clang  8.0.0svn
CGStmt.cpp
Go to the documentation of this file.
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 // Statement Emission
36 //===----------------------------------------------------------------------===//
37 
39  if (CGDebugInfo *DI = getDebugInfo()) {
40  SourceLocation Loc;
41  Loc = S->getBeginLoc();
42  DI->EmitLocation(Builder, Loc);
43 
44  LastStopPoint = Loc;
45  }
46 }
47 
49  assert(S && "Null statement?");
50  PGO.setCurrentStmt(S);
51 
52  // These statements have their own debug info handling.
53  if (EmitSimpleStmt(S))
54  return;
55 
56  // Check if we are generating unreachable code.
57  if (!HaveInsertPoint()) {
58  // If so, and the statement doesn't contain a label, then we do not need to
59  // generate actual code. This is safe because (1) the current point is
60  // unreachable, so we don't need to execute the code, and (2) we've already
61  // handled the statements which update internal data structures (like the
62  // local variable map) which could be used by subsequent statements.
63  if (!ContainsLabel(S)) {
64  // Verify that any decl statements were handled as simple, they may be in
65  // scope of subsequent reachable statements.
66  assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67  return;
68  }
69 
70  // Otherwise, make a new block to hold the code.
72  }
73 
74  // Generate a stoppoint if we are emitting debug info.
75  EmitStopPoint(S);
76 
77  // Ignore all OpenMP directives except for simd if OpenMP with Simd is
78  // enabled.
79  if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
80  if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
82  return;
83  }
84  }
85 
86  switch (S->getStmtClass()) {
87  case Stmt::NoStmtClass:
88  case Stmt::CXXCatchStmtClass:
89  case Stmt::SEHExceptStmtClass:
90  case Stmt::SEHFinallyStmtClass:
91  case Stmt::MSDependentExistsStmtClass:
92  llvm_unreachable("invalid statement class to emit generically");
93  case Stmt::NullStmtClass:
94  case Stmt::CompoundStmtClass:
95  case Stmt::DeclStmtClass:
96  case Stmt::LabelStmtClass:
97  case Stmt::AttributedStmtClass:
98  case Stmt::GotoStmtClass:
99  case Stmt::BreakStmtClass:
100  case Stmt::ContinueStmtClass:
101  case Stmt::DefaultStmtClass:
102  case Stmt::CaseStmtClass:
103  case Stmt::SEHLeaveStmtClass:
104  llvm_unreachable("should have emitted these statements as simple");
105 
106 #define STMT(Type, Base)
107 #define ABSTRACT_STMT(Op)
108 #define EXPR(Type, Base) \
109  case Stmt::Type##Class:
110 #include "clang/AST/StmtNodes.inc"
111  {
112  // Remember the block we came in on.
113  llvm::BasicBlock *incoming = Builder.GetInsertBlock();
114  assert(incoming && "expression emission must have an insertion point");
115 
116  EmitIgnoredExpr(cast<Expr>(S));
117 
118  llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
119  assert(outgoing && "expression emission cleared block!");
120 
121  // The expression emitters assume (reasonably!) that the insertion
122  // point is always set. To maintain that, the call-emission code
123  // for noreturn functions has to enter a new block with no
124  // predecessors. We want to kill that block and mark the current
125  // insertion point unreachable in the common case of a call like
126  // "exit();". Since expression emission doesn't otherwise create
127  // blocks with no predecessors, we can just test for that.
128  // However, we must be careful not to do this to our incoming
129  // block, because *statement* emission does sometimes create
130  // reachable blocks which will have no predecessors until later in
131  // the function. This occurs with, e.g., labels that are not
132  // reachable by fallthrough.
133  if (incoming != outgoing && outgoing->use_empty()) {
134  outgoing->eraseFromParent();
135  Builder.ClearInsertionPoint();
136  }
137  break;
138  }
139 
140  case Stmt::IndirectGotoStmtClass:
141  EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
142 
143  case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
144  case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
145  case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break;
146  case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break;
147 
148  case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
149 
150  case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
151  case Stmt::GCCAsmStmtClass: // Intentional fall-through.
152  case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
153  case Stmt::CoroutineBodyStmtClass:
154  EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
155  break;
156  case Stmt::CoreturnStmtClass:
157  EmitCoreturnStmt(cast<CoreturnStmt>(*S));
158  break;
159  case Stmt::CapturedStmtClass: {
160  const CapturedStmt *CS = cast<CapturedStmt>(S);
162  }
163  break;
164  case Stmt::ObjCAtTryStmtClass:
165  EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
166  break;
167  case Stmt::ObjCAtCatchStmtClass:
168  llvm_unreachable(
169  "@catch statements should be handled by EmitObjCAtTryStmt");
170  case Stmt::ObjCAtFinallyStmtClass:
171  llvm_unreachable(
172  "@finally statements should be handled by EmitObjCAtTryStmt");
173  case Stmt::ObjCAtThrowStmtClass:
174  EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
175  break;
176  case Stmt::ObjCAtSynchronizedStmtClass:
177  EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
178  break;
179  case Stmt::ObjCForCollectionStmtClass:
180  EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
181  break;
182  case Stmt::ObjCAutoreleasePoolStmtClass:
183  EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
184  break;
185 
186  case Stmt::CXXTryStmtClass:
187  EmitCXXTryStmt(cast<CXXTryStmt>(*S));
188  break;
189  case Stmt::CXXForRangeStmtClass:
190  EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
191  break;
192  case Stmt::SEHTryStmtClass:
193  EmitSEHTryStmt(cast<SEHTryStmt>(*S));
194  break;
195  case Stmt::OMPParallelDirectiveClass:
196  EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
197  break;
198  case Stmt::OMPSimdDirectiveClass:
199  EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
200  break;
201  case Stmt::OMPForDirectiveClass:
202  EmitOMPForDirective(cast<OMPForDirective>(*S));
203  break;
204  case Stmt::OMPForSimdDirectiveClass:
205  EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
206  break;
207  case Stmt::OMPSectionsDirectiveClass:
208  EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
209  break;
210  case Stmt::OMPSectionDirectiveClass:
211  EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
212  break;
213  case Stmt::OMPSingleDirectiveClass:
214  EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
215  break;
216  case Stmt::OMPMasterDirectiveClass:
217  EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
218  break;
219  case Stmt::OMPCriticalDirectiveClass:
220  EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
221  break;
222  case Stmt::OMPParallelForDirectiveClass:
223  EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
224  break;
225  case Stmt::OMPParallelForSimdDirectiveClass:
226  EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
227  break;
228  case Stmt::OMPParallelSectionsDirectiveClass:
229  EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
230  break;
231  case Stmt::OMPTaskDirectiveClass:
232  EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
233  break;
234  case Stmt::OMPTaskyieldDirectiveClass:
235  EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
236  break;
237  case Stmt::OMPBarrierDirectiveClass:
238  EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
239  break;
240  case Stmt::OMPTaskwaitDirectiveClass:
241  EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
242  break;
243  case Stmt::OMPTaskgroupDirectiveClass:
244  EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
245  break;
246  case Stmt::OMPFlushDirectiveClass:
247  EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
248  break;
249  case Stmt::OMPOrderedDirectiveClass:
250  EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
251  break;
252  case Stmt::OMPAtomicDirectiveClass:
253  EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
254  break;
255  case Stmt::OMPTargetDirectiveClass:
256  EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
257  break;
258  case Stmt::OMPTeamsDirectiveClass:
259  EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
260  break;
261  case Stmt::OMPCancellationPointDirectiveClass:
262  EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
263  break;
264  case Stmt::OMPCancelDirectiveClass:
265  EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
266  break;
267  case Stmt::OMPTargetDataDirectiveClass:
268  EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
269  break;
270  case Stmt::OMPTargetEnterDataDirectiveClass:
271  EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
272  break;
273  case Stmt::OMPTargetExitDataDirectiveClass:
274  EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
275  break;
276  case Stmt::OMPTargetParallelDirectiveClass:
277  EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
278  break;
279  case Stmt::OMPTargetParallelForDirectiveClass:
280  EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
281  break;
282  case Stmt::OMPTaskLoopDirectiveClass:
283  EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
284  break;
285  case Stmt::OMPTaskLoopSimdDirectiveClass:
286  EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
287  break;
288  case Stmt::OMPDistributeDirectiveClass:
289  EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
290  break;
291  case Stmt::OMPTargetUpdateDirectiveClass:
292  EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
293  break;
294  case Stmt::OMPDistributeParallelForDirectiveClass:
296  cast<OMPDistributeParallelForDirective>(*S));
297  break;
298  case Stmt::OMPDistributeParallelForSimdDirectiveClass:
300  cast<OMPDistributeParallelForSimdDirective>(*S));
301  break;
302  case Stmt::OMPDistributeSimdDirectiveClass:
303  EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
304  break;
305  case Stmt::OMPTargetParallelForSimdDirectiveClass:
307  cast<OMPTargetParallelForSimdDirective>(*S));
308  break;
309  case Stmt::OMPTargetSimdDirectiveClass:
310  EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
311  break;
312  case Stmt::OMPTeamsDistributeDirectiveClass:
313  EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
314  break;
315  case Stmt::OMPTeamsDistributeSimdDirectiveClass:
317  cast<OMPTeamsDistributeSimdDirective>(*S));
318  break;
319  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
321  cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
322  break;
323  case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
325  cast<OMPTeamsDistributeParallelForDirective>(*S));
326  break;
327  case Stmt::OMPTargetTeamsDirectiveClass:
328  EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
329  break;
330  case Stmt::OMPTargetTeamsDistributeDirectiveClass:
332  cast<OMPTargetTeamsDistributeDirective>(*S));
333  break;
334  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
336  cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
337  break;
338  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
340  cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
341  break;
342  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
344  cast<OMPTargetTeamsDistributeSimdDirective>(*S));
345  break;
346  }
347 }
348 
350  switch (S->getStmtClass()) {
351  default: return false;
352  case Stmt::NullStmtClass: break;
353  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
354  case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
355  case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
356  case Stmt::AttributedStmtClass:
357  EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
358  case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
359  case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
360  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
361  case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
362  case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
363  case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
364  }
365 
366  return true;
367 }
368 
369 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
370 /// this captures the expression result of the last sub-statement and returns it
371 /// (for use by the statement expression extension).
373  AggValueSlot AggSlot) {
374  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
375  "LLVM IR generation of compound statement ('{}')");
376 
377  // Keep track of the current cleanup stack depth, including debug scopes.
378  LexicalScope Scope(*this, S.getSourceRange());
379 
380  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
381 }
382 
383 Address
385  bool GetLast,
386  AggValueSlot AggSlot) {
387 
389  E = S.body_end()-GetLast; I != E; ++I)
390  EmitStmt(*I);
391 
392  Address RetAlloca = Address::invalid();
393  if (GetLast) {
394  // We have to special case labels here. They are statements, but when put
395  // at the end of a statement expression, they yield the value of their
396  // subexpression. Handle this by walking through all labels we encounter,
397  // emitting them before we evaluate the subexpr.
398  const Stmt *LastStmt = S.body_back();
399  while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
400  EmitLabel(LS->getDecl());
401  LastStmt = LS->getSubStmt();
402  }
403 
405 
406  QualType ExprTy = cast<Expr>(LastStmt)->getType();
407  if (hasAggregateEvaluationKind(ExprTy)) {
408  EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
409  } else {
410  // We can't return an RValue here because there might be cleanups at
411  // the end of the StmtExpr. Because of that, we have to emit the result
412  // here into a temporary alloca.
413  RetAlloca = CreateMemTemp(ExprTy);
414  EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
415  /*IsInit*/false);
416  }
417 
418  }
419 
420  return RetAlloca;
421 }
422 
423 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
424  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
425 
426  // If there is a cleanup stack, then we it isn't worth trying to
427  // simplify this block (we would need to remove it from the scope map
428  // and cleanup entry).
429  if (!EHStack.empty())
430  return;
431 
432  // Can only simplify direct branches.
433  if (!BI || !BI->isUnconditional())
434  return;
435 
436  // Can only simplify empty blocks.
437  if (BI->getIterator() != BB->begin())
438  return;
439 
440  BB->replaceAllUsesWith(BI->getSuccessor(0));
441  BI->eraseFromParent();
442  BB->eraseFromParent();
443 }
444 
445 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
446  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
447 
448  // Fall out of the current block (if necessary).
449  EmitBranch(BB);
450 
451  if (IsFinished && BB->use_empty()) {
452  delete BB;
453  return;
454  }
455 
456  // Place the block after the current block, if possible, or else at
457  // the end of the function.
458  if (CurBB && CurBB->getParent())
459  CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
460  else
461  CurFn->getBasicBlockList().push_back(BB);
462  Builder.SetInsertPoint(BB);
463 }
464 
465 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
466  // Emit a branch from the current block to the target one if this
467  // was a real block. If this was just a fall-through block after a
468  // terminator, don't emit it.
469  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
470 
471  if (!CurBB || CurBB->getTerminator()) {
472  // If there is no insert point or the previous block is already
473  // terminated, don't touch it.
474  } else {
475  // Otherwise, create a fall-through branch.
476  Builder.CreateBr(Target);
477  }
478 
479  Builder.ClearInsertionPoint();
480 }
481 
482 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
483  bool inserted = false;
484  for (llvm::User *u : block->users()) {
485  if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
486  CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
487  block);
488  inserted = true;
489  break;
490  }
491  }
492 
493  if (!inserted)
494  CurFn->getBasicBlockList().push_back(block);
495 
496  Builder.SetInsertPoint(block);
497 }
498 
501  JumpDest &Dest = LabelMap[D];
502  if (Dest.isValid()) return Dest;
503 
504  // Create, but don't insert, the new block.
505  Dest = JumpDest(createBasicBlock(D->getName()),
508  return Dest;
509 }
510 
512  // Add this label to the current lexical scope if we're within any
513  // normal cleanups. Jumps "in" to this label --- when permitted by
514  // the language --- may need to be routed around such cleanups.
515  if (EHStack.hasNormalCleanups() && CurLexicalScope)
516  CurLexicalScope->addLabel(D);
517 
518  JumpDest &Dest = LabelMap[D];
519 
520  // If we didn't need a forward reference to this label, just go
521  // ahead and create a destination at the current scope.
522  if (!Dest.isValid()) {
523  Dest = getJumpDestInCurrentScope(D->getName());
524 
525  // Otherwise, we need to give this label a target depth and remove
526  // it from the branch-fixups list.
527  } else {
528  assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
531  }
532 
533  EmitBlock(Dest.getBlock());
535 }
536 
537 /// Change the cleanup scope of the labels in this lexical scope to
538 /// match the scope of the enclosing context.
540  assert(!Labels.empty());
541  EHScopeStack::stable_iterator innermostScope
542  = CGF.EHStack.getInnermostNormalCleanup();
543 
544  // Change the scope depth of all the labels.
546  i = Labels.begin(), e = Labels.end(); i != e; ++i) {
547  assert(CGF.LabelMap.count(*i));
548  JumpDest &dest = CGF.LabelMap.find(*i)->second;
549  assert(dest.getScopeDepth().isValid());
550  assert(innermostScope.encloses(dest.getScopeDepth()));
551  dest.setScopeDepth(innermostScope);
552  }
553 
554  // Reparent the labels if the new scope also has cleanups.
555  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
556  ParentScope->Labels.append(Labels.begin(), Labels.end());
557  }
558 }
559 
560 
562  EmitLabel(S.getDecl());
563  EmitStmt(S.getSubStmt());
564 }
565 
567  EmitStmt(S.getSubStmt(), S.getAttrs());
568 }
569 
571  // If this code is reachable then emit a stop point (if generating
572  // debug info). We have to do this ourselves because we are on the
573  // "simple" statement path.
574  if (HaveInsertPoint())
575  EmitStopPoint(&S);
576 
578 }
579 
580 
582  if (const LabelDecl *Target = S.getConstantTarget()) {
584  return;
585  }
586 
587  // Ensure that we have an i8* for our PHI node.
589  Int8PtrTy, "addr");
590  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
591 
592  // Get the basic block for the indirect goto.
593  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
594 
595  // The first instruction in the block has to be the PHI for the switch dest,
596  // add an entry for this branch.
597  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
598 
599  EmitBranch(IndGotoBB);
600 }
601 
603  // C99 6.8.4.1: The first substatement is executed if the expression compares
604  // unequal to 0. The condition must be a scalar type.
605  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
606 
607  if (S.getInit())
608  EmitStmt(S.getInit());
609 
610  if (S.getConditionVariable())
612 
613  // If the condition constant folds and can be elided, try to avoid emitting
614  // the condition and the dead arm of the if/else.
615  bool CondConstant;
616  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
617  S.isConstexpr())) {
618  // Figure out which block (then or else) is executed.
619  const Stmt *Executed = S.getThen();
620  const Stmt *Skipped = S.getElse();
621  if (!CondConstant) // Condition false?
622  std::swap(Executed, Skipped);
623 
624  // If the skipped block has no labels in it, just emit the executed block.
625  // This avoids emitting dead code and simplifies the CFG substantially.
626  if (S.isConstexpr() || !ContainsLabel(Skipped)) {
627  if (CondConstant)
629  if (Executed) {
630  RunCleanupsScope ExecutedScope(*this);
631  EmitStmt(Executed);
632  }
633  return;
634  }
635  }
636 
637  // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
638  // the conditional branch.
639  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
640  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
641  llvm::BasicBlock *ElseBlock = ContBlock;
642  if (S.getElse())
643  ElseBlock = createBasicBlock("if.else");
644 
645  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
646  getProfileCount(S.getThen()));
647 
648  // Emit the 'then' code.
649  EmitBlock(ThenBlock);
651  {
652  RunCleanupsScope ThenScope(*this);
653  EmitStmt(S.getThen());
654  }
655  EmitBranch(ContBlock);
656 
657  // Emit the 'else' code if present.
658  if (const Stmt *Else = S.getElse()) {
659  {
660  // There is no need to emit line number for an unconditional branch.
661  auto NL = ApplyDebugLocation::CreateEmpty(*this);
662  EmitBlock(ElseBlock);
663  }
664  {
665  RunCleanupsScope ElseScope(*this);
666  EmitStmt(Else);
667  }
668  {
669  // There is no need to emit line number for an unconditional branch.
670  auto NL = ApplyDebugLocation::CreateEmpty(*this);
671  EmitBranch(ContBlock);
672  }
673  }
674 
675  // Emit the continuation block for code after the if.
676  EmitBlock(ContBlock, true);
677 }
678 
680  ArrayRef<const Attr *> WhileAttrs) {
681  // Emit the header for the loop, which will also become
682  // the continue target.
683  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
684  EmitBlock(LoopHeader.getBlock());
685 
686  const SourceRange &R = S.getSourceRange();
687  LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
688  SourceLocToDebugLoc(R.getBegin()),
689  SourceLocToDebugLoc(R.getEnd()));
690 
691  // Create an exit block for when the condition fails, which will
692  // also become the break target.
694 
695  // Store the blocks to use for break and continue.
696  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
697 
698  // C++ [stmt.while]p2:
699  // When the condition of a while statement is a declaration, the
700  // scope of the variable that is declared extends from its point
701  // of declaration (3.3.2) to the end of the while statement.
702  // [...]
703  // The object created in a condition is destroyed and created
704  // with each iteration of the loop.
705  RunCleanupsScope ConditionScope(*this);
706 
707  if (S.getConditionVariable())
709 
710  // Evaluate the conditional in the while header. C99 6.8.5.1: The
711  // evaluation of the controlling expression takes place before each
712  // execution of the loop body.
713  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
714 
715  // while(1) is common, avoid extra exit blocks. Be sure
716  // to correctly handle break/continue though.
717  bool EmitBoolCondBranch = true;
718  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
719  if (C->isOne())
720  EmitBoolCondBranch = false;
721 
722  // As long as the condition is true, go to the loop body.
723  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
724  if (EmitBoolCondBranch) {
725  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
726  if (ConditionScope.requiresCleanups())
727  ExitBlock = createBasicBlock("while.exit");
728  Builder.CreateCondBr(
729  BoolCondVal, LoopBody, ExitBlock,
730  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
731 
732  if (ExitBlock != LoopExit.getBlock()) {
733  EmitBlock(ExitBlock);
734  EmitBranchThroughCleanup(LoopExit);
735  }
736  }
737 
738  // Emit the loop body. We have to emit this in a cleanup scope
739  // because it might be a singleton DeclStmt.
740  {
741  RunCleanupsScope BodyScope(*this);
742  EmitBlock(LoopBody);
744  EmitStmt(S.getBody());
745  }
746 
747  BreakContinueStack.pop_back();
748 
749  // Immediately force cleanup.
750  ConditionScope.ForceCleanup();
751 
752  EmitStopPoint(&S);
753  // Branch to the loop header again.
754  EmitBranch(LoopHeader.getBlock());
755 
756  LoopStack.pop();
757 
758  // Emit the exit block.
759  EmitBlock(LoopExit.getBlock(), true);
760 
761  // The LoopHeader typically is just a branch if we skipped emitting
762  // a branch, try to erase it.
763  if (!EmitBoolCondBranch)
764  SimplifyForwardingBlocks(LoopHeader.getBlock());
765 }
766 
768  ArrayRef<const Attr *> DoAttrs) {
770  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
771 
772  uint64_t ParentCount = getCurrentProfileCount();
773 
774  // Store the blocks to use for break and continue.
775  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
776 
777  // Emit the body of the loop.
778  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
779 
780  EmitBlockWithFallThrough(LoopBody, &S);
781  {
782  RunCleanupsScope BodyScope(*this);
783  EmitStmt(S.getBody());
784  }
785 
786  EmitBlock(LoopCond.getBlock());
787 
788  const SourceRange &R = S.getSourceRange();
789  LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
790  SourceLocToDebugLoc(R.getBegin()),
791  SourceLocToDebugLoc(R.getEnd()));
792 
793  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
794  // after each execution of the loop body."
795 
796  // Evaluate the conditional in the while header.
797  // C99 6.8.5p2/p4: The first substatement is executed if the expression
798  // compares unequal to 0. The condition must be a scalar type.
799  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
800 
801  BreakContinueStack.pop_back();
802 
803  // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
804  // to correctly handle break/continue though.
805  bool EmitBoolCondBranch = true;
806  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
807  if (C->isZero())
808  EmitBoolCondBranch = false;
809 
810  // As long as the condition is true, iterate the loop.
811  if (EmitBoolCondBranch) {
812  uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
813  Builder.CreateCondBr(
814  BoolCondVal, LoopBody, LoopExit.getBlock(),
815  createProfileWeightsForLoop(S.getCond(), BackedgeCount));
816  }
817 
818  LoopStack.pop();
819 
820  // Emit the exit block.
821  EmitBlock(LoopExit.getBlock());
822 
823  // The DoCond block typically is just a branch if we skipped
824  // emitting a branch, try to erase it.
825  if (!EmitBoolCondBranch)
827 }
828 
830  ArrayRef<const Attr *> ForAttrs) {
832 
833  LexicalScope ForScope(*this, S.getSourceRange());
834 
835  // Evaluate the first part before the loop.
836  if (S.getInit())
837  EmitStmt(S.getInit());
838 
839  // Start the loop with a block that tests the condition.
840  // If there's an increment, the continue scope will be overwritten
841  // later.
842  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
843  llvm::BasicBlock *CondBlock = Continue.getBlock();
844  EmitBlock(CondBlock);
845 
846  const SourceRange &R = S.getSourceRange();
847  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
850 
851  // If the for loop doesn't have an increment we can just use the
852  // condition as the continue block. Otherwise we'll need to create
853  // a block for it (in the current scope, i.e. in the scope of the
854  // condition), and that we will become our continue block.
855  if (S.getInc())
856  Continue = getJumpDestInCurrentScope("for.inc");
857 
858  // Store the blocks to use for break and continue.
859  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
860 
861  // Create a cleanup scope for the condition variable cleanups.
862  LexicalScope ConditionScope(*this, S.getSourceRange());
863 
864  if (S.getCond()) {
865  // If the for statement has a condition scope, emit the local variable
866  // declaration.
867  if (S.getConditionVariable()) {
869  }
870 
871  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
872  // If there are any cleanups between here and the loop-exit scope,
873  // create a block to stage a loop exit along.
874  if (ForScope.requiresCleanups())
875  ExitBlock = createBasicBlock("for.cond.cleanup");
876 
877  // As long as the condition is true, iterate the loop.
878  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
879 
880  // C99 6.8.5p2/p4: The first substatement is executed if the expression
881  // compares unequal to 0. The condition must be a scalar type.
882  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
883  Builder.CreateCondBr(
884  BoolCondVal, ForBody, ExitBlock,
885  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
886 
887  if (ExitBlock != LoopExit.getBlock()) {
888  EmitBlock(ExitBlock);
889  EmitBranchThroughCleanup(LoopExit);
890  }
891 
892  EmitBlock(ForBody);
893  } else {
894  // Treat it as a non-zero constant. Don't even create a new block for the
895  // body, just fall into it.
896  }
898 
899  {
900  // Create a separate cleanup scope for the body, in case it is not
901  // a compound statement.
902  RunCleanupsScope BodyScope(*this);
903  EmitStmt(S.getBody());
904  }
905 
906  // If there is an increment, emit it next.
907  if (S.getInc()) {
908  EmitBlock(Continue.getBlock());
909  EmitStmt(S.getInc());
910  }
911 
912  BreakContinueStack.pop_back();
913 
914  ConditionScope.ForceCleanup();
915 
916  EmitStopPoint(&S);
917  EmitBranch(CondBlock);
918 
919  ForScope.ForceCleanup();
920 
921  LoopStack.pop();
922 
923  // Emit the fall-through block.
924  EmitBlock(LoopExit.getBlock(), true);
925 }
926 
927 void
929  ArrayRef<const Attr *> ForAttrs) {
931 
932  LexicalScope ForScope(*this, S.getSourceRange());
933 
934  // Evaluate the first pieces before the loop.
935  EmitStmt(S.getRangeStmt());
936  EmitStmt(S.getBeginStmt());
937  EmitStmt(S.getEndStmt());
938 
939  // Start the loop with a block that tests the condition.
940  // If there's an increment, the continue scope will be overwritten
941  // later.
942  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
943  EmitBlock(CondBlock);
944 
945  const SourceRange &R = S.getSourceRange();
946  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
949 
950  // If there are any cleanups between here and the loop-exit scope,
951  // create a block to stage a loop exit along.
952  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
953  if (ForScope.requiresCleanups())
954  ExitBlock = createBasicBlock("for.cond.cleanup");
955 
956  // The loop body, consisting of the specified body and the loop variable.
957  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
958 
959  // The body is executed if the expression, contextually converted
960  // to bool, is true.
961  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
962  Builder.CreateCondBr(
963  BoolCondVal, ForBody, ExitBlock,
964  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
965 
966  if (ExitBlock != LoopExit.getBlock()) {
967  EmitBlock(ExitBlock);
968  EmitBranchThroughCleanup(LoopExit);
969  }
970 
971  EmitBlock(ForBody);
973 
974  // Create a block for the increment. In case of a 'continue', we jump there.
975  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
976 
977  // Store the blocks to use for break and continue.
978  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
979 
980  {
981  // Create a separate cleanup scope for the loop variable and body.
982  LexicalScope BodyScope(*this, S.getSourceRange());
984  EmitStmt(S.getBody());
985  }
986 
987  EmitStopPoint(&S);
988  // If there is an increment, emit it next.
989  EmitBlock(Continue.getBlock());
990  EmitStmt(S.getInc());
991 
992  BreakContinueStack.pop_back();
993 
994  EmitBranch(CondBlock);
995 
996  ForScope.ForceCleanup();
997 
998  LoopStack.pop();
999 
1000  // Emit the fall-through block.
1001  EmitBlock(LoopExit.getBlock(), true);
1002 }
1003 
1004 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1005  if (RV.isScalar()) {
1007  } else if (RV.isAggregate()) {
1008  LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1009  LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1010  EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue());
1011  } else {
1013  /*init*/ true);
1014  }
1016 }
1017 
1018 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1019 /// if the function returns void, or may be missing one if the function returns
1020 /// non-void. Fun stuff :).
1022  if (requiresReturnValueCheck()) {
1023  llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1024  auto *SLocPtr =
1025  new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1026  llvm::GlobalVariable::PrivateLinkage, SLoc);
1027  SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1029  assert(ReturnLocation.isValid() && "No valid return location");
1031  ReturnLocation);
1032  }
1033 
1034  // Returning from an outlined SEH helper is UB, and we already warn on it.
1035  if (IsOutlinedSEHHelper) {
1036  Builder.CreateUnreachable();
1037  Builder.ClearInsertionPoint();
1038  }
1039 
1040  // Emit the result value, even if unused, to evaluate the side effects.
1041  const Expr *RV = S.getRetValue();
1042 
1043  // Treat block literals in a return expression as if they appeared
1044  // in their own scope. This permits a small, easily-implemented
1045  // exception to our over-conservative rules about not jumping to
1046  // statements following block literals with non-trivial cleanups.
1047  RunCleanupsScope cleanupScope(*this);
1048  if (const ExprWithCleanups *cleanups =
1049  dyn_cast_or_null<ExprWithCleanups>(RV)) {
1050  enterFullExpression(cleanups);
1051  RV = cleanups->getSubExpr();
1052  }
1053 
1054  // FIXME: Clean this up by using an LValue for ReturnTemp,
1055  // EmitStoreThroughLValue, and EmitAnyExpr.
1056  if (getLangOpts().ElideConstructors &&
1058  // Apply the named return value optimization for this return statement,
1059  // which means doing nothing: the appropriate result has already been
1060  // constructed into the NRVO variable.
1061 
1062  // If there is an NRVO flag for this variable, set it to 1 into indicate
1063  // that the cleanup code should not destroy the variable.
1064  if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1065  Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1066  } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1067  // Make sure not to return anything, but evaluate the expression
1068  // for side effects.
1069  if (RV)
1070  EmitAnyExpr(RV);
1071  } else if (!RV) {
1072  // Do nothing (return value is left uninitialized)
1073  } else if (FnRetTy->isReferenceType()) {
1074  // If this function returns a reference, take the address of the expression
1075  // rather than the value.
1076  RValue Result = EmitReferenceBindingToExpr(RV);
1078  } else {
1079  switch (getEvaluationKind(RV->getType())) {
1080  case TEK_Scalar:
1082  break;
1083  case TEK_Complex:
1085  /*isInit*/ true);
1086  break;
1087  case TEK_Aggregate:
1094  break;
1095  }
1096  }
1097 
1098  ++NumReturnExprs;
1099  if (!RV || RV->isEvaluatable(getContext()))
1100  ++NumSimpleReturnExprs;
1101 
1102  cleanupScope.ForceCleanup();
1104 }
1105 
1107  // As long as debug info is modeled with instructions, we have to ensure we
1108  // have a place to insert here and write the stop point here.
1109  if (HaveInsertPoint())
1110  EmitStopPoint(&S);
1111 
1112  for (const auto *I : S.decls())
1113  EmitDecl(*I);
1114 }
1115 
1117  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1118 
1119  // If this code is reachable then emit a stop point (if generating
1120  // debug info). We have to do this ourselves because we are on the
1121  // "simple" statement path.
1122  if (HaveInsertPoint())
1123  EmitStopPoint(&S);
1124 
1125  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1126 }
1127 
1129  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1130 
1131  // If this code is reachable then emit a stop point (if generating
1132  // debug info). We have to do this ourselves because we are on the
1133  // "simple" statement path.
1134  if (HaveInsertPoint())
1135  EmitStopPoint(&S);
1136 
1137  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1138 }
1139 
1140 /// EmitCaseStmtRange - If case statement range is not too big then
1141 /// add multiple cases to switch instruction, one for each value within
1142 /// the range. If range is too big then emit "if" condition check.
1144  assert(S.getRHS() && "Expected RHS value in CaseStmt");
1145 
1146  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1147  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1148 
1149  // Emit the code for this case. We do this first to make sure it is
1150  // properly chained from our predecessor before generating the
1151  // switch machinery to enter this block.
1152  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1153  EmitBlockWithFallThrough(CaseDest, &S);
1154  EmitStmt(S.getSubStmt());
1155 
1156  // If range is empty, do nothing.
1157  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1158  return;
1159 
1160  llvm::APInt Range = RHS - LHS;
1161  // FIXME: parameters such as this should not be hardcoded.
1162  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1163  // Range is small enough to add multiple switch instruction cases.
1164  uint64_t Total = getProfileCount(&S);
1165  unsigned NCases = Range.getZExtValue() + 1;
1166  // We only have one region counter for the entire set of cases here, so we
1167  // need to divide the weights evenly between the generated cases, ensuring
1168  // that the total weight is preserved. E.g., a weight of 5 over three cases
1169  // will be distributed as weights of 2, 2, and 1.
1170  uint64_t Weight = Total / NCases, Rem = Total % NCases;
1171  for (unsigned I = 0; I != NCases; ++I) {
1172  if (SwitchWeights)
1173  SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1174  if (Rem)
1175  Rem--;
1176  SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1177  ++LHS;
1178  }
1179  return;
1180  }
1181 
1182  // The range is too big. Emit "if" condition into a new block,
1183  // making sure to save and restore the current insertion point.
1184  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1185 
1186  // Push this test onto the chain of range checks (which terminates
1187  // in the default basic block). The switch's default will be changed
1188  // to the top of this chain after switch emission is complete.
1189  llvm::BasicBlock *FalseDest = CaseRangeBlock;
1190  CaseRangeBlock = createBasicBlock("sw.caserange");
1191 
1192  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1193  Builder.SetInsertPoint(CaseRangeBlock);
1194 
1195  // Emit range check.
1196  llvm::Value *Diff =
1197  Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1198  llvm::Value *Cond =
1199  Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1200 
1201  llvm::MDNode *Weights = nullptr;
1202  if (SwitchWeights) {
1203  uint64_t ThisCount = getProfileCount(&S);
1204  uint64_t DefaultCount = (*SwitchWeights)[0];
1205  Weights = createProfileWeights(ThisCount, DefaultCount);
1206 
1207  // Since we're chaining the switch default through each large case range, we
1208  // need to update the weight for the default, ie, the first case, to include
1209  // this case.
1210  (*SwitchWeights)[0] += ThisCount;
1211  }
1212  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1213 
1214  // Restore the appropriate insertion point.
1215  if (RestoreBB)
1216  Builder.SetInsertPoint(RestoreBB);
1217  else
1218  Builder.ClearInsertionPoint();
1219 }
1220 
1222  // If there is no enclosing switch instance that we're aware of, then this
1223  // case statement and its block can be elided. This situation only happens
1224  // when we've constant-folded the switch, are emitting the constant case,
1225  // and part of the constant case includes another case statement. For
1226  // instance: switch (4) { case 4: do { case 5: } while (1); }
1227  if (!SwitchInsn) {
1228  EmitStmt(S.getSubStmt());
1229  return;
1230  }
1231 
1232  // Handle case ranges.
1233  if (S.getRHS()) {
1234  EmitCaseStmtRange(S);
1235  return;
1236  }
1237 
1238  llvm::ConstantInt *CaseVal =
1240 
1241  // If the body of the case is just a 'break', try to not emit an empty block.
1242  // If we're profiling or we're not optimizing, leave the block in for better
1243  // debug and coverage analysis.
1245  CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1246  isa<BreakStmt>(S.getSubStmt())) {
1247  JumpDest Block = BreakContinueStack.back().BreakBlock;
1248 
1249  // Only do this optimization if there are no cleanups that need emitting.
1250  if (isObviouslyBranchWithoutCleanups(Block)) {
1251  if (SwitchWeights)
1252  SwitchWeights->push_back(getProfileCount(&S));
1253  SwitchInsn->addCase(CaseVal, Block.getBlock());
1254 
1255  // If there was a fallthrough into this case, make sure to redirect it to
1256  // the end of the switch as well.
1257  if (Builder.GetInsertBlock()) {
1258  Builder.CreateBr(Block.getBlock());
1259  Builder.ClearInsertionPoint();
1260  }
1261  return;
1262  }
1263  }
1264 
1265  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1266  EmitBlockWithFallThrough(CaseDest, &S);
1267  if (SwitchWeights)
1268  SwitchWeights->push_back(getProfileCount(&S));
1269  SwitchInsn->addCase(CaseVal, CaseDest);
1270 
1271  // Recursively emitting the statement is acceptable, but is not wonderful for
1272  // code where we have many case statements nested together, i.e.:
1273  // case 1:
1274  // case 2:
1275  // case 3: etc.
1276  // Handling this recursively will create a new block for each case statement
1277  // that falls through to the next case which is IR intensive. It also causes
1278  // deep recursion which can run into stack depth limitations. Handle
1279  // sequential non-range case statements specially.
1280  const CaseStmt *CurCase = &S;
1281  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1282 
1283  // Otherwise, iteratively add consecutive cases to this switch stmt.
1284  while (NextCase && NextCase->getRHS() == nullptr) {
1285  CurCase = NextCase;
1286  llvm::ConstantInt *CaseVal =
1287  Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1288 
1289  if (SwitchWeights)
1290  SwitchWeights->push_back(getProfileCount(NextCase));
1292  CaseDest = createBasicBlock("sw.bb");
1293  EmitBlockWithFallThrough(CaseDest, &S);
1294  }
1295 
1296  SwitchInsn->addCase(CaseVal, CaseDest);
1297  NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1298  }
1299 
1300  // Normal default recursion for non-cases.
1301  EmitStmt(CurCase->getSubStmt());
1302 }
1303 
1305  // If there is no enclosing switch instance that we're aware of, then this
1306  // default statement can be elided. This situation only happens when we've
1307  // constant-folded the switch.
1308  if (!SwitchInsn) {
1309  EmitStmt(S.getSubStmt());
1310  return;
1311  }
1312 
1313  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1314  assert(DefaultBlock->empty() &&
1315  "EmitDefaultStmt: Default block already defined?");
1316 
1317  EmitBlockWithFallThrough(DefaultBlock, &S);
1318 
1319  EmitStmt(S.getSubStmt());
1320 }
1321 
1322 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1323 /// constant value that is being switched on, see if we can dead code eliminate
1324 /// the body of the switch to a simple series of statements to emit. Basically,
1325 /// on a switch (5) we want to find these statements:
1326 /// case 5:
1327 /// printf(...); <--
1328 /// ++i; <--
1329 /// break;
1330 ///
1331 /// and add them to the ResultStmts vector. If it is unsafe to do this
1332 /// transformation (for example, one of the elided statements contains a label
1333 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1334 /// should include statements after it (e.g. the printf() line is a substmt of
1335 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1336 /// statement, then return CSFC_Success.
1337 ///
1338 /// If Case is non-null, then we are looking for the specified case, checking
1339 /// that nothing we jump over contains labels. If Case is null, then we found
1340 /// the case and are looking for the break.
1341 ///
1342 /// If the recursive walk actually finds our Case, then we set FoundCase to
1343 /// true.
1344 ///
1347  const SwitchCase *Case,
1348  bool &FoundCase,
1349  SmallVectorImpl<const Stmt*> &ResultStmts) {
1350  // If this is a null statement, just succeed.
1351  if (!S)
1352  return Case ? CSFC_Success : CSFC_FallThrough;
1353 
1354  // If this is the switchcase (case 4: or default) that we're looking for, then
1355  // we're in business. Just add the substatement.
1356  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1357  if (S == Case) {
1358  FoundCase = true;
1359  return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1360  ResultStmts);
1361  }
1362 
1363  // Otherwise, this is some other case or default statement, just ignore it.
1364  return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1365  ResultStmts);
1366  }
1367 
1368  // If we are in the live part of the code and we found our break statement,
1369  // return a success!
1370  if (!Case && isa<BreakStmt>(S))
1371  return CSFC_Success;
1372 
1373  // If this is a switch statement, then it might contain the SwitchCase, the
1374  // break, or neither.
1375  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1376  // Handle this as two cases: we might be looking for the SwitchCase (if so
1377  // the skipped statements must be skippable) or we might already have it.
1378  CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1379  bool StartedInLiveCode = FoundCase;
1380  unsigned StartSize = ResultStmts.size();
1381 
1382  // If we've not found the case yet, scan through looking for it.
1383  if (Case) {
1384  // Keep track of whether we see a skipped declaration. The code could be
1385  // using the declaration even if it is skipped, so we can't optimize out
1386  // the decl if the kept statements might refer to it.
1387  bool HadSkippedDecl = false;
1388 
1389  // If we're looking for the case, just see if we can skip each of the
1390  // substatements.
1391  for (; Case && I != E; ++I) {
1392  HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1393 
1394  switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1395  case CSFC_Failure: return CSFC_Failure;
1396  case CSFC_Success:
1397  // A successful result means that either 1) that the statement doesn't
1398  // have the case and is skippable, or 2) does contain the case value
1399  // and also contains the break to exit the switch. In the later case,
1400  // we just verify the rest of the statements are elidable.
1401  if (FoundCase) {
1402  // If we found the case and skipped declarations, we can't do the
1403  // optimization.
1404  if (HadSkippedDecl)
1405  return CSFC_Failure;
1406 
1407  for (++I; I != E; ++I)
1408  if (CodeGenFunction::ContainsLabel(*I, true))
1409  return CSFC_Failure;
1410  return CSFC_Success;
1411  }
1412  break;
1413  case CSFC_FallThrough:
1414  // If we have a fallthrough condition, then we must have found the
1415  // case started to include statements. Consider the rest of the
1416  // statements in the compound statement as candidates for inclusion.
1417  assert(FoundCase && "Didn't find case but returned fallthrough?");
1418  // We recursively found Case, so we're not looking for it anymore.
1419  Case = nullptr;
1420 
1421  // If we found the case and skipped declarations, we can't do the
1422  // optimization.
1423  if (HadSkippedDecl)
1424  return CSFC_Failure;
1425  break;
1426  }
1427  }
1428 
1429  if (!FoundCase)
1430  return CSFC_Success;
1431 
1432  assert(!HadSkippedDecl && "fallthrough after skipping decl");
1433  }
1434 
1435  // If we have statements in our range, then we know that the statements are
1436  // live and need to be added to the set of statements we're tracking.
1437  bool AnyDecls = false;
1438  for (; I != E; ++I) {
1439  AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1440 
1441  switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1442  case CSFC_Failure: return CSFC_Failure;
1443  case CSFC_FallThrough:
1444  // A fallthrough result means that the statement was simple and just
1445  // included in ResultStmt, keep adding them afterwards.
1446  break;
1447  case CSFC_Success:
1448  // A successful result means that we found the break statement and
1449  // stopped statement inclusion. We just ensure that any leftover stmts
1450  // are skippable and return success ourselves.
1451  for (++I; I != E; ++I)
1452  if (CodeGenFunction::ContainsLabel(*I, true))
1453  return CSFC_Failure;
1454  return CSFC_Success;
1455  }
1456  }
1457 
1458  // If we're about to fall out of a scope without hitting a 'break;', we
1459  // can't perform the optimization if there were any decls in that scope
1460  // (we'd lose their end-of-lifetime).
1461  if (AnyDecls) {
1462  // If the entire compound statement was live, there's one more thing we
1463  // can try before giving up: emit the whole thing as a single statement.
1464  // We can do that unless the statement contains a 'break;'.
1465  // FIXME: Such a break must be at the end of a construct within this one.
1466  // We could emit this by just ignoring the BreakStmts entirely.
1467  if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1468  ResultStmts.resize(StartSize);
1469  ResultStmts.push_back(S);
1470  } else {
1471  return CSFC_Failure;
1472  }
1473  }
1474 
1475  return CSFC_FallThrough;
1476  }
1477 
1478  // Okay, this is some other statement that we don't handle explicitly, like a
1479  // for statement or increment etc. If we are skipping over this statement,
1480  // just verify it doesn't have labels, which would make it invalid to elide.
1481  if (Case) {
1482  if (CodeGenFunction::ContainsLabel(S, true))
1483  return CSFC_Failure;
1484  return CSFC_Success;
1485  }
1486 
1487  // Otherwise, we want to include this statement. Everything is cool with that
1488  // so long as it doesn't contain a break out of the switch we're in.
1490 
1491  // Otherwise, everything is great. Include the statement and tell the caller
1492  // that we fall through and include the next statement as well.
1493  ResultStmts.push_back(S);
1494  return CSFC_FallThrough;
1495 }
1496 
1497 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1498 /// then invoke CollectStatementsForCase to find the list of statements to emit
1499 /// for a switch on constant. See the comment above CollectStatementsForCase
1500 /// for more details.
1502  const llvm::APSInt &ConstantCondValue,
1503  SmallVectorImpl<const Stmt*> &ResultStmts,
1504  ASTContext &C,
1505  const SwitchCase *&ResultCase) {
1506  // First step, find the switch case that is being branched to. We can do this
1507  // efficiently by scanning the SwitchCase list.
1508  const SwitchCase *Case = S.getSwitchCaseList();
1509  const DefaultStmt *DefaultCase = nullptr;
1510 
1511  for (; Case; Case = Case->getNextSwitchCase()) {
1512  // It's either a default or case. Just remember the default statement in
1513  // case we're not jumping to any numbered cases.
1514  if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1515  DefaultCase = DS;
1516  continue;
1517  }
1518 
1519  // Check to see if this case is the one we're looking for.
1520  const CaseStmt *CS = cast<CaseStmt>(Case);
1521  // Don't handle case ranges yet.
1522  if (CS->getRHS()) return false;
1523 
1524  // If we found our case, remember it as 'case'.
1525  if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1526  break;
1527  }
1528 
1529  // If we didn't find a matching case, we use a default if it exists, or we
1530  // elide the whole switch body!
1531  if (!Case) {
1532  // It is safe to elide the body of the switch if it doesn't contain labels
1533  // etc. If it is safe, return successfully with an empty ResultStmts list.
1534  if (!DefaultCase)
1535  return !CodeGenFunction::ContainsLabel(&S);
1536  Case = DefaultCase;
1537  }
1538 
1539  // Ok, we know which case is being jumped to, try to collect all the
1540  // statements that follow it. This can fail for a variety of reasons. Also,
1541  // check to see that the recursive walk actually found our case statement.
1542  // Insane cases like this can fail to find it in the recursive walk since we
1543  // don't handle every stmt kind:
1544  // switch (4) {
1545  // while (1) {
1546  // case 4: ...
1547  bool FoundCase = false;
1548  ResultCase = Case;
1549  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1550  ResultStmts) != CSFC_Failure &&
1551  FoundCase;
1552 }
1553 
1555  // Handle nested switch statements.
1556  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1557  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1558  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1559 
1560  // See if we can constant fold the condition of the switch and therefore only
1561  // emit the live case statement (if any) of the switch.
1562  llvm::APSInt ConstantCondValue;
1563  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1564  SmallVector<const Stmt*, 4> CaseStmts;
1565  const SwitchCase *Case = nullptr;
1566  if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1567  getContext(), Case)) {
1568  if (Case)
1570  RunCleanupsScope ExecutedScope(*this);
1571 
1572  if (S.getInit())
1573  EmitStmt(S.getInit());
1574 
1575  // Emit the condition variable if needed inside the entire cleanup scope
1576  // used by this special case for constant folded switches.
1577  if (S.getConditionVariable())
1579 
1580  // At this point, we are no longer "within" a switch instance, so
1581  // we can temporarily enforce this to ensure that any embedded case
1582  // statements are not emitted.
1583  SwitchInsn = nullptr;
1584 
1585  // Okay, we can dead code eliminate everything except this case. Emit the
1586  // specified series of statements and we're good.
1587  for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1588  EmitStmt(CaseStmts[i]);
1590 
1591  // Now we want to restore the saved switch instance so that nested
1592  // switches continue to function properly
1593  SwitchInsn = SavedSwitchInsn;
1594 
1595  return;
1596  }
1597  }
1598 
1599  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1600 
1601  RunCleanupsScope ConditionScope(*this);
1602 
1603  if (S.getInit())
1604  EmitStmt(S.getInit());
1605 
1606  if (S.getConditionVariable())
1608  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1609 
1610  // Create basic block to hold stuff that comes after switch
1611  // statement. We also need to create a default block now so that
1612  // explicit case ranges tests can have a place to jump to on
1613  // failure.
1614  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1615  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1616  if (PGO.haveRegionCounts()) {
1617  // Walk the SwitchCase list to find how many there are.
1618  uint64_t DefaultCount = 0;
1619  unsigned NumCases = 0;
1620  for (const SwitchCase *Case = S.getSwitchCaseList();
1621  Case;
1622  Case = Case->getNextSwitchCase()) {
1623  if (isa<DefaultStmt>(Case))
1624  DefaultCount = getProfileCount(Case);
1625  NumCases += 1;
1626  }
1627  SwitchWeights = new SmallVector<uint64_t, 16>();
1628  SwitchWeights->reserve(NumCases);
1629  // The default needs to be first. We store the edge count, so we already
1630  // know the right weight.
1631  SwitchWeights->push_back(DefaultCount);
1632  }
1633  CaseRangeBlock = DefaultBlock;
1634 
1635  // Clear the insertion point to indicate we are in unreachable code.
1636  Builder.ClearInsertionPoint();
1637 
1638  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1639  // then reuse last ContinueBlock.
1640  JumpDest OuterContinue;
1641  if (!BreakContinueStack.empty())
1642  OuterContinue = BreakContinueStack.back().ContinueBlock;
1643 
1644  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1645 
1646  // Emit switch body.
1647  EmitStmt(S.getBody());
1648 
1649  BreakContinueStack.pop_back();
1650 
1651  // Update the default block in case explicit case range tests have
1652  // been chained on top.
1653  SwitchInsn->setDefaultDest(CaseRangeBlock);
1654 
1655  // If a default was never emitted:
1656  if (!DefaultBlock->getParent()) {
1657  // If we have cleanups, emit the default block so that there's a
1658  // place to jump through the cleanups from.
1659  if (ConditionScope.requiresCleanups()) {
1660  EmitBlock(DefaultBlock);
1661 
1662  // Otherwise, just forward the default block to the switch end.
1663  } else {
1664  DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1665  delete DefaultBlock;
1666  }
1667  }
1668 
1669  ConditionScope.ForceCleanup();
1670 
1671  // Emit continuation.
1672  EmitBlock(SwitchExit.getBlock(), true);
1674 
1675  // If the switch has a condition wrapped by __builtin_unpredictable,
1676  // create metadata that specifies that the switch is unpredictable.
1677  // Don't bother if not optimizing because that metadata would not be used.
1678  auto *Call = dyn_cast<CallExpr>(S.getCond());
1679  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1680  auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1681  if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1682  llvm::MDBuilder MDHelper(getLLVMContext());
1683  SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1684  MDHelper.createUnpredictable());
1685  }
1686  }
1687 
1688  if (SwitchWeights) {
1689  assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1690  "switch weights do not match switch cases");
1691  // If there's only one jump destination there's no sense weighting it.
1692  if (SwitchWeights->size() > 1)
1693  SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1694  createProfileWeights(*SwitchWeights));
1695  delete SwitchWeights;
1696  }
1697  SwitchInsn = SavedSwitchInsn;
1698  SwitchWeights = SavedSwitchWeights;
1699  CaseRangeBlock = SavedCRBlock;
1700 }
1701 
1702 static std::string
1703 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1705  std::string Result;
1706 
1707  while (*Constraint) {
1708  switch (*Constraint) {
1709  default:
1710  Result += Target.convertConstraint(Constraint);
1711  break;
1712  // Ignore these
1713  case '*':
1714  case '?':
1715  case '!':
1716  case '=': // Will see this and the following in mult-alt constraints.
1717  case '+':
1718  break;
1719  case '#': // Ignore the rest of the constraint alternative.
1720  while (Constraint[1] && Constraint[1] != ',')
1721  Constraint++;
1722  break;
1723  case '&':
1724  case '%':
1725  Result += *Constraint;
1726  while (Constraint[1] && Constraint[1] == *Constraint)
1727  Constraint++;
1728  break;
1729  case ',':
1730  Result += "|";
1731  break;
1732  case 'g':
1733  Result += "imr";
1734  break;
1735  case '[': {
1736  assert(OutCons &&
1737  "Must pass output names to constraints with a symbolic name");
1738  unsigned Index;
1739  bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1740  assert(result && "Could not resolve symbolic name"); (void)result;
1741  Result += llvm::utostr(Index);
1742  break;
1743  }
1744  }
1745 
1746  Constraint++;
1747  }
1748 
1749  return Result;
1750 }
1751 
1752 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1753 /// as using a particular register add that as a constraint that will be used
1754 /// in this asm stmt.
1755 static std::string
1756 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1758  const AsmStmt &Stmt, const bool EarlyClobber) {
1759  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1760  if (!AsmDeclRef)
1761  return Constraint;
1762  const ValueDecl &Value = *AsmDeclRef->getDecl();
1763  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1764  if (!Variable)
1765  return Constraint;
1766  if (Variable->getStorageClass() != SC_Register)
1767  return Constraint;
1768  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1769  if (!Attr)
1770  return Constraint;
1771  StringRef Register = Attr->getLabel();
1772  assert(Target.isValidGCCRegisterName(Register));
1773  // We're using validateOutputConstraint here because we only care if
1774  // this is a register constraint.
1775  TargetInfo::ConstraintInfo Info(Constraint, "");
1776  if (Target.validateOutputConstraint(Info) &&
1777  !Info.allowsRegister()) {
1778  CGM.ErrorUnsupported(&Stmt, "__asm__");
1779  return Constraint;
1780  }
1781  // Canonicalize the register here before returning it.
1782  Register = Target.getNormalizedGCCRegisterName(Register);
1783  return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1784 }
1785 
1786 llvm::Value*
1787 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1788  LValue InputValue, QualType InputType,
1789  std::string &ConstraintStr,
1790  SourceLocation Loc) {
1791  llvm::Value *Arg;
1792  if (Info.allowsRegister() || !Info.allowsMemory()) {
1794  Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1795  } else {
1796  llvm::Type *Ty = ConvertType(InputType);
1797  uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1798  if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1799  Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1800  Ty = llvm::PointerType::getUnqual(Ty);
1801 
1802  Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1803  Ty));
1804  } else {
1805  Arg = InputValue.getPointer();
1806  ConstraintStr += '*';
1807  }
1808  }
1809  } else {
1810  Arg = InputValue.getPointer();
1811  ConstraintStr += '*';
1812  }
1813 
1814  return Arg;
1815 }
1816 
1817 llvm::Value* CodeGenFunction::EmitAsmInput(
1818  const TargetInfo::ConstraintInfo &Info,
1819  const Expr *InputExpr,
1820  std::string &ConstraintStr) {
1821  // If this can't be a register or memory, i.e., has to be a constant
1822  // (immediate or symbolic), try to emit it as such.
1823  if (!Info.allowsRegister() && !Info.allowsMemory()) {
1824  llvm::APSInt Result;
1825  if (InputExpr->EvaluateAsInt(Result, getContext()))
1826  return llvm::ConstantInt::get(getLLVMContext(), Result);
1827  assert(!Info.requiresImmediateConstant() &&
1828  "Required-immediate inlineasm arg isn't constant?");
1829  }
1830 
1831  if (Info.allowsRegister() || !Info.allowsMemory())
1833  return EmitScalarExpr(InputExpr);
1834  if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1835  return EmitScalarExpr(InputExpr);
1836  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1837  LValue Dest = EmitLValue(InputExpr);
1838  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1839  InputExpr->getExprLoc());
1840 }
1841 
1842 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1843 /// asm call instruction. The !srcloc MDNode contains a list of constant
1844 /// integers which are the source locations of the start of each line in the
1845 /// asm.
1846 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1847  CodeGenFunction &CGF) {
1849  // Add the location of the first line to the MDNode.
1850  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1851  CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1852  StringRef StrVal = Str->getString();
1853  if (!StrVal.empty()) {
1854  const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1855  const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1856  unsigned StartToken = 0;
1857  unsigned ByteOffset = 0;
1858 
1859  // Add the location of the start of each subsequent line of the asm to the
1860  // MDNode.
1861  for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1862  if (StrVal[i] != '\n') continue;
1863  SourceLocation LineLoc = Str->getLocationOfByte(
1864  i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1865  Locs.push_back(llvm::ConstantAsMetadata::get(
1866  llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1867  }
1868  }
1869 
1870  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1871 }
1872 
1874  // Assemble the final asm string.
1875  std::string AsmString = S.generateAsmString(getContext());
1876 
1877  // Get all the output and input constraints together.
1878  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1879  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1880 
1881  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1882  StringRef Name;
1883  if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1884  Name = GAS->getOutputName(i);
1886  bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1887  assert(IsValid && "Failed to parse output constraint");
1888  OutputConstraintInfos.push_back(Info);
1889  }
1890 
1891  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1892  StringRef Name;
1893  if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1894  Name = GAS->getInputName(i);
1896  bool IsValid =
1897  getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1898  assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1899  InputConstraintInfos.push_back(Info);
1900  }
1901 
1902  std::string Constraints;
1903 
1904  std::vector<LValue> ResultRegDests;
1905  std::vector<QualType> ResultRegQualTys;
1906  std::vector<llvm::Type *> ResultRegTypes;
1907  std::vector<llvm::Type *> ResultTruncRegTypes;
1908  std::vector<llvm::Type *> ArgTypes;
1909  std::vector<llvm::Value*> Args;
1910 
1911  // Keep track of inout constraints.
1912  std::string InOutConstraints;
1913  std::vector<llvm::Value*> InOutArgs;
1914  std::vector<llvm::Type*> InOutArgTypes;
1915 
1916  // An inline asm can be marked readonly if it meets the following conditions:
1917  // - it doesn't have any sideeffects
1918  // - it doesn't clobber memory
1919  // - it doesn't return a value by-reference
1920  // It can be marked readnone if it doesn't have any input memory constraints
1921  // in addition to meeting the conditions listed above.
1922  bool ReadOnly = true, ReadNone = true;
1923 
1924  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1925  TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1926 
1927  // Simplify the output constraint.
1928  std::string OutputConstraint(S.getOutputConstraint(i));
1929  OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1930  getTarget(), &OutputConstraintInfos);
1931 
1932  const Expr *OutExpr = S.getOutputExpr(i);
1933  OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1934 
1935  OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1936  getTarget(), CGM, S,
1937  Info.earlyClobber());
1938 
1939  LValue Dest = EmitLValue(OutExpr);
1940  if (!Constraints.empty())
1941  Constraints += ',';
1942 
1943  // If this is a register output, then make the inline asm return it
1944  // by-value. If this is a memory result, return the value by-reference.
1945  if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1946  Constraints += "=" + OutputConstraint;
1947  ResultRegQualTys.push_back(OutExpr->getType());
1948  ResultRegDests.push_back(Dest);
1949  ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1950  ResultTruncRegTypes.push_back(ResultRegTypes.back());
1951 
1952  // If this output is tied to an input, and if the input is larger, then
1953  // we need to set the actual result type of the inline asm node to be the
1954  // same as the input type.
1955  if (Info.hasMatchingInput()) {
1956  unsigned InputNo;
1957  for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1958  TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1959  if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1960  break;
1961  }
1962  assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1963 
1964  QualType InputTy = S.getInputExpr(InputNo)->getType();
1965  QualType OutputType = OutExpr->getType();
1966 
1967  uint64_t InputSize = getContext().getTypeSize(InputTy);
1968  if (getContext().getTypeSize(OutputType) < InputSize) {
1969  // Form the asm to return the value as a larger integer or fp type.
1970  ResultRegTypes.back() = ConvertType(InputTy);
1971  }
1972  }
1973  if (llvm::Type* AdjTy =
1974  getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1975  ResultRegTypes.back()))
1976  ResultRegTypes.back() = AdjTy;
1977  else {
1978  CGM.getDiags().Report(S.getAsmLoc(),
1979  diag::err_asm_invalid_type_in_input)
1980  << OutExpr->getType() << OutputConstraint;
1981  }
1982 
1983  // Update largest vector width for any vector types.
1984  if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
1985  LargestVectorWidth = std::max(LargestVectorWidth,
1986  VT->getPrimitiveSizeInBits());
1987  } else {
1988  ArgTypes.push_back(Dest.getAddress().getType());
1989  Args.push_back(Dest.getPointer());
1990  Constraints += "=*";
1991  Constraints += OutputConstraint;
1992  ReadOnly = ReadNone = false;
1993  }
1994 
1995  if (Info.isReadWrite()) {
1996  InOutConstraints += ',';
1997 
1998  const Expr *InputExpr = S.getOutputExpr(i);
1999  llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2000  InOutConstraints,
2001  InputExpr->getExprLoc());
2002 
2003  if (llvm::Type* AdjTy =
2004  getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2005  Arg->getType()))
2006  Arg = Builder.CreateBitCast(Arg, AdjTy);
2007 
2008  // Update largest vector width for any vector types.
2009  if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2010  LargestVectorWidth = std::max(LargestVectorWidth,
2011  VT->getPrimitiveSizeInBits());
2012  if (Info.allowsRegister())
2013  InOutConstraints += llvm::utostr(i);
2014  else
2015  InOutConstraints += OutputConstraint;
2016 
2017  InOutArgTypes.push_back(Arg->getType());
2018  InOutArgs.push_back(Arg);
2019  }
2020  }
2021 
2022  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2023  // to the return value slot. Only do this when returning in registers.
2024  if (isa<MSAsmStmt>(&S)) {
2025  const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2026  if (RetAI.isDirect() || RetAI.isExtend()) {
2027  // Make a fake lvalue for the return value slot.
2028  LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2030  *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2031  ResultRegDests, AsmString, S.getNumOutputs());
2032  SawAsmBlock = true;
2033  }
2034  }
2035 
2036  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2037  const Expr *InputExpr = S.getInputExpr(i);
2038 
2039  TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2040 
2041  if (Info.allowsMemory())
2042  ReadNone = false;
2043 
2044  if (!Constraints.empty())
2045  Constraints += ',';
2046 
2047  // Simplify the input constraint.
2048  std::string InputConstraint(S.getInputConstraint(i));
2049  InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2050  &OutputConstraintInfos);
2051 
2052  InputConstraint = AddVariableConstraints(
2053  InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2054  getTarget(), CGM, S, false /* No EarlyClobber */);
2055 
2056  llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2057 
2058  // If this input argument is tied to a larger output result, extend the
2059  // input to be the same size as the output. The LLVM backend wants to see
2060  // the input and output of a matching constraint be the same size. Note
2061  // that GCC does not define what the top bits are here. We use zext because
2062  // that is usually cheaper, but LLVM IR should really get an anyext someday.
2063  if (Info.hasTiedOperand()) {
2064  unsigned Output = Info.getTiedOperand();
2065  QualType OutputType = S.getOutputExpr(Output)->getType();
2066  QualType InputTy = InputExpr->getType();
2067 
2068  if (getContext().getTypeSize(OutputType) >
2069  getContext().getTypeSize(InputTy)) {
2070  // Use ptrtoint as appropriate so that we can do our extension.
2071  if (isa<llvm::PointerType>(Arg->getType()))
2072  Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2073  llvm::Type *OutputTy = ConvertType(OutputType);
2074  if (isa<llvm::IntegerType>(OutputTy))
2075  Arg = Builder.CreateZExt(Arg, OutputTy);
2076  else if (isa<llvm::PointerType>(OutputTy))
2077  Arg = Builder.CreateZExt(Arg, IntPtrTy);
2078  else {
2079  assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2080  Arg = Builder.CreateFPExt(Arg, OutputTy);
2081  }
2082  }
2083  }
2084  if (llvm::Type* AdjTy =
2085  getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
2086  Arg->getType()))
2087  Arg = Builder.CreateBitCast(Arg, AdjTy);
2088  else
2089  CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2090  << InputExpr->getType() << InputConstraint;
2091 
2092  // Update largest vector width for any vector types.
2093  if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2094  LargestVectorWidth = std::max(LargestVectorWidth,
2095  VT->getPrimitiveSizeInBits());
2096 
2097  ArgTypes.push_back(Arg->getType());
2098  Args.push_back(Arg);
2099  Constraints += InputConstraint;
2100  }
2101 
2102  // Append the "input" part of inout constraints last.
2103  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2104  ArgTypes.push_back(InOutArgTypes[i]);
2105  Args.push_back(InOutArgs[i]);
2106  }
2107  Constraints += InOutConstraints;
2108 
2109  // Clobbers
2110  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2111  StringRef Clobber = S.getClobber(i);
2112 
2113  if (Clobber == "memory")
2114  ReadOnly = ReadNone = false;
2115  else if (Clobber != "cc")
2116  Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2117 
2118  if (!Constraints.empty())
2119  Constraints += ',';
2120 
2121  Constraints += "~{";
2122  Constraints += Clobber;
2123  Constraints += '}';
2124  }
2125 
2126  // Add machine specific clobbers
2127  std::string MachineClobbers = getTarget().getClobbers();
2128  if (!MachineClobbers.empty()) {
2129  if (!Constraints.empty())
2130  Constraints += ',';
2131  Constraints += MachineClobbers;
2132  }
2133 
2134  llvm::Type *ResultType;
2135  if (ResultRegTypes.empty())
2136  ResultType = VoidTy;
2137  else if (ResultRegTypes.size() == 1)
2138  ResultType = ResultRegTypes[0];
2139  else
2140  ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2141 
2142  llvm::FunctionType *FTy =
2143  llvm::FunctionType::get(ResultType, ArgTypes, false);
2144 
2145  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2146  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2147  llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2148  llvm::InlineAsm *IA =
2149  llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2150  /* IsAlignStack */ false, AsmDialect);
2151  llvm::CallInst *Result =
2152  Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2153  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2154  llvm::Attribute::NoUnwind);
2155 
2156  // Attach readnone and readonly attributes.
2157  if (!HasSideEffect) {
2158  if (ReadNone)
2159  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2160  llvm::Attribute::ReadNone);
2161  else if (ReadOnly)
2162  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2163  llvm::Attribute::ReadOnly);
2164  }
2165 
2166  // Slap the source location of the inline asm into a !srcloc metadata on the
2167  // call.
2168  if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2169  Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2170  *this));
2171  } else {
2172  // At least put the line number on MS inline asm blobs.
2173  auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2174  Result->setMetadata("srcloc",
2175  llvm::MDNode::get(getLLVMContext(),
2176  llvm::ConstantAsMetadata::get(Loc)));
2177  }
2178 
2179  if (getLangOpts().assumeFunctionsAreConvergent()) {
2180  // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2181  // convergent (meaning, they may call an intrinsically convergent op, such
2182  // as bar.sync, and so can't have certain optimizations applied around
2183  // them).
2184  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2185  llvm::Attribute::Convergent);
2186  }
2187 
2188  // Extract all of the register value results from the asm.
2189  std::vector<llvm::Value*> RegResults;
2190  if (ResultRegTypes.size() == 1) {
2191  RegResults.push_back(Result);
2192  } else {
2193  for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2194  llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2195  RegResults.push_back(Tmp);
2196  }
2197  }
2198 
2199  assert(RegResults.size() == ResultRegTypes.size());
2200  assert(RegResults.size() == ResultTruncRegTypes.size());
2201  assert(RegResults.size() == ResultRegDests.size());
2202  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2203  llvm::Value *Tmp = RegResults[i];
2204 
2205  // If the result type of the LLVM IR asm doesn't match the result type of
2206  // the expression, do the conversion.
2207  if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2208  llvm::Type *TruncTy = ResultTruncRegTypes[i];
2209 
2210  // Truncate the integer result to the right size, note that TruncTy can be
2211  // a pointer.
2212  if (TruncTy->isFloatingPointTy())
2213  Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2214  else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2215  uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2216  Tmp = Builder.CreateTrunc(Tmp,
2217  llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2218  Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2219  } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2220  uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2221  Tmp = Builder.CreatePtrToInt(Tmp,
2222  llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2223  Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2224  } else if (TruncTy->isIntegerTy()) {
2225  Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2226  } else if (TruncTy->isVectorTy()) {
2227  Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2228  }
2229  }
2230 
2231  EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2232  }
2233 }
2234 
2236  const RecordDecl *RD = S.getCapturedRecordDecl();
2237  QualType RecordTy = getContext().getRecordType(RD);
2238 
2239  // Initialize the captured struct.
2240  LValue SlotLV =
2241  MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2242 
2243  RecordDecl::field_iterator CurField = RD->field_begin();
2245  E = S.capture_init_end();
2246  I != E; ++I, ++CurField) {
2247  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2248  if (CurField->hasCapturedVLAType()) {
2249  auto VAT = CurField->getCapturedVLAType();
2250  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2251  } else {
2252  EmitInitializerForField(*CurField, LV, *I);
2253  }
2254  }
2255 
2256  return SlotLV;
2257 }
2258 
2259 /// Generate an outlined function for the body of a CapturedStmt, store any
2260 /// captured variables into the captured struct, and call the outlined function.
2261 llvm::Function *
2263  LValue CapStruct = InitCapturedStruct(S);
2264 
2265  // Emit the CapturedDecl
2266  CodeGenFunction CGF(CGM, true);
2267  CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2268  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2269  delete CGF.CapturedStmtInfo;
2270 
2271  // Emit call to the helper function.
2272  EmitCallOrInvoke(F, CapStruct.getPointer());
2273 
2274  return F;
2275 }
2276 
2278  LValue CapStruct = InitCapturedStruct(S);
2279  return CapStruct.getAddress();
2280 }
2281 
2282 /// Creates the outlined function for a CapturedStmt.
2283 llvm::Function *
2285  assert(CapturedStmtInfo &&
2286  "CapturedStmtInfo should be set when generating the captured function");
2287  const CapturedDecl *CD = S.getCapturedDecl();
2288  const RecordDecl *RD = S.getCapturedRecordDecl();
2289  SourceLocation Loc = S.getBeginLoc();
2290  assert(CD->hasBody() && "missing CapturedDecl body");
2291 
2292  // Build the argument list.
2293  ASTContext &Ctx = CGM.getContext();
2294  FunctionArgList Args;
2295  Args.append(CD->param_begin(), CD->param_end());
2296 
2297  // Create the function declaration.
2298  const CGFunctionInfo &FuncInfo =
2299  CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2300  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2301 
2302  llvm::Function *F =
2305  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2306  if (CD->isNothrow())
2307  F->addFnAttr(llvm::Attribute::NoUnwind);
2308 
2309  // Generate the function.
2310  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2311  CD->getBody()->getBeginLoc());
2312  // Set the context parameter in CapturedStmtInfo.
2313  Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2315 
2316  // Initialize variable-length arrays.
2318  Ctx.getTagDeclType(RD));
2319  for (auto *FD : RD->fields()) {
2320  if (FD->hasCapturedVLAType()) {
2321  auto *ExprArg =
2323  .getScalarVal();
2324  auto VAT = FD->getCapturedVLAType();
2325  VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2326  }
2327  }
2328 
2329  // If 'this' is captured, load it into CXXThisValue.
2332  LValue ThisLValue = EmitLValueForField(Base, FD);
2333  CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2334  }
2335 
2336  PGO.assignRegionCounters(GlobalDecl(CD), F);
2337  CapturedStmtInfo->EmitBody(*this, CD->getBody());
2339 
2340  return F;
2341 }
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:653
bool isAggregate() const
Definition: CGValue.h:54
const llvm::DataLayout & getDataLayout() const
Expr * getInc()
Definition: Stmt.h:1372
void EmitIndirectGotoStmt(const IndirectGotoStmt &S)
Definition: CGStmt.cpp:581
void EmitCoroutineBody(const CoroutineBodyStmt &S)
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents a GCC inline-assembly statement extension.
Definition: Stmt.h:1807
Stmt * body_back()
Definition: Stmt.h:673
const Stmt * getElse() const
Definition: Stmt.h:1071
body_iterator body_end()
Definition: Stmt.h:670
void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S)
unsigned getNumInputs() const
Definition: Stmt.h:1723
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
A (possibly-)qualified type.
Definition: Type.h:640
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument.
Definition: Stmt.h:2459
void EmitSEHLeaveStmt(const SEHLeaveStmt &S)
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
const CodeGenOptions & getCodeGenOpts() const
static CSFC_Result CollectStatementsForCase(const Stmt *S, const SwitchCase *Case, bool &FoundCase, SmallVectorImpl< const Stmt *> &ResultStmts)
Definition: CGStmt.cpp:1346
void EmitGotoStmt(const GotoStmt &S)
Definition: CGStmt.cpp:570
void EmitAttributedStmt(const AttributedStmt &S)
Definition: CGStmt.cpp:566
param_iterator param_begin() const
Retrieve an iterator pointing to the first parameter decl.
Definition: Decl.h:4095
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
Expr * getCond()
Definition: Stmt.h:1246
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
void EmitOMPDistributeDirective(const OMPDistributeDirective &S)
void EmitCXXTryStmt(const CXXTryStmt &S)
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:1031
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1075
static stable_iterator stable_end()
Create a stable reference to the bottom of the EH stack.
Definition: EHScopeStack.h:384
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1025
void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S)
unsigned getNumOutputs() const
Definition: Stmt.h:1701
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
bool isNothrow() const
Definition: Decl.cpp:4431
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
Represents an attribute applied to a statement.
Definition: Stmt.h:969
void EmitOMPOrderedDirective(const OMPOrderedDirective &S)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1898
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Address GenerateCapturedStmtArgument(const CapturedStmt &S)
Definition: CGStmt.cpp:2277
bool validateInputConstraint(MutableArrayRef< ConstraintInfo > OutputConstraints, ConstraintInfo &info) const
Definition: TargetInfo.cpp:623
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2403
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, ArrayRef< llvm::Value *> Args, const Twine &Name="")
Emits a call or invoke instruction to the given function, depending on the current state of the EH st...
Definition: CGCall.cpp:3752
LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field)
EmitLValueForFieldInitialization - Like EmitLValueForField, except that if the Field is a reference...
Definition: CGExpr.cpp:3963
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant, or if it does but contains a label, return false.
Represents a point when we exit a loop.
Definition: ProgramPoint.h:687
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "while" statement, if any.
Definition: Stmt.cpp:903
bool empty() const
Determines whether the exception-scopes stack is empty.
Definition: EHScopeStack.h:345
void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S)
Stmt * getSubStmt()
Definition: Stmt.h:882
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Represents a variable declaration or definition.
Definition: Decl.h:820
void EmitOMPCriticalDirective(const OMPCriticalDirective &S)
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:1615
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
static bool mightAddDeclToScope(const Stmt *S)
Determine if the given statement might introduce a declaration into the current scope, by being a (possibly-labelled) DeclStmt.
DiagnosticsEngine & getDiags() const
void EmitLabel(const LabelDecl *D)
EmitLabel - Emit the block for the given label.
Definition: CGStmt.cpp:511
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3269
void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S)
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "switch" statement, if any.
Definition: Stmt.cpp:869
void SimplifyForwardingBlocks(llvm::BasicBlock *BB)
SimplifyForwardingBlocks - If the given basic block is only a branch to another basic block...
Definition: CGStmt.cpp:423
The collection of all-type qualifiers we support.
Definition: Type.h:139
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
void EmitOMPTargetTeamsDistributeParallelForSimdDirective(const OMPTargetTeamsDistributeParallelForSimdDirective &S)
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const
isObviouslyBranchWithoutCleanups - Return true if a branch to the specified destination obviously has...
Definition: CGCleanup.cpp:1025
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:920
void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S)
JumpDest getJumpDestForLabel(const LabelDecl *S)
getBasicBlockForLabel - Return the LLVM basicblock that the specified label maps to.
Definition: CGStmt.cpp:500
Represents a struct/union/class.
Definition: Decl.h:3572
const TargetInfo & getTarget() const
void EmitOMPSimdDirective(const OMPSimdDirective &S)
Stmt * getBody()
Definition: Stmt.h:1302
void setScopeDepth(EHScopeStack::stable_iterator depth)
Address getAddress() const
Definition: CGValue.h:327
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:153
StringRef getNormalizedGCCRegisterName(StringRef Name, bool ReturnCanonical=false) const
Returns the "normalized" GCC register name.
Definition: TargetInfo.cpp:485
RValue EmitReferenceBindingToExpr(const Expr *E)
Emits a reference binding to the passed in expression.
Definition: CGExpr.cpp:589
field_range fields() const
Definition: Decl.h:3763
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:280
Represents a member of a struct/union/class.
Definition: Decl.h:2554
ImplicitParamDecl * getContextParam() const
Retrieve the parameter containing captured variables.
Definition: Decl.h:4080
void rescopeLabels()
Change the cleanup scope of the labels in this lexical scope to match the scope of the enclosing cont...
Definition: CGStmt.cpp:539
static bool FindCaseStatementsForValue(const SwitchStmt &S, const llvm::APSInt &ConstantCondValue, SmallVectorImpl< const Stmt *> &ResultStmts, ASTContext &C, const SwitchCase *&ResultCase)
FindCaseStatementsForValue - Find the case statement being jumped to and then invoke CollectStatement...
Definition: CGStmt.cpp:1501
const Expr * getRetValue() const
Definition: Stmt.cpp:930
bool isReferenceType() const
Definition: Type.h:6161
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:514
void EmitForStmt(const ForStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:829
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
void EmitOMPDistributeParallelForSimdDirective(const OMPDistributeParallelForSimdDirective &S)
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init)
Definition: CGClass.cpp:666
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1459
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4428
static bool hasScalarEvaluationKind(QualType T)
bool hasMatchingInput() const
Return true if this output operand has a matching (tied) input operand.
Definition: TargetInfo.h:827
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: Stmt.h:2446
void EmitOMPTargetTeamsDistributeSimdDirective(const OMPTargetTeamsDistributeSimdDirective &S)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1338
void pop()
End the current loop.
Definition: CGLoopInfo.cpp:325
LabelDecl * getDecl() const
Definition: Stmt.h:937
SourceLocation getLBracLoc() const
Definition: Stmt.h:735
void EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S)
RAII for correct setting/restoring of CapturedStmtInfo.
const Expr * getOutputExpr(unsigned i) const
Definition: Stmt.cpp:372
param_iterator param_end() const
Retrieve an iterator one past the last parameter decl.
Definition: Decl.h:4097
Stmt * getBody()
Definition: Stmt.h:1373
void EmitOMPTeamsDistributeParallelForSimdDirective(const OMPTeamsDistributeParallelForSimdDirective &S)
void EmitContinueStmt(const ContinueStmt &S)
Definition: CGStmt.cpp:1128
void EmitOMPTargetDirective(const OMPTargetDirective &S)
bool hasNormalCleanups() const
Determines whether there are any normal cleanups on the stack.
Definition: EHScopeStack.h:350
Stmt * getInit()
Definition: Stmt.h:1352
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:142
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S)
void EmitSwitchStmt(const SwitchStmt &S)
Definition: CGStmt.cpp:1554
If a crash happens while one of these objects are live, the message is printed out along with the spe...
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
field_iterator field_begin() const
Definition: Decl.cpp:4107
Expr * getCond()
Definition: Stmt.h:1371
void EmitOMPParallelDirective(const OMPParallelDirective &S)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:182
void assignRegionCounters(GlobalDecl GD, llvm::Function *Fn)
Assign counters to regions and configure them for PGO of a given function.
Definition: CodeGenPGO.cpp:753
llvm::Function * EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K)
Generate an outlined function for the body of a CapturedStmt, store any captured variables into the c...
Definition: CGStmt.cpp:2262
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
void EmitDefaultStmt(const DefaultStmt &S)
Definition: CGStmt.cpp:1304
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void EmitCaseStmtRange(const CaseStmt &S)
EmitCaseStmtRange - If case statement range is not too big then add multiple cases to switch instruct...
Definition: CGStmt.cpp:1143
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4015
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "for" statement, if any.
Definition: Stmt.cpp:841
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:71
virtual bool isValidGCCRegisterName(StringRef Name) const
Returns whether the passed in string is a valid register name according to GCC.
Definition: TargetInfo.cpp:440
Stmt * getInit()
Definition: Stmt.h:1064
LValue EmitLValueForField(LValue Base, const FieldDecl *Field)
Definition: CGExpr.cpp:3835
bool isValid() const
Definition: Address.h:36
StringRef getString() const
Definition: Expr.h:1681
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:637
void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S)
const TargetCodeGenInfo & getTargetCodeGenInfo()
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2664
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:223
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
bool isConstexpr() const
Definition: Stmt.h:1083
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
std::string generateAsmString(const ASTContext &C) const
Assemble final IR asm string.
Definition: Stmt.cpp:356
Exposes information about the current target.
Definition: TargetInfo.h:54
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:640
Expr - This represents one expression.
Definition: Expr.h:106
DeclStmt * getEndStmt()
Definition: StmtCXX.h:172
static Address invalid()
Definition: Address.h:35
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
void EmitCaseStmt(const CaseStmt &S)
Definition: CGStmt.cpp:1221
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:66
void EmitOMPTeamsDirective(const OMPTeamsDirective &S)
const Stmt * getThen() const
Definition: Stmt.h:1069
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
Definition: CGStmt.cpp:372
LabelDecl * getConstantTarget()
getConstantTarget - Returns the fixed target of this indirect goto, if one exists.
Definition: Stmt.cpp:923
Stmt * getBody()
Definition: Stmt.h:1249
void EmitSEHTryStmt(const SEHTryStmt &S)
Expr * getRHS()
Definition: Stmt.h:825
static llvm::MDNode * getAsmSrcLocInfo(const StringLiteral *Str, CodeGenFunction &CGF)
getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline asm call instruction...
Definition: CGStmt.cpp:1846
llvm::LLVMContext & getLLVMContext()
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
Definition: CGCall.cpp:3682
llvm::BasicBlock * GetIndirectGotoBlock()
QualType getType() const
Definition: Expr.h:128
void EmitOMPMasterDirective(const OMPMasterDirective &S)
LabelDecl * getLabel() const
Definition: Stmt.h:1429
llvm::Function * GenerateCapturedStmtFunction(const CapturedStmt &S)
Creates the outlined function for a CapturedStmt.
Definition: CGStmt.cpp:2284
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1588
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
QualType getRecordType(const RecordDecl *Decl) const
void ResolveBranchFixups(llvm::BasicBlock *Target)
Definition: CGCleanup.cpp:385
SourceLocation getEnd() const
void EmitOMPBarrierDirective(const OMPBarrierDirective &S)
StringRef getClobber(unsigned i) const
Definition: Stmt.cpp:396
ValueDecl * getDecl()
Definition: Expr.h:1065
const LangOptions & getLangOpts() const
ASTContext & getContext() const
Stmt *const * const_body_iterator
Definition: Stmt.h:682
llvm::StoreInst * CreateFlagStore(bool Value, llvm::Value *Addr)
Emit a store to an i1 flag variable.
Definition: CGBuilder.h:136
const SourceManager & SM
Definition: Format.cpp:1475
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D)
Emit simple code for OpenMP directives in Simd-only mode.
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1281
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1644
void EmitDeclStmt(const DeclStmt &S)
Definition: CGStmt.cpp:1106
virtual bool hasBody() const
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: DeclBase.h:998
The l-value was considered opaque, so the alignment was determined from a type.
void EmitOMPFlushDirective(const OMPFlushDirective &S)
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:142
void disableSanitizerForGlobal(llvm::GlobalVariable *GV)
StringRef getInputConstraint(unsigned i) const
getInputConstraint - Return the specified input constraint.
Definition: Stmt.cpp:380
This captures a statement into a function.
Definition: Stmt.h:2285
StringRef getOutputConstraint(unsigned i) const
getOutputConstraint - Return the constraint string for the specified output operand.
Definition: Stmt.cpp:364
Encodes a location in the source.
void EmitDoStmt(const DoStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:767
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
void EmitOMPForDirective(const OMPForDirective &S)
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Definition: CGExpr.cpp:164
AggValueSlot::Overlap_t overlapForReturnValue()
Determine whether a return value slot may overlap some other object.
const SwitchCase * getSwitchCaseList() const
Definition: Stmt.h:1157
Expr * getLHS()
Definition: Stmt.h:824
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1475
ArrayRef< const Attr * > getAttrs() const
Definition: Stmt.h:1003
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:509
Represents the declaration of a label.
Definition: Decl.h:468
An aggregate value slot.
Definition: CGValue.h:437
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S)
void EmitOMPTargetParallelForSimdDirective(const OMPTargetParallelForSimdDirective &S)
bool validateOutputConstraint(ConstraintInfo &Info) const
Definition: TargetInfo.cpp:526
void EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S)
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1781
void EmitOMPSingleDirective(const OMPSingleDirective &S)
An aligned address.
Definition: Address.h:25
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
void EmitOMPForSimdDirective(const OMPForSimdDirective &S)
void EmitOMPAtomicDirective(const OMPAtomicDirective &S)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
void EmitOMPSectionDirective(const OMPSectionDirective &S)
void EmitOMPSectionsDirective(const OMPSectionsDirective &S)
void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S)
const CGFunctionInfo * CurFnInfo
void enterFullExpression(const ExprWithCleanups *E)
void EmitDecl(const Decl &D)
EmitDecl - Emit a declaration.
Definition: CGDecl.cpp:41
const TargetCodeGenInfo & getTargetHooks() const
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
void EmitWhileStmt(const WhileStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:679
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:356
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:59
LabelStmt * getStmt() const
Definition: Decl.h:492
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S)
Definition: CGObjC.cpp:1772
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn&#39;t support the specified stmt yet.
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "if" statement, if any.
Definition: Stmt.cpp:806
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S)
Dataflow Directional Tag Classes.
bool isVolatile() const
Definition: Stmt.h:1680
void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S)
LValue InitCapturedStruct(const CapturedStmt &S)
Definition: CGStmt.cpp:2235
void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S)
void EmitOMPParallelForDirective(const OMPParallelForDirective &S)
CSFC_Result
CollectStatementsForCase - Given the body of a &#39;switch&#39; statement and a constant value that is being ...
Definition: CGStmt.cpp:1345
void push(llvm::BasicBlock *Header, const llvm::DebugLoc &StartLoc, const llvm::DebugLoc &EndLoc)
Begin a new structured loop.
void EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S)
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:70
StmtClass getStmtClass() const
Definition: Stmt.h:391
void EmitOMPTeamsDistributeParallelForDirective(const OMPTeamsDistributeParallelForDirective &S)
void EmitOMPCancelDirective(const OMPCancelDirective &S)
bool hasTiedOperand() const
Return true if this input operand is a matching constraint that ties it to an output operand...
Definition: TargetInfo.h:834
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:2481
llvm::Module & getModule() const
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S)
Definition: CGObjC.cpp:1768
body_iterator body_begin()
Definition: Stmt.h:669
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2034
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1772
void EmitCoreturnStmt(const CoreturnStmt &S)
const Stmt * getBody() const
Definition: Stmt.h:1156
JumpDest ReturnBlock
ReturnBlock - Unified return block.
virtual StringRef getHelperName() const
Get the name of the capture helper.
static bool hasAggregateEvaluationKind(QualType T)
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1117
API for captured statement code generation.
static std::string SimplifyConstraint(const char *Constraint, const TargetInfo &Target, SmallVectorImpl< TargetInfo::ConstraintInfo > *OutCons=nullptr)
Definition: CGStmt.cpp:1703
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S)
When instrumenting to collect profile data, the counts for some blocks such as switch cases need to n...
bool resolveSymbolicName(const char *&Name, ArrayRef< ConstraintInfo > OutputConstraints, unsigned &Index) const
Definition: TargetInfo.cpp:600
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location)
Converts Location to a DebugLoc, if debug information is enabled.
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
T * getAttr() const
Definition: DeclBase.h:540
void EmitAsmStmt(const AsmStmt &S)
Definition: CGStmt.cpp:1873
static std::string AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, const TargetInfo &Target, CodeGenModule &CGM, const AsmStmt &Stmt, const bool EarlyClobber)
AddVariableConstraints - Look at AsmExpr and if it is a variable declared as using a particular regis...
Definition: CGStmt.cpp:1756
Stmt * getInit()
Definition: Stmt.h:1152
decl_range decls()
Definition: Stmt.h:566
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
const Expr * getInputExpr(unsigned i) const
Definition: Stmt.cpp:388
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:32
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S)
unsigned getNumClobbers() const
Definition: Stmt.h:1733
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2074
SourceManager & getSourceManager()
Definition: ASTContext.h:670
void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S)
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:168
void EmitStopPoint(const Stmt *S)
EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
Definition: CGStmt.cpp:38
SourceLocation getAsmLoc() const
Definition: Stmt.h:1674
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1417
Expr * getTarget()
Definition: Stmt.h:1479
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:765
CapturedDecl * getCapturedDecl()
Retrieve the outlined function declaration.
Definition: Stmt.cpp:1102
void setCurrentStmt(const Stmt *S)
If the execution count for the current statement is known, record that as the current count...
Definition: CodeGenPGO.h:75
Expr * getCond()
Definition: Stmt.h:1299
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
void EmitOMPTargetTeamsDistributeDirective(const OMPTargetTeamsDistributeDirective &S)
void EmitIfStmt(const IfStmt &S)
Definition: CGStmt.cpp:602
ContinueStmt - This represents a continue.
Definition: Stmt.h:1510
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:465
bool isNRVOVariable() const
Determine whether this local variable can be used with the named return value optimization (NRVO)...
Definition: Decl.h:1330
bool isVoidType() const
Definition: Type.h:6376
void EmitReturnStmt(const ReturnStmt &S)
EmitReturnStmt - Note that due to GCC extensions, this can have an operand if the function returns vo...
Definition: CGStmt.cpp:1021
llvm::Type * ConvertType(QualType T)
virtual llvm::Type * adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type *Ty) const
Corrects the low-level LLVM type for a given constraint and "usual" type.
Definition: TargetInfo.h:128
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:1217
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1232
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
void EmitLabelStmt(const LabelStmt &S)
Definition: CGStmt.cpp:561
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:268
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1744
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1633
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2406
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
virtual void addReturnRegisterOutputs(CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, std::string &Constraints, std::vector< llvm::Type *> &ResultRegTypes, std::vector< llvm::Type *> &ResultTruncRegTypes, std::vector< CodeGen::LValue > &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const
Adds constraints and types for result registers.
Definition: TargetInfo.h:135
CGCapturedStmtInfo * CapturedStmtInfo
__DEVICE__ int max(int __a, int __b)
void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S)
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
Definition: CGExprAgg.cpp:1818
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:980
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool EmitSimpleStmt(const Stmt *S)
EmitSimpleStmt - Try to emit a "simple" statement which does not necessarily require an insertion poi...
Definition: CGStmt.cpp:349
BreakStmt - This represents a break.
Definition: Stmt.h:1544
void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S)
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1050
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:706
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:2774
Stmt * getSubStmt()
Definition: Stmt.h:940
void EmitCXXForRangeStmt(const CXXForRangeStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:928
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition: CGStmt.cpp:384
void EmitOMPDistributeParallelForDirective(const OMPDistributeParallelForDirective &S)
DeclStmt * getLoopVarStmt()
Definition: StmtCXX.h:175
const Expr * getCond() const
Definition: Stmt.h:1067
A trivial tuple used to represent a source range.
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S)
Definition: CGObjC.cpp:1764
LValue - This represents an lvalue references.
Definition: CGValue.h:167
SanitizerMetadata * getSanitizerMetadata()
void EmitBlockAfterUses(llvm::BasicBlock *BB)
EmitBlockAfterUses - Emit the given block somewhere hopefully near its uses, and leave the insertion ...
Definition: CGStmt.cpp:482
const LangOptions & getLangOpts() const
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:169
void EmitBreakStmt(const BreakStmt &S)
Definition: CGStmt.cpp:1116
const Expr * getCond() const
Definition: Stmt.h:1155
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S)
Definition: CGObjC.cpp:3164
static bool containsBreak(const Stmt *S)
containsBreak - Return true if the statement contains a break out of it.
SourceLocation getBegin() const
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument.
Definition: Stmt.h:2469
llvm::Value * getPointer() const
Definition: CGValue.h:323
This class handles loading and caching of source files into memory.
Stmt * getSubStmt()
Definition: Stmt.h:1007
bool haveRegionCounts() const
Whether or not we have PGO region data for the current function.
Definition: CodeGenPGO.h:52
Defines enum values for all the target-independent builtin functions.
void EmitOMPTaskDirective(const OMPTaskDirective &S)
SourceLocation getBodyRBrace() const
getBodyRBrace - Gets the right brace of the body, if a body exists.
Definition: DeclBase.cpp:882
CapturedRegionKind getCapturedRegionKind() const
Retrieve the captured region kind.
Definition: Stmt.cpp:1117
bool isScalar() const
Definition: CGValue.h:52
Attr - This represents one attribute.
Definition: Attr.h:43
SourceLocation getLocation() const
Definition: DeclBase.h:425
virtual std::string convertConstraint(const char *&Constraint) const
Definition: TargetInfo.h:932
void EmitOMPTargetTeamsDistributeParallelForDirective(const OMPTargetTeamsDistributeParallelForDirective &S)
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:1622
virtual const char * getClobbers() const =0
Returns a string of target-specific clobbers, in LLVM format.
Stmt * getSubStmt()
Definition: Stmt.h:826
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition: CGCall.cpp:1544