clang 19.0.0git
CGExprAgg.cpp
Go to the documentation of this file.
1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Aggregate Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclCXX.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29using namespace clang;
30using namespace CodeGen;
31
32//===----------------------------------------------------------------------===//
33// Aggregate Expression Emitter
34//===----------------------------------------------------------------------===//
35
36namespace llvm {
37extern cl::opt<bool> EnableSingleByteCoverage;
38} // namespace llvm
39
40namespace {
41class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
42 CodeGenFunction &CGF;
43 CGBuilderTy &Builder;
44 AggValueSlot Dest;
45 bool IsResultUnused;
46
47 AggValueSlot EnsureSlot(QualType T) {
48 if (!Dest.isIgnored()) return Dest;
49 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50 }
51 void EnsureDest(QualType T) {
52 if (!Dest.isIgnored()) return;
53 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
54 }
55
56 // Calls `Fn` with a valid return value slot, potentially creating a temporary
57 // to do so. If a temporary is created, an appropriate copy into `Dest` will
58 // be emitted, as will lifetime markers.
59 //
60 // The given function should take a ReturnValueSlot, and return an RValue that
61 // points to said slot.
62 void withReturnValueSlot(const Expr *E,
63 llvm::function_ref<RValue(ReturnValueSlot)> Fn);
64
65public:
66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68 IsResultUnused(IsResultUnused) { }
69
70 //===--------------------------------------------------------------------===//
71 // Utilities
72 //===--------------------------------------------------------------------===//
73
74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75 /// represents a value lvalue, this method emits the address of the lvalue,
76 /// then loads the result into DestPtr.
77 void EmitAggLoadOfLValue(const Expr *E);
78
79 enum ExprValueKind {
80 EVK_RValue,
81 EVK_NonRValue
82 };
83
84 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
85 /// SrcIsRValue is true if source comes from an RValue.
86 void EmitFinalDestCopy(QualType type, const LValue &src,
87 ExprValueKind SrcValueKind = EVK_NonRValue);
88 void EmitFinalDestCopy(QualType type, RValue src);
89 void EmitCopy(QualType type, const AggValueSlot &dest,
90 const AggValueSlot &src);
91
92 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
93 Expr *ExprToVisit, ArrayRef<Expr *> Args,
94 Expr *ArrayFiller);
95
97 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
100 }
101
102 bool TypeRequiresGCollection(QualType T);
103
104 //===--------------------------------------------------------------------===//
105 // Visitor Methods
106 //===--------------------------------------------------------------------===//
107
108 void Visit(Expr *E) {
109 ApplyDebugLocation DL(CGF, E);
111 }
112
113 void VisitStmt(Stmt *S) {
114 CGF.ErrorUnsupported(S, "aggregate expression");
115 }
116 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
117 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
118 Visit(GE->getResultExpr());
119 }
120 void VisitCoawaitExpr(CoawaitExpr *E) {
121 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
122 }
123 void VisitCoyieldExpr(CoyieldExpr *E) {
124 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
125 }
126 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
127 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
128 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
129 return Visit(E->getReplacement());
130 }
131
132 void VisitConstantExpr(ConstantExpr *E) {
133 EnsureDest(E->getType());
134
135 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
136 Address StoreDest = Dest.getAddress();
137 // The emitted value is guaranteed to have the same size as the
138 // destination but can have a different type. Just do a bitcast in this
139 // case to avoid incorrect GEPs.
140 if (Result->getType() != StoreDest.getType())
141 StoreDest = StoreDest.withElementType(Result->getType());
142
143 CGF.EmitAggregateStore(Result, StoreDest,
145 return;
146 }
147 return Visit(E->getSubExpr());
148 }
149
150 // l-values.
151 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
152 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
153 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
154 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
155 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
156 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
157 EmitAggLoadOfLValue(E);
158 }
159 void VisitPredefinedExpr(const PredefinedExpr *E) {
160 EmitAggLoadOfLValue(E);
161 }
162
163 // Operators.
164 void VisitCastExpr(CastExpr *E);
165 void VisitCallExpr(const CallExpr *E);
166 void VisitStmtExpr(const StmtExpr *E);
167 void VisitBinaryOperator(const BinaryOperator *BO);
168 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
169 void VisitBinAssign(const BinaryOperator *E);
170 void VisitBinComma(const BinaryOperator *E);
171 void VisitBinCmp(const BinaryOperator *E);
172 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
174 }
175
176 void VisitObjCMessageExpr(ObjCMessageExpr *E);
177 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
178 EmitAggLoadOfLValue(E);
179 }
180
181 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
182 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
183 void VisitChooseExpr(const ChooseExpr *CE);
184 void VisitInitListExpr(InitListExpr *E);
185 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
186 FieldDecl *InitializedFieldInUnion,
187 Expr *ArrayFiller);
188 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
189 llvm::Value *outerBegin = nullptr);
190 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
191 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
192 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
193 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
194 Visit(DAE->getExpr());
195 }
196 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
197 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
198 Visit(DIE->getExpr());
199 }
200 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
201 void VisitCXXConstructExpr(const CXXConstructExpr *E);
202 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
203 void VisitLambdaExpr(LambdaExpr *E);
204 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
205 void VisitExprWithCleanups(ExprWithCleanups *E);
206 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
207 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
208 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
209 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
210
211 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
212 if (E->isGLValue()) {
213 LValue LV = CGF.EmitPseudoObjectLValue(E);
214 return EmitFinalDestCopy(E->getType(), LV);
215 }
216
217 AggValueSlot Slot = EnsureSlot(E->getType());
218 bool NeedsDestruction =
219 !Slot.isExternallyDestructed() &&
221 if (NeedsDestruction)
223 CGF.EmitPseudoObjectRValue(E, Slot);
224 if (NeedsDestruction)
226 E->getType());
227 }
228
229 void VisitVAArgExpr(VAArgExpr *E);
230 void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
231 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
232 Expr *ArrayFiller);
233
234 void EmitInitializationToLValue(Expr *E, LValue Address);
235 void EmitNullInitializationToLValue(LValue Address);
236 // case Expr::ChooseExprClass:
237 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
238 void VisitAtomicExpr(AtomicExpr *E) {
239 RValue Res = CGF.EmitAtomicExpr(E);
240 EmitFinalDestCopy(E->getType(), Res);
241 }
242 void VisitPackIndexingExpr(PackIndexingExpr *E) {
244 }
245};
246} // end anonymous namespace.
247
248//===----------------------------------------------------------------------===//
249// Utilities
250//===----------------------------------------------------------------------===//
251
252/// EmitAggLoadOfLValue - Given an expression with aggregate type that
253/// represents a value lvalue, this method emits the address of the lvalue,
254/// then loads the result into DestPtr.
255void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
256 LValue LV = CGF.EmitLValue(E);
257
258 // If the type of the l-value is atomic, then do an atomic load.
260 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
261 return;
262 }
263
264 EmitFinalDestCopy(E->getType(), LV);
265}
266
267/// True if the given aggregate type requires special GC API calls.
268bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
269 // Only record types have members that might require garbage collection.
270 const RecordType *RecordTy = T->getAs<RecordType>();
271 if (!RecordTy) return false;
272
273 // Don't mess with non-trivial C++ types.
274 RecordDecl *Record = RecordTy->getDecl();
275 if (isa<CXXRecordDecl>(Record) &&
276 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
277 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
278 return false;
279
280 // Check whether the type has an object member.
281 return Record->hasObjectMember();
282}
283
284void AggExprEmitter::withReturnValueSlot(
285 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
286 QualType RetTy = E->getType();
287 bool RequiresDestruction =
288 !Dest.isExternallyDestructed() &&
290
291 // If it makes no observable difference, save a memcpy + temporary.
292 //
293 // We need to always provide our own temporary if destruction is required.
294 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
295 // its lifetime before we have the chance to emit a proper destructor call.
296 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
297 (RequiresDestruction && Dest.isIgnored());
298
299 Address RetAddr = Address::invalid();
300 RawAddress RetAllocaAddr = RawAddress::invalid();
301
302 EHScopeStack::stable_iterator LifetimeEndBlock;
303 llvm::Value *LifetimeSizePtr = nullptr;
304 llvm::IntrinsicInst *LifetimeStartInst = nullptr;
305 if (!UseTemp) {
306 RetAddr = Dest.getAddress();
307 } else {
308 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
309 llvm::TypeSize Size =
310 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
311 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
312 if (LifetimeSizePtr) {
313 LifetimeStartInst =
314 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
315 assert(LifetimeStartInst->getIntrinsicID() ==
316 llvm::Intrinsic::lifetime_start &&
317 "Last insertion wasn't a lifetime.start?");
318
319 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
320 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
321 LifetimeEndBlock = CGF.EHStack.stable_begin();
322 }
323 }
324
325 RValue Src =
326 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
327 Dest.isExternallyDestructed()));
328
329 if (!UseTemp)
330 return;
331
332 assert(Dest.isIgnored() || Dest.emitRawPointer(CGF) !=
333 Src.getAggregatePointer(E->getType(), CGF));
334 EmitFinalDestCopy(E->getType(), Src);
335
336 if (!RequiresDestruction && LifetimeStartInst) {
337 // If there's no dtor to run, the copy was the last use of our temporary.
338 // Since we're not guaranteed to be in an ExprWithCleanups, clean up
339 // eagerly.
340 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
341 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
342 }
343}
344
345/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
346void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
347 assert(src.isAggregate() && "value must be aggregate value!");
348 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
349 EmitFinalDestCopy(type, srcLV, EVK_RValue);
350}
351
352/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
353void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
354 ExprValueKind SrcValueKind) {
355 // If Dest is ignored, then we're evaluating an aggregate expression
356 // in a context that doesn't care about the result. Note that loads
357 // from volatile l-values force the existence of a non-ignored
358 // destination.
359 if (Dest.isIgnored())
360 return;
361
362 // Copy non-trivial C structs here.
363 LValue DstLV = CGF.MakeAddrLValue(
364 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
365
366 if (SrcValueKind == EVK_RValue) {
367 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
368 if (Dest.isPotentiallyAliased())
369 CGF.callCStructMoveAssignmentOperator(DstLV, src);
370 else
371 CGF.callCStructMoveConstructor(DstLV, src);
372 return;
373 }
374 } else {
375 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
376 if (Dest.isPotentiallyAliased())
377 CGF.callCStructCopyAssignmentOperator(DstLV, src);
378 else
379 CGF.callCStructCopyConstructor(DstLV, src);
380 return;
381 }
382 }
383
385 src, CGF, AggValueSlot::IsDestructed, needsGC(type),
387 EmitCopy(type, Dest, srcAgg);
388}
389
390/// Perform a copy from the source into the destination.
391///
392/// \param type - the type of the aggregate being copied; qualifiers are
393/// ignored
394void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
395 const AggValueSlot &src) {
396 if (dest.requiresGCollection()) {
397 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
398 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
400 dest.getAddress(),
401 src.getAddress(),
402 size);
403 return;
404 }
405
406 // If the result of the assignment is used, copy the LHS there also.
407 // It's volatile if either side is. Use the minimum alignment of
408 // the two sides.
409 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
410 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
411 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
412 dest.isVolatile() || src.isVolatile());
413}
414
415/// Emit the initializer for a std::initializer_list initialized with a
416/// real initializer list.
417void
418AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
419 // Emit an array containing the elements. The array is externally destructed
420 // if the std::initializer_list object is.
421 ASTContext &Ctx = CGF.getContext();
422 LValue Array = CGF.EmitLValue(E->getSubExpr());
423 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
424 Address ArrayPtr = Array.getAddress(CGF);
425
428 assert(ArrayType && "std::initializer_list constructed from non-array");
429
430 // FIXME: Perform the checks on the field types in SemaInit.
431 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
432 RecordDecl::field_iterator Field = Record->field_begin();
433 if (Field == Record->field_end()) {
434 CGF.ErrorUnsupported(E, "weird std::initializer_list");
435 return;
436 }
437
438 // Start pointer.
439 if (!Field->getType()->isPointerType() ||
440 !Ctx.hasSameType(Field->getType()->getPointeeType(),
442 CGF.ErrorUnsupported(E, "weird std::initializer_list");
443 return;
444 }
445
446 AggValueSlot Dest = EnsureSlot(E->getType());
447 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
448 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
449 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
450 llvm::Value *IdxStart[] = { Zero, Zero };
451 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
452 ArrayPtr.getElementType(), ArrayPtr.emitRawPointer(CGF), IdxStart,
453 "arraystart");
454 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
455 ++Field;
456
457 if (Field == Record->field_end()) {
458 CGF.ErrorUnsupported(E, "weird std::initializer_list");
459 return;
460 }
461
462 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
463 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
464 if (Field->getType()->isPointerType() &&
465 Ctx.hasSameType(Field->getType()->getPointeeType(),
467 // End pointer.
468 llvm::Value *IdxEnd[] = { Zero, Size };
469 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
470 ArrayPtr.getElementType(), ArrayPtr.emitRawPointer(CGF), IdxEnd,
471 "arrayend");
472 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
473 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
474 // Length.
475 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
476 } else {
477 CGF.ErrorUnsupported(E, "weird std::initializer_list");
478 return;
479 }
480}
481
482/// Determine if E is a trivial array filler, that is, one that is
483/// equivalent to zero-initialization.
484static bool isTrivialFiller(Expr *E) {
485 if (!E)
486 return true;
487
488 if (isa<ImplicitValueInitExpr>(E))
489 return true;
490
491 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
492 if (ILE->getNumInits())
493 return false;
494 return isTrivialFiller(ILE->getArrayFiller());
495 }
496
497 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
498 return Cons->getConstructor()->isDefaultConstructor() &&
499 Cons->getConstructor()->isTrivial();
500
501 // FIXME: Are there other cases where we can avoid emitting an initializer?
502 return false;
503}
504
505/// Emit initialization of an array from an initializer list. ExprToVisit must
506/// be either an InitListEpxr a CXXParenInitListExpr.
507void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
508 QualType ArrayQTy, Expr *ExprToVisit,
509 ArrayRef<Expr *> Args, Expr *ArrayFiller) {
510 uint64_t NumInitElements = Args.size();
511
512 uint64_t NumArrayElements = AType->getNumElements();
513 assert(NumInitElements <= NumArrayElements);
514
515 QualType elementType =
516 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
517
518 // DestPtr is an array*. Construct an elementType* by drilling
519 // down a level.
520 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
521 llvm::Value *indices[] = { zero, zero };
522 llvm::Value *begin = Builder.CreateInBoundsGEP(DestPtr.getElementType(),
523 DestPtr.emitRawPointer(CGF),
524 indices, "arrayinit.begin");
525
526 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
527 CharUnits elementAlign =
528 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
529 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
530
531 // Consider initializing the array by copying from a global. For this to be
532 // more efficient than per-element initialization, the size of the elements
533 // with explicit initializers should be large enough.
534 if (NumInitElements * elementSize.getQuantity() > 16 &&
535 elementType.isTriviallyCopyableType(CGF.getContext())) {
536 CodeGen::CodeGenModule &CGM = CGF.CGM;
538 LangAS AS = ArrayQTy.getAddressSpace();
539 if (llvm::Constant *C =
540 Emitter.tryEmitForInitializer(ExprToVisit, AS, ArrayQTy)) {
541 auto GV = new llvm::GlobalVariable(
542 CGM.getModule(), C->getType(),
543 /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C,
544 "constinit",
545 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
547 Emitter.finalize(GV);
548 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
549 GV->setAlignment(Align.getAsAlign());
550 Address GVAddr(GV, GV->getValueType(), Align);
551 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy));
552 return;
553 }
554 }
555
556 // Exception safety requires us to destroy all the
557 // already-constructed members if an initializer throws.
558 // For that, we'll need an EH cleanup.
559 QualType::DestructionKind dtorKind = elementType.isDestructedType();
560 Address endOfInit = Address::invalid();
562 llvm::Instruction *cleanupDominator = nullptr;
563 if (CGF.needsEHCleanup(dtorKind)) {
564 // In principle we could tell the cleanup where we are more
565 // directly, but the control flow can get so varied here that it
566 // would actually be quite complex. Therefore we go through an
567 // alloca.
568 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
569 "arrayinit.endOfInit");
570 cleanupDominator = Builder.CreateStore(begin, endOfInit);
571 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
572 elementAlign,
573 CGF.getDestroyer(dtorKind));
575
576 // Otherwise, remember that we didn't need a cleanup.
577 } else {
578 dtorKind = QualType::DK_none;
579 }
580
581 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
582
583 // The 'current element to initialize'. The invariants on this
584 // variable are complicated. Essentially, after each iteration of
585 // the loop, it points to the last initialized element, except
586 // that it points to the beginning of the array before any
587 // elements have been initialized.
588 llvm::Value *element = begin;
589
590 // Emit the explicit initializers.
591 for (uint64_t i = 0; i != NumInitElements; ++i) {
592 // Advance to the next element.
593 if (i > 0) {
594 element = Builder.CreateInBoundsGEP(
595 llvmElementType, element, one, "arrayinit.element");
596
597 // Tell the cleanup that it needs to destroy up to this
598 // element. TODO: some of these stores can be trivially
599 // observed to be unnecessary.
600 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
601 }
602
603 LValue elementLV = CGF.MakeAddrLValue(
604 Address(element, llvmElementType, elementAlign), elementType);
605 EmitInitializationToLValue(Args[i], elementLV);
606 }
607
608 // Check whether there's a non-trivial array-fill expression.
609 bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
610
611 // Any remaining elements need to be zero-initialized, possibly
612 // using the filler expression. We can skip this if the we're
613 // emitting to zeroed memory.
614 if (NumInitElements != NumArrayElements &&
615 !(Dest.isZeroed() && hasTrivialFiller &&
616 CGF.getTypes().isZeroInitializable(elementType))) {
617
618 // Use an actual loop. This is basically
619 // do { *array++ = filler; } while (array != end);
620
621 // Advance to the start of the rest of the array.
622 if (NumInitElements) {
623 element = Builder.CreateInBoundsGEP(
624 llvmElementType, element, one, "arrayinit.start");
625 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
626 }
627
628 // Compute the end of the array.
629 llvm::Value *end = Builder.CreateInBoundsGEP(
630 llvmElementType, begin,
631 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
632
633 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
634 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
635
636 // Jump into the body.
637 CGF.EmitBlock(bodyBB);
638 llvm::PHINode *currentElement =
639 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
640 currentElement->addIncoming(element, entryBB);
641
642 // Emit the actual filler expression.
643 {
644 // C++1z [class.temporary]p5:
645 // when a default constructor is called to initialize an element of
646 // an array with no corresponding initializer [...] the destruction of
647 // every temporary created in a default argument is sequenced before
648 // the construction of the next array element, if any
649 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
650 LValue elementLV = CGF.MakeAddrLValue(
651 Address(currentElement, llvmElementType, elementAlign), elementType);
652 if (ArrayFiller)
653 EmitInitializationToLValue(ArrayFiller, elementLV);
654 else
655 EmitNullInitializationToLValue(elementLV);
656 }
657
658 // Move on to the next element.
659 llvm::Value *nextElement = Builder.CreateInBoundsGEP(
660 llvmElementType, currentElement, one, "arrayinit.next");
661
662 // Tell the EH cleanup that we finished with the last element.
663 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
664
665 // Leave the loop if we're done.
666 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
667 "arrayinit.done");
668 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
669 Builder.CreateCondBr(done, endBB, bodyBB);
670 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
671
672 CGF.EmitBlock(endBB);
673 }
674
675 // Leave the partial-array cleanup if we entered one.
676 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
677}
678
679//===----------------------------------------------------------------------===//
680// Visitor Methods
681//===----------------------------------------------------------------------===//
682
683void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
684 Visit(E->getSubExpr());
685}
686
687void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
688 // If this is a unique OVE, just visit its source expression.
689 if (e->isUnique())
690 Visit(e->getSourceExpr());
691 else
692 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
693}
694
695void
696AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
697 if (Dest.isPotentiallyAliased() &&
698 E->getType().isPODType(CGF.getContext())) {
699 // For a POD type, just emit a load of the lvalue + a copy, because our
700 // compound literal might alias the destination.
701 EmitAggLoadOfLValue(E);
702 return;
703 }
704
705 AggValueSlot Slot = EnsureSlot(E->getType());
706
707 // Block-scope compound literals are destroyed at the end of the enclosing
708 // scope in C.
709 bool Destruct =
710 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
711 if (Destruct)
713
714 CGF.EmitAggExpr(E->getInitializer(), Slot);
715
716 if (Destruct)
719 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
720 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
721}
722
723/// Attempt to look through various unimportant expressions to find a
724/// cast of the given kind.
725static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
726 op = op->IgnoreParenNoopCasts(ctx);
727 if (auto castE = dyn_cast<CastExpr>(op)) {
728 if (castE->getCastKind() == kind)
729 return castE->getSubExpr();
730 }
731 return nullptr;
732}
733
734void AggExprEmitter::VisitCastExpr(CastExpr *E) {
735 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
736 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
737 switch (E->getCastKind()) {
738 case CK_Dynamic: {
739 // FIXME: Can this actually happen? We have no test coverage for it.
740 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
741 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
742 CodeGenFunction::TCK_Load);
743 // FIXME: Do we also need to handle property references here?
744 if (LV.isSimple())
745 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
746 else
747 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
748
749 if (!Dest.isIgnored())
750 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
751 break;
752 }
753
754 case CK_ToUnion: {
755 // Evaluate even if the destination is ignored.
756 if (Dest.isIgnored()) {
758 /*ignoreResult=*/true);
759 break;
760 }
761
762 // GCC union extension
763 QualType Ty = E->getSubExpr()->getType();
764 Address CastPtr = Dest.getAddress().withElementType(CGF.ConvertType(Ty));
765 EmitInitializationToLValue(E->getSubExpr(),
766 CGF.MakeAddrLValue(CastPtr, Ty));
767 break;
768 }
769
770 case CK_LValueToRValueBitCast: {
771 if (Dest.isIgnored()) {
773 /*ignoreResult=*/true);
774 break;
775 }
776
777 LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
778 Address SourceAddress =
779 SourceLV.getAddress(CGF).withElementType(CGF.Int8Ty);
780 Address DestAddress = Dest.getAddress().withElementType(CGF.Int8Ty);
781 llvm::Value *SizeVal = llvm::ConstantInt::get(
782 CGF.SizeTy,
784 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
785 break;
786 }
787
788 case CK_DerivedToBase:
789 case CK_BaseToDerived:
790 case CK_UncheckedDerivedToBase: {
791 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
792 "should have been unpacked before we got here");
793 }
794
795 case CK_NonAtomicToAtomic:
796 case CK_AtomicToNonAtomic: {
797 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
798
799 // Determine the atomic and value types.
801 QualType valueType = E->getType();
802 if (isToAtomic) std::swap(atomicType, valueType);
803
804 assert(atomicType->isAtomicType());
805 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
806 atomicType->castAs<AtomicType>()->getValueType()));
807
808 // Just recurse normally if we're ignoring the result or the
809 // atomic type doesn't change representation.
810 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
811 return Visit(E->getSubExpr());
812 }
813
814 CastKind peepholeTarget =
815 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
816
817 // These two cases are reverses of each other; try to peephole them.
818 if (Expr *op =
819 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
820 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
821 E->getType()) &&
822 "peephole significantly changed types?");
823 return Visit(op);
824 }
825
826 // If we're converting an r-value of non-atomic type to an r-value
827 // of atomic type, just emit directly into the relevant sub-object.
828 if (isToAtomic) {
829 AggValueSlot valueDest = Dest;
830 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
831 // Zero-initialize. (Strictly speaking, we only need to initialize
832 // the padding at the end, but this is simpler.)
833 if (!Dest.isZeroed())
835
836 // Build a GEP to refer to the subobject.
837 Address valueAddr =
838 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
839 valueDest = AggValueSlot::forAddr(valueAddr,
840 valueDest.getQualifiers(),
841 valueDest.isExternallyDestructed(),
842 valueDest.requiresGCollection(),
843 valueDest.isPotentiallyAliased(),
846 }
847
848 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
849 return;
850 }
851
852 // Otherwise, we're converting an atomic type to a non-atomic type.
853 // Make an atomic temporary, emit into that, and then copy the value out.
854 AggValueSlot atomicSlot =
855 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
856 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
857
858 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
859 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
860 return EmitFinalDestCopy(valueType, rvalue);
861 }
862 case CK_AddressSpaceConversion:
863 return Visit(E->getSubExpr());
864
865 case CK_LValueToRValue:
866 // If we're loading from a volatile type, force the destination
867 // into existence.
868 if (E->getSubExpr()->getType().isVolatileQualified()) {
869 bool Destruct =
870 !Dest.isExternallyDestructed() &&
872 if (Destruct)
874 EnsureDest(E->getType());
875 Visit(E->getSubExpr());
876
877 if (Destruct)
879 E->getType());
880
881 return;
882 }
883
884 [[fallthrough]];
885
886 case CK_HLSLArrayRValue:
887 Visit(E->getSubExpr());
888 break;
889
890 case CK_NoOp:
891 case CK_UserDefinedConversion:
892 case CK_ConstructorConversion:
894 E->getType()) &&
895 "Implicit cast types must be compatible");
896 Visit(E->getSubExpr());
897 break;
898
899 case CK_LValueBitCast:
900 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
901
902 case CK_Dependent:
903 case CK_BitCast:
904 case CK_ArrayToPointerDecay:
905 case CK_FunctionToPointerDecay:
906 case CK_NullToPointer:
907 case CK_NullToMemberPointer:
908 case CK_BaseToDerivedMemberPointer:
909 case CK_DerivedToBaseMemberPointer:
910 case CK_MemberPointerToBoolean:
911 case CK_ReinterpretMemberPointer:
912 case CK_IntegralToPointer:
913 case CK_PointerToIntegral:
914 case CK_PointerToBoolean:
915 case CK_ToVoid:
916 case CK_VectorSplat:
917 case CK_IntegralCast:
918 case CK_BooleanToSignedIntegral:
919 case CK_IntegralToBoolean:
920 case CK_IntegralToFloating:
921 case CK_FloatingToIntegral:
922 case CK_FloatingToBoolean:
923 case CK_FloatingCast:
924 case CK_CPointerToObjCPointerCast:
925 case CK_BlockPointerToObjCPointerCast:
926 case CK_AnyPointerToBlockPointerCast:
927 case CK_ObjCObjectLValueCast:
928 case CK_FloatingRealToComplex:
929 case CK_FloatingComplexToReal:
930 case CK_FloatingComplexToBoolean:
931 case CK_FloatingComplexCast:
932 case CK_FloatingComplexToIntegralComplex:
933 case CK_IntegralRealToComplex:
934 case CK_IntegralComplexToReal:
935 case CK_IntegralComplexToBoolean:
936 case CK_IntegralComplexCast:
937 case CK_IntegralComplexToFloatingComplex:
938 case CK_ARCProduceObject:
939 case CK_ARCConsumeObject:
940 case CK_ARCReclaimReturnedObject:
941 case CK_ARCExtendBlockObject:
942 case CK_CopyAndAutoreleaseBlockObject:
943 case CK_BuiltinFnToFnPtr:
944 case CK_ZeroToOCLOpaqueType:
945 case CK_MatrixCast:
946 case CK_HLSLVectorTruncation:
947
948 case CK_IntToOCLSampler:
949 case CK_FloatingToFixedPoint:
950 case CK_FixedPointToFloating:
951 case CK_FixedPointCast:
952 case CK_FixedPointToBoolean:
953 case CK_FixedPointToIntegral:
954 case CK_IntegralToFixedPoint:
955 llvm_unreachable("cast kind invalid for aggregate types");
956 }
957}
958
959void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
961 EmitAggLoadOfLValue(E);
962 return;
963 }
964
965 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
966 return CGF.EmitCallExpr(E, Slot);
967 });
968}
969
970void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
971 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
972 return CGF.EmitObjCMessageExpr(E, Slot);
973 });
974}
975
976void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
977 CGF.EmitIgnoredExpr(E->getLHS());
978 Visit(E->getRHS());
979}
980
981void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
982 CodeGenFunction::StmtExprEvaluation eval(CGF);
983 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
984}
985
990};
991
992static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
993 const BinaryOperator *E, llvm::Value *LHS,
994 llvm::Value *RHS, CompareKind Kind,
995 const char *NameSuffix = "") {
996 QualType ArgTy = E->getLHS()->getType();
997 if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
998 ArgTy = CT->getElementType();
999
1000 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
1001 assert(Kind == CK_Equal &&
1002 "member pointers may only be compared for equality");
1004 CGF, LHS, RHS, MPT, /*IsInequality*/ false);
1005 }
1006
1007 // Compute the comparison instructions for the specified comparison kind.
1008 struct CmpInstInfo {
1009 const char *Name;
1010 llvm::CmpInst::Predicate FCmp;
1011 llvm::CmpInst::Predicate SCmp;
1012 llvm::CmpInst::Predicate UCmp;
1013 };
1014 CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
1015 using FI = llvm::FCmpInst;
1016 using II = llvm::ICmpInst;
1017 switch (Kind) {
1018 case CK_Less:
1019 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1020 case CK_Greater:
1021 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1022 case CK_Equal:
1023 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1024 }
1025 llvm_unreachable("Unrecognised CompareKind enum");
1026 }();
1027
1028 if (ArgTy->hasFloatingRepresentation())
1029 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1030 llvm::Twine(InstInfo.Name) + NameSuffix);
1031 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1032 auto Inst =
1033 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1034 return Builder.CreateICmp(Inst, LHS, RHS,
1035 llvm::Twine(InstInfo.Name) + NameSuffix);
1036 }
1037
1038 llvm_unreachable("unsupported aggregate binary expression should have "
1039 "already been handled");
1040}
1041
1042void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1043 using llvm::BasicBlock;
1044 using llvm::PHINode;
1045 using llvm::Value;
1046 assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1047 E->getRHS()->getType()));
1048 const ComparisonCategoryInfo &CmpInfo =
1050 assert(CmpInfo.Record->isTriviallyCopyable() &&
1051 "cannot copy non-trivially copyable aggregate");
1052
1053 QualType ArgTy = E->getLHS()->getType();
1054
1055 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1056 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1057 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1058 return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1059 }
1060 bool IsComplex = ArgTy->isAnyComplexType();
1061
1062 // Evaluate the operands to the expression and extract their values.
1063 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1064 RValue RV = CGF.EmitAnyExpr(E);
1065 if (RV.isScalar())
1066 return {RV.getScalarVal(), nullptr};
1067 if (RV.isAggregate())
1068 return {RV.getAggregatePointer(E->getType(), CGF), nullptr};
1069 assert(RV.isComplex());
1070 return RV.getComplexVal();
1071 };
1072 auto LHSValues = EmitOperand(E->getLHS()),
1073 RHSValues = EmitOperand(E->getRHS());
1074
1075 auto EmitCmp = [&](CompareKind K) {
1076 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1077 K, IsComplex ? ".r" : "");
1078 if (!IsComplex)
1079 return Cmp;
1080 assert(K == CompareKind::CK_Equal);
1081 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1082 RHSValues.second, K, ".i");
1083 return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1084 };
1085 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1086 return Builder.getInt(VInfo->getIntValue());
1087 };
1088
1089 Value *Select;
1090 if (ArgTy->isNullPtrType()) {
1091 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1092 } else if (!CmpInfo.isPartial()) {
1093 Value *SelectOne =
1094 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1095 EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1096 Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1097 EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1098 SelectOne, "sel.eq");
1099 } else {
1100 Value *SelectEq = Builder.CreateSelect(
1101 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1102 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1103 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1104 EmitCmpRes(CmpInfo.getGreater()),
1105 SelectEq, "sel.gt");
1106 Select = Builder.CreateSelect(
1107 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1108 }
1109 // Create the return value in the destination slot.
1110 EnsureDest(E->getType());
1111 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1112
1113 // Emit the address of the first (and only) field in the comparison category
1114 // type, and initialize it from the constant integer value selected above.
1116 DestLV, *CmpInfo.Record->field_begin());
1117 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1118
1119 // All done! The result is in the Dest slot.
1120}
1121
1122void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1123 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1124 VisitPointerToDataMemberBinaryOperator(E);
1125 else
1126 CGF.ErrorUnsupported(E, "aggregate binary expression");
1127}
1128
1129void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1130 const BinaryOperator *E) {
1132 EmitFinalDestCopy(E->getType(), LV);
1133}
1134
1135/// Is the value of the given expression possibly a reference to or
1136/// into a __block variable?
1137static bool isBlockVarRef(const Expr *E) {
1138 // Make sure we look through parens.
1139 E = E->IgnoreParens();
1140
1141 // Check for a direct reference to a __block variable.
1142 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1143 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1144 return (var && var->hasAttr<BlocksAttr>());
1145 }
1146
1147 // More complicated stuff.
1148
1149 // Binary operators.
1150 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1151 // For an assignment or pointer-to-member operation, just care
1152 // about the LHS.
1153 if (op->isAssignmentOp() || op->isPtrMemOp())
1154 return isBlockVarRef(op->getLHS());
1155
1156 // For a comma, just care about the RHS.
1157 if (op->getOpcode() == BO_Comma)
1158 return isBlockVarRef(op->getRHS());
1159
1160 // FIXME: pointer arithmetic?
1161 return false;
1162
1163 // Check both sides of a conditional operator.
1164 } else if (const AbstractConditionalOperator *op
1165 = dyn_cast<AbstractConditionalOperator>(E)) {
1166 return isBlockVarRef(op->getTrueExpr())
1167 || isBlockVarRef(op->getFalseExpr());
1168
1169 // OVEs are required to support BinaryConditionalOperators.
1170 } else if (const OpaqueValueExpr *op
1171 = dyn_cast<OpaqueValueExpr>(E)) {
1172 if (const Expr *src = op->getSourceExpr())
1173 return isBlockVarRef(src);
1174
1175 // Casts are necessary to get things like (*(int*)&var) = foo().
1176 // We don't really care about the kind of cast here, except
1177 // we don't want to look through l2r casts, because it's okay
1178 // to get the *value* in a __block variable.
1179 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1180 if (cast->getCastKind() == CK_LValueToRValue)
1181 return false;
1182 return isBlockVarRef(cast->getSubExpr());
1183
1184 // Handle unary operators. Again, just aggressively look through
1185 // it, ignoring the operation.
1186 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1187 return isBlockVarRef(uop->getSubExpr());
1188
1189 // Look into the base of a field access.
1190 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1191 return isBlockVarRef(mem->getBase());
1192
1193 // Look into the base of a subscript.
1194 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1195 return isBlockVarRef(sub->getBase());
1196 }
1197
1198 return false;
1199}
1200
1201void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1202 // For an assignment to work, the value on the right has
1203 // to be compatible with the value on the left.
1204 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1205 E->getRHS()->getType())
1206 && "Invalid assignment");
1207
1208 // If the LHS might be a __block variable, and the RHS can
1209 // potentially cause a block copy, we need to evaluate the RHS first
1210 // so that the assignment goes the right place.
1211 // This is pretty semantically fragile.
1212 if (isBlockVarRef(E->getLHS()) &&
1213 E->getRHS()->HasSideEffects(CGF.getContext())) {
1214 // Ensure that we have a destination, and evaluate the RHS into that.
1215 EnsureDest(E->getRHS()->getType());
1216 Visit(E->getRHS());
1217
1218 // Now emit the LHS and copy into it.
1219 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1220
1221 // That copy is an atomic copy if the LHS is atomic.
1222 if (LHS.getType()->isAtomicType() ||
1224 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1225 return;
1226 }
1227
1228 EmitCopy(E->getLHS()->getType(),
1230 needsGC(E->getLHS()->getType()),
1233 Dest);
1234 return;
1235 }
1236
1237 LValue LHS = CGF.EmitLValue(E->getLHS());
1238
1239 // If we have an atomic type, evaluate into the destination and then
1240 // do an atomic copy.
1241 if (LHS.getType()->isAtomicType() ||
1243 EnsureDest(E->getRHS()->getType());
1244 Visit(E->getRHS());
1245 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1246 return;
1247 }
1248
1249 // Codegen the RHS so that it stores directly into the LHS.
1251 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1253 // A non-volatile aggregate destination might have volatile member.
1254 if (!LHSSlot.isVolatile() &&
1255 CGF.hasVolatileMember(E->getLHS()->getType()))
1256 LHSSlot.setVolatile(true);
1257
1258 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1259
1260 // Copy into the destination if the assignment isn't ignored.
1261 EmitFinalDestCopy(E->getType(), LHS);
1262
1263 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1266 E->getType());
1267}
1268
1269void AggExprEmitter::
1270VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1271 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1272 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1273 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1274
1275 // Bind the common expression if necessary.
1276 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1277
1278 CodeGenFunction::ConditionalEvaluation eval(CGF);
1279 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1280 CGF.getProfileCount(E));
1281
1282 // Save whether the destination's lifetime is externally managed.
1283 bool isExternallyDestructed = Dest.isExternallyDestructed();
1284 bool destructNonTrivialCStruct =
1285 !isExternallyDestructed &&
1287 isExternallyDestructed |= destructNonTrivialCStruct;
1288 Dest.setExternallyDestructed(isExternallyDestructed);
1289
1290 eval.begin(CGF);
1291 CGF.EmitBlock(LHSBlock);
1294 else
1296 Visit(E->getTrueExpr());
1297 eval.end(CGF);
1298
1299 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1300 CGF.Builder.CreateBr(ContBlock);
1301
1302 // If the result of an agg expression is unused, then the emission
1303 // of the LHS might need to create a destination slot. That's fine
1304 // with us, and we can safely emit the RHS into the same slot, but
1305 // we shouldn't claim that it's already being destructed.
1306 Dest.setExternallyDestructed(isExternallyDestructed);
1307
1308 eval.begin(CGF);
1309 CGF.EmitBlock(RHSBlock);
1312 Visit(E->getFalseExpr());
1313 eval.end(CGF);
1314
1315 if (destructNonTrivialCStruct)
1317 E->getType());
1318
1319 CGF.EmitBlock(ContBlock);
1322}
1323
1324void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1325 Visit(CE->getChosenSubExpr());
1326}
1327
1328void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1329 Address ArgValue = Address::invalid();
1330 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1331
1332 // If EmitVAArg fails, emit an error.
1333 if (!ArgPtr.isValid()) {
1334 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1335 return;
1336 }
1337
1338 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1339}
1340
1341void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1342 // Ensure that we have a slot, but if we already do, remember
1343 // whether it was externally destructed.
1344 bool wasExternallyDestructed = Dest.isExternallyDestructed();
1345 EnsureDest(E->getType());
1346
1347 // We're going to push a destructor if there isn't already one.
1349
1350 Visit(E->getSubExpr());
1351
1352 // Push that destructor we promised.
1353 if (!wasExternallyDestructed)
1354 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1355}
1356
1357void
1358AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1359 AggValueSlot Slot = EnsureSlot(E->getType());
1360 CGF.EmitCXXConstructExpr(E, Slot);
1361}
1362
1363void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1364 const CXXInheritedCtorInitExpr *E) {
1365 AggValueSlot Slot = EnsureSlot(E->getType());
1367 E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1368 E->inheritedFromVBase(), E);
1369}
1370
1371void
1372AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1373 AggValueSlot Slot = EnsureSlot(E->getType());
1374 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1375
1376 // We'll need to enter cleanup scopes in case any of the element
1377 // initializers throws an exception.
1379 llvm::Instruction *CleanupDominator = nullptr;
1380
1383 e = E->capture_init_end();
1384 i != e; ++i, ++CurField) {
1385 // Emit initialization
1386 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1387 if (CurField->hasCapturedVLAType()) {
1388 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1389 continue;
1390 }
1391
1392 EmitInitializationToLValue(*i, LV);
1393
1394 // Push a destructor if necessary.
1395 if (QualType::DestructionKind DtorKind =
1396 CurField->getType().isDestructedType()) {
1397 assert(LV.isSimple());
1398 if (CGF.needsEHCleanup(DtorKind)) {
1399 if (!CleanupDominator)
1400 CleanupDominator = CGF.Builder.CreateAlignedLoad(
1401 CGF.Int8Ty,
1402 llvm::Constant::getNullValue(CGF.Int8PtrTy),
1403 CharUnits::One()); // placeholder
1404
1405 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1406 CGF.getDestroyer(DtorKind), false);
1407 Cleanups.push_back(CGF.EHStack.stable_begin());
1408 }
1409 }
1410 }
1411
1412 // Deactivate all the partial cleanups in reverse order, which
1413 // generally means popping them.
1414 for (unsigned i = Cleanups.size(); i != 0; --i)
1415 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1416
1417 // Destroy the placeholder if we made one.
1418 if (CleanupDominator)
1419 CleanupDominator->eraseFromParent();
1420}
1421
1422void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1423 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1424 Visit(E->getSubExpr());
1425}
1426
1427void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1428 QualType T = E->getType();
1429 AggValueSlot Slot = EnsureSlot(T);
1430 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1431}
1432
1433void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1434 QualType T = E->getType();
1435 AggValueSlot Slot = EnsureSlot(T);
1436 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1437}
1438
1439/// Determine whether the given cast kind is known to always convert values
1440/// with all zero bits in their value representation to values with all zero
1441/// bits in their value representation.
1442static bool castPreservesZero(const CastExpr *CE) {
1443 switch (CE->getCastKind()) {
1444 // No-ops.
1445 case CK_NoOp:
1446 case CK_UserDefinedConversion:
1447 case CK_ConstructorConversion:
1448 case CK_BitCast:
1449 case CK_ToUnion:
1450 case CK_ToVoid:
1451 // Conversions between (possibly-complex) integral, (possibly-complex)
1452 // floating-point, and bool.
1453 case CK_BooleanToSignedIntegral:
1454 case CK_FloatingCast:
1455 case CK_FloatingComplexCast:
1456 case CK_FloatingComplexToBoolean:
1457 case CK_FloatingComplexToIntegralComplex:
1458 case CK_FloatingComplexToReal:
1459 case CK_FloatingRealToComplex:
1460 case CK_FloatingToBoolean:
1461 case CK_FloatingToIntegral:
1462 case CK_IntegralCast:
1463 case CK_IntegralComplexCast:
1464 case CK_IntegralComplexToBoolean:
1465 case CK_IntegralComplexToFloatingComplex:
1466 case CK_IntegralComplexToReal:
1467 case CK_IntegralRealToComplex:
1468 case CK_IntegralToBoolean:
1469 case CK_IntegralToFloating:
1470 // Reinterpreting integers as pointers and vice versa.
1471 case CK_IntegralToPointer:
1472 case CK_PointerToIntegral:
1473 // Language extensions.
1474 case CK_VectorSplat:
1475 case CK_MatrixCast:
1476 case CK_NonAtomicToAtomic:
1477 case CK_AtomicToNonAtomic:
1478 case CK_HLSLVectorTruncation:
1479 return true;
1480
1481 case CK_BaseToDerivedMemberPointer:
1482 case CK_DerivedToBaseMemberPointer:
1483 case CK_MemberPointerToBoolean:
1484 case CK_NullToMemberPointer:
1485 case CK_ReinterpretMemberPointer:
1486 // FIXME: ABI-dependent.
1487 return false;
1488
1489 case CK_AnyPointerToBlockPointerCast:
1490 case CK_BlockPointerToObjCPointerCast:
1491 case CK_CPointerToObjCPointerCast:
1492 case CK_ObjCObjectLValueCast:
1493 case CK_IntToOCLSampler:
1494 case CK_ZeroToOCLOpaqueType:
1495 // FIXME: Check these.
1496 return false;
1497
1498 case CK_FixedPointCast:
1499 case CK_FixedPointToBoolean:
1500 case CK_FixedPointToFloating:
1501 case CK_FixedPointToIntegral:
1502 case CK_FloatingToFixedPoint:
1503 case CK_IntegralToFixedPoint:
1504 // FIXME: Do all fixed-point types represent zero as all 0 bits?
1505 return false;
1506
1507 case CK_AddressSpaceConversion:
1508 case CK_BaseToDerived:
1509 case CK_DerivedToBase:
1510 case CK_Dynamic:
1511 case CK_NullToPointer:
1512 case CK_PointerToBoolean:
1513 // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1514 // same representation in all involved address spaces.
1515 return false;
1516
1517 case CK_ARCConsumeObject:
1518 case CK_ARCExtendBlockObject:
1519 case CK_ARCProduceObject:
1520 case CK_ARCReclaimReturnedObject:
1521 case CK_CopyAndAutoreleaseBlockObject:
1522 case CK_ArrayToPointerDecay:
1523 case CK_FunctionToPointerDecay:
1524 case CK_BuiltinFnToFnPtr:
1525 case CK_Dependent:
1526 case CK_LValueBitCast:
1527 case CK_LValueToRValue:
1528 case CK_LValueToRValueBitCast:
1529 case CK_UncheckedDerivedToBase:
1530 case CK_HLSLArrayRValue:
1531 return false;
1532 }
1533 llvm_unreachable("Unhandled clang::CastKind enum");
1534}
1535
1536/// isSimpleZero - If emitting this value will obviously just cause a store of
1537/// zero to memory, return true. This can return false if uncertain, so it just
1538/// handles simple cases.
1539static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1540 E = E->IgnoreParens();
1541 while (auto *CE = dyn_cast<CastExpr>(E)) {
1542 if (!castPreservesZero(CE))
1543 break;
1544 E = CE->getSubExpr()->IgnoreParens();
1545 }
1546
1547 // 0
1548 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1549 return IL->getValue() == 0;
1550 // +0.0
1551 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1552 return FL->getValue().isPosZero();
1553 // int()
1554 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1556 return true;
1557 // (int*)0 - Null pointer expressions.
1558 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1559 return ICE->getCastKind() == CK_NullToPointer &&
1561 !E->HasSideEffects(CGF.getContext());
1562 // '\0'
1563 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1564 return CL->getValue() == 0;
1565
1566 // Otherwise, hard case: conservatively return false.
1567 return false;
1568}
1569
1570
1571void
1572AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1573 QualType type = LV.getType();
1574 // FIXME: Ignore result?
1575 // FIXME: Are initializers affected by volatile?
1576 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1577 // Storing "i32 0" to a zero'd memory location is a noop.
1578 return;
1579 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1580 return EmitNullInitializationToLValue(LV);
1581 } else if (isa<NoInitExpr>(E)) {
1582 // Do nothing.
1583 return;
1584 } else if (type->isReferenceType()) {
1586 return CGF.EmitStoreThroughLValue(RV, LV);
1587 }
1588
1589 switch (CGF.getEvaluationKind(type)) {
1590 case TEK_Complex:
1591 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1592 return;
1593 case TEK_Aggregate:
1594 CGF.EmitAggExpr(
1599 return;
1600 case TEK_Scalar:
1601 if (LV.isSimple()) {
1602 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1603 } else {
1605 }
1606 return;
1607 }
1608 llvm_unreachable("bad evaluation kind");
1609}
1610
1611void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1612 QualType type = lv.getType();
1613
1614 // If the destination slot is already zeroed out before the aggregate is
1615 // copied into it, we don't have to emit any zeros here.
1616 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1617 return;
1618
1619 if (CGF.hasScalarEvaluationKind(type)) {
1620 // For non-aggregates, we can store the appropriate null constant.
1621 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1622 // Note that the following is not equivalent to
1623 // EmitStoreThroughBitfieldLValue for ARC types.
1624 if (lv.isBitField()) {
1626 } else {
1627 assert(lv.isSimple());
1628 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1629 }
1630 } else {
1631 // There's a potential optimization opportunity in combining
1632 // memsets; that would be easy for arrays, but relatively
1633 // difficult for structures with the current code.
1634 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1635 }
1636}
1637
1638void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1639 VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1641 E->getArrayFiller());
1642}
1643
1644void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1645 if (E->hadArrayRangeDesignator())
1646 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1647
1648 if (E->isTransparent())
1649 return Visit(E->getInit(0));
1650
1651 VisitCXXParenListOrInitListExpr(
1652 E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1653}
1654
1655void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1656 Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1657 FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1658#if 0
1659 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1660 // (Length of globals? Chunks of zeroed-out space?).
1661 //
1662 // If we can, prefer a copy from a global; this is a lot less code for long
1663 // globals, and it's easier for the current optimizers to analyze.
1664 if (llvm::Constant *C =
1665 CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1666 llvm::GlobalVariable* GV =
1667 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1668 llvm::GlobalValue::InternalLinkage, C, "");
1669 EmitFinalDestCopy(ExprToVisit->getType(),
1670 CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1671 return;
1672 }
1673#endif
1674
1675 AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1676
1677 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1678
1679 // Handle initialization of an array.
1680 if (ExprToVisit->getType()->isConstantArrayType()) {
1681 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1682 EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1683 InitExprs, ArrayFiller);
1684 return;
1685 } else if (ExprToVisit->getType()->isVariableArrayType()) {
1686 // A variable array type that has an initializer can only do empty
1687 // initialization. And because this feature is not exposed as an extension
1688 // in C++, we can safely memset the array memory to zero.
1689 assert(InitExprs.size() == 0 &&
1690 "you can only use an empty initializer with VLAs");
1691 CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType());
1692 return;
1693 }
1694
1695 assert(ExprToVisit->getType()->isRecordType() &&
1696 "Only support structs/unions here!");
1697
1698 // Do struct initialization; this code just sets each individual member
1699 // to the approprate value. This makes bitfield support automatic;
1700 // the disadvantage is that the generated code is more difficult for
1701 // the optimizer, especially with bitfields.
1702 unsigned NumInitElements = InitExprs.size();
1703 RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1704
1705 // We'll need to enter cleanup scopes in case any of the element
1706 // initializers throws an exception.
1708 llvm::Instruction *cleanupDominator = nullptr;
1709 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1710 cleanups.push_back(cleanup);
1711 if (!cleanupDominator) // create placeholder once needed
1712 cleanupDominator = CGF.Builder.CreateAlignedLoad(
1713 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1714 CharUnits::One());
1715 };
1716
1717 unsigned curInitIndex = 0;
1718
1719 // Emit initialization of base classes.
1720 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1721 assert(NumInitElements >= CXXRD->getNumBases() &&
1722 "missing initializer for base class");
1723 for (auto &Base : CXXRD->bases()) {
1724 assert(!Base.isVirtual() && "should not see vbases here");
1725 auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1727 Dest.getAddress(), CXXRD, BaseRD,
1728 /*isBaseVirtual*/ false);
1730 V, Qualifiers(),
1734 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1735 CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1736
1737 if (QualType::DestructionKind dtorKind =
1738 Base.getType().isDestructedType()) {
1739 CGF.pushDestroy(dtorKind, V, Base.getType());
1740 addCleanup(CGF.EHStack.stable_begin());
1741 }
1742 }
1743 }
1744
1745 // Prepare a 'this' for CXXDefaultInitExprs.
1746 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1747
1748 if (record->isUnion()) {
1749 // Only initialize one field of a union. The field itself is
1750 // specified by the initializer list.
1751 if (!InitializedFieldInUnion) {
1752 // Empty union; we have nothing to do.
1753
1754#ifndef NDEBUG
1755 // Make sure that it's really an empty and not a failure of
1756 // semantic analysis.
1757 for (const auto *Field : record->fields())
1758 assert(
1759 (Field->isUnnamedBitField() || Field->isAnonymousStructOrUnion()) &&
1760 "Only unnamed bitfields or ananymous class allowed");
1761#endif
1762 return;
1763 }
1764
1765 // FIXME: volatility
1766 FieldDecl *Field = InitializedFieldInUnion;
1767
1768 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1769 if (NumInitElements) {
1770 // Store the initializer into the field
1771 EmitInitializationToLValue(InitExprs[0], FieldLoc);
1772 } else {
1773 // Default-initialize to null.
1774 EmitNullInitializationToLValue(FieldLoc);
1775 }
1776
1777 return;
1778 }
1779
1780 // Here we iterate over the fields; this makes it simpler to both
1781 // default-initialize fields and skip over unnamed fields.
1782 for (const auto *field : record->fields()) {
1783 // We're done once we hit the flexible array member.
1784 if (field->getType()->isIncompleteArrayType())
1785 break;
1786
1787 // Always skip anonymous bitfields.
1788 if (field->isUnnamedBitField())
1789 continue;
1790
1791 // We're done if we reach the end of the explicit initializers, we
1792 // have a zeroed object, and the rest of the fields are
1793 // zero-initializable.
1794 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1795 CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1796 break;
1797
1798
1799 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1800 // We never generate write-barries for initialized fields.
1801 LV.setNonGC(true);
1802
1803 if (curInitIndex < NumInitElements) {
1804 // Store the initializer into the field.
1805 EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1806 } else {
1807 // We're out of initializers; default-initialize to null
1808 EmitNullInitializationToLValue(LV);
1809 }
1810
1811 // Push a destructor if necessary.
1812 // FIXME: if we have an array of structures, all explicitly
1813 // initialized, we can end up pushing a linear number of cleanups.
1814 bool pushedCleanup = false;
1815 if (QualType::DestructionKind dtorKind
1816 = field->getType().isDestructedType()) {
1817 assert(LV.isSimple());
1818 if (CGF.needsEHCleanup(dtorKind)) {
1819 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1820 CGF.getDestroyer(dtorKind), false);
1821 addCleanup(CGF.EHStack.stable_begin());
1822 pushedCleanup = true;
1823 }
1824 }
1825
1826 // If the GEP didn't get used because of a dead zero init or something
1827 // else, clean it up for -O0 builds and general tidiness.
1828 if (!pushedCleanup && LV.isSimple())
1829 if (llvm::GetElementPtrInst *GEP =
1830 dyn_cast<llvm::GetElementPtrInst>(LV.emitRawPointer(CGF)))
1831 if (GEP->use_empty())
1832 GEP->eraseFromParent();
1833 }
1834
1835 // Deactivate all the partial cleanups in reverse order, which
1836 // generally means popping them.
1837 assert((cleanupDominator || cleanups.empty()) &&
1838 "Missing cleanupDominator before deactivating cleanup blocks");
1839 for (unsigned i = cleanups.size(); i != 0; --i)
1840 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1841
1842 // Destroy the placeholder if we made one.
1843 if (cleanupDominator)
1844 cleanupDominator->eraseFromParent();
1845}
1846
1847void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1848 llvm::Value *outerBegin) {
1849 // Emit the common subexpression.
1850 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1851
1852 Address destPtr = EnsureSlot(E->getType()).getAddress();
1853 uint64_t numElements = E->getArraySize().getZExtValue();
1854
1855 if (!numElements)
1856 return;
1857
1858 // destPtr is an array*. Construct an elementType* by drilling down a level.
1859 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1860 llvm::Value *indices[] = {zero, zero};
1861 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getElementType(),
1862 destPtr.emitRawPointer(CGF),
1863 indices, "arrayinit.begin");
1864
1865 // Prepare to special-case multidimensional array initialization: we avoid
1866 // emitting multiple destructor loops in that case.
1867 if (!outerBegin)
1868 outerBegin = begin;
1869 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1870
1871 QualType elementType =
1873 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1874 CharUnits elementAlign =
1875 destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1876 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1877
1878 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1879 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1880
1881 // Jump into the body.
1882 CGF.EmitBlock(bodyBB);
1883 llvm::PHINode *index =
1884 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1885 index->addIncoming(zero, entryBB);
1886 llvm::Value *element =
1887 Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1888
1889 // Prepare for a cleanup.
1890 QualType::DestructionKind dtorKind = elementType.isDestructedType();
1892 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1893 if (outerBegin->getType() != element->getType())
1894 outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1895 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1896 elementAlign,
1897 CGF.getDestroyer(dtorKind));
1899 } else {
1900 dtorKind = QualType::DK_none;
1901 }
1902
1903 // Emit the actual filler expression.
1904 {
1905 // Temporaries created in an array initialization loop are destroyed
1906 // at the end of each iteration.
1907 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1908 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1909 LValue elementLV = CGF.MakeAddrLValue(
1910 Address(element, llvmElementType, elementAlign), elementType);
1911
1912 if (InnerLoop) {
1913 // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1914 auto elementSlot = AggValueSlot::forLValue(
1915 elementLV, CGF, AggValueSlot::IsDestructed,
1918 AggExprEmitter(CGF, elementSlot, false)
1919 .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1920 } else
1921 EmitInitializationToLValue(E->getSubExpr(), elementLV);
1922 }
1923
1924 // Move on to the next element.
1925 llvm::Value *nextIndex = Builder.CreateNUWAdd(
1926 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1927 index->addIncoming(nextIndex, Builder.GetInsertBlock());
1928
1929 // Leave the loop if we're done.
1930 llvm::Value *done = Builder.CreateICmpEQ(
1931 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1932 "arrayinit.done");
1933 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1934 Builder.CreateCondBr(done, endBB, bodyBB);
1935
1936 CGF.EmitBlock(endBB);
1937
1938 // Leave the partial-array cleanup if we entered one.
1939 if (dtorKind)
1940 CGF.DeactivateCleanupBlock(cleanup, index);
1941}
1942
1943void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1944 AggValueSlot Dest = EnsureSlot(E->getType());
1945
1946 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1947 EmitInitializationToLValue(E->getBase(), DestLV);
1948 VisitInitListExpr(E->getUpdater());
1949}
1950
1951//===----------------------------------------------------------------------===//
1952// Entry Points into this File
1953//===----------------------------------------------------------------------===//
1954
1955/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1956/// non-zero bytes that will be stored when outputting the initializer for the
1957/// specified initializer expression.
1959 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1960 E = MTE->getSubExpr();
1961 E = E->IgnoreParenNoopCasts(CGF.getContext());
1962
1963 // 0 and 0.0 won't require any non-zero stores!
1964 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1965
1966 // If this is an initlist expr, sum up the size of sizes of the (present)
1967 // elements. If this is something weird, assume the whole thing is non-zero.
1968 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1969 while (ILE && ILE->isTransparent())
1970 ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1971 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1972 return CGF.getContext().getTypeSizeInChars(E->getType());
1973
1974 // InitListExprs for structs have to be handled carefully. If there are
1975 // reference members, we need to consider the size of the reference, not the
1976 // referencee. InitListExprs for unions and arrays can't have references.
1977 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1978 if (!RT->isUnionType()) {
1979 RecordDecl *SD = RT->getDecl();
1980 CharUnits NumNonZeroBytes = CharUnits::Zero();
1981
1982 unsigned ILEElement = 0;
1983 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1984 while (ILEElement != CXXRD->getNumBases())
1985 NumNonZeroBytes +=
1986 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1987 for (const auto *Field : SD->fields()) {
1988 // We're done once we hit the flexible array member or run out of
1989 // InitListExpr elements.
1990 if (Field->getType()->isIncompleteArrayType() ||
1991 ILEElement == ILE->getNumInits())
1992 break;
1993 if (Field->isUnnamedBitField())
1994 continue;
1995
1996 const Expr *E = ILE->getInit(ILEElement++);
1997
1998 // Reference values are always non-null and have the width of a pointer.
1999 if (Field->getType()->isReferenceType())
2000 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
2001 CGF.getTarget().getPointerWidth(LangAS::Default));
2002 else
2003 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
2004 }
2005
2006 return NumNonZeroBytes;
2007 }
2008 }
2009
2010 // FIXME: This overestimates the number of non-zero bytes for bit-fields.
2011 CharUnits NumNonZeroBytes = CharUnits::Zero();
2012 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
2013 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
2014 return NumNonZeroBytes;
2015}
2016
2017/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
2018/// zeros in it, emit a memset and avoid storing the individual zeros.
2019///
2020static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
2021 CodeGenFunction &CGF) {
2022 // If the slot is already known to be zeroed, nothing to do. Don't mess with
2023 // volatile stores.
2024 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
2025 return;
2026
2027 // C++ objects with a user-declared constructor don't need zero'ing.
2028 if (CGF.getLangOpts().CPlusPlus)
2029 if (const RecordType *RT = CGF.getContext()
2031 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2033 return;
2034 }
2035
2036 // If the type is 16-bytes or smaller, prefer individual stores over memset.
2037 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2038 if (Size <= CharUnits::fromQuantity(16))
2039 return;
2040
2041 // Check to see if over 3/4 of the initializer are known to be zero. If so,
2042 // we prefer to emit memset + individual stores for the rest.
2043 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2044 if (NumNonZeroBytes*4 > Size)
2045 return;
2046
2047 // Okay, it seems like a good idea to use an initial memset, emit the call.
2048 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2049
2050 Address Loc = Slot.getAddress().withElementType(CGF.Int8Ty);
2051 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2052
2053 // Tell the AggExprEmitter that the slot is known zero.
2054 Slot.setZeroed();
2055}
2056
2057
2058
2059
2060/// EmitAggExpr - Emit the computation of the specified expression of aggregate
2061/// type. The result is computed into DestPtr. Note that if DestPtr is null,
2062/// the value of the aggregate expression is not needed. If VolatileDest is
2063/// true, DestPtr cannot be 0.
2064void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2065 assert(E && hasAggregateEvaluationKind(E->getType()) &&
2066 "Invalid aggregate expression to emit");
2067 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2068 "slot has bits but no address");
2069
2070 // Optimize the slot if possible.
2071 CheckAggExprForMemSetUse(Slot, E, *this);
2072
2073 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2074}
2075
2077 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2078 Address Temp = CreateMemTemp(E->getType());
2079 LValue LV = MakeAddrLValue(Temp, E->getType());
2084 return LV;
2085}
2086
2089 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2091
2092 // If the field lies entirely within the enclosing class's nvsize, its tail
2093 // padding cannot overlap any already-initialized object. (The only subobjects
2094 // with greater addresses that might already be initialized are vbases.)
2095 const RecordDecl *ClassRD = FD->getParent();
2096 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2097 if (Layout.getFieldOffset(FD->getFieldIndex()) +
2098 getContext().getTypeSize(FD->getType()) <=
2099 (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2101
2102 // The tail padding may contain values we need to preserve.
2104}
2105
2107 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2108 // If the most-derived object is a field declared with [[no_unique_address]],
2109 // the tail padding of any virtual base could be reused for other subobjects
2110 // of that field's class.
2111 if (IsVirtual)
2113
2114 // If the base class is laid out entirely within the nvsize of the derived
2115 // class, its tail padding cannot yet be initialized, so we can issue
2116 // stores at the full width of the base class.
2117 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2118 if (Layout.getBaseClassOffset(BaseRD) +
2119 getContext().getASTRecordLayout(BaseRD).getSize() <=
2120 Layout.getNonVirtualSize())
2122
2123 // The tail padding may contain values we need to preserve.
2125}
2126
2128 AggValueSlot::Overlap_t MayOverlap,
2129 bool isVolatile) {
2130 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2131
2132 Address DestPtr = Dest.getAddress(*this);
2133 Address SrcPtr = Src.getAddress(*this);
2134
2135 if (getLangOpts().CPlusPlus) {
2136 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2137 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2138 assert((Record->hasTrivialCopyConstructor() ||
2139 Record->hasTrivialCopyAssignment() ||
2140 Record->hasTrivialMoveConstructor() ||
2141 Record->hasTrivialMoveAssignment() ||
2142 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2143 "Trying to aggregate-copy a type without a trivial copy/move "
2144 "constructor or assignment operator");
2145 // Ignore empty classes in C++.
2146 if (Record->isEmpty())
2147 return;
2148 }
2149 }
2150
2151 if (getLangOpts().CUDAIsDevice) {
2153 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2154 Src))
2155 return;
2156 } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2157 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2158 Src))
2159 return;
2160 }
2161 }
2162
2163 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
2164 // C99 6.5.16.1p3, which states "If the value being stored in an object is
2165 // read from another object that overlaps in anyway the storage of the first
2166 // object, then the overlap shall be exact and the two objects shall have
2167 // qualified or unqualified versions of a compatible type."
2168 //
2169 // memcpy is not defined if the source and destination pointers are exactly
2170 // equal, but other compilers do this optimization, and almost every memcpy
2171 // implementation handles this case safely. If there is a libc that does not
2172 // safely handle this, we can add a target hook.
2173
2174 // Get data size info for this aggregate. Don't copy the tail padding if this
2175 // might be a potentially-overlapping subobject, since the tail padding might
2176 // be occupied by a different object. Otherwise, copying it is fine.
2178 if (MayOverlap)
2180 else
2182
2183 llvm::Value *SizeVal = nullptr;
2184 if (TypeInfo.Width.isZero()) {
2185 // But note that getTypeInfo returns 0 for a VLA.
2186 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2187 getContext().getAsArrayType(Ty))) {
2188 QualType BaseEltTy;
2189 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2190 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2191 assert(!TypeInfo.Width.isZero());
2192 SizeVal = Builder.CreateNUWMul(
2193 SizeVal,
2194 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2195 }
2196 }
2197 if (!SizeVal) {
2198 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2199 }
2200
2201 // FIXME: If we have a volatile struct, the optimizer can remove what might
2202 // appear to be `extra' memory ops:
2203 //
2204 // volatile struct { int i; } a, b;
2205 //
2206 // int main() {
2207 // a = b;
2208 // a = b;
2209 // }
2210 //
2211 // we need to use a different call here. We use isVolatile to indicate when
2212 // either the source or the destination is volatile.
2213
2214 DestPtr = DestPtr.withElementType(Int8Ty);
2215 SrcPtr = SrcPtr.withElementType(Int8Ty);
2216
2217 // Don't do any of the memmove_collectable tests if GC isn't set.
2218 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2219 // fall through
2220 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2221 RecordDecl *Record = RecordTy->getDecl();
2222 if (Record->hasObjectMember()) {
2223 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2224 SizeVal);
2225 return;
2226 }
2227 } else if (Ty->isArrayType()) {
2228 QualType BaseType = getContext().getBaseElementType(Ty);
2229 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2230 if (RecordTy->getDecl()->hasObjectMember()) {
2231 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2232 SizeVal);
2233 return;
2234 }
2235 }
2236 }
2237
2238 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2239
2240 // Determine the metadata to describe the position of any padding in this
2241 // memcpy, as well as the TBAA tags for the members of the struct, in case
2242 // the optimizer wishes to expand it in to scalar memory operations.
2243 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2244 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2245
2246 if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2248 Dest.getTBAAInfo(), Src.getTBAAInfo());
2249 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2250 }
2251}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3273
CompareKind
Definition: CGExprAgg.cpp:986
@ CK_Greater
Definition: CGExprAgg.cpp:988
@ CK_Less
Definition: CGExprAgg.cpp:987
@ CK_Equal
Definition: CGExprAgg.cpp:989
static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF)
GetNumNonZeroBytesInInit - Get an approximate count of the number of non-zero bytes that will be stor...
Definition: CGExprAgg.cpp:1958
static Expr * findPeephole(Expr *op, CastKind kind, const ASTContext &ctx)
Attempt to look through various unimportant expressions to find a cast of the given kind.
Definition: CGExprAgg.cpp:725
static bool isBlockVarRef(const Expr *E)
Is the value of the given expression possibly a reference to or into a __block variable?
Definition: CGExprAgg.cpp:1137
static bool isTrivialFiller(Expr *E)
Determine if E is a trivial array filler, that is, one that is equivalent to zero-initialization.
Definition: CGExprAgg.cpp:484
static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF)
isSimpleZero - If emitting this value will obviously just cause a store of zero to memory,...
Definition: CGExprAgg.cpp:1539
static llvm::Value * EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, const BinaryOperator *E, llvm::Value *LHS, llvm::Value *RHS, CompareKind Kind, const char *NameSuffix="")
Definition: CGExprAgg.cpp:992
static bool castPreservesZero(const CastExpr *CE)
Determine whether the given cast kind is known to always convert values with all zero bits in their v...
Definition: CGExprAgg.cpp:1442
static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, CodeGenFunction &CGF)
CheckAggExprForMemSetUse - If the initializer is large and has a lot of zeros in it,...
Definition: CGExprAgg.cpp:2020
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
llvm::MachO::Record Record
Definition: MachO.h:31
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:182
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2756
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2579
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
ComparisonCategories CompCategories
Types and expressions required to build C++2a three-way comparisons using operator<=>,...
Definition: ASTContext.h:2260
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const
TypeInfoChars getTypeInfoInChars(const Type *T) const
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2606
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
unsigned getTargetAddressSpace(LangAS AS) const
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:210
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:4141
Expr * getCond() const
getCond - Return the expression representing the condition for the ?: operator.
Definition: Expr.h:4319
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression representing the value of the expression if the condition eval...
Definition: Expr.h:4325
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression representing the value of the expression if the condition eva...
Definition: Expr.h:4331
Represents a loop initializing the elements of an array.
Definition: Expr.h:5511
llvm::APInt getArraySize() const
Definition: Expr.h:5533
OpaqueValueExpr * getCommonExpr() const
Get the common subexpression shared by all initializations (the source array).
Definition: Expr.h:5526
Expr * getSubExpr() const
Get the initializer to use for each array element.
Definition: Expr.h:5531
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2664
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3308
QualType getElementType() const
Definition: Type.h:3320
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load,...
Definition: Expr.h:6437
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:6979
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3840
Expr * getLHS() const
Definition: Expr.h:3889
Expr * getRHS() const
Definition: Expr.h:3891
Opcode getOpcode() const
Definition: Expr.h:3884
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1485
CXXTemporary * getTemporary()
Definition: ExprCXX.h:1503
const Expr * getSubExpr() const
Definition: ExprCXX.h:1507
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1540
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1264
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1371
Expr * getExpr()
Get the initialization expression that will be used.
Definition: ExprCXX.cpp:1035
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1731
bool constructsVBase() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1772
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will call.
Definition: ExprCXX.h:1768
bool inheritedFromVBase() const
Determine whether the inherited constructor is inherited from a virtual base of the object we constru...
Definition: ExprCXX.h:1782
Represents a list-initialization with parenthesis.
Definition: ExprCXX.h:4923
ArrayRef< Expr * > getInitExprs()
Definition: ExprCXX.h:4963
FieldDecl * getInitializedFieldInUnion()
Definition: ExprCXX.h:5003
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
bool isTriviallyCopyable() const
Determine whether this class is considered trivially copyable per (C++11 [class]p6).
Definition: DeclCXX.cpp:575
bool hasUserDeclaredConstructor() const
Determine whether this class has any user-declared constructors.
Definition: DeclCXX.h:790
A rewritten comparison expression that was originally written using operator syntax.
Definition: ExprCXX.h:283
Expr * getSemanticForm()
Get an equivalent semantic form for this expression.
Definition: ExprCXX.h:301
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type.
Definition: ExprCXX.h:2175
Implicit construction of a std::initializer_list<T> object from an array temporary within list-initia...
Definition: ExprCXX.h:797
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1202
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:845
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2820
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1590
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3483
CastKind getCastKind() const
Definition: Expr.h:3527
Expr * getSubExpr()
Definition: Expr.h:3533
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:214
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4558
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4594
Represents a 'co_await' expression.
Definition: ExprCXX.h:5154
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:111
static Address invalid()
Definition: Address.h:153
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:220
CharUnits getAlignment() const
Definition: Address.h:166
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:184
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:241
bool isValid() const
Definition: Address.h:154
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:176
An aggregate value slot.
Definition: CGValue.h:512
void setVolatile(bool flag)
Definition: CGValue.h:631
static AggValueSlot ignored()
ignored - Returns an aggregate value slot indicating that the aggregate value is being ignored.
Definition: CGValue.h:580
Address getAddress() const
Definition: CGValue.h:652
CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const
Get the preferred size to use when storing a value to this slot.
Definition: CGValue.h:690
static AggValueSlot forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition: CGValue.h:610
NeedsGCBarriers_t requiresGCollection() const
Definition: CGValue.h:642
void setExternallyDestructed(bool destructed=true)
Definition: CGValue.h:621
void setZeroed(bool V=true)
Definition: CGValue.h:682
IsZeroed_t isZeroed() const
Definition: CGValue.h:683
Qualifiers getQualifiers() const
Definition: CGValue.h:625
IsAliased_t isPotentiallyAliased() const
Definition: CGValue.h:662
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:595
IsDestructed_t isExternallyDestructed() const
Definition: CGValue.h:618
Overlap_t mayOverlap() const
Definition: CGValue.h:666
RValue asRValue() const
Definition: CGValue.h:674
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Definition: CGValue.h:648
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:823
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:397
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:219
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:364
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:128
virtual llvm::Value * EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality)
Emit a comparison between two member pointers. Returns an i1.
Definition: CGCXXABI.cpp:87
virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, llvm::Value *Size)=0
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
llvm::Value * EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr)
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
DeactivateCleanupBlock - Deactivates the given cleanup block.
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH=Stmt::LH_None, const Expr *ConditionalOp=nullptr)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its LValue mapping if it exists, otherwise create one.
LValue EmitAggExprToLValue(const Expr *E)
EmitAggExprToLValue - Emit the computation of the specified expression of aggregate type into a tempo...
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
static bool hasScalarEvaluationKind(QualType T)
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, Address arrayEndPointer, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
llvm::Value * emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr)
emitArrayLength - Compute the length of an array, even if it's a VLA, and drill down to the base elem...
AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual)
Determine whether a base class initialization may overlap some other object.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
RValue EmitAtomicLoad(LValue LV, SourceLocation SL, AggValueSlot Slot=AggValueSlot::ignored())
bool hasVolatileMember(QualType T)
hasVolatileMember - returns true if aggregate type has a volatile member.
void callCStructCopyAssignmentOperator(LValue Dst, LValue Src)
void callCStructMoveConstructor(LValue Dst, LValue Src)
void callCStructCopyConstructor(LValue Dst, LValue Src)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field)
EmitLValueForFieldInitialization - Like EmitLValueForField, except that if the Field is a reference,...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, bool ForVirtualBase, Address This, bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E)
Emit a call to a constructor inherited from a base class, passing the current constructor's arguments...
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
llvm::Type * ConvertTypeForMem(QualType T)
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior.
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=nullptr)
EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints as EmitStoreThroughLValue.
const TargetInfo & getTarget() const
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateAggTemp - Create a temporary memory object for the given aggregate type.
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn't support the specified stmt yet.
AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
const TargetCodeGenInfo & getTargetHooks() const
RValue EmitReferenceBindingToExpr(const Expr *E)
Emits a reference binding to the passed in expression.
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, Address Ptr)
void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile)
Build all the stores needed to initialize an aggregate at Dest with the value Val.
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint=true)
void pushDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type)
Address GetAddressOfDirectBaseInCompleteClass(Address Value, const CXXRecordDecl *Derived, const CXXRecordDecl *Base, bool BaseIsVirtual)
GetAddressOfBaseOfCompleteClass - Convert the given pointer to a complete class to the given direct b...
void callCStructMoveAssignmentOperator(LValue Dst, LValue Src)
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind.
CleanupKind getCleanupKind(QualType::DestructionKind kind)
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
llvm::Type * ConvertType(QualType T)
Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr)
Generate code to get an argument from the passed in pointer and update it accordingly.
CodeGenTypes & getTypes() const
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e)
static bool hasAggregateEvaluationKind(QualType T)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV)
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit)
RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue=ReturnValueSlot())
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
bool LValueIsSuitableForInlineAtomic(LValue Src)
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAtomicExpr(AtomicExpr *E)
LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E)
This class organizes the cross-function state that is used while generating LLVM code.
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
Definition: CGExpr.cpp:1235
llvm::MDNode * getTBAAStructInfo(QualType QTy)
llvm::Module & getModule() const
bool isPaddedAtomicType(QualType type)
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn't support the specified stmt yet.
TBAAAccessInfo mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, TBAAAccessInfo SrcInfo)
mergeTBAAInfoForMemoryTransfer - Get merged TBAA information for the purposes of memory transfer call...
const LangOptions & getLangOpts() const
const llvm::DataLayout & getDataLayout() const
CGCXXABI & getCXXABI() const
void DecorateInstructionWithTBAA(llvm::Instruction *Inst, TBAAAccessInfo TBAAInfo)
DecorateInstructionWithTBAA - Decorate the instruction with a TBAA tag.
ASTContext & getContext() const
const CodeGenOptions & getCodeGenOpts() const
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
bool isPointerZeroInitializable(QualType T)
Check if the pointer type can be zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
bool isZeroInitializable(QualType T)
IsZeroInitializable - Return whether a type can be zero-initialized (in the C++ sense) with an LLVM z...
A saved depth on the scope stack.
Definition: EHScopeStack.h:101
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:393
LValue - This represents an lvalue references.
Definition: CGValue.h:181
bool isBitField() const
Definition: CGValue.h:283
bool isSimple() const
Definition: CGValue.h:281
Address getAddress(CodeGenFunction &CGF) const
Definition: CGValue.h:370
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Definition: CGValue.h:365
QualType getType() const
Definition: CGValue.h:294
TBAAAccessInfo getTBAAInfo() const
Definition: CGValue.h:338
void setNonGC(bool Value)
Definition: CGValue.h:307
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:41
llvm::Value * getAggregatePointer(QualType PointeeType, CodeGenFunction &CGF) const
Definition: CGValue.h:87
bool isScalar() const
Definition: CGValue.h:63
static RValue get(llvm::Value *V)
Definition: CGValue.h:97
static RValue getAggregate(Address addr, bool isVolatile=false)
Convert an Address to an RValue.
Definition: CGValue.h:124
bool isAggregate() const
Definition: CGValue.h:65
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:82
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:70
bool isComplex() const
Definition: CGValue.h:64
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:77
An abstract representation of an aligned address.
Definition: Address.h:41
llvm::Value * getPointer() const
Definition: Address.h:65
static RawAddress invalid()
Definition: Address.h:60
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:356
const ComparisonCategoryInfo & getInfoForType(QualType Ty) const
Return the comparison category information as specified by getCategoryForType(Ty).
bool isPartial() const
True iff the comparison is not totally ordered.
const ValueInfo * getLess() const
const ValueInfo * getUnordered() const
const CXXRecordDecl * Record
The declaration for the comparison category type from the standard library.
const ValueInfo * getGreater() const
const ValueInfo * getEqualOrEquiv() const
Complex values, per C99 6.2.5p11.
Definition: Type.h:2876
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3413
const Expr * getInitializer() const
Definition: Expr.h:3436
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3346
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:1072
Represents a 'co_yield' expression.
Definition: ExprCXX.h:5235
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2341
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1260
bool hasAttr() const
Definition: DeclBase.h:582
Expr * getBase() const
Definition: Expr.h:5476
InitListExpr * getUpdater() const
Definition: Expr.h:5479
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3446
This represents one expression.
Definition: Expr.h:110
bool isGLValue() const
Definition: Expr.h:280
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parentheses and casts which do not change the value (including ptr->int casts of the sa...
Definition: Expr.cpp:3086
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3055
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3556
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
Represents a member of a struct/union/class.
Definition: Decl.h:3058
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:4646
const RecordDecl * getParent() const
Returns the parent of this field declaration, which is the struct in which this field is defined.
Definition: Decl.h:3271
const Expr * getSubExpr() const
Definition: Expr.h:1052
Represents a C11 generic selection.
Definition: Expr.h:5725
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5600
Describes an C or C++ initializer list.
Definition: Expr.h:4847
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic,...
Definition: Expr.cpp:2432
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:4966
unsigned getNumInits() const
Definition: Expr.h:4877
bool hadArrayRangeDesignator() const
Definition: Expr.h:5024
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:4941
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4893
ArrayRef< Expr * > inits()
Definition: Expr.h:4887
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1948
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression.
Definition: ExprCXX.h:2086
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:2060
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:2074
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:1332
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4689
Expr * getSubExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue.
Definition: ExprCXX.h:4706
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:3172
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3250
Represents a place-holder for an object not to be initialized by anything.
Definition: Expr.h:5420
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:549
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:945
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition: Expr.h:1168
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1218
bool isUnique() const
Definition: Expr.h:1226
Expr * getSelectedExpr() const
Definition: ExprCXX.h:4421
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:2130
const Expr * getSubExpr() const
Definition: Expr.h:2145
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1986
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:6305
A (possibly-)qualified type.
Definition: Type.h:738
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:7233
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2716
@ DK_nontrivial_c_struct
Definition: Type.h:1317
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:7275
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after.
Definition: Type.h:1324
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2561
@ PCK_Struct
The type is a struct containing a field whose type is neither PCK_Trivial nor PCK_VolatileTrivial.
Definition: Type.h:1296
The collection of all-type qualifiers we support.
Definition: Type.h:148
Represents a struct/union/class.
Definition: Decl.h:4169
bool hasObjectMember() const
Definition: Decl.h:4229
field_range fields() const
Definition: Decl.h:4375
field_iterator field_begin() const
Definition: Decl.cpp:5070
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5339
RecordDecl * getDecl() const
Definition: Type.h:5349
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4383
CompoundStmt * getSubStmt()
Definition: Expr.h:4400
RetTy Visit(PTR(Stmt) S, ParamTys... P)
Definition: StmtVisitor.h:44
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:185
Stmt - This represents one statement.
Definition: Stmt.h:84
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1773
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4445
bool isUnion() const
Definition: Decl.h:3791
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:467
bool isConstantArrayType() const
Definition: Type.h:7472
bool isArrayType() const
Definition: Type.h:7468
bool isPointerType() const
Definition: Type.h:7402
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7980
bool isReferenceType() const
Definition: Type.h:7414
bool isVariableArrayType() const
Definition: Type.h:7480
bool isCUDADeviceBuiltinSurfaceType() const
Check if the type is the CUDA device builtin surface type.
Definition: Type.cpp:4906
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:7810
bool isAnyComplexType() const
Definition: Type.h:7504
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g....
Definition: Type.cpp:2174
bool isMemberPointerType() const
Definition: Type.h:7450
bool isAtomicType() const
Definition: Type.h:7547
bool isCUDADeviceBuiltinTextureType() const
Check if the type is the CUDA device builtin texture type.
Definition: Type.cpp:4913
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition: Type.cpp:2246
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:2254
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:7913
bool isNullPtrType() const
Definition: Type.h:7728
bool isRecordType() const
Definition: Type.h:7496
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2183
Expr * getSubExpr() const
Definition: Expr.h:2228
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4667
QualType getType() const
Definition: Decl.h:717
Represents a variable declaration or definition.
Definition: Decl.h:918
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< AtomicType > atomicType
Matches atomic types.
tooling::Replacements cleanup(const FormatStyle &Style, StringRef Code, ArrayRef< tooling::Range > Ranges, StringRef FileName="<stdin>")
Clean up any erroneous/redundant code in the given Ranges in Code.
Definition: Format.cpp:3793
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1840
bool GE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:897
The JSON file list parser is used to communicate input to InstallAPI.
@ CPlusPlus
Definition: LangStandard.h:55
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
CastKind
CastKind - The kind of operation required for a conversion.
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:129
const FunctionProtoType * T
U cast(CodeGen::Address addr)
Definition: Address.h:291
unsigned long uint64_t
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
cl::opt< bool > EnableSingleByteCoverage
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
uint64_t Width
Definition: ASTContext.h:153