clang  10.0.0svn
CGExprComplex.cpp
Go to the documentation of this file.
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CodeGenModule.h"
15 #include "clang/AST/StmtVisitor.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/Metadata.h"
21 #include <algorithm>
22 using namespace clang;
23 using namespace CodeGen;
24 
25 //===----------------------------------------------------------------------===//
26 // Complex Expression Emitter
27 //===----------------------------------------------------------------------===//
28 
30 
31 /// Return the complex type that we are meant to emit.
33  type = type.getCanonicalType();
34  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
35  return comp;
36  } else {
37  return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
38  }
39 }
40 
41 namespace {
42 class ComplexExprEmitter
43  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
44  CodeGenFunction &CGF;
45  CGBuilderTy &Builder;
46  bool IgnoreReal;
47  bool IgnoreImag;
48 public:
49  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
50  : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
51  }
52 
53 
54  //===--------------------------------------------------------------------===//
55  // Utilities
56  //===--------------------------------------------------------------------===//
57 
58  bool TestAndClearIgnoreReal() {
59  bool I = IgnoreReal;
60  IgnoreReal = false;
61  return I;
62  }
63  bool TestAndClearIgnoreImag() {
64  bool I = IgnoreImag;
65  IgnoreImag = false;
66  return I;
67  }
68 
69  /// EmitLoadOfLValue - Given an expression with complex type that represents a
70  /// value l-value, this method emits the address of the l-value, then loads
71  /// and returns the result.
72  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
73  return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
74  }
75 
76  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
77 
78  /// EmitStoreOfComplex - Store the specified real/imag parts into the
79  /// specified value pointer.
80  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
81 
82  /// Emit a cast from complex value Val to DestType.
83  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
84  QualType DestType, SourceLocation Loc);
85  /// Emit a cast from scalar value Val to DestType.
86  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
87  QualType DestType, SourceLocation Loc);
88 
89  //===--------------------------------------------------------------------===//
90  // Visitor Methods
91  //===--------------------------------------------------------------------===//
92 
93  ComplexPairTy Visit(Expr *E) {
94  ApplyDebugLocation DL(CGF, E);
96  }
97 
98  ComplexPairTy VisitStmt(Stmt *S) {
99  S->dump(CGF.getContext().getSourceManager());
100  llvm_unreachable("Stmt can't have complex result type!");
101  }
102  ComplexPairTy VisitExpr(Expr *S);
103  ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
104  return Visit(E->getSubExpr());
105  }
106  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
107  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
108  return Visit(GE->getResultExpr());
109  }
110  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
113  return Visit(PE->getReplacement());
114  }
115  ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
116  return CGF.EmitCoawaitExpr(*S).getComplexVal();
117  }
118  ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
119  return CGF.EmitCoyieldExpr(*S).getComplexVal();
120  }
121  ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
122  return Visit(E->getSubExpr());
123  }
124 
125  ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
126  Expr *E) {
127  assert(Constant && "not a constant");
128  if (Constant.isReference())
129  return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
130  E->getExprLoc());
131 
132  llvm::Constant *pair = Constant.getValue();
133  return ComplexPairTy(pair->getAggregateElement(0U),
134  pair->getAggregateElement(1U));
135  }
136 
137  // l-values.
138  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
139  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
140  return emitConstant(Constant, E);
141  return EmitLoadOfLValue(E);
142  }
143  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
144  return EmitLoadOfLValue(E);
145  }
146  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
147  return CGF.EmitObjCMessageExpr(E).getComplexVal();
148  }
149  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
150  ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
151  if (CodeGenFunction::ConstantEmission Constant =
152  CGF.tryEmitAsConstant(ME)) {
153  CGF.EmitIgnoredExpr(ME->getBase());
154  return emitConstant(Constant, ME);
155  }
156  return EmitLoadOfLValue(ME);
157  }
158  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
159  if (E->isGLValue())
160  return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
161  E->getExprLoc());
162  return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
163  }
164 
165  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
166  return CGF.EmitPseudoObjectRValue(E).getComplexVal();
167  }
168 
169  // FIXME: CompoundLiteralExpr
170 
171  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
172  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
173  // Unlike for scalars, we don't have to worry about function->ptr demotion
174  // here.
175  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
176  }
177  ComplexPairTy VisitCastExpr(CastExpr *E) {
178  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
179  CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
180  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
181  }
182  ComplexPairTy VisitCallExpr(const CallExpr *E);
183  ComplexPairTy VisitStmtExpr(const StmtExpr *E);
184 
185  // Operators.
186  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
187  bool isInc, bool isPre) {
188  LValue LV = CGF.EmitLValue(E->getSubExpr());
189  return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
190  }
191  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
192  return VisitPrePostIncDec(E, false, false);
193  }
194  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
195  return VisitPrePostIncDec(E, true, false);
196  }
197  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
198  return VisitPrePostIncDec(E, false, true);
199  }
200  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
201  return VisitPrePostIncDec(E, true, true);
202  }
203  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
204  ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
205  TestAndClearIgnoreReal();
206  TestAndClearIgnoreImag();
207  return Visit(E->getSubExpr());
208  }
209  ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
210  ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
211  // LNot,Real,Imag never return complex.
212  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
213  return Visit(E->getSubExpr());
214  }
215  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
217  return Visit(DAE->getExpr());
218  }
219  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
221  return Visit(DIE->getExpr());
222  }
223  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
224  CGF.enterFullExpression(E);
226  ComplexPairTy Vals = Visit(E->getSubExpr());
227  // Defend against dominance problems caused by jumps out of expression
228  // evaluation through the shared cleanup block.
229  Scope.ForceCleanup({&Vals.first, &Vals.second});
230  return Vals;
231  }
232  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
233  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
234  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
235  llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
236  return ComplexPairTy(Null, Null);
237  }
238  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
239  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
240  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
241  llvm::Constant *Null =
242  llvm::Constant::getNullValue(CGF.ConvertType(Elem));
243  return ComplexPairTy(Null, Null);
244  }
245 
246  struct BinOpInfo {
247  ComplexPairTy LHS;
248  ComplexPairTy RHS;
249  QualType Ty; // Computation Type.
250  };
251 
252  BinOpInfo EmitBinOps(const BinaryOperator *E);
253  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
254  ComplexPairTy (ComplexExprEmitter::*Func)
255  (const BinOpInfo &),
256  RValue &Val);
257  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
258  ComplexPairTy (ComplexExprEmitter::*Func)
259  (const BinOpInfo &));
260 
261  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
262  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
263  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
264  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
265 
266  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
267  const BinOpInfo &Op);
268 
269  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
270  return EmitBinAdd(EmitBinOps(E));
271  }
272  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
273  return EmitBinSub(EmitBinOps(E));
274  }
275  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
276  return EmitBinMul(EmitBinOps(E));
277  }
278  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
279  return EmitBinDiv(EmitBinOps(E));
280  }
281 
282  // Compound assignments.
283  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
284  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
285  }
286  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
287  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
288  }
289  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
290  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
291  }
292  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
293  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
294  }
295 
296  // GCC rejects rem/and/or/xor for integer complex.
297  // Logical and/or always return int, never complex.
298 
299  // No comparisons produce a complex result.
300 
301  LValue EmitBinAssignLValue(const BinaryOperator *E,
302  ComplexPairTy &Val);
303  ComplexPairTy VisitBinAssign (const BinaryOperator *E);
304  ComplexPairTy VisitBinComma (const BinaryOperator *E);
305 
306 
308  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
309  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
310 
311  ComplexPairTy VisitInitListExpr(InitListExpr *E);
312 
313  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
314  return EmitLoadOfLValue(E);
315  }
316 
317  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
318 
319  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
320  return CGF.EmitAtomicExpr(E).getComplexVal();
321  }
322 };
323 } // end anonymous namespace.
324 
325 //===----------------------------------------------------------------------===//
326 // Utilities
327 //===----------------------------------------------------------------------===//
328 
331  return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
332 }
333 
336  return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
337 }
338 
339 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
340 /// load the real and imaginary pieces, returning them as Real/Imag.
341 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
342  SourceLocation loc) {
343  assert(lvalue.isSimple() && "non-simple complex l-value?");
344  if (lvalue.getType()->isAtomicType())
345  return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
346 
347  Address SrcPtr = lvalue.getAddress();
348  bool isVolatile = lvalue.isVolatileQualified();
349 
350  llvm::Value *Real = nullptr, *Imag = nullptr;
351 
352  if (!IgnoreReal || isVolatile) {
353  Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
354  Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
355  }
356 
357  if (!IgnoreImag || isVolatile) {
358  Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
359  Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
360  }
361 
362  return ComplexPairTy(Real, Imag);
363 }
364 
365 /// EmitStoreOfComplex - Store the specified real/imag parts into the
366 /// specified value pointer.
367 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
368  bool isInit) {
369  if (lvalue.getType()->isAtomicType() ||
370  (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
371  return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
372 
373  Address Ptr = lvalue.getAddress();
374  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
375  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
376 
377  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
378  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
379 }
380 
381 
382 
383 //===----------------------------------------------------------------------===//
384 // Visitor Methods
385 //===----------------------------------------------------------------------===//
386 
387 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
388  CGF.ErrorUnsupported(E, "complex expression");
389  llvm::Type *EltTy =
390  CGF.ConvertType(getComplexType(E->getType())->getElementType());
391  llvm::Value *U = llvm::UndefValue::get(EltTy);
392  return ComplexPairTy(U, U);
393 }
394 
395 ComplexPairTy ComplexExprEmitter::
396 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
397  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
398  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
399 }
400 
401 
402 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
403  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
404  return EmitLoadOfLValue(E);
405 
406  return CGF.EmitCallExpr(E).getComplexVal();
407 }
408 
409 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
411  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
412  assert(RetAlloca.isValid() && "Expected complex return value");
413  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
414  E->getExprLoc());
415 }
416 
417 /// Emit a cast from complex value Val to DestType.
418 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
419  QualType SrcType,
420  QualType DestType,
421  SourceLocation Loc) {
422  // Get the src/dest element type.
423  SrcType = SrcType->castAs<ComplexType>()->getElementType();
424  DestType = DestType->castAs<ComplexType>()->getElementType();
425 
426  // C99 6.3.1.6: When a value of complex type is converted to another
427  // complex type, both the real and imaginary parts follow the conversion
428  // rules for the corresponding real types.
429  Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
430  Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
431  return Val;
432 }
433 
434 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
435  QualType SrcType,
436  QualType DestType,
437  SourceLocation Loc) {
438  // Convert the input element to the element type of the complex.
439  DestType = DestType->castAs<ComplexType>()->getElementType();
440  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
441 
442  // Return (realval, 0).
443  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
444 }
445 
446 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
447  QualType DestTy) {
448  switch (CK) {
449  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
450 
451  // Atomic to non-atomic casts may be more than a no-op for some platforms and
452  // for some types.
453  case CK_AtomicToNonAtomic:
454  case CK_NonAtomicToAtomic:
455  case CK_NoOp:
456  case CK_LValueToRValue:
457  case CK_UserDefinedConversion:
458  return Visit(Op);
459 
460  case CK_LValueBitCast: {
461  LValue origLV = CGF.EmitLValue(Op);
462  Address V = origLV.getAddress();
463  V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
464  return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
465  }
466 
467  case CK_LValueToRValueBitCast: {
468  LValue SourceLVal = CGF.EmitLValue(Op);
469  Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
470  CGF.ConvertTypeForMem(DestTy));
471  LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
473  return EmitLoadOfLValue(DestLV, Op->getExprLoc());
474  }
475 
476  case CK_BitCast:
477  case CK_BaseToDerived:
478  case CK_DerivedToBase:
479  case CK_UncheckedDerivedToBase:
480  case CK_Dynamic:
481  case CK_ToUnion:
482  case CK_ArrayToPointerDecay:
483  case CK_FunctionToPointerDecay:
484  case CK_NullToPointer:
485  case CK_NullToMemberPointer:
486  case CK_BaseToDerivedMemberPointer:
487  case CK_DerivedToBaseMemberPointer:
488  case CK_MemberPointerToBoolean:
489  case CK_ReinterpretMemberPointer:
490  case CK_ConstructorConversion:
491  case CK_IntegralToPointer:
492  case CK_PointerToIntegral:
493  case CK_PointerToBoolean:
494  case CK_ToVoid:
495  case CK_VectorSplat:
496  case CK_IntegralCast:
497  case CK_BooleanToSignedIntegral:
498  case CK_IntegralToBoolean:
499  case CK_IntegralToFloating:
500  case CK_FloatingToIntegral:
501  case CK_FloatingToBoolean:
502  case CK_FloatingCast:
503  case CK_CPointerToObjCPointerCast:
504  case CK_BlockPointerToObjCPointerCast:
505  case CK_AnyPointerToBlockPointerCast:
506  case CK_ObjCObjectLValueCast:
507  case CK_FloatingComplexToReal:
508  case CK_FloatingComplexToBoolean:
509  case CK_IntegralComplexToReal:
510  case CK_IntegralComplexToBoolean:
511  case CK_ARCProduceObject:
512  case CK_ARCConsumeObject:
513  case CK_ARCReclaimReturnedObject:
514  case CK_ARCExtendBlockObject:
515  case CK_CopyAndAutoreleaseBlockObject:
516  case CK_BuiltinFnToFnPtr:
517  case CK_ZeroToOCLOpaqueType:
518  case CK_AddressSpaceConversion:
519  case CK_IntToOCLSampler:
520  case CK_FixedPointCast:
521  case CK_FixedPointToBoolean:
522  case CK_FixedPointToIntegral:
523  case CK_IntegralToFixedPoint:
524  llvm_unreachable("invalid cast kind for complex value");
525 
526  case CK_FloatingRealToComplex:
527  case CK_IntegralRealToComplex:
528  return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
529  DestTy, Op->getExprLoc());
530 
531  case CK_FloatingComplexCast:
532  case CK_FloatingComplexToIntegralComplex:
533  case CK_IntegralComplexCast:
534  case CK_IntegralComplexToFloatingComplex:
535  return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
536  Op->getExprLoc());
537  }
538 
539  llvm_unreachable("unknown cast resulting in complex value");
540 }
541 
542 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
543  TestAndClearIgnoreReal();
544  TestAndClearIgnoreImag();
545  ComplexPairTy Op = Visit(E->getSubExpr());
546 
547  llvm::Value *ResR, *ResI;
548  if (Op.first->getType()->isFloatingPointTy()) {
549  ResR = Builder.CreateFNeg(Op.first, "neg.r");
550  ResI = Builder.CreateFNeg(Op.second, "neg.i");
551  } else {
552  ResR = Builder.CreateNeg(Op.first, "neg.r");
553  ResI = Builder.CreateNeg(Op.second, "neg.i");
554  }
555  return ComplexPairTy(ResR, ResI);
556 }
557 
558 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
559  TestAndClearIgnoreReal();
560  TestAndClearIgnoreImag();
561  // ~(a+ib) = a + i*-b
562  ComplexPairTy Op = Visit(E->getSubExpr());
563  llvm::Value *ResI;
564  if (Op.second->getType()->isFloatingPointTy())
565  ResI = Builder.CreateFNeg(Op.second, "conj.i");
566  else
567  ResI = Builder.CreateNeg(Op.second, "conj.i");
568 
569  return ComplexPairTy(Op.first, ResI);
570 }
571 
572 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
573  llvm::Value *ResR, *ResI;
574 
575  if (Op.LHS.first->getType()->isFloatingPointTy()) {
576  ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
577  if (Op.LHS.second && Op.RHS.second)
578  ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
579  else
580  ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
581  assert(ResI && "Only one operand may be real!");
582  } else {
583  ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
584  assert(Op.LHS.second && Op.RHS.second &&
585  "Both operands of integer complex operators must be complex!");
586  ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
587  }
588  return ComplexPairTy(ResR, ResI);
589 }
590 
591 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
592  llvm::Value *ResR, *ResI;
593  if (Op.LHS.first->getType()->isFloatingPointTy()) {
594  ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
595  if (Op.LHS.second && Op.RHS.second)
596  ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
597  else
598  ResI = Op.LHS.second ? Op.LHS.second
599  : Builder.CreateFNeg(Op.RHS.second, "sub.i");
600  assert(ResI && "Only one operand may be real!");
601  } else {
602  ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
603  assert(Op.LHS.second && Op.RHS.second &&
604  "Both operands of integer complex operators must be complex!");
605  ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
606  }
607  return ComplexPairTy(ResR, ResI);
608 }
609 
610 /// Emit a libcall for a binary operation on complex types.
611 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
612  const BinOpInfo &Op) {
613  CallArgList Args;
614  Args.add(RValue::get(Op.LHS.first),
615  Op.Ty->castAs<ComplexType>()->getElementType());
616  Args.add(RValue::get(Op.LHS.second),
617  Op.Ty->castAs<ComplexType>()->getElementType());
618  Args.add(RValue::get(Op.RHS.first),
619  Op.Ty->castAs<ComplexType>()->getElementType());
620  Args.add(RValue::get(Op.RHS.second),
621  Op.Ty->castAs<ComplexType>()->getElementType());
622 
623  // We *must* use the full CG function call building logic here because the
624  // complex type has special ABI handling. We also should not forget about
625  // special calling convention which may be used for compiler builtins.
626 
627  // We create a function qualified type to state that this call does not have
628  // any exceptions.
630  EPI = EPI.withExceptionSpec(
632  SmallVector<QualType, 4> ArgsQTys(
633  4, Op.Ty->castAs<ComplexType>()->getElementType());
634  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
635  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
636  Args, cast<FunctionType>(FQTy.getTypePtr()), false);
637 
638  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
639  llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
640  FTy, LibCallName, llvm::AttributeList(), true);
641  CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
642 
643  llvm::CallBase *Call;
644  RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
645  Call->setCallingConv(CGF.CGM.getRuntimeCC());
646  return Res.getComplexVal();
647 }
648 
649 /// Lookup the libcall name for a given floating point type complex
650 /// multiply.
652  switch (Ty->getTypeID()) {
653  default:
654  llvm_unreachable("Unsupported floating point type!");
655  case llvm::Type::HalfTyID:
656  return "__mulhc3";
657  case llvm::Type::FloatTyID:
658  return "__mulsc3";
659  case llvm::Type::DoubleTyID:
660  return "__muldc3";
661  case llvm::Type::PPC_FP128TyID:
662  return "__multc3";
663  case llvm::Type::X86_FP80TyID:
664  return "__mulxc3";
665  case llvm::Type::FP128TyID:
666  return "__multc3";
667  }
668 }
669 
670 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
671 // typed values.
672 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
673  using llvm::Value;
674  Value *ResR, *ResI;
675  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
676 
677  if (Op.LHS.first->getType()->isFloatingPointTy()) {
678  // The general formulation is:
679  // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
680  //
681  // But we can fold away components which would be zero due to a real
682  // operand according to C11 Annex G.5.1p2.
683  // FIXME: C11 also provides for imaginary types which would allow folding
684  // still more of this within the type system.
685 
686  if (Op.LHS.second && Op.RHS.second) {
687  // If both operands are complex, emit the core math directly, and then
688  // test for NaNs. If we find NaNs in the result, we delegate to a libcall
689  // to carefully re-compute the correct infinity representation if
690  // possible. The expectation is that the presence of NaNs here is
691  // *extremely* rare, and so the cost of the libcall is almost irrelevant.
692  // This is good, because the libcall re-computes the core multiplication
693  // exactly the same as we do here and re-tests for NaNs in order to be
694  // a generic complex*complex libcall.
695 
696  // First compute the four products.
697  Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
698  Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
699  Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
700  Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
701 
702  // The real part is the difference of the first two, the imaginary part is
703  // the sum of the second.
704  ResR = Builder.CreateFSub(AC, BD, "mul_r");
705  ResI = Builder.CreateFAdd(AD, BC, "mul_i");
706 
707  // Emit the test for the real part becoming NaN and create a branch to
708  // handle it. We test for NaN by comparing the number to itself.
709  Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
710  llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
711  llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
712  llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
713  llvm::BasicBlock *OrigBB = Branch->getParent();
714 
715  // Give hint that we very much don't expect to see NaNs.
716  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
717  llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
718  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
719 
720  // Now test the imaginary part and create its branch.
721  CGF.EmitBlock(INaNBB);
722  Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
723  llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
724  Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
725  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
726 
727  // Now emit the libcall on this slowest of the slow paths.
728  CGF.EmitBlock(LibCallBB);
729  Value *LibCallR, *LibCallI;
730  std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
731  getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
732  Builder.CreateBr(ContBB);
733 
734  // Finally continue execution by phi-ing together the different
735  // computation paths.
736  CGF.EmitBlock(ContBB);
737  llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
738  RealPHI->addIncoming(ResR, OrigBB);
739  RealPHI->addIncoming(ResR, INaNBB);
740  RealPHI->addIncoming(LibCallR, LibCallBB);
741  llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
742  ImagPHI->addIncoming(ResI, OrigBB);
743  ImagPHI->addIncoming(ResI, INaNBB);
744  ImagPHI->addIncoming(LibCallI, LibCallBB);
745  return ComplexPairTy(RealPHI, ImagPHI);
746  }
747  assert((Op.LHS.second || Op.RHS.second) &&
748  "At least one operand must be complex!");
749 
750  // If either of the operands is a real rather than a complex, the
751  // imaginary component is ignored when computing the real component of the
752  // result.
753  ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
754 
755  ResI = Op.LHS.second
756  ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
757  : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
758  } else {
759  assert(Op.LHS.second && Op.RHS.second &&
760  "Both operands of integer complex operators must be complex!");
761  Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
762  Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
763  ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
764 
765  Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
766  Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
767  ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
768  }
769  return ComplexPairTy(ResR, ResI);
770 }
771 
772 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
773 // typed values.
774 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
775  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
776  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
777 
778  llvm::Value *DSTr, *DSTi;
779  if (LHSr->getType()->isFloatingPointTy()) {
780  // If we have a complex operand on the RHS and FastMath is not allowed, we
781  // delegate to a libcall to handle all of the complexities and minimize
782  // underflow/overflow cases. When FastMath is allowed we construct the
783  // divide inline using the same algorithm as for integer operands.
784  //
785  // FIXME: We would be able to avoid the libcall in many places if we
786  // supported imaginary types in addition to complex types.
787  if (RHSi && !CGF.getLangOpts().FastMath) {
788  BinOpInfo LibCallOp = Op;
789  // If LHS was a real, supply a null imaginary part.
790  if (!LHSi)
791  LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
792 
793  switch (LHSr->getType()->getTypeID()) {
794  default:
795  llvm_unreachable("Unsupported floating point type!");
796  case llvm::Type::HalfTyID:
797  return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
798  case llvm::Type::FloatTyID:
799  return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
800  case llvm::Type::DoubleTyID:
801  return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
802  case llvm::Type::PPC_FP128TyID:
803  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
804  case llvm::Type::X86_FP80TyID:
805  return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
806  case llvm::Type::FP128TyID:
807  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
808  }
809  } else if (RHSi) {
810  if (!LHSi)
811  LHSi = llvm::Constant::getNullValue(RHSi->getType());
812 
813  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
814  llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
815  llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
816  llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
817 
818  llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
819  llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
820  llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
821 
822  llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
823  llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
824  llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
825 
826  DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
827  DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
828  } else {
829  assert(LHSi && "Can have at most one non-complex operand!");
830 
831  DSTr = Builder.CreateFDiv(LHSr, RHSr);
832  DSTi = Builder.CreateFDiv(LHSi, RHSr);
833  }
834  } else {
835  assert(Op.LHS.second && Op.RHS.second &&
836  "Both operands of integer complex operators must be complex!");
837  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
838  llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
839  llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
840  llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
841 
842  llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
843  llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
844  llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
845 
846  llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
847  llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
848  llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
849 
850  if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
851  DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
852  DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
853  } else {
854  DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
855  DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
856  }
857  }
858 
859  return ComplexPairTy(DSTr, DSTi);
860 }
861 
862 ComplexExprEmitter::BinOpInfo
863 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
864  TestAndClearIgnoreReal();
865  TestAndClearIgnoreImag();
866  BinOpInfo Ops;
867  if (E->getLHS()->getType()->isRealFloatingType())
868  Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
869  else
870  Ops.LHS = Visit(E->getLHS());
871  if (E->getRHS()->getType()->isRealFloatingType())
872  Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
873  else
874  Ops.RHS = Visit(E->getRHS());
875 
876  Ops.Ty = E->getType();
877  return Ops;
878 }
879 
880 
881 LValue ComplexExprEmitter::
882 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
883  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
884  RValue &Val) {
885  TestAndClearIgnoreReal();
886  TestAndClearIgnoreImag();
887  QualType LHSTy = E->getLHS()->getType();
888  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
889  LHSTy = AT->getValueType();
890 
891  BinOpInfo OpInfo;
892 
893  // Load the RHS and LHS operands.
894  // __block variables need to have the rhs evaluated first, plus this should
895  // improve codegen a little.
896  OpInfo.Ty = E->getComputationResultType();
897  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
898 
899  // The RHS should have been converted to the computation type.
900  if (E->getRHS()->getType()->isRealFloatingType()) {
901  assert(
902  CGF.getContext()
903  .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
904  OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
905  } else {
906  assert(CGF.getContext()
907  .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
908  OpInfo.RHS = Visit(E->getRHS());
909  }
910 
911  LValue LHS = CGF.EmitLValue(E->getLHS());
912 
913  // Load from the l-value and convert it.
914  SourceLocation Loc = E->getExprLoc();
915  if (LHSTy->isAnyComplexType()) {
916  ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
917  OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
918  } else {
919  llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
920  // For floating point real operands we can directly pass the scalar form
921  // to the binary operator emission and potentially get more efficient code.
922  if (LHSTy->isRealFloatingType()) {
923  if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
924  LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
925  OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
926  } else {
927  OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
928  }
929  }
930 
931  // Expand the binary operator.
932  ComplexPairTy Result = (this->*Func)(OpInfo);
933 
934  // Truncate the result and store it into the LHS lvalue.
935  if (LHSTy->isAnyComplexType()) {
936  ComplexPairTy ResVal =
937  EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
938  EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
939  Val = RValue::getComplex(ResVal);
940  } else {
941  llvm::Value *ResVal =
942  CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
943  CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
944  Val = RValue::get(ResVal);
945  }
946 
947  return LHS;
948 }
949 
950 // Compound assignments.
951 ComplexPairTy ComplexExprEmitter::
952 EmitCompoundAssign(const CompoundAssignOperator *E,
953  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
954  RValue Val;
955  LValue LV = EmitCompoundAssignLValue(E, Func, Val);
956 
957  // The result of an assignment in C is the assigned r-value.
958  if (!CGF.getLangOpts().CPlusPlus)
959  return Val.getComplexVal();
960 
961  // If the lvalue is non-volatile, return the computed value of the assignment.
962  if (!LV.isVolatileQualified())
963  return Val.getComplexVal();
964 
965  return EmitLoadOfLValue(LV, E->getExprLoc());
966 }
967 
968 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
969  ComplexPairTy &Val) {
970  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
971  E->getRHS()->getType()) &&
972  "Invalid assignment");
973  TestAndClearIgnoreReal();
974  TestAndClearIgnoreImag();
975 
976  // Emit the RHS. __block variables need the RHS evaluated first.
977  Val = Visit(E->getRHS());
978 
979  // Compute the address to store into.
980  LValue LHS = CGF.EmitLValue(E->getLHS());
981 
982  // Store the result value into the LHS lvalue.
983  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
984 
985  return LHS;
986 }
987 
988 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
989  ComplexPairTy Val;
990  LValue LV = EmitBinAssignLValue(E, Val);
991 
992  // The result of an assignment in C is the assigned r-value.
993  if (!CGF.getLangOpts().CPlusPlus)
994  return Val;
995 
996  // If the lvalue is non-volatile, return the computed value of the assignment.
997  if (!LV.isVolatileQualified())
998  return Val;
999 
1000  return EmitLoadOfLValue(LV, E->getExprLoc());
1001 }
1002 
1003 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1004  CGF.EmitIgnoredExpr(E->getLHS());
1005  return Visit(E->getRHS());
1006 }
1007 
1008 ComplexPairTy ComplexExprEmitter::
1009 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1010  TestAndClearIgnoreReal();
1011  TestAndClearIgnoreImag();
1012  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1013  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1014  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1015 
1016  // Bind the common expression if necessary.
1017  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1018 
1019 
1021  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1022  CGF.getProfileCount(E));
1023 
1024  eval.begin(CGF);
1025  CGF.EmitBlock(LHSBlock);
1026  CGF.incrementProfileCounter(E);
1027  ComplexPairTy LHS = Visit(E->getTrueExpr());
1028  LHSBlock = Builder.GetInsertBlock();
1029  CGF.EmitBranch(ContBlock);
1030  eval.end(CGF);
1031 
1032  eval.begin(CGF);
1033  CGF.EmitBlock(RHSBlock);
1034  ComplexPairTy RHS = Visit(E->getFalseExpr());
1035  RHSBlock = Builder.GetInsertBlock();
1036  CGF.EmitBlock(ContBlock);
1037  eval.end(CGF);
1038 
1039  // Create a PHI node for the real part.
1040  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1041  RealPN->addIncoming(LHS.first, LHSBlock);
1042  RealPN->addIncoming(RHS.first, RHSBlock);
1043 
1044  // Create a PHI node for the imaginary part.
1045  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1046  ImagPN->addIncoming(LHS.second, LHSBlock);
1047  ImagPN->addIncoming(RHS.second, RHSBlock);
1048 
1049  return ComplexPairTy(RealPN, ImagPN);
1050 }
1051 
1052 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1053  return Visit(E->getChosenSubExpr());
1054 }
1055 
1056 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1057  bool Ignore = TestAndClearIgnoreReal();
1058  (void)Ignore;
1059  assert (Ignore == false && "init list ignored");
1060  Ignore = TestAndClearIgnoreImag();
1061  (void)Ignore;
1062  assert (Ignore == false && "init list ignored");
1063 
1064  if (E->getNumInits() == 2) {
1065  llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1066  llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1067  return ComplexPairTy(Real, Imag);
1068  } else if (E->getNumInits() == 1) {
1069  return Visit(E->getInit(0));
1070  }
1071 
1072  // Empty init list initializes to null
1073  assert(E->getNumInits() == 0 && "Unexpected number of inits");
1074  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1075  llvm::Type* LTy = CGF.ConvertType(Ty);
1076  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1077  return ComplexPairTy(zeroConstant, zeroConstant);
1078 }
1079 
1080 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1081  Address ArgValue = Address::invalid();
1082  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1083 
1084  if (!ArgPtr.isValid()) {
1085  CGF.ErrorUnsupported(E, "complex va_arg expression");
1086  llvm::Type *EltTy =
1087  CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1088  llvm::Value *U = llvm::UndefValue::get(EltTy);
1089  return ComplexPairTy(U, U);
1090  }
1091 
1092  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1093  E->getExprLoc());
1094 }
1095 
1096 //===----------------------------------------------------------------------===//
1097 // Entry Point into this File
1098 //===----------------------------------------------------------------------===//
1099 
1100 /// EmitComplexExpr - Emit the computation of the specified expression of
1101 /// complex type, ignoring the result.
1103  bool IgnoreImag) {
1104  assert(E && getComplexType(E->getType()) &&
1105  "Invalid complex expression to emit");
1106 
1107  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1108  .Visit(const_cast<Expr *>(E));
1109 }
1110 
1112  bool isInit) {
1113  assert(E && getComplexType(E->getType()) &&
1114  "Invalid complex expression to emit");
1115  ComplexExprEmitter Emitter(*this);
1116  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1117  Emitter.EmitStoreOfComplex(Val, dest, isInit);
1118 }
1119 
1120 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1122  bool isInit) {
1123  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1124 }
1125 
1126 /// EmitLoadOfComplex - Load a complex number from the specified address.
1128  SourceLocation loc) {
1129  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1130 }
1131 
1133  assert(E->getOpcode() == BO_Assign);
1134  ComplexPairTy Val; // ignored
1135  return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1136 }
1137 
1138 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1139  const ComplexExprEmitter::BinOpInfo &);
1140 
1142  switch (Op) {
1143  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1144  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1145  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1146  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1147  default:
1148  llvm_unreachable("unexpected complex compound assignment");
1149  }
1150 }
1151 
1154  CompoundFunc Op = getComplexOp(E->getOpcode());
1155  RValue Val;
1156  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1157 }
1158 
1161  llvm::Value *&Result) {
1162  CompoundFunc Op = getComplexOp(E->getOpcode());
1163  RValue Val;
1164  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1165  Result = Val.getScalarVal();
1166  return Ret;
1167 }
const Expr * getSubExpr() const
Definition: Expr.h:933
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4138
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E)
A (possibly-)qualified type.
Definition: Type.h:643
SourceLocation getExprLoc() const
Definition: Expr.h:3435
Expr * getResultExpr()
Return the result expression of this controlling expression.
Definition: Expr.h:5393
CompoundStmt * getSubStmt()
Definition: Expr.h:3937
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4418
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1981
Expr * getBase() const
Definition: Expr.h:2883
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty)
Lookup the libcall name for a given floating point type complex multiply.
Opcode getOpcode() const
Definition: Expr.h:3439
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1964
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
const Expr * getSubExpr() const
Definition: Expr.h:1644
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1928
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3047
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6857
Extra information about a function prototype.
Definition: Type.h:3805
LValue EmitComplexAssignmentLValue(const BinaryOperator *E)
Emit an l-value for an assignment (simple or compound) of complex type.
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3212
Address emitAddrOfImagComponent(Address complex, QualType complexType)
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
An object to manage conditionally-evaluated expressions.
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
Address getAddress() const
Definition: CGValue.h:326
QualType getComputationResultType() const
Definition: Expr.h:3650
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
bool isVolatileQualified() const
Definition: CGValue.h:257
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
Expr * getSubExpr()
Definition: Expr.h:3172
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool GE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:255
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
bool isGLValue() const
Definition: Expr.h:261
Describes an C or C++ initializer list.
Definition: Expr.h:4370
Address emitAddrOfRealComponent(Address complex, QualType complexType)
BinaryOperatorKind
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3404
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3120
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
bool isSimple() const
Definition: CGValue.h:251
ComplexPairTy(ComplexExprEmitter::* CompoundFunc)(const ComplexExprEmitter::BinOpInfo &)
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1111
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1216
bool isValid() const
Definition: Address.h:35
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3725
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:948
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4211
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1958
QualType getElementType() const
Definition: Type.h:2528
This represents one expression.
Definition: Expr.h:108
static Address invalid()
Definition: Address.h:34
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:65
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6922
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
#define V(N, I)
Definition: ASTContext.h:2913
unsigned getNumInits() const
Definition: Expr.h:4400
bool isAnyComplexType() const
Definition: Type.h:6478
QualType getType() const
Definition: Expr.h:137
An RAII object to record that we&#39;re evaluating a statement expression.
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:950
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2016
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4115
const Expr * getSubExpr() const
Definition: Expr.h:1980
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1632
The l-value was considered opaque, so the alignment was determined from a type.
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:1045
QualType getCanonicalType() const
Definition: Type.h:6187
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5668
Encodes a location in the source.
Expr * getSubExpr() const
Definition: Expr.h:2046
static bool Ret(InterpState &S, CodePtr &PC, APValue &Result)
Definition: Interp.cpp:34
CastKind getCastKind() const
Definition: Expr.h:3166
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:711
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:182
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5802
An aligned address.
Definition: Address.h:24
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3244
All available information about a concrete callee.
Definition: CGCall.h:66
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3921
QualType getType() const
Definition: CGValue.h:263
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:221
Expr * getLHS() const
Definition: Expr.h:3444
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3624
Represents a C11 generic selection.
Definition: Expr.h:5201
CGFunctionInfo - Class to encapsulate the information about a function definition.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1083
Dataflow Directional Tag Classes.
static CompoundFunc getComplexOp(BinaryOperatorKind Op)
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:92
CodeGenFunction::ComplexPairTy ComplexPairTy
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4698
const Expr * getExpr() const
Definition: ExprCXX.h:1150
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1496
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI)
Definition: Type.h:3819
Complex values, per C99 6.2.5p11.
Definition: Type.h:2515
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:243
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3660
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
bool isAtomicType() const
Definition: Type.h:6507
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4611
llvm::StringRef getName() const
Return the IR name of the pointer value.
Definition: Address.h:61
Holds information about the various types of exception specification.
Definition: Type.h:3779
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type, returning the result.
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:546
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1188
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2806
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4097
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2516
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1141
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
Expr * getRHS() const
Definition: Expr.h:3446
bool Null(InterpState &S, CodePtr OpPC)
Definition: Interp.h:821
LValue - This represents an lvalue references.
Definition: CGValue.h:166
void setTBAAInfo(TBAAAccessInfo Info)
Definition: CGValue.h:308
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
static TBAAAccessInfo getMayAliasInfo()
Definition: CodeGenTBAA.h:63
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5084