clang 18.0.0git
CGDecl.cpp
Go to the documentation of this file.
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Decl nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGOpenCLRuntime.h"
18#include "CGOpenMPRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/Decl.h"
28#include "clang/AST/DeclObjC.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/Type.h"
40#include <optional>
41
42using namespace clang;
43using namespace CodeGen;
44
45static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
46 "Clang max alignment greater than what LLVM supports?");
47
48void CodeGenFunction::EmitDecl(const Decl &D) {
49 switch (D.getKind()) {
50 case Decl::BuiltinTemplate:
51 case Decl::TranslationUnit:
52 case Decl::ExternCContext:
53 case Decl::Namespace:
54 case Decl::UnresolvedUsingTypename:
55 case Decl::ClassTemplateSpecialization:
56 case Decl::ClassTemplatePartialSpecialization:
57 case Decl::VarTemplateSpecialization:
58 case Decl::VarTemplatePartialSpecialization:
59 case Decl::TemplateTypeParm:
60 case Decl::UnresolvedUsingValue:
61 case Decl::NonTypeTemplateParm:
62 case Decl::CXXDeductionGuide:
63 case Decl::CXXMethod:
64 case Decl::CXXConstructor:
65 case Decl::CXXDestructor:
66 case Decl::CXXConversion:
67 case Decl::Field:
68 case Decl::MSProperty:
69 case Decl::IndirectField:
70 case Decl::ObjCIvar:
71 case Decl::ObjCAtDefsField:
72 case Decl::ParmVar:
73 case Decl::ImplicitParam:
74 case Decl::ClassTemplate:
75 case Decl::VarTemplate:
76 case Decl::FunctionTemplate:
77 case Decl::TypeAliasTemplate:
78 case Decl::TemplateTemplateParm:
79 case Decl::ObjCMethod:
80 case Decl::ObjCCategory:
81 case Decl::ObjCProtocol:
82 case Decl::ObjCInterface:
83 case Decl::ObjCCategoryImpl:
84 case Decl::ObjCImplementation:
85 case Decl::ObjCProperty:
86 case Decl::ObjCCompatibleAlias:
87 case Decl::PragmaComment:
88 case Decl::PragmaDetectMismatch:
89 case Decl::AccessSpec:
90 case Decl::LinkageSpec:
91 case Decl::Export:
92 case Decl::ObjCPropertyImpl:
93 case Decl::FileScopeAsm:
94 case Decl::TopLevelStmt:
95 case Decl::Friend:
96 case Decl::FriendTemplate:
97 case Decl::Block:
98 case Decl::Captured:
99 case Decl::UsingShadow:
100 case Decl::ConstructorUsingShadow:
101 case Decl::ObjCTypeParam:
102 case Decl::Binding:
103 case Decl::UnresolvedUsingIfExists:
104 case Decl::HLSLBuffer:
105 llvm_unreachable("Declaration should not be in declstmts!");
106 case Decl::Record: // struct/union/class X;
107 case Decl::CXXRecord: // struct/union/class X; [C++]
108 if (CGDebugInfo *DI = getDebugInfo())
109 if (cast<RecordDecl>(D).getDefinition())
110 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
111 return;
112 case Decl::Enum: // enum X;
113 if (CGDebugInfo *DI = getDebugInfo())
114 if (cast<EnumDecl>(D).getDefinition())
115 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
116 return;
117 case Decl::Function: // void X();
118 case Decl::EnumConstant: // enum ? { X = ? }
119 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
120 case Decl::Label: // __label__ x;
121 case Decl::Import:
122 case Decl::MSGuid: // __declspec(uuid("..."))
123 case Decl::UnnamedGlobalConstant:
124 case Decl::TemplateParamObject:
125 case Decl::OMPThreadPrivate:
126 case Decl::OMPAllocate:
127 case Decl::OMPCapturedExpr:
128 case Decl::OMPRequires:
129 case Decl::Empty:
130 case Decl::Concept:
131 case Decl::ImplicitConceptSpecialization:
132 case Decl::LifetimeExtendedTemporary:
133 case Decl::RequiresExprBody:
134 // None of these decls require codegen support.
135 return;
136
137 case Decl::NamespaceAlias:
138 if (CGDebugInfo *DI = getDebugInfo())
139 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
140 return;
141 case Decl::Using: // using X; [C++]
142 if (CGDebugInfo *DI = getDebugInfo())
143 DI->EmitUsingDecl(cast<UsingDecl>(D));
144 return;
145 case Decl::UsingEnum: // using enum X; [C++]
146 if (CGDebugInfo *DI = getDebugInfo())
147 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
148 return;
149 case Decl::UsingPack:
150 for (auto *Using : cast<UsingPackDecl>(D).expansions())
151 EmitDecl(*Using);
152 return;
153 case Decl::UsingDirective: // using namespace X; [C++]
154 if (CGDebugInfo *DI = getDebugInfo())
155 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
156 return;
157 case Decl::Var:
158 case Decl::Decomposition: {
159 const VarDecl &VD = cast<VarDecl>(D);
160 assert(VD.isLocalVarDecl() &&
161 "Should not see file-scope variables inside a function!");
162 EmitVarDecl(VD);
163 if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
164 for (auto *B : DD->bindings())
165 if (auto *HD = B->getHoldingVar())
166 EmitVarDecl(*HD);
167 return;
168 }
169
170 case Decl::OMPDeclareReduction:
171 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
172
173 case Decl::OMPDeclareMapper:
174 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
175
176 case Decl::Typedef: // typedef int X;
177 case Decl::TypeAlias: { // using X = int; [C++0x]
178 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
179 if (CGDebugInfo *DI = getDebugInfo())
180 DI->EmitAndRetainType(Ty);
181 if (Ty->isVariablyModifiedType())
183 return;
184 }
185 }
186}
187
188/// EmitVarDecl - This method handles emission of any variable declaration
189/// inside a function, including static vars etc.
191 if (D.hasExternalStorage())
192 // Don't emit it now, allow it to be emitted lazily on its first use.
193 return;
194
195 // Some function-scope variable does not have static storage but still
196 // needs to be emitted like a static variable, e.g. a function-scope
197 // variable in constant address space in OpenCL.
198 if (D.getStorageDuration() != SD_Automatic) {
199 // Static sampler variables translated to function calls.
200 if (D.getType()->isSamplerT())
201 return;
202
203 llvm::GlobalValue::LinkageTypes Linkage =
205
206 // FIXME: We need to force the emission/use of a guard variable for
207 // some variables even if we can constant-evaluate them because
208 // we can't guarantee every translation unit will constant-evaluate them.
209
210 return EmitStaticVarDecl(D, Linkage);
211 }
212
215
216 assert(D.hasLocalStorage());
217 return EmitAutoVarDecl(D);
218}
219
220static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
221 if (CGM.getLangOpts().CPlusPlus)
222 return CGM.getMangledName(&D).str();
223
224 // If this isn't C++, we don't need a mangled name, just a pretty one.
225 assert(!D.isExternallyVisible() && "name shouldn't matter");
226 std::string ContextName;
227 const DeclContext *DC = D.getDeclContext();
228 if (auto *CD = dyn_cast<CapturedDecl>(DC))
229 DC = cast<DeclContext>(CD->getNonClosureContext());
230 if (const auto *FD = dyn_cast<FunctionDecl>(DC))
231 ContextName = std::string(CGM.getMangledName(FD));
232 else if (const auto *BD = dyn_cast<BlockDecl>(DC))
233 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
234 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
235 ContextName = OMD->getSelector().getAsString();
236 else
237 llvm_unreachable("Unknown context for static var decl");
238
239 ContextName += "." + D.getNameAsString();
240 return ContextName;
241}
242
244 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
245 // In general, we don't always emit static var decls once before we reference
246 // them. It is possible to reference them before emitting the function that
247 // contains them, and it is possible to emit the containing function multiple
248 // times.
249 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
250 return ExistingGV;
251
252 QualType Ty = D.getType();
253 assert(Ty->isConstantSizeType() && "VLAs can't be static");
254
255 // Use the label if the variable is renamed with the asm-label extension.
256 std::string Name;
257 if (D.hasAttr<AsmLabelAttr>())
258 Name = std::string(getMangledName(&D));
259 else
260 Name = getStaticDeclName(*this, D);
261
262 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
264 unsigned TargetAS = getContext().getTargetAddressSpace(AS);
265
266 // OpenCL variables in local address space and CUDA shared
267 // variables cannot have an initializer.
268 llvm::Constant *Init = nullptr;
270 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
271 Init = llvm::UndefValue::get(LTy);
272 else
274
275 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
276 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
277 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
278 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
279
280 if (supportsCOMDAT() && GV->isWeakForLinker())
281 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
282
283 if (D.getTLSKind())
284 setTLSMode(GV, D);
285
286 setGVProperties(GV, &D);
287
288 // Make sure the result is of the correct type.
289 LangAS ExpectedAS = Ty.getAddressSpace();
290 llvm::Constant *Addr = GV;
291 if (AS != ExpectedAS) {
293 *this, GV, AS, ExpectedAS,
294 llvm::PointerType::get(getLLVMContext(),
295 getContext().getTargetAddressSpace(ExpectedAS)));
296 }
297
299
300 // Ensure that the static local gets initialized by making sure the parent
301 // function gets emitted eventually.
302 const Decl *DC = cast<Decl>(D.getDeclContext());
303
304 // We can't name blocks or captured statements directly, so try to emit their
305 // parents.
306 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
307 DC = DC->getNonClosureContext();
308 // FIXME: Ensure that global blocks get emitted.
309 if (!DC)
310 return Addr;
311 }
312
313 GlobalDecl GD;
314 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
315 GD = GlobalDecl(CD, Ctor_Base);
316 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
317 GD = GlobalDecl(DD, Dtor_Base);
318 else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
319 GD = GlobalDecl(FD);
320 else {
321 // Don't do anything for Obj-C method decls or global closures. We should
322 // never defer them.
323 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
324 }
325 if (GD.getDecl()) {
326 // Disable emission of the parent function for the OpenMP device codegen.
328 (void)GetAddrOfGlobal(GD);
329 }
330
331 return Addr;
332}
333
334/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335/// global variable that has already been created for it. If the initializer
336/// has a different type than GV does, this may free GV and return a different
337/// one. Otherwise it just returns GV.
338llvm::GlobalVariable *
340 llvm::GlobalVariable *GV) {
341 ConstantEmitter emitter(*this);
342 llvm::Constant *Init = emitter.tryEmitForInitializer(D);
343
344 // If constant emission failed, then this should be a C++ static
345 // initializer.
346 if (!Init) {
347 if (!getLangOpts().CPlusPlus)
348 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
349 else if (D.hasFlexibleArrayInit(getContext()))
350 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
351 else if (HaveInsertPoint()) {
352 // Since we have a static initializer, this global variable can't
353 // be constant.
354 GV->setConstant(false);
355
356 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
357 }
358 return GV;
359 }
360
361#ifndef NDEBUG
365 CGM.getDataLayout().getTypeAllocSize(Init->getType()));
366 assert(VarSize == CstSize && "Emitted constant has unexpected size");
367#endif
368
369 // The initializer may differ in type from the global. Rewrite
370 // the global to match the initializer. (We have to do this
371 // because some types, like unions, can't be completely represented
372 // in the LLVM type system.)
373 if (GV->getValueType() != Init->getType()) {
374 llvm::GlobalVariable *OldGV = GV;
375
376 GV = new llvm::GlobalVariable(
377 CGM.getModule(), Init->getType(), OldGV->isConstant(),
378 OldGV->getLinkage(), Init, "",
379 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
380 OldGV->getType()->getPointerAddressSpace());
381 GV->setVisibility(OldGV->getVisibility());
382 GV->setDSOLocal(OldGV->isDSOLocal());
383 GV->setComdat(OldGV->getComdat());
384
385 // Steal the name of the old global
386 GV->takeName(OldGV);
387
388 // Replace all uses of the old global with the new global
389 OldGV->replaceAllUsesWith(GV);
390
391 // Erase the old global, since it is no longer used.
392 OldGV->eraseFromParent();
393 }
394
395 bool NeedsDtor =
397
398 GV->setConstant(
399 D.getType().isConstantStorage(getContext(), true, !NeedsDtor));
400 GV->setInitializer(Init);
401
402 emitter.finalize(GV);
403
404 if (NeedsDtor && HaveInsertPoint()) {
405 // We have a constant initializer, but a nontrivial destructor. We still
406 // need to perform a guarded "initialization" in order to register the
407 // destructor.
408 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
409 }
410
411 return GV;
412}
413
415 llvm::GlobalValue::LinkageTypes Linkage) {
416 // Check to see if we already have a global variable for this
417 // declaration. This can happen when double-emitting function
418 // bodies, e.g. with complete and base constructors.
419 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
420 CharUnits alignment = getContext().getDeclAlign(&D);
421
422 // Store into LocalDeclMap before generating initializer to handle
423 // circular references.
424 llvm::Type *elemTy = ConvertTypeForMem(D.getType());
425 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
426
427 // We can't have a VLA here, but we can have a pointer to a VLA,
428 // even though that doesn't really make any sense.
429 // Make sure to evaluate VLA bounds now so that we have them for later.
432
433 // Save the type in case adding the initializer forces a type change.
434 llvm::Type *expectedType = addr->getType();
435
436 llvm::GlobalVariable *var =
437 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
438
439 // CUDA's local and local static __shared__ variables should not
440 // have any non-empty initializers. This is ensured by Sema.
441 // Whatever initializer such variable may have when it gets here is
442 // a no-op and should not be emitted.
443 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
444 D.hasAttr<CUDASharedAttr>();
445 // If this value has an initializer, emit it.
446 if (D.getInit() && !isCudaSharedVar)
447 var = AddInitializerToStaticVarDecl(D, var);
448
449 var->setAlignment(alignment.getAsAlign());
450
451 if (D.hasAttr<AnnotateAttr>())
452 CGM.AddGlobalAnnotations(&D, var);
453
454 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
455 var->addAttribute("bss-section", SA->getName());
456 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
457 var->addAttribute("data-section", SA->getName());
458 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
459 var->addAttribute("rodata-section", SA->getName());
460 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
461 var->addAttribute("relro-section", SA->getName());
462
463 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
464 var->setSection(SA->getName());
465
466 if (D.hasAttr<RetainAttr>())
467 CGM.addUsedGlobal(var);
468 else if (D.hasAttr<UsedAttr>())
470
471 if (CGM.getCodeGenOpts().KeepPersistentStorageVariables)
473
474 // We may have to cast the constant because of the initializer
475 // mismatch above.
476 //
477 // FIXME: It is really dangerous to store this in the map; if anyone
478 // RAUW's the GV uses of this constant will be invalid.
479 llvm::Constant *castedAddr =
480 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
481 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
482 CGM.setStaticLocalDeclAddress(&D, castedAddr);
483
485
486 // Emit global variable debug descriptor for static vars.
488 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
489 DI->setLocation(D.getLocation());
490 DI->EmitGlobalVariable(var, &D);
491 }
492}
493
494namespace {
495 struct DestroyObject final : EHScopeStack::Cleanup {
496 DestroyObject(Address addr, QualType type,
497 CodeGenFunction::Destroyer *destroyer,
498 bool useEHCleanupForArray)
499 : addr(addr), type(type), destroyer(destroyer),
500 useEHCleanupForArray(useEHCleanupForArray) {}
501
502 Address addr;
504 CodeGenFunction::Destroyer *destroyer;
505 bool useEHCleanupForArray;
506
507 void Emit(CodeGenFunction &CGF, Flags flags) override {
508 // Don't use an EH cleanup recursively from an EH cleanup.
509 bool useEHCleanupForArray =
510 flags.isForNormalCleanup() && this->useEHCleanupForArray;
511
512 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
513 }
514 };
515
516 template <class Derived>
517 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
518 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
519 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
520
521 llvm::Value *NRVOFlag;
522 Address Loc;
523 QualType Ty;
524
525 void Emit(CodeGenFunction &CGF, Flags flags) override {
526 // Along the exceptions path we always execute the dtor.
527 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
528
529 llvm::BasicBlock *SkipDtorBB = nullptr;
530 if (NRVO) {
531 // If we exited via NRVO, we skip the destructor call.
532 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
533 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
534 llvm::Value *DidNRVO =
535 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
536 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
537 CGF.EmitBlock(RunDtorBB);
538 }
539
540 static_cast<Derived *>(this)->emitDestructorCall(CGF);
541
542 if (NRVO) CGF.EmitBlock(SkipDtorBB);
543 }
544
545 virtual ~DestroyNRVOVariable() = default;
546 };
547
548 struct DestroyNRVOVariableCXX final
549 : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
550 DestroyNRVOVariableCXX(Address addr, QualType type,
551 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
552 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
553 Dtor(Dtor) {}
554
555 const CXXDestructorDecl *Dtor;
556
557 void emitDestructorCall(CodeGenFunction &CGF) {
559 /*ForVirtualBase=*/false,
560 /*Delegating=*/false, Loc, Ty);
561 }
562 };
563
564 struct DestroyNRVOVariableC final
565 : DestroyNRVOVariable<DestroyNRVOVariableC> {
566 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
567 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
568
569 void emitDestructorCall(CodeGenFunction &CGF) {
570 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
571 }
572 };
573
574 struct CallStackRestore final : EHScopeStack::Cleanup {
575 Address Stack;
576 CallStackRestore(Address Stack) : Stack(Stack) {}
577 bool isRedundantBeforeReturn() override { return true; }
578 void Emit(CodeGenFunction &CGF, Flags flags) override {
579 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
580 CGF.Builder.CreateStackRestore(V);
581 }
582 };
583
584 struct KmpcAllocFree final : EHScopeStack::Cleanup {
585 std::pair<llvm::Value *, llvm::Value *> AddrSizePair;
586 KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair)
587 : AddrSizePair(AddrSizePair) {}
588 void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override {
589 auto &RT = CGF.CGM.getOpenMPRuntime();
590 RT.getKmpcFreeShared(CGF, AddrSizePair);
591 }
592 };
593
594 struct ExtendGCLifetime final : EHScopeStack::Cleanup {
595 const VarDecl &Var;
596 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
597
598 void Emit(CodeGenFunction &CGF, Flags flags) override {
599 // Compute the address of the local variable, in case it's a
600 // byref or something.
601 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
603 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
605 CGF.EmitExtendGCLifetime(value);
606 }
607 };
608
609 struct CallCleanupFunction final : EHScopeStack::Cleanup {
610 llvm::Constant *CleanupFn;
611 const CGFunctionInfo &FnInfo;
612 const VarDecl &Var;
613
614 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
615 const VarDecl *Var)
616 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
617
618 void Emit(CodeGenFunction &CGF, Flags flags) override {
619 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
621 // Compute the address of the local variable, in case it's a byref
622 // or something.
623 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
624
625 // In some cases, the type of the function argument will be different from
626 // the type of the pointer. An example of this is
627 // void f(void* arg);
628 // __attribute__((cleanup(f))) void *g;
629 //
630 // To fix this we insert a bitcast here.
631 QualType ArgTy = FnInfo.arg_begin()->type;
632 llvm::Value *Arg =
633 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
634
635 CallArgList Args;
636 Args.add(RValue::get(Arg),
637 CGF.getContext().getPointerType(Var.getType()));
638 auto Callee = CGCallee::forDirect(CleanupFn);
639 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
640 }
641 };
642} // end anonymous namespace
643
644/// EmitAutoVarWithLifetime - Does the setup required for an automatic
645/// variable with lifetime.
647 Address addr,
648 Qualifiers::ObjCLifetime lifetime) {
649 switch (lifetime) {
651 llvm_unreachable("present but none");
652
654 // nothing to do
655 break;
656
658 CodeGenFunction::Destroyer *destroyer =
659 (var.hasAttr<ObjCPreciseLifetimeAttr>()
662
663 CleanupKind cleanupKind = CGF.getARCCleanupKind();
664 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
665 cleanupKind & EHCleanup);
666 break;
667 }
669 // nothing to do
670 break;
671
673 // __weak objects always get EH cleanups; otherwise, exceptions
674 // could cause really nasty crashes instead of mere leaks.
675 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
677 /*useEHCleanup*/ true);
678 break;
679 }
680}
681
682static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
683 if (const Expr *e = dyn_cast<Expr>(s)) {
684 // Skip the most common kinds of expressions that make
685 // hierarchy-walking expensive.
686 s = e = e->IgnoreParenCasts();
687
688 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
689 return (ref->getDecl() == &var);
690 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
691 const BlockDecl *block = be->getBlockDecl();
692 for (const auto &I : block->captures()) {
693 if (I.getVariable() == &var)
694 return true;
695 }
696 }
697 }
698
699 for (const Stmt *SubStmt : s->children())
700 // SubStmt might be null; as in missing decl or conditional of an if-stmt.
701 if (SubStmt && isAccessedBy(var, SubStmt))
702 return true;
703
704 return false;
705}
706
707static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
708 if (!decl) return false;
709 if (!isa<VarDecl>(decl)) return false;
710 const VarDecl *var = cast<VarDecl>(decl);
711 return isAccessedBy(*var, e);
712}
713
715 const LValue &destLV, const Expr *init) {
716 bool needsCast = false;
717
718 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
719 switch (castExpr->getCastKind()) {
720 // Look through casts that don't require representation changes.
721 case CK_NoOp:
722 case CK_BitCast:
723 case CK_BlockPointerToObjCPointerCast:
724 needsCast = true;
725 break;
726
727 // If we find an l-value to r-value cast from a __weak variable,
728 // emit this operation as a copy or move.
729 case CK_LValueToRValue: {
730 const Expr *srcExpr = castExpr->getSubExpr();
731 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
732 return false;
733
734 // Emit the source l-value.
735 LValue srcLV = CGF.EmitLValue(srcExpr);
736
737 // Handle a formal type change to avoid asserting.
738 auto srcAddr = srcLV.getAddress(CGF);
739 if (needsCast) {
740 srcAddr =
741 srcAddr.withElementType(destLV.getAddress(CGF).getElementType());
742 }
743
744 // If it was an l-value, use objc_copyWeak.
745 if (srcExpr->isLValue()) {
746 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
747 } else {
748 assert(srcExpr->isXValue());
749 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
750 }
751 return true;
752 }
753
754 // Stop at anything else.
755 default:
756 return false;
757 }
758
759 init = castExpr->getSubExpr();
760 }
761 return false;
762}
763
765 LValue &lvalue,
766 const VarDecl *var) {
767 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
768}
769
770void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
771 SourceLocation Loc) {
772 if (!SanOpts.has(SanitizerKind::NullabilityAssign))
773 return;
774
775 auto Nullability = LHS.getType()->getNullability();
776 if (!Nullability || *Nullability != NullabilityKind::NonNull)
777 return;
778
779 // Check if the right hand side of the assignment is nonnull, if the left
780 // hand side must be nonnull.
781 SanitizerScope SanScope(this);
782 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
783 llvm::Constant *StaticData[] = {
785 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
786 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
787 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
788 SanitizerHandler::TypeMismatch, StaticData, RHS);
789}
790
791void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
792 LValue lvalue, bool capturedByInit) {
793 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
794 if (!lifetime) {
795 llvm::Value *value = EmitScalarExpr(init);
796 if (capturedByInit)
797 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
798 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
799 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
800 return;
801 }
802
803 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
804 init = DIE->getExpr();
805
806 // If we're emitting a value with lifetime, we have to do the
807 // initialization *before* we leave the cleanup scopes.
808 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
809 CodeGenFunction::RunCleanupsScope Scope(*this);
810 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
811 }
812
813 // We have to maintain the illusion that the variable is
814 // zero-initialized. If the variable might be accessed in its
815 // initializer, zero-initialize before running the initializer, then
816 // actually perform the initialization with an assign.
817 bool accessedByInit = false;
818 if (lifetime != Qualifiers::OCL_ExplicitNone)
819 accessedByInit = (capturedByInit || isAccessedBy(D, init));
820 if (accessedByInit) {
821 LValue tempLV = lvalue;
822 // Drill down to the __block object if necessary.
823 if (capturedByInit) {
824 // We can use a simple GEP for this because it can't have been
825 // moved yet.
826 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
827 cast<VarDecl>(D),
828 /*follow*/ false));
829 }
830
831 auto ty =
832 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
833 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
834
835 // If __weak, we want to use a barrier under certain conditions.
836 if (lifetime == Qualifiers::OCL_Weak)
837 EmitARCInitWeak(tempLV.getAddress(*this), zero);
838
839 // Otherwise just do a simple store.
840 else
841 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
842 }
843
844 // Emit the initializer.
845 llvm::Value *value = nullptr;
846
847 switch (lifetime) {
849 llvm_unreachable("present but none");
850
852 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
853 value = EmitARCRetainScalarExpr(init);
854 break;
855 }
856 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
857 // that we omit the retain, and causes non-autoreleased return values to be
858 // immediately released.
859 [[fallthrough]];
860 }
861
864 break;
865
867 // If it's not accessed by the initializer, try to emit the
868 // initialization with a copy or move.
869 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
870 return;
871 }
872
873 // No way to optimize a producing initializer into this. It's not
874 // worth optimizing for, because the value will immediately
875 // disappear in the common case.
876 value = EmitScalarExpr(init);
877
878 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
879 if (accessedByInit)
880 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
881 else
882 EmitARCInitWeak(lvalue.getAddress(*this), value);
883 return;
884 }
885
888 break;
889 }
890
891 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
892
893 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
894
895 // If the variable might have been accessed by its initializer, we
896 // might have to initialize with a barrier. We have to do this for
897 // both __weak and __strong, but __weak got filtered out above.
898 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
899 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
900 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
902 return;
903 }
904
905 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
906}
907
908/// Decide whether we can emit the non-zero parts of the specified initializer
909/// with equal or fewer than NumStores scalar stores.
910static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
911 unsigned &NumStores) {
912 // Zero and Undef never requires any extra stores.
913 if (isa<llvm::ConstantAggregateZero>(Init) ||
914 isa<llvm::ConstantPointerNull>(Init) ||
915 isa<llvm::UndefValue>(Init))
916 return true;
917 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
918 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
919 isa<llvm::ConstantExpr>(Init))
920 return Init->isNullValue() || NumStores--;
921
922 // See if we can emit each element.
923 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
924 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
925 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
926 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
927 return false;
928 }
929 return true;
930 }
931
932 if (llvm::ConstantDataSequential *CDS =
933 dyn_cast<llvm::ConstantDataSequential>(Init)) {
934 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
935 llvm::Constant *Elt = CDS->getElementAsConstant(i);
936 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
937 return false;
938 }
939 return true;
940 }
941
942 // Anything else is hard and scary.
943 return false;
944}
945
946/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
947/// the scalar stores that would be required.
949 llvm::Constant *Init, Address Loc,
950 bool isVolatile, CGBuilderTy &Builder,
951 bool IsAutoInit) {
952 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
953 "called emitStoresForInitAfterBZero for zero or undef value.");
954
955 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
956 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
957 isa<llvm::ConstantExpr>(Init)) {
958 auto *I = Builder.CreateStore(Init, Loc, isVolatile);
959 if (IsAutoInit)
960 I->addAnnotationMetadata("auto-init");
961 return;
962 }
963
964 if (llvm::ConstantDataSequential *CDS =
965 dyn_cast<llvm::ConstantDataSequential>(Init)) {
966 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
967 llvm::Constant *Elt = CDS->getElementAsConstant(i);
968
969 // If necessary, get a pointer to the element and emit it.
970 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
972 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
973 Builder, IsAutoInit);
974 }
975 return;
976 }
977
978 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
979 "Unknown value type!");
980
981 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
982 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
983
984 // If necessary, get a pointer to the element and emit it.
985 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
987 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
988 isVolatile, Builder, IsAutoInit);
989 }
990}
991
992/// Decide whether we should use bzero plus some stores to initialize a local
993/// variable instead of using a memcpy from a constant global. It is beneficial
994/// to use bzero if the global is all zeros, or mostly zeros and large.
995static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
996 uint64_t GlobalSize) {
997 // If a global is all zeros, always use a bzero.
998 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
999
1000 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
1001 // do it if it will require 6 or fewer scalar stores.
1002 // TODO: Should budget depends on the size? Avoiding a large global warrants
1003 // plopping in more stores.
1004 unsigned StoreBudget = 6;
1005 uint64_t SizeLimit = 32;
1006
1007 return GlobalSize > SizeLimit &&
1009}
1010
1011/// Decide whether we should use memset to initialize a local variable instead
1012/// of using a memcpy from a constant global. Assumes we've already decided to
1013/// not user bzero.
1014/// FIXME We could be more clever, as we are for bzero above, and generate
1015/// memset followed by stores. It's unclear that's worth the effort.
1016static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
1017 uint64_t GlobalSize,
1018 const llvm::DataLayout &DL) {
1019 uint64_t SizeLimit = 32;
1020 if (GlobalSize <= SizeLimit)
1021 return nullptr;
1022 return llvm::isBytewiseValue(Init, DL);
1023}
1024
1025/// Decide whether we want to split a constant structure or array store into a
1026/// sequence of its fields' stores. This may cost us code size and compilation
1027/// speed, but plays better with store optimizations.
1029 uint64_t GlobalByteSize) {
1030 // Don't break things that occupy more than one cacheline.
1031 uint64_t ByteSizeLimit = 64;
1032 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1033 return false;
1034 if (GlobalByteSize <= ByteSizeLimit)
1035 return true;
1036 return false;
1037}
1038
1039enum class IsPattern { No, Yes };
1040
1041/// Generate a constant filled with either a pattern or zeroes.
1042static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1043 llvm::Type *Ty) {
1044 if (isPattern == IsPattern::Yes)
1045 return initializationPatternFor(CGM, Ty);
1046 else
1047 return llvm::Constant::getNullValue(Ty);
1048}
1049
1050static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1051 llvm::Constant *constant);
1052
1053/// Helper function for constWithPadding() to deal with padding in structures.
1054static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1055 IsPattern isPattern,
1056 llvm::StructType *STy,
1057 llvm::Constant *constant) {
1058 const llvm::DataLayout &DL = CGM.getDataLayout();
1059 const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1060 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1061 unsigned SizeSoFar = 0;
1063 bool NestedIntact = true;
1064 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1065 unsigned CurOff = Layout->getElementOffset(i);
1066 if (SizeSoFar < CurOff) {
1067 assert(!STy->isPacked());
1068 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1069 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1070 }
1071 llvm::Constant *CurOp;
1072 if (constant->isZeroValue())
1073 CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1074 else
1075 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1076 auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1077 if (CurOp != NewOp)
1078 NestedIntact = false;
1079 Values.push_back(NewOp);
1080 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1081 }
1082 unsigned TotalSize = Layout->getSizeInBytes();
1083 if (SizeSoFar < TotalSize) {
1084 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1085 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1086 }
1087 if (NestedIntact && Values.size() == STy->getNumElements())
1088 return constant;
1089 return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1090}
1091
1092/// Replace all padding bytes in a given constant with either a pattern byte or
1093/// 0x00.
1094static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1095 llvm::Constant *constant) {
1096 llvm::Type *OrigTy = constant->getType();
1097 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1098 return constStructWithPadding(CGM, isPattern, STy, constant);
1099 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1101 uint64_t Size = ArrayTy->getNumElements();
1102 if (!Size)
1103 return constant;
1104 llvm::Type *ElemTy = ArrayTy->getElementType();
1105 bool ZeroInitializer = constant->isNullValue();
1106 llvm::Constant *OpValue, *PaddedOp;
1107 if (ZeroInitializer) {
1108 OpValue = llvm::Constant::getNullValue(ElemTy);
1109 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1110 }
1111 for (unsigned Op = 0; Op != Size; ++Op) {
1112 if (!ZeroInitializer) {
1113 OpValue = constant->getAggregateElement(Op);
1114 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1115 }
1116 Values.push_back(PaddedOp);
1117 }
1118 auto *NewElemTy = Values[0]->getType();
1119 if (NewElemTy == ElemTy)
1120 return constant;
1121 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1122 return llvm::ConstantArray::get(NewArrayTy, Values);
1123 }
1124 // FIXME: Add handling for tail padding in vectors. Vectors don't
1125 // have padding between or inside elements, but the total amount of
1126 // data can be less than the allocated size.
1127 return constant;
1128}
1129
1131 llvm::Constant *Constant,
1132 CharUnits Align) {
1133 auto FunctionName = [&](const DeclContext *DC) -> std::string {
1134 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1135 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1136 return CC->getNameAsString();
1137 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1138 return CD->getNameAsString();
1139 return std::string(getMangledName(FD));
1140 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1141 return OM->getNameAsString();
1142 } else if (isa<BlockDecl>(DC)) {
1143 return "<block>";
1144 } else if (isa<CapturedDecl>(DC)) {
1145 return "<captured>";
1146 } else {
1147 llvm_unreachable("expected a function or method");
1148 }
1149 };
1150
1151 // Form a simple per-variable cache of these values in case we find we
1152 // want to reuse them.
1153 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1154 if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1155 auto *Ty = Constant->getType();
1156 bool isConstant = true;
1157 llvm::GlobalVariable *InsertBefore = nullptr;
1158 unsigned AS =
1160 std::string Name;
1161 if (D.hasGlobalStorage())
1162 Name = getMangledName(&D).str() + ".const";
1163 else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1164 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1165 else
1166 llvm_unreachable("local variable has no parent function or method");
1167 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1168 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1169 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1170 GV->setAlignment(Align.getAsAlign());
1171 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1172 CacheEntry = GV;
1173 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1174 CacheEntry->setAlignment(Align.getAsAlign());
1175 }
1176
1177 return Address(CacheEntry, CacheEntry->getValueType(), Align);
1178}
1179
1181 const VarDecl &D,
1182 CGBuilderTy &Builder,
1183 llvm::Constant *Constant,
1184 CharUnits Align) {
1185 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1186 return SrcPtr.withElementType(CGM.Int8Ty);
1187}
1188
1190 Address Loc, bool isVolatile,
1191 CGBuilderTy &Builder,
1192 llvm::Constant *constant, bool IsAutoInit) {
1193 auto *Ty = constant->getType();
1194 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1195 if (!ConstantSize)
1196 return;
1197
1198 bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1199 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1200 if (canDoSingleStore) {
1201 auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1202 if (IsAutoInit)
1203 I->addAnnotationMetadata("auto-init");
1204 return;
1205 }
1206
1207 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1208
1209 // If the initializer is all or mostly the same, codegen with bzero / memset
1210 // then do a few stores afterward.
1211 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1212 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1213 SizeVal, isVolatile);
1214 if (IsAutoInit)
1215 I->addAnnotationMetadata("auto-init");
1216
1217 bool valueAlreadyCorrect =
1218 constant->isNullValue() || isa<llvm::UndefValue>(constant);
1219 if (!valueAlreadyCorrect) {
1220 Loc = Loc.withElementType(Ty);
1221 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1222 IsAutoInit);
1223 }
1224 return;
1225 }
1226
1227 // If the initializer is a repeated byte pattern, use memset.
1228 llvm::Value *Pattern =
1229 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1230 if (Pattern) {
1231 uint64_t Value = 0x00;
1232 if (!isa<llvm::UndefValue>(Pattern)) {
1233 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1234 assert(AP.getBitWidth() <= 8);
1235 Value = AP.getLimitedValue();
1236 }
1237 auto *I = Builder.CreateMemSet(
1238 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1239 if (IsAutoInit)
1240 I->addAnnotationMetadata("auto-init");
1241 return;
1242 }
1243
1244 // If the initializer is small, use a handful of stores.
1245 if (shouldSplitConstantStore(CGM, ConstantSize)) {
1246 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1247 const llvm::StructLayout *Layout =
1248 CGM.getDataLayout().getStructLayout(STy);
1249 for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1250 CharUnits CurOff = CharUnits::fromQuantity(Layout->getElementOffset(i));
1251 Address EltPtr = Builder.CreateConstInBoundsByteGEP(
1252 Loc.withElementType(CGM.Int8Ty), CurOff);
1253 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1254 constant->getAggregateElement(i), IsAutoInit);
1255 }
1256 return;
1257 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1258 for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1259 Address EltPtr = Builder.CreateConstGEP(
1260 Loc.withElementType(ATy->getElementType()), i);
1261 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1262 constant->getAggregateElement(i), IsAutoInit);
1263 }
1264 return;
1265 }
1266 }
1267
1268 // Copy from a global.
1269 auto *I =
1270 Builder.CreateMemCpy(Loc,
1272 CGM, D, Builder, constant, Loc.getAlignment()),
1273 SizeVal, isVolatile);
1274 if (IsAutoInit)
1275 I->addAnnotationMetadata("auto-init");
1276}
1277
1279 Address Loc, bool isVolatile,
1280 CGBuilderTy &Builder) {
1281 llvm::Type *ElTy = Loc.getElementType();
1282 llvm::Constant *constant =
1283 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1284 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1285 /*IsAutoInit=*/true);
1286}
1287
1289 Address Loc, bool isVolatile,
1290 CGBuilderTy &Builder) {
1291 llvm::Type *ElTy = Loc.getElementType();
1292 llvm::Constant *constant = constWithPadding(
1293 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1294 assert(!isa<llvm::UndefValue>(constant));
1295 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1296 /*IsAutoInit=*/true);
1297}
1298
1299static bool containsUndef(llvm::Constant *constant) {
1300 auto *Ty = constant->getType();
1301 if (isa<llvm::UndefValue>(constant))
1302 return true;
1303 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1304 for (llvm::Use &Op : constant->operands())
1305 if (containsUndef(cast<llvm::Constant>(Op)))
1306 return true;
1307 return false;
1308}
1309
1310static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1311 llvm::Constant *constant) {
1312 auto *Ty = constant->getType();
1313 if (isa<llvm::UndefValue>(constant))
1314 return patternOrZeroFor(CGM, isPattern, Ty);
1315 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1316 return constant;
1317 if (!containsUndef(constant))
1318 return constant;
1319 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1320 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1321 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1322 Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1323 }
1324 if (Ty->isStructTy())
1325 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1326 if (Ty->isArrayTy())
1327 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1328 assert(Ty->isVectorTy());
1329 return llvm::ConstantVector::get(Values);
1330}
1331
1332/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1333/// variable declaration with auto, register, or no storage class specifier.
1334/// These turn into simple stack objects, or GlobalValues depending on target.
1336 AutoVarEmission emission = EmitAutoVarAlloca(D);
1337 EmitAutoVarInit(emission);
1338 EmitAutoVarCleanups(emission);
1339}
1340
1341/// Emit a lifetime.begin marker if some criteria are satisfied.
1342/// \return a pointer to the temporary size Value if a marker was emitted, null
1343/// otherwise
1344llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1345 llvm::Value *Addr) {
1346 if (!ShouldEmitLifetimeMarkers)
1347 return nullptr;
1348
1349 assert(Addr->getType()->getPointerAddressSpace() ==
1350 CGM.getDataLayout().getAllocaAddrSpace() &&
1351 "Pointer should be in alloca address space");
1352 llvm::Value *SizeV = llvm::ConstantInt::get(
1353 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1354 llvm::CallInst *C =
1355 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1356 C->setDoesNotThrow();
1357 return SizeV;
1358}
1359
1360void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1361 assert(Addr->getType()->getPointerAddressSpace() ==
1362 CGM.getDataLayout().getAllocaAddrSpace() &&
1363 "Pointer should be in alloca address space");
1364 llvm::CallInst *C =
1365 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1366 C->setDoesNotThrow();
1367}
1368
1370 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1371 // For each dimension stores its QualType and corresponding
1372 // size-expression Value.
1375
1376 // Break down the array into individual dimensions.
1377 QualType Type1D = D.getType();
1378 while (getContext().getAsVariableArrayType(Type1D)) {
1379 auto VlaSize = getVLAElements1D(Type1D);
1380 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1381 Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1382 else {
1383 // Generate a locally unique name for the size expression.
1384 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1385 SmallString<12> Buffer;
1386 StringRef NameRef = Name.toStringRef(Buffer);
1387 auto &Ident = getContext().Idents.getOwn(NameRef);
1388 VLAExprNames.push_back(&Ident);
1389 auto SizeExprAddr =
1390 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1391 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1392 Dimensions.emplace_back(SizeExprAddr.getPointer(),
1393 Type1D.getUnqualifiedType());
1394 }
1395 Type1D = VlaSize.Type;
1396 }
1397
1398 if (!EmitDebugInfo)
1399 return;
1400
1401 // Register each dimension's size-expression with a DILocalVariable,
1402 // so that it can be used by CGDebugInfo when instantiating a DISubrange
1403 // to describe this array.
1404 unsigned NameIdx = 0;
1405 for (auto &VlaSize : Dimensions) {
1406 llvm::Metadata *MD;
1407 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1408 MD = llvm::ConstantAsMetadata::get(C);
1409 else {
1410 // Create an artificial VarDecl to generate debug info for.
1411 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1413 SizeTy->getScalarSizeInBits(), false);
1414 auto *ArtificialDecl = VarDecl::Create(
1415 getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1416 D.getLocation(), D.getLocation(), NameIdent, QT,
1417 getContext().CreateTypeSourceInfo(QT), SC_Auto);
1418 ArtificialDecl->setImplicit();
1419
1420 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1421 Builder);
1422 }
1423 assert(MD && "No Size expression debug node created");
1424 DI->registerVLASizeExpression(VlaSize.Type, MD);
1425 }
1426}
1427
1428/// EmitAutoVarAlloca - Emit the alloca and debug information for a
1429/// local variable. Does not emit initialization or destruction.
1430CodeGenFunction::AutoVarEmission
1432 QualType Ty = D.getType();
1433 assert(
1436
1437 AutoVarEmission emission(D);
1438
1439 bool isEscapingByRef = D.isEscapingByref();
1440 emission.IsEscapingByRef = isEscapingByRef;
1441
1442 CharUnits alignment = getContext().getDeclAlign(&D);
1443
1444 // If the type is variably-modified, emit all the VLA sizes for it.
1445 if (Ty->isVariablyModifiedType())
1447
1448 auto *DI = getDebugInfo();
1449 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1450
1451 Address address = Address::invalid();
1452 Address AllocaAddr = Address::invalid();
1453 Address OpenMPLocalAddr = Address::invalid();
1454 if (CGM.getLangOpts().OpenMPIRBuilder)
1455 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1456 else
1457 OpenMPLocalAddr =
1458 getLangOpts().OpenMP
1460 : Address::invalid();
1461
1462 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1463
1464 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1465 address = OpenMPLocalAddr;
1466 AllocaAddr = OpenMPLocalAddr;
1467 } else if (Ty->isConstantSizeType()) {
1468 // If this value is an array or struct with a statically determinable
1469 // constant initializer, there are optimizations we can do.
1470 //
1471 // TODO: We should constant-evaluate the initializer of any variable,
1472 // as long as it is initialized by a constant expression. Currently,
1473 // isConstantInitializer produces wrong answers for structs with
1474 // reference or bitfield members, and a few other cases, and checking
1475 // for POD-ness protects us from some of these.
1476 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1477 (D.isConstexpr() ||
1478 ((Ty.isPODType(getContext()) ||
1479 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1480 D.getInit()->isConstantInitializer(getContext(), false)))) {
1481
1482 // If the variable's a const type, and it's neither an NRVO
1483 // candidate nor a __block variable and has no mutable members,
1484 // emit it as a global instead.
1485 // Exception is if a variable is located in non-constant address space
1486 // in OpenCL.
1487 bool NeedsDtor =
1489 if ((!getLangOpts().OpenCL ||
1491 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1492 !isEscapingByRef &&
1493 Ty.isConstantStorage(getContext(), true, !NeedsDtor))) {
1494 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1495
1496 // Signal this condition to later callbacks.
1497 emission.Addr = Address::invalid();
1498 assert(emission.wasEmittedAsGlobal());
1499 return emission;
1500 }
1501
1502 // Otherwise, tell the initialization code that we're in this case.
1503 emission.IsConstantAggregate = true;
1504 }
1505
1506 // A normal fixed sized variable becomes an alloca in the entry block,
1507 // unless:
1508 // - it's an NRVO variable.
1509 // - we are compiling OpenMP and it's an OpenMP local variable.
1510 if (NRVO) {
1511 // The named return value optimization: allocate this variable in the
1512 // return slot, so that we can elide the copy when returning this
1513 // variable (C++0x [class.copy]p34).
1514 address = ReturnValue;
1515 AllocaAddr = ReturnValue;
1516
1517 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1518 const auto *RD = RecordTy->getDecl();
1519 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1520 if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1521 RD->isNonTrivialToPrimitiveDestroy()) {
1522 // Create a flag that is used to indicate when the NRVO was applied
1523 // to this variable. Set it to zero to indicate that NRVO was not
1524 // applied.
1525 llvm::Value *Zero = Builder.getFalse();
1526 Address NRVOFlag =
1527 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1529 Builder.CreateStore(Zero, NRVOFlag);
1530
1531 // Record the NRVO flag for this variable.
1532 NRVOFlags[&D] = NRVOFlag.getPointer();
1533 emission.NRVOFlag = NRVOFlag.getPointer();
1534 }
1535 }
1536 } else {
1537 CharUnits allocaAlignment;
1538 llvm::Type *allocaTy;
1539 if (isEscapingByRef) {
1540 auto &byrefInfo = getBlockByrefInfo(&D);
1541 allocaTy = byrefInfo.Type;
1542 allocaAlignment = byrefInfo.ByrefAlignment;
1543 } else {
1544 allocaTy = ConvertTypeForMem(Ty);
1545 allocaAlignment = alignment;
1546 }
1547
1548 // Create the alloca. Note that we set the name separately from
1549 // building the instruction so that it's there even in no-asserts
1550 // builds.
1551 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1552 /*ArraySize=*/nullptr, &AllocaAddr);
1553
1554 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1555 // the catch parameter starts in the catchpad instruction, and we can't
1556 // insert code in those basic blocks.
1557 bool IsMSCatchParam =
1559
1560 // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1561 // if we don't have a valid insertion point (?).
1562 if (HaveInsertPoint() && !IsMSCatchParam) {
1563 // If there's a jump into the lifetime of this variable, its lifetime
1564 // gets broken up into several regions in IR, which requires more work
1565 // to handle correctly. For now, just omit the intrinsics; this is a
1566 // rare case, and it's better to just be conservatively correct.
1567 // PR28267.
1568 //
1569 // We have to do this in all language modes if there's a jump past the
1570 // declaration. We also have to do it in C if there's a jump to an
1571 // earlier point in the current block because non-VLA lifetimes begin as
1572 // soon as the containing block is entered, not when its variables
1573 // actually come into scope; suppressing the lifetime annotations
1574 // completely in this case is unnecessarily pessimistic, but again, this
1575 // is rare.
1576 if (!Bypasses.IsBypassed(&D) &&
1578 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1579 emission.SizeForLifetimeMarkers =
1580 EmitLifetimeStart(Size, AllocaAddr.getPointer());
1581 }
1582 } else {
1583 assert(!emission.useLifetimeMarkers());
1584 }
1585 }
1586 } else {
1588
1589 // Delayed globalization for variable length declarations. This ensures that
1590 // the expression representing the length has been emitted and can be used
1591 // by the definition of the VLA. Since this is an escaped declaration, in
1592 // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching
1593 // deallocation call to __kmpc_free_shared() is emitted later.
1594 bool VarAllocated = false;
1595 if (getLangOpts().OpenMPIsTargetDevice) {
1596 auto &RT = CGM.getOpenMPRuntime();
1597 if (RT.isDelayedVariableLengthDecl(*this, &D)) {
1598 // Emit call to __kmpc_alloc_shared() instead of the alloca.
1599 std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1600 RT.getKmpcAllocShared(*this, &D);
1601
1602 // Save the address of the allocation:
1603 LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(),
1606 address = Base.getAddress(*this);
1607
1608 // Push a cleanup block to emit the call to __kmpc_free_shared in the
1609 // appropriate location at the end of the scope of the
1610 // __kmpc_alloc_shared functions:
1611 pushKmpcAllocFree(NormalCleanup, AddrSizePair);
1612
1613 // Mark variable as allocated:
1614 VarAllocated = true;
1615 }
1616 }
1617
1618 if (!VarAllocated) {
1619 if (!DidCallStackSave) {
1620 // Save the stack.
1621 Address Stack =
1623
1624 llvm::Value *V = Builder.CreateStackSave();
1625 assert(V->getType() == AllocaInt8PtrTy);
1626 Builder.CreateStore(V, Stack);
1627
1628 DidCallStackSave = true;
1629
1630 // Push a cleanup block and restore the stack there.
1631 // FIXME: in general circumstances, this should be an EH cleanup.
1633 }
1634
1635 auto VlaSize = getVLASize(Ty);
1636 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1637
1638 // Allocate memory for the array.
1639 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1640 &AllocaAddr);
1641 }
1642
1643 // If we have debug info enabled, properly describe the VLA dimensions for
1644 // this type by registering the vla size expression for each of the
1645 // dimensions.
1646 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1647 }
1648
1649 setAddrOfLocalVar(&D, address);
1650 emission.Addr = address;
1651 emission.AllocaAddr = AllocaAddr;
1652
1653 // Emit debug info for local var declaration.
1654 if (EmitDebugInfo && HaveInsertPoint()) {
1655 Address DebugAddr = address;
1656 bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1657 DI->setLocation(D.getLocation());
1658
1659 // If NRVO, use a pointer to the return address.
1660 if (UsePointerValue) {
1661 DebugAddr = ReturnValuePointer;
1662 AllocaAddr = ReturnValuePointer;
1663 }
1664 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1665 UsePointerValue);
1666 }
1667
1668 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1669 EmitVarAnnotations(&D, address.getPointer());
1670
1671 // Make sure we call @llvm.lifetime.end.
1672 if (emission.useLifetimeMarkers())
1673 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1674 emission.getOriginalAllocatedAddress(),
1675 emission.getSizeForLifetimeMarkers());
1676
1677 return emission;
1678}
1679
1680static bool isCapturedBy(const VarDecl &, const Expr *);
1681
1682/// Determines whether the given __block variable is potentially
1683/// captured by the given statement.
1684static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1685 if (const Expr *E = dyn_cast<Expr>(S))
1686 return isCapturedBy(Var, E);
1687 for (const Stmt *SubStmt : S->children())
1688 if (isCapturedBy(Var, SubStmt))
1689 return true;
1690 return false;
1691}
1692
1693/// Determines whether the given __block variable is potentially
1694/// captured by the given expression.
1695static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1696 // Skip the most common kinds of expressions that make
1697 // hierarchy-walking expensive.
1698 E = E->IgnoreParenCasts();
1699
1700 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1701 const BlockDecl *Block = BE->getBlockDecl();
1702 for (const auto &I : Block->captures()) {
1703 if (I.getVariable() == &Var)
1704 return true;
1705 }
1706
1707 // No need to walk into the subexpressions.
1708 return false;
1709 }
1710
1711 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1712 const CompoundStmt *CS = SE->getSubStmt();
1713 for (const auto *BI : CS->body())
1714 if (const auto *BIE = dyn_cast<Expr>(BI)) {
1715 if (isCapturedBy(Var, BIE))
1716 return true;
1717 }
1718 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1719 // special case declarations
1720 for (const auto *I : DS->decls()) {
1721 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1722 const Expr *Init = VD->getInit();
1723 if (Init && isCapturedBy(Var, Init))
1724 return true;
1725 }
1726 }
1727 }
1728 else
1729 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1730 // Later, provide code to poke into statements for capture analysis.
1731 return true;
1732 return false;
1733 }
1734
1735 for (const Stmt *SubStmt : E->children())
1736 if (isCapturedBy(Var, SubStmt))
1737 return true;
1738
1739 return false;
1740}
1741
1742/// Determine whether the given initializer is trivial in the sense
1743/// that it requires no code to be generated.
1745 if (!Init)
1746 return true;
1747
1748 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1749 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1750 if (Constructor->isTrivial() &&
1751 Constructor->isDefaultConstructor() &&
1752 !Construct->requiresZeroInitialization())
1753 return true;
1754
1755 return false;
1756}
1757
1758void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1759 const VarDecl &D,
1760 Address Loc) {
1761 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1763 bool isVolatile = type.isVolatileQualified();
1764 if (!Size.isZero()) {
1765 switch (trivialAutoVarInit) {
1767 llvm_unreachable("Uninitialized handled by caller");
1769 if (CGM.stopAutoInit())
1770 return;
1771 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1772 break;
1774 if (CGM.stopAutoInit())
1775 return;
1776 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1777 break;
1778 }
1779 return;
1780 }
1781
1782 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1783 // them, so emit a memcpy with the VLA size to initialize each element.
1784 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1785 // will catch that code, but there exists code which generates zero-sized
1786 // VLAs. Be nice and initialize whatever they requested.
1787 const auto *VlaType = getContext().getAsVariableArrayType(type);
1788 if (!VlaType)
1789 return;
1790 auto VlaSize = getVLASize(VlaType);
1791 auto SizeVal = VlaSize.NumElts;
1792 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1793 switch (trivialAutoVarInit) {
1795 llvm_unreachable("Uninitialized handled by caller");
1796
1798 if (CGM.stopAutoInit())
1799 return;
1800 if (!EltSize.isOne())
1801 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1802 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1803 SizeVal, isVolatile);
1804 I->addAnnotationMetadata("auto-init");
1805 break;
1806 }
1807
1809 if (CGM.stopAutoInit())
1810 return;
1811 llvm::Type *ElTy = Loc.getElementType();
1812 llvm::Constant *Constant = constWithPadding(
1813 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1814 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1815 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1816 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1817 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1818 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1819 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1820 "vla.iszerosized");
1821 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1822 EmitBlock(SetupBB);
1823 if (!EltSize.isOne())
1824 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1825 llvm::Value *BaseSizeInChars =
1826 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1828 llvm::Value *End = Builder.CreateInBoundsGEP(
1829 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
1830 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1831 EmitBlock(LoopBB);
1832 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1833 Cur->addIncoming(Begin.getPointer(), OriginBB);
1834 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1835 auto *I =
1836 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1838 CGM, D, Builder, Constant, ConstantAlign),
1839 BaseSizeInChars, isVolatile);
1840 I->addAnnotationMetadata("auto-init");
1841 llvm::Value *Next =
1842 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1843 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1844 Builder.CreateCondBr(Done, ContBB, LoopBB);
1845 Cur->addIncoming(Next, LoopBB);
1846 EmitBlock(ContBB);
1847 } break;
1848 }
1849}
1850
1851void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1852 assert(emission.Variable && "emission was not valid!");
1853
1854 // If this was emitted as a global constant, we're done.
1855 if (emission.wasEmittedAsGlobal()) return;
1856
1857 const VarDecl &D = *emission.Variable;
1859 QualType type = D.getType();
1860
1861 // If this local has an initializer, emit it now.
1862 const Expr *Init = D.getInit();
1863
1864 // If we are at an unreachable point, we don't need to emit the initializer
1865 // unless it contains a label.
1866 if (!HaveInsertPoint()) {
1867 if (!Init || !ContainsLabel(Init)) return;
1869 }
1870
1871 // Initialize the structure of a __block variable.
1872 if (emission.IsEscapingByRef)
1873 emitByrefStructureInit(emission);
1874
1875 // Initialize the variable here if it doesn't have a initializer and it is a
1876 // C struct that is non-trivial to initialize or an array containing such a
1877 // struct.
1878 if (!Init &&
1879 type.isNonTrivialToPrimitiveDefaultInitialize() ==
1881 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1882 if (emission.IsEscapingByRef)
1883 drillIntoBlockVariable(*this, Dst, &D);
1885 return;
1886 }
1887
1888 // Check whether this is a byref variable that's potentially
1889 // captured and moved by its own initializer. If so, we'll need to
1890 // emit the initializer first, then copy into the variable.
1891 bool capturedByInit =
1892 Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1893
1894 bool locIsByrefHeader = !capturedByInit;
1895 const Address Loc =
1896 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1897
1898 // Note: constexpr already initializes everything correctly.
1899 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1900 (D.isConstexpr()
1902 : (D.getAttr<UninitializedAttr>()
1904 : getContext().getLangOpts().getTrivialAutoVarInit()));
1905
1906 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1907 if (trivialAutoVarInit ==
1909 return;
1910
1911 // Only initialize a __block's storage: we always initialize the header.
1912 if (emission.IsEscapingByRef && !locIsByrefHeader)
1913 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1914
1915 return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1916 };
1917
1919 return initializeWhatIsTechnicallyUninitialized(Loc);
1920
1921 llvm::Constant *constant = nullptr;
1922 if (emission.IsConstantAggregate ||
1924 assert(!capturedByInit && "constant init contains a capturing block?");
1926 if (constant && !constant->isZeroValue() &&
1927 (trivialAutoVarInit !=
1929 IsPattern isPattern =
1930 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1931 ? IsPattern::Yes
1932 : IsPattern::No;
1933 // C guarantees that brace-init with fewer initializers than members in
1934 // the aggregate will initialize the rest of the aggregate as-if it were
1935 // static initialization. In turn static initialization guarantees that
1936 // padding is initialized to zero bits. We could instead pattern-init if D
1937 // has any ImplicitValueInitExpr, but that seems to be unintuitive
1938 // behavior.
1939 constant = constWithPadding(CGM, IsPattern::No,
1940 replaceUndef(CGM, isPattern, constant));
1941 }
1942 }
1943
1944 if (!constant) {
1945 initializeWhatIsTechnicallyUninitialized(Loc);
1946 LValue lv = MakeAddrLValue(Loc, type);
1947 lv.setNonGC(true);
1948 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1949 }
1950
1951 if (!emission.IsConstantAggregate) {
1952 // For simple scalar/complex initialization, store the value directly.
1953 LValue lv = MakeAddrLValue(Loc, type);
1954 lv.setNonGC(true);
1955 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1956 }
1957
1959 type.isVolatileQualified(), Builder, constant,
1960 /*IsAutoInit=*/false);
1961}
1962
1963/// Emit an expression as an initializer for an object (variable, field, etc.)
1964/// at the given location. The expression is not necessarily the normal
1965/// initializer for the object, and the address is not necessarily
1966/// its normal location.
1967///
1968/// \param init the initializing expression
1969/// \param D the object to act as if we're initializing
1970/// \param lvalue the lvalue to initialize
1971/// \param capturedByInit true if \p D is a __block variable
1972/// whose address is potentially changed by the initializer
1973void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1974 LValue lvalue, bool capturedByInit) {
1975 QualType type = D->getType();
1976
1977 if (type->isReferenceType()) {
1978 RValue rvalue = EmitReferenceBindingToExpr(init);
1979 if (capturedByInit)
1980 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1981 EmitStoreThroughLValue(rvalue, lvalue, true);
1982 return;
1983 }
1984 switch (getEvaluationKind(type)) {
1985 case TEK_Scalar:
1986 EmitScalarInit(init, D, lvalue, capturedByInit);
1987 return;
1988 case TEK_Complex: {
1989 ComplexPairTy complex = EmitComplexExpr(init);
1990 if (capturedByInit)
1991 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1992 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1993 return;
1994 }
1995 case TEK_Aggregate:
1996 if (type->isAtomicType()) {
1997 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1998 } else {
2000 if (isa<VarDecl>(D))
2002 else if (auto *FD = dyn_cast<FieldDecl>(D))
2003 Overlap = getOverlapForFieldInit(FD);
2004 // TODO: how can we delay here if D is captured by its initializer?
2006 lvalue, *this, AggValueSlot::IsDestructed,
2008 AggValueSlot::IsNotAliased, Overlap));
2009 }
2010 return;
2011 }
2012 llvm_unreachable("bad evaluation kind");
2013}
2014
2015/// Enter a destroy cleanup for the given local variable.
2017 const CodeGenFunction::AutoVarEmission &emission,
2018 QualType::DestructionKind dtorKind) {
2019 assert(dtorKind != QualType::DK_none);
2020
2021 // Note that for __block variables, we want to destroy the
2022 // original stack object, not the possibly forwarded object.
2023 Address addr = emission.getObjectAddress(*this);
2024
2025 const VarDecl *var = emission.Variable;
2026 QualType type = var->getType();
2027
2028 CleanupKind cleanupKind = NormalAndEHCleanup;
2029 CodeGenFunction::Destroyer *destroyer = nullptr;
2030
2031 switch (dtorKind) {
2032 case QualType::DK_none:
2033 llvm_unreachable("no cleanup for trivially-destructible variable");
2034
2036 // If there's an NRVO flag on the emission, we need a different
2037 // cleanup.
2038 if (emission.NRVOFlag) {
2039 assert(!type->isArrayType());
2040 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2041 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2042 emission.NRVOFlag);
2043 return;
2044 }
2045 break;
2046
2048 // Suppress cleanups for pseudo-strong variables.
2049 if (var->isARCPseudoStrong()) return;
2050
2051 // Otherwise, consider whether to use an EH cleanup or not.
2052 cleanupKind = getARCCleanupKind();
2053
2054 // Use the imprecise destroyer by default.
2055 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2057 break;
2058
2060 break;
2061
2064 if (emission.NRVOFlag) {
2065 assert(!type->isArrayType());
2066 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2067 emission.NRVOFlag, type);
2068 return;
2069 }
2070 break;
2071 }
2072
2073 // If we haven't chosen a more specific destroyer, use the default.
2074 if (!destroyer) destroyer = getDestroyer(dtorKind);
2075
2076 // Use an EH cleanup in array destructors iff the destructor itself
2077 // is being pushed as an EH cleanup.
2078 bool useEHCleanup = (cleanupKind & EHCleanup);
2079 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2080 useEHCleanup);
2081}
2082
2083void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2084 assert(emission.Variable && "emission was not valid!");
2085
2086 // If this was emitted as a global constant, we're done.
2087 if (emission.wasEmittedAsGlobal()) return;
2088
2089 // If we don't have an insertion point, we're done. Sema prevents
2090 // us from jumping into any of these scopes anyway.
2091 if (!HaveInsertPoint()) return;
2092
2093 const VarDecl &D = *emission.Variable;
2094
2095 // Check the type for a cleanup.
2097 emitAutoVarTypeCleanup(emission, dtorKind);
2098
2099 // In GC mode, honor objc_precise_lifetime.
2100 if (getLangOpts().getGC() != LangOptions::NonGC &&
2101 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2102 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2103 }
2104
2105 // Handle the cleanup attribute.
2106 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2107 const FunctionDecl *FD = CA->getFunctionDecl();
2108
2109 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2110 assert(F && "Could not find function!");
2111
2113 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2114 }
2115
2116 // If this is a block variable, call _Block_object_destroy
2117 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2118 // mode.
2119 if (emission.IsEscapingByRef &&
2120 CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2122 if (emission.Variable->getType().isObjCGCWeak())
2123 Flags |= BLOCK_FIELD_IS_WEAK;
2124 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2125 /*LoadBlockVarAddr*/ false,
2126 cxxDestructorCanThrow(emission.Variable->getType()));
2127 }
2128}
2129
2132 switch (kind) {
2133 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2135 return destroyCXXObject;
2139 return destroyARCWeak;
2142 }
2143 llvm_unreachable("Unknown DestructionKind");
2144}
2145
2146/// pushEHDestroy - Push the standard destructor for the given type as
2147/// an EH-only cleanup.
2149 Address addr, QualType type) {
2150 assert(dtorKind && "cannot push destructor for trivial type");
2151 assert(needsEHCleanup(dtorKind));
2152
2153 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2154}
2155
2156/// pushDestroy - Push the standard destructor for the given type as
2157/// at least a normal cleanup.
2159 Address addr, QualType type) {
2160 assert(dtorKind && "cannot push destructor for trivial type");
2161
2162 CleanupKind cleanupKind = getCleanupKind(dtorKind);
2163 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2164 cleanupKind & EHCleanup);
2165}
2166
2167void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2168 QualType type, Destroyer *destroyer,
2169 bool useEHCleanupForArray) {
2170 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2171 destroyer, useEHCleanupForArray);
2172}
2173
2175 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2176}
2177
2179 CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) {
2180 EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair);
2181}
2182
2184 Address addr, QualType type,
2185 Destroyer *destroyer,
2186 bool useEHCleanupForArray) {
2187 // If we're not in a conditional branch, we don't need to bother generating a
2188 // conditional cleanup.
2189 if (!isInConditionalBranch()) {
2190 // Push an EH-only cleanup for the object now.
2191 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2192 // around in case a temporary's destructor throws an exception.
2193 if (cleanupKind & EHCleanup)
2194 EHStack.pushCleanup<DestroyObject>(
2195 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2196 destroyer, useEHCleanupForArray);
2197
2198 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2199 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2200 }
2201
2202 // Otherwise, we should only destroy the object if it's been initialized.
2203 // Re-use the active flag and saved address across both the EH and end of
2204 // scope cleanups.
2205
2206 using SavedType = typename DominatingValue<Address>::saved_type;
2207 using ConditionalCleanupType =
2209 Destroyer *, bool>;
2210
2211 Address ActiveFlag = createCleanupActiveFlag();
2212 SavedType SavedAddr = saveValueInCond(addr);
2213
2214 if (cleanupKind & EHCleanup) {
2215 EHStack.pushCleanup<ConditionalCleanupType>(
2216 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2217 destroyer, useEHCleanupForArray);
2218 initFullExprCleanupWithFlag(ActiveFlag);
2219 }
2220
2221 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2222 cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2223 useEHCleanupForArray);
2224}
2225
2226/// emitDestroy - Immediately perform the destruction of the given
2227/// object.
2228///
2229/// \param addr - the address of the object; a type*
2230/// \param type - the type of the object; if an array type, all
2231/// objects are destroyed in reverse order
2232/// \param destroyer - the function to call to destroy individual
2233/// elements
2234/// \param useEHCleanupForArray - whether an EH cleanup should be
2235/// used when destroying array elements, in case one of the
2236/// destructions throws an exception
2238 Destroyer *destroyer,
2239 bool useEHCleanupForArray) {
2241 if (!arrayType)
2242 return destroyer(*this, addr, type);
2243
2244 llvm::Value *length = emitArrayLength(arrayType, type, addr);
2245
2246 CharUnits elementAlign =
2247 addr.getAlignment()
2248 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2249
2250 // Normally we have to check whether the array is zero-length.
2251 bool checkZeroLength = true;
2252
2253 // But if the array length is constant, we can suppress that.
2254 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2255 // ...and if it's constant zero, we can just skip the entire thing.
2256 if (constLength->isZero()) return;
2257 checkZeroLength = false;
2258 }
2259
2260 llvm::Value *begin = addr.getPointer();
2261 llvm::Value *end =
2262 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2263 emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2264 checkZeroLength, useEHCleanupForArray);
2265}
2266
2267/// emitArrayDestroy - Destroys all the elements of the given array,
2268/// beginning from last to first. The array cannot be zero-length.
2269///
2270/// \param begin - a type* denoting the first element of the array
2271/// \param end - a type* denoting one past the end of the array
2272/// \param elementType - the element type of the array
2273/// \param destroyer - the function to call to destroy elements
2274/// \param useEHCleanup - whether to push an EH cleanup to destroy
2275/// the remaining elements in case the destruction of a single
2276/// element throws
2277void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2278 llvm::Value *end,
2279 QualType elementType,
2280 CharUnits elementAlign,
2281 Destroyer *destroyer,
2282 bool checkZeroLength,
2283 bool useEHCleanup) {
2284 assert(!elementType->isArrayType());
2285
2286 // The basic structure here is a do-while loop, because we don't
2287 // need to check for the zero-element case.
2288 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2289 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2290
2291 if (checkZeroLength) {
2292 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2293 "arraydestroy.isempty");
2294 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2295 }
2296
2297 // Enter the loop body, making that address the current address.
2298 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2299 EmitBlock(bodyBB);
2300 llvm::PHINode *elementPast =
2301 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2302 elementPast->addIncoming(end, entryBB);
2303
2304 // Shift the address back by one element.
2305 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2306 llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2307 llvm::Value *element = Builder.CreateInBoundsGEP(
2308 llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2309
2310 if (useEHCleanup)
2311 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2312 destroyer);
2313
2314 // Perform the actual destruction there.
2315 destroyer(*this, Address(element, llvmElementType, elementAlign),
2316 elementType);
2317
2318 if (useEHCleanup)
2320
2321 // Check whether we've reached the end.
2322 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2323 Builder.CreateCondBr(done, doneBB, bodyBB);
2324 elementPast->addIncoming(element, Builder.GetInsertBlock());
2325
2326 // Done.
2327 EmitBlock(doneBB);
2328}
2329
2330/// Perform partial array destruction as if in an EH cleanup. Unlike
2331/// emitArrayDestroy, the element type here may still be an array type.
2333 llvm::Value *begin, llvm::Value *end,
2334 QualType type, CharUnits elementAlign,
2335 CodeGenFunction::Destroyer *destroyer) {
2336 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2337
2338 // If the element type is itself an array, drill down.
2339 unsigned arrayDepth = 0;
2340 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2341 // VLAs don't require a GEP index to walk into.
2342 if (!isa<VariableArrayType>(arrayType))
2343 arrayDepth++;
2344 type = arrayType->getElementType();
2345 }
2346
2347 if (arrayDepth) {
2348 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2349
2350 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2351 begin = CGF.Builder.CreateInBoundsGEP(
2352 elemTy, begin, gepIndices, "pad.arraybegin");
2353 end = CGF.Builder.CreateInBoundsGEP(
2354 elemTy, end, gepIndices, "pad.arrayend");
2355 }
2356
2357 // Destroy the array. We don't ever need an EH cleanup because we
2358 // assume that we're in an EH cleanup ourselves, so a throwing
2359 // destructor causes an immediate terminate.
2360 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2361 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2362}
2363
2364namespace {
2365 /// RegularPartialArrayDestroy - a cleanup which performs a partial
2366 /// array destroy where the end pointer is regularly determined and
2367 /// does not need to be loaded from a local.
2368 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2369 llvm::Value *ArrayBegin;
2370 llvm::Value *ArrayEnd;
2371 QualType ElementType;
2372 CodeGenFunction::Destroyer *Destroyer;
2373 CharUnits ElementAlign;
2374 public:
2375 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2376 QualType elementType, CharUnits elementAlign,
2377 CodeGenFunction::Destroyer *destroyer)
2378 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2379 ElementType(elementType), Destroyer(destroyer),
2380 ElementAlign(elementAlign) {}
2381
2382 void Emit(CodeGenFunction &CGF, Flags flags) override {
2383 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2384 ElementType, ElementAlign, Destroyer);
2385 }
2386 };
2387
2388 /// IrregularPartialArrayDestroy - a cleanup which performs a
2389 /// partial array destroy where the end pointer is irregularly
2390 /// determined and must be loaded from a local.
2391 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2392 llvm::Value *ArrayBegin;
2393 Address ArrayEndPointer;
2394 QualType ElementType;
2395 CodeGenFunction::Destroyer *Destroyer;
2396 CharUnits ElementAlign;
2397 public:
2398 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2399 Address arrayEndPointer,
2400 QualType elementType,
2401 CharUnits elementAlign,
2402 CodeGenFunction::Destroyer *destroyer)
2403 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2404 ElementType(elementType), Destroyer(destroyer),
2405 ElementAlign(elementAlign) {}
2406
2407 void Emit(CodeGenFunction &CGF, Flags flags) override {
2408 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2409 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2410 ElementType, ElementAlign, Destroyer);
2411 }
2412 };
2413} // end anonymous namespace
2414
2415/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2416/// already-constructed elements of the given array. The cleanup
2417/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2418///
2419/// \param elementType - the immediate element type of the array;
2420/// possibly still an array type
2421void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2422 Address arrayEndPointer,
2423 QualType elementType,
2424 CharUnits elementAlign,
2425 Destroyer *destroyer) {
2426 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2427 arrayBegin, arrayEndPointer,
2428 elementType, elementAlign,
2429 destroyer);
2430}
2431
2432/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2433/// already-constructed elements of the given array. The cleanup
2434/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2435///
2436/// \param elementType - the immediate element type of the array;
2437/// possibly still an array type
2438void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2439 llvm::Value *arrayEnd,
2440 QualType elementType,
2441 CharUnits elementAlign,
2442 Destroyer *destroyer) {
2443 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2444 arrayBegin, arrayEnd,
2445 elementType, elementAlign,
2446 destroyer);
2447}
2448
2449/// Lazily declare the @llvm.lifetime.start intrinsic.
2451 if (LifetimeStartFn)
2452 return LifetimeStartFn;
2453 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2454 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2455 return LifetimeStartFn;
2456}
2457
2458/// Lazily declare the @llvm.lifetime.end intrinsic.
2460 if (LifetimeEndFn)
2461 return LifetimeEndFn;
2462 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2463 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2464 return LifetimeEndFn;
2465}
2466
2467namespace {
2468 /// A cleanup to perform a release of an object at the end of a
2469 /// function. This is used to balance out the incoming +1 of a
2470 /// ns_consumed argument when we can't reasonably do that just by
2471 /// not doing the initial retain for a __block argument.
2472 struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2473 ConsumeARCParameter(llvm::Value *param,
2474 ARCPreciseLifetime_t precise)
2475 : Param(param), Precise(precise) {}
2476
2477 llvm::Value *Param;
2478 ARCPreciseLifetime_t Precise;
2479
2480 void Emit(CodeGenFunction &CGF, Flags flags) override {
2481 CGF.EmitARCRelease(Param, Precise);
2482 }
2483 };
2484} // end anonymous namespace
2485
2486/// Emit an alloca (or GlobalValue depending on target)
2487/// for the specified parameter and set up LocalDeclMap.
2488void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2489 unsigned ArgNo) {
2490 bool NoDebugInfo = false;
2491 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2492 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2493 "Invalid argument to EmitParmDecl");
2494
2495 // Set the name of the parameter's initial value to make IR easier to
2496 // read. Don't modify the names of globals.
2497 if (!isa<llvm::GlobalValue>(Arg.getAnyValue()))
2498 Arg.getAnyValue()->setName(D.getName());
2499
2500 QualType Ty = D.getType();
2501
2502 // Use better IR generation for certain implicit parameters.
2503 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2504 // The only implicit argument a block has is its literal.
2505 // This may be passed as an inalloca'ed value on Windows x86.
2506 if (BlockInfo) {
2507 llvm::Value *V = Arg.isIndirect()
2508 ? Builder.CreateLoad(Arg.getIndirectAddress())
2509 : Arg.getDirectValue();
2510 setBlockContextParameter(IPD, ArgNo, V);
2511 return;
2512 }
2513 // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2514 // debug info of TLS variables.
2515 NoDebugInfo =
2516 (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar);
2517 }
2518
2519 Address DeclPtr = Address::invalid();
2520 Address AllocaPtr = Address::invalid();
2521 bool DoStore = false;
2522 bool IsScalar = hasScalarEvaluationKind(Ty);
2523 bool UseIndirectDebugAddress = false;
2524
2525 // If we already have a pointer to the argument, reuse the input pointer.
2526 if (Arg.isIndirect()) {
2527 DeclPtr = Arg.getIndirectAddress();
2528 DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty));
2529 // Indirect argument is in alloca address space, which may be different
2530 // from the default address space.
2531 auto AllocaAS = CGM.getASTAllocaAddressSpace();
2532 auto *V = DeclPtr.getPointer();
2533 AllocaPtr = DeclPtr;
2534
2535 // For truly ABI indirect arguments -- those that are not `byval` -- store
2536 // the address of the argument on the stack to preserve debug information.
2537 ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info;
2538 if (ArgInfo.isIndirect())
2539 UseIndirectDebugAddress = !ArgInfo.getIndirectByVal();
2540 if (UseIndirectDebugAddress) {
2541 auto PtrTy = getContext().getPointerType(Ty);
2542 AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy),
2543 D.getName() + ".indirect_addr");
2544 EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy);
2545 }
2546
2547 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2548 auto DestLangAS =
2550 if (SrcLangAS != DestLangAS) {
2551 assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2552 CGM.getDataLayout().getAllocaAddrSpace());
2553 auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2554 auto *T = llvm::PointerType::get(getLLVMContext(), DestAS);
2555 DeclPtr =
2556 DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2557 *this, V, SrcLangAS, DestLangAS, T, true),
2558 DeclPtr.isKnownNonNull());
2559 }
2560
2561 // Push a destructor cleanup for this parameter if the ABI requires it.
2562 // Don't push a cleanup in a thunk for a method that will also emit a
2563 // cleanup.
2564 if (Ty->isRecordType() && !CurFuncIsThunk &&
2566 if (QualType::DestructionKind DtorKind =
2568 assert((DtorKind == QualType::DK_cxx_destructor ||
2569 DtorKind == QualType::DK_nontrivial_c_struct) &&
2570 "unexpected destructor type");
2571 pushDestroy(DtorKind, DeclPtr, Ty);
2572 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2574 }
2575 }
2576 } else {
2577 // Check if the parameter address is controlled by OpenMP runtime.
2578 Address OpenMPLocalAddr =
2579 getLangOpts().OpenMP
2581 : Address::invalid();
2582 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2583 DeclPtr = OpenMPLocalAddr;
2584 AllocaPtr = DeclPtr;
2585 } else {
2586 // Otherwise, create a temporary to hold the value.
2587 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2588 D.getName() + ".addr", &AllocaPtr);
2589 }
2590 DoStore = true;
2591 }
2592
2593 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2594
2595 LValue lv = MakeAddrLValue(DeclPtr, Ty);
2596 if (IsScalar) {
2597 Qualifiers qs = Ty.getQualifiers();
2599 // We honor __attribute__((ns_consumed)) for types with lifetime.
2600 // For __strong, it's handled by just skipping the initial retain;
2601 // otherwise we have to balance out the initial +1 with an extra
2602 // cleanup to do the release at the end of the function.
2603 bool isConsumed = D.hasAttr<NSConsumedAttr>();
2604
2605 // If a parameter is pseudo-strong then we can omit the implicit retain.
2606 if (D.isARCPseudoStrong()) {
2607 assert(lt == Qualifiers::OCL_Strong &&
2608 "pseudo-strong variable isn't strong?");
2609 assert(qs.hasConst() && "pseudo-strong variable should be const!");
2611 }
2612
2613 // Load objects passed indirectly.
2614 if (Arg.isIndirect() && !ArgVal)
2615 ArgVal = Builder.CreateLoad(DeclPtr);
2616
2617 if (lt == Qualifiers::OCL_Strong) {
2618 if (!isConsumed) {
2619 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2620 // use objc_storeStrong(&dest, value) for retaining the
2621 // object. But first, store a null into 'dest' because
2622 // objc_storeStrong attempts to release its old value.
2623 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2624 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2625 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2626 DoStore = false;
2627 }
2628 else
2629 // Don't use objc_retainBlock for block pointers, because we
2630 // don't want to Block_copy something just because we got it
2631 // as a parameter.
2632 ArgVal = EmitARCRetainNonBlock(ArgVal);
2633 }
2634 } else {
2635 // Push the cleanup for a consumed parameter.
2636 if (isConsumed) {
2637 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2639 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2640 precise);
2641 }
2642
2643 if (lt == Qualifiers::OCL_Weak) {
2644 EmitARCInitWeak(DeclPtr, ArgVal);
2645 DoStore = false; // The weak init is a store, no need to do two.
2646 }
2647 }
2648
2649 // Enter the cleanup scope.
2650 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2651 }
2652 }
2653
2654 // Store the initial value into the alloca.
2655 if (DoStore)
2656 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2657
2658 setAddrOfLocalVar(&D, DeclPtr);
2659
2660 // Emit debug info for param declarations in non-thunk functions.
2661 if (CGDebugInfo *DI = getDebugInfo()) {
2663 !NoDebugInfo) {
2664 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2665 &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress);
2666 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2667 DI->getParamDbgMappings().insert({Var, DILocalVar});
2668 }
2669 }
2670
2671 if (D.hasAttr<AnnotateAttr>())
2672 EmitVarAnnotations(&D, DeclPtr.getPointer());
2673
2674 // We can only check return value nullability if all arguments to the
2675 // function satisfy their nullability preconditions. This makes it necessary
2676 // to emit null checks for args in the function body itself.
2677 if (requiresReturnValueNullabilityCheck()) {
2678 auto Nullability = Ty->getNullability();
2679 if (Nullability && *Nullability == NullabilityKind::NonNull) {
2680 SanitizerScope SanScope(this);
2681 RetValNullabilityPrecondition =
2682 Builder.CreateAnd(RetValNullabilityPrecondition,
2683 Builder.CreateIsNotNull(Arg.getAnyValue()));
2684 }
2685 }
2686}
2687
2689 CodeGenFunction *CGF) {
2690 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2691 return;
2693}
2694
2696 CodeGenFunction *CGF) {
2697 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2698 (!LangOpts.EmitAllDecls && !D->isUsed()))
2699 return;
2701}
2702
2705}
2706
2708 for (const Expr *E : D->varlists()) {
2709 const auto *DE = cast<DeclRefExpr>(E);
2710 const auto *VD = cast<VarDecl>(DE->getDecl());
2711
2712 // Skip all but globals.
2713 if (!VD->hasGlobalStorage())
2714 continue;
2715
2716 // Check if the global has been materialized yet or not. If not, we are done
2717 // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2718 // we already emitted the global we might have done so before the
2719 // OMPAllocateDeclAttr was attached, leading to the wrong address space
2720 // (potentially). While not pretty, common practise is to remove the old IR
2721 // global and generate a new one, so we do that here too. Uses are replaced
2722 // properly.
2723 StringRef MangledName = getMangledName(VD);
2724 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2725 if (!Entry)
2726 continue;
2727
2728 // We can also keep the existing global if the address space is what we
2729 // expect it to be, if not, it is replaced.
2730 QualType ASTTy = VD->getType();
2732 auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2733 if (Entry->getType()->getAddressSpace() == TargetAS)
2734 continue;
2735
2736 // Make a new global with the correct type / address space.
2737 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2738 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2739
2740 // Replace all uses of the old global with a cast. Since we mutate the type
2741 // in place we neeed an intermediate that takes the spot of the old entry
2742 // until we can create the cast.
2743 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2744 getModule(), Entry->getValueType(), false,
2745 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2746 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2747 Entry->replaceAllUsesWith(DummyGV);
2748
2749 Entry->mutateType(PTy);
2750 llvm::Constant *NewPtrForOldDecl =
2751 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2752 Entry, DummyGV->getType());
2753
2754 // Now we have a casted version of the changed global, the dummy can be
2755 // replaced and deleted.
2756 DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2757 DummyGV->eraseFromParent();
2758 }
2759}
2760
2761std::optional<CharUnits>
2763 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2764 if (Expr *Alignment = AA->getAlignment()) {
2765 unsigned UserAlign =
2766 Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2767 CharUnits NaturalAlign =
2769
2770 // OpenMP5.1 pg 185 lines 7-10
2771 // Each item in the align modifier list must be aligned to the maximum
2772 // of the specified alignment and the type's natural alignment.
2774 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2775 }
2776 }
2777 return std::nullopt;
2778}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3241
static void emitStoresForInitAfterBZero(CodeGenModule &CGM, llvm::Constant *Init, Address Loc, bool isVolatile, CGBuilderTy &Builder, bool IsAutoInit)
For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit the scalar stores that woul...
Definition: CGDecl.cpp:948
static bool isCapturedBy(const VarDecl &, const Expr *)
Determines whether the given __block variable is potentially captured by the given expression.
Definition: CGDecl.cpp:1695
static void emitPartialArrayDestroy(CodeGenFunction &CGF, llvm::Value *begin, llvm::Value *end, QualType type, CharUnits elementAlign, CodeGenFunction::Destroyer *destroyer)
Perform partial array destruction as if in an EH cleanup.
Definition: CGDecl.cpp:2332
static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, Address Loc, bool isVolatile, CGBuilderTy &Builder)
Definition: CGDecl.cpp:1288
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, unsigned &NumStores)
Decide whether we can emit the non-zero parts of the specified initializer with equal or fewer than N...
Definition: CGDecl.cpp:910
static llvm::Constant * patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, llvm::Type *Ty)
Generate a constant filled with either a pattern or zeroes.
Definition: CGDecl.cpp:1042
static llvm::Constant * constWithPadding(CodeGenModule &CGM, IsPattern isPattern, llvm::Constant *constant)
Replace all padding bytes in a given constant with either a pattern byte or 0x00.
Definition: CGDecl.cpp:1094
static llvm::Value * shouldUseMemSetToInitialize(llvm::Constant *Init, uint64_t GlobalSize, const llvm::DataLayout &DL)
Decide whether we should use memset to initialize a local variable instead of using a memcpy from a c...
Definition: CGDecl.cpp:1016
IsPattern
Definition: CGDecl.cpp:1039
static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D)
Definition: CGDecl.cpp:220
static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, Address Loc, bool isVolatile, CGBuilderTy &Builder, llvm::Constant *constant, bool IsAutoInit)
Definition: CGDecl.cpp:1189
static bool shouldSplitConstantStore(CodeGenModule &CGM, uint64_t GlobalByteSize)
Decide whether we want to split a constant structure or array store into a sequence of its fields' st...
Definition: CGDecl.cpp:1028
static llvm::Constant * replaceUndef(CodeGenModule &CGM, IsPattern isPattern, llvm::Constant *constant)
Definition: CGDecl.cpp:1310
static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, const LValue &destLV, const Expr *init)
Definition: CGDecl.cpp:714
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, uint64_t GlobalSize)
Decide whether we should use bzero plus some stores to initialize a local variable instead of using a...
Definition: CGDecl.cpp:995
static llvm::Constant * constStructWithPadding(CodeGenModule &CGM, IsPattern isPattern, llvm::StructType *STy, llvm::Constant *constant)
Helper function for constWithPadding() to deal with padding in structures.
Definition: CGDecl.cpp:1054
static bool containsUndef(llvm::Constant *constant)
Definition: CGDecl.cpp:1299
static bool isAccessedBy(const VarDecl &var, const Stmt *s)
Definition: CGDecl.cpp:682
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, Address addr, Qualifiers::ObjCLifetime lifetime)
EmitAutoVarWithLifetime - Does the setup required for an automatic variable with lifetime.
Definition: CGDecl.cpp:646
static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, const VarDecl &D, CGBuilderTy &Builder, llvm::Constant *Constant, CharUnits Align)
Definition: CGDecl.cpp:1180
static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, Address Loc, bool isVolatile, CGBuilderTy &Builder)
Definition: CGDecl.cpp:1278
static void drillIntoBlockVariable(CodeGenFunction &CGF, LValue &lvalue, const VarDecl *var)
Definition: CGDecl.cpp:764
CodeGenFunction::ComplexPairTy ComplexPairTy
This file defines OpenMP nodes for declarative directives.
static const RecordType * getRecordType(QualType QT)
Checks that the passed in QualType either is of RecordType or points to RecordType.
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:3012
Defines the SourceManager interface.
SourceLocation Begin
__device__ __2f16 float __ockl_bool s
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
IdentifierTable & Idents
Definition: ASTContext.h:636
const LangOptions & getLangOpts() const
Definition: ASTContext.h:767
QualType getIntTypeForBitwidth(unsigned DestWidth, unsigned Signed) const
getIntTypeForBitwidth - sets integer QualTy according to specified details: bitwidth,...
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2731
unsigned getTargetAddressSpace(LangAS AS) const
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3145
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4463
ArrayRef< Capture > captures() const
Definition: Decl.h:4590
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:6184
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1530
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2528
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1361
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2792
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:214
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:125
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
bool hasReducedDebugInfo() const
Check if type and variable info should be emitted.
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
An aligned address.
Definition: Address.h:29
static Address invalid()
Definition: Address.h:46
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:78
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:62
Address withPointer(llvm::Value *NewPointer, KnownNonNull_t IsKnownNonNull) const
Return address with different pointer, but same element type and alignment.
Definition: Address.h:85
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:100
KnownNonNull_t isKnownNonNull() const
Whether the pointer is known not to be null.
Definition: Address.h:105
llvm::Value * getPointer() const
Definition: Address.h:51
bool isValid() const
Definition: Address.h:47
static AggValueSlot forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition: CGValue.h:610
static ApplyDebugLocation CreateDefaultArtificial(CodeGenFunction &CGF, SourceLocation TemporaryLocation)
Apply TemporaryLocation if it is valid.
Definition: CGDebugInfo.h:876
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:97
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:329
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:71
llvm::LoadInst * CreateFlagLoad(llvm::Value *Addr, const llvm::Twine &Name="")
Emit a load from an i1 flag variable.
Definition: CGBuilder.h:119
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:300
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:128
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:55
void EmitGlobalVariable(llvm::GlobalVariable *GV, const VarDecl *Decl)
Emit information about a global variable.
Param2DILocTy & getParamDbgMappings()
Definition: CGDebugInfo.h:606
llvm::DILocalVariable * EmitDeclareOfArgVariable(const VarDecl *Decl, llvm::Value *AI, unsigned ArgNo, CGBuilderTy &Builder, bool UsePointerValue=false)
Emit call to llvm.dbg.declare for an argument variable declaration.
llvm::DILocalVariable * EmitDeclareOfAutoVariable(const VarDecl *Decl, llvm::Value *AI, CGBuilderTy &Builder, const bool UsePointerValue=false)
Emit call to llvm.dbg.declare for an automatic variable declaration.
void setLocation(SourceLocation Loc)
Update the current source location.
void registerVLASizeExpression(QualType Ty, llvm::Metadata *SizeExpr)
Register VLA size expression debug node with the qualified type.
Definition: CGDebugInfo.h:414
CGFunctionInfo - Class to encapsulate the information about a function definition.
const_arg_iterator arg_begin() const
MutableArrayRef< ArgInfo > arguments()
virtual void EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF, const VarDecl &D)
Emit the IR required for a work-group-local variable declaration, and add an entry to CGF's LocalDecl...
Allows to disable automatic handling of functions used in target regions as those marked as omp decla...
virtual void getKmpcFreeShared(CodeGenFunction &CGF, const std::pair< llvm::Value *, llvm::Value * > &AddrSizePair)
Get call to __kmpc_free_shared.
void emitUserDefinedMapper(const OMPDeclareMapperDecl *D, CodeGenFunction *CGF=nullptr)
Emit the function for the user defined mapper construct.
virtual void processRequiresDirective(const OMPRequiresDecl *D)
Perform check on requires decl to ensure that target architecture supports unified addressing.
virtual std::pair< llvm::Value *, llvm::Value * > getKmpcAllocShared(CodeGenFunction &CGF, const VarDecl *VD)
Get call to __kmpc_alloc_shared.
virtual void emitUserDefinedReduction(CodeGenFunction *CGF, const OMPDeclareReductionDecl *D)
Emit code for the specified user defined reduction construct.
virtual Address getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD)
Gets the OpenMP-specific address of the local variable.
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:257
void add(RValue rvalue, QualType type)
Definition: CGCall.h:281
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void emitAutoVarTypeCleanup(const AutoVarEmission &emission, QualType::DestructionKind dtorKind)
void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, bool LoadBlockVarAddr, bool CanThrow)
Enter a cleanup to destroy a __block variable.
llvm::Value * EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr)
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
static Destroyer destroyNonTrivialCStruct
static bool cxxDestructorCanThrow(QualType T)
Check if T is a C++ class that has a destructor that can throw.
SanitizerSet SanOpts
Sanitizers enabled for this function.
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
void EmitARCMoveWeak(Address dst, Address src)
void EmitAutoVarDecl(const VarDecl &D)
EmitAutoVarDecl - Emit an auto variable declaration.
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
static bool hasScalarEvaluationKind(QualType T)
const BlockByrefInfo & getBlockByrefInfo(const VarDecl *var)
void EmitDecl(const Decl &D)
EmitDecl - Emit a declaration.
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, Address arrayEndPointer, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
llvm::Value * emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr)
emitArrayLength - Compute the length of an array, even if it's a VLA, and drill down to the base elem...
VlaSizePair getVLASize(const VariableArrayType *vla)
Returns an LLVM value that corresponds to the size, in non-variably-sized elements,...
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool CurFuncIsThunk
In C++, whether we are code generating a thunk.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy)
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
void EmitExtendGCLifetime(llvm::Value *object)
EmitExtendGCLifetime - Given a pointer to an Objective-C object, make sure it survives garbage collec...
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler.
void pushEHDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type)
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
const CodeGen::CGBlockInfo * BlockInfo
void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
EmitExprAsInit - Emits the code necessary to initialize a location in memory with the given initializ...
void emitByrefStructureInit(const AutoVarEmission &emission)
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
@ TCK_NonnullAssign
Checking the value assigned to a _Nonnull pointer. Must not be null.
llvm::Value * EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored)
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, bool IsMustTail, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type,...
llvm::Type * ConvertTypeForMem(QualType T)
llvm::Value * EmitARCUnsafeUnretainedScalarExpr(const Expr *expr)
void EmitAutoVarInit(const AutoVarEmission &emission)
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
DominatingValue< T >::saved_type saveValueInCond(T value)
void EmitStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage)
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V)
Emit local annotations for the local variable V, declared by D.
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
void EmitAtomicInit(Expr *E, LValue lvalue)
const TargetInfo & getTarget() const
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we're currently emitting one branch or the other of a conditio...
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit)
Emit code in this function to perform a guarded variable initialization.
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask > > Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
void EmitARCCopyWeak(Address dst, Address src)
void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, llvm::Value *ptr)
void defaultInitNonTrivialCStructVar(LValue Dst)
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
bool isTrivialInitializer(const Expr *Init)
Determine whether the given initializer is trivial in the sense that it requires no code to be genera...
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, bool followForward=true)
BuildBlockByrefAddress - Computes the location of the data in a variable which is declared as __block...
LValue EmitDeclRefLValue(const DeclRefExpr *E)
AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
llvm::Value * EmitARCRetainAutoreleaseScalarExpr(const Expr *expr)
const TargetCodeGenInfo & getTargetHooks() const
RValue EmitReferenceBindingToExpr(const Expr *E)
Emits a reference binding to the passed in expression.
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
VlaSizePair getVLAElements1D(const VariableArrayType *vla)
Return the number of elements for a single dimension for the given array type.
void EmitVarDecl(const VarDecl &D)
EmitVarDecl - Emit a local variable declaration.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc)
Given an assignment *LHS = RHS, emit a test that checks if RHS is nonnull, if LHS is marked _Nonnull.
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var)
void pushDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type)
Address ReturnValuePointer
ReturnValuePointer - The temporary alloca to hold a pointer to sret.
void EmitAutoVarCleanups(const AutoVarEmission &emission)
llvm::GlobalVariable * AddInitializerToStaticVarDecl(const VarDecl &D, llvm::GlobalVariable *GV)
AddInitializerToStaticVarDecl - Add the initializer for 'D' to the global variable that has already b...
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind.
CleanupKind getCleanupKind(QualType::DestructionKind kind)
llvm::Type * ConvertType(QualType T)
void EmitARCInitWeak(Address addr, llvm::Value *value)
static Destroyer destroyARCStrongPrecise
void initFullExprCleanupWithFlag(Address ActiveFlag)
llvm::Value * EmitARCRetainNonBlock(llvm::Value *value)
void pushStackRestore(CleanupKind kind, Address SPMem)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
const CGFunctionInfo * CurFnInfo
void pushKmpcAllocFree(CleanupKind Kind, std::pair< llvm::Value *, llvm::Value * > AddrSizePair)
void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo)
EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
static Destroyer destroyARCStrongImprecise
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go.
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo)
Emits the alloca and debug information for the size expressions for each dimension of an array.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
This class organizes the cross-function state that is used while generating LLVM code.
StringRef getBlockMangledName(GlobalDecl GD, const BlockDecl *BD)
void setGVProperties(llvm::GlobalValue *GV, GlobalDecl GD) const
Set visibility, dllimport/dllexport and dso_local.
llvm::Module & getModule() const
void setStaticLocalDeclAddress(const VarDecl *D, llvm::Constant *C)
llvm::Function * getLLVMLifetimeStartFn()
Lazily declare the @llvm.lifetime.start intrinsic.
Definition: CGDecl.cpp:2450
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
Address createUnnamedGlobalFrom(const VarDecl &D, llvm::Constant *Constant, CharUnits Align)
Definition: CGDecl.cpp:1130
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn't support the specified stmt yet.
const LangOptions & getLangOpts() const
CharUnits getNaturalTypeAlignment(QualType T, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, bool forPointeeType=false)
CGOpenCLRuntime & getOpenCLRuntime()
Return a reference to the configured OpenCL runtime.
void addUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.used metadata.
void EmitOMPAllocateDecl(const OMPAllocateDecl *D)
Emit a code for the allocate directive.
Definition: CGDecl.cpp:2707
llvm::GlobalValue::LinkageTypes getLLVMLinkageVarDefinition(const VarDecl *VD)
Returns LLVM linkage for a declarator.
const llvm::DataLayout & getDataLayout() const
void addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.compiler.used metadata.
CGOpenMPRuntime & getOpenMPRuntime()
Return a reference to the configured OpenMP runtime.
SanitizerMetadata * getSanitizerMetadata()
llvm::Constant * getOrCreateStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage)
Definition: CGDecl.cpp:243
llvm::Constant * GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition=NotForDefinition)
void AddGlobalAnnotations(const ValueDecl *D, llvm::GlobalValue *GV)
Add global annotations that are set on D, for the global GV.
void setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const
Set the TLS mode for the given LLVM GlobalValue for the thread-local variable declaration D.
ASTContext & getContext() const
void EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, CodeGenFunction *CGF=nullptr)
Emit a code for declare mapper construct.
Definition: CGDecl.cpp:2695
llvm::Function * getLLVMLifetimeEndFn()
Lazily declare the @llvm.lifetime.end intrinsic.
Definition: CGDecl.cpp:2459
void EmitOMPRequiresDecl(const OMPRequiresDecl *D)
Emit a code for requires directive.
Definition: CGDecl.cpp:2703
const TargetCodeGenInfo & getTargetCodeGenInfo()
const CodeGenOptions & getCodeGenOpts() const
StringRef getMangledName(GlobalDecl GD)
std::optional< CharUnits > getOMPAllocateAlignment(const VarDecl *VD)
Return the alignment specified in an allocate directive, if present.
Definition: CGDecl.cpp:2762
llvm::LLVMContext & getLLVMContext()
llvm::GlobalValue * GetGlobalValue(StringRef Ref)
void EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, CodeGenFunction *CGF=nullptr)
Emit a code for declare reduction construct.
Definition: CGDecl.cpp:2688
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
LangAS GetGlobalConstantAddressSpace() const
Return the AST address space of constant literal, which is used to emit the constant literal as globa...
LangAS GetGlobalVarAddressSpace(const VarDecl *D)
Return the AST address space of the underlying global variable for D, as determined by its declaratio...
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
const CGFunctionInfo & arrangeFunctionDeclaration(const FunctionDecl *FD)
Free functions are functions that are compatible with an ordinary C function pointer type.
Definition: CGCall.cpp:453
llvm::Type * ConvertTypeForMem(QualType T, bool ForBitField=false)
ConvertTypeForMem - Convert type T into a llvm::Type.
llvm::Constant * tryEmitAbstractForInitializer(const VarDecl &D)
Try to emit the initializer of the given declaration as an abstract constant.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:141
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:203
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:393
LValue - This represents an lvalue references.
Definition: CGValue.h:171
Address getAddress(CodeGenFunction &CGF) const
Definition: CGValue.h:350
llvm::Value * getPointer(CodeGenFunction &CGF) const
Definition: CGValue.h:346
QualType getType() const
Definition: CGValue.h:279
void setNonGC(bool Value)
Definition: CGValue.h:292
void setAddress(Address address)
Definition: CGValue.h:354
Qualifiers::ObjCLifetime getObjCLifetime() const
Definition: CGValue.h:281
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:39
static RValue get(llvm::Value *V)
Definition: CGValue.h:89
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:355
void reportGlobal(llvm::GlobalVariable *GV, const VarDecl &D, bool IsDynInit=false)
virtual llvm::Value * performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, llvm::Value *V, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
Perform address space cast of an expression of pointer type.
Definition: TargetInfo.cpp:132
bool IsBypassed(const VarDecl *D) const
Returns true if the variable declaration was by bypassed by any goto or switch statement.
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1602
body_range body()
Definition: Stmt.h:1658
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1248
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:85
const DeclContext * getParentFunctionOrMethod(bool LexicalParent=false) const
If this decl is defined inside a function/method/block it returns the corresponding DeclContext,...
Definition: DeclBase.cpp:295
T * getAttr() const
Definition: DeclBase.h:577
Decl * getNonClosureContext()
Find the innermost non-closure ancestor of this declaration, walking up through blocks,...
Definition: DeclBase.cpp:1181
SourceLocation getLocation() const
Definition: DeclBase.h:444
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required.
Definition: DeclBase.cpp:530
DeclContext * getDeclContext()
Definition: DeclBase.h:453
bool hasAttr() const
Definition: DeclBase.h:581
Kind getKind() const
Definition: DeclBase.h:447
This represents one expression.
Definition: Expr.h:110
bool isXValue() const
Definition: Expr.h:273
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3036
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3027
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:271
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant,...
Definition: Expr.cpp:3259
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:267
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1957
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:56
const Decl * getDecl() const
Definition: GlobalDecl.h:103
One of these records is kept for each identifier that is lexed.
IdentifierInfo & getOwn(StringRef Name)
Gets an IdentifierInfo for the given name without consulting external sources.
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:291
bool isExternallyVisible() const
Definition: Decl.h:406
This represents '#pragma omp allocate ...' directive.
Definition: DeclOpenMP.h:473
varlist_range varlists()
Definition: DeclOpenMP.h:515
This represents '#pragma omp declare mapper ...' directive.
Definition: DeclOpenMP.h:287
This represents '#pragma omp declare reduction ...' directive.
Definition: DeclOpenMP.h:177
This represents '#pragma omp requires...' directive.
Definition: DeclOpenMP.h:416
A (possibly-)qualified type.
Definition: Type.h:736
@ DK_cxx_destructor
Definition: Type.h:1309
@ DK_nontrivial_c_struct
Definition: Type.h:1312
@ DK_objc_weak_lifetime
Definition: Type.h:1311
@ DK_objc_strong_lifetime
Definition: Type.h:1310
@ PDIK_Struct
The type is a struct containing a field whose type is not PCK_Trivial.
Definition: Type.h:1255
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6906
bool isConstant(const ASTContext &Ctx) const
Definition: Type.h:896
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6821
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1225
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6981
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6874
bool isConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, bool ExcludeDtor)
Definition: Type.h:835
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2497
The collection of all-type qualifiers we support.
Definition: Type.h:146
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:174
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:167
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:163
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:177
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:180
bool hasConst() const
Definition: Type.h:263
ObjCLifetime getObjCLifetime() const
Definition: Type.h:351
bool isParamDestroyedInCallee() const
Definition: Decl.h:4259
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4971
RecordDecl * getDecl() const
Definition: Type.h:4981
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
static const uint64_t MaximumAlignment
Definition: Sema.h:397
Encodes a location in the source.
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4405
Stmt - This represents one statement.
Definition: Stmt.h:84
child_range children()
Definition: Stmt.cpp:286
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:136
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1289
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6....
Definition: Type.cpp:2289
bool isArrayType() const
Definition: Type.h:7099
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7625
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2439
bool isSamplerT() const
Definition: Type.h:7226
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:7558
bool isRecordType() const
Definition: Type.h:7123
std::optional< NullabilityKind > getNullability() const
Determine the nullability of the given type.
Definition: Type.cpp:4409
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:704
QualType getType() const
Definition: Decl.h:715
Represents a variable declaration or definition.
Definition: Decl.h:916
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:2143
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1544
TLSKind getTLSKind() const
Definition: Decl.cpp:2160
bool hasFlexibleArrayInit(const ASTContext &Ctx) const
Whether this variable has a flexible array member initialized with one or more elements.
Definition: Decl.cpp:2817
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1208
CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const
If hasFlexibleArrayInit is true, compute the number of additional bytes necessary to store those elem...
Definition: Decl.cpp:2832
bool mightBeUsableInConstantExpressions(const ASTContext &C) const
Determine whether this variable's value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2459
bool isNRVOVariable() const
Determine whether this local variable can be used with the named return value optimization (NRVO).
Definition: Decl.h:1487
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1469
QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const
Would the destruction of this variable have any effect, and if so, what kind?
Definition: Decl.cpp:2806
const Expr * getInit() const
Definition: Decl.h:1350
bool hasExternalStorage() const
Returns true if a variable has extern or private_extern storage.
Definition: Decl.h:1199
bool isARCPseudoStrong() const
Determine whether this variable is an ARC pseudo-__strong variable.
Definition: Decl.h:1522
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1166
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1235
StorageDuration getStorageDuration() const
Get the storage duration of this variable, per C++ [basic.stc].
Definition: Decl.h:1211
bool isEscapingByref() const
Indicates the capture is a __block variable that is captured by a block that can potentially escape (...
Definition: Decl.cpp:2661
Defines the clang::TargetInfo interface.
@ BLOCK_FIELD_IS_BYREF
Definition: CGBlocks.h:92
@ BLOCK_FIELD_IS_WEAK
Definition: CGBlocks.h:94
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::Constant * initializationPatternFor(CodeGenModule &, llvm::Type *)
Definition: PatternInit.cpp:15
@ NormalCleanup
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:124
@ ARCPreciseLifetime
Definition: CGValue.h:125
@ ARCImpreciseLifetime
Definition: CGValue.h:125
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
const internal::VariadicDynCastAllOfMatcher< Stmt, CastExpr > castExpr
Matches any cast nodes of Clang's AST.
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1686
bool Null(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1702
@ Ctor_Base
Base object ctor.
Definition: ABI.h:26
@ OpenCL
Definition: LangStandard.h:64
@ CPlusPlus
Definition: LangStandard.h:54
@ NonNull
Values of this type can never be null.
@ SC_Auto
Definition: Specifiers.h:251
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have.
Definition: Linkage.h:24
@ SD_Automatic
Automatic storage duration (most local variables).
Definition: Specifiers.h:322
@ Dtor_Base
Base object dtor.
Definition: ABI.h:36
@ Dtor_Complete
Complete object dtor.
Definition: ABI.h:35
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:134
@ ThreadPrivateVar
Parameter for Thread private variable.
float __ovld __cnfn length(float)
Return the length of vector p, i.e., sqrt(p.x2 + p.y 2 + ...)
static Address getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD)
Gets the OpenMP-specific address of the local variable /p VD.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
llvm::PointerType * AllocaInt8PtrTy
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function.
Definition: EHScopeStack.h:65
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:159