clang  17.0.0git
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 #include <optional>
45 
46 namespace llvm {
47 class BasicBlock;
48 class LLVMContext;
49 class MDNode;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 class OMPUseDevicePtrClause;
80 class OMPUseDeviceAddrClause;
81 class SVETypeFlags;
82 class OMPExecutableDirective;
83 
84 namespace analyze_os_log {
85 class OSLogBufferLayout;
86 }
87 
88 namespace CodeGen {
89 class CodeGenTypes;
90 class CGCallee;
91 class CGFunctionInfo;
92 class CGBlockInfo;
93 class CGCXXABI;
94 class BlockByrefHelpers;
95 class BlockByrefInfo;
96 class BlockFieldFlags;
97 class RegionCodeGenTy;
98 class TargetCodeGenInfo;
99 struct OMPTaskDataTy;
100 struct CGCoroData;
101 
102 /// The kind of evaluation to perform on values of a particular
103 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
104 /// CGExprAgg?
105 ///
106 /// TODO: should vectors maybe be split out into their own thing?
111 };
112 
113 #define LIST_SANITIZER_CHECKS \
114  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
115  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
116  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
117  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
118  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
119  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
120  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \
121  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \
122  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
123  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \
124  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
125  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
126  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
127  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
128  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
129  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
130  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
131  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
132  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
133  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
134  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
135  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
136  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
137  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \
138  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
139 
141 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
143 #undef SANITIZER_CHECK
144 };
145 
146 /// Helper class with most of the code for saving a value for a
147 /// conditional expression cleanup.
149  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
150 
151  /// Answer whether the given value needs extra work to be saved.
152  static bool needsSaving(llvm::Value *value) {
153  // If it's not an instruction, we don't need to save.
154  if (!isa<llvm::Instruction>(value)) return false;
155 
156  // If it's an instruction in the entry block, we don't need to save.
157  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
158  return (block != &block->getParent()->getEntryBlock());
159  }
160 
161  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
162  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
163 };
164 
165 /// A partial specialization of DominatingValue for llvm::Values that
166 /// might be llvm::Instructions.
167 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
168  typedef T *type;
169  static type restore(CodeGenFunction &CGF, saved_type value) {
170  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
171  }
172 };
173 
174 /// A specialization of DominatingValue for Address.
175 template <> struct DominatingValue<Address> {
176  typedef Address type;
177 
178  struct saved_type {
180  llvm::Type *ElementType;
182  };
183 
184  static bool needsSaving(type value) {
186  }
187  static saved_type save(CodeGenFunction &CGF, type value) {
188  return { DominatingLLVMValue::save(CGF, value.getPointer()),
189  value.getElementType(), value.getAlignment() };
190  }
191  static type restore(CodeGenFunction &CGF, saved_type value) {
192  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
193  value.ElementType, value.Alignment);
194  }
195 };
196 
197 /// A specialization of DominatingValue for RValue.
198 template <> struct DominatingValue<RValue> {
199  typedef RValue type;
200  class saved_type {
201  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
202  AggregateAddress, ComplexAddress };
203 
204  llvm::Value *Value;
205  llvm::Type *ElementType;
206  unsigned K : 3;
207  unsigned Align : 29;
208  saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
209  : Value(v), ElementType(e), K(k), Align(a) {}
210 
211  public:
212  static bool needsSaving(RValue value);
213  static saved_type save(CodeGenFunction &CGF, RValue value);
215 
216  // implementations in CGCleanup.cpp
217  };
218 
219  static bool needsSaving(type value) {
220  return saved_type::needsSaving(value);
221  }
222  static saved_type save(CodeGenFunction &CGF, type value) {
223  return saved_type::save(CGF, value);
224  }
225  static type restore(CodeGenFunction &CGF, saved_type value) {
226  return value.restore(CGF);
227  }
228 };
229 
230 /// CodeGenFunction - This class organizes the per-function state that is used
231 /// while generating LLVM code.
233  CodeGenFunction(const CodeGenFunction &) = delete;
234  void operator=(const CodeGenFunction &) = delete;
235 
236  friend class CGCXXABI;
237 public:
238  /// A jump destination is an abstract label, branching to which may
239  /// require a jump out through normal cleanups.
240  struct JumpDest {
241  JumpDest() : Block(nullptr), Index(0) {}
242  JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
243  unsigned Index)
244  : Block(Block), ScopeDepth(Depth), Index(Index) {}
245 
246  bool isValid() const { return Block != nullptr; }
247  llvm::BasicBlock *getBlock() const { return Block; }
248  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
249  unsigned getDestIndex() const { return Index; }
250 
251  // This should be used cautiously.
253  ScopeDepth = depth;
254  }
255 
256  private:
257  llvm::BasicBlock *Block;
259  unsigned Index;
260  };
261 
262  CodeGenModule &CGM; // Per-module state.
264 
265  // For EH/SEH outlined funclets, this field points to parent's CGF
267 
268  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
271 
272  // Stores variables for which we can't generate correct lifetime markers
273  // because of jumps.
275 
276  /// List of recently emitted OMPCanonicalLoops.
277  ///
278  /// Since OMPCanonicalLoops are nested inside other statements (in particular
279  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
280  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
281  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
282  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
283  /// this stack when done. Entering a new loop requires clearing this list; it
284  /// either means we start parsing a new loop nest (in which case the previous
285  /// loop nest goes out of scope) or a second loop in the same level in which
286  /// case it would be ambiguous into which of the two (or more) loops the loop
287  /// nest would extend.
289 
290  /// Number of nested loop to be consumed by the last surrounding
291  /// loop-associated directive.
293 
294  // CodeGen lambda for loops and support for ordered clause
295  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
296  JumpDest)>
298  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
299  const unsigned, const bool)>
301 
302  // Codegen lambda for loop bounds in worksharing loop constructs
303  typedef llvm::function_ref<std::pair<LValue, LValue>(
306 
307  // Codegen lambda for loop bounds in dispatch-based loop implementation
308  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
310  Address UB)>
312 
313  /// CGBuilder insert helper. This function is called after an
314  /// instruction is created using Builder.
315  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
316  llvm::BasicBlock *BB,
317  llvm::BasicBlock::iterator InsertPt) const;
318 
319  /// CurFuncDecl - Holds the Decl for the current outermost
320  /// non-closure context.
322  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
326  llvm::Function *CurFn = nullptr;
327 
328  /// Save Parameter Decl for coroutine.
330 
331  // Holds coroutine data if the current function is a coroutine. We use a
332  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
333  // in this header.
334  struct CGCoroInfo {
335  std::unique_ptr<CGCoroData> Data;
336  CGCoroInfo();
337  ~CGCoroInfo();
338  };
340 
341  bool isCoroutine() const {
342  return CurCoro.Data != nullptr;
343  }
344 
345  /// CurGD - The GlobalDecl for the current function being compiled.
347 
348  /// PrologueCleanupDepth - The cleanup depth enclosing all the
349  /// cleanups associated with the parameters.
351 
352  /// ReturnBlock - Unified return block.
354 
355  /// ReturnValue - The temporary alloca to hold the return
356  /// value. This is invalid iff the function has no return value.
358 
359  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
360  /// This is invalid if sret is not in use.
362 
363  /// If a return statement is being visited, this holds the return statment's
364  /// result expression.
365  const Expr *RetExpr = nullptr;
366 
367  /// Return true if a label was seen in the current scope.
369  if (CurLexicalScope)
370  return CurLexicalScope->hasLabels();
371  return !LabelMap.empty();
372  }
373 
374  /// AllocaInsertPoint - This is an instruction in the entry block before which
375  /// we prefer to insert allocas.
376  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
377 
378 private:
379  /// PostAllocaInsertPt - This is a place in the prologue where code can be
380  /// inserted that will be dominated by all the static allocas. This helps
381  /// achieve two things:
382  /// 1. Contiguity of all static allocas (within the prologue) is maintained.
383  /// 2. All other prologue code (which are dominated by static allocas) do
384  /// appear in the source order immediately after all static allocas.
385  ///
386  /// PostAllocaInsertPt will be lazily created when it is *really* required.
387  llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
388 
389 public:
390  /// Return PostAllocaInsertPt. If it is not yet created, then insert it
391  /// immediately after AllocaInsertPt.
392  llvm::Instruction *getPostAllocaInsertPoint() {
393  if (!PostAllocaInsertPt) {
394  assert(AllocaInsertPt &&
395  "Expected static alloca insertion point at function prologue");
396  assert(AllocaInsertPt->getParent()->isEntryBlock() &&
397  "EBB should be entry block of the current code gen function");
398  PostAllocaInsertPt = AllocaInsertPt->clone();
399  PostAllocaInsertPt->setName("postallocapt");
400  PostAllocaInsertPt->insertAfter(AllocaInsertPt);
401  }
402 
403  return PostAllocaInsertPt;
404  }
405 
406  /// API for captured statement code generation.
408  public:
410  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
411  explicit CGCapturedStmtInfo(const CapturedStmt &S,
413  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
414 
416  S.getCapturedRecordDecl()->field_begin();
417  for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
418  E = S.capture_end();
419  I != E; ++I, ++Field) {
420  if (I->capturesThis())
421  CXXThisFieldDecl = *Field;
422  else if (I->capturesVariable())
423  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
424  else if (I->capturesVariableByCopy())
425  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
426  }
427  }
428 
429  virtual ~CGCapturedStmtInfo();
430 
431  CapturedRegionKind getKind() const { return Kind; }
432 
433  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
434  // Retrieve the value of the context parameter.
435  virtual llvm::Value *getContextValue() const { return ThisValue; }
436 
437  /// Lookup the captured field decl for a variable.
438  virtual const FieldDecl *lookup(const VarDecl *VD) const {
439  return CaptureFields.lookup(VD->getCanonicalDecl());
440  }
441 
442  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
443  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
444 
445  static bool classof(const CGCapturedStmtInfo *) {
446  return true;
447  }
448 
449  /// Emit the captured statement body.
450  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
452  CGF.EmitStmt(S);
453  }
454 
455  /// Get the name of the capture helper.
456  virtual StringRef getHelperName() const { return "__captured_stmt"; }
457 
458  /// Get the CaptureFields
459  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
460  return CaptureFields;
461  }
462 
463  private:
464  /// The kind of captured statement being generated.
465  CapturedRegionKind Kind;
466 
467  /// Keep the map between VarDecl and FieldDecl.
468  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
469 
470  /// The base address of the captured record, passed in as the first
471  /// argument of the parallel region function.
472  llvm::Value *ThisValue;
473 
474  /// Captured 'this' type.
475  FieldDecl *CXXThisFieldDecl;
476  };
478 
479  /// RAII for correct setting/restoring of CapturedStmtInfo.
481  private:
482  CodeGenFunction &CGF;
483  CGCapturedStmtInfo *PrevCapturedStmtInfo;
484  public:
486  CGCapturedStmtInfo *NewCapturedStmtInfo)
487  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
488  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
489  }
490  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
491  };
492 
493  /// An abstract representation of regular/ObjC call/message targets.
495  /// The function declaration of the callee.
496  const Decl *CalleeDecl;
497 
498  public:
499  AbstractCallee() : CalleeDecl(nullptr) {}
500  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
501  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
502  bool hasFunctionDecl() const {
503  return isa_and_nonnull<FunctionDecl>(CalleeDecl);
504  }
505  const Decl *getDecl() const { return CalleeDecl; }
506  unsigned getNumParams() const {
507  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
508  return FD->getNumParams();
509  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
510  }
511  const ParmVarDecl *getParamDecl(unsigned I) const {
512  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
513  return FD->getParamDecl(I);
514  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
515  }
516  };
517 
518  /// Sanitizers enabled for this function.
520 
521  /// True if CodeGen currently emits code implementing sanitizer checks.
522  bool IsSanitizerScope = false;
523 
524  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
526  CodeGenFunction *CGF;
527  public:
529  ~SanitizerScope();
530  };
531 
532  /// In C++, whether we are code generating a thunk. This controls whether we
533  /// should emit cleanups.
534  bool CurFuncIsThunk = false;
535 
536  /// In ARC, whether we should autorelease the return value.
537  bool AutoreleaseResult = false;
538 
539  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
540  /// potentially set the return value.
541  bool SawAsmBlock = false;
542 
544 
545  /// True if the current function is an outlined SEH helper. This can be a
546  /// finally block or filter expression.
547  bool IsOutlinedSEHHelper = false;
548 
549  /// True if CodeGen currently emits code inside presereved access index
550  /// region.
551  bool IsInPreservedAIRegion = false;
552 
553  /// True if the current statement has nomerge attribute.
555 
556  /// True if the current statement has noinline attribute.
558 
559  /// True if the current statement has always_inline attribute.
561 
562  // The CallExpr within the current statement that the musttail attribute
563  // applies to. nullptr if there is no 'musttail' on the current statement.
564  const CallExpr *MustTailCall = nullptr;
565 
566  /// Returns true if a function must make progress, which means the
567  /// mustprogress attribute can be added.
569  if (CGM.getCodeGenOpts().getFiniteLoops() ==
570  CodeGenOptions::FiniteLoopsKind::Never)
571  return false;
572 
573  // C++11 and later guarantees that a thread eventually will do one of the
574  // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
575  // - terminate,
576  // - make a call to a library I/O function,
577  // - perform an access through a volatile glvalue, or
578  // - perform a synchronization operation or an atomic operation.
579  //
580  // Hence each function is 'mustprogress' in C++11 or later.
581  return getLangOpts().CPlusPlus11;
582  }
583 
584  /// Returns true if a loop must make progress, which means the mustprogress
585  /// attribute can be added. \p HasConstantCond indicates whether the branch
586  /// condition is a known constant.
587  bool checkIfLoopMustProgress(bool HasConstantCond) {
588  if (CGM.getCodeGenOpts().getFiniteLoops() ==
589  CodeGenOptions::FiniteLoopsKind::Always)
590  return true;
591  if (CGM.getCodeGenOpts().getFiniteLoops() ==
592  CodeGenOptions::FiniteLoopsKind::Never)
593  return false;
594 
595  // If the containing function must make progress, loops also must make
596  // progress (as in C++11 and later).
598  return true;
599 
600  // Now apply rules for plain C (see 6.8.5.6 in C11).
601  // Loops with constant conditions do not have to make progress in any C
602  // version.
603  if (HasConstantCond)
604  return false;
605 
606  // Loops with non-constant conditions must make progress in C11 and later.
607  return getLangOpts().C11;
608  }
609 
610  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
611  llvm::Value *BlockPointer = nullptr;
612 
613  llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
615 
616  /// A mapping from NRVO variables to the flags used to indicate
617  /// when the NRVO has been applied to this variable.
618  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
619 
623 
624  llvm::Instruction *CurrentFuncletPad = nullptr;
625 
626  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
627  bool isRedundantBeforeReturn() override { return true; }
628 
629  llvm::Value *Addr;
630  llvm::Value *Size;
631 
632  public:
633  CallLifetimeEnd(Address addr, llvm::Value *size)
634  : Addr(addr.getPointer()), Size(size) {}
635 
636  void Emit(CodeGenFunction &CGF, Flags flags) override {
637  CGF.EmitLifetimeEnd(Size, Addr);
638  }
639  };
640 
641  /// Header for data within LifetimeExtendedCleanupStack.
643  /// The size of the following cleanup object.
644  unsigned Size;
645  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
646  unsigned Kind : 31;
647  /// Whether this is a conditional cleanup.
648  unsigned IsConditional : 1;
649 
650  size_t getSize() const { return Size; }
651  CleanupKind getKind() const { return (CleanupKind)Kind; }
652  bool isConditional() const { return IsConditional; }
653  };
654 
655  /// i32s containing the indexes of the cleanup destinations.
657 
658  unsigned NextCleanupDestIndex = 1;
659 
660  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
661  llvm::BasicBlock *EHResumeBlock = nullptr;
662 
663  /// The exception slot. All landing pads write the current exception pointer
664  /// into this alloca.
665  llvm::Value *ExceptionSlot = nullptr;
666 
667  /// The selector slot. Under the MandatoryCleanup model, all landing pads
668  /// write the current selector value into this alloca.
669  llvm::AllocaInst *EHSelectorSlot = nullptr;
670 
671  /// A stack of exception code slots. Entering an __except block pushes a slot
672  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
673  /// a value from the top of the stack.
675 
676  /// Value returned by __exception_info intrinsic.
677  llvm::Value *SEHInfo = nullptr;
678 
679  /// Emits a landing pad for the current EH stack.
680  llvm::BasicBlock *EmitLandingPad();
681 
682  llvm::BasicBlock *getInvokeDestImpl();
683 
684  /// Parent loop-based directive for scan directive.
686  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
687  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
688  llvm::BasicBlock *OMPScanExitBlock = nullptr;
689  llvm::BasicBlock *OMPScanDispatch = nullptr;
690  bool OMPFirstScanLoop = false;
691 
692  /// Manages parent directive for scan directives.
694  CodeGenFunction &CGF;
695  const OMPExecutableDirective *ParentLoopDirectiveForScan;
696 
697  public:
699  CodeGenFunction &CGF,
700  const OMPExecutableDirective &ParentLoopDirectiveForScan)
701  : CGF(CGF),
702  ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
703  CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
704  }
706  CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
707  }
708  };
709 
710  template <class T>
712  return DominatingValue<T>::save(*this, value);
713  }
714 
716  public:
717  CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
718  CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
720 
721  private:
722  void ConstructorHelper(FPOptions FPFeatures);
723  CodeGenFunction &CGF;
724  FPOptions OldFPFeatures;
725  llvm::fp::ExceptionBehavior OldExcept;
726  llvm::RoundingMode OldRounding;
727  std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
728  };
730 
731 public:
732  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
733  /// rethrows.
735 
736  /// A class controlling the emission of a finally block.
737  class FinallyInfo {
738  /// Where the catchall's edge through the cleanup should go.
739  JumpDest RethrowDest;
740 
741  /// A function to call to enter the catch.
742  llvm::FunctionCallee BeginCatchFn;
743 
744  /// An i1 variable indicating whether or not the @finally is
745  /// running for an exception.
746  llvm::AllocaInst *ForEHVar;
747 
748  /// An i8* variable into which the exception pointer to rethrow
749  /// has been saved.
750  llvm::AllocaInst *SavedExnVar;
751 
752  public:
753  void enter(CodeGenFunction &CGF, const Stmt *Finally,
754  llvm::FunctionCallee beginCatchFn,
755  llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
756  void exit(CodeGenFunction &CGF);
757  };
758 
759  /// Returns true inside SEH __try blocks.
760  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
761 
762  /// Returns true while emitting a cleanuppad.
763  bool isCleanupPadScope() const {
764  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
765  }
766 
767  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
768  /// current full-expression. Safe against the possibility that
769  /// we're currently inside a conditionally-evaluated expression.
770  template <class T, class... As>
772  // If we're not in a conditional branch, or if none of the
773  // arguments requires saving, then use the unconditional cleanup.
774  if (!isInConditionalBranch())
775  return EHStack.pushCleanup<T>(kind, A...);
776 
777  // Stash values in a tuple so we can guarantee the order of saves.
778  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
779  SavedTuple Saved{saveValueInCond(A)...};
780 
781  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
782  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
784  }
785 
786  /// Queue a cleanup to be pushed after finishing the current full-expression,
787  /// potentially with an active flag.
788  template <class T, class... As>
790  if (!isInConditionalBranch())
791  return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
792  A...);
793 
794  Address ActiveFlag = createCleanupActiveFlag();
795  assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
796  "cleanup active flag should never need saving");
797 
798  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
799  SavedTuple Saved{saveValueInCond(A)...};
800 
801  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
802  pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
803  }
804 
805  template <class T, class... As>
807  Address ActiveFlag, As... A) {
808  LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
809  ActiveFlag.isValid()};
810 
811  size_t OldSize = LifetimeExtendedCleanupStack.size();
813  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
814  (Header.IsConditional ? sizeof(ActiveFlag) : 0));
815 
816  static_assert(sizeof(Header) % alignof(T) == 0,
817  "Cleanup will be allocated on misaligned address");
818  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
819  new (Buffer) LifetimeExtendedCleanupHeader(Header);
820  new (Buffer + sizeof(Header)) T(A...);
821  if (Header.IsConditional)
822  new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
823  }
824 
825  /// Set up the last cleanup that was pushed as a conditional
826  /// full-expression cleanup.
829  }
830 
831  void initFullExprCleanupWithFlag(Address ActiveFlag);
833 
834  /// PushDestructorCleanup - Push a cleanup to call the
835  /// complete-object destructor of an object of the given type at the
836  /// given address. Does nothing if T is not a C++ class type with a
837  /// non-trivial destructor.
838  void PushDestructorCleanup(QualType T, Address Addr);
839 
840  /// PushDestructorCleanup - Push a cleanup to call the
841  /// complete-object variant of the given destructor on the object at
842  /// the given address.
844  Address Addr);
845 
846  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
847  /// process all branch fixups.
848  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
849 
850  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
851  /// The block cannot be reactivated. Pops it if it's the top of the
852  /// stack.
853  ///
854  /// \param DominatingIP - An instruction which is known to
855  /// dominate the current IP (if set) and which lies along
856  /// all paths of execution between the current IP and the
857  /// the point at which the cleanup comes into scope.
859  llvm::Instruction *DominatingIP);
860 
861  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
862  /// Cannot be used to resurrect a deactivated cleanup.
863  ///
864  /// \param DominatingIP - An instruction which is known to
865  /// dominate the current IP (if set) and which lies along
866  /// all paths of execution between the current IP and the
867  /// the point at which the cleanup comes into scope.
869  llvm::Instruction *DominatingIP);
870 
871  /// Enters a new scope for capturing cleanups, all of which
872  /// will be executed once the scope is exited.
874  EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
875  size_t LifetimeExtendedCleanupStackSize;
876  bool OldDidCallStackSave;
877  protected:
879  private:
880 
881  RunCleanupsScope(const RunCleanupsScope &) = delete;
882  void operator=(const RunCleanupsScope &) = delete;
883 
884  protected:
886 
887  public:
888  /// Enter a new cleanup scope.
891  {
892  CleanupStackDepth = CGF.EHStack.stable_begin();
893  LifetimeExtendedCleanupStackSize =
895  OldDidCallStackSave = CGF.DidCallStackSave;
896  CGF.DidCallStackSave = false;
897  OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
898  CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
899  }
900 
901  /// Exit this cleanup scope, emitting any accumulated cleanups.
903  if (PerformCleanup)
904  ForceCleanup();
905  }
906 
907  /// Determine whether this scope requires any cleanups.
908  bool requiresCleanups() const {
909  return CGF.EHStack.stable_begin() != CleanupStackDepth;
910  }
911 
912  /// Force the emission of cleanups now, instead of waiting
913  /// until this object is destroyed.
914  /// \param ValuesToReload - A list of values that need to be available at
915  /// the insertion point after cleanup emission. If cleanup emission created
916  /// a shared cleanup block, these value pointers will be rewritten.
917  /// Otherwise, they not will be modified.
918  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
919  assert(PerformCleanup && "Already forced cleanup");
920  CGF.DidCallStackSave = OldDidCallStackSave;
921  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
922  ValuesToReload);
923  PerformCleanup = false;
924  CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
925  }
926  };
927 
928  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
931 
933  SourceRange Range;
935  LexicalScope *ParentScope;
936 
937  LexicalScope(const LexicalScope &) = delete;
938  void operator=(const LexicalScope &) = delete;
939 
940  public:
941  /// Enter a new cleanup scope.
943  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
944  CGF.CurLexicalScope = this;
945  if (CGDebugInfo *DI = CGF.getDebugInfo())
946  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
947  }
948 
949  void addLabel(const LabelDecl *label) {
950  assert(PerformCleanup && "adding label to dead scope?");
951  Labels.push_back(label);
952  }
953 
954  /// Exit this cleanup scope, emitting any accumulated
955  /// cleanups.
957  if (CGDebugInfo *DI = CGF.getDebugInfo())
958  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
959 
960  // If we should perform a cleanup, force them now. Note that
961  // this ends the cleanup scope before rescoping any labels.
962  if (PerformCleanup) {
963  ApplyDebugLocation DL(CGF, Range.getEnd());
964  ForceCleanup();
965  }
966  }
967 
968  /// Force the emission of cleanups now, instead of waiting
969  /// until this object is destroyed.
970  void ForceCleanup() {
971  CGF.CurLexicalScope = ParentScope;
973 
974  if (!Labels.empty())
975  rescopeLabels();
976  }
977 
978  bool hasLabels() const {
979  return !Labels.empty();
980  }
981 
982  void rescopeLabels();
983  };
984 
985  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
986 
987  /// The class used to assign some variables some temporarily addresses.
988  class OMPMapVars {
989  DeclMapTy SavedLocals;
990  DeclMapTy SavedTempAddresses;
991  OMPMapVars(const OMPMapVars &) = delete;
992  void operator=(const OMPMapVars &) = delete;
993 
994  public:
995  explicit OMPMapVars() = default;
997  assert(SavedLocals.empty() && "Did not restored original addresses.");
998  };
999 
1000  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1001  /// function \p CGF.
1002  /// \return true if at least one variable was set already, false otherwise.
1003  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1004  Address TempAddr) {
1005  LocalVD = LocalVD->getCanonicalDecl();
1006  // Only save it once.
1007  if (SavedLocals.count(LocalVD)) return false;
1008 
1009  // Copy the existing local entry to SavedLocals.
1010  auto it = CGF.LocalDeclMap.find(LocalVD);
1011  if (it != CGF.LocalDeclMap.end())
1012  SavedLocals.try_emplace(LocalVD, it->second);
1013  else
1014  SavedLocals.try_emplace(LocalVD, Address::invalid());
1015 
1016  // Generate the private entry.
1017  QualType VarTy = LocalVD->getType();
1018  if (VarTy->isReferenceType()) {
1019  Address Temp = CGF.CreateMemTemp(VarTy);
1020  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1021  TempAddr = Temp;
1022  }
1023  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1024 
1025  return true;
1026  }
1027 
1028  /// Applies new addresses to the list of the variables.
1029  /// \return true if at least one variable is using new address, false
1030  /// otherwise.
1031  bool apply(CodeGenFunction &CGF) {
1032  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1033  SavedTempAddresses.clear();
1034  return !SavedLocals.empty();
1035  }
1036 
1037  /// Restores original addresses of the variables.
1039  if (!SavedLocals.empty()) {
1040  copyInto(SavedLocals, CGF.LocalDeclMap);
1041  SavedLocals.clear();
1042  }
1043  }
1044 
1045  private:
1046  /// Copy all the entries in the source map over the corresponding
1047  /// entries in the destination, which must exist.
1048  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1049  for (auto &Pair : Src) {
1050  if (!Pair.second.isValid()) {
1051  Dest.erase(Pair.first);
1052  continue;
1053  }
1054 
1055  auto I = Dest.find(Pair.first);
1056  if (I != Dest.end())
1057  I->second = Pair.second;
1058  else
1059  Dest.insert(Pair);
1060  }
1061  }
1062  };
1063 
1064  /// The scope used to remap some variables as private in the OpenMP loop body
1065  /// (or other captured region emitted without outlining), and to restore old
1066  /// vars back on exit.
1068  OMPMapVars MappedVars;
1069  OMPPrivateScope(const OMPPrivateScope &) = delete;
1070  void operator=(const OMPPrivateScope &) = delete;
1071 
1072  public:
1073  /// Enter a new OpenMP private scope.
1075 
1076  /// Registers \p LocalVD variable as a private with \p Addr as the address
1077  /// of the corresponding private variable. \p
1078  /// PrivateGen is the address of the generated private variable.
1079  /// \return true if the variable is registered as private, false if it has
1080  /// been privatized already.
1081  bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1082  assert(PerformCleanup && "adding private to dead scope");
1083  return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1084  }
1085 
1086  /// Privatizes local variables previously registered as private.
1087  /// Registration is separate from the actual privatization to allow
1088  /// initializers use values of the original variables, not the private one.
1089  /// This is important, for example, if the private variable is a class
1090  /// variable initialized by a constructor that references other private
1091  /// variables. But at initialization original variables must be used, not
1092  /// private copies.
1093  /// \return true if at least one variable was privatized, false otherwise.
1094  bool Privatize() { return MappedVars.apply(CGF); }
1095 
1096  void ForceCleanup() {
1098  restoreMap();
1099  }
1100 
1101  /// Exit scope - all the mapped variables are restored.
1103  if (PerformCleanup)
1104  ForceCleanup();
1105  }
1106 
1107  /// Checks if the global variable is captured in current function.
1108  bool isGlobalVarCaptured(const VarDecl *VD) const {
1109  VD = VD->getCanonicalDecl();
1110  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1111  }
1112 
1113  /// Restore all mapped variables w/o clean up. This is usefully when we want
1114  /// to reference the original variables but don't want the clean up because
1115  /// that could emit lifetime end too early, causing backend issue #56913.
1116  void restoreMap() { MappedVars.restore(CGF); }
1117  };
1118 
1119  /// Save/restore original map of previously emitted local vars in case when we
1120  /// need to duplicate emission of the same code several times in the same
1121  /// function for OpenMP code.
1123  CodeGenFunction &CGF;
1124  DeclMapTy SavedMap;
1125 
1126  public:
1128  : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1129  ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1130  };
1131 
1132  /// Takes the old cleanup stack size and emits the cleanup blocks
1133  /// that have been added.
1134  void
1135  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1136  std::initializer_list<llvm::Value **> ValuesToReload = {});
1137 
1138  /// Takes the old cleanup stack size and emits the cleanup blocks
1139  /// that have been added, then adds all lifetime-extended cleanups from
1140  /// the given position to the stack.
1141  void
1142  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1143  size_t OldLifetimeExtendedStackSize,
1144  std::initializer_list<llvm::Value **> ValuesToReload = {});
1145 
1146  void ResolveBranchFixups(llvm::BasicBlock *Target);
1147 
1148  /// The given basic block lies in the current EH scope, but may be a
1149  /// target of a potentially scope-crossing jump; get a stable handle
1150  /// to which we can perform this jump later.
1152  return JumpDest(Target,
1155  }
1156 
1157  /// The given basic block lies in the current EH scope, but may be a
1158  /// target of a potentially scope-crossing jump; get a stable handle
1159  /// to which we can perform this jump later.
1160  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1162  }
1163 
1164  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1165  /// block through the normal cleanup handling code (if any) and then
1166  /// on to \arg Dest.
1167  void EmitBranchThroughCleanup(JumpDest Dest);
1168 
1169  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1170  /// specified destination obviously has no cleanups to run. 'false' is always
1171  /// a conservatively correct answer for this method.
1172  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1173 
1174  /// popCatchScope - Pops the catch scope at the top of the EHScope
1175  /// stack, emitting any required code (other than the catch handlers
1176  /// themselves).
1177  void popCatchScope();
1178 
1179  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1180  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1181  llvm::BasicBlock *
1183 
1184  /// An object to manage conditionally-evaluated expressions.
1186  llvm::BasicBlock *StartBB;
1187 
1188  public:
1190  : StartBB(CGF.Builder.GetInsertBlock()) {}
1191 
1192  void begin(CodeGenFunction &CGF) {
1193  assert(CGF.OutermostConditional != this);
1194  if (!CGF.OutermostConditional)
1195  CGF.OutermostConditional = this;
1196  }
1197 
1198  void end(CodeGenFunction &CGF) {
1199  assert(CGF.OutermostConditional != nullptr);
1200  if (CGF.OutermostConditional == this)
1201  CGF.OutermostConditional = nullptr;
1202  }
1203 
1204  /// Returns a block which will be executed prior to each
1205  /// evaluation of the conditional code.
1206  llvm::BasicBlock *getStartingBlock() const {
1207  return StartBB;
1208  }
1209  };
1210 
1211  /// isInConditionalBranch - Return true if we're currently emitting
1212  /// one branch or the other of a conditional expression.
1213  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1214 
1215  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1216  assert(isInConditionalBranch());
1217  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1218  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1219  store->setAlignment(addr.getAlignment().getAsAlign());
1220  }
1221 
1222  /// An RAII object to record that we're evaluating a statement
1223  /// expression.
1225  CodeGenFunction &CGF;
1226 
1227  /// We have to save the outermost conditional: cleanups in a
1228  /// statement expression aren't conditional just because the
1229  /// StmtExpr is.
1230  ConditionalEvaluation *SavedOutermostConditional;
1231 
1232  public:
1234  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1235  CGF.OutermostConditional = nullptr;
1236  }
1237 
1239  CGF.OutermostConditional = SavedOutermostConditional;
1240  CGF.EnsureInsertPoint();
1241  }
1242  };
1243 
1244  /// An object which temporarily prevents a value from being
1245  /// destroyed by aggressive peephole optimizations that assume that
1246  /// all uses of a value have been realized in the IR.
1248  llvm::Instruction *Inst;
1249  friend class CodeGenFunction;
1250 
1251  public:
1252  PeepholeProtection() : Inst(nullptr) {}
1253  };
1254 
1255  /// A non-RAII class containing all the information about a bound
1256  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
1257  /// this which makes individual mappings very simple; using this
1258  /// class directly is useful when you have a variable number of
1259  /// opaque values or don't want the RAII functionality for some
1260  /// reason.
1262  const OpaqueValueExpr *OpaqueValue;
1263  bool BoundLValue;
1265 
1267  bool boundLValue)
1268  : OpaqueValue(ov), BoundLValue(boundLValue) {}
1269  public:
1270  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1271 
1272  static bool shouldBindAsLValue(const Expr *expr) {
1273  // gl-values should be bound as l-values for obvious reasons.
1274  // Records should be bound as l-values because IR generation
1275  // always keeps them in memory. Expressions of function type
1276  // act exactly like l-values but are formally required to be
1277  // r-values in C.
1278  return expr->isGLValue() ||
1279  expr->getType()->isFunctionType() ||
1280  hasAggregateEvaluationKind(expr->getType());
1281  }
1282 
1284  const OpaqueValueExpr *ov,
1285  const Expr *e) {
1286  if (shouldBindAsLValue(ov))
1287  return bind(CGF, ov, CGF.EmitLValue(e));
1288  return bind(CGF, ov, CGF.EmitAnyExpr(e));
1289  }
1290 
1292  const OpaqueValueExpr *ov,
1293  const LValue &lv) {
1294  assert(shouldBindAsLValue(ov));
1295  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1296  return OpaqueValueMappingData(ov, true);
1297  }
1298 
1300  const OpaqueValueExpr *ov,
1301  const RValue &rv) {
1302  assert(!shouldBindAsLValue(ov));
1303  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1304 
1305  OpaqueValueMappingData data(ov, false);
1306 
1307  // Work around an extremely aggressive peephole optimization in
1308  // EmitScalarConversion which assumes that all other uses of a
1309  // value are extant.
1310  data.Protection = CGF.protectFromPeepholes(rv);
1311 
1312  return data;
1313  }
1314 
1315  bool isValid() const { return OpaqueValue != nullptr; }
1316  void clear() { OpaqueValue = nullptr; }
1317 
1319  assert(OpaqueValue && "no data to unbind!");
1320 
1321  if (BoundLValue) {
1322  CGF.OpaqueLValues.erase(OpaqueValue);
1323  } else {
1324  CGF.OpaqueRValues.erase(OpaqueValue);
1325  CGF.unprotectFromPeepholes(Protection);
1326  }
1327  }
1328  };
1329 
1330  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1332  CodeGenFunction &CGF;
1334 
1335  public:
1336  static bool shouldBindAsLValue(const Expr *expr) {
1338  }
1339 
1340  /// Build the opaque value mapping for the given conditional
1341  /// operator if it's the GNU ?: extension. This is a common
1342  /// enough pattern that the convenience operator is really
1343  /// helpful.
1344  ///
1346  const AbstractConditionalOperator *op) : CGF(CGF) {
1347  if (isa<ConditionalOperator>(op))
1348  // Leave Data empty.
1349  return;
1350 
1351  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1353  e->getCommon());
1354  }
1355 
1356  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1357  /// expression is set to the expression the OVE represents.
1359  : CGF(CGF) {
1360  if (OV) {
1361  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1362  "for OVE with no source expression");
1363  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1364  }
1365  }
1366 
1368  const OpaqueValueExpr *opaqueValue,
1369  LValue lvalue)
1370  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1371  }
1372 
1374  const OpaqueValueExpr *opaqueValue,
1375  RValue rvalue)
1376  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1377  }
1378 
1379  void pop() {
1380  Data.unbind(CGF);
1381  Data.clear();
1382  }
1383 
1385  if (Data.isValid()) Data.unbind(CGF);
1386  }
1387  };
1388 
1389 private:
1390  CGDebugInfo *DebugInfo;
1391  /// Used to create unique names for artificial VLA size debug info variables.
1392  unsigned VLAExprCounter = 0;
1393  bool DisableDebugInfo = false;
1394 
1395  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1396  /// calling llvm.stacksave for multiple VLAs in the same scope.
1397  bool DidCallStackSave = false;
1398 
1399  /// IndirectBranch - The first time an indirect goto is seen we create a block
1400  /// with an indirect branch. Every time we see the address of a label taken,
1401  /// we add the label to the indirect goto. Every subsequent indirect goto is
1402  /// codegen'd as a jump to the IndirectBranch's basic block.
1403  llvm::IndirectBrInst *IndirectBranch = nullptr;
1404 
1405  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1406  /// decls.
1407  DeclMapTy LocalDeclMap;
1408 
1409  // Keep track of the cleanups for callee-destructed parameters pushed to the
1410  // cleanup stack so that they can be deactivated later.
1411  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1412  CalleeDestructedParamCleanups;
1413 
1414  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1415  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1416  /// parameter.
1417  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1418  SizeArguments;
1419 
1420  /// Track escaped local variables with auto storage. Used during SEH
1421  /// outlining to produce a call to llvm.localescape.
1422  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1423 
1424  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1425  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1426 
1427  // BreakContinueStack - This keeps track of where break and continue
1428  // statements should jump to.
1429  struct BreakContinue {
1430  BreakContinue(JumpDest Break, JumpDest Continue)
1431  : BreakBlock(Break), ContinueBlock(Continue) {}
1432 
1433  JumpDest BreakBlock;
1434  JumpDest ContinueBlock;
1435  };
1436  SmallVector<BreakContinue, 8> BreakContinueStack;
1437 
1438  /// Handles cancellation exit points in OpenMP-related constructs.
1439  class OpenMPCancelExitStack {
1440  /// Tracks cancellation exit point and join point for cancel-related exit
1441  /// and normal exit.
1442  struct CancelExit {
1443  CancelExit() = default;
1444  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1445  JumpDest ContBlock)
1446  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1447  OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1448  /// true if the exit block has been emitted already by the special
1449  /// emitExit() call, false if the default codegen is used.
1450  bool HasBeenEmitted = false;
1451  JumpDest ExitBlock;
1452  JumpDest ContBlock;
1453  };
1454 
1455  SmallVector<CancelExit, 8> Stack;
1456 
1457  public:
1458  OpenMPCancelExitStack() : Stack(1) {}
1459  ~OpenMPCancelExitStack() = default;
1460  /// Fetches the exit block for the current OpenMP construct.
1461  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1462  /// Emits exit block with special codegen procedure specific for the related
1463  /// OpenMP construct + emits code for normal construct cleanup.
1464  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1465  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1466  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1467  assert(CGF.getOMPCancelDestination(Kind).isValid());
1468  assert(CGF.HaveInsertPoint());
1469  assert(!Stack.back().HasBeenEmitted);
1470  auto IP = CGF.Builder.saveAndClearIP();
1471  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1472  CodeGen(CGF);
1473  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1474  CGF.Builder.restoreIP(IP);
1475  Stack.back().HasBeenEmitted = true;
1476  }
1477  CodeGen(CGF);
1478  }
1479  /// Enter the cancel supporting \a Kind construct.
1480  /// \param Kind OpenMP directive that supports cancel constructs.
1481  /// \param HasCancel true, if the construct has inner cancel directive,
1482  /// false otherwise.
1483  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1484  Stack.push_back({Kind,
1485  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1486  : JumpDest(),
1487  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1488  : JumpDest()});
1489  }
1490  /// Emits default exit point for the cancel construct (if the special one
1491  /// has not be used) + join point for cancel/normal exits.
1492  void exit(CodeGenFunction &CGF) {
1493  if (getExitBlock().isValid()) {
1494  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1495  bool HaveIP = CGF.HaveInsertPoint();
1496  if (!Stack.back().HasBeenEmitted) {
1497  if (HaveIP)
1498  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1499  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1500  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1501  }
1502  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1503  if (!HaveIP) {
1504  CGF.Builder.CreateUnreachable();
1505  CGF.Builder.ClearInsertionPoint();
1506  }
1507  }
1508  Stack.pop_back();
1509  }
1510  };
1511  OpenMPCancelExitStack OMPCancelStack;
1512 
1513  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1514  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1515  Stmt::Likelihood LH);
1516 
1517  CodeGenPGO PGO;
1518 
1519  /// Calculate branch weights appropriate for PGO data
1520  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1521  uint64_t FalseCount) const;
1522  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1523  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1524  uint64_t LoopCount) const;
1525 
1526 public:
1527  /// Increment the profiler's counter for the given statement by \p StepV.
1528  /// If \p StepV is null, the default increment is 1.
1529  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1531  !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1532  !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile))
1533  PGO.emitCounterIncrement(Builder, S, StepV);
1534  PGO.setCurrentStmt(S);
1535  }
1536 
1537  /// Get the profiler's count for the given statement.
1539  return PGO.getStmtCount(S).value_or(0);
1540  }
1541 
1542  /// Set the profiler's current count.
1544  PGO.setCurrentRegionCount(Count);
1545  }
1546 
1547  /// Get the profiler's current count. This is generally the count for the most
1548  /// recently incremented counter.
1550  return PGO.getCurrentRegionCount();
1551  }
1552 
1553 private:
1554 
1555  /// SwitchInsn - This is nearest current switch instruction. It is null if
1556  /// current context is not in a switch.
1557  llvm::SwitchInst *SwitchInsn = nullptr;
1558  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1559  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1560 
1561  /// The likelihood attributes of the SwitchCase.
1562  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1563 
1564  /// CaseRangeBlock - This block holds if condition check for last case
1565  /// statement range in current switch instruction.
1566  llvm::BasicBlock *CaseRangeBlock = nullptr;
1567 
1568  /// OpaqueLValues - Keeps track of the current set of opaque value
1569  /// expressions.
1570  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1571  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1572 
1573  // VLASizeMap - This keeps track of the associated size for each VLA type.
1574  // We track this by the size expression rather than the type itself because
1575  // in certain situations, like a const qualifier applied to an VLA typedef,
1576  // multiple VLA types can share the same size expression.
1577  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1578  // enter/leave scopes.
1579  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1580 
1581  /// A block containing a single 'unreachable' instruction. Created
1582  /// lazily by getUnreachableBlock().
1583  llvm::BasicBlock *UnreachableBlock = nullptr;
1584 
1585  /// Counts of the number return expressions in the function.
1586  unsigned NumReturnExprs = 0;
1587 
1588  /// Count the number of simple (constant) return expressions in the function.
1589  unsigned NumSimpleReturnExprs = 0;
1590 
1591  /// The last regular (non-return) debug location (breakpoint) in the function.
1592  SourceLocation LastStopPoint;
1593 
1594 public:
1595  /// Source location information about the default argument or member
1596  /// initializer expression we're evaluating, if any.
1598  using SourceLocExprScopeGuard =
1600 
1601  /// A scope within which we are constructing the fields of an object which
1602  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1603  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1605  public:
1607  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1608  CGF.CXXDefaultInitExprThis = This;
1609  }
1611  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1612  }
1613 
1614  private:
1615  CodeGenFunction &CGF;
1616  Address OldCXXDefaultInitExprThis;
1617  };
1618 
1619  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1620  /// is overridden to be the object under construction.
1622  public:
1624  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1625  OldCXXThisAlignment(CGF.CXXThisAlignment),
1627  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1628  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1629  }
1631  CGF.CXXThisValue = OldCXXThisValue;
1632  CGF.CXXThisAlignment = OldCXXThisAlignment;
1633  }
1634 
1635  public:
1637  llvm::Value *OldCXXThisValue;
1640  };
1641 
1645  };
1646 
1647  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1648  /// current loop index is overridden.
1650  public:
1651  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1652  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1653  CGF.ArrayInitIndex = Index;
1654  }
1656  CGF.ArrayInitIndex = OldArrayInitIndex;
1657  }
1658 
1659  private:
1660  CodeGenFunction &CGF;
1661  llvm::Value *OldArrayInitIndex;
1662  };
1663 
1665  public:
1667  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1668  OldCurCodeDecl(CGF.CurCodeDecl),
1669  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1670  OldCXXABIThisValue(CGF.CXXABIThisValue),
1671  OldCXXThisValue(CGF.CXXThisValue),
1672  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1673  OldCXXThisAlignment(CGF.CXXThisAlignment),
1674  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1675  OldCXXInheritedCtorInitExprArgs(
1676  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1677  CGF.CurGD = GD;
1678  CGF.CurFuncDecl = CGF.CurCodeDecl =
1679  cast<CXXConstructorDecl>(GD.getDecl());
1680  CGF.CXXABIThisDecl = nullptr;
1681  CGF.CXXABIThisValue = nullptr;
1682  CGF.CXXThisValue = nullptr;
1683  CGF.CXXABIThisAlignment = CharUnits();
1684  CGF.CXXThisAlignment = CharUnits();
1685  CGF.ReturnValue = Address::invalid();
1686  CGF.FnRetTy = QualType();
1687  CGF.CXXInheritedCtorInitExprArgs.clear();
1688  }
1690  CGF.CurGD = OldCurGD;
1691  CGF.CurFuncDecl = OldCurFuncDecl;
1692  CGF.CurCodeDecl = OldCurCodeDecl;
1693  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1694  CGF.CXXABIThisValue = OldCXXABIThisValue;
1695  CGF.CXXThisValue = OldCXXThisValue;
1696  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1697  CGF.CXXThisAlignment = OldCXXThisAlignment;
1698  CGF.ReturnValue = OldReturnValue;
1699  CGF.FnRetTy = OldFnRetTy;
1700  CGF.CXXInheritedCtorInitExprArgs =
1701  std::move(OldCXXInheritedCtorInitExprArgs);
1702  }
1703 
1704  private:
1705  CodeGenFunction &CGF;
1706  GlobalDecl OldCurGD;
1707  const Decl *OldCurFuncDecl;
1708  const Decl *OldCurCodeDecl;
1709  ImplicitParamDecl *OldCXXABIThisDecl;
1710  llvm::Value *OldCXXABIThisValue;
1711  llvm::Value *OldCXXThisValue;
1712  CharUnits OldCXXABIThisAlignment;
1713  CharUnits OldCXXThisAlignment;
1714  Address OldReturnValue;
1715  QualType OldFnRetTy;
1716  CallArgList OldCXXInheritedCtorInitExprArgs;
1717  };
1718 
1719  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1720  // region body, and finalization codegen callbacks. This will class will also
1721  // contain privatization functions used by the privatization call backs
1722  //
1723  // TODO: this is temporary class for things that are being moved out of
1724  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1725  // utility function for use with the OMPBuilder. Once that move to use the
1726  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1727  // directly, or a new helper class that will contain functions used by both
1728  // this and the OMPBuilder
1729 
1731 
1732  OMPBuilderCBHelpers() = delete;
1733  OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1735 
1736  using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1737 
1738  /// Cleanup action for allocate support.
1740 
1741  private:
1742  llvm::CallInst *RTLFnCI;
1743 
1744  public:
1745  OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1746  RLFnCI->removeFromParent();
1747  }
1748 
1749  void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1750  if (!CGF.HaveInsertPoint())
1751  return;
1752  CGF.Builder.Insert(RTLFnCI);
1753  }
1754  };
1755 
1756  /// Returns address of the threadprivate variable for the current
1757  /// thread. This Also create any necessary OMP runtime calls.
1758  ///
1759  /// \param VD VarDecl for Threadprivate variable.
1760  /// \param VDAddr Address of the Vardecl
1761  /// \param Loc The location where the barrier directive was encountered
1763  const VarDecl *VD, Address VDAddr,
1764  SourceLocation Loc);
1765 
1766  /// Gets the OpenMP-specific address of the local variable /p VD.
1768  const VarDecl *VD);
1769  /// Get the platform-specific name separator.
1770  /// \param Parts different parts of the final name that needs separation
1771  /// \param FirstSeparator First separator used between the initial two
1772  /// parts of the name.
1773  /// \param Separator separator used between all of the rest consecutinve
1774  /// parts of the name
1776  StringRef FirstSeparator = ".",
1777  StringRef Separator = ".");
1778  /// Emit the Finalization for an OMP region
1779  /// \param CGF The Codegen function this belongs to
1780  /// \param IP Insertion point for generating the finalization code.
1782  CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1783  assert(IP.getBlock()->end() != IP.getPoint() &&
1784  "OpenMP IR Builder should cause terminated block!");
1785 
1786  llvm::BasicBlock *IPBB = IP.getBlock();
1787  llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1788  assert(DestBB && "Finalization block should have one successor!");
1789 
1790  // erase and replace with cleanup branch.
1791  IPBB->getTerminator()->eraseFromParent();
1792  CGF.Builder.SetInsertPoint(IPBB);
1794  CGF.EmitBranchThroughCleanup(Dest);
1795  }
1796 
1797  /// Emit the body of an OMP region
1798  /// \param CGF The Codegen function this belongs to
1799  /// \param RegionBodyStmt The body statement for the OpenMP region being
1800  /// generated
1801  /// \param AllocaIP Where to insert alloca instructions
1802  /// \param CodeGenIP Where to insert the region code
1803  /// \param RegionName Name to be used for new blocks
1804  static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1805  const Stmt *RegionBodyStmt,
1806  InsertPointTy AllocaIP,
1807  InsertPointTy CodeGenIP,
1808  Twine RegionName);
1809 
1810  static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1811  llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1812  ArrayRef<llvm::Value *> Args) {
1813  llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1814  if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1815  CodeGenIPBBTI->eraseFromParent();
1816 
1817  CGF.Builder.SetInsertPoint(CodeGenIPBB);
1818 
1819  if (Fn->doesNotThrow())
1820  CGF.EmitNounwindRuntimeCall(Fn, Args);
1821  else
1822  CGF.EmitRuntimeCall(Fn, Args);
1823 
1824  if (CGF.Builder.saveIP().isSet())
1825  CGF.Builder.CreateBr(&FiniBB);
1826  }
1827 
1828  /// Emit the body of an OMP region that will be outlined in
1829  /// OpenMPIRBuilder::finalize().
1830  /// \param CGF The Codegen function this belongs to
1831  /// \param RegionBodyStmt The body statement for the OpenMP region being
1832  /// generated
1833  /// \param AllocaIP Where to insert alloca instructions
1834  /// \param CodeGenIP Where to insert the region code
1835  /// \param RegionName Name to be used for new blocks
1836  static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1837  const Stmt *RegionBodyStmt,
1838  InsertPointTy AllocaIP,
1839  InsertPointTy CodeGenIP,
1840  Twine RegionName);
1841 
1842  /// RAII for preserving necessary info during Outlined region body codegen.
1844 
1845  llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1846  CodeGenFunction::JumpDest OldReturnBlock;
1847  CodeGenFunction &CGF;
1848 
1849  public:
1851  llvm::BasicBlock &RetBB)
1852  : CGF(cgf) {
1853  assert(AllocaIP.isSet() &&
1854  "Must specify Insertion point for allocas of outlined function");
1855  OldAllocaIP = CGF.AllocaInsertPt;
1856  CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1857 
1858  OldReturnBlock = CGF.ReturnBlock;
1859  CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1860  }
1861 
1863  CGF.AllocaInsertPt = OldAllocaIP;
1864  CGF.ReturnBlock = OldReturnBlock;
1865  }
1866  };
1867 
1868  /// RAII for preserving necessary info during inlined region body codegen.
1870 
1871  llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1872  CodeGenFunction &CGF;
1873 
1874  public:
1876  llvm::BasicBlock &FiniBB)
1877  : CGF(cgf) {
1878  // Alloca insertion block should be in the entry block of the containing
1879  // function so it expects an empty AllocaIP in which case will reuse the
1880  // old alloca insertion point, or a new AllocaIP in the same block as
1881  // the old one
1882  assert((!AllocaIP.isSet() ||
1883  CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1884  "Insertion point should be in the entry block of containing "
1885  "function!");
1886  OldAllocaIP = CGF.AllocaInsertPt;
1887  if (AllocaIP.isSet())
1888  CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1889 
1890  // TODO: Remove the call, after making sure the counter is not used by
1891  // the EHStack.
1892  // Since this is an inlined region, it should not modify the
1893  // ReturnBlock, and should reuse the one for the enclosing outlined
1894  // region. So, the JumpDest being return by the function is discarded
1895  (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1896  }
1897 
1898  ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1899  };
1900  };
1901 
1902 private:
1903  /// CXXThisDecl - When generating code for a C++ member function,
1904  /// this will hold the implicit 'this' declaration.
1905  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1906  llvm::Value *CXXABIThisValue = nullptr;
1907  llvm::Value *CXXThisValue = nullptr;
1908  CharUnits CXXABIThisAlignment;
1909  CharUnits CXXThisAlignment;
1910 
1911  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1912  /// this expression.
1913  Address CXXDefaultInitExprThis = Address::invalid();
1914 
1915  /// The current array initialization index when evaluating an
1916  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1917  llvm::Value *ArrayInitIndex = nullptr;
1918 
1919  /// The values of function arguments to use when evaluating
1920  /// CXXInheritedCtorInitExprs within this context.
1921  CallArgList CXXInheritedCtorInitExprArgs;
1922 
1923  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1924  /// destructor, this will hold the implicit argument (e.g. VTT).
1925  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1926  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1927 
1928  /// OutermostConditional - Points to the outermost active
1929  /// conditional control. This is used so that we know if a
1930  /// temporary should be destroyed conditionally.
1931  ConditionalEvaluation *OutermostConditional = nullptr;
1932 
1933  /// The current lexical scope.
1934  LexicalScope *CurLexicalScope = nullptr;
1935 
1936  /// The current source location that should be used for exception
1937  /// handling code.
1938  SourceLocation CurEHLocation;
1939 
1940  /// BlockByrefInfos - For each __block variable, contains
1941  /// information about the layout of the variable.
1942  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1943 
1944  /// Used by -fsanitize=nullability-return to determine whether the return
1945  /// value can be checked.
1946  llvm::Value *RetValNullabilityPrecondition = nullptr;
1947 
1948  /// Check if -fsanitize=nullability-return instrumentation is required for
1949  /// this function.
1950  bool requiresReturnValueNullabilityCheck() const {
1951  return RetValNullabilityPrecondition;
1952  }
1953 
1954  /// Used to store precise source locations for return statements by the
1955  /// runtime return value checks.
1956  Address ReturnLocation = Address::invalid();
1957 
1958  /// Check if the return value of this function requires sanitization.
1959  bool requiresReturnValueCheck() const;
1960 
1961  llvm::BasicBlock *TerminateLandingPad = nullptr;
1962  llvm::BasicBlock *TerminateHandler = nullptr;
1964 
1965  /// Terminate funclets keyed by parent funclet pad.
1966  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1967 
1968  /// Largest vector width used in ths function. Will be used to create a
1969  /// function attribute.
1970  unsigned LargestVectorWidth = 0;
1971 
1972  /// True if we need emit the life-time markers. This is initially set in
1973  /// the constructor, but could be overwritten to true if this is a coroutine.
1974  bool ShouldEmitLifetimeMarkers;
1975 
1976  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1977  /// the function metadata.
1978  void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
1979 
1980 public:
1981  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1982  ~CodeGenFunction();
1983 
1984  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1985  ASTContext &getContext() const { return CGM.getContext(); }
1987  if (DisableDebugInfo)
1988  return nullptr;
1989  return DebugInfo;
1990  }
1991  void disableDebugInfo() { DisableDebugInfo = true; }
1992  void enableDebugInfo() { DisableDebugInfo = false; }
1993 
1995  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1996  }
1997 
1998  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1999 
2000  /// Returns a pointer to the function's exception object and selector slot,
2001  /// which is assigned in every landing pad.
2004 
2005  /// Returns the contents of the function's exception object and selector
2006  /// slots.
2007  llvm::Value *getExceptionFromSlot();
2008  llvm::Value *getSelectorFromSlot();
2009 
2011 
2012  llvm::BasicBlock *getUnreachableBlock() {
2013  if (!UnreachableBlock) {
2014  UnreachableBlock = createBasicBlock("unreachable");
2015  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2016  }
2017  return UnreachableBlock;
2018  }
2019 
2020  llvm::BasicBlock *getInvokeDest() {
2021  if (!EHStack.requiresLandingPad()) return nullptr;
2022  return getInvokeDestImpl();
2023  }
2024 
2025  bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2026 
2027  const TargetInfo &getTarget() const { return Target; }
2028  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2030  return CGM.getTargetCodeGenInfo();
2031  }
2032 
2033  //===--------------------------------------------------------------------===//
2034  // Cleanups
2035  //===--------------------------------------------------------------------===//
2036 
2037  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2038 
2039  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2040  Address arrayEndPointer,
2041  QualType elementType,
2042  CharUnits elementAlignment,
2043  Destroyer *destroyer);
2044  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2045  llvm::Value *arrayEnd,
2046  QualType elementType,
2047  CharUnits elementAlignment,
2048  Destroyer *destroyer);
2049 
2050  void pushDestroy(QualType::DestructionKind dtorKind,
2051  Address addr, QualType type);
2053  Address addr, QualType type);
2055  Destroyer *destroyer, bool useEHCleanupForArray);
2057  QualType type, Destroyer *destroyer,
2058  bool useEHCleanupForArray);
2059  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2060  llvm::Value *CompletePtr,
2061  QualType ElementType);
2063  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2064  bool useEHCleanupForArray);
2065  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2066  Destroyer *destroyer,
2067  bool useEHCleanupForArray,
2068  const VarDecl *VD);
2069  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2070  QualType elementType, CharUnits elementAlign,
2071  Destroyer *destroyer,
2072  bool checkZeroLength, bool useEHCleanup);
2073 
2075 
2076  /// Determines whether an EH cleanup is required to destroy a type
2077  /// with the given destruction kind.
2079  switch (kind) {
2080  case QualType::DK_none:
2081  return false;
2085  return getLangOpts().Exceptions;
2087  return getLangOpts().Exceptions &&
2088  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2089  }
2090  llvm_unreachable("bad destruction kind");
2091  }
2092 
2095  }
2096 
2097  //===--------------------------------------------------------------------===//
2098  // Objective-C
2099  //===--------------------------------------------------------------------===//
2100 
2101  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2102 
2103  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2104 
2105  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2107  const ObjCPropertyImplDecl *PID);
2108  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2109  const ObjCPropertyImplDecl *propImpl,
2110  const ObjCMethodDecl *GetterMothodDecl,
2111  llvm::Constant *AtomicHelperFn);
2112 
2114  ObjCMethodDecl *MD, bool ctor);
2115 
2116  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2117  /// for the given property.
2119  const ObjCPropertyImplDecl *PID);
2120  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2121  const ObjCPropertyImplDecl *propImpl,
2122  llvm::Constant *AtomicHelperFn);
2123 
2124  //===--------------------------------------------------------------------===//
2125  // Block Bits
2126  //===--------------------------------------------------------------------===//
2127 
2128  /// Emit block literal.
2129  /// \return an LLVM value which is a pointer to a struct which contains
2130  /// information about the block, including the block invoke function, the
2131  /// captured variables, etc.
2132  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2133 
2134  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2135  const CGBlockInfo &Info,
2136  const DeclMapTy &ldm,
2137  bool IsLambdaConversionToBlock,
2138  bool BuildGlobalBlock);
2139 
2140  /// Check if \p T is a C++ class that has a destructor that can throw.
2141  static bool cxxDestructorCanThrow(QualType T);
2142 
2143  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2144  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2146  const ObjCPropertyImplDecl *PID);
2148  const ObjCPropertyImplDecl *PID);
2149  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2150 
2151  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2152  bool CanThrow);
2153 
2154  class AutoVarEmission;
2155 
2156  void emitByrefStructureInit(const AutoVarEmission &emission);
2157 
2158  /// Enter a cleanup to destroy a __block variable. Note that this
2159  /// cleanup should be a no-op if the variable hasn't left the stack
2160  /// yet; if a cleanup is required for the variable itself, that needs
2161  /// to be done externally.
2162  ///
2163  /// \param Kind Cleanup kind.
2164  ///
2165  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2166  /// structure that will be passed to _Block_object_dispose. When
2167  /// \p LoadBlockVarAddr is true, the address of the field of the block
2168  /// structure that holds the address of the __block structure.
2169  ///
2170  /// \param Flags The flag that will be passed to _Block_object_dispose.
2171  ///
2172  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2173  /// \p Addr to get the address of the __block structure.
2175  bool LoadBlockVarAddr, bool CanThrow);
2176 
2177  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2178  llvm::Value *ptr);
2179 
2182 
2183  /// BuildBlockByrefAddress - Computes the location of the
2184  /// data in a variable which is declared as __block.
2185  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2186  bool followForward = true);
2188  const BlockByrefInfo &info,
2189  bool followForward,
2190  const llvm::Twine &name);
2191 
2193 
2195 
2196  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2197  const CGFunctionInfo &FnInfo);
2198 
2199  /// Annotate the function with an attribute that disables TSan checking at
2200  /// runtime.
2201  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2202 
2203  /// Emit code for the start of a function.
2204  /// \param Loc The location to be associated with the function.
2205  /// \param StartLoc The location of the function body.
2206  void StartFunction(GlobalDecl GD,
2207  QualType RetTy,
2208  llvm::Function *Fn,
2209  const CGFunctionInfo &FnInfo,
2210  const FunctionArgList &Args,
2212  SourceLocation StartLoc = SourceLocation());
2213 
2214  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2215 
2217  void EmitDestructorBody(FunctionArgList &Args);
2219  void EmitFunctionBody(const Stmt *Body);
2220  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2221 
2222  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2223  CallArgList &CallArgs);
2226  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2228  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2229  }
2230  void EmitAsanPrologueOrEpilogue(bool Prologue);
2231 
2232  /// Emit the unified return block, trying to avoid its emission when
2233  /// possible.
2234  /// \return The debug location of the user written return statement if the
2235  /// return block is avoided.
2236  llvm::DebugLoc EmitReturnBlock();
2237 
2238  /// FinishFunction - Complete IR generation of the current function. It is
2239  /// legal to call this function even if there is no current insertion point.
2241 
2242  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2243  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2244 
2245  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2246  const ThunkInfo *Thunk, bool IsUnprototyped);
2247 
2248  void FinishThunk();
2249 
2250  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2251  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2252  llvm::FunctionCallee Callee);
2253 
2254  /// Generate a thunk for the given method.
2255  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2256  GlobalDecl GD, const ThunkInfo &Thunk,
2257  bool IsUnprototyped);
2258 
2259  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2260  const CGFunctionInfo &FnInfo,
2261  GlobalDecl GD, const ThunkInfo &Thunk);
2262 
2264  FunctionArgList &Args);
2265 
2266  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2267 
2268  /// Struct with all information about dynamic [sub]class needed to set vptr.
2269  struct VPtr {
2274  };
2275 
2276  /// Initialize the vtable pointer of the given subobject.
2277  void InitializeVTablePointer(const VPtr &vptr);
2278 
2280 
2282  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2283 
2284  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2285  CharUnits OffsetFromNearestVBase,
2286  bool BaseIsNonVirtualPrimaryBase,
2287  const CXXRecordDecl *VTableClass,
2288  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2289 
2290  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2291 
2292  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2293  /// to by This.
2294  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2295  const CXXRecordDecl *VTableClass);
2296 
2305  };
2306 
2307  /// Derived is the presumed address of an object of type T after a
2308  /// cast. If T is a polymorphic class type, emit a check that the virtual
2309  /// table for Derived belongs to a class derived from T.
2310  void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2311  CFITypeCheckKind TCK, SourceLocation Loc);
2312 
2313  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2314  /// If vptr CFI is enabled, emit a check that VTable is valid.
2315  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2316  CFITypeCheckKind TCK, SourceLocation Loc);
2317 
2318  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2319  /// RD using llvm.type.test.
2320  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2321  CFITypeCheckKind TCK, SourceLocation Loc);
2322 
2323  /// If whole-program virtual table optimization is enabled, emit an assumption
2324  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2325  /// enabled, emit a check that VTable is a member of RD's type identifier.
2327  llvm::Value *VTable, SourceLocation Loc);
2328 
2329  /// Returns whether we should perform a type checked load when loading a
2330  /// virtual function for virtual calls to members of RD. This is generally
2331  /// true when both vcall CFI and whole-program-vtables are enabled.
2333 
2334  /// Emit a type checked load from the given vtable.
2335  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2336  llvm::Value *VTable,
2337  llvm::Type *VTableTy,
2338  uint64_t VTableByteOffset);
2339 
2340  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2341  /// given phase of destruction for a destructor. The end result
2342  /// should call destructors on members and base classes in reverse
2343  /// order of their construction.
2345 
2346  /// ShouldInstrumentFunction - Return true if the current function should be
2347  /// instrumented with __cyg_profile_func_* calls
2348  bool ShouldInstrumentFunction();
2349 
2350  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2351  /// should not be instrumented with sanitizers.
2353 
2354  /// ShouldXRayInstrument - Return true if the current function should be
2355  /// instrumented with XRay nop sleds.
2356  bool ShouldXRayInstrumentFunction() const;
2357 
2358  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2359  /// XRay custom event handling calls.
2360  bool AlwaysEmitXRayCustomEvents() const;
2361 
2362  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2363  /// XRay typed event handling calls.
2364  bool AlwaysEmitXRayTypedEvents() const;
2365 
2366  /// Decode an address used in a function prologue, encoded by \c
2367  /// EncodeAddrForUseInPrologue.
2368  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2369  llvm::Value *EncodedAddr);
2370 
2371  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2372  /// arguments for the given function. This is also responsible for naming the
2373  /// LLVM function arguments.
2374  void EmitFunctionProlog(const CGFunctionInfo &FI,
2375  llvm::Function *Fn,
2376  const FunctionArgList &Args);
2377 
2378  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2379  /// given temporary.
2380  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2381  SourceLocation EndLoc);
2382 
2383  /// Emit a test that checks if the return value \p RV is nonnull.
2384  void EmitReturnValueCheck(llvm::Value *RV);
2385 
2386  /// EmitStartEHSpec - Emit the start of the exception spec.
2387  void EmitStartEHSpec(const Decl *D);
2388 
2389  /// EmitEndEHSpec - Emit the end of the exception spec.
2390  void EmitEndEHSpec(const Decl *D);
2391 
2392  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2393  llvm::BasicBlock *getTerminateLandingPad();
2394 
2395  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2396  /// terminate.
2397  llvm::BasicBlock *getTerminateFunclet();
2398 
2399  /// getTerminateHandler - Return a handler (not a landing pad, just
2400  /// a catch handler) that just calls terminate. This is used when
2401  /// a terminate scope encloses a try.
2402  llvm::BasicBlock *getTerminateHandler();
2403 
2404  llvm::Type *ConvertTypeForMem(QualType T);
2405  llvm::Type *ConvertType(QualType T);
2406  llvm::Type *ConvertType(const TypeDecl *T) {
2407  return ConvertType(getContext().getTypeDeclType(T));
2408  }
2409 
2410  /// LoadObjCSelf - Load the value of self. This function is only valid while
2411  /// generating code for an Objective-C method.
2412  llvm::Value *LoadObjCSelf();
2413 
2414  /// TypeOfSelfObject - Return type of object that this self represents.
2416 
2417  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2419 
2421  return getEvaluationKind(T) == TEK_Scalar;
2422  }
2423 
2425  return getEvaluationKind(T) == TEK_Aggregate;
2426  }
2427 
2428  /// createBasicBlock - Create an LLVM basic block.
2429  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2430  llvm::Function *parent = nullptr,
2431  llvm::BasicBlock *before = nullptr) {
2432  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2433  }
2434 
2435  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2436  /// label maps to.
2437  JumpDest getJumpDestForLabel(const LabelDecl *S);
2438 
2439  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2440  /// another basic block, simplify it. This assumes that no other code could
2441  /// potentially reference the basic block.
2442  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2443 
2444  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2445  /// adding a fall-through branch from the current insert block if
2446  /// necessary. It is legal to call this function even if there is no current
2447  /// insertion point.
2448  ///
2449  /// IsFinished - If true, indicates that the caller has finished emitting
2450  /// branches to the given block and does not expect to emit code into it. This
2451  /// means the block can be ignored if it is unreachable.
2452  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2453 
2454  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2455  /// near its uses, and leave the insertion point in it.
2456  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2457 
2458  /// EmitBranch - Emit a branch to the specified basic block from the current
2459  /// insert block, taking care to avoid creation of branches from dummy
2460  /// blocks. It is legal to call this function even if there is no current
2461  /// insertion point.
2462  ///
2463  /// This function clears the current insertion point. The caller should follow
2464  /// calls to this function with calls to Emit*Block prior to generation new
2465  /// code.
2466  void EmitBranch(llvm::BasicBlock *Block);
2467 
2468  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2469  /// indicates that the current code being emitted is unreachable.
2470  bool HaveInsertPoint() const {
2471  return Builder.GetInsertBlock() != nullptr;
2472  }
2473 
2474  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2475  /// emitted IR has a place to go. Note that by definition, if this function
2476  /// creates a block then that block is unreachable; callers may do better to
2477  /// detect when no insertion point is defined and simply skip IR generation.
2479  if (!HaveInsertPoint())
2481  }
2482 
2483  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2484  /// specified stmt yet.
2485  void ErrorUnsupported(const Stmt *S, const char *Type);
2486 
2487  //===--------------------------------------------------------------------===//
2488  // Helpers
2489  //===--------------------------------------------------------------------===//
2490 
2493  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2494  CGM.getTBAAAccessInfo(T));
2495  }
2496 
2498  TBAAAccessInfo TBAAInfo) {
2499  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2500  }
2501 
2502  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2504  Address Addr(V, ConvertTypeForMem(T), Alignment);
2505  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2506  CGM.getTBAAAccessInfo(T));
2507  }
2508 
2509  LValue
2512  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2513  TBAAAccessInfo());
2514  }
2515 
2517  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2518 
2520  LValueBaseInfo *PointeeBaseInfo = nullptr,
2521  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2524  AlignmentSource Source =
2526  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2527  CGM.getTBAAAccessInfo(RefTy));
2528  return EmitLoadOfReferenceLValue(RefLVal);
2529  }
2530 
2531  /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2532  /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2533  /// it is loaded from.
2534  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2535  LValueBaseInfo *BaseInfo = nullptr,
2536  TBAAAccessInfo *TBAAInfo = nullptr);
2538 
2539  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2540  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2541  /// insertion point of the builder. The caller is responsible for setting an
2542  /// appropriate alignment on
2543  /// the alloca.
2544  ///
2545  /// \p ArraySize is the number of array elements to be allocated if it
2546  /// is not nullptr.
2547  ///
2548  /// LangAS::Default is the address space of pointers to local variables and
2549  /// temporaries, as exposed in the source language. In certain
2550  /// configurations, this is not the same as the alloca address space, and a
2551  /// cast is needed to lift the pointer from the alloca AS into
2552  /// LangAS::Default. This can happen when the target uses a restricted
2553  /// address space for the stack but the source language requires
2554  /// LangAS::Default to be a generic address space. The latter condition is
2555  /// common for most programming languages; OpenCL is an exception in that
2556  /// LangAS::Default is the private address space, which naturally maps
2557  /// to the stack.
2558  ///
2559  /// Because the address of a temporary is often exposed to the program in
2560  /// various ways, this function will perform the cast. The original alloca
2561  /// instruction is returned through \p Alloca if it is not nullptr.
2562  ///
2563  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2564  /// more efficient if the caller knows that the address will not be exposed.
2565  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2566  llvm::Value *ArraySize = nullptr);
2567  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2568  const Twine &Name = "tmp",
2569  llvm::Value *ArraySize = nullptr,
2570  Address *Alloca = nullptr);
2572  const Twine &Name = "tmp",
2573  llvm::Value *ArraySize = nullptr);
2574 
2575  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2576  /// default ABI alignment of the given LLVM type.
2577  ///
2578  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2579  /// any given AST type that happens to have been lowered to the
2580  /// given IR type. This should only ever be used for function-local,
2581  /// IR-driven manipulations like saving and restoring a value. Do
2582  /// not hand this address off to arbitrary IRGen routines, and especially
2583  /// do not pass it as an argument to a function that might expect a
2584  /// properly ABI-aligned value.
2585  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2586  const Twine &Name = "tmp");
2587 
2588  /// CreateIRTemp - Create a temporary IR object of the given type, with
2589  /// appropriate alignment. This routine should only be used when an temporary
2590  /// value needs to be stored into an alloca (for example, to avoid explicit
2591  /// PHI construction), but the type is the IR type, not the type appropriate
2592  /// for storing in memory.
2593  ///
2594  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2595  /// ConvertType instead of ConvertTypeForMem.
2596  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2597 
2598  /// CreateMemTemp - Create a temporary memory object of the given type, with
2599  /// appropriate alignmen and cast it to the default address space. Returns
2600  /// the original alloca instruction by \p Alloca if it is not nullptr.
2601  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2602  Address *Alloca = nullptr);
2603  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2604  Address *Alloca = nullptr);
2605 
2606  /// CreateMemTemp - Create a temporary memory object of the given type, with
2607  /// appropriate alignmen without casting it to the default address space.
2608  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2610  const Twine &Name = "tmp");
2611 
2612  /// CreateAggTemp - Create a temporary memory object for the given
2613  /// aggregate type.
2614  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2615  Address *Alloca = nullptr) {
2616  return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2617  T.getQualifiers(),
2622  }
2623 
2624  /// Emit a cast to void* in the appropriate address space.
2625  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2626 
2627  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2628  /// expression and compare the result against zero, returning an Int1Ty value.
2629  llvm::Value *EvaluateExprAsBool(const Expr *E);
2630 
2631  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2632  void EmitIgnoredExpr(const Expr *E);
2633 
2634  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2635  /// any type. The result is returned as an RValue struct. If this is an
2636  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2637  /// the result should be returned.
2638  ///
2639  /// \param ignoreResult True if the resulting value isn't used.
2640  RValue EmitAnyExpr(const Expr *E,
2641  AggValueSlot aggSlot = AggValueSlot::ignored(),
2642  bool ignoreResult = false);
2643 
2644  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2645  // or the value of the expression, depending on how va_list is defined.
2646  Address EmitVAListRef(const Expr *E);
2647 
2648  /// Emit a "reference" to a __builtin_ms_va_list; this is
2649  /// always the value of the expression, because a __builtin_ms_va_list is a
2650  /// pointer to a char.
2651  Address EmitMSVAListRef(const Expr *E);
2652 
2653  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2654  /// always be accessible even if no aggregate location is provided.
2655  RValue EmitAnyExprToTemp(const Expr *E);
2656 
2657  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2658  /// arbitrary expression into the given memory location.
2659  void EmitAnyExprToMem(const Expr *E, Address Location,
2660  Qualifiers Quals, bool IsInitializer);
2661 
2662  void EmitAnyExprToExn(const Expr *E, Address Addr);
2663 
2664  /// EmitExprAsInit - Emits the code necessary to initialize a
2665  /// location in memory with the given initializer.
2666  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2667  bool capturedByInit);
2668 
2669  /// hasVolatileMember - returns true if aggregate type has a volatile
2670  /// member.
2672  if (const RecordType *RT = T->getAs<RecordType>()) {
2673  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2674  return RD->hasVolatileMember();
2675  }
2676  return false;
2677  }
2678 
2679  /// Determine whether a return value slot may overlap some other object.
2681  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2682  // class subobjects. These cases may need to be revisited depending on the
2683  // resolution of the relevant core issue.
2685  }
2686 
2687  /// Determine whether a field initialization may overlap some other object.
2689 
2690  /// Determine whether a base class initialization may overlap some other
2691  /// object.
2693  const CXXRecordDecl *BaseRD,
2694  bool IsVirtual);
2695 
2696  /// Emit an aggregate assignment.
2697  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2698  bool IsVolatile = hasVolatileMember(EltTy);
2699  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2700  }
2701 
2703  AggValueSlot::Overlap_t MayOverlap) {
2704  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2705  }
2706 
2707  /// EmitAggregateCopy - Emit an aggregate copy.
2708  ///
2709  /// \param isVolatile \c true iff either the source or the destination is
2710  /// volatile.
2711  /// \param MayOverlap Whether the tail padding of the destination might be
2712  /// occupied by some other object. More efficient code can often be
2713  /// generated if not.
2714  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2715  AggValueSlot::Overlap_t MayOverlap,
2716  bool isVolatile = false);
2717 
2718  /// GetAddrOfLocalVar - Return the address of a local variable.
2720  auto it = LocalDeclMap.find(VD);
2721  assert(it != LocalDeclMap.end() &&
2722  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2723  return it->second;
2724  }
2725 
2726  /// Given an opaque value expression, return its LValue mapping if it exists,
2727  /// otherwise create one.
2729 
2730  /// Given an opaque value expression, return its RValue mapping if it exists,
2731  /// otherwise create one.
2733 
2734  /// Get the index of the current ArrayInitLoopExpr, if any.
2735  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2736 
2737  /// getAccessedFieldNo - Given an encoded value and a result number, return
2738  /// the input field number being accessed.
2739  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2740 
2741  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2742  llvm::BasicBlock *GetIndirectGotoBlock();
2743 
2744  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2745  static bool IsWrappedCXXThis(const Expr *E);
2746 
2747  /// EmitNullInitialization - Generate code to set a value of the given type to
2748  /// null, If the type contains data member pointers, they will be initialized
2749  /// to -1 in accordance with the Itanium C++ ABI.
2750  void EmitNullInitialization(Address DestPtr, QualType Ty);
2751 
2752  /// Emits a call to an LLVM variable-argument intrinsic, either
2753  /// \c llvm.va_start or \c llvm.va_end.
2754  /// \param ArgValue A reference to the \c va_list as emitted by either
2755  /// \c EmitVAListRef or \c EmitMSVAListRef.
2756  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2757  /// calls \c llvm.va_end.
2758  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2759 
2760  /// Generate code to get an argument from the passed in pointer
2761  /// and update it accordingly.
2762  /// \param VE The \c VAArgExpr for which to generate code.
2763  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2764  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2765  /// \returns A pointer to the argument.
2766  // FIXME: We should be able to get rid of this method and use the va_arg
2767  // instruction in LLVM instead once it works well enough.
2768  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2769 
2770  /// emitArrayLength - Compute the length of an array, even if it's a
2771  /// VLA, and drill down to the base element type.
2772  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2773  QualType &baseType,
2774  Address &addr);
2775 
2776  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2777  /// the given variably-modified type and store them in the VLASizeMap.
2778  ///
2779  /// This function can be called with a null (unreachable) insert point.
2781 
2782  struct VlaSizePair {
2783  llvm::Value *NumElts;
2785 
2786  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2787  };
2788 
2789  /// Return the number of elements for a single dimension
2790  /// for the given array type.
2791  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2792  VlaSizePair getVLAElements1D(QualType vla);
2793 
2794  /// Returns an LLVM value that corresponds to the size,
2795  /// in non-variably-sized elements, of a variable length array type,
2796  /// plus that largest non-variably-sized element type. Assumes that
2797  /// the type has already been emitted with EmitVariablyModifiedType.
2798  VlaSizePair getVLASize(const VariableArrayType *vla);
2799  VlaSizePair getVLASize(QualType vla);
2800 
2801  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2802  /// generating code for an C++ member function.
2803  llvm::Value *LoadCXXThis() {
2804  assert(CXXThisValue && "no 'this' value for this function");
2805  return CXXThisValue;
2806  }
2808 
2809  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2810  /// virtual bases.
2811  // FIXME: Every place that calls LoadCXXVTT is something
2812  // that needs to be abstracted properly.
2813  llvm::Value *LoadCXXVTT() {
2814  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2815  return CXXStructorImplicitParamValue;
2816  }
2817 
2818  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2819  /// complete class to the given direct base.
2820  Address
2822  const CXXRecordDecl *Derived,
2823  const CXXRecordDecl *Base,
2824  bool BaseIsVirtual);
2825 
2826  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2827 
2828  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2829  /// load of 'this' and returns address of the base class.
2831  const CXXRecordDecl *Derived,
2834  bool NullCheckValue, SourceLocation Loc);
2835 
2837  const CXXRecordDecl *Derived,
2840  bool NullCheckValue);
2841 
2842  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2843  /// base constructor/destructor with virtual bases.
2844  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2845  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2846  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2847  bool Delegating);
2848 
2850  CXXCtorType CtorType,
2851  const FunctionArgList &Args,
2852  SourceLocation Loc);
2853  // It's important not to confuse this and the previous function. Delegating
2854  // constructors are the C++0x feature. The constructor delegate optimization
2855  // is used to reduce duplication in the base and complete consturctors where
2856  // they are substantially the same.
2858  const FunctionArgList &Args);
2859 
2860  /// Emit a call to an inheriting constructor (that is, one that invokes a
2861  /// constructor inherited from a base class) by inlining its definition. This
2862  /// is necessary if the ABI does not support forwarding the arguments to the
2863  /// base class constructor (because they're variadic or similar).
2865  CXXCtorType CtorType,
2866  bool ForVirtualBase,
2867  bool Delegating,
2868  CallArgList &Args);
2869 
2870  /// Emit a call to a constructor inherited from a base class, passing the
2871  /// current constructor's arguments along unmodified (without even making
2872  /// a copy).
2874  bool ForVirtualBase, Address This,
2875  bool InheritedFromVBase,
2876  const CXXInheritedCtorInitExpr *E);
2877 
2879  bool ForVirtualBase, bool Delegating,
2880  AggValueSlot ThisAVS, const CXXConstructExpr *E);
2881 
2883  bool ForVirtualBase, bool Delegating,
2884  Address This, CallArgList &Args,
2885  AggValueSlot::Overlap_t Overlap,
2886  SourceLocation Loc, bool NewPointerIsChecked);
2887 
2888  /// Emit assumption load for all bases. Requires to be called only on
2889  /// most-derived class and not under construction of the object.
2890  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2891 
2892  /// Emit assumption that vptr load == global vtable.
2893  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2894 
2896  Address This, Address Src,
2897  const CXXConstructExpr *E);
2898 
2900  const ArrayType *ArrayTy,
2901  Address ArrayPtr,
2902  const CXXConstructExpr *E,
2903  bool NewPointerIsChecked,
2904  bool ZeroInitialization = false);
2905 
2907  llvm::Value *NumElements,
2908  Address ArrayPtr,
2909  const CXXConstructExpr *E,
2910  bool NewPointerIsChecked,
2911  bool ZeroInitialization = false);
2912 
2914 
2916  bool ForVirtualBase, bool Delegating, Address This,
2917  QualType ThisTy);
2918 
2919  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2920  llvm::Type *ElementTy, Address NewPtr,
2921  llvm::Value *NumElements,
2922  llvm::Value *AllocSizeWithoutCookie);
2923 
2924  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2925  Address Ptr);
2926 
2927  void EmitSehCppScopeBegin();
2928  void EmitSehCppScopeEnd();
2929  void EmitSehTryScopeBegin();
2930  void EmitSehTryScopeEnd();
2931 
2932  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2933  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2934 
2935  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2936  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2937 
2938  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2939  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2940  CharUnits CookieSize = CharUnits());
2941 
2943  const CallExpr *TheCallExpr, bool IsDelete);
2944 
2945  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2946  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2948 
2949  /// Situations in which we might emit a check for the suitability of a
2950  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2951  /// compiler-rt.
2953  /// Checking the operand of a load. Must be suitably sized and aligned.
2955  /// Checking the destination of a store. Must be suitably sized and aligned.
2957  /// Checking the bound value in a reference binding. Must be suitably sized
2958  /// and aligned, but is not required to refer to an object (until the
2959  /// reference is used), per core issue 453.
2961  /// Checking the object expression in a non-static data member access. Must
2962  /// be an object within its lifetime.
2964  /// Checking the 'this' pointer for a call to a non-static member function.
2965  /// Must be an object within its lifetime.
2967  /// Checking the 'this' pointer for a constructor call.
2969  /// Checking the operand of a static_cast to a derived pointer type. Must be
2970  /// null or an object within its lifetime.
2972  /// Checking the operand of a static_cast to a derived reference type. Must
2973  /// be an object within its lifetime.
2975  /// Checking the operand of a cast to a base object. Must be suitably sized
2976  /// and aligned.
2978  /// Checking the operand of a cast to a virtual base object. Must be an
2979  /// object within its lifetime.
2981  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2983  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2984  /// null or an object within its lifetime.
2986  };
2987 
2988  /// Determine whether the pointer type check \p TCK permits null pointers.
2989  static bool isNullPointerAllowed(TypeCheckKind TCK);
2990 
2991  /// Determine whether the pointer type check \p TCK requires a vptr check.
2992  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2993 
2994  /// Whether any type-checking sanitizers are enabled. If \c false,
2995  /// calls to EmitTypeCheck can be skipped.
2996  bool sanitizePerformTypeCheck() const;
2997 
2998  /// Emit a check that \p V is the address of storage of the
2999  /// appropriate size and alignment for an object of type \p Type
3000  /// (or if ArraySize is provided, for an array of that bound).
3001  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3002  QualType Type, CharUnits Alignment = CharUnits::Zero(),
3003  SanitizerSet SkippedChecks = SanitizerSet(),
3004  llvm::Value *ArraySize = nullptr);
3005 
3006  /// Emit a check that \p Base points into an array object, which
3007  /// we can access at index \p Index. \p Accessed should be \c false if we
3008  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3009  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3010  QualType IndexType, bool Accessed);
3011 
3012  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3013  bool isInc, bool isPre);
3015  bool isInc, bool isPre);
3016 
3017  /// Converts Location to a DebugLoc, if debug information is enabled.
3018  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3019 
3020  /// Get the record field index as represented in debug info.
3021  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3022 
3023 
3024  //===--------------------------------------------------------------------===//
3025  // Declaration Emission
3026  //===--------------------------------------------------------------------===//
3027 
3028  /// EmitDecl - Emit a declaration.
3029  ///
3030  /// This function can be called with a null (unreachable) insert point.
3031  void EmitDecl(const Decl &D);
3032 
3033  /// EmitVarDecl - Emit a local variable declaration.
3034  ///
3035  /// This function can be called with a null (unreachable) insert point.
3036  void EmitVarDecl(const VarDecl &D);
3037 
3038  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3039  bool capturedByInit);
3040 
3041  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3042  llvm::Value *Address);
3043 
3044  /// Determine whether the given initializer is trivial in the sense
3045  /// that it requires no code to be generated.
3046  bool isTrivialInitializer(const Expr *Init);
3047 
3048  /// EmitAutoVarDecl - Emit an auto variable declaration.
3049  ///
3050  /// This function can be called with a null (unreachable) insert point.
3051  void EmitAutoVarDecl(const VarDecl &D);
3052 
3054  friend class CodeGenFunction;
3055 
3056  const VarDecl *Variable;
3057 
3058  /// The address of the alloca for languages with explicit address space
3059  /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3060  /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3061  /// as a global constant.
3062  Address Addr;
3063 
3064  llvm::Value *NRVOFlag;
3065 
3066  /// True if the variable is a __block variable that is captured by an
3067  /// escaping block.
3068  bool IsEscapingByRef;
3069 
3070  /// True if the variable is of aggregate type and has a constant
3071  /// initializer.
3072  bool IsConstantAggregate;
3073 
3074  /// Non-null if we should use lifetime annotations.
3075  llvm::Value *SizeForLifetimeMarkers;
3076 
3077  /// Address with original alloca instruction. Invalid if the variable was
3078  /// emitted as a global constant.
3079  Address AllocaAddr;
3080 
3081  struct Invalid {};
3082  AutoVarEmission(Invalid)
3083  : Variable(nullptr), Addr(Address::invalid()),
3084  AllocaAddr(Address::invalid()) {}
3085 
3086  AutoVarEmission(const VarDecl &variable)
3087  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3088  IsEscapingByRef(false), IsConstantAggregate(false),
3089  SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3090 
3091  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3092 
3093  public:
3094  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3095 
3096  bool useLifetimeMarkers() const {
3097  return SizeForLifetimeMarkers != nullptr;
3098  }
3099  llvm::Value *getSizeForLifetimeMarkers() const {
3100  assert(useLifetimeMarkers());
3101  return SizeForLifetimeMarkers;
3102  }
3103 
3104  /// Returns the raw, allocated address, which is not necessarily
3105  /// the address of the object itself. It is casted to default
3106  /// address space for address space agnostic languages.
3108  return Addr;
3109  }
3110 
3111  /// Returns the address for the original alloca instruction.
3112  Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3113 
3114  /// Returns the address of the object within this declaration.
3115  /// Note that this does not chase the forwarding pointer for
3116  /// __block decls.
3118  if (!IsEscapingByRef) return Addr;
3119 
3120  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3121  }
3122  };
3123  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3124  void EmitAutoVarInit(const AutoVarEmission &emission);
3125  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3126  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3127  QualType::DestructionKind dtorKind);
3128 
3129  /// Emits the alloca and debug information for the size expressions for each
3130  /// dimension of an array. It registers the association of its (1-dimensional)
3131  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3132  /// reference this node when creating the DISubrange object to describe the
3133  /// array types.
3135  const VarDecl &D,
3136  bool EmitDebugInfo);
3137 
3138  void EmitStaticVarDecl(const VarDecl &D,
3139  llvm::GlobalValue::LinkageTypes Linkage);
3140 
3141  class ParamValue {
3142  llvm::Value *Value;
3143  llvm::Type *ElementType;
3144  unsigned Alignment;
3145  ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3146  : Value(V), ElementType(T), Alignment(A) {}
3147  public:
3148  static ParamValue forDirect(llvm::Value *value) {
3149  return ParamValue(value, nullptr, 0);
3150  }
3152  assert(!addr.getAlignment().isZero());
3153  return ParamValue(addr.getPointer(), addr.getElementType(),
3154  addr.getAlignment().getQuantity());
3155  }
3156 
3157  bool isIndirect() const { return Alignment != 0; }
3158  llvm::Value *getAnyValue() const { return Value; }
3159 
3160  llvm::Value *getDirectValue() const {
3161  assert(!isIndirect());
3162  return Value;
3163  }
3164 
3166  assert(isIndirect());
3167  return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3168  }
3169  };
3170 
3171  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3172  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3173 
3174  /// protectFromPeepholes - Protect a value that we're intending to
3175  /// store to the side, but which will probably be used later, from
3176  /// aggressive peepholing optimizations that might delete it.
3177  ///
3178  /// Pass the result to unprotectFromPeepholes to declare that
3179  /// protection is no longer required.
3180  ///
3181  /// There's no particular reason why this shouldn't apply to
3182  /// l-values, it's just that no existing peepholes work on pointers.
3183  PeepholeProtection protectFromPeepholes(RValue rvalue);
3184  void unprotectFromPeepholes(PeepholeProtection protection);
3185 
3186  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3187  SourceLocation Loc,
3188  SourceLocation AssumptionLoc,
3189  llvm::Value *Alignment,
3190  llvm::Value *OffsetValue,
3191  llvm::Value *TheCheck,
3192  llvm::Instruction *Assumption);
3193 
3194  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3195  SourceLocation Loc, SourceLocation AssumptionLoc,
3196  llvm::Value *Alignment,
3197  llvm::Value *OffsetValue = nullptr);
3198 
3199  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3200  SourceLocation AssumptionLoc,
3201  llvm::Value *Alignment,
3202  llvm::Value *OffsetValue = nullptr);
3203 
3204  //===--------------------------------------------------------------------===//
3205  // Statement Emission
3206  //===--------------------------------------------------------------------===//
3207 
3208  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3209  void EmitStopPoint(const Stmt *S);
3210 
3211  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3212  /// this function even if there is no current insertion point.
3213  ///
3214  /// This function may clear the current insertion point; callers should use
3215  /// EnsureInsertPoint if they wish to subsequently generate code without first
3216  /// calling EmitBlock, EmitBranch, or EmitStmt.
3217  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt);
3218 
3219  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3220  /// necessarily require an insertion point or debug information; typically
3221  /// because the statement amounts to a jump or a container of other
3222  /// statements.
3223  ///
3224  /// \return True if the statement was handled.
3225  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3226 
3227  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3230  bool GetLast = false,
3231  AggValueSlot AVS =
3233 
3234  /// EmitLabel - Emit the block for the given label. It is legal to call this
3235  /// function even if there is no current insertion point.
3236  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3237 
3238  void EmitLabelStmt(const LabelStmt &S);
3239  void EmitAttributedStmt(const AttributedStmt &S);
3240  void EmitGotoStmt(const GotoStmt &S);
3241  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3242  void EmitIfStmt(const IfStmt &S);
3243 
3244  void EmitWhileStmt(const WhileStmt &S,
3245  ArrayRef<const Attr *> Attrs = std::nullopt);
3246  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt);
3247  void EmitForStmt(const ForStmt &S,
3248  ArrayRef<const Attr *> Attrs = std::nullopt);
3249  void EmitReturnStmt(const ReturnStmt &S);
3250  void EmitDeclStmt(const DeclStmt &S);
3251  void EmitBreakStmt(const BreakStmt &S);
3252  void EmitContinueStmt(const ContinueStmt &S);
3253  void EmitSwitchStmt(const SwitchStmt &S);
3254  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3255  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3256  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3257  void EmitAsmStmt(const AsmStmt &S);
3258 
3260  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3261  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3264 
3265  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3266  void EmitCoreturnStmt(const CoreturnStmt &S);
3268  AggValueSlot aggSlot = AggValueSlot::ignored(),
3269  bool ignoreResult = false);
3272  AggValueSlot aggSlot = AggValueSlot::ignored(),
3273  bool ignoreResult = false);
3275  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3276 
3277  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3278  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3279 
3280  void EmitCXXTryStmt(const CXXTryStmt &S);
3281  void EmitSEHTryStmt(const SEHTryStmt &S);
3282  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3283  void EnterSEHTryStmt(const SEHTryStmt &S);
3284  void ExitSEHTryStmt(const SEHTryStmt &S);
3285  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3287 
3289  llvm::Function *FinallyFunc);
3290  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3291  const Stmt *OutlinedStmt);
3292 
3294  const SEHExceptStmt &Except);
3295 
3297  const SEHFinallyStmt &Finally);
3298 
3300  llvm::Value *ParentFP,
3301  llvm::Value *EntryEBP);
3302  llvm::Value *EmitSEHExceptionCode();
3303  llvm::Value *EmitSEHExceptionInfo();
3304  llvm::Value *EmitSEHAbnormalTermination();
3305 
3306  /// Emit simple code for OpenMP directives in Simd-only mode.
3308 
3309  /// Scan the outlined statement for captures from the parent function. For
3310  /// each capture, mark the capture as escaped and emit a call to
3311  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3312  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3313  bool IsFilter);
3314 
3315  /// Recovers the address of a local in a parent function. ParentVar is the
3316  /// address of the variable used in the immediate parent function. It can
3317  /// either be an alloca or a call to llvm.localrecover if there are nested
3318  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3319  /// frame.
3321  Address ParentVar,
3322  llvm::Value *ParentFP);
3323 
3324  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3325  ArrayRef<const Attr *> Attrs = std::nullopt);
3326 
3327  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3329  CodeGenFunction &CGF;
3330 
3331  public:
3333  bool HasCancel)
3334  : CGF(CGF) {
3335  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3336  }
3337  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3338  };
3339 
3340  /// Returns calculated size of the specified type.
3341  llvm::Value *getTypeSize(QualType Ty);
3343  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3344  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3346  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3347  SourceLocation Loc);
3349  SmallVectorImpl<llvm::Value *> &CapturedVars);
3350  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3351  SourceLocation Loc);
3352  /// Perform element by element copying of arrays with type \a
3353  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3354  /// generated by \a CopyGen.
3355  ///
3356  /// \param DestAddr Address of the destination array.
3357  /// \param SrcAddr Address of the source array.
3358  /// \param OriginalType Type of destination and source arrays.
3359  /// \param CopyGen Copying procedure that copies value of single array element
3360  /// to another single array element.
3362  Address DestAddr, Address SrcAddr, QualType OriginalType,
3363  const llvm::function_ref<void(Address, Address)> CopyGen);
3364  /// Emit proper copying of data from one variable to another.
3365  ///
3366  /// \param OriginalType Original type of the copied variables.
3367  /// \param DestAddr Destination address.
3368  /// \param SrcAddr Source address.
3369  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3370  /// type of the base array element).
3371  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3372  /// the base array element).
3373  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3374  /// DestVD.
3375  void EmitOMPCopy(QualType OriginalType,
3376  Address DestAddr, Address SrcAddr,
3377  const VarDecl *DestVD, const VarDecl *SrcVD,
3378  const Expr *Copy);
3379  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3380  /// \a X = \a E \a BO \a E.
3381  ///
3382  /// \param X Value to be updated.
3383  /// \param E Update value.
3384  /// \param BO Binary operation for update operation.
3385  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3386  /// expression, false otherwise.
3387  /// \param AO Atomic ordering of the generated atomic instructions.
3388  /// \param CommonGen Code generator for complex expressions that cannot be
3389  /// expressed through atomicrmw instruction.
3390  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3391  /// generated, <false, RValue::get(nullptr)> otherwise.
3392  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3393  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3394  llvm::AtomicOrdering AO, SourceLocation Loc,
3395  const llvm::function_ref<RValue(RValue)> CommonGen);
3397  OMPPrivateScope &PrivateScope);
3399  OMPPrivateScope &PrivateScope);
3401  const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3402  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3404  const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3405  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3406  /// Emit code for copyin clause in \a D directive. The next code is
3407  /// generated at the start of outlined functions for directives:
3408  /// \code
3409  /// threadprivate_var1 = master_threadprivate_var1;
3410  /// operator=(threadprivate_var2, master_threadprivate_var2);
3411  /// ...
3412  /// __kmpc_barrier(&loc, global_tid);
3413  /// \endcode
3414  ///
3415  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3416  /// \returns true if at least one copyin variable is found, false otherwise.
3418  /// Emit initial code for lastprivate variables. If some variable is
3419  /// not also firstprivate, then the default initialization is used. Otherwise
3420  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3421  /// method.
3422  ///
3423  /// \param D Directive that may have 'lastprivate' directives.
3424  /// \param PrivateScope Private scope for capturing lastprivate variables for
3425  /// proper codegen in internal captured statement.
3426  ///
3427  /// \returns true if there is at least one lastprivate variable, false
3428  /// otherwise.
3430  OMPPrivateScope &PrivateScope);
3431  /// Emit final copying of lastprivate values to original variables at
3432  /// the end of the worksharing or simd directive.
3433  ///
3434  /// \param D Directive that has at least one 'lastprivate' directives.
3435  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3436  /// it is the last iteration of the loop code in associated directive, or to
3437  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3439  bool NoFinals,
3440  llvm::Value *IsLastIterCond = nullptr);
3441  /// Emit initial code for linear clauses.
3442  void EmitOMPLinearClause(const OMPLoopDirective &D,
3443  CodeGenFunction::OMPPrivateScope &PrivateScope);
3444  /// Emit final code for linear clauses.
3445  /// \param CondGen Optional conditional code for final part of codegen for
3446  /// linear clause.
3448  const OMPLoopDirective &D,
3449  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3450  /// Emit initial code for reduction variables. Creates reduction copies
3451  /// and initializes them with the values according to OpenMP standard.
3452  ///
3453  /// \param D Directive (possibly) with the 'reduction' clause.
3454  /// \param PrivateScope Private scope for capturing reduction variables for
3455  /// proper codegen in internal captured statement.
3456  ///
3458  OMPPrivateScope &PrivateScope,
3459  bool ForInscan = false);
3460  /// Emit final update of reduction values to original variables at
3461  /// the end of the directive.
3462  ///
3463  /// \param D Directive that has at least one 'reduction' directives.
3464  /// \param ReductionKind The kind of reduction to perform.
3466  const OpenMPDirectiveKind ReductionKind);
3467  /// Emit initial code for linear variables. Creates private copies
3468  /// and initializes them with the values according to OpenMP standard.
3469  ///
3470  /// \param D Directive (possibly) with the 'linear' clause.
3471  /// \return true if at least one linear variable is found that should be
3472  /// initialized with the value of the original variable, false otherwise.
3474 
3475  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3476  llvm::Function * /*OutlinedFn*/,
3477  const OMPTaskDataTy & /*Data*/)>
3480  const OpenMPDirectiveKind CapturedRegion,
3481  const RegionCodeGenTy &BodyGen,
3482  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3488  unsigned NumberOfTargetItems = 0;
3489  explicit OMPTargetDataInfo() = default;
3492  unsigned NumberOfTargetItems)
3496  };
3498  const RegionCodeGenTy &BodyGen,
3499  OMPTargetDataInfo &InputInfo);
3501  OMPTaskDataTy &Data,
3502  CodeGenFunction &CGF,
3503  const CapturedStmt *CS,
3504  OMPPrivateScope &Scope);
3505  void EmitOMPMetaDirective(const OMPMetaDirective &S);
3507  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3508  void EmitOMPTileDirective(const OMPTileDirective &S);
3510  void EmitOMPForDirective(const OMPForDirective &S);
3522  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3530  void EmitOMPScanDirective(const OMPScanDirective &S);
3539  void
3542  void
3549  void
3565  void
3582 
3583  /// Emit device code for the target directive.
3585  StringRef ParentName,
3586  const OMPTargetDirective &S);
3587  static void
3588  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3589  const OMPTargetParallelDirective &S);
3590  /// Emit device code for the target parallel for directive.
3592  CodeGenModule &CGM, StringRef ParentName,
3594  /// Emit device code for the target parallel for simd directive.
3596  CodeGenModule &CGM, StringRef ParentName,
3598  /// Emit device code for the target teams directive.
3599  static void
3600  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3601  const OMPTargetTeamsDirective &S);
3602  /// Emit device code for the target teams distribute directive.
3604  CodeGenModule &CGM, StringRef ParentName,
3606  /// Emit device code for the target teams distribute simd directive.
3608  CodeGenModule &CGM, StringRef ParentName,
3610  /// Emit device code for the target simd directive.
3612  StringRef ParentName,
3613  const OMPTargetSimdDirective &S);
3614  /// Emit device code for the target teams distribute parallel for simd
3615  /// directive.
3617  CodeGenModule &CGM, StringRef ParentName,
3619 
3621  CodeGenModule &CGM, StringRef ParentName,
3623 
3624  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3625  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3626  /// future it is meant to be the number of loops expected in the loop nests
3627  /// (usually specified by the "collapse" clause) that are collapsed to a
3628  /// single loop by this function.
3629  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3630  int Depth);
3631 
3632  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3633  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3634 
3635  /// Emit inner loop of the worksharing/simd construct.
3636  ///
3637  /// \param S Directive, for which the inner loop must be emitted.
3638  /// \param RequiresCleanup true, if directive has some associated private
3639  /// variables.
3640  /// \param LoopCond Bollean condition for loop continuation.
3641  /// \param IncExpr Increment expression for loop control variable.
3642  /// \param BodyGen Generator for the inner body of the inner loop.
3643  /// \param PostIncGen Genrator for post-increment code (required for ordered
3644  /// loop directvies).
3645  void EmitOMPInnerLoop(
3646  const OMPExecutableDirective &S, bool RequiresCleanup,
3647  const Expr *LoopCond, const Expr *IncExpr,
3648  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3649  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3650 
3652  /// Emit initial code for loop counters of loop-based directives.
3654  OMPPrivateScope &LoopScope);
3655 
3656  /// Helper for the OpenMP loop directives.
3657  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3658 
3659  /// Emit code for the worksharing loop-based directive.
3660  /// \return true, if this construct has any lastprivate clause, false -
3661  /// otherwise.
3662  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3663  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3664  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3665 
3666  /// Emit code for the distribute loop-based directive.
3668  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3669 
3670  /// Helpers for the OpenMP loop directives.
3671  void EmitOMPSimdInit(const OMPLoopDirective &D);
3672  void EmitOMPSimdFinal(
3673  const OMPLoopDirective &D,
3674  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3675 
3676  /// Emits the lvalue for the expression with possibly captured variable.
3677  LValue EmitOMPSharedLValue(const Expr *E);
3678 
3679 private:
3680  /// Helpers for blocks.
3681  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3682 
3683  /// struct with the values to be passed to the OpenMP loop-related functions
3684  struct OMPLoopArguments {
3685  /// loop lower bound
3686  Address LB = Address::invalid();
3687  /// loop upper bound
3688  Address UB = Address::invalid();
3689  /// loop stride
3690  Address ST = Address::invalid();
3691  /// isLastIteration argument for runtime functions
3692  Address IL = Address::invalid();
3693  /// Chunk value generated by sema
3694  llvm::Value *Chunk = nullptr;
3695  /// EnsureUpperBound
3696  Expr *EUB = nullptr;
3697  /// IncrementExpression
3698  Expr *IncExpr = nullptr;
3699  /// Loop initialization
3700  Expr *Init = nullptr;
3701  /// Loop exit condition
3702  Expr *Cond = nullptr;
3703  /// Update of LB after a whole chunk has been executed
3704  Expr *NextLB = nullptr;
3705  /// Update of UB after a whole chunk has been executed
3706  Expr *NextUB = nullptr;
3707  OMPLoopArguments() = default;
3708  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3709  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3710  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3711  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3712  Expr *NextUB = nullptr)
3713  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3714  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3715  NextUB(NextUB) {}
3716  };
3717  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3718  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3719  const OMPLoopArguments &LoopArgs,
3720  const CodeGenLoopTy &CodeGenLoop,
3721  const CodeGenOrderedTy &CodeGenOrdered);
3722  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3723  bool IsMonotonic, const OMPLoopDirective &S,
3724  OMPPrivateScope &LoopScope, bool Ordered,
3725  const OMPLoopArguments &LoopArgs,
3726  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3727  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3728  const OMPLoopDirective &S,
3729  OMPPrivateScope &LoopScope,
3730  const OMPLoopArguments &LoopArgs,
3731  const CodeGenLoopTy &CodeGenLoopContent);
3732  /// Emit code for sections directive.
3733  void EmitSections(const OMPExecutableDirective &S);
3734 
3735 public:
3736 
3737  //===--------------------------------------------------------------------===//
3738  // LValue Expression Emission
3739  //===--------------------------------------------------------------------===//
3740 
3741  /// Create a check that a scalar RValue is non-null.
3742  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3743 
3744  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3745  RValue GetUndefRValue(QualType Ty);
3746 
3747  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3748  /// and issue an ErrorUnsupported style diagnostic (using the
3749  /// provided Name).
3750  RValue EmitUnsupportedRValue(const Expr *E,
3751  const char *Name);
3752 
3753  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3754  /// an ErrorUnsupported style diagnostic (using the provided Name).
3755  LValue EmitUnsupportedLValue(const Expr *E,
3756  const char *Name);
3757 
3758  /// EmitLValue - Emit code to compute a designator that specifies the location
3759  /// of the expression.
3760  ///
3761  /// This can return one of two things: a simple address or a bitfield
3762  /// reference. In either case, the LLVM Value* in the LValue structure is
3763  /// guaranteed to be an LLVM pointer type.
3764  ///
3765  /// If this returns a bitfield reference, nothing about the pointee type of
3766  /// the LLVM value is known: For example, it may not be a pointer to an
3767  /// integer.
3768  ///
3769  /// If this returns a normal address, and if the lvalue's C type is fixed
3770  /// size, this method guarantees that the returned pointer type will point to
3771  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3772  /// variable length type, this is not possible.
3773  ///
3774  LValue EmitLValue(const Expr *E);
3775 
3776  /// Same as EmitLValue but additionally we generate checking code to
3777  /// guard against undefined behavior. This is only suitable when we know
3778  /// that the address will be used to access the object.
3779  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3780 
3781  RValue convertTempToRValue(Address addr, QualType type,
3782  SourceLocation Loc);
3783 
3784  void EmitAtomicInit(Expr *E, LValue lvalue);
3785 
3786  bool LValueIsSuitableForInlineAtomic(LValue Src);
3787 
3788  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3789  AggValueSlot Slot = AggValueSlot::ignored());
3790 
3791  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3792  llvm::AtomicOrdering AO, bool IsVolatile = false,
3793  AggValueSlot slot = AggValueSlot::ignored());
3794 
3795  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3796 
3797  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3798  bool IsVolatile, bool isInit);
3799 
3800  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3801  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3802  llvm::AtomicOrdering Success =
3803  llvm::AtomicOrdering::SequentiallyConsistent,
3804  llvm::AtomicOrdering Failure =
3805  llvm::AtomicOrdering::SequentiallyConsistent,
3806  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3807 
3808  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3809  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3810  bool IsVolatile);
3811 
3812  /// EmitToMemory - Change a scalar value from its value
3813  /// representation to its in-memory representation.
3814  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3815 
3816  /// EmitFromMemory - Change a scalar value from its memory
3817  /// representation to its value representation.
3818  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3819 
3820  /// Check if the scalar \p Value is within the valid range for the given
3821  /// type \p Ty.
3822  ///
3823  /// Returns true if a check is needed (even if the range is unknown).
3824  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3825  SourceLocation Loc);
3826 
3827  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3828  /// care to appropriately convert from the memory representation to
3829  /// the LLVM value representation.
3830  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3831  SourceLocation Loc,
3833  bool isNontemporal = false) {
3834  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3835  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3836  }
3837 
3838  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3839  SourceLocation Loc, LValueBaseInfo BaseInfo,
3840  TBAAAccessInfo TBAAInfo,
3841  bool isNontemporal = false);
3842 
3843  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3844  /// care to appropriately convert from the memory representation to
3845  /// the LLVM value representation. The l-value must be a simple
3846  /// l-value.
3847  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3848 
3849  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3850  /// care to appropriately convert from the memory representation to
3851  /// the LLVM value representation.
3852  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3853  bool Volatile, QualType Ty,
3855  bool isInit = false, bool isNontemporal = false) {
3856  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3857  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3858  }
3859 
3860  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3861  bool Volatile, QualType Ty,
3862  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3863  bool isInit = false, bool isNontemporal = false);
3864 
3865  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3866  /// care to appropriately convert from the memory representation to
3867  /// the LLVM value representation. The l-value must be a simple
3868  /// l-value. The isInit flag indicates whether this is an initialization.
3869  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3870  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3871 
3872  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3873  /// this method emits the address of the lvalue, then loads the result as an
3874  /// rvalue, returning the rvalue.
3879 
3880  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3881  /// lvalue, where both are guaranteed to the have the same type, and that type
3882  /// is 'Ty'.
3883  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3886 
3887  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3888  /// as EmitStoreThroughLValue.
3889  ///
3890  /// \param Result [out] - If non-null, this will be set to a Value* for the
3891  /// bit-field contents after the store, appropriate for use as the result of
3892  /// an assignment to the bit-field.
3894  llvm::Value **Result=nullptr);
3895 
3896  /// Emit an l-value for an assignment (simple or compound) of complex type.
3900  llvm::Value *&Result);
3901 
3902  // Note: only available for agg return types
3905  // Note: only available for agg return types
3907  // Note: only available for agg return types
3915  bool Accessed = false);
3918  bool IsLowerBound = true);
3920  LValue EmitMemberExpr(const MemberExpr *E);
3926  LValue EmitCastLValue(const CastExpr *E);
3929 
3931 
3933 
3934  Address EmitArrayToPointerDecay(const Expr *Array,
3935  LValueBaseInfo *BaseInfo = nullptr,
3936  TBAAAccessInfo *TBAAInfo = nullptr);
3937 
3939  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3940  ConstantEmission(llvm::Constant *C, bool isReference)
3941  : ValueAndIsReference(C, isReference) {}
3942  public:
3944  static ConstantEmission forReference(llvm::Constant *C) {
3945  return ConstantEmission(C, true);
3946  }
3947  static ConstantEmission forValue(llvm::Constant *C) {
3948  return ConstantEmission(C, false);
3949  }
3950 
3951  explicit operator bool() const {
3952  return ValueAndIsReference.getOpaqueValue() != nullptr;
3953  }
3954 
3955  bool isReference() const { return ValueAndIsReference.getInt(); }
3957  assert(isReference());
3958  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3959  refExpr->getType());
3960  }
3961 
3962  llvm::Constant *getValue() const {
3963  assert(!isReference());
3964  return ValueAndIsReference.getPointer();
3965  }
3966  };
3967 
3968  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3969  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3970  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3971 
3975 
3976  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3977  const ObjCIvarDecl *Ivar);
3978  llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
3979  const ObjCIvarDecl *Ivar);
3982 
3983  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3984  /// if the Field is a reference, this will return the address of the reference
3985  /// and not the address of the value stored in the reference.
3987  const FieldDecl* Field);
3988 
3990  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3991  unsigned CVRQualifiers);
3992 
3997 
4003  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4004 
4005  //===--------------------------------------------------------------------===//
4006  // Scalar Expression Emission
4007  //===--------------------------------------------------------------------===//
4008 
4009  /// EmitCall - Generate a call of the given function, expecting the given
4010  /// result type, and using the given argument list which specifies both the
4011  /// LLVM arguments and the types they were derived from.
4012  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4014  llvm::CallBase **callOrInvoke, bool IsMustTail,
4015  SourceLocation Loc);
4016  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4018  llvm::CallBase **callOrInvoke = nullptr,
4019  bool IsMustTail = false) {
4020  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4021  IsMustTail, SourceLocation());
4022  }
4023  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4024  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4025  RValue EmitCallExpr(const CallExpr *E,
4028  CGCallee EmitCallee(const Expr *E);
4029 
4030  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4031  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4032 
4033  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4034  const Twine &name = "");
4035  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4037  const Twine &name = "");
4038  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4039  const Twine &name = "");
4040  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4042  const Twine &name = "");
4043 
4045  getBundlesForFunclet(llvm::Value *Callee);
4046 
4047  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4049  const Twine &Name = "");
4050  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4052  const Twine &name = "");
4053  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4054  const Twine &name = "");
4055  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4057 
4059  NestedNameSpecifier *Qual,
4060  llvm::Type *Ty);
4061 
4063  CXXDtorType Type,
4064  const CXXRecordDecl *RD);
4065 
4066  // Return the copy constructor name with the prefix "__copy_constructor_"
4067  // removed.
4069  CharUnits Alignment,
4070  bool IsVolatile,
4071  ASTContext &Ctx);
4072 
4073  // Return the destructor name with the prefix "__destructor_" removed.
4075  CharUnits Alignment,
4076  bool IsVolatile,
4077  ASTContext &Ctx);
4078 
4079  // These functions emit calls to the special functions of non-trivial C
4080  // structs.
4083  void callCStructDestructor(LValue Dst);
4084  void callCStructCopyConstructor(LValue Dst, LValue Src);
4085  void callCStructMoveConstructor(LValue Dst, LValue Src);
4088 
4089  RValue
4091  const CGCallee &Callee,
4092  ReturnValueSlot ReturnValue, llvm::Value *This,
4093  llvm::Value *ImplicitParam,
4094  QualType ImplicitParamTy, const CallExpr *E,
4095  CallArgList *RtlArgs);
4096  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4097  llvm::Value *This, QualType ThisTy,
4098  llvm::Value *ImplicitParam,
4099  QualType ImplicitParamTy, const CallExpr *E);
4103  const CXXMethodDecl *MD,
4105  bool HasQualifier,
4106  NestedNameSpecifier *Qualifier,
4107  bool IsArrow, const Expr *Base);
4108  // Compute the object pointer.
4110  llvm::Value *memberPtr,
4111  const MemberPointerType *memberPtrType,
4112  LValueBaseInfo *BaseInfo = nullptr,
4113  TBAAAccessInfo *TBAAInfo = nullptr);
4116 
4118  const CXXMethodDecl *MD,
4121 
4124 
4128 
4129  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4131 
4132  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4133 
4134  /// Emit IR for __builtin_os_log_format.
4136 
4137  /// Emit IR for __builtin_is_aligned.
4139  /// Emit IR for __builtin_align_up/__builtin_align_down.
4140  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4141 
4142  llvm::Function *generateBuiltinOSLogHelperFunction(
4143  const analyze_os_log::OSLogBufferLayout &Layout,
4144  CharUnits BufferAlignment);
4145 
4147 
4148  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4149  /// is unhandled by the current target.
4150  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4152 
4153  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4154  const llvm::CmpInst::Predicate Fp,
4155  const llvm::CmpInst::Predicate Ip,
4156  const llvm::Twine &Name = "");
4157  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4159  llvm::Triple::ArchType Arch);
4160  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4162  llvm::Triple::ArchType Arch);
4163  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4165  llvm::Triple::ArchType Arch);
4166  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4167  QualType RTy);
4168  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4169  QualType RTy);
4170 
4171  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4172  unsigned LLVMIntrinsic,
4173  unsigned AltLLVMIntrinsic,
4174  const char *NameHint,
4175  unsigned Modifier,
4176  const CallExpr *E,
4178  Address PtrOp0, Address PtrOp1,
4179  llvm::Triple::ArchType Arch);
4180 
4181  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4182  unsigned Modifier, llvm::Type *ArgTy,
4183  const CallExpr *E);
4184  llvm::Value *EmitNeonCall(llvm::Function *F,
4186  const char *name,
4187  unsigned shift = 0, bool rightshift = false);
4188  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4189  const llvm::ElementCount &Count);
4190  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4191  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4192  bool negateForRightShift);
4193  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4194  llvm::Type *Ty, bool usgn, const char *name);
4195  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4196  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4197  /// access builtin. Only required if it can't be inferred from the base
4198  /// pointer operand.
4199  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4200 
4202  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4204  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4205  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4206  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4207  llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4208  llvm::Type *ReturnType,
4210  llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4211  llvm::Type *ReturnType,
4213  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4214  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4215  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4216  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4217  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4219  unsigned BuiltinID);
4220  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4222  unsigned BuiltinID);
4223  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4224  llvm::ScalableVectorType *VTy);
4225  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4227  unsigned IntID);
4228  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4230  unsigned IntID);
4231  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4233  unsigned BuiltinID, bool IsZExtReturn);
4234  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4236  unsigned BuiltinID);
4237  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4239  unsigned BuiltinID);
4240  llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4242  unsigned IntID);
4243  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4245  unsigned IntID);
4246  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4248  unsigned IntID);
4249  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4250 
4251  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4252  llvm::Triple::ArchType Arch);
4253  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4254 
4255  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4256  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4257  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4258  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4259  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4260  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4261  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4262  const CallExpr *E);
4263  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4264  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4266  llvm::Value *EmitLoongArchBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4267  void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4268  llvm::AtomicOrdering &AO,
4269  llvm::SyncScope::ID &SSID);
4270 
4271  enum class MSVCIntrin;
4272  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4273 
4274  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4275 
4276  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4277  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4278  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4279  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4280  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4281  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4282  const ObjCMethodDecl *MethodWithObjects);
4283  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4285  ReturnValueSlot Return = ReturnValueSlot());
4286 
4287  /// Retrieves the default cleanup kind for an ARC cleanup.
4288  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4290  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4292  }
4293 
4294  // ARC primitives.
4295  void EmitARCInitWeak(Address addr, llvm::Value *value);
4296  void EmitARCDestroyWeak(Address addr);
4297  llvm::Value *EmitARCLoadWeak(Address addr);
4298  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4299  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4300  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4301  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4302  void EmitARCCopyWeak(Address dst, Address src);
4303  void EmitARCMoveWeak(Address dst, Address src);
4304  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4305  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4306  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4307  bool resultIgnored);
4308  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4309  bool resultIgnored);
4310  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4311  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4312  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4314  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4315  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4316  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4317  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4318  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4319  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4320 
4321  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4322  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4323  llvm::Type *returnType);
4324  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4325 
4326  std::pair<LValue,llvm::Value*>
4328  std::pair<LValue,llvm::Value*>
4329  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4330  std::pair<LValue,llvm::Value*>
4331  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4332 
4333  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4334  llvm::Type *returnType);
4335  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4336  llvm::Type *returnType);
4337  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4338 
4339  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4340  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4341  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4342 
4343  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4344  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4345  bool allowUnsafeClaim);
4346  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4347  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4348  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4349 
4351 
4353 
4359 
4360  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4361  llvm::Value *EmitObjCAutoreleasePoolPush();
4362  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4363  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4364  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4365 
4366  /// Emits a reference binding to the passed in expression.
4368 
4369  //===--------------------------------------------------------------------===//
4370  // Expression Emission
4371  //===--------------------------------------------------------------------===//
4372 
4373  // Expressions are broken into three classes: scalar, complex, aggregate.
4374 
4375  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4376  /// scalar type, returning the result.
4377  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4378 
4379  /// Emit a conversion from the specified type to the specified destination
4380  /// type, both of which are LLVM scalar types.
4381  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4382  QualType DstTy, SourceLocation Loc);
4383 
4384  /// Emit a conversion from the specified complex type to the specified
4385  /// destination type, where the destination type is an LLVM scalar type.
4386  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4387  QualType DstTy,
4388  SourceLocation Loc);
4389 
4390  /// EmitAggExpr - Emit the computation of the specified expression
4391  /// of aggregate type. The result is computed into the given slot,
4392  /// which may be null to indicate that the value is not needed.
4393  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4394 
4395  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4396  /// aggregate type into a temporary LValue.
4397  LValue EmitAggExprToLValue(const Expr *E);
4398 
4399  /// Build all the stores needed to initialize an aggregate at Dest with the
4400  /// value Val.
4401  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4402 
4403  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4404  /// make sure it survives garbage collection until this point.
4405  void EmitExtendGCLifetime(llvm::Value *object);
4406 
4407  /// EmitComplexExpr - Emit the computation of the specified expression of
4408  /// complex type, returning the result.
4410  bool IgnoreReal = false,
4411  bool IgnoreImag = false);
4412 
4413  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4414  /// type and place its result into the specified l-value.
4415  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4416 
4417  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4418  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4419 
4420  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4422 
4423  ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4424  llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4425  ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4427 
4430 
4431  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4432  /// global variable that has already been created for it. If the initializer
4433  /// has a different type than GV does, this may free GV and return a different
4434  /// one. Otherwise it just returns GV.
4435  llvm::GlobalVariable *
4437  llvm::GlobalVariable *GV);
4438 
4439  // Emit an @llvm.invariant.start call for the given memory region.
4440  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4441 
4442  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4443  /// variable with global storage.
4444  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4445  bool PerformInit);
4446 
4447  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4448  llvm::Constant *Addr);
4449 
4450  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4451  llvm::FunctionCallee Dtor,
4452  llvm::Constant *Addr,
4453  llvm::FunctionCallee &AtExit);
4454 
4455  /// Call atexit() with a function that passes the given argument to
4456  /// the given function.
4457  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4458  llvm::Constant *addr);
4459 
4460  /// Call atexit() with function dtorStub.
4461  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4462 
4463  /// Call unatexit() with function dtorStub.
4464  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4465 
4466  /// Emit code in this function to perform a guarded variable
4467  /// initialization. Guarded initializations are used when it's not
4468  /// possible to prove that an initialization will be done exactly
4469  /// once, e.g. with a static local variable or a static data member
4470  /// of a class template.
4471  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4472  bool PerformInit);
4473 
4475 
4476  /// Emit a branch to select whether or not to perform guarded initialization.
4477  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4478  llvm::BasicBlock *InitBlock,
4479  llvm::BasicBlock *NoInitBlock,
4480  GuardKind Kind, const VarDecl *D);
4481 
4482  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4483  /// variables.
4484  void
4485  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4486  ArrayRef<llvm::Function *> CXXThreadLocals,
4488 
4489  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4490  /// variables.
4492  llvm::Function *Fn,
4493  ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4494  llvm::Constant *>>
4495  DtorsOrStermFinalizers);
4496 
4497  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4498  const VarDecl *D,
4499  llvm::GlobalVariable *Addr,
4500  bool PerformInit);
4501 
4502  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4503 
4504  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4505 
4506  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4507 
4509 
4510  //===--------------------------------------------------------------------===//
4511  // Annotations Emission
4512  //===--------------------------------------------------------------------===//
4513 
4514  /// Emit an annotation call (intrinsic).
4515  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4516  llvm::Value *AnnotatedVal,
4517  StringRef AnnotationStr,
4518  SourceLocation Location,
4519  const AnnotateAttr *Attr);
4520 
4521  /// Emit local annotations for the local variable V, declared by D.
4522  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4523 
4524  /// Emit field annotations for the given field & value. Returns the
4525  /// annotation result.
4527 
4528  //===--------------------------------------------------------------------===//
4529  // Internal Helpers
4530  //===--------------------------------------------------------------------===//
4531 
4532  /// ContainsLabel - Return true if the statement contains a label in it. If
4533  /// this statement is not executed normally, it not containing a label means
4534  /// that we can just remove the code.
4535  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4536 
4537  /// containsBreak - Return true if the statement contains a break out of it.
4538  /// If the statement (recursively) contains a switch or loop with a break
4539  /// inside of it, this is fine.
4540  static bool containsBreak(const Stmt *S);
4541 
4542  /// Determine if the given statement might introduce a declaration into the
4543  /// current scope, by being a (possibly-labelled) DeclStmt.
4544  static bool mightAddDeclToScope(const Stmt *S);
4545 
4546  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4547  /// to a constant, or if it does but contains a label, return false. If it
4548  /// constant folds return true and set the boolean result in Result.
4549  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4550  bool AllowLabels = false);
4551 
4552  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4553  /// to a constant, or if it does but contains a label, return false. If it
4554  /// constant folds return true and set the folded value.
4555  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4556  bool AllowLabels = false);
4557 
4558  /// isInstrumentedCondition - Determine whether the given condition is an
4559  /// instrumentable condition (i.e. no "&&" or "||").
4560  static bool isInstrumentedCondition(const Expr *C);
4561 
4562  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4563  /// increments a profile counter based on the semantics of the given logical
4564  /// operator opcode. This is used to instrument branch condition coverage
4565  /// for logical operators.
4567  llvm::BasicBlock *TrueBlock,
4568  llvm::BasicBlock *FalseBlock,
4569  uint64_t TrueCount = 0,
4571  const Expr *CntrIdx = nullptr);
4572 
4573  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4574  /// if statement) to the specified blocks. Based on the condition, this might
4575  /// try to simplify the codegen of the conditional based on the branch.
4576  /// Tr