clang  14.0.0git
CGExprScalar.cpp
Go to the documentation of this file.
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 // Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61  BinaryOperator::Opcode Opcode, bool Signed,
62  llvm::APInt &Result) {
63  // Assume overflow is possible, unless we can prove otherwise.
64  bool Overflow = true;
65  const auto &LHSAP = LHS->getValue();
66  const auto &RHSAP = RHS->getValue();
67  if (Opcode == BO_Add) {
68  if (Signed)
69  Result = LHSAP.sadd_ov(RHSAP, Overflow);
70  else
71  Result = LHSAP.uadd_ov(RHSAP, Overflow);
72  } else if (Opcode == BO_Sub) {
73  if (Signed)
74  Result = LHSAP.ssub_ov(RHSAP, Overflow);
75  else
76  Result = LHSAP.usub_ov(RHSAP, Overflow);
77  } else if (Opcode == BO_Mul) {
78  if (Signed)
79  Result = LHSAP.smul_ov(RHSAP, Overflow);
80  else
81  Result = LHSAP.umul_ov(RHSAP, Overflow);
82  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83  if (Signed && !RHS->isZero())
84  Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85  else
86  return false;
87  }
88  return Overflow;
89 }
90 
91 struct BinOpInfo {
92  Value *LHS;
93  Value *RHS;
94  QualType Ty; // Computation Type.
95  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96  FPOptions FPFeatures;
97  const Expr *E; // Entire expr, for error unsupported. May not be binop.
98 
99  /// Check if the binop can result in integer overflow.
100  bool mayHaveIntegerOverflow() const {
101  // Without constant input, we can't rule out overflow.
102  auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103  auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104  if (!LHSCI || !RHSCI)
105  return true;
106 
107  llvm::APInt Result;
108  return ::mayHaveIntegerOverflow(
109  LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110  }
111 
112  /// Check if the binop computes a division or a remainder.
113  bool isDivremOp() const {
114  return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115  Opcode == BO_RemAssign;
116  }
117 
118  /// Check if the binop can result in an integer division by zero.
119  bool mayHaveIntegerDivisionByZero() const {
120  if (isDivremOp())
121  if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122  return CI->isZero();
123  return true;
124  }
125 
126  /// Check if the binop can result in a float division by zero.
127  bool mayHaveFloatDivisionByZero() const {
128  if (isDivremOp())
129  if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130  return CFP->isZero();
131  return true;
132  }
133 
134  /// Check if at least one operand is a fixed point type. In such cases, this
135  /// operation did not follow usual arithmetic conversion and both operands
136  /// might not be of the same type.
137  bool isFixedPointOp() const {
138  // We cannot simply check the result type since comparison operations return
139  // an int.
140  if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141  QualType LHSType = BinOp->getLHS()->getType();
142  QualType RHSType = BinOp->getRHS()->getType();
143  return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144  }
145  if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146  return UnOp->getSubExpr()->getType()->isFixedPointType();
147  return false;
148  }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152  // If a null pointer expression's type is the C++0x nullptr_t, then
153  // it's not necessarily a simple constant and it must be evaluated
154  // for its potential side effects.
155  return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160  const Expr *E) {
161  const Expr *Base = E->IgnoreImpCasts();
162  if (E == Base)
163  return llvm::None;
164 
165  QualType BaseTy = Base->getType();
166  if (!BaseTy->isPromotableIntegerType() ||
167  Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168  return llvm::None;
169 
170  return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175  return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180  assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181  "Expected a unary or binary operator");
182 
183  // If the binop has constant inputs and we can prove there is no overflow,
184  // we can elide the overflow check.
185  if (!Op.mayHaveIntegerOverflow())
186  return true;
187 
188  // If a unary op has a widened operand, the op cannot overflow.
189  if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190  return !UO->canOverflow();
191 
192  // We usually don't need overflow checks for binops with widened operands.
193  // Multiplication with promoted unsigned operands is a special case.
194  const auto *BO = cast<BinaryOperator>(Op.E);
195  auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196  if (!OptionalLHSTy)
197  return false;
198 
199  auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200  if (!OptionalRHSTy)
201  return false;
202 
203  QualType LHSTy = *OptionalLHSTy;
204  QualType RHSTy = *OptionalRHSTy;
205 
206  // This is the simple case: binops without unsigned multiplication, and with
207  // widened operands. No overflow check is needed here.
208  if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209  !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210  return true;
211 
212  // For unsigned multiplication the overflow check can be elided if either one
213  // of the unpromoted types are less than half the size of the promoted type.
214  unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215  return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216  (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220  : public StmtVisitor<ScalarExprEmitter, Value*> {
221  CodeGenFunction &CGF;
222  CGBuilderTy &Builder;
223  bool IgnoreResultAssign;
224  llvm::LLVMContext &VMContext;
225 public:
226 
227  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228  : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229  VMContext(cgf.getLLVMContext()) {
230  }
231 
232  //===--------------------------------------------------------------------===//
233  // Utilities
234  //===--------------------------------------------------------------------===//
235 
236  bool TestAndClearIgnoreResultAssign() {
237  bool I = IgnoreResultAssign;
238  IgnoreResultAssign = false;
239  return I;
240  }
241 
242  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245  return CGF.EmitCheckedLValue(E, TCK);
246  }
247 
248  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249  const BinOpInfo &Info);
250 
251  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252  return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253  }
254 
255  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256  const AlignValueAttr *AVAttr = nullptr;
257  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258  const ValueDecl *VD = DRE->getDecl();
259 
260  if (VD->getType()->isReferenceType()) {
261  if (const auto *TTy =
262  dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264  } else {
265  // Assumptions for function parameters are emitted at the start of the
266  // function, so there is no need to repeat that here,
267  // unless the alignment-assumption sanitizer is enabled,
268  // then we prefer the assumption over alignment attribute
269  // on IR function param.
270  if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271  return;
272 
273  AVAttr = VD->getAttr<AlignValueAttr>();
274  }
275  }
276 
277  if (!AVAttr)
278  if (const auto *TTy =
279  dyn_cast<TypedefType>(E->getType()))
280  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282  if (!AVAttr)
283  return;
284 
285  Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286  llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287  CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288  }
289 
290  /// EmitLoadOfLValue - Given an expression with complex type that represents a
291  /// value l-value, this method emits the address of the l-value, then loads
292  /// and returns the result.
293  Value *EmitLoadOfLValue(const Expr *E) {
294  Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295  E->getExprLoc());
296 
297  EmitLValueAlignmentAssumption(E, V);
298  return V;
299  }
300 
301  /// EmitConversionToBool - Convert the specified expression value to a
302  /// boolean (i1) truth value. This is equivalent to "Val != 0".
303  Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305  /// Emit a check that a conversion from a floating-point type does not
306  /// overflow.
307  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308  Value *Src, QualType SrcType, QualType DstType,
309  llvm::Type *DstTy, SourceLocation Loc);
310 
311  /// Known implicit conversion check kinds.
312  /// Keep in sync with the enum of the same name in ubsan_handlers.h
313  enum ImplicitConversionCheckKind : unsigned char {
314  ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315  ICCK_UnsignedIntegerTruncation = 1,
316  ICCK_SignedIntegerTruncation = 2,
317  ICCK_IntegerSignChange = 3,
318  ICCK_SignedIntegerTruncationOrSignChange = 4,
319  };
320 
321  /// Emit a check that an [implicit] truncation of an integer does not
322  /// discard any bits. It is not UB, so we use the value after truncation.
323  void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324  QualType DstType, SourceLocation Loc);
325 
326  /// Emit a check that an [implicit] conversion of an integer does not change
327  /// the sign of the value. It is not UB, so we use the value after conversion.
328  /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329  void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330  QualType DstType, SourceLocation Loc);
331 
332  /// Emit a conversion from the specified type to the specified destination
333  /// type, both of which are LLVM scalar types.
334  struct ScalarConversionOpts {
335  bool TreatBooleanAsSigned;
336  bool EmitImplicitIntegerTruncationChecks;
337  bool EmitImplicitIntegerSignChangeChecks;
338 
339  ScalarConversionOpts()
340  : TreatBooleanAsSigned(false),
341  EmitImplicitIntegerTruncationChecks(false),
342  EmitImplicitIntegerSignChangeChecks(false) {}
343 
344  ScalarConversionOpts(clang::SanitizerSet SanOpts)
345  : TreatBooleanAsSigned(false),
346  EmitImplicitIntegerTruncationChecks(
347  SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348  EmitImplicitIntegerSignChangeChecks(
349  SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350  };
351  Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352  llvm::Type *SrcTy, llvm::Type *DstTy,
353  ScalarConversionOpts Opts);
354  Value *
355  EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356  SourceLocation Loc,
357  ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359  /// Convert between either a fixed point and other fixed point or fixed point
360  /// and an integer.
361  Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362  SourceLocation Loc);
363 
364  /// Emit a conversion from the specified complex type to the specified
365  /// destination type, where the destination type is an LLVM scalar type.
366  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367  QualType SrcTy, QualType DstTy,
368  SourceLocation Loc);
369 
370  /// EmitNullValue - Emit a value that corresponds to null for the given type.
371  Value *EmitNullValue(QualType Ty);
372 
373  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374  Value *EmitFloatToBoolConversion(Value *V) {
375  // Compare against 0.0 for fp scalars.
376  llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377  return Builder.CreateFCmpUNE(V, Zero, "tobool");
378  }
379 
380  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381  Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382  Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384  return Builder.CreateICmpNE(V, Zero, "tobool");
385  }
386 
387  Value *EmitIntToBoolConversion(Value *V) {
388  // Because of the type rules of C, we often end up computing a
389  // logical value, then zero extending it to int, then wanting it
390  // as a logical value again. Optimize this common case.
391  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392  if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393  Value *Result = ZI->getOperand(0);
394  // If there aren't any more uses, zap the instruction to save space.
395  // Note that there can be more uses, for example if this
396  // is the result of an assignment.
397  if (ZI->use_empty())
398  ZI->eraseFromParent();
399  return Result;
400  }
401  }
402 
403  return Builder.CreateIsNotNull(V, "tobool");
404  }
405 
406  //===--------------------------------------------------------------------===//
407  // Visitor Methods
408  //===--------------------------------------------------------------------===//
409 
410  Value *Visit(Expr *E) {
411  ApplyDebugLocation DL(CGF, E);
413  }
414 
415  Value *VisitStmt(Stmt *S) {
416  S->dump(llvm::errs(), CGF.getContext());
417  llvm_unreachable("Stmt can't have complex result type!");
418  }
419  Value *VisitExpr(Expr *S);
420 
421  Value *VisitConstantExpr(ConstantExpr *E) {
422  // A constant expression of type 'void' generates no code and produces no
423  // value.
424  if (E->getType()->isVoidType())
425  return nullptr;
426 
427  if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
428  if (E->isGLValue())
429  return CGF.Builder.CreateLoad(Address(
430  Result, CGF.getContext().getTypeAlignInChars(E->getType())));
431  return Result;
432  }
433  return Visit(E->getSubExpr());
434  }
435  Value *VisitParenExpr(ParenExpr *PE) {
436  return Visit(PE->getSubExpr());
437  }
438  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439  return Visit(E->getReplacement());
440  }
441  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442  return Visit(GE->getResultExpr());
443  }
444  Value *VisitCoawaitExpr(CoawaitExpr *S) {
445  return CGF.EmitCoawaitExpr(*S).getScalarVal();
446  }
447  Value *VisitCoyieldExpr(CoyieldExpr *S) {
448  return CGF.EmitCoyieldExpr(*S).getScalarVal();
449  }
450  Value *VisitUnaryCoawait(const UnaryOperator *E) {
451  return Visit(E->getSubExpr());
452  }
453 
454  // Leaves.
455  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456  return Builder.getInt(E->getValue());
457  }
458  Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459  return Builder.getInt(E->getValue());
460  }
461  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462  return llvm::ConstantFP::get(VMContext, E->getValue());
463  }
464  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466  }
467  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469  }
470  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472  }
473  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474  return EmitNullValue(E->getType());
475  }
476  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477  return EmitNullValue(E->getType());
478  }
479  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482  llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483  return Builder.CreateBitCast(V, ConvertType(E->getType()));
484  }
485 
486  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487  return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488  }
489 
490  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491  return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492  }
493 
494  Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
495 
496  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
497  if (E->isGLValue())
498  return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
499  E->getExprLoc());
500 
501  // Otherwise, assume the mapping is the scalar directly.
503  }
504 
505  // l-values.
506  Value *VisitDeclRefExpr(DeclRefExpr *E) {
508  return CGF.emitScalarConstant(Constant, E);
509  return EmitLoadOfLValue(E);
510  }
511 
512  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
513  return CGF.EmitObjCSelectorExpr(E);
514  }
515  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
516  return CGF.EmitObjCProtocolExpr(E);
517  }
518  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
519  return EmitLoadOfLValue(E);
520  }
521  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
522  if (E->getMethodDecl() &&
524  return EmitLoadOfLValue(E);
525  return CGF.EmitObjCMessageExpr(E).getScalarVal();
526  }
527 
528  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
529  LValue LV = CGF.EmitObjCIsaExpr(E);
530  Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
531  return V;
532  }
533 
534  Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
535  VersionTuple Version = E->getVersion();
536 
537  // If we're checking for a platform older than our minimum deployment
538  // target, we can fold the check away.
539  if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
540  return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
541 
542  return CGF.EmitBuiltinAvailable(Version);
543  }
544 
545  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
546  Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
547  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
548  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
549  Value *VisitMemberExpr(MemberExpr *E);
550  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
551  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
552  // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
553  // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
554  // literals aren't l-values in C++. We do so simply because that's the
555  // cleanest way to handle compound literals in C++.
556  // See the discussion here: https://reviews.llvm.org/D64464
557  return EmitLoadOfLValue(E);
558  }
559 
560  Value *VisitInitListExpr(InitListExpr *E);
561 
562  Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563  assert(CGF.getArrayInitIndex() &&
564  "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565  return CGF.getArrayInitIndex();
566  }
567 
568  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569  return EmitNullValue(E->getType());
570  }
571  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572  CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573  return VisitCastExpr(E);
574  }
575  Value *VisitCastExpr(CastExpr *E);
576 
577  Value *VisitCallExpr(const CallExpr *E) {
579  return EmitLoadOfLValue(E);
580 
581  Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583  EmitLValueAlignmentAssumption(E, V);
584  return V;
585  }
586 
587  Value *VisitStmtExpr(const StmtExpr *E);
588 
589  // Unary Operators.
590  Value *VisitUnaryPostDec(const UnaryOperator *E) {
591  LValue LV = EmitLValue(E->getSubExpr());
592  return EmitScalarPrePostIncDec(E, LV, false, false);
593  }
594  Value *VisitUnaryPostInc(const UnaryOperator *E) {
595  LValue LV = EmitLValue(E->getSubExpr());
596  return EmitScalarPrePostIncDec(E, LV, true, false);
597  }
598  Value *VisitUnaryPreDec(const UnaryOperator *E) {
599  LValue LV = EmitLValue(E->getSubExpr());
600  return EmitScalarPrePostIncDec(E, LV, false, true);
601  }
602  Value *VisitUnaryPreInc(const UnaryOperator *E) {
603  LValue LV = EmitLValue(E->getSubExpr());
604  return EmitScalarPrePostIncDec(E, LV, true, true);
605  }
606 
607  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608  llvm::Value *InVal,
609  bool IsInc);
610 
611  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612  bool isInc, bool isPre);
613 
614 
615  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616  if (isa<MemberPointerType>(E->getType())) // never sugared
617  return CGF.CGM.getMemberPointerConstant(E);
618 
619  return EmitLValue(E->getSubExpr()).getPointer(CGF);
620  }
621  Value *VisitUnaryDeref(const UnaryOperator *E) {
622  if (E->getType()->isVoidType())
623  return Visit(E->getSubExpr()); // the actual value should be unused
624  return EmitLoadOfLValue(E);
625  }
626  Value *VisitUnaryPlus(const UnaryOperator *E) {
627  // This differs from gcc, though, most likely due to a bug in gcc.
628  TestAndClearIgnoreResultAssign();
629  return Visit(E->getSubExpr());
630  }
631  Value *VisitUnaryMinus (const UnaryOperator *E);
632  Value *VisitUnaryNot (const UnaryOperator *E);
633  Value *VisitUnaryLNot (const UnaryOperator *E);
634  Value *VisitUnaryReal (const UnaryOperator *E);
635  Value *VisitUnaryImag (const UnaryOperator *E);
636  Value *VisitUnaryExtension(const UnaryOperator *E) {
637  return Visit(E->getSubExpr());
638  }
639 
640  // C++
641  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642  return EmitLoadOfLValue(E);
643  }
644  Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645  auto &Ctx = CGF.getContext();
646  APValue Evaluated =
648  return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
649  SLE->getType());
650  }
651 
652  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
654  return Visit(DAE->getExpr());
655  }
656  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
658  return Visit(DIE->getExpr());
659  }
660  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661  return CGF.LoadCXXThis();
662  }
663 
664  Value *VisitExprWithCleanups(ExprWithCleanups *E);
665  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666  return CGF.EmitCXXNewExpr(E);
667  }
668  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669  CGF.EmitCXXDeleteExpr(E);
670  return nullptr;
671  }
672 
673  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675  }
676 
677  Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
678  return Builder.getInt1(E->isSatisfied());
679  }
680 
681  Value *VisitRequiresExpr(const RequiresExpr *E) {
682  return Builder.getInt1(E->isSatisfied());
683  }
684 
685  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
686  return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
687  }
688 
689  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
690  return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
691  }
692 
693  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
694  // C++ [expr.pseudo]p1:
695  // The result shall only be used as the operand for the function call
696  // operator (), and the result of such a call has type void. The only
697  // effect is the evaluation of the postfix-expression before the dot or
698  // arrow.
699  CGF.EmitScalarExpr(E->getBase());
700  return nullptr;
701  }
702 
703  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
704  return EmitNullValue(E->getType());
705  }
706 
707  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
708  CGF.EmitCXXThrowExpr(E);
709  return nullptr;
710  }
711 
712  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
713  return Builder.getInt1(E->getValue());
714  }
715 
716  // Binary Operators.
717  Value *EmitMul(const BinOpInfo &Ops) {
718  if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
719  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
721  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
723  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
724  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
725  LLVM_FALLTHROUGH;
727  if (CanElideOverflowCheck(CGF.getContext(), Ops))
728  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
729  return EmitOverflowCheckedBinOp(Ops);
730  }
731  }
732 
733  if (Ops.Ty->isConstantMatrixType()) {
734  llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
735  // We need to check the types of the operands of the operator to get the
736  // correct matrix dimensions.
737  auto *BO = cast<BinaryOperator>(Ops.E);
738  auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
739  BO->getLHS()->getType().getCanonicalType());
740  auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
741  BO->getRHS()->getType().getCanonicalType());
742  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
743  if (LHSMatTy && RHSMatTy)
744  return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
745  LHSMatTy->getNumColumns(),
746  RHSMatTy->getNumColumns());
747  return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
748  }
749 
750  if (Ops.Ty->isUnsignedIntegerType() &&
751  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
752  !CanElideOverflowCheck(CGF.getContext(), Ops))
753  return EmitOverflowCheckedBinOp(Ops);
754 
755  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
756  // Preserve the old values
757  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
758  return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
759  }
760  if (Ops.isFixedPointOp())
761  return EmitFixedPointBinOp(Ops);
762  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
763  }
764  /// Create a binary op that checks for overflow.
765  /// Currently only supports +, - and *.
766  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
767 
768  // Check for undefined division and modulus behaviors.
769  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
770  llvm::Value *Zero,bool isDiv);
771  // Common helper for getting how wide LHS of shift is.
772  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
773 
774  // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
775  // non powers of two.
776  Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
777 
778  Value *EmitDiv(const BinOpInfo &Ops);
779  Value *EmitRem(const BinOpInfo &Ops);
780  Value *EmitAdd(const BinOpInfo &Ops);
781  Value *EmitSub(const BinOpInfo &Ops);
782  Value *EmitShl(const BinOpInfo &Ops);
783  Value *EmitShr(const BinOpInfo &Ops);
784  Value *EmitAnd(const BinOpInfo &Ops) {
785  return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
786  }
787  Value *EmitXor(const BinOpInfo &Ops) {
788  return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
789  }
790  Value *EmitOr (const BinOpInfo &Ops) {
791  return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
792  }
793 
794  // Helper functions for fixed point binary operations.
795  Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
796 
797  BinOpInfo EmitBinOps(const BinaryOperator *E);
798  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
799  Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
800  Value *&Result);
801 
802  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
803  Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
804 
805  // Binary operators and binary compound assignment operators.
806 #define HANDLEBINOP(OP) \
807  Value *VisitBin ## OP(const BinaryOperator *E) { \
808  return Emit ## OP(EmitBinOps(E)); \
809  } \
810  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
811  return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
812  }
814  HANDLEBINOP(Div)
815  HANDLEBINOP(Rem)
821  HANDLEBINOP(Xor)
822  HANDLEBINOP(Or)
823 #undef HANDLEBINOP
824 
825  // Comparisons.
826  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
827  llvm::CmpInst::Predicate SICmpOpc,
828  llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
829 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
830  Value *VisitBin##CODE(const BinaryOperator *E) { \
831  return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
832  llvm::FCmpInst::FP, SIG); }
833  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
834  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
835  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
836  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
837  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
838  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
839 #undef VISITCOMP
840 
841  Value *VisitBinAssign (const BinaryOperator *E);
842 
843  Value *VisitBinLAnd (const BinaryOperator *E);
844  Value *VisitBinLOr (const BinaryOperator *E);
845  Value *VisitBinComma (const BinaryOperator *E);
846 
847  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
848  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
849 
850  Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
851  return Visit(E->getSemanticForm());
852  }
853 
854  // Other Operators.
855  Value *VisitBlockExpr(const BlockExpr *BE);
856  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
857  Value *VisitChooseExpr(ChooseExpr *CE);
858  Value *VisitVAArgExpr(VAArgExpr *VE);
859  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
860  return CGF.EmitObjCStringLiteral(E);
861  }
862  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
863  return CGF.EmitObjCBoxedExpr(E);
864  }
865  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
866  return CGF.EmitObjCArrayLiteral(E);
867  }
868  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
869  return CGF.EmitObjCDictionaryLiteral(E);
870  }
871  Value *VisitAsTypeExpr(AsTypeExpr *CE);
872  Value *VisitAtomicExpr(AtomicExpr *AE);
873 };
874 } // end anonymous namespace.
875 
876 //===----------------------------------------------------------------------===//
877 // Utilities
878 //===----------------------------------------------------------------------===//
879 
880 /// EmitConversionToBool - Convert the specified expression value to a
881 /// boolean (i1) truth value. This is equivalent to "Val != 0".
882 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
883  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
884 
885  if (SrcType->isRealFloatingType())
886  return EmitFloatToBoolConversion(Src);
887 
888  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
889  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
890 
891  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
892  "Unknown scalar type to convert");
893 
894  if (isa<llvm::IntegerType>(Src->getType()))
895  return EmitIntToBoolConversion(Src);
896 
897  assert(isa<llvm::PointerType>(Src->getType()));
898  return EmitPointerToBoolConversion(Src, SrcType);
899 }
900 
901 void ScalarExprEmitter::EmitFloatConversionCheck(
902  Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
903  QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
904  assert(SrcType->isFloatingType() && "not a conversion from floating point");
905  if (!isa<llvm::IntegerType>(DstTy))
906  return;
907 
908  CodeGenFunction::SanitizerScope SanScope(&CGF);
909  using llvm::APFloat;
910  using llvm::APSInt;
911 
912  llvm::Value *Check = nullptr;
913  const llvm::fltSemantics &SrcSema =
914  CGF.getContext().getFloatTypeSemantics(OrigSrcType);
915 
916  // Floating-point to integer. This has undefined behavior if the source is
917  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
918  // to an integer).
919  unsigned Width = CGF.getContext().getIntWidth(DstType);
921 
922  APSInt Min = APSInt::getMinValue(Width, Unsigned);
923  APFloat MinSrc(SrcSema, APFloat::uninitialized);
924  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
925  APFloat::opOverflow)
926  // Don't need an overflow check for lower bound. Just check for
927  // -Inf/NaN.
928  MinSrc = APFloat::getInf(SrcSema, true);
929  else
930  // Find the largest value which is too small to represent (before
931  // truncation toward zero).
932  MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
933 
934  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
935  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
936  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
937  APFloat::opOverflow)
938  // Don't need an overflow check for upper bound. Just check for
939  // +Inf/NaN.
940  MaxSrc = APFloat::getInf(SrcSema, false);
941  else
942  // Find the smallest value which is too large to represent (before
943  // truncation toward zero).
944  MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
945 
946  // If we're converting from __half, convert the range to float to match
947  // the type of src.
948  if (OrigSrcType->isHalfType()) {
949  const llvm::fltSemantics &Sema =
950  CGF.getContext().getFloatTypeSemantics(SrcType);
951  bool IsInexact;
952  MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
953  MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
954  }
955 
956  llvm::Value *GE =
957  Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
958  llvm::Value *LE =
959  Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
960  Check = Builder.CreateAnd(GE, LE);
961 
962  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
963  CGF.EmitCheckTypeDescriptor(OrigSrcType),
964  CGF.EmitCheckTypeDescriptor(DstType)};
965  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
966  SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
967 }
968 
969 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
970 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
971 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
972  std::pair<llvm::Value *, SanitizerMask>>
974  QualType DstType, CGBuilderTy &Builder) {
975  llvm::Type *SrcTy = Src->getType();
976  llvm::Type *DstTy = Dst->getType();
977  (void)DstTy; // Only used in assert()
978 
979  // This should be truncation of integral types.
980  assert(Src != Dst);
981  assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
982  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
983  "non-integer llvm type");
984 
985  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
986  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
987 
988  // If both (src and dst) types are unsigned, then it's an unsigned truncation.
989  // Else, it is a signed truncation.
990  ScalarExprEmitter::ImplicitConversionCheckKind Kind;
991  SanitizerMask Mask;
992  if (!SrcSigned && !DstSigned) {
993  Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
994  Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
995  } else {
996  Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
997  Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
998  }
999 
1000  llvm::Value *Check = nullptr;
1001  // 1. Extend the truncated value back to the same width as the Src.
1002  Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1003  // 2. Equality-compare with the original source value
1004  Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1005  // If the comparison result is 'i1 false', then the truncation was lossy.
1006  return std::make_pair(Kind, std::make_pair(Check, Mask));
1007 }
1008 
1010  QualType SrcType, QualType DstType) {
1011  return SrcType->isIntegerType() && DstType->isIntegerType();
1012 }
1013 
1014 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1015  Value *Dst, QualType DstType,
1016  SourceLocation Loc) {
1017  if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1018  return;
1019 
1020  // We only care about int->int conversions here.
1021  // We ignore conversions to/from pointer and/or bool.
1023  DstType))
1024  return;
1025 
1026  unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1027  unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1028  // This must be truncation. Else we do not care.
1029  if (SrcBits <= DstBits)
1030  return;
1031 
1032  assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1033 
1034  // If the integer sign change sanitizer is enabled,
1035  // and we are truncating from larger unsigned type to smaller signed type,
1036  // let that next sanitizer deal with it.
1037  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1038  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1039  if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1040  (!SrcSigned && DstSigned))
1041  return;
1042 
1043  CodeGenFunction::SanitizerScope SanScope(&CGF);
1044 
1045  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1046  std::pair<llvm::Value *, SanitizerMask>>
1047  Check =
1048  EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1049  // If the comparison result is 'i1 false', then the truncation was lossy.
1050 
1051  // Do we care about this type of truncation?
1052  if (!CGF.SanOpts.has(Check.second.second))
1053  return;
1054 
1055  llvm::Constant *StaticArgs[] = {
1056  CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1057  CGF.EmitCheckTypeDescriptor(DstType),
1058  llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1059  CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1060  {Src, Dst});
1061 }
1062 
1063 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1064 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1065 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1066  std::pair<llvm::Value *, SanitizerMask>>
1068  QualType DstType, CGBuilderTy &Builder) {
1069  llvm::Type *SrcTy = Src->getType();
1070  llvm::Type *DstTy = Dst->getType();
1071 
1072  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1073  "non-integer llvm type");
1074 
1075  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1076  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1077  (void)SrcSigned; // Only used in assert()
1078  (void)DstSigned; // Only used in assert()
1079  unsigned SrcBits = SrcTy->getScalarSizeInBits();
1080  unsigned DstBits = DstTy->getScalarSizeInBits();
1081  (void)SrcBits; // Only used in assert()
1082  (void)DstBits; // Only used in assert()
1083 
1084  assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1085  "either the widths should be different, or the signednesses.");
1086 
1087  // NOTE: zero value is considered to be non-negative.
1088  auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1089  const char *Name) -> Value * {
1090  // Is this value a signed type?
1091  bool VSigned = VType->isSignedIntegerOrEnumerationType();
1092  llvm::Type *VTy = V->getType();
1093  if (!VSigned) {
1094  // If the value is unsigned, then it is never negative.
1095  // FIXME: can we encounter non-scalar VTy here?
1096  return llvm::ConstantInt::getFalse(VTy->getContext());
1097  }
1098  // Get the zero of the same type with which we will be comparing.
1099  llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1100  // %V.isnegative = icmp slt %V, 0
1101  // I.e is %V *strictly* less than zero, does it have negative value?
1102  return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1103  llvm::Twine(Name) + "." + V->getName() +
1104  ".negativitycheck");
1105  };
1106 
1107  // 1. Was the old Value negative?
1108  llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1109  // 2. Is the new Value negative?
1110  llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1111  // 3. Now, was the 'negativity status' preserved during the conversion?
1112  // NOTE: conversion from negative to zero is considered to change the sign.
1113  // (We want to get 'false' when the conversion changed the sign)
1114  // So we should just equality-compare the negativity statuses.
1115  llvm::Value *Check = nullptr;
1116  Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1117  // If the comparison result is 'false', then the conversion changed the sign.
1118  return std::make_pair(
1119  ScalarExprEmitter::ICCK_IntegerSignChange,
1120  std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1121 }
1122 
1123 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1124  Value *Dst, QualType DstType,
1125  SourceLocation Loc) {
1126  if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1127  return;
1128 
1129  llvm::Type *SrcTy = Src->getType();
1130  llvm::Type *DstTy = Dst->getType();
1131 
1132  // We only care about int->int conversions here.
1133  // We ignore conversions to/from pointer and/or bool.
1135  DstType))
1136  return;
1137 
1138  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1139  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1140  unsigned SrcBits = SrcTy->getScalarSizeInBits();
1141  unsigned DstBits = DstTy->getScalarSizeInBits();
1142 
1143  // Now, we do not need to emit the check in *all* of the cases.
1144  // We can avoid emitting it in some obvious cases where it would have been
1145  // dropped by the opt passes (instcombine) always anyways.
1146  // If it's a cast between effectively the same type, no check.
1147  // NOTE: this is *not* equivalent to checking the canonical types.
1148  if (SrcSigned == DstSigned && SrcBits == DstBits)
1149  return;
1150  // At least one of the values needs to have signed type.
1151  // If both are unsigned, then obviously, neither of them can be negative.
1152  if (!SrcSigned && !DstSigned)
1153  return;
1154  // If the conversion is to *larger* *signed* type, then no check is needed.
1155  // Because either sign-extension happens (so the sign will remain),
1156  // or zero-extension will happen (the sign bit will be zero.)
1157  if ((DstBits > SrcBits) && DstSigned)
1158  return;
1159  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1160  (SrcBits > DstBits) && SrcSigned) {
1161  // If the signed integer truncation sanitizer is enabled,
1162  // and this is a truncation from signed type, then no check is needed.
1163  // Because here sign change check is interchangeable with truncation check.
1164  return;
1165  }
1166  // That's it. We can't rule out any more cases with the data we have.
1167 
1168  CodeGenFunction::SanitizerScope SanScope(&CGF);
1169 
1170  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1171  std::pair<llvm::Value *, SanitizerMask>>
1172  Check;
1173 
1174  // Each of these checks needs to return 'false' when an issue was detected.
1175  ImplicitConversionCheckKind CheckKind;
1177  // So we can 'and' all the checks together, and still get 'false',
1178  // if at least one of the checks detected an issue.
1179 
1180  Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1181  CheckKind = Check.first;
1182  Checks.emplace_back(Check.second);
1183 
1184  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1185  (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1186  // If the signed integer truncation sanitizer was enabled,
1187  // and we are truncating from larger unsigned type to smaller signed type,
1188  // let's handle the case we skipped in that check.
1189  Check =
1190  EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1191  CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1192  Checks.emplace_back(Check.second);
1193  // If the comparison result is 'i1 false', then the truncation was lossy.
1194  }
1195 
1196  llvm::Constant *StaticArgs[] = {
1197  CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1198  CGF.EmitCheckTypeDescriptor(DstType),
1199  llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1200  // EmitCheck() will 'and' all the checks together.
1201  CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1202  {Src, Dst});
1203 }
1204 
1205 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1206  QualType DstType, llvm::Type *SrcTy,
1207  llvm::Type *DstTy,
1208  ScalarConversionOpts Opts) {
1209  // The Element types determine the type of cast to perform.
1210  llvm::Type *SrcElementTy;
1211  llvm::Type *DstElementTy;
1212  QualType SrcElementType;
1213  QualType DstElementType;
1214  if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1215  SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1216  DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1217  SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1218  DstElementType = DstType->castAs<MatrixType>()->getElementType();
1219  } else {
1220  assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1221  "cannot cast between matrix and non-matrix types");
1222  SrcElementTy = SrcTy;
1223  DstElementTy = DstTy;
1224  SrcElementType = SrcType;
1225  DstElementType = DstType;
1226  }
1227 
1228  if (isa<llvm::IntegerType>(SrcElementTy)) {
1229  bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1230  if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1231  InputSigned = true;
1232  }
1233 
1234  if (isa<llvm::IntegerType>(DstElementTy))
1235  return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1236  if (InputSigned)
1237  return Builder.CreateSIToFP(Src, DstTy, "conv");
1238  return Builder.CreateUIToFP(Src, DstTy, "conv");
1239  }
1240 
1241  if (isa<llvm::IntegerType>(DstElementTy)) {
1242  assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1243  if (DstElementType->isSignedIntegerOrEnumerationType())
1244  return Builder.CreateFPToSI(Src, DstTy, "conv");
1245  return Builder.CreateFPToUI(Src, DstTy, "conv");
1246  }
1247 
1248  if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1249  return Builder.CreateFPTrunc(Src, DstTy, "conv");
1250  return Builder.CreateFPExt(Src, DstTy, "conv");
1251 }
1252 
1253 /// Emit a conversion from the specified type to the specified destination type,
1254 /// both of which are LLVM scalar types.
1255 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1256  QualType DstType,
1257  SourceLocation Loc,
1258  ScalarConversionOpts Opts) {
1259  // All conversions involving fixed point types should be handled by the
1260  // EmitFixedPoint family functions. This is done to prevent bloating up this
1261  // function more, and although fixed point numbers are represented by
1262  // integers, we do not want to follow any logic that assumes they should be
1263  // treated as integers.
1264  // TODO(leonardchan): When necessary, add another if statement checking for
1265  // conversions to fixed point types from other types.
1266  if (SrcType->isFixedPointType()) {
1267  if (DstType->isBooleanType())
1268  // It is important that we check this before checking if the dest type is
1269  // an integer because booleans are technically integer types.
1270  // We do not need to check the padding bit on unsigned types if unsigned
1271  // padding is enabled because overflow into this bit is undefined
1272  // behavior.
1273  return Builder.CreateIsNotNull(Src, "tobool");
1274  if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1275  DstType->isRealFloatingType())
1276  return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1277 
1278  llvm_unreachable(
1279  "Unhandled scalar conversion from a fixed point type to another type.");
1280  } else if (DstType->isFixedPointType()) {
1281  if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1282  // This also includes converting booleans and enums to fixed point types.
1283  return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1284 
1285  llvm_unreachable(
1286  "Unhandled scalar conversion to a fixed point type from another type.");
1287  }
1288 
1289  QualType NoncanonicalSrcType = SrcType;
1290  QualType NoncanonicalDstType = DstType;
1291 
1292  SrcType = CGF.getContext().getCanonicalType(SrcType);
1293  DstType = CGF.getContext().getCanonicalType(DstType);
1294  if (SrcType == DstType) return Src;
1295 
1296  if (DstType->isVoidType()) return nullptr;
1297 
1298  llvm::Value *OrigSrc = Src;
1299  QualType OrigSrcType = SrcType;
1300  llvm::Type *SrcTy = Src->getType();
1301 
1302  // Handle conversions to bool first, they are special: comparisons against 0.
1303  if (DstType->isBooleanType())
1304  return EmitConversionToBool(Src, SrcType);
1305 
1306  llvm::Type *DstTy = ConvertType(DstType);
1307 
1308  // Cast from half through float if half isn't a native type.
1309  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1310  // Cast to FP using the intrinsic if the half type itself isn't supported.
1311  if (DstTy->isFloatingPointTy()) {
1313  return Builder.CreateCall(
1314  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1315  Src);
1316  } else {
1317  // Cast to other types through float, using either the intrinsic or FPExt,
1318  // depending on whether the half type itself is supported
1319  // (as opposed to operations on half, available with NativeHalfType).
1321  Src = Builder.CreateCall(
1322  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1323  CGF.CGM.FloatTy),
1324  Src);
1325  } else {
1326  Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1327  }
1328  SrcType = CGF.getContext().FloatTy;
1329  SrcTy = CGF.FloatTy;
1330  }
1331  }
1332 
1333  // Ignore conversions like int -> uint.
1334  if (SrcTy == DstTy) {
1335  if (Opts.EmitImplicitIntegerSignChangeChecks)
1336  EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1337  NoncanonicalDstType, Loc);
1338 
1339  return Src;
1340  }
1341 
1342  // Handle pointer conversions next: pointers can only be converted to/from
1343  // other pointers and integers. Check for pointer types in terms of LLVM, as
1344  // some native types (like Obj-C id) may map to a pointer type.
1345  if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1346  // The source value may be an integer, or a pointer.
1347  if (isa<llvm::PointerType>(SrcTy))
1348  return Builder.CreateBitCast(Src, DstTy, "conv");
1349 
1350  assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1351  // First, convert to the correct width so that we control the kind of
1352  // extension.
1353  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1354  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1355  llvm::Value* IntResult =
1356  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1357  // Then, cast to pointer.
1358  return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1359  }
1360 
1361  if (isa<llvm::PointerType>(SrcTy)) {
1362  // Must be an ptr to int cast.
1363  assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1364  return Builder.CreatePtrToInt(Src, DstTy, "conv");
1365  }
1366 
1367  // A scalar can be splatted to an extended vector of the same element type
1368  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1369  // Sema should add casts to make sure that the source expression's type is
1370  // the same as the vector's element type (sans qualifiers)
1371  assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1372  SrcType.getTypePtr() &&
1373  "Splatted expr doesn't match with vector element type?");
1374 
1375  // Splat the element across to all elements
1376  unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1377  return Builder.CreateVectorSplat(NumElements, Src, "splat");
1378  }
1379 
1380  if (SrcType->isMatrixType() && DstType->isMatrixType())
1381  return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1382 
1383  if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1384  // Allow bitcast from vector to integer/fp of the same size.
1385  unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1386  unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1387  if (SrcSize == DstSize)
1388  return Builder.CreateBitCast(Src, DstTy, "conv");
1389 
1390  // Conversions between vectors of different sizes are not allowed except
1391  // when vectors of half are involved. Operations on storage-only half
1392  // vectors require promoting half vector operands to float vectors and
1393  // truncating the result, which is either an int or float vector, to a
1394  // short or half vector.
1395 
1396  // Source and destination are both expected to be vectors.
1397  llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1398  llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1399  (void)DstElementTy;
1400 
1401  assert(((SrcElementTy->isIntegerTy() &&
1402  DstElementTy->isIntegerTy()) ||
1403  (SrcElementTy->isFloatingPointTy() &&
1404  DstElementTy->isFloatingPointTy())) &&
1405  "unexpected conversion between a floating-point vector and an "
1406  "integer vector");
1407 
1408  // Truncate an i32 vector to an i16 vector.
1409  if (SrcElementTy->isIntegerTy())
1410  return Builder.CreateIntCast(Src, DstTy, false, "conv");
1411 
1412  // Truncate a float vector to a half vector.
1413  if (SrcSize > DstSize)
1414  return Builder.CreateFPTrunc(Src, DstTy, "conv");
1415 
1416  // Promote a half vector to a float vector.
1417  return Builder.CreateFPExt(Src, DstTy, "conv");
1418  }
1419 
1420  // Finally, we have the arithmetic types: real int/float.
1421  Value *Res = nullptr;
1422  llvm::Type *ResTy = DstTy;
1423 
1424  // An overflowing conversion has undefined behavior if either the source type
1425  // or the destination type is a floating-point type. However, we consider the
1426  // range of representable values for all floating-point types to be
1427  // [-inf,+inf], so no overflow can ever happen when the destination type is a
1428  // floating-point type.
1429  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1430  OrigSrcType->isFloatingType())
1431  EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1432  Loc);
1433 
1434  // Cast to half through float if half isn't a native type.
1435  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1436  // Make sure we cast in a single step if from another FP type.
1437  if (SrcTy->isFloatingPointTy()) {
1438  // Use the intrinsic if the half type itself isn't supported
1439  // (as opposed to operations on half, available with NativeHalfType).
1441  return Builder.CreateCall(
1442  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1443  // If the half type is supported, just use an fptrunc.
1444  return Builder.CreateFPTrunc(Src, DstTy);
1445  }
1446  DstTy = CGF.FloatTy;
1447  }
1448 
1449  Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1450 
1451  if (DstTy != ResTy) {
1453  assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1454  Res = Builder.CreateCall(
1455  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1456  Res);
1457  } else {
1458  Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1459  }
1460  }
1461 
1462  if (Opts.EmitImplicitIntegerTruncationChecks)
1463  EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1464  NoncanonicalDstType, Loc);
1465 
1466  if (Opts.EmitImplicitIntegerSignChangeChecks)
1467  EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1468  NoncanonicalDstType, Loc);
1469 
1470  return Res;
1471 }
1472 
1473 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1474  QualType DstTy,
1475  SourceLocation Loc) {
1476  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1477  llvm::Value *Result;
1478  if (SrcTy->isRealFloatingType())
1479  Result = FPBuilder.CreateFloatingToFixed(Src,
1480  CGF.getContext().getFixedPointSemantics(DstTy));
1481  else if (DstTy->isRealFloatingType())
1482  Result = FPBuilder.CreateFixedToFloating(Src,
1483  CGF.getContext().getFixedPointSemantics(SrcTy),
1484  ConvertType(DstTy));
1485  else {
1486  auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1487  auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1488 
1489  if (DstTy->isIntegerType())
1490  Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1491  DstFPSema.getWidth(),
1492  DstFPSema.isSigned());
1493  else if (SrcTy->isIntegerType())
1494  Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1495  DstFPSema);
1496  else
1497  Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1498  }
1499  return Result;
1500 }
1501 
1502 /// Emit a conversion from the specified complex type to the specified
1503 /// destination type, where the destination type is an LLVM scalar type.
1504 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1506  SourceLocation Loc) {
1507  // Get the source element type.
1508  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1509 
1510  // Handle conversions to bool first, they are special: comparisons against 0.
1511  if (DstTy->isBooleanType()) {
1512  // Complex != 0 -> (Real != 0) | (Imag != 0)
1513  Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1514  Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1515  return Builder.CreateOr(Src.first, Src.second, "tobool");
1516  }
1517 
1518  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1519  // the imaginary part of the complex value is discarded and the value of the
1520  // real part is converted according to the conversion rules for the
1521  // corresponding real type.
1522  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1523 }
1524 
1525 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1526  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1527 }
1528 
1529 /// Emit a sanitization check for the given "binary" operation (which
1530 /// might actually be a unary increment which has been lowered to a binary
1531 /// operation). The check passes if all values in \p Checks (which are \c i1),
1532 /// are \c true.
1533 void ScalarExprEmitter::EmitBinOpCheck(
1534  ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1535  assert(CGF.IsSanitizerScope);
1536  SanitizerHandler Check;
1538  SmallVector<llvm::Value *, 2> DynamicData;
1539 
1540  BinaryOperatorKind Opcode = Info.Opcode;
1543 
1544  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1545  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1546  if (UO && UO->getOpcode() == UO_Minus) {
1547  Check = SanitizerHandler::NegateOverflow;
1548  StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1549  DynamicData.push_back(Info.RHS);
1550  } else {
1552  // Shift LHS negative or too large, or RHS out of bounds.
1553  Check = SanitizerHandler::ShiftOutOfBounds;
1554  const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1555  StaticData.push_back(
1556  CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1557  StaticData.push_back(
1558  CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1559  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1560  // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1561  Check = SanitizerHandler::DivremOverflow;
1562  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1563  } else {
1564  // Arithmetic overflow (+, -, *).
1565  switch (Opcode) {
1566  case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1567  case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1568  case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1569  default: llvm_unreachable("unexpected opcode for bin op check");
1570  }
1571  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1572  }
1573  DynamicData.push_back(Info.LHS);
1574  DynamicData.push_back(Info.RHS);
1575  }
1576 
1577  CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1578 }
1579 
1580 //===----------------------------------------------------------------------===//
1581 // Visitor Methods
1582 //===----------------------------------------------------------------------===//
1583 
1584 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1585  CGF.ErrorUnsupported(E, "scalar expression");
1586  if (E->getType()->isVoidType())
1587  return nullptr;
1588  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1589 }
1590 
1591 Value *
1592 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1593  ASTContext &Context = CGF.getContext();
1594  llvm::Optional<LangAS> GlobalAS =
1596  llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1597  E->ComputeName(Context), "__usn_str",
1598  static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1599 
1600  unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1601 
1602  if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1603  return GlobalConstStr;
1604 
1605  llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
1606  llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
1607  return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1608 }
1609 
1610 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1611  // Vector Mask Case
1612  if (E->getNumSubExprs() == 2) {
1613  Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1614  Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1615  Value *Mask;
1616 
1617  auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1618  unsigned LHSElts = LTy->getNumElements();
1619 
1620  Mask = RHS;
1621 
1622  auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1623 
1624  // Mask off the high bits of each shuffle index.
1625  Value *MaskBits =
1626  llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1627  Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1628 
1629  // newv = undef
1630  // mask = mask & maskbits
1631  // for each elt
1632  // n = extract mask i
1633  // x = extract val n
1634  // newv = insert newv, x, i
1635  auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1636  MTy->getNumElements());
1637  Value* NewV = llvm::UndefValue::get(RTy);
1638  for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1639  Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1640  Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1641 
1642  Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1643  NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1644  }
1645  return NewV;
1646  }
1647 
1648  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1649  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1650 
1651  SmallVector<int, 32> Indices;
1652  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1653  llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1654  // Check for -1 and output it as undef in the IR.
1655  if (Idx.isSigned() && Idx.isAllOnes())
1656  Indices.push_back(-1);
1657  else
1658  Indices.push_back(Idx.getZExtValue());
1659  }
1660 
1661  return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1662 }
1663 
1664 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1665  QualType SrcType = E->getSrcExpr()->getType(),
1666  DstType = E->getType();
1667 
1668  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1669 
1670  SrcType = CGF.getContext().getCanonicalType(SrcType);
1671  DstType = CGF.getContext().getCanonicalType(DstType);
1672  if (SrcType == DstType) return Src;
1673 
1674  assert(SrcType->isVectorType() &&
1675  "ConvertVector source type must be a vector");
1676  assert(DstType->isVectorType() &&
1677  "ConvertVector destination type must be a vector");
1678 
1679  llvm::Type *SrcTy = Src->getType();
1680  llvm::Type *DstTy = ConvertType(DstType);
1681 
1682  // Ignore conversions like int -> uint.
1683  if (SrcTy == DstTy)
1684  return Src;
1685 
1686  QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1687  DstEltType = DstType->castAs<VectorType>()->getElementType();
1688 
1689  assert(SrcTy->isVectorTy() &&
1690  "ConvertVector source IR type must be a vector");
1691  assert(DstTy->isVectorTy() &&
1692  "ConvertVector destination IR type must be a vector");
1693 
1694  llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1695  *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1696 
1697  if (DstEltType->isBooleanType()) {
1698  assert((SrcEltTy->isFloatingPointTy() ||
1699  isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1700 
1701  llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1702  if (SrcEltTy->isFloatingPointTy()) {
1703  return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1704  } else {
1705  return Builder.CreateICmpNE(Src, Zero, "tobool");
1706  }
1707  }
1708 
1709  // We have the arithmetic types: real int/float.
1710  Value *Res = nullptr;
1711 
1712  if (isa<llvm::IntegerType>(SrcEltTy)) {
1713  bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1714  if (isa<llvm::IntegerType>(DstEltTy))
1715  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1716  else if (InputSigned)
1717  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1718  else
1719  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1720  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1721  assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1722  if (DstEltType->isSignedIntegerOrEnumerationType())
1723  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1724  else
1725  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1726  } else {
1727  assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1728  "Unknown real conversion");
1729  if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1730  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1731  else
1732  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1733  }
1734 
1735  return Res;
1736 }
1737 
1738 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1739  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1740  CGF.EmitIgnoredExpr(E->getBase());
1741  return CGF.emitScalarConstant(Constant, E);
1742  } else {
1743  Expr::EvalResult Result;
1744  if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1745  llvm::APSInt Value = Result.Val.getInt();
1746  CGF.EmitIgnoredExpr(E->getBase());
1747  return Builder.getInt(Value);
1748  }
1749  }
1750 
1751  return EmitLoadOfLValue(E);
1752 }
1753 
1754 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1755  TestAndClearIgnoreResultAssign();
1756 
1757  // Emit subscript expressions in rvalue context's. For most cases, this just
1758  // loads the lvalue formed by the subscript expr. However, we have to be
1759  // careful, because the base of a vector subscript is occasionally an rvalue,
1760  // so we can't get it as an lvalue.
1761  if (!E->getBase()->getType()->isVectorType())
1762  return EmitLoadOfLValue(E);
1763 
1764  // Handle the vector case. The base must be a vector, the index must be an
1765  // integer value.
1766  Value *Base = Visit(E->getBase());
1767  Value *Idx = Visit(E->getIdx());
1768  QualType IdxTy = E->getIdx()->getType();
1769 
1770  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1771  CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1772 
1773  return Builder.CreateExtractElement(Base, Idx, "vecext");
1774 }
1775 
1776 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1777  TestAndClearIgnoreResultAssign();
1778 
1779  // Handle the vector case. The base must be a vector, the index must be an
1780  // integer value.
1781  Value *RowIdx = Visit(E->getRowIdx());
1782  Value *ColumnIdx = Visit(E->getColumnIdx());
1783 
1784  const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1785  unsigned NumRows = MatrixTy->getNumRows();
1786  llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1787  Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1788  if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1789  MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1790 
1791  Value *Matrix = Visit(E->getBase());
1792 
1793  // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1794  return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1795 }
1796 
1797 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1798  unsigned Off) {
1799  int MV = SVI->getMaskValue(Idx);
1800  if (MV == -1)
1801  return -1;
1802  return Off + MV;
1803 }
1804 
1805 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1806  assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1807  "Index operand too large for shufflevector mask!");
1808  return C->getZExtValue();
1809 }
1810 
1811 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1812  bool Ignore = TestAndClearIgnoreResultAssign();
1813  (void)Ignore;
1814  assert (Ignore == false && "init list ignored");
1815  unsigned NumInitElements = E->getNumInits();
1816 
1817  if (E->hadArrayRangeDesignator())
1818  CGF.ErrorUnsupported(E, "GNU array range designator extension");
1819 
1820  llvm::VectorType *VType =
1821  dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1822 
1823  if (!VType) {
1824  if (NumInitElements == 0) {
1825  // C++11 value-initialization for the scalar.
1826  return EmitNullValue(E->getType());
1827  }
1828  // We have a scalar in braces. Just use the first element.
1829  return Visit(E->getInit(0));
1830  }
1831 
1832  unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1833 
1834  // Loop over initializers collecting the Value for each, and remembering
1835  // whether the source was swizzle (ExtVectorElementExpr). This will allow
1836  // us to fold the shuffle for the swizzle into the shuffle for the vector
1837  // initializer, since LLVM optimizers generally do not want to touch
1838  // shuffles.
1839  unsigned CurIdx = 0;
1840  bool VIsUndefShuffle = false;
1841  llvm::Value *V = llvm::UndefValue::get(VType);
1842  for (unsigned i = 0; i != NumInitElements; ++i) {
1843  Expr *IE = E->getInit(i);
1844  Value *Init = Visit(IE);
1845  SmallVector<int, 16> Args;
1846 
1847  llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1848 
1849  // Handle scalar elements. If the scalar initializer is actually one
1850  // element of a different vector of the same width, use shuffle instead of
1851  // extract+insert.
1852  if (!VVT) {
1853  if (isa<ExtVectorElementExpr>(IE)) {
1854  llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1855 
1856  if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1857  ->getNumElements() == ResElts) {
1858  llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1859  Value *LHS = nullptr, *RHS = nullptr;
1860  if (CurIdx == 0) {
1861  // insert into undef -> shuffle (src, undef)
1862  // shufflemask must use an i32
1863  Args.push_back(getAsInt32(C, CGF.Int32Ty));
1864  Args.resize(ResElts, -1);
1865 
1866  LHS = EI->getVectorOperand();
1867  RHS = V;
1868  VIsUndefShuffle = true;
1869  } else if (VIsUndefShuffle) {
1870  // insert into undefshuffle && size match -> shuffle (v, src)
1871  llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1872  for (unsigned j = 0; j != CurIdx; ++j)
1873  Args.push_back(getMaskElt(SVV, j, 0));
1874  Args.push_back(ResElts + C->getZExtValue());
1875  Args.resize(ResElts, -1);
1876 
1877  LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1878  RHS = EI->getVectorOperand();
1879  VIsUndefShuffle = false;
1880  }
1881  if (!Args.empty()) {
1882  V = Builder.CreateShuffleVector(LHS, RHS, Args);
1883  ++CurIdx;
1884  continue;
1885  }
1886  }
1887  }
1888  V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1889  "vecinit");
1890  VIsUndefShuffle = false;
1891  ++CurIdx;
1892  continue;
1893  }
1894 
1895  unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1896 
1897  // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1898  // input is the same width as the vector being constructed, generate an
1899  // optimized shuffle of the swizzle input into the result.
1900  unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1901  if (isa<ExtVectorElementExpr>(IE)) {
1902  llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1903  Value *SVOp = SVI->getOperand(0);
1904  auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1905 
1906  if (OpTy->getNumElements() == ResElts) {
1907  for (unsigned j = 0; j != CurIdx; ++j) {
1908  // If the current vector initializer is a shuffle with undef, merge
1909  // this shuffle directly into it.
1910  if (VIsUndefShuffle) {
1911  Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1912  } else {
1913  Args.push_back(j);
1914  }
1915  }
1916  for (unsigned j = 0, je = InitElts; j != je; ++j)
1917  Args.push_back(getMaskElt(SVI, j, Offset));
1918  Args.resize(ResElts, -1);
1919 
1920  if (VIsUndefShuffle)
1921  V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1922 
1923  Init = SVOp;
1924  }
1925  }
1926 
1927  // Extend init to result vector length, and then shuffle its contribution
1928  // to the vector initializer into V.
1929  if (Args.empty()) {
1930  for (unsigned j = 0; j != InitElts; ++j)
1931  Args.push_back(j);
1932  Args.resize(ResElts, -1);
1933  Init = Builder.CreateShuffleVector(Init, Args, "vext");
1934 
1935  Args.clear();
1936  for (unsigned j = 0; j != CurIdx; ++j)
1937  Args.push_back(j);
1938  for (unsigned j = 0; j != InitElts; ++j)
1939  Args.push_back(j + Offset);
1940  Args.resize(ResElts, -1);
1941  }
1942 
1943  // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1944  // merging subsequent shuffles into this one.
1945  if (CurIdx == 0)
1946  std::swap(V, Init);
1947  V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1948  VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1949  CurIdx += InitElts;
1950  }
1951 
1952  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1953  // Emit remaining default initializers.
1954  llvm::Type *EltTy = VType->getElementType();
1955 
1956  // Emit remaining default initializers
1957  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1958  Value *Idx = Builder.getInt32(CurIdx);
1959  llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1960  V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1961  }
1962  return V;
1963 }
1964 
1966  const Expr *E = CE->getSubExpr();
1967 
1968  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1969  return false;
1970 
1971  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1972  // We always assume that 'this' is never null.
1973  return false;
1974  }
1975 
1976  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1977  // And that glvalue casts are never null.
1978  if (ICE->isGLValue())
1979  return false;
1980  }
1981 
1982  return true;
1983 }
1984 
1985 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1986 // have to handle a more broad range of conversions than explicit casts, as they
1987 // handle things like function to ptr-to-function decay etc.
1988 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1989  Expr *E = CE->getSubExpr();
1990  QualType DestTy = CE->getType();
1991  CastKind Kind = CE->getCastKind();
1992 
1993  // These cases are generally not written to ignore the result of
1994  // evaluating their sub-expressions, so we clear this now.
1995  bool Ignored = TestAndClearIgnoreResultAssign();
1996 
1997  // Since almost all cast kinds apply to scalars, this switch doesn't have
1998  // a default case, so the compiler will warn on a missing case. The cases
1999  // are in the same order as in the CastKind enum.
2000  switch (Kind) {
2001  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2002  case CK_BuiltinFnToFnPtr:
2003  llvm_unreachable("builtin functions are handled elsewhere");
2004 
2005  case CK_LValueBitCast:
2006  case CK_ObjCObjectLValueCast: {
2007  Address Addr = EmitLValue(E).getAddress(CGF);
2008  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2009  LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2010  return EmitLoadOfLValue(LV, CE->getExprLoc());
2011  }
2012 
2013  case CK_LValueToRValueBitCast: {
2014  LValue SourceLVal = CGF.EmitLValue(E);
2015  Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2016  CGF.ConvertTypeForMem(DestTy));
2017  LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2019  return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2020  }
2021 
2022  case CK_CPointerToObjCPointerCast:
2023  case CK_BlockPointerToObjCPointerCast:
2024  case CK_AnyPointerToBlockPointerCast:
2025  case CK_BitCast: {
2026  Value *Src = Visit(const_cast<Expr*>(E));
2027  llvm::Type *SrcTy = Src->getType();
2028  llvm::Type *DstTy = ConvertType(DestTy);
2029  if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2030  SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2031  llvm_unreachable("wrong cast for pointers in different address spaces"
2032  "(must be an address space cast)!");
2033  }
2034 
2035  if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2036  if (auto PT = DestTy->getAs<PointerType>())
2037  CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2038  /*MayBeNull=*/true,
2040  CE->getBeginLoc());
2041  }
2042 
2043  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2044  const QualType SrcType = E->getType();
2045 
2046  if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2047  // Casting to pointer that could carry dynamic information (provided by
2048  // invariant.group) requires launder.
2049  Src = Builder.CreateLaunderInvariantGroup(Src);
2050  } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2051  // Casting to pointer that does not carry dynamic information (provided
2052  // by invariant.group) requires stripping it. Note that we don't do it
2053  // if the source could not be dynamic type and destination could be
2054  // dynamic because dynamic information is already laundered. It is
2055  // because launder(strip(src)) == launder(src), so there is no need to
2056  // add extra strip before launder.
2057  Src = Builder.CreateStripInvariantGroup(Src);
2058  }
2059  }
2060 
2061  // Update heapallocsite metadata when there is an explicit pointer cast.
2062  if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2063  if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2064  QualType PointeeType = DestTy->getPointeeType();
2065  if (!PointeeType.isNull())
2066  CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2067  CE->getExprLoc());
2068  }
2069  }
2070 
2071  // If Src is a fixed vector and Dst is a scalable vector, and both have the
2072  // same element type, use the llvm.experimental.vector.insert intrinsic to
2073  // perform the bitcast.
2074  if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2075  if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2076  // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2077  // vector, use a vector insert and bitcast the result.
2078  bool NeedsBitCast = false;
2079  auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2080  llvm::Type *OrigType = DstTy;
2081  if (ScalableDst == PredType &&
2082  FixedSrc->getElementType() == Builder.getInt8Ty()) {
2083  DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2084  ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
2085  NeedsBitCast = true;
2086  }
2087  if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2088  llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2089  llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2090  llvm::Value *Result = Builder.CreateInsertVector(
2091  DstTy, UndefVec, Src, Zero, "castScalableSve");
2092  if (NeedsBitCast)
2093  Result = Builder.CreateBitCast(Result, OrigType);
2094  return Result;
2095  }
2096  }
2097  }
2098 
2099  // If Src is a scalable vector and Dst is a fixed vector, and both have the
2100  // same element type, use the llvm.experimental.vector.extract intrinsic to
2101  // perform the bitcast.
2102  if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2103  if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2104  // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2105  // vector, bitcast the source and use a vector extract.
2106  auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2107  if (ScalableSrc == PredType &&
2108  FixedDst->getElementType() == Builder.getInt8Ty()) {
2109  SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2110  ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
2111  Src = Builder.CreateBitCast(Src, SrcTy);
2112  }
2113  if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2114  llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2115  return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2116  }
2117  }
2118  }
2119 
2120  // Perform VLAT <-> VLST bitcast through memory.
2121  // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2122  // require the element types of the vectors to be the same, we
2123  // need to keep this around for bitcasts between VLAT <-> VLST where
2124  // the element types of the vectors are not the same, until we figure
2125  // out a better way of doing these casts.
2126  if ((isa<llvm::FixedVectorType>(SrcTy) &&
2127  isa<llvm::ScalableVectorType>(DstTy)) ||
2128  (isa<llvm::ScalableVectorType>(SrcTy) &&
2129  isa<llvm::FixedVectorType>(DstTy))) {
2130  Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2131  LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2132  CGF.EmitStoreOfScalar(Src, LV);
2133  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2134  "castFixedSve");
2135  LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2137  return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2138  }
2139 
2140  return Builder.CreateBitCast(Src, DstTy);
2141  }
2142  case CK_AddressSpaceConversion: {
2143  Expr::EvalResult Result;
2144  if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2145  Result.Val.isNullPointer()) {
2146  // If E has side effect, it is emitted even if its final result is a
2147  // null pointer. In that case, a DCE pass should be able to
2148  // eliminate the useless instructions emitted during translating E.
2149  if (Result.HasSideEffects)
2150  Visit(E);
2151  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2152  ConvertType(DestTy)), DestTy);
2153  }
2154  // Since target may map different address spaces in AST to the same address
2155  // space, an address space conversion may end up as a bitcast.
2157  CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2158  DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2159  }
2160  case CK_AtomicToNonAtomic:
2161  case CK_NonAtomicToAtomic:
2162  case CK_UserDefinedConversion:
2163  return Visit(const_cast<Expr*>(E));
2164 
2165  case CK_NoOp: {
2166  llvm::Value *V = Visit(const_cast<Expr *>(E));
2167  if (V) {
2168  // CK_NoOp can model a pointer qualification conversion, which can remove
2169  // an array bound and change the IR type.
2170  // FIXME: Once pointee types are removed from IR, remove this.
2171  llvm::Type *T = ConvertType(DestTy);
2172  if (T != V->getType())
2173  V = Builder.CreateBitCast(V, T);
2174  }
2175  return V;
2176  }
2177 
2178  case CK_BaseToDerived: {
2179  const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2180  assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2181 
2183  Address Derived =
2184  CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2185  CE->path_begin(), CE->path_end(),
2187 
2188  // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2189  // performed and the object is not of the derived type.
2190  if (CGF.sanitizePerformTypeCheck())
2192  Derived.getPointer(), DestTy->getPointeeType());
2193 
2194  if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2196  DestTy->getPointeeType(), Derived.getPointer(),
2197  /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2198  CE->getBeginLoc());
2199 
2200  return Derived.getPointer();
2201  }
2202  case CK_UncheckedDerivedToBase:
2203  case CK_DerivedToBase: {
2204  // The EmitPointerWithAlignment path does this fine; just discard
2205  // the alignment.
2206  return CGF.EmitPointerWithAlignment(CE).getPointer();
2207  }
2208 
2209  case CK_Dynamic: {
2211  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2212  return CGF.EmitDynamicCast(V, DCE);
2213  }
2214 
2215  case CK_ArrayToPointerDecay:
2216  return CGF.EmitArrayToPointerDecay(E).getPointer();
2217  case CK_FunctionToPointerDecay:
2218  return EmitLValue(E).getPointer(CGF);
2219 
2220  case CK_NullToPointer:
2221  if (MustVisitNullValue(E))
2222  CGF.EmitIgnoredExpr(E);
2223 
2224  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2225  DestTy);
2226 
2227  case CK_NullToMemberPointer: {
2228  if (MustVisitNullValue(E))
2229  CGF.EmitIgnoredExpr(E);
2230 
2231  const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2232  return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2233  }
2234 
2235  case CK_ReinterpretMemberPointer:
2236  case CK_BaseToDerivedMemberPointer:
2237  case CK_DerivedToBaseMemberPointer: {
2238  Value *Src = Visit(E);
2239 
2240  // Note that the AST doesn't distinguish between checked and
2241  // unchecked member pointer conversions, so we always have to
2242  // implement checked conversions here. This is inefficient when
2243  // actual control flow may be required in order to perform the
2244  // check, which it is for data member pointers (but not member
2245  // function pointers on Itanium and ARM).
2246  return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2247  }
2248 
2249  case CK_ARCProduceObject:
2250  return CGF.EmitARCRetainScalarExpr(E);
2251  case CK_ARCConsumeObject:
2252  return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2253  case CK_ARCReclaimReturnedObject:
2254  return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2255  case CK_ARCExtendBlockObject:
2256  return CGF.EmitARCExtendBlockObject(E);
2257 
2258  case CK_CopyAndAutoreleaseBlockObject:
2259  return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2260 
2261  case CK_FloatingRealToComplex:
2262  case CK_FloatingComplexCast:
2263  case CK_IntegralRealToComplex:
2264  case CK_IntegralComplexCast:
2265  case CK_IntegralComplexToFloatingComplex:
2266  case CK_FloatingComplexToIntegralComplex:
2267  case CK_ConstructorConversion:
2268  case CK_ToUnion:
2269  llvm_unreachable("scalar cast to non-scalar value");
2270 
2271  case CK_LValueToRValue:
2272  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2273  assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2274  return Visit(const_cast<Expr*>(E));
2275 
2276  case CK_IntegralToPointer: {
2277  Value *Src = Visit(const_cast<Expr*>(E));
2278 
2279  // First, convert to the correct width so that we control the kind of
2280  // extension.
2281  auto DestLLVMTy = ConvertType(DestTy);
2282  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2283  bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2284  llvm::Value* IntResult =
2285  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2286 
2287  auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2288 
2289  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2290  // Going from integer to pointer that could be dynamic requires reloading
2291  // dynamic information from invariant.group.
2292  if (DestTy.mayBeDynamicClass())
2293  IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2294  }
2295  return IntToPtr;
2296  }
2297  case CK_PointerToIntegral: {
2298  assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2299  auto *PtrExpr = Visit(E);
2300 
2301  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2302  const QualType SrcType = E->getType();
2303 
2304  // Casting to integer requires stripping dynamic information as it does
2305  // not carries it.
2306  if (SrcType.mayBeDynamicClass())
2307  PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2308  }
2309 
2310  return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2311  }
2312  case CK_ToVoid: {
2313  CGF.EmitIgnoredExpr(E);
2314  return nullptr;
2315  }
2316  case CK_MatrixCast: {
2317  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2318  CE->getExprLoc());
2319  }
2320  case CK_VectorSplat: {
2321  llvm::Type *DstTy = ConvertType(DestTy);
2322  Value *Elt = Visit(const_cast<Expr*>(E));
2323  // Splat the element across to all elements
2324  unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2325  return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2326  }
2327 
2328  case CK_FixedPointCast:
2329  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2330  CE->getExprLoc());
2331 
2332  case CK_FixedPointToBoolean:
2333  assert(E->getType()->isFixedPointType() &&
2334  "Expected src type to be fixed point type");
2335  assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2336  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2337  CE->getExprLoc());
2338 
2339  case CK_FixedPointToIntegral:
2340  assert(E->getType()->isFixedPointType() &&
2341  "Expected src type to be fixed point type");
2342  assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2343  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2344  CE->getExprLoc());
2345 
2346  case CK_IntegralToFixedPoint:
2347  assert(E->getType()->isIntegerType() &&
2348  "Expected src type to be an integer");
2349  assert(DestTy->isFixedPointType() &&
2350  "Expected dest type to be fixed point type");
2351  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2352  CE->getExprLoc());
2353 
2354  case CK_IntegralCast: {
2355  ScalarConversionOpts Opts;
2356  if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2357  if (!ICE->isPartOfExplicitCast())
2358  Opts = ScalarConversionOpts(CGF.SanOpts);
2359  }
2360  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2361  CE->getExprLoc(), Opts);
2362  }
2363  case CK_IntegralToFloating:
2364  case CK_FloatingToIntegral:
2365  case CK_FloatingCast:
2366  case CK_FixedPointToFloating:
2367  case CK_FloatingToFixedPoint: {
2368  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2369  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2370  CE->getExprLoc());
2371  }
2372  case CK_BooleanToSignedIntegral: {
2373  ScalarConversionOpts Opts;
2374  Opts.TreatBooleanAsSigned = true;
2375  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2376  CE->getExprLoc(), Opts);
2377  }
2378  case CK_IntegralToBoolean:
2379  return EmitIntToBoolConversion(Visit(E));
2380  case CK_PointerToBoolean:
2381  return EmitPointerToBoolConversion(Visit(E), E->getType());
2382  case CK_FloatingToBoolean: {
2383  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2384  return EmitFloatToBoolConversion(Visit(E));
2385  }
2386  case CK_MemberPointerToBoolean: {
2387  llvm::Value *MemPtr = Visit(E);
2388  const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2389  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2390  }
2391 
2392  case CK_FloatingComplexToReal:
2393  case CK_IntegralComplexToReal:
2394  return CGF.EmitComplexExpr(E, false, true).first;
2395 
2396  case CK_FloatingComplexToBoolean:
2397  case CK_IntegralComplexToBoolean: {
2399 
2400  // TODO: kill this function off, inline appropriate case here
2401  return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2402  CE->getExprLoc());
2403  }
2404 
2405  case CK_ZeroToOCLOpaqueType: {
2406  assert((DestTy->isEventT() || DestTy->isQueueT() ||
2407  DestTy->isOCLIntelSubgroupAVCType()) &&
2408  "CK_ZeroToOCLEvent cast on non-event type");
2409  return llvm::Constant::getNullValue(ConvertType(DestTy));
2410  }
2411 
2412  case CK_IntToOCLSampler:
2413  return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2414 
2415  } // end of switch
2416 
2417  llvm_unreachable("unknown scalar cast");
2418 }
2419 
2420 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2422  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2423  !E->getType()->isVoidType());
2424  if (!RetAlloca.isValid())
2425  return nullptr;
2426  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2427  E->getExprLoc());
2428 }
2429 
2430 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2432  Value *V = Visit(E->getSubExpr());
2433  // Defend against dominance problems caused by jumps out of expression
2434  // evaluation through the shared cleanup block.
2435  Scope.ForceCleanup({&V});
2436  return V;
2437 }
2438 
2439 //===----------------------------------------------------------------------===//
2440 // Unary Operators
2441 //===----------------------------------------------------------------------===//
2442 
2443 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2444  llvm::Value *InVal, bool IsInc,
2445  FPOptions FPFeatures) {
2446  BinOpInfo BinOp;
2447  BinOp.LHS = InVal;
2448  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2449  BinOp.Ty = E->getType();
2450  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2451  BinOp.FPFeatures = FPFeatures;
2452  BinOp.E = E;
2453  return BinOp;
2454 }
2455 
2456 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2457  const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2458  llvm::Value *Amount =
2459  llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2460  StringRef Name = IsInc ? "inc" : "dec";
2461  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2463  return Builder.CreateAdd(InVal, Amount, Name);
2465  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2466  return Builder.CreateNSWAdd(InVal, Amount, Name);
2467  LLVM_FALLTHROUGH;
2469  if (!E->canOverflow())
2470  return Builder.CreateNSWAdd(InVal, Amount, Name);
2471  return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2472  E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2473  }
2474  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2475 }
2476 
2477 namespace {
2478 /// Handles check and update for lastprivate conditional variables.
2479 class OMPLastprivateConditionalUpdateRAII {
2480 private:
2481  CodeGenFunction &CGF;
2482  const UnaryOperator *E;
2483 
2484 public:
2485  OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2486  const UnaryOperator *E)
2487  : CGF(CGF), E(E) {}
2488  ~OMPLastprivateConditionalUpdateRAII() {
2489  if (CGF.getLangOpts().OpenMP)
2491  CGF, E->getSubExpr());
2492  }
2493 };
2494 } // namespace
2495 
2496 llvm::Value *
2497 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2498  bool isInc, bool isPre) {
2499  OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2500  QualType type = E->getSubExpr()->getType();
2501  llvm::PHINode *atomicPHI = nullptr;
2502  llvm::Value *value;
2503  llvm::Value *input;
2504 
2505  int amount = (isInc ? 1 : -1);
2506  bool isSubtraction = !isInc;
2507 
2508  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2509  type = atomicTy->getValueType();
2510  if (isInc && type->isBooleanType()) {
2511  llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2512  if (isPre) {
2513  Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2514  ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2515  return Builder.getTrue();
2516  }
2517  // For atomic bool increment, we just store true and return it for
2518  // preincrement, do an atomic swap with true for postincrement
2519  return Builder.CreateAtomicRMW(
2520  llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2521  llvm::AtomicOrdering::SequentiallyConsistent);
2522  }
2523  // Special case for atomic increment / decrement on integers, emit
2524  // atomicrmw instructions. We skip this if we want to be doing overflow
2525  // checking, and fall into the slow path with the atomic cmpxchg loop.
2526  if (!type->isBooleanType() && type->isIntegerType() &&
2527  !(type->isUnsignedIntegerType() &&
2528  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2529  CGF.getLangOpts().getSignedOverflowBehavior() !=
2531  llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2533  llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2535  llvm::Value *amt = CGF.EmitToMemory(
2536  llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2537  llvm::Value *old =
2538  Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2539  llvm::AtomicOrdering::SequentiallyConsistent);
2540  return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2541  }
2542  value = EmitLoadOfLValue(LV, E->getExprLoc());
2543  input = value;
2544  // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2545  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2546  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2547  value = CGF.EmitToMemory(value, type);
2548  Builder.CreateBr(opBB);
2549  Builder.SetInsertPoint(opBB);
2550  atomicPHI = Builder.CreatePHI(value->getType(), 2);
2551  atomicPHI->addIncoming(value, startBB);
2552  value = atomicPHI;
2553  } else {
2554  value = EmitLoadOfLValue(LV, E->getExprLoc());
2555  input = value;
2556  }
2557 
2558  // Special case of integer increment that we have to check first: bool++.
2559  // Due to promotion rules, we get:
2560  // bool++ -> bool = bool + 1
2561  // -> bool = (int)bool + 1
2562  // -> bool = ((int)bool + 1 != 0)
2563  // An interesting aspect of this is that increment is always true.
2564  // Decrement does not have this property.
2565  if (isInc && type->isBooleanType()) {
2566  value = Builder.getTrue();
2567 
2568  // Most common case by far: integer increment.
2569  } else if (type->isIntegerType()) {
2570  QualType promotedType;
2571  bool canPerformLossyDemotionCheck = false;
2572  if (type->isPromotableIntegerType()) {
2573  promotedType = CGF.getContext().getPromotedIntegerType(type);
2574  assert(promotedType != type && "Shouldn't promote to the same type.");
2575  canPerformLossyDemotionCheck = true;
2576  canPerformLossyDemotionCheck &=
2577  CGF.getContext().getCanonicalType(type) !=
2578  CGF.getContext().getCanonicalType(promotedType);
2579  canPerformLossyDemotionCheck &=
2581  type, promotedType);
2582  assert((!canPerformLossyDemotionCheck ||
2583  type->isSignedIntegerOrEnumerationType() ||
2584  promotedType->isSignedIntegerOrEnumerationType() ||
2585  ConvertType(type)->getScalarSizeInBits() ==
2586  ConvertType(promotedType)->getScalarSizeInBits()) &&
2587  "The following check expects that if we do promotion to different "
2588  "underlying canonical type, at least one of the types (either "
2589  "base or promoted) will be signed, or the bitwidths will match.");
2590  }
2591  if (CGF.SanOpts.hasOneOf(
2592  SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2593  canPerformLossyDemotionCheck) {
2594  // While `x += 1` (for `x` with width less than int) is modeled as
2595  // promotion+arithmetics+demotion, and we can catch lossy demotion with
2596  // ease; inc/dec with width less than int can't overflow because of
2597  // promotion rules, so we omit promotion+demotion, which means that we can
2598  // not catch lossy "demotion". Because we still want to catch these cases
2599  // when the sanitizer is enabled, we perform the promotion, then perform
2600  // the increment/decrement in the wider type, and finally
2601  // perform the demotion. This will catch lossy demotions.
2602 
2603  value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2604  Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2605  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2606  // Do pass non-default ScalarConversionOpts so that sanitizer check is
2607  // emitted.
2608  value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2609  ScalarConversionOpts(CGF.SanOpts));
2610 
2611  // Note that signed integer inc/dec with width less than int can't
2612  // overflow because of promotion rules; we're just eliding a few steps
2613  // here.
2614  } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2615  value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2616  } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2617  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2618  value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2619  E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2620  } else {
2621  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2622  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2623  }
2624 
2625  // Next most common: pointer increment.
2626  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2627  QualType type = ptr->getPointeeType();
2628 
2629  // VLA types don't have constant size.
2630  if (const VariableArrayType *vla
2632  llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2633  if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2635  value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2636  value, numElts, "vla.inc");
2637  else
2638  value = CGF.EmitCheckedInBoundsGEP(
2639  value, numElts, /*SignedIndices=*/false, isSubtraction,
2640  E->getExprLoc(), "vla.inc");
2641 
2642  // Arithmetic on function pointers (!) is just +-1.
2643  } else if (type->isFunctionType()) {
2644  llvm::Value *amt = Builder.getInt32(amount);
2645 
2646  value = CGF.EmitCastToVoidPtr(value);
2648  value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2649  else
2650  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2651  isSubtraction, E->getExprLoc(),
2652  "incdec.funcptr");
2653  value = Builder.CreateBitCast(value, input->getType());
2654 
2655  // For everything else, we can just do a simple increment.
2656  } else {
2657  llvm::Value *amt = Builder.getInt32(amount);
2659  value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2660  value, amt, "incdec.ptr");
2661  else
2662  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2663  isSubtraction, E->getExprLoc(),
2664  "incdec.ptr");
2665  }
2666 
2667  // Vector increment/decrement.
2668  } else if (type->isVectorType()) {
2669  if (type->hasIntegerRepresentation()) {
2670  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2671 
2672  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2673  } else {
2674  value = Builder.CreateFAdd(
2675  value,
2676  llvm::ConstantFP::get(value->getType(), amount),
2677  isInc ? "inc" : "dec");
2678  }
2679 
2680  // Floating point.
2681  } else if (type->isRealFloatingType()) {
2682  // Add the inc/dec to the real part.
2683  llvm::Value *amt;
2684  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2685 
2686  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2687  // Another special case: half FP increment should be done via float
2689  value = Builder.CreateCall(
2690  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2691  CGF.CGM.FloatTy),
2692  input, "incdec.conv");
2693  } else {
2694  value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2695  }
2696  }
2697 
2698  if (value->getType()->isFloatTy())
2699  amt = llvm::ConstantFP::get(VMContext,
2700  llvm::APFloat(static_cast<float>(amount)));
2701  else if (value->getType()->isDoubleTy())
2702  amt = llvm::ConstantFP::get(VMContext,
2703  llvm::APFloat(static_cast<double>(amount)));
2704  else {
2705  // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2706  // from float.
2707  llvm::APFloat F(static_cast<float>(amount));
2708  bool ignored;
2709  const llvm::fltSemantics *FS;
2710  // Don't use getFloatTypeSemantics because Half isn't
2711  // necessarily represented using the "half" LLVM type.
2712  if (value->getType()->isFP128Ty())
2713  FS = &CGF.getTarget().getFloat128Format();
2714  else if (value->getType()->isHalfTy())
2715  FS = &CGF.getTarget().getHalfFormat();
2716  else if (value->getType()->isPPC_FP128Ty())
2717  FS = &CGF.getTarget().getIbm128Format();
2718  else
2719  FS = &CGF.getTarget().getLongDoubleFormat();
2720  F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2721  amt = llvm::ConstantFP::get(VMContext, F);
2722  }
2723  value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2724 
2725  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2727  value = Builder.CreateCall(
2728  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2729  CGF.CGM.FloatTy),
2730  value, "incdec.conv");
2731  } else {
2732  value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2733  }
2734  }
2735 
2736  // Fixed-point types.
2737  } else if (type->isFixedPointType()) {
2738  // Fixed-point types are tricky. In some cases, it isn't possible to
2739  // represent a 1 or a -1 in the type at all. Piggyback off of
2740  // EmitFixedPointBinOp to avoid having to reimplement saturation.
2741  BinOpInfo Info;
2742  Info.E = E;
2743  Info.Ty = E->getType();
2744  Info.Opcode = isInc ? BO_Add : BO_Sub;
2745  Info.LHS = value;
2746  Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2747  // If the type is signed, it's better to represent this as +(-1) or -(-1),
2748  // since -1 is guaranteed to be representable.
2749  if (type->isSignedFixedPointType()) {
2750  Info.Opcode = isInc ? BO_Sub : BO_Add;
2751  Info.RHS = Builder.CreateNeg(Info.RHS);
2752  }
2753  // Now, convert from our invented integer literal to the type of the unary
2754  // op. This will upscale and saturate if necessary. This value can become
2755  // undef in some cases.
2756  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2757  auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2758  Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2759  value = EmitFixedPointBinOp(Info);
2760 
2761  // Objective-C pointer types.
2762  } else {
2763  const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2764  value = CGF.EmitCastToVoidPtr(value);
2765 
2767  if (!isInc) size = -size;
2768  llvm::Value *sizeValue =
2769  llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2770 
2772  value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2773  else
2774  value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2775  /*SignedIndices=*/false, isSubtraction,
2776  E->getExprLoc(), "incdec.objptr");
2777  value = Builder.CreateBitCast(value, input->getType());
2778  }
2779 
2780  if (atomicPHI) {
2781  llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2782  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2783  auto Pair = CGF.EmitAtomicCompareExchange(
2784  LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2785  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2786  llvm::Value *success = Pair.second;
2787  atomicPHI->addIncoming(old, curBlock);
2788  Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2789  Builder.SetInsertPoint(contBB);
2790  return isPre ? value : input;
2791  }
2792 
2793  // Store the updated result through the lvalue.
2794  if (LV.isBitField())
2795  CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2796  else
2797  CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2798 
2799  // If this is a postinc, return the value read from memory, otherwise use the
2800  // updated value.
2801  return isPre ? value : input;
2802 }
2803 
2804 
2805 
2806 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2807  TestAndClearIgnoreResultAssign();
2808  Value *Op = Visit(E->getSubExpr());
2809 
2810  // Generate a unary FNeg for FP ops.
2811  if (Op->getType()->isFPOrFPVectorTy())
2812  return Builder.CreateFNeg(Op, "fneg");
2813 
2814  // Emit unary minus with EmitSub so we handle overflow cases etc.
2815  BinOpInfo BinOp;
2816  BinOp.RHS = Op;
2817  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2818  BinOp.Ty = E->getType();
2819  BinOp.Opcode = BO_Sub;
2820  BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2821  BinOp.E = E;
2822  return EmitSub(BinOp);
2823 }
2824 
2825 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2826  TestAndClearIgnoreResultAssign();
2827  Value *Op = Visit(E->getSubExpr());
2828  return Builder.CreateNot(Op, "neg");
2829 }
2830 
2831 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2832  // Perform vector logical not on comparison with zero vector.
2833  if (E->getType()->isVectorType() &&
2834  E->getType()->castAs<VectorType>()->getVectorKind() ==
2836  Value *Oper = Visit(E->getSubExpr());
2837  Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2838  Value *Result;
2839  if (Oper->getType()->isFPOrFPVectorTy()) {
2841  CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2842  Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2843  } else
2844  Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2845  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2846  }
2847 
2848  // Compare operand to zero.
2849  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2850 
2851  // Invert value.
2852  // TODO: Could dynamically modify easy computations here. For example, if
2853  // the operand is an icmp ne, turn into icmp eq.
2854  BoolVal = Builder.CreateNot(BoolVal, "lnot");
2855 
2856  // ZExt result to the expr type.
2857  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2858 }
2859 
2860 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2861  // Try folding the offsetof to a constant.
2862  Expr::EvalResult EVResult;
2863  if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2864  llvm::APSInt Value = EVResult.Val.getInt();
2865  return Builder.getInt(Value);
2866  }
2867 
2868  // Loop over the components of the offsetof to compute the value.
2869  unsigned n = E->getNumComponents();
2870  llvm::Type* ResultType = ConvertType(E->getType());
2871  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2872  QualType CurrentType = E->getTypeSourceInfo()->getType();
2873  for (unsigned i = 0; i != n; ++i) {
2874  OffsetOfNode ON = E->getComponent(i);
2875  llvm::Value *Offset = nullptr;
2876  switch (ON.getKind()) {
2877  case OffsetOfNode::Array: {
2878  // Compute the index
2879  Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2880  llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2881  bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2882  Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2883 
2884  // Save the element type
2885  CurrentType =
2886  CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2887 
2888  // Compute the element size
2889  llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2890  CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2891 
2892  // Multiply out to compute the result
2893  Offset = Builder.CreateMul(Idx, ElemSize);
2894  break;
2895  }
2896 
2897  case OffsetOfNode::Field: {
2898  FieldDecl *MemberDecl = ON.getField();
2899  RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2900  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2901 
2902  // Compute the index of the field in its parent.
2903  unsigned i = 0;
2904  // FIXME: It would be nice if we didn't have to loop here!
2905  for (RecordDecl::field_iterator Field = RD->field_begin(),
2906  FieldEnd = RD->field_end();
2907  Field != FieldEnd; ++Field, ++i) {
2908  if (*Field == MemberDecl)
2909  break;
2910  }
2911  assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2912 
2913  // Compute the offset to the field
2914  int64_t OffsetInt = RL.getFieldOffset(i) /
2915  CGF.getContext().getCharWidth();
2916  Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2917 
2918  // Save the element type.
2919  CurrentType = MemberDecl->getType();
2920  break;
2921  }
2922 
2924  llvm_unreachable("dependent __builtin_offsetof");
2925 
2926  case OffsetOfNode::Base: {
2927  if (ON.getBase()->isVirtual()) {
2928  CGF.ErrorUnsupported(E, "virtual base in offsetof");
2929  continue;
2930  }
2931 
2932  RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2933  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2934 
2935  // Save the element type.
2936  CurrentType = ON.getBase()->getType();
2937 
2938  // Compute the offset to the base.
2939  const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2940  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2941  CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2942  Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2943  break;
2944  }
2945  }
2946  Result = Builder.CreateAdd(Result, Offset);
2947  }
2948  return Result;
2949 }
2950 
2951 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2952 /// argument of the sizeof expression as an integer.
2953 Value *
2954 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2955  const UnaryExprOrTypeTraitExpr *E) {
2956  QualType TypeToSize = E->getTypeOfArgument();
2957  if (E->getKind() == UETT_SizeOf) {
2958  if (const VariableArrayType *VAT =
2959  CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2960  if (E->isArgumentType()) {
2961  // sizeof(type) - make sure to emit the VLA size.
2962  CGF.EmitVariablyModifiedType(TypeToSize);
2963  } else {
2964  // C99 6.5.3.4p2: If the argument is an expression of type
2965  // VLA, it is evaluated.
2966  CGF.EmitIgnoredExpr(E->getArgumentExpr());
2967  }
2968 
2969  auto VlaSize = CGF.getVLASize(VAT);
2970  llvm::Value *size = VlaSize.NumElts;
2971 
2972  // Scale the number of non-VLA elements by the non-VLA element size.
2973  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2974  if (!eltSize.isOne())
2975  size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2976 
2977  return size;
2978  }
2979  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2980  auto Alignment =
2981  CGF.getContext()
2984  .getQuantity();
2985  return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2986  }
2987 
2988  // If this isn't sizeof(vla), the result must be constant; use the constant
2989  // folding logic so we don't have to duplicate it here.
2990  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2991 }
2992 
2993 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2994  Expr *Op = E->getSubExpr();
2995  if (Op->getType()->isAnyComplexType()) {
2996  // If it's an l-value, load through the appropriate subobject l-value.
2997  // Note that we have to ask E because Op might be an l-value that
2998  // this won't work for, e.g. an Obj-C property.
2999  if (E->isGLValue())
3000  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3001  E->getExprLoc()).getScalarVal();
3002 
3003  // Otherwise, calculate and project.
3004  return CGF.EmitComplexExpr(Op, false, true).first;
3005  }
3006 
3007  return Visit(Op);
3008 }
3009 
3010 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3011  Expr *Op = E->getSubExpr();
3012  if (Op->getType()->isAnyComplexType()) {
3013  // If it's an l-value, load through the appropriate subobject l-value.
3014  // Note that we have to ask E because Op might be an l-value that
3015  // this won't work for, e.g. an Obj-C property.
3016  if (Op->isGLValue())
3017  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3018  E->getExprLoc()).getScalarVal();
3019 
3020  // Otherwise, calculate and project.
3021  return CGF.EmitComplexExpr(Op, true, false).second;
3022  }
3023 
3024  // __imag on a scalar returns zero. Emit the subexpr to ensure side
3025  // effects are evaluated, but not the actual value.
3026  if (Op->isGLValue())
3027  CGF.EmitLValue(Op);
3028  else
3029  CGF.EmitScalarExpr(Op, true);
3030  return llvm::Constant::getNullValue(ConvertType(E->getType()));
3031 }
3032 
3033 //===----------------------------------------------------------------------===//
3034 // Binary Operators
3035 //===----------------------------------------------------------------------===//
3036 
3037 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3038  TestAndClearIgnoreResultAssign();
3039  BinOpInfo Result;
3040  Result.LHS = Visit(E->getLHS());
3041  Result.RHS = Visit(E->getRHS());
3042  Result.Ty = E->getType();
3043  Result.Opcode = E->getOpcode();
3044  Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3045  Result.E = E;
3046  return Result;
3047 }
3048 
3049 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3050  const CompoundAssignOperator *E,
3051  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3052  Value *&Result) {
3053  QualType LHSTy = E->getLHS()->getType();
3054  BinOpInfo OpInfo;
3055 
3057  return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3058 
3059  // Emit the RHS first. __block variables need to have the rhs evaluated
3060  // first, plus this should improve codegen a little.
3061  OpInfo.RHS = Visit(E->getRHS());
3062  OpInfo.Ty = E->getComputationResultType();
3063  OpInfo.Opcode = E->getOpcode();
3064  OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3065  OpInfo.E = E;
3066  // Load/convert the LHS.
3067  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3068 
3069  llvm::PHINode *atomicPHI = nullptr;
3070  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3071  QualType type = atomicTy->getValueType();
3072  if (!type->isBooleanType() && type->isIntegerType() &&
3073  !(type->isUnsignedIntegerType() &&
3074  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3075  CGF.getLangOpts().getSignedOverflowBehavior() !=
3077  llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3078  llvm::Instruction::BinaryOps Op;
3079  switch (OpInfo.Opcode) {
3080  // We don't have atomicrmw operands for *, %, /, <<, >>
3081  case BO_MulAssign: case BO_DivAssign:
3082  case BO_RemAssign:
3083  case BO_ShlAssign:
3084  case BO_ShrAssign:
3085  break;
3086  case BO_AddAssign:
3087  AtomicOp = llvm::AtomicRMWInst::Add;
3089  break;
3090  case BO_SubAssign:
3091  AtomicOp = llvm::AtomicRMWInst::Sub;
3093  break;
3094  case BO_AndAssign:
3095  AtomicOp = llvm::AtomicRMWInst::And;
3097  break;
3098  case BO_XorAssign:
3099  AtomicOp = llvm::AtomicRMWInst::Xor;
3100  Op = llvm::Instruction::Xor;
3101  break;
3102  case BO_OrAssign:
3103  AtomicOp = llvm::AtomicRMWInst::Or;
3104  Op = llvm::Instruction::Or;
3105  break;
3106  default:
3107  llvm_unreachable("Invalid compound assignment type");
3108  }
3109  if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3110  llvm::Value *Amt = CGF.EmitToMemory(
3111  EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3112  E->getExprLoc()),
3113  LHSTy);
3114  Value *OldVal = Builder.CreateAtomicRMW(
3115  AtomicOp, LHSLV.getPointer(CGF), Amt,
3116  llvm::AtomicOrdering::SequentiallyConsistent);
3117 
3118  // Since operation is atomic, the result type is guaranteed to be the
3119  // same as the input in LLVM terms.
3120  Result = Builder.CreateBinOp(Op, OldVal, Amt);
3121  return LHSLV;
3122  }
3123  }
3124  // FIXME: For floating point types, we should be saving and restoring the
3125  // floating point environment in the loop.
3126  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3127  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3128  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3129  OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3130  Builder.CreateBr(opBB);
3131  Builder.SetInsertPoint(opBB);
3132  atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3133  atomicPHI->addIncoming(OpInfo.LHS, startBB);
3134  OpInfo.LHS = atomicPHI;
3135  }
3136  else
3137  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3138 
3139  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3140  SourceLocation Loc = E->getExprLoc();
3141  OpInfo.LHS =
3142  EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3143 
3144  // Expand the binary operator.
3145  Result = (this->*Func)(OpInfo);
3146 
3147  // Convert the result back to the LHS type,
3148  // potentially with Implicit Conversion sanitizer check.
3149  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3150  Loc, ScalarConversionOpts(CGF.SanOpts));
3151 
3152  if (atomicPHI) {
3153  llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3154  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3155  auto Pair = CGF.EmitAtomicCompareExchange(
3156  LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3157  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3158  llvm::Value *success = Pair.second;
3159  atomicPHI->addIncoming(old, curBlock);
3160  Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3161  Builder.SetInsertPoint(contBB);
3162  return LHSLV;
3163  }
3164 
3165  // Store the result value into the LHS lvalue. Bit-fields are handled
3166  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3167  // 'An assignment expression has the value of the left operand after the
3168  // assignment...'.
3169  if (LHSLV.isBitField())
3170  CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3171  else
3172  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3173 
3174  if (CGF.getLangOpts().OpenMP)
3176  E->getLHS());
3177  return LHSLV;
3178 }
3179 
3180 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3181  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3182  bool Ignore = TestAndClearIgnoreResultAssign();
3183  Value *RHS = nullptr;
3184  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3185 
3186  // If the result is clearly ignored, return now.
3187  if (Ignore)
3188  return nullptr;
3189 
3190  // The result of an assignment in C is the assigned r-value.
3191  if (!CGF.getLangOpts().CPlusPlus)
3192  return RHS;
3193 
3194  // If the lvalue is non-volatile, return the computed value of the assignment.
3195  if (!LHS.isVolatileQualified())
3196  return RHS;
3197 
3198  // Otherwise, reload the value.
3199  return EmitLoadOfLValue(LHS, E->getExprLoc());
3200 }
3201 
3202 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3203  const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3205 
3206  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3207  Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3208  SanitizerKind::IntegerDivideByZero));
3209  }
3210 
3211  const auto *BO = cast<BinaryOperator>(Ops.E);
3212  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3213  Ops.Ty->hasSignedIntegerRepresentation() &&
3214  !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3215  Ops.mayHaveIntegerOverflow()) {
3216  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3217 
3218  llvm::Value *IntMin =
3219  Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3220  llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3221 
3222  llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3223  llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3224  llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3225  Checks.push_back(
3226  std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3227  }
3228 
3229  if (Checks.size() > 0)
3230  EmitBinOpCheck(Checks, Ops);
3231 }
3232 
3233 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3234  {
3235  CodeGenFunction::SanitizerScope SanScope(&CGF);
3236  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3237  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3238  Ops.Ty->isIntegerType() &&
3239  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3240  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3241  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3242  } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3243  Ops.Ty->isRealFloatingType() &&
3244  Ops.mayHaveFloatDivisionByZero()) {
3245  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3246  llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3247  EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3248  Ops);
3249  }
3250  }
3251 
3252  if (Ops.Ty->isConstantMatrixType()) {
3253  llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3254  // We need to check the types of the operands of the operator to get the
3255  // correct matrix dimensions.
3256  auto *BO = cast<BinaryOperator>(Ops.E);
3257  (void)BO;
3258  assert(
3259  isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3260  "first operand must be a matrix");
3261  assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3262  "second operand must be an arithmetic type");
3263  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3264  return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3265  Ops.Ty->hasUnsignedIntegerRepresentation());
3266  }
3267 
3268  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3269  llvm::Value *Val;
3270  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3271  Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3272  if ((CGF.getLangOpts().OpenCL &&
3273  !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3274  (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3275  !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3276  // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3277  // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3278  // build option allows an application to specify that single precision
3279  // floating-point divide (x/y and 1/x) and sqrt used in the program
3280  // source are correctly rounded.
3281  llvm::Type *ValTy = Val->getType();
3282  if (ValTy->isFloatTy() ||
3283  (isa<llvm::VectorType>(ValTy) &&
3284  cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3285  CGF.SetFPAccuracy(Val, 2.5);
3286  }
3287  return Val;
3288  }
3289  else if (Ops.isFixedPointOp())
3290  return EmitFixedPointBinOp(Ops);
3291  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3292  return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3293  else
3294  return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3295 }
3296 
3297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3298  // Rem in C can't be a floating point type: C99 6.5.5p2.
3299  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3300  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3301  Ops.Ty->isIntegerType() &&
3302  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3303  CodeGenFunction::SanitizerScope SanScope(&CGF);
3304  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3305  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3306  }
3307 
3308  if (Ops.Ty->hasUnsignedIntegerRepresentation())
3309  return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3310  else
3311  return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3312 }
3313 
3314 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3315  unsigned IID;
3316  unsigned OpID = 0;
3317  SanitizerHandler OverflowKind;
3318 
3319  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3320  switch (Ops.Opcode) {
3321  case BO_Add:
3322  case BO_AddAssign:
3323  OpID = 1;
3324  IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3325  llvm::Intrinsic::uadd_with_overflow;
3326  OverflowKind = SanitizerHandler::AddOverflow;
3327  break;
3328  case BO_Sub:
3329  case BO_SubAssign:
3330  OpID = 2;
3331  IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3332  llvm::Intrinsic::usub_with_overflow;
3333  OverflowKind = SanitizerHandler::SubOverflow;
3334  break;
3335  case BO_Mul:
3336  case BO_MulAssign:
3337  OpID = 3;
3338  IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3339  llvm::Intrinsic::umul_with_overflow;
3340  OverflowKind = SanitizerHandler::MulOverflow;
3341  break;
3342  default:
3343  llvm_unreachable("Unsupported operation for overflow detection");
3344  }
3345  OpID <<= 1;
3346  if (isSigned)
3347  OpID |= 1;
3348 
3349  CodeGenFunction::SanitizerScope SanScope(&CGF);
3350  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3351 
3352  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3353 
3354  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3355  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3356  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3357 
3358  // Handle overflow with llvm.trap if no custom handler has been specified.
3359  const std::string *handlerName =
3361  if (handlerName->empty()) {
3362  // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3363  // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3364  if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3365  llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3366  SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3367  : SanitizerKind::UnsignedIntegerOverflow;
3368  EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3369  } else
3370  CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3371  return result;
3372  }
3373 
3374  // Branch in case of overflow.
3375  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3376  llvm::BasicBlock *continueBB =
3377  CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3378  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3379 
3380  Builder.CreateCondBr(overflow, overflowBB, continueBB);
3381 
3382  // If an overflow handler is set, then we want to call it and then use its
3383  // result, if it returns.
3384  Builder.SetInsertPoint(overflowBB);
3385 
3386  // Get the overflow handler.
3387  llvm::Type *Int8Ty = CGF.Int8Ty;
3388  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3389  llvm::FunctionType *handlerTy =
3390  llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3391  llvm::FunctionCallee handler =
3392  CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3393 
3394  // Sign extend the args to 64-bit, so that we can use the same handler for
3395  // all types of overflow.
3396  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3397  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3398 
3399  // Call the handler with the two arguments, the operation, and the size of
3400  // the result.
3401  llvm::Value *handlerArgs[] = {
3402  lhs,
3403  rhs,
3404  Builder.getInt8(OpID),
3405  Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3406  };
3407  llvm::Value *handlerResult =
3408  CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3409 
3410  // Truncate the result back to the desired size.
3411  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3412  Builder.CreateBr(continueBB);
3413 
3414  Builder.SetInsertPoint(continueBB);
3415  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3416  phi->addIncoming(result, initialBB);
3417  phi->addIncoming(handlerResult, overflowBB);
3418 
3419  return phi;
3420 }
3421 
3422 /// Emit pointer + index arithmetic.
3424  const BinOpInfo &op,
3425  bool isSubtraction) {
3426  // Must have binary (not unary) expr here. Unary pointer
3427  // increment/decrement doesn't use this path.
3428  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3429 
3430  Value *pointer = op.LHS;
3431  Expr *pointerOperand = expr->getLHS();
3432  Value *index = op.RHS;
3433  Expr *indexOperand = expr->getRHS();
3434 
3435  // In a subtraction, the LHS is always the pointer.
3436  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3437  std::swap(pointer, index);
3438  std::swap(pointerOperand, indexOperand);
3439  }
3440 
3441  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3442 
3443  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3444  auto &DL = CGF.CGM.getDataLayout();
3445  auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3446 
3447  // Some versions of glibc and gcc use idioms (particularly in their malloc
3448  // routines) that add a pointer-sized integer (known to be a pointer value)
3449  // to a null pointer in order to cast the value back to an integer or as
3450  // part of a pointer alignment algorithm. This is undefined behavior, but
3451  // we'd like to be able to compile programs that use it.
3452  //
3453  // Normally, we'd generate a GEP with a null-pointer base here in response
3454  // to that code, but it's also UB to dereference a pointer created that
3455  // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3456  // generate a direct cast of the integer value to a pointer.
3457  //
3458  // The idiom (p = nullptr + N) is not met if any of the following are true:
3459  //
3460  // The operation is subtraction.
3461  // The index is not pointer-sized.
3462  // The pointer type is not byte-sized.
3463  //
3465  op.Opcode,
3466  expr->getLHS(),
3467  expr->getRHS()))
3468  return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3469 
3470  if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3471  // Zero-extend or sign-extend the pointer value according to
3472  // whether the index is signed or not.
3473  index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3474  "idx.ext");
3475  }
3476 
3477  // If this is subtraction, negate the index.
3478  if (isSubtraction)
3479  index = CGF.Builder.CreateNeg(index, "idx.neg");
3480 
3481  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3482  CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3483  /*Accessed*/ false);
3484 
3485  const PointerType *pointerType
3486  = pointerOperand->getType()->getAs<PointerType>();
3487  if (!pointerType) {
3488  QualType objectType = pointerOperand->getType()
3490  ->getPointeeType();
3491  llvm::Value *objectSize
3492  = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3493 
3494  index = CGF.Builder.CreateMul(index, objectSize);
3495 
3496  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3497  result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3498  return CGF.Builder.CreateBitCast(result, pointer->getType());
3499  }
3500 
3501  QualType elementType = pointerType->getPointeeType();
3502  if (const VariableArrayType *vla
3503  = CGF.getContext().getAsVariableArrayType(elementType)) {
3504  // The element count here is the total number of non-VLA elements.
3505  llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3506 
3507  // Effectively, the multiply by the VLA size is part of the GEP.
3508  // GEP indexes are signed, and scaling an index isn't permitted to
3509  // signed-overflow, so we use the same semantics for our explicit
3510  // multiply. We suppress this if overflow is not undefined behavior.
3511  if (CGF.getLangOpts().isSignedOverflowDefined()) {
3512  index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3513  pointer = CGF.Builder.CreateGEP(
3514  pointer->getType()->getPointerElementType(), pointer, index,
3515  "add.ptr");
3516  } else {
3517  index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3518  pointer =
3519  CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3520  op.E->getExprLoc(), "add.ptr");
3521  }
3522  return pointer;
3523  }
3524 
3525  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3526  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3527  // future proof.
3528  if (elementType->isVoidType() || elementType->isFunctionType()) {
3529  Value *result = CGF.EmitCastToVoidPtr(pointer);
3530  result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3531  return CGF.Builder.CreateBitCast(result, pointer->getType());
3532  }
3533 
3535  return CGF.Builder.CreateGEP(
3536  pointer->getType()->getPointerElementType(), pointer, index, "add.ptr");
3537 
3538  return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3539  op.E->getExprLoc(), "add.ptr");
3540 }
3541 
3542 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3543 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3544 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3545 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3546 // efficient operations.
3547 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3548  const CodeGenFunction &CGF, CGBuilderTy &Builder,
3549  bool negMul, bool negAdd) {
3550  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3551 
3552  Value *MulOp0 = MulOp->getOperand(0);
3553  Value *MulOp1 = MulOp->getOperand(1);
3554  if (negMul)
3555  MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3556  if (negAdd)
3557  Addend = Builder.CreateFNeg(Addend, "neg");
3558 
3559  Value *FMulAdd = nullptr;
3560  if (Builder.getIsFPConstrained()) {
3561  assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3562  "Only constrained operation should be created when Builder is in FP "
3563  "constrained mode");
3564  FMulAdd = Builder.CreateConstrainedFPCall(
3565  CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3566  Addend->getType()),
3567  {MulOp0, MulOp1, Addend});
3568  } else {
3569  FMulAdd = Builder.CreateCall(
3570  CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3571  {MulOp0, MulOp1, Addend});
3572  }
3573  MulOp->eraseFromParent();
3574 
3575  return FMulAdd;
3576 }
3577 
3578 // Check whether it would be legal to emit an fmuladd intrinsic call to
3579 // represent op and if so, build the fmuladd.
3580 //
3581 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3582 // Does NOT check the type of the operation - it's assumed that this function
3583 // will be called from contexts where it's known that the type is contractable.
3584 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3585  const CodeGenFunction &CGF, CGBuilderTy &Builder,
3586  bool isSub=false) {
3587 
3588  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3589  op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3590  "Only fadd/fsub can be the root of an fmuladd.");
3591 
3592  // Check whether this op is marked as fusable.
3593  if (!op.FPFeatures.allowFPContractWithinStatement())
3594  return nullptr;
3595 
3596  // We have a potentially fusable op. Look for a mul on one of the operands.
3597  // Also, make sure that the mul result isn't used directly. In that case,
3598  // there's no point creating a muladd operation.
3599  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3600  if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3601  LHSBinOp->use_empty())
3602  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3603  }
3604  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3605  if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3606  RHSBinOp->use_empty())
3607  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3608  }
3609 
3610  if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3611  if (LHSBinOp->getIntrinsicID() ==
3612  llvm::Intrinsic::experimental_constrained_fmul &&
3613  LHSBinOp->use_empty())
3614  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3615  }
3616  if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3617  if (RHSBinOp->getIntrinsicID() ==
3618  llvm::Intrinsic::experimental_constrained_fmul &&
3619  RHSBinOp->use_empty())
3620  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3621  }
3622 
3623  return nullptr;
3624 }
3625 
3626 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3627  if (op.LHS->getType()->isPointerTy() ||
3628  op.RHS->getType()->isPointerTy())
3630 
3631  if (op.Ty->isSignedIntegerOrEnumerationType()) {
3632  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3634  return Builder.CreateAdd(op.LHS, op.RHS, "add");
3636  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3637  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3638  LLVM_FALLTHROUGH;
3640  if (CanElideOverflowCheck(CGF.getContext(), op))
3641  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3642  return EmitOverflowCheckedBinOp(op);
3643  }
3644  }
3645 
3646  if (op.Ty->isConstantMatrixType()) {
3647  llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3648  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3649  return MB.CreateAdd(op.LHS, op.RHS);
3650  }
3651 
3652  if (op.Ty->isUnsignedIntegerType() &&
3653  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3654  !CanElideOverflowCheck(CGF.getContext(), op))
3655  return EmitOverflowCheckedBinOp(op);
3656 
3657  if (op.LHS->getType()->isFPOrFPVectorTy()) {
3658  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3659  // Try to form an fmuladd.
3660  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3661  return FMulAdd;
3662 
3663  return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3664  }
3665 
3666  if (op.isFixedPointOp())
3667  return EmitFixedPointBinOp(op);
3668 
3669  return Builder.CreateAdd(op.LHS, op.RHS, "add");
3670 }
3671 
3672 /// The resulting value must be calculated with exact precision, so the operands
3673 /// may not be the same type.
3674 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3675  using llvm::APSInt;
3676  using llvm::ConstantInt;
3677 
3678  // This is either a binary operation where at least one of the operands is
3679  // a fixed-point type, or a unary operation where the operand is a fixed-point
3680  // type. The result type of a binary operation is determined by
3681  // Sema::handleFixedPointConversions().
3682  QualType ResultTy = op.Ty;
3683  QualType LHSTy, RHSTy;
3684  if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3685  RHSTy = BinOp->getRHS()->getType();
3686  if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3687  // For compound assignment, the effective type of the LHS at this point
3688  // is the computation LHS type, not the actual LHS type, and the final
3689  // result type is not the type of the expression but rather the
3690  // computation result type.
3691  LHSTy = CAO->getComputationLHSType();
3692  ResultTy = CAO->getComputationResultType();
3693  } else
3694  LHSTy = BinOp->getLHS()->getType();
3695  } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3696  LHSTy = UnOp->getSubExpr()->getType();
3697  RHSTy = UnOp->getSubExpr()->getType();
3698  }
3699  ASTContext &Ctx = CGF.getContext();
3700  Value *LHS = op.LHS;
3701  Value *RHS = op.RHS;
3702 
3703  auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3704  auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3705  auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3706  auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3707 
3708  // Perform the actual operation.
3709  Value *Result;
3710  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3711  switch (op.Opcode) {
3712  case BO_AddAssign:
3713  case BO_Add:
3714  Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3715  break;
3716  case BO_SubAssign:
3717  case BO_Sub:
3718  Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3719  break;
3720  case BO_MulAssign:
3721  case BO_Mul:
3722  Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3723  break;
3724  case BO_DivAssign:
3725  case BO_Div:
3726  Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3727  break;
3728  case BO_ShlAssign:
3729  case BO_Shl:
3730  Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3731  break;
3732  case BO_ShrAssign:
3733  case BO_Shr:
3734  Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3735  break;
3736  case BO_LT:
3737  return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3738  case BO_GT:
3739  return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3740  case BO_LE:
3741  return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3742  case BO_GE:
3743  return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3744  case BO_EQ:
3745  // For equality operations, we assume any padding bits on unsigned types are
3746  // zero'd out. They could be overwritten through non-saturating operations
3747  // that cause overflow, but this leads to undefined behavior.
3748  return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3749  case BO_NE:
3750  return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3751  case BO_Cmp:
3752  case BO_LAnd:
3753  case BO_LOr:
3754  llvm_unreachable("Found unimplemented fixed point binary operation");
3755  case BO_PtrMemD:
3756  case BO_PtrMemI:
3757  case BO_Rem:
3758  case BO_Xor:
3759  case BO_And:
3760  case BO_Or:
3761  case BO_Assign:
3762  case BO_RemAssign:
3763  case BO_AndAssign:
3764  case BO_XorAssign:
3765  case BO_OrAssign:
3766  case BO_Comma:
3767  llvm_unreachable("Found unsupported binary operation for fixed point types.");
3768  }
3769 
3770  bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3772  // Convert to the result type.
3773  return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3774  : CommonFixedSema,
3775  ResultFixedSema);
3776 }
3777 
3778 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3779  // The LHS is always a pointer if either side is.
3780  if (!op.LHS->getType()->isPointerTy()) {
3781  if (op.Ty->isSignedIntegerOrEnumerationType()) {
3782  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3784  return Builder.CreateSub(op.LHS, op.RHS, "sub");
3786  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3787  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3788  LLVM_FALLTHROUGH;
3790  if (CanElideOverflowCheck(CGF.getContext(), op))
3791  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3792  return EmitOverflowCheckedBinOp(op);
3793  }
3794  }
3795 
3796  if (op.Ty->isConstantMatrixType()) {
3797  llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3798  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3799  return MB.CreateSub(op.LHS, op.RHS);
3800  }
3801 
3802  if (op.Ty->isUnsignedIntegerType() &&
3803  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3804  !CanElideOverflowCheck(CGF.getContext(), op))
3805  return EmitOverflowCheckedBinOp(op);
3806 
3807  if (op.LHS->getType()->isFPOrFPVectorTy()) {
3808  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3809  // Try to form an fmuladd.
3810  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3811  return FMulAdd;
3812  return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3813  }
3814 
3815  if (op.isFixedPointOp())
3816  return EmitFixedPointBinOp(op);
3817 
3818  return Builder.CreateSub(op.LHS, op.RHS, "sub");
3819  }
3820 
3821  // If the RHS is not a pointer, then we have normal pointer
3822  // arithmetic.
3823  if (!op.RHS->getType()->isPointerTy())
3825 
3826  // Otherwise, this is a pointer subtraction.
3827 
3828  // Do the raw subtraction part.
3829  llvm::Value *LHS
3830  = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3831  llvm::Value *RHS
3832  = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3833  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3834 
3835  // Okay, figure out the element size.
3836  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3837  QualType elementType = expr->getLHS()->getType()->getPointeeType();
3838 
3839  llvm::Value *divisor = nullptr;
3840 
3841  // For a variable-length array, this is going to be non-constant.
3842  if (const VariableArrayType *vla
3843  = CGF.getContext().getAsVariableArrayType(elementType)) {
3844  auto VlaSize = CGF.getVLASize(vla);
3845  elementType = VlaSize.Type;
3846  divisor = VlaSize.NumElts;
3847 
3848  // Scale the number of non-VLA elements by the non-VLA element size.
3849  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3850  if (!eltSize.isOne())
3851  divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3852 
3853  // For everything elese, we can just compute it, safe in the
3854  // assumption that Sema won't let anything through that we can't
3855  // safely compute the size of.
3856  } else {
3857  CharUnits elementSize;
3858  // Handle GCC extension for pointer arithmetic on void* and
3859  // function pointer types.
3860  if (elementType->isVoidType() || elementType->isFunctionType())
3861  elementSize = CharUnits::One();
3862  else
3863  elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3864 
3865  // Don't even emit the divide for element size of 1.
3866  if (elementSize.isOne())
3867  return diffInChars;
3868 
3869  divisor = CGF.CGM.getSize(elementSize);
3870  }
3871 
3872  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3873  // pointer difference in C is only defined in the case where both operands
3874  // are pointing to elements of an array.
3875  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3876 }
3877 
3878 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3879  llvm::IntegerType *Ty;
3880  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3881  Ty = cast<llvm::IntegerType>(VT->getElementType());
3882  else
3883  Ty = cast<llvm::IntegerType>(LHS->getType());
3884  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3885 }
3886 
3887 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3888  const Twine &Name) {
3889  llvm::IntegerType *Ty;
3890  if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3891  Ty = cast<llvm::IntegerType>(VT->getElementType());
3892  else
3893  Ty = cast<llvm::IntegerType>(LHS->getType());
3894 
3895  if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3896  return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3897 
3898  return Builder.CreateURem(
3899  RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3900 }
3901 
3902 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3903  // TODO: This misses out on the sanitizer check below.
3904  if (Ops.isFixedPointOp())
3905  return EmitFixedPointBinOp(Ops);
3906 
3907  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3908  // RHS to the same size as the LHS.
3909  Value *RHS = Ops.RHS;
3910  if (Ops.LHS->getType() != RHS->getType())
3911  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3912 
3913  bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3914  Ops.Ty->hasSignedIntegerRepresentation() &&
3916  !CGF.getLangOpts().CPlusPlus20;
3917  bool SanitizeUnsignedBase =
3918  CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3919  Ops.Ty->hasUnsignedIntegerRepresentation();
3920  bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3921  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3922  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3923  if (CGF.getLangOpts().OpenCL)
3924  RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3925  else if ((SanitizeBase || SanitizeExponent) &&
3926  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3927  CodeGenFunction::SanitizerScope SanScope(&CGF);
3929  llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3930  llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3931 
3932  if (SanitizeExponent) {
3933  Checks.push_back(
3934  std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3935  }
3936 
3937  if (SanitizeBase) {
3938  // Check whether we are shifting any non-zero bits off the top of the
3939  // integer. We only emit this check if exponent is valid - otherwise
3940  // instructions below will have undefined behavior themselves.
3941  llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3942  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3943  llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3944  Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3945  llvm::Value *PromotedWidthMinusOne =
3946  (RHS == Ops.RHS) ? WidthMinusOne
3947  : GetWidthMinusOneValue(Ops.LHS, RHS);
3948  CGF.EmitBlock(CheckShiftBase);
3949  llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3950  Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3951  /*NUW*/ true, /*NSW*/ true),
3952  "shl.check");
3953  if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3954  // In C99, we are not permitted to shift a 1 bit into the sign bit.
3955  // Under C++11's rules, shifting a 1 bit into the sign bit is
3956  // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3957  // define signed left shifts, so we use the C99 and C++11 rules there).
3958  // Unsigned shifts can always shift into the top bit.
3959  llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3960  BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3961  }
3962  llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3963  llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3964  CGF.EmitBlock(Cont);
3965  llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3966  BaseCheck->addIncoming(Builder.getTrue(), Orig);
3967  BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3968  Checks.push_back(std::make_pair(
3969  BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3970  : SanitizerKind::UnsignedShiftBase));
3971  }
3972 
3973  assert(!Checks.empty());
3974  EmitBinOpCheck(Checks, Ops);
3975  }
3976 
3977  return Builder.CreateShl(Ops.LHS, RHS, "shl");
3978 }
3979 
3980 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3981  // TODO: This misses out on the sanitizer check below.
3982  if (Ops.isFixedPointOp())
3983  return EmitFixedPointBinOp(Ops);
3984 
3985  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3986  // RHS to the same size as the LHS.
3987  Value *RHS = Ops.RHS;
3988  if (Ops.LHS->getType() != RHS->getType())
3989  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3990 
3991  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3992  if (CGF.getLangOpts().OpenCL)
3993  RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3994  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3995  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3996  CodeGenFunction::SanitizerScope SanScope(&CGF);
3997  llvm::Value *Valid =
3998  Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3999  EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4000  }
4001 
4002  if (Ops.Ty->hasUnsignedIntegerRepresentation())
4003  return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4004  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4005 }
4006 
4008 // return corresponding comparison intrinsic for given vector type
4010  BuiltinType::Kind ElemKind) {
4011  switch (ElemKind) {
4012  default: llvm_unreachable("unexpected element type");
4013  case BuiltinType::Char_U:
4014  case BuiltinType::UChar:
4015  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4016  llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4017  case BuiltinType::Char_S:
4018  case BuiltinType::SChar:
4019  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4020  llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4021  case BuiltinType::UShort:
4022  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4023  llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4024  case BuiltinType::Short:
4025  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4026  llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4027  case BuiltinType::UInt:
4028  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4029  llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4030  case BuiltinType::Int:
4031  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4032  llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4033  case BuiltinType::ULong:
4034  case BuiltinType::ULongLong:
4035  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4036  llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4037  case BuiltinType::Long:
4038  case BuiltinType::LongLong:
4039  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4040  llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4041  case BuiltinType::Float:
4042  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4043  llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4044  case BuiltinType::Double:
4045  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4046  llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4047  case BuiltinType::UInt128:
4048  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4049  : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4050  case BuiltinType::Int128:
4051  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4052  : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4053  }
4054 }
4055 
4057  llvm::CmpInst::Predicate UICmpOpc,
4058  llvm::CmpInst::Predicate SICmpOpc,
4059  llvm::CmpInst::Predicate FCmpOpc,
4060  bool IsSignaling) {
4061  TestAndClearIgnoreResultAssign();
4062  Value *Result;
4063  QualType LHSTy = E->getLHS()->getType();
4064  QualType RHSTy = E->getRHS()->getType();
4065  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4066  assert(E->getOpcode() == BO_EQ ||
4067  E->getOpcode() == BO_NE);
4068  Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4069  Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4070  Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4071  CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4072  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4073  BinOpInfo BOInfo = EmitBinOps(E);
4074  Value *LHS = BOInfo.LHS;
4075  Value *RHS = BOInfo.RHS;
4076 
4077  // If AltiVec, the comparison results in a numeric type, so we use
4078  // intrinsics comparing vectors and giving 0 or 1 as a result
4079  if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4080  // constants for mapping CR6 register bits to predicate result
4081  enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4082 
4083  llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4084 
4085  // in several cases vector arguments order will be reversed
4086  Value *FirstVecArg = LHS,
4087  *SecondVecArg = RHS;
4088 
4089  QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4090  BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4091 
4092  switch(E->getOpcode()) {
4093  default: llvm_unreachable("is not a comparison operation");
4094  case BO_EQ:
4095  CR6 = CR6_LT;
4096  ID = GetIntrinsic(VCMPEQ, ElementKind);
4097  break;
4098  case BO_NE:
4099  CR6 = CR6_EQ;
4100  ID = GetIntrinsic(VCMPEQ, ElementKind);
4101  break;
4102  case BO_LT:
4103  CR6 = CR6_LT;
4104  ID = GetIntrinsic(VCMPGT, ElementKind);
4105  std::swap(FirstVecArg, SecondVecArg);
4106  break;
4107  case BO_GT:
4108  CR6 = CR6_LT;
4109  ID = GetIntrinsic(VCMPGT, ElementKind);
4110  break;
4111  case BO_LE:
4112  if (ElementKind == BuiltinType::Float) {
4113  CR6 = CR6_LT;
4114  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4115  std::swap(FirstVecArg, SecondVecArg);
4116  }
4117  else {
4118  CR6 = CR6_EQ;
4119  ID = GetIntrinsic(VCMPGT, ElementKind);
4120  }
4121  break;
4122  case BO_GE:
4123  if (ElementKind == BuiltinType::Float) {
4124  CR6 = CR6_LT;
4125  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4126  }
4127  else {
4128  CR6 = CR6_EQ;
4129  ID = GetIntrinsic(VCMPGT, ElementKind);
4130  std::swap(FirstVecArg, SecondVecArg);
4131  }
4132  break;
4133  }
4134 
4135  Value *CR6Param = Builder.getInt32(CR6);
4136  llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4137  Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4138 
4139  // The result type of intrinsic may not be same as E->getType().
4140  // If E->getType() is not BoolTy, EmitScalarConversion will do the
4141  // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4142  // do nothing, if ResultTy is not i1 at the same time, it will cause
4143  // crash later.
4144  llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4145  if (ResultTy->getBitWidth() > 1 &&
4146  E->getType() == CGF.getContext().BoolTy)
4147  Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4148  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4149  E->getExprLoc());
4150  }
4151 
4152  if (BOInfo.isFixedPointOp()) {
4153  Result = EmitFixedPointBinOp(BOInfo);
4154  } else if (LHS->getType()->isFPOrFPVectorTy()) {
4155  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4156  if (!IsSignaling)
4157  Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4158  else
4159  Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4160  } else if (LHSTy->hasSignedIntegerRepresentation()) {
4161  Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4162  } else {
4163  // Unsigned integers and pointers.
4164 
4165  if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4166  !isa<llvm::ConstantPointerNull>(LHS) &&
4167  !isa<llvm::ConstantPointerNull>(RHS)) {
4168 
4169  // Dynamic information is required to be stripped for comparisons,
4170  // because it could leak the dynamic information. Based on comparisons
4171  // of pointers to dynamic objects, the optimizer can replace one pointer
4172  // with another, which might be incorrect in presence of invariant
4173  // groups. Comparison with null is safe because null does not carry any
4174  // dynamic information.
4175  if (LHSTy.mayBeDynamicClass())
4176  LHS = Builder.CreateStripInvariantGroup(LHS);
4177  if (RHSTy.mayBeDynamicClass())
4178  RHS = Builder.CreateStripInvariantGroup(RHS);
4179  }
4180 
4181  Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4182  }
4183 
4184  // If this is a vector comparison, sign extend the result to the appropriate
4185  // vector integer type and return it (don't convert to bool).
4186  if (LHSTy->isVectorType())
4187  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4188 
4189  } else {
4190  // Complex Comparison: can only be an equality comparison.
4192  QualType CETy;
4193  if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4194  LHS = CGF.EmitComplexExpr(E->getLHS());
4195  CETy = CTy->getElementType();
4196  } else {
4197  LHS.first = Visit(E->getLHS());
4198  LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4199  CETy = LHSTy;
4200  }
4201  if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4202  RHS = CGF.EmitComplexExpr(E->getRHS());
4203  assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4204  CTy->getElementType()) &&
4205  "The element types must always match.");
4206  (void)CTy;
4207  } else {
4208  RHS.first = Visit(E->getRHS());
4209  RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4210  assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4211  "The element types must always match.");
4212  }
4213 
4214  Value *ResultR, *ResultI;
4215  if (CETy->isRealFloatingType()) {
4216  // As complex comparisons can only be equality comparisons, they
4217  // are never signaling comparisons.
4218  ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4219  ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4220  } else {
4221  // Complex comparisons can only be equality comparisons. As such, signed
4222  // and unsigned opcodes are the same.
4223  ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4224  ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4225  }
4226 
4227  if (E->getOpcode() == BO_EQ) {
4228  Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4229  } else {
4230  assert(E->getOpcode() == BO_NE &&
4231  "Complex comparison other than == or != ?");
4232  Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4233  }
4234  }
4235 
4236  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4237  E->getExprLoc());
4238 }
4239 
4240 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4241  bool Ignore = TestAndClearIgnoreResultAssign();
4242 
4243  Value *RHS;
4244  LValue LHS;
4245 
4246  switch (E->getLHS()->getType().getObjCLifetime()) {
4248  std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4249  break;
4250 
4252  std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4253  break;
4254 
4256  std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4257  break;
4258 
4259  case Qualifiers::OCL_Weak:
4260  RHS = Visit(E->getRHS());
4261  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4262  RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4263  break;
4264 
4265  case Qualifiers::OCL_None:
4266  // __block variables need to have the rhs evaluated first, plus
4267  // this should improve codegen just a little.
4268  RHS = Visit(E->getRHS());
4269  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4270 
4271  // Store the value into the LHS. Bit-fields are handled specially
4272  // because the result is altered by the store, i.e., [C99 6.5.16p1]
4273  // 'An assignment expression has the value of the left operand after
4274  // the assignment...'.
4275  if (LHS.isBitField()) {
4276  CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4277  } else {
4278  CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4279  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4280  }
4281  }
4282 
4283  // If the result is clearly ignored, return now.
4284  if (Ignore)
4285  return nullptr;
4286 
4287  // The result of an assignment in C is the assigned r-value.
4288  if (!CGF.getLangOpts().CPlusPlus)
4289  return RHS;
4290 
4291  // If the lvalue is non-volatile, return the computed value of the assignment.
4292  if (!LHS.isVolatileQualified())
4293  return RHS;
4294 
4295  // Otherwise, reload the value.
4296  return EmitLoadOfLValue(LHS, E->getExprLoc());
4297 }
4298 
4299 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4300  // Perform vector logical and on comparisons with zero vectors.
4301  if (E->getType()->isVectorType()) {
4302  CGF.incrementProfileCounter(E);
4303 
4304  Value *LHS = Visit(E->getLHS());
4305  Value *RHS = Visit(E->getRHS());
4306  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4307  if (LHS->getType()->isFPOrFPVectorTy()) {
4309  CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4310  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4311  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4312  } else {
4313  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4314  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4315  }
4316  Value *And = Builder.CreateAnd(LHS, RHS);
4317  return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4318  }
4319 
4320  bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4321  llvm::Type *ResTy = ConvertType(E->getType());
4322 
4323  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4324  // If we have 1 && X, just emit X without inserting the control flow.
4325  bool LHSCondVal;
4326  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4327  if (LHSCondVal) { // If we have 1 && X, just emit X.
4328  CGF.incrementProfileCounter(E);
4329 
4330  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4331 
4332  // If we're generating for profiling or coverage, generate a branch to a
4333  // block that increments the RHS counter needed to track branch condition
4334  // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4335  // "FalseBlock" after the increment is done.
4336  if (InstrumentRegions &&
4338  llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4339  llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4340  Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4341  CGF.EmitBlock(RHSBlockCnt);
4342  CGF.incrementProfileCounter(E->getRHS());
4343  CGF.EmitBranch(FBlock);
4344  CGF.EmitBlock(FBlock);
4345  }
4346 
4347  // ZExt result to int or bool.
4348  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4349  }
4350 
4351  // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4352  if (!CGF.ContainsLabel(E->getRHS()))
4353  return llvm::Constant::getNullValue(ResTy);
4354  }
4355 
4356  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4357  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4358 
4360 
4361  // Branch on the LHS first. If it is false, go to the failure (cont) block.
4362  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4363  CGF.getProfileCount(E->getRHS()));
4364 
4365  // Any edges into the ContBlock are now from an (indeterminate number of)
4366  // edges from this first condition. All of these values will be false. Start
4367  // setting up the PHI node in the Cont Block for this.
4368  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4369  "", ContBlock);
4370  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4371  PI != PE; ++PI)
4372  PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4373 
4374  eval.begin(CGF);
4375  CGF.EmitBlock(RHSBlock);
4376  CGF.incrementProfileCounter(E);
4377  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4378  eval.end(CGF);
4379 
4380  // Reaquire the RHS block, as there may be subblocks inserted.
4381  RHSBlock = Builder.GetInsertBlock();
4382 
4383  // If we're generating for profiling or coverage, generate a branch on the
4384  // RHS to a block that increments the RHS true counter needed to track branch
4385  // condition coverage.
4386  if (InstrumentRegions &&
4388  llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4389  Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4390  CGF.EmitBlock(RHSBlockCnt);
4391  CGF.incrementProfileCounter(E->getRHS());
4392  CGF.EmitBranch(ContBlock);
4393  PN->addIncoming(RHSCond, RHSBlockCnt);
4394  }
4395 
4396  // Emit an unconditional branch from this block to ContBlock.
4397  {
4398  // There is no need to emit line number for unconditional branch.
4399  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4400  CGF.EmitBlock(ContBlock);
4401  }
4402  // Insert an entry into the phi node for the edge with the value of RHSCond.
4403  PN->addIncoming(RHSCond, RHSBlock);
4404 
4405  // Artificial location to preserve the scope information
4406  {
4407  auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4408  PN->setDebugLoc(Builder.getCurrentDebugLocation());
4409  }
4410 
4411  // ZExt result to int.
4412  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4413 }
4414 
4415 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4416  // Perform vector logical or on comparisons with zero vectors.
4417  if (E->getType()->isVectorType()) {
4418  CGF.incrementProfileCounter(E);
4419 
4420  Value *LHS = Visit(E->getLHS());
4421  Value *RHS = Visit(E->getRHS());
4422  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4423  if (LHS->getType()->isFPOrFPVectorTy()) {
4425  CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4426  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4427  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4428  } else {
4429  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4430  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4431  }
4432  Value *Or = Builder.CreateOr(LHS, RHS);
4433  return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4434  }
4435 
4436  bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4437  llvm::Type *ResTy = ConvertType(E->getType());
4438 
4439  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4440  // If we have 0 || X, just emit X without inserting the control flow.
4441  bool LHSCondVal;
4442  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4443  if (!LHSCondVal) { // If we have 0 || X, just emit X.
4444  CGF.incrementProfileCounter(E);
4445 
4446  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4447 
4448  // If we're generating for profiling or coverage, generate a branch to a
4449  // block that increments the RHS counter need to track branch condition
4450  // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4451  // "FalseBlock" after the increment is done.
4452  if (InstrumentRegions &&
4454  llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4455  llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4456  Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4457  CGF.EmitBlock(RHSBlockCnt);
4458  CGF.incrementProfileCounter(E->getRHS());
4459  CGF.EmitBranch(FBlock);
4460  CGF.EmitBlock(FBlock);
4461  }
4462 
4463  // ZExt result to int or bool.
4464  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4465  }
4466 
4467  // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4468  if (!CGF.ContainsLabel(E->getRHS()))
4469  return llvm::ConstantInt::get(ResTy, 1);
4470  }
4471 
4472  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4473  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4474 
4476 
4477  // Branch on the LHS first. If it is true, go to the success (cont) block.
4478  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4479  CGF.getCurrentProfileCount() -
4480  CGF.getProfileCount(E->getRHS()));
4481 
4482  // Any edges into the ContBlock are now from an (indeterminate number of)
4483  // edges from this first condition. All of these values will be true. Start
4484  // setting up the PHI node in the Cont Block for this.
4485  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4486  "", ContBlock);
4487  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4488  PI != PE; ++PI)
4489  PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4490 
4491  eval.begin(CGF);
4492 
4493  // Emit the RHS condition as a bool value.
4494  CGF.EmitBlock(RHSBlock);
4495  CGF.incrementProfileCounter(E);
4496  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4497 
4498  eval.end(CGF);
4499 
4500  // Reaquire the RHS block, as there may be subblocks inserted.
4501  RHSBlock = Builder.GetInsertBlock();
4502 
4503  // If we're generating for profiling or coverage, generate a branch on the
4504  // RHS to a block that increments the RHS true counter needed to track branch
4505  // condition coverage.
4506  if (InstrumentRegions &&
4508  llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4509  Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4510  CGF.EmitBlock(RHSBlockCnt);
4511  CGF.incrementProfileCounter(E->getRHS());
4512  CGF.EmitBranch(ContBlock);
4513  PN->addIncoming(RHSCond, RHSBlockCnt);
4514  }
4515 
4516  // Emit an unconditional branch from this block to ContBlock. Insert an entry
4517  // into the phi node for the edge with the value of RHSCond.
4518  CGF.EmitBlock(ContBlock);
4519  PN->addIncoming(RHSCond, RHSBlock);
4520 
4521  // ZExt result to int.
4522  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4523 }
4524 
4525 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4526  CGF.EmitIgnoredExpr(E->getLHS());
4527  CGF.EnsureInsertPoint();
4528  return Visit(E->getRHS());
4529 }
4530 
4531 //===----------------------------------------------------------------------===//
4532 // Other Operators
4533 //===----------------------------------------------------------------------===//
4534 
4535 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4536 /// expression is cheap enough and side-effect-free enough to evaluate
4537 /// unconditionally instead of conditionally. This is used to convert control
4538 /// flow into selects in some cases.
4540  CodeGenFunction &CGF) {
4541  // Anything that is an integer or floating point constant is fine.
4542  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4543 
4544  // Even non-volatile automatic variables can't be evaluated unconditionally.
4545  // Referencing a thread_local may cause non-trivial initialization work to
4546  // occur. If we're inside a lambda and one of the variables is from the scope
4547  // outside the lambda, that function may have returned already. Reading its
4548  // locals is a bad idea. Also, these reads may introduce races there didn't
4549  // exist in the source-level program.
4550 }
4551 
4552 
4553 Value *ScalarExprEmitter::
4554 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4555  TestAndClearIgnoreResultAssign();
4556 
4557  // Bind the common expression if necessary.
4558  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4559 
4560  Expr *condExpr = E->getCond();
4561  Expr *lhsExpr = E->getTrueExpr();
4562  Expr *rhsExpr = E->getFalseExpr();
4563 
4564  // If the condition constant folds and can be elided, try to avoid emitting
4565  // the condition and the dead arm.
4566  bool CondExprBool;
4567  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4568  Expr *live = lhsExpr, *dead = rhsExpr;
4569  if (!CondExprBool) std::swap(live, dead);
4570 
4571  // If the dead side doesn't have labels we need, just emit the Live part.
4572  if (!CGF.ContainsLabel(dead)) {
4573  if (CondExprBool)
4574  CGF.incrementProfileCounter(E);
4575  Value *Result = Visit(live);
4576 
4577  // If the live part is a throw expression, it acts like it has a void
4578  // type, so evaluating it returns a null Value*. However, a conditional
4579  // with non-void type must return a non-null Value*.
4580  if (!Result && !E->getType()->isVoidType())
4581  Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4582 
4583  return Result;
4584  }
4585  }
4586 
4587  // OpenCL: If the condition is a vector, we can treat this condition like
4588  // the select function.
4589  if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4590  condExpr->getType()->isExtVectorType()) {
4591  CGF.incrementProfileCounter(E);
4592 
4593  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4594  llvm::Value *LHS = Visit(lhsExpr);
4595  llvm::Value *RHS = Visit(rhsExpr);
4596 
4597  llvm::Type *condType = ConvertType(condExpr->getType());
4598  auto *vecTy = cast<llvm::FixedVectorType>(condType);
4599 
4600  unsigned numElem = vecTy->getNumElements();
4601  llvm::Type *elemType = vecTy->getElementType();
4602 
4603  llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4604  llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4605  llvm::Value *tmp = Builder.CreateSExt(
4606  TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4607  llvm::Value *tmp2 = Builder.CreateNot(tmp);
4608 
4609  // Cast float to int to perform ANDs if necessary.
4610  llvm::Value *RHSTmp = RHS;
4611  llvm::Value *LHSTmp = LHS;
4612  bool wasCast = false;
4613  llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4614  if (rhsVTy->getElementType()->isFloatingPointTy()) {
4615  RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4616  LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4617  wasCast = true;
4618  }
4619 
4620  llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4621  llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4622  llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4623  if (wasCast)
4624  tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4625 
4626  return tmp5;
4627  }
4628 
4629  if (condExpr->getType()->isVectorType()) {
4630  CGF.incrementProfileCounter(E);
4631 
4632  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4633  llvm::Value *LHS = Visit(lhsExpr);
4634  llvm::Value *RHS = Visit(rhsExpr);
4635 
4636  llvm::Type *CondType = ConvertType(condExpr->getType());
4637  auto *VecTy = cast<llvm::VectorType>(CondType);
4638  llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4639 
4640  CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4641  return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4642  }
4643 
4644  // If this is a really simple expression (like x ? 4 : 5), emit this as a
4645  // select instead of as control flow. We can only do this if it is cheap and
4646  // safe to evaluate the LHS and RHS unconditionally.
4647  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4649  llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4650  llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4651 
4652  CGF.incrementProfileCounter(E, StepV);
4653 
4654  llvm::Value *LHS = Visit(lhsExpr);
4655  llvm::Value *RHS = Visit(rhsExpr);
4656  if (!LHS) {
4657  // If the conditional has void type, make sure we return a null Value*.
4658  assert(!RHS && "LHS and RHS types must match");
4659  return nullptr;
4660  }
4661  return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4662  }
4663 
4664  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4665  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4666  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4667 
4669  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4670  CGF.getProfileCount(lhsExpr));
4671 
4672  CGF.EmitBlock(LHSBlock);
4673  CGF.incrementProfileCounter(E);
4674  eval.begin(CGF);
4675  Value *LHS = Visit(lhsExpr);
4676  eval.end(CGF);
4677 
4678  LHSBlock = Builder.GetInsertBlock();
4679  Builder.CreateBr(ContBlock);
4680 
4681  CGF.EmitBlock(RHSBlock);
4682  eval.begin(CGF);
4683  Value *RHS = Visit(rhsExpr);
4684  eval.end(CGF);
4685 
4686  RHSBlock = Builder.GetInsertBlock();
4687  CGF.EmitBlock(ContBlock);
4688 
4689  // If the LHS or RHS is a throw expression, it will be legitimately null.
4690  if (!LHS)
4691  return RHS;
4692  if (!RHS)
4693  return LHS;
4694 
4695  // Create a PHI node for the real part.
4696  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4697  PN->addIncoming(LHS, LHSBlock);
4698  PN->addIncoming(RHS, RHSBlock);
4699  return PN;
4700 }
4701 
4702 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4703  return Visit(E->getChosenSubExpr());
4704 }
4705 
4706 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4707  QualType Ty = VE->getType();
4708 
4709  if (Ty->isVariablyModifiedType())
4710  CGF.EmitVariablyModifiedType(Ty);
4711 
4712  Address ArgValue = Address::invalid();
4713  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4714 
4715  llvm::Type *ArgTy = ConvertType(VE->getType());
4716 
4717  // If EmitVAArg fails, emit an error.
4718  if (!ArgPtr.isValid()) {
4719  CGF.ErrorUnsupported(VE, "va_arg expression");
4720  return llvm::UndefValue::get(ArgTy);
4721  }
4722 
4723  // FIXME Volatility.
4724  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4725 
4726  // If EmitVAArg promoted the type, we must truncate it.
4727  if (ArgTy != Val->getType()) {
4728  if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4729  Val = Builder.CreateIntToPtr(Val, ArgTy);
4730  else
4731  Val = Builder.CreateTrunc(Val, ArgTy);
4732  }
4733 
4734  return Val;
4735 }
4736 
4737 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4738  return CGF.EmitBlockLiteral(block);
4739 }
4740 
4741 // Convert a vec3 to vec4, or vice versa.
4743  Value *Src, unsigned NumElementsDst) {
4744  static constexpr int Mask[] = {0, 1, 2, -1};
4745  return Builder.CreateShuffleVector(Src,
4746  llvm::makeArrayRef(Mask, NumElementsDst));
4747 }
4748 
4749 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4750 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4751 // but could be scalar or vectors of different lengths, and either can be
4752 // pointer.
4753 // There are 4 cases:
4754 // 1. non-pointer -> non-pointer : needs 1 bitcast
4755 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4756 // 3. pointer -> non-pointer
4757 // a) pointer -> intptr_t : needs 1 ptrtoint
4758 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4759 // 4. non-pointer -> pointer
4760 // a) intptr_t -> pointer : needs 1 inttoptr
4761 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4762 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4763 // allow casting directly between pointer types and non-integer non-pointer
4764 // types.
4766  const llvm::DataLayout &DL,
4767  Value *Src, llvm::Type *DstTy,
4768  StringRef Name = "") {
4769  auto SrcTy = Src->getType();
4770 
4771  // Case 1.
4772  if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4773  return Builder.CreateBitCast(Src, DstTy, Name);
4774 
4775  // Case 2.
4776  if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4777  return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4778 
4779  // Case 3.
4780  if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4781  // Case 3b.
4782  if (!DstTy->isIntegerTy())
4783  Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4784  // Cases 3a and 3b.
4785  return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4786  }
4787 
4788  // Case 4b.
4789  if (!SrcTy->isIntegerTy())
4790  Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4791  // Cases 4a and 4b.
4792  return Builder.CreateIntToPtr(Src, DstTy, Name);
4793 }
4794 
4795 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4796  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4797  llvm::Type *DstTy = ConvertType(E->getType());
4798 
4799  llvm::Type *SrcTy = Src->getType();
4800  unsigned NumElementsSrc =
4801  isa<llvm::VectorType>(SrcTy)
4802  ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4803  : 0;
4804  unsigned NumElementsDst =
4805  isa<llvm::VectorType>(DstTy)
4806  ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4807  : 0;
4808 
4809  // Going from vec3 to non-vec3 is a special case and requires a shuffle
4810  // vector to get a vec4, then a bitcast if the target type is different.
4811  if (NumElementsSrc == 3 && NumElementsDst != 3) {
4812  Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4813  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4814  DstTy);
4815 
4816  Src->setName("astype");
4817  return Src;
4818  }
4819 
4820  // Going from non-vec3 to vec3 is a special case and requires a bitcast
4821  // to vec4 if the original type is not vec4, then a shuffle vector to
4822  // get a vec3.
4823  if (NumElementsSrc != 3 && NumElementsDst == 3) {
4824  auto *Vec4Ty = llvm::FixedVectorType::get(
4825  cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4826  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4827  Vec4Ty);
4828 
4829  Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4830  Src->setName("astype");
4831  return Src;
4832  }
4833 
4834  return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4835  Src, DstTy, "astype");
4836 }
4837 
4838 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4839  return CGF.EmitAtomicExpr(E).getScalarVal();
4840 }
4841 
4842 //===----------------------------------------------------------------------===//
4843 // Entry Point into this File
4844 //===----------------------------------------------------------------------===//
4845 
4846 /// Emit the computation of the specified expression of scalar type, ignoring
4847 /// the result.
4848 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4849  assert(E && hasScalarEvaluationKind(E->getType()) &&
4850  "Invalid scalar expression to emit");
4851 
4852  return ScalarExprEmitter(*this, IgnoreResultAssign)
4853  .Visit(const_cast<Expr *>(E));
4854 }
4855 
4856 /// Emit a conversion from the specified type to the specified destination type,
4857 /// both of which are LLVM scalar types.
4859  QualType DstTy,
4860  SourceLocation Loc) {
4861  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4862  "Invalid scalar expression to emit");
4863  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4864 }
4865 
4866 /// Emit a conversion from the specified complex type to the specified
4867 /// destination type, where the destination type is an LLVM scalar type.
4869  QualType SrcTy,
4870  QualType DstTy,
4871  SourceLocation Loc) {
4872  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4873  "Invalid complex -> scalar conversion");
4874  return ScalarExprEmitter(*this)
4875  .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4876 }
4877 
4878 
4881  bool isInc, bool isPre) {
4882  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4883 }
4884 
4886  // object->isa or (*object).isa
4887  // Generate code as for: *(Class*)object
4888 
4889  Expr *BaseExpr = E->getBase();
4890  Address Addr = Address::invalid();
4891  if (BaseExpr->isPRValue()) {
4892  Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4893  } else {
4894  Addr = EmitLValue(BaseExpr).getAddress(*this);
4895  }
4896 
4897  // Cast the address to Class*.
4898  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4899  return MakeAddrLValue(Addr, E->getType());
4900 }
4901 
4902 
4904  const CompoundAssignOperator *E) {
4905  ScalarExprEmitter Scalar(*this);
4906  Value *Result = nullptr;
4907  switch (E->getOpcode()) {
4908 #define COMPOUND_OP(Op) \
4909  case BO_##Op##Assign: \
4910  return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4911  Result)
4912  COMPOUND_OP(Mul);
4913  COMPOUND_OP(Div);
4914  COMPOUND_OP(Rem);
4915  COMPOUND_OP(Add);
4916  COMPOUND_OP(Sub);
4917  COMPOUND_OP(Shl);
4918  COMPOUND_OP(Shr);
4919  COMPOUND_OP(And);
4920  COMPOUND_OP(Xor);
4921  COMPOUND_OP(Or);
4922 #undef COMPOUND_OP
4923 
4924  case BO_PtrMemD:
4925  case BO_PtrMemI:
4926  case BO_Mul:
4927  case BO_Div:
4928  case BO_Rem:
4929  case BO_Add:
4930  case BO_Sub:
4931  case BO_Shl:
4932  case BO_Shr:
4933  case BO_LT:
4934  case BO_GT:
4935  case BO_LE:
4936  case BO_GE:
4937  case BO_EQ:
4938  case BO_NE:
4939  case BO_Cmp:
4940  case BO_And:
4941  case BO_Xor:
4942  case BO_Or:
4943  case BO_LAnd:
4944  case BO_LOr:
4945  case BO_Assign:
4946  case BO_Comma:
4947  llvm_unreachable("Not valid compound assignment operators");
4948  }
4949 
4950  llvm_unreachable("Unhandled compound assignment operator");
4951 }
4952 
4954  // The total (signed) byte offset for the GEP.
4956  // The offset overflow flag - true if the total offset overflows.
4958 };
4959 
4960 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4961 /// and compute the total offset it applies from it's base pointer BasePtr.
4962 /// Returns offset in bytes and a boolean flag whether an overflow happened
4963 /// during evaluation.
4965  llvm::LLVMContext &VMContext,
4966  CodeGenModule &CGM,
4967  CGBuilderTy &Builder) {
4968  const auto &DL = CGM.getDataLayout();
4969 
4970  // The total (signed) byte offset for the GEP.
4971  llvm::Value *TotalOffset = nullptr;
4972 
4973  // Was the GEP already reduced to a constant?
4974  if (isa<llvm::Constant>(GEPVal)) {
4975  // Compute the offset by casting both pointers to integers and subtracting:
4976  // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4977  Value *BasePtr_int =
4978  Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4979  Value *GEPVal_int =
4980  Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4981  TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4982  return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4983  }
4984 
4985  auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4986  assert(GEP->getPointerOperand() == BasePtr &&
4987  "BasePtr must be the base of the GEP.");
4988  assert(GEP->isInBounds() && "Expected inbounds GEP");
4989 
4990  auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4991 
4992  // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4993  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4994  auto *SAddIntrinsic =
4995  CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4996  auto *SMulIntrinsic =
4997  CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4998 
4999  // The offset overflow flag - true if the total offset overflows.
5000  llvm::Value *OffsetOverflows = Builder.getFalse();
5001 
5002  /// Return the result of the given binary operation.
5003  auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5004  llvm::Value *RHS) -> llvm::Value * {
5005  assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5006 
5007  // If the operands are constants, return a constant result.
5008  if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5009  if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5010  llvm::APInt N;
5011  bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5012  /*Signed=*/true, N);
5013  if (HasOverflow)
5014  OffsetOverflows = Builder.getTrue();
5015  return llvm::ConstantInt::get(VMContext, N);
5016  }
5017  }
5018 
5019  // Otherwise, compute the result with checked arithmetic.
5020  auto *ResultAndOverflow = Builder.CreateCall(
5021  (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5022  OffsetOverflows = Builder.CreateOr(
5023  Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5024  return Builder.CreateExtractValue(ResultAndOverflow, 0);
5025  };
5026 
5027  // Determine the total byte offset by looking at each GEP operand.
5028  for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5029  GTI != GTE; ++GTI) {
5030  llvm::Value *LocalOffset;
5031  auto *Index = GTI.getOperand();
5032  // Compute the local offset contributed by this indexing step:
5033  if (auto *STy = GTI.getStructTypeOrNull()) {
5034  // For struct indexing, the local offset is the byte position of the
5035  // specified field.
5036  unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5037  LocalOffset = llvm::ConstantInt::get(
5038  IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5039  } else {
5040  // Otherwise this is array-like indexing. The local offset is the index
5041  // multiplied by the element size.
5042  auto *ElementSize = llvm::ConstantInt::get(
5043  IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5044  auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5045  LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5046  }
5047 
5048  // If this is the first offset, set it as the total offset. Otherwise, add
5049  // the local offset into the running total.
5050  if (!TotalOffset || TotalOffset == Zero)
5051  TotalOffset = LocalOffset;
5052  else
5053  TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5054  }
5055 
5056  return {TotalOffset, OffsetOverflows};
5057 }
5058 
5059 Value *
5061  bool SignedIndices, bool IsSubtraction,
5062  SourceLocation Loc, const Twine &Name) {
5063  llvm::Type *PtrTy = Ptr->getType();
5064  Value *GEPVal = Builder.CreateInBoundsGEP(
5065  PtrTy->getPointerElementType(), Ptr, IdxList, Name);
5066 
5067  // If the pointer overflow sanitizer isn't enabled, do nothing.
5068  if (!SanOpts.has(SanitizerKind::PointerOverflow))
5069  return GEPVal;
5070 
5071  // Perform nullptr-and-offset check unless the nullptr is defined.
5072  bool PerformNullCheck = !NullPointerIsDefined(
5073  Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5074  // Check for overflows unless the GEP got constant-folded,
5075  // and only in the default address space
5076  bool PerformOverflowCheck =
5077  !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5078 
5079  if (!(PerformNullCheck || PerformOverflowCheck))
5080  return GEPVal;
5081 
5082  const auto &DL = CGM.getDataLayout();
5083 
5084  SanitizerScope SanScope(this);
5085  llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5086 
5087  GEPOffsetAndOverflow EvaluatedGEP =
5088  EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5089 
5090  assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5091  EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5092  "If the offset got constant-folded, we don't expect that there was an "
5093  "overflow.");
5094 
5095  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5096 
5097  // Common case: if the total offset is zero, and we are using C++ semantics,
5098  // where nullptr+0 is defined, don't emit a check.
5099  if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5100  return GEPVal;
5101 
5102  // Now that we've computed the total offset, add it to the base pointer (with
5103  // wrapping semantics).
5104  auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5105  auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5106 
5108 
5109  if (PerformNullCheck) {
5110  // In C++, if the base pointer evaluates to a null pointer value,
5111  // the only valid pointer this inbounds GEP can produce is also
5112  // a null pointer, so the offset must also evaluate to zero.
5113  // Likewise, if we have non-zero base pointer, we can not get null pointer
5114  // as a result, so the offset can not be -intptr_t(BasePtr).
5115  // In other words, both pointers are either null, or both are non-null,
5116  // or the behaviour is undefined.
5117  //
5118  // C, however, is more strict in this regard, and gives more
5119  // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5120  // So both the input to the 'gep inbounds' AND the output must not be null.
5121  auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5122  auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5123  auto *Valid =
5124  CGM.getLangOpts().CPlusPlus
5125  ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5126  : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5127  Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5128  }
5129 
5130  if (PerformOverflowCheck) {
5131  // The GEP is valid if:
5132  // 1) The total offset doesn't overflow, and
5133  // 2) The sign of the difference between the computed address and the base
5134  // pointer matches the sign of the total offset.
5135  llvm::Value *ValidGEP;
5136  auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5137  if (SignedIndices) {
5138  // GEP is computed as `unsigned base + signed offset`, therefore:
5139  // * If offset was positive, then the computed pointer can not be
5140  // [unsigned] less than the base pointer, unless it overflowed.
5141  // * If offset was negative, then the computed pointer can not be
5142  // [unsigned] greater than the bas pointere, unless it overflowed.
5143  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5144  auto *PosOrZeroOffset =
5145  Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5146  llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5147  ValidGEP =
5148  Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5149  } else if (!IsSubtraction) {
5150  // GEP is computed as `unsigned base + unsigned offset`, therefore the
5151  // computed pointer can not be [unsigned] less than base pointer,
5152  // unless there was an overflow.
5153  // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5154  ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5155  } else {
5156  // GEP is computed as `unsigned base - unsigned offset`, therefore the
5157  // computed pointer can not be [unsigned] greater than base pointer,
5158  // unless there was an overflow.
5159  // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5160  ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5161  }
5162  ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5163  Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5164  }
5165 
5166  assert(!Checks.empty() && "Should have produced some checks.");
5167 
5168  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5169  // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5170  llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5171  EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5172 
5173  return GEPVal;
5174 }
clang::StmtVisitor
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:183
clang::BuiltinType
This class is used for builtin types like 'int'.
Definition: Type.h:2493
clang::ArrayInitIndexExpr
Represents the index of the current element of an array being initialized by an ArrayInitLoopExpr.
Definition: Expr.h:5469
clang::ExpressionTraitExpr
An expression trait intrinsic.
Definition: ExprCXX.h:2823
clang::CodeGen::CodeGenFunction::EmitBuiltinAvailable
llvm::Value * EmitBuiltinAvailable(const VersionTuple &Version)
Definition: CGObjC.cpp:3937
clang::CodeGen::CodeGenFunction::SanitizerScope
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
Definition: CodeGenFunction.h:496
clang::CodeGen::CodeGenFunction::ConvertTypeForMem
llvm::Type * ConvertTypeForMem(QualType T)
Definition: CodeGenFunction.cpp:207
clang::ASTContext::getTypeSizeInChars
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
Definition: ASTContext.cpp:2450
clang::CompoundAssignOperator::getComputationLHSType
QualType getComputationLHSType() const
Definition: Expr.h:4084
clang::interp::Shl
bool Shl(InterpState &S, CodePtr OpPC)
Definition: Interp.h:913
clang::CodeGen::CodeGenModule::createOpenCLIntToSamplerConversion
llvm::Value * createOpenCLIntToSamplerConversion(const Expr *E, CodeGenFunction &CGF)
Definition: CodeGenModule.cpp:6372
HANDLEBINOP
#define HANDLEBINOP(OP)
Definition: CGExprScalar.cpp:806
clang::MatrixSubscriptExpr
MatrixSubscriptExpr - Matrix subscript expression for the MatrixType extension.
Definition: Expr.h:2717
clang::SubstNonTypeTemplateParmExpr
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4245
clang::CharUnits::isOne
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
clang::AtomicExpr
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load,...
Definition: Expr.h:6229
clang::CodeGen::CodeGenFunction::TCK_DowncastPointer
@ TCK_DowncastPointer
Checking the operand of a static_cast to a derived pointer type.
Definition: CodeGenFunction.h:2931
clang::CodeGen::CodeGenTypeCache::SizeTy
llvm::IntegerType * SizeTy
Definition: CodeGenTypeCache.h:50
clang::LangOptions::isSignedOverflowDefined
bool isSignedOverflowDefined() const
Definition: LangOptions.h:401
clang::CodeGen::CGDebugInfo::addHeapAllocSiteMetadata
void addHeapAllocSiteMetadata(llvm::CallBase *CallSite, QualType AllocatedTy, SourceLocation Loc)
Add heapallocsite metadata for MSAllocator calls.
Definition: CGDebugInfo.cpp:2318
clang::QualType::getObjCLifetime
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1120
clang::ExpressionTraitExpr::getValue
bool getValue() const
Definition: ExprCXX.h:2862
clang::CodeGen::CodeGenFunction::getProfileCount
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
Definition: CodeGenFunction.h:1498
clang::RecordDecl::field_begin
field_iterator field_begin() const
Definition: Decl.cpp:4605
GEPOffsetAndOverflow
Definition: CGExprScalar.cpp:4953
clang::TargetInfo::getLongDoubleFormat
const llvm::fltSemantics & getLongDoubleFormat() const
Definition: TargetInfo.h:670
clang::CodeGen::CodeGenFunction::EmitStoreThroughBitfieldLValue
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=nullptr)
EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints as EmitStoreThroughLValue.
Definition: CGExpr.cpp:2166
clang::ASTRecordLayout::getFieldOffset
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
clang::CodeGen::CodeGenFunction::EmitScalarConversion
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
Definition: CGExprScalar.cpp:4858
EmitIntegerTruncationCheckHelper
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerMask > > EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
Definition: CGExprScalar.cpp:973
clang::ArrayTypeTraitExpr
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent.
Definition: ExprCXX.h:2753
clang::CXXBaseSpecifier::getType
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:246
clang::ASTContext::getOpenMPDefaultSimdAlign
unsigned getOpenMPDefaultSimdAlign(QualType T) const
Get default simd alignment of the specified complete type in bits.
Definition: ASTContext.cpp:2433
clang::CodeGen::CodeGenFunction::EmitAtomicCompareExchange
std::pair< RValue, llvm::Value * > EmitAtomicCompareExchange(LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success=llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure=llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak=false, AggValueSlot Slot=AggValueSlot::ignored())
Emit a compare-and-exchange op for atomic type.
Definition: CGAtomic.cpp:2062
clang::CodeGen::CGCXXABI::EmitMemberPointerConversion
virtual llvm::Value * EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src)
Perform a derived-to-base, base-to-derived, or bitcast member pointer conversion.
Definition: CGCXXABI.cpp:68
clang::ObjCBoxedExpr
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:128
clang::interp::Add
bool Add(InterpState &S, CodePtr OpPC)
Definition: Interp.h:134
clang::CXXBoolLiteralExpr
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:721
clang::CodeGen::CodeGenFunction::LoadCXXThis
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of 'this'.
Definition: CodeGenFunction.h:2763
clang::AsTypeExpr
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:6026
clang::OffsetOfExpr
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type,...
Definition: Expr.h:2438
clang::interp::APInt
llvm::APInt APInt
Definition: Integral.h:27
clang::BinaryOperator::isCompoundAssignmentOp
bool isCompoundAssignmentOp() const
Definition: Expr.h:3946
VCMPEQ
@ VCMPEQ
Definition: CGExprScalar.cpp:4007
clang::CXXPseudoDestructorExpr
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2517
clang::CodeGen::CodeGenModule::EmitNullConstant
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
Definition: CGExprConstant.cpp:2308
clang::CodeGen::CodeGenFunction::EmitBlockCopyAndAutorelease
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3862
LT
ASTImporterLookupTable & LT
Definition: ASTImporterLookupTable.cpp:23
clang::DeclContext::specific_decl_iterator
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2135
clang::CodeGen::CodeGenFunction::EmitScalarPrePostIncDec
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
Definition: CGExprScalar.cpp:4880
clang::ASTContext::getCharWidth
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2249
clang::CodeGen::CodeGenModule::CreateRuntimeFunction
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
Definition: CodeGenModule.cpp:3792
clang::TypeSourceInfo::getType
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:6406
clang::Type::isOCLIntelSubgroupAVCType
bool isOCLIntelSubgroupAVCType() const
Definition: Type.h:6900
clang::CodeGen::CodeGenTypeCache::FloatTy
llvm::Type * FloatTy
Definition: CodeGenTypeCache.h:39
type
clang::CodeGen::CodeGenFunction::ConstantFoldsToSimpleInteger
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant,...
Definition: CodeGenFunction.cpp:1513
clang::CodeGen::CodeGenFunction::sanitizePerformTypeCheck
bool sanitizePerformTypeCheck() const
Whether any type-checking sanitizers are enabled.
Definition: CGExpr.cpp:657
clang::CodeGen::CodeGenFunction::EmitObjCConsumeObject
llvm::Value * EmitObjCConsumeObject(QualType T, llvm::Value *Ptr)
Produce the code for a CK_ARCConsumeObject.
Definition: CGObjC.cpp:2066
clang::CodeGen::CodeGenFunction::EmitCheckSourceLocation
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:3064
clang::MatrixSubscriptExpr::getBase
Expr * getBase()
Definition: Expr.h:2743
clang::CodeGen::CodeGenFunction::EmitTrapCheck
void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID)
Create a basic block that will call the trap intrinsic, and emit a conditional branch to it,...
Definition: CGExpr.cpp:3478
createBinOpInfoFromIncDec
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc, FPOptions FPFeatures)
Definition: CGExprScalar.cpp:2443
clang::CXXDefaultArgExpr::getExpr
const Expr * getExpr() const
Definition: ExprCXX.h:1280
CodeGenFunction.h
string
string(SUBSTRING ${CMAKE_CURRENT_BINARY_DIR} 0 ${PATH_LIB_START} PATH_HEAD) string(SUBSTRING $
Definition: CMakeLists.txt:22
clang::OffsetOfExpr::getIndexExpr
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:2501
getMaskElt
static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off)
Definition: CGExprScalar.cpp:1797
clang::CXXNoexceptExpr::getValue
bool getValue() const
Definition: ExprCXX.h:4020
clang::CodeGen::CodeGenFunction::EmitNounwindRuntimeCall
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
clang::CodeGen::CodeGenFunction::EmitScalarCompoundAssignWithComplex
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
Definition: CGExprComplex.cpp:1182
clang::FloatingLiteral::getValue
llvm::APFloat getValue() const
Definition: Expr.h:1647
clang::Qualifiers::OCL_Weak
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:176
clang::CodeGen::CodeGenFunction::EmitObjCIsaExpr
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
Definition: CGExprScalar.cpp:4885
clang::CodeGen::CodeGenFunction::EmitCoyieldExpr
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
Definition: CGCoroutine.cpp:268
llvm::SmallVector
Definition: LLVM.h:38
clang::APValue::getInt
APSInt & getInt()
Definition: APValue.h:415
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:88
clang::LangOptions::OverflowHandler
std::string OverflowHandler
The name of the handler function to be called when -ftrapv is specified.
Definition: LangOptions.h:333
clang::BuiltinType::Kind
Kind
Definition: Type.h:2495
clang::AsTypeExpr::getSrcExpr
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:6045
clang::ASTContext::getIntWidth
unsigned getIntWidth(QualType T) const
Definition: ASTContext.cpp:10220
clang::AbstractConditionalOperator
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:4103
clang::CodeGen::CodeGenFunction::EmitPseudoObjectRValue
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
Definition: CGExpr.cpp:5483
clang::CodeGen::LValue::getAddress
Address getAddress(CodeGenFunction &CGF) const
Definition: CGValue.h:329
clang::CharacterLiteral::getValue
unsigned getValue() const
Definition: Expr.h:1612
clang::CodeGen::CodeGenFunction::CXXDefaultArgExprScope
Definition: CodeGenFunction.h:1605
clang::OffsetOfNode::getKind
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2388
TargetInfo.h
clang::QualType::getNonReferenceType
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6620
clang::CastExpr::getSubExpr
Expr * getSubExpr()
Definition: Expr.h:3524
clang::CodeGen::CodeGenModule::getSize
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
Definition: CodeGenModule.cpp:981
clang::CXXRewrittenBinaryOperator::getSemanticForm
Expr * getSemanticForm()
Get an equivalent semantic form for this expression.
Definition: ExprCXX.h:302
clang::OffsetOfNode::Array
@ Array
An index into an array.
Definition: Expr.h:2339
clang::CodeGen::CodeGenTypeCache::getPointerAlign
CharUnits getPointerAlign() const
Definition: CodeGenTypeCache.h:117
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:673
Attr.h
clang::Type::isMatrixType
bool isMatrixType() const
Definition: Type.h:6782
AttributeLangSupport::C
@ C
Definition: SemaDeclAttr.cpp:54
clang::ASTRecordLayout::getBaseClassOffset
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
clang::BinaryOperator::getOpForCompoundAssignment
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3949
clang::AbstractConditionalOperator::getTrueExpr
Expr * getTrueExpr() const
Definition: Expr.h:4287
clang::ArraySubscriptExpr::getIdx
Expr * getIdx()
Definition: Expr.h:2679
clang::ArrayTypeTraitExpr::getValue
uint64_t getValue() const
Definition: ExprCXX.h:2798
clang::TypeTraitExpr
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2665
clang::SanitizerSet::has
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:155
clang::ASTContext::getFloatTypeSemantics
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat 'semantics' for the specified scalar floating point type.
Definition: ASTContext.cpp:1703
clang::SanitizerSet::hasOneOf
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:161
clang::QualType::getCanonicalType
QualType getCanonicalType() const
Definition: Type.h:6463
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2835
clang::CodeGen::Address::isValid
bool isValid() const
Definition: Address.h:35
clang::Type::isFloatingType
bool isFloatingType() const
Definition: Type.cpp:2104
clang::RequiresExpr
C++2a [expr.prim.req]: A requires-expression provides a concise way to express requirements on templa...
Definition: ExprConcepts.h:475
clang::ast_matchers::type
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchersInternal.cpp:772
clang::CodeGen::CodeGenFunction::EmitCoawaitExpr
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
Definition: CGCoroutine.cpp:261
clang::ShuffleVectorExpr::getShuffleMaskIdx
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:4444
clang::CodeGen::CodeGenFunction::EmitCheckedInBoundsGEP
llvm::Value * EmitCheckedInBoundsGEP(llvm::Value *Ptr, ArrayRef< llvm::Value * > IdxList, bool SignedIndices, bool IsSubtraction, SourceLocation Loc, const Twine &Name="")
Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to detect undefined behavior whe...
Definition: CGExprScalar.cpp:5060
clang::BinaryOperator::getExprLoc
SourceLocation getExprLoc() const
Definition: Expr.h:3843
clang::TypeTraitExpr::getValue
bool getValue() const
Definition: ExprCXX.h:2708
clang::CodeGen::CodeGenFunction::createBasicBlock
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
Definition: CodeGenFunction.h:2394
clang::CXXNewExpr
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)".
Definition: ExprCXX.h:2139
clang::Type::isRealFloatingType
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:2120
clang::CodeGen::CodeGenFunction::OpaqueValueMapping
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
Definition: CodeGenFunction.h:1292
clang::StmtExpr::getSubStmt
CompoundStmt * getSubStmt()
Definition: Expr.h:4362
CGObjCRuntime.h
clang::InitListExpr
Describes an C or C++ initializer list.
Definition: Expr.h:4786
clang::OffsetOfNode::getBase
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:2408
clang::Qualifiers::OCL_ExplicitNone
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:166
llvm::Optional
Definition: LLVM.h:40
clang::TargetInfo::getConstantAddressSpace
virtual llvm::Optional< LangAS > getConstantAddressSpace() const
Return an AST address space which can be used opportunistically for constant global memory.
Definition: TargetInfo.h:1423
clang::UnaryOperator
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2157
clang::Expr::isPRValue
bool isPRValue() const
Definition: Expr.h:271
clang::CodeGen::CodeGenModule::getLangOpts
const LangOptions & getLangOpts() const
Definition: CodeGenModule.h:703
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:6955
clang::CodeGen::CodeGenFunction::EmitARCStoreAutoreleasing
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3605