clang  10.0.0svn
CGExprScalar.cpp
Go to the documentation of this file.
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/FixedPoint.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 // Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56  BinaryOperator::Opcode Opcode, bool Signed,
57  llvm::APInt &Result) {
58  // Assume overflow is possible, unless we can prove otherwise.
59  bool Overflow = true;
60  const auto &LHSAP = LHS->getValue();
61  const auto &RHSAP = RHS->getValue();
62  if (Opcode == BO_Add) {
63  if (Signed)
64  Result = LHSAP.sadd_ov(RHSAP, Overflow);
65  else
66  Result = LHSAP.uadd_ov(RHSAP, Overflow);
67  } else if (Opcode == BO_Sub) {
68  if (Signed)
69  Result = LHSAP.ssub_ov(RHSAP, Overflow);
70  else
71  Result = LHSAP.usub_ov(RHSAP, Overflow);
72  } else if (Opcode == BO_Mul) {
73  if (Signed)
74  Result = LHSAP.smul_ov(RHSAP, Overflow);
75  else
76  Result = LHSAP.umul_ov(RHSAP, Overflow);
77  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78  if (Signed && !RHS->isZero())
79  Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80  else
81  return false;
82  }
83  return Overflow;
84 }
85 
86 struct BinOpInfo {
87  Value *LHS;
88  Value *RHS;
89  QualType Ty; // Computation Type.
90  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91  FPOptions FPFeatures;
92  const Expr *E; // Entire expr, for error unsupported. May not be binop.
93 
94  /// Check if the binop can result in integer overflow.
95  bool mayHaveIntegerOverflow() const {
96  // Without constant input, we can't rule out overflow.
97  auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98  auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99  if (!LHSCI || !RHSCI)
100  return true;
101 
102  llvm::APInt Result;
103  return ::mayHaveIntegerOverflow(
104  LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105  }
106 
107  /// Check if the binop computes a division or a remainder.
108  bool isDivremOp() const {
109  return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110  Opcode == BO_RemAssign;
111  }
112 
113  /// Check if the binop can result in an integer division by zero.
114  bool mayHaveIntegerDivisionByZero() const {
115  if (isDivremOp())
116  if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117  return CI->isZero();
118  return true;
119  }
120 
121  /// Check if the binop can result in a float division by zero.
122  bool mayHaveFloatDivisionByZero() const {
123  if (isDivremOp())
124  if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125  return CFP->isZero();
126  return true;
127  }
128 
129  /// Check if either operand is a fixed point type or integer type, with at
130  /// least one being a fixed point type. In any case, this
131  /// operation did not follow usual arithmetic conversion and both operands may
132  /// not be the same.
133  bool isFixedPointBinOp() const {
134  // We cannot simply check the result type since comparison operations return
135  // an int.
136  if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137  QualType LHSType = BinOp->getLHS()->getType();
138  QualType RHSType = BinOp->getRHS()->getType();
139  return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140  }
141  return false;
142  }
143 };
144 
145 static bool MustVisitNullValue(const Expr *E) {
146  // If a null pointer expression's type is the C++0x nullptr_t, then
147  // it's not necessarily a simple constant and it must be evaluated
148  // for its potential side effects.
149  return E->getType()->isNullPtrType();
150 }
151 
152 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154  const Expr *E) {
155  const Expr *Base = E->IgnoreImpCasts();
156  if (E == Base)
157  return llvm::None;
158 
159  QualType BaseTy = Base->getType();
160  if (!BaseTy->isPromotableIntegerType() ||
161  Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162  return llvm::None;
163 
164  return BaseTy;
165 }
166 
167 /// Check if \p E is a widened promoted integer.
168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169  return getUnwidenedIntegerType(Ctx, E).hasValue();
170 }
171 
172 /// Check if we can skip the overflow check for \p Op.
173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174  assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
175  "Expected a unary or binary operator");
176 
177  // If the binop has constant inputs and we can prove there is no overflow,
178  // we can elide the overflow check.
179  if (!Op.mayHaveIntegerOverflow())
180  return true;
181 
182  // If a unary op has a widened operand, the op cannot overflow.
183  if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184  return !UO->canOverflow();
185 
186  // We usually don't need overflow checks for binops with widened operands.
187  // Multiplication with promoted unsigned operands is a special case.
188  const auto *BO = cast<BinaryOperator>(Op.E);
189  auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190  if (!OptionalLHSTy)
191  return false;
192 
193  auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194  if (!OptionalRHSTy)
195  return false;
196 
197  QualType LHSTy = *OptionalLHSTy;
198  QualType RHSTy = *OptionalRHSTy;
199 
200  // This is the simple case: binops without unsigned multiplication, and with
201  // widened operands. No overflow check is needed here.
202  if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203  !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204  return true;
205 
206  // For unsigned multiplication the overflow check can be elided if either one
207  // of the unpromoted types are less than half the size of the promoted type.
208  unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209  return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210  (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211 }
212 
213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215  FPOptions FPFeatures) {
216  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217 }
218 
219 /// Propagate fast-math flags from \p Op to the instruction in \p V.
220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221  if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222  llvm::FastMathFlags FMF = I->getFastMathFlags();
223  updateFastMathFlags(FMF, Op.FPFeatures);
224  I->setFastMathFlags(FMF);
225  }
226  return V;
227 }
228 
229 class ScalarExprEmitter
230  : public StmtVisitor<ScalarExprEmitter, Value*> {
231  CodeGenFunction &CGF;
232  CGBuilderTy &Builder;
233  bool IgnoreResultAssign;
234  llvm::LLVMContext &VMContext;
235 public:
236 
237  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238  : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239  VMContext(cgf.getLLVMContext()) {
240  }
241 
242  //===--------------------------------------------------------------------===//
243  // Utilities
244  //===--------------------------------------------------------------------===//
245 
246  bool TestAndClearIgnoreResultAssign() {
247  bool I = IgnoreResultAssign;
248  IgnoreResultAssign = false;
249  return I;
250  }
251 
252  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255  return CGF.EmitCheckedLValue(E, TCK);
256  }
257 
258  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259  const BinOpInfo &Info);
260 
261  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262  return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263  }
264 
265  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266  const AlignValueAttr *AVAttr = nullptr;
267  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268  const ValueDecl *VD = DRE->getDecl();
269 
270  if (VD->getType()->isReferenceType()) {
271  if (const auto *TTy =
272  dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274  } else {
275  // Assumptions for function parameters are emitted at the start of the
276  // function, so there is no need to repeat that here,
277  // unless the alignment-assumption sanitizer is enabled,
278  // then we prefer the assumption over alignment attribute
279  // on IR function param.
280  if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281  return;
282 
283  AVAttr = VD->getAttr<AlignValueAttr>();
284  }
285  }
286 
287  if (!AVAttr)
288  if (const auto *TTy =
289  dyn_cast<TypedefType>(E->getType()))
290  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291 
292  if (!AVAttr)
293  return;
294 
295  Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296  llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297  CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(),
298  AlignmentCI->getZExtValue());
299  }
300 
301  /// EmitLoadOfLValue - Given an expression with complex type that represents a
302  /// value l-value, this method emits the address of the l-value, then loads
303  /// and returns the result.
304  Value *EmitLoadOfLValue(const Expr *E) {
305  Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
306  E->getExprLoc());
307 
308  EmitLValueAlignmentAssumption(E, V);
309  return V;
310  }
311 
312  /// EmitConversionToBool - Convert the specified expression value to a
313  /// boolean (i1) truth value. This is equivalent to "Val != 0".
314  Value *EmitConversionToBool(Value *Src, QualType DstTy);
315 
316  /// Emit a check that a conversion from a floating-point type does not
317  /// overflow.
318  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
319  Value *Src, QualType SrcType, QualType DstType,
320  llvm::Type *DstTy, SourceLocation Loc);
321 
322  /// Known implicit conversion check kinds.
323  /// Keep in sync with the enum of the same name in ubsan_handlers.h
324  enum ImplicitConversionCheckKind : unsigned char {
325  ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
326  ICCK_UnsignedIntegerTruncation = 1,
327  ICCK_SignedIntegerTruncation = 2,
328  ICCK_IntegerSignChange = 3,
329  ICCK_SignedIntegerTruncationOrSignChange = 4,
330  };
331 
332  /// Emit a check that an [implicit] truncation of an integer does not
333  /// discard any bits. It is not UB, so we use the value after truncation.
334  void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
335  QualType DstType, SourceLocation Loc);
336 
337  /// Emit a check that an [implicit] conversion of an integer does not change
338  /// the sign of the value. It is not UB, so we use the value after conversion.
339  /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
340  void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
341  QualType DstType, SourceLocation Loc);
342 
343  /// Emit a conversion from the specified type to the specified destination
344  /// type, both of which are LLVM scalar types.
345  struct ScalarConversionOpts {
346  bool TreatBooleanAsSigned;
347  bool EmitImplicitIntegerTruncationChecks;
348  bool EmitImplicitIntegerSignChangeChecks;
349 
350  ScalarConversionOpts()
351  : TreatBooleanAsSigned(false),
352  EmitImplicitIntegerTruncationChecks(false),
353  EmitImplicitIntegerSignChangeChecks(false) {}
354 
355  ScalarConversionOpts(clang::SanitizerSet SanOpts)
356  : TreatBooleanAsSigned(false),
357  EmitImplicitIntegerTruncationChecks(
358  SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
359  EmitImplicitIntegerSignChangeChecks(
360  SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
361  };
362  Value *
363  EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
364  SourceLocation Loc,
365  ScalarConversionOpts Opts = ScalarConversionOpts());
366 
367  /// Convert between either a fixed point and other fixed point or fixed point
368  /// and an integer.
369  Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
370  SourceLocation Loc);
371  Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
372  FixedPointSemantics &DstFixedSema,
373  SourceLocation Loc,
374  bool DstIsInteger = false);
375 
376  /// Emit a conversion from the specified complex type to the specified
377  /// destination type, where the destination type is an LLVM scalar type.
378  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
379  QualType SrcTy, QualType DstTy,
380  SourceLocation Loc);
381 
382  /// EmitNullValue - Emit a value that corresponds to null for the given type.
383  Value *EmitNullValue(QualType Ty);
384 
385  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
386  Value *EmitFloatToBoolConversion(Value *V) {
387  // Compare against 0.0 for fp scalars.
388  llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
389  return Builder.CreateFCmpUNE(V, Zero, "tobool");
390  }
391 
392  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
393  Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
394  Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
395 
396  return Builder.CreateICmpNE(V, Zero, "tobool");
397  }
398 
399  Value *EmitIntToBoolConversion(Value *V) {
400  // Because of the type rules of C, we often end up computing a
401  // logical value, then zero extending it to int, then wanting it
402  // as a logical value again. Optimize this common case.
403  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
404  if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
405  Value *Result = ZI->getOperand(0);
406  // If there aren't any more uses, zap the instruction to save space.
407  // Note that there can be more uses, for example if this
408  // is the result of an assignment.
409  if (ZI->use_empty())
410  ZI->eraseFromParent();
411  return Result;
412  }
413  }
414 
415  return Builder.CreateIsNotNull(V, "tobool");
416  }
417 
418  //===--------------------------------------------------------------------===//
419  // Visitor Methods
420  //===--------------------------------------------------------------------===//
421 
422  Value *Visit(Expr *E) {
423  ApplyDebugLocation DL(CGF, E);
425  }
426 
427  Value *VisitStmt(Stmt *S) {
428  S->dump(CGF.getContext().getSourceManager());
429  llvm_unreachable("Stmt can't have complex result type!");
430  }
431  Value *VisitExpr(Expr *S);
432 
433  Value *VisitConstantExpr(ConstantExpr *E) {
434  return Visit(E->getSubExpr());
435  }
436  Value *VisitParenExpr(ParenExpr *PE) {
437  return Visit(PE->getSubExpr());
438  }
439  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
440  return Visit(E->getReplacement());
441  }
442  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
443  return Visit(GE->getResultExpr());
444  }
445  Value *VisitCoawaitExpr(CoawaitExpr *S) {
446  return CGF.EmitCoawaitExpr(*S).getScalarVal();
447  }
448  Value *VisitCoyieldExpr(CoyieldExpr *S) {
449  return CGF.EmitCoyieldExpr(*S).getScalarVal();
450  }
451  Value *VisitUnaryCoawait(const UnaryOperator *E) {
452  return Visit(E->getSubExpr());
453  }
454 
455  // Leaves.
456  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
457  return Builder.getInt(E->getValue());
458  }
459  Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
460  return Builder.getInt(E->getValue());
461  }
462  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
463  return llvm::ConstantFP::get(VMContext, E->getValue());
464  }
465  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
466  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467  }
468  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
469  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
470  }
471  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
472  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
473  }
474  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
475  return EmitNullValue(E->getType());
476  }
477  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
478  return EmitNullValue(E->getType());
479  }
480  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
481  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
482  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
483  llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
484  return Builder.CreateBitCast(V, ConvertType(E->getType()));
485  }
486 
487  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
488  return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489  }
490 
491  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
492  return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493  }
494 
495  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496  if (E->isGLValue())
497  return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498  E->getExprLoc());
499 
500  // Otherwise, assume the mapping is the scalar directly.
502  }
503 
504  // l-values.
505  Value *VisitDeclRefExpr(DeclRefExpr *E) {
507  return CGF.emitScalarConstant(Constant, E);
508  return EmitLoadOfLValue(E);
509  }
510 
511  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512  return CGF.EmitObjCSelectorExpr(E);
513  }
514  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515  return CGF.EmitObjCProtocolExpr(E);
516  }
517  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518  return EmitLoadOfLValue(E);
519  }
520  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521  if (E->getMethodDecl() &&
523  return EmitLoadOfLValue(E);
524  return CGF.EmitObjCMessageExpr(E).getScalarVal();
525  }
526 
527  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528  LValue LV = CGF.EmitObjCIsaExpr(E);
529  Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530  return V;
531  }
532 
533  Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534  VersionTuple Version = E->getVersion();
535 
536  // If we're checking for a platform older than our minimum deployment
537  // target, we can fold the check away.
538  if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539  return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540 
541  Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
542  llvm::Value *Args[] = {
543  llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
544  llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
545  llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
546  };
547 
548  return CGF.EmitBuiltinAvailable(Args);
549  }
550 
551  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
552  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
553  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
554  Value *VisitMemberExpr(MemberExpr *E);
555  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
556  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
557  return EmitLoadOfLValue(E);
558  }
559 
560  Value *VisitInitListExpr(InitListExpr *E);
561 
562  Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563  assert(CGF.getArrayInitIndex() &&
564  "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565  return CGF.getArrayInitIndex();
566  }
567 
568  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569  return EmitNullValue(E->getType());
570  }
571  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572  CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573  return VisitCastExpr(E);
574  }
575  Value *VisitCastExpr(CastExpr *E);
576 
577  Value *VisitCallExpr(const CallExpr *E) {
578  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579  return EmitLoadOfLValue(E);
580 
581  Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583  EmitLValueAlignmentAssumption(E, V);
584  return V;
585  }
586 
587  Value *VisitStmtExpr(const StmtExpr *E);
588 
589  // Unary Operators.
590  Value *VisitUnaryPostDec(const UnaryOperator *E) {
591  LValue LV = EmitLValue(E->getSubExpr());
592  return EmitScalarPrePostIncDec(E, LV, false, false);
593  }
594  Value *VisitUnaryPostInc(const UnaryOperator *E) {
595  LValue LV = EmitLValue(E->getSubExpr());
596  return EmitScalarPrePostIncDec(E, LV, true, false);
597  }
598  Value *VisitUnaryPreDec(const UnaryOperator *E) {
599  LValue LV = EmitLValue(E->getSubExpr());
600  return EmitScalarPrePostIncDec(E, LV, false, true);
601  }
602  Value *VisitUnaryPreInc(const UnaryOperator *E) {
603  LValue LV = EmitLValue(E->getSubExpr());
604  return EmitScalarPrePostIncDec(E, LV, true, true);
605  }
606 
607  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608  llvm::Value *InVal,
609  bool IsInc);
610 
611  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612  bool isInc, bool isPre);
613 
614 
615  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616  if (isa<MemberPointerType>(E->getType())) // never sugared
617  return CGF.CGM.getMemberPointerConstant(E);
618 
619  return EmitLValue(E->getSubExpr()).getPointer();
620  }
621  Value *VisitUnaryDeref(const UnaryOperator *E) {
622  if (E->getType()->isVoidType())
623  return Visit(E->getSubExpr()); // the actual value should be unused
624  return EmitLoadOfLValue(E);
625  }
626  Value *VisitUnaryPlus(const UnaryOperator *E) {
627  // This differs from gcc, though, most likely due to a bug in gcc.
628  TestAndClearIgnoreResultAssign();
629  return Visit(E->getSubExpr());
630  }
631  Value *VisitUnaryMinus (const UnaryOperator *E);
632  Value *VisitUnaryNot (const UnaryOperator *E);
633  Value *VisitUnaryLNot (const UnaryOperator *E);
634  Value *VisitUnaryReal (const UnaryOperator *E);
635  Value *VisitUnaryImag (const UnaryOperator *E);
636  Value *VisitUnaryExtension(const UnaryOperator *E) {
637  return Visit(E->getSubExpr());
638  }
639 
640  // C++
641  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642  return EmitLoadOfLValue(E);
643  }
644  Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645  auto &Ctx = CGF.getContext();
646  APValue Evaluated =
648  return ConstantEmitter(CGF.CGM, &CGF)
649  .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
650  }
651 
652  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
654  return Visit(DAE->getExpr());
655  }
656  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
658  return Visit(DIE->getExpr());
659  }
660  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661  return CGF.LoadCXXThis();
662  }
663 
664  Value *VisitExprWithCleanups(ExprWithCleanups *E);
665  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666  return CGF.EmitCXXNewExpr(E);
667  }
668  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669  CGF.EmitCXXDeleteExpr(E);
670  return nullptr;
671  }
672 
673  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675  }
676 
677  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
678  return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
679  }
680 
681  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
682  return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
683  }
684 
685  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
686  // C++ [expr.pseudo]p1:
687  // The result shall only be used as the operand for the function call
688  // operator (), and the result of such a call has type void. The only
689  // effect is the evaluation of the postfix-expression before the dot or
690  // arrow.
691  CGF.EmitScalarExpr(E->getBase());
692  return nullptr;
693  }
694 
695  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
696  return EmitNullValue(E->getType());
697  }
698 
699  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
700  CGF.EmitCXXThrowExpr(E);
701  return nullptr;
702  }
703 
704  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
705  return Builder.getInt1(E->getValue());
706  }
707 
708  // Binary Operators.
709  Value *EmitMul(const BinOpInfo &Ops) {
710  if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
711  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
713  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
715  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
716  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
717  LLVM_FALLTHROUGH;
719  if (CanElideOverflowCheck(CGF.getContext(), Ops))
720  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
721  return EmitOverflowCheckedBinOp(Ops);
722  }
723  }
724 
725  if (Ops.Ty->isUnsignedIntegerType() &&
726  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
727  !CanElideOverflowCheck(CGF.getContext(), Ops))
728  return EmitOverflowCheckedBinOp(Ops);
729 
730  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
731  Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
732  return propagateFMFlags(V, Ops);
733  }
734  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
735  }
736  /// Create a binary op that checks for overflow.
737  /// Currently only supports +, - and *.
738  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
739 
740  // Check for undefined division and modulus behaviors.
741  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
742  llvm::Value *Zero,bool isDiv);
743  // Common helper for getting how wide LHS of shift is.
744  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
745  Value *EmitDiv(const BinOpInfo &Ops);
746  Value *EmitRem(const BinOpInfo &Ops);
747  Value *EmitAdd(const BinOpInfo &Ops);
748  Value *EmitSub(const BinOpInfo &Ops);
749  Value *EmitShl(const BinOpInfo &Ops);
750  Value *EmitShr(const BinOpInfo &Ops);
751  Value *EmitAnd(const BinOpInfo &Ops) {
752  return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
753  }
754  Value *EmitXor(const BinOpInfo &Ops) {
755  return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
756  }
757  Value *EmitOr (const BinOpInfo &Ops) {
758  return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
759  }
760 
761  // Helper functions for fixed point binary operations.
762  Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
763 
764  BinOpInfo EmitBinOps(const BinaryOperator *E);
765  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
766  Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
767  Value *&Result);
768 
769  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
770  Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
771 
772  // Binary operators and binary compound assignment operators.
773 #define HANDLEBINOP(OP) \
774  Value *VisitBin ## OP(const BinaryOperator *E) { \
775  return Emit ## OP(EmitBinOps(E)); \
776  } \
777  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
778  return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
779  }
780  HANDLEBINOP(Mul)
781  HANDLEBINOP(Div)
782  HANDLEBINOP(Rem)
783  HANDLEBINOP(Add)
784  HANDLEBINOP(Sub)
785  HANDLEBINOP(Shl)
786  HANDLEBINOP(Shr)
788  HANDLEBINOP(Xor)
789  HANDLEBINOP(Or)
790 #undef HANDLEBINOP
791 
792  // Comparisons.
793  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
794  llvm::CmpInst::Predicate SICmpOpc,
795  llvm::CmpInst::Predicate FCmpOpc);
796 #define VISITCOMP(CODE, UI, SI, FP) \
797  Value *VisitBin##CODE(const BinaryOperator *E) { \
798  return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
799  llvm::FCmpInst::FP); }
800  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
801  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
802  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
803  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
804  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
805  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
806 #undef VISITCOMP
807 
808  Value *VisitBinAssign (const BinaryOperator *E);
809 
810  Value *VisitBinLAnd (const BinaryOperator *E);
811  Value *VisitBinLOr (const BinaryOperator *E);
812  Value *VisitBinComma (const BinaryOperator *E);
813 
814  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
815  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
816 
817  // Other Operators.
818  Value *VisitBlockExpr(const BlockExpr *BE);
819  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
820  Value *VisitChooseExpr(ChooseExpr *CE);
821  Value *VisitVAArgExpr(VAArgExpr *VE);
822  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
823  return CGF.EmitObjCStringLiteral(E);
824  }
825  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
826  return CGF.EmitObjCBoxedExpr(E);
827  }
828  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
829  return CGF.EmitObjCArrayLiteral(E);
830  }
831  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
832  return CGF.EmitObjCDictionaryLiteral(E);
833  }
834  Value *VisitAsTypeExpr(AsTypeExpr *CE);
835  Value *VisitAtomicExpr(AtomicExpr *AE);
836 };
837 } // end anonymous namespace.
838 
839 //===----------------------------------------------------------------------===//
840 // Utilities
841 //===----------------------------------------------------------------------===//
842 
843 /// EmitConversionToBool - Convert the specified expression value to a
844 /// boolean (i1) truth value. This is equivalent to "Val != 0".
845 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
846  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
847 
848  if (SrcType->isRealFloatingType())
849  return EmitFloatToBoolConversion(Src);
850 
851  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
852  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
853 
854  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
855  "Unknown scalar type to convert");
856 
857  if (isa<llvm::IntegerType>(Src->getType()))
858  return EmitIntToBoolConversion(Src);
859 
860  assert(isa<llvm::PointerType>(Src->getType()));
861  return EmitPointerToBoolConversion(Src, SrcType);
862 }
863 
864 void ScalarExprEmitter::EmitFloatConversionCheck(
865  Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
866  QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
867  assert(SrcType->isFloatingType() && "not a conversion from floating point");
868  if (!isa<llvm::IntegerType>(DstTy))
869  return;
870 
871  CodeGenFunction::SanitizerScope SanScope(&CGF);
872  using llvm::APFloat;
873  using llvm::APSInt;
874 
875  llvm::Value *Check = nullptr;
876  const llvm::fltSemantics &SrcSema =
877  CGF.getContext().getFloatTypeSemantics(OrigSrcType);
878 
879  // Floating-point to integer. This has undefined behavior if the source is
880  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
881  // to an integer).
882  unsigned Width = CGF.getContext().getIntWidth(DstType);
883  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
884 
885  APSInt Min = APSInt::getMinValue(Width, Unsigned);
886  APFloat MinSrc(SrcSema, APFloat::uninitialized);
887  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
888  APFloat::opOverflow)
889  // Don't need an overflow check for lower bound. Just check for
890  // -Inf/NaN.
891  MinSrc = APFloat::getInf(SrcSema, true);
892  else
893  // Find the largest value which is too small to represent (before
894  // truncation toward zero).
895  MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
896 
897  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
898  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
899  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
900  APFloat::opOverflow)
901  // Don't need an overflow check for upper bound. Just check for
902  // +Inf/NaN.
903  MaxSrc = APFloat::getInf(SrcSema, false);
904  else
905  // Find the smallest value which is too large to represent (before
906  // truncation toward zero).
907  MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
908 
909  // If we're converting from __half, convert the range to float to match
910  // the type of src.
911  if (OrigSrcType->isHalfType()) {
912  const llvm::fltSemantics &Sema =
913  CGF.getContext().getFloatTypeSemantics(SrcType);
914  bool IsInexact;
915  MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
916  MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
917  }
918 
919  llvm::Value *GE =
920  Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
921  llvm::Value *LE =
922  Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
923  Check = Builder.CreateAnd(GE, LE);
924 
925  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
926  CGF.EmitCheckTypeDescriptor(OrigSrcType),
927  CGF.EmitCheckTypeDescriptor(DstType)};
928  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
929  SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
930 }
931 
932 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
933 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
934 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
935  std::pair<llvm::Value *, SanitizerMask>>
937  QualType DstType, CGBuilderTy &Builder) {
938  llvm::Type *SrcTy = Src->getType();
939  llvm::Type *DstTy = Dst->getType();
940  (void)DstTy; // Only used in assert()
941 
942  // This should be truncation of integral types.
943  assert(Src != Dst);
944  assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
945  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
946  "non-integer llvm type");
947 
948  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
949  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
950 
951  // If both (src and dst) types are unsigned, then it's an unsigned truncation.
952  // Else, it is a signed truncation.
953  ScalarExprEmitter::ImplicitConversionCheckKind Kind;
954  SanitizerMask Mask;
955  if (!SrcSigned && !DstSigned) {
956  Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
957  Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
958  } else {
959  Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
960  Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
961  }
962 
963  llvm::Value *Check = nullptr;
964  // 1. Extend the truncated value back to the same width as the Src.
965  Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
966  // 2. Equality-compare with the original source value
967  Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
968  // If the comparison result is 'i1 false', then the truncation was lossy.
969  return std::make_pair(Kind, std::make_pair(Check, Mask));
970 }
971 
972 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
973  Value *Dst, QualType DstType,
974  SourceLocation Loc) {
975  if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
976  return;
977 
978  // We only care about int->int conversions here.
979  // We ignore conversions to/from pointer and/or bool.
980  if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
981  return;
982 
983  unsigned SrcBits = Src->getType()->getScalarSizeInBits();
984  unsigned DstBits = Dst->getType()->getScalarSizeInBits();
985  // This must be truncation. Else we do not care.
986  if (SrcBits <= DstBits)
987  return;
988 
989  assert(!DstType->isBooleanType() && "we should not get here with booleans.");
990 
991  // If the integer sign change sanitizer is enabled,
992  // and we are truncating from larger unsigned type to smaller signed type,
993  // let that next sanitizer deal with it.
994  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
995  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
996  if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
997  (!SrcSigned && DstSigned))
998  return;
999 
1000  CodeGenFunction::SanitizerScope SanScope(&CGF);
1001 
1002  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1003  std::pair<llvm::Value *, SanitizerMask>>
1004  Check =
1005  EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1006  // If the comparison result is 'i1 false', then the truncation was lossy.
1007 
1008  // Do we care about this type of truncation?
1009  if (!CGF.SanOpts.has(Check.second.second))
1010  return;
1011 
1012  llvm::Constant *StaticArgs[] = {
1013  CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1014  CGF.EmitCheckTypeDescriptor(DstType),
1015  llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1016  CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1017  {Src, Dst});
1018 }
1019 
1020 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1021 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1022 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1023  std::pair<llvm::Value *, SanitizerMask>>
1025  QualType DstType, CGBuilderTy &Builder) {
1026  llvm::Type *SrcTy = Src->getType();
1027  llvm::Type *DstTy = Dst->getType();
1028 
1029  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1030  "non-integer llvm type");
1031 
1032  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1033  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1034  (void)SrcSigned; // Only used in assert()
1035  (void)DstSigned; // Only used in assert()
1036  unsigned SrcBits = SrcTy->getScalarSizeInBits();
1037  unsigned DstBits = DstTy->getScalarSizeInBits();
1038  (void)SrcBits; // Only used in assert()
1039  (void)DstBits; // Only used in assert()
1040 
1041  assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1042  "either the widths should be different, or the signednesses.");
1043 
1044  // NOTE: zero value is considered to be non-negative.
1045  auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1046  const char *Name) -> Value * {
1047  // Is this value a signed type?
1048  bool VSigned = VType->isSignedIntegerOrEnumerationType();
1049  llvm::Type *VTy = V->getType();
1050  if (!VSigned) {
1051  // If the value is unsigned, then it is never negative.
1052  // FIXME: can we encounter non-scalar VTy here?
1053  return llvm::ConstantInt::getFalse(VTy->getContext());
1054  }
1055  // Get the zero of the same type with which we will be comparing.
1056  llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1057  // %V.isnegative = icmp slt %V, 0
1058  // I.e is %V *strictly* less than zero, does it have negative value?
1059  return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1060  llvm::Twine(Name) + "." + V->getName() +
1061  ".negativitycheck");
1062  };
1063 
1064  // 1. Was the old Value negative?
1065  llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1066  // 2. Is the new Value negative?
1067  llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1068  // 3. Now, was the 'negativity status' preserved during the conversion?
1069  // NOTE: conversion from negative to zero is considered to change the sign.
1070  // (We want to get 'false' when the conversion changed the sign)
1071  // So we should just equality-compare the negativity statuses.
1072  llvm::Value *Check = nullptr;
1073  Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1074  // If the comparison result is 'false', then the conversion changed the sign.
1075  return std::make_pair(
1076  ScalarExprEmitter::ICCK_IntegerSignChange,
1077  std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1078 }
1079 
1080 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1081  Value *Dst, QualType DstType,
1082  SourceLocation Loc) {
1083  if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1084  return;
1085 
1086  llvm::Type *SrcTy = Src->getType();
1087  llvm::Type *DstTy = Dst->getType();
1088 
1089  // We only care about int->int conversions here.
1090  // We ignore conversions to/from pointer and/or bool.
1091  if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1092  return;
1093 
1094  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1095  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1096  unsigned SrcBits = SrcTy->getScalarSizeInBits();
1097  unsigned DstBits = DstTy->getScalarSizeInBits();
1098 
1099  // Now, we do not need to emit the check in *all* of the cases.
1100  // We can avoid emitting it in some obvious cases where it would have been
1101  // dropped by the opt passes (instcombine) always anyways.
1102  // If it's a cast between effectively the same type, no check.
1103  // NOTE: this is *not* equivalent to checking the canonical types.
1104  if (SrcSigned == DstSigned && SrcBits == DstBits)
1105  return;
1106  // At least one of the values needs to have signed type.
1107  // If both are unsigned, then obviously, neither of them can be negative.
1108  if (!SrcSigned && !DstSigned)
1109  return;
1110  // If the conversion is to *larger* *signed* type, then no check is needed.
1111  // Because either sign-extension happens (so the sign will remain),
1112  // or zero-extension will happen (the sign bit will be zero.)
1113  if ((DstBits > SrcBits) && DstSigned)
1114  return;
1115  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1116  (SrcBits > DstBits) && SrcSigned) {
1117  // If the signed integer truncation sanitizer is enabled,
1118  // and this is a truncation from signed type, then no check is needed.
1119  // Because here sign change check is interchangeable with truncation check.
1120  return;
1121  }
1122  // That's it. We can't rule out any more cases with the data we have.
1123 
1124  CodeGenFunction::SanitizerScope SanScope(&CGF);
1125 
1126  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1127  std::pair<llvm::Value *, SanitizerMask>>
1128  Check;
1129 
1130  // Each of these checks needs to return 'false' when an issue was detected.
1131  ImplicitConversionCheckKind CheckKind;
1133  // So we can 'and' all the checks together, and still get 'false',
1134  // if at least one of the checks detected an issue.
1135 
1136  Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1137  CheckKind = Check.first;
1138  Checks.emplace_back(Check.second);
1139 
1140  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1141  (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1142  // If the signed integer truncation sanitizer was enabled,
1143  // and we are truncating from larger unsigned type to smaller signed type,
1144  // let's handle the case we skipped in that check.
1145  Check =
1146  EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1147  CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1148  Checks.emplace_back(Check.second);
1149  // If the comparison result is 'i1 false', then the truncation was lossy.
1150  }
1151 
1152  llvm::Constant *StaticArgs[] = {
1153  CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1154  CGF.EmitCheckTypeDescriptor(DstType),
1155  llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1156  // EmitCheck() will 'and' all the checks together.
1157  CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1158  {Src, Dst});
1159 }
1160 
1161 /// Emit a conversion from the specified type to the specified destination type,
1162 /// both of which are LLVM scalar types.
1163 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1164  QualType DstType,
1165  SourceLocation Loc,
1166  ScalarConversionOpts Opts) {
1167  // All conversions involving fixed point types should be handled by the
1168  // EmitFixedPoint family functions. This is done to prevent bloating up this
1169  // function more, and although fixed point numbers are represented by
1170  // integers, we do not want to follow any logic that assumes they should be
1171  // treated as integers.
1172  // TODO(leonardchan): When necessary, add another if statement checking for
1173  // conversions to fixed point types from other types.
1174  if (SrcType->isFixedPointType()) {
1175  if (DstType->isBooleanType())
1176  // It is important that we check this before checking if the dest type is
1177  // an integer because booleans are technically integer types.
1178  // We do not need to check the padding bit on unsigned types if unsigned
1179  // padding is enabled because overflow into this bit is undefined
1180  // behavior.
1181  return Builder.CreateIsNotNull(Src, "tobool");
1182  if (DstType->isFixedPointType() || DstType->isIntegerType())
1183  return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1184 
1185  llvm_unreachable(
1186  "Unhandled scalar conversion from a fixed point type to another type.");
1187  } else if (DstType->isFixedPointType()) {
1188  if (SrcType->isIntegerType())
1189  // This also includes converting booleans and enums to fixed point types.
1190  return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1191 
1192  llvm_unreachable(
1193  "Unhandled scalar conversion to a fixed point type from another type.");
1194  }
1195 
1196  QualType NoncanonicalSrcType = SrcType;
1197  QualType NoncanonicalDstType = DstType;
1198 
1199  SrcType = CGF.getContext().getCanonicalType(SrcType);
1200  DstType = CGF.getContext().getCanonicalType(DstType);
1201  if (SrcType == DstType) return Src;
1202 
1203  if (DstType->isVoidType()) return nullptr;
1204 
1205  llvm::Value *OrigSrc = Src;
1206  QualType OrigSrcType = SrcType;
1207  llvm::Type *SrcTy = Src->getType();
1208 
1209  // Handle conversions to bool first, they are special: comparisons against 0.
1210  if (DstType->isBooleanType())
1211  return EmitConversionToBool(Src, SrcType);
1212 
1213  llvm::Type *DstTy = ConvertType(DstType);
1214 
1215  // Cast from half through float if half isn't a native type.
1216  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1217  // Cast to FP using the intrinsic if the half type itself isn't supported.
1218  if (DstTy->isFloatingPointTy()) {
1220  return Builder.CreateCall(
1221  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1222  Src);
1223  } else {
1224  // Cast to other types through float, using either the intrinsic or FPExt,
1225  // depending on whether the half type itself is supported
1226  // (as opposed to operations on half, available with NativeHalfType).
1228  Src = Builder.CreateCall(
1229  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1230  CGF.CGM.FloatTy),
1231  Src);
1232  } else {
1233  Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1234  }
1235  SrcType = CGF.getContext().FloatTy;
1236  SrcTy = CGF.FloatTy;
1237  }
1238  }
1239 
1240  // Ignore conversions like int -> uint.
1241  if (SrcTy == DstTy) {
1242  if (Opts.EmitImplicitIntegerSignChangeChecks)
1243  EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1244  NoncanonicalDstType, Loc);
1245 
1246  return Src;
1247  }
1248 
1249  // Handle pointer conversions next: pointers can only be converted to/from
1250  // other pointers and integers. Check for pointer types in terms of LLVM, as
1251  // some native types (like Obj-C id) may map to a pointer type.
1252  if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1253  // The source value may be an integer, or a pointer.
1254  if (isa<llvm::PointerType>(SrcTy))
1255  return Builder.CreateBitCast(Src, DstTy, "conv");
1256 
1257  assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1258  // First, convert to the correct width so that we control the kind of
1259  // extension.
1260  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1261  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1262  llvm::Value* IntResult =
1263  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1264  // Then, cast to pointer.
1265  return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1266  }
1267 
1268  if (isa<llvm::PointerType>(SrcTy)) {
1269  // Must be an ptr to int cast.
1270  assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1271  return Builder.CreatePtrToInt(Src, DstTy, "conv");
1272  }
1273 
1274  // A scalar can be splatted to an extended vector of the same element type
1275  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1276  // Sema should add casts to make sure that the source expression's type is
1277  // the same as the vector's element type (sans qualifiers)
1278  assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1279  SrcType.getTypePtr() &&
1280  "Splatted expr doesn't match with vector element type?");
1281 
1282  // Splat the element across to all elements
1283  unsigned NumElements = DstTy->getVectorNumElements();
1284  return Builder.CreateVectorSplat(NumElements, Src, "splat");
1285  }
1286 
1287  if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1288  // Allow bitcast from vector to integer/fp of the same size.
1289  unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1290  unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1291  if (SrcSize == DstSize)
1292  return Builder.CreateBitCast(Src, DstTy, "conv");
1293 
1294  // Conversions between vectors of different sizes are not allowed except
1295  // when vectors of half are involved. Operations on storage-only half
1296  // vectors require promoting half vector operands to float vectors and
1297  // truncating the result, which is either an int or float vector, to a
1298  // short or half vector.
1299 
1300  // Source and destination are both expected to be vectors.
1301  llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1302  llvm::Type *DstElementTy = DstTy->getVectorElementType();
1303  (void)DstElementTy;
1304 
1305  assert(((SrcElementTy->isIntegerTy() &&
1306  DstElementTy->isIntegerTy()) ||
1307  (SrcElementTy->isFloatingPointTy() &&
1308  DstElementTy->isFloatingPointTy())) &&
1309  "unexpected conversion between a floating-point vector and an "
1310  "integer vector");
1311 
1312  // Truncate an i32 vector to an i16 vector.
1313  if (SrcElementTy->isIntegerTy())
1314  return Builder.CreateIntCast(Src, DstTy, false, "conv");
1315 
1316  // Truncate a float vector to a half vector.
1317  if (SrcSize > DstSize)
1318  return Builder.CreateFPTrunc(Src, DstTy, "conv");
1319 
1320  // Promote a half vector to a float vector.
1321  return Builder.CreateFPExt(Src, DstTy, "conv");
1322  }
1323 
1324  // Finally, we have the arithmetic types: real int/float.
1325  Value *Res = nullptr;
1326  llvm::Type *ResTy = DstTy;
1327 
1328  // An overflowing conversion has undefined behavior if either the source type
1329  // or the destination type is a floating-point type. However, we consider the
1330  // range of representable values for all floating-point types to be
1331  // [-inf,+inf], so no overflow can ever happen when the destination type is a
1332  // floating-point type.
1333  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1334  OrigSrcType->isFloatingType())
1335  EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1336  Loc);
1337 
1338  // Cast to half through float if half isn't a native type.
1339  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1340  // Make sure we cast in a single step if from another FP type.
1341  if (SrcTy->isFloatingPointTy()) {
1342  // Use the intrinsic if the half type itself isn't supported
1343  // (as opposed to operations on half, available with NativeHalfType).
1345  return Builder.CreateCall(
1346  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1347  // If the half type is supported, just use an fptrunc.
1348  return Builder.CreateFPTrunc(Src, DstTy);
1349  }
1350  DstTy = CGF.FloatTy;
1351  }
1352 
1353  if (isa<llvm::IntegerType>(SrcTy)) {
1354  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1355  if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1356  InputSigned = true;
1357  }
1358  if (isa<llvm::IntegerType>(DstTy))
1359  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1360  else if (InputSigned)
1361  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1362  else
1363  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1364  } else if (isa<llvm::IntegerType>(DstTy)) {
1365  assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1366  if (DstType->isSignedIntegerOrEnumerationType())
1367  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1368  else
1369  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1370  } else {
1371  assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1372  "Unknown real conversion");
1373  if (DstTy->getTypeID() < SrcTy->getTypeID())
1374  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1375  else
1376  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1377  }
1378 
1379  if (DstTy != ResTy) {
1381  assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1382  Res = Builder.CreateCall(
1383  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1384  Res);
1385  } else {
1386  Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1387  }
1388  }
1389 
1390  if (Opts.EmitImplicitIntegerTruncationChecks)
1391  EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1392  NoncanonicalDstType, Loc);
1393 
1394  if (Opts.EmitImplicitIntegerSignChangeChecks)
1395  EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1396  NoncanonicalDstType, Loc);
1397 
1398  return Res;
1399 }
1400 
1401 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1402  QualType DstTy,
1403  SourceLocation Loc) {
1404  FixedPointSemantics SrcFPSema =
1405  CGF.getContext().getFixedPointSemantics(SrcTy);
1406  FixedPointSemantics DstFPSema =
1407  CGF.getContext().getFixedPointSemantics(DstTy);
1408  return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1409  DstTy->isIntegerType());
1410 }
1411 
1412 Value *ScalarExprEmitter::EmitFixedPointConversion(
1413  Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1414  SourceLocation Loc, bool DstIsInteger) {
1415  using llvm::APInt;
1416  using llvm::ConstantInt;
1417  using llvm::Value;
1418 
1419  unsigned SrcWidth = SrcFPSema.getWidth();
1420  unsigned DstWidth = DstFPSema.getWidth();
1421  unsigned SrcScale = SrcFPSema.getScale();
1422  unsigned DstScale = DstFPSema.getScale();
1423  bool SrcIsSigned = SrcFPSema.isSigned();
1424  bool DstIsSigned = DstFPSema.isSigned();
1425 
1426  llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1427 
1428  Value *Result = Src;
1429  unsigned ResultWidth = SrcWidth;
1430 
1431  // Downscale.
1432  if (DstScale < SrcScale) {
1433  // When converting to integers, we round towards zero. For negative numbers,
1434  // right shifting rounds towards negative infinity. In this case, we can
1435  // just round up before shifting.
1436  if (DstIsInteger && SrcIsSigned) {
1437  Value *Zero = llvm::Constant::getNullValue(Result->getType());
1438  Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1439  Value *LowBits = ConstantInt::get(
1440  CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1441  Value *Rounded = Builder.CreateAdd(Result, LowBits);
1442  Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1443  }
1444 
1445  Result = SrcIsSigned
1446  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1447  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1448  }
1449 
1450  if (!DstFPSema.isSaturated()) {
1451  // Resize.
1452  Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1453 
1454  // Upscale.
1455  if (DstScale > SrcScale)
1456  Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1457  } else {
1458  // Adjust the number of fractional bits.
1459  if (DstScale > SrcScale) {
1460  // Compare to DstWidth to prevent resizing twice.
1461  ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1462  llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1463  Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1464  Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1465  }
1466 
1467  // Handle saturation.
1468  bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1469  if (LessIntBits) {
1470  Value *Max = ConstantInt::get(
1471  CGF.getLLVMContext(),
1472  APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1473  Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1474  : Builder.CreateICmpUGT(Result, Max);
1475  Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1476  }
1477  // Cannot overflow min to dest type if src is unsigned since all fixed
1478  // point types can cover the unsigned min of 0.
1479  if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1480  Value *Min = ConstantInt::get(
1481  CGF.getLLVMContext(),
1482  APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1483  Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1484  Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1485  }
1486 
1487  // Resize the integer part to get the final destination size.
1488  if (ResultWidth != DstWidth)
1489  Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1490  }
1491  return Result;
1492 }
1493 
1494 /// Emit a conversion from the specified complex type to the specified
1495 /// destination type, where the destination type is an LLVM scalar type.
1496 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1498  SourceLocation Loc) {
1499  // Get the source element type.
1500  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1501 
1502  // Handle conversions to bool first, they are special: comparisons against 0.
1503  if (DstTy->isBooleanType()) {
1504  // Complex != 0 -> (Real != 0) | (Imag != 0)
1505  Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1506  Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1507  return Builder.CreateOr(Src.first, Src.second, "tobool");
1508  }
1509 
1510  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1511  // the imaginary part of the complex value is discarded and the value of the
1512  // real part is converted according to the conversion rules for the
1513  // corresponding real type.
1514  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1515 }
1516 
1517 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1518  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1519 }
1520 
1521 /// Emit a sanitization check for the given "binary" operation (which
1522 /// might actually be a unary increment which has been lowered to a binary
1523 /// operation). The check passes if all values in \p Checks (which are \c i1),
1524 /// are \c true.
1525 void ScalarExprEmitter::EmitBinOpCheck(
1526  ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1527  assert(CGF.IsSanitizerScope);
1528  SanitizerHandler Check;
1530  SmallVector<llvm::Value *, 2> DynamicData;
1531 
1532  BinaryOperatorKind Opcode = Info.Opcode;
1535 
1536  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1537  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1538  if (UO && UO->getOpcode() == UO_Minus) {
1539  Check = SanitizerHandler::NegateOverflow;
1540  StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1541  DynamicData.push_back(Info.RHS);
1542  } else {
1543  if (BinaryOperator::isShiftOp(Opcode)) {
1544  // Shift LHS negative or too large, or RHS out of bounds.
1545  Check = SanitizerHandler::ShiftOutOfBounds;
1546  const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1547  StaticData.push_back(
1548  CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1549  StaticData.push_back(
1550  CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1551  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1552  // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1553  Check = SanitizerHandler::DivremOverflow;
1554  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1555  } else {
1556  // Arithmetic overflow (+, -, *).
1557  switch (Opcode) {
1558  case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1559  case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1560  case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1561  default: llvm_unreachable("unexpected opcode for bin op check");
1562  }
1563  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1564  }
1565  DynamicData.push_back(Info.LHS);
1566  DynamicData.push_back(Info.RHS);
1567  }
1568 
1569  CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 // Visitor Methods
1574 //===----------------------------------------------------------------------===//
1575 
1576 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1577  CGF.ErrorUnsupported(E, "scalar expression");
1578  if (E->getType()->isVoidType())
1579  return nullptr;
1580  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1581 }
1582 
1583 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1584  // Vector Mask Case
1585  if (E->getNumSubExprs() == 2) {
1586  Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1587  Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1588  Value *Mask;
1589 
1590  llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1591  unsigned LHSElts = LTy->getNumElements();
1592 
1593  Mask = RHS;
1594 
1595  llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1596 
1597  // Mask off the high bits of each shuffle index.
1598  Value *MaskBits =
1599  llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1600  Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1601 
1602  // newv = undef
1603  // mask = mask & maskbits
1604  // for each elt
1605  // n = extract mask i
1606  // x = extract val n
1607  // newv = insert newv, x, i
1608  llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1609  MTy->getNumElements());
1610  Value* NewV = llvm::UndefValue::get(RTy);
1611  for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1612  Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1613  Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1614 
1615  Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1616  NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1617  }
1618  return NewV;
1619  }
1620 
1621  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1622  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1623 
1625  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1626  llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1627  // Check for -1 and output it as undef in the IR.
1628  if (Idx.isSigned() && Idx.isAllOnesValue())
1629  indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1630  else
1631  indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1632  }
1633 
1634  Value *SV = llvm::ConstantVector::get(indices);
1635  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1636 }
1637 
1638 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1639  QualType SrcType = E->getSrcExpr()->getType(),
1640  DstType = E->getType();
1641 
1642  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1643 
1644  SrcType = CGF.getContext().getCanonicalType(SrcType);
1645  DstType = CGF.getContext().getCanonicalType(DstType);
1646  if (SrcType == DstType) return Src;
1647 
1648  assert(SrcType->isVectorType() &&
1649  "ConvertVector source type must be a vector");
1650  assert(DstType->isVectorType() &&
1651  "ConvertVector destination type must be a vector");
1652 
1653  llvm::Type *SrcTy = Src->getType();
1654  llvm::Type *DstTy = ConvertType(DstType);
1655 
1656  // Ignore conversions like int -> uint.
1657  if (SrcTy == DstTy)
1658  return Src;
1659 
1660  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1661  DstEltType = DstType->getAs<VectorType>()->getElementType();
1662 
1663  assert(SrcTy->isVectorTy() &&
1664  "ConvertVector source IR type must be a vector");
1665  assert(DstTy->isVectorTy() &&
1666  "ConvertVector destination IR type must be a vector");
1667 
1668  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1669  *DstEltTy = DstTy->getVectorElementType();
1670 
1671  if (DstEltType->isBooleanType()) {
1672  assert((SrcEltTy->isFloatingPointTy() ||
1673  isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1674 
1675  llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1676  if (SrcEltTy->isFloatingPointTy()) {
1677  return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1678  } else {
1679  return Builder.CreateICmpNE(Src, Zero, "tobool");
1680  }
1681  }
1682 
1683  // We have the arithmetic types: real int/float.
1684  Value *Res = nullptr;
1685 
1686  if (isa<llvm::IntegerType>(SrcEltTy)) {
1687  bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1688  if (isa<llvm::IntegerType>(DstEltTy))
1689  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1690  else if (InputSigned)
1691  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1692  else
1693  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1694  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1695  assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1696  if (DstEltType->isSignedIntegerOrEnumerationType())
1697  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1698  else
1699  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1700  } else {
1701  assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1702  "Unknown real conversion");
1703  if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1704  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1705  else
1706  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1707  }
1708 
1709  return Res;
1710 }
1711 
1712 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1713  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1714  CGF.EmitIgnoredExpr(E->getBase());
1715  return CGF.emitScalarConstant(Constant, E);
1716  } else {
1717  Expr::EvalResult Result;
1718  if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1719  llvm::APSInt Value = Result.Val.getInt();
1720  CGF.EmitIgnoredExpr(E->getBase());
1721  return Builder.getInt(Value);
1722  }
1723  }
1724 
1725  return EmitLoadOfLValue(E);
1726 }
1727 
1728 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1729  TestAndClearIgnoreResultAssign();
1730 
1731  // Emit subscript expressions in rvalue context's. For most cases, this just
1732  // loads the lvalue formed by the subscript expr. However, we have to be
1733  // careful, because the base of a vector subscript is occasionally an rvalue,
1734  // so we can't get it as an lvalue.
1735  if (!E->getBase()->getType()->isVectorType())
1736  return EmitLoadOfLValue(E);
1737 
1738  // Handle the vector case. The base must be a vector, the index must be an
1739  // integer value.
1740  Value *Base = Visit(E->getBase());
1741  Value *Idx = Visit(E->getIdx());
1742  QualType IdxTy = E->getIdx()->getType();
1743 
1744  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1745  CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1746 
1747  return Builder.CreateExtractElement(Base, Idx, "vecext");
1748 }
1749 
1750 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1751  unsigned Off, llvm::Type *I32Ty) {
1752  int MV = SVI->getMaskValue(Idx);
1753  if (MV == -1)
1754  return llvm::UndefValue::get(I32Ty);
1755  return llvm::ConstantInt::get(I32Ty, Off+MV);
1756 }
1757 
1758 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1759  if (C->getBitWidth() != 32) {
1760  assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1761  C->getZExtValue()) &&
1762  "Index operand too large for shufflevector mask!");
1763  return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1764  }
1765  return C;
1766 }
1767 
1768 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1769  bool Ignore = TestAndClearIgnoreResultAssign();
1770  (void)Ignore;
1771  assert (Ignore == false && "init list ignored");
1772  unsigned NumInitElements = E->getNumInits();
1773 
1774  if (E->hadArrayRangeDesignator())
1775  CGF.ErrorUnsupported(E, "GNU array range designator extension");
1776 
1777  llvm::VectorType *VType =
1778  dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1779 
1780  if (!VType) {
1781  if (NumInitElements == 0) {
1782  // C++11 value-initialization for the scalar.
1783  return EmitNullValue(E->getType());
1784  }
1785  // We have a scalar in braces. Just use the first element.
1786  return Visit(E->getInit(0));
1787  }
1788 
1789  unsigned ResElts = VType->getNumElements();
1790 
1791  // Loop over initializers collecting the Value for each, and remembering
1792  // whether the source was swizzle (ExtVectorElementExpr). This will allow
1793  // us to fold the shuffle for the swizzle into the shuffle for the vector
1794  // initializer, since LLVM optimizers generally do not want to touch
1795  // shuffles.
1796  unsigned CurIdx = 0;
1797  bool VIsUndefShuffle = false;
1798  llvm::Value *V = llvm::UndefValue::get(VType);
1799  for (unsigned i = 0; i != NumInitElements; ++i) {
1800  Expr *IE = E->getInit(i);
1801  Value *Init = Visit(IE);
1803 
1804  llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1805 
1806  // Handle scalar elements. If the scalar initializer is actually one
1807  // element of a different vector of the same width, use shuffle instead of
1808  // extract+insert.
1809  if (!VVT) {
1810  if (isa<ExtVectorElementExpr>(IE)) {
1811  llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1812 
1813  if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1814  llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1815  Value *LHS = nullptr, *RHS = nullptr;
1816  if (CurIdx == 0) {
1817  // insert into undef -> shuffle (src, undef)
1818  // shufflemask must use an i32
1819  Args.push_back(getAsInt32(C, CGF.Int32Ty));
1820  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1821 
1822  LHS = EI->getVectorOperand();
1823  RHS = V;
1824  VIsUndefShuffle = true;
1825  } else if (VIsUndefShuffle) {
1826  // insert into undefshuffle && size match -> shuffle (v, src)
1827  llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1828  for (unsigned j = 0; j != CurIdx; ++j)
1829  Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1830  Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1831  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1832 
1833  LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1834  RHS = EI->getVectorOperand();
1835  VIsUndefShuffle = false;
1836  }
1837  if (!Args.empty()) {
1838  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1839  V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1840  ++CurIdx;
1841  continue;
1842  }
1843  }
1844  }
1845  V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1846  "vecinit");
1847  VIsUndefShuffle = false;
1848  ++CurIdx;
1849  continue;
1850  }
1851 
1852  unsigned InitElts = VVT->getNumElements();
1853 
1854  // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1855  // input is the same width as the vector being constructed, generate an
1856  // optimized shuffle of the swizzle input into the result.
1857  unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1858  if (isa<ExtVectorElementExpr>(IE)) {
1859  llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1860  Value *SVOp = SVI->getOperand(0);
1861  llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1862 
1863  if (OpTy->getNumElements() == ResElts) {
1864  for (unsigned j = 0; j != CurIdx; ++j) {
1865  // If the current vector initializer is a shuffle with undef, merge
1866  // this shuffle directly into it.
1867  if (VIsUndefShuffle) {
1868  Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1869  CGF.Int32Ty));
1870  } else {
1871  Args.push_back(Builder.getInt32(j));
1872  }
1873  }
1874  for (unsigned j = 0, je = InitElts; j != je; ++j)
1875  Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1876  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1877 
1878  if (VIsUndefShuffle)
1879  V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1880 
1881  Init = SVOp;
1882  }
1883  }
1884 
1885  // Extend init to result vector length, and then shuffle its contribution
1886  // to the vector initializer into V.
1887  if (Args.empty()) {
1888  for (unsigned j = 0; j != InitElts; ++j)
1889  Args.push_back(Builder.getInt32(j));
1890  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1891  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1892  Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1893  Mask, "vext");
1894 
1895  Args.clear();
1896  for (unsigned j = 0; j != CurIdx; ++j)
1897  Args.push_back(Builder.getInt32(j));
1898  for (unsigned j = 0; j != InitElts; ++j)
1899  Args.push_back(Builder.getInt32(j+Offset));
1900  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1901  }
1902 
1903  // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1904  // merging subsequent shuffles into this one.
1905  if (CurIdx == 0)
1906  std::swap(V, Init);
1907  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1908  V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1909  VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1910  CurIdx += InitElts;
1911  }
1912 
1913  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1914  // Emit remaining default initializers.
1915  llvm::Type *EltTy = VType->getElementType();
1916 
1917  // Emit remaining default initializers
1918  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1919  Value *Idx = Builder.getInt32(CurIdx);
1920  llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1921  V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1922  }
1923  return V;
1924 }
1925 
1927  const Expr *E = CE->getSubExpr();
1928 
1929  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1930  return false;
1931 
1932  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1933  // We always assume that 'this' is never null.
1934  return false;
1935  }
1936 
1937  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1938  // And that glvalue casts are never null.
1939  if (ICE->getValueKind() != VK_RValue)
1940  return false;
1941  }
1942 
1943  return true;
1944 }
1945 
1946 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1947 // have to handle a more broad range of conversions than explicit casts, as they
1948 // handle things like function to ptr-to-function decay etc.
1949 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1950  Expr *E = CE->getSubExpr();
1951  QualType DestTy = CE->getType();
1952  CastKind Kind = CE->getCastKind();
1953 
1954  // These cases are generally not written to ignore the result of
1955  // evaluating their sub-expressions, so we clear this now.
1956  bool Ignored = TestAndClearIgnoreResultAssign();
1957 
1958  // Since almost all cast kinds apply to scalars, this switch doesn't have
1959  // a default case, so the compiler will warn on a missing case. The cases
1960  // are in the same order as in the CastKind enum.
1961  switch (Kind) {
1962  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1963  case CK_BuiltinFnToFnPtr:
1964  llvm_unreachable("builtin functions are handled elsewhere");
1965 
1966  case CK_LValueBitCast:
1967  case CK_ObjCObjectLValueCast: {
1968  Address Addr = EmitLValue(E).getAddress();
1969  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1970  LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1971  return EmitLoadOfLValue(LV, CE->getExprLoc());
1972  }
1973 
1974  case CK_LValueToRValueBitCast: {
1975  LValue SourceLVal = CGF.EmitLValue(E);
1976  Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
1977  CGF.ConvertTypeForMem(DestTy));
1978  LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1980  return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1981  }
1982 
1983  case CK_CPointerToObjCPointerCast:
1984  case CK_BlockPointerToObjCPointerCast:
1985  case CK_AnyPointerToBlockPointerCast:
1986  case CK_BitCast: {
1987  Value *Src = Visit(const_cast<Expr*>(E));
1988  llvm::Type *SrcTy = Src->getType();
1989  llvm::Type *DstTy = ConvertType(DestTy);
1990  if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1991  SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1992  llvm_unreachable("wrong cast for pointers in different address spaces"
1993  "(must be an address space cast)!");
1994  }
1995 
1996  if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1997  if (auto PT = DestTy->getAs<PointerType>())
1998  CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1999  /*MayBeNull=*/true,
2001  CE->getBeginLoc());
2002  }
2003 
2004  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2005  const QualType SrcType = E->getType();
2006 
2007  if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2008  // Casting to pointer that could carry dynamic information (provided by
2009  // invariant.group) requires launder.
2010  Src = Builder.CreateLaunderInvariantGroup(Src);
2011  } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2012  // Casting to pointer that does not carry dynamic information (provided
2013  // by invariant.group) requires stripping it. Note that we don't do it
2014  // if the source could not be dynamic type and destination could be
2015  // dynamic because dynamic information is already laundered. It is
2016  // because launder(strip(src)) == launder(src), so there is no need to
2017  // add extra strip before launder.
2018  Src = Builder.CreateStripInvariantGroup(Src);
2019  }
2020  }
2021 
2022  // Update heapallocsite metadata when there is an explicit cast.
2023  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2024  if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2025  CGF.getDebugInfo()->
2026  addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2027 
2028  return Builder.CreateBitCast(Src, DstTy);
2029  }
2030  case CK_AddressSpaceConversion: {
2031  Expr::EvalResult Result;
2032  if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2033  Result.Val.isNullPointer()) {
2034  // If E has side effect, it is emitted even if its final result is a
2035  // null pointer. In that case, a DCE pass should be able to
2036  // eliminate the useless instructions emitted during translating E.
2037  if (Result.HasSideEffects)
2038  Visit(E);
2039  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2040  ConvertType(DestTy)), DestTy);
2041  }
2042  // Since target may map different address spaces in AST to the same address
2043  // space, an address space conversion may end up as a bitcast.
2045  CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2046  DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2047  }
2048  case CK_AtomicToNonAtomic:
2049  case CK_NonAtomicToAtomic:
2050  case CK_NoOp:
2051  case CK_UserDefinedConversion:
2052  return Visit(const_cast<Expr*>(E));
2053 
2054  case CK_BaseToDerived: {
2055  const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2056  assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2057 
2058  Address Base = CGF.EmitPointerWithAlignment(E);
2059  Address Derived =
2060  CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2061  CE->path_begin(), CE->path_end(),
2063 
2064  // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2065  // performed and the object is not of the derived type.
2066  if (CGF.sanitizePerformTypeCheck())
2068  Derived.getPointer(), DestTy->getPointeeType());
2069 
2070  if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2072  DestTy->getPointeeType(), Derived.getPointer(),
2073  /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2074  CE->getBeginLoc());
2075 
2076  return Derived.getPointer();
2077  }
2078  case CK_UncheckedDerivedToBase:
2079  case CK_DerivedToBase: {
2080  // The EmitPointerWithAlignment path does this fine; just discard
2081  // the alignment.
2082  return CGF.EmitPointerWithAlignment(CE).getPointer();
2083  }
2084 
2085  case CK_Dynamic: {
2086  Address V = CGF.EmitPointerWithAlignment(E);
2087  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2088  return CGF.EmitDynamicCast(V, DCE);
2089  }
2090 
2091  case CK_ArrayToPointerDecay:
2092  return CGF.EmitArrayToPointerDecay(E).getPointer();
2093  case CK_FunctionToPointerDecay:
2094  return EmitLValue(E).getPointer();
2095 
2096  case CK_NullToPointer:
2097  if (MustVisitNullValue(E))
2098  CGF.EmitIgnoredExpr(E);
2099 
2100  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2101  DestTy);
2102 
2103  case CK_NullToMemberPointer: {
2104  if (MustVisitNullValue(E))
2105  CGF.EmitIgnoredExpr(E);
2106 
2107  const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2108  return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2109  }
2110 
2111  case CK_ReinterpretMemberPointer:
2112  case CK_BaseToDerivedMemberPointer:
2113  case CK_DerivedToBaseMemberPointer: {
2114  Value *Src = Visit(E);
2115 
2116  // Note that the AST doesn't distinguish between checked and
2117  // unchecked member pointer conversions, so we always have to
2118  // implement checked conversions here. This is inefficient when
2119  // actual control flow may be required in order to perform the
2120  // check, which it is for data member pointers (but not member
2121  // function pointers on Itanium and ARM).
2122  return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2123  }
2124 
2125  case CK_ARCProduceObject:
2126  return CGF.EmitARCRetainScalarExpr(E);
2127  case CK_ARCConsumeObject:
2128  return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2129  case CK_ARCReclaimReturnedObject:
2130  return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2131  case CK_ARCExtendBlockObject:
2132  return CGF.EmitARCExtendBlockObject(E);
2133 
2134  case CK_CopyAndAutoreleaseBlockObject:
2135  return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2136 
2137  case CK_FloatingRealToComplex:
2138  case CK_FloatingComplexCast:
2139  case CK_IntegralRealToComplex:
2140  case CK_IntegralComplexCast:
2141  case CK_IntegralComplexToFloatingComplex:
2142  case CK_FloatingComplexToIntegralComplex:
2143  case CK_ConstructorConversion:
2144  case CK_ToUnion:
2145  llvm_unreachable("scalar cast to non-scalar value");
2146 
2147  case CK_LValueToRValue:
2148  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2149  assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2150  return Visit(const_cast<Expr*>(E));
2151 
2152  case CK_IntegralToPointer: {
2153  Value *Src = Visit(const_cast<Expr*>(E));
2154 
2155  // First, convert to the correct width so that we control the kind of
2156  // extension.
2157  auto DestLLVMTy = ConvertType(DestTy);
2158  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2159  bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2160  llvm::Value* IntResult =
2161  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2162 
2163  auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2164 
2165  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2166  // Going from integer to pointer that could be dynamic requires reloading
2167  // dynamic information from invariant.group.
2168  if (DestTy.mayBeDynamicClass())
2169  IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2170  }
2171  return IntToPtr;
2172  }
2173  case CK_PointerToIntegral: {
2174  assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2175  auto *PtrExpr = Visit(E);
2176 
2177  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2178  const QualType SrcType = E->getType();
2179 
2180  // Casting to integer requires stripping dynamic information as it does
2181  // not carries it.
2182  if (SrcType.mayBeDynamicClass())
2183  PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2184  }
2185 
2186  return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2187  }
2188  case CK_ToVoid: {
2189  CGF.EmitIgnoredExpr(E);
2190  return nullptr;
2191  }
2192  case CK_VectorSplat: {
2193  llvm::Type *DstTy = ConvertType(DestTy);
2194  Value *Elt = Visit(const_cast<Expr*>(E));
2195  // Splat the element across to all elements
2196  unsigned NumElements = DstTy->getVectorNumElements();
2197  return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2198  }
2199 
2200  case CK_FixedPointCast:
2201  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2202  CE->getExprLoc());
2203 
2204  case CK_FixedPointToBoolean:
2205  assert(E->getType()->isFixedPointType() &&
2206  "Expected src type to be fixed point type");
2207  assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2208  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2209  CE->getExprLoc());
2210 
2211  case CK_FixedPointToIntegral:
2212  assert(E->getType()->isFixedPointType() &&
2213  "Expected src type to be fixed point type");
2214  assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2215  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2216  CE->getExprLoc());
2217 
2218  case CK_IntegralToFixedPoint:
2219  assert(E->getType()->isIntegerType() &&
2220  "Expected src type to be an integer");
2221  assert(DestTy->isFixedPointType() &&
2222  "Expected dest type to be fixed point type");
2223  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2224  CE->getExprLoc());
2225 
2226  case CK_IntegralCast: {
2227  ScalarConversionOpts Opts;
2228  if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2229  if (!ICE->isPartOfExplicitCast())
2230  Opts = ScalarConversionOpts(CGF.SanOpts);
2231  }
2232  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2233  CE->getExprLoc(), Opts);
2234  }
2235  case CK_IntegralToFloating:
2236  case CK_FloatingToIntegral:
2237  case CK_FloatingCast:
2238  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2239  CE->getExprLoc());
2240  case CK_BooleanToSignedIntegral: {
2241  ScalarConversionOpts Opts;
2242  Opts.TreatBooleanAsSigned = true;
2243  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2244  CE->getExprLoc(), Opts);
2245  }
2246  case CK_IntegralToBoolean:
2247  return EmitIntToBoolConversion(Visit(E));
2248  case CK_PointerToBoolean:
2249  return EmitPointerToBoolConversion(Visit(E), E->getType());
2250  case CK_FloatingToBoolean:
2251  return EmitFloatToBoolConversion(Visit(E));
2252  case CK_MemberPointerToBoolean: {
2253  llvm::Value *MemPtr = Visit(E);
2254  const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2255  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2256  }
2257 
2258  case CK_FloatingComplexToReal:
2259  case CK_IntegralComplexToReal:
2260  return CGF.EmitComplexExpr(E, false, true).first;
2261 
2262  case CK_FloatingComplexToBoolean:
2263  case CK_IntegralComplexToBoolean: {
2265 
2266  // TODO: kill this function off, inline appropriate case here
2267  return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2268  CE->getExprLoc());
2269  }
2270 
2271  case CK_ZeroToOCLOpaqueType: {
2272  assert((DestTy->isEventT() || DestTy->isQueueT() ||
2273  DestTy->isOCLIntelSubgroupAVCType()) &&
2274  "CK_ZeroToOCLEvent cast on non-event type");
2275  return llvm::Constant::getNullValue(ConvertType(DestTy));
2276  }
2277 
2278  case CK_IntToOCLSampler:
2279  return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2280 
2281  } // end of switch
2282 
2283  llvm_unreachable("unknown scalar cast");
2284 }
2285 
2286 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2288  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2289  !E->getType()->isVoidType());
2290  if (!RetAlloca.isValid())
2291  return nullptr;
2292  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2293  E->getExprLoc());
2294 }
2295 
2296 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2297  CGF.enterFullExpression(E);
2299  Value *V = Visit(E->getSubExpr());
2300  // Defend against dominance problems caused by jumps out of expression
2301  // evaluation through the shared cleanup block.
2302  Scope.ForceCleanup({&V});
2303  return V;
2304 }
2305 
2306 //===----------------------------------------------------------------------===//
2307 // Unary Operators
2308 //===----------------------------------------------------------------------===//
2309 
2310 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2311  llvm::Value *InVal, bool IsInc) {
2312  BinOpInfo BinOp;
2313  BinOp.LHS = InVal;
2314  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2315  BinOp.Ty = E->getType();
2316  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2317  // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2318  BinOp.E = E;
2319  return BinOp;
2320 }
2321 
2322 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2323  const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2324  llvm::Value *Amount =
2325  llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2326  StringRef Name = IsInc ? "inc" : "dec";
2327  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2329  return Builder.CreateAdd(InVal, Amount, Name);
2331  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2332  return Builder.CreateNSWAdd(InVal, Amount, Name);
2333  LLVM_FALLTHROUGH;
2335  if (!E->canOverflow())
2336  return Builder.CreateNSWAdd(InVal, Amount, Name);
2337  return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2338  }
2339  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2340 }
2341 
2342 llvm::Value *
2343 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2344  bool isInc, bool isPre) {
2345 
2346  QualType type = E->getSubExpr()->getType();
2347  llvm::PHINode *atomicPHI = nullptr;
2348  llvm::Value *value;
2349  llvm::Value *input;
2350 
2351  int amount = (isInc ? 1 : -1);
2352  bool isSubtraction = !isInc;
2353 
2354  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2355  type = atomicTy->getValueType();
2356  if (isInc && type->isBooleanType()) {
2357  llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2358  if (isPre) {
2359  Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2360  ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2361  return Builder.getTrue();
2362  }
2363  // For atomic bool increment, we just store true and return it for
2364  // preincrement, do an atomic swap with true for postincrement
2365  return Builder.CreateAtomicRMW(
2366  llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2367  llvm::AtomicOrdering::SequentiallyConsistent);
2368  }
2369  // Special case for atomic increment / decrement on integers, emit
2370  // atomicrmw instructions. We skip this if we want to be doing overflow
2371  // checking, and fall into the slow path with the atomic cmpxchg loop.
2372  if (!type->isBooleanType() && type->isIntegerType() &&
2373  !(type->isUnsignedIntegerType() &&
2374  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2375  CGF.getLangOpts().getSignedOverflowBehavior() !=
2377  llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2378  llvm::AtomicRMWInst::Sub;
2379  llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2380  llvm::Instruction::Sub;
2381  llvm::Value *amt = CGF.EmitToMemory(
2382  llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2383  llvm::Value *old = Builder.CreateAtomicRMW(aop,
2384  LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2385  return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2386  }
2387  value = EmitLoadOfLValue(LV, E->getExprLoc());
2388  input = value;
2389  // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2390  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2391  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2392  value = CGF.EmitToMemory(value, type);
2393  Builder.CreateBr(opBB);
2394  Builder.SetInsertPoint(opBB);
2395  atomicPHI = Builder.CreatePHI(value->getType(), 2);
2396  atomicPHI->addIncoming(value, startBB);
2397  value = atomicPHI;
2398  } else {
2399  value = EmitLoadOfLValue(LV, E->getExprLoc());
2400  input = value;
2401  }
2402 
2403  // Special case of integer increment that we have to check first: bool++.
2404  // Due to promotion rules, we get:
2405  // bool++ -> bool = bool + 1
2406  // -> bool = (int)bool + 1
2407  // -> bool = ((int)bool + 1 != 0)
2408  // An interesting aspect of this is that increment is always true.
2409  // Decrement does not have this property.
2410  if (isInc && type->isBooleanType()) {
2411  value = Builder.getTrue();
2412 
2413  // Most common case by far: integer increment.
2414  } else if (type->isIntegerType()) {
2415  // Note that signed integer inc/dec with width less than int can't
2416  // overflow because of promotion rules; we're just eliding a few steps here.
2417  if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2418  value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2419  } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2420  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2421  value =
2422  EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2423  } else {
2424  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2425  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2426  }
2427 
2428  // Next most common: pointer increment.
2429  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2430  QualType type = ptr->getPointeeType();
2431 
2432  // VLA types don't have constant size.
2433  if (const VariableArrayType *vla
2434  = CGF.getContext().getAsVariableArrayType(type)) {
2435  llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2436  if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2438  value = Builder.CreateGEP(value, numElts, "vla.inc");
2439  else
2440  value = CGF.EmitCheckedInBoundsGEP(
2441  value, numElts, /*SignedIndices=*/false, isSubtraction,
2442  E->getExprLoc(), "vla.inc");
2443 
2444  // Arithmetic on function pointers (!) is just +-1.
2445  } else if (type->isFunctionType()) {
2446  llvm::Value *amt = Builder.getInt32(amount);
2447 
2448  value = CGF.EmitCastToVoidPtr(value);
2450  value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2451  else
2452  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2453  isSubtraction, E->getExprLoc(),
2454  "incdec.funcptr");
2455  value = Builder.CreateBitCast(value, input->getType());
2456 
2457  // For everything else, we can just do a simple increment.
2458  } else {
2459  llvm::Value *amt = Builder.getInt32(amount);
2461  value = Builder.CreateGEP(value, amt, "incdec.ptr");
2462  else
2463  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2464  isSubtraction, E->getExprLoc(),
2465  "incdec.ptr");
2466  }
2467 
2468  // Vector increment/decrement.
2469  } else if (type->isVectorType()) {
2470  if (type->hasIntegerRepresentation()) {
2471  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2472 
2473  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2474  } else {
2475  value = Builder.CreateFAdd(
2476  value,
2477  llvm::ConstantFP::get(value->getType(), amount),
2478  isInc ? "inc" : "dec");
2479  }
2480 
2481  // Floating point.
2482  } else if (type->isRealFloatingType()) {
2483  // Add the inc/dec to the real part.
2484  llvm::Value *amt;
2485 
2486  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2487  // Another special case: half FP increment should be done via float
2489  value = Builder.CreateCall(
2490  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2491  CGF.CGM.FloatTy),
2492  input, "incdec.conv");
2493  } else {
2494  value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2495  }
2496  }
2497 
2498  if (value->getType()->isFloatTy())
2499  amt = llvm::ConstantFP::get(VMContext,
2500  llvm::APFloat(static_cast<float>(amount)));
2501  else if (value->getType()->isDoubleTy())
2502  amt = llvm::ConstantFP::get(VMContext,
2503  llvm::APFloat(static_cast<double>(amount)));
2504  else {
2505  // Remaining types are Half, LongDouble or __float128. Convert from float.
2506  llvm::APFloat F(static_cast<float>(amount));
2507  bool ignored;
2508  const llvm::fltSemantics *FS;
2509  // Don't use getFloatTypeSemantics because Half isn't
2510  // necessarily represented using the "half" LLVM type.
2511  if (value->getType()->isFP128Ty())
2512  FS = &CGF.getTarget().getFloat128Format();
2513  else if (value->getType()->isHalfTy())
2514  FS = &CGF.getTarget().getHalfFormat();
2515  else
2516  FS = &CGF.getTarget().getLongDoubleFormat();
2517  F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2518  amt = llvm::ConstantFP::get(VMContext, F);
2519  }
2520  value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2521 
2522  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2524  value = Builder.CreateCall(
2525  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2526  CGF.CGM.FloatTy),
2527  value, "incdec.conv");
2528  } else {
2529  value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2530  }
2531  }
2532 
2533  // Objective-C pointer types.
2534  } else {
2535  const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2536  value = CGF.EmitCastToVoidPtr(value);
2537 
2539  if (!isInc) size = -size;
2540  llvm::Value *sizeValue =
2541  llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2542 
2544  value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2545  else
2546  value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2547  /*SignedIndices=*/false, isSubtraction,
2548  E->getExprLoc(), "incdec.objptr");
2549  value = Builder.CreateBitCast(value, input->getType());
2550  }
2551 
2552  if (atomicPHI) {
2553  llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2554  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2555  auto Pair = CGF.EmitAtomicCompareExchange(
2556  LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2557  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2558  llvm::Value *success = Pair.second;
2559  atomicPHI->addIncoming(old, curBlock);
2560  Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2561  Builder.SetInsertPoint(contBB);
2562  return isPre ? value : input;
2563  }
2564 
2565  // Store the updated result through the lvalue.
2566  if (LV.isBitField())
2567  CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2568  else
2569  CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2570 
2571  // If this is a postinc, return the value read from memory, otherwise use the
2572  // updated value.
2573  return isPre ? value : input;
2574 }
2575 
2576 
2577 
2578 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2579  TestAndClearIgnoreResultAssign();
2580  // Emit unary minus with EmitSub so we handle overflow cases etc.
2581  BinOpInfo BinOp;
2582  BinOp.RHS = Visit(E->getSubExpr());
2583 
2584  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2585  BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2586  else
2587  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2588  BinOp.Ty = E->getType();
2589  BinOp.Opcode = BO_Sub;
2590  // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2591  BinOp.E = E;
2592  return EmitSub(BinOp);
2593 }
2594 
2595 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2596  TestAndClearIgnoreResultAssign();
2597  Value *Op = Visit(E->getSubExpr());
2598  return Builder.CreateNot(Op, "neg");
2599 }
2600 
2601 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2602  // Perform vector logical not on comparison with zero vector.
2603  if (E->getType()->isExtVectorType()) {
2604  Value *Oper = Visit(E->getSubExpr());
2605  Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2606  Value *Result;
2607  if (Oper->getType()->isFPOrFPVectorTy())
2608  Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2609  else
2610  Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2611  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2612  }
2613 
2614  // Compare operand to zero.
2615  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2616 
2617  // Invert value.
2618  // TODO: Could dynamically modify easy computations here. For example, if
2619  // the operand is an icmp ne, turn into icmp eq.
2620  BoolVal = Builder.CreateNot(BoolVal, "lnot");
2621 
2622  // ZExt result to the expr type.
2623  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2624 }
2625 
2626 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2627  // Try folding the offsetof to a constant.
2628  Expr::EvalResult EVResult;
2629  if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2630  llvm::APSInt Value = EVResult.Val.getInt();
2631  return Builder.getInt(Value);
2632  }
2633 
2634  // Loop over the components of the offsetof to compute the value.
2635  unsigned n = E->getNumComponents();
2636  llvm::Type* ResultType = ConvertType(E->getType());
2637  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2638  QualType CurrentType = E->getTypeSourceInfo()->getType();
2639  for (unsigned i = 0; i != n; ++i) {
2640  OffsetOfNode ON = E->getComponent(i);
2641  llvm::Value *Offset = nullptr;
2642  switch (ON.getKind()) {
2643  case OffsetOfNode::Array: {
2644  // Compute the index
2645  Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2646  llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2647  bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2648  Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2649 
2650  // Save the element type
2651  CurrentType =
2652  CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2653 
2654  // Compute the element size
2655  llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2656  CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2657 
2658  // Multiply out to compute the result
2659  Offset = Builder.CreateMul(Idx, ElemSize);
2660  break;
2661  }
2662 
2663  case OffsetOfNode::Field: {
2664  FieldDecl *MemberDecl = ON.getField();
2665  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2666  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2667 
2668  // Compute the index of the field in its parent.
2669  unsigned i = 0;
2670  // FIXME: It would be nice if we didn't have to loop here!
2671  for (RecordDecl::field_iterator Field = RD->field_begin(),
2672  FieldEnd = RD->field_end();
2673  Field != FieldEnd; ++Field, ++i) {
2674  if (*Field == MemberDecl)
2675  break;
2676  }
2677  assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2678 
2679  // Compute the offset to the field
2680  int64_t OffsetInt = RL.getFieldOffset(i) /
2681  CGF.getContext().getCharWidth();
2682  Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2683 
2684  // Save the element type.
2685  CurrentType = MemberDecl->getType();
2686  break;
2687  }
2688 
2690  llvm_unreachable("dependent __builtin_offsetof");
2691 
2692  case OffsetOfNode::Base: {
2693  if (ON.getBase()->isVirtual()) {
2694  CGF.ErrorUnsupported(E, "virtual base in offsetof");
2695  continue;
2696  }
2697 
2698  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2699  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2700 
2701  // Save the element type.
2702  CurrentType = ON.getBase()->getType();
2703 
2704  // Compute the offset to the base.
2705  const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2706  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2707  CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2708  Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2709  break;
2710  }
2711  }
2712  Result = Builder.CreateAdd(Result, Offset);
2713  }
2714  return Result;
2715 }
2716 
2717 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2718 /// argument of the sizeof expression as an integer.
2719 Value *
2720 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2721  const UnaryExprOrTypeTraitExpr *E) {
2722  QualType TypeToSize = E->getTypeOfArgument();
2723  if (E->getKind() == UETT_SizeOf) {
2724  if (const VariableArrayType *VAT =
2725  CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2726  if (E->isArgumentType()) {
2727  // sizeof(type) - make sure to emit the VLA size.
2728  CGF.EmitVariablyModifiedType(TypeToSize);
2729  } else {
2730  // C99 6.5.3.4p2: If the argument is an expression of type
2731  // VLA, it is evaluated.
2732  CGF.EmitIgnoredExpr(E->getArgumentExpr());
2733  }
2734 
2735  auto VlaSize = CGF.getVLASize(VAT);
2736  llvm::Value *size = VlaSize.NumElts;
2737 
2738  // Scale the number of non-VLA elements by the non-VLA element size.
2739  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2740  if (!eltSize.isOne())
2741  size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2742 
2743  return size;
2744  }
2745  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2746  auto Alignment =
2747  CGF.getContext()
2750  .getQuantity();
2751  return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2752  }
2753 
2754  // If this isn't sizeof(vla), the result must be constant; use the constant
2755  // folding logic so we don't have to duplicate it here.
2756  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2757 }
2758 
2759 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2760  Expr *Op = E->getSubExpr();
2761  if (Op->getType()->isAnyComplexType()) {
2762  // If it's an l-value, load through the appropriate subobject l-value.
2763  // Note that we have to ask E because Op might be an l-value that
2764  // this won't work for, e.g. an Obj-C property.
2765  if (E->isGLValue())
2766  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2767  E->getExprLoc()).getScalarVal();
2768 
2769  // Otherwise, calculate and project.
2770  return CGF.EmitComplexExpr(Op, false, true).first;
2771  }
2772 
2773  return Visit(Op);
2774 }
2775 
2776 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2777  Expr *Op = E->getSubExpr();
2778  if (Op->getType()->isAnyComplexType()) {
2779  // If it's an l-value, load through the appropriate subobject l-value.
2780  // Note that we have to ask E because Op might be an l-value that
2781  // this won't work for, e.g. an Obj-C property.
2782  if (Op->isGLValue())
2783  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2784  E->getExprLoc()).getScalarVal();
2785 
2786  // Otherwise, calculate and project.
2787  return CGF.EmitComplexExpr(Op, true, false).second;
2788  }
2789 
2790  // __imag on a scalar returns zero. Emit the subexpr to ensure side
2791  // effects are evaluated, but not the actual value.
2792  if (Op->isGLValue())
2793  CGF.EmitLValue(Op);
2794  else
2795  CGF.EmitScalarExpr(Op, true);
2796  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2797 }
2798 
2799 //===----------------------------------------------------------------------===//
2800 // Binary Operators
2801 //===----------------------------------------------------------------------===//
2802 
2803 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2804  TestAndClearIgnoreResultAssign();
2805  BinOpInfo Result;
2806  Result.LHS = Visit(E->getLHS());
2807  Result.RHS = Visit(E->getRHS());
2808  Result.Ty = E->getType();
2809  Result.Opcode = E->getOpcode();
2810  Result.FPFeatures = E->getFPFeatures();
2811  Result.E = E;
2812  return Result;
2813 }
2814 
2815 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2816  const CompoundAssignOperator *E,
2817  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2818  Value *&Result) {
2819  QualType LHSTy = E->getLHS()->getType();
2820  BinOpInfo OpInfo;
2821 
2823  return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2824 
2825  // Emit the RHS first. __block variables need to have the rhs evaluated
2826  // first, plus this should improve codegen a little.
2827  OpInfo.RHS = Visit(E->getRHS());
2828  OpInfo.Ty = E->getComputationResultType();
2829  OpInfo.Opcode = E->getOpcode();
2830  OpInfo.FPFeatures = E->getFPFeatures();
2831  OpInfo.E = E;
2832  // Load/convert the LHS.
2833  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2834 
2835  llvm::PHINode *atomicPHI = nullptr;
2836  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2837  QualType type = atomicTy->getValueType();
2838  if (!type->isBooleanType() && type->isIntegerType() &&
2839  !(type->isUnsignedIntegerType() &&
2840  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2841  CGF.getLangOpts().getSignedOverflowBehavior() !=
2843  llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2844  switch (OpInfo.Opcode) {
2845  // We don't have atomicrmw operands for *, %, /, <<, >>
2846  case BO_MulAssign: case BO_DivAssign:
2847  case BO_RemAssign:
2848  case BO_ShlAssign:
2849  case BO_ShrAssign:
2850  break;
2851  case BO_AddAssign:
2852  aop = llvm::AtomicRMWInst::Add;
2853  break;
2854  case BO_SubAssign:
2855  aop = llvm::AtomicRMWInst::Sub;
2856  break;
2857  case BO_AndAssign:
2859  break;
2860  case BO_XorAssign:
2861  aop = llvm::AtomicRMWInst::Xor;
2862  break;
2863  case BO_OrAssign:
2864  aop = llvm::AtomicRMWInst::Or;
2865  break;
2866  default:
2867  llvm_unreachable("Invalid compound assignment type");
2868  }
2869  if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2870  llvm::Value *amt = CGF.EmitToMemory(
2871  EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2872  E->getExprLoc()),
2873  LHSTy);
2874  Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2875  llvm::AtomicOrdering::SequentiallyConsistent);
2876  return LHSLV;
2877  }
2878  }
2879  // FIXME: For floating point types, we should be saving and restoring the
2880  // floating point environment in the loop.
2881  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2882  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2883  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2884  OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2885  Builder.CreateBr(opBB);
2886  Builder.SetInsertPoint(opBB);
2887  atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2888  atomicPHI->addIncoming(OpInfo.LHS, startBB);
2889  OpInfo.LHS = atomicPHI;
2890  }
2891  else
2892  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2893 
2894  SourceLocation Loc = E->getExprLoc();
2895  OpInfo.LHS =
2896  EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2897 
2898  // Expand the binary operator.
2899  Result = (this->*Func)(OpInfo);
2900 
2901  // Convert the result back to the LHS type,
2902  // potentially with Implicit Conversion sanitizer check.
2903  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2904  Loc, ScalarConversionOpts(CGF.SanOpts));
2905 
2906  if (atomicPHI) {
2907  llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2908  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2909  auto Pair = CGF.EmitAtomicCompareExchange(
2910  LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2911  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2912  llvm::Value *success = Pair.second;
2913  atomicPHI->addIncoming(old, curBlock);
2914  Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2915  Builder.SetInsertPoint(contBB);
2916  return LHSLV;
2917  }
2918 
2919  // Store the result value into the LHS lvalue. Bit-fields are handled
2920  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2921  // 'An assignment expression has the value of the left operand after the
2922  // assignment...'.
2923  if (LHSLV.isBitField())
2924  CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2925  else
2926  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2927 
2928  return LHSLV;
2929 }
2930 
2931 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2932  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2933  bool Ignore = TestAndClearIgnoreResultAssign();
2934  Value *RHS = nullptr;
2935  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2936 
2937  // If the result is clearly ignored, return now.
2938  if (Ignore)
2939  return nullptr;
2940 
2941  // The result of an assignment in C is the assigned r-value.
2942  if (!CGF.getLangOpts().CPlusPlus)
2943  return RHS;
2944 
2945  // If the lvalue is non-volatile, return the computed value of the assignment.
2946  if (!LHS.isVolatileQualified())
2947  return RHS;
2948 
2949  // Otherwise, reload the value.
2950  return EmitLoadOfLValue(LHS, E->getExprLoc());
2951 }
2952 
2953 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2954  const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2956 
2957  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2958  Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2959  SanitizerKind::IntegerDivideByZero));
2960  }
2961 
2962  const auto *BO = cast<BinaryOperator>(Ops.E);
2963  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2964  Ops.Ty->hasSignedIntegerRepresentation() &&
2965  !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2966  Ops.mayHaveIntegerOverflow()) {
2967  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2968 
2969  llvm::Value *IntMin =
2970  Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2971  llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2972 
2973  llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2974  llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2975  llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2976  Checks.push_back(
2977  std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2978  }
2979 
2980  if (Checks.size() > 0)
2981  EmitBinOpCheck(Checks, Ops);
2982 }
2983 
2984 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2985  {
2986  CodeGenFunction::SanitizerScope SanScope(&CGF);
2987  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2988  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2989  Ops.Ty->isIntegerType() &&
2990  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2991  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2992  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2993  } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2994  Ops.Ty->isRealFloatingType() &&
2995  Ops.mayHaveFloatDivisionByZero()) {
2996  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2997  llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2998  EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2999  Ops);
3000  }
3001  }
3002 
3003  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3004  llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3005  if (CGF.getLangOpts().OpenCL &&
3006  !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3007  // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3008  // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3009  // build option allows an application to specify that single precision
3010  // floating-point divide (x/y and 1/x) and sqrt used in the program
3011  // source are correctly rounded.
3012  llvm::Type *ValTy = Val->getType();
3013  if (ValTy->isFloatTy() ||
3014  (isa<llvm::VectorType>(ValTy) &&
3015  cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3016  CGF.SetFPAccuracy(Val, 2.5);
3017  }
3018  return Val;
3019  }
3020  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3021  return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3022  else
3023  return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3024 }
3025 
3026 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3027  // Rem in C can't be a floating point type: C99 6.5.5p2.
3028  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3029  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3030  Ops.Ty->isIntegerType() &&
3031  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3032  CodeGenFunction::SanitizerScope SanScope(&CGF);
3033  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3034  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3035  }
3036 
3037  if (Ops.Ty->hasUnsignedIntegerRepresentation())
3038  return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3039  else
3040  return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3041 }
3042 
3043 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3044  unsigned IID;
3045  unsigned OpID = 0;
3046 
3047  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3048  switch (Ops.Opcode) {
3049  case BO_Add:
3050  case BO_AddAssign:
3051  OpID = 1;
3052  IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3053  llvm::Intrinsic::uadd_with_overflow;
3054  break;
3055  case BO_Sub:
3056  case BO_SubAssign:
3057  OpID = 2;
3058  IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3059  llvm::Intrinsic::usub_with_overflow;
3060  break;
3061  case BO_Mul:
3062  case BO_MulAssign:
3063  OpID = 3;
3064  IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3065  llvm::Intrinsic::umul_with_overflow;
3066  break;
3067  default:
3068  llvm_unreachable("Unsupported operation for overflow detection");
3069  }
3070  OpID <<= 1;
3071  if (isSigned)
3072  OpID |= 1;
3073 
3074  CodeGenFunction::SanitizerScope SanScope(&CGF);
3075  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3076 
3077  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3078 
3079  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3080  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3081  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3082 
3083  // Handle overflow with llvm.trap if no custom handler has been specified.
3084  const std::string *handlerName =
3086  if (handlerName->empty()) {
3087  // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3088  // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3089  if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3090  llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3091  SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3092  : SanitizerKind::UnsignedIntegerOverflow;
3093  EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3094  } else
3095  CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3096  return result;
3097  }
3098 
3099  // Branch in case of overflow.
3100  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3101  llvm::BasicBlock *continueBB =
3102  CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3103  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3104 
3105  Builder.CreateCondBr(overflow, overflowBB, continueBB);
3106 
3107  // If an overflow handler is set, then we want to call it and then use its
3108  // result, if it returns.
3109  Builder.SetInsertPoint(overflowBB);
3110 
3111  // Get the overflow handler.
3112  llvm::Type *Int8Ty = CGF.Int8Ty;
3113  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3114  llvm::FunctionType *handlerTy =
3115  llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3116  llvm::FunctionCallee handler =
3117  CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3118 
3119  // Sign extend the args to 64-bit, so that we can use the same handler for
3120  // all types of overflow.
3121  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3122  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3123 
3124  // Call the handler with the two arguments, the operation, and the size of
3125  // the result.
3126  llvm::Value *handlerArgs[] = {
3127  lhs,
3128  rhs,
3129  Builder.getInt8(OpID),
3130  Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3131  };
3132  llvm::Value *handlerResult =
3133  CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3134 
3135  // Truncate the result back to the desired size.
3136  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3137  Builder.CreateBr(continueBB);
3138 
3139  Builder.SetInsertPoint(continueBB);
3140  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3141  phi->addIncoming(result, initialBB);
3142  phi->addIncoming(handlerResult, overflowBB);
3143 
3144  return phi;
3145 }
3146 
3147 /// Emit pointer + index arithmetic.
3149  const BinOpInfo &op,
3150  bool isSubtraction) {
3151  // Must have binary (not unary) expr here. Unary pointer
3152  // increment/decrement doesn't use this path.
3153  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3154 
3155  Value *pointer = op.LHS;
3156  Expr *pointerOperand = expr->getLHS();
3157  Value *index = op.RHS;
3158  Expr *indexOperand = expr->getRHS();
3159 
3160  // In a subtraction, the LHS is always the pointer.
3161  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3162  std::swap(pointer, index);
3163  std::swap(pointerOperand, indexOperand);
3164  }
3165 
3166  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3167 
3168  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3169  auto &DL = CGF.CGM.getDataLayout();
3170  auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3171 
3172  // Some versions of glibc and gcc use idioms (particularly in their malloc
3173  // routines) that add a pointer-sized integer (known to be a pointer value)
3174  // to a null pointer in order to cast the value back to an integer or as
3175  // part of a pointer alignment algorithm. This is undefined behavior, but
3176  // we'd like to be able to compile programs that use it.
3177  //
3178  // Normally, we'd generate a GEP with a null-pointer base here in response
3179  // to that code, but it's also UB to dereference a pointer created that
3180  // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3181  // generate a direct cast of the integer value to a pointer.
3182  //
3183  // The idiom (p = nullptr + N) is not met if any of the following are true:
3184  //
3185  // The operation is subtraction.
3186  // The index is not pointer-sized.
3187  // The pointer type is not byte-sized.
3188  //
3190  op.Opcode,
3191  expr->getLHS(),
3192  expr->getRHS()))
3193  return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3194 
3195  if (width != DL.getTypeSizeInBits(PtrTy)) {
3196  // Zero-extend or sign-extend the pointer value according to
3197  // whether the index is signed or not.
3198  index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3199  "idx.ext");
3200  }
3201 
3202  // If this is subtraction, negate the index.
3203  if (isSubtraction)
3204  index = CGF.Builder.CreateNeg(index, "idx.neg");
3205 
3206  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3207  CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3208  /*Accessed*/ false);
3209 
3210  const PointerType *pointerType
3211  = pointerOperand->getType()->getAs<PointerType>();
3212  if (!pointerType) {
3213  QualType objectType = pointerOperand->getType()
3215  ->getPointeeType();
3216  llvm::Value *objectSize
3217  = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3218 
3219  index = CGF.Builder.CreateMul(index, objectSize);
3220 
3221  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3222  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3223  return CGF.Builder.CreateBitCast(result, pointer->getType());
3224  }
3225 
3226  QualType elementType = pointerType->getPointeeType();
3227  if (const VariableArrayType *vla
3228  = CGF.getContext().getAsVariableArrayType(elementType)) {
3229  // The element count here is the total number of non-VLA elements.
3230  llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3231 
3232  // Effectively, the multiply by the VLA size is part of the GEP.
3233  // GEP indexes are signed, and scaling an index isn't permitted to
3234  // signed-overflow, so we use the same semantics for our explicit
3235  // multiply. We suppress this if overflow is not undefined behavior.
3236  if (CGF.getLangOpts().isSignedOverflowDefined()) {
3237  index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3238  pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3239  } else {
3240  index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3241  pointer =
3242  CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3243  op.E->getExprLoc(), "add.ptr");
3244  }
3245  return pointer;
3246  }
3247 
3248  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3249  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3250  // future proof.
3251  if (elementType->isVoidType() || elementType->isFunctionType()) {
3252  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3253  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3254  return CGF.Builder.CreateBitCast(result, pointer->getType());
3255  }
3256 
3258  return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3259 
3260  return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3261  op.E->getExprLoc(), "add.ptr");
3262 }
3263 
3264 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3265 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3266 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3267 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3268 // efficient operations.
3269 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3270  const CodeGenFunction &CGF, CGBuilderTy &Builder,
3271  bool negMul, bool negAdd) {
3272  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3273 
3274  Value *MulOp0 = MulOp->getOperand(0);
3275  Value *MulOp1 = MulOp->getOperand(1);
3276  if (negMul) {
3277  MulOp0 =
3278  Builder.CreateFSub(
3279  llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3280  "neg");
3281  } else if (negAdd) {
3282  Addend =
3283  Builder.CreateFSub(
3284  llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3285  "neg");
3286  }
3287 
3288  Value *FMulAdd = Builder.CreateCall(
3289  CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3290  {MulOp0, MulOp1, Addend});
3291  MulOp->eraseFromParent();
3292 
3293  return FMulAdd;
3294 }
3295 
3296 // Check whether it would be legal to emit an fmuladd intrinsic call to
3297 // represent op and if so, build the fmuladd.
3298 //
3299 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3300 // Does NOT check the type of the operation - it's assumed that this function
3301 // will be called from contexts where it's known that the type is contractable.
3302 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3303  const CodeGenFunction &CGF, CGBuilderTy &Builder,
3304  bool isSub=false) {
3305 
3306  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3307  op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3308  "Only fadd/fsub can be the root of an fmuladd.");
3309 
3310  // Check whether this op is marked as fusable.
3311  if (!op.FPFeatures.allowFPContractWithinStatement())
3312  return nullptr;
3313 
3314  // We have a potentially fusable op. Look for a mul on one of the operands.
3315  // Also, make sure that the mul result isn't used directly. In that case,
3316  // there's no point creating a muladd operation.
3317  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3318  if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3319  LHSBinOp->use_empty())
3320  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3321  }
3322  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3323  if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3324  RHSBinOp->use_empty())
3325  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3326  }
3327 
3328  return nullptr;
3329 }
3330 
3331 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3332  if (op.LHS->getType()->isPointerTy() ||
3333  op.RHS->getType()->isPointerTy())
3335 
3336  if (op.Ty->isSignedIntegerOrEnumerationType()) {
3337  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3339  return Builder.CreateAdd(op.LHS, op.RHS, "add");
3341  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3342  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3343  LLVM_FALLTHROUGH;
3345  if (CanElideOverflowCheck(CGF.getContext(), op))
3346  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3347  return EmitOverflowCheckedBinOp(op);
3348  }
3349  }
3350 
3351  if (op.Ty->isUnsignedIntegerType() &&
3352  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3353  !CanElideOverflowCheck(CGF.getContext(), op))
3354  return EmitOverflowCheckedBinOp(op);
3355 
3356  if (op.LHS->getType()->isFPOrFPVectorTy()) {
3357  // Try to form an fmuladd.
3358  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3359  return FMulAdd;
3360 
3361  Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3362  return propagateFMFlags(V, op);
3363  }
3364 
3365  if (op.isFixedPointBinOp())
3366  return EmitFixedPointBinOp(op);
3367 
3368  return Builder.CreateAdd(op.LHS, op.RHS, "add");
3369 }
3370 
3371 /// The resulting value must be calculated with exact precision, so the operands
3372 /// may not be the same type.
3373 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3374  using llvm::APSInt;
3375  using llvm::ConstantInt;
3376 
3377  const auto *BinOp = cast<BinaryOperator>(op.E);
3378 
3379  // The result is a fixed point type and at least one of the operands is fixed
3380  // point while the other is either fixed point or an int. This resulting type
3381  // should be determined by Sema::handleFixedPointConversions().
3382  QualType ResultTy = op.Ty;
3383  QualType LHSTy = BinOp->getLHS()->getType();
3384  QualType RHSTy = BinOp->getRHS()->getType();
3385  ASTContext &Ctx = CGF.getContext();
3386  Value *LHS = op.LHS;
3387  Value *RHS = op.RHS;
3388 
3389  auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3390  auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3391  auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3392  auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3393 
3394  // Convert the operands to the full precision type.
3395  Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3396  BinOp->getExprLoc());
3397  Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3398  BinOp->getExprLoc());
3399 
3400  // Perform the actual addition.
3401  Value *Result;
3402  switch (BinOp->getOpcode()) {
3403  case BO_Add: {
3404  if (ResultFixedSema.isSaturated()) {
3405  llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3406  ? llvm::Intrinsic::sadd_sat
3407  : llvm::Intrinsic::uadd_sat;
3408  Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3409  } else {
3410  Result = Builder.CreateAdd(FullLHS, FullRHS);
3411  }
3412  break;
3413  }
3414  case BO_Sub: {
3415  if (ResultFixedSema.isSaturated()) {
3416  llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3417  ? llvm::Intrinsic::ssub_sat
3418  : llvm::Intrinsic::usub_sat;
3419  Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3420  } else {
3421  Result = Builder.CreateSub(FullLHS, FullRHS);
3422  }
3423  break;
3424  }
3425  case BO_LT:
3426  return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3427  : Builder.CreateICmpULT(FullLHS, FullRHS);
3428  case BO_GT:
3429  return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3430  : Builder.CreateICmpUGT(FullLHS, FullRHS);
3431  case BO_LE:
3432  return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3433  : Builder.CreateICmpULE(FullLHS, FullRHS);
3434  case BO_GE:
3435  return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3436  : Builder.CreateICmpUGE(FullLHS, FullRHS);
3437  case BO_EQ:
3438  // For equality operations, we assume any padding bits on unsigned types are
3439  // zero'd out. They could be overwritten through non-saturating operations
3440  // that cause overflow, but this leads to undefined behavior.
3441  return Builder.CreateICmpEQ(FullLHS, FullRHS);
3442  case BO_NE:
3443  return Builder.CreateICmpNE(FullLHS, FullRHS);
3444  case BO_Mul:
3445  case BO_Div:
3446  case BO_Shl:
3447  case BO_Shr:
3448  case BO_Cmp:
3449  case BO_LAnd:
3450  case BO_LOr:
3451  case BO_MulAssign:
3452  case BO_DivAssign:
3453  case BO_AddAssign:
3454  case BO_SubAssign:
3455  case BO_ShlAssign:
3456  case BO_ShrAssign:
3457  llvm_unreachable("Found unimplemented fixed point binary operation");
3458  case BO_PtrMemD:
3459  case BO_PtrMemI:
3460  case BO_Rem:
3461  case BO_Xor:
3462  case BO_And:
3463  case BO_Or:
3464  case BO_Assign:
3465  case BO_RemAssign:
3466  case BO_AndAssign:
3467  case BO_XorAssign:
3468  case BO_OrAssign:
3469  case BO_Comma:
3470  llvm_unreachable("Found unsupported binary operation for fixed point types.");
3471  }
3472 
3473  // Convert to the result type.
3474  return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3475  BinOp->getExprLoc());
3476 }
3477 
3478 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3479  // The LHS is always a pointer if either side is.
3480  if (!op.LHS->getType()->isPointerTy()) {
3481  if (op.Ty->isSignedIntegerOrEnumerationType()) {
3482  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3484  return Builder.CreateSub(op.LHS, op.RHS, "sub");
3486  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3487  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3488  LLVM_FALLTHROUGH;
3490  if (CanElideOverflowCheck(CGF.getContext(), op))
3491  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3492  return EmitOverflowCheckedBinOp(op);
3493  }
3494  }
3495 
3496  if (op.Ty->isUnsignedIntegerType() &&
3497  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3498  !CanElideOverflowCheck(CGF.getContext(), op))
3499  return EmitOverflowCheckedBinOp(op);
3500 
3501  if (op.LHS->getType()->isFPOrFPVectorTy()) {
3502  // Try to form an fmuladd.
3503  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3504  return FMulAdd;
3505  Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3506  return propagateFMFlags(V, op);
3507  }
3508 
3509  if (op.isFixedPointBinOp())
3510  return EmitFixedPointBinOp(op);
3511 
3512  return Builder.CreateSub(op.LHS, op.RHS, "sub");
3513  }
3514 
3515  // If the RHS is not a pointer, then we have normal pointer
3516  // arithmetic.
3517  if (!op.RHS->getType()->isPointerTy())
3519 
3520  // Otherwise, this is a pointer subtraction.
3521 
3522  // Do the raw subtraction part.
3523  llvm::Value *LHS
3524  = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3525  llvm::Value *RHS
3526  = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3527  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3528 
3529  // Okay, figure out the element size.
3530  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3531  QualType elementType = expr->getLHS()->getType()->getPointeeType();
3532 
3533  llvm::Value *divisor = nullptr;
3534 
3535  // For a variable-length array, this is going to be non-constant.
3536  if (const VariableArrayType *vla
3537  = CGF.getContext().getAsVariableArrayType(elementType)) {
3538  auto VlaSize = CGF.getVLASize(vla);
3539  elementType = VlaSize.Type;
3540  divisor = VlaSize.NumElts;
3541 
3542  // Scale the number of non-VLA elements by the non-VLA element size.
3543  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3544  if (!eltSize.isOne())
3545  divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3546 
3547  // For everything elese, we can just compute it, safe in the
3548  // assumption that Sema won't let anything through that we can't
3549  // safely compute the size of.
3550  } else {
3551  CharUnits elementSize;
3552  // Handle GCC extension for pointer arithmetic on void* and
3553  // function pointer types.
3554  if (elementType->isVoidType() || elementType->isFunctionType())
3555  elementSize = CharUnits::One();
3556  else
3557  elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3558 
3559  // Don't even emit the divide for element size of 1.
3560  if (elementSize.isOne())
3561  return diffInChars;
3562 
3563  divisor = CGF.CGM.getSize(elementSize);
3564  }
3565 
3566  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3567  // pointer difference in C is only defined in the case where both operands
3568  // are pointing to elements of an array.
3569  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3570 }
3571 
3572 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3573  llvm::IntegerType *Ty;
3574  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3575  Ty = cast<llvm::IntegerType>(VT->getElementType());
3576  else
3577  Ty = cast<llvm::IntegerType>(LHS->getType());
3578  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3579 }
3580 
3581 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3582  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3583  // RHS to the same size as the LHS.
3584  Value *RHS = Ops.RHS;
3585  if (Ops.LHS->getType() != RHS->getType())
3586  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3587 
3588  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3589  Ops.Ty->hasSignedIntegerRepresentation() &&
3591  !CGF.getLangOpts().CPlusPlus2a;
3592  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3593  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3594  if (CGF.getLangOpts().OpenCL)
3595  RHS =
3596  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3597  else if ((SanitizeBase || SanitizeExponent) &&
3598  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3599  CodeGenFunction::SanitizerScope SanScope(&CGF);
3601  llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3602  llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3603 
3604  if (SanitizeExponent) {
3605  Checks.push_back(
3606  std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3607  }
3608 
3609  if (SanitizeBase) {
3610  // Check whether we are shifting any non-zero bits off the top of the
3611  // integer. We only emit this check if exponent is valid - otherwise
3612  // instructions below will have undefined behavior themselves.
3613  llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3614  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3615  llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3616  Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3617  llvm::Value *PromotedWidthMinusOne =
3618  (RHS == Ops.RHS) ? WidthMinusOne
3619  : GetWidthMinusOneValue(Ops.LHS, RHS);
3620  CGF.EmitBlock(CheckShiftBase);
3621  llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3622  Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3623  /*NUW*/ true, /*NSW*/ true),
3624  "shl.check");
3625  if (CGF.getLangOpts().CPlusPlus) {
3626  // In C99, we are not permitted to shift a 1 bit into the sign bit.
3627  // Under C++11's rules, shifting a 1 bit into the sign bit is
3628  // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3629  // define signed left shifts, so we use the C99 and C++11 rules there).
3630  llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3631  BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3632  }
3633  llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3634  llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3635  CGF.EmitBlock(Cont);
3636  llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3637  BaseCheck->addIncoming(Builder.getTrue(), Orig);
3638  BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3639  Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3640  }
3641 
3642  assert(!Checks.empty());
3643  EmitBinOpCheck(Checks, Ops);
3644  }
3645 
3646  return Builder.CreateShl(Ops.LHS, RHS, "shl");
3647 }
3648 
3649 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3650  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3651  // RHS to the same size as the LHS.
3652  Value *RHS = Ops.RHS;
3653  if (Ops.LHS->getType() != RHS->getType())
3654  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3655 
3656  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3657  if (CGF.getLangOpts().OpenCL)
3658  RHS =
3659  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3660  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3661  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3662  CodeGenFunction::SanitizerScope SanScope(&CGF);
3663  llvm::Value *Valid =
3664  Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3665  EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3666  }
3667 
3668  if (Ops.Ty->hasUnsignedIntegerRepresentation())
3669  return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3670  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3671 }
3672 
3674 // return corresponding comparison intrinsic for given vector type
3676  BuiltinType::Kind ElemKind) {
3677  switch (ElemKind) {
3678  default: llvm_unreachable("unexpected element type");
3679  case BuiltinType::Char_U:
3680  case BuiltinType::UChar:
3681  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3682  llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3683  case BuiltinType::Char_S:
3684  case BuiltinType::SChar:
3685  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3686  llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3687  case BuiltinType::UShort:
3688  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3689  llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3690  case BuiltinType::Short:
3691  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3692  llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3693  case BuiltinType::UInt:
3694  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3695  llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3696  case BuiltinType::Int:
3697  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3698  llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3699  case BuiltinType::ULong:
3700  case BuiltinType::ULongLong:
3701  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3702  llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3703  case BuiltinType::Long:
3704  case BuiltinType::LongLong:
3705  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3706  llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3707  case BuiltinType::Float:
3708  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3709  llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3710  case BuiltinType::Double:
3711  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3712  llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3713  }
3714 }
3715 
3717  llvm::CmpInst::Predicate UICmpOpc,
3718  llvm::CmpInst::Predicate SICmpOpc,
3719  llvm::CmpInst::Predicate FCmpOpc) {
3720  TestAndClearIgnoreResultAssign();
3721  Value *Result;
3722  QualType LHSTy = E->getLHS()->getType();
3723  QualType RHSTy = E->getRHS()->getType();
3724  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3725  assert(E->getOpcode() == BO_EQ ||
3726  E->getOpcode() == BO_NE);
3727  Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3728  Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3729  Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3730  CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3731  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3732  BinOpInfo BOInfo = EmitBinOps(E);
3733  Value *LHS = BOInfo.LHS;
3734  Value *RHS = BOInfo.RHS;
3735 
3736  // If AltiVec, the comparison results in a numeric type, so we use
3737  // intrinsics comparing vectors and giving 0 or 1 as a result
3738  if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3739  // constants for mapping CR6 register bits to predicate result
3740  enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3741 
3742  llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3743 
3744  // in several cases vector arguments order will be reversed
3745  Value *FirstVecArg = LHS,
3746  *SecondVecArg = RHS;
3747 
3748  QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3749  const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3750  BuiltinType::Kind ElementKind = BTy->getKind();
3751 
3752  switch(E->getOpcode()) {
3753  default: llvm_unreachable("is not a comparison operation");
3754  case BO_EQ:
3755  CR6 = CR6_LT;
3756  ID = GetIntrinsic(VCMPEQ, ElementKind);
3757  break;
3758  case BO_NE:
3759  CR6 = CR6_EQ;
3760  ID = GetIntrinsic(VCMPEQ, ElementKind);
3761  break;
3762  case BO_LT:
3763  CR6 = CR6_LT;
3764  ID = GetIntrinsic(VCMPGT, ElementKind);
3765  std::swap(FirstVecArg, SecondVecArg);
3766  break;
3767  case BO_GT:
3768  CR6 = CR6_LT;
3769  ID = GetIntrinsic(VCMPGT, ElementKind);
3770  break;
3771  case BO_LE:
3772  if (ElementKind == BuiltinType::Float) {
3773  CR6 = CR6_LT;
3774  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3775  std::swap(FirstVecArg, SecondVecArg);
3776  }
3777  else {
3778  CR6 = CR6_EQ;
3779  ID = GetIntrinsic(VCMPGT, ElementKind);
3780  }
3781  break;
3782  case BO_GE:
3783  if (ElementKind == BuiltinType::Float) {
3784  CR6 = CR6_LT;
3785  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3786  }
3787  else {
3788  CR6 = CR6_EQ;
3789  ID = GetIntrinsic(VCMPGT, ElementKind);
3790  std::swap(FirstVecArg, SecondVecArg);
3791  }
3792  break;
3793  }
3794 
3795  Value *CR6Param = Builder.getInt32(CR6);
3796  llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3797  Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3798 
3799  // The result type of intrinsic may not be same as E->getType().
3800  // If E->getType() is not BoolTy, EmitScalarConversion will do the
3801  // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3802  // do nothing, if ResultTy is not i1 at the same time, it will cause
3803  // crash later.
3804  llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3805  if (ResultTy->getBitWidth() > 1 &&
3806  E->getType() == CGF.getContext().BoolTy)
3807  Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3808  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3809  E->getExprLoc());
3810  }
3811 
3812  if (BOInfo.isFixedPointBinOp()) {
3813  Result = EmitFixedPointBinOp(BOInfo);
3814  } else if (LHS->getType()->isFPOrFPVectorTy()) {
3815  Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3816  } else if (LHSTy->hasSignedIntegerRepresentation()) {
3817  Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3818  } else {
3819  // Unsigned integers and pointers.
3820 
3821  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3822  !isa<llvm::ConstantPointerNull>(LHS) &&
3823  !isa<llvm::ConstantPointerNull>(RHS)) {
3824 
3825  // Dynamic information is required to be stripped for comparisons,
3826  // because it could leak the dynamic information. Based on comparisons
3827  // of pointers to dynamic objects, the optimizer can replace one pointer
3828  // with another, which might be incorrect in presence of invariant
3829  // groups. Comparison with null is safe because null does not carry any
3830  // dynamic information.
3831  if (LHSTy.mayBeDynamicClass())
3832  LHS = Builder.CreateStripInvariantGroup(LHS);
3833  if (RHSTy.mayBeDynamicClass())
3834  RHS = Builder.CreateStripInvariantGroup(RHS);
3835  }
3836 
3837  Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3838  }
3839 
3840  // If this is a vector comparison, sign extend the result to the appropriate
3841  // vector integer type and return it (don't convert to bool).
3842  if (LHSTy->isVectorType())
3843  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3844 
3845  } else {
3846  // Complex Comparison: can only be an equality comparison.
3848  QualType CETy;
3849  if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3850  LHS = CGF.EmitComplexExpr(E->getLHS());
3851  CETy = CTy->getElementType();
3852  } else {
3853  LHS.first = Visit(E->getLHS());
3854  LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3855  CETy = LHSTy;
3856  }
3857  if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3858  RHS = CGF.EmitComplexExpr(E->getRHS());
3859  assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3860  CTy->getElementType()) &&
3861  "The element types must always match.");
3862  (void)CTy;
3863  } else {
3864  RHS.first = Visit(E->getRHS());
3865  RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3866  assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3867  "The element types must always match.");
3868  }
3869 
3870  Value *ResultR, *ResultI;
3871  if (CETy->isRealFloatingType()) {
3872  ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3873  ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3874  } else {
3875  // Complex comparisons can only be equality comparisons. As such, signed
3876  // and unsigned opcodes are the same.
3877  ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3878  ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3879  }
3880 
3881  if (E->getOpcode() == BO_EQ) {
3882  Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3883  } else {
3884  assert(E->getOpcode() == BO_NE &&
3885  "Complex comparison other than == or != ?");
3886  Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3887  }
3888  }
3889 
3890  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3891  E->getExprLoc());
3892 }
3893 
3894 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3895  bool Ignore = TestAndClearIgnoreResultAssign();
3896 
3897  Value *RHS;
3898  LValue LHS;
3899 
3900  switch (E->getLHS()->getType().getObjCLifetime()) {
3902  std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3903  break;
3904 
3906  std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3907  break;
3908 
3910  std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3911  break;
3912 
3913  case Qualifiers::OCL_Weak:
3914  RHS = Visit(E->getRHS());
3915  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3916  RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3917  break;
3918 
3919  case Qualifiers::OCL_None:
3920  // __block variables need to have the rhs evaluated first, plus
3921  // this should improve codegen just a little.
3922  RHS = Visit(E->getRHS());
3923  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3924 
3925  // Store the value into the LHS. Bit-fields are handled specially
3926  // because the result is altered by the store, i.e., [C99 6.5.16p1]
3927  // 'An assignment expression has the value of the left operand after
3928  // the assignment...'.
3929  if (LHS.isBitField()) {
3930  CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3931  } else {
3932  CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3933  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3934  }
3935  }
3936 
3937  // If the result is clearly ignored, return now.
3938  if (Ignore)
3939  return nullptr;
3940 
3941  // The result of an assignment in C is the assigned r-value.
3942  if (!CGF.getLangOpts().CPlusPlus)
3943  return RHS;
3944 
3945  // If the lvalue is non-volatile, return the computed value of the assignment.
3946  if (!LHS.isVolatileQualified())
3947  return RHS;
3948 
3949  // Otherwise, reload the value.
3950  return EmitLoadOfLValue(LHS, E->getExprLoc());
3951 }
3952 
3953 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3954  // Perform vector logical and on comparisons with zero vectors.
3955  if (E->getType()->isVectorType()) {
3956  CGF.incrementProfileCounter(E);
3957 
3958  Value *LHS = Visit(E->getLHS());
3959  Value *RHS = Visit(E->getRHS());
3960  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3961  if (LHS->getType()->isFPOrFPVectorTy()) {
3962  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3963  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3964  } else {
3965  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3966  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3967  }
3968  Value *And = Builder.CreateAnd(LHS, RHS);
3969  return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3970  }
3971 
3972  llvm::Type *ResTy = ConvertType(E->getType());
3973 
3974  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3975  // If we have 1 && X, just emit X without inserting the control flow.
3976  bool LHSCondVal;
3977  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3978  if (LHSCondVal) { // If we have 1 && X, just emit X.
3979  CGF.incrementProfileCounter(E);
3980 
3981  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3982  // ZExt result to int or bool.
3983  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3984  }
3985 
3986  // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3987  if (!CGF.ContainsLabel(E->getRHS()))
3988  return llvm::Constant::getNullValue(ResTy);
3989  }
3990 
3991  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3992  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3993 
3995 
3996  // Branch on the LHS first. If it is false, go to the failure (cont) block.
3997  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3998  CGF.getProfileCount(E->getRHS()));
3999 
4000  // Any edges into the ContBlock are now from an (indeterminate number of)
4001  // edges from this first condition. All of these values will be false. Start
4002  // setting up the PHI node in the Cont Block for this.
4003  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4004  "", ContBlock);
4005  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4006  PI != PE; ++PI)
4007  PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4008 
4009  eval.begin(CGF);
4010  CGF.EmitBlock(RHSBlock);
4011  CGF.incrementProfileCounter(E);
4012  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4013  eval.end(CGF);
4014 
4015  // Reaquire the RHS block, as there may be subblocks inserted.
4016  RHSBlock = Builder.GetInsertBlock();
4017 
4018  // Emit an unconditional branch from this block to ContBlock.
4019  {
4020  // There is no need to emit line number for unconditional branch.
4021  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4022  CGF.EmitBlock(ContBlock);
4023  }
4024  // Insert an entry into the phi node for the edge with the value of RHSCond.
4025  PN->addIncoming(RHSCond, RHSBlock);
4026 
4027  // Artificial location to preserve the scope information
4028  {
4029  auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4030  PN->setDebugLoc(Builder.getCurrentDebugLocation());
4031  }
4032 
4033  // ZExt result to int.
4034  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4035 }
4036 
4037 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4038  // Perform vector logical or on comparisons with zero vectors.
4039  if (E->getType()->isVectorType()) {
4040  CGF.incrementProfileCounter(E);
4041 
4042  Value *LHS = Visit(E->getLHS());
4043  Value *RHS = Visit(E->getRHS());
4044  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4045  if (LHS->getType()->isFPOrFPVectorTy()) {
4046  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4047  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4048  } else {
4049  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4050  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4051  }
4052  Value *Or = Builder.CreateOr(LHS, RHS);
4053  return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4054  }
4055 
4056  llvm::Type *ResTy = ConvertType(E->getType());
4057 
4058  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4059  // If we have 0 || X, just emit X without inserting the control flow.
4060  bool LHSCondVal;
4061  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4062  if (!LHSCondVal) { // If we have 0 || X, just emit X.
4063  CGF.incrementProfileCounter(E);
4064 
4065  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4066  // ZExt result to int or bool.
4067  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4068  }
4069 
4070  // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4071  if (!CGF.ContainsLabel(E->getRHS()))
4072  return llvm::ConstantInt::get(ResTy, 1);
4073  }
4074 
4075  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4076  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4077 
4079 
4080  // Branch on the LHS first. If it is true, go to the success (cont) block.
4081  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4082  CGF.getCurrentProfileCount() -
4083  CGF.getProfileCount(E->getRHS()));
4084 
4085  // Any edges into the ContBlock are now from an (indeterminate number of)
4086  // edges from this first condition. All of these values will be true. Start
4087  // setting up the PHI node in the Cont Block for this.
4088  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4089  "", ContBlock);
4090  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4091  PI != PE; ++PI)
4092  PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4093 
4094  eval.begin(CGF);
4095 
4096  // Emit the RHS condition as a bool value.
4097  CGF.EmitBlock(RHSBlock);
4098  CGF.incrementProfileCounter(E);
4099  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4100 
4101  eval.end(CGF);
4102 
4103  // Reaquire the RHS block, as there may be subblocks inserted.
4104  RHSBlock = Builder.GetInsertBlock();
4105 
4106  // Emit an unconditional branch from this block to ContBlock. Insert an entry
4107  // into the phi node for the edge with the value of RHSCond.
4108  CGF.EmitBlock(ContBlock);
4109  PN->addIncoming(RHSCond, RHSBlock);
4110 
4111  // ZExt result to int.
4112  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4113 }
4114 
4115 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4116  CGF.EmitIgnoredExpr(E->getLHS());
4117  CGF.EnsureInsertPoint();
4118  return Visit(E->getRHS());
4119 }
4120 
4121 //===----------------------------------------------------------------------===//
4122 // Other Operators
4123 //===----------------------------------------------------------------------===//
4124 
4125 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4126 /// expression is cheap enough and side-effect-free enough to evaluate
4127 /// unconditionally instead of conditionally. This is used to convert control
4128 /// flow into selects in some cases.
4130  CodeGenFunction &CGF) {
4131  // Anything that is an integer or floating point constant is fine.
4132  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4133 
4134  // Even non-volatile automatic variables can't be evaluated unconditionally.
4135  // Referencing a thread_local may cause non-trivial initialization work to
4136  // occur. If we're inside a lambda and one of the variables is from the scope
4137  // outside the lambda, that function may have returned already. Reading its
4138  // locals is a bad idea. Also, these reads may introduce races there didn't
4139  // exist in the source-level program.
4140 }
4141 
4142 
4143 Value *ScalarExprEmitter::
4144 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4145  TestAndClearIgnoreResultAssign();
4146 
4147  // Bind the common expression if necessary.
4148  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4149 
4150  Expr *condExpr = E->getCond();
4151  Expr *lhsExpr = E->getTrueExpr();
4152  Expr *rhsExpr = E->getFalseExpr();
4153 
4154  // If the condition constant folds and can be elided, try to avoid emitting
4155  // the condition and the dead arm.
4156  bool CondExprBool;
4157  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4158  Expr *live = lhsExpr, *dead = rhsExpr;
4159  if (!CondExprBool) std::swap(live, dead);
4160 
4161  // If the dead side doesn't have labels we need, just emit the Live part.
4162  if (!CGF.ContainsLabel(dead)) {
4163  if (CondExprBool)
4164  CGF.incrementProfileCounter(E);
4165  Value *Result = Visit(live);
4166 
4167  // If the live part is a throw expression, it acts like it has a void
4168  // type, so evaluating it returns a null Value*. However, a conditional
4169  // with non-void type must return a non-null Value*.
4170  if (!Result && !E->getType()->isVoidType())
4171  Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4172 
4173  return Result;
4174  }
4175  }
4176 
4177  // OpenCL: If the condition is a vector, we can treat this condition like
4178  // the select function.
4179  if (CGF.getLangOpts().OpenCL
4180  && condExpr->getType()->isVectorType()) {
4181  CGF.incrementProfileCounter(E);
4182 
4183  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4184  llvm::Value *LHS = Visit(lhsExpr);
4185  llvm::Value *RHS = Visit(rhsExpr);
4186 
4187  llvm::Type *condType = ConvertType(condExpr->getType());
4188  llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4189 
4190  unsigned numElem = vecTy->getNumElements();
4191  llvm::Type *elemType = vecTy->getElementType();
4192 
4193  llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4194  llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4195  llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4196  llvm::VectorType::get(elemType,
4197  numElem),
4198  "sext");
4199  llvm::Value *tmp2 = Builder.CreateNot(tmp);
4200 
4201  // Cast float to int to perform ANDs if necessary.
4202  llvm::Value *RHSTmp = RHS;
4203  llvm::Value *LHSTmp = LHS;
4204  bool wasCast = false;
4205  llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4206  if (rhsVTy->getElementType()->isFloatingPointTy()) {
4207  RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4208  LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4209  wasCast = true;
4210  }
4211 
4212  llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4213  llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4214  llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4215  if (wasCast)
4216  tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4217 
4218  return tmp5;
4219  }
4220 
4221  // If this is a really simple expression (like x ? 4 : 5), emit this as a
4222  // select instead of as control flow. We can only do this if it is cheap and
4223  // safe to evaluate the LHS and RHS unconditionally.
4224  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4226  llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4227  llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4228 
4229  CGF.incrementProfileCounter(E, StepV);
4230 
4231  llvm::Value *LHS = Visit(lhsExpr);
4232  llvm::Value *RHS = Visit(rhsExpr);
4233  if (!LHS) {
4234  // If the conditional has void type, make sure we return a null Value*.
4235  assert(!RHS && "LHS and RHS types must match");
4236  return nullptr;
4237  }
4238  return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4239  }
4240 
4241  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4242  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4243  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4244 
4246  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4247  CGF.getProfileCount(lhsExpr));
4248 
4249  CGF.EmitBlock(LHSBlock);
4250  CGF.incrementProfileCounter(E);
4251  eval.begin(CGF);
4252  Value *LHS = Visit(lhsExpr);
4253  eval.end(CGF);
4254 
4255  LHSBlock = Builder.GetInsertBlock();
4256  Builder.CreateBr(ContBlock);
4257 
4258  CGF.EmitBlock(RHSBlock);
4259  eval.begin(CGF);
4260  Value *RHS = Visit(rhsExpr);
4261  eval.end(CGF);
4262 
4263  RHSBlock = Builder.GetInsertBlock();
4264  CGF.EmitBlock(ContBlock);
4265 
4266  // If the LHS or RHS is a throw expression, it will be legitimately null.
4267  if (!LHS)
4268  return RHS;
4269  if (!RHS)
4270  return LHS;
4271 
4272  // Create a PHI node for the real part.
4273  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4274  PN->addIncoming(LHS, LHSBlock);
4275  PN->addIncoming(RHS, RHSBlock);
4276  return PN;
4277 }
4278 
4279 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4280  return Visit(E->getChosenSubExpr());
4281 }
4282 
4283 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4284  QualType Ty = VE->getType();
4285 
4286  if (Ty->isVariablyModifiedType())
4287  CGF.EmitVariablyModifiedType(Ty);
4288 
4289  Address ArgValue = Address::invalid();
4290  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4291 
4292  llvm::Type *ArgTy = ConvertType(VE->getType());
4293 
4294  // If EmitVAArg fails, emit an error.
4295  if (!ArgPtr.isValid()) {
4296  CGF.ErrorUnsupported(VE, "va_arg expression");
4297  return llvm::UndefValue::get(ArgTy);
4298  }
4299 
4300  // FIXME Volatility.
4301  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4302 
4303  // If EmitVAArg promoted the type, we must truncate it.
4304  if (ArgTy != Val->getType()) {
4305  if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4306  Val = Builder.CreateIntToPtr(Val, ArgTy);
4307  else
4308  Val = Builder.CreateTrunc(Val, ArgTy);
4309  }
4310 
4311  return Val;
4312 }
4313 
4314 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4315  return CGF.EmitBlockLiteral(block);
4316 }
4317 
4318 // Convert a vec3 to vec4, or vice versa.
4320  Value *Src, unsigned NumElementsDst) {
4321  llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4323  Args.push_back(Builder.getInt32(0));
4324  Args.push_back(Builder.getInt32(1));
4325  Args.push_back(Builder.getInt32(2));
4326  if (NumElementsDst == 4)
4327  Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4328  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4329  return Builder.CreateShuffleVector(Src, UnV, Mask);
4330 }
4331 
4332 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4333 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4334 // but could be scalar or vectors of different lengths, and either can be
4335 // pointer.
4336 // There are 4 cases:
4337 // 1. non-pointer -> non-pointer : needs 1 bitcast
4338 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4339 // 3. pointer -> non-pointer
4340 // a) pointer -> intptr_t : needs 1 ptrtoint
4341 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4342 // 4. non-pointer -> pointer
4343 // a) intptr_t -> pointer : needs 1 inttoptr
4344 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4345 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4346 // allow casting directly between pointer types and non-integer non-pointer
4347 // types.
4349  const llvm::DataLayout &DL,
4350  Value *Src, llvm::Type *DstTy,
4351  StringRef Name = "") {
4352  auto SrcTy = Src->getType();
4353 
4354  // Case 1.
4355  if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4356  return Builder.CreateBitCast(Src, DstTy, Name);
4357 
4358  // Case 2.
4359  if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4360  return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4361 
4362  // Case 3.
4363  if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4364  // Case 3b.
4365  if (!DstTy->isIntegerTy())
4366  Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4367  // Cases 3a and 3b.
4368  return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4369  }
4370 
4371  // Case 4b.
4372  if (!SrcTy->isIntegerTy())
4373  Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4374  // Cases 4a and 4b.
4375  return Builder.CreateIntToPtr(Src, DstTy, Name);
4376 }
4377 
4378 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4379  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4380  llvm::Type *DstTy = ConvertType(E->getType());
4381 
4382  llvm::Type *SrcTy = Src->getType();
4383  unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4384  cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4385  unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4386  cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4387 
4388  // Going from vec3 to non-vec3 is a special case and requires a shuffle
4389  // vector to get a vec4, then a bitcast if the target type is different.
4390  if (NumElementsSrc == 3 && NumElementsDst != 3) {
4391  Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4392 
4393  if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4394  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4395  DstTy);
4396  }
4397 
4398  Src->setName("astype");
4399  return Src;
4400  }
4401 
4402  // Going from non-vec3 to vec3 is a special case and requires a bitcast
4403  // to vec4 if the original type is not vec4, then a shuffle vector to
4404  // get a vec3.
4405  if (NumElementsSrc != 3 && NumElementsDst == 3) {
4406  if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4407  auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4408  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4409  Vec4Ty);
4410  }
4411 
4412  Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4413  Src->setName("astype");
4414  return Src;
4415  }
4416 
4417  return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4418  Src, DstTy, "astype");
4419 }
4420 
4421 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4422  return CGF.EmitAtomicExpr(E).getScalarVal();
4423 }
4424 
4425 //===----------------------------------------------------------------------===//
4426 // Entry Point into this File
4427 //===----------------------------------------------------------------------===//
4428 
4429 /// Emit the computation of the specified expression of scalar type, ignoring
4430 /// the result.
4431 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4432  assert(E && hasScalarEvaluationKind(E->getType()) &&
4433  "Invalid scalar expression to emit");
4434 
4435  return ScalarExprEmitter(*this, IgnoreResultAssign)
4436  .Visit(const_cast<Expr *>(E));
4437 }
4438 
4439 /// Emit a conversion from the specified type to the specified destination type,
4440 /// both of which are LLVM scalar types.
4442  QualType DstTy,
4443  SourceLocation Loc) {
4444  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4445  "Invalid scalar expression to emit");
4446  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4447 }
4448 
4449 /// Emit a conversion from the specified complex type to the specified
4450 /// destination type, where the destination type is an LLVM scalar type.
4452  QualType SrcTy,
4453  QualType DstTy,
4454  SourceLocation Loc) {
4455  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4456  "Invalid complex -> scalar conversion");
4457  return ScalarExprEmitter(*this)
4458  .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4459 }
4460 
4461 
4464  bool isInc, bool isPre) {
4465  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4466 }
4467 
4469  // object->isa or (*object).isa
4470  // Generate code as for: *(Class*)object
4471 
4472  Expr *BaseExpr = E->getBase();
4473  Address Addr = Address::invalid();
4474  if (BaseExpr->isRValue()) {
4475  Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4476  } else {
4477  Addr = EmitLValue(BaseExpr).getAddress();
4478  }
4479 
4480  // Cast the address to Class*.
4481  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4482  return MakeAddrLValue(Addr, E->getType());
4483 }
4484 
4485 
4487  const CompoundAssignOperator *E) {
4488  ScalarExprEmitter Scalar(*this);
4489  Value *Result = nullptr;
4490  switch (E->getOpcode()) {
4491 #define COMPOUND_OP(Op) \
4492  case BO_##Op##Assign: \
4493  return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4494  Result)
4495  COMPOUND_OP(Mul);
4496  COMPOUND_OP(Div);
4497  COMPOUND_OP(Rem);
4498  COMPOUND_OP(Add);
4499  COMPOUND_OP(Sub);
4500  COMPOUND_OP(Shl);
4501  COMPOUND_OP(Shr);
4502  COMPOUND_OP(And);
4503  COMPOUND_OP(Xor);
4504  COMPOUND_OP(Or);
4505 #undef COMPOUND_OP
4506 
4507  case BO_PtrMemD:
4508  case BO_PtrMemI:
4509  case BO_Mul:
4510  case BO_Div:
4511  case BO_Rem:
4512  case BO_Add:
4513  case BO_Sub:
4514  case BO_Shl:
4515  case BO_Shr:
4516  case BO_LT:
4517  case BO_GT:
4518  case BO_LE:
4519  case BO_GE:
4520  case BO_EQ:
4521  case BO_NE:
4522  case BO_Cmp:
4523  case BO_And:
4524  case BO_Xor:
4525  case BO_Or:
4526  case BO_LAnd:
4527  case BO_LOr:
4528  case BO_Assign:
4529  case BO_Comma:
4530  llvm_unreachable("Not valid compound assignment operators");
4531  }
4532 
4533  llvm_unreachable("Unhandled compound assignment operator");
4534 }
4535 
4537  ArrayRef<Value *> IdxList,
4538  bool SignedIndices,
4539  bool IsSubtraction,
4540  SourceLocation Loc,
4541  const Twine &Name) {
4542  Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4543 
4544  // If the pointer overflow sanitizer isn't enabled, do nothing.
4545  if (!SanOpts.has(SanitizerKind::PointerOverflow))
4546  return GEPVal;
4547 
4548  // If the GEP has already been reduced to a constant, leave it be.
4549  if (isa<llvm::Constant>(GEPVal))
4550  return GEPVal;
4551 
4552  // Only check for overflows in the default address space.
4553  if (GEPVal->getType()->getPointerAddressSpace())
4554  return GEPVal;
4555 
4556  auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4557  assert(GEP->isInBounds() && "Expected inbounds GEP");
4558 
4559  SanitizerScope SanScope(this);
4560  auto &VMContext = getLLVMContext();
4561  const auto &DL = CGM.getDataLayout();
4562  auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4563 
4564  // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4565  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4566  auto *SAddIntrinsic =
4567  CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4568  auto *SMulIntrinsic =
4569  CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4570 
4571  // The total (signed) byte offset for the GEP.
4572  llvm::Value *TotalOffset = nullptr;
4573  // The offset overflow flag - true if the total offset overflows.
4574  llvm::Value *OffsetOverflows = Builder.getFalse();
4575 
4576  /// Return the result of the given binary operation.
4577  auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4578  llvm::Value *RHS) -> llvm::Value * {
4579  assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4580 
4581  // If the operands are constants, return a constant result.
4582  if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4583  if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4584  llvm::APInt N;
4585  bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4586  /*Signed=*/true, N);
4587  if (HasOverflow)
4588  OffsetOverflows = Builder.getTrue();
4589  return llvm::ConstantInt::get(VMContext, N);
4590  }
4591  }
4592 
4593  // Otherwise, compute the result with checked arithmetic.
4594  auto *ResultAndOverflow = Builder.CreateCall(
4595  (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4596  OffsetOverflows = Builder.CreateOr(
4597  Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4598  return Builder.CreateExtractValue(ResultAndOverflow, 0);
4599  };
4600 
4601  // Determine the total byte offset by looking at each GEP operand.
4602  for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4603  GTI != GTE; ++GTI) {
4604  llvm::Value *LocalOffset;
4605  auto *Index = GTI.getOperand();
4606  // Compute the local offset contributed by this indexing step:
4607  if (auto *STy = GTI.getStructTypeOrNull()) {
4608  // For struct indexing, the local offset is the byte position of the
4609  // specified field.
4610  unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4611  LocalOffset = llvm::ConstantInt::get(
4612  IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4613  } else {
4614  // Otherwise this is array-like indexing. The local offset is the index
4615  // multiplied by the element size.
4616  auto *ElementSize = llvm::ConstantInt::get(
4617  IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4618  auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4619  LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4620  }
4621 
4622  // If this is the first offset, set it as the total offset. Otherwise, add
4623  // the local offset into the running total.
4624  if (!TotalOffset || TotalOffset == Zero)
4625  TotalOffset = LocalOffset;
4626  else
4627  TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4628  }
4629 
4630  // Common case: if the total offset is zero, don't emit a check.
4631  if (TotalOffset == Zero)
4632  return GEPVal;
4633 
4634  // Now that we've computed the total offset, add it to the base pointer (with
4635  // wrapping semantics).
4636  auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4637  auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4638 
4639  // The GEP is valid if:
4640  // 1) The total offset doesn't overflow, and
4641  // 2) The sign of the difference between the computed address and the base
4642  // pointer matches the sign of the total offset.
4643  llvm::Value *ValidGEP;
4644  auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4645  if (SignedIndices) {
4646  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4647  auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4648  llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4649  ValidGEP = Builder.CreateAnd(
4650  Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4651  NoOffsetOverflow);
4652  } else if (!SignedIndices && !IsSubtraction) {
4653  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4654  ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4655  } else {
4656  auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4657  ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4658  }
4659 
4660  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4661  // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4662  llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4663  EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4664  SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4665 
4666  return GEPVal;
4667 }
const llvm::DataLayout & getDataLayout() const
const Expr * getSubExpr() const
Definition: Expr.h:933
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
std::pair< RValue, llvm::Value * > EmitAtomicCompareExchange(LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success=llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure=llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak=false, AggValueSlot Slot=AggValueSlot::ignored())
Emit a compare-and-exchange op for atomic type.
Definition: CGAtomic.cpp:1979
The null pointer literal (C++11 [lex.nullptr])
Definition: ExprCXX.h:592
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4138
static APFixedPoint getMax(const FixedPointSemantics &Sema)
Definition: FixedPoint.cpp:114
llvm::Value * EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2300
bool getValue() const
Definition: ExprObjC.h:97
bool getValue() const
Definition: ExprCXX.h:2576
bool isFixedPointType() const
Return true if this is a fixed point type according to ISO/IEC JTC1 SC22 WG14 N1169.
Definition: Type.h:6660
llvm::Value * EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim)
Definition: CGObjC.cpp:2837
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc)
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:1253
bool isSignedOverflowDefined() const
Definition: LangOptions.h:272
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2557
QualType getPointeeType() const
Definition: Type.h:2570
A (possibly-)qualified type.
Definition: Type.h:643
uint64_t getValue() const
Definition: ExprCXX.h:2666
bool sanitizePerformTypeCheck() const
Whether any type-checking sanitizers are enabled.
Definition: CGExpr.cpp:646
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3541
const CodeGenOptions & getCodeGenOpts() const
SourceLocation getExprLoc() const
Definition: Expr.h:3435
llvm::Value * EmitARCExtendBlockObject(const Expr *expr)
Definition: CGObjC.cpp:3273
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1931
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler...
Definition: CGExpr.cpp:2785
void enterFullExpression(const FullExpr *E)
Expr * getExpr(unsigned Index)
getExpr - Return the Expr at the specified index.
Definition: Expr.h:4006
unsigned getNumSubExprs() const
getNumSubExprs - Return the size of the SubExprs array.
Definition: Expr.h:4000
llvm::APSInt getValue() const
Definition: FixedPoint.h:110
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2533
Expr * getResultExpr()
Return the result expression of this controlling expression.
Definition: Expr.h:5387
llvm::Constant * getMemberPointerConstant(const UnaryOperator *e)
CompoundStmt * getSubStmt()
Definition: Expr.h:3937
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
const internal::ArgumentAdaptingMatcherFunc< internal::HasMatcher > has
Matches AST nodes that have child AST nodes that match the provided matcher.
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4418
static llvm::Constant * getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty)
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
Stmt - This represents one statement.
Definition: Stmt.h:66
Kind getKind() const
Definition: Type.h:2438
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:232
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1968
The fixed point semantics work similarly to llvm::fltSemantics.
Definition: FixedPoint.h:33
Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue)
Definition: CGClass.cpp:375
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
Definition: CGExpr.cpp:1037
Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr)
Generate code to get an argument from the passed in pointer and update it accordingly.
Definition: CGCall.cpp:4580
Expr * getBase() const
Definition: Expr.h:2883
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
Definition: CGExpr.cpp:5069
llvm::APFloat getValue() const
Definition: Expr.h:1567
Represents the index of the current element of an array being initialized by an ArrayInitLoopExpr.
Definition: Expr.h:5043
bool isExtVectorType() const
Definition: Type.h:6450
bool isVirtual() const
Determines whether the base class is a virtual base class (or not).
Definition: DeclCXX.h:245
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
Opcode getOpcode() const
Definition: Expr.h:3439
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask >> Checked, SanitizerHandler Check, ArrayRef< llvm::Constant *> StaticArgs, ArrayRef< llvm::Value *> DynamicArgs)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
Definition: CGExpr.cpp:2999
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1964
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6303
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1926
FPOptions getFPFeatures() const
Definition: Expr.h:3581
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent...
Definition: ExprCXX.h:2621
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:693
SourceLocation getLocation() const
Definition: Expr.h:4305
Floating point control options.
Definition: LangOptions.h:307
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4325
static Value * buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool negMul, bool negAdd)
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant, or if it does but contains a label, return false.
QualType getElementType() const
Definition: Type.h:2867
#define COMPOUND_OP(Op)
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:2300
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1915
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1492
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3047
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6821
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
const llvm::fltSemantics & getHalfFormat() const
Definition: TargetInfo.h:576
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3673
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
llvm::Value * getPointer() const
Definition: Address.h:37
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1049
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3212
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
Definition: CGObjC.cpp:244
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=nullptr)
EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints as EmitStoreThroughLValue.
Definition: CGExpr.cpp:2023
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed)
Emit a check that Base points into an array object, which we can access at index Index.
Definition: CGExpr.cpp:960
Represents a struct/union/class.
Definition: Decl.h:3626
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1537
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:2197
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
Represents a function call to one of __builtin_LINE(), __builtin_COLUMN(), __builtin_FUNCTION(), or __builtin_FILE().
Definition: Expr.h:4262
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:3966
Address getAddress() const
Definition: CGValue.h:326
QualType getComputationResultType() const
Definition: Expr.h:3650
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3429
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:158
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2185
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
bool isVolatileQualified() const
Definition: CGValue.h:257
Represents a member of a struct/union/class.
Definition: Decl.h:2607
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:2191
unsigned getIntegralBits() const
Return the number of integral bits represented by these semantics.
Definition: FixedPoint.h:55
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4177
bool isReferenceType() const
Definition: Type.h:6366
__DEVICE__ int max(int __a, int __b)
Expr * getSubExpr()
Definition: Expr.h:3172
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:188
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
EmitObjCBoxedExpr - This routine generates code to call the appropriate expression boxing method...
Definition: CGObjC.cpp:59
bool hadArrayRangeDesignator() const
Definition: Expr.h:4538
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:124
static ApplyDebugLocation CreateArtificial(CodeGenFunction &CGF)
Apply TemporaryLocation if it is valid.
Definition: CGDebugInfo.h:742
bool isGLValue() const
Definition: Expr.h:261
Describes an C or C++ initializer list.
Definition: Expr.h:4370
BinaryOperatorKind
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
Emits an instance of NSConstantString representing the object.
Definition: CGObjC.cpp:45
static APFixedPoint getMin(const FixedPointSemantics &Sema)
Definition: FixedPoint.cpp:122
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:156
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:582
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:118
path_iterator path_begin()
Definition: Expr.h:3192
llvm::Value * EmitBlockLiteral(const BlockExpr *)
Emit block literal.
Definition: CGBlocks.cpp:900
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3404
virtual llvm::Value * EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT)
Determine if a member pointer is non-null. Returns an i1.
Definition: CGCXXABI.cpp:90
static Value * tryEmitFMulAdd(const BinOpInfo &op, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool isSub=false)
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:50
static llvm::Constant * getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off, llvm::Type *I32Ty)
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6130
unsigned getScale() const
Definition: FixedPoint.h:45
field_iterator field_begin() const
Definition: Decl.cpp:4297
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
EmitARCRetainScalarExpr - Semantically equivalent to EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a best-effort attempt to peephole expressions that naturally produce retained objects.
Definition: CGObjC.cpp:3240
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:182
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3120
Helper class for OffsetOfExpr.
Definition: Expr.h:2133
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
RValue EmitAtomicExpr(AtomicExpr *E)
Definition: CGAtomic.cpp:745
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
QualType getReturnType() const
Definition: DeclObjC.h:322
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1111
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast)
Checking the operand of a load. Must be suitably sized and aligned.
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2944
This object can be modified without requiring retains or releases.
Definition: Type.h:158
Represents the this expression in C++.
Definition: ExprCXX.h:1006
virtual llvm::Value * performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, llvm::Value *V, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
Perform address space cast of an expression of pointer type.
Definition: TargetInfo.cpp:445
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS)
Definition: Expr.cpp:2096
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1216
#define HANDLEBINOP(OP)
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
bool isHalfType() const
Definition: Type.h:6619
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
Definition: CGObjC.cpp:484
bool isValid() const
Definition: Address.h:35
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:328
bool isPromotableIntegerType() const
More type predicates useful for type checking/promotion.
Definition: Type.cpp:2542
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:57
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2385
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
const TargetCodeGenInfo & getTargetCodeGenInfo()
QualType getComputationLHSType() const
Definition: Expr.h:3647
CastKind
CastKind - The kind of operation required for a conversion.
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerMask > > EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2342
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:948
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4211
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
unsigned Offset
Definition: Format.cpp:1728
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
const llvm::fltSemantics & getLongDoubleFormat() const
Definition: TargetInfo.h:592
unsigned getValue() const
Definition: Expr.h:1534
llvm::Value * emitScalarConstant(const ConstantEmission &Constant, Expr *E)
Definition: CGExpr.cpp:1513
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
i8* @objc_storeWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2406
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:5612
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:4017
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1958
bool isEventT() const
Definition: Type.h:6523
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
Allow any unmodeled side effect.
Definition: Expr.h:609
static Address invalid()
Definition: Address.h:34
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:2207
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type, where the destination type is an LLVM scalar type.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprObjC.h:1541
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to...
Definition: Type.cpp:1621
unsigned getPackLength() const
Retrieve the length of the parameter pack.
Definition: ExprCXX.h:4074
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6886
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerMask > > EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
#define V(N, I)
Definition: ASTContext.h:2898
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5540
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
Definition: CGStmt.cpp:368
unsigned getNumInits() const
Definition: Expr.h:4400
bool isNullPtrType() const
Definition: Type.h:6638
void SetFPAccuracy(llvm::Value *Val, float Accuracy)
SetFPAccuracy - Set the minimum required accuracy of the given floating point operation, expressed as the maximum relative error in ulp.
Definition: CGExpr.cpp:4979
VlaSizePair getVLASize(const VariableArrayType *vla)
Returns an LLVM value that corresponds to the size, in non-variably-sized elements, of a variable length array type, plus that largest non-variably-sized element type.
field_iterator field_end() const
Definition: Decl.h:3820
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:304
llvm::Value * EmitToMemory(llvm::Value *Value, QualType Ty)
EmitToMemory - Change a scalar value from its value representation to its in-memory representation...
Definition: CGExpr.cpp:1690
bool isAnyComplexType() const
Definition: Type.h:6442
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:454
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:2279
Represents an expression that computes the length of a parameter pack.
Definition: ExprCXX.h:3997
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:5589
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:186
llvm::LLVMContext & getLLVMContext()
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2187
QualType getType() const
Definition: Expr.h:137
void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc)
Given an assignment *LHS = RHS, emit a test that checks if RHS is nonnull, if LHS is marked _Nonnull...
Definition: CGDecl.cpp:725
An RAII object to record that we&#39;re evaluating a statement expression.
QualType getTypeOfArgument() const
Gets the argument type, or the type of the argument expression, whichever is appropriate.
Definition: Expr.h:2405
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:653
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:950
FixedPointSemantics getCommonSemantics(const FixedPointSemantics &Other) const
Return the FixedPointSemantics that allows for calculating the full precision semantic that can preci...
Definition: FixedPoint.cpp:127
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2016
Represents a GCC generic vector type.
Definition: Type.h:3188
bool isNullPointer() const
Definition: APValue.cpp:743
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr)
Try to emit a reference to the given value without producing it as an l-value.
Definition: CGExpr.cpp:1432
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4115
const OffsetOfNode & getComponent(unsigned Idx) const
Definition: Expr.h:2286
const TargetInfo & getTarget() const
const Expr * getSubExpr() const
Definition: Expr.h:1980
bool getValue() const
Definition: ExprCXX.h:566
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4436
virtual bool useFP16ConversionIntrinsics() const
Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used to convert to and from __fp...
Definition: TargetInfo.h:753
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:190
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
There is no lifetime qualification on this type.
Definition: Type.h:154
bool getValue() const
Definition: ExprCXX.h:3890
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:354
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:1045
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:141
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:4034
virtual llvm::Value * EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src)
Perform a derived-to-base, base-to-derived, or bitcast member pointer conversion. ...
Definition: CGCXXABI.cpp:67
#define false
Definition: stdbool.h:17
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
A field in a dependent type, known only by its name.
Definition: Expr.h:2142
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5662
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
Definition: CGObjC.cpp:240
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Definition: CGObjC.cpp:3379
bool mayBeNotDynamicClass() const
Returns true if it is not a class or if the class might not be dynamic.
Definition: Type.cpp:96
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6246
bool allowFPContractAcrossStatement() const
Definition: LangOptions.h:327
unsigned getOpenMPDefaultSimdAlign(QualType T) const
Get default simd alignment of the specified complete type in bits.
Expr * getSubExpr() const
Definition: Expr.h:2046
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Definition: CGExpr.cpp:164
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior...
Definition: CGExpr.cpp:1208
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2109
llvm::Value * EmitFromMemory(llvm::Value *Value, QualType Ty)
EmitFromMemory - Change a scalar value from its memory representation to its value representation...
Definition: CGExpr.cpp:1704
CastKind getCastKind() const
Definition: Expr.h:3166
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:2005
QualType getElementType() const
Definition: Type.h:3223
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:711
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:182
bool canOverflow() const
Returns true if the unary operator can cause an overflow.
Definition: Expr.h:2059
CanQualType FloatTy
Definition: ASTContext.h:1014
SanitizerSet SanOpts
Sanitizers enabled for this function.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1891
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5796
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2373
APValue EvaluateInContext(const ASTContext &Ctx, const Expr *DefaultExpr) const
Return the result of evaluating this SourceLocExpr in the specified (and possibly null) default argum...
Definition: Expr.cpp:2167
llvm::Constant * emitAbstract(const Expr *E, QualType T)
Emit the result of the given expression as an abstract constant, asserting that it succeeded...
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:503
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:24
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3244
Address EmitArrayToPointerDecay(const Expr *Array, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
Definition: CGExpr.cpp:3308
An expression trait intrinsic.
Definition: ExprCXX.h:2691
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1356
bool isVectorType() const
Definition: Type.h:6446
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3921
bool isSaturated() const
Definition: FixedPoint.h:47
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:124
virtual llvm::Constant * EmitNullMemberPointer(const MemberPointerType *MPT)
Create a null member pointer of the given type.
Definition: CGCXXABI.cpp:98
bool isArgumentType() const
Definition: Expr.h:2378
RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue=ReturnValueSlot())
Definition: CGExpr.cpp:4490
FixedPointSemantics getFixedPointSemantics(QualType Ty) const
bool isCanonical() const
Definition: Type.h:6174
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2311
static Value * createCastsForTypeOfSameSize(CGBuilderTy &Builder, const llvm::DataLayout &DL, Value *Src, llvm::Type *DstTy, StringRef Name="")
Defines the fixed point number interface.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat &#39;semantics&#39; for the specified scalar floating point type.
Expr * getLHS() const
Definition: Expr.h:3444
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3624
const llvm::fltSemantics & getFloat128Format() const
Definition: TargetInfo.h:600
Represents a C11 generic selection.
Definition: Expr.h:5195
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
virtual llvm::Value * EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality)
Emit a comparison between two member pointers. Returns an i1.
Definition: CGCXXABI.cpp:80
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:3877
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:58
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1083
Dataflow Directional Tag Classes.
void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, bool MayBeNull, CFITypeCheckKind TCK, SourceLocation Loc)
Derived is the presumed address of an object of type T after a cast.
Definition: CGClass.cpp:2665
std::string OverflowHandler
The name of the handler function to be called when -ftrapv is specified.
Definition: LangOptions.h:217
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:580
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2265
bool isShiftOp() const
Definition: Expr.h:3483
LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its LValue mapping if it exists, otherwise create one...
Definition: CGExpr.cpp:4439
A runtime availability query.
Definition: ExprObjC.h:1699
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:69
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4701
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, BuiltinType::Kind ElemKind)
static Value * emitPointerArithmetic(CodeGenFunction &CGF, const BinOpInfo &op, bool isSubtraction)
Emit pointer + index arithmetic.
bool isBooleanType() const
Definition: Type.h:6730
const Expr * getExpr() const
Definition: ExprCXX.h:1150
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.