template<>
3198template<>
3200 static constexpr bool value = true;
3201};
3202
3205 ArrayRef<TemplateArgument> SugaredDeducedArgs,
3206 ArrayRef<TemplateArgument> CanonicalDeducedArgs,
3207 TemplateDeductionInfo &Info) {
3208 llvm::SmallVector<AssociatedConstraint, 3> AssociatedConstraints;
3209 bool DeducedArgsNeedReplacement = false;
3210 if (auto *TD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Template)) {
3211 TD->getAssociatedConstraints(AssociatedConstraints);
3212 DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization();
3213 } else if (auto *TD =
3214 dyn_cast<VarTemplatePartialSpecializationDecl>(Template)) {
3215 TD->getAssociatedConstraints(AssociatedConstraints);
3216 DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization();
3217 } else {
3218 cast<TemplateDecl>(Template)->getAssociatedConstraints(
3219 AssociatedConstraints);
3220 }
3221
3222 std::optional<ArrayRef<TemplateArgument>> Innermost;
3223 // If we don't need to replace the deduced template arguments,
3224 // we can add them immediately as the inner-most argument list.
3225 if (!DeducedArgsNeedReplacement)
3226 Innermost = CanonicalDeducedArgs;
3227
3229 Template, Template->getDeclContext(), /*Final=*/false, Innermost,
3230 /*RelativeToPrimary=*/true, /*Pattern=*/
3231 nullptr, /*ForConstraintInstantiation=*/true);
3232
3233 // getTemplateInstantiationArgs picks up the non-deduced version of the
3234 // template args when this is a variable template partial specialization and
3235 // not class-scope explicit specialization, so replace with Deduced Args
3236 // instead of adding to inner-most.
3237 if (!Innermost)
3238 MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs);
3239
3240 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL,
3241 Info.getLocation(),
3244 Info.reset(
3245 TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs),
3246 TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs));
3248 }
3250}
3251
3252/// Complete template argument deduction.
3254 Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL,
3258 TemplateDeductionInfo &Info, bool CopyDeducedArgs) {
3259 // Unevaluated SFINAE context.
3262
3263 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Entity));
3264
3265 // C++ [temp.deduct.type]p2:
3266 // [...] or if any template argument remains neither deduced nor
3267 // explicitly specified, template argument deduction fails.
3269 if (auto Result = ConvertDeducedTemplateArguments(
3270 S, Entity, EntityTPL, /*IsDeduced=*/PartialOrdering, Deduced, Info,
3271 CTAI,
3272 /*CurrentInstantiationScope=*/nullptr,
3273 /*NumAlreadyConverted=*/0U, /*IsIncomplete=*/nullptr);
3275 return Result;
3276
3277 if (CopyDeducedArgs) {
3278 // Form the template argument list from the deduced template arguments.
3279 TemplateArgumentList *SugaredDeducedArgumentList =
3281 TemplateArgumentList *CanonicalDeducedArgumentList =
3283 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
3284 }
3285
3286 TemplateParameterList *TPL = Template->getTemplateParameters();
3287 TemplateArgumentListInfo InstArgs(TPL->getLAngleLoc(), TPL->getRAngleLoc());
3289 /*Final=*/true);
3290 MLTAL.addOuterRetainedLevels(TPL->getDepth());
3291
3292 if (S.SubstTemplateArguments(Ps, MLTAL, InstArgs)) {
3293 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
3294 if (ParamIdx >= TPL->size())
3295 ParamIdx = TPL->size() - 1;
3296
3297 Decl *Param = TPL->getParam(ParamIdx);
3298 Info.Param = makeTemplateParameter(Param);
3299 Info.FirstArg = Ps[ArgIdx].getArgument();
3301 }
3302
3305 if (S.CheckTemplateArgumentList(Template, Template->getLocation(), InstArgs,
3306 /*DefaultArgs=*/{}, false, InstCTAI,
3307 /*UpdateArgsWithConversions=*/true,
3312
3313 // Check that we produced the correct argument list.
3315 AsStack{As};
3316 for (;;) {
3317 auto take = [](SmallVectorImpl<ArrayRef<TemplateArgument>> &Stack)
3319 while (!Stack.empty()) {
3320 auto &Xs = Stack.back();
3321 if (Xs.empty()) {
3322 Stack.pop_back();
3323 continue;
3324 }
3325 auto &X = Xs.front();
3326 if (X.getKind() == TemplateArgument::Pack) {
3327 Stack.emplace_back(X.getPackAsArray());
3328 Xs = Xs.drop_front();
3329 continue;
3330 }
3331 assert(!X.isNull());
3332 return {Xs, X};
3333 }
3334 static constexpr ArrayRef<TemplateArgument> None;
3335 return {const_cast<ArrayRef<TemplateArgument> &>(None),
3337 };
3338 auto [Ps, P] = take(PsStack);
3339 auto [As, A] = take(AsStack);
3340 if (P.isNull() && A.isNull())
3341 break;
3342 TemplateArgument PP = P.isPackExpansion() ? P.getPackExpansionPattern() : P,
3343 PA = A.isPackExpansion() ? A.getPackExpansionPattern() : A;
3344 if (!S.Context.isSameTemplateArgument(PP, PA)) {
3345 if (!P.isPackExpansion() && !A.isPackExpansion()) {
3347 (AsStack.empty() ? As.end() : AsStack.back().begin()) -
3348 As.begin()));
3349 Info.FirstArg = P;
3350 Info.SecondArg = A;
3352 }
3353 if (P.isPackExpansion()) {
3354 Ps = Ps.drop_front();
3355 continue;
3356 }
3357 if (A.isPackExpansion()) {
3358 As = As.drop_front();
3359 continue;
3360 }
3361 }
3362 Ps = Ps.drop_front(P.isPackExpansion() ? 0 : 1);
3363 As = As.drop_front(A.isPackExpansion() && !P.isPackExpansion() ? 0 : 1);
3364 }
3365 assert(PsStack.empty());
3366 assert(AsStack.empty());
3367
3368 if (!PartialOrdering) {
3369 if (auto Result = CheckDeducedArgumentConstraints(
3370 S, Entity, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info);
3372 return Result;
3373 }
3374
3376}
3378 Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL,
3382 TemplateDeductionInfo &Info, bool CopyDeducedArgs) {
3383 TemplateParameterList *TPL = Template->getTemplateParameters();
3384 SmallVector<TemplateArgumentLoc, 8> PsLoc(Ps.size());
3385 for (unsigned I = 0, N = Ps.size(); I != N; ++I)
3386 PsLoc[I] = S.getTrivialTemplateArgumentLoc(Ps[I], QualType(),
3387 TPL->getParam(I)->getLocation());
3388 return FinishTemplateArgumentDeduction(S, Entity, EntityTPL, Template,
3389 PartialOrdering, PsLoc, As, Deduced,
3390 Info, CopyDeducedArgs);
3391}
3392
3393/// Complete template argument deduction for DeduceTemplateArgumentsFromType.
3394/// FIXME: this is mostly duplicated with the above two versions. Deduplicate
3395/// the three implementations.
3397 Sema &S, TemplateDecl *TD,
3399 TemplateDeductionInfo &Info) {
3400 // Unevaluated SFINAE context.
3403
3405
3406 // C++ [temp.deduct.type]p2:
3407 // [...] or if any template argument remains neither deduced nor
3408 // explicitly specified, template argument deduction fails.
3410 if (auto Result = ConvertDeducedTemplateArguments(
3411 S, TD, TD->getTemplateParameters(), /*IsDeduced=*/false, Deduced,
3412 Info, CTAI,
3413 /*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0,
3414 /*IsIncomplete=*/nullptr);
3416 return Result;
3417
3418 return ::CheckDeducedArgumentConstraints(S, TD, CTAI.SugaredConverted,
3419 CTAI.CanonicalConverted, Info);
3420}
3421
3422/// Perform template argument deduction to determine whether the given template
3423/// arguments match the given class or variable template partial specialization
3424/// per C++ [temp.class.spec.match].
3425template <typename T>
3426static std::enable_if_t<IsPartialSpecialization<T>::value,
3429 ArrayRef<TemplateArgument> TemplateArgs,
3430 TemplateDeductionInfo &Info) {
3431 if (Partial->isInvalidDecl())
3433
3434 // C++ [temp.class.spec.match]p2:
3435 // A partial specialization matches a given actual template
3436 // argument list if the template arguments of the partial
3437 // specialization can be deduced from the actual template argument
3438 // list (14.8.2).
3439
3440 // Unevaluated SFINAE context.
3443 Sema::SFINAETrap Trap(S);
3444
3445 // This deduction has no relation to any outer instantiation we might be
3446 // performing.
3447 LocalInstantiationScope InstantiationScope(S);
3448
3450 Deduced.resize(Partial->getTemplateParameters()->size());
3452 S, Partial->getTemplateParameters(),
3453 Partial->getTemplateArgs().asArray(), TemplateArgs, Info, Deduced,
3454 /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/false,
3456 /*HasDeducedAnyParam=*/nullptr);
3458 return Result;
3459
3460 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3461 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), Partial, DeducedArgs,
3462 Info);
3463 if (Inst.isInvalid())
3465
3468 Result = ::FinishTemplateArgumentDeduction(
3469 S, Partial, Partial->getTemplateParameters(),
3470 Partial->getSpecializedTemplate(),
3471 /*IsPartialOrdering=*/false,
3472 Partial->getTemplateArgsAsWritten()->arguments(), TemplateArgs, Deduced,
3473 Info, /*CopyDeducedArgs=*/true);
3474 });
3475
3477 return Result;
3478
3479 if (Trap.hasErrorOccurred())
3481
3483}
3484
3487 ArrayRef<TemplateArgument> TemplateArgs,
3488 TemplateDeductionInfo &Info) {
3489 return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
3490}
3493 ArrayRef<TemplateArgument> TemplateArgs,
3494 TemplateDeductionInfo &Info) {
3495 return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
3496}
3497
3501 if (TD->isInvalidDecl())
3503
3504 QualType PType;
3505 if (const auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
3506 // Use the InjectedClassNameType.
3507 PType = Context.getCanonicalTagType(CTD->getTemplatedDecl());
3508 } else if (const auto *AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(TD)) {
3509 PType = AliasTemplate->getTemplatedDecl()->getUnderlyingType();
3510 } else {
3511 assert(false && "Expected a class or alias template");
3512 }
3513
3514 // Unevaluated SFINAE context.
3517 SFINAETrap Trap(*this);
3518
3519 // This deduction has no relation to any outer instantiation we might be
3520 // performing.
3521 LocalInstantiationScope InstantiationScope(*this);
3522
3524 TD->getTemplateParameters()->size());
3527 if (auto DeducedResult = DeduceTemplateArguments(
3528 TD->getTemplateParameters(), PArgs, AArgs, Info, Deduced, false);
3529 DeducedResult != TemplateDeductionResult::Success) {
3530 return DeducedResult;
3531 }
3532
3533 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3534 InstantiatingTemplate Inst(*this, Info.getLocation(), TD, DeducedArgs, Info);
3535 if (Inst.isInvalid())
3537
3540 Result = ::FinishTemplateArgumentDeduction(*this, TD, Deduced, Info);
3541 });
3542
3544 return Result;
3545
3546 if (Trap.hasErrorOccurred())
3548
3550}
3551
3552/// Determine whether the given type T is a simple-template-id type.
3554 if (const TemplateSpecializationType *Spec
3555 = T->getAs<TemplateSpecializationType>())
3556 return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
3557
3558 // C++17 [temp.local]p2:
3559 // the injected-class-name [...] is equivalent to the template-name followed
3560 // by the template-arguments of the class template specialization or partial
3561 // specialization enclosed in <>
3562 // ... which means it's equivalent to a simple-template-id.
3563 //
3564 // This only arises during class template argument deduction for a copy
3565 // deduction candidate, where it permits slicing.
3566 if (isa<InjectedClassNameType>(T.getCanonicalType()))
3567 return true;
3568
3569 return false;
3570}
3571
3574 TemplateArgumentListInfo &ExplicitTemplateArgs,
3577 TemplateDeductionInfo &Info) {
3578 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3579 TemplateParameterList *TemplateParams
3580 = FunctionTemplate->getTemplateParameters();
3581
3582 if (ExplicitTemplateArgs.size() == 0) {
3583 // No arguments to substitute; just copy over the parameter types and
3584 // fill in the function type.
3585 for (auto *P : Function->parameters())
3586 ParamTypes.push_back(P->getType());
3587
3588 if (FunctionType)
3589 *FunctionType = Function->getType();
3591 }
3592
3593 // Unevaluated SFINAE context.
3596 SFINAETrap Trap(*this);
3597
3598 // C++ [temp.arg.explicit]p3:
3599 // Template arguments that are present shall be specified in the
3600 // declaration order of their corresponding template-parameters. The
3601 // template argument list shall not specify more template-arguments than
3602 // there are corresponding template-parameters.
3603
3604 // Enter a new template instantiation context where we check the
3605 // explicitly-specified template arguments against this function template,
3606 // and then substitute them into the function parameter types.
3609 *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3611 if (Inst.isInvalid())
3613
3616 ExplicitTemplateArgs, /*DefaultArgs=*/{},
3617 /*PartialTemplateArgs=*/true, CTAI,
3618 /*UpdateArgsWithConversions=*/false) ||
3619 Trap.hasErrorOccurred()) {
3620 unsigned Index = CTAI.SugaredConverted.size();
3621 if (Index >= TemplateParams->size())
3623 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3625 }
3626
3627 // Form the template argument list from the explicitly-specified
3628 // template arguments.
3629 TemplateArgumentList *SugaredExplicitArgumentList =
3631 TemplateArgumentList *CanonicalExplicitArgumentList =
3633 Info.setExplicitArgs(SugaredExplicitArgumentList,
3634 CanonicalExplicitArgumentList);
3635
3636 // Template argument deduction and the final substitution should be
3637 // done in the context of the templated declaration. Explicit
3638 // argument substitution, on the other hand, needs to happen in the
3639 // calling context.
3640 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3641
3642 // If we deduced template arguments for a template parameter pack,
3643 // note that the template argument pack is partially substituted and record
3644 // the explicit template arguments. They'll be used as part of deduction
3645 // for this template parameter pack.
3646 unsigned PartiallySubstitutedPackIndex = -1u;
3647 if (!CTAI.SugaredConverted.empty()) {
3648 const TemplateArgument &Arg = CTAI.SugaredConverted.back();
3649 if (Arg.getKind() == TemplateArgument::Pack) {
3650 auto *Param = TemplateParams->getParam(CTAI.SugaredConverted.size() - 1);
3651 // If this is a fully-saturated fixed-size pack, it should be
3652 // fully-substituted, not partially-substituted.
3653 UnsignedOrNone Expansions = getExpandedPackSize(Param);
3654 if (!Expansions || Arg.pack_size() < *Expansions) {
3655 PartiallySubstitutedPackIndex = CTAI.SugaredConverted.size() - 1;
3656 CurrentInstantiationScope->SetPartiallySubstitutedPack(
3657 Param, Arg.pack_begin(), Arg.pack_size());
3658 }
3659 }
3660 }
3661
3662 const FunctionProtoType *Proto
3663 = Function->getType()->getAs<FunctionProtoType>();
3664 assert(Proto && "Function template does not have a prototype?");
3665
3666 // Isolate our substituted parameters from our caller.
3667 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3668
3669 ExtParameterInfoBuilder ExtParamInfos;
3670
3672 SugaredExplicitArgumentList->asArray(),
3673 /*Final=*/true);
3674
3675 // Instantiate the types of each of the function parameters given the
3676 // explicitly-specified template arguments. If the function has a trailing
3677 // return type, substitute it after the arguments to ensure we substitute
3678 // in lexical order.
3679 if (Proto->hasTrailingReturn()) {
3680 if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3681 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
3682 /*params=*/nullptr, ExtParamInfos))
3684 }
3685
3686 // Instantiate the return type.
3687 QualType ResultType;
3688 {
3689 // C++11 [expr.prim.general]p3:
3690 // If a declaration declares a member function or member function
3691 // template of a class X, the expression this is a prvalue of type
3692 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3693 // and the end of the function-definition, member-declarator, or
3694 // declarator.
3695 Qualifiers ThisTypeQuals;
3696 CXXRecordDecl *ThisContext = nullptr;
3697 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3698 ThisContext = Method->getParent();
3699 ThisTypeQuals = Method->getMethodQualifiers();
3700 }
3701
3702 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3704
3705 ResultType =
3706 SubstType(Proto->getReturnType(), MLTAL,
3707 Function->getTypeSpecStartLoc(), Function->getDeclName());
3708 if (ResultType.isNull() || Trap.hasErrorOccurred())
3710 // CUDA: Kernel function must have 'void' return type.
3711 if (getLangOpts().CUDA)
3712 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3713 Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3714 << Function->getType() << Function->getSourceRange();
3716 }
3717 }
3718
3719 // Instantiate the types of each of the function parameters given the
3720 // explicitly-specified template arguments if we didn't do so earlier.
3721 if (!Proto->hasTrailingReturn() &&
3722 SubstParmTypes(Function->getLocation(), Function->parameters(),
3723 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
3724 /*params*/ nullptr, ExtParamInfos))
3726
3727 if (FunctionType) {
3728 auto EPI = Proto->getExtProtoInfo();
3729 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3730 *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3731 Function->getLocation(),
3732 Function->getDeclName(),
3733 EPI);
3734 if (FunctionType->isNull() || Trap.hasErrorOccurred())
3736 }
3737
3738 // C++ [temp.arg.explicit]p2:
3739 // Trailing template arguments that can be deduced (14.8.2) may be
3740 // omitted from the list of explicit template-arguments. If all of the
3741 // template arguments can be deduced, they may all be omitted; in this
3742 // case, the empty template argument list <> itself may also be omitted.
3743 //
3744 // Take all of the explicitly-specified arguments and put them into
3745 // the set of deduced template arguments. The partially-substituted
3746 // parameter pack, however, will be set to NULL since the deduction
3747 // mechanism handles the partially-substituted argument pack directly.
3748 Deduced.reserve(TemplateParams->size());
3749 for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) {
3750 const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I);
3751 if (I == PartiallySubstitutedPackIndex)
3752 Deduced.push_back(DeducedTemplateArgument());
3753 else
3754 Deduced.push_back(Arg);
3755 }
3756
3758}
3759
3760/// Check whether the deduced argument type for a call to a function
3761/// template matches the actual argument type per C++ [temp.deduct.call]p4.
3764 Sema::OriginalCallArg OriginalArg,
3765 QualType DeducedA) {
3766 ASTContext &Context = S.Context;
3767
3768 auto Failed = [&]() -> TemplateDeductionResult {
3769 Info.FirstArg = TemplateArgument(DeducedA);
3770 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3771 Info.CallArgIndex = OriginalArg.ArgIdx;
3772 return OriginalArg.DecomposedParam
3775 };
3776
3777 QualType A = OriginalArg.OriginalArgType;
3778 QualType OriginalParamType = OriginalArg.OriginalParamType;
3779
3780 // Check for type equality (top-level cv-qualifiers are ignored).
3781 if (Context.hasSameUnqualifiedType(A, DeducedA))
3783
3784 // Strip off references on the argument types; they aren't needed for
3785 // the following checks.
3786 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3787 DeducedA = DeducedARef->getPointeeType();
3788 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3789 A = ARef->getPointeeType();
3790
3791 // C++ [temp.deduct.call]p4:
3792 // [...] However, there are three cases that allow a difference:
3793 // - If the original P is a reference type, the deduced A (i.e., the
3794 // type referred to by the reference) can be more cv-qualified than
3795 // the transformed A.
3796 if (const ReferenceType *OriginalParamRef
3797 = OriginalParamType->getAs<ReferenceType>()) {
3798 // We don't want to keep the reference around any more.
3799 OriginalParamType = OriginalParamRef->getPointeeType();
3800
3801 // FIXME: Resolve core issue (no number yet): if the original P is a
3802 // reference type and the transformed A is function type "noexcept F",
3803 // the deduced A can be F.
3804 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA))
3806
3807 Qualifiers AQuals = A.getQualifiers();
3808 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3809
3810 // Under Objective-C++ ARC, the deduced type may have implicitly
3811 // been given strong or (when dealing with a const reference)
3812 // unsafe_unretained lifetime. If so, update the original
3813 // qualifiers to include this lifetime.
3814 if (S.getLangOpts().ObjCAutoRefCount &&
3815 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3817 (DeducedAQuals.hasConst() &&
3818 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3819 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3820 }
3821
3822 if (AQuals == DeducedAQuals) {
3823 // Qualifiers match; there's nothing to do.
3824 } else if (!DeducedAQuals.compatiblyIncludes(AQuals, S.getASTContext())) {
3825 return Failed();
3826 } else {
3827 // Qualifiers are compatible, so have the argument type adopt the
3828 // deduced argument type's qualifiers as if we had performed the
3829 // qualification conversion.
3830 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3831 }
3832 }
3833
3834 // - The transformed A can be another pointer or pointer to member
3835 // type that can be converted to the deduced A via a function pointer
3836 // conversion and/or a qualification conversion.
3837 //
3838 // Also allow conversions which merely strip __attribute__((noreturn)) from
3839 // function types (recursively).
3840 bool ObjCLifetimeConversion = false;
3841 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3842 (S.IsQualificationConversion(A, DeducedA, false,
3843 ObjCLifetimeConversion) ||
3844 S.IsFunctionConversion(A, DeducedA)))
3846
3847 // - If P is a class and P has the form simple-template-id, then the
3848 // transformed A can be a derived class of the deduced A. [...]
3849 // [...] Likewise, if P is a pointer to a class of the form
3850 // simple-template-id, the transformed A can be a pointer to a
3851 // derived class pointed to by the deduced A.
3852 if (const PointerType *OriginalParamPtr
3853 = OriginalParamType->getAs<PointerType>()) {
3854 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3855 if (const PointerType *APtr = A->getAs<PointerType>()) {
3856 if (A->getPointeeType()->isRecordType()) {
3857 OriginalParamType = OriginalParamPtr->getPointeeType();
3858 DeducedA = DeducedAPtr->getPointeeType();
3859 A = APtr->getPointeeType();
3860 }
3861 }
3862 }
3863 }
3864
3865 if (Context.hasSameUnqualifiedType(A, DeducedA))
3867
3868 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3869 S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3871
3872 return Failed();
3873}
3874
3875/// Find the pack index for a particular parameter index in an instantiation of
3876/// a function template with specific arguments.
3877///
3878/// \return The pack index for whichever pack produced this parameter, or -1
3879/// if this was not produced by a parameter. Intended to be used as the
3880/// ArgumentPackSubstitutionIndex for further substitutions.
3881// FIXME: We should track this in OriginalCallArgs so we don't need to
3882// reconstruct it here.
3883static UnsignedOrNone
3886 unsigned ParamIdx) {
3887 unsigned Idx = 0;
3888 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3889 if (PD->isParameterPack()) {
3890 UnsignedOrNone NumArgs =
3891 S.getNumArgumentsInExpansion(PD->getType(), Args);
3892 unsigned NumExpansions = NumArgs ? *NumArgs : 1;
3893 if (Idx + NumExpansions > ParamIdx)
3894 return ParamIdx - Idx;
3895 Idx += NumExpansions;
3896 } else {
3897 if (Idx == ParamIdx)
3898 return std::nullopt; // Not a pack expansion
3899 ++Idx;
3900 }
3901 }
3902
3903 llvm_unreachable("parameter index would not be produced from template");
3904}
3905
3906// if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`,
3907// we'll try to instantiate and update its explicit specifier after constraint
3908// checking.
3911 const MultiLevelTemplateArgumentList &SubstArgs,
3913 ArrayRef<TemplateArgument> DeducedArgs) {
3914 auto GetExplicitSpecifier = [](FunctionDecl *D) {
3915 return isa<CXXConstructorDecl>(D)
3916 ? cast<CXXConstructorDecl>(D)->getExplicitSpecifier()
3917 : cast<CXXConversionDecl>(D)->getExplicitSpecifier();
3918 };
3919 auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) {
3921 ? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES)
3922 : cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES);
3923 };
3924
3925 ExplicitSpecifier ES = GetExplicitSpecifier(Specialization);
3926 Expr *ExplicitExpr = ES.getExpr();
3927 if (!ExplicitExpr)
3929 if (!ExplicitExpr->isValueDependent())
3931
3933 S, Info.getLocation(), FunctionTemplate, DeducedArgs,
3935 if (Inst.isInvalid())
3937 Sema::SFINAETrap Trap(S);
3938 const ExplicitSpecifier InstantiatedES =
3939 S.instantiateExplicitSpecifier(SubstArgs, ES);
3940 if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) {
3941 Specialization->setInvalidDecl(true);
3943 }
3944 SetExplicitSpecifier(Specialization, InstantiatedES);
3946}
3947
3951 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3953 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3954 bool PartialOverloading, bool PartialOrdering,
3955 bool ForOverloadSetAddressResolution,
3956 llvm::function_ref<bool(bool)> CheckNonDependent) {
3957 // Unevaluated SFINAE context.
3960 SFINAETrap Trap(*this);
3961
3962 // Enter a new template instantiation context while we instantiate the
3963 // actual function declaration.
3964 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3966 *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3968 if (Inst.isInvalid())
3970
3971 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3972
3973 // C++ [temp.deduct.type]p2:
3974 // [...] or if any template argument remains neither deduced nor
3975 // explicitly specified, template argument deduction fails.
3976 bool IsIncomplete = false;
3979 *this, FunctionTemplate, FunctionTemplate->getTemplateParameters(),
3980 /*IsDeduced=*/true, Deduced, Info, CTAI, CurrentInstantiationScope,
3981 NumExplicitlySpecified, PartialOverloading ? &IsIncomplete : nullptr);
3983 return Result;
3984
3985 // Form the template argument list from the deduced template arguments.
3986 TemplateArgumentList *SugaredDeducedArgumentList =
3988 TemplateArgumentList *CanonicalDeducedArgumentList =
3990 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
3991
3992 // Substitute the deduced template arguments into the function template
3993 // declaration to produce the function template specialization.
3994 DeclContext *Owner = FunctionTemplate->getDeclContext();
3995 if (FunctionTemplate->getFriendObjectKind())
3996 Owner = FunctionTemplate->getLexicalDeclContext();
3997 FunctionDecl *FD = FunctionTemplate->getTemplatedDecl();
3998
3999 if (CheckNonDependent(/*OnlyInitializeNonUserDefinedConversions=*/true))
4001
4002 // C++20 [temp.deduct.general]p5: [CWG2369]
4003 // If the function template has associated constraints, those constraints
4004 // are checked for satisfaction. If the constraints are not satisfied, type
4005 // deduction fails.
4006 //
4007 // FIXME: We haven't implemented CWG2369 for lambdas yet, because we need
4008 // to figure out how to instantiate lambda captures to the scope without
4009 // first instantiating the lambda.
4010 bool IsLambda = isLambdaCallOperator(FD) || isLambdaConversionOperator(FD);
4011 if (!IsLambda && !IsIncomplete) {
4013 Info.getLocation(),
4014 FunctionTemplate->getCanonicalDecl()->getTemplatedDecl(),
4021 }
4022 }
4023 // C++ [temp.deduct.call]p10: [CWG1391]
4024 // If deduction succeeds for all parameters that contain
4025 // template-parameters that participate in template argument deduction,
4026 // and all template arguments are explicitly specified, deduced, or
4027 // obtained from default template arguments, remaining parameters are then
4028 // compared with the corresponding arguments. For each remaining parameter
4029 // P with a type that was non-dependent before substitution of any
4030 // explicitly-specified template arguments, if the corresponding argument
4031 // A cannot be implicitly converted to P, deduction fails.
4032 if (CheckNonDependent(/*OnlyInitializeNonUserDefinedConversions=*/false))
4034
4036 FunctionTemplate, CanonicalDeducedArgumentList->asArray(),
4037 /*Final=*/false);
4038 Specialization = cast_or_null<FunctionDecl>(
4039 SubstDecl(FD, Owner, SubstArgs));
4040 if (!Specialization || Specialization->isInvalidDecl())
4042
4043 assert(isSameDeclaration(Specialization->getPrimaryTemplate(),
4045
4046 // If the template argument list is owned by the function template
4047 // specialization, release it.
4048 if (Specialization->getTemplateSpecializationArgs() ==
4049 CanonicalDeducedArgumentList &&
4050 !Trap.hasErrorOccurred())
4051 Info.takeCanonical();
4052
4053 // There may have been an error that did not prevent us from constructing a
4054 // declaration. Mark the declaration invalid and return with a substitution
4055 // failure.
4056 if (Trap.hasErrorOccurred()) {
4057 Specialization->setInvalidDecl(true);
4059 }
4060
4061 // C++2a [temp.deduct]p5
4062 // [...] When all template arguments have been deduced [...] all uses of
4063 // template parameters [...] are replaced with the corresponding deduced
4064 // or default argument values.
4065 // [...] If the function template has associated constraints
4066 // ([temp.constr.decl]), those constraints are checked for satisfaction
4067 // ([temp.constr.constr]). If the constraints are not satisfied, type
4068 // deduction fails.
4069 if (IsLambda && !IsIncomplete) {
4074
4079 }
4080 }
4081
4082 // We skipped the instantiation of the explicit-specifier during the
4083 // substitution of `FD` before. So, we try to instantiate it back if
4084 // `Specialization` is either a constructor or a conversion function.
4088 Info, FunctionTemplate,
4089 DeducedArgs)) {
4091 }
4092 }
4093
4094 if (OriginalCallArgs) {
4095 // C++ [temp.deduct.call]p4:
4096 // In general, the deduction process attempts to find template argument
4097 // values that will make the deduced A identical to A (after the type A
4098 // is transformed as described above). [...]
4099 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
4100 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
4101 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
4102
4103 auto ParamIdx = OriginalArg.ArgIdx;
4104 unsigned ExplicitOffset =
4105 (Specialization->hasCXXExplicitFunctionObjectParameter() &&
4106 !ForOverloadSetAddressResolution)
4107 ? 1
4108 : 0;
4109 if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset)
4110 // FIXME: This presumably means a pack ended up smaller than we
4111 // expected while deducing. Should this not result in deduction
4112 // failure? Can it even happen?
4113 continue;
4114
4115 QualType DeducedA;
4116 if (!OriginalArg.DecomposedParam) {
4117 // P is one of the function parameters, just look up its substituted
4118 // type.
4119 DeducedA =
4120 Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType();
4121 } else {
4122 // P is a decomposed element of a parameter corresponding to a
4123 // braced-init-list argument. Substitute back into P to find the
4124 // deduced A.
4125 QualType &CacheEntry =
4126 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
4127 if (CacheEntry.isNull()) {
4128 ArgPackSubstIndexRAII PackIndex(
4129 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
4130 ParamIdx));
4131 CacheEntry =
4132 SubstType(OriginalArg.OriginalParamType, SubstArgs,
4133 Specialization->getTypeSpecStartLoc(),
4134 Specialization->getDeclName());
4135 }
4136 DeducedA = CacheEntry;
4137 }
4138
4139 if (auto TDK =
4140 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
4142 return TDK;
4143 }
4144 }
4145
4146 // If we suppressed any diagnostics while performing template argument
4147 // deduction, and if we haven't already instantiated this declaration,
4148 // keep track of these diagnostics. They'll be emitted if this specialization
4149 // is actually used.
4150 if (Info.diag_begin() != Info.diag_end()) {
4151 auto [Pos, Inserted] =
4152 SuppressedDiagnostics.try_emplace(Specialization->getCanonicalDecl());
4153 if (Inserted)
4154 Pos->second.append(Info.diag_begin(), Info.diag_end());
4155 }
4156
4158}
4159
4160/// Gets the type of a function for template-argument-deducton
4161/// purposes when it's considered as part of an overload set.
4163 FunctionDecl *Fn) {
4164 // We may need to deduce the return type of the function now.
4165 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
4166 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
4167 return {};
4168
4169 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
4170 if (Method->isImplicitObjectMemberFunction()) {
4171 // An instance method that's referenced in a form that doesn't
4172 // look like a member pointer is just invalid.
4174 return {};
4175
4177 Fn->getType(), /*Qualifier=*/std::nullopt, Method->getParent());
4178 }
4179
4180 if (!R.IsAddressOfOperand) return Fn->getType();
4181 return S.Context.getPointerType(Fn->getType());
4182}
4183
4184/// Apply the deduction rules for overload sets.
4185///
4186/// \return the null type if this argument should be treated as an
4187/// undeduced context
4188static QualType
4190 Expr *Arg, QualType ParamType,
4191 bool ParamWasReference,
4192 TemplateSpecCandidateSet *FailedTSC = nullptr) {
4193
4195
4196 OverloadExpr *Ovl = R.Expression;
4197
4198 // C++0x [temp.deduct.call]p4
4199 unsigned TDF = 0;
4200 if (ParamWasReference)
4202 if (R.IsAddressOfOperand)
4203 TDF |= TDF_IgnoreQualifiers;
4204
4205 // C++0x [temp.deduct.call]p6:
4206 // When P is a function type, pointer to function type, or pointer
4207 // to member function type:
4208
4209 if (!ParamType->isFunctionType() &&
4210 !ParamType->isFunctionPointerType() &&
4211 !ParamType->isMemberFunctionPointerType()) {
4212 if (Ovl->hasExplicitTemplateArgs()) {
4213 // But we can still look for an explicit specialization.
4214 if (FunctionDecl *ExplicitSpec =
4216 Ovl, /*Complain=*/false,
4217 /*Found=*/nullptr, FailedTSC,
4218 /*ForTypeDeduction=*/true))
4219 return GetTypeOfFunction(S, R, ExplicitSpec);
4220 }
4221
4222 DeclAccessPair DAP;
4223 if (FunctionDecl *Viable =
4225 return GetTypeOfFunction(S, R, Viable);
4226
4227 return {};
4228 }
4229
4230 // Gather the explicit template arguments, if any.
4231 TemplateArgumentListInfo ExplicitTemplateArgs;
4232 if (Ovl->hasExplicitTemplateArgs())
4233 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4235 for (UnresolvedSetIterator I = Ovl->decls_begin(),
4236 E = Ovl->decls_end(); I != E; ++I) {
4237 NamedDecl *D = (*I)->getUnderlyingDecl();
4238
4239 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
4240 // - If the argument is an overload set containing one or more
4241 // function templates, the parameter is treated as a
4242 // non-deduced context.
4243 if (!Ovl->hasExplicitTemplateArgs())
4244 return {};
4245
4246 // Otherwise, see if we can resolve a function type
4247 FunctionDecl *Specialization = nullptr;
4248 TemplateDeductionInfo Info(Ovl->getNameLoc());
4249 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
4252 continue;
4253
4254 D = Specialization;
4255 }
4256
4258 QualType ArgType = GetTypeOfFunction(S, R, Fn);
4259 if (ArgType.isNull()) continue;
4260
4261 // Function-to-pointer conversion.
4262 if (!ParamWasReference && ParamType->isPointerType() &&
4263 ArgType->isFunctionType())
4264 ArgType = S.Context.getPointerType(ArgType);
4265
4266 // - If the argument is an overload set (not containing function
4267 // templates), trial argument deduction is attempted using each
4268 // of the members of the set. If deduction succeeds for only one
4269 // of the overload set members, that member is used as the
4270 // argument value for the deduction. If deduction succeeds for
4271 // more than one member of the overload set the parameter is
4272 // treated as a non-deduced context.
4273
4274 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
4275 // Type deduction is done independently for each P/A pair, and
4276 // the deduced template argument values are then combined.
4277 // So we do not reject deductions which were made elsewhere.
4279 Deduced(TemplateParams->size());
4280 TemplateDeductionInfo Info(Ovl->getNameLoc());
4282 S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
4283 PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
4284 /*HasDeducedAnyParam=*/nullptr);
4286 continue;
4287 // C++ [temp.deduct.call]p6:
4288 // [...] If all successful deductions yield the same deduced A, that
4289 // deduced A is the result of deduction; otherwise, the parameter is
4290 // treated as a non-deduced context. [...]
4291 if (!Match.isNull() && !S.isSameOrCompatibleFunctionType(Match, ArgType))
4292 return {};
4293 Match = ArgType;
4294 }
4295
4296 return Match;
4297}
4298
4299/// Perform the adjustments to the parameter and argument types
4300/// described in C++ [temp.deduct.call].
4301///
4302/// \returns true if the caller should not attempt to perform any template
4303/// argument deduction based on this P/A pair because the argument is an
4304/// overloaded function set that could not be resolved.
4306 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4307 QualType &ParamType, QualType &ArgType,
4308 Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF,
4309 TemplateSpecCandidateSet *FailedTSC = nullptr) {
4310 // C++0x [temp.deduct.call]p3:
4311 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
4312 // are ignored for type deduction.
4313 if (ParamType.hasQualifiers())
4314 ParamType = ParamType.getUnqualifiedType();
4315
4316 // [...] If P is a reference type, the type referred to by P is
4317 // used for type deduction.
4318 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
4319 if (ParamRefType)
4320 ParamType = ParamRefType->getPointeeType();
4321
4322 // Overload sets usually make this parameter an undeduced context,
4323 // but there are sometimes special circumstances. Typically
4324 // involving a template-id-expr.
4325 if (ArgType == S.Context.OverloadTy) {
4326 assert(Arg && "expected a non-null arg expression");
4327 ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType,
4328 ParamRefType != nullptr, FailedTSC);
4329 if (ArgType.isNull())
4330 return true;
4331 }
4332
4333 if (ParamRefType) {
4334 // If the argument has incomplete array type, try to complete its type.
4335 if (ArgType->isIncompleteArrayType()) {
4336 assert(Arg && "expected a non-null arg expression");
4337 ArgType = S.getCompletedType(Arg);
4338 }
4339
4340 // C++1z [temp.deduct.call]p3:
4341 // If P is a forwarding reference and the argument is an lvalue, the type
4342 // "lvalue reference to A" is used in place of A for type deduction.
4343 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
4344 ArgClassification.isLValue()) {
4345 if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace())
4346 ArgType = S.Context.getAddrSpaceQualType(
4348 ArgType = S.Context.getLValueReferenceType(ArgType);
4349 }
4350 } else {
4351 // C++ [temp.deduct.call]p2:
4352 // If P is not a reference type:
4353 // - If A is an array type, the pointer type produced by the
4354 // array-to-pointer standard conversion (4.2) is used in place of
4355 // A for type deduction; otherwise,
4356 // - If A is a function type, the pointer type produced by the
4357 // function-to-pointer standard conversion (4.3) is used in place
4358 // of A for type deduction; otherwise,
4359 if (ArgType->canDecayToPointerType())
4360 ArgType = S.Context.getDecayedType(ArgType);
4361 else {
4362 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
4363 // type are ignored for type deduction.
4364 ArgType = ArgType.getUnqualifiedType();
4365 }
4366 }
4367
4368 // C++0x [temp.deduct.call]p4:
4369 // In general, the deduction process attempts to find template argument
4370 // values that will make the deduced A identical to A (after the type A
4371 // is transformed as described above). [...]
4373
4374 // - If the original P is a reference type, the deduced A (i.e., the
4375 // type referred to by the reference) can be more cv-qualified than
4376 // the transformed A.
4377 if (ParamRefType)
4379 // - The transformed A can be another pointer or pointer to member
4380 // type that can be converted to the deduced A via a qualification
4381 // conversion (4.4).
4382 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
4383 ArgType->isObjCObjectPointerType())
4384 TDF |= TDF_IgnoreQualifiers;
4385 // - If P is a class and P has the form simple-template-id, then the
4386 // transformed A can be a derived class of the deduced A. Likewise,
4387 // if P is a pointer to a class of the form simple-template-id, the
4388 // transformed A can be a pointer to a derived class pointed to by
4389 // the deduced A.
4390 if (isSimpleTemplateIdType(ParamType) ||
4391 (ParamType->getAs<PointerType>() &&
4393 ParamType->castAs<PointerType>()->getPointeeType())))
4394 TDF |= TDF_DerivedClass;
4395
4396 return false;
4397}
4398
4399static bool
4401 QualType T);
4402
4404 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4405 QualType ParamType, QualType ArgType,
4406 Expr::Classification ArgClassification, Expr *Arg,
4410 bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
4411 TemplateSpecCandidateSet *FailedTSC = nullptr);
4412
4413/// Attempt template argument deduction from an initializer list
4414/// deemed to be an argument in a function call.
4416 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
4419 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
4420 unsigned TDF) {
4421 // C++ [temp.deduct.call]p1: (CWG 1591)
4422 // If removing references and cv-qualifiers from P gives
4423 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
4424 // a non-empty initializer list, then deduction is performed instead for
4425 // each element of the initializer list, taking P0 as a function template
4426 // parameter type and the initializer element as its argument
4427 //
4428 // We've already removed references and cv-qualifiers here.
4429 if (!ILE->getNumInits())
4431
4432 QualType ElTy;
4433 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
4434 if (ArrTy)
4435 ElTy = ArrTy->getElementType();
4436 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
4437 // Otherwise, an initializer list argument causes the parameter to be
4438 // considered a non-deduced context
4440 }
4441
4442 // Resolving a core issue: a braced-init-list containing any designators is
4443 // a non-deduced context.
4444 for (Expr *E : ILE->inits())
4447
4448 // Deduction only needs to be done for dependent types.
4449 if (ElTy->isDependentType()) {
4450 for (Expr *E : ILE->inits()) {
4452 S, TemplateParams, 0, ElTy, E->getType(),
4453 E->Classify(S.getASTContext()), E, Info, Deduced,
4454 OriginalCallArgs, true, ArgIdx, TDF);
4456 return Result;
4457 }
4458 }
4459
4460 // in the P0[N] case, if N is a non-type template parameter, N is deduced
4461 // from the length of the initializer list.
4462 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
4463 // Determine the array bound is something we can deduce.
4465 Info, DependentArrTy->getSizeExpr())) {
4466 // We can perform template argument deduction for the given non-type
4467 // template parameter.
4468 // C++ [temp.deduct.type]p13:
4469 // The type of N in the type T[N] is std::size_t.
4471 llvm::APInt Size(S.Context.getIntWidth(T),
4473 if (auto Result = DeduceNonTypeTemplateArgument(
4474 S, TemplateParams, NTTP, llvm::APSInt(Size), T,
4475 /*ArrayBound=*/true, Info, /*PartialOrdering=*/false, Deduced,
4476 /*HasDeducedAnyParam=*/nullptr);
4478 return Result;
4479 }
4480 }
4481
4483}
4484
4485/// Perform template argument deduction per [temp.deduct.call] for a
4486/// single parameter / argument pair.
4488 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4489 QualType ParamType, QualType ArgType,
4490 Expr::Classification ArgClassification, Expr *Arg,
4494 bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
4495 TemplateSpecCandidateSet *FailedTSC) {
4496
4497 QualType OrigParamType = ParamType;
4498
4499 // If P is a reference type [...]
4500 // If P is a cv-qualified type [...]
4502 S, TemplateParams, FirstInnerIndex, ParamType, ArgType,
4503 ArgClassification, Arg, TDF, FailedTSC))
4505
4506 // If [...] the argument is a non-empty initializer list [...]
4507 if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg))
4508 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
4509 Deduced, OriginalCallArgs, ArgIdx, TDF);
4510
4511 // [...] the deduction process attempts to find template argument values
4512 // that will make the deduced A identical to A
4513 //
4514 // Keep track of the argument type and corresponding parameter index,
4515 // so we can check for compatibility between the deduced A and A.
4516 if (Arg)
4517 OriginalCallArgs.push_back(
4518 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
4520 S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
4521 PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
4522 /*HasDeducedAnyParam=*/nullptr);
4523}
4524
4527 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
4529 bool PartialOverloading, bool AggregateDeductionCandidate,
4530 bool PartialOrdering, QualType ObjectType,
4531 Expr::Classification ObjectClassification,
4532 bool ForOverloadSetAddressResolution,
4533 llvm::function_ref<bool(ArrayRef<QualType>, bool)> CheckNonDependent) {
4534 if (FunctionTemplate->isInvalidDecl())
4536
4537 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4538 unsigned NumParams = Function->getNumParams();
4539 bool HasExplicitObject = false;
4540 int ExplicitObjectOffset = 0;
4541
4542 // [C++26] [over.call.func]p3
4543 // If the primary-expression is the address of an overload set,
4544 // the argument list is the same as the expression-list in the call.
4545 // Otherwise, the argument list is the expression-list in the call augmented
4546 // by the addition of an implied object argument as in a qualified function
4547 // call.
4548 if (!ForOverloadSetAddressResolution &&
4549 Function->hasCXXExplicitFunctionObjectParameter()) {
4550 HasExplicitObject = true;
4551 ExplicitObjectOffset = 1;
4552 }
4553
4554 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
4555
4556 // C++ [temp.deduct.call]p1:
4557 // Template argument deduction is done by comparing each function template
4558 // parameter type (call it P) with the type of the corresponding argument
4559 // of the call (call it A) as described below.
4560 if (Args.size() < Function->getMinRequiredExplicitArguments() &&
4561 !PartialOverloading)
4563 else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset,
4564 PartialOverloading)) {
4565 const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
4566 if (Proto->isTemplateVariadic())
4567 /* Do nothing */;
4568 else if (!Proto->isVariadic())
4570 }
4571
4572 // The types of the parameters from which we will perform template argument
4573 // deduction.
4574 LocalInstantiationScope InstScope(*this);
4575 TemplateParameterList *TemplateParams
4576 = FunctionTemplate->getTemplateParameters();
4578 SmallVector<QualType, 8> ParamTypes;
4579 unsigned NumExplicitlySpecified = 0;
4580 if (ExplicitTemplateArgs) {
4583 Result = SubstituteExplicitTemplateArguments(
4584 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr,
4585 Info);
4586 });
4588 return Result;
4589
4590 NumExplicitlySpecified = Deduced.size();
4591 } else {
4592 // Just fill in the parameter types from the function declaration.
4593 for (unsigned I = 0; I != NumParams; ++I)
4594 ParamTypes.push_back(Function->getParamDecl(I)->getType());
4595 }
4596
4597 SmallVector<OriginalCallArg, 8> OriginalCallArgs;
4598
4599 // Deduce an argument of type ParamType from an expression with index ArgIdx.
4600 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx,
4601 bool ExplicitObjectArgument) {
4602 // C++ [demp.deduct.call]p1: (DR1391)
4603 // Template argument deduction is done by comparing each function template
4604 // parameter that contains template-parameters that participate in
4605 // template argument deduction ...
4606 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
4608
4609 if (ExplicitObjectArgument) {
4610 // ... with the type of the corresponding argument
4612 *this, TemplateParams, FirstInnerIndex, ParamType, ObjectType,
4613 ObjectClassification,
4614 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
4615 /*Decomposed*/ false, ArgIdx, /*TDF*/ 0);
4616 }
4617
4618 // ... with the type of the corresponding argument
4620 *this, TemplateParams, FirstInnerIndex, ParamType,
4621 Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()),
4622 Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false,
4623 ArgIdx, /*TDF*/ 0);
4624 };
4625
4626 // Deduce template arguments from the function parameters.
4627 Deduced.resize(TemplateParams->size());
4628 SmallVector<QualType, 8> ParamTypesForArgChecking;
4629 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
4630 ParamIdx != NumParamTypes; ++ParamIdx) {
4631 QualType ParamType = ParamTypes[ParamIdx];
4632
4633 const PackExpansionType *ParamExpansion =
4634 dyn_cast<PackExpansionType>(ParamType);
4635 if (!ParamExpansion) {
4636 // Simple case: matching a function parameter to a function argument.
4637 if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0))
4638 break;
4639
4640 ParamTypesForArgChecking.push_back(ParamType);
4641
4642 if (ParamIdx == 0 && HasExplicitObject) {
4643 if (ObjectType.isNull())
4645
4646 if (auto Result = DeduceCallArgument(ParamType, 0,
4647 /*ExplicitObjectArgument=*/true);
4649 return Result;
4650 continue;
4651 }
4652
4653 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++,
4654 /*ExplicitObjectArgument=*/false);
4656 return Result;
4657
4658 continue;
4659 }
4660
4661 bool IsTrailingPack = ParamIdx + 1 == NumParamTypes;
4662
4663 QualType ParamPattern = ParamExpansion->getPattern();
4664 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
4665 ParamPattern,
4666 AggregateDeductionCandidate && IsTrailingPack);
4667
4668 // C++0x [temp.deduct.call]p1:
4669 // For a function parameter pack that occurs at the end of the
4670 // parameter-declaration-list, the type A of each remaining argument of
4671 // the call is compared with the type P of the declarator-id of the
4672 // function parameter pack. Each comparison deduces template arguments
4673 // for subsequent positions in the template parameter packs expanded by
4674 // the function parameter pack. When a function parameter pack appears
4675 // in a non-deduced context [not at the end of the list], the type of
4676 // that parameter pack is never deduced.
4677 //
4678 // FIXME: The above rule allows the size of the parameter pack to change
4679 // after we skip it (in the non-deduced case). That makes no sense, so
4680 // we instead notionally deduce the pack against N arguments, where N is
4681 // the length of the explicitly-specified pack if it's expanded by the
4682 // parameter pack and 0 otherwise, and we treat each deduction as a
4683 // non-deduced context.
4684 if (IsTrailingPack || PackScope.hasFixedArity()) {
4685 for (; ArgIdx < Args.size() && PackScope.hasNextElement();
4686 PackScope.nextPackElement(), ++ArgIdx) {
4687 ParamTypesForArgChecking.push_back(ParamPattern);
4688 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx,
4689 /*ExplicitObjectArgument=*/false);
4691 return Result;
4692 }
4693 } else {
4694 // If the parameter type contains an explicitly-specified pack that we
4695 // could not expand, skip the number of parameters notionally created
4696 // by the expansion.
4697 UnsignedOrNone NumExpansions = ParamExpansion->getNumExpansions();
4698 if (NumExpansions && !PackScope.isPartiallyExpanded()) {
4699 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4700 ++I, ++ArgIdx) {
4701 ParamTypesForArgChecking.push_back(ParamPattern);
4702 // FIXME: Should we add OriginalCallArgs for these? What if the
4703 // corresponding argument is a list?
4704 PackScope.nextPackElement();
4705 }
4706 } else if (!IsTrailingPack && !PackScope.isPartiallyExpanded() &&
4707 PackScope.isDeducedFromEarlierParameter()) {
4708 // [temp.deduct.general#3]
4709 // When all template arguments have been deduced
4710 // or obtained from default template arguments, all uses of template
4711 // parameters in the template parameter list of the template are
4712 // replaced with the corresponding deduced or default argument values
4713 //
4714 // If we have a trailing parameter pack, that has been deduced
4715 // previously we substitute the pack here in a similar fashion as
4716 // above with the trailing parameter packs. The main difference here is
4717 // that, in this case we are not processing all of the remaining
4718 // arguments. We are only process as many arguments as we have in
4719 // the already deduced parameter.
4720 UnsignedOrNone ArgPosAfterSubstitution =
4721 PackScope.getSavedPackSizeIfAllEqual();
4722 if (!ArgPosAfterSubstitution)
4723 continue;
4724
4725 unsigned PackArgEnd = ArgIdx + *ArgPosAfterSubstitution;
4726 for (; ArgIdx < PackArgEnd && ArgIdx < Args.size(); ArgIdx++) {
4727 ParamTypesForArgChecking.push_back(ParamPattern);
4728 if (auto Result =
4729 DeduceCallArgument(ParamPattern, ArgIdx,
4730 /*ExplicitObjectArgument=*/false);
4732 return Result;
4733
4734 PackScope.nextPackElement();
4735 }
4736 }
4737 }
4738
4739 // Build argument packs for each of the parameter packs expanded by this
4740 // pack expansion.
4741 if (auto Result = PackScope.finish();
4743 return Result;
4744 }
4745
4746 // Capture the context in which the function call is made. This is the context
4747 // that is needed when the accessibility of template arguments is checked.
4748 DeclContext *CallingCtx = CurContext;
4749
4752 Result = FinishTemplateArgumentDeduction(
4753 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4754 &OriginalCallArgs, PartialOverloading, PartialOrdering,
4755 ForOverloadSetAddressResolution,
4756 [&, CallingCtx](bool OnlyInitializeNonUserDefinedConversions) {
4757 ContextRAII SavedContext(*this, CallingCtx);
4758 return CheckNonDependent(ParamTypesForArgChecking,
4759 OnlyInitializeNonUserDefinedConversions);
4760 });
4761 });
4762 return Result;
4763}
4764
4767 bool AdjustExceptionSpec) {
4768 if (ArgFunctionType.isNull())
4769 return ArgFunctionType;
4770
4771 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4772 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4773 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4774 bool Rebuild = false;
4775
4776 CallingConv CC = FunctionTypeP->getCallConv();
4777 if (EPI.ExtInfo.getCC() != CC) {
4778 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4779 Rebuild = true;
4780 }
4781
4782 bool NoReturn = FunctionTypeP->getNoReturnAttr();
4783 if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4784 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4785 Rebuild = true;
4786 }
4787
4788 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4789 ArgFunctionTypeP->hasExceptionSpec())) {
4790 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4791 Rebuild = true;
4792 }
4793
4794 if (!Rebuild)
4795 return ArgFunctionType;
4796
4797 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4798 ArgFunctionTypeP->getParamTypes(), EPI);
4799}
4800
4803 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4805 bool IsAddressOfFunction) {
4806 if (FunctionTemplate->isInvalidDecl())
4808
4809 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4810 TemplateParameterList *TemplateParams
4811 = FunctionTemplate->getTemplateParameters();
4812 QualType FunctionType = Function->getType();
4813
4814 // Substitute any explicit template arguments.
4815 LocalInstantiationScope InstScope(*this);
4817 unsigned NumExplicitlySpecified = 0;
4818 SmallVector<QualType, 4> ParamTypes;
4819 if (ExplicitTemplateArgs) {
4822 Result = SubstituteExplicitTemplateArguments(
4823 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes,
4824 &FunctionType, Info);
4825 });
4827 return Result;
4828
4829 NumExplicitlySpecified = Deduced.size();
4830 }
4831
4832 // When taking the address of a function, we require convertibility of
4833 // the resulting function type. Otherwise, we allow arbitrary mismatches
4834 // of calling convention and noreturn.
4835 if (!IsAddressOfFunction)
4836 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4837 /*AdjustExceptionSpec*/false);
4838
4839 // Unevaluated SFINAE context.
4840 std::optional<EnterExpressionEvaluationContext> Unevaluated(
4842 SFINAETrap Trap(*this);
4843
4844 Deduced.resize(TemplateParams->size());
4845
4846 // If the function has a deduced return type, substitute it for a dependent
4847 // type so that we treat it as a non-deduced context in what follows.
4848 bool HasDeducedReturnType = false;
4849 if (getLangOpts().CPlusPlus14 &&
4850 Function->getReturnType()->getContainedAutoType()) {
4852 HasDeducedReturnType = true;
4853 }
4854
4855 if (!ArgFunctionType.isNull() && !FunctionType.isNull()) {
4856 unsigned TDF =
4858 // Deduce template arguments from the function type.
4860 *this, TemplateParams, FunctionType, ArgFunctionType, Info, Deduced,
4861 TDF, PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
4862 /*HasDeducedAnyParam=*/nullptr);
4864 return Result;
4865 }
4866
4869 Result = FinishTemplateArgumentDeduction(
4870 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4871 /*OriginalCallArgs=*/nullptr, /*PartialOverloading=*/false,
4872 /*PartialOrdering=*/true, IsAddressOfFunction);
4873 });
4875 return Result;
4876
4877 // If the function has a deduced return type, deduce it now, so we can check
4878 // that the deduced function type matches the requested type.
4879 if (HasDeducedReturnType && IsAddressOfFunction &&
4880 Specialization->getReturnType()->isUndeducedType() &&
4883
4884 Unevaluated = std::nullopt;
4885 // [C++26][expr.const]/p17
4886 // An expression or conversion is immediate-escalating if it is not initially
4887 // in an immediate function context and it is [...]
4888 // a potentially-evaluated id-expression that denotes an immediate function.
4889 if (IsAddressOfFunction && getLangOpts().CPlusPlus20 &&
4890 Specialization->isImmediateEscalating() &&
4891 currentEvaluationContext().isPotentiallyEvaluated() &&
4893 Info.getLocation()))
4895
4896 // Adjust the exception specification of the argument to match the
4897 // substituted and resolved type we just formed. (Calling convention and
4898 // noreturn can't be dependent, so we don't actually need this for them
4899 // right now.)
4900 QualType SpecializationType = Specialization->getType();
4901 if (!IsAddressOfFunction) {
4902 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4903 /*AdjustExceptionSpec*/true);
4904
4905 // Revert placeholder types in the return type back to undeduced types so
4906 // that the comparison below compares the declared return types.
4907 if (HasDeducedReturnType) {
4908 SpecializationType = SubstAutoType(SpecializationType, QualType());
4909 ArgFunctionType = SubstAutoType(ArgFunctionType, QualType());
4910 }
4911 }
4912
4913 // If the requested function type does not match the actual type of the
4914 // specialization with respect to arguments of compatible pointer to function
4915 // types, template argument deduction fails.
4916 if (!ArgFunctionType.isNull()) {
4917 if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType(
4918 SpecializationType, ArgFunctionType)
4919 : !Context.hasSameFunctionTypeIgnoringExceptionSpec(
4920 SpecializationType, ArgFunctionType)) {
4921 Info.FirstArg = TemplateArgument(SpecializationType);
4922 Info.SecondArg = TemplateArgument(ArgFunctionType);
4924 }
4925 }
4926
4928}
4929
4931 FunctionTemplateDecl *ConversionTemplate, QualType ObjectType,
4932 Expr::Classification ObjectClassification, QualType A,
4934 if (ConversionTemplate->isInvalidDecl())
4936
4937 CXXConversionDecl *ConversionGeneric
4938 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4939
4940 QualType P = ConversionGeneric->getConversionType();
4941 bool IsReferenceP = P->isReferenceType();
4942 bool IsReferenceA = A->isReferenceType();
4943
4944 // C++0x [temp.deduct.conv]p2:
4945 // If P is a reference type, the type referred to by P is used for
4946 // type deduction.
4947 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4948 P = PRef->getPointeeType();
4949
4950 // C++0x [temp.deduct.conv]p4:
4951 // [...] If A is a reference type, the type referred to by A is used
4952 // for type deduction.
4953 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4954 A = ARef->getPointeeType();
4955 // We work around a defect in the standard here: cv-qualifiers are also
4956 // removed from P and A in this case, unless P was a reference type. This
4957 // seems to mostly match what other compilers are doing.
4958 if (!IsReferenceP) {
4959 A = A.getUnqualifiedType();
4960 P = P.getUnqualifiedType();
4961 }
4962
4963 // C++ [temp.deduct.conv]p3:
4964 //
4965 // If A is not a reference type:
4966 } else {
4967 assert(!A->isReferenceType() && "Reference types were handled above");
4968
4969 // - If P is an array type, the pointer type produced by the
4970 // array-to-pointer standard conversion (4.2) is used in place
4971 // of P for type deduction; otherwise,
4972 if (P->isArrayType())
4973 P = Context.getArrayDecayedType(P);
4974 // - If P is a function type, the pointer type produced by the
4975 // function-to-pointer standard conversion (4.3) is used in
4976 // place of P for type deduction; otherwise,
4977 else if (P->isFunctionType())
4978 P = Context.getPointerType(P);
4979 // - If P is a cv-qualified type, the top level cv-qualifiers of
4980 // P's type are ignored for type deduction.
4981 else
4982 P = P.getUnqualifiedType();
4983
4984 // C++0x [temp.deduct.conv]p4:
4985 // If A is a cv-qualified type, the top level cv-qualifiers of A's
4986 // type are ignored for type deduction. If A is a reference type, the type
4987 // referred to by A is used for type deduction.
4988 A = A.getUnqualifiedType();
4989 }
4990
4991 // Unevaluated SFINAE context.
4994 SFINAETrap Trap(*this);
4995
4996 // C++ [temp.deduct.conv]p1:
4997 // Template argument deduction is done by comparing the return
4998 // type of the template conversion function (call it P) with the
4999 // type that is required as the result of the conversion (call it
5000 // A) as described in 14.8.2.4.
5001 TemplateParameterList *TemplateParams
5002 = ConversionTemplate->getTemplateParameters();
5004 Deduced.resize(TemplateParams->size());
5005
5006 // C++0x [temp.deduct.conv]p4:
5007 // In general, the deduction process attempts to find template
5008 // argument values that will make the deduced A identical to
5009 // A. However, there are two cases that allow a difference:
5010 unsigned TDF = 0;
5011 // - If the original A is a reference type, A can be more
5012 // cv-qualified than the deduced A (i.e., the type referred to
5013 // by the reference)
5014 if (IsReferenceA)
5016 // - The deduced A can be another pointer or pointer to member
5017 // type that can be converted to A via a qualification
5018 // conversion.
5019 //
5020 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
5021 // both P and A are pointers or member pointers. In this case, we
5022 // just ignore cv-qualifiers completely).
5023 if ((P->isPointerType() && A->isPointerType()) ||
5025 TDF |= TDF_IgnoreQualifiers;
5026
5028 if (ConversionGeneric->isExplicitObjectMemberFunction()) {
5029 QualType ParamType = ConversionGeneric->getParamDecl(0)->getType();
5032 *this, TemplateParams, getFirstInnerIndex(ConversionTemplate),
5033 ParamType, ObjectType, ObjectClassification,
5034 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
5035 /*Decomposed*/ false, 0, /*TDF*/ 0);
5037 return Result;
5038 }
5039
5041 *this, TemplateParams, P, A, Info, Deduced, TDF,
5042 PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
5043 /*HasDeducedAnyParam=*/nullptr);
5045 return Result;
5046
5047 // Create an Instantiation Scope for finalizing the operator.
5048 LocalInstantiationScope InstScope(*this);
5049 // Finish template argument deduction.
5050 FunctionDecl *ConversionSpecialized = nullptr;
5053 Result = FinishTemplateArgumentDeduction(
5054 ConversionTemplate, Deduced, 0, ConversionSpecialized, Info,
5055 &OriginalCallArgs, /*PartialOverloading=*/false,
5056 /*PartialOrdering=*/false, /*ForOverloadSetAddressResolution*/ false);
5057 });
5058 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
5059 return Result;
5060}
5061
5064 TemplateArgumentListInfo *ExplicitTemplateArgs,
5067 bool IsAddressOfFunction) {
5068 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5069 QualType(), Specialization, Info,
5070 IsAddressOfFunction);
5071}
5072
5073namespace {
5074 struct DependentAuto { bool IsPack; };
5075
5076 /// Substitute the 'auto' specifier or deduced template specialization type
5077 /// specifier within a type for a given replacement type.
5078 class SubstituteDeducedTypeTransform :
5079 public TreeTransform<SubstituteDeducedTypeTransform> {
5080 QualType Replacement;
5081 bool ReplacementIsPack;
5082 bool UseTypeSugar;
5084
5085 public:
5086 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
5087 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
5088 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
5089
5090 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
5091 bool UseTypeSugar = true)
5092 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
5093 Replacement(Replacement), ReplacementIsPack(false),
5094 UseTypeSugar(UseTypeSugar) {}
5095
5096 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
5097 assert(isa<TemplateTypeParmType>(Replacement) &&
5098 "unexpected unsugared replacement kind");
5099 QualType Result = Replacement;
5100 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
5101 NewTL.setNameLoc(TL.getNameLoc());
5102 return Result;
5103 }
5104
5105 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
5106 // If we're building the type pattern to deduce against, don't wrap the
5107 // substituted type in an AutoType. Certain template deduction rules
5108 // apply only when a template type parameter appears directly (and not if
5109 // the parameter is found through desugaring). For instance:
5110 // auto &&lref = lvalue;
5111 // must transform into "rvalue reference to T" not "rvalue reference to
5112 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
5113 //
5114 // FIXME: Is this still necessary?
5115 if (!UseTypeSugar)
5116 return TransformDesugared(TLB, TL);
5117
5118 QualType Result = SemaRef.Context.getAutoType(
5119 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
5120 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
5121 TL.getTypePtr()->getTypeConstraintArguments());
5122 auto NewTL = TLB.push<AutoTypeLoc>(Result);
5123 NewTL.copy(TL);
5124 return Result;
5125 }
5126
5127 QualType TransformDeducedTemplateSpecializationType(
5128 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
5129 if (!UseTypeSugar)
5130 return TransformDesugared(TLB, TL);
5131
5132 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
5133 TL.getTypePtr()->getKeyword(), TL.getTypePtr()->getTemplateName(),
5134 Replacement, Replacement.isNull());
5135 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
5136 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5137 NewTL.setNameLoc(TL.getNameLoc());
5138 NewTL.setQualifierLoc(TL.getQualifierLoc());
5139 return Result;
5140 }
5141
5142 ExprResult TransformLambdaExpr(LambdaExpr *E) {
5143 // Lambdas never need to be transformed.
5144 return E;
5145 }
5146 bool TransformExceptionSpec(SourceLocation Loc,
5147 FunctionProtoType::ExceptionSpecInfo &ESI,
5148 SmallVectorImpl<QualType> &Exceptions,
5149 bool &Changed) {
5150 if (ESI.Type == EST_Uninstantiated) {
5151 ESI.instantiate();
5152 Changed = true;
5153 }
5154 return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed);
5155 }
5156
5157 QualType Apply(TypeLoc TL) {
5158 // Create some scratch storage for the transformed type locations.
5159 // FIXME: We're just going to throw this information away. Don't build it.
5160 TypeLocBuilder TLB;
5161 TLB.reserve(TL.getFullDataSize());
5162 return TransformType(TLB, TL);
5163 }
5164 };
5165
5166} // namespace
5167
5168static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
5170 QualType Deduced) {
5171 ConstraintSatisfaction Satisfaction;
5172 ConceptDecl *Concept = cast<ConceptDecl>(Type.getTypeConstraintConcept());
5173 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
5174 TypeLoc.getRAngleLoc());
5175 TemplateArgs.addArgument(
5178 Deduced, TypeLoc.getNameLoc())));
5179 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
5180 TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
5181
5183 if (S.CheckTemplateArgumentList(Concept, TypeLoc.getNameLoc(), TemplateArgs,
5184 /*DefaultArgs=*/{},
5185 /*PartialTemplateArgs=*/false, CTAI))
5186 return true;
5188 /*Final=*/false);
5189 // Build up an EvaluationContext with an ImplicitConceptSpecializationDecl so
5190 // that the template arguments of the constraint can be preserved. For
5191 // example:
5192 //
5193 // template <class T>
5194 // concept C = []<D U = void>() { return true; }();
5195 //
5196 // We need the argument for T while evaluating type constraint D in
5197 // building the CallExpr to the lambda.
5201 S.getASTContext(), Concept->getDeclContext(), Concept->getLocation(),
5202 CTAI.CanonicalConverted));
5204 Concept, AssociatedConstraint(Concept->getConstraintExpr()), MLTAL,
5205 TypeLoc.getLocalSourceRange(), Satisfaction))
5206 return true;
5207 if (!Satisfaction.IsSatisfied) {
5208 std::string Buf;
5209 llvm::raw_string_ostream OS(Buf);
5210 OS << "'" << Concept->getName();
5211 if (TypeLoc.hasExplicitTemplateArgs()) {
5212 printTemplateArgumentList(
5213 OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(),
5214 Type.getTypeConstraintConcept()->getTemplateParameters());
5215 }
5216 OS << "'";
5217 S.Diag(TypeLoc.getConceptNameLoc(),
5218 diag::err_placeholder_constraints_not_satisfied)
5219 << Deduced << Buf << TypeLoc.getLocalSourceRange();
5220 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
5221 return true;
5222 }
5223 return false;
5224}
5225
5228 TemplateDeductionInfo &Info, bool DependentDeduction,
5229 bool IgnoreConstraints,
5230 TemplateSpecCandidateSet *FailedTSC) {
5231 assert(DependentDeduction || Info.getDeducedDepth() == 0);
5232 if (Init->containsErrors())
5234
5235 const AutoType *AT = Type.getType()->getContainedAutoType();
5236 assert(AT);
5237
5238 if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) {
5239 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
5240 if (NonPlaceholder.isInvalid())
5242 Init = NonPlaceholder.get();
5243 }
5244
5245 DependentAuto DependentResult = {
5246 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
5247
5248 if (!DependentDeduction &&
5249 (Type.getType()->isDependentType() || Init->isTypeDependent() ||
5250 Init->containsUnexpandedParameterPack())) {
5251 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
5252 assert(!Result.isNull() && "substituting DependentTy can't fail");
5254 }
5255
5256 // Make sure that we treat 'char[]' equaly as 'char*' in C23 mode.
5257 auto *String = dyn_cast<StringLiteral>(Init);
5258 if (getLangOpts().C23 && String && Type.getType()->isArrayType()) {
5259 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
5260 TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData());
5261 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL);
5262 assert(!Result.isNull() && "substituting DependentTy can't fail");
5264 }
5265
5266 // Emit a warning if 'auto*' is used in pedantic and in C23 mode.
5267 if (getLangOpts().C23 && Type.getType()->isPointerType()) {
5268 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
5269 }
5270
5271 auto *InitList = dyn_cast<InitListExpr>(Init);
5272 if (!getLangOpts().CPlusPlus && InitList) {
5273 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c)
5274 << (int)AT->getKeyword() << getLangOpts().C23;
5276 }
5277
5278 // Deduce type of TemplParam in Func(Init)
5280 Deduced.resize(1);
5281
5282 // If deduction failed, don't diagnose if the initializer is dependent; it
5283 // might acquire a matching type in the instantiation.
5284 auto DeductionFailed = [&](TemplateDeductionResult TDK) {
5285 if (Init->isTypeDependent()) {
5286 Result =
5287 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
5288 assert(!Result.isNull() && "substituting DependentTy can't fail");
5290 }
5291 return TDK;
5292 };
5293
5294 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
5295
5296 QualType DeducedType;
5297 // If this is a 'decltype(auto)' specifier, do the decltype dance.
5298 if (AT->isDecltypeAuto()) {
5299 if (InitList) {
5300 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
5302 }
5303
5304 DeducedType = getDecltypeForExpr(Init);
5305 assert(!DeducedType.isNull());
5306 } else {
5307 LocalInstantiationScope InstScope(*this);
5308
5309 // Build template<class TemplParam> void Func(FuncParam);
5310 SourceLocation Loc = Init->getExprLoc();
5312 Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0,
5313 nullptr, false, false, false);
5314 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
5315 NamedDecl *TemplParamPtr = TemplParam;
5317 Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
5318
5319 if (InitList) {
5320 // Notionally, we substitute std::initializer_list<T> for 'auto' and
5321 // deduce against that. Such deduction only succeeds if removing
5322 // cv-qualifiers and references results in std::initializer_list<T>.
5323 if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
5325
5326 SourceRange DeducedFromInitRange;
5327 for (Expr *Init : InitList->inits()) {
5328 // Resolving a core issue: a braced-init-list containing any designators
5329 // is a non-deduced context.
5333 *this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(),
5334 Init->Classify(getASTContext()), Init, Info, Deduced,
5335 OriginalCallArgs,
5336 /*Decomposed=*/true,
5337 /*ArgIdx=*/0, /*TDF=*/0);
5340 Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction)
5341 << Info.FirstArg << Info.SecondArg << DeducedFromInitRange
5342 << Init->getSourceRange();
5343 return DeductionFailed(TemplateDeductionResult::AlreadyDiagnosed);
5344 }
5345 return DeductionFailed(TDK);
5346 }
5347
5348 if (DeducedFromInitRange.isInvalid() &&
5349 Deduced[0].getKind() != TemplateArgument::Null)
5350 DeducedFromInitRange = Init->getSourceRange();
5351 }
5352 } else {
5353 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
5354 Diag(Loc, diag::err_auto_bitfield);
5356 }
5357 QualType FuncParam =
5358 SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type);
5359 assert(!FuncParam.isNull() &&
5360 "substituting template parameter for 'auto' failed");
5362 *this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(),
5363 Init->Classify(getASTContext()), Init, Info, Deduced,
5364 OriginalCallArgs,
5365 /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC);
5367 return DeductionFailed(TDK);
5368 }
5369
5370 // Could be null if somehow 'auto' appears in a non-deduced context.
5371 if (Deduced[0].getKind() != TemplateArgument::Type)
5372 return DeductionFailed(TemplateDeductionResult::Incomplete);
5373 DeducedType = Deduced[0].getAsType();
5374
5375 if (InitList) {
5376 DeducedType = BuildStdInitializerList(DeducedType, Loc);
5377 if (DeducedType.isNull())
5379 }
5380 }
5381
5382 if (!Result.isNull()) {
5383 if (!Context.hasSameType(DeducedType, Result)) {
5384 Info.FirstArg = Result;
5385 Info.SecondArg = DeducedType;
5386 return DeductionFailed(TemplateDeductionResult::Inconsistent);
5387 }
5388 DeducedType = Context.getCommonSugaredType(Result, DeducedType);
5389 }
5390
5391 if (AT->isConstrained() && !IgnoreConstraints &&
5393 *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType))
5395
5396 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
5397 if (Result.isNull())
5399
5400 // Check that the deduced argument type is compatible with the original
5401 // argument type per C++ [temp.deduct.call]p4.
5402 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
5403 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
5404 assert((bool)InitList == OriginalArg.DecomposedParam &&
5405 "decomposed non-init-list in auto deduction?");
5406 if (auto TDK =
5407 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
5409 Result = QualType();
5410 return DeductionFailed(TDK);
5411 }
5412 }
5413
5415}
5416
5418 QualType TypeToReplaceAuto) {
5419 assert(TypeToReplaceAuto != Context.DependentTy);
5420 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
5421 .TransformType(TypeWithAuto);
5422}
5423
5425 QualType TypeToReplaceAuto) {
5426 assert(TypeToReplaceAuto != Context.DependentTy);
5427 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
5428 .TransformType(TypeWithAuto);
5429}
5430
5432 return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
5433 .TransformType(TypeWithAuto);
5434}
5435
5438 return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
5439 .TransformType(TypeWithAuto);
5440}
5441
5443 QualType TypeToReplaceAuto) {
5444 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
5445 /*UseTypeSugar*/ false)
5446 .TransformType(TypeWithAuto);
5447}
5448
5450 QualType TypeToReplaceAuto) {
5451 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
5452 /*UseTypeSugar*/ false)
5453 .TransformType(TypeWithAuto);
5454}
5455
5457 const Expr *Init) {
5459 Diag(VDecl->getLocation(),
5460 VDecl->isInitCapture()
5461 ? diag::err_init_capture_deduction_failure_from_init_list
5462 : diag::err_auto_var_deduction_failure_from_init_list)
5463 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
5464 else
5465 Diag(VDecl->getLocation(),
5466 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
5467 : diag::err_auto_var_deduction_failure)
5468 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5469 << Init->getSourceRange();
5470}
5471
5473 bool Diagnose) {
5474 assert(FD->getReturnType()->isUndeducedType());
5475
5476 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
5477 // within the return type from the call operator's type.
5479 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
5480 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
5481
5482 // For a generic lambda, instantiate the call operator if needed.
5483 if (auto *Args = FD->getTemplateSpecializationArgs()) {
5485 CallOp->getDescribedFunctionTemplate(), Args, Loc);
5486 if (!CallOp || CallOp->isInvalidDecl())
5487 return true;
5488
5489 // We might need to deduce the return type by instantiating the definition
5490 // of the operator() function.
5491 if (CallOp->getReturnType()->isUndeducedType()) {
5493 InstantiateFunctionDefinition(Loc, CallOp);
5494 });
5495 }
5496 }
5497
5498 if (CallOp->isInvalidDecl())
5499 return true;
5500 assert(!CallOp->getReturnType()->isUndeducedType() &&
5501 "failed to deduce lambda return type");
5502
5503 // Build the new return type from scratch.
5504 CallingConv RetTyCC = FD->getReturnType()
5505 ->getPointeeType()
5506 ->castAs<FunctionType>()
5507 ->getCallConv();
5509 CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC);
5510 if (FD->getReturnType()->getAs<PointerType>())
5511 RetType = Context.getPointerType(RetType);
5512 else {
5513 assert(FD->getReturnType()->getAs<BlockPointerType>());
5514 RetType = Context.getBlockPointerType(RetType);
5515 }
5516 Context.adjustDeducedFunctionResultType(FD, RetType);
5517 return false;
5518 }
5519
5523 });
5524 }
5525
5526 bool StillUndeduced = FD->getReturnType()->isUndeducedType();
5527 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
5528 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
5529 Diag(FD->getLocation(), diag::note_callee_decl) << FD;
5530 }
5531
5532 return StillUndeduced;
5533}
5534
5536 SourceLocation Loc) {
5537 assert(FD->isImmediateEscalating());
5538
5540 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
5541 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
5542
5543 // For a generic lambda, instantiate the call operator if needed.
5544 if (auto *Args = FD->getTemplateSpecializationArgs()) {
5546 CallOp->getDescribedFunctionTemplate(), Args, Loc);
5547 if (!CallOp || CallOp->isInvalidDecl())
5548 return true;
5550 Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); });
5551 }
5552 return CallOp->isInvalidDecl();
5553 }
5554
5557 Loc, [&] { InstantiateFunctionDefinition(Loc, FD); });
5558 }
5559 return false;
5560}
5561
5563 const CXXMethodDecl *Method,
5564 QualType RawType,
5565 bool IsOtherRvr) {
5566 // C++20 [temp.func.order]p3.1, p3.2:
5567 // - The type X(M) is "rvalue reference to cv A" if the optional
5568 // ref-qualifier of M is && or if M has no ref-qualifier and the
5569 // positionally-corresponding parameter of the other transformed template
5570 // has rvalue reference type; if this determination depends recursively
5571 // upon whether X(M) is an rvalue reference type, it is not considered to
5572 // have rvalue reference type.
5573 //
5574 // - Otherwise, X(M) is "lvalue reference to cv A".
5575 assert(Method && !Method->isExplicitObjectMemberFunction() &&
5576 "expected a member function with no explicit object parameter");
5577
5578 RawType = Context.getQualifiedType(RawType, Method->getMethodQualifiers());
5579 if (Method->getRefQualifier() == RQ_RValue ||
5580 (IsOtherRvr && Method->getRefQualifier() == RQ_None))
5581 return Context.getRValueReferenceType(RawType);
5582 return Context.getLValueReferenceType(RawType);
5583}
5584
5587 QualType A, ArrayRef<TemplateArgument> DeducedArgs, bool CheckConsistency) {
5588 MultiLevelTemplateArgumentList MLTAL(FTD, DeducedArgs,
5589 /*Final=*/true);
5591 S,
5592 ArgIdx ? ::getPackIndexForParam(S, FTD, MLTAL, *ArgIdx) : std::nullopt);
5593 bool IsIncompleteSubstitution = false;
5594 // FIXME: A substitution can be incomplete on a non-structural part of the
5595 // type. Use the canonical type for now, until the TemplateInstantiator can
5596 // deal with that.
5597
5598 // Workaround: Implicit deduction guides use InjectedClassNameTypes, whereas
5599 // the explicit guides don't. The substitution doesn't transform these types,
5600 // so let it transform their specializations instead.
5601 bool IsDeductionGuide = isa<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
5602 if (IsDeductionGuide) {
5603 if (auto *Injected = P->getAsCanonical<InjectedClassNameType>())
5604 P = Injected->getOriginalDecl()->getCanonicalTemplateSpecializationType(
5605 S.Context);
5606 }
5607 QualType InstP = S.SubstType(P.getCanonicalType(), MLTAL, FTD->getLocation(),
5608 FTD->getDeclName(), &IsIncompleteSubstitution);
5609 if (InstP.isNull() && !IsIncompleteSubstitution)
5611 if (!CheckConsistency)
5613 if (IsIncompleteSubstitution)
5615
5616 // [temp.deduct.call]/4 - Check we produced a consistent deduction.
5617 // This handles just the cases that can appear when partial ordering.
5618 if (auto *PA = dyn_cast<PackExpansionType>(A);
5619 PA && !isa<PackExpansionType>(InstP))
5620 A = PA->getPattern();
5623 if (IsDeductionGuide) {
5624 if (auto *Injected = T1->getAsCanonical<InjectedClassNameType>())
5625 T1 = Injected->getOriginalDecl()->getCanonicalTemplateSpecializationType(
5626 S.Context);
5627 if (auto *Injected = T2->getAsCanonical<InjectedClassNameType>())
5628 T2 = Injected->getOriginalDecl()->getCanonicalTemplateSpecializationType(
5629 S.Context);
5630 }
5631 if (!S.Context.hasSameType(T1, T2))
5634}
5635
5636template <class T>
5638 Sema &S, FunctionTemplateDecl *FTD,
5643 Sema::SFINAETrap Trap(S);
5644
5645 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(FTD));
5646
5647 // C++26 [temp.deduct.type]p2:
5648 // [...] or if any template argument remains neither deduced nor
5649 // explicitly specified, template argument deduction fails.
5650 bool IsIncomplete = false;
5651 Sema::CheckTemplateArgumentInfo CTAI(/*PartialOrdering=*/true);
5652 if (auto Result = ConvertDeducedTemplateArguments(
5653 S, FTD, FTD->getTemplateParameters(), /*IsDeduced=*/true, Deduced,
5654 Info, CTAI,
5655 /*CurrentInstantiationScope=*/nullptr,
5656 /*NumAlreadyConverted=*/0, &IsIncomplete);
5658 return Result;
5659
5660 // Form the template argument list from the deduced template arguments.
5661 TemplateArgumentList *SugaredDeducedArgumentList =
5663 TemplateArgumentList *CanonicalDeducedArgumentList =
5665
5666 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
5667
5668 // Substitute the deduced template arguments into the argument
5669 // and verify that the instantiated argument is both valid
5670 // and equivalent to the parameter.
5671 LocalInstantiationScope InstScope(S);
5672
5673 if (auto TDR = CheckDeductionConsistency(S, FTD, CTAI.SugaredConverted);
5675 return TDR;
5676
5679}
5680
5681/// Determine whether the function template \p FT1 is at least as
5682/// specialized as \p FT2.
5686 ArrayRef<QualType> Args1, ArrayRef<QualType> Args2, bool Args1Offset) {
5687 FunctionDecl *FD1 = FT1->getTemplatedDecl();
5688 FunctionDecl *FD2 = FT2->getTemplatedDecl();
5689 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
5690 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
5691 assert(Proto1 && Proto2 && "Function templates must have prototypes");
5692
5693 // C++26 [temp.deduct.partial]p3:
5694 // The types used to determine the ordering depend on the context in which
5695 // the partial ordering is done:
5696 // - In the context of a function call, the types used are those function
5697 // parameter types for which the function call has arguments.
5698 // - In the context of a call to a conversion operator, the return types
5699 // of the conversion function templates are used.
5700 // - In other contexts (14.6.6.2) the function template's function type
5701 // is used.
5702
5703 if (TPOC == TPOC_Other) {
5704 // We wouldn't be partial ordering these candidates if these didn't match.
5705 assert(Proto1->getMethodQuals() == Proto2->getMethodQuals() &&
5706 Proto1->getRefQualifier() == Proto2->getRefQualifier() &&
5707 Proto1->isVariadic() == Proto2->isVariadic() &&
5708 "shouldn't partial order functions with different qualifiers in a "
5709 "context where the function type is used");
5710
5711 assert(Args1.empty() && Args2.empty() &&
5712 "Only call context should have arguments");
5713 Args1 = Proto1->getParamTypes();
5714 Args2 = Proto2->getParamTypes();
5715 }
5716
5717 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
5718 SmallVector<DeducedTemplateArgument, 4> Deduced(TemplateParams->size());
5719 TemplateDeductionInfo Info(Loc);
5720
5721 bool HasDeducedAnyParamFromReturnType = false;
5722 if (TPOC != TPOC_Call) {
5724 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
5725 Info, Deduced, TDF_None, PartialOrderingKind::Call,
5726 /*DeducedFromArrayBound=*/false,
5727 &HasDeducedAnyParamFromReturnType) !=
5729 return false;
5730 }
5731
5732 llvm::SmallBitVector HasDeducedParam;
5733 if (TPOC != TPOC_Conversion) {
5734 HasDeducedParam.resize(Args2.size());
5735 if (DeduceTemplateArguments(S, TemplateParams, Args2, Args1, Info, Deduced,
5737 /*HasDeducedAnyParam=*/nullptr,
5738 &HasDeducedParam) !=
5740 return false;
5741 }
5742
5743 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
5745 S, Info.getLocation(), FT2, DeducedArgs,
5747 if (Inst.isInvalid())
5748 return false;
5749
5750 bool AtLeastAsSpecialized;
5752 AtLeastAsSpecialized =
5753 ::FinishTemplateArgumentDeduction(
5754 S, FT2, Deduced, Info,
5755 [&](Sema &S, FunctionTemplateDecl *FTD,
5756 ArrayRef<TemplateArgument> DeducedArgs) {
5757 // As a provisional fix for a core issue that does not
5758 // exist yet, which may be related to CWG2160, only check the
5759 // consistency of parameters and return types which participated
5760 // in deduction. We will still try to substitute them though.
5761 if (TPOC != TPOC_Call) {
5762 if (auto TDR = ::CheckDeductionConsistency(
5763 S, FTD, /*ArgIdx=*/std::nullopt,
5764 Proto2->getReturnType(), Proto1->getReturnType(),
5765 DeducedArgs,
5766 /*CheckConsistency=*/HasDeducedAnyParamFromReturnType);
5767 TDR != TemplateDeductionResult::Success)
5768 return TDR;
5769 }
5770
5771 if (TPOC == TPOC_Conversion)
5772 return TemplateDeductionResult::Success;
5773
5774 return ::DeduceForEachType(
5775 S, TemplateParams, Args2, Args1, Info, Deduced,
5776 PartialOrderingKind::Call, /*FinishingDeduction=*/true,
5777 [&](Sema &S, TemplateParameterList *, int ParamIdx,
5778 UnsignedOrNone ArgIdx, QualType P, QualType A,
5779 TemplateDeductionInfo &Info,
5780 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
5781 PartialOrderingKind) {
5782 if (ArgIdx && *ArgIdx >= static_cast<unsigned>(Args1Offset))
5783 ArgIdx = *ArgIdx - Args1Offset;
5784 else
5785 ArgIdx = std::nullopt;
5786 return ::CheckDeductionConsistency(
5787 S, FTD, ArgIdx, P, A, DeducedArgs,
5788 /*CheckConsistency=*/HasDeducedParam[ParamIdx]);
5789 });
5791 });
5792 if (!AtLeastAsSpecialized)
5793 return false;
5794
5795 // C++0x [temp.deduct.partial]p11:
5796 // In most cases, all template parameters must have values in order for
5797 // deduction to succeed, but for partial ordering purposes a template
5798 // parameter may remain without a value provided it is not used in the
5799 // types being used for partial ordering. [ Note: a template parameter used
5800 // in a non-deduced context is considered used. -end note]
5801 unsigned ArgIdx = 0, NumArgs = Deduced.size();
5802 for (; ArgIdx != NumArgs; ++ArgIdx)
5803 if (Deduced[ArgIdx].isNull())
5804 break;
5805
5806 if (ArgIdx == NumArgs) {
5807 // All template arguments were deduced. FT1 is at least as specialized
5808 // as FT2.
5809 return true;
5810 }
5811
5812 // Figure out which template parameters were used.
5813 llvm::SmallBitVector UsedParameters(TemplateParams->size());
5814 switch (TPOC) {
5815 case TPOC_Call:
5816 for (unsigned I = 0, N = Args2.size(); I != N; ++I)
5817 ::MarkUsedTemplateParameters(S.Context, Args2[I], /*OnlyDeduced=*/false,
5818 TemplateParams->getDepth(), UsedParameters);
5819 break;
5820
5821 case TPOC_Conversion:
5822 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(),
5823 /*OnlyDeduced=*/false,
5824 TemplateParams->getDepth(), UsedParameters);
5825 break;
5826
5827 case TPOC_Other:
5828 // We do not deduce template arguments from the exception specification
5829 // when determining the primary template of a function template
5830 // specialization or when taking the address of a function template.
5831 // Therefore, we do not mark template parameters in the exception
5832 // specification as used during partial ordering to prevent the following
5833 // from being ambiguous:
5834 //
5835 // template<typename T, typename U>
5836 // void f(U) noexcept(noexcept(T())); // #1
5837 //
5838 // template<typename T>
5839 // void f(T*) noexcept; // #2
5840 //
5841 // template<>
5842 // void f<int>(int*) noexcept; // explicit specialization of #2
5843 //
5844 // Although there is no corresponding wording in the standard, this seems
5845 // to be the intended behavior given the definition of
5846 // 'deduction substitution loci' in [temp.deduct].
5848 S.Context,
5849 S.Context.getFunctionTypeWithExceptionSpec(FD2->getType(), EST_None),
5850 /*OnlyDeduced=*/false, TemplateParams->getDepth(), UsedParameters);
5851 break;
5852 }
5853
5854 for (; ArgIdx != NumArgs; ++ArgIdx)
5855 // If this argument had no value deduced but was used in one of the types
5856 // used for partial ordering, then deduction fails.
5857 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
5858 return false;
5859
5860 return true;
5861}
5862
5864
5865// This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that
5866// there is no wording or even resolution for this issue.
5869 const TemplateSpecializationType *TST1,
5870 const TemplateSpecializationType *TST2) {
5871 ArrayRef<TemplateArgument> As1 = TST1->template_arguments(),
5872 As2 = TST2->template_arguments();
5873 const TemplateArgument &TA1 = As1.back(), &TA2 = As2.back();
5874 bool IsPack = TA1.getKind() == TemplateArgument::Pack;
5875 assert(IsPack == (TA2.getKind() == TemplateArgument::Pack));
5876 if (!IsPack)
5878 assert(As1.size() == As2.size());
5879
5880 unsigned PackSize1 = TA1.pack_size(), PackSize2 = TA2.pack_size();
5881 bool IsPackExpansion1 =
5882 PackSize1 && TA1.pack_elements().back().isPackExpansion();
5883 bool IsPackExpansion2 =
5884 PackSize2 && TA2.pack_elements().back().isPackExpansion();
5885 if (PackSize1 == PackSize2 && IsPackExpansion1 == IsPackExpansion2)
5887 if (PackSize1 > PackSize2 && IsPackExpansion1)
5889 if (PackSize1 < PackSize2 && IsPackExpansion2)
5892}
5893
5896 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
5897 QualType RawObj1Ty, QualType RawObj2Ty, bool Reversed,
5898 bool PartialOverloading) {
5901 const FunctionDecl *FD1 = FT1->getTemplatedDecl();
5902 const FunctionDecl *FD2 = FT2->getTemplatedDecl();
5903 bool ShouldConvert1 = false;
5904 bool ShouldConvert2 = false;
5905 bool Args1Offset = false;
5906 bool Args2Offset = false;
5907 QualType Obj1Ty;
5908 QualType Obj2Ty;
5909 if (TPOC == TPOC_Call) {
5910 const FunctionProtoType *Proto1 =
5911 FD1->getType()->castAs<FunctionProtoType>();
5912 const FunctionProtoType *Proto2 =
5913 FD2->getType()->castAs<FunctionProtoType>();
5914
5915 // - In the context of a function call, the function parameter types are
5916 // used.
5917 const CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
5918 const CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
5919 // C++20 [temp.func.order]p3
5920 // [...] Each function template M that is a member function is
5921 // considered to have a new first parameter of type
5922 // X(M), described below, inserted in its function parameter list.
5923 //
5924 // Note that we interpret "that is a member function" as
5925 // "that is a member function with no expicit object argument".
5926 // Otherwise the ordering rules for methods with expicit objet arguments
5927 // against anything else make no sense.
5928
5929 bool NonStaticMethod1 = Method1 && !Method1->isStatic(),
5930 NonStaticMethod2 = Method2 && !Method2->isStatic();
5931
5932 auto Params1Begin = Proto1->param_type_begin(),
5933 Params2Begin = Proto2->param_type_begin();
5934
5935 size_t NumComparedArguments = NumCallArguments1;
5936
5937 if (auto OO = FD1->getOverloadedOperator();
5938 (NonStaticMethod1 && NonStaticMethod2) ||
5939 (OO != OO_None && OO != OO_Call && OO != OO_Subscript)) {
5940 ShouldConvert1 =
5941 NonStaticMethod1 && !Method1->hasCXXExplicitFunctionObjectParameter();
5942 ShouldConvert2 =
5943 NonStaticMethod2 && !Method2->hasCXXExplicitFunctionObjectParameter();
5944 NumComparedArguments += 1;
5945
5946 if (ShouldConvert1) {
5947 bool IsRValRef2 =
5948 ShouldConvert2
5949 ? Method2->getRefQualifier() == RQ_RValue
5950 : Proto2->param_type_begin()[0]->isRValueReferenceType();
5951 // Compare 'this' from Method1 against first parameter from Method2.
5952 Obj1Ty = GetImplicitObjectParameterType(this->Context, Method1,
5953 RawObj1Ty, IsRValRef2);
5954 Args1.push_back(Obj1Ty);
5955 Args1Offset = true;
5956 }
5957 if (ShouldConvert2) {
5958 bool IsRValRef1 =
5959 ShouldConvert1
5960 ? Method1->getRefQualifier() == RQ_RValue
5961 : Proto1->param_type_begin()[0]->isRValueReferenceType();
5962 // Compare 'this' from Method2 against first parameter from Method1.
5963 Obj2Ty = GetImplicitObjectParameterType(this->Context, Method2,
5964 RawObj2Ty, IsRValRef1);
5965 Args2.push_back(Obj2Ty);
5966 Args2Offset = true;
5967 }
5968 } else {
5969 if (NonStaticMethod1 && Method1->hasCXXExplicitFunctionObjectParameter())
5970 Params1Begin += 1;
5971 if (NonStaticMethod2 && Method2->hasCXXExplicitFunctionObjectParameter())
5972 Params2Begin += 1;
5973 }
5974 Args1.insert(Args1.end(), Params1Begin, Proto1->param_type_end());
5975 Args2.insert(Args2.end(), Params2Begin, Proto2->param_type_end());
5976
5977 // C++ [temp.func.order]p5:
5978 // The presence of unused ellipsis and default arguments has no effect on
5979 // the partial ordering of function templates.
5980 Args1.resize(std::min(Args1.size(), NumComparedArguments));
5981 Args2.resize(std::min(Args2.size(), NumComparedArguments));
5982
5983 if (Reversed)
5984 std::reverse(Args2.begin(), Args2.end());
5985 } else {
5986 assert(!Reversed && "Only call context could have reversed arguments");
5987 }
5988 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, Args1,
5989 Args2, Args2Offset);
5990 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, Args2,
5991 Args1, Args1Offset);
5992 // C++ [temp.deduct.partial]p10:
5993 // F is more specialized than G if F is at least as specialized as G and G
5994 // is not at least as specialized as F.
5995 if (Better1 != Better2) // We have a clear winner
5996 return Better1 ? FT1 : FT2;
5997
5998 if (!Better1 && !Better2) // Neither is better than the other
5999 return nullptr;
6000
6001 // C++ [temp.deduct.partial]p11:
6002 // ... and if G has a trailing function parameter pack for which F does not
6003 // have a corresponding parameter, and if F does not have a trailing
6004 // function parameter pack, then F is more specialized than G.
6005
6006 SmallVector<QualType> Param1;
6007 Param1.reserve(FD1->param_size() + ShouldConvert1);
6008 if (ShouldConvert1)
6009 Param1.push_back(Obj1Ty);
6010 for (const auto &P : FD1->parameters())
6011 Param1.push_back(P->getType());
6012
6013 SmallVector<QualType> Param2;
6014 Param2.reserve(FD2->param_size() + ShouldConvert2);
6015 if (ShouldConvert2)
6016 Param2.push_back(Obj2Ty);
6017 for (const auto &P : FD2->parameters())
6018 Param2.push_back(P->getType());
6019
6020 unsigned NumParams1 = Param1.size();
6021 unsigned NumParams2 = Param2.size();
6022
6023 bool Variadic1 =
6024 FD1->param_size() && FD1->parameters().back()->isParameterPack();
6025 bool Variadic2 =
6026 FD2->param_size() && FD2->parameters().back()->isParameterPack();
6027 if (Variadic1 != Variadic2) {
6028 if (Variadic1 && NumParams1 > NumParams2)
6029 return FT2;
6030 if (Variadic2 && NumParams2 > NumParams1)
6031 return FT1;
6032 }
6033
6034 // Skip this tie breaker if we are performing overload resolution with partial
6035 // arguments, as this breaks some assumptions about how closely related the
6036 // candidates are.
6037 for (int i = 0, e = std::min(NumParams1, NumParams2);
6038 !PartialOverloading && i < e; ++i) {
6039 QualType T1 = Param1[i].getCanonicalType();
6040 QualType T2 = Param2[i].getCanonicalType();
6041 auto *TST1 = dyn_cast<TemplateSpecializationType>(T1);
6042 auto *TST2 = dyn_cast<TemplateSpecializationType>(T2);
6043 if (!TST1 || !TST2)
6044 continue;
6045 switch (getMoreSpecializedTrailingPackTieBreaker(TST1, TST2)) {
6047 return FT1;
6049 return FT2;
6051 continue;
6052 }
6053 llvm_unreachable(
6054 "unknown MoreSpecializedTrailingPackTieBreakerResult value");
6055 }
6056
6057 if (!Context.getLangOpts().CPlusPlus20)
6058 return nullptr;
6059
6060 // Match GCC on not implementing [temp.func.order]p6.2.1.
6061
6062 // C++20 [temp.func.order]p6:
6063 // If deduction against the other template succeeds for both transformed
6064 // templates, constraints can be considered as follows:
6065
6066 // C++20 [temp.func.order]p6.1:
6067 // If their template-parameter-lists (possibly including template-parameters
6068 // invented for an abbreviated function template ([dcl.fct])) or function
6069 // parameter lists differ in length, neither template is more specialized
6070 // than the other.
6073 if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2)
6074 return nullptr;
6075
6076 // C++20 [temp.func.order]p6.2.2:
6077 // Otherwise, if the corresponding template-parameters of the
6078 // template-parameter-lists are not equivalent ([temp.over.link]) or if the
6079 // function parameters that positionally correspond between the two
6080 // templates are not of the same type, neither template is more specialized
6081 // than the other.
6082 if (!TemplateParameterListsAreEqual(TPL1, TPL2, false,
6084 return nullptr;
6085
6086 // [dcl.fct]p5:
6087 // Any top-level cv-qualifiers modifying a parameter type are deleted when
6088 // forming the function type.
6089 for (unsigned i = 0; i < NumParams1; ++i)
6090 if (!Context.hasSameUnqualifiedType(Param1[i], Param2[i]))
6091 return nullptr;
6092
6093 // C++20 [temp.func.order]p6.3:
6094 // Otherwise, if the context in which the partial ordering is done is
6095 // that of a call to a conversion function and the return types of the
6096 // templates are not the same, then neither template is more specialized
6097 // than the other.
6098 if (TPOC == TPOC_Conversion &&
6099 !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType()))
6100 return nullptr;
6101
6103 FT1->getAssociatedConstraints(AC1);
6104 FT2->getAssociatedConstraints(AC2);
6105 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
6106 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
6107 return nullptr;
6108 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
6109 return nullptr;
6110 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
6111 return nullptr;
6112 return AtLeastAsConstrained1 ? FT1 : FT2;
6113}
6114
6117 TemplateSpecCandidateSet &FailedCandidates,
6118 SourceLocation Loc, const PartialDiagnostic &NoneDiag,
6119 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
6120 bool Complain, QualType TargetType) {
6121 if (SpecBegin == SpecEnd) {
6122 if (Complain) {
6123 Diag(Loc, NoneDiag);
6124 FailedCandidates.NoteCandidates(*this, Loc);
6125 }
6126 return SpecEnd;
6127 }
6128
6129 if (SpecBegin + 1 == SpecEnd)
6130 return SpecBegin;
6131
6132 // Find the function template that is better than all of the templates it
6133 // has been compared to.
6134 UnresolvedSetIterator Best = SpecBegin;
6135 FunctionTemplateDecl *BestTemplate
6136 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
6137 assert(BestTemplate && "Not a function template specialization?");
6138 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
6139 FunctionTemplateDecl *Challenger
6140 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
6141 assert(Challenger && "Not a function template specialization?");
6142 if (declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
6143 Loc, TPOC_Other, 0),
6144 Challenger)) {
6145 Best = I;
6146 BestTemplate = Challenger;
6147 }
6148 }
6149
6150 // Make sure that the "best" function template is more specialized than all
6151 // of the others.
6152 bool Ambiguous = false;
6153 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
6154 FunctionTemplateDecl *Challenger
6155 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
6156 if (I != Best &&
6157 !declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
6158 Loc, TPOC_Other, 0),
6159 BestTemplate)) {
6160 Ambiguous = true;
6161 break;
6162 }
6163 }
6164
6165 if (!Ambiguous) {
6166 // We found an answer. Return it.
6167 return Best;
6168 }
6169
6170 // Diagnose the ambiguity.
6171 if (Complain) {
6172 Diag(Loc, AmbigDiag);
6173
6174 // FIXME: Can we order the candidates in some sane way?
6175 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
6176 PartialDiagnostic PD = CandidateDiag;
6177 const auto *FD = cast<FunctionDecl>(*I);
6179 FD->getPrimaryTemplate()->getTemplateParameters(),
6180 *FD->getTemplateSpecializationArgs());
6181 if (!TargetType.isNull())
6182 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
6183 Diag((*I)->getLocation(), PD);
6184 }
6185 }
6186
6187 return SpecEnd;
6188}
6189
6191 FunctionDecl *FD2) {
6192 assert(!FD1->getDescribedTemplate() && !FD2->getDescribedTemplate() &&
6193 "not for function templates");
6194 assert(!FD1->isFunctionTemplateSpecialization() ||
6196 assert(!FD2->isFunctionTemplateSpecialization() ||
6198
6199 FunctionDecl *F1 = FD1;
6200 if (FunctionDecl *P = FD1->getTemplateInstantiationPattern(false))
6201 F1 = P;
6202
6203 FunctionDecl *F2 = FD2;
6204 if (FunctionDecl *P = FD2->getTemplateInstantiationPattern(false))
6205 F2 = P;
6206
6208 F1->getAssociatedConstraints(AC1);
6209 F2->getAssociatedConstraints(AC2);
6210 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
6211 if (IsAtLeastAsConstrained(F1, AC1, F2, AC2, AtLeastAsConstrained1))
6212 return nullptr;
6213 if (IsAtLeastAsConstrained(F2, AC2, F1, AC1, AtLeastAsConstrained2))
6214 return nullptr;
6215 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
6216 return nullptr;
6217 return AtLeastAsConstrained1 ? FD1 : FD2;
6218}
6219
6220/// Determine whether one template specialization, P1, is at least as
6221/// specialized than another, P2.
6222///
6223/// \tparam TemplateLikeDecl The kind of P2, which must be a
6224/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
6225/// \param T1 The injected-class-name of P1 (faked for a variable template).
6226/// \param T2 The injected-class-name of P2 (faked for a variable template).
6227/// \param Template The primary template of P2, in case it is a partial
6228/// specialization, the same as P2 otherwise.
6229template <typename TemplateLikeDecl>
6231 TemplateLikeDecl *P2,
6233 TemplateDeductionInfo &Info) {
6234 // C++ [temp.class.order]p1:
6235 // For two class template partial specializations, the first is at least as
6236 // specialized as the second if, given the following rewrite to two
6237 // function templates, the first function template is at least as
6238 // specialized as the second according to the ordering rules for function
6239 // templates (14.6.6.2):
6240 // - the first function template has the same template parameters as the
6241 // first partial specialization and has a single function parameter
6242 // whose type is a class template specialization with the template
6243 // arguments of the first partial specialization, and
6244 // - the second function template has the same template parameters as the
6245 // second partial specialization and has a single function parameter
6246 // whose type is a class template specialization with the template
6247 // arguments of the second partial specialization.
6248 //
6249 // Rather than synthesize function templates, we merely perform the
6250 // equivalent partial ordering by performing deduction directly on
6251 // the template arguments of the class template partial
6252 // specializations. This computation is slightly simpler than the
6253 // general problem of function template partial ordering, because
6254 // class template partial specializations are more constrained. We
6255 // know that every template parameter is deducible from the class
6256 // template partial specialization's template arguments, for
6257 // example.
6259
6260 // Determine whether P1 is at least as specialized as P2.
6261 Deduced.resize(P2->getTemplateParameters()->size());
6263 S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None,
6264 PartialOrderingKind::Call, /*DeducedFromArrayBound=*/false,
6265 /*HasDeducedAnyParam=*/nullptr) != TemplateDeductionResult::Success)
6266 return false;
6267
6268 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
6269 Deduced.end());
6270 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
6271 Info);
6272 if (Inst.isInvalid())
6273 return false;
6274
6276 Ps = cast<TemplateSpecializationType>(T2)->template_arguments(),
6277 As = cast<TemplateSpecializationType>(T1)->template_arguments();
6278
6279 Sema::SFINAETrap Trap(S);
6280
6283 Result = ::FinishTemplateArgumentDeduction(
6284 S, P2, P2->getTemplateParameters(), Template,
6285 /*IsPartialOrdering=*/true, Ps, As, Deduced, Info,
6286 /*CopyDeducedArgs=*/false);
6287 });
6288
6290 return false;
6291
6292 if (Trap.hasErrorOccurred())
6293 return false;
6294
6295 return true;
6296}
6297
6298namespace {
6299// A dummy class to return nullptr instead of P2 when performing "more
6300// specialized than primary" check.
6301struct GetP2 {
6302 template <typename T1, typename T2,
6303 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
6304 T2 *operator()(T1 *, T2 *P2) {
6305 return P2;
6306 }
6307 template <typename T1, typename T2,
6308 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
6309 T1 *operator()(T1 *, T2 *) {
6310 return nullptr;
6311 }
6312};
6313
6314// The assumption is that two template argument lists have the same size.
6315struct TemplateArgumentListAreEqual {
6316 ASTContext &Ctx;
6317 TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {}
6318
6319 template <typename T1, typename T2,
6320 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
6321 bool operator()(T1 *PS1, T2 *PS2) {
6322 ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(),
6323 Args2 = PS2->getTemplateArgs().asArray();
6324
6325 for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
6326 // We use profile, instead of structural comparison of the arguments,
6327 // because canonicalization can't do the right thing for dependent
6328 // expressions.
6329 llvm::FoldingSetNodeID IDA, IDB;
6330 Args1[I].Profile(IDA, Ctx);
6331 Args2[I].Profile(IDB, Ctx);
6332 if (IDA != IDB)
6333 return false;
6334 }
6335 return true;
6336 }
6337
6338 template <typename T1, typename T2,
6339 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
6340 bool operator()(T1 *Spec, T2 *Primary) {
6341 ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(),
6342 Args2 = Primary->getInjectedTemplateArgs(Ctx);
6343
6344 for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
6345 // We use profile, instead of structural comparison of the arguments,
6346 // because canonicalization can't do the right thing for dependent
6347 // expressions.
6348 llvm::FoldingSetNodeID IDA, IDB;
6349 Args1[I].Profile(IDA, Ctx);
6350 // Unlike the specialization arguments, the injected arguments are not
6351 // always canonical.
6352 Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx);
6353 if (IDA != IDB)
6354 return false;
6355 }
6356 return true;
6357 }
6358};
6359} // namespace
6360
6361/// Returns the more specialized template specialization between T1/P1 and
6362/// T2/P2.
6363/// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial
6364/// specialization and T2/P2 is the primary template.
6365/// - otherwise, both T1/P1 and T2/P2 are the partial specialization.
6366///
6367/// \param T1 the type of the first template partial specialization
6368///
6369/// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second
6370/// template partial specialization; otherwise, the type of the
6371/// primary template.
6372///
6373/// \param P1 the first template partial specialization
6374///
6375/// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template
6376/// partial specialization; otherwise, the primary template.
6377///
6378/// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is
6379/// more specialized, returns nullptr if P1 is not more specialized.
6380/// - otherwise, returns the more specialized template partial
6381/// specialization. If neither partial specialization is more
6382/// specialized, returns NULL.
6383template <typename TemplateLikeDecl, typename PrimaryDel>
6384static TemplateLikeDecl *
6385getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1,
6386 PrimaryDel *P2, TemplateDeductionInfo &Info) {
6387 constexpr bool IsMoreSpecialThanPrimaryCheck =
6388 !std::is_same_v<TemplateLikeDecl, PrimaryDel>;
6389
6390 TemplateDecl *P2T;
6391 if constexpr (IsMoreSpecialThanPrimaryCheck)
6392 P2T = P2;
6393 else
6394 P2T = P2->getSpecializedTemplate();
6395
6396 bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, P2T, Info);
6397 if (IsMoreSpecialThanPrimaryCheck && !Better1)
6398 return nullptr;
6399
6400 bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1,
6401 P1->getSpecializedTemplate(), Info);
6402 if (IsMoreSpecialThanPrimaryCheck && !Better2)
6403 return P1;
6404
6405 // C++ [temp.deduct.partial]p10:
6406 // F is more specialized than G if F is at least as specialized as G and G
6407 // is not at least as specialized as F.
6408 if (Better1 != Better2) // We have a clear winner
6409 return Better1 ? P1 : GetP2()(P1, P2);
6410
6411 if (!Better1 && !Better2)
6412 return nullptr;
6413
6418 return P1;
6420 return GetP2()(P1, P2);
6422 break;
6423 }
6424
6425 if (!S.Context.getLangOpts().CPlusPlus20)
6426 return nullptr;
6427
6428 // Match GCC on not implementing [temp.func.order]p6.2.1.
6429
6430 // C++20 [temp.func.order]p6:
6431 // If deduction against the other template succeeds for both transformed
6432 // templates, constraints can be considered as follows:
6433
6434 TemplateParameterList *TPL1 = P1->getTemplateParameters();
6435 TemplateParameterList *TPL2 = P2->getTemplateParameters();
6436 if (TPL1->size() != TPL2->size())
6437 return nullptr;
6438
6439 // C++20 [temp.func.order]p6.2.2:
6440 // Otherwise, if the corresponding template-parameters of the
6441 // template-parameter-lists are not equivalent ([temp.over.link]) or if the
6442 // function parameters that positionally correspond between the two
6443 // templates are not of the same type, neither template is more specialized
6444 // than the other.
6445 if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false,
6447 return nullptr;
6448
6449 if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2))
6450 return nullptr;
6451
6453 P1->getAssociatedConstraints(AC1);
6454 P2->getAssociatedConstraints(AC2);
6455 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
6456 if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) ||
6457 (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1))
6458 return nullptr;
6459 if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2))
6460 return nullptr;
6461 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
6462 return nullptr;
6463 return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2);
6464}
6465
6477
6480 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
6483
6485 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
6486 if (MaybeSpec)
6487 Info.clearSFINAEDiagnostic();
6488 return MaybeSpec;
6489}
6490
6495 // Pretend the variable template specializations are class template
6496 // specializations and form a fake injected class name type for comparison.
6497 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
6498 "the partial specializations being compared should specialize"
6499 " the same template.");
6501 QualType PT1 = Context.getCanonicalTemplateSpecializationType(
6503 QualType PT2 = Context.getCanonicalTemplateSpecializationType(
6505
6506 TemplateDeductionInfo Info(Loc);
6507 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
6508}
6509
6512 VarTemplateDecl *Primary = Spec->getSpecializedTemplate();
6513 TemplateName Name(Primary->getCanonicalDecl());
6514
6515 SmallVector<TemplateArgument, 8> PrimaryCanonArgs(
6517 Context.canonicalizeTemplateArguments(PrimaryCanonArgs);
6518
6519 QualType PrimaryT = Context.getCanonicalTemplateSpecializationType(
6520 ElaboratedTypeKeyword::None, Name, PrimaryCanonArgs);
6521 QualType PartialT = Context.getCanonicalTemplateSpecializationType(
6523
6525 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
6526 if (MaybeSpec)
6527 Info.clearSFINAEDiagnostic();
6528 return MaybeSpec;
6529}
6530
6533 const DefaultArguments &DefaultArgs, SourceLocation ArgLoc,
6534 bool PartialOrdering, bool *StrictPackMatch) {
6535 // C++1z [temp.arg.template]p4: (DR 150)
6536 // A template template-parameter P is at least as specialized as a
6537 // template template-argument A if, given the following rewrite to two
6538 // function templates...
6539
6540 // Rather than synthesize function templates, we merely perform the
6541 // equivalent partial ordering by performing deduction directly on
6542 // the template parameter lists of the template template parameters.
6543 //
6545
6549 if (Inst.isInvalid())
6550 return false;
6551
6552 // Given an invented class template X with the template parameter list of
6553 // A (including default arguments):
6554 // - Each function template has a single function parameter whose type is
6555 // a specialization of X with template arguments corresponding to the
6556 // template parameters from the respective function template
6558
6559 // Check P's arguments against A's parameter list. This will fill in default
6560 // template arguments as needed. AArgs are already correct by construction.
6561 // We can't just use CheckTemplateIdType because that will expand alias
6562 // templates.
6564 {
6566 P->getRAngleLoc());
6567 for (unsigned I = 0, N = P->size(); I != N; ++I) {
6568 // Unwrap packs that getInjectedTemplateArgs wrapped around pack
6569 // expansions, to form an "as written" argument list.
6570 TemplateArgument Arg = PArgs[I];
6571 if (Arg.getKind() == TemplateArgument::Pack) {
6572 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
6573 Arg = *Arg.pack_begin();
6574 }
6576 Arg, QualType(), P->getParam(I)->getLocation()));
6577 }
6578 PArgs.clear();
6579
6580 // C++1z [temp.arg.template]p3:
6581 // If the rewrite produces an invalid type, then P is not at least as
6582 // specialized as A.
6584 /*PartialOrdering=*/false, /*MatchingTTP=*/true);
6585 CTAI.SugaredConverted = std::move(PArgs);
6586 if (CheckTemplateArgumentList(AArg, ArgLoc, PArgList, DefaultArgs,
6587 /*PartialTemplateArgs=*/false, CTAI,
6588 /*UpdateArgsWithConversions=*/true,
6589 /*ConstraintsNotSatisfied=*/nullptr))
6590 return false;
6591 PArgs = std::move(CTAI.SugaredConverted);
6592 if (StrictPackMatch)
6593 *StrictPackMatch |= CTAI.StrictPackMatch;
6594 }
6595
6596 // Determine whether P1 is at least as specialized as P2.
6597 TemplateDeductionInfo Info(ArgLoc, A->getDepth());
6599 Deduced.resize(A->size());
6600
6601 // ... the function template corresponding to P is at least as specialized
6602 // as the function template corresponding to A according to the partial
6603 // ordering rules for function templates.
6604
6605 // Provisional resolution for CWG2398: Regarding temp.arg.template]p4, when
6606 // applying the partial ordering rules for function templates on
6607 // the rewritten template template parameters:
6608 // - In a deduced context, the matching of packs versus fixed-size needs to
6609 // be inverted between Ps and As. On non-deduced context, matching needs to
6610 // happen both ways, according to [temp.arg.template]p3, but this is
6611 // currently implemented as a special case elsewhere.
6613 *this, A, AArgs, PArgs, Info, Deduced,
6614 /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/true,
6616 /*HasDeducedAnyParam=*/nullptr)) {
6618 if (StrictPackMatch && Info.hasStrictPackMatch())
6619 *StrictPackMatch = true;
6620 break;
6621
6623 Diag(AArg->getLocation(), diag::err_template_param_list_different_arity)
6624 << (A->size() > P->size()) << /*isTemplateTemplateParameter=*/true
6626 return false;
6628 Diag(AArg->getLocation(), diag::err_non_deduced_mismatch)
6629 << Info.FirstArg << Info.SecondArg;
6630 return false;
6633 diag::err_inconsistent_deduction)
6634 << Info.FirstArg << Info.SecondArg;
6635 return false;
6637 return false;
6638
6639 // None of these should happen for a plain deduction.
6654 llvm_unreachable("Unexpected Result");
6655 }
6656
6659 TDK = ::FinishTemplateArgumentDeduction(
6660 *this, AArg, AArg->getTemplateParameters(), AArg, PartialOrdering,
6661 AArgs, PArgs, Deduced, Info, /*CopyDeducedArgs=*/false);
6662 });
6663 switch (TDK) {
6665 return true;
6666
6667 // It doesn't seem possible to get a non-deduced mismatch when partial
6668 // ordering TTPs, except with an invalid template parameter list which has
6669 // a parameter after a pack.
6671 assert(PArg->isInvalidDecl() && "Unexpected NonDeducedMismatch");
6672 return false;
6673
6674 // Substitution failures should have already been diagnosed.
6678 return false;
6679
6680 // None of these should happen when just converting deduced arguments.
6695 llvm_unreachable("Unexpected Result");
6696 }
6697 llvm_unreachable("Unexpected TDK");
6698}
6699
6700namespace {
6701struct MarkUsedTemplateParameterVisitor : DynamicRecursiveASTVisitor {
6702 llvm::SmallBitVector &Used;
6703 unsigned Depth;
6704
6705 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
6706 unsigned Depth)
6707 : Used(Used), Depth(Depth) { }
6708
6709 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override {
6710 if (T->getDepth() == Depth)
6711 Used[T->getIndex()] = true;
6712 return true;
6713 }
6714
6715 bool TraverseTemplateName(TemplateName Template) override {
6716 if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
6717 Template.getAsTemplateDecl()))
6718 if (TTP->getDepth() == Depth)
6719 Used[TTP->getIndex()] = true;
6721 return true;
6722 }
6723
6724 bool VisitDeclRefExpr(DeclRefExpr *E) override {
6725 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
6726 if (NTTP->getDepth() == Depth)
6727 Used[NTTP->getIndex()] = true;
6728 return true;
6729 }
6730
6731 bool VisitUnresolvedLookupExpr(UnresolvedLookupExpr *ULE) override {
6732 if (ULE->isConceptReference() || ULE->isVarDeclReference()) {
6733 if (auto *TTP = ULE->getTemplateTemplateDecl()) {
6734 if (TTP->getDepth() == Depth)
6735 Used[TTP->getIndex()] = true;
6736 }
6737 for (auto &TLoc : ULE->template_arguments())
6739 }
6740 return true;
6741 }
6742};
6743}
6744
6745/// Mark the template parameters that are used by the given
6746/// expression.
6747static void
6749 const Expr *E,
6750 bool OnlyDeduced,
6751 unsigned Depth,
6752 llvm::SmallBitVector &Used) {
6753 if (!OnlyDeduced) {
6754 MarkUsedTemplateParameterVisitor(Used, Depth)
6755 .TraverseStmt(const_cast<Expr *>(E));
6756 return;
6757 }
6758
6759 // We can deduce from a pack expansion.
6760 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
6761 E = Expansion->getPattern();
6762
6764 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E);
6765 ULE && (ULE->isConceptReference() || ULE->isVarDeclReference())) {
6766 if (const auto *TTP = ULE->getTemplateTemplateDecl())
6767 Used[TTP->getIndex()] = true;
6768 for (auto &TLoc : ULE->template_arguments())
6769 MarkUsedTemplateParameters(Ctx, TLoc.getArgument(), OnlyDeduced, Depth,
6770 Used);
6771 return;
6772 }
6773
6774 const NonTypeOrVarTemplateParmDecl NTTP =
6776 if (!NTTP)
6777 return;
6778 if (NTTP.getDepth() == Depth)
6779 Used[NTTP.getIndex()] = true;
6780
6781 // In C++17 mode, additional arguments may be deduced from the type of a
6782 // non-type argument.
6783 if (Ctx.getLangOpts().CPlusPlus17)
6784 MarkUsedTemplateParameters(Ctx, NTTP.getType(), OnlyDeduced, Depth, Used);
6785}
6786
6787/// Mark the template parameters that are used by the given
6788/// nested name specifier.
6790 bool OnlyDeduced, unsigned Depth,
6791 llvm::SmallBitVector &Used) {
6793 return;
6794 MarkUsedTemplateParameters(Ctx, QualType(NNS.getAsType(), 0), OnlyDeduced,
6795 Depth, Used);
6796}
6797
6798/// Mark the template parameters that are used by the given
6799/// template name.
6800static void
6802 TemplateName Name,
6803 bool OnlyDeduced,
6804 unsigned Depth,
6805 llvm::SmallBitVector &Used) {
6806 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
6808 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
6809 if (TTP->getDepth() == Depth)
6810 Used[TTP->getIndex()] = true;
6811 }
6812 return;
6813 }
6814
6816 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
6817 Depth, Used);
6819 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
6820 Depth, Used);
6821}
6822
6823/// Mark the template parameters that are used by the given
6824/// type.
6825static void
6827 bool OnlyDeduced,
6828 unsigned Depth,
6829 llvm::SmallBitVector &Used) {
6830 if (T.isNull())
6831 return;
6832
6833 // Non-dependent types have nothing deducible
6834 if (!T->isDependentType())
6835 return;
6836
6837 T = Ctx.getCanonicalType(T);
6838 switch (T->getTypeClass()) {
6839 case Type::Pointer:
6842 OnlyDeduced,
6843 Depth,
6844 Used);
6845 break;
6846
6847 case Type::BlockPointer:
6850 OnlyDeduced,
6851 Depth,
6852 Used);
6853 break;
6854
6855 case Type::LValueReference:
6856 case Type::RValueReference:
6859 OnlyDeduced,
6860 Depth,
6861 Used);
6862 break;
6863
6864 case Type::MemberPointer: {
6865 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
6866 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
6867 Depth, Used);
6869 QualType(MemPtr->getQualifier().getAsType(), 0),
6870 OnlyDeduced, Depth, Used);
6871 break;
6872 }
6873
6874 case Type::DependentSizedArray:
6876 cast<DependentSizedArrayType>(T)->getSizeExpr(),
6877 OnlyDeduced, Depth, Used);
6878 // Fall through to check the element type
6879 [[fallthrough]];
6880
6881 case Type::ConstantArray:
6882 case Type::IncompleteArray:
6883 case Type::ArrayParameter:
6885 cast<ArrayType>(T)->getElementType(),
6886 OnlyDeduced, Depth, Used);
6887 break;
6888 case Type::Vector:
6889 case Type::ExtVector:
6891 cast<VectorType>(T)->getElementType(),
6892 OnlyDeduced, Depth, Used);
6893 break;
6894
6895 case Type::DependentVector: {
6896 const auto *VecType = cast<DependentVectorType>(T);
6897 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
6898 Depth, Used);
6899 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
6900 Used);
6901 break;
6902 }
6903 case Type::DependentSizedExtVector: {
6904 const DependentSizedExtVectorType *VecType
6906 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
6907 Depth, Used);
6908 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
6909 Depth, Used);
6910 break;
6911 }
6912
6913 case Type::DependentAddressSpace: {
6914 const DependentAddressSpaceType *DependentASType =
6916 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
6917 OnlyDeduced, Depth, Used);
6919 DependentASType->getAddrSpaceExpr(),
6920 OnlyDeduced, Depth, Used);
6921 break;
6922 }
6923
6924 case Type::ConstantMatrix: {
6926 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
6927 Depth, Used);
6928 break;
6929 }
6930
6931 case Type::DependentSizedMatrix: {
6933 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
6934 Depth, Used);
6935 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth,
6936 Used);
6937 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced,
6938 Depth, Used);
6939 break;
6940 }
6941
6942 case Type::FunctionProto: {
6944 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
6945 Used);
6946 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
6947 // C++17 [temp.deduct.type]p5:
6948 // The non-deduced contexts are: [...]
6949 // -- A function parameter pack that does not occur at the end of the
6950 // parameter-declaration-list.
6951 if (!OnlyDeduced || I + 1 == N ||
6952 !Proto->getParamType(I)->getAs<PackExpansionType>()) {
6953 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
6954 Depth, Used);
6955 } else {
6956 // FIXME: C++17 [temp.deduct.call]p1:
6957 // When a function parameter pack appears in a non-deduced context,
6958 // the type of that pack is never deduced.
6959 //
6960 // We should also track a set of "never deduced" parameters, and
6961 // subtract that from the list of deduced parameters after marking.
6962 }
6963 }
6964 if (auto *E = Proto->getNoexceptExpr())
6965 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
6966 break;
6967 }
6968
6969 case Type::TemplateTypeParm: {
6970 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
6971 if (TTP->getDepth() == Depth)
6972 Used[TTP->getIndex()] = true;
6973 break;
6974 }
6975
6976 case Type::SubstTemplateTypeParmPack: {
6977 const SubstTemplateTypeParmPackType *Subst
6979 if (Subst->getReplacedParameter()->getDepth() == Depth)
6980 Used[Subst->getIndex()] = true;
6981 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), OnlyDeduced,
6982 Depth, Used);
6983 break;
6984 }
6985 case Type::SubstBuiltinTemplatePack: {
6986 MarkUsedTemplateParameters(Ctx, cast<SubstPackType>(T)->getArgumentPack(),
6987 OnlyDeduced, Depth, Used);
6988 break;
6989 }
6990
6991 case Type::InjectedClassName:
6993 ->getOriginalDecl()
6994 ->getCanonicalTemplateSpecializationType(Ctx);
6995 [[fallthrough]];
6996
6997 case Type::TemplateSpecialization: {
6998 const TemplateSpecializationType *Spec
7000
7001 TemplateName Name = Spec->getTemplateName();
7002 if (OnlyDeduced && Name.getAsDependentTemplateName())
7003 break;
7004
7005 MarkUsedTemplateParameters(Ctx, Name, OnlyDeduced, Depth, Used);
7006
7007 // C++0x [temp.deduct.type]p9:
7008 // If the template argument list of P contains a pack expansion that is
7009 // not the last template argument, the entire template argument list is a
7010 // non-deduced context.
7011 if (OnlyDeduced &&
7012 hasPackExpansionBeforeEnd(Spec->template_arguments()))
7013 break;
7014
7015 for (const auto &Arg : Spec->template_arguments())
7016 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
7017 break;
7018 }
7019
7020 case Type::Complex:
7021 if (!OnlyDeduced)
7023 cast<ComplexType>(T)->getElementType(),
7024 OnlyDeduced, Depth, Used);
7025 break;
7026
7027 case Type::Atomic:
7028 if (!OnlyDeduced)
7030 cast<AtomicType>(T)->getValueType(),
7031 OnlyDeduced, Depth, Used);
7032 break;
7033
7034 case Type::DependentName:
7035 if (!OnlyDeduced)
7037 cast<DependentNameType>(T)->getQualifier(),
7038 OnlyDeduced, Depth, Used);
7039 break;
7040
7041 case Type::TypeOf:
7042 if (!OnlyDeduced)
7043 MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(),
7044 OnlyDeduced, Depth, Used);
7045 break;
7046
7047 case Type::TypeOfExpr:
7048 if (!OnlyDeduced)
7050 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
7051 OnlyDeduced, Depth, Used);
7052 break;
7053
7054 case Type::Decltype:
7055 if (!OnlyDeduced)
7057 cast<DecltypeType>(T)->getUnderlyingExpr(),
7058 OnlyDeduced, Depth, Used);
7059 break;
7060
7061 case Type::PackIndexing:
7062 if (!OnlyDeduced) {
7064 OnlyDeduced, Depth, Used);
7066 OnlyDeduced, Depth, Used);
7067 }
7068 break;
7069
7070 case Type::UnaryTransform:
7071 if (!OnlyDeduced)
7074 OnlyDeduced, Depth, Used);
7075 break;
7076
7077 case Type::PackExpansion:
7079 cast<PackExpansionType>(T)->getPattern(),
7080 OnlyDeduced, Depth, Used);
7081 break;
7082
7083 case Type::Auto:
7084 case Type::DeducedTemplateSpecialization:
7086 cast<DeducedType>(T)->getDeducedType(),
7087 OnlyDeduced, Depth, Used);
7088 break;
7089 case Type::DependentBitInt:
7091 cast<DependentBitIntType>(T)->getNumBitsExpr(),
7092 OnlyDeduced, Depth, Used);
7093 break;
7094
7095 case Type::HLSLAttributedResource:
7097 Ctx, cast<HLSLAttributedResourceType>(T)->getWrappedType(), OnlyDeduced,
7098 Depth, Used);
7099 if (cast<HLSLAttributedResourceType>(T)->hasContainedType())
7101 Ctx, cast<HLSLAttributedResourceType>(T)->getContainedType(),
7102 OnlyDeduced, Depth, Used);
7103 break;
7104
7105 // None of these types have any template parameters in them.
7106 case Type::Builtin:
7107 case Type::VariableArray:
7108 case Type::FunctionNoProto:
7109 case Type::Record:
7110 case Type::Enum:
7111 case Type::ObjCInterface:
7112 case Type::ObjCObject:
7113 case Type::ObjCObjectPointer:
7114 case Type::UnresolvedUsing:
7115 case Type::Pipe:
7116 case Type::BitInt:
7117 case Type::HLSLInlineSpirv:
7118#define TYPE(Class, Base)
7119#define ABSTRACT_TYPE(Class, Base)
7120#define DEPENDENT_TYPE(Class, Base)
7121#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7122#include "clang/AST/TypeNodes.inc"
7123 break;
7124 }
7125}
7126
7127/// Mark the template parameters that are used by this
7128/// template argument.
7129static void
7132 bool OnlyDeduced,
7133 unsigned Depth,
7134 llvm::SmallBitVector &Used) {
7135 switch (TemplateArg.getKind()) {
7141 break;
7142
7144 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
7145 Depth, Used);
7146 break;
7147
7151 TemplateArg.getAsTemplateOrTemplatePattern(),
7152 OnlyDeduced, Depth, Used);
7153 break;
7154
7156 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
7157 Depth, Used);
7158 break;
7159
7161 for (const auto &P : TemplateArg.pack_elements())
7162 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
7163 break;
7164 }
7165}
7166
7167void
7168Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
7169 unsigned Depth,
7170 llvm::SmallBitVector &Used) {
7171 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
7172}
7173
7174void
7176 bool OnlyDeduced, unsigned Depth,
7177 llvm::SmallBitVector &Used) {
7178 // C++0x [temp.deduct.type]p9:
7179 // If the template argument list of P contains a pack expansion that is not
7180 // the last template argument, the entire template argument list is a
7181 // non-deduced context.
7182 if (OnlyDeduced &&
7183 hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
7184 return;
7185
7186 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7187 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
7188 Depth, Used);
7189}
7190
7192 unsigned Depth,
7193 llvm::SmallBitVector &Used) {
7194 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7195 ::MarkUsedTemplateParameters(Context, TemplateArgs[I],
7196 /*OnlyDeduced=*/false, Depth, Used);
7197}
7198
7201 llvm::SmallBitVector &Deduced) {
7202 TemplateParameterList *TemplateParams
7203 = FunctionTemplate->getTemplateParameters();
7204 Deduced.clear();
7205 Deduced.resize(TemplateParams->size());
7206
7207 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
7208 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
7209 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
7210 true, TemplateParams->getDepth(), Deduced);
7211}
7212
7215 QualType T) {
7216 if (!T->isDependentType())
7217 return false;
7218
7219 TemplateParameterList *TemplateParams
7220 = FunctionTemplate->getTemplateParameters();
7221 llvm::SmallBitVector Deduced(TemplateParams->size());
7222 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
7223 Deduced);
7224
7225 return Deduced.any();
7226}
Defines the clang::ASTContext interface.
This file provides some common utility functions for processing Lambda related AST Constructs.
Provides definitions for the various language-specific address spaces.
static Decl::Kind getKind(const Decl *D)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
Defines the ExceptionSpecificationType enumeration and various utility functions.
Defines the clang::Expr interface and subclasses for C++ expressions.
TokenType getType() const
Returns the token's type, e.g.
#define X(type, name)
Definition Value.h:97
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines the clang::LangOptions interface.
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream.
static QualType getUnderlyingType(const SubRegion *R)
static TemplateDeductionResult DeduceNullPtrTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, NonTypeOrVarTemplateParmDecl NTTP, QualType NullPtrType, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
Deduce the value of the given non-type template parameter from the given null pointer template argume...
static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template, TemplateDeductionInfo &Info, bool IsDeduced, Sema::CheckTemplateArgumentInfo &CTAI)
Convert the given deduced template argument and add it to the set of fully-converted template argumen...
static TemplateDeductionResult DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, ArrayRef< TemplateArgument > Ps, ArrayRef< TemplateArgument > As, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool NumberOfArgumentsMustMatch, bool PartialOrdering, PackFold PackFold, bool *HasDeducedAnyParam)
static TemplateDeductionResult DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, const QualType P, QualType A, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(Sema &S, TemplateParameterList *TemplateParams, QualType Param, QualType Arg, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, unsigned TDF, PartialOrderingKind POK, bool DeducedFromArrayBound, bool *HasDeducedAnyParam)
Deduce the template arguments by comparing the parameter type and the argument type (C++ [temp....
static TemplateDeductionResult CheckDeductionConsistency(Sema &S, FunctionTemplateDecl *FTD, UnsignedOrNone ArgIdx, QualType P, QualType A, ArrayRef< TemplateArgument > DeducedArgs, bool CheckConsistency)
static PartialOrderingKind degradeCallPartialOrderingKind(PartialOrderingKind POK)
When propagating a partial ordering kind into a NonCall context, this is used to downgrade a 'Call' i...
static MoreSpecializedTrailingPackTieBreakerResult getMoreSpecializedTrailingPackTieBreaker(const TemplateSpecializationType *TST1, const TemplateSpecializationType *TST2)
static TemplateLikeDecl * getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, PrimaryDel *P2, TemplateDeductionInfo &Info)
Returns the more specialized template specialization between T1/P1 and T2/P2.
static DeducedTemplateArgument checkDeducedTemplateArguments(ASTContext &Context, const DeducedTemplateArgument &X, const DeducedTemplateArgument &Y, bool AggregateCandidateDeduction=false)
Verify that the given, deduced template arguments are compatible.
static const Expr * unwrapExpressionForDeduction(const Expr *E)
static bool isSameDeclaration(Decl *X, Decl *Y)
Determine whether two declaration pointers refer to the same declaration.
static NonTypeOrVarTemplateParmDecl getDeducedNTTParameterFromExpr(const Expr *E, unsigned Depth)
If the given expression is of a form that permits the deduction of a non-type template parameter,...
static TemplateDeductionResult DeduceForEachType(Sema &S, TemplateParameterList *TemplateParams, ArrayRef< QualType > Params, ArrayRef< QualType > Args, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, PartialOrderingKind POK, bool FinishingDeduction, T &&DeductFunc)
static TemplateDeductionResult DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, TemplateParameterList *TemplateParams, QualType P, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
Attempt to deduce the template arguments by checking the base types according to (C++20 [temp....
static bool hasTemplateArgumentForDeduction(ArrayRef< TemplateArgument > &Args, unsigned &ArgIdx)
Determine whether there is a template argument to be used for deduction.
static DeclContext * getAsDeclContextOrEnclosing(Decl *D)
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, QualType ArgType)
Determine whether the parameter has qualifiers that the argument lacks.
static void MarkUsedTemplateParameters(ASTContext &Ctx, const TemplateArgument &TemplateArg, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used)
Mark the template parameters that are used by this template argument.
static UnsignedOrNone getPackIndexForParam(Sema &S, FunctionTemplateDecl *FunctionTemplate, const MultiLevelTemplateArgumentList &Args, unsigned ParamIdx)
Find the pack index for a particular parameter index in an instantiation of a function template with ...
static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, FunctionDecl *Fn)
Gets the type of a function for template-argument-deducton purposes when it's considered as part of a...
static bool hasPackExpansionBeforeEnd(ArrayRef< TemplateArgument > Args)
Determine whether the given set of template arguments has a pack expansion that is not the last templ...
static bool isSimpleTemplateIdType(QualType T)
Determine whether the given type T is a simple-template-id type.
PartialOrderingKind
The kind of PartialOrdering we're performing template argument deduction for (C++11 [temp....
MoreSpecializedTrailingPackTieBreakerResult
static TemplateParameter makeTemplateParameter(Decl *D)
Helper function to build a TemplateParameter when we don't know its type statically.
static TemplateDeductionResult CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, Sema::OriginalCallArg OriginalArg, QualType DeducedA)
Check whether the deduced argument type for a call to a function template matches the actual argument...
static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType &ParamType, QualType &ArgType, Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF, TemplateSpecCandidateSet *FailedTSC=nullptr)
Perform the adjustments to the parameter and argument types described in C++ [temp....
static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, QualType ParamType, QualType ArgType, Expr::Classification ArgClassification, Expr *Arg, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, SmallVectorImpl< Sema::OriginalCallArg > &OriginalCallArgs, bool DecomposedParam, unsigned ArgIdx, unsigned TDF, TemplateSpecCandidateSet *FailedTSC=nullptr)
Perform template argument deduction per [temp.deduct.call] for a single parameter / argument pair.
static bool isAtLeastAsSpecializedAs(Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC, ArrayRef< QualType > Args1, ArrayRef< QualType > Args2, bool Args1Offset)
Determine whether the function template FT1 is at least as specialized as FT2.
static QualType GetImplicitObjectParameterType(ASTContext &Context, const CXXMethodDecl *Method, QualType RawType, bool IsOtherRvr)
static TemplateDeductionResult DeduceFromInitializerList(Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, InitListExpr *ILE, TemplateDeductionInfo &Info, SmallVectorImpl< DeducedTemplateArgument > &Deduced, SmallVectorImpl< Sema::OriginalCallArg > &OriginalCallArgs, unsigned ArgIdx, unsigned TDF)
Attempt template argument deduction from an initializer list deemed to be an argument in a function c...
static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD)
Get the index of the first template parameter that was originally from the innermost template-paramet...
PackFold
What directions packs are allowed to match non-packs.
static TemplateDeductionResult ConvertDeducedTemplateArguments(Sema &S, NamedDecl *Template, TemplateParameterList *TemplateParams, bool IsDeduced, SmallVectorImpl< DeducedTemplateArgument > &Deduced, TemplateDeductionInfo &Info, Sema::CheckTemplateArgumentInfo &CTAI, LocalInstantiationScope *CurrentInstantiationScope, unsigned NumAlreadyConverted, bool *IsIncomplete)
static QualType ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, Expr *Arg, QualType ParamType, bool ParamWasReference, TemplateSpecCandidateSet *FailedTSC=nullptr)
Apply the deduction rules for overload sets.
static bool IsPossiblyOpaquelyQualifiedType(QualType T)
Determines whether the given type is an opaque type that might be more qualified when instantiated.
static TemplateDeductionResult CheckDeducedArgumentConstraints(Sema &S, NamedDecl *Template, ArrayRef< TemplateArgument > SugaredDeducedArgs, ArrayRef< TemplateArgument > CanonicalDeducedArgs, TemplateDeductionInfo &Info)
static const TemplateSpecializationType * getLastTemplateSpecType(QualType QT)
Deduce the template arguments by comparing the template parameter type (which is a template-id) with ...
static TemplateDeductionResult instantiateExplicitSpecifierDeferred(Sema &S, FunctionDecl *Specialization, const MultiLevelTemplateArgumentList &SubstArgs, TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate, ArrayRef< TemplateArgument > DeducedArgs)
static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, AutoTypeLoc TypeLoc, QualType Deduced)
static TemplateDeductionResult DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, const NonTypeOrVarTemplateParmDecl NTTP, const DeducedTemplateArgument &NewDeduced, QualType ValueType, TemplateDeductionInfo &Info, bool PartialOrdering, SmallVectorImpl< DeducedTemplateArgument > &Deduced, bool *HasDeducedAnyParam)
Deduce the value of the given non-type template parameter as the given deduced template argument.
static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T)
static bool hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, QualType T)
static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex)
Determine whether a type denotes a forwarding reference.
static TemplateDeductionResult FinishTemplateArgumentDeduction(Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL, TemplateDecl *Template, bool PartialOrdering, ArrayRef< TemplateArgumentLoc > Ps, ArrayRef< TemplateArgument > As, SmallVectorImpl< DeducedTemplateArgument > &Deduced, TemplateDeductionInfo &Info, bool CopyDeducedArgs)
Complete template argument deduction.
static bool isParameterPack(Expr *PackExpression)
Defines the clang::SourceLocation class and associated facilities.
Defines various enumerations that describe declaration and type specifiers.
static QualType getPointeeType(const MemRegion *R)
Defines the clang::TemplateNameKind enum.
Defines the clang::TypeLoc interface and its subclasses.
Allows QualTypes to be sorted and hence used in maps and sets.
C Language Family Type Representation.
const TemplateTemplateParmDecl * getTemplate() const
const NonTypeTemplateParmDecl * getNTTP() const
NonTypeOrVarTemplateParmDecl(const NamedDecl *Template)
TemplateParameter asTemplateParam() const
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:188
const ConstantArrayType * getAsConstantArrayType(QualType T) const
QualType getRValueReferenceType(QualType T) const
Return the uniqued reference to the type for an rvalue reference to the specified type.
unsigned getIntWidth(QualType T) const
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg) const
Retrieve the "canonical" template argument.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
const IncompleteArrayType * getAsIncompleteArrayType(QualType T) const
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type.
CanQualType DependentTy
CanQualType NullPtrTy
const LangOptions & getLangOpts() const
Definition ASTContext.h:891
QualType getDecayedType(QualType T) const
Return the uniqued reference to the decayed version of the given type.
CanQualType BoolTy
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
QualType removeAddrSpaceQualType(QualType T) const
Remove any existing address space on the type and returns the type with qualifiers intact (or that's ...
CanQualType IntTy
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
LangAS getDefaultOpenCLPointeeAddrSpace()
Returns default address space based on OpenCL version and enabled features.
CanQualType OverloadTy
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
CanQualType UnsignedIntTy
QualType getMemberPointerType(QualType T, NestedNameSpecifier Qualifier, const CXXRecordDecl *Cls) const
Return the uniqued reference to the type for a member pointer to the specified type in the specified ...
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y, bool IgnoreDeduced=false) const
Determine whether the given template names refer to the same template.
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const
Return the uniqued reference to the type for an address space qualified type with the specified type ...
CanQualType getCanonicalTagType(const TagDecl *TD) const
bool isSameTemplateArgument(const TemplateArgument &Arg1, const TemplateArgument &Arg2) const
Determine whether the given template arguments Arg1 and Arg2 are equivalent.
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals) const
Return this type as a completely-unqualified array type, capturing the qualifiers in Quals.
TemplateName getDeducedTemplateName(TemplateName Underlying, DefaultArguments DefaultArgs) const
Represents a TemplateName which had some of its default arguments deduced.
const DependentSizedArrayType * getAsDependentSizedArrayType(QualType T) const
PtrTy get() const
Definition Ownership.h:171
bool isInvalid() const
Definition Ownership.h:167
A fixed int type of a specified bitwidth.
Definition TypeBase.h:8137
Pointer to a block type.
Definition TypeBase.h:3540
Represents a C++ conversion function within a class.
Definition DeclCXX.h:2943
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition DeclCXX.h:2983
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
bool isExplicitObjectMemberFunction() const
[C++2b][dcl.fct]/p7 An explicit object member function is a non-static member function with an explic...
Definition DeclCXX.cpp:2703
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this method.
Definition DeclCXX.h:2305
bool isStatic() const
Definition DeclCXX.cpp:2401
The null pointer literal (C++11 [lex.nullptr])
Definition ExprCXX.h:768
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
base_class_range bases()
Definition DeclCXX.h:608
CXXMethodDecl * getLambdaCallOperator() const
Retrieve the lambda call operator of the closure type if this is a closure type.
Definition DeclCXX.cpp:1736
Declaration of a class template.
CanQualType getCanonicalInjectedSpecializationType(const ASTContext &Ctx) const
Retrieve the canonical template specialization type of the injected-class-name for this class templat...
CanQualType getCanonicalInjectedSpecializationType(const ASTContext &Ctx) const
Retrieves the canonical injected specialization type for this partial specialization.
ClassTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
Complex values, per C99 6.2.5p11.
Definition TypeBase.h:3275
Declaration of a C++20 concept.
const TypeClass * getTypePtr() const
Definition TypeLoc.h:438
Represents a concrete matrix type with constant number of rows and columns.
Definition TypeBase.h:4371
unsigned getNumColumns() const
Returns the number of columns in the matrix.
Definition TypeBase.h:4392
unsigned getNumRows() const
Returns the number of rows in the matrix.
Definition TypeBase.h:4389
The result of a constraint satisfaction check, containing the necessary information to diagnose an un...
Definition ASTConcept.h:37
A POD class for pairing a NamedDecl* with an access specifier.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition DeclBase.h:1449
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
ValueDecl * getDecl()
Definition Expr.h:1338
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
TemplateDecl * getDescribedTemplate() const
If this is a declaration that describes some template, this method returns that template declaration.
Definition DeclBase.cpp:263
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:524
bool isInvalidDecl() const
Definition DeclBase.h:588
SourceLocation getLocation() const
Definition DeclBase.h:439
DeclContext * getDeclContext()
Definition DeclBase.h:448
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition DeclBase.h:978
Kind getKind() const
Definition DeclBase.h:442
Captures a template argument whose value has been deduced via c++ template argument deduction.
Definition Template.h:327
void setDeducedFromArrayBound(bool Deduced)
Specify whether the given non-type template argument was deduced from an array bound.
Definition Template.h:354
bool wasDeducedFromArrayBound() const
For a non-type template argument, determine whether the template argument was deduced from an array b...
Definition Template.h:350
SourceLocation getElaboratedKeywordLoc() const
Definition TypeLoc.h:2489
NestedNameSpecifierLoc getQualifierLoc() const
Definition TypeLoc.h:2501
Represents an extended address space qualifier where the input address space value is dependent.
Definition TypeBase.h:4059
QualType getPointeeType() const
Definition TypeBase.h:4071
Represents an extended vector type where either the type or size is dependent.
Definition TypeBase.h:4099
Represents a matrix type where the type and the number of rows and columns is dependent on a template...
Definition TypeBase.h:4430
Represents a vector type where either the type or size is dependent.
Definition TypeBase.h:4225
virtual bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc)
virtual bool TraverseTemplateName(TemplateName Template)
RAII object that enters a new expression evaluation context.
Store information needed for an explicit specifier.
Definition DeclCXX.h:1924
bool isInvalid() const
Determine if the explicit specifier is invalid.
Definition DeclCXX.h:1953
const Expr * getExpr() const
Definition DeclCXX.h:1933
The return type of classify().
Definition Expr.h:337
bool isLValue() const
Definition Expr.h:387
This represents one expression.
Definition Expr.h:112
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition Expr.h:177
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
QualType getType() const
Definition Expr.h:144
ExtVectorType - Extended vector type.
Definition TypeBase.h:4265
Stores a list of template parameters and the associated requires-clause (if any) for a TemplateDecl a...
Represents a function declaration or definition.
Definition Decl.h:1999
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2794
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition Decl.cpp:4146
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition Decl.cpp:4134
bool hasCXXExplicitFunctionObjectParameter() const
Definition Decl.cpp:3806
QualType getReturnType() const
Definition Decl.h:2842
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2771
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition Decl.cpp:4205
void getAssociatedConstraints(SmallVectorImpl< AssociatedConstraint > &ACs) const
Get the associated-constraints of this function declaration.
Definition Decl.h:2749
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition Decl.cpp:4270
bool isImmediateEscalating() const
Definition Decl.cpp:3303
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any.
Definition Decl.cpp:4071
size_t param_size() const
Definition Decl.h:2787
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5264
param_type_iterator param_type_begin() const
Definition TypeBase.h:5708
const ExtParameterInfo * getExtParameterInfosOrNull() const
Return a pointer to the beginning of the array of extra parameter information, if present,...
Definition TypeBase.h:5746
unsigned getNumParams() const
Definition TypeBase.h:5542
bool hasTrailingReturn() const
Whether this function prototype has a trailing return type.
Definition TypeBase.h:5684
Qualifiers getMethodQuals() const
Definition TypeBase.h:5690
QualType getParamType(unsigned i) const
Definition TypeBase.h:5544
bool hasExceptionSpec() const
Return whether this function has any kind of exception spec.
Definition TypeBase.h:5577
bool isVariadic() const
Whether this function prototype is variadic.
Definition TypeBase.h:5668
ExtProtoInfo getExtProtoInfo() const
Definition TypeBase.h:5553
Expr * getNoexceptExpr() const
Return the expression inside noexcept(expression), or a null pointer if there is none (because the ex...
Definition TypeBase.h:5629
param_type_iterator param_type_end() const
Definition TypeBase.h:5712
ArrayRef< QualType > getParamTypes() const
Definition TypeBase.h:5549
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition TypeBase.h:5698
Declaration of a template function.
FunctionDecl * getTemplatedDecl() const
Get the underlying function declaration of the template.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4460
QualType getReturnType() const
Definition TypeBase.h:4800
static ImplicitConceptSpecializationDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation SL, ArrayRef< TemplateArgument > ConvertedArgs)
Describes an C or C++ initializer list.
Definition Expr.h:5233
unsigned getNumInits() const
Definition Expr.h:5263
unsigned getNumInitsWithEmbedExpanded() const
getNumInits but if the list has an EmbedExpr inside includes full length of embedded data.
Definition Expr.h:5267
ArrayRef< Expr * > inits()
Definition Expr.h:5283
An lvalue reference type, per C++11 [dcl.ref].
Definition TypeBase.h:3615
A stack-allocated class that identifies which local variable declaration instantiations are present i...
Definition Template.h:365
NamedDecl * getPartiallySubstitutedPack(const TemplateArgument **ExplicitArgs=nullptr, unsigned *NumExplicitArgs=nullptr) const
Retrieve the partially-substitued template parameter pack.
void ResetPartiallySubstitutedPack()
Reset the partially-substituted pack when it is no longer of interest.
Definition Template.h:553
Represents a matrix type, as defined in the Matrix Types clang extensions.
Definition TypeBase.h:4335
QualType getElementType() const
Returns type of the elements being stored in the matrix.
Definition TypeBase.h:4349
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition TypeBase.h:3651
NestedNameSpecifier getQualifier() const
Definition TypeBase.h:3683
QualType getPointeeType() const
Definition TypeBase.h:3669
Data structure that captures multiple levels of template argument lists for use in template instantia...
Definition Template.h:76
void replaceInnermostTemplateArguments(Decl *AssociatedDecl, ArgList Args)
Replaces the current 'innermost' level with the provided argument list.
Definition Template.h:237
void addOuterRetainedLevels(unsigned Num)
Definition Template.h:260
This represents a decl that may have a name.
Definition Decl.h:273
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition Decl.h:486
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition Decl.h:339
Class that aids in the construction of nested-name-specifiers along with source-location information ...
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a pointer to an Objective C object.
Definition TypeBase.h:7903
A reference to an overloaded function set, either an UnresolvedLookupExpr or an UnresolvedMemberExpr.
Definition ExprCXX.h:3122
bool isVarDeclReference() const
Definition ExprCXX.h:3296
bool hasExplicitTemplateArgs() const
Determines whether this expression had explicit template arguments.
Definition ExprCXX.h:3274
static FindResult find(Expr *E)
Finds the overloaded expression in the given expression E of OverloadTy.
Definition ExprCXX.h:3183
SourceLocation getNameLoc() const
Gets the location of the name.
Definition ExprCXX.h:3235
decls_iterator decls_begin() const
Definition ExprCXX.h:3215
TemplateTemplateParmDecl * getTemplateTemplateDecl() const
Definition ExprCXX.h:3312
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const
Copies the template arguments into the given structure.
Definition ExprCXX.h:3336
bool isConceptReference() const
Definition ExprCXX.h:3285
decls_iterator decls_end() const
Definition ExprCXX.h:3218
ArrayRef< TemplateArgumentLoc > template_arguments() const
Definition ExprCXX.h:3331
Represents a C++11 pack expansion that produces a sequence of expressions.
Definition ExprCXX.h:4357
A single parameter index whose accessors require each use to make explicit the parameter index encodi...
Definition Attr.h:290
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
QualType getPointeeType() const
Definition TypeBase.h:3338
A (possibly-)qualified type.
Definition TypeBase.h:937
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition TypeBase.h:8374
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8285
LangAS getAddressSpace() const
Return the address space of this type.
Definition TypeBase.h:8411
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition TypeBase.h:8325
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition TypeBase.h:8470
QualType getCanonicalType() const
Definition TypeBase.h:8337
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition TypeBase.h:8379
unsigned getCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers applied to this type.
Definition TypeBase.h:8331
Represents a template name as written in source code.
The collection of all-type qualifiers we support.
Definition TypeBase.h:331
unsigned getCVRQualifiers() const
Definition TypeBase.h:488
void removeCVRQualifiers(unsigned mask)
Definition TypeBase.h:495
GC getObjCGCAttr() const
Definition TypeBase.h:519
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition TypeBase.h:361
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition TypeBase.h:354
@ OCL_None
There is no lifetime qualification on this type.
Definition TypeBase.h:350
void removeObjCLifetime()
Definition TypeBase.h:551
bool isStrictSupersetOf(Qualifiers Other) const
Determine whether this set of qualifiers is a strict superset of another set of qualifiers,...
Definition Type.cpp:57
bool hasConst() const
Definition TypeBase.h:457
bool hasNonTrivialObjCLifetime() const
True if the lifetime is neither None or ExplicitNone.
Definition TypeBase.h:559
bool compatiblyIncludes(Qualifiers other, const ASTContext &Ctx) const
Determines if these qualifiers compatibly include another set.
Definition TypeBase.h:727
bool hasAddressSpace() const
Definition TypeBase.h:570
void removeObjCGCAttr()
Definition TypeBase.h:523
void removeAddressSpace()
Definition TypeBase.h:596
bool hasObjCGCAttr() const
Definition TypeBase.h:518
void setCVRQualifiers(unsigned mask)
Definition TypeBase.h:491
bool hasObjCLifetime() const
Definition TypeBase.h:544
ObjCLifetime getObjCLifetime() const
Definition TypeBase.h:545
Qualifiers withoutObjCLifetime() const
Definition TypeBase.h:533
LangAS getAddressSpace() const
Definition TypeBase.h:571
void setObjCLifetime(ObjCLifetime type)
Definition TypeBase.h:548
An rvalue reference type, per C++11 [dcl.ref].
Definition TypeBase.h:3633
ArrayRef< TemplateArgument > getInjectedTemplateArgs(const ASTContext &Context) const
Retrieve the "injected" template arguments that correspond to the template parameters of this templat...
Base for LValueReferenceType and RValueReferenceType.
Definition TypeBase.h:3571
QualType getPointeeType() const
Definition TypeBase.h:3589
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition SemaBase.cpp:61
RAII object used to change the argument pack substitution index within a Sema object.
Definition Sema.h:13504
RAII object used to temporarily allow the C++ 'this' expression to be used, with the given qualifiers...
Definition Sema.h:8401
A RAII object to temporarily push a declaration context.
Definition Sema.h:3476
A helper class for building up ExtParameterInfos.
Definition Sema.h:12915
const FunctionProtoType::ExtParameterInfo * getPointerOrNull(unsigned numParams)
Return a pointer (suitable for setting in an ExtProtoInfo) to the ExtParameterInfo array we've built ...
Definition Sema.h:12934
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition Sema.h:12367
bool hasErrorOccurred() const
Determine whether any SFINAE errors have been trapped.
Definition Sema.h:12400
Sema - This implements semantic analysis and AST building for C.
Definition Sema.h:854
bool TryFunctionConversion(QualType FromType, QualType ToType, QualType &ResultTy) const
Same as IsFunctionConversion, but if this would return true, it sets ResultTy to ToType.
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement)
Substitute Replacement for auto in TypeWithAuto.
LocalInstantiationScope * CurrentInstantiationScope
The current instantiation scope used to store local variables.
Definition Sema.h:12944
TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType, SourceLocation Loc, NamedDecl *TemplateParam=nullptr)
Allocate a TemplateArgumentLoc where all locations have been initialized to the given location.
TemplateDeductionResult DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType, sema::TemplateDeductionInfo &Info)
Deduce the template arguments of the given template from FromType.
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement)
Completely replace the auto in TypeWithAuto by Replacement.
SemaCUDA & CUDA()
Definition Sema.h:1445
bool TemplateParameterListsAreEqual(const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc=SourceLocation())
Determine whether the given template parameter lists are equivalent.
ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc)
Returns the more specialized class template partial specialization according to the rules of partial ...
const ExpressionEvaluationContextRecord & currentEvaluationContext() const
Definition Sema.h:6890
FunctionDecl * getMoreConstrainedFunction(FunctionDecl *FD1, FunctionDecl *FD2)
Returns the more constrained function according to the rules of partial ordering by constraints (C++ ...
FunctionDecl * InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, SourceLocation Loc, CodeSynthesisContext::SynthesisKind CSC=CodeSynthesisContext::ExplicitTemplateArgumentSubstitution)
Instantiate (or find existing instantiation of) a function template with a given set of template argu...
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc)
Looks for the std::initializer_list template and instantiates it with Element, or emits an error if i...
TemplateDeductionResult FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl< DeducedTemplateArgument > &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, SmallVectorImpl< OriginalCallArg > const *OriginalCallArgs, bool PartialOverloading, bool PartialOrdering, bool ForOverloadSetAddressResolution, llvm::function_ref< bool(bool)> CheckNonDependent=[](bool) { return false;})
Finish template argument deduction for a function template, checking the deduced template arguments f...
@ CTAK_DeducedFromArrayBound
The template argument was deduced from an array bound via template argument deduction.
Definition Sema.h:11911
@ CTAK_Specified
The template argument was specified in the code or was instantiated with some deduced template argume...
Definition Sema.h:11903
@ CTAK_Deduced
The template argument was deduced via template argument deduction.
Definition Sema.h:11907
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, bool Diagnose=true)
ASTContext & Context
Definition Sema.h:1283
bool IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion)
IsQualificationConversion - Determines whether the conversion from an rvalue of type FromType to ToTy...
QualType BuildFunctionType(QualType T, MutableArrayRef< QualType > ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI)
Build a function type.
ExprResult BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, SourceLocation Loc)
ASTContext & getASTContext() const
Definition Sema.h:925
UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, TemplateSpecCandidateSet &FailedCandidates, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain=true, QualType TargetType=QualType())
Retrieve the most specialized of the given function template specializations.
TypeSourceInfo * SubstType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, bool AllowDeducedTST=false)
Perform substitution on the type T with a given set of template arguments.
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK=VK_PRValue, const CXXCastPath *BasePath=nullptr, CheckedConversionKind CCK=CheckedConversionKind::Implicit)
ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
Definition Sema.cpp:756
bool isTemplateTemplateParameterAtLeastAsSpecializedAs(TemplateParameterList *PParam, TemplateDecl *PArg, TemplateDecl *AArg, const DefaultArguments &DefaultArgs, SourceLocation ArgLoc, bool PartialOrdering, bool *StrictPackMatch)
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition Sema.h:1191
bool SubstTemplateArguments(ArrayRef< TemplateArgumentLoc > Args, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateArgumentListInfo &Outputs)
@ TPL_TemplateParamsEquivalent
We are determining whether the template-parameters are equivalent according to C++ [temp....
Definition Sema.h:12101
bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, CheckTemplateArgumentInfo &CTAI, CheckTemplateArgumentKind CTAK)
Check that the given template argument corresponds to the given template parameter.
bool isSameOrCompatibleFunctionType(QualType Param, QualType Arg)
Compare types for equality with respect to possibly compatible function types (noreturn adjustment,...
const LangOptions & getLangOpts() const
Definition Sema.h:918
bool CheckConstraintSatisfaction(const NamedDecl *Template, ArrayRef< AssociatedConstraint > AssociatedConstraints, const MultiLevelTemplateArgumentList &TemplateArgLists, SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction)
Check whether the given list of constraint expressions are satisfied (as if in a 'conjunction') given...
Definition Sema.h:14716
UnsignedOrNone getNumArgumentsInExpansion(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs)
Determine the number of arguments in the given pack expansion type.
ExplicitSpecifier instantiateExplicitSpecifier(const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES)
TemplateDeductionResult SubstituteExplicitTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl< DeducedTemplateArgument > &Deduced, SmallVectorImpl< QualType > &ParamTypes, QualType *FunctionType, sema::TemplateDeductionInfo &Info)
Substitute the explicitly-provided template arguments into the given function template according to C...
bool SubstParmTypes(SourceLocation Loc, ArrayRef< ParmVarDecl * > Params, const FunctionProtoType::ExtParameterInfo *ExtParamInfos, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl< QualType > &ParamTypes, SmallVectorImpl< ParmVarDecl * > *OutParams, ExtParameterInfoBuilder &ParamInfos)
Substitute the given template arguments into the given set of parameters, producing the set of parame...
FunctionDecl * resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult)
Given an expression that refers to an overloaded function, try to resolve that function to a single f...
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition Sema.h:1418
MultiLevelTemplateArgumentList getTemplateInstantiationArgs(const NamedDecl *D, const DeclContext *DC=nullptr, bool Final=false, std::optional< ArrayRef< TemplateArgument > > Innermost=std::nullopt, bool RelativeToPrimary=false, const FunctionDecl *Pattern=nullptr, bool ForConstraintInstantiation=false, bool SkipForSpecialization=false, bool ForDefaultArgumentSubstitution=false)
Retrieve the template argument list(s) that should be used to instantiate the definition of the given...
SuppressedDiagnosticsMap SuppressedDiagnostics
Definition Sema.h:12433
bool IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived, CXXRecordDecl *Base, CXXBasePaths &Paths)
Determine whether the type Derived is a C++ class that is derived from the type Base.
FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain=false, DeclAccessPair *Found=nullptr, TemplateSpecCandidateSet *FailedTSC=nullptr, bool ForTypeDeduction=false)
Given an expression that refers to an overloaded function, try to resolve that overloaded function ex...
QualType getDecltypeForExpr(Expr *E)
getDecltypeForExpr - Given an expr, will return the decltype for that expression, according to the ru...
ExprResult CheckPlaceholderExpr(Expr *E)
Check for operands with placeholder types and complain if found.
bool IsFunctionConversion(QualType FromType, QualType ToType, bool *DiscardingCFIUncheckedCallee=nullptr, bool *AddingCFIUncheckedCallee=nullptr) const
Determine whether the conversion from FromType to ToType is a valid conversion that strips "noexcept"...
Decl * SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs)
TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, SourceLocation TemplateKWLoc, SourceLocation TemplateNameLoc, SourceLocation RAngleLoc, Decl *Param, ArrayRef< TemplateArgument > SugaredConverted, ArrayRef< TemplateArgument > CanonicalConverted, bool &HasDefaultArg)
If the given template parameter has a default template argument, substitute into that default templat...
TypeSourceInfo * SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto)
TypeSourceInfo * ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement)
bool isCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind=CompleteTypeKind::Default)
Definition Sema.h:15286
bool isStdInitializerList(QualType Ty, QualType *Element)
Tests whether Ty is an instance of std::initializer_list and, if it is and Element is not NULL,...
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive=false, bool DefinitionRequired=false, bool AtEndOfTU=false)
Instantiate the definition of the given function from its template.
void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used)
Mark which template parameters are used in a given expression.
@ Unevaluated
The current expression and its subexpressions occur within an unevaluated operand (C++11 [expr]p7),...
Definition Sema.h:6675
QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType, CallingConv CC)
Get the return type to use for a lambda's conversion function(s) to function pointer type,...
QualType getCompletedType(Expr *E)
Get the type of expression E, triggering instantiation to complete the type if necessary – that is,...
TypeSourceInfo * SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement)
Substitute Replacement for auto in TypeWithAuto.
bool IsAtLeastAsConstrained(const NamedDecl *D1, MutableArrayRef< AssociatedConstraint > AC1, const NamedDecl *D2, MutableArrayRef< AssociatedConstraint > AC2, bool &Result)
Check whether the given declaration's associated constraints are at least as constrained than another...
void DiagnoseAutoDeductionFailure(const VarDecl *VDecl, const Expr *Init)
TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param, SourceLocation Location)
Get a template argument mapping the given template parameter to itself, e.g.
bool CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, SourceLocation Loc)
QualType SubstAutoTypeDependent(QualType TypeWithAuto)
TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, ArrayRef< TemplateArgument > TemplateArgs, sema::TemplateDeductionInfo &Info)
bool CheckFunctionTemplateConstraints(SourceLocation PointOfInstantiation, FunctionDecl *Decl, ArrayRef< TemplateArgument > TemplateArgs, ConstraintSatisfaction &Satisfaction)
void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref< void()> Fn)
Run some code with "sufficient" stack space.
Definition Sema.cpp:627
bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info)
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments.
bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs, const DefaultArguments &DefaultArgs, bool PartialTemplateArgs, CheckTemplateArgumentInfo &CTAI, bool UpdateArgsWithConversions=true, bool *ConstraintsNotSatisfied=nullptr)
Check that the given template arguments can be provided to the given template, converting the argumen...
void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction, bool First=true)
Emit diagnostics explaining why a constraint expression was deemed unsatisfied.
void adjustMemberFunctionCC(QualType &T, bool HasThisPointer, bool IsCtorOrDtor, SourceLocation Loc)
Adjust the calling convention of a method to be the ABI default if it wasn't specified explicitly.
@ Diagnose
Diagnose issues that are non-constant or that are extensions.
Definition Sema.h:6383
ExprResult BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc, NamedDecl *TemplateParam=nullptr)
Given a non-type template argument that refers to a declaration and the type of its corresponding non...
TemplateDeductionResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *Initializer, QualType &Result, sema::TemplateDeductionInfo &Info, bool DependentDeduction=false, bool IgnoreConstraints=false, TemplateSpecCandidateSet *FailedTSC=nullptr)
Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, bool AdjustExceptionSpec=false)
Adjust the type ArgFunctionType to match the calling convention, noreturn, and optionally the excepti...
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType)
HandleFunctionTypeMismatch - Gives diagnostic information for differeing function types.
FunctionTemplateDecl * getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, QualType RawObj1Ty={}, QualType RawObj2Ty={}, bool Reversed=false, bool PartialOverloading=false)
Returns the more specialized function template according to the rules of function template partial or...
void MarkDeducedTemplateParameters(const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced)
Definition Sema.h:12787
Encodes a location in the source.
A trivial tuple used to represent a source range.
bool isInvalid() const
SourceLocation getEnd() const
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, bool Canonical, bool ProfileLambdaExpr=false) const
Produce a unique representation of the given statement.
A convenient class for passing around template argument information.
void addArgument(const TemplateArgumentLoc &Loc)
A template argument list.
static TemplateArgumentList * CreateCopy(ASTContext &Context, ArrayRef< TemplateArgument > Args)
Create a new template argument list that copies the given set of template arguments.
unsigned size() const
Retrieve the number of template arguments in this template argument list.
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
Location wrapper for a TemplateArgument.
const TemplateArgument & getArgument() const
Represents a template argument.
QualType getParamTypeForDecl() const
Expr * getAsExpr() const
Retrieve the template argument as an expression.
pack_iterator pack_end() const
Iterator referencing one past the last argument of a template argument pack.
const TemplateArgument * pack_iterator
Iterator that traverses the elements of a template argument pack.
pack_iterator pack_begin() const
Iterator referencing the first argument of a template argument pack.
QualType getNonTypeTemplateArgumentType() const
If this is a non-type template argument, get its type.
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) const
Used to insert TemplateArguments into FoldingSets.
QualType getAsType() const
Retrieve the type for a type template argument.
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
static TemplateArgument CreatePackCopy(ASTContext &Context, ArrayRef< TemplateArgument > Args)
Create a new template argument pack by copying the given set of template arguments.
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
TemplateArgument getPackExpansionPattern() const
When the template argument is a pack expansion, returns the pattern of the pack expansion.
bool isNull() const
Determine whether this template argument has no value.
static TemplateArgument getEmptyPack()
unsigned pack_size() const
The number of template arguments in the given template argument pack.
bool structurallyEquals(const TemplateArgument &Other) const
Determines whether two template arguments are superficially the same.
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
@ Declaration
The template argument is a declaration that was provided for a pointer, reference,...
@ Template
The template argument is a template name that was provided for a template template parameter.
@ StructuralValue
The template argument is a non-type template argument that can't be represented by the special-case D...
@ Pack
The template argument is actually a parameter pack.
@ TemplateExpansion
The template argument is a pack expansion of a template name that was provided for a template templat...
@ NullPtr
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
@ Type
The template argument is a type.
@ Null
Represents an empty template argument, e.g., one that has not been deduced.
@ Integral
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
@ Expression
The template argument is an expression, and we've not resolved it to one of the other forms yet,...
ArgKind getKind() const
Return the kind of stored template argument.
bool isPackExpansion() const
Determine whether this template argument is a pack expansion.
TemplateName getAsTemplateOrTemplatePattern() const
Retrieve the template argument as a template name; if the argument is a pack expansion,...
The base class of all kinds of template declarations (e.g., class, function, etc.).
void getAssociatedConstraints(llvm::SmallVectorImpl< AssociatedConstraint > &AC) const
Get the total constraint-expression associated with this template, including constraint-expressions d...
bool isTypeAlias() const
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Represents a C++ template name within the type system.
TemplateDecl * getAsTemplateDecl(bool IgnoreDeduced=false) const
Retrieve the underlying template declaration that this template name refers to, if known.
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
Stores a list of template parameters for a TemplateDecl and its derived classes.
NamedDecl * getParam(unsigned Idx)
ArrayRef< TemplateArgument > getInjectedTemplateArgs(const ASTContext &Context)
Get the template argument list of the template parameter list.
unsigned getDepth() const
Get the depth of this template parameter list in the set of template parameter lists.
SourceLocation getRAngleLoc() const
SourceLocation getLAngleLoc() const
ArrayRef< NamedDecl * > asArray()
SourceLocation getTemplateLoc() const
TemplateSpecCandidateSet - A set of generalized overload candidates, used in template specializations...
void NoteCandidates(Sema &S, SourceLocation Loc)
NoteCandidates - When no template specialization match is found, prints diagnostic messages containin...
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
TemplateNameKind templateParameterKind() const
unsigned getIndex() const
Get the index of the template parameter within its parameter list.
unsigned getDepth() const
Get the nesting depth of the template parameter.
bool isExpandedParameterPack() const
Whether this parameter is a template template parameter pack that has a known list of different templ...
Declaration of a template type parameter.
static TemplateTypeParmDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation KeyLoc, SourceLocation NameLoc, unsigned D, unsigned P, IdentifierInfo *Id, bool Typename, bool ParameterPack, bool HasTypeConstraint=false, UnsignedOrNone NumExpanded=std::nullopt)
A semantic tree transformation that allows one to transform one abstract syntax tree into another.
const Type * getTypeForDecl() const
Definition Decl.h:3535
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
void reserve(size_t Requested)
Ensures that this buffer has at least as much capacity as described.
Base wrapper for a particular "section" of type source info.
Definition TypeLoc.h:59
SourceRange getLocalSourceRange() const
Get the local source range.
Definition TypeLoc.h:160
unsigned getFullDataSize() const
Returns the size of the type source info data block.
Definition TypeLoc.h:165
void copy(TypeLoc other)
Copies the other type loc into this one.
Definition TypeLoc.cpp:169
A container of type source information.
Definition TypeBase.h:8256
SourceLocation getNameLoc() const
Definition TypeLoc.h:552
void setNameLoc(SourceLocation Loc)
Definition TypeLoc.h:556
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isVoidType() const
Definition TypeBase.h:8878
const TemplateSpecializationType * getAsNonAliasTemplateSpecializationType() const
Look through sugar for an instance of TemplateSpecializationType which is not a type alias,...
Definition Type.cpp:1921
bool isPlaceholderType() const
Test for a type which does not represent an actual type-system type but is instead used as a placehol...
Definition TypeBase.h:8854
bool isRValueReferenceType() const
Definition TypeBase.h:8554
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
bool isArrayType() const
Definition TypeBase.h:8621
bool isFunctionPointerType() const
Definition TypeBase.h:8589
bool isPointerType() const
Definition TypeBase.h:8522
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9165
bool isReferenceType() const
Definition TypeBase.h:8546
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type.
Definition TypeBase.h:2899
bool isLValueReferenceType() const
Definition TypeBase.h:8550
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition TypeBase.h:2782
QualType getCanonicalTypeInternal() const
Definition TypeBase.h:3119
bool isMemberPointerType() const
Definition TypeBase.h:8603
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition Type.cpp:5310
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition TypeBase.h:9014
bool isFunctionType() const
Definition TypeBase.h:8518
bool isMemberFunctionPointerType() const
Definition TypeBase.h:8607
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2921
bool isAnyPointerType() const
Definition TypeBase.h:8530
TypeClass getTypeClass() const
Definition TypeBase.h:2385
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9098
bool isRecordType() const
Definition TypeBase.h:8649
The iterator over UnresolvedSets.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition Decl.h:711
QualType getType() const
Definition Decl.h:722
QualType getType() const
Definition Value.cpp:237
Represents a variable declaration or definition.
Definition Decl.h:925
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition Decl.h:1577
Declaration of a variable template.
VarTemplateDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this template.
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
Represents a GCC generic vector type.
Definition TypeBase.h:4173
Provides information about an attempted template argument deduction, whose success or failure was des...
void setExplicitArgs(TemplateArgumentList *NewDeducedSugared, TemplateArgumentList *NewDeducedCanonical)
Provide an initial template argument list that contains the explicitly-specified arguments.
TemplateArgumentList * takeCanonical()
TemplateArgumentList * takeSugared()
Take ownership of the deduced template argument lists.
SourceLocation getLocation() const
Returns the location at which template argument is occurring.
void clearSFINAEDiagnostic()
Discard any SFINAE diagnostics.
TemplateArgument SecondArg
The second template argument to which the template argument deduction failure refers.
TemplateParameter Param
The template parameter to which a template argument deduction failure refers.
diag_iterator diag_end() const
Returns an iterator at the end of the sequence of suppressed diagnostics.
void reset(TemplateArgumentList *NewDeducedSugared, TemplateArgumentList *NewDeducedCanonical)
Provide a new template argument list that contains the results of template argument deduction.
unsigned getDeducedDepth() const
The depth of template parameters for which deduction is being performed.
diag_iterator diag_begin() const
Returns an iterator at the beginning of the sequence of suppressed diagnostics.
TemplateArgument FirstArg
The first template argument to which the template argument deduction failure refers.
ConstraintSatisfaction AssociatedConstraintsSatisfaction
The constraint satisfaction details resulting from the associated constraints satisfaction tests.
unsigned CallArgIndex
The index of the function argument that caused a deduction failure.
#define bool
Definition gpuintrin.h:32
__inline void unsigned int _2
The JSON file list parser is used to communicate input to InstallAPI.
@ OO_None
Not an overloaded operator.
@ Match
This is not an overload because the signature exactly matches an existing declaration.
Definition Sema.h:816
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus20
@ CPlusPlus
@ CPlusPlus11
@ CPlusPlus14
bool isTargetAddressSpace(LangAS AS)
@ Specialization
We are substituting template parameters for template arguments in order to form a template specializa...
Definition Template.h:50
@ Both
Look for allocation functions in both the global scope and in the scope of the allocated class.
Definition Sema.h:785
@ RQ_None
No ref-qualifier was provided.
Definition TypeBase.h:1782
@ RQ_RValue
An rvalue ref-qualifier was provided (&&).
Definition TypeBase.h:1788
@ TemplateName
The identifier is a template name. FIXME: Add an annotation for that.
Definition Parser.h:61
NamedDecl * getAsNamedDecl(TemplateParameter P)
bool isPackProducingBuiltinTemplateName(TemplateName N)
UnsignedOrNone getExpandedPackSize(const NamedDecl *Param)
Check whether the template parameter is a pack expansion, and if so, determine the number of paramete...
unsigned toTargetAddressSpace(LangAS AS)
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
std::pair< unsigned, unsigned > getDepthAndIndex(const NamedDecl *ND)
Retrieve the depth and index of a template parameter.
const FunctionProtoType * T
@ Template
We are parsing a template declaration.
Definition Parser.h:81
ActionResult< CXXBaseSpecifier * > BaseResult
Definition Ownership.h:252
@ FunctionTemplate
The name was classified as a function template name.
Definition Sema.h:585
@ Concept
The name was classified as a concept name.
Definition Sema.h:589
bool isLambdaConversionOperator(CXXConversionDecl *C)
Definition ASTLambda.h:69
@ TNK_Var_template
The name refers to a variable template whose specialization produces a variable.
@ TNK_Concept_template
The name refers to a concept.
llvm::PointerUnion< TemplateTypeParmDecl *, NonTypeTemplateParmDecl *, TemplateTemplateParmDecl * > TemplateParameter
Stores a template parameter of any kind.
TPOC
The context in which partial ordering of function templates occurs.
Definition Template.h:298
@ TPOC_Conversion
Partial ordering of function templates for a call to a conversion function.
Definition Template.h:304
@ TPOC_Other
Partial ordering of function templates in other contexts, e.g., taking the address of a function temp...
Definition Template.h:309
@ TPOC_Call
Partial ordering of function templates for a function call.
Definition Template.h:300
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
DynamicRecursiveASTVisitorBase< false > DynamicRecursiveASTVisitor
TemplateDeductionResult
Describes the result of template argument deduction.
Definition Sema.h:366
@ MiscellaneousDeductionFailure
Deduction failed; that's all we know.
Definition Sema.h:416
@ NonDependentConversionFailure
Checking non-dependent argument conversions failed.
Definition Sema.h:411
@ ConstraintsNotSatisfied
The deduced arguments did not satisfy the constraints associated with the template.
Definition Sema.h:414
@ Underqualified
Template argument deduction failed due to inconsistent cv-qualifiers on a template parameter type tha...
Definition Sema.h:387
@ InstantiationDepth
Template argument deduction exceeded the maximum template instantiation depth (which has already been...
Definition Sema.h:373
@ InvalidExplicitArguments
The explicitly-specified template arguments were not valid template arguments for the given template.
Definition Sema.h:409
@ CUDATargetMismatch
CUDA Target attributes do not match.
Definition Sema.h:418
@ TooFewArguments
When performing template argument deduction for a function template, there were too few call argument...
Definition Sema.h:406
@ Incomplete
Template argument deduction did not deduce a value for every template parameter.
Definition Sema.h:376
@ Invalid
The declaration was invalid; do nothing.
Definition Sema.h:370
@ Success
Template argument deduction was successful.
Definition Sema.h:368
@ SubstitutionFailure
Substitution of the deduced template argument values resulted in an error.
Definition Sema.h:390
@ IncompletePack
Template argument deduction did not deduce a value for every expansion of an expanded template parame...
Definition Sema.h:379
@ DeducedMismatch
After substituting deduced template arguments, a dependent parameter type did not match the correspon...
Definition Sema.h:393
@ Inconsistent
Template argument deduction produced inconsistent deduced values for the given template parameter.
Definition Sema.h:382
@ TooManyArguments
When performing template argument deduction for a function template, there were too many call argumen...
Definition Sema.h:403
@ AlreadyDiagnosed
Some error which was already diagnosed.
Definition Sema.h:420
@ DeducedMismatchNested
After substituting deduced template arguments, an element of a dependent parameter type did not match...
Definition Sema.h:397
@ NonDeducedMismatch
A non-depnedent component of the parameter did not match the corresponding component of the argument.
Definition Sema.h:400
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition Specifiers.h:278
U cast(CodeGen::Address addr)
Definition Address.h:327
@ Noexcept
Condition in a noexcept(bool) specifier.
Definition Sema.h:832
@ None
No keyword precedes the qualified type name.
Definition TypeBase.h:5884
ActionResult< Expr * > ExprResult
Definition Ownership.h:249
@ EST_Uninstantiated
not instantiated yet
@ EST_None
no exception specification
TemplateDeductionFlags
Various flags that control template argument deduction.
@ TDF_None
No template argument deduction flags, which indicates the strictest results for template argument ded...
@ TDF_DerivedClass
Within template argument deduction from a function call, we are matching in a case where we can perfo...
@ TDF_TopLevelParameterTypeList
Whether we are performing template argument deduction for parameters and arguments in a top-level tem...
@ TDF_IgnoreQualifiers
Within template argument deduction from a function call, we are matching in a case where we ignore cv...
@ TDF_ParamWithReferenceType
Within template argument deduction from a function call, we are matching with a parameter type for wh...
@ TDF_SkipNonDependent
Allow non-dependent types to differ, e.g., when performing template argument deduction from a functio...
@ TDF_AllowCompatibleFunctionType
Within template argument deduction from overload resolution per C++ [over.over] allow matching functi...
@ TDF_ArgWithReferenceType
Within template argument deduction for a conversion function, we are matching with an argument type f...
#define false
Definition stdbool.h:26
#define true
Definition stdbool.h:25
A pack that we're currently deducing.
SmallVector< DeducedTemplateArgument, 4 > New
DeducedTemplateArgument Saved
DeducedTemplateArgument DeferredDeduction
ExceptionSpecificationType Type
The kind of exception specification this is.
Definition TypeBase.h:5323
Extra information about a function prototype.
Definition TypeBase.h:5349
const ExtParameterInfo * ExtParameterInfos
Definition TypeBase.h:5354
bool StrictPackMatch
Is set to true when, in the context of TTP matching, a pack parameter matches non-pack arguments.
Definition Sema.h:11938
bool MatchingTTP
If true, assume these template arguments are the injected template arguments for a template template ...
Definition Sema.h:11934
bool PartialOrdering
The check is being performed in the context of partial ordering.
Definition Sema.h:11927
SmallVector< TemplateArgument, 4 > SugaredConverted
The checked, converted argument will be added to the end of these vectors.
Definition Sema.h:11924
SmallVector< TemplateArgument, 4 > CanonicalConverted
Definition Sema.h:11924
@ ExplicitTemplateArgumentSubstitution
We are substituting explicit template arguments provided for a function template.
Definition Sema.h:12982
@ DeducedTemplateArgumentSubstitution
We are substituting template argument determined as part of template argument deduction for either a ...
Definition Sema.h:12989
A stack object to be created when performing template instantiation.
Definition Sema.h:13152
bool isInvalid() const
Determines whether we have exceeded the maximum recursive template instantiations.
Definition Sema.h:13312
brief A function argument from which we performed template argument
Definition Sema.h:12533
Location information for a TemplateArgument.