clang 20.0.0git
CGExprScalar.cpp
Go to the documentation of this file.
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenMPRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "TargetInfo.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/Expr.h"
31#include "llvm/ADT/APFixedPoint.h"
32#include "llvm/IR/CFG.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/FixedPointBuilder.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GetElementPtrTypeIterator.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/IntrinsicsPowerPC.h"
42#include "llvm/IR/MatrixBuilder.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/TypeSize.h"
45#include <cstdarg>
46#include <optional>
47
48using namespace clang;
49using namespace CodeGen;
50using llvm::Value;
51
52//===----------------------------------------------------------------------===//
53// Scalar Expression Emitter
54//===----------------------------------------------------------------------===//
55
56namespace llvm {
57extern cl::opt<bool> EnableSingleByteCoverage;
58} // namespace llvm
59
60namespace {
61
62/// Determine whether the given binary operation may overflow.
63/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
64/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
65/// the returned overflow check is precise. The returned value is 'true' for
66/// all other opcodes, to be conservative.
67bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
68 BinaryOperator::Opcode Opcode, bool Signed,
69 llvm::APInt &Result) {
70 // Assume overflow is possible, unless we can prove otherwise.
71 bool Overflow = true;
72 const auto &LHSAP = LHS->getValue();
73 const auto &RHSAP = RHS->getValue();
74 if (Opcode == BO_Add) {
75 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
76 : LHSAP.uadd_ov(RHSAP, Overflow);
77 } else if (Opcode == BO_Sub) {
78 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
79 : LHSAP.usub_ov(RHSAP, Overflow);
80 } else if (Opcode == BO_Mul) {
81 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
82 : LHSAP.umul_ov(RHSAP, Overflow);
83 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
84 if (Signed && !RHS->isZero())
85 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
86 else
87 return false;
88 }
89 return Overflow;
90}
91
92struct BinOpInfo {
93 Value *LHS;
94 Value *RHS;
95 QualType Ty; // Computation Type.
96 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
97 FPOptions FPFeatures;
98 const Expr *E; // Entire expr, for error unsupported. May not be binop.
99
100 /// Check if the binop can result in integer overflow.
101 bool mayHaveIntegerOverflow() const {
102 // Without constant input, we can't rule out overflow.
103 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
104 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
105 if (!LHSCI || !RHSCI)
106 return true;
107
108 llvm::APInt Result;
109 return ::mayHaveIntegerOverflow(
110 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
111 }
112
113 /// Check if the binop computes a division or a remainder.
114 bool isDivremOp() const {
115 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
116 Opcode == BO_RemAssign;
117 }
118
119 /// Check if the binop can result in an integer division by zero.
120 bool mayHaveIntegerDivisionByZero() const {
121 if (isDivremOp())
122 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
123 return CI->isZero();
124 return true;
125 }
126
127 /// Check if the binop can result in a float division by zero.
128 bool mayHaveFloatDivisionByZero() const {
129 if (isDivremOp())
130 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
131 return CFP->isZero();
132 return true;
133 }
134
135 /// Check if at least one operand is a fixed point type. In such cases, this
136 /// operation did not follow usual arithmetic conversion and both operands
137 /// might not be of the same type.
138 bool isFixedPointOp() const {
139 // We cannot simply check the result type since comparison operations return
140 // an int.
141 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
142 QualType LHSType = BinOp->getLHS()->getType();
143 QualType RHSType = BinOp->getRHS()->getType();
144 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
145 }
146 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
147 return UnOp->getSubExpr()->getType()->isFixedPointType();
148 return false;
149 }
150
151 /// Check if the RHS has a signed integer representation.
152 bool rhsHasSignedIntegerRepresentation() const {
153 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
154 QualType RHSType = BinOp->getRHS()->getType();
155 return RHSType->hasSignedIntegerRepresentation();
156 }
157 return false;
158 }
159};
160
161static bool MustVisitNullValue(const Expr *E) {
162 // If a null pointer expression's type is the C++0x nullptr_t, then
163 // it's not necessarily a simple constant and it must be evaluated
164 // for its potential side effects.
165 return E->getType()->isNullPtrType();
166}
167
168/// If \p E is a widened promoted integer, get its base (unpromoted) type.
169static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
170 const Expr *E) {
171 const Expr *Base = E->IgnoreImpCasts();
172 if (E == Base)
173 return std::nullopt;
174
175 QualType BaseTy = Base->getType();
176 if (!Ctx.isPromotableIntegerType(BaseTy) ||
177 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
178 return std::nullopt;
179
180 return BaseTy;
181}
182
183/// Check if \p E is a widened promoted integer.
184static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
185 return getUnwidenedIntegerType(Ctx, E).has_value();
186}
187
188/// Check if we can skip the overflow check for \p Op.
189static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
190 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
191 "Expected a unary or binary operator");
192
193 // If the binop has constant inputs and we can prove there is no overflow,
194 // we can elide the overflow check.
195 if (!Op.mayHaveIntegerOverflow())
196 return true;
197
198 // If a unary op has a widened operand, the op cannot overflow.
199 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
200 return !UO->canOverflow();
201
202 // We usually don't need overflow checks for binops with widened operands.
203 // Multiplication with promoted unsigned operands is a special case.
204 const auto *BO = cast<BinaryOperator>(Op.E);
205 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
206 if (!OptionalLHSTy)
207 return false;
208
209 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
210 if (!OptionalRHSTy)
211 return false;
212
213 QualType LHSTy = *OptionalLHSTy;
214 QualType RHSTy = *OptionalRHSTy;
215
216 // This is the simple case: binops without unsigned multiplication, and with
217 // widened operands. No overflow check is needed here.
218 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
219 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
220 return true;
221
222 // For unsigned multiplication the overflow check can be elided if either one
223 // of the unpromoted types are less than half the size of the promoted type.
224 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
225 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
226 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
227}
228
229class ScalarExprEmitter
230 : public StmtVisitor<ScalarExprEmitter, Value*> {
231 CodeGenFunction &CGF;
232 CGBuilderTy &Builder;
233 bool IgnoreResultAssign;
234 llvm::LLVMContext &VMContext;
235public:
236
237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239 VMContext(cgf.getLLVMContext()) {
240 }
241
242 //===--------------------------------------------------------------------===//
243 // Utilities
244 //===--------------------------------------------------------------------===//
245
246 bool TestAndClearIgnoreResultAssign() {
247 bool I = IgnoreResultAssign;
248 IgnoreResultAssign = false;
249 return I;
250 }
251
252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255 return CGF.EmitCheckedLValue(E, TCK);
256 }
257
258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259 const BinOpInfo &Info);
260
261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263 }
264
265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266 const AlignValueAttr *AVAttr = nullptr;
267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268 const ValueDecl *VD = DRE->getDecl();
269
270 if (VD->getType()->isReferenceType()) {
271 if (const auto *TTy =
273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274 } else {
275 // Assumptions for function parameters are emitted at the start of the
276 // function, so there is no need to repeat that here,
277 // unless the alignment-assumption sanitizer is enabled,
278 // then we prefer the assumption over alignment attribute
279 // on IR function param.
280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281 return;
282
283 AVAttr = VD->getAttr<AlignValueAttr>();
284 }
285 }
286
287 if (!AVAttr)
288 if (const auto *TTy = E->getType()->getAs<TypedefType>())
289 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
290
291 if (!AVAttr)
292 return;
293
294 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
295 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
296 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
297 }
298
299 /// EmitLoadOfLValue - Given an expression with complex type that represents a
300 /// value l-value, this method emits the address of the l-value, then loads
301 /// and returns the result.
302 Value *EmitLoadOfLValue(const Expr *E) {
303 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
304 E->getExprLoc());
305
306 EmitLValueAlignmentAssumption(E, V);
307 return V;
308 }
309
310 /// EmitConversionToBool - Convert the specified expression value to a
311 /// boolean (i1) truth value. This is equivalent to "Val != 0".
312 Value *EmitConversionToBool(Value *Src, QualType DstTy);
313
314 /// Emit a check that a conversion from a floating-point type does not
315 /// overflow.
316 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
317 Value *Src, QualType SrcType, QualType DstType,
318 llvm::Type *DstTy, SourceLocation Loc);
319
320 /// Known implicit conversion check kinds.
321 /// This is used for bitfield conversion checks as well.
322 /// Keep in sync with the enum of the same name in ubsan_handlers.h
323 enum ImplicitConversionCheckKind : unsigned char {
324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325 ICCK_UnsignedIntegerTruncation = 1,
326 ICCK_SignedIntegerTruncation = 2,
327 ICCK_IntegerSignChange = 3,
328 ICCK_SignedIntegerTruncationOrSignChange = 4,
329 };
330
331 /// Emit a check that an [implicit] truncation of an integer does not
332 /// discard any bits. It is not UB, so we use the value after truncation.
333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334 QualType DstType, SourceLocation Loc);
335
336 /// Emit a check that an [implicit] conversion of an integer does not change
337 /// the sign of the value. It is not UB, so we use the value after conversion.
338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340 QualType DstType, SourceLocation Loc);
341
342 /// Emit a conversion from the specified type to the specified destination
343 /// type, both of which are LLVM scalar types.
344 struct ScalarConversionOpts {
345 bool TreatBooleanAsSigned;
346 bool EmitImplicitIntegerTruncationChecks;
347 bool EmitImplicitIntegerSignChangeChecks;
348
349 ScalarConversionOpts()
350 : TreatBooleanAsSigned(false),
351 EmitImplicitIntegerTruncationChecks(false),
352 EmitImplicitIntegerSignChangeChecks(false) {}
353
354 ScalarConversionOpts(clang::SanitizerSet SanOpts)
355 : TreatBooleanAsSigned(false),
356 EmitImplicitIntegerTruncationChecks(
357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358 EmitImplicitIntegerSignChangeChecks(
359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360 };
361 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
362 llvm::Type *SrcTy, llvm::Type *DstTy,
363 ScalarConversionOpts Opts);
364 Value *
365 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
367 ScalarConversionOpts Opts = ScalarConversionOpts());
368
369 /// Convert between either a fixed point and other fixed point or fixed point
370 /// and an integer.
371 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
373
374 /// Emit a conversion from the specified complex type to the specified
375 /// destination type, where the destination type is an LLVM scalar type.
376 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
377 QualType SrcTy, QualType DstTy,
379
380 /// EmitNullValue - Emit a value that corresponds to null for the given type.
381 Value *EmitNullValue(QualType Ty);
382
383 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
384 Value *EmitFloatToBoolConversion(Value *V) {
385 // Compare against 0.0 for fp scalars.
386 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
387 return Builder.CreateFCmpUNE(V, Zero, "tobool");
388 }
389
390 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
391 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
392 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
393
394 return Builder.CreateICmpNE(V, Zero, "tobool");
395 }
396
397 Value *EmitIntToBoolConversion(Value *V) {
398 // Because of the type rules of C, we often end up computing a
399 // logical value, then zero extending it to int, then wanting it
400 // as a logical value again. Optimize this common case.
401 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
402 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
403 Value *Result = ZI->getOperand(0);
404 // If there aren't any more uses, zap the instruction to save space.
405 // Note that there can be more uses, for example if this
406 // is the result of an assignment.
407 if (ZI->use_empty())
408 ZI->eraseFromParent();
409 return Result;
410 }
411 }
412
413 return Builder.CreateIsNotNull(V, "tobool");
414 }
415
416 //===--------------------------------------------------------------------===//
417 // Visitor Methods
418 //===--------------------------------------------------------------------===//
419
420 Value *Visit(Expr *E) {
421 ApplyDebugLocation DL(CGF, E);
423 }
424
425 Value *VisitStmt(Stmt *S) {
426 S->dump(llvm::errs(), CGF.getContext());
427 llvm_unreachable("Stmt can't have complex result type!");
428 }
429 Value *VisitExpr(Expr *S);
430
431 Value *VisitConstantExpr(ConstantExpr *E) {
432 // A constant expression of type 'void' generates no code and produces no
433 // value.
434 if (E->getType()->isVoidType())
435 return nullptr;
436
437 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
438 if (E->isGLValue())
439 return CGF.EmitLoadOfScalar(
442 /*Volatile*/ false, E->getType(), E->getExprLoc());
443 return Result;
444 }
445 return Visit(E->getSubExpr());
446 }
447 Value *VisitParenExpr(ParenExpr *PE) {
448 return Visit(PE->getSubExpr());
449 }
450 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
451 return Visit(E->getReplacement());
452 }
453 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
454 return Visit(GE->getResultExpr());
455 }
456 Value *VisitCoawaitExpr(CoawaitExpr *S) {
457 return CGF.EmitCoawaitExpr(*S).getScalarVal();
458 }
459 Value *VisitCoyieldExpr(CoyieldExpr *S) {
460 return CGF.EmitCoyieldExpr(*S).getScalarVal();
461 }
462 Value *VisitUnaryCoawait(const UnaryOperator *E) {
463 return Visit(E->getSubExpr());
464 }
465
466 // Leaves.
467 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
468 return Builder.getInt(E->getValue());
469 }
470 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
471 return Builder.getInt(E->getValue());
472 }
473 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
474 return llvm::ConstantFP::get(VMContext, E->getValue());
475 }
476 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
477 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
478 }
479 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
480 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
481 }
482 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
483 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
484 }
485 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
486 if (E->getType()->isVoidType())
487 return nullptr;
488
489 return EmitNullValue(E->getType());
490 }
491 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
492 return EmitNullValue(E->getType());
493 }
494 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
495 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
496 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
497 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
498 return Builder.CreateBitCast(V, ConvertType(E->getType()));
499 }
500
501 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
502 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
503 }
504
505 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
507 }
508
509 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
510 Value *VisitEmbedExpr(EmbedExpr *E);
511
512 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
513 if (E->isGLValue())
514 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
515 E->getExprLoc());
516
517 // Otherwise, assume the mapping is the scalar directly.
519 }
520
521 // l-values.
522 Value *VisitDeclRefExpr(DeclRefExpr *E) {
523 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
524 return CGF.emitScalarConstant(Constant, E);
525 return EmitLoadOfLValue(E);
526 }
527
528 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
529 return CGF.EmitObjCSelectorExpr(E);
530 }
531 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
532 return CGF.EmitObjCProtocolExpr(E);
533 }
534 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
535 return EmitLoadOfLValue(E);
536 }
537 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
538 if (E->getMethodDecl() &&
539 E->getMethodDecl()->getReturnType()->isReferenceType())
540 return EmitLoadOfLValue(E);
541 return CGF.EmitObjCMessageExpr(E).getScalarVal();
542 }
543
544 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
545 LValue LV = CGF.EmitObjCIsaExpr(E);
547 return V;
548 }
549
550 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
551 VersionTuple Version = E->getVersion();
552
553 // If we're checking for a platform older than our minimum deployment
554 // target, we can fold the check away.
555 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
556 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
557
558 return CGF.EmitBuiltinAvailable(Version);
559 }
560
561 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
562 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
563 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
564 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
565 Value *VisitMemberExpr(MemberExpr *E);
566 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
567 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
568 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
569 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
570 // literals aren't l-values in C++. We do so simply because that's the
571 // cleanest way to handle compound literals in C++.
572 // See the discussion here: https://reviews.llvm.org/D64464
573 return EmitLoadOfLValue(E);
574 }
575
576 Value *VisitInitListExpr(InitListExpr *E);
577
578 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
579 assert(CGF.getArrayInitIndex() &&
580 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
581 return CGF.getArrayInitIndex();
582 }
583
584 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
585 return EmitNullValue(E->getType());
586 }
587 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
588 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
589 return VisitCastExpr(E);
590 }
591 Value *VisitCastExpr(CastExpr *E);
592
593 Value *VisitCallExpr(const CallExpr *E) {
594 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
595 return EmitLoadOfLValue(E);
596
598
599 EmitLValueAlignmentAssumption(E, V);
600 return V;
601 }
602
603 Value *VisitStmtExpr(const StmtExpr *E);
604
605 // Unary Operators.
606 Value *VisitUnaryPostDec(const UnaryOperator *E) {
607 LValue LV = EmitLValue(E->getSubExpr());
608 return EmitScalarPrePostIncDec(E, LV, false, false);
609 }
610 Value *VisitUnaryPostInc(const UnaryOperator *E) {
611 LValue LV = EmitLValue(E->getSubExpr());
612 return EmitScalarPrePostIncDec(E, LV, true, false);
613 }
614 Value *VisitUnaryPreDec(const UnaryOperator *E) {
615 LValue LV = EmitLValue(E->getSubExpr());
616 return EmitScalarPrePostIncDec(E, LV, false, true);
617 }
618 Value *VisitUnaryPreInc(const UnaryOperator *E) {
619 LValue LV = EmitLValue(E->getSubExpr());
620 return EmitScalarPrePostIncDec(E, LV, true, true);
621 }
622
623 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
624 llvm::Value *InVal,
625 bool IsInc);
626
627 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
628 bool isInc, bool isPre);
629
630
631 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
632 if (isa<MemberPointerType>(E->getType())) // never sugared
633 return CGF.CGM.getMemberPointerConstant(E);
634
635 return EmitLValue(E->getSubExpr()).getPointer(CGF);
636 }
637 Value *VisitUnaryDeref(const UnaryOperator *E) {
638 if (E->getType()->isVoidType())
639 return Visit(E->getSubExpr()); // the actual value should be unused
640 return EmitLoadOfLValue(E);
641 }
642
643 Value *VisitUnaryPlus(const UnaryOperator *E,
644 QualType PromotionType = QualType());
645 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
646 Value *VisitUnaryMinus(const UnaryOperator *E,
647 QualType PromotionType = QualType());
648 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
649
650 Value *VisitUnaryNot (const UnaryOperator *E);
651 Value *VisitUnaryLNot (const UnaryOperator *E);
652 Value *VisitUnaryReal(const UnaryOperator *E,
653 QualType PromotionType = QualType());
654 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
655 Value *VisitUnaryImag(const UnaryOperator *E,
656 QualType PromotionType = QualType());
657 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
658 Value *VisitUnaryExtension(const UnaryOperator *E) {
659 return Visit(E->getSubExpr());
660 }
661
662 // C++
663 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
664 return EmitLoadOfLValue(E);
665 }
666 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
667 auto &Ctx = CGF.getContext();
671 SLE->getType());
672 }
673
674 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
675 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
676 return Visit(DAE->getExpr());
677 }
678 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
679 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
680 return Visit(DIE->getExpr());
681 }
682 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
683 return CGF.LoadCXXThis();
684 }
685
686 Value *VisitExprWithCleanups(ExprWithCleanups *E);
687 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
688 return CGF.EmitCXXNewExpr(E);
689 }
690 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
691 CGF.EmitCXXDeleteExpr(E);
692 return nullptr;
693 }
694
695 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
696 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
697 }
698
699 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
700 return Builder.getInt1(E->isSatisfied());
701 }
702
703 Value *VisitRequiresExpr(const RequiresExpr *E) {
704 return Builder.getInt1(E->isSatisfied());
705 }
706
707 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
708 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
709 }
710
711 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
712 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
713 }
714
715 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
716 // C++ [expr.pseudo]p1:
717 // The result shall only be used as the operand for the function call
718 // operator (), and the result of such a call has type void. The only
719 // effect is the evaluation of the postfix-expression before the dot or
720 // arrow.
721 CGF.EmitScalarExpr(E->getBase());
722 return nullptr;
723 }
724
725 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
726 return EmitNullValue(E->getType());
727 }
728
729 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
730 CGF.EmitCXXThrowExpr(E);
731 return nullptr;
732 }
733
734 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
735 return Builder.getInt1(E->getValue());
736 }
737
738 // Binary Operators.
739 Value *EmitMul(const BinOpInfo &Ops) {
740 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
741 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
743 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
744 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
745 [[fallthrough]];
747 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
748 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
749 [[fallthrough]];
751 if (CanElideOverflowCheck(CGF.getContext(), Ops))
752 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
753 return EmitOverflowCheckedBinOp(Ops);
754 }
755 }
756
757 if (Ops.Ty->isConstantMatrixType()) {
758 llvm::MatrixBuilder MB(Builder);
759 // We need to check the types of the operands of the operator to get the
760 // correct matrix dimensions.
761 auto *BO = cast<BinaryOperator>(Ops.E);
762 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
763 BO->getLHS()->getType().getCanonicalType());
764 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
765 BO->getRHS()->getType().getCanonicalType());
766 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
767 if (LHSMatTy && RHSMatTy)
768 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
769 LHSMatTy->getNumColumns(),
770 RHSMatTy->getNumColumns());
771 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
772 }
773
774 if (Ops.Ty->isUnsignedIntegerType() &&
775 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
776 !CanElideOverflowCheck(CGF.getContext(), Ops))
777 return EmitOverflowCheckedBinOp(Ops);
778
779 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
780 // Preserve the old values
781 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
782 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
783 }
784 if (Ops.isFixedPointOp())
785 return EmitFixedPointBinOp(Ops);
786 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
787 }
788 /// Create a binary op that checks for overflow.
789 /// Currently only supports +, - and *.
790 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
791
792 // Check for undefined division and modulus behaviors.
793 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
794 llvm::Value *Zero,bool isDiv);
795 // Common helper for getting how wide LHS of shift is.
796 static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
797
798 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
799 // non powers of two.
800 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
801
802 Value *EmitDiv(const BinOpInfo &Ops);
803 Value *EmitRem(const BinOpInfo &Ops);
804 Value *EmitAdd(const BinOpInfo &Ops);
805 Value *EmitSub(const BinOpInfo &Ops);
806 Value *EmitShl(const BinOpInfo &Ops);
807 Value *EmitShr(const BinOpInfo &Ops);
808 Value *EmitAnd(const BinOpInfo &Ops) {
809 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
810 }
811 Value *EmitXor(const BinOpInfo &Ops) {
812 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
813 }
814 Value *EmitOr (const BinOpInfo &Ops) {
815 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
816 }
817
818 // Helper functions for fixed point binary operations.
819 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
820
821 BinOpInfo EmitBinOps(const BinaryOperator *E,
822 QualType PromotionTy = QualType());
823
824 Value *EmitPromotedValue(Value *result, QualType PromotionType);
825 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
826 Value *EmitPromoted(const Expr *E, QualType PromotionType);
827
828 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
829 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
830 Value *&Result);
831
832 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
833 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
834
835 QualType getPromotionType(QualType Ty) {
836 const auto &Ctx = CGF.getContext();
837 if (auto *CT = Ty->getAs<ComplexType>()) {
838 QualType ElementType = CT->getElementType();
839 if (ElementType.UseExcessPrecision(Ctx))
840 return Ctx.getComplexType(Ctx.FloatTy);
841 }
842
843 if (Ty.UseExcessPrecision(Ctx)) {
844 if (auto *VT = Ty->getAs<VectorType>()) {
845 unsigned NumElements = VT->getNumElements();
846 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
847 }
848 return Ctx.FloatTy;
849 }
850
851 return QualType();
852 }
853
854 // Binary operators and binary compound assignment operators.
855#define HANDLEBINOP(OP) \
856 Value *VisitBin##OP(const BinaryOperator *E) { \
857 QualType promotionTy = getPromotionType(E->getType()); \
858 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
859 if (result && !promotionTy.isNull()) \
860 result = EmitUnPromotedValue(result, E->getType()); \
861 return result; \
862 } \
863 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
864 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
865 }
866 HANDLEBINOP(Mul)
867 HANDLEBINOP(Div)
868 HANDLEBINOP(Rem)
869 HANDLEBINOP(Add)
870 HANDLEBINOP(Sub)
871 HANDLEBINOP(Shl)
872 HANDLEBINOP(Shr)
874 HANDLEBINOP(Xor)
876#undef HANDLEBINOP
877
878 // Comparisons.
879 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
880 llvm::CmpInst::Predicate SICmpOpc,
881 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
882#define VISITCOMP(CODE, UI, SI, FP, SIG) \
883 Value *VisitBin##CODE(const BinaryOperator *E) { \
884 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
885 llvm::FCmpInst::FP, SIG); }
886 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
887 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
888 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
889 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
890 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
891 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
892#undef VISITCOMP
893
894 Value *VisitBinAssign (const BinaryOperator *E);
895
896 Value *VisitBinLAnd (const BinaryOperator *E);
897 Value *VisitBinLOr (const BinaryOperator *E);
898 Value *VisitBinComma (const BinaryOperator *E);
899
900 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
901 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
902
903 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
904 return Visit(E->getSemanticForm());
905 }
906
907 // Other Operators.
908 Value *VisitBlockExpr(const BlockExpr *BE);
909 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
910 Value *VisitChooseExpr(ChooseExpr *CE);
911 Value *VisitVAArgExpr(VAArgExpr *VE);
912 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
913 return CGF.EmitObjCStringLiteral(E);
914 }
915 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
916 return CGF.EmitObjCBoxedExpr(E);
917 }
918 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
919 return CGF.EmitObjCArrayLiteral(E);
920 }
921 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
922 return CGF.EmitObjCDictionaryLiteral(E);
923 }
924 Value *VisitAsTypeExpr(AsTypeExpr *CE);
925 Value *VisitAtomicExpr(AtomicExpr *AE);
926 Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
927 return Visit(E->getSelectedExpr());
928 }
929};
930} // end anonymous namespace.
931
932//===----------------------------------------------------------------------===//
933// Utilities
934//===----------------------------------------------------------------------===//
935
936/// EmitConversionToBool - Convert the specified expression value to a
937/// boolean (i1) truth value. This is equivalent to "Val != 0".
938Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
939 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
940
941 if (SrcType->isRealFloatingType())
942 return EmitFloatToBoolConversion(Src);
943
944 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
945 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
946
947 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
948 "Unknown scalar type to convert");
949
950 if (isa<llvm::IntegerType>(Src->getType()))
951 return EmitIntToBoolConversion(Src);
952
953 assert(isa<llvm::PointerType>(Src->getType()));
954 return EmitPointerToBoolConversion(Src, SrcType);
955}
956
957void ScalarExprEmitter::EmitFloatConversionCheck(
958 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
959 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
960 assert(SrcType->isFloatingType() && "not a conversion from floating point");
961 if (!isa<llvm::IntegerType>(DstTy))
962 return;
963
964 CodeGenFunction::SanitizerScope SanScope(&CGF);
965 using llvm::APFloat;
966 using llvm::APSInt;
967
968 llvm::Value *Check = nullptr;
969 const llvm::fltSemantics &SrcSema =
970 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
971
972 // Floating-point to integer. This has undefined behavior if the source is
973 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
974 // to an integer).
975 unsigned Width = CGF.getContext().getIntWidth(DstType);
977
978 APSInt Min = APSInt::getMinValue(Width, Unsigned);
979 APFloat MinSrc(SrcSema, APFloat::uninitialized);
980 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
981 APFloat::opOverflow)
982 // Don't need an overflow check for lower bound. Just check for
983 // -Inf/NaN.
984 MinSrc = APFloat::getInf(SrcSema, true);
985 else
986 // Find the largest value which is too small to represent (before
987 // truncation toward zero).
988 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
989
990 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
991 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
992 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
993 APFloat::opOverflow)
994 // Don't need an overflow check for upper bound. Just check for
995 // +Inf/NaN.
996 MaxSrc = APFloat::getInf(SrcSema, false);
997 else
998 // Find the smallest value which is too large to represent (before
999 // truncation toward zero).
1000 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
1001
1002 // If we're converting from __half, convert the range to float to match
1003 // the type of src.
1004 if (OrigSrcType->isHalfType()) {
1005 const llvm::fltSemantics &Sema =
1006 CGF.getContext().getFloatTypeSemantics(SrcType);
1007 bool IsInexact;
1008 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1009 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1010 }
1011
1012 llvm::Value *GE =
1013 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
1014 llvm::Value *LE =
1015 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
1016 Check = Builder.CreateAnd(GE, LE);
1017
1018 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1019 CGF.EmitCheckTypeDescriptor(OrigSrcType),
1020 CGF.EmitCheckTypeDescriptor(DstType)};
1021 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1022 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1023}
1024
1025// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1026// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1027static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1028 std::pair<llvm::Value *, SanitizerMask>>
1030 QualType DstType, CGBuilderTy &Builder) {
1031 llvm::Type *SrcTy = Src->getType();
1032 llvm::Type *DstTy = Dst->getType();
1033 (void)DstTy; // Only used in assert()
1034
1035 // This should be truncation of integral types.
1036 assert(Src != Dst);
1037 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1038 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1039 "non-integer llvm type");
1040
1041 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1042 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1043
1044 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1045 // Else, it is a signed truncation.
1046 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1047 SanitizerMask Mask;
1048 if (!SrcSigned && !DstSigned) {
1049 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1050 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1051 } else {
1052 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1053 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1054 }
1055
1056 llvm::Value *Check = nullptr;
1057 // 1. Extend the truncated value back to the same width as the Src.
1058 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1059 // 2. Equality-compare with the original source value
1060 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1061 // If the comparison result is 'i1 false', then the truncation was lossy.
1062 return std::make_pair(Kind, std::make_pair(Check, Mask));
1063}
1064
1066 QualType SrcType, QualType DstType) {
1067 return SrcType->isIntegerType() && DstType->isIntegerType();
1068}
1069
1070void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1071 Value *Dst, QualType DstType,
1073 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1074 return;
1075
1076 // We only care about int->int conversions here.
1077 // We ignore conversions to/from pointer and/or bool.
1079 DstType))
1080 return;
1081
1082 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1083 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1084 // This must be truncation. Else we do not care.
1085 if (SrcBits <= DstBits)
1086 return;
1087
1088 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1089
1090 // If the integer sign change sanitizer is enabled,
1091 // and we are truncating from larger unsigned type to smaller signed type,
1092 // let that next sanitizer deal with it.
1093 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1094 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1095 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1096 (!SrcSigned && DstSigned))
1097 return;
1098
1099 CodeGenFunction::SanitizerScope SanScope(&CGF);
1100
1101 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1102 std::pair<llvm::Value *, SanitizerMask>>
1103 Check =
1104 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1105 // If the comparison result is 'i1 false', then the truncation was lossy.
1106
1107 // Do we care about this type of truncation?
1108 if (!CGF.SanOpts.has(Check.second.second))
1109 return;
1110
1111 llvm::Constant *StaticArgs[] = {
1113 CGF.EmitCheckTypeDescriptor(DstType),
1114 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first),
1115 llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1116
1117 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1118 {Src, Dst});
1119}
1120
1121static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1122 const char *Name,
1123 CGBuilderTy &Builder) {
1124 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1125 llvm::Type *VTy = V->getType();
1126 if (!VSigned) {
1127 // If the value is unsigned, then it is never negative.
1128 return llvm::ConstantInt::getFalse(VTy->getContext());
1129 }
1130 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1131 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1132 llvm::Twine(Name) + "." + V->getName() +
1133 ".negativitycheck");
1134}
1135
1136// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1137// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1138static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1139 std::pair<llvm::Value *, SanitizerMask>>
1141 QualType DstType, CGBuilderTy &Builder) {
1142 llvm::Type *SrcTy = Src->getType();
1143 llvm::Type *DstTy = Dst->getType();
1144
1145 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1146 "non-integer llvm type");
1147
1148 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1149 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1150 (void)SrcSigned; // Only used in assert()
1151 (void)DstSigned; // Only used in assert()
1152 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1153 unsigned DstBits = DstTy->getScalarSizeInBits();
1154 (void)SrcBits; // Only used in assert()
1155 (void)DstBits; // Only used in assert()
1156
1157 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1158 "either the widths should be different, or the signednesses.");
1159
1160 // 1. Was the old Value negative?
1161 llvm::Value *SrcIsNegative =
1162 EmitIsNegativeTestHelper(Src, SrcType, "src", Builder);
1163 // 2. Is the new Value negative?
1164 llvm::Value *DstIsNegative =
1165 EmitIsNegativeTestHelper(Dst, DstType, "dst", Builder);
1166 // 3. Now, was the 'negativity status' preserved during the conversion?
1167 // NOTE: conversion from negative to zero is considered to change the sign.
1168 // (We want to get 'false' when the conversion changed the sign)
1169 // So we should just equality-compare the negativity statuses.
1170 llvm::Value *Check = nullptr;
1171 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1172 // If the comparison result is 'false', then the conversion changed the sign.
1173 return std::make_pair(
1174 ScalarExprEmitter::ICCK_IntegerSignChange,
1175 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1176}
1177
1178void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1179 Value *Dst, QualType DstType,
1181 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1182 return;
1183
1184 llvm::Type *SrcTy = Src->getType();
1185 llvm::Type *DstTy = Dst->getType();
1186
1187 // We only care about int->int conversions here.
1188 // We ignore conversions to/from pointer and/or bool.
1190 DstType))
1191 return;
1192
1193 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1194 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1195 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1196 unsigned DstBits = DstTy->getScalarSizeInBits();
1197
1198 // Now, we do not need to emit the check in *all* of the cases.
1199 // We can avoid emitting it in some obvious cases where it would have been
1200 // dropped by the opt passes (instcombine) always anyways.
1201 // If it's a cast between effectively the same type, no check.
1202 // NOTE: this is *not* equivalent to checking the canonical types.
1203 if (SrcSigned == DstSigned && SrcBits == DstBits)
1204 return;
1205 // At least one of the values needs to have signed type.
1206 // If both are unsigned, then obviously, neither of them can be negative.
1207 if (!SrcSigned && !DstSigned)
1208 return;
1209 // If the conversion is to *larger* *signed* type, then no check is needed.
1210 // Because either sign-extension happens (so the sign will remain),
1211 // or zero-extension will happen (the sign bit will be zero.)
1212 if ((DstBits > SrcBits) && DstSigned)
1213 return;
1214 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1215 (SrcBits > DstBits) && SrcSigned) {
1216 // If the signed integer truncation sanitizer is enabled,
1217 // and this is a truncation from signed type, then no check is needed.
1218 // Because here sign change check is interchangeable with truncation check.
1219 return;
1220 }
1221 // That's it. We can't rule out any more cases with the data we have.
1222
1223 CodeGenFunction::SanitizerScope SanScope(&CGF);
1224
1225 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1226 std::pair<llvm::Value *, SanitizerMask>>
1227 Check;
1228
1229 // Each of these checks needs to return 'false' when an issue was detected.
1230 ImplicitConversionCheckKind CheckKind;
1232 // So we can 'and' all the checks together, and still get 'false',
1233 // if at least one of the checks detected an issue.
1234
1235 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1236 CheckKind = Check.first;
1237 Checks.emplace_back(Check.second);
1238
1239 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1240 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1241 // If the signed integer truncation sanitizer was enabled,
1242 // and we are truncating from larger unsigned type to smaller signed type,
1243 // let's handle the case we skipped in that check.
1244 Check =
1245 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1246 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1247 Checks.emplace_back(Check.second);
1248 // If the comparison result is 'i1 false', then the truncation was lossy.
1249 }
1250
1251 llvm::Constant *StaticArgs[] = {
1253 CGF.EmitCheckTypeDescriptor(DstType),
1254 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1255 llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1256 // EmitCheck() will 'and' all the checks together.
1257 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1258 {Src, Dst});
1259}
1260
1261// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1262// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1263static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1264 std::pair<llvm::Value *, SanitizerMask>>
1266 QualType DstType, CGBuilderTy &Builder) {
1267 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1268 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1269
1270 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1271 if (!SrcSigned && !DstSigned)
1272 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1273 else
1274 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1275
1276 llvm::Value *Check = nullptr;
1277 // 1. Extend the truncated value back to the same width as the Src.
1278 Check = Builder.CreateIntCast(Dst, Src->getType(), DstSigned, "bf.anyext");
1279 // 2. Equality-compare with the original source value
1280 Check = Builder.CreateICmpEQ(Check, Src, "bf.truncheck");
1281 // If the comparison result is 'i1 false', then the truncation was lossy.
1282
1283 return std::make_pair(
1284 Kind, std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1285}
1286
1287// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1288// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1289static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1290 std::pair<llvm::Value *, SanitizerMask>>
1292 QualType DstType, CGBuilderTy &Builder) {
1293 // 1. Was the old Value negative?
1294 llvm::Value *SrcIsNegative =
1295 EmitIsNegativeTestHelper(Src, SrcType, "bf.src", Builder);
1296 // 2. Is the new Value negative?
1297 llvm::Value *DstIsNegative =
1298 EmitIsNegativeTestHelper(Dst, DstType, "bf.dst", Builder);
1299 // 3. Now, was the 'negativity status' preserved during the conversion?
1300 // NOTE: conversion from negative to zero is considered to change the sign.
1301 // (We want to get 'false' when the conversion changed the sign)
1302 // So we should just equality-compare the negativity statuses.
1303 llvm::Value *Check = nullptr;
1304 Check =
1305 Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "bf.signchangecheck");
1306 // If the comparison result is 'false', then the conversion changed the sign.
1307 return std::make_pair(
1308 ScalarExprEmitter::ICCK_IntegerSignChange,
1309 std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1310}
1311
1312void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1313 Value *Dst, QualType DstType,
1314 const CGBitFieldInfo &Info,
1316
1317 if (!SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
1318 return;
1319
1320 // We only care about int->int conversions here.
1321 // We ignore conversions to/from pointer and/or bool.
1323 DstType))
1324 return;
1325
1326 if (DstType->isBooleanType() || SrcType->isBooleanType())
1327 return;
1328
1329 // This should be truncation of integral types.
1330 assert(isa<llvm::IntegerType>(Src->getType()) &&
1331 isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1332
1333 // TODO: Calculate src width to avoid emitting code
1334 // for unecessary cases.
1335 unsigned SrcBits = ConvertType(SrcType)->getScalarSizeInBits();
1336 unsigned DstBits = Info.Size;
1337
1338 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1339 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1340
1341 CodeGenFunction::SanitizerScope SanScope(this);
1342
1343 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1344 std::pair<llvm::Value *, SanitizerMask>>
1345 Check;
1346
1347 // Truncation
1348 bool EmitTruncation = DstBits < SrcBits;
1349 // If Dst is signed and Src unsigned, we want to be more specific
1350 // about the CheckKind we emit, in this case we want to emit
1351 // ICCK_SignedIntegerTruncationOrSignChange.
1352 bool EmitTruncationFromUnsignedToSigned =
1353 EmitTruncation && DstSigned && !SrcSigned;
1354 // Sign change
1355 bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1356 bool BothUnsigned = !SrcSigned && !DstSigned;
1357 bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1358 // We can avoid emitting sign change checks in some obvious cases
1359 // 1. If Src and Dst have the same signedness and size
1360 // 2. If both are unsigned sign check is unecessary!
1361 // 3. If Dst is signed and bigger than Src, either
1362 // sign-extension or zero-extension will make sure
1363 // the sign remains.
1364 bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1365
1366 if (EmitTruncation)
1367 Check =
1368 EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1369 else if (EmitSignChange) {
1370 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1371 "either the widths should be different, or the signednesses.");
1372 Check =
1373 EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1374 } else
1375 return;
1376
1377 ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1378 if (EmitTruncationFromUnsignedToSigned)
1379 CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1380
1381 llvm::Constant *StaticArgs[] = {
1383 EmitCheckTypeDescriptor(DstType),
1384 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1385 llvm::ConstantInt::get(Builder.getInt32Ty(), Info.Size)};
1386
1387 EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1388 {Src, Dst});
1389}
1390
1391Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1392 QualType DstType, llvm::Type *SrcTy,
1393 llvm::Type *DstTy,
1394 ScalarConversionOpts Opts) {
1395 // The Element types determine the type of cast to perform.
1396 llvm::Type *SrcElementTy;
1397 llvm::Type *DstElementTy;
1398 QualType SrcElementType;
1399 QualType DstElementType;
1400 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1401 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1402 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1403 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1404 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1405 } else {
1406 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1407 "cannot cast between matrix and non-matrix types");
1408 SrcElementTy = SrcTy;
1409 DstElementTy = DstTy;
1410 SrcElementType = SrcType;
1411 DstElementType = DstType;
1412 }
1413
1414 if (isa<llvm::IntegerType>(SrcElementTy)) {
1415 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1416 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1417 InputSigned = true;
1418 }
1419
1420 if (isa<llvm::IntegerType>(DstElementTy))
1421 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422 if (InputSigned)
1423 return Builder.CreateSIToFP(Src, DstTy, "conv");
1424 return Builder.CreateUIToFP(Src, DstTy, "conv");
1425 }
1426
1427 if (isa<llvm::IntegerType>(DstElementTy)) {
1428 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1429 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1430
1431 // If we can't recognize overflow as undefined behavior, assume that
1432 // overflow saturates. This protects against normal optimizations if we are
1433 // compiling with non-standard FP semantics.
1434 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1435 llvm::Intrinsic::ID IID =
1436 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1437 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1438 }
1439
1440 if (IsSigned)
1441 return Builder.CreateFPToSI(Src, DstTy, "conv");
1442 return Builder.CreateFPToUI(Src, DstTy, "conv");
1443 }
1444
1445 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1446 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1447 return Builder.CreateFPExt(Src, DstTy, "conv");
1448}
1449
1450/// Emit a conversion from the specified type to the specified destination type,
1451/// both of which are LLVM scalar types.
1452Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1453 QualType DstType,
1455 ScalarConversionOpts Opts) {
1456 // All conversions involving fixed point types should be handled by the
1457 // EmitFixedPoint family functions. This is done to prevent bloating up this
1458 // function more, and although fixed point numbers are represented by
1459 // integers, we do not want to follow any logic that assumes they should be
1460 // treated as integers.
1461 // TODO(leonardchan): When necessary, add another if statement checking for
1462 // conversions to fixed point types from other types.
1463 if (SrcType->isFixedPointType()) {
1464 if (DstType->isBooleanType())
1465 // It is important that we check this before checking if the dest type is
1466 // an integer because booleans are technically integer types.
1467 // We do not need to check the padding bit on unsigned types if unsigned
1468 // padding is enabled because overflow into this bit is undefined
1469 // behavior.
1470 return Builder.CreateIsNotNull(Src, "tobool");
1471 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1472 DstType->isRealFloatingType())
1473 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1474
1475 llvm_unreachable(
1476 "Unhandled scalar conversion from a fixed point type to another type.");
1477 } else if (DstType->isFixedPointType()) {
1478 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1479 // This also includes converting booleans and enums to fixed point types.
1480 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1481
1482 llvm_unreachable(
1483 "Unhandled scalar conversion to a fixed point type from another type.");
1484 }
1485
1486 QualType NoncanonicalSrcType = SrcType;
1487 QualType NoncanonicalDstType = DstType;
1488
1489 SrcType = CGF.getContext().getCanonicalType(SrcType);
1490 DstType = CGF.getContext().getCanonicalType(DstType);
1491 if (SrcType == DstType) return Src;
1492
1493 if (DstType->isVoidType()) return nullptr;
1494
1495 llvm::Value *OrigSrc = Src;
1496 QualType OrigSrcType = SrcType;
1497 llvm::Type *SrcTy = Src->getType();
1498
1499 // Handle conversions to bool first, they are special: comparisons against 0.
1500 if (DstType->isBooleanType())
1501 return EmitConversionToBool(Src, SrcType);
1502
1503 llvm::Type *DstTy = ConvertType(DstType);
1504
1505 // Cast from half through float if half isn't a native type.
1506 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1507 // Cast to FP using the intrinsic if the half type itself isn't supported.
1508 if (DstTy->isFloatingPointTy()) {
1510 return Builder.CreateCall(
1511 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1512 Src);
1513 } else {
1514 // Cast to other types through float, using either the intrinsic or FPExt,
1515 // depending on whether the half type itself is supported
1516 // (as opposed to operations on half, available with NativeHalfType).
1518 Src = Builder.CreateCall(
1519 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1520 CGF.CGM.FloatTy),
1521 Src);
1522 } else {
1523 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1524 }
1525 SrcType = CGF.getContext().FloatTy;
1526 SrcTy = CGF.FloatTy;
1527 }
1528 }
1529
1530 // Ignore conversions like int -> uint.
1531 if (SrcTy == DstTy) {
1532 if (Opts.EmitImplicitIntegerSignChangeChecks)
1533 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1534 NoncanonicalDstType, Loc);
1535
1536 return Src;
1537 }
1538
1539 // Handle pointer conversions next: pointers can only be converted to/from
1540 // other pointers and integers. Check for pointer types in terms of LLVM, as
1541 // some native types (like Obj-C id) may map to a pointer type.
1542 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1543 // The source value may be an integer, or a pointer.
1544 if (isa<llvm::PointerType>(SrcTy))
1545 return Src;
1546
1547 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1548 // First, convert to the correct width so that we control the kind of
1549 // extension.
1550 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1551 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1552 llvm::Value* IntResult =
1553 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1554 // Then, cast to pointer.
1555 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1556 }
1557
1558 if (isa<llvm::PointerType>(SrcTy)) {
1559 // Must be an ptr to int cast.
1560 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1561 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1562 }
1563
1564 // A scalar can be splatted to an extended vector of the same element type
1565 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1566 // Sema should add casts to make sure that the source expression's type is
1567 // the same as the vector's element type (sans qualifiers)
1568 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1569 SrcType.getTypePtr() &&
1570 "Splatted expr doesn't match with vector element type?");
1571
1572 // Splat the element across to all elements
1573 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1574 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1575 }
1576
1577 if (SrcType->isMatrixType() && DstType->isMatrixType())
1578 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1579
1580 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1581 // Allow bitcast from vector to integer/fp of the same size.
1582 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1583 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1584 if (SrcSize == DstSize)
1585 return Builder.CreateBitCast(Src, DstTy, "conv");
1586
1587 // Conversions between vectors of different sizes are not allowed except
1588 // when vectors of half are involved. Operations on storage-only half
1589 // vectors require promoting half vector operands to float vectors and
1590 // truncating the result, which is either an int or float vector, to a
1591 // short or half vector.
1592
1593 // Source and destination are both expected to be vectors.
1594 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1595 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1596 (void)DstElementTy;
1597
1598 assert(((SrcElementTy->isIntegerTy() &&
1599 DstElementTy->isIntegerTy()) ||
1600 (SrcElementTy->isFloatingPointTy() &&
1601 DstElementTy->isFloatingPointTy())) &&
1602 "unexpected conversion between a floating-point vector and an "
1603 "integer vector");
1604
1605 // Truncate an i32 vector to an i16 vector.
1606 if (SrcElementTy->isIntegerTy())
1607 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1608
1609 // Truncate a float vector to a half vector.
1610 if (SrcSize > DstSize)
1611 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1612
1613 // Promote a half vector to a float vector.
1614 return Builder.CreateFPExt(Src, DstTy, "conv");
1615 }
1616
1617 // Finally, we have the arithmetic types: real int/float.
1618 Value *Res = nullptr;
1619 llvm::Type *ResTy = DstTy;
1620
1621 // An overflowing conversion has undefined behavior if either the source type
1622 // or the destination type is a floating-point type. However, we consider the
1623 // range of representable values for all floating-point types to be
1624 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1625 // floating-point type.
1626 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1627 OrigSrcType->isFloatingType())
1628 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1629 Loc);
1630
1631 // Cast to half through float if half isn't a native type.
1632 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1633 // Make sure we cast in a single step if from another FP type.
1634 if (SrcTy->isFloatingPointTy()) {
1635 // Use the intrinsic if the half type itself isn't supported
1636 // (as opposed to operations on half, available with NativeHalfType).
1638 return Builder.CreateCall(
1639 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1640 // If the half type is supported, just use an fptrunc.
1641 return Builder.CreateFPTrunc(Src, DstTy);
1642 }
1643 DstTy = CGF.FloatTy;
1644 }
1645
1646 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1647
1648 if (DstTy != ResTy) {
1650 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1651 Res = Builder.CreateCall(
1652 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1653 Res);
1654 } else {
1655 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1656 }
1657 }
1658
1659 if (Opts.EmitImplicitIntegerTruncationChecks)
1660 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1661 NoncanonicalDstType, Loc);
1662
1663 if (Opts.EmitImplicitIntegerSignChangeChecks)
1664 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1665 NoncanonicalDstType, Loc);
1666
1667 return Res;
1668}
1669
1670Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1671 QualType DstTy,
1673 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1674 llvm::Value *Result;
1675 if (SrcTy->isRealFloatingType())
1676 Result = FPBuilder.CreateFloatingToFixed(Src,
1677 CGF.getContext().getFixedPointSemantics(DstTy));
1678 else if (DstTy->isRealFloatingType())
1679 Result = FPBuilder.CreateFixedToFloating(Src,
1681 ConvertType(DstTy));
1682 else {
1683 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1684 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1685
1686 if (DstTy->isIntegerType())
1687 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1688 DstFPSema.getWidth(),
1689 DstFPSema.isSigned());
1690 else if (SrcTy->isIntegerType())
1691 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1692 DstFPSema);
1693 else
1694 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1695 }
1696 return Result;
1697}
1698
1699/// Emit a conversion from the specified complex type to the specified
1700/// destination type, where the destination type is an LLVM scalar type.
1701Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1704 // Get the source element type.
1705 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1706
1707 // Handle conversions to bool first, they are special: comparisons against 0.
1708 if (DstTy->isBooleanType()) {
1709 // Complex != 0 -> (Real != 0) | (Imag != 0)
1710 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1711 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1712 return Builder.CreateOr(Src.first, Src.second, "tobool");
1713 }
1714
1715 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1716 // the imaginary part of the complex value is discarded and the value of the
1717 // real part is converted according to the conversion rules for the
1718 // corresponding real type.
1719 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1720}
1721
1722Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1723 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1724}
1725
1726/// Emit a sanitization check for the given "binary" operation (which
1727/// might actually be a unary increment which has been lowered to a binary
1728/// operation). The check passes if all values in \p Checks (which are \c i1),
1729/// are \c true.
1730void ScalarExprEmitter::EmitBinOpCheck(
1731 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1732 assert(CGF.IsSanitizerScope);
1733 SanitizerHandler Check;
1736
1737 BinaryOperatorKind Opcode = Info.Opcode;
1740
1741 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1742 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1743 if (UO && UO->getOpcode() == UO_Minus) {
1744 Check = SanitizerHandler::NegateOverflow;
1745 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1746 DynamicData.push_back(Info.RHS);
1747 } else {
1748 if (BinaryOperator::isShiftOp(Opcode)) {
1749 // Shift LHS negative or too large, or RHS out of bounds.
1750 Check = SanitizerHandler::ShiftOutOfBounds;
1751 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1752 StaticData.push_back(
1753 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1754 StaticData.push_back(
1755 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1756 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1757 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1758 Check = SanitizerHandler::DivremOverflow;
1759 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1760 } else {
1761 // Arithmetic overflow (+, -, *).
1762 switch (Opcode) {
1763 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1764 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1765 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1766 default: llvm_unreachable("unexpected opcode for bin op check");
1767 }
1768 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1769 }
1770 DynamicData.push_back(Info.LHS);
1771 DynamicData.push_back(Info.RHS);
1772 }
1773
1774 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1775}
1776
1777//===----------------------------------------------------------------------===//
1778// Visitor Methods
1779//===----------------------------------------------------------------------===//
1780
1781Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1782 CGF.ErrorUnsupported(E, "scalar expression");
1783 if (E->getType()->isVoidType())
1784 return nullptr;
1785 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1786}
1787
1788Value *
1789ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1790 ASTContext &Context = CGF.getContext();
1791 unsigned AddrSpace =
1793 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1794 E->ComputeName(Context), "__usn_str", AddrSpace);
1795
1796 llvm::Type *ExprTy = ConvertType(E->getType());
1797 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1798 "usn_addr_cast");
1799}
1800
1801Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1802 assert(E->getDataElementCount() == 1);
1803 auto It = E->begin();
1804 return Builder.getInt((*It)->getValue());
1805}
1806
1807Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1808 // Vector Mask Case
1809 if (E->getNumSubExprs() == 2) {
1810 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1811 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1812 Value *Mask;
1813
1814 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1815 unsigned LHSElts = LTy->getNumElements();
1816
1817 Mask = RHS;
1818
1819 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1820
1821 // Mask off the high bits of each shuffle index.
1822 Value *MaskBits =
1823 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1824 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1825
1826 // newv = undef
1827 // mask = mask & maskbits
1828 // for each elt
1829 // n = extract mask i
1830 // x = extract val n
1831 // newv = insert newv, x, i
1832 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1833 MTy->getNumElements());
1834 Value* NewV = llvm::PoisonValue::get(RTy);
1835 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1836 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1837 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1838
1839 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1840 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1841 }
1842 return NewV;
1843 }
1844
1845 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1846 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1847
1848 SmallVector<int, 32> Indices;
1849 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1850 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1851 // Check for -1 and output it as undef in the IR.
1852 if (Idx.isSigned() && Idx.isAllOnes())
1853 Indices.push_back(-1);
1854 else
1855 Indices.push_back(Idx.getZExtValue());
1856 }
1857
1858 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1859}
1860
1861Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1862 QualType SrcType = E->getSrcExpr()->getType(),
1863 DstType = E->getType();
1864
1865 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1866
1867 SrcType = CGF.getContext().getCanonicalType(SrcType);
1868 DstType = CGF.getContext().getCanonicalType(DstType);
1869 if (SrcType == DstType) return Src;
1870
1871 assert(SrcType->isVectorType() &&
1872 "ConvertVector source type must be a vector");
1873 assert(DstType->isVectorType() &&
1874 "ConvertVector destination type must be a vector");
1875
1876 llvm::Type *SrcTy = Src->getType();
1877 llvm::Type *DstTy = ConvertType(DstType);
1878
1879 // Ignore conversions like int -> uint.
1880 if (SrcTy == DstTy)
1881 return Src;
1882
1883 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1884 DstEltType = DstType->castAs<VectorType>()->getElementType();
1885
1886 assert(SrcTy->isVectorTy() &&
1887 "ConvertVector source IR type must be a vector");
1888 assert(DstTy->isVectorTy() &&
1889 "ConvertVector destination IR type must be a vector");
1890
1891 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1892 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1893
1894 if (DstEltType->isBooleanType()) {
1895 assert((SrcEltTy->isFloatingPointTy() ||
1896 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1897
1898 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1899 if (SrcEltTy->isFloatingPointTy()) {
1900 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1901 } else {
1902 return Builder.CreateICmpNE(Src, Zero, "tobool");
1903 }
1904 }
1905
1906 // We have the arithmetic types: real int/float.
1907 Value *Res = nullptr;
1908
1909 if (isa<llvm::IntegerType>(SrcEltTy)) {
1910 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1911 if (isa<llvm::IntegerType>(DstEltTy))
1912 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1913 else if (InputSigned)
1914 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1915 else
1916 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1917 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1918 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1919 if (DstEltType->isSignedIntegerOrEnumerationType())
1920 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1921 else
1922 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1923 } else {
1924 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1925 "Unknown real conversion");
1926 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1927 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1928 else
1929 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1930 }
1931
1932 return Res;
1933}
1934
1935Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1936 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1937 CGF.EmitIgnoredExpr(E->getBase());
1938 return CGF.emitScalarConstant(Constant, E);
1939 } else {
1942 llvm::APSInt Value = Result.Val.getInt();
1943 CGF.EmitIgnoredExpr(E->getBase());
1944 return Builder.getInt(Value);
1945 }
1946 }
1947
1948 llvm::Value *Result = EmitLoadOfLValue(E);
1949
1950 // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
1951 // debug info for the pointer, even if there is no variable associated with
1952 // the pointer's expression.
1953 if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
1954 if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Result)) {
1955 if (llvm::GetElementPtrInst *GEP =
1956 dyn_cast<llvm::GetElementPtrInst>(Load->getPointerOperand())) {
1957 if (llvm::Instruction *Pointer =
1958 dyn_cast<llvm::Instruction>(GEP->getPointerOperand())) {
1959 QualType Ty = E->getBase()->getType();
1960 if (!E->isArrow())
1961 Ty = CGF.getContext().getPointerType(Ty);
1962 CGF.getDebugInfo()->EmitPseudoVariable(Builder, Pointer, Ty);
1963 }
1964 }
1965 }
1966 }
1967 return Result;
1968}
1969
1970Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1971 TestAndClearIgnoreResultAssign();
1972
1973 // Emit subscript expressions in rvalue context's. For most cases, this just
1974 // loads the lvalue formed by the subscript expr. However, we have to be
1975 // careful, because the base of a vector subscript is occasionally an rvalue,
1976 // so we can't get it as an lvalue.
1977 if (!E->getBase()->getType()->isVectorType() &&
1978 !E->getBase()->getType()->isSveVLSBuiltinType())
1979 return EmitLoadOfLValue(E);
1980
1981 // Handle the vector case. The base must be a vector, the index must be an
1982 // integer value.
1983 Value *Base = Visit(E->getBase());
1984 Value *Idx = Visit(E->getIdx());
1985 QualType IdxTy = E->getIdx()->getType();
1986
1987 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1988 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1989
1990 return Builder.CreateExtractElement(Base, Idx, "vecext");
1991}
1992
1993Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1994 TestAndClearIgnoreResultAssign();
1995
1996 // Handle the vector case. The base must be a vector, the index must be an
1997 // integer value.
1998 Value *RowIdx = Visit(E->getRowIdx());
1999 Value *ColumnIdx = Visit(E->getColumnIdx());
2000
2001 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2002 unsigned NumRows = MatrixTy->getNumRows();
2003 llvm::MatrixBuilder MB(Builder);
2004 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2005 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2006 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
2007
2008 Value *Matrix = Visit(E->getBase());
2009
2010 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2011 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
2012}
2013
2014static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2015 unsigned Off) {
2016 int MV = SVI->getMaskValue(Idx);
2017 if (MV == -1)
2018 return -1;
2019 return Off + MV;
2020}
2021
2022static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2023 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2024 "Index operand too large for shufflevector mask!");
2025 return C->getZExtValue();
2026}
2027
2028Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2029 bool Ignore = TestAndClearIgnoreResultAssign();
2030 (void)Ignore;
2031 assert (Ignore == false && "init list ignored");
2032 unsigned NumInitElements = E->getNumInits();
2033
2034 if (E->hadArrayRangeDesignator())
2035 CGF.ErrorUnsupported(E, "GNU array range designator extension");
2036
2037 llvm::VectorType *VType =
2038 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
2039
2040 if (!VType) {
2041 if (NumInitElements == 0) {
2042 // C++11 value-initialization for the scalar.
2043 return EmitNullValue(E->getType());
2044 }
2045 // We have a scalar in braces. Just use the first element.
2046 return Visit(E->getInit(0));
2047 }
2048
2049 if (isa<llvm::ScalableVectorType>(VType)) {
2050 if (NumInitElements == 0) {
2051 // C++11 value-initialization for the vector.
2052 return EmitNullValue(E->getType());
2053 }
2054
2055 if (NumInitElements == 1) {
2056 Expr *InitVector = E->getInit(0);
2057
2058 // Initialize from another scalable vector of the same type.
2059 if (InitVector->getType() == E->getType())
2060 return Visit(InitVector);
2061 }
2062
2063 llvm_unreachable("Unexpected initialization of a scalable vector!");
2064 }
2065
2066 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
2067
2068 // Loop over initializers collecting the Value for each, and remembering
2069 // whether the source was swizzle (ExtVectorElementExpr). This will allow
2070 // us to fold the shuffle for the swizzle into the shuffle for the vector
2071 // initializer, since LLVM optimizers generally do not want to touch
2072 // shuffles.
2073 unsigned CurIdx = 0;
2074 bool VIsPoisonShuffle = false;
2075 llvm::Value *V = llvm::PoisonValue::get(VType);
2076 for (unsigned i = 0; i != NumInitElements; ++i) {
2077 Expr *IE = E->getInit(i);
2078 Value *Init = Visit(IE);
2080
2081 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
2082
2083 // Handle scalar elements. If the scalar initializer is actually one
2084 // element of a different vector of the same width, use shuffle instead of
2085 // extract+insert.
2086 if (!VVT) {
2087 if (isa<ExtVectorElementExpr>(IE)) {
2088 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2089
2090 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
2091 ->getNumElements() == ResElts) {
2092 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
2093 Value *LHS = nullptr, *RHS = nullptr;
2094 if (CurIdx == 0) {
2095 // insert into poison -> shuffle (src, poison)
2096 // shufflemask must use an i32
2097 Args.push_back(getAsInt32(C, CGF.Int32Ty));
2098 Args.resize(ResElts, -1);
2099
2100 LHS = EI->getVectorOperand();
2101 RHS = V;
2102 VIsPoisonShuffle = true;
2103 } else if (VIsPoisonShuffle) {
2104 // insert into poison shuffle && size match -> shuffle (v, src)
2105 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
2106 for (unsigned j = 0; j != CurIdx; ++j)
2107 Args.push_back(getMaskElt(SVV, j, 0));
2108 Args.push_back(ResElts + C->getZExtValue());
2109 Args.resize(ResElts, -1);
2110
2111 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2112 RHS = EI->getVectorOperand();
2113 VIsPoisonShuffle = false;
2114 }
2115 if (!Args.empty()) {
2116 V = Builder.CreateShuffleVector(LHS, RHS, Args);
2117 ++CurIdx;
2118 continue;
2119 }
2120 }
2121 }
2122 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
2123 "vecinit");
2124 VIsPoisonShuffle = false;
2125 ++CurIdx;
2126 continue;
2127 }
2128
2129 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
2130
2131 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2132 // input is the same width as the vector being constructed, generate an
2133 // optimized shuffle of the swizzle input into the result.
2134 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2135 if (isa<ExtVectorElementExpr>(IE)) {
2136 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
2137 Value *SVOp = SVI->getOperand(0);
2138 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
2139
2140 if (OpTy->getNumElements() == ResElts) {
2141 for (unsigned j = 0; j != CurIdx; ++j) {
2142 // If the current vector initializer is a shuffle with poison, merge
2143 // this shuffle directly into it.
2144 if (VIsPoisonShuffle) {
2145 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
2146 } else {
2147 Args.push_back(j);
2148 }
2149 }
2150 for (unsigned j = 0, je = InitElts; j != je; ++j)
2151 Args.push_back(getMaskElt(SVI, j, Offset));
2152 Args.resize(ResElts, -1);
2153
2154 if (VIsPoisonShuffle)
2155 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2156
2157 Init = SVOp;
2158 }
2159 }
2160
2161 // Extend init to result vector length, and then shuffle its contribution
2162 // to the vector initializer into V.
2163 if (Args.empty()) {
2164 for (unsigned j = 0; j != InitElts; ++j)
2165 Args.push_back(j);
2166 Args.resize(ResElts, -1);
2167 Init = Builder.CreateShuffleVector(Init, Args, "vext");
2168
2169 Args.clear();
2170 for (unsigned j = 0; j != CurIdx; ++j)
2171 Args.push_back(j);
2172 for (unsigned j = 0; j != InitElts; ++j)
2173 Args.push_back(j + Offset);
2174 Args.resize(ResElts, -1);
2175 }
2176
2177 // If V is poison, make sure it ends up on the RHS of the shuffle to aid
2178 // merging subsequent shuffles into this one.
2179 if (CurIdx == 0)
2180 std::swap(V, Init);
2181 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2182 VIsPoisonShuffle = isa<llvm::PoisonValue>(Init);
2183 CurIdx += InitElts;
2184 }
2185
2186 // FIXME: evaluate codegen vs. shuffling against constant null vector.
2187 // Emit remaining default initializers.
2188 llvm::Type *EltTy = VType->getElementType();
2189
2190 // Emit remaining default initializers
2191 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2192 Value *Idx = Builder.getInt32(CurIdx);
2193 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2194 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2195 }
2196 return V;
2197}
2198
2200 const Expr *E = CE->getSubExpr();
2201
2202 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2203 return false;
2204
2205 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2206 // We always assume that 'this' is never null.
2207 return false;
2208 }
2209
2210 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2211 // And that glvalue casts are never null.
2212 if (ICE->isGLValue())
2213 return false;
2214 }
2215
2216 return true;
2217}
2218
2219// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2220// have to handle a more broad range of conversions than explicit casts, as they
2221// handle things like function to ptr-to-function decay etc.
2222Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2223 Expr *E = CE->getSubExpr();
2224 QualType DestTy = CE->getType();
2225 CastKind Kind = CE->getCastKind();
2226 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2227
2228 // These cases are generally not written to ignore the result of
2229 // evaluating their sub-expressions, so we clear this now.
2230 bool Ignored = TestAndClearIgnoreResultAssign();
2231
2232 // Since almost all cast kinds apply to scalars, this switch doesn't have
2233 // a default case, so the compiler will warn on a missing case. The cases
2234 // are in the same order as in the CastKind enum.
2235 switch (Kind) {
2236 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2237 case CK_BuiltinFnToFnPtr:
2238 llvm_unreachable("builtin functions are handled elsewhere");
2239
2240 case CK_LValueBitCast:
2241 case CK_ObjCObjectLValueCast: {
2242 Address Addr = EmitLValue(E).getAddress();
2243 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2244 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2245 return EmitLoadOfLValue(LV, CE->getExprLoc());
2246 }
2247
2248 case CK_LValueToRValueBitCast: {
2249 LValue SourceLVal = CGF.EmitLValue(E);
2250 Address Addr =
2251 SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
2252 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2254 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2255 }
2256
2257 case CK_CPointerToObjCPointerCast:
2258 case CK_BlockPointerToObjCPointerCast:
2259 case CK_AnyPointerToBlockPointerCast:
2260 case CK_BitCast: {
2261 Value *Src = Visit(const_cast<Expr*>(E));
2262 llvm::Type *SrcTy = Src->getType();
2263 llvm::Type *DstTy = ConvertType(DestTy);
2264 assert(
2265 (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2266 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2267 "Address-space cast must be used to convert address spaces");
2268
2269 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2270 if (auto *PT = DestTy->getAs<PointerType>()) {
2272 PT->getPointeeType(),
2273 Address(Src,
2276 CGF.getPointerAlign()),
2277 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2278 CE->getBeginLoc());
2279 }
2280 }
2281
2282 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2283 const QualType SrcType = E->getType();
2284
2285 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2286 // Casting to pointer that could carry dynamic information (provided by
2287 // invariant.group) requires launder.
2288 Src = Builder.CreateLaunderInvariantGroup(Src);
2289 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2290 // Casting to pointer that does not carry dynamic information (provided
2291 // by invariant.group) requires stripping it. Note that we don't do it
2292 // if the source could not be dynamic type and destination could be
2293 // dynamic because dynamic information is already laundered. It is
2294 // because launder(strip(src)) == launder(src), so there is no need to
2295 // add extra strip before launder.
2296 Src = Builder.CreateStripInvariantGroup(Src);
2297 }
2298 }
2299
2300 // Update heapallocsite metadata when there is an explicit pointer cast.
2301 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2302 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2303 !isa<CastExpr>(E)) {
2304 QualType PointeeType = DestTy->getPointeeType();
2305 if (!PointeeType.isNull())
2306 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2307 CE->getExprLoc());
2308 }
2309 }
2310
2311 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2312 // same element type, use the llvm.vector.insert intrinsic to perform the
2313 // bitcast.
2314 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2315 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2316 // If we are casting a fixed i8 vector to a scalable i1 predicate
2317 // vector, use a vector insert and bitcast the result.
2318 if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
2319 ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
2320 FixedSrcTy->getElementType()->isIntegerTy(8)) {
2321 ScalableDstTy = llvm::ScalableVectorType::get(
2322 FixedSrcTy->getElementType(),
2323 ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2324 }
2325 if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2326 llvm::Value *UndefVec = llvm::UndefValue::get(ScalableDstTy);
2327 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2328 llvm::Value *Result = Builder.CreateInsertVector(
2329 ScalableDstTy, UndefVec, Src, Zero, "cast.scalable");
2330 if (Result->getType() != DstTy)
2331 Result = Builder.CreateBitCast(Result, DstTy);
2332 return Result;
2333 }
2334 }
2335 }
2336
2337 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2338 // same element type, use the llvm.vector.extract intrinsic to perform the
2339 // bitcast.
2340 if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2341 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2342 // If we are casting a scalable i1 predicate vector to a fixed i8
2343 // vector, bitcast the source and use a vector extract.
2344 if (ScalableSrcTy->getElementType()->isIntegerTy(1) &&
2345 ScalableSrcTy->getElementCount().isKnownMultipleOf(8) &&
2346 FixedDstTy->getElementType()->isIntegerTy(8)) {
2347 ScalableSrcTy = llvm::ScalableVectorType::get(
2348 FixedDstTy->getElementType(),
2349 ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2350 Src = Builder.CreateBitCast(Src, ScalableSrcTy);
2351 }
2352 if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2353 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2354 return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2355 }
2356 }
2357 }
2358
2359 // Perform VLAT <-> VLST bitcast through memory.
2360 // TODO: since the llvm.vector.{insert,extract} intrinsics
2361 // require the element types of the vectors to be the same, we
2362 // need to keep this around for bitcasts between VLAT <-> VLST where
2363 // the element types of the vectors are not the same, until we figure
2364 // out a better way of doing these casts.
2365 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2366 isa<llvm::ScalableVectorType>(DstTy)) ||
2367 (isa<llvm::ScalableVectorType>(SrcTy) &&
2368 isa<llvm::FixedVectorType>(DstTy))) {
2369 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2370 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2371 CGF.EmitStoreOfScalar(Src, LV);
2372 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2373 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2375 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2376 }
2377
2378 llvm::Value *Result = Builder.CreateBitCast(Src, DstTy);
2379 return CGF.authPointerToPointerCast(Result, E->getType(), DestTy);
2380 }
2381 case CK_AddressSpaceConversion: {
2383 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2384 Result.Val.isNullPointer()) {
2385 // If E has side effect, it is emitted even if its final result is a
2386 // null pointer. In that case, a DCE pass should be able to
2387 // eliminate the useless instructions emitted during translating E.
2388 if (Result.HasSideEffects)
2389 Visit(E);
2390 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2391 ConvertType(DestTy)), DestTy);
2392 }
2393 // Since target may map different address spaces in AST to the same address
2394 // space, an address space conversion may end up as a bitcast.
2396 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2397 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2398 }
2399 case CK_AtomicToNonAtomic:
2400 case CK_NonAtomicToAtomic:
2401 case CK_UserDefinedConversion:
2402 return Visit(const_cast<Expr*>(E));
2403
2404 case CK_NoOp: {
2405 return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2406 : Visit(const_cast<Expr *>(E));
2407 }
2408
2409 case CK_BaseToDerived: {
2410 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2411 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2412
2414 Address Derived =
2415 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2416 CE->path_begin(), CE->path_end(),
2418
2419 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2420 // performed and the object is not of the derived type.
2421 if (CGF.sanitizePerformTypeCheck())
2423 Derived, DestTy->getPointeeType());
2424
2425 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2426 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2427 /*MayBeNull=*/true,
2429 CE->getBeginLoc());
2430
2431 return CGF.getAsNaturalPointerTo(Derived, CE->getType()->getPointeeType());
2432 }
2433 case CK_UncheckedDerivedToBase:
2434 case CK_DerivedToBase: {
2435 // The EmitPointerWithAlignment path does this fine; just discard
2436 // the alignment.
2438 CE->getType()->getPointeeType());
2439 }
2440
2441 case CK_Dynamic: {
2443 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2444 return CGF.EmitDynamicCast(V, DCE);
2445 }
2446
2447 case CK_ArrayToPointerDecay:
2449 CE->getType()->getPointeeType());
2450 case CK_FunctionToPointerDecay:
2451 return EmitLValue(E).getPointer(CGF);
2452
2453 case CK_NullToPointer:
2454 if (MustVisitNullValue(E))
2455 CGF.EmitIgnoredExpr(E);
2456
2457 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2458 DestTy);
2459
2460 case CK_NullToMemberPointer: {
2461 if (MustVisitNullValue(E))
2462 CGF.EmitIgnoredExpr(E);
2463
2464 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2465 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2466 }
2467
2468 case CK_ReinterpretMemberPointer:
2469 case CK_BaseToDerivedMemberPointer:
2470 case CK_DerivedToBaseMemberPointer: {
2471 Value *Src = Visit(E);
2472
2473 // Note that the AST doesn't distinguish between checked and
2474 // unchecked member pointer conversions, so we always have to
2475 // implement checked conversions here. This is inefficient when
2476 // actual control flow may be required in order to perform the
2477 // check, which it is for data member pointers (but not member
2478 // function pointers on Itanium and ARM).
2479 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2480 }
2481
2482 case CK_ARCProduceObject:
2483 return CGF.EmitARCRetainScalarExpr(E);
2484 case CK_ARCConsumeObject:
2485 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2486 case CK_ARCReclaimReturnedObject:
2487 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2488 case CK_ARCExtendBlockObject:
2489 return CGF.EmitARCExtendBlockObject(E);
2490
2491 case CK_CopyAndAutoreleaseBlockObject:
2492 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2493
2494 case CK_FloatingRealToComplex:
2495 case CK_FloatingComplexCast:
2496 case CK_IntegralRealToComplex:
2497 case CK_IntegralComplexCast:
2498 case CK_IntegralComplexToFloatingComplex:
2499 case CK_FloatingComplexToIntegralComplex:
2500 case CK_ConstructorConversion:
2501 case CK_ToUnion:
2502 case CK_HLSLArrayRValue:
2503 llvm_unreachable("scalar cast to non-scalar value");
2504
2505 case CK_LValueToRValue:
2506 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2507 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2508 return Visit(const_cast<Expr*>(E));
2509
2510 case CK_IntegralToPointer: {
2511 Value *Src = Visit(const_cast<Expr*>(E));
2512
2513 // First, convert to the correct width so that we control the kind of
2514 // extension.
2515 auto DestLLVMTy = ConvertType(DestTy);
2516 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2517 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2518 llvm::Value* IntResult =
2519 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2520
2521 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2522
2523 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2524 // Going from integer to pointer that could be dynamic requires reloading
2525 // dynamic information from invariant.group.
2526 if (DestTy.mayBeDynamicClass())
2527 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2528 }
2529
2530 IntToPtr = CGF.authPointerToPointerCast(IntToPtr, E->getType(), DestTy);
2531 return IntToPtr;
2532 }
2533 case CK_PointerToIntegral: {
2534 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2535 auto *PtrExpr = Visit(E);
2536
2537 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2538 const QualType SrcType = E->getType();
2539
2540 // Casting to integer requires stripping dynamic information as it does
2541 // not carries it.
2542 if (SrcType.mayBeDynamicClass())
2543 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2544 }
2545
2546 PtrExpr = CGF.authPointerToPointerCast(PtrExpr, E->getType(), DestTy);
2547 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2548 }
2549 case CK_ToVoid: {
2550 CGF.EmitIgnoredExpr(E);
2551 return nullptr;
2552 }
2553 case CK_MatrixCast: {
2554 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2555 CE->getExprLoc());
2556 }
2557 case CK_VectorSplat: {
2558 llvm::Type *DstTy = ConvertType(DestTy);
2559 Value *Elt = Visit(const_cast<Expr *>(E));
2560 // Splat the element across to all elements
2561 llvm::ElementCount NumElements =
2562 cast<llvm::VectorType>(DstTy)->getElementCount();
2563 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2564 }
2565
2566 case CK_FixedPointCast:
2567 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2568 CE->getExprLoc());
2569
2570 case CK_FixedPointToBoolean:
2571 assert(E->getType()->isFixedPointType() &&
2572 "Expected src type to be fixed point type");
2573 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2574 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2575 CE->getExprLoc());
2576
2577 case CK_FixedPointToIntegral:
2578 assert(E->getType()->isFixedPointType() &&
2579 "Expected src type to be fixed point type");
2580 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2581 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2582 CE->getExprLoc());
2583
2584 case CK_IntegralToFixedPoint:
2585 assert(E->getType()->isIntegerType() &&
2586 "Expected src type to be an integer");
2587 assert(DestTy->isFixedPointType() &&
2588 "Expected dest type to be fixed point type");
2589 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2590 CE->getExprLoc());
2591
2592 case CK_IntegralCast: {
2593 if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2594 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2595 return Builder.CreateIntCast(Visit(E), ConvertType(DestTy),
2597 "conv");
2598 }
2599 ScalarConversionOpts Opts;
2600 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2601 if (!ICE->isPartOfExplicitCast())
2602 Opts = ScalarConversionOpts(CGF.SanOpts);
2603 }
2604 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2605 CE->getExprLoc(), Opts);
2606 }
2607 case CK_IntegralToFloating: {
2608 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2609 // TODO: Support constrained FP intrinsics.
2610 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2611 if (SrcElTy->isSignedIntegerOrEnumerationType())
2612 return Builder.CreateSIToFP(Visit(E), ConvertType(DestTy), "conv");
2613 return Builder.CreateUIToFP(Visit(E), ConvertType(DestTy), "conv");
2614 }
2615 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2616 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2617 CE->getExprLoc());
2618 }
2619 case CK_FloatingToIntegral: {
2620 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2621 // TODO: Support constrained FP intrinsics.
2622 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2623 if (DstElTy->isSignedIntegerOrEnumerationType())
2624 return Builder.CreateFPToSI(Visit(E), ConvertType(DestTy), "conv");
2625 return Builder.CreateFPToUI(Visit(E), ConvertType(DestTy), "conv");
2626 }
2627 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2628 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2629 CE->getExprLoc());
2630 }
2631 case CK_FloatingCast: {
2632 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2633 // TODO: Support constrained FP intrinsics.
2634 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2635 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2636 if (DstElTy->castAs<BuiltinType>()->getKind() <
2637 SrcElTy->castAs<BuiltinType>()->getKind())
2638 return Builder.CreateFPTrunc(Visit(E), ConvertType(DestTy), "conv");
2639 return Builder.CreateFPExt(Visit(E), ConvertType(DestTy), "conv");
2640 }
2641 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2642 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2643 CE->getExprLoc());
2644 }
2645 case CK_FixedPointToFloating:
2646 case CK_FloatingToFixedPoint: {
2647 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2648 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2649 CE->getExprLoc());
2650 }
2651 case CK_BooleanToSignedIntegral: {
2652 ScalarConversionOpts Opts;
2653 Opts.TreatBooleanAsSigned = true;
2654 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2655 CE->getExprLoc(), Opts);
2656 }
2657 case CK_IntegralToBoolean:
2658 return EmitIntToBoolConversion(Visit(E));
2659 case CK_PointerToBoolean:
2660 return EmitPointerToBoolConversion(Visit(E), E->getType());
2661 case CK_FloatingToBoolean: {
2662 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2663 return EmitFloatToBoolConversion(Visit(E));
2664 }
2665 case CK_MemberPointerToBoolean: {
2666 llvm::Value *MemPtr = Visit(E);
2668 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2669 }
2670
2671 case CK_FloatingComplexToReal:
2672 case CK_IntegralComplexToReal:
2673 return CGF.EmitComplexExpr(E, false, true).first;
2674
2675 case CK_FloatingComplexToBoolean:
2676 case CK_IntegralComplexToBoolean: {
2678
2679 // TODO: kill this function off, inline appropriate case here
2680 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2681 CE->getExprLoc());
2682 }
2683
2684 case CK_ZeroToOCLOpaqueType: {
2685 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2686 DestTy->isOCLIntelSubgroupAVCType()) &&
2687 "CK_ZeroToOCLEvent cast on non-event type");
2688 return llvm::Constant::getNullValue(ConvertType(DestTy));
2689 }
2690
2691 case CK_IntToOCLSampler:
2692 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2693
2694 case CK_HLSLVectorTruncation: {
2695 assert(DestTy->isVectorType() && "Expected dest type to be vector type");
2696 Value *Vec = Visit(const_cast<Expr *>(E));
2698 unsigned NumElts = DestTy->castAs<VectorType>()->getNumElements();
2699 for (unsigned I = 0; I != NumElts; ++I)
2700 Mask.push_back(I);
2701
2702 return Builder.CreateShuffleVector(Vec, Mask, "trunc");
2703 }
2704
2705 } // end of switch
2706
2707 llvm_unreachable("unknown scalar cast");
2708}
2709
2710Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2711 CodeGenFunction::StmtExprEvaluation eval(CGF);
2712 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2713 !E->getType()->isVoidType());
2714 if (!RetAlloca.isValid())
2715 return nullptr;
2716 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2717 E->getExprLoc());
2718}
2719
2720Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2721 CodeGenFunction::RunCleanupsScope Scope(CGF);
2722 Value *V = Visit(E->getSubExpr());
2723 // Defend against dominance problems caused by jumps out of expression
2724 // evaluation through the shared cleanup block.
2725 Scope.ForceCleanup({&V});
2726 return V;
2727}
2728
2729//===----------------------------------------------------------------------===//
2730// Unary Operators
2731//===----------------------------------------------------------------------===//
2732
2734 llvm::Value *InVal, bool IsInc,
2735 FPOptions FPFeatures) {
2736 BinOpInfo BinOp;
2737 BinOp.LHS = InVal;
2738 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2739 BinOp.Ty = E->getType();
2740 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2741 BinOp.FPFeatures = FPFeatures;
2742 BinOp.E = E;
2743 return BinOp;
2744}
2745
2746llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2747 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2748 llvm::Value *Amount =
2749 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2750 StringRef Name = IsInc ? "inc" : "dec";
2751 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2753 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2754 return Builder.CreateAdd(InVal, Amount, Name);
2755 [[fallthrough]];
2757 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2758 return Builder.CreateNSWAdd(InVal, Amount, Name);
2759 [[fallthrough]];
2761 if (!E->canOverflow())
2762 return Builder.CreateNSWAdd(InVal, Amount, Name);
2763 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2764 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2765 }
2766 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2767}
2768
2769namespace {
2770/// Handles check and update for lastprivate conditional variables.
2771class OMPLastprivateConditionalUpdateRAII {
2772private:
2773 CodeGenFunction &CGF;
2774 const UnaryOperator *E;
2775
2776public:
2777 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2778 const UnaryOperator *E)
2779 : CGF(CGF), E(E) {}
2780 ~OMPLastprivateConditionalUpdateRAII() {
2781 if (CGF.getLangOpts().OpenMP)
2783 CGF, E->getSubExpr());
2784 }
2785};
2786} // namespace
2787
2788llvm::Value *
2789ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2790 bool isInc, bool isPre) {
2791 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2792 QualType type = E->getSubExpr()->getType();
2793 llvm::PHINode *atomicPHI = nullptr;
2794 llvm::Value *value;
2795 llvm::Value *input;
2796 llvm::Value *Previous = nullptr;
2797 QualType SrcType = E->getType();
2798
2799 int amount = (isInc ? 1 : -1);
2800 bool isSubtraction = !isInc;
2801
2802 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2803 type = atomicTy->getValueType();
2804 if (isInc && type->isBooleanType()) {
2805 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2806 if (isPre) {
2807 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2808 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2809 return Builder.getTrue();
2810 }
2811 // For atomic bool increment, we just store true and return it for
2812 // preincrement, do an atomic swap with true for postincrement
2813 return Builder.CreateAtomicRMW(
2814 llvm::AtomicRMWInst::Xchg, LV.getAddress(), True,
2815 llvm::AtomicOrdering::SequentiallyConsistent);
2816 }
2817 // Special case for atomic increment / decrement on integers, emit
2818 // atomicrmw instructions. We skip this if we want to be doing overflow
2819 // checking, and fall into the slow path with the atomic cmpxchg loop.
2820 if (!type->isBooleanType() && type->isIntegerType() &&
2821 !(type->isUnsignedIntegerType() &&
2822 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2823 CGF.getLangOpts().getSignedOverflowBehavior() !=
2825 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2826 llvm::AtomicRMWInst::Sub;
2827 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2828 llvm::Instruction::Sub;
2829 llvm::Value *amt = CGF.EmitToMemory(
2830 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2831 llvm::Value *old =
2832 Builder.CreateAtomicRMW(aop, LV.getAddress(), amt,
2833 llvm::AtomicOrdering::SequentiallyConsistent);
2834 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2835 }
2836 // Special case for atomic increment/decrement on floats
2837 if (type->isFloatingType()) {
2838 llvm::AtomicRMWInst::BinOp aop =
2839 isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2840 llvm::Instruction::BinaryOps op =
2841 isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2842 llvm::Value *amt = llvm::ConstantFP::get(
2843 VMContext, llvm::APFloat(static_cast<float>(1.0)));
2844 llvm::AtomicRMWInst *old =
2845 CGF.emitAtomicRMWInst(aop, LV.getAddress(), amt,
2846 llvm::AtomicOrdering::SequentiallyConsistent);
2847
2848 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2849 }
2850 value = EmitLoadOfLValue(LV, E->getExprLoc());
2851 input = value;
2852 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2853 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2854 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2855 value = CGF.EmitToMemory(value, type);
2856 Builder.CreateBr(opBB);
2857 Builder.SetInsertPoint(opBB);
2858 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2859 atomicPHI->addIncoming(value, startBB);
2860 value = atomicPHI;
2861 } else {
2862 value = EmitLoadOfLValue(LV, E->getExprLoc());
2863 input = value;
2864 }
2865
2866 // Special case of integer increment that we have to check first: bool++.
2867 // Due to promotion rules, we get:
2868 // bool++ -> bool = bool + 1
2869 // -> bool = (int)bool + 1
2870 // -> bool = ((int)bool + 1 != 0)
2871 // An interesting aspect of this is that increment is always true.
2872 // Decrement does not have this property.
2873 if (isInc && type->isBooleanType()) {
2874 value = Builder.getTrue();
2875
2876 // Most common case by far: integer increment.
2877 } else if (type->isIntegerType()) {
2878 QualType promotedType;
2879 bool canPerformLossyDemotionCheck = false;
2881 promotedType = CGF.getContext().getPromotedIntegerType(type);
2882 assert(promotedType != type && "Shouldn't promote to the same type.");
2883 canPerformLossyDemotionCheck = true;
2884 canPerformLossyDemotionCheck &=
2886 CGF.getContext().getCanonicalType(promotedType);
2887 canPerformLossyDemotionCheck &=
2889 type, promotedType);
2890 assert((!canPerformLossyDemotionCheck ||
2891 type->isSignedIntegerOrEnumerationType() ||
2892 promotedType->isSignedIntegerOrEnumerationType() ||
2893 ConvertType(type)->getScalarSizeInBits() ==
2894 ConvertType(promotedType)->getScalarSizeInBits()) &&
2895 "The following check expects that if we do promotion to different "
2896 "underlying canonical type, at least one of the types (either "
2897 "base or promoted) will be signed, or the bitwidths will match.");
2898 }
2899 if (CGF.SanOpts.hasOneOf(
2900 SanitizerKind::ImplicitIntegerArithmeticValueChange |
2901 SanitizerKind::ImplicitBitfieldConversion) &&
2902 canPerformLossyDemotionCheck) {
2903 // While `x += 1` (for `x` with width less than int) is modeled as
2904 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2905 // ease; inc/dec with width less than int can't overflow because of
2906 // promotion rules, so we omit promotion+demotion, which means that we can
2907 // not catch lossy "demotion". Because we still want to catch these cases
2908 // when the sanitizer is enabled, we perform the promotion, then perform
2909 // the increment/decrement in the wider type, and finally
2910 // perform the demotion. This will catch lossy demotions.
2911
2912 // We have a special case for bitfields defined using all the bits of the
2913 // type. In this case we need to do the same trick as for the integer
2914 // sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
2915
2916 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2917 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2918 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2919 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2920 // emitted if LV is not a bitfield, otherwise the bitfield sanitizer
2921 // checks will take care of the conversion.
2922 ScalarConversionOpts Opts;
2923 if (!LV.isBitField())
2924 Opts = ScalarConversionOpts(CGF.SanOpts);
2925 else if (CGF.SanOpts.has(SanitizerKind::ImplicitBitfieldConversion)) {
2926 Previous = value;
2927 SrcType = promotedType;
2928 }
2929
2930 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2931 Opts);
2932
2933 // Note that signed integer inc/dec with width less than int can't
2934 // overflow because of promotion rules; we're just eliding a few steps
2935 // here.
2936 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2937 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2938 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2939 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2940 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2941 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2942 } else {
2943 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2944 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2945 }
2946
2947 // Next most common: pointer increment.
2948 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2949 QualType type = ptr->getPointeeType();
2950
2951 // VLA types don't have constant size.
2952 if (const VariableArrayType *vla
2954 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2955 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2956 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2958 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2959 else
2960 value = CGF.EmitCheckedInBoundsGEP(
2961 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2962 E->getExprLoc(), "vla.inc");
2963
2964 // Arithmetic on function pointers (!) is just +-1.
2965 } else if (type->isFunctionType()) {
2966 llvm::Value *amt = Builder.getInt32(amount);
2967
2969 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2970 else
2971 value =
2972 CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2973 /*SignedIndices=*/false, isSubtraction,
2974 E->getExprLoc(), "incdec.funcptr");
2975
2976 // For everything else, we can just do a simple increment.
2977 } else {
2978 llvm::Value *amt = Builder.getInt32(amount);
2979 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2981 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2982 else
2983 value = CGF.EmitCheckedInBoundsGEP(
2984 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2985 E->getExprLoc(), "incdec.ptr");
2986 }
2987
2988 // Vector increment/decrement.
2989 } else if (type->isVectorType()) {
2990 if (type->hasIntegerRepresentation()) {
2991 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2992
2993 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2994 } else {
2995 value = Builder.CreateFAdd(
2996 value,
2997 llvm::ConstantFP::get(value->getType(), amount),
2998 isInc ? "inc" : "dec");
2999 }
3000
3001 // Floating point.
3002 } else if (type->isRealFloatingType()) {
3003 // Add the inc/dec to the real part.
3004 llvm::Value *amt;
3005 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3006
3007 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3008 // Another special case: half FP increment should be done via float
3010 value = Builder.CreateCall(
3011 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
3012 CGF.CGM.FloatTy),
3013 input, "incdec.conv");
3014 } else {
3015 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
3016 }
3017 }
3018
3019 if (value->getType()->isFloatTy())
3020 amt = llvm::ConstantFP::get(VMContext,
3021 llvm::APFloat(static_cast<float>(amount)));
3022 else if (value->getType()->isDoubleTy())
3023 amt = llvm::ConstantFP::get(VMContext,
3024 llvm::APFloat(static_cast<double>(amount)));
3025 else {
3026 // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3027 // Convert from float.
3028 llvm::APFloat F(static_cast<float>(amount));
3029 bool ignored;
3030 const llvm::fltSemantics *FS;
3031 // Don't use getFloatTypeSemantics because Half isn't
3032 // necessarily represented using the "half" LLVM type.
3033 if (value->getType()->isFP128Ty())
3034 FS = &CGF.getTarget().getFloat128Format();
3035 else if (value->getType()->isHalfTy())
3036 FS = &CGF.getTarget().getHalfFormat();
3037 else if (value->getType()->isBFloatTy())
3038 FS = &CGF.getTarget().getBFloat16Format();
3039 else if (value->getType()->isPPC_FP128Ty())
3040 FS = &CGF.getTarget().getIbm128Format();
3041 else
3042 FS = &CGF.getTarget().getLongDoubleFormat();
3043 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
3044 amt = llvm::ConstantFP::get(VMContext, F);
3045 }
3046 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
3047
3048 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3050 value = Builder.CreateCall(
3051 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
3052 CGF.CGM.FloatTy),
3053 value, "incdec.conv");
3054 } else {
3055 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
3056 }
3057 }
3058
3059 // Fixed-point types.
3060 } else if (type->isFixedPointType()) {
3061 // Fixed-point types are tricky. In some cases, it isn't possible to
3062 // represent a 1 or a -1 in the type at all. Piggyback off of
3063 // EmitFixedPointBinOp to avoid having to reimplement saturation.
3064 BinOpInfo Info;
3065 Info.E = E;
3066 Info.Ty = E->getType();
3067 Info.Opcode = isInc ? BO_Add : BO_Sub;
3068 Info.LHS = value;
3069 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
3070 // If the type is signed, it's better to represent this as +(-1) or -(-1),
3071 // since -1 is guaranteed to be representable.
3072 if (type->isSignedFixedPointType()) {
3073 Info.Opcode = isInc ? BO_Sub : BO_Add;
3074 Info.RHS = Builder.CreateNeg(Info.RHS);
3075 }
3076 // Now, convert from our invented integer literal to the type of the unary
3077 // op. This will upscale and saturate if necessary. This value can become
3078 // undef in some cases.
3079 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3080 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
3081 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
3082 value = EmitFixedPointBinOp(Info);
3083
3084 // Objective-C pointer types.
3085 } else {
3086 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3087
3089 if (!isInc) size = -size;
3090 llvm::Value *sizeValue =
3091 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
3092
3094 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
3095 else
3096 value = CGF.EmitCheckedInBoundsGEP(
3097 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
3098 E->getExprLoc(), "incdec.objptr");
3099 value = Builder.CreateBitCast(value, input->getType());
3100 }
3101
3102 if (atomicPHI) {
3103 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3104 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3105 auto Pair = CGF.EmitAtomicCompareExchange(
3106 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
3107 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
3108 llvm::Value *success = Pair.second;
3109 atomicPHI->addIncoming(old, curBlock);
3110 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3111 Builder.SetInsertPoint(contBB);
3112 return isPre ? value : input;
3113 }
3114
3115 // Store the updated result through the lvalue.
3116 if (LV.isBitField()) {
3117 Value *Src = Previous ? Previous : value;
3118 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
3119 CGF.EmitBitfieldConversionCheck(Src, SrcType, value, E->getType(),
3120 LV.getBitFieldInfo(), E->getExprLoc());
3121 } else
3122 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
3123
3124 // If this is a postinc, return the value read from memory, otherwise use the
3125 // updated value.
3126 return isPre ? value : input;
3127}
3128
3129
3130Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3131 QualType PromotionType) {
3132 QualType promotionTy = PromotionType.isNull()
3133 ? getPromotionType(E->getSubExpr()->getType())
3134 : PromotionType;
3135 Value *result = VisitPlus(E, promotionTy);
3136 if (result && !promotionTy.isNull())
3137 result = EmitUnPromotedValue(result, E->getType());
3138 return result;
3139}
3140
3141Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3142 QualType PromotionType) {
3143 // This differs from gcc, though, most likely due to a bug in gcc.
3144 TestAndClearIgnoreResultAssign();
3145 if (!PromotionType.isNull())
3146 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3147 return Visit(E->getSubExpr());
3148}
3149
3150Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3151 QualType PromotionType) {
3152 QualType promotionTy = PromotionType.isNull()
3153 ? getPromotionType(E->getSubExpr()->getType())
3154 : PromotionType;
3155 Value *result = VisitMinus(E, promotionTy);
3156 if (result && !promotionTy.isNull())
3157 result = EmitUnPromotedValue(result, E->getType());
3158 return result;
3159}
3160
3161Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3162 QualType PromotionType) {
3163 TestAndClearIgnoreResultAssign();
3164 Value *Op;
3165 if (!PromotionType.isNull())
3166 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3167 else
3168 Op = Visit(E->getSubExpr());
3169
3170 // Generate a unary FNeg for FP ops.
3171 if (Op->getType()->isFPOrFPVectorTy())
3172 return Builder.CreateFNeg(Op, "fneg");
3173
3174 // Emit unary minus with EmitSub so we handle overflow cases etc.
3175 BinOpInfo BinOp;
3176 BinOp.RHS = Op;
3177 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
3178 BinOp.Ty = E->getType();
3179 BinOp.Opcode = BO_Sub;
3180 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3181 BinOp.E = E;
3182 return EmitSub(BinOp);
3183}
3184
3185Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3186 TestAndClearIgnoreResultAssign();
3187 Value *Op = Visit(E->getSubExpr());
3188 return Builder.CreateNot(Op, "not");
3189}
3190
3191Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3192 // Perform vector logical not on comparison with zero vector.
3193 if (E->getType()->isVectorType() &&
3196 Value *Oper = Visit(E->getSubExpr());
3197 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
3198 Value *Result;
3199 if (Oper->getType()->isFPOrFPVectorTy()) {
3200 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3201 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
3202 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
3203 } else
3204 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
3205 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3206 }
3207
3208 // Compare operand to zero.
3209 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
3210
3211 // Invert value.
3212 // TODO: Could dynamically modify easy computations here. For example, if
3213 // the operand is an icmp ne, turn into icmp eq.
3214 BoolVal = Builder.CreateNot(BoolVal, "lnot");
3215
3216 // ZExt result to the expr type.
3217 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
3218}
3219
3220Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3221 // Try folding the offsetof to a constant.
3222 Expr::EvalResult EVResult;
3223 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
3224 llvm::APSInt Value = EVResult.Val.getInt();
3225 return Builder.getInt(Value);
3226 }
3227
3228 // Loop over the components of the offsetof to compute the value.
3229 unsigned n = E->getNumComponents();
3230 llvm::Type* ResultType = ConvertType(E->getType());
3231 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
3232 QualType CurrentType = E->getTypeSourceInfo()->getType();
3233 for (unsigned i = 0; i != n; ++i) {
3234 OffsetOfNode ON = E->getComponent(i);
3235 llvm::Value *Offset = nullptr;
3236 switch (ON.getKind()) {
3237 case OffsetOfNode::Array: {
3238 // Compute the index
3239 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
3240 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
3241 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3242 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
3243
3244 // Save the element type
3245 CurrentType =
3246 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
3247
3248 // Compute the element size
3249 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
3250 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
3251
3252 // Multiply out to compute the result
3253 Offset = Builder.CreateMul(Idx, ElemSize);
3254 break;
3255 }
3256
3257 case OffsetOfNode::Field: {
3258 FieldDecl *MemberDecl = ON.getField();
3259 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3260 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3261
3262 // Compute the index of the field in its parent.
3263 unsigned i = 0;
3264 // FIXME: It would be nice if we didn't have to loop here!
3265 for (RecordDecl::field_iterator Field = RD->field_begin(),
3266 FieldEnd = RD->field_end();
3267 Field != FieldEnd; ++Field, ++i) {
3268 if (*Field == MemberDecl)
3269 break;
3270 }
3271 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3272
3273 // Compute the offset to the field
3274 int64_t OffsetInt = RL.getFieldOffset(i) /
3275 CGF.getContext().getCharWidth();
3276 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3277
3278 // Save the element type.
3279 CurrentType = MemberDecl->getType();
3280 break;
3281 }
3282
3284 llvm_unreachable("dependent __builtin_offsetof");
3285
3286 case OffsetOfNode::Base: {
3287 if (ON.getBase()->isVirtual()) {
3288 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3289 continue;
3290 }
3291
3292 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3293 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3294
3295 // Save the element type.
3296 CurrentType = ON.getBase()->getType();
3297
3298 // Compute the offset to the base.
3299 auto *BaseRT = CurrentType->castAs<RecordType>();
3300 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3301 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3302 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3303 break;
3304 }
3305 }
3306 Result = Builder.CreateAdd(Result, Offset);
3307 }
3308 return Result;
3309}
3310
3311/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3312/// argument of the sizeof expression as an integer.
3313Value *
3314ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3315 const UnaryExprOrTypeTraitExpr *E) {
3316 QualType TypeToSize = E->getTypeOfArgument();
3317 if (auto Kind = E->getKind();
3318 Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3319 if (const VariableArrayType *VAT =
3320 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3321 if (E->isArgumentType()) {
3322 // sizeof(type) - make sure to emit the VLA size.
3323 CGF.EmitVariablyModifiedType(TypeToSize);
3324 } else {
3325 // C99 6.5.3.4p2: If the argument is an expression of type
3326 // VLA, it is evaluated.
3327 CGF.EmitIgnoredExpr(E->getArgumentExpr());
3328 }
3329
3330 auto VlaSize = CGF.getVLASize(VAT);
3331 llvm::Value *size = VlaSize.NumElts;
3332
3333 // Scale the number of non-VLA elements by the non-VLA element size.
3334 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3335 if (!eltSize.isOne())
3336 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3337
3338 return size;
3339 }
3340 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3341 auto Alignment =
3342 CGF.getContext()
3344 E->getTypeOfArgument()->getPointeeType()))
3345 .getQuantity();
3346 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3347 } else if (E->getKind() == UETT_VectorElements) {
3348 auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3349 return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3350 }
3351
3352 // If this isn't sizeof(vla), the result must be constant; use the constant
3353 // folding logic so we don't have to duplicate it here.
3354 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3355}
3356
3357Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3358 QualType PromotionType) {
3359 QualType promotionTy = PromotionType.isNull()
3360 ? getPromotionType(E->getSubExpr()->getType())
3361 : PromotionType;
3362 Value *result = VisitReal(E, promotionTy);
3363 if (result && !promotionTy.isNull())
3364 result = EmitUnPromotedValue(result, E->getType());
3365 return result;
3366}
3367
3368Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3369 QualType PromotionType) {
3370 Expr *Op = E->getSubExpr();
3371 if (Op->getType()->isAnyComplexType()) {
3372 // If it's an l-value, load through the appropriate subobject l-value.
3373 // Note that we have to ask E because Op might be an l-value that
3374 // this won't work for, e.g. an Obj-C property.
3375 if (E->isGLValue()) {
3376 if (!PromotionType.isNull()) {
3378 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3379 if (result.first)
3380 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3381 return result.first;
3382 } else {
3383 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3384 .getScalarVal();
3385 }
3386 }
3387 // Otherwise, calculate and project.
3388 return CGF.EmitComplexExpr(Op, false, true).first;
3389 }
3390
3391 if (!PromotionType.isNull())
3392 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3393 return Visit(Op);
3394}
3395
3396Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3397 QualType PromotionType) {
3398 QualType promotionTy = PromotionType.isNull()
3399 ? getPromotionType(E->getSubExpr()->getType())
3400 : PromotionType;
3401 Value *result = VisitImag(E, promotionTy);
3402 if (result && !promotionTy.isNull())
3403 result = EmitUnPromotedValue(result, E->getType());
3404 return result;
3405}
3406
3407Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3408 QualType PromotionType) {
3409 Expr *Op = E->getSubExpr();
3410 if (Op->getType()->isAnyComplexType()) {
3411 // If it's an l-value, load through the appropriate subobject l-value.
3412 // Note that we have to ask E because Op might be an l-value that
3413 // this won't work for, e.g. an Obj-C property.
3414 if (Op->isGLValue()) {
3415 if (!PromotionType.isNull()) {
3417 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3418 if (result.second)
3419 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3420 return result.second;
3421 } else {
3422 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3423 .getScalarVal();
3424 }
3425 }
3426 // Otherwise, calculate and project.
3427 return CGF.EmitComplexExpr(Op, true, false).second;
3428 }
3429
3430 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3431 // effects are evaluated, but not the actual value.
3432 if (Op->isGLValue())
3433 CGF.EmitLValue(Op);
3434 else if (!PromotionType.isNull())
3435 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3436 else
3437 CGF.EmitScalarExpr(Op, true);
3438 if (!PromotionType.isNull())
3439 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3440 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3441}
3442
3443//===----------------------------------------------------------------------===//
3444// Binary Operators
3445//===----------------------------------------------------------------------===//
3446
3447Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3448 QualType PromotionType) {
3449 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3450}
3451
3452Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3453 QualType ExprType) {
3454 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3455}
3456
3457Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3458 E = E->IgnoreParens();
3459 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3460 switch (BO->getOpcode()) {
3461#define HANDLE_BINOP(OP) \
3462 case BO_##OP: \
3463 return Emit##OP(EmitBinOps(BO, PromotionType));
3464 HANDLE_BINOP(Add)
3465 HANDLE_BINOP(Sub)
3466 HANDLE_BINOP(Mul)
3467 HANDLE_BINOP(Div)
3468#undef HANDLE_BINOP
3469 default:
3470 break;
3471 }
3472 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3473 switch (UO->getOpcode()) {
3474 case UO_Imag:
3475 return VisitImag(UO, PromotionType);
3476 case UO_Real:
3477 return VisitReal(UO, PromotionType);
3478 case UO_Minus:
3479 return VisitMinus(UO, PromotionType);
3480 case UO_Plus:
3481 return VisitPlus(UO, PromotionType);
3482 default:
3483 break;
3484 }
3485 }
3486 auto result = Visit(const_cast<Expr *>(E));
3487 if (result) {
3488 if (!PromotionType.isNull())
3489 return EmitPromotedValue(result, PromotionType);
3490 else
3491 return EmitUnPromotedValue(result, E->getType());
3492 }
3493 return result;
3494}
3495
3496BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3497 QualType PromotionType) {
3498 TestAndClearIgnoreResultAssign();
3499 BinOpInfo Result;
3500 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3501 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3502 if (!PromotionType.isNull())
3503 Result.Ty = PromotionType;
3504 else
3505 Result.Ty = E->getType();
3506 Result.Opcode = E->getOpcode();
3507 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3508 Result.E = E;
3509 return Result;
3510}
3511
3512LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3514 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3515 Value *&Result) {
3516 QualType LHSTy = E->getLHS()->getType();
3517 BinOpInfo OpInfo;
3518
3519 if (E->getComputationResultType()->isAnyComplexType())
3521
3522 // Emit the RHS first. __block variables need to have the rhs evaluated
3523 // first, plus this should improve codegen a little.
3524
3525 QualType PromotionTypeCR;
3526 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3527 if (PromotionTypeCR.isNull())
3528 PromotionTypeCR = E->getComputationResultType();
3529 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3530 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3531 if (!PromotionTypeRHS.isNull())
3532 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3533 else
3534 OpInfo.RHS = Visit(E->getRHS());
3535 OpInfo.Ty = PromotionTypeCR;
3536 OpInfo.Opcode = E->getOpcode();
3537 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3538 OpInfo.E = E;
3539 // Load/convert the LHS.
3540 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3541
3542 llvm::PHINode *atomicPHI = nullptr;
3543 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3544 QualType type = atomicTy->getValueType();
3545 if (!type->isBooleanType() && type->isIntegerType() &&
3546 !(type->isUnsignedIntegerType() &&
3547 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3548 CGF.getLangOpts().getSignedOverflowBehavior() !=
3550 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3551 llvm::Instruction::BinaryOps Op;
3552 switch (OpInfo.Opcode) {
3553 // We don't have atomicrmw operands for *, %, /, <<, >>
3554 case BO_MulAssign: case BO_DivAssign:
3555 case BO_RemAssign:
3556 case BO_ShlAssign:
3557 case BO_ShrAssign:
3558 break;
3559 case BO_AddAssign:
3560 AtomicOp = llvm::AtomicRMWInst::Add;
3561 Op = llvm::Instruction::Add;
3562 break;
3563 case BO_SubAssign:
3564 AtomicOp = llvm::AtomicRMWInst::Sub;
3565 Op = llvm::Instruction::Sub;
3566 break;
3567 case BO_AndAssign:
3568 AtomicOp = llvm::AtomicRMWInst::And;
3569 Op = llvm::Instruction::And;
3570 break;
3571 case BO_XorAssign:
3572 AtomicOp = llvm::AtomicRMWInst::Xor;
3573 Op = llvm::Instruction::Xor;
3574 break;
3575 case BO_OrAssign:
3576 AtomicOp = llvm::AtomicRMWInst::Or;
3577 Op = llvm::Instruction::Or;
3578 break;
3579 default:
3580 llvm_unreachable("Invalid compound assignment type");
3581 }
3582 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3583 llvm::Value *Amt = CGF.EmitToMemory(
3584 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3585 E->getExprLoc()),
3586 LHSTy);
3587
3588 llvm::AtomicRMWInst *OldVal =
3589 CGF.emitAtomicRMWInst(AtomicOp, LHSLV.getAddress(), Amt);
3590
3591 // Since operation is atomic, the result type is guaranteed to be the
3592 // same as the input in LLVM terms.
3593 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3594 return LHSLV;
3595 }
3596 }
3597 // FIXME: For floating point types, we should be saving and restoring the
3598 // floating point environment in the loop.
3599 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3600 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3601 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3602 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3603 Builder.CreateBr(opBB);
3604 Builder.SetInsertPoint(opBB);
3605 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3606 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3607 OpInfo.LHS = atomicPHI;
3608 }
3609 else
3610 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3611
3612 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3614 if (!PromotionTypeLHS.isNull())
3615 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3616 E->getExprLoc());
3617 else
3618 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3619 E->getComputationLHSType(), Loc);
3620
3621 // Expand the binary operator.
3622 Result = (this->*Func)(OpInfo);
3623
3624 // Convert the result back to the LHS type,
3625 // potentially with Implicit Conversion sanitizer check.
3626 // If LHSLV is a bitfield, use default ScalarConversionOpts
3627 // to avoid emit any implicit integer checks.
3628 Value *Previous = nullptr;
3629 if (LHSLV.isBitField()) {
3630 Previous = Result;
3631 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc);
3632 } else
3633 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3634 ScalarConversionOpts(CGF.SanOpts));
3635
3636 if (atomicPHI) {
3637 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3638 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3639 auto Pair = CGF.EmitAtomicCompareExchange(
3640 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3641 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3642 llvm::Value *success = Pair.second;
3643 atomicPHI->addIncoming(old, curBlock);
3644 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3645 Builder.SetInsertPoint(contBB);
3646 return LHSLV;
3647 }
3648
3649 // Store the result value into the LHS lvalue. Bit-fields are handled
3650 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3651 // 'An assignment expression has the value of the left operand after the
3652 // assignment...'.
3653 if (LHSLV.isBitField()) {
3654 Value *Src = Previous ? Previous : Result;
3655 QualType SrcType = E->getRHS()->getType();
3656 QualType DstType = E->getLHS()->getType();
3658 CGF.EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
3659 LHSLV.getBitFieldInfo(), E->getExprLoc());
3660 } else
3662
3663 if (CGF.getLangOpts().OpenMP)
3665 E->getLHS());
3666 return LHSLV;
3667}
3668
3669Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3670 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3671 bool Ignore = TestAndClearIgnoreResultAssign();
3672 Value *RHS = nullptr;
3673 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3674
3675 // If the result is clearly ignored, return now.
3676 if (Ignore)
3677 return nullptr;
3678
3679 // The result of an assignment in C is the assigned r-value.
3680 if (!CGF.getLangOpts().CPlusPlus)
3681 return RHS;
3682
3683 // If the lvalue is non-volatile, return the computed value of the assignment.
3684 if (!LHS.isVolatileQualified())
3685 return RHS;
3686
3687 // Otherwise, reload the value.
3688 return EmitLoadOfLValue(LHS, E->getExprLoc());
3689}
3690
3691void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3692 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3694
3695 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3696 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3697 SanitizerKind::IntegerDivideByZero));
3698 }
3699
3700 const auto *BO = cast<BinaryOperator>(Ops.E);
3701 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3702 Ops.Ty->hasSignedIntegerRepresentation() &&
3703 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3704 Ops.mayHaveIntegerOverflow()) {
3705 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3706
3707 llvm::Value *IntMin =
3708 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3709 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3710
3711 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3712 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3713 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3714 Checks.push_back(
3715 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3716 }
3717
3718 if (Checks.size() > 0)
3719 EmitBinOpCheck(Checks, Ops);
3720}
3721
3722Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3723 {
3724 CodeGenFunction::SanitizerScope SanScope(&CGF);
3725 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3726 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3727 Ops.Ty->isIntegerType() &&
3728 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3729 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3730 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3731 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3732 Ops.Ty->isRealFloatingType() &&
3733 Ops.mayHaveFloatDivisionByZero()) {
3734 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3735 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3736 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3737 Ops);
3738 }
3739 }
3740
3741 if (Ops.Ty->isConstantMatrixType()) {
3742 llvm::MatrixBuilder MB(Builder);
3743 // We need to check the types of the operands of the operator to get the
3744 // correct matrix dimensions.
3745 auto *BO = cast<BinaryOperator>(Ops.E);
3746 (void)BO;
3747 assert(
3748 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3749 "first operand must be a matrix");
3750 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3751 "second operand must be an arithmetic type");
3752 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3753 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3754 Ops.Ty->hasUnsignedIntegerRepresentation());
3755 }
3756
3757 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3758 llvm::Value *Val;
3759 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3760 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3761 CGF.SetDivFPAccuracy(Val);
3762 return Val;
3763 }
3764 else if (Ops.isFixedPointOp())
3765 return EmitFixedPointBinOp(Ops);
3766 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3767 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3768 else
3769 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3770}
3771
3772Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3773 // Rem in C can't be a floating point type: C99 6.5.5p2.
3774 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3775 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3776 Ops.Ty->isIntegerType() &&
3777 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3778 CodeGenFunction::SanitizerScope SanScope(&CGF);
3779 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3780 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3781 }
3782
3783 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3784 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3785 else
3786 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3787}
3788
3789Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3790 unsigned IID;
3791 unsigned OpID = 0;
3792 SanitizerHandler OverflowKind;
3793
3794 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3795 switch (Ops.Opcode) {
3796 case BO_Add:
3797 case BO_AddAssign:
3798 OpID = 1;
3799 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3800 llvm::Intrinsic::uadd_with_overflow;
3801 OverflowKind = SanitizerHandler::AddOverflow;
3802 break;
3803 case BO_Sub:
3804 case BO_SubAssign:
3805 OpID = 2;
3806 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3807 llvm::Intrinsic::usub_with_overflow;
3808 OverflowKind = SanitizerHandler::SubOverflow;
3809 break;
3810 case BO_Mul:
3811 case BO_MulAssign:
3812 OpID = 3;
3813 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3814 llvm::Intrinsic::umul_with_overflow;
3815 OverflowKind = SanitizerHandler::MulOverflow;
3816 break;
3817 default:
3818 llvm_unreachable("Unsupported operation for overflow detection");
3819 }
3820 OpID <<= 1;
3821 if (isSigned)
3822 OpID |= 1;
3823
3824 CodeGenFunction::SanitizerScope SanScope(&CGF);
3825 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3826
3827 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3828
3829 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3830 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3831 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3832
3833 // Handle overflow with llvm.trap if no custom handler has been specified.
3834 const std::string *handlerName =
3836 if (handlerName->empty()) {
3837 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3838 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3839 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3840 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3841 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3842 : SanitizerKind::UnsignedIntegerOverflow;
3843 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3844 } else
3845 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3846 return result;
3847 }
3848
3849 // Branch in case of overflow.
3850 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3851 llvm::BasicBlock *continueBB =
3852 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3853 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3854
3855 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3856
3857 // If an overflow handler is set, then we want to call it and then use its
3858 // result, if it returns.
3859 Builder.SetInsertPoint(overflowBB);
3860
3861 // Get the overflow handler.
3862 llvm::Type *Int8Ty = CGF.Int8Ty;
3863 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3864 llvm::FunctionType *handlerTy =
3865 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3866 llvm::FunctionCallee handler =
3867 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3868
3869 // Sign extend the args to 64-bit, so that we can use the same handler for
3870 // all types of overflow.
3871 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3872 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3873
3874 // Call the handler with the two arguments, the operation, and the size of
3875 // the result.
3876 llvm::Value *handlerArgs[] = {
3877 lhs,
3878 rhs,
3879 Builder.getInt8(OpID),
3880 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3881 };
3882 llvm::Value *handlerResult =
3883 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3884
3885 // Truncate the result back to the desired size.
3886 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3887 Builder.CreateBr(continueBB);
3888
3889 Builder.SetInsertPoint(continueBB);
3890 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3891 phi->addIncoming(result, initialBB);
3892 phi->addIncoming(handlerResult, overflowBB);
3893
3894 return phi;
3895}
3896
3897/// Emit pointer + index arithmetic.
3899 const BinOpInfo &op,
3900 bool isSubtraction) {
3901 // Must have binary (not unary) expr here. Unary pointer
3902 // increment/decrement doesn't use this path.
3903 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3904
3905 Value *pointer = op.LHS;
3906 Expr *pointerOperand = expr->getLHS();
3907 Value *index = op.RHS;
3908 Expr *indexOperand = expr->getRHS();
3909
3910 // In a subtraction, the LHS is always the pointer.
3911 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3912 std::swap(pointer, index);
3913 std::swap(pointerOperand, indexOperand);
3914 }
3915
3916 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3917
3918 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3919 auto &DL = CGF.CGM.getDataLayout();
3920 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3921
3922 // Some versions of glibc and gcc use idioms (particularly in their malloc
3923 // routines) that add a pointer-sized integer (known to be a pointer value)
3924 // to a null pointer in order to cast the value back to an integer or as
3925 // part of a pointer alignment algorithm. This is undefined behavior, but
3926 // we'd like to be able to compile programs that use it.
3927 //
3928 // Normally, we'd generate a GEP with a null-pointer base here in response
3929 // to that code, but it's also UB to dereference a pointer created that
3930 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3931 // generate a direct cast of the integer value to a pointer.
3932 //
3933 // The idiom (p = nullptr + N) is not met if any of the following are true:
3934 //
3935 // The operation is subtraction.
3936 // The index is not pointer-sized.
3937 // The pointer type is not byte-sized.
3938 //
3940 op.Opcode,
3941 expr->getLHS(),
3942 expr->getRHS()))
3943 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3944
3945 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3946 // Zero-extend or sign-extend the pointer value according to
3947 // whether the index is signed or not.
3948 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3949 "idx.ext");
3950 }
3951
3952 // If this is subtraction, negate the index.
3953 if (isSubtraction)
3954 index = CGF.Builder.CreateNeg(index, "idx.neg");
3955
3956 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3957 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3958 /*Accessed*/ false);
3959
3961 = pointerOperand->getType()->getAs<PointerType>();
3962 if (!pointerType) {
3963 QualType objectType = pointerOperand->getType()
3965 ->getPointeeType();
3966 llvm::Value *objectSize
3967 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3968
3969 index = CGF.Builder.CreateMul(index, objectSize);
3970
3971 Value *result =
3972 CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
3973 return CGF.Builder.CreateBitCast(result, pointer->getType());
3974 }
3975
3976 QualType elementType = pointerType->getPointeeType();
3977 if (const VariableArrayType *vla
3978 = CGF.getContext().getAsVariableArrayType(elementType)) {
3979 // The element count here is the total number of non-VLA elements.
3980 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3981
3982 // Effectively, the multiply by the VLA size is part of the GEP.
3983 // GEP indexes are signed, and scaling an index isn't permitted to
3984 // signed-overflow, so we use the same semantics for our explicit
3985 // multiply. We suppress this if overflow is not undefined behavior.
3986 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3988 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3989 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3990 } else {
3991 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3992 pointer = CGF.EmitCheckedInBoundsGEP(
3993 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3994 "add.ptr");
3995 }
3996 return pointer;
3997 }
3998
3999 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
4000 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
4001 // future proof.
4002 llvm::Type *elemTy;
4003 if (elementType->isVoidType() || elementType->isFunctionType())
4004 elemTy = CGF.Int8Ty;
4005 else
4006 elemTy = CGF.ConvertTypeForMem(elementType);
4007
4009 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4010
4011 return CGF.EmitCheckedInBoundsGEP(
4012 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4013 "add.ptr");
4014}
4015
4016// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4017// Addend. Use negMul and negAdd to negate the first operand of the Mul or
4018// the add operand respectively. This allows fmuladd to represent a*b-c, or
4019// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4020// efficient operations.
4021static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4022 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4023 bool negMul, bool negAdd) {
4024 Value *MulOp0 = MulOp->getOperand(0);
4025 Value *MulOp1 = MulOp->getOperand(1);
4026 if (negMul)
4027 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
4028 if (negAdd)
4029 Addend = Builder.CreateFNeg(Addend, "neg");
4030
4031 Value *FMulAdd = nullptr;
4032 if (Builder.getIsFPConstrained()) {
4033 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4034 "Only constrained operation should be created when Builder is in FP "
4035 "constrained mode");
4036 FMulAdd = Builder.CreateConstrainedFPCall(
4037 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
4038 Addend->getType()),
4039 {MulOp0, MulOp1, Addend});
4040 } else {
4041 FMulAdd = Builder.CreateCall(
4042 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
4043 {MulOp0, MulOp1, Addend});
4044 }
4045 MulOp->eraseFromParent();
4046
4047 return FMulAdd;
4048}
4049
4050// Check whether it would be legal to emit an fmuladd intrinsic call to
4051// represent op and if so, build the fmuladd.
4052//
4053// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4054// Does NOT check the type of the operation - it's assumed that this function
4055// will be called from contexts where it's known that the type is contractable.
4056static Value* tryEmitFMulAdd(const BinOpInfo &op,
4057 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4058 bool isSub=false) {
4059
4060 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4061 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4062 "Only fadd/fsub can be the root of an fmuladd.");
4063
4064 // Check whether this op is marked as fusable.
4065 if (!op.FPFeatures.allowFPContractWithinStatement())
4066 return nullptr;
4067
4068 Value *LHS = op.LHS;
4069 Value *RHS = op.RHS;
4070
4071 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
4072 // it is the only use of its operand.
4073 bool NegLHS = false;
4074 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
4075 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4076 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
4077 LHS = LHSUnOp->getOperand(0);
4078 NegLHS = true;
4079 }
4080 }
4081
4082 bool NegRHS = false;
4083 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
4084 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4085 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
4086 RHS = RHSUnOp->getOperand(0);
4087 NegRHS = true;
4088 }
4089 }
4090
4091 // We have a potentially fusable op. Look for a mul on one of the operands.
4092 // Also, make sure that the mul result isn't used directly. In that case,
4093 // there's no point creating a muladd operation.
4094 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
4095 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4096 (LHSBinOp->use_empty() || NegLHS)) {
4097 // If we looked through fneg, erase it.
4098 if (NegLHS)
4099 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4100 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4101 }
4102 }
4103 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
4104 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4105 (RHSBinOp->use_empty() || NegRHS)) {
4106 // If we looked through fneg, erase it.
4107 if (NegRHS)
4108 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4109 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4110 }
4111 }
4112
4113 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
4114 if (LHSBinOp->getIntrinsicID() ==
4115 llvm::Intrinsic::experimental_constrained_fmul &&
4116 (LHSBinOp->use_empty() || NegLHS)) {
4117 // If we looked through fneg, erase it.
4118 if (NegLHS)
4119 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4120 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4121 }
4122 }
4123 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
4124 if (RHSBinOp->getIntrinsicID() ==
4125 llvm::Intrinsic::experimental_constrained_fmul &&
4126 (RHSBinOp->use_empty() || NegRHS)) {
4127 // If we looked through fneg, erase it.
4128 if (NegRHS)
4129 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4130 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4131 }
4132 }
4133
4134 return nullptr;
4135}
4136
4137Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4138 if (op.LHS->getType()->isPointerTy() ||
4139 op.RHS->getType()->isPointerTy())
4141
4142 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4143 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4145 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4146 return Builder.CreateAdd(op.LHS, op.RHS, "add");
4147 [[fallthrough]];
4149 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4150 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4151 [[fallthrough]];
4153 if (CanElideOverflowCheck(CGF.getContext(), op))
4154 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4155 return EmitOverflowCheckedBinOp(op);
4156 }
4157 }
4158
4159 // For vector and matrix adds, try to fold into a fmuladd.
4160 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4161 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4162 // Try to form an fmuladd.
4163 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4164 return FMulAdd;
4165 }
4166
4167 if (op.Ty->isConstantMatrixType()) {
4168 llvm::MatrixBuilder MB(Builder);
4169 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4170 return MB.CreateAdd(op.LHS, op.RHS);
4171 }
4172
4173 if (op.Ty->isUnsignedIntegerType() &&
4174 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4175 !CanElideOverflowCheck(CGF.getContext(), op))
4176 return EmitOverflowCheckedBinOp(op);
4177
4178 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4179 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4180 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
4181 }
4182
4183 if (op.isFixedPointOp())
4184 return EmitFixedPointBinOp(op);
4185
4186 return Builder.CreateAdd(op.LHS, op.RHS, "add");
4187}
4188
4189/// The resulting value must be calculated with exact precision, so the operands
4190/// may not be the same type.
4191Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4192 using llvm::APSInt;
4193 using llvm::ConstantInt;
4194
4195 // This is either a binary operation where at least one of the operands is
4196 // a fixed-point type, or a unary operation where the operand is a fixed-point
4197 // type. The result type of a binary operation is determined by
4198 // Sema::handleFixedPointConversions().
4199 QualType ResultTy = op.Ty;
4200 QualType LHSTy, RHSTy;
4201 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
4202 RHSTy = BinOp->getRHS()->getType();
4203 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
4204 // For compound assignment, the effective type of the LHS at this point
4205 // is the computation LHS type, not the actual LHS type, and the final
4206 // result type is not the type of the expression but rather the
4207 // computation result type.
4208 LHSTy = CAO->getComputationLHSType();
4209 ResultTy = CAO->getComputationResultType();
4210 } else
4211 LHSTy = BinOp->getLHS()->getType();
4212 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
4213 LHSTy = UnOp->getSubExpr()->getType();
4214 RHSTy = UnOp->getSubExpr()->getType();
4215 }
4216 ASTContext &Ctx = CGF.getContext();
4217 Value *LHS = op.LHS;
4218 Value *RHS = op.RHS;
4219
4220 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
4221 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
4222 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
4223 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
4224
4225 // Perform the actual operation.
4226 Value *Result;
4227 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4228 switch (op.Opcode) {
4229 case BO_AddAssign:
4230 case BO_Add:
4231 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
4232 break;
4233 case BO_SubAssign:
4234 case BO_Sub:
4235 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
4236 break;
4237 case BO_MulAssign:
4238 case BO_Mul:
4239 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
4240 break;
4241 case BO_DivAssign:
4242 case BO_Div:
4243 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
4244 break;
4245 case BO_ShlAssign:
4246 case BO_Shl:
4247 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
4248 break;
4249 case BO_ShrAssign:
4250 case BO_Shr:
4251 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
4252 break;
4253 case BO_LT:
4254 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4255 case BO_GT:
4256 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4257 case BO_LE:
4258 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4259 case BO_GE:
4260 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4261 case BO_EQ:
4262 // For equality operations, we assume any padding bits on unsigned types are
4263 // zero'd out. They could be overwritten through non-saturating operations
4264 // that cause overflow, but this leads to undefined behavior.
4265 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
4266 case BO_NE:
4267 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4268 case BO_Cmp:
4269 case BO_LAnd:
4270 case BO_LOr:
4271 llvm_unreachable("Found unimplemented fixed point binary operation");
4272 case BO_PtrMemD:
4273 case BO_PtrMemI:
4274 case BO_Rem:
4275 case BO_Xor:
4276 case BO_And:
4277 case BO_Or:
4278 case BO_Assign:
4279 case BO_RemAssign:
4280 case BO_AndAssign:
4281 case BO_XorAssign:
4282 case BO_OrAssign:
4283 case BO_Comma:
4284 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4285 }
4286
4287 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4289 // Convert to the result type.
4290 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4291 : CommonFixedSema,
4292 ResultFixedSema);
4293}
4294
4295Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4296 // The LHS is always a pointer if either side is.
4297 if (!op.LHS->getType()->isPointerTy()) {
4298 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4299 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4301 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4302 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4303 [[fallthrough]];
4305 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4306 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4307 [[fallthrough]];
4309 if (CanElideOverflowCheck(CGF.getContext(), op))
4310 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4311 return EmitOverflowCheckedBinOp(op);
4312 }
4313 }
4314
4315 // For vector and matrix subs, try to fold into a fmuladd.
4316 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4317 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4318 // Try to form an fmuladd.
4319 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4320 return FMulAdd;
4321 }
4322
4323 if (op.Ty->isConstantMatrixType()) {
4324 llvm::MatrixBuilder MB(Builder);
4325 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4326 return MB.CreateSub(op.LHS, op.RHS);
4327 }
4328
4329 if (op.Ty->isUnsignedIntegerType() &&
4330 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4331 !CanElideOverflowCheck(CGF.getContext(), op))
4332 return EmitOverflowCheckedBinOp(op);
4333
4334 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4335 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4336 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4337 }
4338
4339 if (op.isFixedPointOp())
4340 return EmitFixedPointBinOp(op);
4341
4342 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4343 }
4344
4345 // If the RHS is not a pointer, then we have normal pointer
4346 // arithmetic.
4347 if (!op.RHS->getType()->isPointerTy())
4349
4350 // Otherwise, this is a pointer subtraction.
4351
4352 // Do the raw subtraction part.
4353 llvm::Value *LHS
4354 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4355 llvm::Value *RHS
4356 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4357 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4358
4359 // Okay, figure out the element size.
4360 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4361 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4362
4363 llvm::Value *divisor = nullptr;
4364
4365 // For a variable-length array, this is going to be non-constant.
4366 if (const VariableArrayType *vla
4367 = CGF.getContext().getAsVariableArrayType(elementType)) {
4368 auto VlaSize = CGF.getVLASize(vla);
4369 elementType = VlaSize.Type;
4370 divisor = VlaSize.NumElts;
4371
4372 // Scale the number of non-VLA elements by the non-VLA element size.
4373 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4374 if (!eltSize.isOne())
4375 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4376
4377 // For everything elese, we can just compute it, safe in the
4378 // assumption that Sema won't let anything through that we can't
4379 // safely compute the size of.
4380 } else {
4381 CharUnits elementSize;
4382 // Handle GCC extension for pointer arithmetic on void* and
4383 // function pointer types.
4384 if (elementType->isVoidType() || elementType->isFunctionType())
4385 elementSize = CharUnits::One();
4386 else
4387 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4388
4389 // Don't even emit the divide for element size of 1.
4390 if (elementSize.isOne())
4391 return diffInChars;
4392
4393 divisor = CGF.CGM.getSize(elementSize);
4394 }
4395
4396 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4397 // pointer difference in C is only defined in the case where both operands
4398 // are pointing to elements of an array.
4399 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4400}
4401
4402Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4403 bool RHSIsSigned) {
4404 llvm::IntegerType *Ty;
4405 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4406 Ty = cast<llvm::IntegerType>(VT->getElementType());
4407 else
4408 Ty = cast<llvm::IntegerType>(LHS->getType());
4409 // For a given type of LHS the maximum shift amount is width(LHS)-1, however
4410 // it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4411 // this in ConstantInt::get, this results in the value getting truncated.
4412 // Constrain the return value to be max(RHS) in this case.
4413 llvm::Type *RHSTy = RHS->getType();
4414 llvm::APInt RHSMax =
4415 RHSIsSigned ? llvm::APInt::getSignedMaxValue(RHSTy->getScalarSizeInBits())
4416 : llvm::APInt::getMaxValue(RHSTy->getScalarSizeInBits());
4417 if (RHSMax.ult(Ty->getBitWidth()))
4418 return llvm::ConstantInt::get(RHSTy, RHSMax);
4419 return llvm::ConstantInt::get(RHSTy, Ty->getBitWidth() - 1);
4420}
4421
4422Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4423 const Twine &Name) {
4424 llvm::IntegerType *Ty;
4425 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4426 Ty = cast<llvm::IntegerType>(VT->getElementType());
4427 else
4428 Ty = cast<llvm::IntegerType>(LHS->getType());
4429
4430 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4431 return Builder.CreateAnd(RHS, GetMaximumShiftAmount(LHS, RHS, false), Name);
4432
4433 return Builder.CreateURem(
4434 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4435}
4436
4437Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4438 // TODO: This misses out on the sanitizer check below.
4439 if (Ops.isFixedPointOp())
4440 return EmitFixedPointBinOp(Ops);
4441
4442 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4443 // RHS to the same size as the LHS.
4444 Value *RHS = Ops.RHS;
4445 if (Ops.LHS->getType() != RHS->getType())
4446 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4447
4448 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4449 Ops.Ty->hasSignedIntegerRepresentation() &&
4451 !CGF.getLangOpts().CPlusPlus20;
4452 bool SanitizeUnsignedBase =
4453 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4454 Ops.Ty->hasUnsignedIntegerRepresentation();
4455 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4456 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4457 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4458 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4459 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4460 else if ((SanitizeBase || SanitizeExponent) &&
4461 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4462 CodeGenFunction::SanitizerScope SanScope(&CGF);
4464 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4465 llvm::Value *WidthMinusOne =
4466 GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned);
4467 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4468
4469 if (SanitizeExponent) {
4470 Checks.push_back(
4471 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4472 }
4473
4474 if (SanitizeBase) {
4475 // Check whether we are shifting any non-zero bits off the top of the
4476 // integer. We only emit this check if exponent is valid - otherwise
4477 // instructions below will have undefined behavior themselves.
4478 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4479 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4480 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4481 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4482 llvm::Value *PromotedWidthMinusOne =
4483 (RHS == Ops.RHS) ? WidthMinusOne
4484 : GetMaximumShiftAmount(Ops.LHS, RHS, RHSIsSigned);
4485 CGF.EmitBlock(CheckShiftBase);
4486 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4487 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4488 /*NUW*/ true, /*NSW*/ true),
4489 "shl.check");
4490 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4491 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4492 // Under C++11's rules, shifting a 1 bit into the sign bit is
4493 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4494 // define signed left shifts, so we use the C99 and C++11 rules there).
4495 // Unsigned shifts can always shift into the top bit.
4496 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4497 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4498 }
4499 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4500 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4501 CGF.EmitBlock(Cont);
4502 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4503 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4504 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4505 Checks.push_back(std::make_pair(
4506 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4507 : SanitizerKind::UnsignedShiftBase));
4508 }
4509
4510 assert(!Checks.empty());
4511 EmitBinOpCheck(Checks, Ops);
4512 }
4513
4514 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4515}
4516
4517Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4518 // TODO: This misses out on the sanitizer check below.
4519 if (Ops.isFixedPointOp())
4520 return EmitFixedPointBinOp(Ops);
4521
4522 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4523 // RHS to the same size as the LHS.
4524 Value *RHS = Ops.RHS;
4525 if (Ops.LHS->getType() != RHS->getType())
4526 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4527
4528 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4529 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4530 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4531 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4532 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4533 CodeGenFunction::SanitizerScope SanScope(&CGF);
4534 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4535 llvm::Value *Valid = Builder.CreateICmpULE(
4536 Ops.RHS, GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned));
4537 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4538 }
4539
4540 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4541 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4542 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4543}
4544
4546// return corresponding comparison intrinsic for given vector type
4547static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4548 BuiltinType::Kind ElemKind) {
4549 switch (ElemKind) {
4550 default: llvm_unreachable("unexpected element type");
4551 case BuiltinType::Char_U:
4552 case BuiltinType::UChar:
4553 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4554 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4555 case BuiltinType::Char_S:
4556 case BuiltinType::SChar:
4557 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4558 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4559 case BuiltinType::UShort:
4560 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4561 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4562 case BuiltinType::Short:
4563 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4564 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4565 case BuiltinType::UInt:
4566 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4567 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4568 case BuiltinType::Int:
4569 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4570 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4571 case BuiltinType::ULong:
4572 case BuiltinType::ULongLong:
4573 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4574 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4575 case BuiltinType::Long:
4576 case BuiltinType::LongLong:
4577 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4578 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4579 case BuiltinType::Float:
4580 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4581 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4582 case BuiltinType::Double:
4583 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4584 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4585 case BuiltinType::UInt128:
4586 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4587 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4588 case BuiltinType::Int128:
4589 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4590 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4591 }
4592}
4593
4594Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4595 llvm::CmpInst::Predicate UICmpOpc,
4596 llvm::CmpInst::Predicate SICmpOpc,
4597 llvm::CmpInst::Predicate FCmpOpc,
4598 bool IsSignaling) {
4599 TestAndClearIgnoreResultAssign();
4600 Value *Result;
4601 QualType LHSTy = E->getLHS()->getType();
4602 QualType RHSTy = E->getRHS()->getType();
4603 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4604 assert(E->getOpcode() == BO_EQ ||
4605 E->getOpcode() == BO_NE);
4606 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4607 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4609 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4610 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4611 BinOpInfo BOInfo = EmitBinOps(E);
4612 Value *LHS = BOInfo.LHS;
4613 Value *RHS = BOInfo.RHS;
4614
4615 // If AltiVec, the comparison results in a numeric type, so we use
4616 // intrinsics comparing vectors and giving 0 or 1 as a result
4617 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4618 // constants for mapping CR6 register bits to predicate result
4619 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4620
4621 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4622
4623 // in several cases vector arguments order will be reversed
4624 Value *FirstVecArg = LHS,
4625 *SecondVecArg = RHS;
4626
4627 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4628 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4629
4630 switch(E->getOpcode()) {
4631 default: llvm_unreachable("is not a comparison operation");
4632 case BO_EQ:
4633 CR6 = CR6_LT;
4634 ID = GetIntrinsic(VCMPEQ, ElementKind);
4635 break;
4636 case BO_NE:
4637 CR6 = CR6_EQ;
4638 ID = GetIntrinsic(VCMPEQ, ElementKind);
4639 break;
4640 case BO_LT:
4641 CR6 = CR6_LT;
4642 ID = GetIntrinsic(VCMPGT, ElementKind);
4643 std::swap(FirstVecArg, SecondVecArg);
4644 break;
4645 case BO_GT:
4646 CR6 = CR6_LT;
4647 ID = GetIntrinsic(VCMPGT, ElementKind);
4648 break;
4649 case BO_LE:
4650 if (ElementKind == BuiltinType::Float) {
4651 CR6 = CR6_LT;
4652 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4653 std::swap(FirstVecArg, SecondVecArg);
4654 }
4655 else {
4656 CR6 = CR6_EQ;
4657 ID = GetIntrinsic(VCMPGT, ElementKind);
4658 }
4659 break;
4660 case BO_GE:
4661 if (ElementKind == BuiltinType::Float) {
4662 CR6 = CR6_LT;
4663 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4664 }
4665 else {
4666 CR6 = CR6_EQ;
4667 ID = GetIntrinsic(VCMPGT, ElementKind);
4668 std::swap(FirstVecArg, SecondVecArg);
4669 }
4670 break;
4671 }
4672
4673 Value *CR6Param = Builder.getInt32(CR6);
4674 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4675 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4676
4677 // The result type of intrinsic may not be same as E->getType().
4678 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4679 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4680 // do nothing, if ResultTy is not i1 at the same time, it will cause
4681 // crash later.
4682 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4683 if (ResultTy->getBitWidth() > 1 &&
4684 E->getType() == CGF.getContext().BoolTy)
4685 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4686 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4687 E->getExprLoc());
4688 }
4689
4690 if (BOInfo.isFixedPointOp()) {
4691 Result = EmitFixedPointBinOp(BOInfo);
4692 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4693 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4694 if (!IsSignaling)
4695 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4696 else
4697 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4698 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4699 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4700 } else {
4701 // Unsigned integers and pointers.
4702
4703 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4704 !isa<llvm::ConstantPointerNull>(LHS) &&
4705 !isa<llvm::ConstantPointerNull>(RHS)) {
4706
4707 // Dynamic information is required to be stripped for comparisons,
4708 // because it could leak the dynamic information. Based on comparisons
4709 // of pointers to dynamic objects, the optimizer can replace one pointer
4710 // with another, which might be incorrect in presence of invariant
4711 // groups. Comparison with null is safe because null does not carry any
4712 // dynamic information.
4713 if (LHSTy.mayBeDynamicClass())
4714 LHS = Builder.CreateStripInvariantGroup(LHS);
4715 if (RHSTy.mayBeDynamicClass())
4716 RHS = Builder.CreateStripInvariantGroup(RHS);
4717 }
4718
4719 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4720 }
4721
4722 // If this is a vector comparison, sign extend the result to the appropriate
4723 // vector integer type and return it (don't convert to bool).
4724 if (LHSTy->isVectorType())
4725 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4726
4727 } else {
4728 // Complex Comparison: can only be an equality comparison.
4730 QualType CETy;
4731 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4732 LHS = CGF.EmitComplexExpr(E->getLHS());
4733 CETy = CTy->getElementType();
4734 } else {
4735 LHS.first = Visit(E->getLHS());
4736 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4737 CETy = LHSTy;
4738 }
4739 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4740 RHS = CGF.EmitComplexExpr(E->getRHS());
4741 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4742 CTy->getElementType()) &&
4743 "The element types must always match.");
4744 (void)CTy;
4745 } else {
4746 RHS.first = Visit(E->getRHS());
4747 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4748 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4749 "The element types must always match.");
4750 }
4751
4752 Value *ResultR, *ResultI;
4753 if (CETy->isRealFloatingType()) {
4754 // As complex comparisons can only be equality comparisons, they
4755 // are never signaling comparisons.
4756 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4757 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4758 } else {
4759 // Complex comparisons can only be equality comparisons. As such, signed
4760 // and unsigned opcodes are the same.
4761 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4762 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4763 }
4764
4765 if (E->getOpcode() == BO_EQ) {
4766 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4767 } else {
4768 assert(E->getOpcode() == BO_NE &&
4769 "Complex comparison other than == or != ?");
4770 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4771 }
4772 }
4773
4774 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4775 E->getExprLoc());
4776}
4777
4779 const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4780 // In case we have the integer or bitfield sanitizer checks enabled
4781 // we want to get the expression before scalar conversion.
4782 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E->getRHS())) {
4783 CastKind Kind = ICE->getCastKind();
4784 if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4785 *SrcType = ICE->getSubExpr()->getType();
4786 *Previous = EmitScalarExpr(ICE->getSubExpr());
4787 // Pass default ScalarConversionOpts to avoid emitting
4788 // integer sanitizer checks as E refers to bitfield.
4789 return EmitScalarConversion(*Previous, *SrcType, ICE->getType(),
4790 ICE->getExprLoc());
4791 }
4792 }
4793 return EmitScalarExpr(E->getRHS());
4794}
4795
4796Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4797 bool Ignore = TestAndClearIgnoreResultAssign();
4798
4799 Value *RHS;
4800 LValue LHS;
4801
4802 switch (E->getLHS()->getType().getObjCLifetime()) {
4804 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4805 break;
4806
4808 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4809 break;
4810
4812 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4813 break;
4814
4816 RHS = Visit(E->getRHS());
4817 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4818 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
4819 break;
4820
4822 // __block variables need to have the rhs evaluated first, plus
4823 // this should improve codegen just a little.
4824 Value *Previous = nullptr;
4825 QualType SrcType = E->getRHS()->getType();
4826 // Check if LHS is a bitfield, if RHS contains an implicit cast expression
4827 // we want to extract that value and potentially (if the bitfield sanitizer
4828 // is enabled) use it to check for an implicit conversion.
4829 if (E->getLHS()->refersToBitField())
4830 RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
4831 else
4832 RHS = Visit(E->getRHS());
4833
4834 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4835
4836 // Store the value into the LHS. Bit-fields are handled specially
4837 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4838 // 'An assignment expression has the value of the left operand after
4839 // the assignment...'.
4840 if (LHS.isBitField()) {
4841 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4842 // If the expression contained an implicit conversion, make sure
4843 // to use the value before the scalar conversion.
4844 Value *Src = Previous ? Previous : RHS;
4845 QualType DstType = E->getLHS()->getType();
4846 CGF.EmitBitfieldConversionCheck(Src, SrcType, RHS, DstType,
4847 LHS.getBitFieldInfo(), E->getExprLoc());
4848 } else {
4849 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4850 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4851 }
4852 }
4853
4854 // If the result is clearly ignored, return now.
4855 if (Ignore)
4856 return nullptr;
4857
4858 // The result of an assignment in C is the assigned r-value.
4859 if (!CGF.getLangOpts().CPlusPlus)
4860 return RHS;
4861
4862 // If the lvalue is non-volatile, return the computed value of the assignment.
4863 if (!LHS.isVolatileQualified())
4864 return RHS;
4865
4866 // Otherwise, reload the value.
4867 return EmitLoadOfLValue(LHS, E->getExprLoc());
4868}
4869
4870Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4871 // Perform vector logical and on comparisons with zero vectors.
4872 if (E->getType()->isVectorType()) {
4874
4875 Value *LHS = Visit(E->getLHS());
4876 Value *RHS = Visit(E->getRHS());
4877 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4878 if (LHS->getType()->isFPOrFPVectorTy()) {
4879 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4880 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4881 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4882 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4883 } else {
4884 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4885 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4886 }
4887 Value *And = Builder.CreateAnd(LHS, RHS);
4888 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4889 }
4890
4891 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4892 llvm::Type *ResTy = ConvertType(E->getType());
4893
4894 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4895 // If we have 1 && X, just emit X without inserting the control flow.
4896 bool LHSCondVal;
4897 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4898 if (LHSCondVal) { // If we have 1 && X, just emit X.
4900
4901 // If the top of the logical operator nest, reset the MCDC temp to 0.
4902 if (CGF.MCDCLogOpStack.empty())
4904
4905 CGF.MCDCLogOpStack.push_back(E);
4906
4907 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4908
4909 // If we're generating for profiling or coverage, generate a branch to a
4910 // block that increments the RHS counter needed to track branch condition
4911 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4912 // "FalseBlock" after the increment is done.
4913 if (InstrumentRegions &&
4915 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
4916 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4917 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4918 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4919 CGF.EmitBlock(RHSBlockCnt);
4920 CGF.incrementProfileCounter(E->getRHS());
4921 CGF.EmitBranch(FBlock);
4922 CGF.EmitBlock(FBlock);
4923 }
4924
4925 CGF.MCDCLogOpStack.pop_back();
4926 // If the top of the logical operator nest, update the MCDC bitmap.
4927 if (CGF.MCDCLogOpStack.empty())
4929
4930 // ZExt result to int or bool.
4931 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4932 }
4933
4934 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4935 if (!CGF.ContainsLabel(E->getRHS()))
4936 return llvm::Constant::getNullValue(ResTy);
4937 }
4938
4939 // If the top of the logical operator nest, reset the MCDC temp to 0.
4940 if (CGF.MCDCLogOpStack.empty())
4942
4943 CGF.MCDCLogOpStack.push_back(E);
4944
4945 llvm::BasicBlock *ContBlock = CGF.