clang 18.0.0git
CGExprScalar.cpp
Go to the documentation of this file.
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenMPRuntime.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "TargetInfo.h"
23#include "clang/AST/Attr.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/Expr.h"
30#include "llvm/ADT/APFixedPoint.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/FixedPointBuilder.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GetElementPtrTypeIterator.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/IntrinsicsPowerPC.h"
41#include "llvm/IR/MatrixBuilder.h"
42#include "llvm/IR/Module.h"
43#include "llvm/Support/TypeSize.h"
44#include <cstdarg>
45#include <optional>
46
47using namespace clang;
48using namespace CodeGen;
49using llvm::Value;
50
51//===----------------------------------------------------------------------===//
52// Scalar Expression Emitter
53//===----------------------------------------------------------------------===//
54
55namespace {
56
57/// Determine whether the given binary operation may overflow.
58/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60/// the returned overflow check is precise. The returned value is 'true' for
61/// all other opcodes, to be conservative.
62bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63 BinaryOperator::Opcode Opcode, bool Signed,
64 llvm::APInt &Result) {
65 // Assume overflow is possible, unless we can prove otherwise.
66 bool Overflow = true;
67 const auto &LHSAP = LHS->getValue();
68 const auto &RHSAP = RHS->getValue();
69 if (Opcode == BO_Add) {
70 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71 : LHSAP.uadd_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Sub) {
73 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74 : LHSAP.usub_ov(RHSAP, Overflow);
75 } else if (Opcode == BO_Mul) {
76 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77 : LHSAP.umul_ov(RHSAP, Overflow);
78 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79 if (Signed && !RHS->isZero())
80 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81 else
82 return false;
83 }
84 return Overflow;
85}
86
87struct BinOpInfo {
88 Value *LHS;
89 Value *RHS;
90 QualType Ty; // Computation Type.
91 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92 FPOptions FPFeatures;
93 const Expr *E; // Entire expr, for error unsupported. May not be binop.
94
95 /// Check if the binop can result in integer overflow.
96 bool mayHaveIntegerOverflow() const {
97 // Without constant input, we can't rule out overflow.
98 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100 if (!LHSCI || !RHSCI)
101 return true;
102
103 llvm::APInt Result;
104 return ::mayHaveIntegerOverflow(
105 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106 }
107
108 /// Check if the binop computes a division or a remainder.
109 bool isDivremOp() const {
110 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111 Opcode == BO_RemAssign;
112 }
113
114 /// Check if the binop can result in an integer division by zero.
115 bool mayHaveIntegerDivisionByZero() const {
116 if (isDivremOp())
117 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118 return CI->isZero();
119 return true;
120 }
121
122 /// Check if the binop can result in a float division by zero.
123 bool mayHaveFloatDivisionByZero() const {
124 if (isDivremOp())
125 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126 return CFP->isZero();
127 return true;
128 }
129
130 /// Check if at least one operand is a fixed point type. In such cases, this
131 /// operation did not follow usual arithmetic conversion and both operands
132 /// might not be of the same type.
133 bool isFixedPointOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140 }
141 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142 return UnOp->getSubExpr()->getType()->isFixedPointType();
143 return false;
144 }
145};
146
147static bool MustVisitNullValue(const Expr *E) {
148 // If a null pointer expression's type is the C++0x nullptr_t, then
149 // it's not necessarily a simple constant and it must be evaluated
150 // for its potential side effects.
151 return E->getType()->isNullPtrType();
152}
153
154/// If \p E is a widened promoted integer, get its base (unpromoted) type.
155static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156 const Expr *E) {
157 const Expr *Base = E->IgnoreImpCasts();
158 if (E == Base)
159 return std::nullopt;
160
161 QualType BaseTy = Base->getType();
162 if (!Ctx.isPromotableIntegerType(BaseTy) ||
163 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164 return std::nullopt;
165
166 return BaseTy;
167}
168
169/// Check if \p E is a widened promoted integer.
170static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171 return getUnwidenedIntegerType(Ctx, E).has_value();
172}
173
174/// Check if we can skip the overflow check for \p Op.
175static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177 "Expected a unary or binary operator");
178
179 // If the binop has constant inputs and we can prove there is no overflow,
180 // we can elide the overflow check.
181 if (!Op.mayHaveIntegerOverflow())
182 return true;
183
184 // If a unary op has a widened operand, the op cannot overflow.
185 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186 return !UO->canOverflow();
187
188 // We usually don't need overflow checks for binops with widened operands.
189 // Multiplication with promoted unsigned operands is a special case.
190 const auto *BO = cast<BinaryOperator>(Op.E);
191 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192 if (!OptionalLHSTy)
193 return false;
194
195 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196 if (!OptionalRHSTy)
197 return false;
198
199 QualType LHSTy = *OptionalLHSTy;
200 QualType RHSTy = *OptionalRHSTy;
201
202 // This is the simple case: binops without unsigned multiplication, and with
203 // widened operands. No overflow check is needed here.
204 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206 return true;
207
208 // For unsigned multiplication the overflow check can be elided if either one
209 // of the unpromoted types are less than half the size of the promoted type.
210 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213}
214
215class ScalarExprEmitter
216 : public StmtVisitor<ScalarExprEmitter, Value*> {
217 CodeGenFunction &CGF;
218 CGBuilderTy &Builder;
219 bool IgnoreResultAssign;
220 llvm::LLVMContext &VMContext;
221public:
222
223 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225 VMContext(cgf.getLLVMContext()) {
226 }
227
228 //===--------------------------------------------------------------------===//
229 // Utilities
230 //===--------------------------------------------------------------------===//
231
232 bool TestAndClearIgnoreResultAssign() {
233 bool I = IgnoreResultAssign;
234 IgnoreResultAssign = false;
235 return I;
236 }
237
238 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
239 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
240 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241 return CGF.EmitCheckedLValue(E, TCK);
242 }
243
244 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245 const BinOpInfo &Info);
246
247 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
249 }
250
251 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252 const AlignValueAttr *AVAttr = nullptr;
253 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254 const ValueDecl *VD = DRE->getDecl();
255
256 if (VD->getType()->isReferenceType()) {
257 if (const auto *TTy =
259 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260 } else {
261 // Assumptions for function parameters are emitted at the start of the
262 // function, so there is no need to repeat that here,
263 // unless the alignment-assumption sanitizer is enabled,
264 // then we prefer the assumption over alignment attribute
265 // on IR function param.
266 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267 return;
268
269 AVAttr = VD->getAttr<AlignValueAttr>();
270 }
271 }
272
273 if (!AVAttr)
274 if (const auto *TTy = E->getType()->getAs<TypedefType>())
275 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
276
277 if (!AVAttr)
278 return;
279
280 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
281 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
282 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
283 }
284
285 /// EmitLoadOfLValue - Given an expression with complex type that represents a
286 /// value l-value, this method emits the address of the l-value, then loads
287 /// and returns the result.
288 Value *EmitLoadOfLValue(const Expr *E) {
289 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
290 E->getExprLoc());
291
292 EmitLValueAlignmentAssumption(E, V);
293 return V;
294 }
295
296 /// EmitConversionToBool - Convert the specified expression value to a
297 /// boolean (i1) truth value. This is equivalent to "Val != 0".
298 Value *EmitConversionToBool(Value *Src, QualType DstTy);
299
300 /// Emit a check that a conversion from a floating-point type does not
301 /// overflow.
302 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
303 Value *Src, QualType SrcType, QualType DstType,
304 llvm::Type *DstTy, SourceLocation Loc);
305
306 /// Known implicit conversion check kinds.
307 /// Keep in sync with the enum of the same name in ubsan_handlers.h
308 enum ImplicitConversionCheckKind : unsigned char {
309 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
310 ICCK_UnsignedIntegerTruncation = 1,
311 ICCK_SignedIntegerTruncation = 2,
312 ICCK_IntegerSignChange = 3,
313 ICCK_SignedIntegerTruncationOrSignChange = 4,
314 };
315
316 /// Emit a check that an [implicit] truncation of an integer does not
317 /// discard any bits. It is not UB, so we use the value after truncation.
318 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
319 QualType DstType, SourceLocation Loc);
320
321 /// Emit a check that an [implicit] conversion of an integer does not change
322 /// the sign of the value. It is not UB, so we use the value after conversion.
323 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
325 QualType DstType, SourceLocation Loc);
326
327 /// Emit a conversion from the specified type to the specified destination
328 /// type, both of which are LLVM scalar types.
329 struct ScalarConversionOpts {
330 bool TreatBooleanAsSigned;
331 bool EmitImplicitIntegerTruncationChecks;
332 bool EmitImplicitIntegerSignChangeChecks;
333
334 ScalarConversionOpts()
335 : TreatBooleanAsSigned(false),
336 EmitImplicitIntegerTruncationChecks(false),
337 EmitImplicitIntegerSignChangeChecks(false) {}
338
339 ScalarConversionOpts(clang::SanitizerSet SanOpts)
340 : TreatBooleanAsSigned(false),
341 EmitImplicitIntegerTruncationChecks(
342 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
343 EmitImplicitIntegerSignChangeChecks(
344 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
345 };
346 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
347 llvm::Type *SrcTy, llvm::Type *DstTy,
348 ScalarConversionOpts Opts);
349 Value *
350 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
351 SourceLocation Loc,
352 ScalarConversionOpts Opts = ScalarConversionOpts());
353
354 /// Convert between either a fixed point and other fixed point or fixed point
355 /// and an integer.
356 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
357 SourceLocation Loc);
358
359 /// Emit a conversion from the specified complex type to the specified
360 /// destination type, where the destination type is an LLVM scalar type.
361 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
362 QualType SrcTy, QualType DstTy,
363 SourceLocation Loc);
364
365 /// EmitNullValue - Emit a value that corresponds to null for the given type.
366 Value *EmitNullValue(QualType Ty);
367
368 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
369 Value *EmitFloatToBoolConversion(Value *V) {
370 // Compare against 0.0 for fp scalars.
371 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
372 return Builder.CreateFCmpUNE(V, Zero, "tobool");
373 }
374
375 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
376 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
377 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
378
379 return Builder.CreateICmpNE(V, Zero, "tobool");
380 }
381
382 Value *EmitIntToBoolConversion(Value *V) {
383 // Because of the type rules of C, we often end up computing a
384 // logical value, then zero extending it to int, then wanting it
385 // as a logical value again. Optimize this common case.
386 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
387 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
388 Value *Result = ZI->getOperand(0);
389 // If there aren't any more uses, zap the instruction to save space.
390 // Note that there can be more uses, for example if this
391 // is the result of an assignment.
392 if (ZI->use_empty())
393 ZI->eraseFromParent();
394 return Result;
395 }
396 }
397
398 return Builder.CreateIsNotNull(V, "tobool");
399 }
400
401 //===--------------------------------------------------------------------===//
402 // Visitor Methods
403 //===--------------------------------------------------------------------===//
404
405 Value *Visit(Expr *E) {
406 ApplyDebugLocation DL(CGF, E);
408 }
409
410 Value *VisitStmt(Stmt *S) {
411 S->dump(llvm::errs(), CGF.getContext());
412 llvm_unreachable("Stmt can't have complex result type!");
413 }
414 Value *VisitExpr(Expr *S);
415
416 Value *VisitConstantExpr(ConstantExpr *E) {
417 // A constant expression of type 'void' generates no code and produces no
418 // value.
419 if (E->getType()->isVoidType())
420 return nullptr;
421
422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423 if (E->isGLValue())
424 return CGF.Builder.CreateLoad(Address(
425 Result, CGF.ConvertTypeForMem(E->getType()),
427 return Result;
428 }
429 return Visit(E->getSubExpr());
430 }
431 Value *VisitParenExpr(ParenExpr *PE) {
432 return Visit(PE->getSubExpr());
433 }
434 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
435 return Visit(E->getReplacement());
436 }
437 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
438 return Visit(GE->getResultExpr());
439 }
440 Value *VisitCoawaitExpr(CoawaitExpr *S) {
441 return CGF.EmitCoawaitExpr(*S).getScalarVal();
442 }
443 Value *VisitCoyieldExpr(CoyieldExpr *S) {
444 return CGF.EmitCoyieldExpr(*S).getScalarVal();
445 }
446 Value *VisitUnaryCoawait(const UnaryOperator *E) {
447 return Visit(E->getSubExpr());
448 }
449
450 // Leaves.
451 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
452 return Builder.getInt(E->getValue());
453 }
454 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
455 return Builder.getInt(E->getValue());
456 }
457 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
458 return llvm::ConstantFP::get(VMContext, E->getValue());
459 }
460 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
461 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
462 }
463 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
464 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
465 }
466 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
467 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
468 }
469 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
470 if (E->getType()->isVoidType())
471 return nullptr;
472
473 return EmitNullValue(E->getType());
474 }
475 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
476 return EmitNullValue(E->getType());
477 }
478 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
479 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
480 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
481 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
482 return Builder.CreateBitCast(V, ConvertType(E->getType()));
483 }
484
485 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
486 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
487 }
488
489 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
490 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
491 }
492
493 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
494
495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496 if (E->isGLValue())
497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498 E->getExprLoc());
499
500 // Otherwise, assume the mapping is the scalar directly.
502 }
503
504 // l-values.
505 Value *VisitDeclRefExpr(DeclRefExpr *E) {
506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507 return CGF.emitScalarConstant(Constant, E);
508 return EmitLoadOfLValue(E);
509 }
510
511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512 return CGF.EmitObjCSelectorExpr(E);
513 }
514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515 return CGF.EmitObjCProtocolExpr(E);
516 }
517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518 return EmitLoadOfLValue(E);
519 }
520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521 if (E->getMethodDecl() &&
523 return EmitLoadOfLValue(E);
524 return CGF.EmitObjCMessageExpr(E).getScalarVal();
525 }
526
527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528 LValue LV = CGF.EmitObjCIsaExpr(E);
530 return V;
531 }
532
533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534 VersionTuple Version = E->getVersion();
535
536 // If we're checking for a platform older than our minimum deployment
537 // target, we can fold the check away.
538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540
541 return CGF.EmitBuiltinAvailable(Version);
542 }
543
544 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
545 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
546 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
547 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
548 Value *VisitMemberExpr(MemberExpr *E);
549 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
550 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
551 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553 // literals aren't l-values in C++. We do so simply because that's the
554 // cleanest way to handle compound literals in C++.
555 // See the discussion here: https://reviews.llvm.org/D64464
556 return EmitLoadOfLValue(E);
557 }
558
559 Value *VisitInitListExpr(InitListExpr *E);
560
561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562 assert(CGF.getArrayInitIndex() &&
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564 return CGF.getArrayInitIndex();
565 }
566
567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568 return EmitNullValue(E->getType());
569 }
570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572 return VisitCastExpr(E);
573 }
574 Value *VisitCastExpr(CastExpr *E);
575
576 Value *VisitCallExpr(const CallExpr *E) {
578 return EmitLoadOfLValue(E);
579
580 Value *V = CGF.EmitCallExpr(E).getScalarVal();
581
582 EmitLValueAlignmentAssumption(E, V);
583 return V;
584 }
585
586 Value *VisitStmtExpr(const StmtExpr *E);
587
588 // Unary Operators.
589 Value *VisitUnaryPostDec(const UnaryOperator *E) {
590 LValue LV = EmitLValue(E->getSubExpr());
591 return EmitScalarPrePostIncDec(E, LV, false, false);
592 }
593 Value *VisitUnaryPostInc(const UnaryOperator *E) {
594 LValue LV = EmitLValue(E->getSubExpr());
595 return EmitScalarPrePostIncDec(E, LV, true, false);
596 }
597 Value *VisitUnaryPreDec(const UnaryOperator *E) {
598 LValue LV = EmitLValue(E->getSubExpr());
599 return EmitScalarPrePostIncDec(E, LV, false, true);
600 }
601 Value *VisitUnaryPreInc(const UnaryOperator *E) {
602 LValue LV = EmitLValue(E->getSubExpr());
603 return EmitScalarPrePostIncDec(E, LV, true, true);
604 }
605
606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607 llvm::Value *InVal,
608 bool IsInc);
609
610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611 bool isInc, bool isPre);
612
613
614 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615 if (isa<MemberPointerType>(E->getType())) // never sugared
616 return CGF.CGM.getMemberPointerConstant(E);
617
618 return EmitLValue(E->getSubExpr()).getPointer(CGF);
619 }
620 Value *VisitUnaryDeref(const UnaryOperator *E) {
621 if (E->getType()->isVoidType())
622 return Visit(E->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E);
624 }
625
626 Value *VisitUnaryPlus(const UnaryOperator *E,
627 QualType PromotionType = QualType());
628 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
629 Value *VisitUnaryMinus(const UnaryOperator *E,
630 QualType PromotionType = QualType());
631 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
632
633 Value *VisitUnaryNot (const UnaryOperator *E);
634 Value *VisitUnaryLNot (const UnaryOperator *E);
635 Value *VisitUnaryReal(const UnaryOperator *E,
636 QualType PromotionType = QualType());
637 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
638 Value *VisitUnaryImag(const UnaryOperator *E,
639 QualType PromotionType = QualType());
640 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
641 Value *VisitUnaryExtension(const UnaryOperator *E) {
642 return Visit(E->getSubExpr());
643 }
644
645 // C++
646 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
647 return EmitLoadOfLValue(E);
648 }
649 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
650 auto &Ctx = CGF.getContext();
654 SLE->getType());
655 }
656
657 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
658 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
659 return Visit(DAE->getExpr());
660 }
661 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
662 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
663 return Visit(DIE->getExpr());
664 }
665 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
666 return CGF.LoadCXXThis();
667 }
668
669 Value *VisitExprWithCleanups(ExprWithCleanups *E);
670 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
671 return CGF.EmitCXXNewExpr(E);
672 }
673 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
674 CGF.EmitCXXDeleteExpr(E);
675 return nullptr;
676 }
677
678 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
679 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
680 }
681
682 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
683 return Builder.getInt1(E->isSatisfied());
684 }
685
686 Value *VisitRequiresExpr(const RequiresExpr *E) {
687 return Builder.getInt1(E->isSatisfied());
688 }
689
690 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
691 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
692 }
693
694 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
695 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
696 }
697
698 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
699 // C++ [expr.pseudo]p1:
700 // The result shall only be used as the operand for the function call
701 // operator (), and the result of such a call has type void. The only
702 // effect is the evaluation of the postfix-expression before the dot or
703 // arrow.
704 CGF.EmitScalarExpr(E->getBase());
705 return nullptr;
706 }
707
708 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
709 return EmitNullValue(E->getType());
710 }
711
712 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
713 CGF.EmitCXXThrowExpr(E);
714 return nullptr;
715 }
716
717 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
718 return Builder.getInt1(E->getValue());
719 }
720
721 // Binary Operators.
722 Value *EmitMul(const BinOpInfo &Ops) {
723 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
724 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
726 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
728 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
729 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
730 [[fallthrough]];
732 if (CanElideOverflowCheck(CGF.getContext(), Ops))
733 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
734 return EmitOverflowCheckedBinOp(Ops);
735 }
736 }
737
738 if (Ops.Ty->isConstantMatrixType()) {
739 llvm::MatrixBuilder MB(Builder);
740 // We need to check the types of the operands of the operator to get the
741 // correct matrix dimensions.
742 auto *BO = cast<BinaryOperator>(Ops.E);
743 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
744 BO->getLHS()->getType().getCanonicalType());
745 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
746 BO->getRHS()->getType().getCanonicalType());
747 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
748 if (LHSMatTy && RHSMatTy)
749 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
750 LHSMatTy->getNumColumns(),
751 RHSMatTy->getNumColumns());
752 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
753 }
754
755 if (Ops.Ty->isUnsignedIntegerType() &&
756 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
757 !CanElideOverflowCheck(CGF.getContext(), Ops))
758 return EmitOverflowCheckedBinOp(Ops);
759
760 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
761 // Preserve the old values
762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
763 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
764 }
765 if (Ops.isFixedPointOp())
766 return EmitFixedPointBinOp(Ops);
767 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
768 }
769 /// Create a binary op that checks for overflow.
770 /// Currently only supports +, - and *.
771 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
772
773 // Check for undefined division and modulus behaviors.
774 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
775 llvm::Value *Zero,bool isDiv);
776 // Common helper for getting how wide LHS of shift is.
777 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
778
779 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780 // non powers of two.
781 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
782
783 Value *EmitDiv(const BinOpInfo &Ops);
784 Value *EmitRem(const BinOpInfo &Ops);
785 Value *EmitAdd(const BinOpInfo &Ops);
786 Value *EmitSub(const BinOpInfo &Ops);
787 Value *EmitShl(const BinOpInfo &Ops);
788 Value *EmitShr(const BinOpInfo &Ops);
789 Value *EmitAnd(const BinOpInfo &Ops) {
790 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
791 }
792 Value *EmitXor(const BinOpInfo &Ops) {
793 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
794 }
795 Value *EmitOr (const BinOpInfo &Ops) {
796 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
797 }
798
799 // Helper functions for fixed point binary operations.
800 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
801
802 BinOpInfo EmitBinOps(const BinaryOperator *E,
803 QualType PromotionTy = QualType());
804
805 Value *EmitPromotedValue(Value *result, QualType PromotionType);
806 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
807 Value *EmitPromoted(const Expr *E, QualType PromotionType);
808
809 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
810 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
811 Value *&Result);
812
813 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
814 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
815
816 QualType getPromotionType(QualType Ty) {
817 const auto &Ctx = CGF.getContext();
818 if (auto *CT = Ty->getAs<ComplexType>()) {
819 QualType ElementType = CT->getElementType();
820 if (ElementType.UseExcessPrecision(Ctx))
821 return Ctx.getComplexType(Ctx.FloatTy);
822 }
823
824 if (Ty.UseExcessPrecision(Ctx)) {
825 if (auto *VT = Ty->getAs<VectorType>()) {
826 unsigned NumElements = VT->getNumElements();
827 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
828 }
829 return Ctx.FloatTy;
830 }
831
832 return QualType();
833 }
834
835 // Binary operators and binary compound assignment operators.
836#define HANDLEBINOP(OP) \
837 Value *VisitBin##OP(const BinaryOperator *E) { \
838 QualType promotionTy = getPromotionType(E->getType()); \
839 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
840 if (result && !promotionTy.isNull()) \
841 result = EmitUnPromotedValue(result, E->getType()); \
842 return result; \
843 } \
844 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
845 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
846 }
847 HANDLEBINOP(Mul)
848 HANDLEBINOP(Div)
849 HANDLEBINOP(Rem)
850 HANDLEBINOP(Add)
851 HANDLEBINOP(Sub)
852 HANDLEBINOP(Shl)
853 HANDLEBINOP(Shr)
854 HANDLEBINOP(And)
855 HANDLEBINOP(Xor)
856 HANDLEBINOP(Or)
857#undef HANDLEBINOP
858
859 // Comparisons.
860 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
861 llvm::CmpInst::Predicate SICmpOpc,
862 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
863#define VISITCOMP(CODE, UI, SI, FP, SIG) \
864 Value *VisitBin##CODE(const BinaryOperator *E) { \
865 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
866 llvm::FCmpInst::FP, SIG); }
867 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
868 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
869 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
870 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
871 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
872 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
873#undef VISITCOMP
874
875 Value *VisitBinAssign (const BinaryOperator *E);
876
877 Value *VisitBinLAnd (const BinaryOperator *E);
878 Value *VisitBinLOr (const BinaryOperator *E);
879 Value *VisitBinComma (const BinaryOperator *E);
880
881 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
882 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
883
884 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
885 return Visit(E->getSemanticForm());
886 }
887
888 // Other Operators.
889 Value *VisitBlockExpr(const BlockExpr *BE);
890 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
891 Value *VisitChooseExpr(ChooseExpr *CE);
892 Value *VisitVAArgExpr(VAArgExpr *VE);
893 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
894 return CGF.EmitObjCStringLiteral(E);
895 }
896 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
897 return CGF.EmitObjCBoxedExpr(E);
898 }
899 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
900 return CGF.EmitObjCArrayLiteral(E);
901 }
902 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
903 return CGF.EmitObjCDictionaryLiteral(E);
904 }
905 Value *VisitAsTypeExpr(AsTypeExpr *CE);
906 Value *VisitAtomicExpr(AtomicExpr *AE);
907};
908} // end anonymous namespace.
909
910//===----------------------------------------------------------------------===//
911// Utilities
912//===----------------------------------------------------------------------===//
913
914/// EmitConversionToBool - Convert the specified expression value to a
915/// boolean (i1) truth value. This is equivalent to "Val != 0".
916Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
917 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
918
919 if (SrcType->isRealFloatingType())
920 return EmitFloatToBoolConversion(Src);
921
922 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
923 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
924
925 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
926 "Unknown scalar type to convert");
927
928 if (isa<llvm::IntegerType>(Src->getType()))
929 return EmitIntToBoolConversion(Src);
930
931 assert(isa<llvm::PointerType>(Src->getType()));
932 return EmitPointerToBoolConversion(Src, SrcType);
933}
934
935void ScalarExprEmitter::EmitFloatConversionCheck(
936 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
937 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
938 assert(SrcType->isFloatingType() && "not a conversion from floating point");
939 if (!isa<llvm::IntegerType>(DstTy))
940 return;
941
942 CodeGenFunction::SanitizerScope SanScope(&CGF);
943 using llvm::APFloat;
944 using llvm::APSInt;
945
946 llvm::Value *Check = nullptr;
947 const llvm::fltSemantics &SrcSema =
948 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
949
950 // Floating-point to integer. This has undefined behavior if the source is
951 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
952 // to an integer).
953 unsigned Width = CGF.getContext().getIntWidth(DstType);
955
956 APSInt Min = APSInt::getMinValue(Width, Unsigned);
957 APFloat MinSrc(SrcSema, APFloat::uninitialized);
958 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
959 APFloat::opOverflow)
960 // Don't need an overflow check for lower bound. Just check for
961 // -Inf/NaN.
962 MinSrc = APFloat::getInf(SrcSema, true);
963 else
964 // Find the largest value which is too small to represent (before
965 // truncation toward zero).
966 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
967
968 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
969 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
970 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
971 APFloat::opOverflow)
972 // Don't need an overflow check for upper bound. Just check for
973 // +Inf/NaN.
974 MaxSrc = APFloat::getInf(SrcSema, false);
975 else
976 // Find the smallest value which is too large to represent (before
977 // truncation toward zero).
978 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
979
980 // If we're converting from __half, convert the range to float to match
981 // the type of src.
982 if (OrigSrcType->isHalfType()) {
983 const llvm::fltSemantics &Sema =
984 CGF.getContext().getFloatTypeSemantics(SrcType);
985 bool IsInexact;
986 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
987 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
988 }
989
990 llvm::Value *GE =
991 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
992 llvm::Value *LE =
993 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
994 Check = Builder.CreateAnd(GE, LE);
995
996 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
997 CGF.EmitCheckTypeDescriptor(OrigSrcType),
998 CGF.EmitCheckTypeDescriptor(DstType)};
999 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1000 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1001}
1002
1003// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1004// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1005static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1006 std::pair<llvm::Value *, SanitizerMask>>
1008 QualType DstType, CGBuilderTy &Builder) {
1009 llvm::Type *SrcTy = Src->getType();
1010 llvm::Type *DstTy = Dst->getType();
1011 (void)DstTy; // Only used in assert()
1012
1013 // This should be truncation of integral types.
1014 assert(Src != Dst);
1015 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1016 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1017 "non-integer llvm type");
1018
1019 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1020 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1021
1022 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1023 // Else, it is a signed truncation.
1024 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1025 SanitizerMask Mask;
1026 if (!SrcSigned && !DstSigned) {
1027 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1028 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1029 } else {
1030 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1031 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1032 }
1033
1034 llvm::Value *Check = nullptr;
1035 // 1. Extend the truncated value back to the same width as the Src.
1036 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1037 // 2. Equality-compare with the original source value
1038 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1039 // If the comparison result is 'i1 false', then the truncation was lossy.
1040 return std::make_pair(Kind, std::make_pair(Check, Mask));
1041}
1042
1044 QualType SrcType, QualType DstType) {
1045 return SrcType->isIntegerType() && DstType->isIntegerType();
1046}
1047
1048void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1049 Value *Dst, QualType DstType,
1050 SourceLocation Loc) {
1051 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1052 return;
1053
1054 // We only care about int->int conversions here.
1055 // We ignore conversions to/from pointer and/or bool.
1057 DstType))
1058 return;
1059
1060 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1061 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1062 // This must be truncation. Else we do not care.
1063 if (SrcBits <= DstBits)
1064 return;
1065
1066 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1067
1068 // If the integer sign change sanitizer is enabled,
1069 // and we are truncating from larger unsigned type to smaller signed type,
1070 // let that next sanitizer deal with it.
1071 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1074 (!SrcSigned && DstSigned))
1075 return;
1076
1077 CodeGenFunction::SanitizerScope SanScope(&CGF);
1078
1079 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1080 std::pair<llvm::Value *, SanitizerMask>>
1081 Check =
1082 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1083 // If the comparison result is 'i1 false', then the truncation was lossy.
1084
1085 // Do we care about this type of truncation?
1086 if (!CGF.SanOpts.has(Check.second.second))
1087 return;
1088
1089 llvm::Constant *StaticArgs[] = {
1090 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1091 CGF.EmitCheckTypeDescriptor(DstType),
1092 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1093 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1094 {Src, Dst});
1095}
1096
1097// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1098// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1099static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1100 std::pair<llvm::Value *, SanitizerMask>>
1102 QualType DstType, CGBuilderTy &Builder) {
1103 llvm::Type *SrcTy = Src->getType();
1104 llvm::Type *DstTy = Dst->getType();
1105
1106 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1107 "non-integer llvm type");
1108
1109 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1110 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1111 (void)SrcSigned; // Only used in assert()
1112 (void)DstSigned; // Only used in assert()
1113 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1114 unsigned DstBits = DstTy->getScalarSizeInBits();
1115 (void)SrcBits; // Only used in assert()
1116 (void)DstBits; // Only used in assert()
1117
1118 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1119 "either the widths should be different, or the signednesses.");
1120
1121 // NOTE: zero value is considered to be non-negative.
1122 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1123 const char *Name) -> Value * {
1124 // Is this value a signed type?
1125 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1126 llvm::Type *VTy = V->getType();
1127 if (!VSigned) {
1128 // If the value is unsigned, then it is never negative.
1129 // FIXME: can we encounter non-scalar VTy here?
1130 return llvm::ConstantInt::getFalse(VTy->getContext());
1131 }
1132 // Get the zero of the same type with which we will be comparing.
1133 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1134 // %V.isnegative = icmp slt %V, 0
1135 // I.e is %V *strictly* less than zero, does it have negative value?
1136 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1137 llvm::Twine(Name) + "." + V->getName() +
1138 ".negativitycheck");
1139 };
1140
1141 // 1. Was the old Value negative?
1142 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1143 // 2. Is the new Value negative?
1144 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1145 // 3. Now, was the 'negativity status' preserved during the conversion?
1146 // NOTE: conversion from negative to zero is considered to change the sign.
1147 // (We want to get 'false' when the conversion changed the sign)
1148 // So we should just equality-compare the negativity statuses.
1149 llvm::Value *Check = nullptr;
1150 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1151 // If the comparison result is 'false', then the conversion changed the sign.
1152 return std::make_pair(
1153 ScalarExprEmitter::ICCK_IntegerSignChange,
1154 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1155}
1156
1157void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1158 Value *Dst, QualType DstType,
1159 SourceLocation Loc) {
1160 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1161 return;
1162
1163 llvm::Type *SrcTy = Src->getType();
1164 llvm::Type *DstTy = Dst->getType();
1165
1166 // We only care about int->int conversions here.
1167 // We ignore conversions to/from pointer and/or bool.
1169 DstType))
1170 return;
1171
1172 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1173 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1174 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1175 unsigned DstBits = DstTy->getScalarSizeInBits();
1176
1177 // Now, we do not need to emit the check in *all* of the cases.
1178 // We can avoid emitting it in some obvious cases where it would have been
1179 // dropped by the opt passes (instcombine) always anyways.
1180 // If it's a cast between effectively the same type, no check.
1181 // NOTE: this is *not* equivalent to checking the canonical types.
1182 if (SrcSigned == DstSigned && SrcBits == DstBits)
1183 return;
1184 // At least one of the values needs to have signed type.
1185 // If both are unsigned, then obviously, neither of them can be negative.
1186 if (!SrcSigned && !DstSigned)
1187 return;
1188 // If the conversion is to *larger* *signed* type, then no check is needed.
1189 // Because either sign-extension happens (so the sign will remain),
1190 // or zero-extension will happen (the sign bit will be zero.)
1191 if ((DstBits > SrcBits) && DstSigned)
1192 return;
1193 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1194 (SrcBits > DstBits) && SrcSigned) {
1195 // If the signed integer truncation sanitizer is enabled,
1196 // and this is a truncation from signed type, then no check is needed.
1197 // Because here sign change check is interchangeable with truncation check.
1198 return;
1199 }
1200 // That's it. We can't rule out any more cases with the data we have.
1201
1202 CodeGenFunction::SanitizerScope SanScope(&CGF);
1203
1204 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1205 std::pair<llvm::Value *, SanitizerMask>>
1206 Check;
1207
1208 // Each of these checks needs to return 'false' when an issue was detected.
1209 ImplicitConversionCheckKind CheckKind;
1211 // So we can 'and' all the checks together, and still get 'false',
1212 // if at least one of the checks detected an issue.
1213
1214 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1215 CheckKind = Check.first;
1216 Checks.emplace_back(Check.second);
1217
1218 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1219 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1220 // If the signed integer truncation sanitizer was enabled,
1221 // and we are truncating from larger unsigned type to smaller signed type,
1222 // let's handle the case we skipped in that check.
1223 Check =
1224 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1225 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1226 Checks.emplace_back(Check.second);
1227 // If the comparison result is 'i1 false', then the truncation was lossy.
1228 }
1229
1230 llvm::Constant *StaticArgs[] = {
1231 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1232 CGF.EmitCheckTypeDescriptor(DstType),
1233 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1234 // EmitCheck() will 'and' all the checks together.
1235 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1236 {Src, Dst});
1237}
1238
1239Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1240 QualType DstType, llvm::Type *SrcTy,
1241 llvm::Type *DstTy,
1242 ScalarConversionOpts Opts) {
1243 // The Element types determine the type of cast to perform.
1244 llvm::Type *SrcElementTy;
1245 llvm::Type *DstElementTy;
1246 QualType SrcElementType;
1247 QualType DstElementType;
1248 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1249 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1250 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1251 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1252 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1253 } else {
1254 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1255 "cannot cast between matrix and non-matrix types");
1256 SrcElementTy = SrcTy;
1257 DstElementTy = DstTy;
1258 SrcElementType = SrcType;
1259 DstElementType = DstType;
1260 }
1261
1262 if (isa<llvm::IntegerType>(SrcElementTy)) {
1263 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1264 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1265 InputSigned = true;
1266 }
1267
1268 if (isa<llvm::IntegerType>(DstElementTy))
1269 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1270 if (InputSigned)
1271 return Builder.CreateSIToFP(Src, DstTy, "conv");
1272 return Builder.CreateUIToFP(Src, DstTy, "conv");
1273 }
1274
1275 if (isa<llvm::IntegerType>(DstElementTy)) {
1276 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1277 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1278
1279 // If we can't recognize overflow as undefined behavior, assume that
1280 // overflow saturates. This protects against normal optimizations if we are
1281 // compiling with non-standard FP semantics.
1282 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1283 llvm::Intrinsic::ID IID =
1284 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1285 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1286 }
1287
1288 if (IsSigned)
1289 return Builder.CreateFPToSI(Src, DstTy, "conv");
1290 return Builder.CreateFPToUI(Src, DstTy, "conv");
1291 }
1292
1293 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1294 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1295 return Builder.CreateFPExt(Src, DstTy, "conv");
1296}
1297
1298/// Emit a conversion from the specified type to the specified destination type,
1299/// both of which are LLVM scalar types.
1300Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1301 QualType DstType,
1302 SourceLocation Loc,
1303 ScalarConversionOpts Opts) {
1304 // All conversions involving fixed point types should be handled by the
1305 // EmitFixedPoint family functions. This is done to prevent bloating up this
1306 // function more, and although fixed point numbers are represented by
1307 // integers, we do not want to follow any logic that assumes they should be
1308 // treated as integers.
1309 // TODO(leonardchan): When necessary, add another if statement checking for
1310 // conversions to fixed point types from other types.
1311 if (SrcType->isFixedPointType()) {
1312 if (DstType->isBooleanType())
1313 // It is important that we check this before checking if the dest type is
1314 // an integer because booleans are technically integer types.
1315 // We do not need to check the padding bit on unsigned types if unsigned
1316 // padding is enabled because overflow into this bit is undefined
1317 // behavior.
1318 return Builder.CreateIsNotNull(Src, "tobool");
1319 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1320 DstType->isRealFloatingType())
1321 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1322
1323 llvm_unreachable(
1324 "Unhandled scalar conversion from a fixed point type to another type.");
1325 } else if (DstType->isFixedPointType()) {
1326 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1327 // This also includes converting booleans and enums to fixed point types.
1328 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1329
1330 llvm_unreachable(
1331 "Unhandled scalar conversion to a fixed point type from another type.");
1332 }
1333
1334 QualType NoncanonicalSrcType = SrcType;
1335 QualType NoncanonicalDstType = DstType;
1336
1337 SrcType = CGF.getContext().getCanonicalType(SrcType);
1338 DstType = CGF.getContext().getCanonicalType(DstType);
1339 if (SrcType == DstType) return Src;
1340
1341 if (DstType->isVoidType()) return nullptr;
1342
1343 llvm::Value *OrigSrc = Src;
1344 QualType OrigSrcType = SrcType;
1345 llvm::Type *SrcTy = Src->getType();
1346
1347 // Handle conversions to bool first, they are special: comparisons against 0.
1348 if (DstType->isBooleanType())
1349 return EmitConversionToBool(Src, SrcType);
1350
1351 llvm::Type *DstTy = ConvertType(DstType);
1352
1353 // Cast from half through float if half isn't a native type.
1354 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1355 // Cast to FP using the intrinsic if the half type itself isn't supported.
1356 if (DstTy->isFloatingPointTy()) {
1358 return Builder.CreateCall(
1359 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1360 Src);
1361 } else {
1362 // Cast to other types through float, using either the intrinsic or FPExt,
1363 // depending on whether the half type itself is supported
1364 // (as opposed to operations on half, available with NativeHalfType).
1366 Src = Builder.CreateCall(
1367 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1368 CGF.CGM.FloatTy),
1369 Src);
1370 } else {
1371 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1372 }
1373 SrcType = CGF.getContext().FloatTy;
1374 SrcTy = CGF.FloatTy;
1375 }
1376 }
1377
1378 // Ignore conversions like int -> uint.
1379 if (SrcTy == DstTy) {
1380 if (Opts.EmitImplicitIntegerSignChangeChecks)
1381 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1382 NoncanonicalDstType, Loc);
1383
1384 return Src;
1385 }
1386
1387 // Handle pointer conversions next: pointers can only be converted to/from
1388 // other pointers and integers. Check for pointer types in terms of LLVM, as
1389 // some native types (like Obj-C id) may map to a pointer type.
1390 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1391 // The source value may be an integer, or a pointer.
1392 if (isa<llvm::PointerType>(SrcTy))
1393 return Builder.CreateBitCast(Src, DstTy, "conv");
1394
1395 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1396 // First, convert to the correct width so that we control the kind of
1397 // extension.
1398 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1399 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1400 llvm::Value* IntResult =
1401 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1402 // Then, cast to pointer.
1403 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1404 }
1405
1406 if (isa<llvm::PointerType>(SrcTy)) {
1407 // Must be an ptr to int cast.
1408 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1409 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1410 }
1411
1412 // A scalar can be splatted to an extended vector of the same element type
1413 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1414 // Sema should add casts to make sure that the source expression's type is
1415 // the same as the vector's element type (sans qualifiers)
1416 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1417 SrcType.getTypePtr() &&
1418 "Splatted expr doesn't match with vector element type?");
1419
1420 // Splat the element across to all elements
1421 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1422 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1423 }
1424
1425 if (SrcType->isMatrixType() && DstType->isMatrixType())
1426 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1427
1428 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1429 // Allow bitcast from vector to integer/fp of the same size.
1430 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1431 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1432 if (SrcSize == DstSize)
1433 return Builder.CreateBitCast(Src, DstTy, "conv");
1434
1435 // Conversions between vectors of different sizes are not allowed except
1436 // when vectors of half are involved. Operations on storage-only half
1437 // vectors require promoting half vector operands to float vectors and
1438 // truncating the result, which is either an int or float vector, to a
1439 // short or half vector.
1440
1441 // Source and destination are both expected to be vectors.
1442 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1443 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1444 (void)DstElementTy;
1445
1446 assert(((SrcElementTy->isIntegerTy() &&
1447 DstElementTy->isIntegerTy()) ||
1448 (SrcElementTy->isFloatingPointTy() &&
1449 DstElementTy->isFloatingPointTy())) &&
1450 "unexpected conversion between a floating-point vector and an "
1451 "integer vector");
1452
1453 // Truncate an i32 vector to an i16 vector.
1454 if (SrcElementTy->isIntegerTy())
1455 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1456
1457 // Truncate a float vector to a half vector.
1458 if (SrcSize > DstSize)
1459 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1460
1461 // Promote a half vector to a float vector.
1462 return Builder.CreateFPExt(Src, DstTy, "conv");
1463 }
1464
1465 // Finally, we have the arithmetic types: real int/float.
1466 Value *Res = nullptr;
1467 llvm::Type *ResTy = DstTy;
1468
1469 // An overflowing conversion has undefined behavior if either the source type
1470 // or the destination type is a floating-point type. However, we consider the
1471 // range of representable values for all floating-point types to be
1472 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1473 // floating-point type.
1474 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1475 OrigSrcType->isFloatingType())
1476 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1477 Loc);
1478
1479 // Cast to half through float if half isn't a native type.
1480 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1481 // Make sure we cast in a single step if from another FP type.
1482 if (SrcTy->isFloatingPointTy()) {
1483 // Use the intrinsic if the half type itself isn't supported
1484 // (as opposed to operations on half, available with NativeHalfType).
1486 return Builder.CreateCall(
1487 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1488 // If the half type is supported, just use an fptrunc.
1489 return Builder.CreateFPTrunc(Src, DstTy);
1490 }
1491 DstTy = CGF.FloatTy;
1492 }
1493
1494 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1495
1496 if (DstTy != ResTy) {
1498 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1499 Res = Builder.CreateCall(
1500 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1501 Res);
1502 } else {
1503 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1504 }
1505 }
1506
1507 if (Opts.EmitImplicitIntegerTruncationChecks)
1508 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1509 NoncanonicalDstType, Loc);
1510
1511 if (Opts.EmitImplicitIntegerSignChangeChecks)
1512 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1513 NoncanonicalDstType, Loc);
1514
1515 return Res;
1516}
1517
1518Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1519 QualType DstTy,
1520 SourceLocation Loc) {
1521 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1522 llvm::Value *Result;
1523 if (SrcTy->isRealFloatingType())
1524 Result = FPBuilder.CreateFloatingToFixed(Src,
1525 CGF.getContext().getFixedPointSemantics(DstTy));
1526 else if (DstTy->isRealFloatingType())
1527 Result = FPBuilder.CreateFixedToFloating(Src,
1529 ConvertType(DstTy));
1530 else {
1531 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1532 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1533
1534 if (DstTy->isIntegerType())
1535 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1536 DstFPSema.getWidth(),
1537 DstFPSema.isSigned());
1538 else if (SrcTy->isIntegerType())
1539 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1540 DstFPSema);
1541 else
1542 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1543 }
1544 return Result;
1545}
1546
1547/// Emit a conversion from the specified complex type to the specified
1548/// destination type, where the destination type is an LLVM scalar type.
1549Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1550 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1551 SourceLocation Loc) {
1552 // Get the source element type.
1553 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1554
1555 // Handle conversions to bool first, they are special: comparisons against 0.
1556 if (DstTy->isBooleanType()) {
1557 // Complex != 0 -> (Real != 0) | (Imag != 0)
1558 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1559 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1560 return Builder.CreateOr(Src.first, Src.second, "tobool");
1561 }
1562
1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1564 // the imaginary part of the complex value is discarded and the value of the
1565 // real part is converted according to the conversion rules for the
1566 // corresponding real type.
1567 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568}
1569
1570Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1571 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1572}
1573
1574/// Emit a sanitization check for the given "binary" operation (which
1575/// might actually be a unary increment which has been lowered to a binary
1576/// operation). The check passes if all values in \p Checks (which are \c i1),
1577/// are \c true.
1578void ScalarExprEmitter::EmitBinOpCheck(
1579 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1580 assert(CGF.IsSanitizerScope);
1581 SanitizerHandler Check;
1584
1585 BinaryOperatorKind Opcode = Info.Opcode;
1588
1589 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1590 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1591 if (UO && UO->getOpcode() == UO_Minus) {
1592 Check = SanitizerHandler::NegateOverflow;
1593 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1594 DynamicData.push_back(Info.RHS);
1595 } else {
1596 if (BinaryOperator::isShiftOp(Opcode)) {
1597 // Shift LHS negative or too large, or RHS out of bounds.
1598 Check = SanitizerHandler::ShiftOutOfBounds;
1599 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1600 StaticData.push_back(
1601 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1602 StaticData.push_back(
1603 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1604 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1606 Check = SanitizerHandler::DivremOverflow;
1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1608 } else {
1609 // Arithmetic overflow (+, -, *).
1610 switch (Opcode) {
1611 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1612 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1613 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1614 default: llvm_unreachable("unexpected opcode for bin op check");
1615 }
1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617 }
1618 DynamicData.push_back(Info.LHS);
1619 DynamicData.push_back(Info.RHS);
1620 }
1621
1622 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1623}
1624
1625//===----------------------------------------------------------------------===//
1626// Visitor Methods
1627//===----------------------------------------------------------------------===//
1628
1629Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1630 CGF.ErrorUnsupported(E, "scalar expression");
1631 if (E->getType()->isVoidType())
1632 return nullptr;
1633 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1634}
1635
1636Value *
1637ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1638 ASTContext &Context = CGF.getContext();
1639 unsigned AddrSpace =
1641 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1642 E->ComputeName(Context), "__usn_str", AddrSpace);
1643
1644 llvm::Type *ExprTy = ConvertType(E->getType());
1645 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1646 "usn_addr_cast");
1647}
1648
1649Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1650 // Vector Mask Case
1651 if (E->getNumSubExprs() == 2) {
1652 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1653 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1654 Value *Mask;
1655
1656 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1657 unsigned LHSElts = LTy->getNumElements();
1658
1659 Mask = RHS;
1660
1661 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1662
1663 // Mask off the high bits of each shuffle index.
1664 Value *MaskBits =
1665 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1666 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1667
1668 // newv = undef
1669 // mask = mask & maskbits
1670 // for each elt
1671 // n = extract mask i
1672 // x = extract val n
1673 // newv = insert newv, x, i
1674 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1675 MTy->getNumElements());
1676 Value* NewV = llvm::PoisonValue::get(RTy);
1677 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1678 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1679 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1680
1681 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1682 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1683 }
1684 return NewV;
1685 }
1686
1687 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1688 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1689
1690 SmallVector<int, 32> Indices;
1691 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1692 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1693 // Check for -1 and output it as undef in the IR.
1694 if (Idx.isSigned() && Idx.isAllOnes())
1695 Indices.push_back(-1);
1696 else
1697 Indices.push_back(Idx.getZExtValue());
1698 }
1699
1700 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1701}
1702
1703Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1704 QualType SrcType = E->getSrcExpr()->getType(),
1705 DstType = E->getType();
1706
1707 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1708
1709 SrcType = CGF.getContext().getCanonicalType(SrcType);
1710 DstType = CGF.getContext().getCanonicalType(DstType);
1711 if (SrcType == DstType) return Src;
1712
1713 assert(SrcType->isVectorType() &&
1714 "ConvertVector source type must be a vector");
1715 assert(DstType->isVectorType() &&
1716 "ConvertVector destination type must be a vector");
1717
1718 llvm::Type *SrcTy = Src->getType();
1719 llvm::Type *DstTy = ConvertType(DstType);
1720
1721 // Ignore conversions like int -> uint.
1722 if (SrcTy == DstTy)
1723 return Src;
1724
1725 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1726 DstEltType = DstType->castAs<VectorType>()->getElementType();
1727
1728 assert(SrcTy->isVectorTy() &&
1729 "ConvertVector source IR type must be a vector");
1730 assert(DstTy->isVectorTy() &&
1731 "ConvertVector destination IR type must be a vector");
1732
1733 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1734 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1735
1736 if (DstEltType->isBooleanType()) {
1737 assert((SrcEltTy->isFloatingPointTy() ||
1738 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1739
1740 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1741 if (SrcEltTy->isFloatingPointTy()) {
1742 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1743 } else {
1744 return Builder.CreateICmpNE(Src, Zero, "tobool");
1745 }
1746 }
1747
1748 // We have the arithmetic types: real int/float.
1749 Value *Res = nullptr;
1750
1751 if (isa<llvm::IntegerType>(SrcEltTy)) {
1752 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1753 if (isa<llvm::IntegerType>(DstEltTy))
1754 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1755 else if (InputSigned)
1756 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1757 else
1758 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1759 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1760 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1761 if (DstEltType->isSignedIntegerOrEnumerationType())
1762 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1763 else
1764 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1765 } else {
1766 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1767 "Unknown real conversion");
1768 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1769 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1770 else
1771 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1772 }
1773
1774 return Res;
1775}
1776
1777Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1778 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1779 CGF.EmitIgnoredExpr(E->getBase());
1780 return CGF.emitScalarConstant(Constant, E);
1781 } else {
1782 Expr::EvalResult Result;
1783 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1784 llvm::APSInt Value = Result.Val.getInt();
1785 CGF.EmitIgnoredExpr(E->getBase());
1786 return Builder.getInt(Value);
1787 }
1788 }
1789
1790 return EmitLoadOfLValue(E);
1791}
1792
1793Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1794 TestAndClearIgnoreResultAssign();
1795
1796 // Emit subscript expressions in rvalue context's. For most cases, this just
1797 // loads the lvalue formed by the subscript expr. However, we have to be
1798 // careful, because the base of a vector subscript is occasionally an rvalue,
1799 // so we can't get it as an lvalue.
1800 if (!E->getBase()->getType()->isVectorType() &&
1802 return EmitLoadOfLValue(E);
1803
1804 // Handle the vector case. The base must be a vector, the index must be an
1805 // integer value.
1806 Value *Base = Visit(E->getBase());
1807 Value *Idx = Visit(E->getIdx());
1808 QualType IdxTy = E->getIdx()->getType();
1809
1810 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1811 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1812
1813 return Builder.CreateExtractElement(Base, Idx, "vecext");
1814}
1815
1816Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1817 TestAndClearIgnoreResultAssign();
1818
1819 // Handle the vector case. The base must be a vector, the index must be an
1820 // integer value.
1821 Value *RowIdx = Visit(E->getRowIdx());
1822 Value *ColumnIdx = Visit(E->getColumnIdx());
1823
1824 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1825 unsigned NumRows = MatrixTy->getNumRows();
1826 llvm::MatrixBuilder MB(Builder);
1827 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1828 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1829 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1830
1831 Value *Matrix = Visit(E->getBase());
1832
1833 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1834 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1835}
1836
1837static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1838 unsigned Off) {
1839 int MV = SVI->getMaskValue(Idx);
1840 if (MV == -1)
1841 return -1;
1842 return Off + MV;
1843}
1844
1845static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1846 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1847 "Index operand too large for shufflevector mask!");
1848 return C->getZExtValue();
1849}
1850
1851Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1852 bool Ignore = TestAndClearIgnoreResultAssign();
1853 (void)Ignore;
1854 assert (Ignore == false && "init list ignored");
1855 unsigned NumInitElements = E->getNumInits();
1856
1857 if (E->hadArrayRangeDesignator())
1858 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1859
1860 llvm::VectorType *VType =
1861 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1862
1863 if (!VType) {
1864 if (NumInitElements == 0) {
1865 // C++11 value-initialization for the scalar.
1866 return EmitNullValue(E->getType());
1867 }
1868 // We have a scalar in braces. Just use the first element.
1869 return Visit(E->getInit(0));
1870 }
1871
1872 if (isa<llvm::ScalableVectorType>(VType)) {
1873 if (NumInitElements == 0) {
1874 // C++11 value-initialization for the vector.
1875 return EmitNullValue(E->getType());
1876 }
1877
1878 if (NumInitElements == 1) {
1879 Expr *InitVector = E->getInit(0);
1880
1881 // Initialize from another scalable vector of the same type.
1882 if (InitVector->getType() == E->getType())
1883 return Visit(InitVector);
1884 }
1885
1886 llvm_unreachable("Unexpected initialization of a scalable vector!");
1887 }
1888
1889 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1890
1891 // Loop over initializers collecting the Value for each, and remembering
1892 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1893 // us to fold the shuffle for the swizzle into the shuffle for the vector
1894 // initializer, since LLVM optimizers generally do not want to touch
1895 // shuffles.
1896 unsigned CurIdx = 0;
1897 bool VIsUndefShuffle = false;
1898 llvm::Value *V = llvm::UndefValue::get(VType);
1899 for (unsigned i = 0; i != NumInitElements; ++i) {
1900 Expr *IE = E->getInit(i);
1901 Value *Init = Visit(IE);
1903
1904 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1905
1906 // Handle scalar elements. If the scalar initializer is actually one
1907 // element of a different vector of the same width, use shuffle instead of
1908 // extract+insert.
1909 if (!VVT) {
1910 if (isa<ExtVectorElementExpr>(IE)) {
1911 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1912
1913 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1914 ->getNumElements() == ResElts) {
1915 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1916 Value *LHS = nullptr, *RHS = nullptr;
1917 if (CurIdx == 0) {
1918 // insert into undef -> shuffle (src, undef)
1919 // shufflemask must use an i32
1920 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1921 Args.resize(ResElts, -1);
1922
1923 LHS = EI->getVectorOperand();
1924 RHS = V;
1925 VIsUndefShuffle = true;
1926 } else if (VIsUndefShuffle) {
1927 // insert into undefshuffle && size match -> shuffle (v, src)
1928 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1929 for (unsigned j = 0; j != CurIdx; ++j)
1930 Args.push_back(getMaskElt(SVV, j, 0));
1931 Args.push_back(ResElts + C->getZExtValue());
1932 Args.resize(ResElts, -1);
1933
1934 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1935 RHS = EI->getVectorOperand();
1936 VIsUndefShuffle = false;
1937 }
1938 if (!Args.empty()) {
1939 V = Builder.CreateShuffleVector(LHS, RHS, Args);
1940 ++CurIdx;
1941 continue;
1942 }
1943 }
1944 }
1945 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1946 "vecinit");
1947 VIsUndefShuffle = false;
1948 ++CurIdx;
1949 continue;
1950 }
1951
1952 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1953
1954 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1955 // input is the same width as the vector being constructed, generate an
1956 // optimized shuffle of the swizzle input into the result.
1957 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1958 if (isa<ExtVectorElementExpr>(IE)) {
1959 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1960 Value *SVOp = SVI->getOperand(0);
1961 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1962
1963 if (OpTy->getNumElements() == ResElts) {
1964 for (unsigned j = 0; j != CurIdx; ++j) {
1965 // If the current vector initializer is a shuffle with undef, merge
1966 // this shuffle directly into it.
1967 if (VIsUndefShuffle) {
1968 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1969 } else {
1970 Args.push_back(j);
1971 }
1972 }
1973 for (unsigned j = 0, je = InitElts; j != je; ++j)
1974 Args.push_back(getMaskElt(SVI, j, Offset));
1975 Args.resize(ResElts, -1);
1976
1977 if (VIsUndefShuffle)
1978 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1979
1980 Init = SVOp;
1981 }
1982 }
1983
1984 // Extend init to result vector length, and then shuffle its contribution
1985 // to the vector initializer into V.
1986 if (Args.empty()) {
1987 for (unsigned j = 0; j != InitElts; ++j)
1988 Args.push_back(j);
1989 Args.resize(ResElts, -1);
1990 Init = Builder.CreateShuffleVector(Init, Args, "vext");
1991
1992 Args.clear();
1993 for (unsigned j = 0; j != CurIdx; ++j)
1994 Args.push_back(j);
1995 for (unsigned j = 0; j != InitElts; ++j)
1996 Args.push_back(j + Offset);
1997 Args.resize(ResElts, -1);
1998 }
1999
2000 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
2001 // merging subsequent shuffles into this one.
2002 if (CurIdx == 0)
2003 std::swap(V, Init);
2004 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2005 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
2006 CurIdx += InitElts;
2007 }
2008
2009 // FIXME: evaluate codegen vs. shuffling against constant null vector.
2010 // Emit remaining default initializers.
2011 llvm::Type *EltTy = VType->getElementType();
2012
2013 // Emit remaining default initializers
2014 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2015 Value *Idx = Builder.getInt32(CurIdx);
2016 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2017 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2018 }
2019 return V;
2020}
2021
2022bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2023 const Expr *E = CE->getSubExpr();
2024
2025 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2026 return false;
2027
2028 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2029 // We always assume that 'this' is never null.
2030 return false;
2031 }
2032
2033 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2034 // And that glvalue casts are never null.
2035 if (ICE->isGLValue())
2036 return false;
2037 }
2038
2039 return true;
2040}
2041
2042// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2043// have to handle a more broad range of conversions than explicit casts, as they
2044// handle things like function to ptr-to-function decay etc.
2045Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2046 Expr *E = CE->getSubExpr();
2047 QualType DestTy = CE->getType();
2048 CastKind Kind = CE->getCastKind();
2049 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2050
2051 // These cases are generally not written to ignore the result of
2052 // evaluating their sub-expressions, so we clear this now.
2053 bool Ignored = TestAndClearIgnoreResultAssign();
2054
2055 // Since almost all cast kinds apply to scalars, this switch doesn't have
2056 // a default case, so the compiler will warn on a missing case. The cases
2057 // are in the same order as in the CastKind enum.
2058 switch (Kind) {
2059 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2060 case CK_BuiltinFnToFnPtr:
2061 llvm_unreachable("builtin functions are handled elsewhere");
2062
2063 case CK_LValueBitCast:
2064 case CK_ObjCObjectLValueCast: {
2065 Address Addr = EmitLValue(E).getAddress(CGF);
2066 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2067 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2068 return EmitLoadOfLValue(LV, CE->getExprLoc());
2069 }
2070
2071 case CK_LValueToRValueBitCast: {
2072 LValue SourceLVal = CGF.EmitLValue(E);
2073 Address Addr = SourceLVal.getAddress(CGF).withElementType(
2074 CGF.ConvertTypeForMem(DestTy));
2075 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2077 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2078 }
2079
2080 case CK_CPointerToObjCPointerCast:
2081 case CK_BlockPointerToObjCPointerCast:
2082 case CK_AnyPointerToBlockPointerCast:
2083 case CK_BitCast: {
2084 Value *Src = Visit(const_cast<Expr*>(E));
2085 llvm::Type *SrcTy = Src->getType();
2086 llvm::Type *DstTy = ConvertType(DestTy);
2087 assert(
2088 (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2089 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2090 "Address-space cast must be used to convert address spaces");
2091
2092 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2093 if (auto *PT = DestTy->getAs<PointerType>()) {
2095 PT->getPointeeType(),
2096 Address(Src,
2099 CGF.getPointerAlign()),
2100 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2101 CE->getBeginLoc());
2102 }
2103 }
2104
2105 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2106 const QualType SrcType = E->getType();
2107
2108 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2109 // Casting to pointer that could carry dynamic information (provided by
2110 // invariant.group) requires launder.
2111 Src = Builder.CreateLaunderInvariantGroup(Src);
2112 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2113 // Casting to pointer that does not carry dynamic information (provided
2114 // by invariant.group) requires stripping it. Note that we don't do it
2115 // if the source could not be dynamic type and destination could be
2116 // dynamic because dynamic information is already laundered. It is
2117 // because launder(strip(src)) == launder(src), so there is no need to
2118 // add extra strip before launder.
2119 Src = Builder.CreateStripInvariantGroup(Src);
2120 }
2121 }
2122
2123 // Update heapallocsite metadata when there is an explicit pointer cast.
2124 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2125 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2126 !isa<CastExpr>(E)) {
2127 QualType PointeeType = DestTy->getPointeeType();
2128 if (!PointeeType.isNull())
2129 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2130 CE->getExprLoc());
2131 }
2132 }
2133
2134 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2135 // same element type, use the llvm.vector.insert intrinsic to perform the
2136 // bitcast.
2137 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2138 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2139 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2140 // vector, use a vector insert and bitcast the result.
2141 bool NeedsBitCast = false;
2142 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2143 llvm::Type *OrigType = DstTy;
2144 if (ScalableDst == PredType &&
2145 FixedSrc->getElementType() == Builder.getInt8Ty()) {
2146 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2147 ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2148 NeedsBitCast = true;
2149 }
2150 if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2151 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2152 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2153 llvm::Value *Result = Builder.CreateInsertVector(
2154 DstTy, UndefVec, Src, Zero, "cast.scalable");
2155 if (NeedsBitCast)
2156 Result = Builder.CreateBitCast(Result, OrigType);
2157 return Result;
2158 }
2159 }
2160 }
2161
2162 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2163 // same element type, use the llvm.vector.extract intrinsic to perform the
2164 // bitcast.
2165 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2166 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2167 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2168 // vector, bitcast the source and use a vector extract.
2169 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2170 if (ScalableSrc == PredType &&
2171 FixedDst->getElementType() == Builder.getInt8Ty()) {
2172 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2173 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2174 Src = Builder.CreateBitCast(Src, SrcTy);
2175 }
2176 if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2177 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2178 return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2179 }
2180 }
2181 }
2182
2183 // Perform VLAT <-> VLST bitcast through memory.
2184 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2185 // require the element types of the vectors to be the same, we
2186 // need to keep this around for bitcasts between VLAT <-> VLST where
2187 // the element types of the vectors are not the same, until we figure
2188 // out a better way of doing these casts.
2189 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2190 isa<llvm::ScalableVectorType>(DstTy)) ||
2191 (isa<llvm::ScalableVectorType>(SrcTy) &&
2192 isa<llvm::FixedVectorType>(DstTy))) {
2193 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2194 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2195 CGF.EmitStoreOfScalar(Src, LV);
2196 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2197 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2199 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2200 }
2201 return Builder.CreateBitCast(Src, DstTy);
2202 }
2203 case CK_AddressSpaceConversion: {
2205 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2206 Result.Val.isNullPointer()) {
2207 // If E has side effect, it is emitted even if its final result is a
2208 // null pointer. In that case, a DCE pass should be able to
2209 // eliminate the useless instructions emitted during translating E.
2210 if (Result.HasSideEffects)
2211 Visit(E);
2212 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2213 ConvertType(DestTy)), DestTy);
2214 }
2215 // Since target may map different address spaces in AST to the same address
2216 // space, an address space conversion may end up as a bitcast.
2218 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2219 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2220 }
2221 case CK_AtomicToNonAtomic:
2222 case CK_NonAtomicToAtomic:
2223 case CK_UserDefinedConversion:
2224 return Visit(const_cast<Expr*>(E));
2225
2226 case CK_NoOp: {
2227 return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2228 : Visit(const_cast<Expr *>(E));
2229 }
2230
2231 case CK_BaseToDerived: {
2232 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2233 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2234
2236 Address Derived =
2237 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2238 CE->path_begin(), CE->path_end(),
2240
2241 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2242 // performed and the object is not of the derived type.
2243 if (CGF.sanitizePerformTypeCheck())
2245 Derived.getPointer(), DestTy->getPointeeType());
2246
2247 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2248 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2249 /*MayBeNull=*/true,
2251 CE->getBeginLoc());
2252
2253 return Derived.getPointer();
2254 }
2255 case CK_UncheckedDerivedToBase:
2256 case CK_DerivedToBase: {
2257 // The EmitPointerWithAlignment path does this fine; just discard
2258 // the alignment.
2259 return CGF.EmitPointerWithAlignment(CE).getPointer();
2260 }
2261
2262 case CK_Dynamic: {
2264 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2265 return CGF.EmitDynamicCast(V, DCE);
2266 }
2267
2268 case CK_ArrayToPointerDecay:
2269 return CGF.EmitArrayToPointerDecay(E).getPointer();
2270 case CK_FunctionToPointerDecay:
2271 return EmitLValue(E).getPointer(CGF);
2272
2273 case CK_NullToPointer:
2274 if (MustVisitNullValue(E))
2275 CGF.EmitIgnoredExpr(E);
2276
2277 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2278 DestTy);
2279
2280 case CK_NullToMemberPointer: {
2281 if (MustVisitNullValue(E))
2282 CGF.EmitIgnoredExpr(E);
2283
2284 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2285 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2286 }
2287
2288 case CK_ReinterpretMemberPointer:
2289 case CK_BaseToDerivedMemberPointer:
2290 case CK_DerivedToBaseMemberPointer: {
2291 Value *Src = Visit(E);
2292
2293 // Note that the AST doesn't distinguish between checked and
2294 // unchecked member pointer conversions, so we always have to
2295 // implement checked conversions here. This is inefficient when
2296 // actual control flow may be required in order to perform the
2297 // check, which it is for data member pointers (but not member
2298 // function pointers on Itanium and ARM).
2299 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2300 }
2301
2302 case CK_ARCProduceObject:
2303 return CGF.EmitARCRetainScalarExpr(E);
2304 case CK_ARCConsumeObject:
2305 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2306 case CK_ARCReclaimReturnedObject:
2307 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2308 case CK_ARCExtendBlockObject:
2309 return CGF.EmitARCExtendBlockObject(E);
2310
2311 case CK_CopyAndAutoreleaseBlockObject:
2312 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2313
2314 case CK_FloatingRealToComplex:
2315 case CK_FloatingComplexCast:
2316 case CK_IntegralRealToComplex:
2317 case CK_IntegralComplexCast:
2318 case CK_IntegralComplexToFloatingComplex:
2319 case CK_FloatingComplexToIntegralComplex:
2320 case CK_ConstructorConversion:
2321 case CK_ToUnion:
2322 llvm_unreachable("scalar cast to non-scalar value");
2323
2324 case CK_LValueToRValue:
2325 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2326 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2327 return Visit(const_cast<Expr*>(E));
2328
2329 case CK_IntegralToPointer: {
2330 Value *Src = Visit(const_cast<Expr*>(E));
2331
2332 // First, convert to the correct width so that we control the kind of
2333 // extension.
2334 auto DestLLVMTy = ConvertType(DestTy);
2335 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2336 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2337 llvm::Value* IntResult =
2338 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2339
2340 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2341
2342 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2343 // Going from integer to pointer that could be dynamic requires reloading
2344 // dynamic information from invariant.group.
2345 if (DestTy.mayBeDynamicClass())
2346 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2347 }
2348 return IntToPtr;
2349 }
2350 case CK_PointerToIntegral: {
2351 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2352 auto *PtrExpr = Visit(E);
2353
2354 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2355 const QualType SrcType = E->getType();
2356
2357 // Casting to integer requires stripping dynamic information as it does
2358 // not carries it.
2359 if (SrcType.mayBeDynamicClass())
2360 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2361 }
2362
2363 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2364 }
2365 case CK_ToVoid: {
2366 CGF.EmitIgnoredExpr(E);
2367 return nullptr;
2368 }
2369 case CK_MatrixCast: {
2370 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2371 CE->getExprLoc());
2372 }
2373 case CK_VectorSplat: {
2374 llvm::Type *DstTy = ConvertType(DestTy);
2375 Value *Elt = Visit(const_cast<Expr *>(E));
2376 // Splat the element across to all elements
2377 llvm::ElementCount NumElements =
2378 cast<llvm::VectorType>(DstTy)->getElementCount();
2379 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2380 }
2381
2382 case CK_FixedPointCast:
2383 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2384 CE->getExprLoc());
2385
2386 case CK_FixedPointToBoolean:
2387 assert(E->getType()->isFixedPointType() &&
2388 "Expected src type to be fixed point type");
2389 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2390 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2391 CE->getExprLoc());
2392
2393 case CK_FixedPointToIntegral:
2394 assert(E->getType()->isFixedPointType() &&
2395 "Expected src type to be fixed point type");
2396 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2397 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2398 CE->getExprLoc());
2399
2400 case CK_IntegralToFixedPoint:
2401 assert(E->getType()->isIntegerType() &&
2402 "Expected src type to be an integer");
2403 assert(DestTy->isFixedPointType() &&
2404 "Expected dest type to be fixed point type");
2405 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2406 CE->getExprLoc());
2407
2408 case CK_IntegralCast: {
2409 ScalarConversionOpts Opts;
2410 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2411 if (!ICE->isPartOfExplicitCast())
2412 Opts = ScalarConversionOpts(CGF.SanOpts);
2413 }
2414 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2415 CE->getExprLoc(), Opts);
2416 }
2417 case CK_IntegralToFloating:
2418 case CK_FloatingToIntegral:
2419 case CK_FloatingCast:
2420 case CK_FixedPointToFloating:
2421 case CK_FloatingToFixedPoint: {
2422 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2423 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2424 CE->getExprLoc());
2425 }
2426 case CK_BooleanToSignedIntegral: {
2427 ScalarConversionOpts Opts;
2428 Opts.TreatBooleanAsSigned = true;
2429 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2430 CE->getExprLoc(), Opts);
2431 }
2432 case CK_IntegralToBoolean:
2433 return EmitIntToBoolConversion(Visit(E));
2434 case CK_PointerToBoolean:
2435 return EmitPointerToBoolConversion(Visit(E), E->getType());
2436 case CK_FloatingToBoolean: {
2437 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2438 return EmitFloatToBoolConversion(Visit(E));
2439 }
2440 case CK_MemberPointerToBoolean: {
2441 llvm::Value *MemPtr = Visit(E);
2442 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2443 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2444 }
2445
2446 case CK_FloatingComplexToReal:
2447 case CK_IntegralComplexToReal:
2448 return CGF.EmitComplexExpr(E, false, true).first;
2449
2450 case CK_FloatingComplexToBoolean:
2451 case CK_IntegralComplexToBoolean: {
2453
2454 // TODO: kill this function off, inline appropriate case here
2455 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2456 CE->getExprLoc());
2457 }
2458
2459 case CK_ZeroToOCLOpaqueType: {
2460 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2461 DestTy->isOCLIntelSubgroupAVCType()) &&
2462 "CK_ZeroToOCLEvent cast on non-event type");
2463 return llvm::Constant::getNullValue(ConvertType(DestTy));
2464 }
2465
2466 case CK_IntToOCLSampler:
2467 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2468
2469 } // end of switch
2470
2471 llvm_unreachable("unknown scalar cast");
2472}
2473
2474Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2475 CodeGenFunction::StmtExprEvaluation eval(CGF);
2476 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2477 !E->getType()->isVoidType());
2478 if (!RetAlloca.isValid())
2479 return nullptr;
2480 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2481 E->getExprLoc());
2482}
2483
2484Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2485 CodeGenFunction::RunCleanupsScope Scope(CGF);
2486 Value *V = Visit(E->getSubExpr());
2487 // Defend against dominance problems caused by jumps out of expression
2488 // evaluation through the shared cleanup block.
2489 Scope.ForceCleanup({&V});
2490 return V;
2491}
2492
2493//===----------------------------------------------------------------------===//
2494// Unary Operators
2495//===----------------------------------------------------------------------===//
2496
2498 llvm::Value *InVal, bool IsInc,
2499 FPOptions FPFeatures) {
2500 BinOpInfo BinOp;
2501 BinOp.LHS = InVal;
2502 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2503 BinOp.Ty = E->getType();
2504 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2505 BinOp.FPFeatures = FPFeatures;
2506 BinOp.E = E;
2507 return BinOp;
2508}
2509
2510llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2511 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2512 llvm::Value *Amount =
2513 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2514 StringRef Name = IsInc ? "inc" : "dec";
2515 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2517 return Builder.CreateAdd(InVal, Amount, Name);
2519 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2520 return Builder.CreateNSWAdd(InVal, Amount, Name);
2521 [[fallthrough]];
2523 if (!E->canOverflow())
2524 return Builder.CreateNSWAdd(InVal, Amount, Name);
2525 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2526 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2527 }
2528 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2529}
2530
2531namespace {
2532/// Handles check and update for lastprivate conditional variables.
2533class OMPLastprivateConditionalUpdateRAII {
2534private:
2535 CodeGenFunction &CGF;
2536 const UnaryOperator *E;
2537
2538public:
2539 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2540 const UnaryOperator *E)
2541 : CGF(CGF), E(E) {}
2542 ~OMPLastprivateConditionalUpdateRAII() {
2543 if (CGF.getLangOpts().OpenMP)
2545 CGF, E->getSubExpr());
2546 }
2547};
2548} // namespace
2549
2550llvm::Value *
2551ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2552 bool isInc, bool isPre) {
2553 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2554 QualType type = E->getSubExpr()->getType();
2555 llvm::PHINode *atomicPHI = nullptr;
2556 llvm::Value *value;
2557 llvm::Value *input;
2558
2559 int amount = (isInc ? 1 : -1);
2560 bool isSubtraction = !isInc;
2561
2562 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2563 type = atomicTy->getValueType();
2564 if (isInc && type->isBooleanType()) {
2565 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2566 if (isPre) {
2567 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2568 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2569 return Builder.getTrue();
2570 }
2571 // For atomic bool increment, we just store true and return it for
2572 // preincrement, do an atomic swap with true for postincrement
2573 return Builder.CreateAtomicRMW(
2574 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2575 llvm::AtomicOrdering::SequentiallyConsistent);
2576 }
2577 // Special case for atomic increment / decrement on integers, emit
2578 // atomicrmw instructions. We skip this if we want to be doing overflow
2579 // checking, and fall into the slow path with the atomic cmpxchg loop.
2580 if (!type->isBooleanType() && type->isIntegerType() &&
2581 !(type->isUnsignedIntegerType() &&
2582 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2583 CGF.getLangOpts().getSignedOverflowBehavior() !=
2585 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2586 llvm::AtomicRMWInst::Sub;
2587 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2588 llvm::Instruction::Sub;
2589 llvm::Value *amt = CGF.EmitToMemory(
2590 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2591 llvm::Value *old =
2592 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2593 llvm::AtomicOrdering::SequentiallyConsistent);
2594 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2595 }
2596 value = EmitLoadOfLValue(LV, E->getExprLoc());
2597 input = value;
2598 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2599 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2600 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2601 value = CGF.EmitToMemory(value, type);
2602 Builder.CreateBr(opBB);
2603 Builder.SetInsertPoint(opBB);
2604 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2605 atomicPHI->addIncoming(value, startBB);
2606 value = atomicPHI;
2607 } else {
2608 value = EmitLoadOfLValue(LV, E->getExprLoc());
2609 input = value;
2610 }
2611
2612 // Special case of integer increment that we have to check first: bool++.
2613 // Due to promotion rules, we get:
2614 // bool++ -> bool = bool + 1
2615 // -> bool = (int)bool + 1
2616 // -> bool = ((int)bool + 1 != 0)
2617 // An interesting aspect of this is that increment is always true.
2618 // Decrement does not have this property.
2619 if (isInc && type->isBooleanType()) {
2620 value = Builder.getTrue();
2621
2622 // Most common case by far: integer increment.
2623 } else if (type->isIntegerType()) {
2624 QualType promotedType;
2625 bool canPerformLossyDemotionCheck = false;
2627 promotedType = CGF.getContext().getPromotedIntegerType(type);
2628 assert(promotedType != type && "Shouldn't promote to the same type.");
2629 canPerformLossyDemotionCheck = true;
2630 canPerformLossyDemotionCheck &=
2632 CGF.getContext().getCanonicalType(promotedType);
2633 canPerformLossyDemotionCheck &=
2635 type, promotedType);
2636 assert((!canPerformLossyDemotionCheck ||
2637 type->isSignedIntegerOrEnumerationType() ||
2638 promotedType->isSignedIntegerOrEnumerationType() ||
2639 ConvertType(type)->getScalarSizeInBits() ==
2640 ConvertType(promotedType)->getScalarSizeInBits()) &&
2641 "The following check expects that if we do promotion to different "
2642 "underlying canonical type, at least one of the types (either "
2643 "base or promoted) will be signed, or the bitwidths will match.");
2644 }
2645 if (CGF.SanOpts.hasOneOf(
2646 SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2647 canPerformLossyDemotionCheck) {
2648 // While `x += 1` (for `x` with width less than int) is modeled as
2649 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2650 // ease; inc/dec with width less than int can't overflow because of
2651 // promotion rules, so we omit promotion+demotion, which means that we can
2652 // not catch lossy "demotion". Because we still want to catch these cases
2653 // when the sanitizer is enabled, we perform the promotion, then perform
2654 // the increment/decrement in the wider type, and finally
2655 // perform the demotion. This will catch lossy demotions.
2656
2657 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2658 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2659 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2660 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2661 // emitted.
2662 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2663 ScalarConversionOpts(CGF.SanOpts));
2664
2665 // Note that signed integer inc/dec with width less than int can't
2666 // overflow because of promotion rules; we're just eliding a few steps
2667 // here.
2668 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2669 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2670 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2671 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2672 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2673 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2674 } else {
2675 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2676 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2677 }
2678
2679 // Next most common: pointer increment.
2680 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2681 QualType type = ptr->getPointeeType();
2682
2683 // VLA types don't have constant size.
2684 if (const VariableArrayType *vla
2686 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2687 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2688 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2690 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2691 else
2692 value = CGF.EmitCheckedInBoundsGEP(
2693 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2694 E->getExprLoc(), "vla.inc");
2695
2696 // Arithmetic on function pointers (!) is just +-1.
2697 } else if (type->isFunctionType()) {
2698 llvm::Value *amt = Builder.getInt32(amount);
2699
2701 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2702 else
2703 value =
2704 CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2705 /*SignedIndices=*/false, isSubtraction,
2706 E->getExprLoc(), "incdec.funcptr");
2707
2708 // For everything else, we can just do a simple increment.
2709 } else {
2710 llvm::Value *amt = Builder.getInt32(amount);
2711 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2713 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2714 else
2715 value = CGF.EmitCheckedInBoundsGEP(
2716 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2717 E->getExprLoc(), "incdec.ptr");
2718 }
2719
2720 // Vector increment/decrement.
2721 } else if (type->isVectorType()) {
2722 if (type->hasIntegerRepresentation()) {
2723 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2724
2725 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2726 } else {
2727 value = Builder.CreateFAdd(
2728 value,
2729 llvm::ConstantFP::get(value->getType(), amount),
2730 isInc ? "inc" : "dec");
2731 }
2732
2733 // Floating point.
2734 } else if (type->isRealFloatingType()) {
2735 // Add the inc/dec to the real part.
2736 llvm::Value *amt;
2737 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2738
2739 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2740 // Another special case: half FP increment should be done via float
2742 value = Builder.CreateCall(
2743 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2744 CGF.CGM.FloatTy),
2745 input, "incdec.conv");
2746 } else {
2747 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2748 }
2749 }
2750
2751 if (value->getType()->isFloatTy())
2752 amt = llvm::ConstantFP::get(VMContext,
2753 llvm::APFloat(static_cast<float>(amount)));
2754 else if (value->getType()->isDoubleTy())
2755 amt = llvm::ConstantFP::get(VMContext,
2756 llvm::APFloat(static_cast<double>(amount)));
2757 else {
2758 // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
2759 // Convert from float.
2760 llvm::APFloat F(static_cast<float>(amount));
2761 bool ignored;
2762 const llvm::fltSemantics *FS;
2763 // Don't use getFloatTypeSemantics because Half isn't
2764 // necessarily represented using the "half" LLVM type.
2765 if (value->getType()->isFP128Ty())
2766 FS = &CGF.getTarget().getFloat128Format();
2767 else if (value->getType()->isHalfTy())
2768 FS = &CGF.getTarget().getHalfFormat();
2769 else if (value->getType()->isBFloatTy())
2770 FS = &CGF.getTarget().getBFloat16Format();
2771 else if (value->getType()->isPPC_FP128Ty())
2772 FS = &CGF.getTarget().getIbm128Format();
2773 else
2774 FS = &CGF.getTarget().getLongDoubleFormat();
2775 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2776 amt = llvm::ConstantFP::get(VMContext, F);
2777 }
2778 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2779
2780 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2782 value = Builder.CreateCall(
2783 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2784 CGF.CGM.FloatTy),
2785 value, "incdec.conv");
2786 } else {
2787 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2788 }
2789 }
2790
2791 // Fixed-point types.
2792 } else if (type->isFixedPointType()) {
2793 // Fixed-point types are tricky. In some cases, it isn't possible to
2794 // represent a 1 or a -1 in the type at all. Piggyback off of
2795 // EmitFixedPointBinOp to avoid having to reimplement saturation.
2796 BinOpInfo Info;
2797 Info.E = E;
2798 Info.Ty = E->getType();
2799 Info.Opcode = isInc ? BO_Add : BO_Sub;
2800 Info.LHS = value;
2801 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2802 // If the type is signed, it's better to represent this as +(-1) or -(-1),
2803 // since -1 is guaranteed to be representable.
2804 if (type->isSignedFixedPointType()) {
2805 Info.Opcode = isInc ? BO_Sub : BO_Add;
2806 Info.RHS = Builder.CreateNeg(Info.RHS);
2807 }
2808 // Now, convert from our invented integer literal to the type of the unary
2809 // op. This will upscale and saturate if necessary. This value can become
2810 // undef in some cases.
2811 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2812 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2813 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2814 value = EmitFixedPointBinOp(Info);
2815
2816 // Objective-C pointer types.
2817 } else {
2818 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2819
2821 if (!isInc) size = -size;
2822 llvm::Value *sizeValue =
2823 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2824
2826 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2827 else
2828 value = CGF.EmitCheckedInBoundsGEP(
2829 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2830 E->getExprLoc(), "incdec.objptr");
2831 value = Builder.CreateBitCast(value, input->getType());
2832 }
2833
2834 if (atomicPHI) {
2835 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2836 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2837 auto Pair = CGF.EmitAtomicCompareExchange(
2838 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2839 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2840 llvm::Value *success = Pair.second;
2841 atomicPHI->addIncoming(old, curBlock);
2842 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2843 Builder.SetInsertPoint(contBB);
2844 return isPre ? value : input;
2845 }
2846
2847 // Store the updated result through the lvalue.
2848 if (LV.isBitField())
2849 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2850 else
2851 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2852
2853 // If this is a postinc, return the value read from memory, otherwise use the
2854 // updated value.
2855 return isPre ? value : input;
2856}
2857
2858
2859Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
2860 QualType PromotionType) {
2861 QualType promotionTy = PromotionType.isNull()
2862 ? getPromotionType(E->getSubExpr()->getType())
2863 : PromotionType;
2864 Value *result = VisitPlus(E, promotionTy);
2865 if (result && !promotionTy.isNull())
2866 result = EmitUnPromotedValue(result, E->getType());
2867 return result;
2868}
2869
2870Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
2871 QualType PromotionType) {
2872 // This differs from gcc, though, most likely due to a bug in gcc.
2873 TestAndClearIgnoreResultAssign();
2874 if (!PromotionType.isNull())
2875 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2876 return Visit(E->getSubExpr());
2877}
2878
2879Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
2880 QualType PromotionType) {
2881 QualType promotionTy = PromotionType.isNull()
2882 ? getPromotionType(E->getSubExpr()->getType())
2883 : PromotionType;
2884 Value *result = VisitMinus(E, promotionTy);
2885 if (result && !promotionTy.isNull())
2886 result = EmitUnPromotedValue(result, E->getType());
2887 return result;
2888}
2889
2890Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
2891 QualType PromotionType) {
2892 TestAndClearIgnoreResultAssign();
2893 Value *Op;
2894 if (!PromotionType.isNull())
2895 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2896 else
2897 Op = Visit(E->getSubExpr());
2898
2899 // Generate a unary FNeg for FP ops.
2900 if (Op->getType()->isFPOrFPVectorTy())
2901 return Builder.CreateFNeg(Op, "fneg");
2902
2903 // Emit unary minus with EmitSub so we handle overflow cases etc.
2904 BinOpInfo BinOp;
2905 BinOp.RHS = Op;
2906 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2907 BinOp.Ty = E->getType();
2908 BinOp.Opcode = BO_Sub;
2909 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2910 BinOp.E = E;
2911 return EmitSub(BinOp);
2912}
2913
2914Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2915 TestAndClearIgnoreResultAssign();
2916 Value *Op = Visit(E->getSubExpr());
2917 return Builder.CreateNot(Op, "not");
2918}
2919
2920Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2921 // Perform vector logical not on comparison with zero vector.
2922 if (E->getType()->isVectorType() &&
2923 E->getType()->castAs<VectorType>()->getVectorKind() ==
2925 Value *Oper = Visit(E->getSubExpr());
2926 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2927 Value *Result;
2928 if (Oper->getType()->isFPOrFPVectorTy()) {
2929 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2930 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2931 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2932 } else
2933 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2934 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2935 }
2936
2937 // Compare operand to zero.
2938 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2939
2940 // Invert value.
2941 // TODO: Could dynamically modify easy computations here. For example, if
2942 // the operand is an icmp ne, turn into icmp eq.
2943 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2944
2945 // ZExt result to the expr type.
2946 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2947}
2948
2949Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2950 // Try folding the offsetof to a constant.
2951 Expr::EvalResult EVResult;
2952 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2953 llvm::APSInt Value = EVResult.Val.getInt();
2954 return Builder.getInt(Value);
2955 }
2956
2957 // Loop over the components of the offsetof to compute the value.
2958 unsigned n = E->getNumComponents();
2959 llvm::Type* ResultType = ConvertType(E->getType());
2960 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2961 QualType CurrentType = E->getTypeSourceInfo()->getType();
2962 for (unsigned i = 0; i != n; ++i) {
2963 OffsetOfNode ON = E->getComponent(i);
2964 llvm::Value *Offset = nullptr;
2965 switch (ON.getKind()) {
2966 case OffsetOfNode::Array: {
2967 // Compute the index
2968 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2969 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2970 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2971 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2972
2973 // Save the element type
2974 CurrentType =
2975 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2976
2977 // Compute the element size
2978 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2979 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2980
2981 // Multiply out to compute the result
2982 Offset = Builder.CreateMul(Idx, ElemSize);
2983 break;
2984 }
2985
2986 case OffsetOfNode::Field: {
2987 FieldDecl *MemberDecl = ON.getField();
2988 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2989 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2990
2991 // Compute the index of the field in its parent.
2992 unsigned i = 0;
2993 // FIXME: It would be nice if we didn't have to loop here!
2994 for (RecordDecl::field_iterator Field = RD->field_begin(),
2995 FieldEnd = RD->field_end();
2996 Field != FieldEnd; ++Field, ++i) {
2997 if (*Field == MemberDecl)
2998 break;
2999 }
3000 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3001
3002 // Compute the offset to the field
3003 int64_t OffsetInt = RL.getFieldOffset(i) /
3004 CGF.getContext().getCharWidth();
3005 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3006
3007 // Save the element type.
3008 CurrentType = MemberDecl->getType();
3009 break;
3010 }
3011
3013 llvm_unreachable("dependent __builtin_offsetof");
3014
3015 case OffsetOfNode::Base: {
3016 if (ON.getBase()->isVirtual()) {
3017 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3018 continue;
3019 }
3020
3021 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3022 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3023
3024 // Save the element type.
3025 CurrentType = ON.getBase()->getType();
3026
3027 // Compute the offset to the base.
3028 auto *BaseRT = CurrentType->castAs<RecordType>();
3029 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3030 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3031 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3032 break;
3033 }
3034 }
3035 Result = Builder.CreateAdd(Result, Offset);
3036 }
3037 return Result;
3038}
3039
3040/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3041/// argument of the sizeof expression as an integer.
3042Value *
3043ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3044 const UnaryExprOrTypeTraitExpr *E) {
3045 QualType TypeToSize = E->getTypeOfArgument();
3046 if (auto Kind = E->getKind();
3047 Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3048 if (const VariableArrayType *VAT =
3049 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3050 if (E->isArgumentType()) {
3051 // sizeof(type) - make sure to emit the VLA size.
3052 CGF.EmitVariablyModifiedType(TypeToSize);
3053 } else {
3054 // C99 6.5.3.4p2: If the argument is an expression of type
3055 // VLA, it is evaluated.
3057 }
3058
3059 auto VlaSize = CGF.getVLASize(VAT);
3060 llvm::Value *size = VlaSize.NumElts;
3061
3062 // Scale the number of non-VLA elements by the non-VLA element size.
3063 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3064 if (!eltSize.isOne())
3065 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3066
3067 return size;
3068 }
3069 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3070 auto Alignment =
3071 CGF.getContext()
3074 .getQuantity();
3075 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3076 } else if (E->getKind() == UETT_VectorElements) {
3077 auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3078 return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3079 }
3080
3081 // If this isn't sizeof(vla), the result must be constant; use the constant
3082 // folding logic so we don't have to duplicate it here.
3083 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3084}
3085
3086Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3087 QualType PromotionType) {
3088 QualType promotionTy = PromotionType.isNull()
3089 ? getPromotionType(E->getSubExpr()->getType())
3090 : PromotionType;
3091 Value *result = VisitReal(E, promotionTy);
3092 if (result && !promotionTy.isNull())
3093 result = EmitUnPromotedValue(result, E->getType());
3094 return result;
3095}
3096
3097Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3098 QualType PromotionType) {
3099 Expr *Op = E->getSubExpr();
3100 if (Op->getType()->isAnyComplexType()) {
3101 // If it's an l-value, load through the appropriate subobject l-value.
3102 // Note that we have to ask E because Op might be an l-value that
3103 // this won't work for, e.g. an Obj-C property.
3104 if (E->isGLValue()) {
3105 if (!PromotionType.isNull()) {
3107 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3108 if (result.first)
3109 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3110 return result.first;
3111 } else {
3112 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3113 .getScalarVal();
3114 }
3115 }
3116 // Otherwise, calculate and project.
3117 return CGF.EmitComplexExpr(Op, false, true).first;
3118 }
3119
3120 if (!PromotionType.isNull())
3121 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3122 return Visit(Op);
3123}
3124
3125Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3126 QualType PromotionType) {
3127 QualType promotionTy = PromotionType.isNull()
3128 ? getPromotionType(E->getSubExpr()->getType())
3129 : PromotionType;
3130 Value *result = VisitImag(E, promotionTy);
3131 if (result && !promotionTy.isNull())
3132 result = EmitUnPromotedValue(result, E->getType());
3133 return result;
3134}
3135
3136Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3137 QualType PromotionType) {
3138 Expr *Op = E->getSubExpr();
3139 if (Op->getType()->isAnyComplexType()) {
3140 // If it's an l-value, load through the appropriate subobject l-value.
3141 // Note that we have to ask E because Op might be an l-value that
3142 // this won't work for, e.g. an Obj-C property.
3143 if (Op->isGLValue()) {
3144 if (!PromotionType.isNull()) {
3146 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3147 if (result.second)
3148 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3149 return result.second;
3150 } else {
3151 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3152 .getScalarVal();
3153 }
3154 }
3155 // Otherwise, calculate and project.
3156 return CGF.EmitComplexExpr(Op, true, false).second;
3157 }
3158
3159 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3160 // effects are evaluated, but not the actual value.
3161 if (Op->isGLValue())
3162 CGF.EmitLValue(Op);
3163 else if (!PromotionType.isNull())
3164 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3165 else
3166 CGF.EmitScalarExpr(Op, true);
3167 if (!PromotionType.isNull())
3168 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3169 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3170}
3171
3172//===----------------------------------------------------------------------===//
3173// Binary Operators
3174//===----------------------------------------------------------------------===//
3175
3176Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3177 QualType PromotionType) {
3178 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3179}
3180
3181Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3182 QualType ExprType) {
3183 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3184}
3185
3186Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3187 E = E->IgnoreParens();
3188 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3189 switch (BO->getOpcode()) {
3190#define HANDLE_BINOP(OP) \
3191 case BO_##OP: \
3192 return Emit##OP(EmitBinOps(BO, PromotionType));
3193 HANDLE_BINOP(Add)
3194 HANDLE_BINOP(Sub)
3195 HANDLE_BINOP(Mul)
3196 HANDLE_BINOP(Div)
3197#undef HANDLE_BINOP
3198 default:
3199 break;
3200 }
3201 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3202 switch (UO->getOpcode()) {
3203 case UO_Imag:
3204 return VisitImag(UO, PromotionType);
3205 case UO_Real:
3206 return VisitReal(UO, PromotionType);
3207 case UO_Minus:
3208 return VisitMinus(UO, PromotionType);
3209 case UO_Plus:
3210 return VisitPlus(UO, PromotionType);
3211 default:
3212 break;
3213 }
3214 }
3215 auto result = Visit(const_cast<Expr *>(E));
3216 if (result) {
3217 if (!PromotionType.isNull())
3218 return EmitPromotedValue(result, PromotionType);
3219 else
3220 return EmitUnPromotedValue(result, E->getType());
3221 }
3222 return result;
3223}
3224
3225BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3226 QualType PromotionType) {
3227 TestAndClearIgnoreResultAssign();
3228 BinOpInfo Result;
3229 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3230 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3231 if (!PromotionType.isNull())
3232 Result.Ty = PromotionType;
3233 else
3234 Result.Ty = E->getType();
3235 Result.Opcode = E->getOpcode();
3236 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3237 Result.E = E;
3238 return Result;
3239}
3240
3241LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3242 const CompoundAssignOperator *E,
3243 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3244 Value *&Result) {
3245 QualType LHSTy = E->getLHS()->getType();
3246 BinOpInfo OpInfo;
3247
3250
3251 // Emit the RHS first. __block variables need to have the rhs evaluated
3252 // first, plus this should improve codegen a little.
3253
3254 QualType PromotionTypeCR;
3255 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3256 if (PromotionTypeCR.isNull())
3257 PromotionTypeCR = E->getComputationResultType();
3258 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3259 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3260 if (!PromotionTypeRHS.isNull())
3261 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3262 else
3263 OpInfo.RHS = Visit(E->getRHS());
3264 OpInfo.Ty = PromotionTypeCR;
3265 OpInfo.Opcode = E->getOpcode();
3266 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3267 OpInfo.E = E;
3268 // Load/convert the LHS.
3269 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3270
3271 llvm::PHINode *atomicPHI = nullptr;
3272 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3273 QualType type = atomicTy->getValueType();
3274 if (!type->isBooleanType() && type->isIntegerType() &&
3275 !(type->isUnsignedIntegerType() &&
3276 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3277 CGF.getLangOpts().getSignedOverflowBehavior() !=
3279 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3280 llvm::Instruction::BinaryOps Op;
3281 switch (OpInfo.Opcode) {
3282 // We don't have atomicrmw operands for *, %, /, <<, >>
3283 case BO_MulAssign: case BO_DivAssign:
3284 case BO_RemAssign:
3285 case BO_ShlAssign:
3286 case BO_ShrAssign:
3287 break;
3288 case BO_AddAssign:
3289 AtomicOp = llvm::AtomicRMWInst::Add;
3290 Op = llvm::Instruction::Add;
3291 break;
3292 case BO_SubAssign:
3293 AtomicOp = llvm::AtomicRMWInst::Sub;
3294 Op = llvm::Instruction::Sub;
3295 break;
3296 case BO_AndAssign:
3297 AtomicOp = llvm::AtomicRMWInst::And;
3298 Op = llvm::Instruction::And;
3299 break;
3300 case BO_XorAssign:
3301 AtomicOp = llvm::AtomicRMWInst::Xor;
3302 Op = llvm::Instruction::Xor;
3303 break;
3304 case BO_OrAssign:
3305 AtomicOp = llvm::AtomicRMWInst::Or;
3306 Op = llvm::Instruction::Or;
3307 break;
3308 default:
3309 llvm_unreachable("Invalid compound assignment type");
3310 }
3311 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3312 llvm::Value *Amt = CGF.EmitToMemory(
3313 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3314 E->getExprLoc()),
3315 LHSTy);
3316 Value *OldVal = Builder.CreateAtomicRMW(
3317 AtomicOp, LHSLV.getPointer(CGF), Amt,
3318 llvm::AtomicOrdering::SequentiallyConsistent);
3319
3320 // Since operation is atomic, the result type is guaranteed to be the
3321 // same as the input in LLVM terms.
3322 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3323 return LHSLV;
3324 }
3325 }
3326 // FIXME: For floating point types, we should be saving and restoring the
3327 // floating point environment in the loop.
3328 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3329 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3330 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3331 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3332 Builder.CreateBr(opBB);
3333 Builder.SetInsertPoint(opBB);
3334 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3335 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3336 OpInfo.LHS = atomicPHI;
3337 }
3338 else
3339 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3340
3341 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3342 SourceLocation Loc = E->getExprLoc();
3343 if (!PromotionTypeLHS.isNull())
3344 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3345 E->getExprLoc());
3346 else
3347 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3348 E->getComputationLHSType(), Loc);
3349
3350 // Expand the binary operator.
3351 Result = (this->*Func)(OpInfo);
3352
3353 // Convert the result back to the LHS type,
3354 // potentially with Implicit Conversion sanitizer check.
3355 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3356 ScalarConversionOpts(CGF.SanOpts));
3357
3358 if (atomicPHI) {
3359 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3360 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3361 auto Pair = CGF.EmitAtomicCompareExchange(
3362 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3363 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3364 llvm::Value *success = Pair.second;
3365 atomicPHI->addIncoming(old, curBlock);
3366 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3367 Builder.SetInsertPoint(contBB);
3368 return LHSLV;
3369 }
3370
3371 // Store the result value into the LHS lvalue. Bit-fields are handled
3372 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3373 // 'An assignment expression has the value of the left operand after the
3374 // assignment...'.
3375 if (LHSLV.isBitField())
3377 else
3379
3380 if (CGF.getLangOpts().OpenMP)
3382 E->getLHS());
3383 return LHSLV;
3384}
3385
3386Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3387 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3388 bool Ignore = TestAndClearIgnoreResultAssign();
3389 Value *RHS = nullptr;
3390 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3391
3392 // If the result is clearly ignored, return now.
3393 if (Ignore)
3394 return nullptr;
3395
3396 // The result of an assignment in C is the assigned r-value.
3397 if (!CGF.getLangOpts().CPlusPlus)
3398 return RHS;
3399
3400 // If the lvalue is non-volatile, return the computed value of the assignment.
3401 if (!LHS.isVolatileQualified())
3402 return RHS;
3403
3404 // Otherwise, reload the value.
3405 return EmitLoadOfLValue(LHS, E->getExprLoc());
3406}
3407
3408void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3409 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3411
3412 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3413 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3414 SanitizerKind::IntegerDivideByZero));
3415 }
3416
3417 const auto *BO = cast<BinaryOperator>(Ops.E);
3418 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3419 Ops.Ty->hasSignedIntegerRepresentation() &&
3420 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3421 Ops.mayHaveIntegerOverflow()) {
3422 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3423
3424 llvm::Value *IntMin =
3425 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3426 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3427
3428 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3429 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3430 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3431 Checks.push_back(
3432 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3433 }
3434
3435 if (Checks.size() > 0)
3436 EmitBinOpCheck(Checks, Ops);
3437}
3438
3439Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3440 {
3441 CodeGenFunction::SanitizerScope SanScope(&CGF);
3442 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3443 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3444 Ops.Ty->isIntegerType() &&
3445 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3446 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3447 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3448 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3449 Ops.Ty->isRealFloatingType() &&
3450 Ops.mayHaveFloatDivisionByZero()) {
3451 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3452 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3453 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3454 Ops);
3455 }
3456 }
3457
3458 if (Ops.Ty->isConstantMatrixType()) {
3459 llvm::MatrixBuilder MB(Builder);
3460 // We need to check the types of the operands of the operator to get the
3461 // correct matrix dimensions.
3462 auto *BO = cast<BinaryOperator>(Ops.E);
3463 (void)BO;
3464 assert(
3465 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3466 "first operand must be a matrix");
3467 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3468 "second operand must be an arithmetic type");
3469 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3470 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3471 Ops.Ty->hasUnsignedIntegerRepresentation());
3472 }
3473
3474 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3475 llvm::Value *Val;
3476 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3477 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3478 CGF.SetDivFPAccuracy(Val);
3479 return Val;
3480 }
3481 else if (Ops.isFixedPointOp())
3482 return EmitFixedPointBinOp(Ops);
3483 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3484 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3485 else
3486 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3487}
3488
3489Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3490 // Rem in C can't be a floating point type: C99 6.5.5p2.
3491 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3492 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3493 Ops.Ty->isIntegerType() &&
3494 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3495 CodeGenFunction::SanitizerScope SanScope(&CGF);
3496 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3497 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3498 }
3499
3500 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3501 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3502 else
3503 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3504}
3505
3506Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3507 unsigned IID;
3508 unsigned OpID = 0;
3509 SanitizerHandler OverflowKind;
3510
3511 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3512 switch (Ops.Opcode) {
3513 case BO_Add:
3514 case BO_AddAssign:
3515 OpID = 1;
3516 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3517 llvm::Intrinsic::uadd_with_overflow;
3518 OverflowKind = SanitizerHandler::AddOverflow;
3519 break;
3520 case BO_Sub:
3521 case BO_SubAssign:
3522 OpID = 2;
3523 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3524 llvm::Intrinsic::usub_with_overflow;
3525 OverflowKind = SanitizerHandler::SubOverflow;
3526 break;
3527 case BO_Mul:
3528 case BO_MulAssign:
3529 OpID = 3;
3530 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3531 llvm::Intrinsic::umul_with_overflow;
3532 OverflowKind = SanitizerHandler::MulOverflow;
3533 break;
3534 default:
3535 llvm_unreachable("Unsupported operation for overflow detection");
3536 }
3537 OpID <<= 1;
3538 if (isSigned)
3539 OpID |= 1;
3540
3541 CodeGenFunction::SanitizerScope SanScope(&CGF);
3542 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3543
3544 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3545
3546 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3547 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3548 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3549
3550 // Handle overflow with llvm.trap if no custom handler has been specified.
3551 const std::string *handlerName =
3553 if (handlerName->empty()) {
3554 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3555 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3556 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3557 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3558 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3559 : SanitizerKind::UnsignedIntegerOverflow;
3560 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3561 } else
3562 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3563 return result;
3564 }
3565
3566 // Branch in case of overflow.
3567 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3568 llvm::BasicBlock *continueBB =
3569 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3570 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3571
3572 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3573
3574 // If an overflow handler is set, then we want to call it and then use its
3575 // result, if it returns.
3576 Builder.SetInsertPoint(overflowBB);
3577
3578 // Get the overflow handler.
3579 llvm::Type *Int8Ty = CGF.Int8Ty;
3580 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3581 llvm::FunctionType *handlerTy =
3582 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3583 llvm::FunctionCallee handler =
3584 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3585
3586 // Sign extend the args to 64-bit, so that we can use the same handler for
3587 // all types of overflow.
3588 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3589 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3590
3591 // Call the handler with the two arguments, the operation, and the size of
3592 // the result.
3593 llvm::Value *handlerArgs[] = {
3594 lhs,
3595 rhs,
3596 Builder.getInt8(OpID),
3597 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3598 };
3599 llvm::Value *handlerResult =
3600 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3601
3602 // Truncate the result back to the desired size.
3603 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3604 Builder.CreateBr(continueBB);
3605
3606 Builder.SetInsertPoint(continueBB);
3607 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3608 phi->addIncoming(result, initialBB);
3609 phi->addIncoming(handlerResult, overflowBB);
3610
3611 return phi;
3612}
3613
3614/// Emit pointer + index arithmetic.
3616 const BinOpInfo &op,
3617 bool isSubtraction) {
3618 // Must have binary (not unary) expr here. Unary pointer
3619 // increment/decrement doesn't use this path.
3620 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3621
3622 Value *pointer = op.LHS;
3623 Expr *pointerOperand = expr->getLHS();
3624 Value *index = op.RHS;
3625 Expr *indexOperand = expr->getRHS();
3626
3627 // In a subtraction, the LHS is always the pointer.
3628 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3629 std::swap(pointer, index);
3630 std::swap(pointerOperand, indexOperand);
3631 }
3632
3633 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3634
3635 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3636 auto &DL = CGF.CGM.getDataLayout();
3637 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3638
3639 // Some versions of glibc and gcc use idioms (particularly in their malloc
3640 // routines) that add a pointer-sized integer (known to be a pointer value)
3641 // to a null pointer in order to cast the value back to an integer or as
3642 // part of a pointer alignment algorithm. This is undefined behavior, but
3643 // we'd like to be able to compile programs that use it.
3644 //
3645 // Normally, we'd generate a GEP with a null-pointer base here in response
3646 // to that code, but it's also UB to dereference a pointer created that
3647 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3648 // generate a direct cast of the integer value to a pointer.
3649 //
3650 // The idiom (p = nullptr + N) is not met if any of the following are true:
3651 //
3652 // The operation is subtraction.
3653 // The index is not pointer-sized.
3654 // The pointer type is not byte-sized.
3655 //
3657 op.Opcode,
3658 expr->getLHS(),
3659 expr->getRHS()))
3660 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3661
3662 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3663 // Zero-extend or sign-extend the pointer value according to
3664 // whether the index is signed or not.
3665 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3666 "idx.ext");
3667 }
3668
3669 // If this is subtraction, negate the index.
3670 if (isSubtraction)
3671 index = CGF.Builder.CreateNeg(index, "idx.neg");
3672
3673 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3674 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3675 /*Accessed*/ false);
3676
3678 = pointerOperand->getType()->getAs<PointerType>();
3679 if (!pointerType) {
3680 QualType objectType = pointerOperand->getType()
3682 ->getPointeeType();
3683 llvm::Value *objectSize
3684 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3685
3686 index = CGF.Builder.CreateMul(index, objectSize);
3687
3688 Value *result =
3689 CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
3690 return CGF.Builder.CreateBitCast(result, pointer->getType());
3691 }
3692
3693 QualType elementType = pointerType->getPointeeType();
3694 if (const VariableArrayType *vla
3695 = CGF.getContext().getAsVariableArrayType(elementType)) {
3696 // The element count here is the total number of non-VLA elements.
3697 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3698
3699 // Effectively, the multiply by the VLA size is part of the GEP.
3700 // GEP indexes are signed, and scaling an index isn't permitted to
3701 // signed-overflow, so we use the same semantics for our explicit
3702 // multiply. We suppress this if overflow is not undefined behavior.
3703 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3705 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3706 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3707 } else {
3708 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3709 pointer = CGF.EmitCheckedInBoundsGEP(
3710 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3711 "add.ptr");
3712 }
3713 return pointer;
3714 }
3715
3716 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3717 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3718 // future proof.
3719 llvm::Type *elemTy;
3720 if (elementType->isVoidType() || elementType->isFunctionType())
3721 elemTy = CGF.Int8Ty;
3722 else
3723 elemTy = CGF.ConvertTypeForMem(elementType);
3724
3726 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3727
3728 return CGF.EmitCheckedInBoundsGEP(
3729 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3730 "add.ptr");
3731}
3732
3733// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3734// Addend. Use negMul and negAdd to negate the first operand of the Mul or
3735// the add operand respectively. This allows fmuladd to represent a*b-c, or
3736// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3737// efficient operations.
3738static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3739 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3740 bool negMul, bool negAdd) {
3741 Value *MulOp0 = MulOp->getOperand(0);
3742 Value *MulOp1 = MulOp->getOperand(1);
3743 if (negMul)
3744 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3745 if (negAdd)
3746 Addend = Builder.CreateFNeg(Addend, "neg");
3747
3748 Value *FMulAdd = nullptr;
3749 if (Builder.getIsFPConstrained()) {
3750 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3751 "Only constrained operation should be created when Builder is in FP "
3752 "constrained mode");
3753 FMulAdd = Builder.CreateConstrainedFPCall(
3754 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3755 Addend->getType()),
3756 {MulOp0, MulOp1, Addend});
3757 } else {
3758 FMulAdd = Builder.CreateCall(
3759 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3760 {MulOp0, MulOp1, Addend});
3761 }
3762 MulOp->eraseFromParent();
3763
3764 return FMulAdd;
3765}
3766
3767// Check whether it would be legal to emit an fmuladd intrinsic call to
3768// represent op and if so, build the fmuladd.
3769//
3770// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3771// Does NOT check the type of the operation - it's assumed that this function
3772// will be called from contexts where it's known that the type is contractable.
3773static Value* tryEmitFMulAdd(const BinOpInfo &op,
3774 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3775 bool isSub=false) {
3776
3777 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3778 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3779 "Only fadd/fsub can be the root of an fmuladd.");
3780
3781 // Check whether this op is marked as fusable.
3782 if (!op.FPFeatures.allowFPContractWithinStatement())
3783 return nullptr;
3784
3785 Value *LHS = op.LHS;
3786 Value *RHS = op.RHS;
3787
3788 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
3789 // it is the only use of its operand.
3790 bool NegLHS = false;
3791 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
3792 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
3793 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
3794 LHS = LHSUnOp->getOperand(0);
3795 NegLHS = true;
3796 }
3797 }
3798
3799 bool NegRHS = false;
3800 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
3801 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
3802 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
3803 RHS = RHSUnOp->getOperand(0);
3804 NegRHS = true;
3805 }
3806 }
3807
3808 // We have a potentially fusable op. Look for a mul on one of the operands.
3809 // Also, make sure that the mul result isn't used directly. In that case,
3810 // there's no point creating a muladd operation.
3811 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
3812 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3813 (LHSBinOp->use_empty() || NegLHS)) {
3814 // If we looked through fneg, erase it.
3815 if (NegLHS)
3816 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
3817 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
3818 }
3819 }
3820 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
3821 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3822 (RHSBinOp->use_empty() || NegRHS)) {
3823 // If we looked through fneg, erase it.
3824 if (NegRHS)
3825 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
3826 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
3827 }
3828 }
3829
3830 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
3831 if (LHSBinOp->getIntrinsicID() ==
3832 llvm::Intrinsic::experimental_constrained_fmul &&
3833 (LHSBinOp->use_empty() || NegLHS)) {
3834 // If we looked through fneg, erase it.
3835 if (NegLHS)
3836 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
3837 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
3838 }
3839 }
3840 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
3841 if (RHSBinOp->getIntrinsicID() ==
3842 llvm::Intrinsic::experimental_constrained_fmul &&
3843 (RHSBinOp->use_empty() || NegRHS)) {
3844 // If we looked through fneg, erase it.
3845 if (NegRHS)
3846 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
3847 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
3848 }
3849 }
3850
3851 return nullptr;
3852}
3853
3854Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3855 if (op.LHS->getType()->isPointerTy() ||
3856 op.RHS->getType()->isPointerTy())
3858
3859 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3860 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3862 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3864 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3865 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3866 [[fallthrough]];
3868 if (CanElideOverflowCheck(CGF.getContext(), op))
3869 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3870 return EmitOverflowCheckedBinOp(op);
3871 }
3872 }
3873
3874 // For vector and matrix adds, try to fold into a fmuladd.
3875 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3876 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3877 // Try to form an fmuladd.
3878 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3879 return FMulAdd;
3880 }
3881
3882 if (op.Ty->isConstantMatrixType()) {
3883 llvm::MatrixBuilder MB(Builder);
3884 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3885 return MB.CreateAdd(op.LHS, op.RHS);
3886 }
3887
3888 if (op.Ty->isUnsignedIntegerType() &&
3889 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3890 !CanElideOverflowCheck(CGF.getContext(), op))
3891 return EmitOverflowCheckedBinOp(op);
3892
3893 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3894 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3895 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3896 }
3897
3898 if (op.isFixedPointOp())
3899 return EmitFixedPointBinOp(op);
3900
3901 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3902}
3903
3904/// The resulting value must be calculated with exact precision, so the operands
3905/// may not be the same type.
3906Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3907 using llvm::APSInt;
3908 using llvm::ConstantInt;
3909
3910 // This is either a binary operation where at least one of the operands is
3911 // a fixed-point type, or a unary operation where the operand is a fixed-point
3912 // type. The result type of a binary operation is determined by
3913 // Sema::handleFixedPointConversions().
3914 QualType ResultTy = op.Ty;
3915 QualType LHSTy, RHSTy;
3916 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3917 RHSTy = BinOp->getRHS()->getType();
3918 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3919 // For compound assignment, the effective type of the LHS at this point
3920 // is the computation LHS type, not the actual LHS type, and the final
3921 // result type is not the type of the expression but rather the
3922 // computation result type.
3923 LHSTy = CAO->getComputationLHSType();
3924 ResultTy = CAO->getComputationResultType();
3925 } else
3926 LHSTy = BinOp->getLHS()->getType();
3927 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3928 LHSTy = UnOp->getSubExpr()->getType();
3929 RHSTy = UnOp->getSubExpr()->getType();
3930 }
3931 ASTContext &Ctx = CGF.getContext();
3932 Value *LHS = op.LHS;
3933 Value *RHS = op.RHS;
3934
3935 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3936 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3937 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3938 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3939
3940 // Perform the actual operation.
3941 Value *Result;
3942 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3943 switch (op.Opcode) {
3944 case BO_AddAssign:
3945 case BO_Add:
3946 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3947 break;
3948 case BO_SubAssign:
3949 case BO_Sub:
3950 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3951 break;
3952 case BO_MulAssign:
3953 case BO_Mul:
3954 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3955 break;
3956 case BO_DivAssign:
3957 case BO_Div:
3958 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3959 break;
3960 case BO_ShlAssign:
3961 case BO_Shl:
3962 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3963 break;
3964 case BO_ShrAssign:
3965 case BO_Shr:
3966 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3967 break;
3968 case BO_LT:
3969 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3970 case BO_GT:
3971 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3972 case BO_LE:
3973 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3974 case BO_GE:
3975 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3976 case BO_EQ:
3977 // For equality operations, we assume any padding bits on unsigned types are
3978 // zero'd out. They could be overwritten through non-saturating operations
3979 // that cause overflow, but this leads to undefined behavior.
3980 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3981 case BO_NE:
3982 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3983 case BO_Cmp:
3984 case BO_LAnd:
3985 case BO_LOr:
3986 llvm_unreachable("Found unimplemented fixed point binary operation");
3987 case BO_PtrMemD:
3988 case BO_PtrMemI:
3989 case BO_Rem:
3990 case BO_Xor:
3991 case BO_And:
3992 case BO_Or:
3993 case BO_Assign:
3994 case BO_RemAssign:
3995 case BO_AndAssign:
3996 case BO_XorAssign:
3997 case BO_OrAssign:
3998 case BO_Comma:
3999 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4000 }
4001
4002 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4004 // Convert to the result type.
4005 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4006 : CommonFixedSema,
4007 ResultFixedSema);
4008}
4009
4010Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4011 // The LHS is always a pointer if either side is.
4012 if (!op.LHS->getType()->isPointerTy()) {
4013 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4014 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4016 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4018 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4019 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4020 [[fallthrough]];
4022 if (CanElideOverflowCheck(CGF.getContext(), op))
4023 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4024 return EmitOverflowCheckedBinOp(op);
4025 }
4026 }
4027
4028 // For vector and matrix subs, try to fold into a fmuladd.
4029 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4030 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4031 // Try to form an fmuladd.
4032 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4033 return FMulAdd;
4034 }
4035
4036 if (op.Ty->isConstantMatrixType()) {
4037 llvm::MatrixBuilder MB(Builder);
4038 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4039 return MB.CreateSub(op.LHS, op.RHS);
4040 }
4041
4042 if (op.Ty->isUnsignedIntegerType() &&
4043 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4044 !CanElideOverflowCheck(CGF.getContext(), op))
4045 return EmitOverflowCheckedBinOp(op);
4046
4047 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4048 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4049 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4050 }
4051
4052 if (op.isFixedPointOp())
4053 return EmitFixedPointBinOp(op);
4054
4055 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4056 }
4057
4058 // If the RHS is not a pointer, then we have normal pointer
4059 // arithmetic.
4060 if (!op.RHS->getType()->isPointerTy())
4062
4063 // Otherwise, this is a pointer subtraction.
4064
4065 // Do the raw subtraction part.
4066 llvm::Value *LHS
4067 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4068 llvm::Value *RHS
4069 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4070 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4071
4072 // Okay, figure out the element size.
4073 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4074 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4075
4076 llvm::Value *divisor = nullptr;
4077
4078 // For a variable-length array, this is going to be non-constant.
4079 if (const VariableArrayType *vla
4080 = CGF.getContext().getAsVariableArrayType(elementType)) {
4081 auto VlaSize = CGF.getVLASize(vla);
4082 elementType = VlaSize.Type;
4083 divisor = VlaSize.NumElts;
4084
4085 // Scale the number of non-VLA elements by the non-VLA element size.
4086 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4087 if (!eltSize.isOne())
4088 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4089
4090 // For everything elese, we can just compute it, safe in the
4091 // assumption that Sema won't let anything through that we can't
4092 // safely compute the size of.
4093 } else {
4094 CharUnits elementSize;
4095 // Handle GCC extension for pointer arithmetic on void* and
4096 // function pointer types.
4097 if (elementType->isVoidType() || elementType->isFunctionType())
4098 elementSize = CharUnits::One();
4099 else
4100 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4101
4102 // Don't even emit the divide for element size of 1.
4103 if (elementSize.isOne())
4104 return diffInChars;
4105
4106 divisor = CGF.CGM.getSize(elementSize);
4107 }
4108
4109 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4110 // pointer difference in C is only defined in the case where both operands
4111 // are pointing to elements of an array.
4112 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4113}
4114
4115Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
4116 llvm::IntegerType *Ty;
4117 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4118 Ty = cast<llvm::IntegerType>(VT->getElementType());
4119 else
4120 Ty = cast<llvm::IntegerType>(LHS->getType());
4121 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
4122}
4123
4124Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4125 const Twine &Name) {
4126 llvm::IntegerType *Ty;
4127 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4128 Ty = cast<llvm::IntegerType>(VT->getElementType());
4129 else
4130 Ty = cast<llvm::IntegerType>(LHS->getType());
4131
4132 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4133 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
4134
4135 return Builder.CreateURem(
4136 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4137}
4138
4139Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4140 // TODO: This misses out on the sanitizer check below.
4141 if (Ops.isFixedPointOp())
4142 return EmitFixedPointBinOp(Ops);
4143
4144 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4145 // RHS to the same size as the LHS.
4146 Value *RHS = Ops.RHS;
4147 if (Ops.LHS->getType() != RHS->getType())
4148 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4149
4150 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4151 Ops.Ty->hasSignedIntegerRepresentation() &&
4153 !CGF.getLangOpts().CPlusPlus20;
4154 bool SanitizeUnsignedBase =
4155 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4156 Ops.Ty->hasUnsignedIntegerRepresentation();
4157 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4158 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4159 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4160 if (CGF.getLangOpts().OpenCL)
4161 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4162 else if ((SanitizeBase || SanitizeExponent) &&
4163 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4164 CodeGenFunction::SanitizerScope SanScope(&CGF);
4166 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
4167 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4168
4169 if (SanitizeExponent) {
4170 Checks.push_back(
4171 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4172 }
4173
4174 if (SanitizeBase) {
4175 // Check whether we are shifting any non-zero bits off the top of the
4176 // integer. We only emit this check if exponent is valid - otherwise
4177 // instructions below will have undefined behavior themselves.
4178 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4179 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4180 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4181 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4182 llvm::Value *PromotedWidthMinusOne =
4183 (RHS == Ops.RHS) ? WidthMinusOne
4184 : GetWidthMinusOneValue(Ops.LHS, RHS);
4185 CGF.EmitBlock(CheckShiftBase);
4186 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4187 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4188 /*NUW*/ true, /*NSW*/ true),
4189 "shl.check");
4190 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4191 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4192 // Under C++11's rules, shifting a 1 bit into the sign bit is
4193 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4194 // define signed left shifts, so we use the C99 and C++11 rules there).
4195 // Unsigned shifts can always shift into the top bit.
4196 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4197 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4198 }
4199 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4200 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4201 CGF.EmitBlock(Cont);
4202 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4203 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4204 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4205 Checks.push_back(std::make_pair(
4206 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4207 : SanitizerKind::UnsignedShiftBase));
4208 }
4209
4210 assert(!Checks.empty());
4211 EmitBinOpCheck(Checks, Ops);
4212 }
4213
4214 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4215}
4216
4217Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4218 // TODO: This misses out on the sanitizer check below.
4219 if (Ops.isFixedPointOp())
4220 return EmitFixedPointBinOp(Ops);
4221
4222 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4223 // RHS to the same size as the LHS.
4224 Value *RHS = Ops.RHS;
4225 if (Ops.LHS->getType() != RHS->getType())
4226 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4227
4228 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4229 if (CGF.getLangOpts().OpenCL)
4230 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4231 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4232 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4233 CodeGenFunction::SanitizerScope SanScope(&CGF);
4234 llvm::Value *Valid =
4235 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4236 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4237 }
4238
4239 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4240 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4241 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4242}
4243
4245// return corresponding comparison intrinsic for given vector type
4246static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4247 BuiltinType::Kind ElemKind) {
4248 switch (ElemKind) {
4249 default: llvm_unreachable("unexpected element type");
4250 case BuiltinType::Char_U:
4251 case BuiltinType::UChar:
4252 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4253 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4254 case BuiltinType::Char_S:
4255 case BuiltinType::SChar:
4256 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4257 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4258 case BuiltinType::UShort:
4259 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4260 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4261 case BuiltinType::Short:
4262 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4263 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4264 case BuiltinType::UInt:
4265 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4266 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4267 case BuiltinType::Int:
4268 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4269 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4270 case BuiltinType::ULong:
4271 case BuiltinType::ULongLong:
4272 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4273 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4274 case BuiltinType::Long:
4275 case BuiltinType::LongLong:
4276 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4277 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4278 case BuiltinType::Float:
4279 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4280 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4281 case BuiltinType::Double:
4282 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4283 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4284 case BuiltinType::UInt128:
4285 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4286 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4287 case BuiltinType::Int128:
4288 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4289 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4290 }
4291}
4292
4293Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4294 llvm::CmpInst::Predicate UICmpOpc,
4295 llvm::CmpInst::Predicate SICmpOpc,
4296 llvm::CmpInst::Predicate FCmpOpc,
4297 bool IsSignaling) {
4298 TestAndClearIgnoreResultAssign();
4299 Value *Result;
4300 QualType LHSTy = E->getLHS()->getType();
4301 QualType RHSTy = E->getRHS()->getType();
4302 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4303 assert(E->getOpcode() == BO_EQ ||
4304 E->getOpcode() == BO_NE);
4305 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4306 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4308 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4309 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4310 BinOpInfo BOInfo = EmitBinOps(E);
4311 Value *LHS = BOInfo.LHS;
4312 Value *RHS = BOInfo.RHS;
4313
4314 // If AltiVec, the comparison results in a numeric type, so we use
4315 // intrinsics comparing vectors and giving 0 or 1 as a result
4316 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4317 // constants for mapping CR6 register bits to predicate result
4318 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4319
4320 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4321
4322 // in several cases vector arguments order will be reversed
4323 Value *FirstVecArg = LHS,
4324 *SecondVecArg = RHS;
4325
4326 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4327 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4328
4329 switch(E->getOpcode()) {
4330 default: llvm_unreachable("is not a comparison operation");
4331 case BO_EQ:
4332 CR6 = CR6_LT;
4333 ID = GetIntrinsic(VCMPEQ, ElementKind);
4334 break;
4335 case BO_NE:
4336 CR6 = CR6_EQ;
4337 ID = GetIntrinsic(VCMPEQ, ElementKind);
4338 break;
4339 case BO_LT:
4340 CR6 = CR6_LT;
4341 ID = GetIntrinsic(VCMPGT, ElementKind);
4342 std::swap(FirstVecArg, SecondVecArg);
4343 break;
4344 case BO_GT:
4345 CR6 = CR6_LT;
4346 ID = GetIntrinsic(VCMPGT, ElementKind);
4347 break;
4348 case BO_LE:
4349 if (ElementKind == BuiltinType::Float) {
4350 CR6 = CR6_LT;
4351 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4352 std::swap(FirstVecArg, SecondVecArg);
4353 }
4354 else {
4355 CR6 = CR6_EQ;
4356 ID = GetIntrinsic(VCMPGT, ElementKind);
4357 }
4358 break;
4359 case BO_GE:
4360 if (ElementKind == BuiltinType::Float) {
4361 CR6 = CR6_LT;
4362 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4363 }
4364 else {
4365 CR6 = CR6_EQ;
4366 ID = GetIntrinsic(VCMPGT, ElementKind);
4367 std::swap(FirstVecArg, SecondVecArg);
4368 }
4369 break;
4370 }
4371
4372 Value *CR6Param = Builder.getInt32(CR6);
4373 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4374 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4375
4376 // The result type of intrinsic may not be same as E->getType().
4377 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4378 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4379 // do nothing, if ResultTy is not i1 at the same time, it will cause
4380 // crash later.
4381 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4382 if (ResultTy->getBitWidth() > 1 &&
4383 E->getType() == CGF.getContext().BoolTy)
4384 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4385 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4386 E->getExprLoc());
4387 }
4388
4389 if (BOInfo.isFixedPointOp()) {
4390 Result = EmitFixedPointBinOp(BOInfo);
4391 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4392 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4393 if (!IsSignaling)
4394 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4395 else
4396 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4397 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4398 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4399 } else {
4400 // Unsigned integers and pointers.
4401
4402 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4403 !isa<llvm::ConstantPointerNull>(LHS) &&
4404 !isa<llvm::ConstantPointerNull>(RHS)) {
4405
4406 // Dynamic information is required to be stripped for comparisons,
4407 // because it could leak the dynamic information. Based on comparisons
4408 // of pointers to dynamic objects, the optimizer can replace one pointer
4409 // with another, which might be incorrect in presence of invariant
4410 // groups. Comparison with null is safe because null does not carry any
4411 // dynamic information.
4412 if (LHSTy.mayBeDynamicClass())
4413 LHS = Builder.CreateStripInvariantGroup(LHS);
4414 if (RHSTy.mayBeDynamicClass())
4415 RHS = Builder.CreateStripInvariantGroup(RHS);
4416 }
4417
4418 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4419 }
4420
4421 // If this is a vector comparison, sign extend the result to the appropriate
4422 // vector integer type and return it (don't convert to bool).
4423 if (LHSTy->isVectorType())
4424 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4425
4426 } else {
4427 // Complex Comparison: can only be an equality comparison.
4429 QualType CETy;
4430 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4431 LHS = CGF.EmitComplexExpr(E->getLHS());
4432 CETy = CTy->getElementType();
4433 } else {
4434 LHS.first = Visit(E->getLHS());
4435 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4436 CETy = LHSTy;
4437 }
4438 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4439 RHS = CGF.EmitComplexExpr(E->getRHS());
4440 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4441 CTy->getElementType()) &&
4442 "The element types must always match.");
4443 (void)CTy;
4444 } else {
4445 RHS.first = Visit(E->getRHS());
4446 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4447 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4448 "The element types must always match.");
4449 }
4450
4451 Value *ResultR, *ResultI;
4452 if (CETy->isRealFloatingType()) {
4453 // As complex comparisons can only be equality comparisons, they
4454 // are never signaling comparisons.
4455 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4456 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4457 } else {
4458 // Complex comparisons can only be equality comparisons. As such, signed
4459 // and unsigned opcodes are the same.
4460 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4461 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4462 }
4463
4464 if (E->getOpcode() == BO_EQ) {
4465 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4466 } else {
4467 assert(E->getOpcode() == BO_NE &&
4468 "Complex comparison other than == or != ?");
4469 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4470 }
4471 }
4472
4473 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4474 E->getExprLoc());
4475}
4476
4477Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4478 bool Ignore = TestAndClearIgnoreResultAssign();
4479
4480 Value *RHS;
4481 LValue LHS;
4482
4483 switch (E->getLHS()->getType().getObjCLifetime()) {
4485 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4486 break;
4487
4489 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4490 break;
4491
4493 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4494 break;
4495
4497 RHS = Visit(E->getRHS());
4498 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4499 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4500 break;
4501
4503 // __block variables need to have the rhs evaluated first, plus
4504 // this should improve codegen just a little.
4505 RHS = Visit(E->getRHS());
4506 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4507
4508 // Store the value into the LHS. Bit-fields are handled specially
4509 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4510 // 'An assignment expression has the value of the left operand after
4511 // the assignment...'.
4512 if (LHS.isBitField()) {
4513 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4514 } else {
4515 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4516 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4517 }
4518 }
4519
4520 // If the result is clearly ignored, return now.
4521 if (Ignore)
4522 return nullptr;
4523
4524 // The result of an assignment in C is the assigned r-value.
4525 if (!CGF.getLangOpts().CPlusPlus)
4526 return RHS;
4527
4528 // If the lvalue is non-volatile, return the computed value of the assignment.
4529 if (!LHS.isVolatileQualified())
4530 return RHS;
4531
4532 // Otherwise, reload the value.
4533 return EmitLoadOfLValue(LHS, E->getExprLoc());
4534}
4535
4536Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4537 // Perform vector logical and on comparisons with zero vectors.
4538 if (E->getType()->isVectorType()) {
4540
4541 Value *LHS = Visit(E->getLHS());
4542 Value *RHS = Visit(E->getRHS());
4543 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4544 if (LHS->getType()->isFPOrFPVectorTy()) {
4545 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4546 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4547 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4548 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4549 } else {
4550 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4551 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4552 }
4553 Value *And = Builder.CreateAnd(LHS, RHS);
4554 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4555 }
4556
4557 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4558 llvm::Type *ResTy = ConvertType(E->getType());
4559
4560 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4561 // If we have 1 && X, just emit X without inserting the control flow.
4562 bool LHSCondVal;
4563 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4564 if (LHSCondVal) { // If we have 1 && X, just emit X.
4566
4567 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4568
4569 // If we're generating for profiling or coverage, generate a branch to a
4570 // block that increments the RHS counter needed to track branch condition
4571 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4572 // "FalseBlock" after the increment is done.
4573 if (InstrumentRegions &&
4575 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4576 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4577 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4578 CGF.EmitBlock(RHSBlockCnt);
4580 CGF.EmitBranch(FBlock);
4581 CGF.EmitBlock(FBlock);
4582 }
4583
4584 // ZExt result to int or bool.
4585 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4586 }
4587
4588 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4589 if (!CGF.ContainsLabel(E->getRHS()))
4590 return llvm::Constant::getNullValue(ResTy);
4591 }
4592
4593 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4594 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4595
4596 CodeGenFunction::ConditionalEvaluation eval(CGF);
4597
4598 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4599 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4600 CGF.getProfileCount(E->getRHS()));
4601
4602 // Any edges into the ContBlock are now from an (indeterminate number of)
4603 // edges from this first condition. All of these values will be false. Start
4604 // setting up the PHI node in the Cont Block for this.
4605 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4606 "", ContBlock);
4607 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4608 PI != PE; ++PI)
4609 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4610
4611 eval.begin(CGF);
4612 CGF.EmitBlock(RHSBlock);
4614 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4615 eval.end(CGF);
4616
4617 // Reaquire the RHS block, as there may be subblocks inserted.
4618 RHSBlock = Builder.GetInsertBlock();
4619
4620 // If we're generating for profiling or coverage, generate a branch on the
4621 // RHS to a block that increments the RHS true counter needed to track branch
4622 // condition coverage.
4623 if (InstrumentRegions &&
4625 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4626 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4627 CGF.EmitBlock(RHSBlockCnt);
4629 CGF.EmitBranch(ContBlock);
4630 PN->addIncoming(RHSCond, RHSBlockCnt);
4631 }
4632
4633 // Emit an unconditional branch from this block to ContBlock.
4634 {
4635 // There is no need to emit line number for unconditional branch.
4636 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4637 CGF.EmitBlock(ContBlock);
4638 }
4639 // Insert an entry into the phi node for the edge with the value of RHSCond.
4640 PN->addIncoming(RHSCond, RHSBlock);
4641
4642 // Artificial location to preserve the scope information
4643 {
4645 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4646 }
4647
4648 // ZExt result to int.
4649 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4650}
4651
4652Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4653 // Perform vector logical or on comparisons with zero vectors.
4654 if (E->getType()->isVectorType()) {
4656
4657 Value *LHS = Visit(E->getLHS());
4658 Value *RHS = Visit(E->getRHS());
4659 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4660 if (LHS->getType()->isFPOrFPVectorTy()) {
4661 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4662 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4663 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4664 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4665 } else {
4666 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4667 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4668 }
4669 Value *Or = Builder.CreateOr(LHS, RHS);
4670 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4671 }
4672
4673 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4674 llvm::Type *ResTy = ConvertType(E->getType());
4675
4676 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4677 // If we have 0 || X, just emit X without inserting the control flow.
4678 bool LHSCondVal;
4679 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4680 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4682
4683 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4684
4685 // If we're generating for profiling or coverage, generate a branch to a
4686 // block that increments the RHS counter need to track branch condition
4687 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4688 // "FalseBlock" after the increment is done.
4689 if (InstrumentRegions &&
4691 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4692 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4693 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4694 CGF.EmitBlock(RHSBlockCnt);
4696 CGF.EmitBranch(FBlock);
4697 CGF.EmitBlock(FBlock);
4698 }
4699
4700 // ZExt result to int or bool.
4701 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4702 }
4703
4704 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4705 if (!CGF.ContainsLabel(E->getRHS()))
4706 return llvm::ConstantInt::get(ResTy, 1);
4707 }
4708
4709 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4710 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4711
4712 CodeGenFunction::ConditionalEvaluation eval(CGF);
4713
4714 // Branch on the LHS first. If it is true, go to the success (cont) block.
4715 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4717 CGF.getProfileCount(E->getRHS()));
4718
4719 // Any edges into the ContBlock are now from an (indeterminate number of)
4720 // edges from this first condition. All of these values will be true. Start
4721 // setting up the PHI node in the Cont Block for this.
4722 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4723 "", ContBlock);
4724 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4725 PI != PE; ++PI)
4726 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4727
4728 eval.begin(CGF);
4729
4730 // Emit the RHS condition as a bool value.
4731 CGF.EmitBlock(RHSBlock);
4733 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4734
4735 eval.end(CGF);
4736
4737 // Reaquire the RHS block, as there may be subblocks inserted.
4738 RHSBlock = Builder.GetInsertBlock();
4739
4740 // If we're generating for profiling or coverage, generate a branch on the
4741 // RHS to a block that increments the RHS true counter needed to track branch
4742 // condition coverage.
4743 if (InstrumentRegions &&
4745 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4746 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4747 CGF.EmitBlock(RHSBlockCnt);
4749 CGF.EmitBranch(ContBlock);
4750 PN->addIncoming(RHSCond, RHSBlockCnt);
4751 }
4752
4753 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4754 // into the phi node for the edge with the value of RHSCond.
4755 CGF.EmitBlock(ContBlock);
4756 PN->addIncoming(RHSCond, RHSBlock);
4757
4758 // ZExt result to int.
4759 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4760}
4761
4762Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4763 CGF.EmitIgnoredExpr(E->getLHS());
4764 CGF.EnsureInsertPoint();
4765 return Visit(E->getRHS());
4766}
4767
4768//===----------------------------------------------------------------------===//
4769// Other Operators
4770//===----------------------------------------------------------------------===//
4771
4772/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4773/// expression is cheap enough and side-effect-free enough to evaluate
4774/// unconditionally instead of conditionally. This is used to convert control
4775/// flow into selects in some cases.
4777 CodeGenFunction &CGF) {
4778 // Anything that is an integer or floating point constant is fine.
4779 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4780
4781 // Even non-volatile automatic variables can't be evaluated unconditionally.
4782 // Referencing a thread_local may cause non-trivial initialization work to
4783 // occur. If we're inside a lambda and one of the variables is from the scope
4784 // outside the lambda, that function may have returned already. Reading its
4785 // locals is a bad idea. Also, these reads may introduce races there didn't
4786 // exist in the source-level program.
4787}
4788
4789
4790Value *ScalarExprEmitter::
4791VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4792 TestAndClearIgnoreResultAssign();
4793
4794 // Bind the common expression if necessary.
4795 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4796
4797 Expr *condExpr = E->getCond();
4798 Expr *lhsExpr = E->getTrueExpr();
4799 Expr *rhsExpr = E->getFalseExpr();
4800
4801 // If the condition constant folds and can be elided, try to avoid emitting
4802 // the condition and the dead arm.
4803 bool CondExprBool;
4804 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4805 Expr *live = lhsExpr, *dead = rhsExpr;
4806 if (!CondExprBool) std::swap(live, dead);
4807
4808 // If the dead side doesn't have labels we need, just emit the Live part.
4809 if (!CGF.ContainsLabel(dead)) {
4810 if (CondExprBool)
4812 Value *Result = Visit(live);
4813
4814 // If the live part is a throw expression, it acts like it has a void
4815 // type, so evaluating it returns a null Value*. However, a conditional
4816 // with non-void type must return a non-null Value*.
4817 if (!Result && !E->getType()->isVoidType())
4818 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4819
4820 return Result;
4821 }
4822 }
4823
4824 // OpenCL: If the condition is a vector, we can treat this condition like
4825 // the select function.
4826 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4827 condExpr->getType()->isExtVectorType()) {
4829
4830 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4831 llvm::Value *LHS = Visit(lhsExpr);
4832 llvm::Value *RHS = Visit(rhsExpr);
4833
4834 llvm::Type *condType = ConvertType(condExpr->getType());
4835 auto *vecTy = cast<llvm::FixedVectorType>(condType);
4836
4837 unsigned numElem = vecTy->getNumElements();
4838 llvm::Type *elemType = vecTy->getElementType();
4839
4840 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4841 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4842 llvm::Value *tmp = Builder.CreateSExt(
4843 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4844 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4845
4846 // Cast float to int to perform ANDs if necessary.
4847 llvm::Value *RHSTmp = RHS;
4848 llvm::Value *LHSTmp = LHS;
4849 bool wasCast = false;
4850 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4851 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4852 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4853 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4854 wasCast = true;
4855 }
4856
4857 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4858 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4859 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4860 if (wasCast)
4861 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4862
4863 return tmp5;
4864 }
4865
4866 if (condExpr->getType()->isVectorType() ||
4867 condExpr->getType()->isSveVLSBuiltinType()) {
4869
4870 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4871 llvm::Value *LHS = Visit(lhsExpr);
4872 llvm::Value *RHS = Visit(rhsExpr);
4873
4874 llvm::Type *CondType = ConvertType(condExpr->getType());
4875 auto *VecTy = cast<llvm::VectorType>(CondType);
4876 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4877
4878 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4879 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4880 }
4881
4882 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4883 // select instead of as control flow. We can only do this if it is cheap and
4884 // safe to evaluate the LHS and RHS unconditionally.
4885 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4887 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4888 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4889
4890 CGF.incrementProfileCounter(E, StepV);
4891
4892 llvm::Value *LHS = Visit(lhsExpr);
4893 llvm::Value *RHS = Visit(rhsExpr);
4894 if (!LHS) {
4895 // If the conditional has void type, make sure we return a null Value*.
4896 assert(!RHS && "LHS and RHS types must match");
4897 return nullptr;
4898 }
4899 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4900 }
4901
4902 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4903 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4904 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4905
4906 CodeGenFunction::ConditionalEvaluation eval(CGF);
4907 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4908 CGF.getProfileCount(lhsExpr));
4909
4910 CGF.EmitBlock(LHSBlock);
4912 eval.begin(CGF);
4913 Value *LHS = Visit(lhsExpr);
4914 eval.end(CGF);
4915
4916 LHSBlock = Builder.GetInsertBlock();
4917 Builder.CreateBr(ContBlock);
4918
4919 CGF.EmitBlock(RHSBlock);
4920 eval.begin(CGF);
4921 Value *RHS = Visit(rhsExpr);
4922 eval.end(CGF);
4923
4924 RHSBlock = Builder.GetInsertBlock();
4925 CGF.EmitBlock(ContBlock);
4926
4927 // If the LHS or RHS is a throw expression, it will be legitimately null.
4928 if (!LHS)
4929 return RHS;
4930 if (!RHS)
4931 return LHS;
4932
4933 // Create a PHI node for the real part.
4934 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4935 PN->addIncoming(LHS, LHSBlock);
4936 PN->addIncoming(RHS, RHSBlock);
4937 return PN;
4938}
4939
4940Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4941 return Visit(E->getChosenSubExpr());
4942}
4943
4944Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4945 QualType Ty = VE->getType();
4946
4947 if (Ty->isVariablyModifiedType())
4949
4950 Address ArgValue = Address::invalid();
4951 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4952
4953 llvm::Type *ArgTy = ConvertType(VE->getType());
4954
4955 // If EmitVAArg fails, emit an error.
4956 if (!ArgPtr.isValid()) {
4957 CGF.ErrorUnsupported(VE, "va_arg expression");
4958 return llvm::UndefValue::get(ArgTy);
4959 }
4960
4961 // FIXME Volatility.
4962 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4963
4964 // If EmitVAArg promoted the type, we must truncate it.
4965 if (ArgTy != Val->getType()) {
4966 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4967 Val = Builder.CreateIntToPtr(Val, ArgTy);
4968 else
4969 Val = Builder.CreateTrunc(Val, ArgTy);
4970 }
4971
4972 return Val;
4973}
4974
4975Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4976 return CGF.EmitBlockLiteral(block);
4977}
4978
4979// Convert a vec3 to vec4, or vice versa.
4981 Value *Src, unsigned NumElementsDst) {
4982 static constexpr int Mask[] = {0, 1, 2, -1};
4983 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
4984}
4985
4986// Create cast instructions for converting LLVM value \p Src to LLVM type \p
4987// DstTy. \p Src has the same size as \p DstTy. Both are single value types
4988// but could be scalar or vectors of different lengths, and either can be
4989// pointer.
4990// There are 4 cases:
4991// 1. non-pointer -> non-pointer : needs 1 bitcast
4992// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4993// 3. pointer -> non-pointer
4994// a) pointer -> intptr_t : needs 1 ptrtoint
4995// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4996// 4. non-pointer -> pointer
4997// a) intptr_t -> pointer : needs 1 inttoptr
4998// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4999// Note: for cases 3b and 4b two casts are required since LLVM casts do not
5000// allow casting directly between pointer types and non-integer non-pointer
5001// types.
5003 const llvm::DataLayout &DL,
5004 Value *Src, llvm::Type *DstTy,
5005 StringRef Name = "") {
5006 auto SrcTy = Src->getType();
5007
5008 // Case 1.
5009 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5010 return Builder.CreateBitCast(Src, DstTy, Name);
5011
5012 // Case 2.
5013 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5014 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5015
5016 // Case 3.
5017 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5018 // Case 3b.
5019 if (!DstTy->isIntegerTy())
5020 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5021 // Cases 3a and 3b.
5022 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5023 }
5024
5025 // Case 4b.
5026 if (!SrcTy->isIntegerTy())
5027 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5028 // Cases 4a and 4b.
5029 return Builder.CreateIntToPtr(Src, DstTy, Name);
5030}
5031
5032Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5033 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
5034 llvm::Type *DstTy = ConvertType(E->getType());
5035
5036 llvm::Type *SrcTy = Src->getType();
5037 unsigned NumElementsSrc =
5038 isa<llvm::VectorType>(SrcTy)
5039 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5040 : 0;
5041 unsigned NumElementsDst =
5042 isa<llvm::VectorType>(DstTy)
5043 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5044 : 0;
5045
5046 // Use bit vector expansion for ext_vector_type boolean vectors.
5047 if (E->getType()->isExtVectorBoolType())
5048 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5049
5050 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5051 // vector to get a vec4, then a bitcast if the target type is different.
5052 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5053 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5054 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5055 DstTy);
5056
5057 Src->setName("astype");
5058 return Src;
5059 }
5060
5061 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5062 // to vec4 if the original type is not vec4, then a shuffle vector to
5063 // get a vec3.
5064 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5065 auto *Vec4Ty = llvm::FixedVectorType::get(
5066 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5067 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5068 Vec4Ty);
5069
5070 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5071 Src->setName("astype");
5072 return Src;
5073 }
5074
5075 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5076 Src, DstTy, "astype");
5077}
5078
5079Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5080 return CGF.EmitAtomicExpr(E).getScalarVal();
5081}
5082
5083//===----------------------------------------------------------------------===//
5084// Entry Point into this File
5085//===----------------------------------------------------------------------===//
5086
5087/// Emit the computation of the specified expression of scalar type, ignoring
5088/// the result.
5089Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5090 assert(E && hasScalarEvaluationKind(E->getType()) &&
5091 "Invalid scalar expression to emit");
5092
5093 return ScalarExprEmitter(*this, IgnoreResultAssign)
5094 .Visit(const_cast<Expr *>(E));
5095}
5096
5097/// Emit a conversion from the specified type to the specified destination type,
5098/// both of which are LLVM scalar types.
5100 QualType DstTy,
5101 SourceLocation Loc) {
5102 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5103 "Invalid scalar expression to emit");
5104 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5105}
5106
5107/// Emit a conversion from the specified complex type to the specified
5108/// destination type, where the destination type is an LLVM scalar type.
5110 QualType SrcTy,
5111 QualType DstTy,
5112 SourceLocation Loc) {
5113 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5114 "Invalid complex -> scalar conversion");
5115 return ScalarExprEmitter(*this)
5116 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5117}
5118
5119
5120Value *
5122 QualType PromotionType) {
5123 if (!PromotionType.isNull())
5124 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5125 else
5126 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5127}
5128
5129
5130llvm::Value *CodeGenFunction::
5132 bool isInc, bool isPre) {
5133 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5134}
5135
5137 // object->isa or (*object).isa
5138 // Generate code as for: *(Class*)object
5139
5140 Expr *BaseExpr = E->getBase();
5141 Address Addr = Address::invalid();
5142 if (BaseExpr->isPRValue()) {
5143 llvm::Type *BaseTy =
5145 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5146 } else {
5147 Addr = EmitLValue(BaseExpr).getAddress(*this);
5148 }
5149
5150 // Cast the address to Class*.
5151 Addr = Addr.withElementType(ConvertType(E->getType()));
5152 return MakeAddrLValue(Addr, E->getType());
5153}
5154
5155
5157 const CompoundAssignOperator *E) {
5158 ScalarExprEmitter Scalar(*this);
5159 Value *Result = nullptr;
5160 switch (E->getOpcode()) {
5161#define COMPOUND_OP(Op) \
5162 case BO_##Op##Assign: \
5163 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5164 Result)
5165 COMPOUND_OP(Mul);
5166 COMPOUND_OP(Div);
5167 COMPOUND_OP(Rem);
5168 COMPOUND_OP(Add);
5169 COMPOUND_OP(Sub);
5170 COMPOUND_OP(Shl);
5171 COMPOUND_OP(Shr);
5172 COMPOUND_OP(And);
5173 COMPOUND_OP(Xor);
5174 COMPOUND_OP(Or);
5175#undef COMPOUND_OP
5176
5177 case BO_PtrMemD:
5178 case BO_PtrMemI:
5179 case BO_Mul:
5180 case BO_Div:
5181 case BO_Rem:
5182 case BO_Add:
5183 case BO_Sub:
5184 case BO_Shl:
5185 case BO_Shr:
5186 case BO_LT:
5187 case BO_GT:
5188 case BO_LE:
5189 case BO_GE:
5190 case BO_EQ:
5191 case BO_NE:
5192 case BO_Cmp:
5193 case BO_And:
5194 case BO_Xor:
5195 case BO_Or:
5196 case BO_LAnd:
5197 case BO_LOr:
5198 case BO_Assign:
5199 case BO_Comma:
5200 llvm_unreachable("Not valid compound assignment operators");
5201 }
5202
5203 llvm_unreachable("Unhandled compound assignment operator");
5204}
5205
5207 // The total (signed) byte offset for the GEP.
5208 llvm::Value *TotalOffset;
5209 // The offset overflow flag - true if the total offset overflows.
5210 llvm::Value *OffsetOverflows;
5211};
5212
5213/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5214/// and compute the total offset it applies from it's base pointer BasePtr.
5215/// Returns offset in bytes and a boolean flag whether an overflow happened
5216/// during evaluation.
5218 llvm::LLVMContext &VMContext,
5219 CodeGenModule &CGM,
5220 CGBuilderTy &Builder) {
5221 const auto &DL = CGM.getDataLayout();
5222
5223 // The total (signed) byte offset for the GEP.
5224 llvm::Value *TotalOffset = nullptr;
5225
5226 // Was the GEP already reduced to a constant?
5227 if (isa<llvm::Constant>(GEPVal)) {
5228 // Compute the offset by casting both pointers to integers and subtracting:
5229 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5230 Value *BasePtr_int =
5231 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5232 Value *GEPVal_int =
5233 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5234 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5235 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5236 }
5237
5238 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5239 assert(GEP->getPointerOperand() == BasePtr &&
5240 "BasePtr must be the base of the GEP.");
5241 assert(GEP->isInBounds() && "Expected inbounds GEP");
5242
5243 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5244
5245 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5246 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5247 auto *SAddIntrinsic =
5248 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5249 auto *SMulIntrinsic =
5250 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);