clang 20.0.0git
CGExprConstant.cpp
Go to the documentation of this file.
1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Constant Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfoImpl.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/APValue.h"
23#include "clang/AST/Attr.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Sequence.h"
29#include "llvm/Analysis/ConstantFolding.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalVariable.h"
34#include <optional>
35using namespace clang;
36using namespace CodeGen;
37
38//===----------------------------------------------------------------------===//
39// ConstantAggregateBuilder
40//===----------------------------------------------------------------------===//
41
42namespace {
43class ConstExprEmitter;
44
45struct ConstantAggregateBuilderUtils {
46 CodeGenModule &CGM;
47
48 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
49
50 CharUnits getAlignment(const llvm::Constant *C) const {
52 CGM.getDataLayout().getABITypeAlign(C->getType()));
53 }
54
55 CharUnits getSize(llvm::Type *Ty) const {
56 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
57 }
58
59 CharUnits getSize(const llvm::Constant *C) const {
60 return getSize(C->getType());
61 }
62
63 llvm::Constant *getPadding(CharUnits PadSize) const {
64 llvm::Type *Ty = CGM.CharTy;
65 if (PadSize > CharUnits::One())
66 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
67 return llvm::UndefValue::get(Ty);
68 }
69
70 llvm::Constant *getZeroes(CharUnits ZeroSize) const {
71 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
72 return llvm::ConstantAggregateZero::get(Ty);
73 }
74};
75
76/// Incremental builder for an llvm::Constant* holding a struct or array
77/// constant.
78class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
79 /// The elements of the constant. These two arrays must have the same size;
80 /// Offsets[i] describes the offset of Elems[i] within the constant. The
81 /// elements are kept in increasing offset order, and we ensure that there
82 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
83 ///
84 /// This may contain explicit padding elements (in order to create a
85 /// natural layout), but need not. Gaps between elements are implicitly
86 /// considered to be filled with undef.
89
90 /// The size of the constant (the maximum end offset of any added element).
91 /// May be larger than the end of Elems.back() if we split the last element
92 /// and removed some trailing undefs.
94
95 /// This is true only if laying out Elems in order as the elements of a
96 /// non-packed LLVM struct will give the correct layout.
97 bool NaturalLayout = true;
98
99 bool split(size_t Index, CharUnits Hint);
100 std::optional<size_t> splitAt(CharUnits Pos);
101
102 static llvm::Constant *buildFrom(CodeGenModule &CGM,
104 ArrayRef<CharUnits> Offsets,
105 CharUnits StartOffset, CharUnits Size,
106 bool NaturalLayout, llvm::Type *DesiredTy,
107 bool AllowOversized);
108
109public:
110 ConstantAggregateBuilder(CodeGenModule &CGM)
111 : ConstantAggregateBuilderUtils(CGM) {}
112
113 /// Update or overwrite the value starting at \p Offset with \c C.
114 ///
115 /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
116 /// a constant that has already been added. This flag is only used to
117 /// detect bugs.
118 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
119
120 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
121 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
122
123 /// Attempt to condense the value starting at \p Offset to a constant of type
124 /// \p DesiredTy.
125 void condense(CharUnits Offset, llvm::Type *DesiredTy);
126
127 /// Produce a constant representing the entire accumulated value, ideally of
128 /// the specified type. If \p AllowOversized, the constant might be larger
129 /// than implied by \p DesiredTy (eg, if there is a flexible array member).
130 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
131 /// even if we can't represent it as that type.
132 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
133 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
134 NaturalLayout, DesiredTy, AllowOversized);
135 }
136};
137
138template<typename Container, typename Range = std::initializer_list<
139 typename Container::value_type>>
140static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
141 assert(BeginOff <= EndOff && "invalid replacement range");
142 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
143}
144
145bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
146 bool AllowOverwrite) {
147 // Common case: appending to a layout.
148 if (Offset >= Size) {
149 CharUnits Align = getAlignment(C);
150 CharUnits AlignedSize = Size.alignTo(Align);
151 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
152 NaturalLayout = false;
153 else if (AlignedSize < Offset) {
154 Elems.push_back(getPadding(Offset - Size));
155 Offsets.push_back(Size);
156 }
157 Elems.push_back(C);
158 Offsets.push_back(Offset);
159 Size = Offset + getSize(C);
160 return true;
161 }
162
163 // Uncommon case: constant overlaps what we've already created.
164 std::optional<size_t> FirstElemToReplace = splitAt(Offset);
165 if (!FirstElemToReplace)
166 return false;
167
168 CharUnits CSize = getSize(C);
169 std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
170 if (!LastElemToReplace)
171 return false;
172
173 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
174 "unexpectedly overwriting field");
175
176 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
177 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
178 Size = std::max(Size, Offset + CSize);
179 NaturalLayout = false;
180 return true;
181}
182
183bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
184 bool AllowOverwrite) {
185 const ASTContext &Context = CGM.getContext();
186 const uint64_t CharWidth = CGM.getContext().getCharWidth();
187
188 // Offset of where we want the first bit to go within the bits of the
189 // current char.
190 unsigned OffsetWithinChar = OffsetInBits % CharWidth;
191
192 // We split bit-fields up into individual bytes. Walk over the bytes and
193 // update them.
194 for (CharUnits OffsetInChars =
195 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
196 /**/; ++OffsetInChars) {
197 // Number of bits we want to fill in this char.
198 unsigned WantedBits =
199 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
200
201 // Get a char containing the bits we want in the right places. The other
202 // bits have unspecified values.
203 llvm::APInt BitsThisChar = Bits;
204 if (BitsThisChar.getBitWidth() < CharWidth)
205 BitsThisChar = BitsThisChar.zext(CharWidth);
206 if (CGM.getDataLayout().isBigEndian()) {
207 // Figure out how much to shift by. We may need to left-shift if we have
208 // less than one byte of Bits left.
209 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
210 if (Shift > 0)
211 BitsThisChar.lshrInPlace(Shift);
212 else if (Shift < 0)
213 BitsThisChar = BitsThisChar.shl(-Shift);
214 } else {
215 BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
216 }
217 if (BitsThisChar.getBitWidth() > CharWidth)
218 BitsThisChar = BitsThisChar.trunc(CharWidth);
219
220 if (WantedBits == CharWidth) {
221 // Got a full byte: just add it directly.
222 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
223 OffsetInChars, AllowOverwrite);
224 } else {
225 // Partial byte: update the existing integer if there is one. If we
226 // can't split out a 1-CharUnit range to update, then we can't add
227 // these bits and fail the entire constant emission.
228 std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
229 if (!FirstElemToUpdate)
230 return false;
231 std::optional<size_t> LastElemToUpdate =
232 splitAt(OffsetInChars + CharUnits::One());
233 if (!LastElemToUpdate)
234 return false;
235 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
236 "should have at most one element covering one byte");
237
238 // Figure out which bits we want and discard the rest.
239 llvm::APInt UpdateMask(CharWidth, 0);
240 if (CGM.getDataLayout().isBigEndian())
241 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
242 CharWidth - OffsetWithinChar);
243 else
244 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
245 BitsThisChar &= UpdateMask;
246
247 if (*FirstElemToUpdate == *LastElemToUpdate ||
248 Elems[*FirstElemToUpdate]->isNullValue() ||
249 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
250 // All existing bits are either zero or undef.
251 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
252 OffsetInChars, /*AllowOverwrite*/ true);
253 } else {
254 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
255 // In order to perform a partial update, we need the existing bitwise
256 // value, which we can only extract for a constant int.
257 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
258 if (!CI)
259 return false;
260 // Because this is a 1-CharUnit range, the constant occupying it must
261 // be exactly one CharUnit wide.
262 assert(CI->getBitWidth() == CharWidth && "splitAt failed");
263 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
264 "unexpectedly overwriting bitfield");
265 BitsThisChar |= (CI->getValue() & ~UpdateMask);
266 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
267 }
268 }
269
270 // Stop if we've added all the bits.
271 if (WantedBits == Bits.getBitWidth())
272 break;
273
274 // Remove the consumed bits from Bits.
275 if (!CGM.getDataLayout().isBigEndian())
276 Bits.lshrInPlace(WantedBits);
277 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
278
279 // The remanining bits go at the start of the following bytes.
280 OffsetWithinChar = 0;
281 }
282
283 return true;
284}
285
286/// Returns a position within Elems and Offsets such that all elements
287/// before the returned index end before Pos and all elements at or after
288/// the returned index begin at or after Pos. Splits elements as necessary
289/// to ensure this. Returns std::nullopt if we find something we can't split.
290std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
291 if (Pos >= Size)
292 return Offsets.size();
293
294 while (true) {
295 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
296 if (FirstAfterPos == Offsets.begin())
297 return 0;
298
299 // If we already have an element starting at Pos, we're done.
300 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
301 if (Offsets[LastAtOrBeforePosIndex] == Pos)
302 return LastAtOrBeforePosIndex;
303
304 // We found an element starting before Pos. Check for overlap.
305 if (Offsets[LastAtOrBeforePosIndex] +
306 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
307 return LastAtOrBeforePosIndex + 1;
308
309 // Try to decompose it into smaller constants.
310 if (!split(LastAtOrBeforePosIndex, Pos))
311 return std::nullopt;
312 }
313}
314
315/// Split the constant at index Index, if possible. Return true if we did.
316/// Hint indicates the location at which we'd like to split, but may be
317/// ignored.
318bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
319 NaturalLayout = false;
320 llvm::Constant *C = Elems[Index];
321 CharUnits Offset = Offsets[Index];
322
323 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
324 // Expand the sequence into its contained elements.
325 // FIXME: This assumes vector elements are byte-sized.
326 replace(Elems, Index, Index + 1,
327 llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
328 [&](unsigned Op) { return CA->getOperand(Op); }));
329 if (isa<llvm::ArrayType>(CA->getType()) ||
330 isa<llvm::VectorType>(CA->getType())) {
331 // Array or vector.
332 llvm::Type *ElemTy =
333 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
334 CharUnits ElemSize = getSize(ElemTy);
335 replace(
336 Offsets, Index, Index + 1,
337 llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
338 [&](unsigned Op) { return Offset + Op * ElemSize; }));
339 } else {
340 // Must be a struct.
341 auto *ST = cast<llvm::StructType>(CA->getType());
342 const llvm::StructLayout *Layout =
343 CGM.getDataLayout().getStructLayout(ST);
344 replace(Offsets, Index, Index + 1,
345 llvm::map_range(
346 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
347 return Offset + CharUnits::fromQuantity(
348 Layout->getElementOffset(Op));
349 }));
350 }
351 return true;
352 }
353
354 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
355 // Expand the sequence into its contained elements.
356 // FIXME: This assumes vector elements are byte-sized.
357 // FIXME: If possible, split into two ConstantDataSequentials at Hint.
358 CharUnits ElemSize = getSize(CDS->getElementType());
359 replace(Elems, Index, Index + 1,
360 llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
361 [&](unsigned Elem) {
362 return CDS->getElementAsConstant(Elem);
363 }));
364 replace(Offsets, Index, Index + 1,
365 llvm::map_range(
366 llvm::seq(0u, CDS->getNumElements()),
367 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
368 return true;
369 }
370
371 if (isa<llvm::ConstantAggregateZero>(C)) {
372 // Split into two zeros at the hinted offset.
373 CharUnits ElemSize = getSize(C);
374 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
375 replace(Elems, Index, Index + 1,
376 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
377 replace(Offsets, Index, Index + 1, {Offset, Hint});
378 return true;
379 }
380
381 if (isa<llvm::UndefValue>(C)) {
382 // Drop undef; it doesn't contribute to the final layout.
383 replace(Elems, Index, Index + 1, {});
384 replace(Offsets, Index, Index + 1, {});
385 return true;
386 }
387
388 // FIXME: We could split a ConstantInt if the need ever arose.
389 // We don't need to do this to handle bit-fields because we always eagerly
390 // split them into 1-byte chunks.
391
392 return false;
393}
394
395static llvm::Constant *
396EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
397 llvm::Type *CommonElementType, uint64_t ArrayBound,
399 llvm::Constant *Filler);
400
401llvm::Constant *ConstantAggregateBuilder::buildFrom(
403 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
404 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
405 ConstantAggregateBuilderUtils Utils(CGM);
406
407 if (Elems.empty())
408 return llvm::UndefValue::get(DesiredTy);
409
410 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
411
412 // If we want an array type, see if all the elements are the same type and
413 // appropriately spaced.
414 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
415 assert(!AllowOversized && "oversized array emission not supported");
416
417 bool CanEmitArray = true;
418 llvm::Type *CommonType = Elems[0]->getType();
419 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
420 CharUnits ElemSize = Utils.getSize(ATy->getElementType());
422 for (size_t I = 0; I != Elems.size(); ++I) {
423 // Skip zeroes; we'll use a zero value as our array filler.
424 if (Elems[I]->isNullValue())
425 continue;
426
427 // All remaining elements must be the same type.
428 if (Elems[I]->getType() != CommonType ||
429 Offset(I) % ElemSize != 0) {
430 CanEmitArray = false;
431 break;
432 }
433 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
434 ArrayElements.back() = Elems[I];
435 }
436
437 if (CanEmitArray) {
438 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
439 ArrayElements, Filler);
440 }
441
442 // Can't emit as an array, carry on to emit as a struct.
443 }
444
445 // The size of the constant we plan to generate. This is usually just
446 // the size of the initialized type, but in AllowOversized mode (i.e.
447 // flexible array init), it can be larger.
448 CharUnits DesiredSize = Utils.getSize(DesiredTy);
449 if (Size > DesiredSize) {
450 assert(AllowOversized && "Elems are oversized");
451 DesiredSize = Size;
452 }
453
454 // The natural alignment of an unpacked LLVM struct with the given elements.
455 CharUnits Align = CharUnits::One();
456 for (llvm::Constant *C : Elems)
457 Align = std::max(Align, Utils.getAlignment(C));
458
459 // The natural size of an unpacked LLVM struct with the given elements.
460 CharUnits AlignedSize = Size.alignTo(Align);
461
462 bool Packed = false;
463 ArrayRef<llvm::Constant*> UnpackedElems = Elems;
464 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
465 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
466 // The natural layout would be too big; force use of a packed layout.
467 NaturalLayout = false;
468 Packed = true;
469 } else if (DesiredSize > AlignedSize) {
470 // The natural layout would be too small. Add padding to fix it. (This
471 // is ignored if we choose a packed layout.)
472 UnpackedElemStorage.assign(Elems.begin(), Elems.end());
473 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
474 UnpackedElems = UnpackedElemStorage;
475 }
476
477 // If we don't have a natural layout, insert padding as necessary.
478 // As we go, double-check to see if we can actually just emit Elems
479 // as a non-packed struct and do so opportunistically if possible.
481 if (!NaturalLayout) {
482 CharUnits SizeSoFar = CharUnits::Zero();
483 for (size_t I = 0; I != Elems.size(); ++I) {
484 CharUnits Align = Utils.getAlignment(Elems[I]);
485 CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
486 CharUnits DesiredOffset = Offset(I);
487 assert(DesiredOffset >= SizeSoFar && "elements out of order");
488
489 if (DesiredOffset != NaturalOffset)
490 Packed = true;
491 if (DesiredOffset != SizeSoFar)
492 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
493 PackedElems.push_back(Elems[I]);
494 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
495 }
496 // If we're using the packed layout, pad it out to the desired size if
497 // necessary.
498 if (Packed) {
499 assert(SizeSoFar <= DesiredSize &&
500 "requested size is too small for contents");
501 if (SizeSoFar < DesiredSize)
502 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
503 }
504 }
505
506 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
507 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
508
509 // Pick the type to use. If the type is layout identical to the desired
510 // type then use it, otherwise use whatever the builder produced for us.
511 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
512 if (DesiredSTy->isLayoutIdentical(STy))
513 STy = DesiredSTy;
514 }
515
516 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
517}
518
519void ConstantAggregateBuilder::condense(CharUnits Offset,
520 llvm::Type *DesiredTy) {
521 CharUnits Size = getSize(DesiredTy);
522
523 std::optional<size_t> FirstElemToReplace = splitAt(Offset);
524 if (!FirstElemToReplace)
525 return;
526 size_t First = *FirstElemToReplace;
527
528 std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
529 if (!LastElemToReplace)
530 return;
531 size_t Last = *LastElemToReplace;
532
533 size_t Length = Last - First;
534 if (Length == 0)
535 return;
536
537 if (Length == 1 && Offsets[First] == Offset &&
538 getSize(Elems[First]) == Size) {
539 // Re-wrap single element structs if necessary. Otherwise, leave any single
540 // element constant of the right size alone even if it has the wrong type.
541 auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
542 if (STy && STy->getNumElements() == 1 &&
543 STy->getElementType(0) == Elems[First]->getType())
544 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
545 return;
546 }
547
548 llvm::Constant *Replacement = buildFrom(
549 CGM, ArrayRef(Elems).slice(First, Length),
550 ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
551 /*known to have natural layout=*/false, DesiredTy, false);
552 replace(Elems, First, Last, {Replacement});
553 replace(Offsets, First, Last, {Offset});
554}
555
556//===----------------------------------------------------------------------===//
557// ConstStructBuilder
558//===----------------------------------------------------------------------===//
559
560class ConstStructBuilder {
561 CodeGenModule &CGM;
563 ConstantAggregateBuilder &Builder;
564 CharUnits StartOffset;
565
566public:
567 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
568 const InitListExpr *ILE,
569 QualType StructTy);
570 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
571 const APValue &Value, QualType ValTy);
572 static bool UpdateStruct(ConstantEmitter &Emitter,
573 ConstantAggregateBuilder &Const, CharUnits Offset,
574 const InitListExpr *Updater);
575
576private:
577 ConstStructBuilder(ConstantEmitter &Emitter,
578 ConstantAggregateBuilder &Builder, CharUnits StartOffset)
579 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
580 StartOffset(StartOffset) {}
581
582 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
583 llvm::Constant *InitExpr, bool AllowOverwrite = false);
584
585 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
586 bool AllowOverwrite = false);
587
588 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
589 llvm::Constant *InitExpr, bool AllowOverwrite = false);
590
591 bool Build(const InitListExpr *ILE, bool AllowOverwrite);
592 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
593 const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
594 llvm::Constant *Finalize(QualType Ty);
595};
596
597bool ConstStructBuilder::AppendField(
598 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
599 bool AllowOverwrite) {
600 const ASTContext &Context = CGM.getContext();
601
602 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
603
604 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
605}
606
607bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
608 llvm::Constant *InitCst,
609 bool AllowOverwrite) {
610 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
611}
612
613bool ConstStructBuilder::AppendBitField(const FieldDecl *Field,
614 uint64_t FieldOffset, llvm::Constant *C,
615 bool AllowOverwrite) {
616
617 llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C);
618 if (!CI) {
619 // Constants for long _BitInt types are sometimes split into individual
620 // bytes. Try to fold these back into an integer constant. If that doesn't
621 // work out, then we are trying to initialize a bitfield with a non-trivial
622 // constant, this must require run-time code.
623 llvm::Type *LoadType =
624 CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType());
625 llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst(
626 C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout());
627 CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant);
628 if (!CI)
629 return false;
630 }
631
632 const CGRecordLayout &RL =
633 CGM.getTypes().getCGRecordLayout(Field->getParent());
634 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
635 llvm::APInt FieldValue = CI->getValue();
636
637 // Promote the size of FieldValue if necessary
638 // FIXME: This should never occur, but currently it can because initializer
639 // constants are cast to bool, and because clang is not enforcing bitfield
640 // width limits.
641 if (Info.Size > FieldValue.getBitWidth())
642 FieldValue = FieldValue.zext(Info.Size);
643
644 // Truncate the size of FieldValue to the bit field size.
645 if (Info.Size < FieldValue.getBitWidth())
646 FieldValue = FieldValue.trunc(Info.Size);
647
648 return Builder.addBits(FieldValue,
649 CGM.getContext().toBits(StartOffset) + FieldOffset,
650 AllowOverwrite);
651}
652
653static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
654 ConstantAggregateBuilder &Const,
655 CharUnits Offset, QualType Type,
656 const InitListExpr *Updater) {
657 if (Type->isRecordType())
658 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
659
660 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
661 if (!CAT)
662 return false;
663 QualType ElemType = CAT->getElementType();
664 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
665 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
666
667 llvm::Constant *FillC = nullptr;
668 if (const Expr *Filler = Updater->getArrayFiller()) {
669 if (!isa<NoInitExpr>(Filler)) {
670 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
671 if (!FillC)
672 return false;
673 }
674 }
675
676 unsigned NumElementsToUpdate =
677 FillC ? CAT->getZExtSize() : Updater->getNumInits();
678 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
679 const Expr *Init = nullptr;
680 if (I < Updater->getNumInits())
681 Init = Updater->getInit(I);
682
683 if (!Init && FillC) {
684 if (!Const.add(FillC, Offset, true))
685 return false;
686 } else if (!Init || isa<NoInitExpr>(Init)) {
687 continue;
688 } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) {
689 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
690 ChildILE))
691 return false;
692 // Attempt to reduce the array element to a single constant if necessary.
693 Const.condense(Offset, ElemTy);
694 } else {
695 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
696 if (!Const.add(Val, Offset, true))
697 return false;
698 }
699 }
700
701 return true;
702}
703
704bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) {
705 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
706 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
707
708 unsigned FieldNo = -1;
709 unsigned ElementNo = 0;
710
711 // Bail out if we have base classes. We could support these, but they only
712 // arise in C++1z where we will have already constant folded most interesting
713 // cases. FIXME: There are still a few more cases we can handle this way.
714 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
715 if (CXXRD->getNumBases())
716 return false;
717
718 for (FieldDecl *Field : RD->fields()) {
719 ++FieldNo;
720
721 // If this is a union, skip all the fields that aren't being initialized.
722 if (RD->isUnion() &&
724 continue;
725
726 // Don't emit anonymous bitfields.
727 if (Field->isUnnamedBitField())
728 continue;
729
730 // Get the initializer. A struct can include fields without initializers,
731 // we just use explicit null values for them.
732 const Expr *Init = nullptr;
733 if (ElementNo < ILE->getNumInits())
734 Init = ILE->getInit(ElementNo++);
735 if (isa_and_nonnull<NoInitExpr>(Init))
736 continue;
737
738 // Zero-sized fields are not emitted, but their initializers may still
739 // prevent emission of this struct as a constant.
740 if (isEmptyFieldForLayout(CGM.getContext(), Field)) {
741 if (Init->HasSideEffects(CGM.getContext()))
742 return false;
743 continue;
744 }
745
746 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
747 // represents additional overwriting of our current constant value, and not
748 // a new constant to emit independently.
749 if (AllowOverwrite &&
750 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
751 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
753 Layout.getFieldOffset(FieldNo));
754 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
755 Field->getType(), SubILE))
756 return false;
757 // If we split apart the field's value, try to collapse it down to a
758 // single value now.
759 Builder.condense(StartOffset + Offset,
760 CGM.getTypes().ConvertTypeForMem(Field->getType()));
761 continue;
762 }
763 }
764
765 llvm::Constant *EltInit =
766 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
767 : Emitter.emitNullForMemory(Field->getType());
768 if (!EltInit)
769 return false;
770
771 if (!Field->isBitField()) {
772 // Handle non-bitfield members.
773 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
774 AllowOverwrite))
775 return false;
776 // After emitting a non-empty field with [[no_unique_address]], we may
777 // need to overwrite its tail padding.
778 if (Field->hasAttr<NoUniqueAddressAttr>())
779 AllowOverwrite = true;
780 } else {
781 // Otherwise we have a bitfield.
782 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit,
783 AllowOverwrite))
784 return false;
785 }
786 }
787
788 return true;
789}
790
791namespace {
792struct BaseInfo {
793 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
794 : Decl(Decl), Offset(Offset), Index(Index) {
795 }
796
797 const CXXRecordDecl *Decl;
798 CharUnits Offset;
799 unsigned Index;
800
801 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
802};
803}
804
805bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
806 bool IsPrimaryBase,
807 const CXXRecordDecl *VTableClass,
808 CharUnits Offset) {
809 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
810
811 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
812 // Add a vtable pointer, if we need one and it hasn't already been added.
813 if (Layout.hasOwnVFPtr()) {
814 llvm::Constant *VTableAddressPoint =
816 VTableClass);
817 if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) {
818 VTableAddressPoint = Emitter.tryEmitConstantSignedPointer(
819 VTableAddressPoint, *Authentication);
820 if (!VTableAddressPoint)
821 return false;
822 }
823 if (!AppendBytes(Offset, VTableAddressPoint))
824 return false;
825 }
826
827 // Accumulate and sort bases, in order to visit them in address order, which
828 // may not be the same as declaration order.
830 Bases.reserve(CD->getNumBases());
831 unsigned BaseNo = 0;
832 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
833 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
834 assert(!Base->isVirtual() && "should not have virtual bases here");
835 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
836 CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
837 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
838 }
839 llvm::stable_sort(Bases);
840
841 for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
842 BaseInfo &Base = Bases[I];
843
844 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
845 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
846 VTableClass, Offset + Base.Offset);
847 }
848 }
849
850 unsigned FieldNo = 0;
851 uint64_t OffsetBits = CGM.getContext().toBits(Offset);
852
853 bool AllowOverwrite = false;
854 for (RecordDecl::field_iterator Field = RD->field_begin(),
855 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
856 // If this is a union, skip all the fields that aren't being initialized.
857 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
858 continue;
859
860 // Don't emit anonymous bitfields or zero-sized fields.
861 if (Field->isUnnamedBitField() ||
862 isEmptyFieldForLayout(CGM.getContext(), *Field))
863 continue;
864
865 // Emit the value of the initializer.
866 const APValue &FieldValue =
867 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
868 llvm::Constant *EltInit =
869 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
870 if (!EltInit)
871 return false;
872
873 if (!Field->isBitField()) {
874 // Handle non-bitfield members.
875 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
876 EltInit, AllowOverwrite))
877 return false;
878 // After emitting a non-empty field with [[no_unique_address]], we may
879 // need to overwrite its tail padding.
880 if (Field->hasAttr<NoUniqueAddressAttr>())
881 AllowOverwrite = true;
882 } else {
883 // Otherwise we have a bitfield.
884 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
885 EltInit, AllowOverwrite))
886 return false;
887 }
888 }
889
890 return true;
891}
892
893llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
894 Type = Type.getNonReferenceType();
895 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
896 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
897 return Builder.build(ValTy, RD->hasFlexibleArrayMember());
898}
899
900llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
901 const InitListExpr *ILE,
902 QualType ValTy) {
903 ConstantAggregateBuilder Const(Emitter.CGM);
904 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
905
906 if (!Builder.Build(ILE, /*AllowOverwrite*/false))
907 return nullptr;
908
909 return Builder.Finalize(ValTy);
910}
911
912llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
913 const APValue &Val,
914 QualType ValTy) {
915 ConstantAggregateBuilder Const(Emitter.CGM);
916 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
917
918 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
919 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
920 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
921 return nullptr;
922
923 return Builder.Finalize(ValTy);
924}
925
926bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
927 ConstantAggregateBuilder &Const,
928 CharUnits Offset,
929 const InitListExpr *Updater) {
930 return ConstStructBuilder(Emitter, Const, Offset)
931 .Build(Updater, /*AllowOverwrite*/ true);
932}
933
934//===----------------------------------------------------------------------===//
935// ConstExprEmitter
936//===----------------------------------------------------------------------===//
937
938static ConstantAddress
939tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
940 const CompoundLiteralExpr *E) {
941 CodeGenModule &CGM = emitter.CGM;
943 if (llvm::GlobalVariable *Addr =
945 return ConstantAddress(Addr, Addr->getValueType(), Align);
946
947 LangAS addressSpace = E->getType().getAddressSpace();
948 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
949 addressSpace, E->getType());
950 if (!C) {
951 assert(!E->isFileScope() &&
952 "file-scope compound literal did not have constant initializer!");
954 }
955
956 auto GV = new llvm::GlobalVariable(
957 CGM.getModule(), C->getType(),
958 E->getType().isConstantStorage(CGM.getContext(), true, false),
959 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
960 llvm::GlobalVariable::NotThreadLocal,
961 CGM.getContext().getTargetAddressSpace(addressSpace));
962 emitter.finalize(GV);
963 GV->setAlignment(Align.getAsAlign());
965 return ConstantAddress(GV, GV->getValueType(), Align);
966}
967
968static llvm::Constant *
969EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
970 llvm::Type *CommonElementType, uint64_t ArrayBound,
972 llvm::Constant *Filler) {
973 // Figure out how long the initial prefix of non-zero elements is.
974 uint64_t NonzeroLength = ArrayBound;
975 if (Elements.size() < NonzeroLength && Filler->isNullValue())
976 NonzeroLength = Elements.size();
977 if (NonzeroLength == Elements.size()) {
978 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
979 --NonzeroLength;
980 }
981
982 if (NonzeroLength == 0)
983 return llvm::ConstantAggregateZero::get(DesiredType);
984
985 // Add a zeroinitializer array filler if we have lots of trailing zeroes.
986 uint64_t TrailingZeroes = ArrayBound - NonzeroLength;
987 if (TrailingZeroes >= 8) {
988 assert(Elements.size() >= NonzeroLength &&
989 "missing initializer for non-zero element");
990
991 // If all the elements had the same type up to the trailing zeroes, emit a
992 // struct of two arrays (the nonzero data and the zeroinitializer).
993 if (CommonElementType && NonzeroLength >= 8) {
994 llvm::Constant *Initial = llvm::ConstantArray::get(
995 llvm::ArrayType::get(CommonElementType, NonzeroLength),
996 ArrayRef(Elements).take_front(NonzeroLength));
997 Elements.resize(2);
998 Elements[0] = Initial;
999 } else {
1000 Elements.resize(NonzeroLength + 1);
1001 }
1002
1003 auto *FillerType =
1004 CommonElementType ? CommonElementType : DesiredType->getElementType();
1005 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
1006 Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
1007 CommonElementType = nullptr;
1008 } else if (Elements.size() != ArrayBound) {
1009 // Otherwise pad to the right size with the filler if necessary.
1010 Elements.resize(ArrayBound, Filler);
1011 if (Filler->getType() != CommonElementType)
1012 CommonElementType = nullptr;
1013 }
1014
1015 // If all elements have the same type, just emit an array constant.
1016 if (CommonElementType)
1017 return llvm::ConstantArray::get(
1018 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
1019
1020 // We have mixed types. Use a packed struct.
1022 Types.reserve(Elements.size());
1023 for (llvm::Constant *Elt : Elements)
1024 Types.push_back(Elt->getType());
1025 llvm::StructType *SType =
1026 llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1027 return llvm::ConstantStruct::get(SType, Elements);
1028}
1029
1030// This class only needs to handle arrays, structs and unions. Outside C++11
1031// mode, we don't currently constant fold those types. All other types are
1032// handled by constant folding.
1033//
1034// Constant folding is currently missing support for a few features supported
1035// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1036class ConstExprEmitter
1037 : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> {
1038 CodeGenModule &CGM;
1040 llvm::LLVMContext &VMContext;
1041public:
1042 ConstExprEmitter(ConstantEmitter &emitter)
1043 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1044 }
1045
1046 //===--------------------------------------------------------------------===//
1047 // Visitor Methods
1048 //===--------------------------------------------------------------------===//
1049
1050 llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; }
1051
1052 llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) {
1053 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1054 return Result;
1055 return Visit(CE->getSubExpr(), T);
1056 }
1057
1058 llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) {
1059 return Visit(PE->getSubExpr(), T);
1060 }
1061
1062 llvm::Constant *
1063 VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE,
1064 QualType T) {
1065 return Visit(PE->getReplacement(), T);
1066 }
1067
1068 llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE,
1069 QualType T) {
1070 return Visit(GE->getResultExpr(), T);
1071 }
1072
1073 llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) {
1074 return Visit(CE->getChosenSubExpr(), T);
1075 }
1076
1077 llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E,
1078 QualType T) {
1079 return Visit(E->getInitializer(), T);
1080 }
1081
1082 llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) {
1083 QualType FromType = E->getType();
1084 // See also HandleIntToIntCast in ExprConstant.cpp
1085 if (FromType->isIntegerType())
1086 if (llvm::Constant *C = Visit(E, FromType))
1087 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1088 unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1089 unsigned DstWidth = CGM.getContext().getIntWidth(DestType);
1090 if (DstWidth == SrcWidth)
1091 return CI;
1092 llvm::APInt A = FromType->isSignedIntegerType()
1093 ? CI->getValue().sextOrTrunc(DstWidth)
1094 : CI->getValue().zextOrTrunc(DstWidth);
1095 return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1096 }
1097 return nullptr;
1098 }
1099
1100 llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) {
1101 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1102 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1103 const Expr *subExpr = E->getSubExpr();
1104
1105 switch (E->getCastKind()) {
1106 case CK_ToUnion: {
1107 // GCC cast to union extension
1108 assert(E->getType()->isUnionType() &&
1109 "Destination type is not union type!");
1110
1111 auto field = E->getTargetUnionField();
1112
1113 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1114 if (!C) return nullptr;
1115
1116 auto destTy = ConvertType(destType);
1117 if (C->getType() == destTy) return C;
1118
1119 // Build a struct with the union sub-element as the first member,
1120 // and padded to the appropriate size.
1123 Elts.push_back(C);
1124 Types.push_back(C->getType());
1125 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1126 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1127
1128 assert(CurSize <= TotalSize && "Union size mismatch!");
1129 if (unsigned NumPadBytes = TotalSize - CurSize) {
1130 llvm::Type *Ty = CGM.CharTy;
1131 if (NumPadBytes > 1)
1132 Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1133
1134 Elts.push_back(llvm::UndefValue::get(Ty));
1135 Types.push_back(Ty);
1136 }
1137
1138 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1139 return llvm::ConstantStruct::get(STy, Elts);
1140 }
1141
1142 case CK_AddressSpaceConversion: {
1143 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1144 if (!C) return nullptr;
1146 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1147 llvm::Type *destTy = ConvertType(E->getType());
1148 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1149 destAS, destTy);
1150 }
1151
1152 case CK_LValueToRValue: {
1153 // We don't really support doing lvalue-to-rvalue conversions here; any
1154 // interesting conversions should be done in Evaluate(). But as a
1155 // special case, allow compound literals to support the gcc extension
1156 // allowing "struct x {int x;} x = (struct x) {};".
1157 if (const auto *E =
1158 dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1159 return Visit(E->getInitializer(), destType);
1160 return nullptr;
1161 }
1162
1163 case CK_AtomicToNonAtomic:
1164 case CK_NonAtomicToAtomic:
1165 case CK_NoOp:
1166 case CK_ConstructorConversion:
1167 return Visit(subExpr, destType);
1168
1169 case CK_ArrayToPointerDecay:
1170 if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1172 return nullptr;
1173 case CK_NullToPointer:
1174 if (Visit(subExpr, destType))
1175 return CGM.EmitNullConstant(destType);
1176 return nullptr;
1177
1178 case CK_IntToOCLSampler:
1179 llvm_unreachable("global sampler variables are not generated");
1180
1181 case CK_IntegralCast:
1182 return ProduceIntToIntCast(subExpr, destType);
1183
1184 case CK_Dependent: llvm_unreachable("saw dependent cast!");
1185
1186 case CK_BuiltinFnToFnPtr:
1187 llvm_unreachable("builtin functions are handled elsewhere");
1188
1189 case CK_ReinterpretMemberPointer:
1190 case CK_DerivedToBaseMemberPointer:
1191 case CK_BaseToDerivedMemberPointer: {
1192 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1193 if (!C) return nullptr;
1195 }
1196
1197 // These will never be supported.
1198 case CK_ObjCObjectLValueCast:
1199 case CK_ARCProduceObject:
1200 case CK_ARCConsumeObject:
1201 case CK_ARCReclaimReturnedObject:
1202 case CK_ARCExtendBlockObject:
1203 case CK_CopyAndAutoreleaseBlockObject:
1204 return nullptr;
1205
1206 // These don't need to be handled here because Evaluate knows how to
1207 // evaluate them in the cases where they can be folded.
1208 case CK_BitCast:
1209 case CK_ToVoid:
1210 case CK_Dynamic:
1211 case CK_LValueBitCast:
1212 case CK_LValueToRValueBitCast:
1213 case CK_NullToMemberPointer:
1214 case CK_UserDefinedConversion:
1215 case CK_CPointerToObjCPointerCast:
1216 case CK_BlockPointerToObjCPointerCast:
1217 case CK_AnyPointerToBlockPointerCast:
1218 case CK_FunctionToPointerDecay:
1219 case CK_BaseToDerived:
1220 case CK_DerivedToBase:
1221 case CK_UncheckedDerivedToBase:
1222 case CK_MemberPointerToBoolean:
1223 case CK_VectorSplat:
1224 case CK_FloatingRealToComplex:
1225 case CK_FloatingComplexToReal:
1226 case CK_FloatingComplexToBoolean:
1227 case CK_FloatingComplexCast:
1228 case CK_FloatingComplexToIntegralComplex:
1229 case CK_IntegralRealToComplex:
1230 case CK_IntegralComplexToReal:
1231 case CK_IntegralComplexToBoolean:
1232 case CK_IntegralComplexCast:
1233 case CK_IntegralComplexToFloatingComplex:
1234 case CK_PointerToIntegral:
1235 case CK_PointerToBoolean:
1236 case CK_BooleanToSignedIntegral:
1237 case CK_IntegralToPointer:
1238 case CK_IntegralToBoolean:
1239 case CK_IntegralToFloating:
1240 case CK_FloatingToIntegral:
1241 case CK_FloatingToBoolean:
1242 case CK_FloatingCast:
1243 case CK_FloatingToFixedPoint:
1244 case CK_FixedPointToFloating:
1245 case CK_FixedPointCast:
1246 case CK_FixedPointToBoolean:
1247 case CK_FixedPointToIntegral:
1248 case CK_IntegralToFixedPoint:
1249 case CK_ZeroToOCLOpaqueType:
1250 case CK_MatrixCast:
1251 case CK_HLSLVectorTruncation:
1252 case CK_HLSLArrayRValue:
1253 return nullptr;
1254 }
1255 llvm_unreachable("Invalid CastKind");
1256 }
1257
1258 llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE,
1259 QualType T) {
1260 // No need for a DefaultInitExprScope: we don't handle 'this' in a
1261 // constant expression.
1262 return Visit(DIE->getExpr(), T);
1263 }
1264
1265 llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) {
1266 return Visit(E->getSubExpr(), T);
1267 }
1268
1269 llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) {
1270 return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1271 }
1272
1273 static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType,
1274 QualType DestType, const llvm::APSInt &Value) {
1275 if (!Ctx.hasSameType(SrcType, DestType)) {
1276 if (DestType->isFloatingType()) {
1277 llvm::APFloat Result =
1278 llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1);
1279 llvm::RoundingMode RM =
1281 if (RM == llvm::RoundingMode::Dynamic)
1282 RM = llvm::RoundingMode::NearestTiesToEven;
1283 Result.convertFromAPInt(Value, Value.isSigned(), RM);
1284 return APValue(Result);
1285 }
1286 }
1287 return APValue(Value);
1288 }
1289
1290 llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) {
1291 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1292 assert(CAT && "can't emit array init for non-constant-bound array");
1293 uint64_t NumInitElements = ILE->getNumInits();
1294 const uint64_t NumElements = CAT->getZExtSize();
1295 for (const auto *Init : ILE->inits()) {
1296 if (const auto *Embed =
1297 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1298 NumInitElements += Embed->getDataElementCount() - 1;
1299 if (NumInitElements > NumElements) {
1300 NumInitElements = NumElements;
1301 break;
1302 }
1303 }
1304 }
1305
1306 // Initialising an array requires us to automatically
1307 // initialise any elements that have not been initialised explicitly
1308 uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements);
1309
1310 QualType EltType = CAT->getElementType();
1311
1312 // Initialize remaining array elements.
1313 llvm::Constant *fillC = nullptr;
1314 if (const Expr *filler = ILE->getArrayFiller()) {
1315 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1316 if (!fillC)
1317 return nullptr;
1318 }
1319
1320 // Copy initializer elements.
1322 if (fillC && fillC->isNullValue())
1323 Elts.reserve(NumInitableElts + 1);
1324 else
1325 Elts.reserve(NumElements);
1326
1327 llvm::Type *CommonElementType = nullptr;
1328 auto Emit = [&](const Expr *Init, unsigned ArrayIndex) {
1329 llvm::Constant *C = nullptr;
1330 C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1331 if (!C)
1332 return false;
1333 if (ArrayIndex == 0)
1334 CommonElementType = C->getType();
1335 else if (C->getType() != CommonElementType)
1336 CommonElementType = nullptr;
1337 Elts.push_back(C);
1338 return true;
1339 };
1340
1341 unsigned ArrayIndex = 0;
1342 QualType DestTy = CAT->getElementType();
1343 for (unsigned i = 0; i < ILE->getNumInits(); ++i) {
1344 const Expr *Init = ILE->getInit(i);
1345 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1346 StringLiteral *SL = EmbedS->getDataStringLiteral();
1347 llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy),
1348 DestTy->isUnsignedIntegerType());
1349 llvm::Constant *C;
1350 for (unsigned I = EmbedS->getStartingElementPos(),
1351 N = EmbedS->getDataElementCount();
1352 I != EmbedS->getStartingElementPos() + N; ++I) {
1353 Value = SL->getCodeUnit(I);
1354 if (DestTy->isIntegerType()) {
1355 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value);
1356 } else {
1357 C = Emitter.tryEmitPrivateForMemory(
1358 withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy,
1359 Value),
1360 EltType);
1361 }
1362 if (!C)
1363 return nullptr;
1364 Elts.push_back(C);
1365 ArrayIndex++;
1366 }
1367 if ((ArrayIndex - EmbedS->getDataElementCount()) == 0)
1368 CommonElementType = C->getType();
1369 else if (C->getType() != CommonElementType)
1370 CommonElementType = nullptr;
1371 } else {
1372 if (!Emit(Init, ArrayIndex))
1373 return nullptr;
1374 ArrayIndex++;
1375 }
1376 }
1377
1378 llvm::ArrayType *Desired =
1379 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1380 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1381 fillC);
1382 }
1383
1384 llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE,
1385 QualType T) {
1386 return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1387 }
1388
1389 llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E,
1390 QualType T) {
1391 return CGM.EmitNullConstant(T);
1392 }
1393
1394 llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) {
1395 if (ILE->isTransparent())
1396 return Visit(ILE->getInit(0), T);
1397
1398 if (ILE->getType()->isArrayType())
1399 return EmitArrayInitialization(ILE, T);
1400
1401 if (ILE->getType()->isRecordType())
1402 return EmitRecordInitialization(ILE, T);
1403
1404 return nullptr;
1405 }
1406
1407 llvm::Constant *
1408 VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E,
1409 QualType destType) {
1410 auto C = Visit(E->getBase(), destType);
1411 if (!C)
1412 return nullptr;
1413
1414 ConstantAggregateBuilder Const(CGM);
1415 Const.add(C, CharUnits::Zero(), false);
1416
1417 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1418 E->getUpdater()))
1419 return nullptr;
1420
1421 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1422 bool HasFlexibleArray = false;
1423 if (const auto *RT = destType->getAs<RecordType>())
1424 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1425 return Const.build(ValTy, HasFlexibleArray);
1426 }
1427
1428 llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E,
1429 QualType Ty) {
1430 if (!E->getConstructor()->isTrivial())
1431 return nullptr;
1432
1433 // Only default and copy/move constructors can be trivial.
1434 if (E->getNumArgs()) {
1435 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1436 assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1437 "trivial ctor has argument but isn't a copy/move ctor");
1438
1439 const Expr *Arg = E->getArg(0);
1440 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1441 "argument to copy ctor is of wrong type");
1442
1443 // Look through the temporary; it's just converting the value to an
1444 // lvalue to pass it to the constructor.
1445 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1446 return Visit(MTE->getSubExpr(), Ty);
1447 // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1448 return nullptr;
1449 }
1450
1451 return CGM.EmitNullConstant(Ty);
1452 }
1453
1454 llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) {
1455 // This is a string literal initializing an array in an initializer.
1457 }
1458
1459 llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) {
1460 // This must be an @encode initializing an array in a static initializer.
1461 // Don't emit it as the address of the string, emit the string data itself
1462 // as an inline array.
1463 std::string Str;
1464 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1466 assert(CAT && "String data not of constant array type!");
1467
1468 // Resize the string to the right size, adding zeros at the end, or
1469 // truncating as needed.
1470 Str.resize(CAT->getZExtSize(), '\0');
1471 return llvm::ConstantDataArray::getString(VMContext, Str, false);
1472 }
1473
1474 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1475 return Visit(E->getSubExpr(), T);
1476 }
1477
1478 llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) {
1479 if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1480 if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1481 return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1482 return nullptr;
1483 }
1484
1485 llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) {
1486 return Visit(E->getSelectedExpr(), T);
1487 }
1488
1489 // Utility methods
1490 llvm::Type *ConvertType(QualType T) {
1491 return CGM.getTypes().ConvertType(T);
1492 }
1493};
1494
1495} // end anonymous namespace.
1496
1497llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1498 AbstractState saved) {
1499 Abstract = saved.OldValue;
1500
1501 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1502 "created a placeholder while doing an abstract emission?");
1503
1504 // No validation necessary for now.
1505 // No cleanup to do for now.
1506 return C;
1507}
1508
1509llvm::Constant *
1511 auto state = pushAbstract();
1513 return validateAndPopAbstract(C, state);
1514}
1515
1516llvm::Constant *
1518 auto state = pushAbstract();
1519 auto C = tryEmitPrivate(E, destType);
1520 return validateAndPopAbstract(C, state);
1521}
1522
1523llvm::Constant *
1525 auto state = pushAbstract();
1526 auto C = tryEmitPrivate(value, destType);
1527 return validateAndPopAbstract(C, state);
1528}
1529
1531 if (!CE->hasAPValueResult())
1532 return nullptr;
1533
1534 QualType RetType = CE->getType();
1535 if (CE->isGLValue())
1536 RetType = CGM.getContext().getLValueReferenceType(RetType);
1537
1538 return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1539}
1540
1541llvm::Constant *
1543 auto state = pushAbstract();
1544 auto C = tryEmitPrivate(E, destType);
1545 C = validateAndPopAbstract(C, state);
1546 if (!C) {
1547 CGM.Error(E->getExprLoc(),
1548 "internal error: could not emit constant value \"abstractly\"");
1549 C = CGM.EmitNullConstant(destType);
1550 }
1551 return C;
1552}
1553
1554llvm::Constant *
1556 QualType destType,
1557 bool EnablePtrAuthFunctionTypeDiscrimination) {
1558 auto state = pushAbstract();
1559 auto C =
1560 tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination);
1561 C = validateAndPopAbstract(C, state);
1562 if (!C) {
1563 CGM.Error(loc,
1564 "internal error: could not emit constant value \"abstractly\"");
1565 C = CGM.EmitNullConstant(destType);
1566 }
1567 return C;
1568}
1569
1571 initializeNonAbstract(D.getType().getAddressSpace());
1572 return markIfFailed(tryEmitPrivateForVarInit(D));
1573}
1574
1576 LangAS destAddrSpace,
1577 QualType destType) {
1578 initializeNonAbstract(destAddrSpace);
1579 return markIfFailed(tryEmitPrivateForMemory(E, destType));
1580}
1581
1583 LangAS destAddrSpace,
1584 QualType destType) {
1585 initializeNonAbstract(destAddrSpace);
1586 auto C = tryEmitPrivateForMemory(value, destType);
1587 assert(C && "couldn't emit constant value non-abstractly?");
1588 return C;
1589}
1590
1592 assert(!Abstract && "cannot get current address for abstract constant");
1593
1594
1595
1596 // Make an obviously ill-formed global that should blow up compilation
1597 // if it survives.
1598 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1599 llvm::GlobalValue::PrivateLinkage,
1600 /*init*/ nullptr,
1601 /*name*/ "",
1602 /*before*/ nullptr,
1603 llvm::GlobalVariable::NotThreadLocal,
1604 CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1605
1606 PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1607
1608 return global;
1609}
1610
1612 llvm::GlobalValue *placeholder) {
1613 assert(!PlaceholderAddresses.empty());
1614 assert(PlaceholderAddresses.back().first == nullptr);
1615 assert(PlaceholderAddresses.back().second == placeholder);
1616 PlaceholderAddresses.back().first = signal;
1617}
1618
1619namespace {
1620 struct ReplacePlaceholders {
1621 CodeGenModule &CGM;
1622
1623 /// The base address of the global.
1624 llvm::Constant *Base;
1625 llvm::Type *BaseValueTy = nullptr;
1626
1627 /// The placeholder addresses that were registered during emission.
1628 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1629
1630 /// The locations of the placeholder signals.
1631 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1632
1633 /// The current index stack. We use a simple unsigned stack because
1634 /// we assume that placeholders will be relatively sparse in the
1635 /// initializer, but we cache the index values we find just in case.
1638
1639 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1640 ArrayRef<std::pair<llvm::Constant*,
1641 llvm::GlobalVariable*>> addresses)
1642 : CGM(CGM), Base(base),
1643 PlaceholderAddresses(addresses.begin(), addresses.end()) {
1644 }
1645
1646 void replaceInInitializer(llvm::Constant *init) {
1647 // Remember the type of the top-most initializer.
1648 BaseValueTy = init->getType();
1649
1650 // Initialize the stack.
1651 Indices.push_back(0);
1652 IndexValues.push_back(nullptr);
1653
1654 // Recurse into the initializer.
1655 findLocations(init);
1656
1657 // Check invariants.
1658 assert(IndexValues.size() == Indices.size() && "mismatch");
1659 assert(Indices.size() == 1 && "didn't pop all indices");
1660
1661 // Do the replacement; this basically invalidates 'init'.
1662 assert(Locations.size() == PlaceholderAddresses.size() &&
1663 "missed a placeholder?");
1664
1665 // We're iterating over a hashtable, so this would be a source of
1666 // non-determinism in compiler output *except* that we're just
1667 // messing around with llvm::Constant structures, which never itself
1668 // does anything that should be visible in compiler output.
1669 for (auto &entry : Locations) {
1670 assert(entry.first->getName() == "" && "not a placeholder!");
1671 entry.first->replaceAllUsesWith(entry.second);
1672 entry.first->eraseFromParent();
1673 }
1674 }
1675
1676 private:
1677 void findLocations(llvm::Constant *init) {
1678 // Recurse into aggregates.
1679 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1680 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1681 Indices.push_back(i);
1682 IndexValues.push_back(nullptr);
1683
1684 findLocations(agg->getOperand(i));
1685
1686 IndexValues.pop_back();
1687 Indices.pop_back();
1688 }
1689 return;
1690 }
1691
1692 // Otherwise, check for registered constants.
1693 while (true) {
1694 auto it = PlaceholderAddresses.find(init);
1695 if (it != PlaceholderAddresses.end()) {
1696 setLocation(it->second);
1697 break;
1698 }
1699
1700 // Look through bitcasts or other expressions.
1701 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1702 init = expr->getOperand(0);
1703 } else {
1704 break;
1705 }
1706 }
1707 }
1708
1709 void setLocation(llvm::GlobalVariable *placeholder) {
1710 assert(!Locations.contains(placeholder) &&
1711 "already found location for placeholder!");
1712
1713 // Lazily fill in IndexValues with the values from Indices.
1714 // We do this in reverse because we should always have a strict
1715 // prefix of indices from the start.
1716 assert(Indices.size() == IndexValues.size());
1717 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1718 if (IndexValues[i]) {
1719#ifndef NDEBUG
1720 for (size_t j = 0; j != i + 1; ++j) {
1721 assert(IndexValues[j] &&
1722 isa<llvm::ConstantInt>(IndexValues[j]) &&
1723 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1724 == Indices[j]);
1725 }
1726#endif
1727 break;
1728 }
1729
1730 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1731 }
1732
1733 llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1734 BaseValueTy, Base, IndexValues);
1735
1736 Locations.insert({placeholder, location});
1737 }
1738 };
1739}
1740
1741void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1742 assert(InitializedNonAbstract &&
1743 "finalizing emitter that was used for abstract emission?");
1744 assert(!Finalized && "finalizing emitter multiple times");
1745 assert(global->getInitializer());
1746
1747 // Note that we might also be Failed.
1748 Finalized = true;
1749
1750 if (!PlaceholderAddresses.empty()) {
1751 ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1752 .replaceInInitializer(global->getInitializer());
1753 PlaceholderAddresses.clear(); // satisfy
1754 }
1755}
1756
1758 assert((!InitializedNonAbstract || Finalized || Failed) &&
1759 "not finalized after being initialized for non-abstract emission");
1760 assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1761}
1762
1764 if (auto AT = type->getAs<AtomicType>()) {
1765 return CGM.getContext().getQualifiedType(AT->getValueType(),
1766 type.getQualifiers());
1767 }
1768 return type;
1769}
1770
1772 // Make a quick check if variable can be default NULL initialized
1773 // and avoid going through rest of code which may do, for c++11,
1774 // initialization of memory to all NULLs.
1775 if (!D.hasLocalStorage()) {
1776 QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1777 if (Ty->isRecordType())
1778 if (const CXXConstructExpr *E =
1779 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1780 const CXXConstructorDecl *CD = E->getConstructor();
1781 if (CD->isTrivial() && CD->isDefaultConstructor())
1782 return CGM.EmitNullConstant(D.getType());
1783 }
1784 }
1785 InConstantContext = D.hasConstantInitialization();
1786
1787 QualType destType = D.getType();
1788 const Expr *E = D.getInit();
1789 assert(E && "No initializer to emit");
1790
1791 if (!destType->isReferenceType()) {
1792 QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1793 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType))
1794 return emitForMemory(C, destType);
1795 }
1796
1797 // Try to emit the initializer. Note that this can allow some things that
1798 // are not allowed by tryEmitPrivateForMemory alone.
1799 if (APValue *value = D.evaluateValue())
1800 return tryEmitPrivateForMemory(*value, destType);
1801
1802 return nullptr;
1803}
1804
1805llvm::Constant *
1807 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1808 auto C = tryEmitAbstract(E, nonMemoryDestType);
1809 return (C ? emitForMemory(C, destType) : nullptr);
1810}
1811
1812llvm::Constant *
1814 QualType destType) {
1815 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1816 auto C = tryEmitAbstract(value, nonMemoryDestType);
1817 return (C ? emitForMemory(C, destType) : nullptr);
1818}
1819
1821 QualType destType) {
1822 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1823 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1824 return (C ? emitForMemory(C, destType) : nullptr);
1825}
1826
1828 QualType destType) {
1829 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1830 auto C = tryEmitPrivate(value, nonMemoryDestType);
1831 return (C ? emitForMemory(C, destType) : nullptr);
1832}
1833
1834/// Try to emit a constant signed pointer, given a raw pointer and the
1835/// destination ptrauth qualifier.
1836///
1837/// This can fail if the qualifier needs address discrimination and the
1838/// emitter is in an abstract mode.
1839llvm::Constant *
1841 PointerAuthQualifier Schema) {
1842 assert(Schema && "applying trivial ptrauth schema");
1843
1844 if (Schema.hasKeyNone())
1845 return UnsignedPointer;
1846
1847 unsigned Key = Schema.getKey();
1848
1849 // Create an address placeholder if we're using address discrimination.
1850 llvm::GlobalValue *StorageAddress = nullptr;
1851 if (Schema.isAddressDiscriminated()) {
1852 // We can't do this if the emitter is in an abstract state.
1853 if (isAbstract())
1854 return nullptr;
1855
1856 StorageAddress = getCurrentAddrPrivate();
1857 }
1858
1859 llvm::ConstantInt *Discriminator =
1860 llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator());
1861
1862 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
1863 UnsignedPointer, Key, StorageAddress, Discriminator);
1864
1865 if (Schema.isAddressDiscriminated())
1866 registerCurrentAddrPrivate(SignedPointer, StorageAddress);
1867
1868 return SignedPointer;
1869}
1870
1872 llvm::Constant *C,
1873 QualType destType) {
1874 // For an _Atomic-qualified constant, we may need to add tail padding.
1875 if (auto AT = destType->getAs<AtomicType>()) {
1876 QualType destValueType = AT->getValueType();
1877 C = emitForMemory(CGM, C, destValueType);
1878
1879 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1880 uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1881 if (innerSize == outerSize)
1882 return C;
1883
1884 assert(innerSize < outerSize && "emitted over-large constant for atomic");
1885 llvm::Constant *elts[] = {
1886 C,
1887 llvm::ConstantAggregateZero::get(
1888 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1889 };
1890 return llvm::ConstantStruct::getAnon(elts);
1891 }
1892
1893 // Zero-extend bool.
1894 if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1895 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1896 llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1897 llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1898 assert(Res && "Constant folding must succeed");
1899 return Res;
1900 }
1901
1902 if (destType->isBitIntType()) {
1903 ConstantAggregateBuilder Builder(CGM);
1904 llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType);
1905 // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so
1906 // casting to ConstantInt is safe here.
1907 auto *CI = cast<llvm::ConstantInt>(C);
1908 llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1909 destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt
1910 : llvm::Instruction::ZExt,
1911 CI, LoadStoreTy, CGM.getDataLayout());
1912 if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) {
1913 // Long _BitInt has array of bytes as in-memory type.
1914 // So, split constant into individual bytes.
1915 llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType);
1916 llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue();
1917 Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false);
1918 return Builder.build(DesiredTy, /*AllowOversized*/ false);
1919 }
1920 return Res;
1921 }
1922
1923 return C;
1924}
1925
1927 QualType destType) {
1928 assert(!destType->isVoidType() && "can't emit a void constant");
1929
1930 if (!destType->isReferenceType())
1931 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType))
1932 return C;
1933
1935
1936 bool Success = false;
1937
1938 if (destType->isReferenceType())
1940 else
1941 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1942
1943 if (Success && !Result.HasSideEffects)
1944 return tryEmitPrivate(Result.Val, destType);
1945
1946 return nullptr;
1947}
1948
1949llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1950 return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1951}
1952
1953namespace {
1954/// A struct which can be used to peephole certain kinds of finalization
1955/// that normally happen during l-value emission.
1956struct ConstantLValue {
1957 llvm::Constant *Value;
1958 bool HasOffsetApplied;
1959
1960 /*implicit*/ ConstantLValue(llvm::Constant *value,
1961 bool hasOffsetApplied = false)
1962 : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1963
1964 /*implicit*/ ConstantLValue(ConstantAddress address)
1965 : ConstantLValue(address.getPointer()) {}
1966};
1967
1968/// A helper class for emitting constant l-values.
1969class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1970 ConstantLValue> {
1971 CodeGenModule &CGM;
1973 const APValue &Value;
1974 QualType DestType;
1975 bool EnablePtrAuthFunctionTypeDiscrimination;
1976
1977 // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1978 friend StmtVisitorBase;
1979
1980public:
1981 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1982 QualType destType,
1983 bool EnablePtrAuthFunctionTypeDiscrimination = true)
1984 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType),
1985 EnablePtrAuthFunctionTypeDiscrimination(
1986 EnablePtrAuthFunctionTypeDiscrimination) {}
1987
1988 llvm::Constant *tryEmit();
1989
1990private:
1991 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1992 ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1993
1994 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1995 ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1996 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1997 ConstantLValue VisitStringLiteral(const StringLiteral *E);
1998 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1999 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
2000 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
2001 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
2002 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
2003 ConstantLValue VisitCallExpr(const CallExpr *E);
2004 ConstantLValue VisitBlockExpr(const BlockExpr *E);
2005 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2006 ConstantLValue VisitMaterializeTemporaryExpr(
2008
2009 ConstantLValue emitPointerAuthSignConstant(const CallExpr *E);
2010 llvm::Constant *emitPointerAuthPointer(const Expr *E);
2011 unsigned emitPointerAuthKey(const Expr *E);
2012 std::pair<llvm::Constant *, llvm::ConstantInt *>
2013 emitPointerAuthDiscriminator(const Expr *E);
2014
2015 bool hasNonZeroOffset() const {
2016 return !Value.getLValueOffset().isZero();
2017 }
2018
2019 /// Return the value offset.
2020 llvm::Constant *getOffset() {
2021 return llvm::ConstantInt::get(CGM.Int64Ty,
2022 Value.getLValueOffset().getQuantity());
2023 }
2024
2025 /// Apply the value offset to the given constant.
2026 llvm::Constant *applyOffset(llvm::Constant *C) {
2027 if (!hasNonZeroOffset())
2028 return C;
2029
2030 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
2031 }
2032};
2033
2034}
2035
2036llvm::Constant *ConstantLValueEmitter::tryEmit() {
2037 const APValue::LValueBase &base = Value.getLValueBase();
2038
2039 // The destination type should be a pointer or reference
2040 // type, but it might also be a cast thereof.
2041 //
2042 // FIXME: the chain of casts required should be reflected in the APValue.
2043 // We need this in order to correctly handle things like a ptrtoint of a
2044 // non-zero null pointer and addrspace casts that aren't trivially
2045 // represented in LLVM IR.
2046 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
2047 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
2048
2049 // If there's no base at all, this is a null or absolute pointer,
2050 // possibly cast back to an integer type.
2051 if (!base) {
2052 return tryEmitAbsolute(destTy);
2053 }
2054
2055 // Otherwise, try to emit the base.
2056 ConstantLValue result = tryEmitBase(base);
2057
2058 // If that failed, we're done.
2059 llvm::Constant *value = result.Value;
2060 if (!value) return nullptr;
2061
2062 // Apply the offset if necessary and not already done.
2063 if (!result.HasOffsetApplied) {
2064 value = applyOffset(value);
2065 }
2066
2067 // Convert to the appropriate type; this could be an lvalue for
2068 // an integer. FIXME: performAddrSpaceCast
2069 if (isa<llvm::PointerType>(destTy))
2070 return llvm::ConstantExpr::getPointerCast(value, destTy);
2071
2072 return llvm::ConstantExpr::getPtrToInt(value, destTy);
2073}
2074
2075/// Try to emit an absolute l-value, such as a null pointer or an integer
2076/// bitcast to pointer type.
2077llvm::Constant *
2078ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
2079 // If we're producing a pointer, this is easy.
2080 auto destPtrTy = cast<llvm::PointerType>(destTy);
2081 if (Value.isNullPointer()) {
2082 // FIXME: integer offsets from non-zero null pointers.
2083 return CGM.getNullPointer(destPtrTy, DestType);
2084 }
2085
2086 // Convert the integer to a pointer-sized integer before converting it
2087 // to a pointer.
2088 // FIXME: signedness depends on the original integer type.
2089 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
2090 llvm::Constant *C;
2091 C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
2092 CGM.getDataLayout());
2093 assert(C && "Must have folded, as Offset is a ConstantInt");
2094 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
2095 return C;
2096}
2097
2098ConstantLValue
2099ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
2100 // Handle values.
2101 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
2102 // The constant always points to the canonical declaration. We want to look
2103 // at properties of the most recent declaration at the point of emission.
2104 D = cast<ValueDecl>(D->getMostRecentDecl());
2105
2106 if (D->hasAttr<WeakRefAttr>())
2107 return CGM.GetWeakRefReference(D).getPointer();
2108
2109 auto PtrAuthSign = [&](llvm::Constant *C) {
2110 CGPointerAuthInfo AuthInfo;
2111
2112 if (EnablePtrAuthFunctionTypeDiscrimination)
2113 AuthInfo = CGM.getFunctionPointerAuthInfo(DestType);
2114
2115 if (AuthInfo) {
2116 if (hasNonZeroOffset())
2117 return ConstantLValue(nullptr);
2118
2119 C = applyOffset(C);
2121 C, AuthInfo.getKey(), nullptr,
2122 cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator()));
2123 return ConstantLValue(C, /*applied offset*/ true);
2124 }
2125
2126 return ConstantLValue(C);
2127 };
2128
2129 if (const auto *FD = dyn_cast<FunctionDecl>(D))
2130 return PtrAuthSign(CGM.getRawFunctionPointer(FD));
2131
2132 if (const auto *VD = dyn_cast<VarDecl>(D)) {
2133 // We can never refer to a variable with local storage.
2134 if (!VD->hasLocalStorage()) {
2135 if (VD->isFileVarDecl() || VD->hasExternalStorage())
2136 return CGM.GetAddrOfGlobalVar(VD);
2137
2138 if (VD->isLocalVarDecl()) {
2139 return CGM.getOrCreateStaticVarDecl(
2140 *VD, CGM.getLLVMLinkageVarDefinition(VD));
2141 }
2142 }
2143 }
2144
2145 if (const auto *GD = dyn_cast<MSGuidDecl>(D))
2146 return CGM.GetAddrOfMSGuidDecl(GD);
2147
2148 if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
2149 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
2150
2151 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
2152 return CGM.GetAddrOfTemplateParamObject(TPO);
2153
2154 return nullptr;
2155 }
2156
2157 // Handle typeid(T).
2158 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
2159 return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
2160
2161 // Otherwise, it must be an expression.
2162 return Visit(base.get<const Expr*>());
2163}
2164
2165ConstantLValue
2166ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
2167 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
2168 return Result;
2169 return Visit(E->getSubExpr());
2170}
2171
2172ConstantLValue
2173ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2174 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
2175 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
2176 return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
2177}
2178
2179ConstantLValue
2180ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2182}
2183
2184ConstantLValue
2185ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2187}
2188
2189static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2190 QualType T,
2191 CodeGenModule &CGM) {
2192 auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2193 return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2194}
2195
2196ConstantLValue
2197ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2198 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2199}
2200
2201ConstantLValue
2202ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2203 assert(E->isExpressibleAsConstantInitializer() &&
2204 "this boxed expression can't be emitted as a compile-time constant");
2205 const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2206 return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2207}
2208
2209ConstantLValue
2210ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2211 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2212}
2213
2214ConstantLValue
2215ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2216 assert(Emitter.CGF && "Invalid address of label expression outside function");
2217 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2218 return Ptr;
2219}
2220
2221ConstantLValue
2222ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2223 unsigned builtin = E->getBuiltinCallee();
2224 if (builtin == Builtin::BI__builtin_function_start)
2225 return CGM.GetFunctionStart(
2226 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2227
2228 if (builtin == Builtin::BI__builtin_ptrauth_sign_constant)
2229 return emitPointerAuthSignConstant(E);
2230
2231 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2232 builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2233 return nullptr;
2234
2235 const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2236 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2237 return CGM.getObjCRuntime().GenerateConstantString(Literal);
2238 } else {
2239 // FIXME: need to deal with UCN conversion issues.
2240 return CGM.GetAddrOfConstantCFString(Literal);
2241 }
2242}
2243
2244ConstantLValue
2245ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) {
2246 llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0));
2247 unsigned Key = emitPointerAuthKey(E->getArg(1));
2248 auto [StorageAddress, OtherDiscriminator] =
2249 emitPointerAuthDiscriminator(E->getArg(2));
2250
2251 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
2252 UnsignedPointer, Key, StorageAddress, OtherDiscriminator);
2253 return SignedPointer;
2254}
2255
2256llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) {
2258 bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext());
2259 assert(Succeeded);
2260 (void)Succeeded;
2261
2262 // The assertions here are all checked by Sema.
2263 assert(Result.Val.isLValue());
2264 if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>()))
2265 assert(Result.Val.getLValueOffset().isZero());
2266 return ConstantEmitter(CGM, Emitter.CGF)
2267 .emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false);
2268}
2269
2270unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) {
2271 return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue();
2272}
2273
2274std::pair<llvm::Constant *, llvm::ConstantInt *>
2275ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) {
2276 E = E->IgnoreParens();
2277
2278 if (const auto *Call = dyn_cast<CallExpr>(E)) {
2279 if (Call->getBuiltinCallee() ==
2280 Builtin::BI__builtin_ptrauth_blend_discriminator) {
2281 llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract(
2282 Call->getArg(0), Call->getArg(0)->getType());
2283 auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract(
2284 Call->getArg(1), Call->getArg(1)->getType()));
2285 return {Pointer, Extra};
2286 }
2287 }
2288
2289 llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType());
2290 if (Result->getType()->isPointerTy())
2291 return {Result, nullptr};
2292 return {nullptr, cast<llvm::ConstantInt>(Result)};
2293}
2294
2295ConstantLValue
2296ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2297 StringRef functionName;
2298 if (auto CGF = Emitter.CGF)
2299 functionName = CGF->CurFn->getName();
2300 else
2301 functionName = "global";
2302
2303 return CGM.GetAddrOfGlobalBlock(E, functionName);
2304}
2305
2306ConstantLValue
2307ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2308 QualType T;
2309 if (E->isTypeOperand())
2310 T = E->getTypeOperand(CGM.getContext());
2311 else
2312 T = E->getExprOperand()->getType();
2313 return CGM.GetAddrOfRTTIDescriptor(T);
2314}
2315
2316ConstantLValue
2317ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2318 const MaterializeTemporaryExpr *E) {
2319 assert(E->getStorageDuration() == SD_Static);
2320 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2321 return CGM.GetAddrOfGlobalTemporary(E, Inner);
2322}
2323
2324llvm::Constant *
2326 bool EnablePtrAuthFunctionTypeDiscrimination) {
2327 switch (Value.getKind()) {
2328 case APValue::None:
2330 // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2331 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2332 case APValue::LValue:
2333 return ConstantLValueEmitter(*this, Value, DestType,
2334 EnablePtrAuthFunctionTypeDiscrimination)
2335 .tryEmit();
2336 case APValue::Int:
2337 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2339 return llvm::ConstantInt::get(CGM.getLLVMContext(),
2340 Value.getFixedPoint().getValue());
2341 case APValue::ComplexInt: {
2342 llvm::Constant *Complex[2];
2343
2344 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2345 Value.getComplexIntReal());
2346 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2347 Value.getComplexIntImag());
2348
2349 // FIXME: the target may want to specify that this is packed.
2350 llvm::StructType *STy =
2351 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2352 return llvm::ConstantStruct::get(STy, Complex);
2353 }
2354 case APValue::Float: {
2355 const llvm::APFloat &Init = Value.getFloat();
2356 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2357 !CGM.getContext().getLangOpts().NativeHalfType &&
2359 return llvm::ConstantInt::get(CGM.getLLVMContext(),
2360 Init.bitcastToAPInt());
2361 else
2362 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2363 }
2364 case APValue::ComplexFloat: {
2365 llvm::Constant *Complex[2];
2366
2367 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2368 Value.getComplexFloatReal());
2369 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2370 Value.getComplexFloatImag());
2371
2372 // FIXME: the target may want to specify that this is packed.
2373 llvm::StructType *STy =
2374 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2375 return llvm::ConstantStruct::get(STy, Complex);
2376 }
2377 case APValue::Vector: {
2378 unsigned NumElts = Value.getVectorLength();
2379 SmallVector<llvm::Constant *, 4> Inits(NumElts);
2380
2381 for (unsigned I = 0; I != NumElts; ++I) {
2382 const APValue &Elt = Value.getVectorElt(I);
2383 if (Elt.isInt())
2384 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2385 else if (Elt.isFloat())
2386 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2387 else if (Elt.isIndeterminate())
2388 Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2389 DestType->castAs<VectorType>()->getElementType()));
2390 else
2391 llvm_unreachable("unsupported vector element type");
2392 }
2393 return llvm::ConstantVector::get(Inits);
2394 }
2396 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2397 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2398 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2399 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2400 if (!LHS || !RHS) return nullptr;
2401
2402 // Compute difference
2403 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2404 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2405 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2406 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2407
2408 // LLVM is a bit sensitive about the exact format of the
2409 // address-of-label difference; make sure to truncate after
2410 // the subtraction.
2411 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2412 }
2413 case APValue::Struct:
2414 case APValue::Union:
2415 return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2416 case APValue::Array: {
2417 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2418 unsigned NumElements = Value.getArraySize();
2419 unsigned NumInitElts = Value.getArrayInitializedElts();
2420
2421 // Emit array filler, if there is one.
2422 llvm::Constant *Filler = nullptr;
2423 if (Value.hasArrayFiller()) {
2424 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2425 ArrayTy->getElementType());
2426 if (!Filler)
2427 return nullptr;
2428 }
2429
2430 // Emit initializer elements.
2432 if (Filler && Filler->isNullValue())
2433 Elts.reserve(NumInitElts + 1);
2434 else
2435 Elts.reserve(NumElements);
2436
2437 llvm::Type *CommonElementType = nullptr;
2438 for (unsigned I = 0; I < NumInitElts; ++I) {
2439 llvm::Constant *C = tryEmitPrivateForMemory(
2440 Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2441 if (!C) return nullptr;
2442
2443 if (I == 0)
2444 CommonElementType = C->getType();
2445 else if (C->getType() != CommonElementType)
2446 CommonElementType = nullptr;
2447 Elts.push_back(C);
2448 }
2449
2450 llvm::ArrayType *Desired =
2451 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2452
2453 // Fix the type of incomplete arrays if the initializer isn't empty.
2454 if (DestType->isIncompleteArrayType() && !Elts.empty())
2455 Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2456
2457 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2458 Filler);
2459 }
2461 return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2462 }
2463 llvm_unreachable("Unknown APValue kind");
2464}
2465
2467 const CompoundLiteralExpr *E) {
2468 return EmittedCompoundLiterals.lookup(E);
2469}
2470
2472 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2473 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2474 (void)Ok;
2475 assert(Ok && "CLE has already been emitted!");
2476}
2477
2480 assert(E->isFileScope() && "not a file-scope compound literal expr");
2481 ConstantEmitter emitter(*this);
2482 return tryEmitGlobalCompoundLiteral(emitter, E);
2483}
2484
2485llvm::Constant *
2487 // Member pointer constants always have a very particular form.
2488 const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2489 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2490
2491 // A member function pointer.
2492 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2493 return getCXXABI().EmitMemberFunctionPointer(method);
2494
2495 // Otherwise, a member data pointer.
2496 uint64_t fieldOffset = getContext().getFieldOffset(decl);
2497 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2498 return getCXXABI().EmitMemberDataPointer(type, chars);
2499}
2500
2501static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2502 llvm::Type *baseType,
2503 const CXXRecordDecl *base);
2504
2505static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2506 const RecordDecl *record,
2507 bool asCompleteObject) {
2508 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2509 llvm::StructType *structure =
2510 (asCompleteObject ? layout.getLLVMType()
2511 : layout.getBaseSubobjectLLVMType());
2512
2513 unsigned numElements = structure->getNumElements();
2514 std::vector<llvm::Constant *> elements(numElements);
2515
2516 auto CXXR = dyn_cast<CXXRecordDecl>(record);
2517 // Fill in all the bases.
2518 if (CXXR) {
2519 for (const auto &I : CXXR->bases()) {
2520 if (I.isVirtual()) {
2521 // Ignore virtual bases; if we're laying out for a complete
2522 // object, we'll lay these out later.
2523 continue;
2524 }
2525
2526 const CXXRecordDecl *base =
2527 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2528
2529 // Ignore empty bases.
2530 if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) ||
2531 CGM.getContext()
2532 .getASTRecordLayout(base)
2534 .isZero())
2535 continue;
2536
2537 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2538 llvm::Type *baseType = structure->getElementType(fieldIndex);
2539 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2540 }
2541 }
2542
2543 // Fill in all the fields.
2544 for (const auto *Field : record->fields()) {
2545 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2546 // will fill in later.)
2547 if (!Field->isBitField() &&
2548 !isEmptyFieldForLayout(CGM.getContext(), Field)) {
2549 unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2550 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2551 }
2552
2553 // For unions, stop after the first named field.
2554 if (record->isUnion()) {
2555 if (Field->getIdentifier())
2556 break;
2557 if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2558 if (FieldRD->findFirstNamedDataMember())
2559 break;
2560 }
2561 }
2562
2563 // Fill in the virtual bases, if we're working with the complete object.
2564 if (CXXR && asCompleteObject) {
2565 for (const auto &I : CXXR->vbases()) {
2566 const CXXRecordDecl *base =
2567 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2568
2569 // Ignore empty bases.
2570 if (isEmptyRecordForLayout(CGM.getContext(), I.getType()))
2571 continue;
2572
2573 unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2574
2575 // We might have already laid this field out.
2576 if (elements[fieldIndex]) continue;
2577
2578 llvm::Type *baseType = structure->getElementType(fieldIndex);
2579 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2580 }
2581 }
2582
2583 // Now go through all other fields and zero them out.
2584 for (unsigned i = 0; i != numElements; ++i) {
2585 if (!elements[i])
2586 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2587 }
2588
2589 return llvm::ConstantStruct::get(structure, elements);
2590}
2591
2592/// Emit the null constant for a base subobject.
2593static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2594 llvm::Type *baseType,
2595 const CXXRecordDecl *base) {
2596 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2597
2598 // Just zero out bases that don't have any pointer to data members.
2599 if (baseLayout.isZeroInitializableAsBase())
2600 return llvm::Constant::getNullValue(baseType);
2601
2602 // Otherwise, we can just use its null constant.
2603 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2604}
2605
2607 QualType T) {
2609}
2610
2612 if (T->getAs<PointerType>())
2613 return getNullPointer(
2614 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2615
2616 if (getTypes().isZeroInitializable(T))
2617 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2618
2619 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2620 llvm::ArrayType *ATy =
2621 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2622
2623 QualType ElementTy = CAT->getElementType();
2624
2625 llvm::Constant *Element =
2626 ConstantEmitter::emitNullForMemory(*this, ElementTy);
2627 unsigned NumElements = CAT->getZExtSize();
2628 SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2629 return llvm::ConstantArray::get(ATy, Array);
2630 }
2631
2632 if (const RecordType *RT = T->getAs<RecordType>())
2633 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2634
2635 assert(T->isMemberDataPointerType() &&
2636 "Should only see pointers to data members here!");
2637
2639}
2640
2641llvm::Constant *
2643 return ::EmitNullConstant(*this, Record, false);
2644}
Defines the clang::ASTContext interface.
Defines enum values for all the target-independent builtin functions.
static QualType getNonMemoryType(CodeGenModule &CGM, QualType type)
static llvm::Constant * EmitNullConstant(CodeGenModule &CGM, const RecordDecl *record, bool asCompleteObject)
static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, QualType T, CodeGenModule &CGM)
static llvm::Constant * EmitNullConstantForBase(CodeGenModule &CGM, llvm::Type *baseType, const CXXRecordDecl *base)
Emit the null constant for a base subobject.
const Decl * D
Expr * E
llvm::MachO::Record Record
Definition: MachO.h:31
SourceRange Range
Definition: SemaObjC.cpp:757
llvm::APInt getValue() const
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition: APValue.h:122
APSInt & getInt()
Definition: APValue.h:423
APValue & getStructField(unsigned i)
Definition: APValue.h:551
const FieldDecl * getUnionField() const
Definition: APValue.h:563
bool isFloat() const
Definition: APValue.h:402
APValue & getUnionValue()
Definition: APValue.h:567
bool isIndeterminate() const
Definition: APValue.h:398
bool isInt() const
Definition: APValue.h:401
@ Indeterminate
This object has an indeterminate value (C++ [basic.indet]).
Definition: APValue.h:131
@ None
There is no such object (it's outside its lifetime).
Definition: APValue.h:129
APFloat & getFloat()
Definition: APValue.h:437
APValue & getStructBase(unsigned i)
Definition: APValue.h:546
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:186
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2822
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
unsigned getIntWidth(QualType T) const
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat 'semantics' for the specified scalar floating point type.
uint64_t getFieldOffset(const ValueDecl *FD) const
Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2641
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type.
const LangOptions & getLangOpts() const
Definition: ASTContext.h:796
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:2207
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2672
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2391
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:778
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
unsigned getTargetAddressSpace(LangAS AS) const
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2395
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
bool hasOwnVFPtr() const
hasOwnVFPtr - Does this class provide its own virtual-function table pointer, rather than inheriting ...
Definition: RecordLayout.h:280
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
const CXXRecordDecl * getPrimaryBase() const
getPrimaryBase - Get the primary base for this record.
Definition: RecordLayout.h:234
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:210
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:4362
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3540
QualType getElementType() const
Definition: Type.h:3552
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:6355
Represents a base class of a C++ class.
Definition: DeclCXX.h:146
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1546
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2535
bool isDefaultConstructor() const
Whether this constructor is a default constructor (C++ [class.ctor]p5), which can be used to default-...
Definition: DeclCXX.cpp:2755
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1375
Expr * getExpr()
Get the initialization expression that will be used.
Definition: ExprCXX.cpp:1082
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2060
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:845
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2830
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3498
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:122
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
CharUnits alignTo(const CharUnits &Align) const
alignTo - Returns the next integer (mod 2**64) that is greater than or equal to this quantity and is ...
Definition: CharUnits.h:201
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4582
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4618
virtual llvm::Constant * EmitNullMemberPointer(const MemberPointerType *MPT)
Create a null member pointer of the given type.
Definition: CGCXXABI.cpp:105
virtual llvm::Constant * EmitMemberPointer(const APValue &MP, QualType MPT)
Create a member pointer for the given member pointer constant.
Definition: CGCXXABI.cpp:119
virtual llvm::Constant * getVTableAddressPoint(BaseSubobject Base, const CXXRecordDecl *VTableClass)=0
Get the address point of the vtable for the given base subobject.
virtual llvm::Constant * EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset)
Create a member pointer for the given field.
Definition: CGCXXABI.cpp:114
virtual llvm::Value * EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src)
Perform a derived-to-base, base-to-derived, or bitcast member pointer conversion.
Definition: CGCXXABI.cpp:74
virtual llvm::Constant * EmitMemberFunctionPointer(const CXXMethodDecl *MD)
Create a member pointer for the given method.
Definition: CGCXXABI.cpp:109
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
llvm::Value * getDiscriminator() const
CGRecordLayout - This class handles struct and union layout info while lowering AST types to LLVM typ...
unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const
llvm::StructType * getLLVMType() const
Return the "complete object" LLVM type associated with this record.
const CGBitFieldInfo & getBitFieldInfo(const FieldDecl *FD) const
Return the BitFieldInfo that corresponds to the field FD.
bool isZeroInitializableAsBase() const
Check whether this struct can be C++ zero-initialized with a zeroinitializer when considered as a bas...
llvm::StructType * getBaseSubobjectLLVMType() const
Return the "base subobject" LLVM type associated with this record.
unsigned getLLVMFieldNo(const FieldDecl *FD) const
Return llvm::StructType element number that corresponds to the field FD.
unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const
Return the LLVM field index corresponding to the given virtual base.
This class organizes the cross-function state that is used while generating LLVM code.
ConstantAddress GetAddrOfMSGuidDecl(const MSGuidDecl *GD)
Get the address of a GUID.
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
Definition: CGExpr.cpp:1243
llvm::Module & getModule() const
ConstantAddress GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E)
Returns a pointer to a constant global variable for the given file-scope compound literal expression.
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type.
llvm::Constant * getRawFunctionPointer(GlobalDecl GD, llvm::Type *Ty=nullptr)
Return a function pointer for a reference to the given function.
Definition: CGExpr.cpp:2878
llvm::Constant * GetAddrOfRTTIDescriptor(QualType Ty, bool ForEH=false)
Get the address of the RTTI descriptor for the given type.
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
llvm::Constant * GetAddrOfGlobalBlock(const BlockExpr *BE, StringRef Name)
Gets the address of a block which requires no captures.
Definition: CGBlocks.cpp:1266
llvm::GlobalValue::LinkageTypes getLLVMLinkageVarDefinition(const VarDecl *VD)
Returns LLVM linkage for a declarator.
llvm::Constant * getMemberPointerConstant(const UnaryOperator *e)
const llvm::DataLayout & getDataLayout() const
void Error(SourceLocation loc, StringRef error)
Emit a general error that something can't be done.
CGCXXABI & getCXXABI() const
ConstantAddress GetWeakRefReference(const ValueDecl *VD)
Get a reference to the target of VD.
CGPointerAuthInfo getFunctionPointerAuthInfo(QualType T)
Return the abstract pointer authentication schema for a pointer to the given function type.
llvm::Constant * GetFunctionStart(const ValueDecl *Decl)
llvm::GlobalVariable * getAddrOfConstantCompoundLiteralIfEmitted(const CompoundLiteralExpr *E)
If it's been emitted already, returns the GlobalVariable corresponding to a compound literal.
std::optional< PointerAuthQualifier > getVTablePointerAuthentication(const CXXRecordDecl *thisClass)
llvm::Constant * getOrCreateStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage)
Definition: CGDecl.cpp:246
ConstantAddress GetAddrOfConstantCFString(const StringLiteral *Literal)
Return a pointer to a constant CFString object for the given string.
ConstantAddress GetAddrOfConstantStringFromLiteral(const StringLiteral *S, StringRef Name=".str")
Return a pointer to a constant array for the given string literal.
ASTContext & getContext() const
ConstantAddress GetAddrOfTemplateParamObject(const TemplateParamObjectDecl *TPO)
Get the address of a template parameter object.
ConstantAddress GetAddrOfUnnamedGlobalConstantDecl(const UnnamedGlobalConstantDecl *GCD)
Get the address of a UnnamedGlobalConstant.
llvm::Constant * GetAddrOfGlobalVar(const VarDecl *D, llvm::Type *Ty=nullptr, ForDefinition_t IsForDefinition=NotForDefinition)
Return the llvm::Constant for the address of the given global variable.
void setAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV)
Notes that CLE's GlobalVariable is GV.
const TargetCodeGenInfo & getTargetCodeGenInfo()
llvm::Constant * GetConstantArrayFromStringLiteral(const StringLiteral *E)
Return a constant array for the given string.
llvm::LLVMContext & getLLVMContext()
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
ConstantAddress GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr *E, const Expr *Inner)
Returns a pointer to a global variable representing a temporary with static or thread storage duratio...
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
llvm::Constant * getConstantSignedPointer(llvm::Constant *Pointer, const PointerAuthSchema &Schema, llvm::Constant *StorageAddress, GlobalDecl SchemaDecl, QualType SchemaType)
Sign a constant pointer using the given scheme, producing a constant with the same IR type.
ConstantAddress GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *)
Return a pointer to a constant array for the given ObjCEncodeExpr node.
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
llvm::Type * convertTypeForLoadStore(QualType T, llvm::Type *LLVMTy=nullptr)
Given that T is a scalar type, return the IR type that should be used for load and store operations.
const CGRecordLayout & getCGRecordLayout(const RecordDecl *)
getCGRecordLayout - Return record layout info for the given record decl.
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
bool typeRequiresSplitIntoByteArray(QualType ASTTy, llvm::Type *LLVMTy=nullptr)
Check whether the given type needs to be laid out in memory using an opaque byte-array type because i...
A specialization of Address that requires the address to be an LLVM Constant.
Definition: Address.h:294
static ConstantAddress invalid()
Definition: Address.h:302
llvm::Constant * getPointer() const
Definition: Address.h:306
llvm::Constant * tryEmitPrivateForMemory(const Expr *E, QualType T)
llvm::Constant * tryEmitForInitializer(const VarDecl &D)
Try to emit the initiaizer of the given declaration as an abstract constant.
llvm::Constant * tryEmitPrivateForVarInit(const VarDecl &D)
llvm::Constant * tryEmitPrivate(const Expr *E, QualType T)
void finalize(llvm::GlobalVariable *global)
llvm::Constant * tryEmitAbstractForInitializer(const VarDecl &D)
Try to emit the initializer of the given declaration as an abstract constant.
llvm::Constant * emitAbstract(const Expr *E, QualType T)
Emit the result of the given expression as an abstract constant, asserting that it succeeded.
llvm::GlobalValue * getCurrentAddrPrivate()
Get the address of the current location.
llvm::Constant * tryEmitConstantExpr(const ConstantExpr *CE)
llvm::Constant * emitForMemory(llvm::Constant *C, QualType T)
llvm::Constant * emitNullForMemory(QualType T)
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
void registerCurrentAddrPrivate(llvm::Constant *signal, llvm::GlobalValue *placeholder)
Register a 'signal' value with the emitter to inform it where to resolve a placeholder.
llvm::Constant * emitForInitializer(const APValue &value, LangAS destAddrSpace, QualType destType)
llvm::Constant * tryEmitAbstractForMemory(const Expr *E, QualType T)
bool isAbstract() const
Is the current emission context abstract?
llvm::Constant * tryEmitConstantSignedPointer(llvm::Constant *Ptr, PointerAuthQualifier Auth)
Try to emit a constant signed pointer, given a raw pointer and the destination ptrauth qualifier.
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
virtual llvm::Constant * getNullPointer(const CodeGen::CodeGenModule &CGM, llvm::PointerType *T, QualType QT) const
Get target specific null pointer.
Definition: TargetInfo.cpp:120
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3428
ConstStmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:195
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3578
uint64_t getZExtSize() const
Return the size zero-extended as a uint64_t.
Definition: Type.h:3654
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:1077
APValue getAPValueResult() const
Definition: Expr.cpp:413
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1127
bool hasAPValueResult() const
Definition: Expr.h:1152
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2359
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
Decl * getMostRecentDecl()
Retrieve the most recent declaration that declares the same entity as this declaration (which may be ...
Definition: DeclBase.h:1055
bool hasAttr() const
Definition: DeclBase.h:583
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3472
This represents one expression.
Definition: Expr.h:110
const Expr * skipRValueSubobjectAdjustments(SmallVectorImpl< const Expr * > &CommaLHS, SmallVectorImpl< SubobjectAdjustment > &Adjustments) const
Walk outwards from an expression we want to bind a reference to and find the expression whose lifetim...
Definition: Expr.cpp:82
bool isGLValue() const
Definition: Expr.h:280
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3075
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition: Expr.cpp:3864
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3066
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
const ValueDecl * getAsBuiltinConstantDeclRef(const ASTContext &Context) const
If this expression is an unambiguous reference to a single declaration, in the style of __builtin_fun...
Definition: Expr.cpp:226
RoundingMode getRoundingMode() const
Definition: LangOptions.h:853
Represents a member of a struct/union/class.
Definition: Decl.h:3030
const Expr * getSubExpr() const
Definition: Expr.h:1057
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2302
Represents a C11 generic selection.
Definition: Expr.h:5907
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5782
Describes an C or C++ initializer list.
Definition: Expr.h:5029
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic,...
Definition: Expr.cpp:2443
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:5148
unsigned getNumInits() const
Definition: Expr.h:5059
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:5123
const Expr * getInit(unsigned Init) const
Definition: Expr.h:5075
ArrayRef< Expr * > inits()
Definition: Expr.h:5069
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4726
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3482
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:127
ObjCEncodeExpr, used for @encode in Objective-C.
Definition: ExprObjC.h:410
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
ParenExpr - This represents a parenthesized expression, e.g.
Definition: Expr.h:2135
const Expr * getSubExpr() const
Definition: Expr.h:2150
Pointer-authentication qualifiers.
Definition: Type.h:146
bool hasKeyNone() const
Definition: Type.h:257
bool isAddressDiscriminated() const
Definition: Type.h:259
unsigned getExtraDiscriminator() const
Definition: Type.h:264
unsigned getKey() const
Definition: Type.h:252
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3161
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1991
A (possibly-)qualified type.
Definition: Type.h:941
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:7869
bool isConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, bool ExcludeDtor)
Definition: Type.h:1040
Represents a struct/union/class.
Definition: Decl.h:4141
bool hasFlexibleArrayMember() const
Definition: Decl.h:4174
field_iterator field_end() const
Definition: Decl.h:4350
field_range fields() const
Definition: Decl.h:4347
field_iterator field_begin() const
Definition: Decl.cpp:5057
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5936
RecordDecl * getDecl() const
Definition: Type.h:5946
Encodes a location in the source.
StmtVisitorBase - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:37
RetTy Visit(PTR(Stmt) S, ParamTys... P)
Definition: StmtVisitor.h:44
Stmt - This represents one statement.
Definition: Stmt.h:84
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1870
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4482
bool isUnion() const
Definition: Decl.h:3763
virtual bool useFP16ConversionIntrinsics() const
Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used to convert to and from __fp...
Definition: TargetInfo.h:992
Symbolic representation of typeid(T) for some type T.
Definition: APValue.h:44
The base class of the type hierarchy.
Definition: Type.h:1829
bool isVoidType() const
Definition: Type.h:8295
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:2167
bool isIncompleteArrayType() const
Definition: Type.h:8072
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition: Type.cpp:2146
bool isArrayType() const
Definition: Type.h:8064
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8335
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8583
bool isReferenceType() const
Definition: Type.h:8010
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:705
bool isMemberDataPointerType() const
Definition: Type.h:8057
bool isBitIntType() const
Definition: Type.h:8230
bool isFloatingType() const
Definition: Type.cpp:2249
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:2196
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8516
bool isRecordType() const
Definition: Type.h:8092
bool isUnionType() const
Definition: Type.cpp:671
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2188
Expr * getSubExpr() const
Definition: Expr.h:2233
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:667
Kind getKind() const
Definition: Value.h:136
Represents a variable declaration or definition.
Definition: Decl.h:879
Represents a GCC generic vector type.
Definition: Type.h:3991
QualType getElementType() const
Definition: Type.h:4005
bool isEmptyRecordForLayout(const ASTContext &Context, QualType T)
isEmptyRecordForLayout - Return true iff a structure contains only empty base classes (per isEmptyRec...
bool isEmptyFieldForLayout(const ASTContext &Context, const FieldDecl *FD)
isEmptyFieldForLayout - Return true iff the field is "empty", that is, either a zero-width bit-field ...
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
uint32_t Literal
Literals are represented as positive integers.
Definition: CNFFormula.h:35
bool Const(InterpState &S, CodePtr OpPC, const T &Arg)
Definition: Interp.h:1166
bool GE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1124
The JSON file list parser is used to communicate input to InstallAPI.
@ Finalize
'finalize' clause, allowed on 'exit data' directive.
bool operator<(DeclarationName LHS, DeclarationName RHS)
Ordering on two declaration names.
@ SD_Static
Static storage duration.
Definition: Specifiers.h:328
@ Result
The result type of a method or function.
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
const FunctionProtoType * T
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition: DeclBase.h:1264
@ Success
Template argument deduction was successful.
unsigned long uint64_t
Structure with information about how a bitfield should be accessed.
unsigned Size
The total size of the bit-field, in bits.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
llvm::IntegerType * CharTy
char
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:642