clang 19.0.0git
CGDecl.cpp
Go to the documentation of this file.
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Decl nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGOpenCLRuntime.h"
18#include "CGOpenMPRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "EHScopeStack.h"
23#include "PatternInit.h"
24#include "TargetInfo.h"
26#include "clang/AST/Attr.h"
27#include "clang/AST/CharUnits.h"
28#include "clang/AST/Decl.h"
29#include "clang/AST/DeclObjC.h"
35#include "clang/Sema/Sema.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Type.h"
42#include <optional>
43
44using namespace clang;
45using namespace CodeGen;
46
47static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
48 "Clang max alignment greater than what LLVM supports?");
49
50void CodeGenFunction::EmitDecl(const Decl &D) {
51 switch (D.getKind()) {
52 case Decl::BuiltinTemplate:
53 case Decl::TranslationUnit:
54 case Decl::ExternCContext:
55 case Decl::Namespace:
56 case Decl::UnresolvedUsingTypename:
57 case Decl::ClassTemplateSpecialization:
58 case Decl::ClassTemplatePartialSpecialization:
59 case Decl::VarTemplateSpecialization:
60 case Decl::VarTemplatePartialSpecialization:
61 case Decl::TemplateTypeParm:
62 case Decl::UnresolvedUsingValue:
63 case Decl::NonTypeTemplateParm:
64 case Decl::CXXDeductionGuide:
65 case Decl::CXXMethod:
66 case Decl::CXXConstructor:
67 case Decl::CXXDestructor:
68 case Decl::CXXConversion:
69 case Decl::Field:
70 case Decl::MSProperty:
71 case Decl::IndirectField:
72 case Decl::ObjCIvar:
73 case Decl::ObjCAtDefsField:
74 case Decl::ParmVar:
75 case Decl::ImplicitParam:
76 case Decl::ClassTemplate:
77 case Decl::VarTemplate:
78 case Decl::FunctionTemplate:
79 case Decl::TypeAliasTemplate:
80 case Decl::TemplateTemplateParm:
81 case Decl::ObjCMethod:
82 case Decl::ObjCCategory:
83 case Decl::ObjCProtocol:
84 case Decl::ObjCInterface:
85 case Decl::ObjCCategoryImpl:
86 case Decl::ObjCImplementation:
87 case Decl::ObjCProperty:
88 case Decl::ObjCCompatibleAlias:
89 case Decl::PragmaComment:
90 case Decl::PragmaDetectMismatch:
91 case Decl::AccessSpec:
92 case Decl::LinkageSpec:
93 case Decl::Export:
94 case Decl::ObjCPropertyImpl:
95 case Decl::FileScopeAsm:
96 case Decl::TopLevelStmt:
97 case Decl::Friend:
98 case Decl::FriendTemplate:
99 case Decl::Block:
100 case Decl::Captured:
101 case Decl::UsingShadow:
102 case Decl::ConstructorUsingShadow:
103 case Decl::ObjCTypeParam:
104 case Decl::Binding:
105 case Decl::UnresolvedUsingIfExists:
106 case Decl::HLSLBuffer:
107 llvm_unreachable("Declaration should not be in declstmts!");
108 case Decl::Record: // struct/union/class X;
109 case Decl::CXXRecord: // struct/union/class X; [C++]
110 if (CGDebugInfo *DI = getDebugInfo())
111 if (cast<RecordDecl>(D).getDefinition())
112 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
113 return;
114 case Decl::Enum: // enum X;
115 if (CGDebugInfo *DI = getDebugInfo())
116 if (cast<EnumDecl>(D).getDefinition())
117 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
118 return;
119 case Decl::Function: // void X();
120 case Decl::EnumConstant: // enum ? { X = ? }
121 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
122 case Decl::Label: // __label__ x;
123 case Decl::Import:
124 case Decl::MSGuid: // __declspec(uuid("..."))
125 case Decl::UnnamedGlobalConstant:
126 case Decl::TemplateParamObject:
127 case Decl::OMPThreadPrivate:
128 case Decl::OMPAllocate:
129 case Decl::OMPCapturedExpr:
130 case Decl::OMPRequires:
131 case Decl::Empty:
132 case Decl::Concept:
133 case Decl::ImplicitConceptSpecialization:
134 case Decl::LifetimeExtendedTemporary:
135 case Decl::RequiresExprBody:
136 // None of these decls require codegen support.
137 return;
138
139 case Decl::NamespaceAlias:
140 if (CGDebugInfo *DI = getDebugInfo())
141 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
142 return;
143 case Decl::Using: // using X; [C++]
144 if (CGDebugInfo *DI = getDebugInfo())
145 DI->EmitUsingDecl(cast<UsingDecl>(D));
146 return;
147 case Decl::UsingEnum: // using enum X; [C++]
148 if (CGDebugInfo *DI = getDebugInfo())
149 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
150 return;
151 case Decl::UsingPack:
152 for (auto *Using : cast<UsingPackDecl>(D).expansions())
153 EmitDecl(*Using);
154 return;
155 case Decl::UsingDirective: // using namespace X; [C++]
156 if (CGDebugInfo *DI = getDebugInfo())
157 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
158 return;
159 case Decl::Var:
160 case Decl::Decomposition: {
161 const VarDecl &VD = cast<VarDecl>(D);
162 assert(VD.isLocalVarDecl() &&
163 "Should not see file-scope variables inside a function!");
164 EmitVarDecl(VD);
165 if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
166 for (auto *B : DD->bindings())
167 if (auto *HD = B->getHoldingVar())
168 EmitVarDecl(*HD);
169 return;
170 }
171
172 case Decl::OMPDeclareReduction:
173 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
174
175 case Decl::OMPDeclareMapper:
176 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
177
178 case Decl::Typedef: // typedef int X;
179 case Decl::TypeAlias: { // using X = int; [C++0x]
180 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
181 if (CGDebugInfo *DI = getDebugInfo())
182 DI->EmitAndRetainType(Ty);
183 if (Ty->isVariablyModifiedType())
185 return;
186 }
187 }
188}
189
190/// EmitVarDecl - This method handles emission of any variable declaration
191/// inside a function, including static vars etc.
193 if (D.hasExternalStorage())
194 // Don't emit it now, allow it to be emitted lazily on its first use.
195 return;
196
197 // Some function-scope variable does not have static storage but still
198 // needs to be emitted like a static variable, e.g. a function-scope
199 // variable in constant address space in OpenCL.
200 if (D.getStorageDuration() != SD_Automatic) {
201 // Static sampler variables translated to function calls.
202 if (D.getType()->isSamplerT())
203 return;
204
205 llvm::GlobalValue::LinkageTypes Linkage =
207
208 // FIXME: We need to force the emission/use of a guard variable for
209 // some variables even if we can constant-evaluate them because
210 // we can't guarantee every translation unit will constant-evaluate them.
211
212 return EmitStaticVarDecl(D, Linkage);
213 }
214
217
218 assert(D.hasLocalStorage());
219 return EmitAutoVarDecl(D);
220}
221
222static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
223 if (CGM.getLangOpts().CPlusPlus)
224 return CGM.getMangledName(&D).str();
225
226 // If this isn't C++, we don't need a mangled name, just a pretty one.
227 assert(!D.isExternallyVisible() && "name shouldn't matter");
228 std::string ContextName;
229 const DeclContext *DC = D.getDeclContext();
230 if (auto *CD = dyn_cast<CapturedDecl>(DC))
231 DC = cast<DeclContext>(CD->getNonClosureContext());
232 if (const auto *FD = dyn_cast<FunctionDecl>(DC))
233 ContextName = std::string(CGM.getMangledName(FD));
234 else if (const auto *BD = dyn_cast<BlockDecl>(DC))
235 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
236 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
237 ContextName = OMD->getSelector().getAsString();
238 else
239 llvm_unreachable("Unknown context for static var decl");
240
241 ContextName += "." + D.getNameAsString();
242 return ContextName;
243}
244
246 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
247 // In general, we don't always emit static var decls once before we reference
248 // them. It is possible to reference them before emitting the function that
249 // contains them, and it is possible to emit the containing function multiple
250 // times.
251 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
252 return ExistingGV;
253
254 QualType Ty = D.getType();
255 assert(Ty->isConstantSizeType() && "VLAs can't be static");
256
257 // Use the label if the variable is renamed with the asm-label extension.
258 std::string Name;
259 if (D.hasAttr<AsmLabelAttr>())
260 Name = std::string(getMangledName(&D));
261 else
262 Name = getStaticDeclName(*this, D);
263
264 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
266 unsigned TargetAS = getContext().getTargetAddressSpace(AS);
267
268 // OpenCL variables in local address space and CUDA shared
269 // variables cannot have an initializer.
270 llvm::Constant *Init = nullptr;
272 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
273 Init = llvm::UndefValue::get(LTy);
274 else
276
277 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
278 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
279 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
280 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
281
282 if (supportsCOMDAT() && GV->isWeakForLinker())
283 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
284
285 if (D.getTLSKind())
286 setTLSMode(GV, D);
287
288 setGVProperties(GV, &D);
289 getTargetCodeGenInfo().setTargetAttributes(cast<Decl>(&D), GV, *this);
290
291 // Make sure the result is of the correct type.
292 LangAS ExpectedAS = Ty.getAddressSpace();
293 llvm::Constant *Addr = GV;
294 if (AS != ExpectedAS) {
296 *this, GV, AS, ExpectedAS,
297 llvm::PointerType::get(getLLVMContext(),
298 getContext().getTargetAddressSpace(ExpectedAS)));
299 }
300
302
303 // Ensure that the static local gets initialized by making sure the parent
304 // function gets emitted eventually.
305 const Decl *DC = cast<Decl>(D.getDeclContext());
306
307 // We can't name blocks or captured statements directly, so try to emit their
308 // parents.
309 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
310 DC = DC->getNonClosureContext();
311 // FIXME: Ensure that global blocks get emitted.
312 if (!DC)
313 return Addr;
314 }
315
316 GlobalDecl GD;
317 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
318 GD = GlobalDecl(CD, Ctor_Base);
319 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
320 GD = GlobalDecl(DD, Dtor_Base);
321 else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
322 GD = GlobalDecl(FD);
323 else {
324 // Don't do anything for Obj-C method decls or global closures. We should
325 // never defer them.
326 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
327 }
328 if (GD.getDecl()) {
329 // Disable emission of the parent function for the OpenMP device codegen.
331 (void)GetAddrOfGlobal(GD);
332 }
333
334 return Addr;
335}
336
337/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
338/// global variable that has already been created for it. If the initializer
339/// has a different type than GV does, this may free GV and return a different
340/// one. Otherwise it just returns GV.
341llvm::GlobalVariable *
343 llvm::GlobalVariable *GV) {
344 ConstantEmitter emitter(*this);
345 llvm::Constant *Init = emitter.tryEmitForInitializer(D);
346
347 // If constant emission failed, then this should be a C++ static
348 // initializer.
349 if (!Init) {
350 if (!getLangOpts().CPlusPlus)
351 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
352 else if (D.hasFlexibleArrayInit(getContext()))
353 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
354 else if (HaveInsertPoint()) {
355 // Since we have a static initializer, this global variable can't
356 // be constant.
357 GV->setConstant(false);
358
359 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
360 }
361 return GV;
362 }
363
364#ifndef NDEBUG
368 CGM.getDataLayout().getTypeAllocSize(Init->getType()));
369 assert(VarSize == CstSize && "Emitted constant has unexpected size");
370#endif
371
372 // The initializer may differ in type from the global. Rewrite
373 // the global to match the initializer. (We have to do this
374 // because some types, like unions, can't be completely represented
375 // in the LLVM type system.)
376 if (GV->getValueType() != Init->getType()) {
377 llvm::GlobalVariable *OldGV = GV;
378
379 GV = new llvm::GlobalVariable(
380 CGM.getModule(), Init->getType(), OldGV->isConstant(),
381 OldGV->getLinkage(), Init, "",
382 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
383 OldGV->getType()->getPointerAddressSpace());
384 GV->setVisibility(OldGV->getVisibility());
385 GV->setDSOLocal(OldGV->isDSOLocal());
386 GV->setComdat(OldGV->getComdat());
387
388 // Steal the name of the old global
389 GV->takeName(OldGV);
390
391 // Replace all uses of the old global with the new global
392 OldGV->replaceAllUsesWith(GV);
393
394 // Erase the old global, since it is no longer used.
395 OldGV->eraseFromParent();
396 }
397
398 bool NeedsDtor =
400
401 GV->setConstant(
402 D.getType().isConstantStorage(getContext(), true, !NeedsDtor));
403 GV->setInitializer(Init);
404
405 emitter.finalize(GV);
406
407 if (NeedsDtor && HaveInsertPoint()) {
408 // We have a constant initializer, but a nontrivial destructor. We still
409 // need to perform a guarded "initialization" in order to register the
410 // destructor.
411 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
412 }
413
414 return GV;
415}
416
418 llvm::GlobalValue::LinkageTypes Linkage) {
419 // Check to see if we already have a global variable for this
420 // declaration. This can happen when double-emitting function
421 // bodies, e.g. with complete and base constructors.
422 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
423 CharUnits alignment = getContext().getDeclAlign(&D);
424
425 // Store into LocalDeclMap before generating initializer to handle
426 // circular references.
427 llvm::Type *elemTy = ConvertTypeForMem(D.getType());
428 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
429
430 // We can't have a VLA here, but we can have a pointer to a VLA,
431 // even though that doesn't really make any sense.
432 // Make sure to evaluate VLA bounds now so that we have them for later.
435
436 // Save the type in case adding the initializer forces a type change.
437 llvm::Type *expectedType = addr->getType();
438
439 llvm::GlobalVariable *var =
440 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
441
442 // CUDA's local and local static __shared__ variables should not
443 // have any non-empty initializers. This is ensured by Sema.
444 // Whatever initializer such variable may have when it gets here is
445 // a no-op and should not be emitted.
446 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
447 D.hasAttr<CUDASharedAttr>();
448 // If this value has an initializer, emit it.
449 if (D.getInit() && !isCudaSharedVar)
450 var = AddInitializerToStaticVarDecl(D, var);
451
452 var->setAlignment(alignment.getAsAlign());
453
454 if (D.hasAttr<AnnotateAttr>())
455 CGM.AddGlobalAnnotations(&D, var);
456
457 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
458 var->addAttribute("bss-section", SA->getName());
459 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
460 var->addAttribute("data-section", SA->getName());
461 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
462 var->addAttribute("rodata-section", SA->getName());
463 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
464 var->addAttribute("relro-section", SA->getName());
465
466 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
467 var->setSection(SA->getName());
468
469 if (D.hasAttr<RetainAttr>())
470 CGM.addUsedGlobal(var);
471 else if (D.hasAttr<UsedAttr>())
473
474 if (CGM.getCodeGenOpts().KeepPersistentStorageVariables)
476
477 // We may have to cast the constant because of the initializer
478 // mismatch above.
479 //
480 // FIXME: It is really dangerous to store this in the map; if anyone
481 // RAUW's the GV uses of this constant will be invalid.
482 llvm::Constant *castedAddr =
483 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
484 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
485 CGM.setStaticLocalDeclAddress(&D, castedAddr);
486
488
489 // Emit global variable debug descriptor for static vars.
491 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
492 DI->setLocation(D.getLocation());
493 DI->EmitGlobalVariable(var, &D);
494 }
495}
496
497namespace {
498 struct DestroyObject final : EHScopeStack::Cleanup {
499 DestroyObject(Address addr, QualType type,
500 CodeGenFunction::Destroyer *destroyer,
501 bool useEHCleanupForArray)
502 : addr(addr), type(type), destroyer(destroyer),
503 useEHCleanupForArray(useEHCleanupForArray) {}
504
505 Address addr;
507 CodeGenFunction::Destroyer *destroyer;
508 bool useEHCleanupForArray;
509
510 void Emit(CodeGenFunction &CGF, Flags flags) override {
511 // Don't use an EH cleanup recursively from an EH cleanup.
512 bool useEHCleanupForArray =
513 flags.isForNormalCleanup() && this->useEHCleanupForArray;
514
515 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
516 }
517 };
518
519 template <class Derived>
520 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
521 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
522 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
523
524 llvm::Value *NRVOFlag;
525 Address Loc;
526 QualType Ty;
527
528 void Emit(CodeGenFunction &CGF, Flags flags) override {
529 // Along the exceptions path we always execute the dtor.
530 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
531
532 llvm::BasicBlock *SkipDtorBB = nullptr;
533 if (NRVO) {
534 // If we exited via NRVO, we skip the destructor call.
535 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
536 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
537 llvm::Value *DidNRVO =
538 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
539 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
540 CGF.EmitBlock(RunDtorBB);
541 }
542
543 static_cast<Derived *>(this)->emitDestructorCall(CGF);
544
545 if (NRVO) CGF.EmitBlock(SkipDtorBB);
546 }
547
548 virtual ~DestroyNRVOVariable() = default;
549 };
550
551 struct DestroyNRVOVariableCXX final
552 : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
553 DestroyNRVOVariableCXX(Address addr, QualType type,
554 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
555 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
556 Dtor(Dtor) {}
557
558 const CXXDestructorDecl *Dtor;
559
560 void emitDestructorCall(CodeGenFunction &CGF) {
562 /*ForVirtualBase=*/false,
563 /*Delegating=*/false, Loc, Ty);
564 }
565 };
566
567 struct DestroyNRVOVariableC final
568 : DestroyNRVOVariable<DestroyNRVOVariableC> {
569 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
570 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
571
572 void emitDestructorCall(CodeGenFunction &CGF) {
573 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
574 }
575 };
576
577 struct CallStackRestore final : EHScopeStack::Cleanup {
578 Address Stack;
579 CallStackRestore(Address Stack) : Stack(Stack) {}
580 bool isRedundantBeforeReturn() override { return true; }
581 void Emit(CodeGenFunction &CGF, Flags flags) override {
582 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
583 CGF.Builder.CreateStackRestore(V);
584 }
585 };
586
587 struct KmpcAllocFree final : EHScopeStack::Cleanup {
588 std::pair<llvm::Value *, llvm::Value *> AddrSizePair;
589 KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair)
590 : AddrSizePair(AddrSizePair) {}
591 void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override {
592 auto &RT = CGF.CGM.getOpenMPRuntime();
593 RT.getKmpcFreeShared(CGF, AddrSizePair);
594 }
595 };
596
597 struct ExtendGCLifetime final : EHScopeStack::Cleanup {
598 const VarDecl &Var;
599 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
600
601 void Emit(CodeGenFunction &CGF, Flags flags) override {
602 // Compute the address of the local variable, in case it's a
603 // byref or something.
604 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
606 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
608 CGF.EmitExtendGCLifetime(value);
609 }
610 };
611
612 struct CallCleanupFunction final : EHScopeStack::Cleanup {
613 llvm::Constant *CleanupFn;
614 const CGFunctionInfo &FnInfo;
615 const VarDecl &Var;
616
617 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
618 const VarDecl *Var)
619 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
620
621 void Emit(CodeGenFunction &CGF, Flags flags) override {
622 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
624 // Compute the address of the local variable, in case it's a byref
625 // or something.
626 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
627
628 // In some cases, the type of the function argument will be different from
629 // the type of the pointer. An example of this is
630 // void f(void* arg);
631 // __attribute__((cleanup(f))) void *g;
632 //
633 // To fix this we insert a bitcast here.
634 QualType ArgTy = FnInfo.arg_begin()->type;
635 llvm::Value *Arg =
636 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
637
638 CallArgList Args;
639 Args.add(RValue::get(Arg),
640 CGF.getContext().getPointerType(Var.getType()));
641 auto Callee = CGCallee::forDirect(CleanupFn);
642 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
643 }
644 };
645} // end anonymous namespace
646
647/// EmitAutoVarWithLifetime - Does the setup required for an automatic
648/// variable with lifetime.
650 Address addr,
651 Qualifiers::ObjCLifetime lifetime) {
652 switch (lifetime) {
654 llvm_unreachable("present but none");
655
657 // nothing to do
658 break;
659
661 CodeGenFunction::Destroyer *destroyer =
662 (var.hasAttr<ObjCPreciseLifetimeAttr>()
665
666 CleanupKind cleanupKind = CGF.getARCCleanupKind();
667 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
668 cleanupKind & EHCleanup);
669 break;
670 }
672 // nothing to do
673 break;
674
676 // __weak objects always get EH cleanups; otherwise, exceptions
677 // could cause really nasty crashes instead of mere leaks.
678 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
680 /*useEHCleanup*/ true);
681 break;
682 }
683}
684
685static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
686 if (const Expr *e = dyn_cast<Expr>(s)) {
687 // Skip the most common kinds of expressions that make
688 // hierarchy-walking expensive.
689 s = e = e->IgnoreParenCasts();
690
691 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
692 return (ref->getDecl() == &var);
693 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
694 const BlockDecl *block = be->getBlockDecl();
695 for (const auto &I : block->captures()) {
696 if (I.getVariable() == &var)
697 return true;
698 }
699 }
700 }
701
702 for (const Stmt *SubStmt : s->children())
703 // SubStmt might be null; as in missing decl or conditional of an if-stmt.
704 if (SubStmt && isAccessedBy(var, SubStmt))
705 return true;
706
707 return false;
708}
709
710static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
711 if (!decl) return false;
712 if (!isa<VarDecl>(decl)) return false;
713 const VarDecl *var = cast<VarDecl>(decl);
714 return isAccessedBy(*var, e);
715}
716
718 const LValue &destLV, const Expr *init) {
719 bool needsCast = false;
720
721 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
722 switch (castExpr->getCastKind()) {
723 // Look through casts that don't require representation changes.
724 case CK_NoOp:
725 case CK_BitCast:
726 case CK_BlockPointerToObjCPointerCast:
727 needsCast = true;
728 break;
729
730 // If we find an l-value to r-value cast from a __weak variable,
731 // emit this operation as a copy or move.
732 case CK_LValueToRValue: {
733 const Expr *srcExpr = castExpr->getSubExpr();
734 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
735 return false;
736
737 // Emit the source l-value.
738 LValue srcLV = CGF.EmitLValue(srcExpr);
739
740 // Handle a formal type change to avoid asserting.
741 auto srcAddr = srcLV.getAddress();
742 if (needsCast) {
743 srcAddr = srcAddr.withElementType(destLV.getAddress().getElementType());
744 }
745
746 // If it was an l-value, use objc_copyWeak.
747 if (srcExpr->isLValue()) {
748 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
749 } else {
750 assert(srcExpr->isXValue());
751 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
752 }
753 return true;
754 }
755
756 // Stop at anything else.
757 default:
758 return false;
759 }
760
761 init = castExpr->getSubExpr();
762 }
763 return false;
764}
765
767 LValue &lvalue,
768 const VarDecl *var) {
769 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
770}
771
772void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
774 if (!SanOpts.has(SanitizerKind::NullabilityAssign))
775 return;
776
777 auto Nullability = LHS.getType()->getNullability();
778 if (!Nullability || *Nullability != NullabilityKind::NonNull)
779 return;
780
781 // Check if the right hand side of the assignment is nonnull, if the left
782 // hand side must be nonnull.
783 SanitizerScope SanScope(this);
784 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
785 llvm::Constant *StaticData[] = {
787 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
788 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
789 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
790 SanitizerHandler::TypeMismatch, StaticData, RHS);
791}
792
793void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
794 LValue lvalue, bool capturedByInit) {
795 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
796 if (!lifetime) {
797 llvm::Value *value = EmitScalarExpr(init);
798 if (capturedByInit)
799 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
800 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
801 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
802 return;
803 }
804
805 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
806 init = DIE->getExpr();
807
808 // If we're emitting a value with lifetime, we have to do the
809 // initialization *before* we leave the cleanup scopes.
810 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
811 CodeGenFunction::RunCleanupsScope Scope(*this);
812 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
813 }
814
815 // We have to maintain the illusion that the variable is
816 // zero-initialized. If the variable might be accessed in its
817 // initializer, zero-initialize before running the initializer, then
818 // actually perform the initialization with an assign.
819 bool accessedByInit = false;
820 if (lifetime != Qualifiers::OCL_ExplicitNone)
821 accessedByInit = (capturedByInit || isAccessedBy(D, init));
822 if (accessedByInit) {
823 LValue tempLV = lvalue;
824 // Drill down to the __block object if necessary.
825 if (capturedByInit) {
826 // We can use a simple GEP for this because it can't have been
827 // moved yet.
829 cast<VarDecl>(D),
830 /*follow*/ false));
831 }
832
833 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
834 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
835
836 // If __weak, we want to use a barrier under certain conditions.
837 if (lifetime == Qualifiers::OCL_Weak)
838 EmitARCInitWeak(tempLV.getAddress(), zero);
839
840 // Otherwise just do a simple store.
841 else
842 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
843 }
844
845 // Emit the initializer.
846 llvm::Value *value = nullptr;
847
848 switch (lifetime) {
850 llvm_unreachable("present but none");
851
853 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
854 value = EmitARCRetainScalarExpr(init);
855 break;
856 }
857 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
858 // that we omit the retain, and causes non-autoreleased return values to be
859 // immediately released.
860 [[fallthrough]];
861 }
862
865 break;
866
868 // If it's not accessed by the initializer, try to emit the
869 // initialization with a copy or move.
870 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
871 return;
872 }
873
874 // No way to optimize a producing initializer into this. It's not
875 // worth optimizing for, because the value will immediately
876 // disappear in the common case.
877 value = EmitScalarExpr(init);
878
879 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
880 if (accessedByInit)
881 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
882 else
883 EmitARCInitWeak(lvalue.getAddress(), value);
884 return;
885 }
886
889 break;
890 }
891
892 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
893
894 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
895
896 // If the variable might have been accessed by its initializer, we
897 // might have to initialize with a barrier. We have to do this for
898 // both __weak and __strong, but __weak got filtered out above.
899 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
900 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
901 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
903 return;
904 }
905
906 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
907}
908
909/// Decide whether we can emit the non-zero parts of the specified initializer
910/// with equal or fewer than NumStores scalar stores.
911static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
912 unsigned &NumStores) {
913 // Zero and Undef never requires any extra stores.
914 if (isa<llvm::ConstantAggregateZero>(Init) ||
915 isa<llvm::ConstantPointerNull>(Init) ||
916 isa<llvm::UndefValue>(Init))
917 return true;
918 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
919 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
920 isa<llvm::ConstantExpr>(Init))
921 return Init->isNullValue() || NumStores--;
922
923 // See if we can emit each element.
924 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
925 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
926 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
927 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
928 return false;
929 }
930 return true;
931 }
932
933 if (llvm::ConstantDataSequential *CDS =
934 dyn_cast<llvm::ConstantDataSequential>(Init)) {
935 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
936 llvm::Constant *Elt = CDS->getElementAsConstant(i);
937 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
938 return false;
939 }
940 return true;
941 }
942
943 // Anything else is hard and scary.
944 return false;
945}
946
947/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
948/// the scalar stores that would be required.
950 llvm::Constant *Init, Address Loc,
951 bool isVolatile, CGBuilderTy &Builder,
952 bool IsAutoInit) {
953 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
954 "called emitStoresForInitAfterBZero for zero or undef value.");
955
956 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
957 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
958 isa<llvm::ConstantExpr>(Init)) {
959 auto *I = Builder.CreateStore(Init, Loc, isVolatile);
960 if (IsAutoInit)
961 I->addAnnotationMetadata("auto-init");
962 return;
963 }
964
965 if (llvm::ConstantDataSequential *CDS =
966 dyn_cast<llvm::ConstantDataSequential>(Init)) {
967 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
968 llvm::Constant *Elt = CDS->getElementAsConstant(i);
969
970 // If necessary, get a pointer to the element and emit it.
971 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
973 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
974 Builder, IsAutoInit);
975 }
976 return;
977 }
978
979 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
980 "Unknown value type!");
981
982 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
983 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
984
985 // If necessary, get a pointer to the element and emit it.
986 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
988 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
989 isVolatile, Builder, IsAutoInit);
990 }
991}
992
993/// Decide whether we should use bzero plus some stores to initialize a local
994/// variable instead of using a memcpy from a constant global. It is beneficial
995/// to use bzero if the global is all zeros, or mostly zeros and large.
996static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
997 uint64_t GlobalSize) {
998 // If a global is all zeros, always use a bzero.
999 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
1000
1001 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
1002 // do it if it will require 6 or fewer scalar stores.
1003 // TODO: Should budget depends on the size? Avoiding a large global warrants
1004 // plopping in more stores.
1005 unsigned StoreBudget = 6;
1006 uint64_t SizeLimit = 32;
1007
1008 return GlobalSize > SizeLimit &&
1010}
1011
1012/// Decide whether we should use memset to initialize a local variable instead
1013/// of using a memcpy from a constant global. Assumes we've already decided to
1014/// not user bzero.
1015/// FIXME We could be more clever, as we are for bzero above, and generate
1016/// memset followed by stores. It's unclear that's worth the effort.
1017static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
1018 uint64_t GlobalSize,
1019 const llvm::DataLayout &DL) {
1020 uint64_t SizeLimit = 32;
1021 if (GlobalSize <= SizeLimit)
1022 return nullptr;
1023 return llvm::isBytewiseValue(Init, DL);
1024}
1025
1026/// Decide whether we want to split a constant structure or array store into a
1027/// sequence of its fields' stores. This may cost us code size and compilation
1028/// speed, but plays better with store optimizations.
1030 uint64_t GlobalByteSize) {
1031 // Don't break things that occupy more than one cacheline.
1032 uint64_t ByteSizeLimit = 64;
1033 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1034 return false;
1035 if (GlobalByteSize <= ByteSizeLimit)
1036 return true;
1037 return false;
1038}
1039
1040enum class IsPattern { No, Yes };
1041
1042/// Generate a constant filled with either a pattern or zeroes.
1043static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1044 llvm::Type *Ty) {
1045 if (isPattern == IsPattern::Yes)
1046 return initializationPatternFor(CGM, Ty);
1047 else
1048 return llvm::Constant::getNullValue(Ty);
1049}
1050
1051static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1052 llvm::Constant *constant);
1053
1054/// Helper function for constWithPadding() to deal with padding in structures.
1055static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1056 IsPattern isPattern,
1057 llvm::StructType *STy,
1058 llvm::Constant *constant) {
1059 const llvm::DataLayout &DL = CGM.getDataLayout();
1060 const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1061 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1062 unsigned SizeSoFar = 0;
1064 bool NestedIntact = true;
1065 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1066 unsigned CurOff = Layout->getElementOffset(i);
1067 if (SizeSoFar < CurOff) {
1068 assert(!STy->isPacked());
1069 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1070 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1071 }
1072 llvm::Constant *CurOp;
1073 if (constant->isZeroValue())
1074 CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1075 else
1076 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1077 auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1078 if (CurOp != NewOp)
1079 NestedIntact = false;
1080 Values.push_back(NewOp);
1081 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1082 }
1083 unsigned TotalSize = Layout->getSizeInBytes();
1084 if (SizeSoFar < TotalSize) {
1085 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1086 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1087 }
1088 if (NestedIntact && Values.size() == STy->getNumElements())
1089 return constant;
1090 return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1091}
1092
1093/// Replace all padding bytes in a given constant with either a pattern byte or
1094/// 0x00.
1095static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1096 llvm::Constant *constant) {
1097 llvm::Type *OrigTy = constant->getType();
1098 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1099 return constStructWithPadding(CGM, isPattern, STy, constant);
1100 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1102 uint64_t Size = ArrayTy->getNumElements();
1103 if (!Size)
1104 return constant;
1105 llvm::Type *ElemTy = ArrayTy->getElementType();
1106 bool ZeroInitializer = constant->isNullValue();
1107 llvm::Constant *OpValue, *PaddedOp;
1108 if (ZeroInitializer) {
1109 OpValue = llvm::Constant::getNullValue(ElemTy);
1110 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1111 }
1112 for (unsigned Op = 0; Op != Size; ++Op) {
1113 if (!ZeroInitializer) {
1114 OpValue = constant->getAggregateElement(Op);
1115 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1116 }
1117 Values.push_back(PaddedOp);
1118 }
1119 auto *NewElemTy = Values[0]->getType();
1120 if (NewElemTy == ElemTy)
1121 return constant;
1122 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1123 return llvm::ConstantArray::get(NewArrayTy, Values);
1124 }
1125 // FIXME: Add handling for tail padding in vectors. Vectors don't
1126 // have padding between or inside elements, but the total amount of
1127 // data can be less than the allocated size.
1128 return constant;
1129}
1130
1132 llvm::Constant *Constant,
1133 CharUnits Align) {
1134 auto FunctionName = [&](const DeclContext *DC) -> std::string {
1135 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1136 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1137 return CC->getNameAsString();
1138 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1139 return CD->getNameAsString();
1140 return std::string(getMangledName(FD));
1141 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1142 return OM->getNameAsString();
1143 } else if (isa<BlockDecl>(DC)) {
1144 return "<block>";
1145 } else if (isa<CapturedDecl>(DC)) {
1146 return "<captured>";
1147 } else {
1148 llvm_unreachable("expected a function or method");
1149 }
1150 };
1151
1152 // Form a simple per-variable cache of these values in case we find we
1153 // want to reuse them.
1154 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1155 if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1156 auto *Ty = Constant->getType();
1157 bool isConstant = true;
1158 llvm::GlobalVariable *InsertBefore = nullptr;
1159 unsigned AS =
1161 std::string Name;
1162 if (D.hasGlobalStorage())
1163 Name = getMangledName(&D).str() + ".const";
1164 else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1165 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1166 else
1167 llvm_unreachable("local variable has no parent function or method");
1168 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1169 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1170 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1171 GV->setAlignment(Align.getAsAlign());
1172 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1173 CacheEntry = GV;
1174 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1175 CacheEntry->setAlignment(Align.getAsAlign());
1176 }
1177
1178 return Address(CacheEntry, CacheEntry->getValueType(), Align);
1179}
1180
1182 const VarDecl &D,
1183 CGBuilderTy &Builder,
1184 llvm::Constant *Constant,
1185 CharUnits Align) {
1186 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1187 return SrcPtr.withElementType(CGM.Int8Ty);
1188}
1189
1191 Address Loc, bool isVolatile,
1192 CGBuilderTy &Builder,
1193 llvm::Constant *constant, bool IsAutoInit) {
1194 auto *Ty = constant->getType();
1195 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1196 if (!ConstantSize)
1197 return;
1198
1199 bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1200 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1201 if (canDoSingleStore) {
1202 auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1203 if (IsAutoInit)
1204 I->addAnnotationMetadata("auto-init");
1205 return;
1206 }
1207
1208 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1209
1210 // If the initializer is all or mostly the same, codegen with bzero / memset
1211 // then do a few stores afterward.
1212 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1213 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1214 SizeVal, isVolatile);
1215 if (IsAutoInit)
1216 I->addAnnotationMetadata("auto-init");
1217
1218 bool valueAlreadyCorrect =
1219 constant->isNullValue() || isa<llvm::UndefValue>(constant);
1220 if (!valueAlreadyCorrect) {
1221 Loc = Loc.withElementType(Ty);
1222 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1223 IsAutoInit);
1224 }
1225 return;
1226 }
1227
1228 // If the initializer is a repeated byte pattern, use memset.
1229 llvm::Value *Pattern =
1230 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1231 if (Pattern) {
1232 uint64_t Value = 0x00;
1233 if (!isa<llvm::UndefValue>(Pattern)) {
1234 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1235 assert(AP.getBitWidth() <= 8);
1236 Value = AP.getLimitedValue();
1237 }
1238 auto *I = Builder.CreateMemSet(
1239 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1240 if (IsAutoInit)
1241 I->addAnnotationMetadata("auto-init");
1242 return;
1243 }
1244
1245 // If the initializer is small or trivialAutoVarInit is set, use a handful of
1246 // stores.
1247 bool IsTrivialAutoVarInitPattern =
1248 CGM.getContext().getLangOpts().getTrivialAutoVarInit() ==
1250 if (shouldSplitConstantStore(CGM, ConstantSize)) {
1251 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1252 if (STy == Loc.getElementType() ||
1253 (STy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) {
1254 const llvm::StructLayout *Layout =
1255 CGM.getDataLayout().getStructLayout(STy);
1256 for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1257 CharUnits CurOff =
1258 CharUnits::fromQuantity(Layout->getElementOffset(i));
1259 Address EltPtr = Builder.CreateConstInBoundsByteGEP(
1260 Loc.withElementType(CGM.Int8Ty), CurOff);
1261 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1262 constant->getAggregateElement(i), IsAutoInit);
1263 }
1264 return;
1265 }
1266 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1267 if (ATy == Loc.getElementType() ||
1268 (ATy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) {
1269 for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1270 Address EltPtr = Builder.CreateConstGEP(
1271 Loc.withElementType(ATy->getElementType()), i);
1272 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1273 constant->getAggregateElement(i), IsAutoInit);
1274 }
1275 return;
1276 }
1277 }
1278 }
1279
1280 // Copy from a global.
1281 auto *I =
1282 Builder.CreateMemCpy(Loc,
1284 CGM, D, Builder, constant, Loc.getAlignment()),
1285 SizeVal, isVolatile);
1286 if (IsAutoInit)
1287 I->addAnnotationMetadata("auto-init");
1288}
1289
1291 Address Loc, bool isVolatile,
1292 CGBuilderTy &Builder) {
1293 llvm::Type *ElTy = Loc.getElementType();
1294 llvm::Constant *constant =
1295 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1296 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1297 /*IsAutoInit=*/true);
1298}
1299
1301 Address Loc, bool isVolatile,
1302 CGBuilderTy &Builder) {
1303 llvm::Type *ElTy = Loc.getElementType();
1304 llvm::Constant *constant = constWithPadding(
1305 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1306 assert(!isa<llvm::UndefValue>(constant));
1307 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1308 /*IsAutoInit=*/true);
1309}
1310
1311static bool containsUndef(llvm::Constant *constant) {
1312 auto *Ty = constant->getType();
1313 if (isa<llvm::UndefValue>(constant))
1314 return true;
1315 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1316 for (llvm::Use &Op : constant->operands())
1317 if (containsUndef(cast<llvm::Constant>(Op)))
1318 return true;
1319 return false;
1320}
1321
1322static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1323 llvm::Constant *constant) {
1324 auto *Ty = constant->getType();
1325 if (isa<llvm::UndefValue>(constant))
1326 return patternOrZeroFor(CGM, isPattern, Ty);
1327 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1328 return constant;
1329 if (!containsUndef(constant))
1330 return constant;
1331 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1332 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1333 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1334 Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1335 }
1336 if (Ty->isStructTy())
1337 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1338 if (Ty->isArrayTy())
1339 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1340 assert(Ty->isVectorTy());
1341 return llvm::ConstantVector::get(Values);
1342}
1343
1344/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1345/// variable declaration with auto, register, or no storage class specifier.
1346/// These turn into simple stack objects, or GlobalValues depending on target.
1348 AutoVarEmission emission = EmitAutoVarAlloca(D);
1349 EmitAutoVarInit(emission);
1350 EmitAutoVarCleanups(emission);
1351}
1352
1353/// Emit a lifetime.begin marker if some criteria are satisfied.
1354/// \return a pointer to the temporary size Value if a marker was emitted, null
1355/// otherwise
1356llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1357 llvm::Value *Addr) {
1358 if (!ShouldEmitLifetimeMarkers)
1359 return nullptr;
1360
1361 assert(Addr->getType()->getPointerAddressSpace() ==
1362 CGM.getDataLayout().getAllocaAddrSpace() &&
1363 "Pointer should be in alloca address space");
1364 llvm::Value *SizeV = llvm::ConstantInt::get(
1365 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1366 llvm::CallInst *C =
1367 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1368 C->setDoesNotThrow();
1369 return SizeV;
1370}
1371
1372void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1373 assert(Addr->getType()->getPointerAddressSpace() ==
1374 CGM.getDataLayout().getAllocaAddrSpace() &&
1375 "Pointer should be in alloca address space");
1376 llvm::CallInst *C =
1377 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1378 C->setDoesNotThrow();
1379}
1380
1382 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1383 // For each dimension stores its QualType and corresponding
1384 // size-expression Value.
1387
1388 // Break down the array into individual dimensions.
1389 QualType Type1D = D.getType();
1390 while (getContext().getAsVariableArrayType(Type1D)) {
1391 auto VlaSize = getVLAElements1D(Type1D);
1392 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1393 Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1394 else {
1395 // Generate a locally unique name for the size expression.
1396 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1397 SmallString<12> Buffer;
1398 StringRef NameRef = Name.toStringRef(Buffer);
1399 auto &Ident = getContext().Idents.getOwn(NameRef);
1400 VLAExprNames.push_back(&Ident);
1401 auto SizeExprAddr =
1402 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1403 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1404 Dimensions.emplace_back(SizeExprAddr.getPointer(),
1405 Type1D.getUnqualifiedType());
1406 }
1407 Type1D = VlaSize.Type;
1408 }
1409
1410 if (!EmitDebugInfo)
1411 return;
1412
1413 // Register each dimension's size-expression with a DILocalVariable,
1414 // so that it can be used by CGDebugInfo when instantiating a DISubrange
1415 // to describe this array.
1416 unsigned NameIdx = 0;
1417 for (auto &VlaSize : Dimensions) {
1418 llvm::Metadata *MD;
1419 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1420 MD = llvm::ConstantAsMetadata::get(C);
1421 else {
1422 // Create an artificial VarDecl to generate debug info for.
1423 const IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1425 SizeTy->getScalarSizeInBits(), false);
1426 auto *ArtificialDecl = VarDecl::Create(
1427 getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1428 D.getLocation(), D.getLocation(), NameIdent, QT,
1429 getContext().CreateTypeSourceInfo(QT), SC_Auto);
1430 ArtificialDecl->setImplicit();
1431
1432 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1433 Builder);
1434 }
1435 assert(MD && "No Size expression debug node created");
1436 DI->registerVLASizeExpression(VlaSize.Type, MD);
1437 }
1438}
1439
1440/// EmitAutoVarAlloca - Emit the alloca and debug information for a
1441/// local variable. Does not emit initialization or destruction.
1442CodeGenFunction::AutoVarEmission
1444 QualType Ty = D.getType();
1445 assert(
1448
1449 AutoVarEmission emission(D);
1450
1451 bool isEscapingByRef = D.isEscapingByref();
1452 emission.IsEscapingByRef = isEscapingByRef;
1453
1454 CharUnits alignment = getContext().getDeclAlign(&D);
1455
1456 // If the type is variably-modified, emit all the VLA sizes for it.
1457 if (Ty->isVariablyModifiedType())
1459
1460 auto *DI = getDebugInfo();
1461 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1462
1463 Address address = Address::invalid();
1464 RawAddress AllocaAddr = RawAddress::invalid();
1465 Address OpenMPLocalAddr = Address::invalid();
1466 if (CGM.getLangOpts().OpenMPIRBuilder)
1467 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1468 else
1469 OpenMPLocalAddr =
1470 getLangOpts().OpenMP
1472 : Address::invalid();
1473
1474 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1475
1476 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1477 address = OpenMPLocalAddr;
1478 AllocaAddr = OpenMPLocalAddr;
1479 } else if (Ty->isConstantSizeType()) {
1480 // If this value is an array or struct with a statically determinable
1481 // constant initializer, there are optimizations we can do.
1482 //
1483 // TODO: We should constant-evaluate the initializer of any variable,
1484 // as long as it is initialized by a constant expression. Currently,
1485 // isConstantInitializer produces wrong answers for structs with
1486 // reference or bitfield members, and a few other cases, and checking
1487 // for POD-ness protects us from some of these.
1488 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1489 (D.isConstexpr() ||
1490 ((Ty.isPODType(getContext()) ||
1491 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1492 D.getInit()->isConstantInitializer(getContext(), false)))) {
1493
1494 // If the variable's a const type, and it's neither an NRVO
1495 // candidate nor a __block variable and has no mutable members,
1496 // emit it as a global instead.
1497 // Exception is if a variable is located in non-constant address space
1498 // in OpenCL.
1499 bool NeedsDtor =
1501 if ((!getLangOpts().OpenCL ||
1503 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1504 !isEscapingByRef &&
1505 Ty.isConstantStorage(getContext(), true, !NeedsDtor))) {
1506 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1507
1508 // Signal this condition to later callbacks.
1509 emission.Addr = Address::invalid();
1510 assert(emission.wasEmittedAsGlobal());
1511 return emission;
1512 }
1513
1514 // Otherwise, tell the initialization code that we're in this case.
1515 emission.IsConstantAggregate = true;
1516 }
1517
1518 // A normal fixed sized variable becomes an alloca in the entry block,
1519 // unless:
1520 // - it's an NRVO variable.
1521 // - we are compiling OpenMP and it's an OpenMP local variable.
1522 if (NRVO) {
1523 // The named return value optimization: allocate this variable in the
1524 // return slot, so that we can elide the copy when returning this
1525 // variable (C++0x [class.copy]p34).
1526 address = ReturnValue;
1527 AllocaAddr =
1530 ;
1531
1532 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1533 const auto *RD = RecordTy->getDecl();
1534 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1535 if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1536 RD->isNonTrivialToPrimitiveDestroy()) {
1537 // Create a flag that is used to indicate when the NRVO was applied
1538 // to this variable. Set it to zero to indicate that NRVO was not
1539 // applied.
1540 llvm::Value *Zero = Builder.getFalse();
1541 RawAddress NRVOFlag =
1542 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1544 Builder.CreateStore(Zero, NRVOFlag);
1545
1546 // Record the NRVO flag for this variable.
1547 NRVOFlags[&D] = NRVOFlag.getPointer();
1548 emission.NRVOFlag = NRVOFlag.getPointer();
1549 }
1550 }
1551 } else {
1552 CharUnits allocaAlignment;
1553 llvm::Type *allocaTy;
1554 if (isEscapingByRef) {
1555 auto &byrefInfo = getBlockByrefInfo(&D);
1556 allocaTy = byrefInfo.Type;
1557 allocaAlignment = byrefInfo.ByrefAlignment;
1558 } else {
1559 allocaTy = ConvertTypeForMem(Ty);
1560 allocaAlignment = alignment;
1561 }
1562
1563 // Create the alloca. Note that we set the name separately from
1564 // building the instruction so that it's there even in no-asserts
1565 // builds.
1566 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1567 /*ArraySize=*/nullptr, &AllocaAddr);
1568
1569 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1570 // the catch parameter starts in the catchpad instruction, and we can't
1571 // insert code in those basic blocks.
1572 bool IsMSCatchParam =
1574
1575 // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1576 // if we don't have a valid insertion point (?).
1577 if (HaveInsertPoint() && !IsMSCatchParam) {
1578 // If there's a jump into the lifetime of this variable, its lifetime
1579 // gets broken up into several regions in IR, which requires more work
1580 // to handle correctly. For now, just omit the intrinsics; this is a
1581 // rare case, and it's better to just be conservatively correct.
1582 // PR28267.
1583 //
1584 // We have to do this in all language modes if there's a jump past the
1585 // declaration. We also have to do it in C if there's a jump to an
1586 // earlier point in the current block because non-VLA lifetimes begin as
1587 // soon as the containing block is entered, not when its variables
1588 // actually come into scope; suppressing the lifetime annotations
1589 // completely in this case is unnecessarily pessimistic, but again, this
1590 // is rare.
1591 if (!Bypasses.IsBypassed(&D) &&
1593 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1594 emission.SizeForLifetimeMarkers =
1595 EmitLifetimeStart(Size, AllocaAddr.getPointer());
1596 }
1597 } else {
1598 assert(!emission.useLifetimeMarkers());
1599 }
1600 }
1601 } else {
1603
1604 // Delayed globalization for variable length declarations. This ensures that
1605 // the expression representing the length has been emitted and can be used
1606 // by the definition of the VLA. Since this is an escaped declaration, in
1607 // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching
1608 // deallocation call to __kmpc_free_shared() is emitted later.
1609 bool VarAllocated = false;
1610 if (getLangOpts().OpenMPIsTargetDevice) {
1611 auto &RT = CGM.getOpenMPRuntime();
1612 if (RT.isDelayedVariableLengthDecl(*this, &D)) {
1613 // Emit call to __kmpc_alloc_shared() instead of the alloca.
1614 std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1615 RT.getKmpcAllocShared(*this, &D);
1616
1617 // Save the address of the allocation:
1618 LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(),
1621 address = Base.getAddress();
1622
1623 // Push a cleanup block to emit the call to __kmpc_free_shared in the
1624 // appropriate location at the end of the scope of the
1625 // __kmpc_alloc_shared functions:
1626 pushKmpcAllocFree(NormalCleanup, AddrSizePair);
1627
1628 // Mark variable as allocated:
1629 VarAllocated = true;
1630 }
1631 }
1632
1633 if (!VarAllocated) {
1634 if (!DidCallStackSave) {
1635 // Save the stack.
1636 Address Stack =
1638
1639 llvm::Value *V = Builder.CreateStackSave();
1640 assert(V->getType() == AllocaInt8PtrTy);
1641 Builder.CreateStore(V, Stack);
1642
1643 DidCallStackSave = true;
1644
1645 // Push a cleanup block and restore the stack there.
1646 // FIXME: in general circumstances, this should be an EH cleanup.
1648 }
1649
1650 auto VlaSize = getVLASize(Ty);
1651 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1652
1653 // Allocate memory for the array.
1654 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1655 &AllocaAddr);
1656 }
1657
1658 // If we have debug info enabled, properly describe the VLA dimensions for
1659 // this type by registering the vla size expression for each of the
1660 // dimensions.
1661 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1662 }
1663
1664 setAddrOfLocalVar(&D, address);
1665 emission.Addr = address;
1666 emission.AllocaAddr = AllocaAddr;
1667
1668 // Emit debug info for local var declaration.
1669 if (EmitDebugInfo && HaveInsertPoint()) {
1670 Address DebugAddr = address;
1671 bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1672 DI->setLocation(D.getLocation());
1673
1674 // If NRVO, use a pointer to the return address.
1675 if (UsePointerValue) {
1676 DebugAddr = ReturnValuePointer;
1677 AllocaAddr = ReturnValuePointer;
1678 }
1679 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1680 UsePointerValue);
1681 }
1682
1683 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1684 EmitVarAnnotations(&D, address.emitRawPointer(*this));
1685
1686 // Make sure we call @llvm.lifetime.end.
1687 if (emission.useLifetimeMarkers())
1688 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1689 emission.getOriginalAllocatedAddress(),
1690 emission.getSizeForLifetimeMarkers());
1691
1692 return emission;
1693}
1694
1695static bool isCapturedBy(const VarDecl &, const Expr *);
1696
1697/// Determines whether the given __block variable is potentially
1698/// captured by the given statement.
1699static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1700 if (const Expr *E = dyn_cast<Expr>(S))
1701 return isCapturedBy(Var, E);
1702 for (const Stmt *SubStmt : S->children())
1703 if (isCapturedBy(Var, SubStmt))
1704 return true;
1705 return false;
1706}
1707
1708/// Determines whether the given __block variable is potentially
1709/// captured by the given expression.
1710static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1711 // Skip the most common kinds of expressions that make
1712 // hierarchy-walking expensive.
1713 E = E->IgnoreParenCasts();
1714
1715 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1716 const BlockDecl *Block = BE->getBlockDecl();
1717 for (const auto &I : Block->captures()) {
1718 if (I.getVariable() == &Var)
1719 return true;
1720 }
1721
1722 // No need to walk into the subexpressions.
1723 return false;
1724 }
1725
1726 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1727 const CompoundStmt *CS = SE->getSubStmt();
1728 for (const auto *BI : CS->body())
1729 if (const auto *BIE = dyn_cast<Expr>(BI)) {
1730 if (isCapturedBy(Var, BIE))
1731 return true;
1732 }
1733 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1734 // special case declarations
1735 for (const auto *I : DS->decls()) {
1736 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1737 const Expr *Init = VD->getInit();
1738 if (Init && isCapturedBy(Var, Init))
1739 return true;
1740 }
1741 }
1742 }
1743 else
1744 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1745 // Later, provide code to poke into statements for capture analysis.
1746 return true;
1747 return false;
1748 }
1749
1750 for (const Stmt *SubStmt : E->children())
1751 if (isCapturedBy(Var, SubStmt))
1752 return true;
1753
1754 return false;
1755}
1756
1757/// Determine whether the given initializer is trivial in the sense
1758/// that it requires no code to be generated.
1760 if (!Init)
1761 return true;
1762
1763 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1764 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1765 if (Constructor->isTrivial() &&
1766 Constructor->isDefaultConstructor() &&
1767 !Construct->requiresZeroInitialization())
1768 return true;
1769
1770 return false;
1771}
1772
1773void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1774 const VarDecl &D,
1775 Address Loc) {
1776 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1777 auto trivialAutoVarInitMaxSize =
1778 getContext().getLangOpts().TrivialAutoVarInitMaxSize;
1780 bool isVolatile = type.isVolatileQualified();
1781 if (!Size.isZero()) {
1782 // We skip auto-init variables by their alloc size. Take this as an example:
1783 // "struct Foo {int x; char buff[1024];}" Assume the max-size flag is 1023.
1784 // All Foo type variables will be skipped. Ideally, we only skip the buff
1785 // array and still auto-init X in this example.
1786 // TODO: Improve the size filtering to by member size.
1787 auto allocSize = CGM.getDataLayout().getTypeAllocSize(Loc.getElementType());
1788 switch (trivialAutoVarInit) {
1790 llvm_unreachable("Uninitialized handled by caller");
1792 if (CGM.stopAutoInit())
1793 return;
1794 if (trivialAutoVarInitMaxSize > 0 &&
1795 allocSize > trivialAutoVarInitMaxSize)
1796 return;
1797 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1798 break;
1800 if (CGM.stopAutoInit())
1801 return;
1802 if (trivialAutoVarInitMaxSize > 0 &&
1803 allocSize > trivialAutoVarInitMaxSize)
1804 return;
1805 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1806 break;
1807 }
1808 return;
1809 }
1810
1811 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1812 // them, so emit a memcpy with the VLA size to initialize each element.
1813 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1814 // will catch that code, but there exists code which generates zero-sized
1815 // VLAs. Be nice and initialize whatever they requested.
1816 const auto *VlaType = getContext().getAsVariableArrayType(type);
1817 if (!VlaType)
1818 return;
1819 auto VlaSize = getVLASize(VlaType);
1820 auto SizeVal = VlaSize.NumElts;
1821 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1822 switch (trivialAutoVarInit) {
1824 llvm_unreachable("Uninitialized handled by caller");
1825
1827 if (CGM.stopAutoInit())
1828 return;
1829 if (!EltSize.isOne())
1830 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1831 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1832 SizeVal, isVolatile);
1833 I->addAnnotationMetadata("auto-init");
1834 break;
1835 }
1836
1838 if (CGM.stopAutoInit())
1839 return;
1840 llvm::Type *ElTy = Loc.getElementType();
1841 llvm::Constant *Constant = constWithPadding(
1842 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1843 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1844 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1845 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1846 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1847 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1848 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1849 "vla.iszerosized");
1850 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1851 EmitBlock(SetupBB);
1852 if (!EltSize.isOne())
1853 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1854 llvm::Value *BaseSizeInChars =
1855 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1856 Address Begin = Loc.withElementType(Int8Ty);
1857 llvm::Value *End = Builder.CreateInBoundsGEP(Begin.getElementType(),
1858 Begin.emitRawPointer(*this),
1859 SizeVal, "vla.end");
1860 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1861 EmitBlock(LoopBB);
1862 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1863 Cur->addIncoming(Begin.emitRawPointer(*this), OriginBB);
1864 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1865 auto *I =
1866 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1868 CGM, D, Builder, Constant, ConstantAlign),
1869 BaseSizeInChars, isVolatile);
1870 I->addAnnotationMetadata("auto-init");
1871 llvm::Value *Next =
1872 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1873 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1874 Builder.CreateCondBr(Done, ContBB, LoopBB);
1875 Cur->addIncoming(Next, LoopBB);
1876 EmitBlock(ContBB);
1877 } break;
1878 }
1879}
1880
1881void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1882 assert(emission.Variable && "emission was not valid!");
1883
1884 // If this was emitted as a global constant, we're done.
1885 if (emission.wasEmittedAsGlobal()) return;
1886
1887 const VarDecl &D = *emission.Variable;
1889 QualType type = D.getType();
1890
1891 // If this local has an initializer, emit it now.
1892 const Expr *Init = D.getInit();
1893
1894 // If we are at an unreachable point, we don't need to emit the initializer
1895 // unless it contains a label.
1896 if (!HaveInsertPoint()) {
1897 if (!Init || !ContainsLabel(Init)) return;
1899 }
1900
1901 // Initialize the structure of a __block variable.
1902 if (emission.IsEscapingByRef)
1903 emitByrefStructureInit(emission);
1904
1905 // Initialize the variable here if it doesn't have a initializer and it is a
1906 // C struct that is non-trivial to initialize or an array containing such a
1907 // struct.
1908 if (!Init &&
1909 type.isNonTrivialToPrimitiveDefaultInitialize() ==
1911 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1912 if (emission.IsEscapingByRef)
1913 drillIntoBlockVariable(*this, Dst, &D);
1915 return;
1916 }
1917
1918 // Check whether this is a byref variable that's potentially
1919 // captured and moved by its own initializer. If so, we'll need to
1920 // emit the initializer first, then copy into the variable.
1921 bool capturedByInit =
1922 Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1923
1924 bool locIsByrefHeader = !capturedByInit;
1925 const Address Loc =
1926 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1927
1928 // Note: constexpr already initializes everything correctly.
1929 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1930 (D.isConstexpr()
1932 : (D.getAttr<UninitializedAttr>()
1934 : getContext().getLangOpts().getTrivialAutoVarInit()));
1935
1936 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1937 if (trivialAutoVarInit ==
1939 return;
1940
1941 // Only initialize a __block's storage: we always initialize the header.
1942 if (emission.IsEscapingByRef && !locIsByrefHeader)
1943 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1944
1945 return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1946 };
1947
1949 return initializeWhatIsTechnicallyUninitialized(Loc);
1950
1951 llvm::Constant *constant = nullptr;
1952 if (emission.IsConstantAggregate ||
1954 assert(!capturedByInit && "constant init contains a capturing block?");
1956 if (constant && !constant->isZeroValue() &&
1957 (trivialAutoVarInit !=
1959 IsPattern isPattern =
1960 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1961 ? IsPattern::Yes
1962 : IsPattern::No;
1963 // C guarantees that brace-init with fewer initializers than members in
1964 // the aggregate will initialize the rest of the aggregate as-if it were
1965 // static initialization. In turn static initialization guarantees that
1966 // padding is initialized to zero bits. We could instead pattern-init if D
1967 // has any ImplicitValueInitExpr, but that seems to be unintuitive
1968 // behavior.
1969 constant = constWithPadding(CGM, IsPattern::No,
1970 replaceUndef(CGM, isPattern, constant));
1971 }
1972 }
1973
1974 if (!constant) {
1975 initializeWhatIsTechnicallyUninitialized(Loc);
1977 lv.setNonGC(true);
1978 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1979 }
1980
1981 if (!emission.IsConstantAggregate) {
1982 // For simple scalar/complex initialization, store the value directly.
1984 lv.setNonGC(true);
1985 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1986 }
1987
1988 emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty),
1989 type.isVolatileQualified(), Builder, constant,
1990 /*IsAutoInit=*/false);
1991}
1992
1993/// Emit an expression as an initializer for an object (variable, field, etc.)
1994/// at the given location. The expression is not necessarily the normal
1995/// initializer for the object, and the address is not necessarily
1996/// its normal location.
1997///
1998/// \param init the initializing expression
1999/// \param D the object to act as if we're initializing
2000/// \param lvalue the lvalue to initialize
2001/// \param capturedByInit true if \p D is a __block variable
2002/// whose address is potentially changed by the initializer
2003void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
2004 LValue lvalue, bool capturedByInit) {
2005 QualType type = D->getType();
2006
2007 if (type->isReferenceType()) {
2008 RValue rvalue = EmitReferenceBindingToExpr(init);
2009 if (capturedByInit)
2010 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
2011 EmitStoreThroughLValue(rvalue, lvalue, true);
2012 return;
2013 }
2014 switch (getEvaluationKind(type)) {
2015 case TEK_Scalar:
2016 EmitScalarInit(init, D, lvalue, capturedByInit);
2017 return;
2018 case TEK_Complex: {
2019 ComplexPairTy complex = EmitComplexExpr(init);
2020 if (capturedByInit)
2021 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
2022 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
2023 return;
2024 }
2025 case TEK_Aggregate:
2026 if (type->isAtomicType()) {
2027 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
2028 } else {
2030 if (isa<VarDecl>(D))
2032 else if (auto *FD = dyn_cast<FieldDecl>(D))
2033 Overlap = getOverlapForFieldInit(FD);
2034 // TODO: how can we delay here if D is captured by its initializer?
2035 EmitAggExpr(init,
2038 AggValueSlot::IsNotAliased, Overlap));
2039 }
2040 return;
2041 }
2042 llvm_unreachable("bad evaluation kind");
2043}
2044
2045/// Enter a destroy cleanup for the given local variable.
2047 const CodeGenFunction::AutoVarEmission &emission,
2048 QualType::DestructionKind dtorKind) {
2049 assert(dtorKind != QualType::DK_none);
2050
2051 // Note that for __block variables, we want to destroy the
2052 // original stack object, not the possibly forwarded object.
2053 Address addr = emission.getObjectAddress(*this);
2054
2055 const VarDecl *var = emission.Variable;
2056 QualType type = var->getType();
2057
2058 CleanupKind cleanupKind = NormalAndEHCleanup;
2059 CodeGenFunction::Destroyer *destroyer = nullptr;
2060
2061 switch (dtorKind) {
2062 case QualType::DK_none:
2063 llvm_unreachable("no cleanup for trivially-destructible variable");
2064
2066 // If there's an NRVO flag on the emission, we need a different
2067 // cleanup.
2068 if (emission.NRVOFlag) {
2069 assert(!type->isArrayType());
2070 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2071 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2072 emission.NRVOFlag);
2073 return;
2074 }
2075 break;
2076
2078 // Suppress cleanups for pseudo-strong variables.
2079 if (var->isARCPseudoStrong()) return;
2080
2081 // Otherwise, consider whether to use an EH cleanup or not.
2082 cleanupKind = getARCCleanupKind();
2083
2084 // Use the imprecise destroyer by default.
2085 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2087 break;
2088
2090 break;
2091
2094 if (emission.NRVOFlag) {
2095 assert(!type->isArrayType());
2096 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2097 emission.NRVOFlag, type);
2098 return;
2099 }
2100 break;
2101 }
2102
2103 // If we haven't chosen a more specific destroyer, use the default.
2104 if (!destroyer) destroyer = getDestroyer(dtorKind);
2105
2106 // Use an EH cleanup in array destructors iff the destructor itself
2107 // is being pushed as an EH cleanup.
2108 bool useEHCleanup = (cleanupKind & EHCleanup);
2109 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2110 useEHCleanup);
2111}
2112
2113void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2114 assert(emission.Variable && "emission was not valid!");
2115
2116 // If this was emitted as a global constant, we're done.
2117 if (emission.wasEmittedAsGlobal()) return;
2118
2119 // If we don't have an insertion point, we're done. Sema prevents
2120 // us from jumping into any of these scopes anyway.
2121 if (!HaveInsertPoint()) return;
2122
2123 const VarDecl &D = *emission.Variable;
2124
2125 // Check the type for a cleanup.
2127 emitAutoVarTypeCleanup(emission, dtorKind);
2128
2129 // In GC mode, honor objc_precise_lifetime.
2130 if (getLangOpts().getGC() != LangOptions::NonGC &&
2131 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2132 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2133 }
2134
2135 // Handle the cleanup attribute.
2136 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2137 const FunctionDecl *FD = CA->getFunctionDecl();
2138
2139 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2140 assert(F && "Could not find function!");
2141
2143 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2144 }
2145
2146 // If this is a block variable, call _Block_object_destroy
2147 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2148 // mode.
2149 if (emission.IsEscapingByRef &&
2150 CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2152 if (emission.Variable->getType().isObjCGCWeak())
2153 Flags |= BLOCK_FIELD_IS_WEAK;
2154 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2155 /*LoadBlockVarAddr*/ false,
2156 cxxDestructorCanThrow(emission.Variable->getType()));
2157 }
2158}
2159
2162 switch (kind) {
2163 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2165 return destroyCXXObject;
2169 return destroyARCWeak;
2172 }
2173 llvm_unreachable("Unknown DestructionKind");
2174}
2175
2176/// pushEHDestroy - Push the standard destructor for the given type as
2177/// an EH-only cleanup.
2179 Address addr, QualType type) {
2180 assert(dtorKind && "cannot push destructor for trivial type");
2181 assert(needsEHCleanup(dtorKind));
2182
2183 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2184}
2185
2186/// pushDestroy - Push the standard destructor for the given type as
2187/// at least a normal cleanup.
2189 Address addr, QualType type) {
2190 assert(dtorKind && "cannot push destructor for trivial type");
2191
2192 CleanupKind cleanupKind = getCleanupKind(dtorKind);
2193 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2194 cleanupKind & EHCleanup);
2195}
2196
2197void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2198 QualType type, Destroyer *destroyer,
2199 bool useEHCleanupForArray) {
2200 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2201 destroyer, useEHCleanupForArray);
2202}
2203
2204// Pushes a destroy and defers its deactivation until its
2205// CleanupDeactivationScope is exited.
2208 assert(dtorKind && "cannot push destructor for trivial type");
2209
2210 CleanupKind cleanupKind = getCleanupKind(dtorKind);
2212 cleanupKind, addr, type, getDestroyer(dtorKind), cleanupKind & EHCleanup);
2213}
2214
2216 CleanupKind cleanupKind, Address addr, QualType type, Destroyer *destroyer,
2217 bool useEHCleanupForArray) {
2218 llvm::Instruction *DominatingIP =
2219 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
2220 pushDestroy(cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2222 {EHStack.stable_begin(), DominatingIP});
2223}
2224
2226 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2227}
2228
2230 CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) {
2231 EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair);
2232}
2233
2235 Address addr, QualType type,
2236 Destroyer *destroyer,
2237 bool useEHCleanupForArray) {
2238 // If we're not in a conditional branch, we don't need to bother generating a
2239 // conditional cleanup.
2240 if (!isInConditionalBranch()) {
2241 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2242 // around in case a temporary's destructor throws an exception.
2243
2244 // Add the cleanup to the EHStack. After the full-expr, this would be
2245 // deactivated before being popped from the stack.
2246 pushDestroyAndDeferDeactivation(cleanupKind, addr, type, destroyer,
2247 useEHCleanupForArray);
2248
2249 // Since this is lifetime-extended, push it once again to the EHStack after
2250 // the full expression.
2251 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2252 cleanupKind, Address::invalid(), addr, type, destroyer,
2253 useEHCleanupForArray);
2254 }
2255
2256 // Otherwise, we should only destroy the object if it's been initialized.
2257
2258 using ConditionalCleanupType =
2260 Destroyer *, bool>;
2262
2263 // Remember to emit cleanup if we branch-out before end of full-expression
2264 // (eg: through stmt-expr or coro suspensions).
2265 AllocaTrackerRAII DeactivationAllocas(*this);
2266 Address ActiveFlagForDeactivation = createCleanupActiveFlag();
2267
2268 pushCleanupAndDeferDeactivation<ConditionalCleanupType>(
2269 cleanupKind, SavedAddr, type, destroyer, useEHCleanupForArray);
2270 initFullExprCleanupWithFlag(ActiveFlagForDeactivation);
2271 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
2272 // Erase the active flag if the cleanup was not emitted.
2273 cleanup.AddAuxAllocas(std::move(DeactivationAllocas).Take());
2274
2275 // Since this is lifetime-extended, push it once again to the EHStack after
2276 // the full expression.
2277 // The previous active flag would always be 'false' due to forced deferred
2278 // deactivation. Use a separate flag for lifetime-extension to correctly
2279 // remember if this branch was taken and the object was initialized.
2280 Address ActiveFlagForLifetimeExt = createCleanupActiveFlag();
2281 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2282 cleanupKind, ActiveFlagForLifetimeExt, SavedAddr, type, destroyer,
2283 useEHCleanupForArray);
2284}
2285
2286/// emitDestroy - Immediately perform the destruction of the given
2287/// object.
2288///
2289/// \param addr - the address of the object; a type*
2290/// \param type - the type of the object; if an array type, all
2291/// objects are destroyed in reverse order
2292/// \param destroyer - the function to call to destroy individual
2293/// elements
2294/// \param useEHCleanupForArray - whether an EH cleanup should be
2295/// used when destroying array elements, in case one of the
2296/// destructions throws an exception
2298 Destroyer *destroyer,
2299 bool useEHCleanupForArray) {
2301 if (!arrayType)
2302 return destroyer(*this, addr, type);
2303
2304 llvm::Value *length = emitArrayLength(arrayType, type, addr);
2305
2306 CharUnits elementAlign =
2307 addr.getAlignment()
2308 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2309
2310 // Normally we have to check whether the array is zero-length.
2311 bool checkZeroLength = true;
2312
2313 // But if the array length is constant, we can suppress that.
2314 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2315 // ...and if it's constant zero, we can just skip the entire thing.
2316 if (constLength->isZero()) return;
2317 checkZeroLength = false;
2318 }
2319
2320 llvm::Value *begin = addr.emitRawPointer(*this);
2321 llvm::Value *end =
2323 emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2324 checkZeroLength, useEHCleanupForArray);
2325}
2326
2327/// emitArrayDestroy - Destroys all the elements of the given array,
2328/// beginning from last to first. The array cannot be zero-length.
2329///
2330/// \param begin - a type* denoting the first element of the array
2331/// \param end - a type* denoting one past the end of the array
2332/// \param elementType - the element type of the array
2333/// \param destroyer - the function to call to destroy elements
2334/// \param useEHCleanup - whether to push an EH cleanup to destroy
2335/// the remaining elements in case the destruction of a single
2336/// element throws
2337void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2338 llvm::Value *end,
2339 QualType elementType,
2340 CharUnits elementAlign,
2341 Destroyer *destroyer,
2342 bool checkZeroLength,
2343 bool useEHCleanup) {
2344 assert(!elementType->isArrayType());
2345
2346 // The basic structure here is a do-while loop, because we don't
2347 // need to check for the zero-element case.
2348 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2349 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2350
2351 if (checkZeroLength) {
2352 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2353 "arraydestroy.isempty");
2354 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2355 }
2356
2357 // Enter the loop body, making that address the current address.
2358 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2359 EmitBlock(bodyBB);
2360 llvm::PHINode *elementPast =
2361 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2362 elementPast->addIncoming(end, entryBB);
2363
2364 // Shift the address back by one element.
2365 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2366 llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2367 llvm::Value *element = Builder.CreateInBoundsGEP(
2368 llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2369
2370 if (useEHCleanup)
2371 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2372 destroyer);
2373
2374 // Perform the actual destruction there.
2375 destroyer(*this, Address(element, llvmElementType, elementAlign),
2376 elementType);
2377
2378 if (useEHCleanup)
2380
2381 // Check whether we've reached the end.
2382 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2383 Builder.CreateCondBr(done, doneBB, bodyBB);
2384 elementPast->addIncoming(element, Builder.GetInsertBlock());
2385
2386 // Done.
2387 EmitBlock(doneBB);
2388}
2389
2390/// Perform partial array destruction as if in an EH cleanup. Unlike
2391/// emitArrayDestroy, the element type here may still be an array type.
2393 llvm::Value *begin, llvm::Value *end,
2394 QualType type, CharUnits elementAlign,
2395 CodeGenFunction::Destroyer *destroyer) {
2396 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2397
2398 // If the element type is itself an array, drill down.
2399 unsigned arrayDepth = 0;
2400 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2401 // VLAs don't require a GEP index to walk into.
2402 if (!isa<VariableArrayType>(arrayType))
2403 arrayDepth++;
2404 type = arrayType->getElementType();
2405 }
2406
2407 if (arrayDepth) {
2408 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2409
2410 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2411 begin = CGF.Builder.CreateInBoundsGEP(
2412 elemTy, begin, gepIndices, "pad.arraybegin");
2413 end = CGF.Builder.CreateInBoundsGEP(
2414 elemTy, end, gepIndices, "pad.arrayend");
2415 }
2416
2417 // Destroy the array. We don't ever need an EH cleanup because we
2418 // assume that we're in an EH cleanup ourselves, so a throwing
2419 // destructor causes an immediate terminate.
2420 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2421 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2422}
2423
2424namespace {
2425 /// RegularPartialArrayDestroy - a cleanup which performs a partial
2426 /// array destroy where the end pointer is regularly determined and
2427 /// does not need to be loaded from a local.
2428 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2429 llvm::Value *ArrayBegin;
2430 llvm::Value *ArrayEnd;
2431 QualType ElementType;
2432 CodeGenFunction::Destroyer *Destroyer;
2433 CharUnits ElementAlign;
2434 public:
2435 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2436 QualType elementType, CharUnits elementAlign,
2437 CodeGenFunction::Destroyer *destroyer)
2438 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2439 ElementType(elementType), Destroyer(destroyer),
2440 ElementAlign(elementAlign) {}
2441
2442 void Emit(CodeGenFunction &CGF, Flags flags) override {
2443 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2444 ElementType, ElementAlign, Destroyer);
2445 }
2446 };
2447
2448 /// IrregularPartialArrayDestroy - a cleanup which performs a
2449 /// partial array destroy where the end pointer is irregularly
2450 /// determined and must be loaded from a local.
2451 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2452 llvm::Value *ArrayBegin;
2453 Address ArrayEndPointer;
2454 QualType ElementType;
2455 CodeGenFunction::Destroyer *Destroyer;
2456 CharUnits ElementAlign;
2457 public:
2458 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2459 Address arrayEndPointer,
2460 QualType elementType,
2461 CharUnits elementAlign,
2462 CodeGenFunction::Destroyer *destroyer)
2463 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2464 ElementType(elementType), Destroyer(destroyer),
2465 ElementAlign(elementAlign) {}
2466
2467 void Emit(CodeGenFunction &CGF, Flags flags) override {
2468 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2469 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2470 ElementType, ElementAlign, Destroyer);
2471 }
2472 };
2473} // end anonymous namespace
2474
2475/// pushIrregularPartialArrayCleanup - Push a NormalAndEHCleanup to
2476/// destroy already-constructed elements of the given array. The cleanup may be
2477/// popped with DeactivateCleanupBlock or PopCleanupBlock.
2478///
2479/// \param elementType - the immediate element type of the array;
2480/// possibly still an array type
2481void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2482 Address arrayEndPointer,
2483 QualType elementType,
2484 CharUnits elementAlign,
2485 Destroyer *destroyer) {
2486 pushFullExprCleanup<IrregularPartialArrayDestroy>(
2487 NormalAndEHCleanup, arrayBegin, arrayEndPointer, elementType,
2488 elementAlign, destroyer);
2489}
2490
2491/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2492/// already-constructed elements of the given array. The cleanup
2493/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2494///
2495/// \param elementType - the immediate element type of the array;
2496/// possibly still an array type
2497void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2498 llvm::Value *arrayEnd,
2499 QualType elementType,
2500 CharUnits elementAlign,
2501 Destroyer *destroyer) {
2502 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2503 arrayBegin, arrayEnd,
2504 elementType, elementAlign,
2505 destroyer);
2506}
2507
2508/// Lazily declare the @llvm.lifetime.start intrinsic.
2510 if (LifetimeStartFn)
2511 return LifetimeStartFn;
2512 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2513 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2514 return LifetimeStartFn;
2515}
2516
2517/// Lazily declare the @llvm.lifetime.end intrinsic.
2519 if (LifetimeEndFn)
2520 return LifetimeEndFn;
2521 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2522 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2523 return LifetimeEndFn;
2524}
2525
2526namespace {
2527 /// A cleanup to perform a release of an object at the end of a
2528 /// function. This is used to balance out the incoming +1 of a
2529 /// ns_consumed argument when we can't reasonably do that just by
2530 /// not doing the initial retain for a __block argument.
2531 struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2532 ConsumeARCParameter(llvm::Value *param,
2533 ARCPreciseLifetime_t precise)
2534 : Param(param), Precise(precise) {}
2535
2536 llvm::Value *Param;
2537 ARCPreciseLifetime_t Precise;
2538
2539 void Emit(CodeGenFunction &CGF, Flags flags) override {
2540 CGF.EmitARCRelease(Param, Precise);
2541 }
2542 };
2543} // end anonymous namespace
2544
2545/// Emit an alloca (or GlobalValue depending on target)
2546/// for the specified parameter and set up LocalDeclMap.
2547void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2548 unsigned ArgNo) {
2549 bool NoDebugInfo = false;
2550 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2551 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2552 "Invalid argument to EmitParmDecl");
2553
2554 // Set the name of the parameter's initial value to make IR easier to
2555 // read. Don't modify the names of globals.
2556 if (!isa<llvm::GlobalValue>(Arg.getAnyValue()))
2557 Arg.getAnyValue()->setName(D.getName());
2558
2559 QualType Ty = D.getType();
2560
2561 // Use better IR generation for certain implicit parameters.
2562 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2563 // The only implicit argument a block has is its literal.
2564 // This may be passed as an inalloca'ed value on Windows x86.
2565 if (BlockInfo) {
2566 llvm::Value *V = Arg.isIndirect()
2567 ? Builder.CreateLoad(Arg.getIndirectAddress())
2568 : Arg.getDirectValue();
2569 setBlockContextParameter(IPD, ArgNo, V);
2570 return;
2571 }
2572 // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2573 // debug info of TLS variables.
2574 NoDebugInfo =
2575 (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar);
2576 }
2577
2578 Address DeclPtr = Address::invalid();
2579 RawAddress AllocaPtr = Address::invalid();
2580 bool DoStore = false;
2581 bool IsScalar = hasScalarEvaluationKind(Ty);
2582 bool UseIndirectDebugAddress = false;
2583
2584 // If we already have a pointer to the argument, reuse the input pointer.
2585 if (Arg.isIndirect()) {
2586 DeclPtr = Arg.getIndirectAddress();
2587 DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty));
2588 // Indirect argument is in alloca address space, which may be different
2589 // from the default address space.
2590 auto AllocaAS = CGM.getASTAllocaAddressSpace();
2591 auto *V = DeclPtr.emitRawPointer(*this);
2592 AllocaPtr = RawAddress(V, DeclPtr.getElementType(), DeclPtr.getAlignment());
2593
2594 // For truly ABI indirect arguments -- those that are not `byval` -- store
2595 // the address of the argument on the stack to preserve debug information.
2596 ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info;
2597 if (ArgInfo.isIndirect())
2598 UseIndirectDebugAddress = !ArgInfo.getIndirectByVal();
2599 if (UseIndirectDebugAddress) {
2600 auto PtrTy = getContext().getPointerType(Ty);
2601 AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy),
2602 D.getName() + ".indirect_addr");
2603 EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy);
2604 }
2605
2606 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2607 auto DestLangAS =
2609 if (SrcLangAS != DestLangAS) {
2610 assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2611 CGM.getDataLayout().getAllocaAddrSpace());
2612 auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2613 auto *T = llvm::PointerType::get(getLLVMContext(), DestAS);
2614 DeclPtr =
2615 DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2616 *this, V, SrcLangAS, DestLangAS, T, true),
2617 DeclPtr.isKnownNonNull());
2618 }
2619
2620 // Push a destructor cleanup for this parameter if the ABI requires it.
2621 // Don't push a cleanup in a thunk for a method that will also emit a
2622 // cleanup.
2623 if (Ty->isRecordType() && !CurFuncIsThunk &&
2625 if (QualType::DestructionKind DtorKind =
2627 assert((DtorKind == QualType::DK_cxx_destructor ||
2628 DtorKind == QualType::DK_nontrivial_c_struct) &&
2629 "unexpected destructor type");
2630 pushDestroy(DtorKind, DeclPtr, Ty);
2631 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2633 }
2634 }
2635 } else {
2636 // Check if the parameter address is controlled by OpenMP runtime.
2637 Address OpenMPLocalAddr =
2638 getLangOpts().OpenMP
2640 : Address::invalid();
2641 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2642 DeclPtr = OpenMPLocalAddr;
2643 AllocaPtr = DeclPtr;
2644 } else {
2645 // Otherwise, create a temporary to hold the value.
2646 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2647 D.getName() + ".addr", &AllocaPtr);
2648 }
2649 DoStore = true;
2650 }
2651
2652 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2653
2654 LValue lv = MakeAddrLValue(DeclPtr, Ty);
2655 if (IsScalar) {
2656 Qualifiers qs = Ty.getQualifiers();
2658 // We honor __attribute__((ns_consumed)) for types with lifetime.
2659 // For __strong, it's handled by just skipping the initial retain;
2660 // otherwise we have to balance out the initial +1 with an extra
2661 // cleanup to do the release at the end of the function.
2662 bool isConsumed = D.hasAttr<NSConsumedAttr>();
2663
2664 // If a parameter is pseudo-strong then we can omit the implicit retain.
2665 if (D.isARCPseudoStrong()) {
2666 assert(lt == Qualifiers::OCL_Strong &&
2667 "pseudo-strong variable isn't strong?");
2668 assert(qs.hasConst() && "pseudo-strong variable should be const!");
2670 }
2671
2672 // Load objects passed indirectly.
2673 if (Arg.isIndirect() && !ArgVal)
2674 ArgVal = Builder.CreateLoad(DeclPtr);
2675
2676 if (lt == Qualifiers::OCL_Strong) {
2677 if (!isConsumed) {
2678 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2679 // use objc_storeStrong(&dest, value) for retaining the
2680 // object. But first, store a null into 'dest' because
2681 // objc_storeStrong attempts to release its old value.
2682 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2683 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2684 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2685 DoStore = false;
2686 }
2687 else
2688 // Don't use objc_retainBlock for block pointers, because we
2689 // don't want to Block_copy something just because we got it
2690 // as a parameter.
2691 ArgVal = EmitARCRetainNonBlock(ArgVal);
2692 }
2693 } else {
2694 // Push the cleanup for a consumed parameter.
2695 if (isConsumed) {
2696 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2698 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2699 precise);
2700 }
2701
2702 if (lt == Qualifiers::OCL_Weak) {
2703 EmitARCInitWeak(DeclPtr, ArgVal);
2704 DoStore = false; // The weak init is a store, no need to do two.
2705 }
2706 }
2707
2708 // Enter the cleanup scope.
2709 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2710 }
2711 }
2712
2713 // Store the initial value into the alloca.
2714 if (DoStore)
2715 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2716
2717 setAddrOfLocalVar(&D, DeclPtr);
2718
2719 // Emit debug info for param declarations in non-thunk functions.
2720 if (CGDebugInfo *DI = getDebugInfo()) {
2722 !NoDebugInfo) {
2723 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2724 &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress);
2725 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2726 DI->getParamDbgMappings().insert({Var, DILocalVar});
2727 }
2728 }
2729
2730 if (D.hasAttr<AnnotateAttr>())
2731 EmitVarAnnotations(&D, DeclPtr.emitRawPointer(*this));
2732
2733 // We can only check return value nullability if all arguments to the
2734 // function satisfy their nullability preconditions. This makes it necessary
2735 // to emit null checks for args in the function body itself.
2736 if (requiresReturnValueNullabilityCheck()) {
2737 auto Nullability = Ty->getNullability();
2738 if (Nullability && *Nullability == NullabilityKind::NonNull) {
2739 SanitizerScope SanScope(this);
2740 RetValNullabilityPrecondition =
2741 Builder.CreateAnd(RetValNullabilityPrecondition,
2742 Builder.CreateIsNotNull(Arg.getAnyValue()));
2743 }
2744 }
2745}
2746
2748 CodeGenFunction *CGF) {
2749 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2750 return;
2752}
2753
2755 CodeGenFunction *CGF) {
2756 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2757 (!LangOpts.EmitAllDecls && !D->isUsed()))
2758 return;
2760}
2761
2764}
2765
2767 for (const Expr *E : D->varlists()) {
2768 const auto *DE = cast<DeclRefExpr>(E);
2769 const auto *VD = cast<VarDecl>(DE->getDecl());
2770
2771 // Skip all but globals.
2772 if (!VD->hasGlobalStorage())
2773 continue;
2774
2775 // Check if the global has been materialized yet or not. If not, we are done
2776 // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2777 // we already emitted the global we might have done so before the
2778 // OMPAllocateDeclAttr was attached, leading to the wrong address space
2779 // (potentially). While not pretty, common practise is to remove the old IR
2780 // global and generate a new one, so we do that here too. Uses are replaced
2781 // properly.
2782 StringRef MangledName = getMangledName(VD);
2783 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2784 if (!Entry)
2785 continue;
2786
2787 // We can also keep the existing global if the address space is what we
2788 // expect it to be, if not, it is replaced.
2789 QualType ASTTy = VD->getType();
2791 auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2792 if (Entry->getType()->getAddressSpace() == TargetAS)
2793 continue;
2794
2795 // Make a new global with the correct type / address space.
2796 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2797 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2798
2799 // Replace all uses of the old global with a cast. Since we mutate the type
2800 // in place we neeed an intermediate that takes the spot of the old entry
2801 // until we can create the cast.
2802 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2803 getModule(), Entry->getValueType(), false,
2804 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2805 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2806 Entry->replaceAllUsesWith(DummyGV);
2807
2808 Entry->mutateType(PTy);
2809 llvm::Constant *NewPtrForOldDecl =
2810 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2811 Entry, DummyGV->getType());
2812
2813 // Now we have a casted version of the changed global, the dummy can be
2814 // replaced and deleted.
2815 DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2816 DummyGV->eraseFromParent();
2817 }
2818}
2819
2820std::optional<CharUnits>
2822 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2823 if (Expr *Alignment = AA->getAlignment()) {
2824 unsigned UserAlign =
2825 Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2826 CharUnits NaturalAlign =
2828
2829 // OpenMP5.1 pg 185 lines 7-10
2830 // Each item in the align modifier list must be aligned to the maximum
2831 // of the specified alignment and the type's natural alignment.
2833 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2834 }
2835 }
2836 return std::nullopt;
2837}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3294
static void emitStoresForInitAfterBZero(CodeGenModule &CGM, llvm::Constant *Init, Address Loc, bool isVolatile, CGBuilderTy &Builder, bool IsAutoInit)
For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit the scalar stores that woul...
Definition: CGDecl.cpp:949
static bool isCapturedBy(const VarDecl &, const Expr *)
Determines whether the given __block variable is potentially captured by the given expression.
Definition: CGDecl.cpp:1710
static void emitPartialArrayDestroy(CodeGenFunction &CGF, llvm::Value *begin, llvm::Value *end, QualType type, CharUnits elementAlign, CodeGenFunction::Destroyer *destroyer)
Perform partial array destruction as if in an EH cleanup.
Definition: CGDecl.cpp:2392
static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, Address Loc, bool isVolatile, CGBuilderTy &Builder)
Definition: CGDecl.cpp:1300
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, unsigned &NumStores)
Decide whether we can emit the non-zero parts of the specified initializer with equal or fewer than N...
Definition: CGDecl.cpp:911
static llvm::Constant * patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, llvm::Type *Ty)
Generate a constant filled with either a pattern or zeroes.
Definition: CGDecl.cpp:1043
static llvm::Constant * constWithPadding(CodeGenModule &CGM, IsPattern isPattern, llvm::Constant *constant)
Replace all padding bytes in a given constant with either a pattern byte or 0x00.
Definition: CGDecl.cpp:1095
static llvm::Value * shouldUseMemSetToInitialize(llvm::Constant *Init, uint64_t GlobalSize, const llvm::DataLayout &DL)
Decide whether we should use memset to initialize a local variable instead of using a memcpy from a c...
Definition: CGDecl.cpp:1017
IsPattern
Definition: CGDecl.cpp:1040
static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D)
Definition: CGDecl.cpp:222
static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, Address Loc, bool isVolatile, CGBuilderTy &Builder, llvm::Constant *constant, bool IsAutoInit)
Definition: CGDecl.cpp:1190
static bool shouldSplitConstantStore(CodeGenModule &CGM, uint64_t GlobalByteSize)
Decide whether we want to split a constant structure or array store into a sequence of its fields' st...
Definition: CGDecl.cpp:1029
static llvm::Constant * replaceUndef(CodeGenModule &CGM, IsPattern isPattern, llvm::Constant *constant)
Definition: CGDecl.cpp:1322
static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, const LValue &destLV, const Expr *init)
Definition: CGDecl.cpp:717
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, uint64_t GlobalSize)
Decide whether we should use bzero plus some stores to initialize a local variable instead of using a...
Definition: CGDecl.cpp:996
static llvm::Constant * constStructWithPadding(CodeGenModule &CGM, IsPattern isPattern, llvm::StructType *STy, llvm::Constant *constant)
Helper function for constWithPadding() to deal with padding in structures.
Definition: CGDecl.cpp:1055
static bool containsUndef(llvm::Constant *constant)
Definition: CGDecl.cpp:1311
static bool isAccessedBy(const VarDecl &var, const Stmt *s)
Definition: CGDecl.cpp:685
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, Address addr, Qualifiers::ObjCLifetime lifetime)
EmitAutoVarWithLifetime - Does the setup required for an automatic variable with lifetime.
Definition: CGDecl.cpp:649
static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, const VarDecl &D, CGBuilderTy &Builder, llvm::Constant *Constant, CharUnits Align)
Definition: CGDecl.cpp:1181
static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, Address Loc, bool isVolatile, CGBuilderTy &Builder)
Definition: CGDecl.cpp:1290
static void drillIntoBlockVariable(CodeGenFunction &CGF, LValue &lvalue, const VarDecl *var)
Definition: CGDecl.cpp:766
CodeGenFunction::ComplexPairTy ComplexPairTy
This file defines OpenMP nodes for declarative directives.
static const RecordType * getRecordType(QualType QT)
Checks that the passed in QualType either is of RecordType or points to RecordType.
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:2964
SourceLocation Loc
Definition: SemaObjC.cpp:755
Defines the SourceManager interface.
SourceLocation Begin
__device__ __2f16 float __ockl_bool s
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
IdentifierTable & Idents
Definition: ASTContext.h:647
const LangOptions & getLangOpts() const
Definition: ASTContext.h:778
QualType getIntTypeForBitwidth(unsigned DestWidth, unsigned Signed) const
getIntTypeForBitwidth - sets integer QualTy according to specified details: bitwidth,...
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2780
unsigned getTargetAddressSpace(LangAS AS) const
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3519
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4496
ArrayRef< Capture > captures() const
Definition: Decl.h:4623
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:6173
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1542
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2535
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1371
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2799
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:214
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:125
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
bool hasReducedDebugInfo() const
Check if type and variable info should be emitted.
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:111
static Address invalid()
Definition: Address.h:153
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:220
CharUnits getAlignment() const
Definition: Address.h:166
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:184
Address withPointer(llvm::Value *NewPointer, KnownNonNull_t IsKnownNonNull) const
Return address with different pointer, but same element type and alignment.
Definition: Address.h:226
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:241
KnownNonNull_t isKnownNonNull() const
Whether the pointer is known not to be null.
Definition: Address.h:203
bool isValid() const
Definition: Address.h:154
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition: CGValue.h:607
static ApplyDebugLocation CreateDefaultArtificial(CodeGenFunction &CGF, SourceLocation TemporaryLocation)
Apply TemporaryLocation if it is valid.
Definition: CGDebugInfo.h:871
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:397
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
llvm::LoadInst * CreateFlagLoad(llvm::Value *Addr, const llvm::Twine &Name="")
Emit a load from an i1 flag variable.
Definition: CGBuilder.h:158
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:364
Address CreateInBoundsGEP(Address Addr, ArrayRef< llvm::Value * > IdxList, llvm::Type *ElementType, CharUnits Align, const Twine &Name="")
Definition: CGBuilder.h:345
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:129
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:55
void EmitGlobalVariable(llvm::GlobalVariable *GV, const VarDecl *Decl)
Emit information about a global variable.
Param2DILocTy & getParamDbgMappings()
Definition: CGDebugInfo.h:600
llvm::DILocalVariable * EmitDeclareOfArgVariable(const VarDecl *Decl, llvm::Value *AI, unsigned ArgNo, CGBuilderTy &Builder, bool UsePointerValue=false)
Emit call to llvm.dbg.declare for an argument variable declaration.
llvm::DILocalVariable * EmitDeclareOfAutoVariable(const VarDecl *Decl, llvm::Value *AI, CGBuilderTy &Builder, const bool UsePointerValue=false)
Emit call to llvm.dbg.declare for an automatic variable declaration.
void setLocation(SourceLocation Loc)
Update the current source location.
void registerVLASizeExpression(QualType Ty, llvm::Metadata *SizeExpr)
Register VLA size expression debug node with the qualified type.
Definition: CGDebugInfo.h:411
CGFunctionInfo - Class to encapsulate the information about a function definition.
const_arg_iterator arg_begin() const
MutableArrayRef< ArgInfo > arguments()
virtual void EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF, const VarDecl &D)
Emit the IR required for a work-group-local variable declaration, and add an entry to CGF's LocalDecl...
Allows to disable automatic handling of functions used in target regions as those marked as omp decla...
virtual void getKmpcFreeShared(CodeGenFunction &CGF, const std::pair< llvm::Value *, llvm::Value * > &AddrSizePair)
Get call to __kmpc_free_shared.
void emitUserDefinedMapper(const OMPDeclareMapperDecl *D, CodeGenFunction *CGF=nullptr)
Emit the function for the user defined mapper construct.
virtual void processRequiresDirective(const OMPRequiresDecl *D)
Perform check on requires decl to ensure that target architecture supports unified addressing.
virtual std::pair< llvm::Value *, llvm::Value * > getKmpcAllocShared(CodeGenFunction &CGF, const VarDecl *VD)
Get call to __kmpc_alloc_shared.
virtual void emitUserDefinedReduction(CodeGenFunction *CGF, const OMPDeclareReductionDecl *D)
Emit code for the specified user defined reduction construct.
virtual Address getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD)
Gets the OpenMP-specific address of the local variable.
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:258
void add(RValue rvalue, QualType type)
Definition: CGCall.h:282
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void emitAutoVarTypeCleanup(const AutoVarEmission &emission, QualType::DestructionKind dtorKind)
void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, bool LoadBlockVarAddr, bool CanThrow)
Enter a cleanup to destroy a __block variable.
llvm::Value * EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr)
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
static Destroyer destroyNonTrivialCStruct
static bool cxxDestructorCanThrow(QualType T)
Check if T is a C++ class that has a destructor that can throw.
SanitizerSet SanOpts
Sanitizers enabled for this function.
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
void EmitARCMoveWeak(Address dst, Address src)
void EmitAutoVarDecl(const VarDecl &D)
EmitAutoVarDecl - Emit an auto variable declaration.
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
static bool hasScalarEvaluationKind(QualType T)
const BlockByrefInfo & getBlockByrefInfo(const VarDecl *var)
void EmitDecl(const Decl &D)
EmitDecl - Emit a declaration.
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, Address arrayEndPointer, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
llvm::Value * emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr)
emitArrayLength - Compute the length of an array, even if it's a VLA, and drill down to the base elem...
VlaSizePair getVLASize(const VariableArrayType *vla)
Returns an LLVM value that corresponds to the size, in non-variably-sized elements,...
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool CurFuncIsThunk
In C++, whether we are code generating a thunk.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy)
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
void EmitExtendGCLifetime(llvm::Value *object)
EmitExtendGCLifetime - Given a pointer to an Objective-C object, make sure it survives garbage collec...
llvm::SmallVector< DeferredDeactivateCleanup > DeferredDeactivationCleanupStack
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler.
void pushEHDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type)
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, Address addr, QualType type)
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
const CodeGen::CGBlockInfo * BlockInfo
void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
EmitExprAsInit - Emits the code necessary to initialize a location in memory with the given initializ...
void emitByrefStructureInit(const AutoVarEmission &emission)
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
@ TCK_NonnullAssign
Checking the value assigned to a _Nonnull pointer. Must not be null.
llvm::Value * EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored)
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, bool IsMustTail, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type,...
llvm::Type * ConvertTypeForMem(QualType T)
llvm::Value * EmitARCUnsafeUnretainedScalarExpr(const Expr *expr)
void EmitAutoVarInit(const AutoVarEmission &emission)
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
DominatingValue< T >::saved_type saveValueInCond(T value)
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
void EmitStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage)
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V)
Emit local annotations for the local variable V, declared by D.
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
void EmitAtomicInit(Expr *E, LValue lvalue)
const TargetInfo & getTarget() const
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we're currently emitting one branch or the other of a conditio...
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit)
Emit code in this function to perform a guarded variable initialization.
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
void initFullExprCleanupWithFlag(RawAddress ActiveFlag)
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask > > Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
void EmitARCCopyWeak(Address dst, Address src)
void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, llvm::Value *ptr)
void defaultInitNonTrivialCStructVar(LValue Dst)
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
bool isTrivialInitializer(const Expr *Init)
Determine whether the given initializer is trivial in the sense that it requires no code to be genera...
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, bool followForward=true)
BuildBlockByrefAddress - Computes the location of the data in a variable which is declared as __block...
LValue EmitDeclRefLValue(const DeclRefExpr *E)
AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
llvm::Value * EmitARCRetainAutoreleaseScalarExpr(const Expr *expr)
const TargetCodeGenInfo & getTargetHooks() const
RValue EmitReferenceBindingToExpr(const Expr *E)
Emits a reference binding to the passed in expression.
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
VlaSizePair getVLAElements1D(const VariableArrayType *vla)
Return the number of elements for a single dimension for the given array type.
void EmitVarDecl(const VarDecl &D)
EmitVarDecl - Emit a local variable declaration.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc)
Given an assignment *LHS = RHS, emit a test that checks if RHS is nonnull, if LHS is marked _Nonnull.
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var)
void pushDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type)
Address ReturnValuePointer
ReturnValuePointer - The temporary alloca to hold a pointer to sret.
void EmitAutoVarCleanups(const AutoVarEmission &emission)
llvm::GlobalVariable * AddInitializerToStaticVarDecl(const VarDecl &D, llvm::GlobalVariable *GV)
AddInitializerToStaticVarDecl - Add the initializer for 'D' to the global variable that has already b...
void PopCleanupBlock(bool FallThroughIsBranchThrough=false, bool ForDeactivation=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind.
CleanupKind getCleanupKind(QualType::DestructionKind kind)
llvm::Type * ConvertType(QualType T)
void EmitARCInitWeak(Address addr, llvm::Value *value)
static Destroyer destroyARCStrongPrecise
llvm::Value * EmitARCRetainNonBlock(llvm::Value *value)
void pushStackRestore(CleanupKind kind, Address SPMem)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
const CGFunctionInfo * CurFnInfo
void pushKmpcAllocFree(CleanupKind Kind, std::pair< llvm::Value *, llvm::Value * > AddrSizePair)
void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo)
EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
static Destroyer destroyARCStrongImprecise
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go.
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo)
Emits the alloca and debug information for the size expressions for each dimension of an array.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
This class organizes the cross-function state that is used while generating LLVM code.
StringRef getBlockMangledName(GlobalDecl GD, const BlockDecl *BD)
void setGVProperties(llvm::GlobalValue *GV, GlobalDecl GD) const
Set visibility, dllimport/dllexport and dso_local.
llvm::Module & getModule() const
void setStaticLocalDeclAddress(const VarDecl *D, llvm::Constant *C)
llvm::Function * getLLVMLifetimeStartFn()
Lazily declare the @llvm.lifetime.start intrinsic.
Definition: CGDecl.cpp:2509
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
Address createUnnamedGlobalFrom(const VarDecl &D, llvm::Constant *Constant, CharUnits Align)
Definition: CGDecl.cpp:1131
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn't support the specified stmt yet.
const LangOptions & getLangOpts() const
CharUnits getNaturalTypeAlignment(QualType T, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, bool forPointeeType=false)
CGOpenCLRuntime & getOpenCLRuntime()
Return a reference to the configured OpenCL runtime.
void addUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.used metadata.
void EmitOMPAllocateDecl(const OMPAllocateDecl *D)
Emit a code for the allocate directive.
Definition: CGDecl.cpp:2766
llvm::GlobalValue::LinkageTypes getLLVMLinkageVarDefinition(const VarDecl *VD)
Returns LLVM linkage for a declarator.
const llvm::DataLayout & getDataLayout() const
void addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.compiler.used metadata.
CGOpenMPRuntime & getOpenMPRuntime()
Return a reference to the configured OpenMP runtime.
SanitizerMetadata * getSanitizerMetadata()
llvm::Constant * getOrCreateStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage)
Definition: CGDecl.cpp:245
llvm::Constant * GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition=NotForDefinition)
void AddGlobalAnnotations(const ValueDecl *D, llvm::GlobalValue *GV)
Add global annotations that are set on D, for the global GV.
void setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const
Set the TLS mode for the given LLVM GlobalValue for the thread-local variable declaration D.
ASTContext & getContext() const
void EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, CodeGenFunction *CGF=nullptr)
Emit a code for declare mapper construct.
Definition: CGDecl.cpp:2754
llvm::Function * getLLVMLifetimeEndFn()
Lazily declare the @llvm.lifetime.end intrinsic.
Definition: CGDecl.cpp:2518
void EmitOMPRequiresDecl(const OMPRequiresDecl *D)
Emit a code for requires directive.
Definition: CGDecl.cpp:2762
const TargetCodeGenInfo & getTargetCodeGenInfo()
const CodeGenOptions & getCodeGenOpts() const
StringRef getMangledName(GlobalDecl GD)
std::optional< CharUnits > getOMPAllocateAlignment(const VarDecl *VD)
Return the alignment specified in an allocate directive, if present.
Definition: CGDecl.cpp:2821
llvm::LLVMContext & getLLVMContext()
llvm::GlobalValue * GetGlobalValue(StringRef Ref)
void EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, CodeGenFunction *CGF=nullptr)
Emit a code for declare reduction construct.
Definition: CGDecl.cpp:2747
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
LangAS GetGlobalConstantAddressSpace() const
Return the AST address space of constant literal, which is used to emit the constant literal as globa...
LangAS GetGlobalVarAddressSpace(const VarDecl *D)
Return the AST address space of the underlying global variable for D, as determined by its declaratio...
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
const CGFunctionInfo & arrangeFunctionDeclaration(const FunctionDecl *FD)
Free functions are functions that are compatible with an ordinary C function pointer type.
Definition: CGCall.cpp:463
llvm::Type * ConvertTypeForMem(QualType T, bool ForBitField=false)
ConvertTypeForMem - Convert type T into a llvm::Type.
llvm::Constant * tryEmitAbstractForInitializer(const VarDecl &D)
Try to emit the initializer of the given declaration as an abstract constant.
A cleanup scope which generates the cleanup blocks lazily.
Definition: CGCleanup.h:243
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:141
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:203
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:393
iterator begin() const
Returns an iterator pointing to the innermost EH scope.
Definition: CGCleanup.h:615
LValue - This represents an lvalue references.
Definition: CGValue.h:181
Address getAddress() const
Definition: CGValue.h:370
llvm::Value * getPointer(CodeGenFunction &CGF) const
Definition: CGValue.h:361
QualType getType() const
Definition: CGValue.h:294
void setNonGC(bool Value)
Definition: CGValue.h:307
void setAddress(Address address)
Definition: CGValue.h:372
Qualifiers::ObjCLifetime getObjCLifetime() const
Definition: CGValue.h:296
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:41
static RValue get(llvm::Value *V)
Definition: CGValue.h:97
An abstract representation of an aligned address.
Definition: Address.h:41
llvm::Value * getPointer() const
Definition: Address.h:65
static RawAddress invalid()
Definition: Address.h:60
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:356
void reportGlobal(llvm::GlobalVariable *GV, const VarDecl &D, bool IsDynInit=false)
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const
setTargetAttributes - Provides a convenient hook to handle extra target-specific attributes for the g...
Definition: TargetInfo.h:75
bool IsBypassed(const VarDecl *D) const
Returns true if the variable declaration was by bypassed by any goto or switch statement.
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1606
body_range body()
Definition: Stmt.h:1664
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1436
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1260
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
const DeclContext * getParentFunctionOrMethod(bool LexicalParent=false) const
If this decl is defined inside a function/method/block it returns the corresponding DeclContext,...
Definition: DeclBase.cpp:295
T * getAttr() const
Definition: DeclBase.h:579
Decl * getNonClosureContext()
Find the innermost non-closure ancestor of this declaration, walking up through blocks,...
Definition: DeclBase.cpp:1191
SourceLocation getLocation() const
Definition: DeclBase.h:445
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required.
Definition: DeclBase.cpp:530
DeclContext * getDeclContext()
Definition: DeclBase.h:454
bool hasAttr() const
Definition: DeclBase.h:583
Kind getKind() const
Definition: DeclBase.h:448
This represents one expression.
Definition: Expr.h:110
bool isXValue() const
Definition: Expr.h:279
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3064
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3055
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:277
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant,...
Definition: Expr.cpp:3287
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1971
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:56
const Decl * getDecl() const
Definition: GlobalDecl.h:103
One of these records is kept for each identifier that is lexed.
IdentifierInfo & getOwn(StringRef Name)
Gets an IdentifierInfo for the given name without consulting external sources.
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:276
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:292
bool isExternallyVisible() const
Definition: Decl.h:408
This represents '#pragma omp allocate ...' directive.
Definition: DeclOpenMP.h:474
varlist_range varlists()
Definition: DeclOpenMP.h:516
This represents '#pragma omp declare mapper ...' directive.
Definition: DeclOpenMP.h:287
This represents '#pragma omp declare reduction ...' directive.
Definition: DeclOpenMP.h:177
This represents '#pragma omp requires...' directive.
Definition: DeclOpenMP.h:417
A (possibly-)qualified type.
Definition: Type.h:940
@ DK_cxx_destructor
Definition: Type.h:1520
@ DK_nontrivial_c_struct
Definition: Type.h:1523
@ DK_objc_weak_lifetime
Definition: Type.h:1522
@ DK_objc_strong_lifetime
Definition: Type.h:1521
@ PDIK_Struct
The type is a struct containing a field whose type is not PCK_Trivial.
Definition: Type.h:1466
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:7486
bool isConstant(const ASTContext &Ctx) const
Definition: Type.h:1100
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:7400
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1432
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:7561
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:7454
bool isConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, bool ExcludeDtor)
Definition: Type.h:1039
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2582
The collection of all-type qualifiers we support.
Definition: Type.h:318
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:347
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:340
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:336
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:350
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:353
bool hasConst() const
Definition: Type.h:443
ObjCLifetime getObjCLifetime() const
Definition: Type.h:531
bool isParamDestroyedInCallee() const
Definition: Decl.h:4312
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5550
RecordDecl * getDecl() const
Definition: Type.h:5560
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
static const uint64_t MaximumAlignment
Definition: Sema.h:796
Encodes a location in the source.
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4383
Stmt - This represents one statement.
Definition: Stmt.h:84
child_range children()
Definition: Stmt.cpp:287
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:136
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1327
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6....
Definition: Type.cpp:2341
bool isArrayType() const
Definition: Type.h:7679
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8198
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2672
bool isSamplerT() const
Definition: Type.h:7814
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8131
bool isRecordType() const
Definition: Type.h:7707
std::optional< NullabilityKind > getNullability() const
Determine the nullability of the given type.
Definition: Type.cpp:4633
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:706
QualType getType() const
Definition: Decl.h:717
Represents a variable declaration or definition.
Definition: Decl.h:918
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:2148
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1549
TLSKind getTLSKind() const
Definition: Decl.cpp:2165
bool hasFlexibleArrayInit(const ASTContext &Ctx) const
Whether this variable has a flexible array member initialized with one or more elements.
Definition: Decl.cpp:2831
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1213
CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const
If hasFlexibleArrayInit is true, compute the number of additional bytes necessary to store those elem...
Definition: Decl.cpp:2846
bool mightBeUsableInConstantExpressions(const ASTContext &C) const
Determine whether this variable's value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2463
bool isNRVOVariable() const
Determine whether this local variable can be used with the named return value optimization (NRVO).
Definition: Decl.h:1492
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1474
QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const
Would the destruction of this variable have any effect, and if so, what kind?
Definition: Decl.cpp:2820
const Expr * getInit() const
Definition: Decl.h:1355
bool hasExternalStorage() const
Returns true if a variable has extern or private_extern storage.
Definition: Decl.h:1204
bool isARCPseudoStrong() const
Determine whether this variable is an ARC pseudo-__strong variable.
Definition: Decl.h:1527
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1171
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1240
StorageDuration getStorageDuration() const
Get the storage duration of this variable, per C++ [basic.stc].
Definition: Decl.h:1216
bool isEscapingByref() const
Indicates the capture is a __block variable that is captured by a block that can potentially escape (...
Definition: Decl.cpp:2675
Defines the clang::TargetInfo interface.
@ BLOCK_FIELD_IS_BYREF
Definition: CGBlocks.h:92
@ BLOCK_FIELD_IS_WEAK
Definition: CGBlocks.h:94
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::Constant * initializationPatternFor(CodeGenModule &, llvm::Type *)
Definition: PatternInit.cpp:15
@ NormalCleanup
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:134
@ ARCPreciseLifetime
Definition: CGValue.h:135
@ ARCImpreciseLifetime
Definition: CGValue.h:135
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
const internal::VariadicDynCastAllOfMatcher< Stmt, CastExpr > castExpr
Matches any cast nodes of Clang's AST.
constexpr Variable var(Literal L)
Returns the variable of L.
Definition: CNFFormula.h:64
tooling::Replacements cleanup(const FormatStyle &Style, StringRef Code, ArrayRef< tooling::Range > Ranges, StringRef FileName="<stdin>")
Clean up any erroneous/redundant code in the given Ranges in Code.
Definition: Format.cpp:3798
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1877
bool Null(InterpState &S, CodePtr OpPC, const Descriptor *Desc)
Definition: Interp.h:1893
The JSON file list parser is used to communicate input to InstallAPI.
@ Ctor_Base
Base object ctor.
Definition: ABI.h:26
@ OpenCL
Definition: LangStandard.h:65
@ CPlusPlus
Definition: LangStandard.h:55
@ NonNull
Values of this type can never be null.
@ SC_Auto
Definition: Specifiers.h:253
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have.
Definition: Linkage.h:24
@ SD_Automatic
Automatic storage duration (most local variables).
Definition: Specifiers.h:326
@ Dtor_Base
Base object dtor.
Definition: ABI.h:36
@ Dtor_Complete
Complete object dtor.
Definition: ABI.h:35
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:136
const FunctionProtoType * T
@ ThreadPrivateVar
Parameter for Thread private variable.
float __ovld __cnfn length(float)
Return the length of vector p, i.e., sqrt(p.x2 + p.y 2 + ...)
static Address getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD)
Gets the OpenMP-specific address of the local variable /p VD.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
llvm::PointerType * AllocaInt8PtrTy
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function.
Definition: EHScopeStack.h:65
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:159