19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/MDBuilder.h"
22#include "llvm/IR/Metadata.h"
47class ComplexExprEmitter
48 :
public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
53 bool FPHasBeenPromoted;
56 ComplexExprEmitter(CodeGenFunction &cgf,
bool ir =
false,
bool ii =
false)
57 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii),
58 FPHasBeenPromoted(
false) {}
64 bool TestAndClearIgnoreReal() {
69 bool TestAndClearIgnoreImag() {
82 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
86 void EmitStoreOfComplex(
ComplexPairTy Val, LValue LV,
bool isInit);
90 QualType DestType, SourceLocation Loc);
92 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
93 QualType DestType, SourceLocation Loc);
100 ApplyDebugLocation DL(CGF, E);
101 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
106 llvm_unreachable(
"Stmt can't have complex result type!");
110 if (llvm::Constant *
Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
112 Result->getAggregateElement(1U));
116 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
117 return Visit(
GE->getResultExpr());
119 ComplexPairTy VisitImaginaryLiteral(
const ImaginaryLiteral *IL);
121 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
134 ComplexPairTy emitConstant(
const CodeGenFunction::ConstantEmission &Constant,
136 assert(Constant &&
"not a constant");
141 llvm::Constant *pair = Constant.
getValue();
143 pair->getAggregateElement(1U));
149 return emitConstant(Constant, E);
150 return EmitLoadOfLValue(E);
153 return EmitLoadOfLValue(E);
158 ComplexPairTy VisitArraySubscriptExpr(Expr *E) {
return EmitLoadOfLValue(E); }
160 if (CodeGenFunction::ConstantEmission Constant =
163 return emitConstant(Constant, ME);
165 return EmitLoadOfLValue(ME);
185 return EmitLoadOfLValue(E);
189 if (
const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
192 return EmitLoadOfLValue(E);
200 bool isInc,
bool isPre) {
205 return VisitPrePostIncDec(E,
false,
false);
208 return VisitPrePostIncDec(E,
true,
false);
211 return VisitPrePostIncDec(E,
false,
true);
214 return VisitPrePostIncDec(E,
true,
true);
216 ComplexPairTy VisitUnaryDeref(
const Expr *E) {
return EmitLoadOfLValue(E); }
219 QualType PromotionType = QualType());
220 ComplexPairTy VisitPlus(
const UnaryOperator *E, QualType PromotionType);
222 QualType PromotionType = QualType());
223 ComplexPairTy VisitMinus(
const UnaryOperator *E, QualType PromotionType);
229 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
230 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
233 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
234 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
238 CodeGenFunction::RunCleanupsScope Scope(CGF);
242 Scope.ForceCleanup({&Vals.first, &Vals.second});
245 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
247 QualType Elem = E->
getType()->
castAs<ComplexType>()->getElementType();
248 llvm::Constant *
Null = llvm::Constant::getNullValue(CGF.
ConvertType(Elem));
251 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
253 QualType Elem = E->
getType()->
castAs<ComplexType>()->getElementType();
254 llvm::Constant *
Null =
255 llvm::Constant::getNullValue(CGF.
ConvertType(Elem));
263 FPOptions FPFeatures;
266 BinOpInfo EmitBinOps(
const BinaryOperator *E,
267 QualType PromotionTy = QualType());
268 ComplexPairTy EmitPromoted(
const Expr *E, QualType PromotionTy);
269 ComplexPairTy EmitPromotedComplexOperand(
const Expr *E, QualType PromotionTy);
270 LValue EmitCompoundAssignLValue(
const CompoundAssignOperator *E,
274 ComplexPairTy EmitCompoundAssign(
const CompoundAssignOperator *E,
276 (
const BinOpInfo &));
282 ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *
C,
284 ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B,
285 llvm::Value *
C, llvm::Value *D);
288 const BinOpInfo &Op);
290 QualType HigherPrecisionTypeForComplexArithmetic(QualType ElementType) {
292 const QualType HigherElementType =
294 const llvm::fltSemantics &ElementTypeSemantics =
296 const llvm::fltSemantics &HigherElementTypeSemantics =
305 if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 <=
306 llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) {
311 FPHasBeenPromoted =
true;
320 QualType getPromotionType(FPOptionsOverride Features, QualType Ty,
321 bool IsComplexDivisor) {
322 if (
auto *CT = Ty->
getAs<ComplexType>()) {
323 QualType ElementType = CT->getElementType();
325 bool IsComplexRangePromoted = CGF.
getLangOpts().getComplexRange() ==
326 LangOptions::ComplexRangeKind::CX_Promoted;
327 bool HasNoComplexRangeOverride = !Features.hasComplexRangeOverride();
328 bool HasMatchingComplexRange = Features.hasComplexRangeOverride() &&
329 Features.getComplexRangeOverride() ==
332 if (IsComplexDivisor && IsFloatingType && IsComplexRangePromoted &&
333 (HasNoComplexRangeOverride || HasMatchingComplexRange))
334 return HigherPrecisionTypeForComplexArithmetic(ElementType);
343#define HANDLEBINOP(OP) \
344 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \
345 QualType promotionTy = \
346 getPromotionType(E->getStoredFPFeaturesOrDefault(), E->getType(), \
347 (E->getOpcode() == BinaryOperatorKind::BO_Div && \
348 E->getRHS()->getType()->isAnyComplexType())); \
349 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \
350 if (!promotionTy.isNull()) \
351 result = CGF.EmitUnPromotedValue(result, E->getType()); \
366 ComplexPairTy VisitBinAddAssign(
const CompoundAssignOperator *E) {
368 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
370 ComplexPairTy VisitBinSubAssign(
const CompoundAssignOperator *E) {
372 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
374 ComplexPairTy VisitBinMulAssign(
const CompoundAssignOperator *E) {
376 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
378 ComplexPairTy VisitBinDivAssign(
const CompoundAssignOperator *E) {
380 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
388 LValue EmitBinAssignLValue(
const BinaryOperator *E,
395 VisitAbstractConditionalOperator(
const AbstractConditionalOperator *CO);
400 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
401 return EmitLoadOfLValue(E);
422 return Builder.CreateStructGEP(addr, 0, addr.
getName() +
".realp");
427 return Builder.CreateStructGEP(addr, 1, addr.
getName() +
".imagp");
434 assert(lvalue.
isSimple() &&
"non-simple complex l-value?");
441 llvm::Value *Real =
nullptr, *Imag =
nullptr;
443 if (!IgnoreReal || isVolatile) {
445 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.
getName() +
".real");
448 if (!IgnoreImag || isVolatile) {
450 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.
getName() +
".imag");
460 if (lvalue.getType()->isAtomicType() ||
464 Address Ptr = lvalue.getAddress();
469 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
472 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
486 llvm::Value *U = llvm::PoisonValue::get(EltTy);
491VisitImaginaryLiteral(
const ImaginaryLiteral *IL) {
493 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
497ComplexPairTy ComplexExprEmitter::VisitCallExpr(
const CallExpr *E) {
499 return EmitLoadOfLValue(E);
504ComplexPairTy ComplexExprEmitter::VisitStmtExpr(
const StmtExpr *E) {
507 assert(RetAlloca.
isValid() &&
"Expected complex return value");
516 SourceLocation Loc) {
518 SrcType = SrcType->
castAs<ComplexType>()->getElementType();
519 DestType = DestType->
castAs<ComplexType>()->getElementType();
531ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
534 SourceLocation Loc) {
536 DestType = DestType->
castAs<ComplexType>()->getElementType();
540 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
546 case CK_Dependent: llvm_unreachable(
"dependent cast kind in IR gen!");
550 case CK_AtomicToNonAtomic:
551 case CK_NonAtomicToAtomic:
553 case CK_LValueToRValue:
554 case CK_UserDefinedConversion:
557 case CK_LValueBitCast: {
563 case CK_LValueToRValueBitCast: {
569 return EmitLoadOfLValue(DestLV, Op->
getExprLoc());
573 case CK_BaseToDerived:
574 case CK_DerivedToBase:
575 case CK_UncheckedDerivedToBase:
578 case CK_ArrayToPointerDecay:
579 case CK_FunctionToPointerDecay:
580 case CK_NullToPointer:
581 case CK_NullToMemberPointer:
582 case CK_BaseToDerivedMemberPointer:
583 case CK_DerivedToBaseMemberPointer:
584 case CK_MemberPointerToBoolean:
585 case CK_ReinterpretMemberPointer:
586 case CK_ConstructorConversion:
587 case CK_IntegralToPointer:
588 case CK_PointerToIntegral:
589 case CK_PointerToBoolean:
592 case CK_IntegralCast:
593 case CK_BooleanToSignedIntegral:
594 case CK_IntegralToBoolean:
595 case CK_IntegralToFloating:
596 case CK_FloatingToIntegral:
597 case CK_FloatingToBoolean:
598 case CK_FloatingCast:
599 case CK_CPointerToObjCPointerCast:
600 case CK_BlockPointerToObjCPointerCast:
601 case CK_AnyPointerToBlockPointerCast:
602 case CK_ObjCObjectLValueCast:
603 case CK_FloatingComplexToReal:
604 case CK_FloatingComplexToBoolean:
605 case CK_IntegralComplexToReal:
606 case CK_IntegralComplexToBoolean:
607 case CK_ARCProduceObject:
608 case CK_ARCConsumeObject:
609 case CK_ARCReclaimReturnedObject:
610 case CK_ARCExtendBlockObject:
611 case CK_CopyAndAutoreleaseBlockObject:
612 case CK_BuiltinFnToFnPtr:
613 case CK_ZeroToOCLOpaqueType:
614 case CK_AddressSpaceConversion:
615 case CK_IntToOCLSampler:
616 case CK_FloatingToFixedPoint:
617 case CK_FixedPointToFloating:
618 case CK_FixedPointCast:
619 case CK_FixedPointToBoolean:
620 case CK_FixedPointToIntegral:
621 case CK_IntegralToFixedPoint:
623 case CK_HLSLVectorTruncation:
624 case CK_HLSLArrayRValue:
625 case CK_HLSLElementwiseCast:
626 case CK_HLSLAggregateSplatCast:
627 llvm_unreachable(
"invalid cast kind for complex value");
629 case CK_FloatingRealToComplex:
630 case CK_IntegralRealToComplex: {
636 case CK_FloatingComplexCast:
637 case CK_FloatingComplexToIntegralComplex:
638 case CK_IntegralComplexCast:
639 case CK_IntegralComplexToFloatingComplex: {
641 return EmitComplexToComplexCast(Visit(Op), Op->
getType(), DestTy,
646 llvm_unreachable(
"unknown cast resulting in complex value");
649ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(
const UnaryOperator *E,
650 QualType PromotionType) {
651 QualType promotionTy =
658 if (!promotionTy.
isNull())
663ComplexPairTy ComplexExprEmitter::VisitPlus(
const UnaryOperator *E,
664 QualType PromotionType) {
665 TestAndClearIgnoreReal();
666 TestAndClearIgnoreImag();
667 if (!PromotionType.
isNull())
672ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(
const UnaryOperator *E,
673 QualType PromotionType) {
674 QualType promotionTy =
681 if (!promotionTy.
isNull())
685ComplexPairTy ComplexExprEmitter::VisitMinus(
const UnaryOperator *E,
686 QualType PromotionType) {
687 TestAndClearIgnoreReal();
688 TestAndClearIgnoreImag();
690 if (!PromotionType.
isNull())
695 llvm::Value *ResR, *ResI;
696 if (Op.first->getType()->isFloatingPointTy()) {
697 ResR = Builder.CreateFNeg(Op.first,
"neg.r");
698 ResI = Builder.CreateFNeg(Op.second,
"neg.i");
700 ResR = Builder.CreateNeg(Op.first,
"neg.r");
701 ResI = Builder.CreateNeg(Op.second,
"neg.i");
706ComplexPairTy ComplexExprEmitter::VisitUnaryNot(
const UnaryOperator *E) {
707 TestAndClearIgnoreReal();
708 TestAndClearIgnoreImag();
712 if (Op.second->getType()->isFloatingPointTy())
713 ResI = Builder.CreateFNeg(Op.second,
"conj.i");
715 ResI = Builder.CreateNeg(Op.second,
"conj.i");
720ComplexPairTy ComplexExprEmitter::EmitBinAdd(
const BinOpInfo &Op) {
721 llvm::Value *ResR, *ResI;
723 if (Op.LHS.first->getType()->isFloatingPointTy()) {
725 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first,
"add.r");
726 if (Op.LHS.second && Op.RHS.second)
727 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second,
"add.i");
729 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
730 assert(ResI &&
"Only one operand may be real!");
732 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first,
"add.r");
733 assert(Op.LHS.second && Op.RHS.second &&
734 "Both operands of integer complex operators must be complex!");
735 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second,
"add.i");
740ComplexPairTy ComplexExprEmitter::EmitBinSub(
const BinOpInfo &Op) {
741 llvm::Value *ResR, *ResI;
742 if (Op.LHS.first->getType()->isFloatingPointTy()) {
744 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first,
"sub.r");
745 if (Op.LHS.second && Op.RHS.second)
746 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second,
"sub.i");
748 ResI = Op.LHS.second ? Op.LHS.second
749 : Builder.CreateFNeg(Op.RHS.second,
"sub.i");
750 assert(ResI &&
"Only one operand may be real!");
752 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first,
"sub.r");
753 assert(Op.LHS.second && Op.RHS.second &&
754 "Both operands of integer complex operators must be complex!");
755 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second,
"sub.i");
761ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
762 const BinOpInfo &Op) {
765 Op.Ty->castAs<ComplexType>()->getElementType());
767 Op.Ty->castAs<ComplexType>()->getElementType());
769 Op.Ty->castAs<ComplexType>()->getElementType());
771 Op.Ty->castAs<ComplexType>()->getElementType());
779 FunctionProtoType::ExtProtoInfo EPI;
782 SmallVector<QualType, 4> ArgsQTys(
783 4, Op.Ty->castAs<ComplexType>()->getElementType());
790 FTy, LibCallName, llvm::AttributeList(),
true);
793 llvm::CallBase *
Call;
802 switch (Ty->getTypeID()) {
804 llvm_unreachable(
"Unsupported floating point type!");
805 case llvm::Type::HalfTyID:
807 case llvm::Type::FloatTyID:
809 case llvm::Type::DoubleTyID:
811 case llvm::Type::PPC_FP128TyID:
813 case llvm::Type::X86_FP80TyID:
815 case llvm::Type::FP128TyID:
822ComplexPairTy ComplexExprEmitter::EmitBinMul(
const BinOpInfo &Op) {
827 if (Op.LHS.first->getType()->isFloatingPointTy()) {
835 if (Op.LHS.second && Op.RHS.second) {
846 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first,
"mul_ac");
847 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second,
"mul_bd");
848 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second,
"mul_ad");
849 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first,
"mul_bc");
853 ResR = Builder.CreateFSub(AC, BD,
"mul_r");
854 ResI = Builder.CreateFAdd(AD, BC,
"mul_i");
863 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR,
"isnan_cmp");
866 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
867 llvm::BasicBlock *OrigBB = Branch->getParent();
870 llvm::MDNode *BrWeight = MDHelper.createUnlikelyBranchWeights();
871 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
875 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI,
"isnan_cmp");
877 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
878 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
882 Value *LibCallR, *LibCallI;
883 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
885 Builder.CreateBr(ContBB);
890 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->
getType(), 3,
"real_mul_phi");
891 RealPHI->addIncoming(ResR, OrigBB);
892 RealPHI->addIncoming(ResR, INaNBB);
893 RealPHI->addIncoming(LibCallR, LibCallBB);
894 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->
getType(), 3,
"imag_mul_phi");
895 ImagPHI->addIncoming(ResI, OrigBB);
896 ImagPHI->addIncoming(ResI, INaNBB);
897 ImagPHI->addIncoming(LibCallI, LibCallBB);
900 assert((Op.LHS.second || Op.RHS.second) &&
901 "At least one operand must be complex!");
906 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first,
"mul.rl");
909 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first,
"mul.il")
910 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second,
"mul.ir");
912 assert(Op.LHS.second && Op.RHS.second &&
913 "Both operands of integer complex operators must be complex!");
914 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first,
"mul.rl");
915 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second,
"mul.rr");
916 ResR = Builder.CreateSub(ResRl, ResRr,
"mul.r");
918 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first,
"mul.il");
919 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second,
"mul.ir");
920 ResI = Builder.CreateAdd(ResIl, ResIr,
"mul.i");
925ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr,
930 llvm::Value *DSTr, *DSTi;
932 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr);
933 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi);
934 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD);
936 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr);
937 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi);
938 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD);
940 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr);
941 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi);
942 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD);
944 DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
945 DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
951 llvm::Function *
Func =
959ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr,
970 llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi,
"abs_cmp");
972 llvm::BasicBlock *TrueBB =
974 llvm::BasicBlock *FalseBB =
977 Builder.CreateCondBr(IsR, TrueBB, FalseBB);
985 llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr);
987 llvm::Value *RD = Builder.CreateFMul(DdC, RHSi);
988 llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD);
990 llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC);
991 llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3);
992 llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD);
994 llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC);
995 llvm::Value *T6 = Builder.CreateFSub(LHSi, T5);
996 llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD);
997 Builder.CreateBr(ContBB);
1005 llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi);
1007 llvm::Value *RC = Builder.CreateFMul(CdD, RHSr);
1008 llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC);
1010 llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD);
1011 llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi);
1012 llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC);
1014 llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD);
1015 llvm::Value *T10 = Builder.CreateFSub(T9, LHSr);
1016 llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC);
1017 Builder.CreateBr(ContBB);
1021 llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2);
1022 VALr->addIncoming(DSTTr, TrueBB);
1023 VALr->addIncoming(DSTFr, FalseBB);
1024 llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2);
1025 VALi->addIncoming(DSTTi, TrueBB);
1026 VALi->addIncoming(DSTFi, FalseBB);
1032ComplexPairTy ComplexExprEmitter::EmitBinDiv(
const BinOpInfo &Op) {
1033 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
1034 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
1035 llvm::Value *DSTr, *DSTi;
1036 if (LHSr->getType()->isFloatingPointTy()) {
1039 assert(LHSi &&
"Can have at most one non-complex operand!");
1041 DSTr = Builder.CreateFDiv(LHSr, RHSr);
1042 DSTi = Builder.CreateFDiv(LHSi, RHSr);
1045 llvm::Value *OrigLHSi = LHSi;
1047 LHSi = llvm::Constant::getNullValue(RHSi->getType());
1050 !FPHasBeenPromoted))
1051 return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi);
1054 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1063 BinOpInfo LibCallOp = Op;
1066 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
1068 switch (LHSr->getType()->getTypeID()) {
1070 llvm_unreachable(
"Unsupported floating point type!");
1071 case llvm::Type::HalfTyID:
1072 return EmitComplexBinOpLibCall(
"__divhc3", LibCallOp);
1073 case llvm::Type::FloatTyID:
1074 return EmitComplexBinOpLibCall(
"__divsc3", LibCallOp);
1075 case llvm::Type::DoubleTyID:
1076 return EmitComplexBinOpLibCall(
"__divdc3", LibCallOp);
1077 case llvm::Type::PPC_FP128TyID:
1078 return EmitComplexBinOpLibCall(
"__divtc3", LibCallOp);
1079 case llvm::Type::X86_FP80TyID:
1080 return EmitComplexBinOpLibCall(
"__divxc3", LibCallOp);
1081 case llvm::Type::FP128TyID:
1082 return EmitComplexBinOpLibCall(
"__divtc3", LibCallOp);
1085 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1088 assert(Op.LHS.second && Op.RHS.second &&
1089 "Both operands of integer complex operators must be complex!");
1091 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr);
1092 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi);
1093 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2);
1095 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr);
1096 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi);
1097 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5);
1099 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr);
1100 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi);
1101 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8);
1103 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
1104 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
1105 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
1107 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
1108 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
1117 llvm::Type *ComplexElementTy =
1121 Builder.CreateFPTrunc(result.first, ComplexElementTy,
"unpromotion");
1124 Builder.CreateFPTrunc(result.second, ComplexElementTy,
"unpromotion");
1130 llvm::Type *ComplexElementTy =
1133 result.first =
Builder.CreateFPExt(result.first, ComplexElementTy,
"ext");
1135 result.second =
Builder.CreateFPExt(result.second, ComplexElementTy,
"ext");
1143 if (
auto BO = dyn_cast<BinaryOperator>(E)) {
1144 switch (BO->getOpcode()) {
1145#define HANDLE_BINOP(OP) \
1147 return EmitBin##OP(EmitBinOps(BO, PromotionType));
1156 }
else if (
auto UO = dyn_cast<UnaryOperator>(E)) {
1157 switch (UO->getOpcode()) {
1159 return VisitMinus(UO, PromotionType);
1161 return VisitPlus(UO, PromotionType);
1166 auto result = Visit(
const_cast<Expr *
>(E));
1167 if (!PromotionType.
isNull())
1175 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
1179ComplexExprEmitter::EmitPromotedComplexOperand(
const Expr *E,
1182 if (!OverallPromotionType.
isNull())
1185 return Visit(
const_cast<Expr *
>(E));
1187 if (!OverallPromotionType.
isNull()) {
1198ComplexExprEmitter::BinOpInfo
1199ComplexExprEmitter::EmitBinOps(
const BinaryOperator *E,
1200 QualType PromotionType) {
1201 TestAndClearIgnoreReal();
1202 TestAndClearIgnoreImag();
1205 Ops.LHS = EmitPromotedComplexOperand(E->
getLHS(), PromotionType);
1206 Ops.RHS = EmitPromotedComplexOperand(E->
getRHS(), PromotionType);
1207 if (!PromotionType.
isNull())
1208 Ops.Ty = PromotionType;
1216LValue ComplexExprEmitter::
1217EmitCompoundAssignLValue(
const CompoundAssignOperator *E,
1220 TestAndClearIgnoreReal();
1221 TestAndClearIgnoreImag();
1223 if (
const AtomicType *AT = LHSTy->
getAs<AtomicType>())
1224 LHSTy = AT->getValueType();
1230 const bool IsComplexDivisor = E->
getOpcode() == BO_DivAssign &&
1236 QualType PromotionTypeCR;
1240 if (PromotionTypeCR.
isNull())
1242 OpInfo.Ty = PromotionTypeCR;
1243 QualType ComplexElementTy =
1244 OpInfo.Ty->castAs<ComplexType>()->getElementType();
1245 QualType PromotionTypeRHS =
1251 if (!PromotionTypeRHS.
isNull())
1261 if (!PromotionTypeRHS.
isNull()) {
1267 OpInfo.RHS = Visit(E->
getRHS());
1275 QualType PromotionTypeLHS =
1280 if (!PromotionTypeLHS.
isNull())
1282 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1284 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1290 QualType PromotedComplexElementTy;
1291 if (!PromotionTypeLHS.
isNull()) {
1292 PromotedComplexElementTy =
1297 PromotedComplexElementTy, Loc);
1305 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1315 EmitComplexToComplexCast(
Result, OpInfo.Ty, LHSTy, Loc);
1316 EmitStoreOfComplex(ResVal, LHS,
false);
1319 llvm::Value *ResVal =
1330EmitCompoundAssign(
const CompoundAssignOperator *E,
1333 LValue LV = EmitCompoundAssignLValue(E,
Func, Val);
1340 if (!LV.isVolatileQualified())
1343 return EmitLoadOfLValue(LV, E->
getExprLoc());
1346LValue ComplexExprEmitter::EmitBinAssignLValue(
const BinaryOperator *E,
1350 "Invalid assignment");
1351 TestAndClearIgnoreReal();
1352 TestAndClearIgnoreImag();
1355 Val = Visit(E->
getRHS());
1361 EmitStoreOfComplex(Val, LHS,
false);
1366ComplexPairTy ComplexExprEmitter::VisitBinAssign(
const BinaryOperator *E) {
1369 LValue LV = EmitBinAssignLValue(E, Val);
1376 if (!LV.isVolatileQualified())
1379 return EmitLoadOfLValue(LV, E->
getExprLoc());
1382ComplexPairTy ComplexExprEmitter::VisitBinComma(
const BinaryOperator *E) {
1384 return Visit(E->
getRHS());
1388VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
1389 TestAndClearIgnoreReal();
1390 TestAndClearIgnoreImag();
1411 LHSBlock = Builder.GetInsertBlock();
1420 RHSBlock = Builder.GetInsertBlock();
1427 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2,
"cond.r");
1428 RealPN->addIncoming(LHS.first, LHSBlock);
1429 RealPN->addIncoming(RHS.first, RHSBlock);
1432 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2,
"cond.i");
1433 ImagPN->addIncoming(LHS.second, LHSBlock);
1434 ImagPN->addIncoming(RHS.second, RHSBlock);
1439ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1443ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1444 bool Ignore = TestAndClearIgnoreReal();
1446 assert (Ignore ==
false &&
"init list ignored");
1447 Ignore = TestAndClearIgnoreImag();
1449 assert (Ignore ==
false &&
"init list ignored");
1460 assert(E->
getNumInits() == 0 &&
"Unexpected number of inits");
1461 QualType Ty = E->
getType()->
castAs<ComplexType>()->getElementType();
1463 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1467ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1475 llvm::Value *U = llvm::PoisonValue::get(EltTy);
1491 "Invalid complex expression to emit");
1493 return ComplexExprEmitter(*
this, IgnoreReal, IgnoreImag)
1494 .Visit(
const_cast<Expr *
>(E));
1500 "Invalid complex expression to emit");
1501 ComplexExprEmitter
Emitter(*
this);
1503 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1509 ComplexExprEmitter(*this).EmitStoreOfComplex(
V, dest, isInit);
1515 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1521 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1523 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*
this,
1529 const ComplexExprEmitter::BinOpInfo &);
1533 case BO_MulAssign:
return &ComplexExprEmitter::EmitBinMul;
1534 case BO_DivAssign:
return &ComplexExprEmitter::EmitBinDiv;
1535 case BO_SubAssign:
return &ComplexExprEmitter::EmitBinSub;
1536 case BO_AddAssign:
return &ComplexExprEmitter::EmitBinAdd;
1538 llvm_unreachable(
"unexpected complex compound assignment");
1547 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1557 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
CodeGenFunction::ComplexPairTy ComplexPairTy
static llvm::Value * EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value)
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty)
Lookup the libcall name for a given floating point type complex multiply.
static CompoundFunc getComplexOp(BinaryOperatorKind op)
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
mlir::Value(ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &) CompoundFunc
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat 'semantics' for the specified scalar floating point type.
const QualType GetHigherPrecisionFPType(QualType ElementType) const
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
QualType getComplexType(QualType T) const
Return the uniqued reference to the type for a complex number with the specified element type.
const TargetInfo & getTargetInfo() const
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Expr * getCond() const
getCond - Return the expression representing the condition for the ?
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression representing the value of the expression if the condition eval...
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression representing the value of the expression if the condition eva...
A builtin binary operation expression such as "x + y" or "x <= y".
FPOptionsOverride getStoredFPFeaturesOrDefault() const
Get the store FPOptionsOverride or default if not stored.
SourceLocation getExprLoc() const
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Get the FP features status of this operator.
Expr * getExpr()
Get the initialization expression that will be used.
A rewritten comparison expression that was originally written using operator syntax.
Expr * getSemanticForm()
Get an equivalent semantic form for this expression.
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
CastKind getCastKind() const
bool changesVolatileQualification() const
Return.
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
llvm::StringRef getName() const
Return the IR name of the pointer value.
A scoped helper to set the current source atom group for CGDebugInfo::addInstToCurrentSourceAtom.
All available information about a concrete callee.
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
CGFunctionInfo - Class to encapsulate the information about a function definition.
CallArgList - Type for representing both the value and type of arguments in a call.
void add(RValue rvalue, QualType type)
An object to manage conditionally-evaluated expressions.
LValue getReferenceLValue(CodeGenFunction &CGF, const Expr *RefExpr) const
llvm::Constant * getValue() const
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
An RAII object to record that we're evaluating a statement expression.
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH=Stmt::LH_None, const Expr *ConditionalOp=nullptr, const VarDecl *ConditionalDecl=nullptr)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
llvm::Type * ConvertType(QualType T)
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, AggValueSlot Slot=AggValueSlot::ignored())
Generate code to get an argument from the passed in pointer and update it accordingly.
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup)
See CGDebugInfo::addInstToCurrentSourceAtom.
llvm::Value * EmitPromotedScalarExpr(const Expr *E, QualType PromotionType)
const LangOptions & getLangOpts() const
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E)
ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType)
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue=ReturnValueSlot(), llvm::CallBase **CallOrInvoke=nullptr)
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type,...
Address emitAddrOfImagComponent(Address complex, QualType complexType)
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its RValue mapping if it exists, otherwise create one.
RValue EmitAtomicLoad(LValue LV, SourceLocation SL, AggValueSlot Slot=AggValueSlot::ignored())
CGDebugInfo * getDebugInfo()
LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its LValue mapping if it exists, otherwise create one.
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
ASTContext & getContext() const
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
LValue EmitComplexAssignmentLValue(const BinaryOperator *E)
Emit an l-value for an assignment (simple or compound) of complex type.
llvm::Type * ConvertTypeForMem(QualType T)
RValue EmitAtomicExpr(AtomicExpr *E)
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
bool LValueIsSuitableForInlineAtomic(LValue Src)
An LValue is a candidate for having its loads and stores be made atomic if we are operating under /vo...
Address emitAddrOfRealComponent(Address complex, QualType complexType)
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit)
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn't support the specified stmt yet.
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
ConstantEmission tryEmitAsConstant(const DeclRefExpr *RefExpr)
Try to emit a reference to the given value without producing it as an l-value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
llvm::LLVMContext & getLLVMContext()
ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType)
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
CodeGenTypes & getTypes()
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys={})
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments.
LValue - This represents an lvalue references.
bool isVolatileQualified() const
Address getAddress() const
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
static RValue get(llvm::Value *V)
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Complex values, per C99 6.2.5p11.
QualType getElementType() const
CompoundAssignOperator - For compound assignments (e.g.
QualType getComputationLHSType() const
QualType getComputationResultType() const
This represents one expression.
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
const Expr * getSubExpr() const
const Expr * getSubExpr() const
unsigned getNumInits() const
const Expr * getInit(unsigned Init) const
@ CX_Full
Implementation of complex division and multiplication using a call to runtime library functions(gener...
@ CX_Basic
Implementation of complex division and multiplication using algebraic formulas at source precision.
@ CX_Promoted
Implementation of complex division using algebraic formulas at higher precision.
@ CX_Improved
Implementation of complex division offering an improved handling for overflow in intermediate calcula...
SourceLocation getExprLoc() const LLVM_READONLY
Expr * getSelectedExpr() const
const Expr * getSubExpr() const
A (possibly-)qualified type.
bool isNull() const
Return true if this QualType doesn't point to a type yet.
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
QualType getCanonicalType() const
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
bool UseExcessPrecision(const ASTContext &Ctx)
Encodes a location in the source.
CompoundStmt * getSubStmt()
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Expr * getReplacement() const
virtual bool hasLongDoubleType() const
Determine whether the long double type is supported on this target.
const T * castAs() const
Member-template castAs<specific type>.
bool isReferenceType() const
bool isAnyComplexType() const
bool isAtomicType() const
bool isRealFloatingType() const
Floating point categories.
bool isFloatingType() const
const T * getAs() const
Member-template getAs<specific type>'.
Expr * getSubExpr() const
FPOptionsOverride getStoredFPFeaturesOrDefault() const
Get the store FPOptionsOverride or default if not stored.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ComplexType > complexType
bool Null(InterpState &S, CodePtr OpPC, uint64_t Value, const Descriptor *Desc)
bool GE(InterpState &S, CodePtr OpPC)
The JSON file list parser is used to communicate input to InstallAPI.
@ Result
The result type of a method or function.
CastKind
CastKind - The kind of operation required for a conversion.
U cast(CodeGen::Address addr)
@ EST_BasicNoexcept
noexcept
Diagnostic wrappers for TextAPI types for error reporting.
cl::opt< bool > EnableSingleByteCoverage
llvm::CallingConv::ID getRuntimeCC() const
static TBAAAccessInfo getMayAliasInfo()
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI)