clang  8.0.0svn
CGExprComplex.cpp
Go to the documentation of this file.
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 #include <algorithm>
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 // Complex Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
31 
32 /// Return the complex type that we are meant to emit.
34  type = type.getCanonicalType();
35  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
36  return comp;
37  } else {
38  return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
39  }
40 }
41 
42 namespace {
43 class ComplexExprEmitter
44  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
45  CodeGenFunction &CGF;
46  CGBuilderTy &Builder;
47  bool IgnoreReal;
48  bool IgnoreImag;
49 public:
50  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
51  : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
52  }
53 
54 
55  //===--------------------------------------------------------------------===//
56  // Utilities
57  //===--------------------------------------------------------------------===//
58 
59  bool TestAndClearIgnoreReal() {
60  bool I = IgnoreReal;
61  IgnoreReal = false;
62  return I;
63  }
64  bool TestAndClearIgnoreImag() {
65  bool I = IgnoreImag;
66  IgnoreImag = false;
67  return I;
68  }
69 
70  /// EmitLoadOfLValue - Given an expression with complex type that represents a
71  /// value l-value, this method emits the address of the l-value, then loads
72  /// and returns the result.
73  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
74  return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
75  }
76 
77  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
78 
79  /// EmitStoreOfComplex - Store the specified real/imag parts into the
80  /// specified value pointer.
81  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
82 
83  /// Emit a cast from complex value Val to DestType.
84  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
85  QualType DestType, SourceLocation Loc);
86  /// Emit a cast from scalar value Val to DestType.
87  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
88  QualType DestType, SourceLocation Loc);
89 
90  //===--------------------------------------------------------------------===//
91  // Visitor Methods
92  //===--------------------------------------------------------------------===//
93 
94  ComplexPairTy Visit(Expr *E) {
95  ApplyDebugLocation DL(CGF, E);
97  }
98 
99  ComplexPairTy VisitStmt(Stmt *S) {
100  S->dump(CGF.getContext().getSourceManager());
101  llvm_unreachable("Stmt can't have complex result type!");
102  }
103  ComplexPairTy VisitExpr(Expr *S);
104  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
105  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
106  return Visit(GE->getResultExpr());
107  }
108  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
110  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
111  return Visit(PE->getReplacement());
112  }
113  ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
114  return CGF.EmitCoawaitExpr(*S).getComplexVal();
115  }
116  ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
117  return CGF.EmitCoyieldExpr(*S).getComplexVal();
118  }
119  ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
120  return Visit(E->getSubExpr());
121  }
122 
123  ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
124  Expr *E) {
125  assert(Constant && "not a constant");
126  if (Constant.isReference())
127  return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
128  E->getExprLoc());
129 
130  llvm::Constant *pair = Constant.getValue();
131  return ComplexPairTy(pair->getAggregateElement(0U),
132  pair->getAggregateElement(1U));
133  }
134 
135  // l-values.
136  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
137  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
138  return emitConstant(Constant, E);
139  return EmitLoadOfLValue(E);
140  }
141  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
142  return EmitLoadOfLValue(E);
143  }
144  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
145  return CGF.EmitObjCMessageExpr(E).getComplexVal();
146  }
147  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
148  ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
149  if (CodeGenFunction::ConstantEmission Constant =
150  CGF.tryEmitAsConstant(ME)) {
151  CGF.EmitIgnoredExpr(ME->getBase());
152  return emitConstant(Constant, ME);
153  }
154  return EmitLoadOfLValue(ME);
155  }
156  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
157  if (E->isGLValue())
158  return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
159  E->getExprLoc());
160  return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
161  }
162 
163  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
164  return CGF.EmitPseudoObjectRValue(E).getComplexVal();
165  }
166 
167  // FIXME: CompoundLiteralExpr
168 
169  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
170  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
171  // Unlike for scalars, we don't have to worry about function->ptr demotion
172  // here.
173  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
174  }
175  ComplexPairTy VisitCastExpr(CastExpr *E) {
176  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
177  CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
178  return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
179  }
180  ComplexPairTy VisitCallExpr(const CallExpr *E);
181  ComplexPairTy VisitStmtExpr(const StmtExpr *E);
182 
183  // Operators.
184  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
185  bool isInc, bool isPre) {
186  LValue LV = CGF.EmitLValue(E->getSubExpr());
187  return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
188  }
189  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
190  return VisitPrePostIncDec(E, false, false);
191  }
192  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
193  return VisitPrePostIncDec(E, true, false);
194  }
195  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
196  return VisitPrePostIncDec(E, false, true);
197  }
198  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
199  return VisitPrePostIncDec(E, true, true);
200  }
201  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
202  ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
203  TestAndClearIgnoreReal();
204  TestAndClearIgnoreImag();
205  return Visit(E->getSubExpr());
206  }
207  ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
208  ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
209  // LNot,Real,Imag never return complex.
210  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
211  return Visit(E->getSubExpr());
212  }
213  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
214  return Visit(DAE->getExpr());
215  }
216  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
218  return Visit(DIE->getExpr());
219  }
220  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
221  CGF.enterFullExpression(E);
223  ComplexPairTy Vals = Visit(E->getSubExpr());
224  // Defend against dominance problems caused by jumps out of expression
225  // evaluation through the shared cleanup block.
226  Scope.ForceCleanup({&Vals.first, &Vals.second});
227  return Vals;
228  }
229  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
230  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
231  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
232  llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
233  return ComplexPairTy(Null, Null);
234  }
235  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
236  assert(E->getType()->isAnyComplexType() && "Expected complex type!");
237  QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
238  llvm::Constant *Null =
239  llvm::Constant::getNullValue(CGF.ConvertType(Elem));
240  return ComplexPairTy(Null, Null);
241  }
242 
243  struct BinOpInfo {
244  ComplexPairTy LHS;
245  ComplexPairTy RHS;
246  QualType Ty; // Computation Type.
247  };
248 
249  BinOpInfo EmitBinOps(const BinaryOperator *E);
250  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
251  ComplexPairTy (ComplexExprEmitter::*Func)
252  (const BinOpInfo &),
253  RValue &Val);
254  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
255  ComplexPairTy (ComplexExprEmitter::*Func)
256  (const BinOpInfo &));
257 
258  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
259  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
260  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
261  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
262 
263  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
264  const BinOpInfo &Op);
265 
266  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
267  return EmitBinAdd(EmitBinOps(E));
268  }
269  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
270  return EmitBinSub(EmitBinOps(E));
271  }
272  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
273  return EmitBinMul(EmitBinOps(E));
274  }
275  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
276  return EmitBinDiv(EmitBinOps(E));
277  }
278 
279  // Compound assignments.
280  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
281  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
282  }
283  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
284  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
285  }
286  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
287  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
288  }
289  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
290  return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
291  }
292 
293  // GCC rejects rem/and/or/xor for integer complex.
294  // Logical and/or always return int, never complex.
295 
296  // No comparisons produce a complex result.
297 
298  LValue EmitBinAssignLValue(const BinaryOperator *E,
299  ComplexPairTy &Val);
300  ComplexPairTy VisitBinAssign (const BinaryOperator *E);
301  ComplexPairTy VisitBinComma (const BinaryOperator *E);
302 
303 
305  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
306  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
307 
308  ComplexPairTy VisitInitListExpr(InitListExpr *E);
309 
310  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
311  return EmitLoadOfLValue(E);
312  }
313 
314  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
315 
316  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
317  return CGF.EmitAtomicExpr(E).getComplexVal();
318  }
319 };
320 } // end anonymous namespace.
321 
322 //===----------------------------------------------------------------------===//
323 // Utilities
324 //===----------------------------------------------------------------------===//
325 
328  CharUnits offset = CharUnits::Zero();
329  return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
330 }
331 
334  QualType eltType = complexType->castAs<ComplexType>()->getElementType();
335  CharUnits offset = getContext().getTypeSizeInChars(eltType);
336  return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
337 }
338 
339 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
340 /// load the real and imaginary pieces, returning them as Real/Imag.
341 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
342  SourceLocation loc) {
343  assert(lvalue.isSimple() && "non-simple complex l-value?");
344  if (lvalue.getType()->isAtomicType())
345  return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
346 
347  Address SrcPtr = lvalue.getAddress();
348  bool isVolatile = lvalue.isVolatileQualified();
349 
350  llvm::Value *Real = nullptr, *Imag = nullptr;
351 
352  if (!IgnoreReal || isVolatile) {
353  Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
354  Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
355  }
356 
357  if (!IgnoreImag || isVolatile) {
358  Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
359  Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
360  }
361 
362  return ComplexPairTy(Real, Imag);
363 }
364 
365 /// EmitStoreOfComplex - Store the specified real/imag parts into the
366 /// specified value pointer.
367 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
368  bool isInit) {
369  if (lvalue.getType()->isAtomicType() ||
370  (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
371  return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
372 
373  Address Ptr = lvalue.getAddress();
374  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
375  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
376 
377  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
378  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
379 }
380 
381 
382 
383 //===----------------------------------------------------------------------===//
384 // Visitor Methods
385 //===----------------------------------------------------------------------===//
386 
387 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
388  CGF.ErrorUnsupported(E, "complex expression");
389  llvm::Type *EltTy =
390  CGF.ConvertType(getComplexType(E->getType())->getElementType());
391  llvm::Value *U = llvm::UndefValue::get(EltTy);
392  return ComplexPairTy(U, U);
393 }
394 
395 ComplexPairTy ComplexExprEmitter::
396 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
397  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
398  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
399 }
400 
401 
402 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
403  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
404  return EmitLoadOfLValue(E);
405 
406  return CGF.EmitCallExpr(E).getComplexVal();
407 }
408 
409 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
411  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
412  assert(RetAlloca.isValid() && "Expected complex return value");
413  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
414  E->getExprLoc());
415 }
416 
417 /// Emit a cast from complex value Val to DestType.
418 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
419  QualType SrcType,
420  QualType DestType,
421  SourceLocation Loc) {
422  // Get the src/dest element type.
423  SrcType = SrcType->castAs<ComplexType>()->getElementType();
424  DestType = DestType->castAs<ComplexType>()->getElementType();
425 
426  // C99 6.3.1.6: When a value of complex type is converted to another
427  // complex type, both the real and imaginary parts follow the conversion
428  // rules for the corresponding real types.
429  Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
430  Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
431  return Val;
432 }
433 
434 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
435  QualType SrcType,
436  QualType DestType,
437  SourceLocation Loc) {
438  // Convert the input element to the element type of the complex.
439  DestType = DestType->castAs<ComplexType>()->getElementType();
440  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
441 
442  // Return (realval, 0).
443  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
444 }
445 
446 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
447  QualType DestTy) {
448  switch (CK) {
449  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
450 
451  // Atomic to non-atomic casts may be more than a no-op for some platforms and
452  // for some types.
453  case CK_AtomicToNonAtomic:
454  case CK_NonAtomicToAtomic:
455  case CK_NoOp:
456  case CK_LValueToRValue:
457  case CK_UserDefinedConversion:
458  return Visit(Op);
459 
460  case CK_LValueBitCast: {
461  LValue origLV = CGF.EmitLValue(Op);
462  Address V = origLV.getAddress();
463  V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
464  return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
465  }
466 
467  case CK_BitCast:
468  case CK_BaseToDerived:
469  case CK_DerivedToBase:
470  case CK_UncheckedDerivedToBase:
471  case CK_Dynamic:
472  case CK_ToUnion:
473  case CK_ArrayToPointerDecay:
474  case CK_FunctionToPointerDecay:
475  case CK_NullToPointer:
476  case CK_NullToMemberPointer:
477  case CK_BaseToDerivedMemberPointer:
478  case CK_DerivedToBaseMemberPointer:
479  case CK_MemberPointerToBoolean:
480  case CK_ReinterpretMemberPointer:
481  case CK_ConstructorConversion:
482  case CK_IntegralToPointer:
483  case CK_PointerToIntegral:
484  case CK_PointerToBoolean:
485  case CK_ToVoid:
486  case CK_VectorSplat:
487  case CK_IntegralCast:
488  case CK_BooleanToSignedIntegral:
489  case CK_IntegralToBoolean:
490  case CK_IntegralToFloating:
491  case CK_FloatingToIntegral:
492  case CK_FloatingToBoolean:
493  case CK_FloatingCast:
494  case CK_CPointerToObjCPointerCast:
495  case CK_BlockPointerToObjCPointerCast:
496  case CK_AnyPointerToBlockPointerCast:
497  case CK_ObjCObjectLValueCast:
498  case CK_FloatingComplexToReal:
499  case CK_FloatingComplexToBoolean:
500  case CK_IntegralComplexToReal:
501  case CK_IntegralComplexToBoolean:
502  case CK_ARCProduceObject:
503  case CK_ARCConsumeObject:
504  case CK_ARCReclaimReturnedObject:
505  case CK_ARCExtendBlockObject:
506  case CK_CopyAndAutoreleaseBlockObject:
507  case CK_BuiltinFnToFnPtr:
508  case CK_ZeroToOCLEvent:
509  case CK_ZeroToOCLQueue:
510  case CK_AddressSpaceConversion:
511  case CK_IntToOCLSampler:
512  llvm_unreachable("invalid cast kind for complex value");
513 
514  case CK_FloatingRealToComplex:
515  case CK_IntegralRealToComplex:
516  return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
517  DestTy, Op->getExprLoc());
518 
519  case CK_FloatingComplexCast:
520  case CK_FloatingComplexToIntegralComplex:
521  case CK_IntegralComplexCast:
522  case CK_IntegralComplexToFloatingComplex:
523  return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
524  Op->getExprLoc());
525  }
526 
527  llvm_unreachable("unknown cast resulting in complex value");
528 }
529 
530 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
531  TestAndClearIgnoreReal();
532  TestAndClearIgnoreImag();
533  ComplexPairTy Op = Visit(E->getSubExpr());
534 
535  llvm::Value *ResR, *ResI;
536  if (Op.first->getType()->isFloatingPointTy()) {
537  ResR = Builder.CreateFNeg(Op.first, "neg.r");
538  ResI = Builder.CreateFNeg(Op.second, "neg.i");
539  } else {
540  ResR = Builder.CreateNeg(Op.first, "neg.r");
541  ResI = Builder.CreateNeg(Op.second, "neg.i");
542  }
543  return ComplexPairTy(ResR, ResI);
544 }
545 
546 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
547  TestAndClearIgnoreReal();
548  TestAndClearIgnoreImag();
549  // ~(a+ib) = a + i*-b
550  ComplexPairTy Op = Visit(E->getSubExpr());
551  llvm::Value *ResI;
552  if (Op.second->getType()->isFloatingPointTy())
553  ResI = Builder.CreateFNeg(Op.second, "conj.i");
554  else
555  ResI = Builder.CreateNeg(Op.second, "conj.i");
556 
557  return ComplexPairTy(Op.first, ResI);
558 }
559 
560 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
561  llvm::Value *ResR, *ResI;
562 
563  if (Op.LHS.first->getType()->isFloatingPointTy()) {
564  ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
565  if (Op.LHS.second && Op.RHS.second)
566  ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
567  else
568  ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
569  assert(ResI && "Only one operand may be real!");
570  } else {
571  ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
572  assert(Op.LHS.second && Op.RHS.second &&
573  "Both operands of integer complex operators must be complex!");
574  ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
575  }
576  return ComplexPairTy(ResR, ResI);
577 }
578 
579 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
580  llvm::Value *ResR, *ResI;
581  if (Op.LHS.first->getType()->isFloatingPointTy()) {
582  ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
583  if (Op.LHS.second && Op.RHS.second)
584  ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
585  else
586  ResI = Op.LHS.second ? Op.LHS.second
587  : Builder.CreateFNeg(Op.RHS.second, "sub.i");
588  assert(ResI && "Only one operand may be real!");
589  } else {
590  ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
591  assert(Op.LHS.second && Op.RHS.second &&
592  "Both operands of integer complex operators must be complex!");
593  ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
594  }
595  return ComplexPairTy(ResR, ResI);
596 }
597 
598 /// Emit a libcall for a binary operation on complex types.
599 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
600  const BinOpInfo &Op) {
601  CallArgList Args;
602  Args.add(RValue::get(Op.LHS.first),
603  Op.Ty->castAs<ComplexType>()->getElementType());
604  Args.add(RValue::get(Op.LHS.second),
605  Op.Ty->castAs<ComplexType>()->getElementType());
606  Args.add(RValue::get(Op.RHS.first),
607  Op.Ty->castAs<ComplexType>()->getElementType());
608  Args.add(RValue::get(Op.RHS.second),
609  Op.Ty->castAs<ComplexType>()->getElementType());
610 
611  // We *must* use the full CG function call building logic here because the
612  // complex type has special ABI handling. We also should not forget about
613  // special calling convention which may be used for compiler builtins.
614 
615  // We create a function qualified type to state that this call does not have
616  // any exceptions.
618  EPI = EPI.withExceptionSpec(
620  SmallVector<QualType, 4> ArgsQTys(
621  4, Op.Ty->castAs<ComplexType>()->getElementType());
622  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
623  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
624  Args, cast<FunctionType>(FQTy.getTypePtr()), false);
625 
626  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
627  llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
628  CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
629 
630  llvm::Instruction *Call;
631  RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
632  cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getRuntimeCC());
633  return Res.getComplexVal();
634 }
635 
636 /// Lookup the libcall name for a given floating point type complex
637 /// multiply.
639  switch (Ty->getTypeID()) {
640  default:
641  llvm_unreachable("Unsupported floating point type!");
642  case llvm::Type::HalfTyID:
643  return "__mulhc3";
644  case llvm::Type::FloatTyID:
645  return "__mulsc3";
646  case llvm::Type::DoubleTyID:
647  return "__muldc3";
648  case llvm::Type::PPC_FP128TyID:
649  return "__multc3";
650  case llvm::Type::X86_FP80TyID:
651  return "__mulxc3";
652  case llvm::Type::FP128TyID:
653  return "__multc3";
654  }
655 }
656 
657 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
658 // typed values.
659 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
660  using llvm::Value;
661  Value *ResR, *ResI;
662  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
663 
664  if (Op.LHS.first->getType()->isFloatingPointTy()) {
665  // The general formulation is:
666  // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
667  //
668  // But we can fold away components which would be zero due to a real
669  // operand according to C11 Annex G.5.1p2.
670  // FIXME: C11 also provides for imaginary types which would allow folding
671  // still more of this within the type system.
672 
673  if (Op.LHS.second && Op.RHS.second) {
674  // If both operands are complex, emit the core math directly, and then
675  // test for NaNs. If we find NaNs in the result, we delegate to a libcall
676  // to carefully re-compute the correct infinity representation if
677  // possible. The expectation is that the presence of NaNs here is
678  // *extremely* rare, and so the cost of the libcall is almost irrelevant.
679  // This is good, because the libcall re-computes the core multiplication
680  // exactly the same as we do here and re-tests for NaNs in order to be
681  // a generic complex*complex libcall.
682 
683  // First compute the four products.
684  Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
685  Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
686  Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
687  Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
688 
689  // The real part is the difference of the first two, the imaginary part is
690  // the sum of the second.
691  ResR = Builder.CreateFSub(AC, BD, "mul_r");
692  ResI = Builder.CreateFAdd(AD, BC, "mul_i");
693 
694  // Emit the test for the real part becoming NaN and create a branch to
695  // handle it. We test for NaN by comparing the number to itself.
696  Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
697  llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
698  llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
699  llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
700  llvm::BasicBlock *OrigBB = Branch->getParent();
701 
702  // Give hint that we very much don't expect to see NaNs.
703  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
704  llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
705  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
706 
707  // Now test the imaginary part and create its branch.
708  CGF.EmitBlock(INaNBB);
709  Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
710  llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
711  Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
712  Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
713 
714  // Now emit the libcall on this slowest of the slow paths.
715  CGF.EmitBlock(LibCallBB);
716  Value *LibCallR, *LibCallI;
717  std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
718  getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
719  Builder.CreateBr(ContBB);
720 
721  // Finally continue execution by phi-ing together the different
722  // computation paths.
723  CGF.EmitBlock(ContBB);
724  llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
725  RealPHI->addIncoming(ResR, OrigBB);
726  RealPHI->addIncoming(ResR, INaNBB);
727  RealPHI->addIncoming(LibCallR, LibCallBB);
728  llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
729  ImagPHI->addIncoming(ResI, OrigBB);
730  ImagPHI->addIncoming(ResI, INaNBB);
731  ImagPHI->addIncoming(LibCallI, LibCallBB);
732  return ComplexPairTy(RealPHI, ImagPHI);
733  }
734  assert((Op.LHS.second || Op.RHS.second) &&
735  "At least one operand must be complex!");
736 
737  // If either of the operands is a real rather than a complex, the
738  // imaginary component is ignored when computing the real component of the
739  // result.
740  ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
741 
742  ResI = Op.LHS.second
743  ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
744  : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
745  } else {
746  assert(Op.LHS.second && Op.RHS.second &&
747  "Both operands of integer complex operators must be complex!");
748  Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
749  Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
750  ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
751 
752  Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
753  Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
754  ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
755  }
756  return ComplexPairTy(ResR, ResI);
757 }
758 
759 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
760 // typed values.
761 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
762  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
763  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
764 
765  llvm::Value *DSTr, *DSTi;
766  if (LHSr->getType()->isFloatingPointTy()) {
767  // If we have a complex operand on the RHS and FastMath is not allowed, we
768  // delegate to a libcall to handle all of the complexities and minimize
769  // underflow/overflow cases. When FastMath is allowed we construct the
770  // divide inline using the same algorithm as for integer operands.
771  //
772  // FIXME: We would be able to avoid the libcall in many places if we
773  // supported imaginary types in addition to complex types.
774  if (RHSi && !CGF.getLangOpts().FastMath) {
775  BinOpInfo LibCallOp = Op;
776  // If LHS was a real, supply a null imaginary part.
777  if (!LHSi)
778  LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
779 
780  switch (LHSr->getType()->getTypeID()) {
781  default:
782  llvm_unreachable("Unsupported floating point type!");
783  case llvm::Type::HalfTyID:
784  return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
785  case llvm::Type::FloatTyID:
786  return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
787  case llvm::Type::DoubleTyID:
788  return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
789  case llvm::Type::PPC_FP128TyID:
790  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
791  case llvm::Type::X86_FP80TyID:
792  return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
793  case llvm::Type::FP128TyID:
794  return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
795  }
796  } else if (RHSi) {
797  if (!LHSi)
798  LHSi = llvm::Constant::getNullValue(RHSi->getType());
799 
800  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
801  llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
802  llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
803  llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
804 
805  llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
806  llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
807  llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
808 
809  llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
810  llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
811  llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
812 
813  DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
814  DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
815  } else {
816  assert(LHSi && "Can have at most one non-complex operand!");
817 
818  DSTr = Builder.CreateFDiv(LHSr, RHSr);
819  DSTi = Builder.CreateFDiv(LHSi, RHSr);
820  }
821  } else {
822  assert(Op.LHS.second && Op.RHS.second &&
823  "Both operands of integer complex operators must be complex!");
824  // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
825  llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
826  llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
827  llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
828 
829  llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
830  llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
831  llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
832 
833  llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
834  llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
835  llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
836 
837  if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
838  DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
839  DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
840  } else {
841  DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
842  DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
843  }
844  }
845 
846  return ComplexPairTy(DSTr, DSTi);
847 }
848 
849 ComplexExprEmitter::BinOpInfo
850 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
851  TestAndClearIgnoreReal();
852  TestAndClearIgnoreImag();
853  BinOpInfo Ops;
854  if (E->getLHS()->getType()->isRealFloatingType())
855  Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
856  else
857  Ops.LHS = Visit(E->getLHS());
858  if (E->getRHS()->getType()->isRealFloatingType())
859  Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
860  else
861  Ops.RHS = Visit(E->getRHS());
862 
863  Ops.Ty = E->getType();
864  return Ops;
865 }
866 
867 
868 LValue ComplexExprEmitter::
869 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
870  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
871  RValue &Val) {
872  TestAndClearIgnoreReal();
873  TestAndClearIgnoreImag();
874  QualType LHSTy = E->getLHS()->getType();
875  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
876  LHSTy = AT->getValueType();
877 
878  BinOpInfo OpInfo;
879 
880  // Load the RHS and LHS operands.
881  // __block variables need to have the rhs evaluated first, plus this should
882  // improve codegen a little.
883  OpInfo.Ty = E->getComputationResultType();
884  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
885 
886  // The RHS should have been converted to the computation type.
887  if (E->getRHS()->getType()->isRealFloatingType()) {
888  assert(
889  CGF.getContext()
890  .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
891  OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
892  } else {
893  assert(CGF.getContext()
894  .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
895  OpInfo.RHS = Visit(E->getRHS());
896  }
897 
898  LValue LHS = CGF.EmitLValue(E->getLHS());
899 
900  // Load from the l-value and convert it.
901  SourceLocation Loc = E->getExprLoc();
902  if (LHSTy->isAnyComplexType()) {
903  ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
904  OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
905  } else {
906  llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
907  // For floating point real operands we can directly pass the scalar form
908  // to the binary operator emission and potentially get more efficient code.
909  if (LHSTy->isRealFloatingType()) {
910  if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
911  LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
912  OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
913  } else {
914  OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
915  }
916  }
917 
918  // Expand the binary operator.
919  ComplexPairTy Result = (this->*Func)(OpInfo);
920 
921  // Truncate the result and store it into the LHS lvalue.
922  if (LHSTy->isAnyComplexType()) {
923  ComplexPairTy ResVal =
924  EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
925  EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
926  Val = RValue::getComplex(ResVal);
927  } else {
928  llvm::Value *ResVal =
929  CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
930  CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
931  Val = RValue::get(ResVal);
932  }
933 
934  return LHS;
935 }
936 
937 // Compound assignments.
938 ComplexPairTy ComplexExprEmitter::
939 EmitCompoundAssign(const CompoundAssignOperator *E,
940  ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
941  RValue Val;
942  LValue LV = EmitCompoundAssignLValue(E, Func, Val);
943 
944  // The result of an assignment in C is the assigned r-value.
945  if (!CGF.getLangOpts().CPlusPlus)
946  return Val.getComplexVal();
947 
948  // If the lvalue is non-volatile, return the computed value of the assignment.
949  if (!LV.isVolatileQualified())
950  return Val.getComplexVal();
951 
952  return EmitLoadOfLValue(LV, E->getExprLoc());
953 }
954 
955 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
956  ComplexPairTy &Val) {
957  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
958  E->getRHS()->getType()) &&
959  "Invalid assignment");
960  TestAndClearIgnoreReal();
961  TestAndClearIgnoreImag();
962 
963  // Emit the RHS. __block variables need the RHS evaluated first.
964  Val = Visit(E->getRHS());
965 
966  // Compute the address to store into.
967  LValue LHS = CGF.EmitLValue(E->getLHS());
968 
969  // Store the result value into the LHS lvalue.
970  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
971 
972  return LHS;
973 }
974 
975 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
976  ComplexPairTy Val;
977  LValue LV = EmitBinAssignLValue(E, Val);
978 
979  // The result of an assignment in C is the assigned r-value.
980  if (!CGF.getLangOpts().CPlusPlus)
981  return Val;
982 
983  // If the lvalue is non-volatile, return the computed value of the assignment.
984  if (!LV.isVolatileQualified())
985  return Val;
986 
987  return EmitLoadOfLValue(LV, E->getExprLoc());
988 }
989 
990 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
991  CGF.EmitIgnoredExpr(E->getLHS());
992  return Visit(E->getRHS());
993 }
994 
995 ComplexPairTy ComplexExprEmitter::
996 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
997  TestAndClearIgnoreReal();
998  TestAndClearIgnoreImag();
999  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1000  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1001  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1002 
1003  // Bind the common expression if necessary.
1004  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1005 
1006 
1008  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1009  CGF.getProfileCount(E));
1010 
1011  eval.begin(CGF);
1012  CGF.EmitBlock(LHSBlock);
1013  CGF.incrementProfileCounter(E);
1014  ComplexPairTy LHS = Visit(E->getTrueExpr());
1015  LHSBlock = Builder.GetInsertBlock();
1016  CGF.EmitBranch(ContBlock);
1017  eval.end(CGF);
1018 
1019  eval.begin(CGF);
1020  CGF.EmitBlock(RHSBlock);
1021  ComplexPairTy RHS = Visit(E->getFalseExpr());
1022  RHSBlock = Builder.GetInsertBlock();
1023  CGF.EmitBlock(ContBlock);
1024  eval.end(CGF);
1025 
1026  // Create a PHI node for the real part.
1027  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1028  RealPN->addIncoming(LHS.first, LHSBlock);
1029  RealPN->addIncoming(RHS.first, RHSBlock);
1030 
1031  // Create a PHI node for the imaginary part.
1032  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1033  ImagPN->addIncoming(LHS.second, LHSBlock);
1034  ImagPN->addIncoming(RHS.second, RHSBlock);
1035 
1036  return ComplexPairTy(RealPN, ImagPN);
1037 }
1038 
1039 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1040  return Visit(E->getChosenSubExpr());
1041 }
1042 
1043 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1044  bool Ignore = TestAndClearIgnoreReal();
1045  (void)Ignore;
1046  assert (Ignore == false && "init list ignored");
1047  Ignore = TestAndClearIgnoreImag();
1048  (void)Ignore;
1049  assert (Ignore == false && "init list ignored");
1050 
1051  if (E->getNumInits() == 2) {
1052  llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1053  llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1054  return ComplexPairTy(Real, Imag);
1055  } else if (E->getNumInits() == 1) {
1056  return Visit(E->getInit(0));
1057  }
1058 
1059  // Empty init list initializes to null
1060  assert(E->getNumInits() == 0 && "Unexpected number of inits");
1061  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1062  llvm::Type* LTy = CGF.ConvertType(Ty);
1063  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1064  return ComplexPairTy(zeroConstant, zeroConstant);
1065 }
1066 
1067 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1068  Address ArgValue = Address::invalid();
1069  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1070 
1071  if (!ArgPtr.isValid()) {
1072  CGF.ErrorUnsupported(E, "complex va_arg expression");
1073  llvm::Type *EltTy =
1074  CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1075  llvm::Value *U = llvm::UndefValue::get(EltTy);
1076  return ComplexPairTy(U, U);
1077  }
1078 
1079  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1080  E->getExprLoc());
1081 }
1082 
1083 //===----------------------------------------------------------------------===//
1084 // Entry Point into this File
1085 //===----------------------------------------------------------------------===//
1086 
1087 /// EmitComplexExpr - Emit the computation of the specified expression of
1088 /// complex type, ignoring the result.
1090  bool IgnoreImag) {
1091  assert(E && getComplexType(E->getType()) &&
1092  "Invalid complex expression to emit");
1093 
1094  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1095  .Visit(const_cast<Expr *>(E));
1096 }
1097 
1099  bool isInit) {
1100  assert(E && getComplexType(E->getType()) &&
1101  "Invalid complex expression to emit");
1102  ComplexExprEmitter Emitter(*this);
1103  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1104  Emitter.EmitStoreOfComplex(Val, dest, isInit);
1105 }
1106 
1107 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1109  bool isInit) {
1110  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1111 }
1112 
1113 /// EmitLoadOfComplex - Load a complex number from the specified address.
1115  SourceLocation loc) {
1116  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1117 }
1118 
1120  assert(E->getOpcode() == BO_Assign);
1121  ComplexPairTy Val; // ignored
1122  return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1123 }
1124 
1125 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1126  const ComplexExprEmitter::BinOpInfo &);
1127 
1129  switch (Op) {
1130  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1131  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1132  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1133  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1134  default:
1135  llvm_unreachable("unexpected complex compound assignment");
1136  }
1137 }
1138 
1141  CompoundFunc Op = getComplexOp(E->getOpcode());
1142  RValue Val;
1143  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1144 }
1145 
1148  llvm::Value *&Result) {
1149  CompoundFunc Op = getComplexOp(E->getOpcode());
1150  RValue Val;
1151  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1152  Result = Val.getScalarVal();
1153  return Ret;
1154 }
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4045
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E)
A (possibly-)qualified type.
Definition: Type.h:640
CompoundStmt * getSubStmt()
Definition: Expr.h:3820
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4284
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1941
Expr * getBase() const
Definition: Expr.h:2686
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty)
Lookup the libcall name for a given floating point type complex multiply.
Opcode getOpcode() const
Definition: Expr.h:3304
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1805
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
const Expr * getResultExpr() const
The generic selection&#39;s result expression.
Definition: Expr.h:5196
const Expr * getSubExpr() const
Definition: Expr.h:1589
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1888
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2854
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6530
Extra information about a function prototype.
Definition: Type.h:3555
LValue EmitComplexAssignmentLValue(const BinaryOperator *E)
Emit an l-value for an assignment (simple or compound) of complex type.
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3269
Address emitAddrOfImagComponent(Address complex, QualType complexType)
void add(RValue rvalue, QualType type)
Definition: CGCall.h:285
An object to manage conditionally-evaluated expressions.
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
Address getAddress() const
Definition: CGValue.h:327
QualType getComputationResultType() const
Definition: Expr.h:3509
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
bool isVolatileQualified() const
Definition: CGValue.h:258
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
Expr * getSubExpr()
Definition: Expr.h:3000
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
bool isGLValue() const
Definition: Expr.h:252
Describes an C or C++ initializer list.
Definition: Expr.h:4236
Address emitAddrOfRealComponent(Address complex, QualType complexType)
BinaryOperatorKind
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3263
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2935
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
bool isSimple() const
Definition: CGValue.h:252
ComplexPairTy(ComplexExprEmitter::* CompoundFunc)(const ComplexExprEmitter::BinOpInfo &)
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1159
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1266
bool isValid() const
Definition: Address.h:36
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3436
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4134
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1993
QualType getElementType() const
Definition: Type.h:2350
Expr - This represents one expression.
Definition: Expr.h:106
static Address invalid()
Definition: Address.h:35
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:66
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6593
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:134
unsigned getNumInits() const
Definition: Expr.h:4266
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O)
Definition: Type.h:3570
bool isAnyComplexType() const
Definition: Type.h:6198
QualType getType() const
Definition: Expr.h:128
An RAII object to record that we&#39;re evaluating a statement expression.
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:992
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1865
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4171
const Expr * getSubExpr() const
Definition: Expr.h:1821
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1577
The l-value was considered opaque, so the alignment was determined from a type.
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:875
QualType getCanonicalType() const
Definition: Type.h:5932
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5441
Encodes a location in the source.
Expr * getSubExpr() const
Definition: Expr.h:1892
CastKind getCastKind() const
Definition: Expr.h:2994
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:658
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:186
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5583
An aligned address.
Definition: Address.h:25
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3069
All available information about a concrete callee.
Definition: CGCall.h:67
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3804
QualType getType() const
Definition: CGValue.h:264
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3307
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3483
Represents a C11 generic selection.
Definition: Expr.h:5120
CGFunctionInfo - Class to encapsulate the information about a function definition.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:921
Dataflow Directional Tag Classes.
static CompoundFunc getComplexOp(BinaryOperatorKind Op)
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:93
CodeGenFunction::ComplexPairTy ComplexPairTy
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4771
const Expr * getExpr() const
Definition: ExprCXX.h:1194
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1342
Complex values, per C99 6.2.5p11.
Definition: Type.h:2337
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:2793
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3519
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
bool isAtomicType() const
Definition: Type.h:6227
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4680
llvm::StringRef getName() const
Return the IR name of the pointer value.
Definition: Address.h:62
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:3300
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type, returning the result.
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:577
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1238
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2596
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4004
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2406
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:980
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
Expr * getRHS() const
Definition: Expr.h:3309
LValue - This represents an lvalue references.
Definition: CGValue.h:167
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5000