clang  9.0.0svn
CGExprComplex.cpp
Go to the documentation of this file.
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CodeGenModule.h"
15 #include "clang/AST/StmtVisitor.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/Metadata.h"
21 #include <algorithm>
22 using namespace clang;
23 using namespace CodeGen;
24 
25 //===----------------------------------------------------------------------===//
26 // Complex Expression Emitter
27 //===----------------------------------------------------------------------===//
28 
30 
31 /// Return the complex type that we are meant to emit.
33  type = type.getCanonicalType();
34  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
35  return comp;
36  } else {
37  return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
38  }
39 }
40 
41 namespace {
42 class ComplexExprEmitter
43  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
44  CodeGenFunction &CGF;
45  CGBuilderTy &Builder;
46  bool IgnoreReal;
47  bool IgnoreImag;
48 public:
49  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
50  : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
51  }
52 
53 
54  //===--------------------------------------------------------------------===//
55  // Utilities
56  //===--------------------------------------------------------------------===//
57 
58  bool TestAndClearIgnoreReal() {
59  bool I = IgnoreReal;
60  IgnoreReal = false;
61  return I;
62  }
63  bool TestAndClearIgnoreImag() {
64  bool I = IgnoreImag;
65  IgnoreImag = false;
66  return I;
67  }
68 
69  /// EmitLoadOfLValue - Given an expression with complex type that represents a
70  /// value l-value, this method emits the address of the l-value, then loads
71  /// and returns the result.
72  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
73  return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
74  }
75 
76  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
77 
78  /// EmitStoreOfComplex - Store the specified real/imag parts into the
79  /// specified value pointer.
80  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
81 
82  /// Emit a cast from complex value Val to DestType.
83  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
84  QualType DestType, SourceLocation Loc);
85  /// Emit a cast from scalar value Val to DestType.
86  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
87  QualType DestType, SourceLocation Loc);
88 
89  //===--------------------------------------------------------------------===//
90  // Visitor Methods
91  //===--------------------------------------------------------------------===//
92 
93  ComplexPairTy Visit(Expr *E) {
94  ApplyDebugLocation DL(CGF, E);
96  }
97 
98  ComplexPairTy VisitStmt(Stmt *S) {
99  S->dump(CGF.getContext().getSourceManager());
100  llvm_unreachable("Stmt can't have complex result type!");
101  }
102  ComplexPairTy VisitExpr(Expr *S);
103  ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
104  return Visit(E->getSubExpr());
105  }
106  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
107  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
108  return Visit(GE->getResultExpr());
109  }
110  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
113  return Visit(PE->getReplacement());
114  }
115  ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
116  return CGF.EmitCoawaitExpr(*S).getComplexVal();
117  }
118  ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
119  return CGF.EmitCoyieldExpr(*S).getComplexVal();
120  }
121  ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
122  return Visit(E->getSubExpr());
123  }
124 
125  ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
126  Expr *E) {
127  assert(Constant && "not a constant");
128  if (Constant.isReference())
129  return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
130  E->getExprLoc());
131 
132  llvm::Constant *pair = Constant.getValue();
133  return ComplexPairTy(pair->getAggregateElement(0U),
134  pair->getAggregateElement(1U));
135  }
136 
137  // l-values.
138  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
139  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
140  return emitConstant(Constant, E);
141  return EmitLoadOfLValue(E);
142  }
143  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
144  return EmitLoadOfLValue(E);
145  }
146  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
147  return CGF.EmitObjCMessageExpr(E).getComplexVal();
148  }
149  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
150  ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
151  if (CodeGenFunction::ConstantEmission Constant =
152  CGF.tryEmitAsConstant(ME)) {
153  CGF.EmitIgnoredExpr(ME->getBase());
154  return emitConstant(Constant, ME);
155  }
156  return EmitLoadOfLValue(ME);
157  }
158  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
159  if (E->isGLValue())
160  return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
161  E->getExprLoc());
162  return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
163  }
164 
165  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
166  return CGF.EmitPseudoObjectRValue(E).getComplexVal();
167  }
168 
169  // FIXME: CompoundLiteralExpr
170 
171  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
172  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
173  // Unlike for scalars, we don't have to worry about function->ptr demotion
174  // here.
175  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
176  }
177  ComplexPairTy VisitCastExpr(CastExpr *E) {
178  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
179  CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
180  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
181  }
182  ComplexPairTy VisitCallExpr(const CallExpr *E);
183  ComplexPairTy VisitStmtExpr(const StmtExpr *E);
184 
185  // Operators.
186  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
187  bool isInc, bool isPre) {
188  LValue LV = CGF.EmitLValue(E->getSubExpr());
189  return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
190  }
191  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
192  return VisitPrePostIncDec(E, false, false);
193  }
194  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
195  return VisitPrePostIncDec(E, true, false);
196  }
197  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
198  return VisitPrePostIncDec(E, false, true);
199  }
200  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
201  return VisitPrePostIncDec(E, true, true);
202  }
203  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
204  ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
205  TestAndClearIgnoreReal();
206  TestAndClearIgnoreImag();
207  return Visit(E->getSubExpr());
208  }
209  ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
210  ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
211  // LNot,Real,Imag never return complex.
212  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
213  return Visit(E->getSubExpr());
214  }
215  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
216  return Visit(DAE->getExpr());
217  }
218  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
220  return Visit(DIE->getExpr());
221  }
222  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
223  CGF.enterFullExpression(E);
225  ComplexPairTy Vals = Visit(E->getSubExpr());
226  // Defend against dominance problems caused by jumps out of expression
227  // evaluation through the shared cleanup block.
228  Scope.ForceCleanup({&Vals.first, &Vals.second});
229  return Vals;
230  }
231  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
232  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
233  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
234  llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
235  return ComplexPairTy(Null, Null);
236  }
237  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
238  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
239  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
240  llvm::Constant *Null =
241  llvm::Constant::getNullValue(CGF.ConvertType(Elem));
242  return ComplexPairTy(Null, Null);
243  }
244 
245  struct BinOpInfo {
246  ComplexPairTy LHS;
247  ComplexPairTy RHS;
248  QualType Ty; // Computation Type.
249  };
250 
251  BinOpInfo EmitBinOps(const BinaryOperator *E);
252  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
253  ComplexPairTy (ComplexExprEmitter::*Func)
254  (const BinOpInfo &),
255  RValue &Val);
256  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
257  ComplexPairTy (ComplexExprEmitter::*Func)
258  (const BinOpInfo &));
259 
260  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
261  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
262  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
263  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
264 
265  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
266  const BinOpInfo &Op);
267 
268  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
269  return EmitBinAdd(EmitBinOps(E));
270  }
271  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
272  return EmitBinSub(EmitBinOps(E));
273  }
274  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
275  return EmitBinMul(EmitBinOps(E));
276  }
277  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
278  return EmitBinDiv(EmitBinOps(E));
279  }
280 
281  // Compound assignments.
282  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
283  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
284  }
285  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
286  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
287  }
288  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
289  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
290  }
291  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
292  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
293  }
294 
295  // GCC rejects rem/and/or/xor for integer complex.
296  // Logical and/or always return int, never complex.
297 
298  // No comparisons produce a complex result.
299 
300  LValue EmitBinAssignLValue(const BinaryOperator *E,
301  ComplexPairTy &Val);
302  ComplexPairTy VisitBinAssign (const BinaryOperator *E);
303  ComplexPairTy VisitBinComma (const BinaryOperator *E);
304 
305 
307  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
308  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
309 
310  ComplexPairTy VisitInitListExpr(InitListExpr *E);
311 
312  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
313  return EmitLoadOfLValue(E);
314  }
315 
316  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
317 
318  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
319  return CGF.EmitAtomicExpr(E).getComplexVal();
320  }
321 };
322 } // end anonymous namespace.
323 
324 //===----------------------------------------------------------------------===//
325 // Utilities
326 //===----------------------------------------------------------------------===//
327 
330  return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
331 }
332 
335  return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
336 }
337 
338 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
339 /// load the real and imaginary pieces, returning them as Real/Imag.
340 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
341  SourceLocation loc) {
342  assert(lvalue.isSimple() && "non-simple complex l-value?");
343  if (lvalue.getType()->isAtomicType())
344  return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
345 
346  Address SrcPtr = lvalue.getAddress();
347  bool isVolatile = lvalue.isVolatileQualified();
348 
349  llvm::Value *Real = nullptr, *Imag = nullptr;
350 
351  if (!IgnoreReal || isVolatile) {
352  Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
353  Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
354  }
355 
356  if (!IgnoreImag || isVolatile) {
357  Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
358  Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
359  }
360 
361  return ComplexPairTy(Real, Imag);
362 }
363 
364 /// EmitStoreOfComplex - Store the specified real/imag parts into the
365 /// specified value pointer.
366 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
367  bool isInit) {
368  if (lvalue.getType()->isAtomicType() ||
369  (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
370  return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
371 
372  Address Ptr = lvalue.getAddress();
373  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
374  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
375 
376  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
377  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
378 }
379 
380 
381 
382 //===----------------------------------------------------------------------===//
383 // Visitor Methods
384 //===----------------------------------------------------------------------===//
385 
386 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
387  CGF.ErrorUnsupported(E, "complex expression");
388  llvm::Type *EltTy =
389  CGF.ConvertType(getComplexType(E->getType())->getElementType());
390  llvm::Value *U = llvm::UndefValue::get(EltTy);
391  return ComplexPairTy(U, U);
392 }
393 
394 ComplexPairTy ComplexExprEmitter::
395 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
396  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
397  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
398 }
399 
400 
401 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
402  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
403  return EmitLoadOfLValue(E);
404 
405  return CGF.EmitCallExpr(E).getComplexVal();
406 }
407 
408 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
410  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
411  assert(RetAlloca.isValid() && "Expected complex return value");
412  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
413  E->getExprLoc());
414 }
415 
416 /// Emit a cast from complex value Val to DestType.
417 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
418  QualType SrcType,
419  QualType DestType,
420  SourceLocation Loc) {
421  // Get the src/dest element type.
422  SrcType = SrcType->castAs<ComplexType>()->getElementType();
423  DestType = DestType->castAs<ComplexType>()->getElementType();
424 
425  // C99 6.3.1.6: When a value of complex type is converted to another
426  // complex type, both the real and imaginary parts follow the conversion
427  // rules for the corresponding real types.
428  Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
429  Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
430  return Val;
431 }
432 
433 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
434  QualType SrcType,
435  QualType DestType,
436  SourceLocation Loc) {
437  // Convert the input element to the element type of the complex.
438  DestType = DestType->castAs<ComplexType>()->getElementType();
439  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
440 
441  // Return (realval, 0).
442  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
443 }
444 
445 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
446  QualType DestTy) {
447  switch (CK) {
448  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
449 
450  // Atomic to non-atomic casts may be more than a no-op for some platforms and
451  // for some types.
452  case CK_AtomicToNonAtomic:
453  case CK_NonAtomicToAtomic:
454  case CK_NoOp:
455  case CK_LValueToRValue:
456  case CK_UserDefinedConversion:
457  return Visit(Op);
458 
459  case CK_LValueBitCast: {
460  LValue origLV = CGF.EmitLValue(Op);
461  Address V = origLV.getAddress();
462  V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
463  return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
464  }
465 
466  case CK_BitCast:
467  case CK_BaseToDerived:
468  case CK_DerivedToBase:
469  case CK_UncheckedDerivedToBase:
470  case CK_Dynamic:
471  case CK_ToUnion:
472  case CK_ArrayToPointerDecay:
473  case CK_FunctionToPointerDecay:
474  case CK_NullToPointer:
475  case CK_NullToMemberPointer:
476  case CK_BaseToDerivedMemberPointer:
477  case CK_DerivedToBaseMemberPointer:
478  case CK_MemberPointerToBoolean:
479  case CK_ReinterpretMemberPointer:
480  case CK_ConstructorConversion:
481  case CK_IntegralToPointer:
482  case CK_PointerToIntegral:
483  case CK_PointerToBoolean:
484  case CK_ToVoid:
485  case CK_VectorSplat:
486  case CK_IntegralCast:
487  case CK_BooleanToSignedIntegral:
488  case CK_IntegralToBoolean:
489  case CK_IntegralToFloating:
490  case CK_FloatingToIntegral:
491  case CK_FloatingToBoolean:
492  case CK_FloatingCast:
493  case CK_CPointerToObjCPointerCast:
494  case CK_BlockPointerToObjCPointerCast:
495  case CK_AnyPointerToBlockPointerCast:
496  case CK_ObjCObjectLValueCast:
497  case CK_FloatingComplexToReal:
498  case CK_FloatingComplexToBoolean:
499  case CK_IntegralComplexToReal:
500  case CK_IntegralComplexToBoolean:
501  case CK_ARCProduceObject:
502  case CK_ARCConsumeObject:
503  case CK_ARCReclaimReturnedObject:
504  case CK_ARCExtendBlockObject:
505  case CK_CopyAndAutoreleaseBlockObject:
506  case CK_BuiltinFnToFnPtr:
507  case CK_ZeroToOCLOpaqueType:
508  case CK_AddressSpaceConversion:
509  case CK_IntToOCLSampler:
510  case CK_FixedPointCast:
511  case CK_FixedPointToBoolean:
512  case CK_FixedPointToIntegral:
513  case CK_IntegralToFixedPoint:
514  llvm_unreachable("invalid cast kind for complex value");
515 
516  case CK_FloatingRealToComplex:
517  case CK_IntegralRealToComplex:
518  return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
519  DestTy, Op->getExprLoc());
520 
521  case CK_FloatingComplexCast:
522  case CK_FloatingComplexToIntegralComplex:
523  case CK_IntegralComplexCast:
524  case CK_IntegralComplexToFloatingComplex:
525  return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
526  Op->getExprLoc());
527  }
528 
529  llvm_unreachable("unknown cast resulting in complex value");
530 }
531 
532 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
533  TestAndClearIgnoreReal();
534  TestAndClearIgnoreImag();
535  ComplexPairTy Op = Visit(E->getSubExpr());
536 
537  llvm::Value *ResR, *ResI;
538  if (Op.first->getType()->isFloatingPointTy()) {
539  ResR = Builder.CreateFNeg(Op.first, "neg.r");
540  ResI = Builder.CreateFNeg(Op.second, "neg.i");
541  } else {
542  ResR = Builder.CreateNeg(Op.first, "neg.r");
543  ResI = Builder.CreateNeg(Op.second, "neg.i");
544  }
545  return ComplexPairTy(ResR, ResI);
546 }
547 
548 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
549  TestAndClearIgnoreReal();
550  TestAndClearIgnoreImag();
551  // ~(a+ib) = a + i*-b
552  ComplexPairTy Op = Visit(E->getSubExpr());
553  llvm::Value *ResI;
554  if (Op.second->getType()->isFloatingPointTy())
555  ResI = Builder.CreateFNeg(Op.second, "conj.i");
556  else
557  ResI = Builder.CreateNeg(Op.second, "conj.i");
558 
559  return ComplexPairTy(Op.first, ResI);
560 }
561 
562 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
563  llvm::Value *ResR, *ResI;
564 
565  if (Op.LHS.first->getType()->isFloatingPointTy()) {
566  ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
567  if (Op.LHS.second && Op.RHS.second)
568  ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
569  else
570  ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
571  assert(ResI && "Only one operand may be real!");
572  } else {
573  ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
574  assert(Op.LHS.second && Op.RHS.second &&
575  "Both operands of integer complex operators must be complex!");
576  ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
577  }
578  return ComplexPairTy(ResR, ResI);
579 }
580 
581 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
582  llvm::Value *ResR, *ResI;
583  if (Op.LHS.first->getType()->isFloatingPointTy()) {
584  ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
585  if (Op.LHS.second && Op.RHS.second)
586  ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
587  else
588  ResI = Op.LHS.second ? Op.LHS.second
589  : Builder.CreateFNeg(Op.RHS.second, "sub.i");
590  assert(ResI && "Only one operand may be real!");
591  } else {
592  ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
593  assert(Op.LHS.second && Op.RHS.second &&
594  "Both operands of integer complex operators must be complex!");
595  ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
596  }
597  return ComplexPairTy(ResR, ResI);
598 }
599 
600 /// Emit a libcall for a binary operation on complex types.
601 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
602  const BinOpInfo &Op) {
603  CallArgList Args;
604  Args.add(RValue::get(Op.LHS.first),
605  Op.Ty->castAs<ComplexType>()->getElementType());
606  Args.add(RValue::get(Op.LHS.second),
607  Op.Ty->castAs<ComplexType>()->getElementType());
608  Args.add(RValue::get(Op.RHS.first),
609  Op.Ty->castAs<ComplexType>()->getElementType());
610  Args.add(RValue::get(Op.RHS.second),
611  Op.Ty->castAs<ComplexType>()->getElementType());
612 
613  // We *must* use the full CG function call building logic here because the
614  // complex type has special ABI handling. We also should not forget about
615  // special calling convention which may be used for compiler builtins.
616 
617  // We create a function qualified type to state that this call does not have
618  // any exceptions.
620  EPI = EPI.withExceptionSpec(
622  SmallVector<QualType, 4> ArgsQTys(
623  4, Op.Ty->castAs<ComplexType>()->getElementType());
624  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
625  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
626  Args, cast<FunctionType>(FQTy.getTypePtr()), false);
627 
628  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
629  llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
630  FTy, LibCallName, llvm::AttributeList(), true);
631  CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
632 
633  llvm::CallBase *Call;
634  RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
635  Call->setCallingConv(CGF.CGM.getRuntimeCC());
636  return Res.getComplexVal();
637 }
638 
639 /// Lookup the libcall name for a given floating point type complex
640 /// multiply.
642  switch (Ty->getTypeID()) {
643  default:
644  llvm_unreachable("Unsupported floating point type!");
645  case llvm::Type::HalfTyID:
646  return "__mulhc3";
647  case llvm::Type::FloatTyID:
648  return "__mulsc3";
649  case llvm::Type::DoubleTyID:
650  return "__muldc3";
651  case llvm::Type::PPC_FP128TyID:
652  return "__multc3";
653  case llvm::Type::X86_FP80TyID:
654  return "__mulxc3";
655  case llvm::Type::FP128TyID:
656  return "__multc3";
657  }
658 }
659 
660 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
661 // typed values.
662 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
663  using llvm::Value;
664  Value *ResR, *ResI;
665  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
666 
667  if (Op.LHS.first->getType()->isFloatingPointTy()) {
668  // The general formulation is:
669  // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
670  //
671  // But we can fold away components which would be zero due to a real
672  // operand according to C11 Annex G.5.1p2.
673  // FIXME: C11 also provides for imaginary types which would allow folding
674  // still more of this within the type system.
675 
676  if (Op.LHS.second && Op.RHS.second) {
677  // If both operands are complex, emit the core math directly, and then
678  // test for NaNs. If we find NaNs in the result, we delegate to a libcall
679  // to carefully re-compute the correct infinity representation if
680  // possible. The expectation is that the presence of NaNs here is
681  // *extremely* rare, and so the cost of the libcall is almost irrelevant.
682  // This is good, because the libcall re-computes the core multiplication
683  // exactly the same as we do here and re-tests for NaNs in order to be
684  // a generic complex*complex libcall.
685 
686  // First compute the four products.
687  Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
688  Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
689  Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
690  Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
691 
692  // The real part is the difference of the first two, the imaginary part is
693  // the sum of the second.
694  ResR = Builder.CreateFSub(AC, BD, "mul_r");
695  ResI = Builder.CreateFAdd(AD, BC, "mul_i");
696 
697  // Emit the test for the real part becoming NaN and create a branch to
698  // handle it. We test for NaN by comparing the number to itself.
699  Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
700  llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
701  llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
702  llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
703  llvm::BasicBlock *OrigBB = Branch->getParent();
704 
705  // Give hint that we very much don't expect to see NaNs.
706  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
707  llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
708  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
709 
710  // Now test the imaginary part and create its branch.
711  CGF.EmitBlock(INaNBB);
712  Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
713  llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
714  Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
715  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
716 
717  // Now emit the libcall on this slowest of the slow paths.
718  CGF.EmitBlock(LibCallBB);
719  Value *LibCallR, *LibCallI;
720  std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
721  getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
722  Builder.CreateBr(ContBB);
723 
724  // Finally continue execution by phi-ing together the different
725  // computation paths.
726  CGF.EmitBlock(ContBB);
727  llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
728  RealPHI->addIncoming(ResR, OrigBB);
729  RealPHI->addIncoming(ResR, INaNBB);
730  RealPHI->addIncoming(LibCallR, LibCallBB);
731  llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
732  ImagPHI->addIncoming(ResI, OrigBB);
733  ImagPHI->addIncoming(ResI, INaNBB);
734  ImagPHI->addIncoming(LibCallI, LibCallBB);
735  return ComplexPairTy(RealPHI, ImagPHI);
736  }
737  assert((Op.LHS.second || Op.RHS.second) &&
738  "At least one operand must be complex!");
739 
740  // If either of the operands is a real rather than a complex, the
741  // imaginary component is ignored when computing the real component of the
742  // result.
743  ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
744 
745  ResI = Op.LHS.second
746  ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
747  : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
748  } else {
749  assert(Op.LHS.second && Op.RHS.second &&
750  "Both operands of integer complex operators must be complex!");
751  Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
752  Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
753  ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
754 
755  Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
756  Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
757  ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
758  }
759  return ComplexPairTy(ResR, ResI);
760 }
761 
762 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
763 // typed values.
764 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
765  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
766  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
767 
768  llvm::Value *DSTr, *DSTi;
769  if (LHSr->getType()->isFloatingPointTy()) {
770  // If we have a complex operand on the RHS and FastMath is not allowed, we
771  // delegate to a libcall to handle all of the complexities and minimize
772  // underflow/overflow cases. When FastMath is allowed we construct the
773  // divide inline using the same algorithm as for integer operands.
774  //
775  // FIXME: We would be able to avoid the libcall in many places if we
776  // supported imaginary types in addition to complex types.
777  if (RHSi && !CGF.getLangOpts().FastMath) {
778  BinOpInfo LibCallOp = Op;
779  // If LHS was a real, supply a null imaginary part.
780  if (!LHSi)
781  LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
782 
783  switch (LHSr->getType()->getTypeID()) {
784  default:
785  llvm_unreachable("Unsupported floating point type!");
786  case llvm::Type::HalfTyID:
787  return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
788  case llvm::Type::FloatTyID:
789  return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
790  case llvm::Type::DoubleTyID:
791  return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
792  case llvm::Type::PPC_FP128TyID:
793  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
794  case llvm::Type::X86_FP80TyID:
795  return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
796  case llvm::Type::FP128TyID:
797  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
798  }
799  } else if (RHSi) {
800  if (!LHSi)
801  LHSi = llvm::Constant::getNullValue(RHSi->getType());
802 
803  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
804  llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
805  llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
806  llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
807 
808  llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
809  llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
810  llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
811 
812  llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
813  llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
814  llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
815 
816  DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
817  DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
818  } else {
819  assert(LHSi && "Can have at most one non-complex operand!");
820 
821  DSTr = Builder.CreateFDiv(LHSr, RHSr);
822  DSTi = Builder.CreateFDiv(LHSi, RHSr);
823  }
824  } else {
825  assert(Op.LHS.second && Op.RHS.second &&
826  "Both operands of integer complex operators must be complex!");
827  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
828  llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
829  llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
830  llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
831 
832  llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
833  llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
834  llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
835 
836  llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
837  llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
838  llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
839 
840  if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
841  DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
842  DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
843  } else {
844  DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
845  DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
846  }
847  }
848 
849  return ComplexPairTy(DSTr, DSTi);
850 }
851 
852 ComplexExprEmitter::BinOpInfo
853 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
854  TestAndClearIgnoreReal();
855  TestAndClearIgnoreImag();
856  BinOpInfo Ops;
857  if (E->getLHS()->getType()->isRealFloatingType())
858  Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
859  else
860  Ops.LHS = Visit(E->getLHS());
861  if (E->getRHS()->getType()->isRealFloatingType())
862  Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
863  else
864  Ops.RHS = Visit(E->getRHS());
865 
866  Ops.Ty = E->getType();
867  return Ops;
868 }
869 
870 
871 LValue ComplexExprEmitter::
872 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
873  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
874  RValue &Val) {
875  TestAndClearIgnoreReal();
876  TestAndClearIgnoreImag();
877  QualType LHSTy = E->getLHS()->getType();
878  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
879  LHSTy = AT->getValueType();
880 
881  BinOpInfo OpInfo;
882 
883  // Load the RHS and LHS operands.
884  // __block variables need to have the rhs evaluated first, plus this should
885  // improve codegen a little.
886  OpInfo.Ty = E->getComputationResultType();
887  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
888 
889  // The RHS should have been converted to the computation type.
890  if (E->getRHS()->getType()->isRealFloatingType()) {
891  assert(
892  CGF.getContext()
893  .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
894  OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
895  } else {
896  assert(CGF.getContext()
897  .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
898  OpInfo.RHS = Visit(E->getRHS());
899  }
900 
901  LValue LHS = CGF.EmitLValue(E->getLHS());
902 
903  // Load from the l-value and convert it.
904  SourceLocation Loc = E->getExprLoc();
905  if (LHSTy->isAnyComplexType()) {
906  ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
907  OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
908  } else {
909  llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
910  // For floating point real operands we can directly pass the scalar form
911  // to the binary operator emission and potentially get more efficient code.
912  if (LHSTy->isRealFloatingType()) {
913  if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
914  LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
915  OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
916  } else {
917  OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
918  }
919  }
920 
921  // Expand the binary operator.
922  ComplexPairTy Result = (this->*Func)(OpInfo);
923 
924  // Truncate the result and store it into the LHS lvalue.
925  if (LHSTy->isAnyComplexType()) {
926  ComplexPairTy ResVal =
927  EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
928  EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
929  Val = RValue::getComplex(ResVal);
930  } else {
931  llvm::Value *ResVal =
932  CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
933  CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
934  Val = RValue::get(ResVal);
935  }
936 
937  return LHS;
938 }
939 
940 // Compound assignments.
941 ComplexPairTy ComplexExprEmitter::
942 EmitCompoundAssign(const CompoundAssignOperator *E,
943  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
944  RValue Val;
945  LValue LV = EmitCompoundAssignLValue(E, Func, Val);
946 
947  // The result of an assignment in C is the assigned r-value.
948  if (!CGF.getLangOpts().CPlusPlus)
949  return Val.getComplexVal();
950 
951  // If the lvalue is non-volatile, return the computed value of the assignment.
952  if (!LV.isVolatileQualified())
953  return Val.getComplexVal();
954 
955  return EmitLoadOfLValue(LV, E->getExprLoc());
956 }
957 
958 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
959  ComplexPairTy &Val) {
960  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
961  E->getRHS()->getType()) &&
962  "Invalid assignment");
963  TestAndClearIgnoreReal();
964  TestAndClearIgnoreImag();
965 
966  // Emit the RHS. __block variables need the RHS evaluated first.
967  Val = Visit(E->getRHS());
968 
969  // Compute the address to store into.
970  LValue LHS = CGF.EmitLValue(E->getLHS());
971 
972  // Store the result value into the LHS lvalue.
973  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
974 
975  return LHS;
976 }
977 
978 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
979  ComplexPairTy Val;
980  LValue LV = EmitBinAssignLValue(E, Val);
981 
982  // The result of an assignment in C is the assigned r-value.
983  if (!CGF.getLangOpts().CPlusPlus)
984  return Val;
985 
986  // If the lvalue is non-volatile, return the computed value of the assignment.
987  if (!LV.isVolatileQualified())
988  return Val;
989 
990  return EmitLoadOfLValue(LV, E->getExprLoc());
991 }
992 
993 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
994  CGF.EmitIgnoredExpr(E->getLHS());
995  return Visit(E->getRHS());
996 }
997 
998 ComplexPairTy ComplexExprEmitter::
999 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1000  TestAndClearIgnoreReal();
1001  TestAndClearIgnoreImag();
1002  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1003  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1004  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1005 
1006  // Bind the common expression if necessary.
1007  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1008 
1009 
1011  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1012  CGF.getProfileCount(E));
1013 
1014  eval.begin(CGF);
1015  CGF.EmitBlock(LHSBlock);
1016  CGF.incrementProfileCounter(E);
1017  ComplexPairTy LHS = Visit(E->getTrueExpr());
1018  LHSBlock = Builder.GetInsertBlock();
1019  CGF.EmitBranch(ContBlock);
1020  eval.end(CGF);
1021 
1022  eval.begin(CGF);
1023  CGF.EmitBlock(RHSBlock);
1024  ComplexPairTy RHS = Visit(E->getFalseExpr());
1025  RHSBlock = Builder.GetInsertBlock();
1026  CGF.EmitBlock(ContBlock);
1027  eval.end(CGF);
1028 
1029  // Create a PHI node for the real part.
1030  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1031  RealPN->addIncoming(LHS.first, LHSBlock);
1032  RealPN->addIncoming(RHS.first, RHSBlock);
1033 
1034  // Create a PHI node for the imaginary part.
1035  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1036  ImagPN->addIncoming(LHS.second, LHSBlock);
1037  ImagPN->addIncoming(RHS.second, RHSBlock);
1038 
1039  return ComplexPairTy(RealPN, ImagPN);
1040 }
1041 
1042 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1043  return Visit(E->getChosenSubExpr());
1044 }
1045 
1046 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1047  bool Ignore = TestAndClearIgnoreReal();
1048  (void)Ignore;
1049  assert (Ignore == false && "init list ignored");
1050  Ignore = TestAndClearIgnoreImag();
1051  (void)Ignore;
1052  assert (Ignore == false && "init list ignored");
1053 
1054  if (E->getNumInits() == 2) {
1055  llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1056  llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1057  return ComplexPairTy(Real, Imag);
1058  } else if (E->getNumInits() == 1) {
1059  return Visit(E->getInit(0));
1060  }
1061 
1062  // Empty init list initializes to null
1063  assert(E->getNumInits() == 0 && "Unexpected number of inits");
1064  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1065  llvm::Type* LTy = CGF.ConvertType(Ty);
1066  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1067  return ComplexPairTy(zeroConstant, zeroConstant);
1068 }
1069 
1070 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1071  Address ArgValue = Address::invalid();
1072  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1073 
1074  if (!ArgPtr.isValid()) {
1075  CGF.ErrorUnsupported(E, "complex va_arg expression");
1076  llvm::Type *EltTy =
1077  CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1078  llvm::Value *U = llvm::UndefValue::get(EltTy);
1079  return ComplexPairTy(U, U);
1080  }
1081 
1082  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1083  E->getExprLoc());
1084 }
1085 
1086 //===----------------------------------------------------------------------===//
1087 // Entry Point into this File
1088 //===----------------------------------------------------------------------===//
1089 
1090 /// EmitComplexExpr - Emit the computation of the specified expression of
1091 /// complex type, ignoring the result.
1093  bool IgnoreImag) {
1094  assert(E && getComplexType(E->getType()) &&
1095  "Invalid complex expression to emit");
1096 
1097  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1098  .Visit(const_cast<Expr *>(E));
1099 }
1100 
1102  bool isInit) {
1103  assert(E && getComplexType(E->getType()) &&
1104  "Invalid complex expression to emit");
1105  ComplexExprEmitter Emitter(*this);
1106  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1107  Emitter.EmitStoreOfComplex(Val, dest, isInit);
1108 }
1109 
1110 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1112  bool isInit) {
1113  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1114 }
1115 
1116 /// EmitLoadOfComplex - Load a complex number from the specified address.
1118  SourceLocation loc) {
1119  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1120 }
1121 
1123  assert(E->getOpcode() == BO_Assign);
1124  ComplexPairTy Val; // ignored
1125  return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1126 }
1127 
1128 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1129  const ComplexExprEmitter::BinOpInfo &);
1130 
1132  switch (Op) {
1133  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1134  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1135  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1136  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1137  default:
1138  llvm_unreachable("unexpected complex compound assignment");
1139  }
1140 }
1141 
1144  CompoundFunc Op = getComplexOp(E->getOpcode());
1145  RValue Val;
1146  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1147 }
1148 
1151  llvm::Value *&Result) {
1152  CompoundFunc Op = getComplexOp(E->getOpcode());
1153  RValue Val;
1154  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1155  Result = Val.getScalarVal();
1156  return Ret;
1157 }
const Expr * getSubExpr() const
Definition: Expr.h:923
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4052
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E)
A (possibly-)qualified type.
Definition: Type.h:639
SourceLocation getExprLoc() const
Definition: Expr.h:3349
Expr * getResultExpr()
Return the result expression of this controlling expression.
Definition: Expr.h:5236
CompoundStmt * getSubStmt()
Definition: Expr.h:3851
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4267
Stmt - This represents one statement.
Definition: Stmt.h:65
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1959
Expr * getBase() const
Definition: Expr.h:2810
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty)
Lookup the libcall name for a given floating point type complex multiply.
Opcode getOpcode() const
Definition: Expr.h:3353
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1882
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
const Expr * getSubExpr() const
Definition: Expr.h:1562
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1906
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2968
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6768
Extra information about a function prototype.
Definition: Type.h:3779
LValue EmitComplexAssignmentLValue(const BinaryOperator *E)
Emit an l-value for an assignment (simple or compound) of complex type.
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3196
Address emitAddrOfImagComponent(Address complex, QualType complexType)
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
An object to manage conditionally-evaluated expressions.
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
Address getAddress() const
Definition: CGValue.h:326
QualType getComputationResultType() const
Definition: Expr.h:3564
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
bool isVolatileQualified() const
Definition: CGValue.h:257
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
Expr * getSubExpr()
Definition: Expr.h:3093
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
bool isGLValue() const
Definition: Expr.h:254
Describes an C or C++ initializer list.
Definition: Expr.h:4219
Address emitAddrOfRealComponent(Address complex, QualType complexType)
BinaryOperatorKind
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3318
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3041
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
bool isSimple() const
Definition: CGValue.h:251
ComplexPairTy(ComplexExprEmitter::* CompoundFunc)(const ComplexExprEmitter::BinOpInfo &)
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1118
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1211
bool isValid() const
Definition: Address.h:35
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3699
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
ConstantExpr - An expression that occurs in a constant context.
Definition: Expr.h:937
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4125
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1942
QualType getElementType() const
Definition: Type.h:2502
This represents one expression.
Definition: Expr.h:108
static Address invalid()
Definition: Address.h:34
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:65
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6831
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
unsigned getNumInits() const
Definition: Expr.h:4249
bool isAnyComplexType() const
Definition: Type.h:6389
QualType getType() const
Definition: Expr.h:130
An RAII object to record that we&#39;re evaluating a statement expression.
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:950
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1934
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4099
const Expr * getSubExpr() const
Definition: Expr.h:1898
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1550
The l-value was considered opaque, so the alignment was determined from a type.
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:978
QualType getCanonicalType() const
Definition: Type.h:6123
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5511
Encodes a location in the source.
Expr * getSubExpr() const
Definition: Expr.h:1964
CastKind getCastKind() const
Definition: Expr.h:3087
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:690
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:182
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5645
An aligned address.
Definition: Address.h:24
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3158
All available information about a concrete callee.
Definition: CGCall.h:66
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3835
QualType getType() const
Definition: CGValue.h:263
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:214
Expr * getLHS() const
Definition: Expr.h:3358
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3538
Represents a C11 generic selection.
Definition: Expr.h:5044
CGFunctionInfo - Class to encapsulate the information about a function definition.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1016
Dataflow Directional Tag Classes.
static CompoundFunc getComplexOp(BinaryOperatorKind Op)
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:92
CodeGenFunction::ComplexPairTy ComplexPairTy
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4676
const Expr * getExpr() const
Definition: ExprCXX.h:1151
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1397
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI)
Definition: Type.h:3793
Complex values, per C99 6.2.5p11.
Definition: Type.h:2489
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:278
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3574
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
bool isAtomicType() const
Definition: Type.h:6418
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4589
llvm::StringRef getName() const
Return the IR name of the pointer value.
Definition: Address.h:61
Holds information about the various types of exception specification.
Definition: Type.h:3753
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type, returning the result.
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:546
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1186
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2725
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4011
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2434
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1074
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
Expr * getRHS() const
Definition: Expr.h:3360
LValue - This represents an lvalue references.
Definition: CGValue.h:166
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4927