clang  14.0.0git
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class BlockDecl;
59 class CXXDestructorDecl;
60 class CXXForRangeStmt;
61 class CXXTryStmt;
62 class Decl;
63 class LabelDecl;
64 class EnumConstantDecl;
65 class FunctionDecl;
66 class FunctionProtoType;
67 class LabelStmt;
68 class ObjCContainerDecl;
69 class ObjCInterfaceDecl;
70 class ObjCIvarDecl;
71 class ObjCMethodDecl;
72 class ObjCImplementationDecl;
73 class ObjCPropertyImplDecl;
74 class TargetInfo;
75 class VarDecl;
76 class ObjCForCollectionStmt;
77 class ObjCAtTryStmt;
78 class ObjCAtThrowStmt;
79 class ObjCAtSynchronizedStmt;
80 class ObjCAutoreleasePoolStmt;
81 class OMPUseDevicePtrClause;
82 class OMPUseDeviceAddrClause;
83 class ReturnsNonNullAttr;
84 class SVETypeFlags;
85 class OMPExecutableDirective;
86 
87 namespace analyze_os_log {
88 class OSLogBufferLayout;
89 }
90 
91 namespace CodeGen {
92 class CodeGenTypes;
93 class CGCallee;
94 class CGFunctionInfo;
95 class CGRecordLayout;
96 class CGBlockInfo;
97 class CGCXXABI;
98 class BlockByrefHelpers;
99 class BlockByrefInfo;
100 class BlockFlags;
101 class BlockFieldFlags;
102 class RegionCodeGenTy;
103 class TargetCodeGenInfo;
104 struct OMPTaskDataTy;
105 struct CGCoroData;
106 
107 /// The kind of evaluation to perform on values of a particular
108 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
109 /// CGExprAgg?
110 ///
111 /// TODO: should vectors maybe be split out into their own thing?
116 };
117 
118 #define LIST_SANITIZER_CHECKS \
119  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
120  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
121  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
122  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
123  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
124  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
125  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \
126  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \
127  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
128  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \
129  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
130  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
131  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
132  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
133  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
134  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
135  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
136  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
137  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
138  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
139  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
140  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
141  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
142  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \
143  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
144 
146 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
148 #undef SANITIZER_CHECK
149 };
150 
151 /// Helper class with most of the code for saving a value for a
152 /// conditional expression cleanup.
154  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
155 
156  /// Answer whether the given value needs extra work to be saved.
157  static bool needsSaving(llvm::Value *value) {
158  // If it's not an instruction, we don't need to save.
159  if (!isa<llvm::Instruction>(value)) return false;
160 
161  // If it's an instruction in the entry block, we don't need to save.
162  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
163  return (block != &block->getParent()->getEntryBlock());
164  }
165 
166  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
167  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
168 };
169 
170 /// A partial specialization of DominatingValue for llvm::Values that
171 /// might be llvm::Instructions.
172 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
173  typedef T *type;
174  static type restore(CodeGenFunction &CGF, saved_type value) {
175  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
176  }
177 };
178 
179 /// A specialization of DominatingValue for Address.
180 template <> struct DominatingValue<Address> {
181  typedef Address type;
182 
183  struct saved_type {
186  };
187 
188  static bool needsSaving(type value) {
190  }
191  static saved_type save(CodeGenFunction &CGF, type value) {
192  return { DominatingLLVMValue::save(CGF, value.getPointer()),
193  value.getAlignment() };
194  }
195  static type restore(CodeGenFunction &CGF, saved_type value) {
196  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
197  value.Alignment);
198  }
199 };
200 
201 /// A specialization of DominatingValue for RValue.
202 template <> struct DominatingValue<RValue> {
203  typedef RValue type;
204  class saved_type {
205  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
206  AggregateAddress, ComplexAddress };
207 
209  unsigned K : 3;
210  unsigned Align : 29;
211  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
212  : Value(v), K(k), Align(a) {}
213 
214  public:
215  static bool needsSaving(RValue value);
216  static saved_type save(CodeGenFunction &CGF, RValue value);
218 
219  // implementations in CGCleanup.cpp
220  };
221 
222  static bool needsSaving(type value) {
223  return saved_type::needsSaving(value);
224  }
225  static saved_type save(CodeGenFunction &CGF, type value) {
226  return saved_type::save(CGF, value);
227  }
228  static type restore(CodeGenFunction &CGF, saved_type value) {
229  return value.restore(CGF);
230  }
231 };
232 
233 /// CodeGenFunction - This class organizes the per-function state that is used
234 /// while generating LLVM code.
236  CodeGenFunction(const CodeGenFunction &) = delete;
237  void operator=(const CodeGenFunction &) = delete;
238 
239  friend class CGCXXABI;
240 public:
241  /// A jump destination is an abstract label, branching to which may
242  /// require a jump out through normal cleanups.
243  struct JumpDest {
244  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
245  JumpDest(llvm::BasicBlock *Block,
247  unsigned Index)
248  : Block(Block), ScopeDepth(Depth), Index(Index) {}
249 
250  bool isValid() const { return Block != nullptr; }
251  llvm::BasicBlock *getBlock() const { return Block; }
252  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
253  unsigned getDestIndex() const { return Index; }
254 
255  // This should be used cautiously.
257  ScopeDepth = depth;
258  }
259 
260  private:
261  llvm::BasicBlock *Block;
263  unsigned Index;
264  };
265 
266  CodeGenModule &CGM; // Per-module state.
268 
269  // For EH/SEH outlined funclets, this field points to parent's CGF
271 
272  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
275 
276  // Stores variables for which we can't generate correct lifetime markers
277  // because of jumps.
279 
280  /// List of recently emitted OMPCanonicalLoops.
281  ///
282  /// Since OMPCanonicalLoops are nested inside other statements (in particular
283  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
284  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
285  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
286  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
287  /// this stack when done. Entering a new loop requires clearing this list; it
288  /// either means we start parsing a new loop nest (in which case the previous
289  /// loop nest goes out of scope) or a second loop in the same level in which
290  /// case it would be ambiguous into which of the two (or more) loops the loop
291  /// nest would extend.
293 
294  /// Number of nested loop to be consumed by the last surrounding
295  /// loop-associated directive.
297 
298  // CodeGen lambda for loops and support for ordered clause
299  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
300  JumpDest)>
302  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
303  const unsigned, const bool)>
305 
306  // Codegen lambda for loop bounds in worksharing loop constructs
307  typedef llvm::function_ref<std::pair<LValue, LValue>(
310 
311  // Codegen lambda for loop bounds in dispatch-based loop implementation
312  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
314  Address UB)>
316 
317  /// CGBuilder insert helper. This function is called after an
318  /// instruction is created using Builder.
319  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
320  llvm::BasicBlock *BB,
321  llvm::BasicBlock::iterator InsertPt) const;
322 
323  /// CurFuncDecl - Holds the Decl for the current outermost
324  /// non-closure context.
326  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
330  llvm::Function *CurFn = nullptr;
331 
332  /// Save Parameter Decl for coroutine.
334 
335  // Holds coroutine data if the current function is a coroutine. We use a
336  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
337  // in this header.
338  struct CGCoroInfo {
339  std::unique_ptr<CGCoroData> Data;
340  CGCoroInfo();
341  ~CGCoroInfo();
342  };
344 
345  bool isCoroutine() const {
346  return CurCoro.Data != nullptr;
347  }
348 
349  /// CurGD - The GlobalDecl for the current function being compiled.
351 
352  /// PrologueCleanupDepth - The cleanup depth enclosing all the
353  /// cleanups associated with the parameters.
355 
356  /// ReturnBlock - Unified return block.
358 
359  /// ReturnValue - The temporary alloca to hold the return
360  /// value. This is invalid iff the function has no return value.
362 
363  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
364  /// This is invalid if sret is not in use.
366 
367  /// If a return statement is being visited, this holds the return statment's
368  /// result expression.
369  const Expr *RetExpr = nullptr;
370 
371  /// Return true if a label was seen in the current scope.
373  if (CurLexicalScope)
374  return CurLexicalScope->hasLabels();
375  return !LabelMap.empty();
376  }
377 
378  /// AllocaInsertPoint - This is an instruction in the entry block before which
379  /// we prefer to insert allocas.
380  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
381 
382  /// API for captured statement code generation.
384  public:
386  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
387  explicit CGCapturedStmtInfo(const CapturedStmt &S,
389  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
390 
392  S.getCapturedRecordDecl()->field_begin();
393  for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
394  E = S.capture_end();
395  I != E; ++I, ++Field) {
396  if (I->capturesThis())
397  CXXThisFieldDecl = *Field;
398  else if (I->capturesVariable())
399  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
400  else if (I->capturesVariableByCopy())
401  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
402  }
403  }
404 
405  virtual ~CGCapturedStmtInfo();
406 
407  CapturedRegionKind getKind() const { return Kind; }
408 
409  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
410  // Retrieve the value of the context parameter.
411  virtual llvm::Value *getContextValue() const { return ThisValue; }
412 
413  /// Lookup the captured field decl for a variable.
414  virtual const FieldDecl *lookup(const VarDecl *VD) const {
415  return CaptureFields.lookup(VD->getCanonicalDecl());
416  }
417 
418  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
419  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
420 
421  static bool classof(const CGCapturedStmtInfo *) {
422  return true;
423  }
424 
425  /// Emit the captured statement body.
426  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
428  CGF.EmitStmt(S);
429  }
430 
431  /// Get the name of the capture helper.
432  virtual StringRef getHelperName() const { return "__captured_stmt"; }
433 
434  private:
435  /// The kind of captured statement being generated.
436  CapturedRegionKind Kind;
437 
438  /// Keep the map between VarDecl and FieldDecl.
439  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
440 
441  /// The base address of the captured record, passed in as the first
442  /// argument of the parallel region function.
443  llvm::Value *ThisValue;
444 
445  /// Captured 'this' type.
446  FieldDecl *CXXThisFieldDecl;
447  };
449 
450  /// RAII for correct setting/restoring of CapturedStmtInfo.
452  private:
453  CodeGenFunction &CGF;
454  CGCapturedStmtInfo *PrevCapturedStmtInfo;
455  public:
457  CGCapturedStmtInfo *NewCapturedStmtInfo)
458  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
459  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
460  }
461  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
462  };
463 
464  /// An abstract representation of regular/ObjC call/message targets.
466  /// The function declaration of the callee.
467  const Decl *CalleeDecl;
468 
469  public:
470  AbstractCallee() : CalleeDecl(nullptr) {}
471  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
472  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
473  bool hasFunctionDecl() const {
474  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
475  }
476  const Decl *getDecl() const { return CalleeDecl; }
477  unsigned getNumParams() const {
478  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
479  return FD->getNumParams();
480  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
481  }
482  const ParmVarDecl *getParamDecl(unsigned I) const {
483  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
484  return FD->getParamDecl(I);
485  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
486  }
487  };
488 
489  /// Sanitizers enabled for this function.
491 
492  /// True if CodeGen currently emits code implementing sanitizer checks.
493  bool IsSanitizerScope = false;
494 
495  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
497  CodeGenFunction *CGF;
498  public:
500  ~SanitizerScope();
501  };
502 
503  /// In C++, whether we are code generating a thunk. This controls whether we
504  /// should emit cleanups.
505  bool CurFuncIsThunk = false;
506 
507  /// In ARC, whether we should autorelease the return value.
508  bool AutoreleaseResult = false;
509 
510  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
511  /// potentially set the return value.
512  bool SawAsmBlock = false;
513 
514  const NamedDecl *CurSEHParent = nullptr;
515 
516  /// True if the current function is an outlined SEH helper. This can be a
517  /// finally block or filter expression.
518  bool IsOutlinedSEHHelper = false;
519 
520  /// True if CodeGen currently emits code inside presereved access index
521  /// region.
522  bool IsInPreservedAIRegion = false;
523 
524  /// True if the current statement has nomerge attribute.
526 
527  // The CallExpr within the current statement that the musttail attribute
528  // applies to. nullptr if there is no 'musttail' on the current statement.
529  const CallExpr *MustTailCall = nullptr;
530 
531  /// Returns true if a function must make progress, which means the
532  /// mustprogress attribute can be added.
534  if (CGM.getCodeGenOpts().getFiniteLoops() ==
535  CodeGenOptions::FiniteLoopsKind::Never)
536  return false;
537 
538  // C++11 and later guarantees that a thread eventually will do one of the
539  // following (6.9.2.3.1 in C++11):
540  // - terminate,
541  // - make a call to a library I/O function,
542  // - perform an access through a volatile glvalue, or
543  // - perform a synchronization operation or an atomic operation.
544  //
545  // Hence each function is 'mustprogress' in C++11 or later.
546  return getLangOpts().CPlusPlus11;
547  }
548 
549  /// Returns true if a loop must make progress, which means the mustprogress
550  /// attribute can be added. \p HasConstantCond indicates whether the branch
551  /// condition is a known constant.
552  bool checkIfLoopMustProgress(bool HasConstantCond) {
553  if (CGM.getCodeGenOpts().getFiniteLoops() ==
554  CodeGenOptions::FiniteLoopsKind::Always)
555  return true;
556  if (CGM.getCodeGenOpts().getFiniteLoops() ==
557  CodeGenOptions::FiniteLoopsKind::Never)
558  return false;
559 
560  // If the containing function must make progress, loops also must make
561  // progress (as in C++11 and later).
563  return true;
564 
565  // Now apply rules for plain C (see 6.8.5.6 in C11).
566  // Loops with constant conditions do not have to make progress in any C
567  // version.
568  if (HasConstantCond)
569  return false;
570 
571  // Loops with non-constant conditions must make progress in C11 and later.
572  return getLangOpts().C11;
573  }
574 
575  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
577 
578  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
580 
581  /// A mapping from NRVO variables to the flags used to indicate
582  /// when the NRVO has been applied to this variable.
583  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
584 
588 
589  llvm::Instruction *CurrentFuncletPad = nullptr;
590 
591  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
592  bool isRedundantBeforeReturn() override { return true; }
593 
594  llvm::Value *Addr;
595  llvm::Value *Size;
596 
597  public:
599  : Addr(addr.getPointer()), Size(size) {}
600 
601  void Emit(CodeGenFunction &CGF, Flags flags) override {
602  CGF.EmitLifetimeEnd(Size, Addr);
603  }
604  };
605 
606  /// Header for data within LifetimeExtendedCleanupStack.
608  /// The size of the following cleanup object.
609  unsigned Size;
610  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
611  unsigned Kind : 31;
612  /// Whether this is a conditional cleanup.
613  unsigned IsConditional : 1;
614 
615  size_t getSize() const { return Size; }
616  CleanupKind getKind() const { return (CleanupKind)Kind; }
617  bool isConditional() const { return IsConditional; }
618  };
619 
620  /// i32s containing the indexes of the cleanup destinations.
622 
623  unsigned NextCleanupDestIndex = 1;
624 
625  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
626  llvm::BasicBlock *EHResumeBlock = nullptr;
627 
628  /// The exception slot. All landing pads write the current exception pointer
629  /// into this alloca.
631 
632  /// The selector slot. Under the MandatoryCleanup model, all landing pads
633  /// write the current selector value into this alloca.
634  llvm::AllocaInst *EHSelectorSlot = nullptr;
635 
636  /// A stack of exception code slots. Entering an __except block pushes a slot
637  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
638  /// a value from the top of the stack.
640 
641  /// Value returned by __exception_info intrinsic.
642  llvm::Value *SEHInfo = nullptr;
643 
644  /// Emits a landing pad for the current EH stack.
645  llvm::BasicBlock *EmitLandingPad();
646 
647  llvm::BasicBlock *getInvokeDestImpl();
648 
649  /// Parent loop-based directive for scan directive.
651  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
652  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
653  llvm::BasicBlock *OMPScanExitBlock = nullptr;
654  llvm::BasicBlock *OMPScanDispatch = nullptr;
655  bool OMPFirstScanLoop = false;
656 
657  /// Manages parent directive for scan directives.
659  CodeGenFunction &CGF;
660  const OMPExecutableDirective *ParentLoopDirectiveForScan;
661 
662  public:
664  CodeGenFunction &CGF,
665  const OMPExecutableDirective &ParentLoopDirectiveForScan)
666  : CGF(CGF),
667  ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
668  CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
669  }
671  CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
672  }
673  };
674 
675  template <class T>
677  return DominatingValue<T>::save(*this, value);
678  }
679 
681  public:
682  CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
683  CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
685 
686  private:
687  void ConstructorHelper(FPOptions FPFeatures);
688  CodeGenFunction &CGF;
689  FPOptions OldFPFeatures;
690  llvm::fp::ExceptionBehavior OldExcept;
691  llvm::RoundingMode OldRounding;
693  };
695 
696 public:
697  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
698  /// rethrows.
700 
701  /// A class controlling the emission of a finally block.
702  class FinallyInfo {
703  /// Where the catchall's edge through the cleanup should go.
704  JumpDest RethrowDest;
705 
706  /// A function to call to enter the catch.
707  llvm::FunctionCallee BeginCatchFn;
708 
709  /// An i1 variable indicating whether or not the @finally is
710  /// running for an exception.
711  llvm::AllocaInst *ForEHVar;
712 
713  /// An i8* variable into which the exception pointer to rethrow
714  /// has been saved.
715  llvm::AllocaInst *SavedExnVar;
716 
717  public:
718  void enter(CodeGenFunction &CGF, const Stmt *Finally,
719  llvm::FunctionCallee beginCatchFn,
720  llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
721  void exit(CodeGenFunction &CGF);
722  };
723 
724  /// Returns true inside SEH __try blocks.
725  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
726 
727  /// Returns true while emitting a cleanuppad.
728  bool isCleanupPadScope() const {
729  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
730  }
731 
732  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
733  /// current full-expression. Safe against the possibility that
734  /// we're currently inside a conditionally-evaluated expression.
735  template <class T, class... As>
737  // If we're not in a conditional branch, or if none of the
738  // arguments requires saving, then use the unconditional cleanup.
739  if (!isInConditionalBranch())
740  return EHStack.pushCleanup<T>(kind, A...);
741 
742  // Stash values in a tuple so we can guarantee the order of saves.
743  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
744  SavedTuple Saved{saveValueInCond(A)...};
745 
746  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
747  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
749  }
750 
751  /// Queue a cleanup to be pushed after finishing the current full-expression,
752  /// potentially with an active flag.
753  template <class T, class... As>
755  if (!isInConditionalBranch())
756  return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
757  A...);
758 
759  Address ActiveFlag = createCleanupActiveFlag();
760  assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
761  "cleanup active flag should never need saving");
762 
763  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
764  SavedTuple Saved{saveValueInCond(A)...};
765 
766  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
767  pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
768  }
769 
770  template <class T, class... As>
772  Address ActiveFlag, As... A) {
773  LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
774  ActiveFlag.isValid()};
775 
776  size_t OldSize = LifetimeExtendedCleanupStack.size();
778  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
779  (Header.IsConditional ? sizeof(ActiveFlag) : 0));
780 
781  static_assert(sizeof(Header) % alignof(T) == 0,
782  "Cleanup will be allocated on misaligned address");
783  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
784  new (Buffer) LifetimeExtendedCleanupHeader(Header);
785  new (Buffer + sizeof(Header)) T(A...);
786  if (Header.IsConditional)
787  new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
788  }
789 
790  /// Set up the last cleanup that was pushed as a conditional
791  /// full-expression cleanup.
794  }
795 
796  void initFullExprCleanupWithFlag(Address ActiveFlag);
798 
799  /// PushDestructorCleanup - Push a cleanup to call the
800  /// complete-object destructor of an object of the given type at the
801  /// given address. Does nothing if T is not a C++ class type with a
802  /// non-trivial destructor.
803  void PushDestructorCleanup(QualType T, Address Addr);
804 
805  /// PushDestructorCleanup - Push a cleanup to call the
806  /// complete-object variant of the given destructor on the object at
807  /// the given address.
809  Address Addr);
810 
811  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
812  /// process all branch fixups.
813  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
814 
815  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
816  /// The block cannot be reactivated. Pops it if it's the top of the
817  /// stack.
818  ///
819  /// \param DominatingIP - An instruction which is known to
820  /// dominate the current IP (if set) and which lies along
821  /// all paths of execution between the current IP and the
822  /// the point at which the cleanup comes into scope.
824  llvm::Instruction *DominatingIP);
825 
826  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
827  /// Cannot be used to resurrect a deactivated cleanup.
828  ///
829  /// \param DominatingIP - An instruction which is known to
830  /// dominate the current IP (if set) and which lies along
831  /// all paths of execution between the current IP and the
832  /// the point at which the cleanup comes into scope.
834  llvm::Instruction *DominatingIP);
835 
836  /// Enters a new scope for capturing cleanups, all of which
837  /// will be executed once the scope is exited.
839  EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
840  size_t LifetimeExtendedCleanupStackSize;
841  bool OldDidCallStackSave;
842  protected:
844  private:
845 
846  RunCleanupsScope(const RunCleanupsScope &) = delete;
847  void operator=(const RunCleanupsScope &) = delete;
848 
849  protected:
851 
852  public:
853  /// Enter a new cleanup scope.
856  {
857  CleanupStackDepth = CGF.EHStack.stable_begin();
858  LifetimeExtendedCleanupStackSize =
860  OldDidCallStackSave = CGF.DidCallStackSave;
861  CGF.DidCallStackSave = false;
862  OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
863  CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
864  }
865 
866  /// Exit this cleanup scope, emitting any accumulated cleanups.
868  if (PerformCleanup)
869  ForceCleanup();
870  }
871 
872  /// Determine whether this scope requires any cleanups.
873  bool requiresCleanups() const {
874  return CGF.EHStack.stable_begin() != CleanupStackDepth;
875  }
876 
877  /// Force the emission of cleanups now, instead of waiting
878  /// until this object is destroyed.
879  /// \param ValuesToReload - A list of values that need to be available at
880  /// the insertion point after cleanup emission. If cleanup emission created
881  /// a shared cleanup block, these value pointers will be rewritten.
882  /// Otherwise, they not will be modified.
883  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
884  assert(PerformCleanup && "Already forced cleanup");
885  CGF.DidCallStackSave = OldDidCallStackSave;
886  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
887  ValuesToReload);
888  PerformCleanup = false;
889  CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
890  }
891  };
892 
893  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
896 
898  SourceRange Range;
900  LexicalScope *ParentScope;
901 
902  LexicalScope(const LexicalScope &) = delete;
903  void operator=(const LexicalScope &) = delete;
904 
905  public:
906  /// Enter a new cleanup scope.
908  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
909  CGF.CurLexicalScope = this;
910  if (CGDebugInfo *DI = CGF.getDebugInfo())
911  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
912  }
913 
914  void addLabel(const LabelDecl *label) {
915  assert(PerformCleanup && "adding label to dead scope?");
916  Labels.push_back(label);
917  }
918 
919  /// Exit this cleanup scope, emitting any accumulated
920  /// cleanups.
922  if (CGDebugInfo *DI = CGF.getDebugInfo())
923  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
924 
925  // If we should perform a cleanup, force them now. Note that
926  // this ends the cleanup scope before rescoping any labels.
927  if (PerformCleanup) {
928  ApplyDebugLocation DL(CGF, Range.getEnd());
929  ForceCleanup();
930  }
931  }
932 
933  /// Force the emission of cleanups now, instead of waiting
934  /// until this object is destroyed.
935  void ForceCleanup() {
936  CGF.CurLexicalScope = ParentScope;
938 
939  if (!Labels.empty())
940  rescopeLabels();
941  }
942 
943  bool hasLabels() const {
944  return !Labels.empty();
945  }
946 
947  void rescopeLabels();
948  };
949 
950  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
951 
952  /// The class used to assign some variables some temporarily addresses.
953  class OMPMapVars {
954  DeclMapTy SavedLocals;
955  DeclMapTy SavedTempAddresses;
956  OMPMapVars(const OMPMapVars &) = delete;
957  void operator=(const OMPMapVars &) = delete;
958 
959  public:
960  explicit OMPMapVars() = default;
962  assert(SavedLocals.empty() && "Did not restored original addresses.");
963  };
964 
965  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
966  /// function \p CGF.
967  /// \return true if at least one variable was set already, false otherwise.
968  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
969  Address TempAddr) {
970  LocalVD = LocalVD->getCanonicalDecl();
971  // Only save it once.
972  if (SavedLocals.count(LocalVD)) return false;
973 
974  // Copy the existing local entry to SavedLocals.
975  auto it = CGF.LocalDeclMap.find(LocalVD);
976  if (it != CGF.LocalDeclMap.end())
977  SavedLocals.try_emplace(LocalVD, it->second);
978  else
979  SavedLocals.try_emplace(LocalVD, Address::invalid());
980 
981  // Generate the private entry.
982  QualType VarTy = LocalVD->getType();
983  if (VarTy->isReferenceType()) {
984  Address Temp = CGF.CreateMemTemp(VarTy);
985  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
986  TempAddr = Temp;
987  }
988  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
989 
990  return true;
991  }
992 
993  /// Applies new addresses to the list of the variables.
994  /// \return true if at least one variable is using new address, false
995  /// otherwise.
996  bool apply(CodeGenFunction &CGF) {
997  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
998  SavedTempAddresses.clear();
999  return !SavedLocals.empty();
1000  }
1001 
1002  /// Restores original addresses of the variables.
1004  if (!SavedLocals.empty()) {
1005  copyInto(SavedLocals, CGF.LocalDeclMap);
1006  SavedLocals.clear();
1007  }
1008  }
1009 
1010  private:
1011  /// Copy all the entries in the source map over the corresponding
1012  /// entries in the destination, which must exist.
1013  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1014  for (auto &Pair : Src) {
1015  if (!Pair.second.isValid()) {
1016  Dest.erase(Pair.first);
1017  continue;
1018  }
1019 
1020  auto I = Dest.find(Pair.first);
1021  if (I != Dest.end())
1022  I->second = Pair.second;
1023  else
1024  Dest.insert(Pair);
1025  }
1026  }
1027  };
1028 
1029  /// The scope used to remap some variables as private in the OpenMP loop body
1030  /// (or other captured region emitted without outlining), and to restore old
1031  /// vars back on exit.
1033  OMPMapVars MappedVars;
1034  OMPPrivateScope(const OMPPrivateScope &) = delete;
1035  void operator=(const OMPPrivateScope &) = delete;
1036 
1037  public:
1038  /// Enter a new OpenMP private scope.
1040 
1041  /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1042  /// function for it to generate corresponding private variable. \p
1043  /// PrivateGen returns an address of the generated private variable.
1044  /// \return true if the variable is registered as private, false if it has
1045  /// been privatized already.
1046  bool addPrivate(const VarDecl *LocalVD,
1047  const llvm::function_ref<Address()> PrivateGen) {
1048  assert(PerformCleanup && "adding private to dead scope");
1049  return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1050  }
1051 
1052  /// Privatizes local variables previously registered as private.
1053  /// Registration is separate from the actual privatization to allow
1054  /// initializers use values of the original variables, not the private one.
1055  /// This is important, for example, if the private variable is a class
1056  /// variable initialized by a constructor that references other private
1057  /// variables. But at initialization original variables must be used, not
1058  /// private copies.
1059  /// \return true if at least one variable was privatized, false otherwise.
1060  bool Privatize() { return MappedVars.apply(CGF); }
1061 
1062  void ForceCleanup() {
1064  MappedVars.restore(CGF);
1065  }
1066 
1067  /// Exit scope - all the mapped variables are restored.
1069  if (PerformCleanup)
1070  ForceCleanup();
1071  }
1072 
1073  /// Checks if the global variable is captured in current function.
1074  bool isGlobalVarCaptured(const VarDecl *VD) const {
1075  VD = VD->getCanonicalDecl();
1076  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1077  }
1078  };
1079 
1080  /// Save/restore original map of previously emitted local vars in case when we
1081  /// need to duplicate emission of the same code several times in the same
1082  /// function for OpenMP code.
1084  CodeGenFunction &CGF;
1085  DeclMapTy SavedMap;
1086 
1087  public:
1089  : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1090  ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1091  };
1092 
1093  /// Takes the old cleanup stack size and emits the cleanup blocks
1094  /// that have been added.
1095  void
1096  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1097  std::initializer_list<llvm::Value **> ValuesToReload = {});
1098 
1099  /// Takes the old cleanup stack size and emits the cleanup blocks
1100  /// that have been added, then adds all lifetime-extended cleanups from
1101  /// the given position to the stack.
1102  void
1103  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1104  size_t OldLifetimeExtendedStackSize,
1105  std::initializer_list<llvm::Value **> ValuesToReload = {});
1106 
1107  void ResolveBranchFixups(llvm::BasicBlock *Target);
1108 
1109  /// The given basic block lies in the current EH scope, but may be a
1110  /// target of a potentially scope-crossing jump; get a stable handle
1111  /// to which we can perform this jump later.
1113  return JumpDest(Target,
1116  }
1117 
1118  /// The given basic block lies in the current EH scope, but may be a
1119  /// target of a potentially scope-crossing jump; get a stable handle
1120  /// to which we can perform this jump later.
1121  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1123  }
1124 
1125  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1126  /// block through the normal cleanup handling code (if any) and then
1127  /// on to \arg Dest.
1128  void EmitBranchThroughCleanup(JumpDest Dest);
1129 
1130  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1131  /// specified destination obviously has no cleanups to run. 'false' is always
1132  /// a conservatively correct answer for this method.
1133  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1134 
1135  /// popCatchScope - Pops the catch scope at the top of the EHScope
1136  /// stack, emitting any required code (other than the catch handlers
1137  /// themselves).
1138  void popCatchScope();
1139 
1140  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1141  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1142  llvm::BasicBlock *
1144 
1145  /// An object to manage conditionally-evaluated expressions.
1147  llvm::BasicBlock *StartBB;
1148 
1149  public:
1151  : StartBB(CGF.Builder.GetInsertBlock()) {}
1152 
1153  void begin(CodeGenFunction &CGF) {
1154  assert(CGF.OutermostConditional != this);
1155  if (!CGF.OutermostConditional)
1156  CGF.OutermostConditional = this;
1157  }
1158 
1159  void end(CodeGenFunction &CGF) {
1160  assert(CGF.OutermostConditional != nullptr);
1161  if (CGF.OutermostConditional == this)
1162  CGF.OutermostConditional = nullptr;
1163  }
1164 
1165  /// Returns a block which will be executed prior to each
1166  /// evaluation of the conditional code.
1167  llvm::BasicBlock *getStartingBlock() const {
1168  return StartBB;
1169  }
1170  };
1171 
1172  /// isInConditionalBranch - Return true if we're currently emitting
1173  /// one branch or the other of a conditional expression.
1174  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1175 
1177  assert(isInConditionalBranch());
1178  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1179  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1180  store->setAlignment(addr.getAlignment().getAsAlign());
1181  }
1182 
1183  /// An RAII object to record that we're evaluating a statement
1184  /// expression.
1186  CodeGenFunction &CGF;
1187 
1188  /// We have to save the outermost conditional: cleanups in a
1189  /// statement expression aren't conditional just because the
1190  /// StmtExpr is.
1191  ConditionalEvaluation *SavedOutermostConditional;
1192 
1193  public:
1195  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1196  CGF.OutermostConditional = nullptr;
1197  }
1198 
1200  CGF.OutermostConditional = SavedOutermostConditional;
1201  CGF.EnsureInsertPoint();
1202  }
1203  };
1204 
1205  /// An object which temporarily prevents a value from being
1206  /// destroyed by aggressive peephole optimizations that assume that
1207  /// all uses of a value have been realized in the IR.
1209  llvm::Instruction *Inst;
1210  friend class CodeGenFunction;
1211 
1212  public:
1213  PeepholeProtection() : Inst(nullptr) {}
1214  };
1215 
1216  /// A non-RAII class containing all the information about a bound
1217  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
1218  /// this which makes individual mappings very simple; using this
1219  /// class directly is useful when you have a variable number of
1220  /// opaque values or don't want the RAII functionality for some
1221  /// reason.
1223  const OpaqueValueExpr *OpaqueValue;
1224  bool BoundLValue;
1226 
1228  bool boundLValue)
1229  : OpaqueValue(ov), BoundLValue(boundLValue) {}
1230  public:
1231  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1232 
1233  static bool shouldBindAsLValue(const Expr *expr) {
1234  // gl-values should be bound as l-values for obvious reasons.
1235  // Records should be bound as l-values because IR generation
1236  // always keeps them in memory. Expressions of function type
1237  // act exactly like l-values but are formally required to be
1238  // r-values in C.
1239  return expr->isGLValue() ||
1240  expr->getType()->isFunctionType() ||
1241  hasAggregateEvaluationKind(expr->getType());
1242  }
1243 
1245  const OpaqueValueExpr *ov,
1246  const Expr *e) {
1247  if (shouldBindAsLValue(ov))
1248  return bind(CGF, ov, CGF.EmitLValue(e));
1249  return bind(CGF, ov, CGF.EmitAnyExpr(e));
1250  }
1251 
1253  const OpaqueValueExpr *ov,
1254  const LValue &lv) {
1255  assert(shouldBindAsLValue(ov));
1256  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1257  return OpaqueValueMappingData(ov, true);
1258  }
1259 
1261  const OpaqueValueExpr *ov,
1262  const RValue &rv) {
1263  assert(!shouldBindAsLValue(ov));
1264  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1265 
1266  OpaqueValueMappingData data(ov, false);
1267 
1268  // Work around an extremely aggressive peephole optimization in
1269  // EmitScalarConversion which assumes that all other uses of a
1270  // value are extant.
1271  data.Protection = CGF.protectFromPeepholes(rv);
1272 
1273  return data;
1274  }
1275 
1276  bool isValid() const { return OpaqueValue != nullptr; }
1277  void clear() { OpaqueValue = nullptr; }
1278 
1280  assert(OpaqueValue && "no data to unbind!");
1281 
1282  if (BoundLValue) {
1283  CGF.OpaqueLValues.erase(OpaqueValue);
1284  } else {
1285  CGF.OpaqueRValues.erase(OpaqueValue);
1286  CGF.unprotectFromPeepholes(Protection);
1287  }
1288  }
1289  };
1290 
1291  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1293  CodeGenFunction &CGF;
1295 
1296  public:
1297  static bool shouldBindAsLValue(const Expr *expr) {
1299  }
1300 
1301  /// Build the opaque value mapping for the given conditional
1302  /// operator if it's the GNU ?: extension. This is a common
1303  /// enough pattern that the convenience operator is really
1304  /// helpful.
1305  ///
1307  const AbstractConditionalOperator *op) : CGF(CGF) {
1308  if (isa<ConditionalOperator>(op))
1309  // Leave Data empty.
1310  return;
1311 
1312  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1314  e->getCommon());
1315  }
1316 
1317  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1318  /// expression is set to the expression the OVE represents.
1320  : CGF(CGF) {
1321  if (OV) {
1322  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1323  "for OVE with no source expression");
1324  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1325  }
1326  }
1327 
1329  const OpaqueValueExpr *opaqueValue,
1330  LValue lvalue)
1331  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1332  }
1333 
1335  const OpaqueValueExpr *opaqueValue,
1336  RValue rvalue)
1337  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1338  }
1339 
1340  void pop() {
1341  Data.unbind(CGF);
1342  Data.clear();
1343  }
1344 
1346  if (Data.isValid()) Data.unbind(CGF);
1347  }
1348  };
1349 
1350 private:
1351  CGDebugInfo *DebugInfo;
1352  /// Used to create unique names for artificial VLA size debug info variables.
1353  unsigned VLAExprCounter = 0;
1354  bool DisableDebugInfo = false;
1355 
1356  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1357  /// calling llvm.stacksave for multiple VLAs in the same scope.
1358  bool DidCallStackSave = false;
1359 
1360  /// IndirectBranch - The first time an indirect goto is seen we create a block
1361  /// with an indirect branch. Every time we see the address of a label taken,
1362  /// we add the label to the indirect goto. Every subsequent indirect goto is
1363  /// codegen'd as a jump to the IndirectBranch's basic block.
1364  llvm::IndirectBrInst *IndirectBranch = nullptr;
1365 
1366  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1367  /// decls.
1368  DeclMapTy LocalDeclMap;
1369 
1370  // Keep track of the cleanups for callee-destructed parameters pushed to the
1371  // cleanup stack so that they can be deactivated later.
1372  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1373  CalleeDestructedParamCleanups;
1374 
1375  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1376  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1377  /// parameter.
1378  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1379  SizeArguments;
1380 
1381  /// Track escaped local variables with auto storage. Used during SEH
1382  /// outlining to produce a call to llvm.localescape.
1383  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1384 
1385  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1386  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1387 
1388  // BreakContinueStack - This keeps track of where break and continue
1389  // statements should jump to.
1390  struct BreakContinue {
1391  BreakContinue(JumpDest Break, JumpDest Continue)
1392  : BreakBlock(Break), ContinueBlock(Continue) {}
1393 
1394  JumpDest BreakBlock;
1395  JumpDest ContinueBlock;
1396  };
1397  SmallVector<BreakContinue, 8> BreakContinueStack;
1398 
1399  /// Handles cancellation exit points in OpenMP-related constructs.
1400  class OpenMPCancelExitStack {
1401  /// Tracks cancellation exit point and join point for cancel-related exit
1402  /// and normal exit.
1403  struct CancelExit {
1404  CancelExit() = default;
1405  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1406  JumpDest ContBlock)
1407  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1408  OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1409  /// true if the exit block has been emitted already by the special
1410  /// emitExit() call, false if the default codegen is used.
1411  bool HasBeenEmitted = false;
1412  JumpDest ExitBlock;
1413  JumpDest ContBlock;
1414  };
1415 
1416  SmallVector<CancelExit, 8> Stack;
1417 
1418  public:
1419  OpenMPCancelExitStack() : Stack(1) {}
1420  ~OpenMPCancelExitStack() = default;
1421  /// Fetches the exit block for the current OpenMP construct.
1422  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1423  /// Emits exit block with special codegen procedure specific for the related
1424  /// OpenMP construct + emits code for normal construct cleanup.
1425  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1426  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1427  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1428  assert(CGF.getOMPCancelDestination(Kind).isValid());
1429  assert(CGF.HaveInsertPoint());
1430  assert(!Stack.back().HasBeenEmitted);
1431  auto IP = CGF.Builder.saveAndClearIP();
1432  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1433  CodeGen(CGF);
1434  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1435  CGF.Builder.restoreIP(IP);
1436  Stack.back().HasBeenEmitted = true;
1437  }
1438  CodeGen(CGF);
1439  }
1440  /// Enter the cancel supporting \a Kind construct.
1441  /// \param Kind OpenMP directive that supports cancel constructs.
1442  /// \param HasCancel true, if the construct has inner cancel directive,
1443  /// false otherwise.
1444  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1445  Stack.push_back({Kind,
1446  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1447  : JumpDest(),
1448  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1449  : JumpDest()});
1450  }
1451  /// Emits default exit point for the cancel construct (if the special one
1452  /// has not be used) + join point for cancel/normal exits.
1453  void exit(CodeGenFunction &CGF) {
1454  if (getExitBlock().isValid()) {
1455  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1456  bool HaveIP = CGF.HaveInsertPoint();
1457  if (!Stack.back().HasBeenEmitted) {
1458  if (HaveIP)
1459  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1460  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1461  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1462  }
1463  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1464  if (!HaveIP) {
1465  CGF.Builder.CreateUnreachable();
1466  CGF.Builder.ClearInsertionPoint();
1467  }
1468  }
1469  Stack.pop_back();
1470  }
1471  };
1472  OpenMPCancelExitStack OMPCancelStack;
1473 
1474  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1475  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1476  Stmt::Likelihood LH);
1477 
1478  CodeGenPGO PGO;
1479 
1480  /// Calculate branch weights appropriate for PGO data
1481  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1482  uint64_t FalseCount) const;
1483  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1484  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1485  uint64_t LoopCount) const;
1486 
1487 public:
1488  /// Increment the profiler's counter for the given statement by \p StepV.
1489  /// If \p StepV is null, the default increment is 1.
1490  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1492  !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1493  PGO.emitCounterIncrement(Builder, S, StepV);
1494  PGO.setCurrentStmt(S);
1495  }
1496 
1497  /// Get the profiler's count for the given statement.
1498  uint64_t getProfileCount(const Stmt *S) {
1499  Optional<uint64_t> Count = PGO.getStmtCount(S);
1500  if (!Count.hasValue())
1501  return 0;
1502  return *Count;
1503  }
1504 
1505  /// Set the profiler's current count.
1506  void setCurrentProfileCount(uint64_t Count) {
1507  PGO.setCurrentRegionCount(Count);
1508  }
1509 
1510  /// Get the profiler's current count. This is generally the count for the most
1511  /// recently incremented counter.
1513  return PGO.getCurrentRegionCount();
1514  }
1515 
1516 private:
1517 
1518  /// SwitchInsn - This is nearest current switch instruction. It is null if
1519  /// current context is not in a switch.
1520  llvm::SwitchInst *SwitchInsn = nullptr;
1521  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1522  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1523 
1524  /// The likelihood attributes of the SwitchCase.
1525  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1526 
1527  /// CaseRangeBlock - This block holds if condition check for last case
1528  /// statement range in current switch instruction.
1529  llvm::BasicBlock *CaseRangeBlock = nullptr;
1530 
1531  /// OpaqueLValues - Keeps track of the current set of opaque value
1532  /// expressions.
1533  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1534  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1535 
1536  // VLASizeMap - This keeps track of the associated size for each VLA type.
1537  // We track this by the size expression rather than the type itself because
1538  // in certain situations, like a const qualifier applied to an VLA typedef,
1539  // multiple VLA types can share the same size expression.
1540  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1541  // enter/leave scopes.
1542  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1543 
1544  /// A block containing a single 'unreachable' instruction. Created
1545  /// lazily by getUnreachableBlock().
1546  llvm::BasicBlock *UnreachableBlock = nullptr;
1547 
1548  /// Counts of the number return expressions in the function.
1549  unsigned NumReturnExprs = 0;
1550 
1551  /// Count the number of simple (constant) return expressions in the function.
1552  unsigned NumSimpleReturnExprs = 0;
1553 
1554  /// The last regular (non-return) debug location (breakpoint) in the function.
1555  SourceLocation LastStopPoint;
1556 
1557 public:
1558  /// Source location information about the default argument or member
1559  /// initializer expression we're evaluating, if any.
1561  using SourceLocExprScopeGuard =
1563 
1564  /// A scope within which we are constructing the fields of an object which
1565  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1566  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1568  public:
1570  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1571  CGF.CXXDefaultInitExprThis = This;
1572  }
1574  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1575  }
1576 
1577  private:
1578  CodeGenFunction &CGF;
1579  Address OldCXXDefaultInitExprThis;
1580  };
1581 
1582  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1583  /// is overridden to be the object under construction.
1585  public:
1587  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1588  OldCXXThisAlignment(CGF.CXXThisAlignment),
1590  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1591  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1592  }
1594  CGF.CXXThisValue = OldCXXThisValue;
1595  CGF.CXXThisAlignment = OldCXXThisAlignment;
1596  }
1597 
1598  public:
1603  };
1604 
1608  };
1609 
1610  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1611  /// current loop index is overridden.
1613  public:
1615  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1616  CGF.ArrayInitIndex = Index;
1617  }
1619  CGF.ArrayInitIndex = OldArrayInitIndex;
1620  }
1621 
1622  private:
1623  CodeGenFunction &CGF;
1624  llvm::Value *OldArrayInitIndex;
1625  };
1626 
1628  public:
1630  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1631  OldCurCodeDecl(CGF.CurCodeDecl),
1632  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1633  OldCXXABIThisValue(CGF.CXXABIThisValue),
1634  OldCXXThisValue(CGF.CXXThisValue),
1635  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1636  OldCXXThisAlignment(CGF.CXXThisAlignment),
1637  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1638  OldCXXInheritedCtorInitExprArgs(
1639  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1640  CGF.CurGD = GD;
1641  CGF.CurFuncDecl = CGF.CurCodeDecl =
1642  cast<CXXConstructorDecl>(GD.getDecl());
1643  CGF.CXXABIThisDecl = nullptr;
1644  CGF.CXXABIThisValue = nullptr;
1645  CGF.CXXThisValue = nullptr;
1646  CGF.CXXABIThisAlignment = CharUnits();
1647  CGF.CXXThisAlignment = CharUnits();
1648  CGF.ReturnValue = Address::invalid();
1649  CGF.FnRetTy = QualType();
1650  CGF.CXXInheritedCtorInitExprArgs.clear();
1651  }
1653  CGF.CurGD = OldCurGD;
1654  CGF.CurFuncDecl = OldCurFuncDecl;
1655  CGF.CurCodeDecl = OldCurCodeDecl;
1656  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1657  CGF.CXXABIThisValue = OldCXXABIThisValue;
1658  CGF.CXXThisValue = OldCXXThisValue;
1659  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1660  CGF.CXXThisAlignment = OldCXXThisAlignment;
1661  CGF.ReturnValue = OldReturnValue;
1662  CGF.FnRetTy = OldFnRetTy;
1663  CGF.CXXInheritedCtorInitExprArgs =
1664  std::move(OldCXXInheritedCtorInitExprArgs);
1665  }
1666 
1667  private:
1668  CodeGenFunction &CGF;
1669  GlobalDecl OldCurGD;
1670  const Decl *OldCurFuncDecl;
1671  const Decl *OldCurCodeDecl;
1672  ImplicitParamDecl *OldCXXABIThisDecl;
1673  llvm::Value *OldCXXABIThisValue;
1674  llvm::Value *OldCXXThisValue;
1675  CharUnits OldCXXABIThisAlignment;
1676  CharUnits OldCXXThisAlignment;
1677  Address OldReturnValue;
1678  QualType OldFnRetTy;
1679  CallArgList OldCXXInheritedCtorInitExprArgs;
1680  };
1681 
1682  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1683  // region body, and finalization codegen callbacks. This will class will also
1684  // contain privatization functions used by the privatization call backs
1685  //
1686  // TODO: this is temporary class for things that are being moved out of
1687  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1688  // utility function for use with the OMPBuilder. Once that move to use the
1689  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1690  // directly, or a new helper class that will contain functions used by both
1691  // this and the OMPBuilder
1692 
1694 
1695  OMPBuilderCBHelpers() = delete;
1696  OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1698 
1699  using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1700 
1701  /// Cleanup action for allocate support.
1703 
1704  private:
1705  llvm::CallInst *RTLFnCI;
1706 
1707  public:
1708  OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1709  RLFnCI->removeFromParent();
1710  }
1711 
1712  void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1713  if (!CGF.HaveInsertPoint())
1714  return;
1715  CGF.Builder.Insert(RTLFnCI);
1716  }
1717  };
1718 
1719  /// Returns address of the threadprivate variable for the current
1720  /// thread. This Also create any necessary OMP runtime calls.
1721  ///
1722  /// \param VD VarDecl for Threadprivate variable.
1723  /// \param VDAddr Address of the Vardecl
1724  /// \param Loc The location where the barrier directive was encountered
1726  const VarDecl *VD, Address VDAddr,
1727  SourceLocation Loc);
1728 
1729  /// Gets the OpenMP-specific address of the local variable /p VD.
1731  const VarDecl *VD);
1732  /// Get the platform-specific name separator.
1733  /// \param Parts different parts of the final name that needs separation
1734  /// \param FirstSeparator First separator used between the initial two
1735  /// parts of the name.
1736  /// \param Separator separator used between all of the rest consecutinve
1737  /// parts of the name
1739  StringRef FirstSeparator = ".",
1740  StringRef Separator = ".");
1741  /// Emit the Finalization for an OMP region
1742  /// \param CGF The Codegen function this belongs to
1743  /// \param IP Insertion point for generating the finalization code.
1745  CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1746  assert(IP.getBlock()->end() != IP.getPoint() &&
1747  "OpenMP IR Builder should cause terminated block!");
1748 
1749  llvm::BasicBlock *IPBB = IP.getBlock();
1750  llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1751  assert(DestBB && "Finalization block should have one successor!");
1752 
1753  // erase and replace with cleanup branch.
1754  IPBB->getTerminator()->eraseFromParent();
1755  CGF.Builder.SetInsertPoint(IPBB);
1757  CGF.EmitBranchThroughCleanup(Dest);
1758  }
1759 
1760  /// Emit the body of an OMP region
1761  /// \param CGF The Codegen function this belongs to
1762  /// \param RegionBodyStmt The body statement for the OpenMP region being
1763  /// generated
1764  /// \param CodeGenIP Insertion point for generating the body code.
1765  /// \param FiniBB The finalization basic block
1767  const Stmt *RegionBodyStmt,
1768  InsertPointTy CodeGenIP,
1769  llvm::BasicBlock &FiniBB) {
1770  llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1771  if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1772  CodeGenIPBBTI->eraseFromParent();
1773 
1774  CGF.Builder.SetInsertPoint(CodeGenIPBB);
1775 
1776  CGF.EmitStmt(RegionBodyStmt);
1777 
1778  if (CGF.Builder.saveIP().isSet())
1779  CGF.Builder.CreateBr(&FiniBB);
1780  }
1781 
1782  static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1783  llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1784  ArrayRef<llvm::Value *> Args) {
1785  llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1786  if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1787  CodeGenIPBBTI->eraseFromParent();
1788 
1789  CGF.Builder.SetInsertPoint(CodeGenIPBB);
1790 
1791  if (Fn->doesNotThrow())
1792  CGF.EmitNounwindRuntimeCall(Fn, Args);
1793  else
1794  CGF.EmitRuntimeCall(Fn, Args);
1795 
1796  if (CGF.Builder.saveIP().isSet())
1797  CGF.Builder.CreateBr(&FiniBB);
1798  }
1799 
1800  /// RAII for preserving necessary info during Outlined region body codegen.
1802 
1803  llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1804  CodeGenFunction::JumpDest OldReturnBlock;
1805  CGBuilderTy::InsertPoint IP;
1806  CodeGenFunction &CGF;
1807 
1808  public:
1810  llvm::BasicBlock &RetBB)
1811  : CGF(cgf) {
1812  assert(AllocaIP.isSet() &&
1813  "Must specify Insertion point for allocas of outlined function");
1814  OldAllocaIP = CGF.AllocaInsertPt;
1815  CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1816  IP = CGF.Builder.saveIP();
1817 
1818  OldReturnBlock = CGF.ReturnBlock;
1819  CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1820  }
1821 
1823  CGF.AllocaInsertPt = OldAllocaIP;
1824  CGF.ReturnBlock = OldReturnBlock;
1825  CGF.Builder.restoreIP(IP);
1826  }
1827  };
1828 
1829  /// RAII for preserving necessary info during inlined region body codegen.
1831 
1832  llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1833  CodeGenFunction &CGF;
1834 
1835  public:
1837  llvm::BasicBlock &FiniBB)
1838  : CGF(cgf) {
1839  // Alloca insertion block should be in the entry block of the containing
1840  // function so it expects an empty AllocaIP in which case will reuse the
1841  // old alloca insertion point, or a new AllocaIP in the same block as
1842  // the old one
1843  assert((!AllocaIP.isSet() ||
1844  CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1845  "Insertion point should be in the entry block of containing "
1846  "function!");
1847  OldAllocaIP = CGF.AllocaInsertPt;
1848  if (AllocaIP.isSet())
1849  CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1850 
1851  // TODO: Remove the call, after making sure the counter is not used by
1852  // the EHStack.
1853  // Since this is an inlined region, it should not modify the
1854  // ReturnBlock, and should reuse the one for the enclosing outlined
1855  // region. So, the JumpDest being return by the function is discarded
1856  (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1857  }
1858 
1859  ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1860  };
1861  };
1862 
1863 private:
1864  /// CXXThisDecl - When generating code for a C++ member function,
1865  /// this will hold the implicit 'this' declaration.
1866  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1867  llvm::Value *CXXABIThisValue = nullptr;
1868  llvm::Value *CXXThisValue = nullptr;
1869  CharUnits CXXABIThisAlignment;
1870  CharUnits CXXThisAlignment;
1871 
1872  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1873  /// this expression.
1874  Address CXXDefaultInitExprThis = Address::invalid();
1875 
1876  /// The current array initialization index when evaluating an
1877  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1878  llvm::Value *ArrayInitIndex = nullptr;
1879 
1880  /// The values of function arguments to use when evaluating
1881  /// CXXInheritedCtorInitExprs within this context.
1882  CallArgList CXXInheritedCtorInitExprArgs;
1883 
1884  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1885  /// destructor, this will hold the implicit argument (e.g. VTT).
1886  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1887  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1888 
1889  /// OutermostConditional - Points to the outermost active
1890  /// conditional control. This is used so that we know if a
1891  /// temporary should be destroyed conditionally.
1892  ConditionalEvaluation *OutermostConditional = nullptr;
1893 
1894  /// The current lexical scope.
1895  LexicalScope *CurLexicalScope = nullptr;
1896 
1897  /// The current source location that should be used for exception
1898  /// handling code.
1899  SourceLocation CurEHLocation;
1900 
1901  /// BlockByrefInfos - For each __block variable, contains
1902  /// information about the layout of the variable.
1903  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1904 
1905  /// Used by -fsanitize=nullability-return to determine whether the return
1906  /// value can be checked.
1907  llvm::Value *RetValNullabilityPrecondition = nullptr;
1908 
1909  /// Check if -fsanitize=nullability-return instrumentation is required for
1910  /// this function.
1911  bool requiresReturnValueNullabilityCheck() const {
1912  return RetValNullabilityPrecondition;
1913  }
1914 
1915  /// Used to store precise source locations for return statements by the
1916  /// runtime return value checks.
1917  Address ReturnLocation = Address::invalid();
1918 
1919  /// Check if the return value of this function requires sanitization.
1920  bool requiresReturnValueCheck() const;
1921 
1922  llvm::BasicBlock *TerminateLandingPad = nullptr;
1923  llvm::BasicBlock *TerminateHandler = nullptr;
1925 
1926  /// Terminate funclets keyed by parent funclet pad.
1927  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1928 
1929  /// Largest vector width used in ths function. Will be used to create a
1930  /// function attribute.
1931  unsigned LargestVectorWidth = 0;
1932 
1933  /// True if we need emit the life-time markers. This is initially set in
1934  /// the constructor, but could be overwritten to true if this is a coroutine.
1935  bool ShouldEmitLifetimeMarkers;
1936 
1937  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1938  /// the function metadata.
1939  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1940  llvm::Function *Fn);
1941 
1942 public:
1943  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1944  ~CodeGenFunction();
1945 
1946  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1947  ASTContext &getContext() const { return CGM.getContext(); }
1949  if (DisableDebugInfo)
1950  return nullptr;
1951  return DebugInfo;
1952  }
1953  void disableDebugInfo() { DisableDebugInfo = true; }
1954  void enableDebugInfo() { DisableDebugInfo = false; }
1955 
1957  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1958  }
1959 
1960  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1961 
1962  /// Returns a pointer to the function's exception object and selector slot,
1963  /// which is assigned in every landing pad.
1966 
1967  /// Returns the contents of the function's exception object and selector
1968  /// slots.
1971 
1973 
1974  llvm::BasicBlock *getUnreachableBlock() {
1975  if (!UnreachableBlock) {
1976  UnreachableBlock = createBasicBlock("unreachable");
1977  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1978  }
1979  return UnreachableBlock;
1980  }
1981 
1982  llvm::BasicBlock *getInvokeDest() {
1983  if (!EHStack.requiresLandingPad()) return nullptr;
1984  return getInvokeDestImpl();
1985  }
1986 
1987  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1988 
1989  const TargetInfo &getTarget() const { return Target; }
1990  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1992  return CGM.getTargetCodeGenInfo();
1993  }
1994 
1995  //===--------------------------------------------------------------------===//
1996  // Cleanups
1997  //===--------------------------------------------------------------------===//
1998 
1999  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2000 
2002  Address arrayEndPointer,
2003  QualType elementType,
2004  CharUnits elementAlignment,
2005  Destroyer *destroyer);
2007  llvm::Value *arrayEnd,
2008  QualType elementType,
2009  CharUnits elementAlignment,
2010  Destroyer *destroyer);
2011 
2012  void pushDestroy(QualType::DestructionKind dtorKind,
2013  Address addr, QualType type);
2015  Address addr, QualType type);
2017  Destroyer *destroyer, bool useEHCleanupForArray);
2019  QualType type, Destroyer *destroyer,
2020  bool useEHCleanupForArray);
2021  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2022  llvm::Value *CompletePtr,
2023  QualType ElementType);
2025  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2026  bool useEHCleanupForArray);
2027  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2028  Destroyer *destroyer,
2029  bool useEHCleanupForArray,
2030  const VarDecl *VD);
2031  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2032  QualType elementType, CharUnits elementAlign,
2033  Destroyer *destroyer,
2034  bool checkZeroLength, bool useEHCleanup);
2035 
2037 
2038  /// Determines whether an EH cleanup is required to destroy a type
2039  /// with the given destruction kind.
2041  switch (kind) {
2042  case QualType::DK_none:
2043  return false;
2047  return getLangOpts().Exceptions;
2049  return getLangOpts().Exceptions &&
2050  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2051  }
2052  llvm_unreachable("bad destruction kind");
2053  }
2054 
2057  }
2058 
2059  //===--------------------------------------------------------------------===//
2060  // Objective-C
2061  //===--------------------------------------------------------------------===//
2062 
2063  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2064 
2065  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2066 
2067  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2069  const ObjCPropertyImplDecl *PID);
2070  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2071  const ObjCPropertyImplDecl *propImpl,
2072  const ObjCMethodDecl *GetterMothodDecl,
2073  llvm::Constant *AtomicHelperFn);
2074 
2076  ObjCMethodDecl *MD, bool ctor);
2077 
2078  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2079  /// for the given property.
2081  const ObjCPropertyImplDecl *PID);
2082  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2083  const ObjCPropertyImplDecl *propImpl,
2084  llvm::Constant *AtomicHelperFn);
2085 
2086  //===--------------------------------------------------------------------===//
2087  // Block Bits
2088  //===--------------------------------------------------------------------===//
2089 
2090  /// Emit block literal.
2091  /// \return an LLVM value which is a pointer to a struct which contains
2092  /// information about the block, including the block invoke function, the
2093  /// captured variables, etc.
2095 
2096  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2097  const CGBlockInfo &Info,
2098  const DeclMapTy &ldm,
2099  bool IsLambdaConversionToBlock,
2100  bool BuildGlobalBlock);
2101 
2102  /// Check if \p T is a C++ class that has a destructor that can throw.
2103  static bool cxxDestructorCanThrow(QualType T);
2104 
2105  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2106  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2108  const ObjCPropertyImplDecl *PID);
2110  const ObjCPropertyImplDecl *PID);
2112 
2113  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2114  bool CanThrow);
2115 
2116  class AutoVarEmission;
2117 
2118  void emitByrefStructureInit(const AutoVarEmission &emission);
2119 
2120  /// Enter a cleanup to destroy a __block variable. Note that this
2121  /// cleanup should be a no-op if the variable hasn't left the stack
2122  /// yet; if a cleanup is required for the variable itself, that needs
2123  /// to be done externally.
2124  ///
2125  /// \param Kind Cleanup kind.
2126  ///
2127  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2128  /// structure that will be passed to _Block_object_dispose. When
2129  /// \p LoadBlockVarAddr is true, the address of the field of the block
2130  /// structure that holds the address of the __block structure.
2131  ///
2132  /// \param Flags The flag that will be passed to _Block_object_dispose.
2133  ///
2134  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2135  /// \p Addr to get the address of the __block structure.
2137  bool LoadBlockVarAddr, bool CanThrow);
2138 
2139  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2140  llvm::Value *ptr);
2141 
2143  Address GetAddrOfBlockDecl(const VarDecl *var);
2144 
2145  /// BuildBlockByrefAddress - Computes the location of the
2146  /// data in a variable which is declared as __block.
2147  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2148  bool followForward = true);
2150  const BlockByrefInfo &info,
2151  bool followForward,
2152  const llvm::Twine &name);
2153 
2154  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2155 
2157 
2158  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2159  const CGFunctionInfo &FnInfo);
2160 
2161  /// Annotate the function with an attribute that disables TSan checking at
2162  /// runtime.
2163  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2164 
2165  /// Emit code for the start of a function.
2166  /// \param Loc The location to be associated with the function.
2167  /// \param StartLoc The location of the function body.
2168  void StartFunction(GlobalDecl GD,
2169  QualType RetTy,
2170  llvm::Function *Fn,
2171  const CGFunctionInfo &FnInfo,
2172  const FunctionArgList &Args,
2174  SourceLocation StartLoc = SourceLocation());
2175 
2176  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2177 
2179  void EmitDestructorBody(FunctionArgList &Args);
2181  void EmitFunctionBody(const Stmt *Body);
2182  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2183 
2184  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2185  CallArgList &CallArgs);
2188  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2190  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2191  }
2192  void EmitAsanPrologueOrEpilogue(bool Prologue);
2193 
2194  /// Emit the unified return block, trying to avoid its emission when
2195  /// possible.
2196  /// \return The debug location of the user written return statement if the
2197  /// return block is is avoided.
2198  llvm::DebugLoc EmitReturnBlock();
2199 
2200  /// FinishFunction - Complete IR generation of the current function. It is
2201  /// legal to call this function even if there is no current insertion point.
2203 
2204  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2205  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2206 
2207  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2208  const ThunkInfo *Thunk, bool IsUnprototyped);
2209 
2210  void FinishThunk();
2211 
2212  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2213  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2214  llvm::FunctionCallee Callee);
2215 
2216  /// Generate a thunk for the given method.
2217  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2218  GlobalDecl GD, const ThunkInfo &Thunk,
2219  bool IsUnprototyped);
2220 
2221  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2222  const CGFunctionInfo &FnInfo,
2223  GlobalDecl GD, const ThunkInfo &Thunk);
2224 
2226  FunctionArgList &Args);
2227 
2228  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2229 
2230  /// Struct with all information about dynamic [sub]class needed to set vptr.
2231  struct VPtr {
2236  };
2237 
2238  /// Initialize the vtable pointer of the given subobject.
2239  void InitializeVTablePointer(const VPtr &vptr);
2240 
2242 
2244  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2245 
2246  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2247  CharUnits OffsetFromNearestVBase,
2248  bool BaseIsNonVirtualPrimaryBase,
2249  const CXXRecordDecl *VTableClass,
2250  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2251 
2252  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2253 
2254  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2255  /// to by This.
2256  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2257  const CXXRecordDecl *VTableClass);
2258 
2267  };
2268 
2269  /// Derived is the presumed address of an object of type T after a
2270  /// cast. If T is a polymorphic class type, emit a check that the virtual
2271  /// table for Derived belongs to a class derived from T.
2273  bool MayBeNull, CFITypeCheckKind TCK,
2274  SourceLocation Loc);
2275 
2276  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2277  /// If vptr CFI is enabled, emit a check that VTable is valid.
2278  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2279  CFITypeCheckKind TCK, SourceLocation Loc);
2280 
2281  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2282  /// RD using llvm.type.test.
2283  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2284  CFITypeCheckKind TCK, SourceLocation Loc);
2285 
2286  /// If whole-program virtual table optimization is enabled, emit an assumption
2287  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2288  /// enabled, emit a check that VTable is a member of RD's type identifier.
2290  llvm::Value *VTable, SourceLocation Loc);
2291 
2292  /// Returns whether we should perform a type checked load when loading a
2293  /// virtual function for virtual calls to members of RD. This is generally
2294  /// true when both vcall CFI and whole-program-vtables are enabled.
2296 
2297  /// Emit a type checked load from the given vtable.
2299  uint64_t VTableByteOffset);
2300 
2301  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2302  /// given phase of destruction for a destructor. The end result
2303  /// should call destructors on members and base classes in reverse
2304  /// order of their construction.
2306 
2307  /// ShouldInstrumentFunction - Return true if the current function should be
2308  /// instrumented with __cyg_profile_func_* calls
2309  bool ShouldInstrumentFunction();
2310 
2311  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2312  /// should not be instrumented with sanitizers.
2314 
2315  /// ShouldXRayInstrument - Return true if the current function should be
2316  /// instrumented with XRay nop sleds.
2317  bool ShouldXRayInstrumentFunction() const;
2318 
2319  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2320  /// XRay custom event handling calls.
2321  bool AlwaysEmitXRayCustomEvents() const;
2322 
2323  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2324  /// XRay typed event handling calls.
2325  bool AlwaysEmitXRayTypedEvents() const;
2326 
2327  /// Encode an address into a form suitable for use in a function prologue.
2328  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2329  llvm::Constant *Addr);
2330 
2331  /// Decode an address used in a function prologue, encoded by \c
2332  /// EncodeAddrForUseInPrologue.
2334  llvm::Value *EncodedAddr);
2335 
2336  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2337  /// arguments for the given function. This is also responsible for naming the
2338  /// LLVM function arguments.
2339  void EmitFunctionProlog(const CGFunctionInfo &FI,
2340  llvm::Function *Fn,
2341  const FunctionArgList &Args);
2342 
2343  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2344  /// given temporary.
2345  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2346  SourceLocation EndLoc);
2347 
2348  /// Emit a test that checks if the return value \p RV is nonnull.
2350 
2351  /// EmitStartEHSpec - Emit the start of the exception spec.
2352  void EmitStartEHSpec(const Decl *D);
2353 
2354  /// EmitEndEHSpec - Emit the end of the exception spec.
2355  void EmitEndEHSpec(const Decl *D);
2356 
2357  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2358  llvm::BasicBlock *getTerminateLandingPad();
2359 
2360  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2361  /// terminate.
2362  llvm::BasicBlock *getTerminateFunclet();
2363 
2364  /// getTerminateHandler - Return a handler (not a landing pad, just
2365  /// a catch handler) that just calls terminate. This is used when
2366  /// a terminate scope encloses a try.
2367  llvm::BasicBlock *getTerminateHandler();
2368 
2369  llvm::Type *ConvertTypeForMem(QualType T);
2370  llvm::Type *ConvertType(QualType T);
2371  llvm::Type *ConvertType(const TypeDecl *T) {
2372  return ConvertType(getContext().getTypeDeclType(T));
2373  }
2374 
2375  /// LoadObjCSelf - Load the value of self. This function is only valid while
2376  /// generating code for an Objective-C method.
2378 
2379  /// TypeOfSelfObject - Return type of object that this self represents.
2381 
2382  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2384 
2386  return getEvaluationKind(T) == TEK_Scalar;
2387  }
2388 
2390  return getEvaluationKind(T) == TEK_Aggregate;
2391  }
2392 
2393  /// createBasicBlock - Create an LLVM basic block.
2394  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2395  llvm::Function *parent = nullptr,
2396  llvm::BasicBlock *before = nullptr) {
2397  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2398  }
2399 
2400  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2401  /// label maps to.
2402  JumpDest getJumpDestForLabel(const LabelDecl *S);
2403 
2404  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2405  /// another basic block, simplify it. This assumes that no other code could
2406  /// potentially reference the basic block.
2407  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2408 
2409  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2410  /// adding a fall-through branch from the current insert block if
2411  /// necessary. It is legal to call this function even if there is no current
2412  /// insertion point.
2413  ///
2414  /// IsFinished - If true, indicates that the caller has finished emitting
2415  /// branches to the given block and does not expect to emit code into it. This
2416  /// means the block can be ignored if it is unreachable.
2417  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2418 
2419  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2420  /// near its uses, and leave the insertion point in it.
2421  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2422 
2423  /// EmitBranch - Emit a branch to the specified basic block from the current
2424  /// insert block, taking care to avoid creation of branches from dummy
2425  /// blocks. It is legal to call this function even if there is no current
2426  /// insertion point.
2427  ///
2428  /// This function clears the current insertion point. The caller should follow
2429  /// calls to this function with calls to Emit*Block prior to generation new
2430  /// code.
2431  void EmitBranch(llvm::BasicBlock *Block);
2432 
2433  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2434  /// indicates that the current code being emitted is unreachable.
2435  bool HaveInsertPoint() const {
2436  return Builder.GetInsertBlock() != nullptr;
2437  }
2438 
2439  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2440  /// emitted IR has a place to go. Note that by definition, if this function
2441  /// creates a block then that block is unreachable; callers may do better to
2442  /// detect when no insertion point is defined and simply skip IR generation.
2444  if (!HaveInsertPoint())
2446  }
2447 
2448  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2449  /// specified stmt yet.
2450  void ErrorUnsupported(const Stmt *S, const char *Type);
2451 
2452  //===--------------------------------------------------------------------===//
2453  // Helpers
2454  //===--------------------------------------------------------------------===//
2455 
2458  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2459  CGM.getTBAAAccessInfo(T));
2460  }
2461 
2463  TBAAAccessInfo TBAAInfo) {
2464  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2465  }
2466 
2469  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2470  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2471  }
2472 
2474  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2475  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2476  BaseInfo, TBAAInfo);
2477  }
2478 
2481 
2483  LValueBaseInfo *PointeeBaseInfo = nullptr,
2484  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2487  AlignmentSource Source =
2489  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2490  CGM.getTBAAAccessInfo(RefTy));
2491  return EmitLoadOfReferenceLValue(RefLVal);
2492  }
2493 
2494  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2495  LValueBaseInfo *BaseInfo = nullptr,
2496  TBAAAccessInfo *TBAAInfo = nullptr);
2498 
2499  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2500  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2501  /// insertion point of the builder. The caller is responsible for setting an
2502  /// appropriate alignment on
2503  /// the alloca.
2504  ///
2505  /// \p ArraySize is the number of array elements to be allocated if it
2506  /// is not nullptr.
2507  ///
2508  /// LangAS::Default is the address space of pointers to local variables and
2509  /// temporaries, as exposed in the source language. In certain
2510  /// configurations, this is not the same as the alloca address space, and a
2511  /// cast is needed to lift the pointer from the alloca AS into
2512  /// LangAS::Default. This can happen when the target uses a restricted
2513  /// address space for the stack but the source language requires
2514  /// LangAS::Default to be a generic address space. The latter condition is
2515  /// common for most programming languages; OpenCL is an exception in that
2516  /// LangAS::Default is the private address space, which naturally maps
2517  /// to the stack.
2518  ///
2519  /// Because the address of a temporary is often exposed to the program in
2520  /// various ways, this function will perform the cast. The original alloca
2521  /// instruction is returned through \p Alloca if it is not nullptr.
2522  ///
2523  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2524  /// more efficient if the caller knows that the address will not be exposed.
2525  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2526  llvm::Value *ArraySize = nullptr);
2527  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2528  const Twine &Name = "tmp",
2529  llvm::Value *ArraySize = nullptr,
2530  Address *Alloca = nullptr);
2532  const Twine &Name = "tmp",
2533  llvm::Value *ArraySize = nullptr);
2534 
2535  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2536  /// default ABI alignment of the given LLVM type.
2537  ///
2538  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2539  /// any given AST type that happens to have been lowered to the
2540  /// given IR type. This should only ever be used for function-local,
2541  /// IR-driven manipulations like saving and restoring a value. Do
2542  /// not hand this address off to arbitrary IRGen routines, and especially
2543  /// do not pass it as an argument to a function that might expect a
2544  /// properly ABI-aligned value.
2545  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2546  const Twine &Name = "tmp");
2547 
2548  /// InitTempAlloca - Provide an initial value for the given alloca which
2549  /// will be observable at all locations in the function.
2550  ///
2551  /// The address should be something that was returned from one of
2552  /// the CreateTempAlloca or CreateMemTemp routines, and the
2553  /// initializer must be valid in the entry block (i.e. it must
2554  /// either be a constant or an argument value).
2555  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2556 
2557  /// CreateIRTemp - Create a temporary IR object of the given type, with
2558  /// appropriate alignment. This routine should only be used when an temporary
2559  /// value needs to be stored into an alloca (for example, to avoid explicit
2560  /// PHI construction), but the type is the IR type, not the type appropriate
2561  /// for storing in memory.
2562  ///
2563  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2564  /// ConvertType instead of ConvertTypeForMem.
2565  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2566 
2567  /// CreateMemTemp - Create a temporary memory object of the given type, with
2568  /// appropriate alignmen and cast it to the default address space. Returns
2569  /// the original alloca instruction by \p Alloca if it is not nullptr.
2570  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2571  Address *Alloca = nullptr);
2572  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2573  Address *Alloca = nullptr);
2574 
2575  /// CreateMemTemp - Create a temporary memory object of the given type, with
2576  /// appropriate alignmen without casting it to the default address space.
2577  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2579  const Twine &Name = "tmp");
2580 
2581  /// CreateAggTemp - Create a temporary memory object for the given
2582  /// aggregate type.
2583  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2584  Address *Alloca = nullptr) {
2585  return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2586  T.getQualifiers(),
2591  }
2592 
2593  /// Emit a cast to void* in the appropriate address space.
2595 
2596  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2597  /// expression and compare the result against zero, returning an Int1Ty value.
2598  llvm::Value *EvaluateExprAsBool(const Expr *E);
2599 
2600  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2601  void EmitIgnoredExpr(const Expr *E);
2602 
2603  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2604  /// any type. The result is returned as an RValue struct. If this is an
2605  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2606  /// the result should be returned.
2607  ///
2608  /// \param ignoreResult True if the resulting value isn't used.
2609  RValue EmitAnyExpr(const Expr *E,
2610  AggValueSlot aggSlot = AggValueSlot::ignored(),
2611  bool ignoreResult = false);
2612 
2613  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2614  // or the value of the expression, depending on how va_list is defined.
2615  Address EmitVAListRef(const Expr *E);
2616 
2617  /// Emit a "reference" to a __builtin_ms_va_list; this is
2618  /// always the value of the expression, because a __builtin_ms_va_list is a
2619  /// pointer to a char.
2620  Address EmitMSVAListRef(const Expr *E);
2621 
2622  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2623  /// always be accessible even if no aggregate location is provided.
2624  RValue EmitAnyExprToTemp(const Expr *E);
2625 
2626  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2627  /// arbitrary expression into the given memory location.
2628  void EmitAnyExprToMem(const Expr *E, Address Location,
2629  Qualifiers Quals, bool IsInitializer);
2630 
2631  void EmitAnyExprToExn(const Expr *E, Address Addr);
2632 
2633  /// EmitExprAsInit - Emits the code necessary to initialize a
2634  /// location in memory with the given initializer.
2635  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2636  bool capturedByInit);
2637 
2638  /// hasVolatileMember - returns true if aggregate type has a volatile
2639  /// member.
2641  if (const RecordType *RT = T->getAs<RecordType>()) {
2642  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2643  return RD->hasVolatileMember();
2644  }
2645  return false;
2646  }
2647 
2648  /// Determine whether a return value slot may overlap some other object.
2650  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2651  // class subobjects. These cases may need to be revisited depending on the
2652  // resolution of the relevant core issue.
2654  }
2655 
2656  /// Determine whether a field initialization may overlap some other object.
2658 
2659  /// Determine whether a base class initialization may overlap some other
2660  /// object.
2662  const CXXRecordDecl *BaseRD,
2663  bool IsVirtual);
2664 
2665  /// Emit an aggregate assignment.
2666  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2667  bool IsVolatile = hasVolatileMember(EltTy);
2668  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2669  }
2670 
2672  AggValueSlot::Overlap_t MayOverlap) {
2673  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2674  }
2675 
2676  /// EmitAggregateCopy - Emit an aggregate copy.
2677  ///
2678  /// \param isVolatile \c true iff either the source or the destination is
2679  /// volatile.
2680  /// \param MayOverlap Whether the tail padding of the destination might be
2681  /// occupied by some other object. More efficient code can often be
2682  /// generated if not.
2683  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2684  AggValueSlot::Overlap_t MayOverlap,
2685  bool isVolatile = false);
2686 
2687  /// GetAddrOfLocalVar - Return the address of a local variable.
2689  auto it = LocalDeclMap.find(VD);
2690  assert(it != LocalDeclMap.end() &&
2691  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2692  return it->second;
2693  }
2694 
2695  /// Given an opaque value expression, return its LValue mapping if it exists,
2696  /// otherwise create one.
2698 
2699  /// Given an opaque value expression, return its RValue mapping if it exists,
2700  /// otherwise create one.
2702 
2703  /// Get the index of the current ArrayInitLoopExpr, if any.
2704  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2705 
2706  /// getAccessedFieldNo - Given an encoded value and a result number, return
2707  /// the input field number being accessed.
2708  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2709 
2710  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2711  llvm::BasicBlock *GetIndirectGotoBlock();
2712 
2713  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2714  static bool IsWrappedCXXThis(const Expr *E);
2715 
2716  /// EmitNullInitialization - Generate code to set a value of the given type to
2717  /// null, If the type contains data member pointers, they will be initialized
2718  /// to -1 in accordance with the Itanium C++ ABI.
2719  void EmitNullInitialization(Address DestPtr, QualType Ty);
2720 
2721  /// Emits a call to an LLVM variable-argument intrinsic, either
2722  /// \c llvm.va_start or \c llvm.va_end.
2723  /// \param ArgValue A reference to the \c va_list as emitted by either
2724  /// \c EmitVAListRef or \c EmitMSVAListRef.
2725  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2726  /// calls \c llvm.va_end.
2727  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2728 
2729  /// Generate code to get an argument from the passed in pointer
2730  /// and update it accordingly.
2731  /// \param VE The \c VAArgExpr for which to generate code.
2732  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2733  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2734  /// \returns A pointer to the argument.
2735  // FIXME: We should be able to get rid of this method and use the va_arg
2736  // instruction in LLVM instead once it works well enough.
2737  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2738 
2739  /// emitArrayLength - Compute the length of an array, even if it's a
2740  /// VLA, and drill down to the base element type.
2742  QualType &baseType,
2743  Address &addr);
2744 
2745  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2746  /// the given variably-modified type and store them in the VLASizeMap.
2747  ///
2748  /// This function can be called with a null (unreachable) insert point.
2750 
2751  struct VlaSizePair {
2754 
2756  };
2757 
2758  /// Return the number of elements for a single dimension
2759  /// for the given array type.
2760  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2761  VlaSizePair getVLAElements1D(QualType vla);
2762 
2763  /// Returns an LLVM value that corresponds to the size,
2764  /// in non-variably-sized elements, of a variable length array type,
2765  /// plus that largest non-variably-sized element type. Assumes that
2766  /// the type has already been emitted with EmitVariablyModifiedType.
2767  VlaSizePair getVLASize(const VariableArrayType *vla);
2768  VlaSizePair getVLASize(QualType vla);
2769 
2770  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2771  /// generating code for an C++ member function.
2773  assert(CXXThisValue && "no 'this' value for this function");
2774  return CXXThisValue;
2775  }
2777 
2778  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2779  /// virtual bases.
2780  // FIXME: Every place that calls LoadCXXVTT is something
2781  // that needs to be abstracted properly.
2783  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2784  return CXXStructorImplicitParamValue;
2785  }
2786 
2787  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2788  /// complete class to the given direct base.
2789  Address
2791  const CXXRecordDecl *Derived,
2792  const CXXRecordDecl *Base,
2793  bool BaseIsVirtual);
2794 
2795  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2796 
2797  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2798  /// load of 'this' and returns address of the base class.
2800  const CXXRecordDecl *Derived,
2803  bool NullCheckValue, SourceLocation Loc);
2804 
2806  const CXXRecordDecl *Derived,
2809  bool NullCheckValue);
2810 
2811  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2812  /// base constructor/destructor with virtual bases.
2813  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2814  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2815  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2816  bool Delegating);
2817 
2819  CXXCtorType CtorType,
2820  const FunctionArgList &Args,
2821  SourceLocation Loc);
2822  // It's important not to confuse this and the previous function. Delegating
2823  // constructors are the C++0x feature. The constructor delegate optimization
2824  // is used to reduce duplication in the base and complete consturctors where
2825  // they are substantially the same.
2827  const FunctionArgList &Args);
2828 
2829  /// Emit a call to an inheriting constructor (that is, one that invokes a
2830  /// constructor inherited from a base class) by inlining its definition. This
2831  /// is necessary if the ABI does not support forwarding the arguments to the
2832  /// base class constructor (because they're variadic or similar).
2834  CXXCtorType CtorType,
2835  bool ForVirtualBase,
2836  bool Delegating,
2837  CallArgList &Args);
2838 
2839  /// Emit a call to a constructor inherited from a base class, passing the
2840  /// current constructor's arguments along unmodified (without even making
2841  /// a copy).
2843  bool ForVirtualBase, Address This,
2844  bool InheritedFromVBase,
2845  const CXXInheritedCtorInitExpr *E);
2846 
2848  bool ForVirtualBase, bool Delegating,
2849  AggValueSlot ThisAVS, const CXXConstructExpr *E);
2850 
2852  bool ForVirtualBase, bool Delegating,
2853  Address This, CallArgList &Args,
2854  AggValueSlot::Overlap_t Overlap,
2855  SourceLocation Loc, bool NewPointerIsChecked);
2856 
2857  /// Emit assumption load for all bases. Requires to be be called only on
2858  /// most-derived class and not under construction of the object.
2859  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2860 
2861  /// Emit assumption that vptr load == global vtable.
2862  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2863 
2865  Address This, Address Src,
2866  const CXXConstructExpr *E);
2867 
2869  const ArrayType *ArrayTy,
2870  Address ArrayPtr,
2871  const CXXConstructExpr *E,
2872  bool NewPointerIsChecked,
2873  bool ZeroInitialization = false);
2874 
2876  llvm::Value *NumElements,
2877  Address ArrayPtr,
2878  const CXXConstructExpr *E,
2879  bool NewPointerIsChecked,
2880  bool ZeroInitialization = false);
2881 
2883 
2885  bool ForVirtualBase, bool Delegating, Address This,
2886  QualType ThisTy);
2887 
2888  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2889  llvm::Type *ElementTy, Address NewPtr,
2890  llvm::Value *NumElements,
2891  llvm::Value *AllocSizeWithoutCookie);
2892 
2893  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2894  Address Ptr);
2895 
2896  void EmitSehCppScopeBegin();
2897  void EmitSehCppScopeEnd();
2898  void EmitSehTryScopeBegin();
2899  void EmitSehTryScopeEnd();
2900 
2901  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2902  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2903 
2905  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2906 
2907  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2908  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2909  CharUnits CookieSize = CharUnits());
2910 
2912  const CallExpr *TheCallExpr, bool IsDelete);
2913 
2917 
2918  /// Situations in which we might emit a check for the suitability of a
2919  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2920  /// compiler-rt.
2922  /// Checking the operand of a load. Must be suitably sized and aligned.
2924  /// Checking the destination of a store. Must be suitably sized and aligned.
2926  /// Checking the bound value in a reference binding. Must be suitably sized
2927  /// and aligned, but is not required to refer to an object (until the
2928  /// reference is used), per core issue 453.
2930  /// Checking the object expression in a non-static data member access. Must
2931  /// be an object within its lifetime.
2933  /// Checking the 'this' pointer for a call to a non-static member function.
2934  /// Must be an object within its lifetime.
2936  /// Checking the 'this' pointer for a constructor call.
2938  /// Checking the operand of a static_cast to a derived pointer type. Must be
2939  /// null or an object within its lifetime.
2941  /// Checking the operand of a static_cast to a derived reference type. Must
2942  /// be an object within its lifetime.
2944  /// Checking the operand of a cast to a base object. Must be suitably sized
2945  /// and aligned.
2947  /// Checking the operand of a cast to a virtual base object. Must be an
2948  /// object within its lifetime.
2950  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2952  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2953  /// null or an object within its lifetime.
2955  };
2956 
2957  /// Determine whether the pointer type check \p TCK permits null pointers.
2958  static bool isNullPointerAllowed(TypeCheckKind TCK);
2959 
2960  /// Determine whether the pointer type check \p TCK requires a vptr check.
2961  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2962 
2963  /// Whether any type-checking sanitizers are enabled. If \c false,
2964  /// calls to EmitTypeCheck can be skipped.
2965  bool sanitizePerformTypeCheck() const;
2966 
2967  /// Emit a check that \p V is the address of storage of the
2968  /// appropriate size and alignment for an object of type \p Type
2969  /// (or if ArraySize is provided, for an array of that bound).
2971  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2972  SanitizerSet SkippedChecks = SanitizerSet(),
2973  llvm::Value *ArraySize = nullptr);
2974 
2975  /// Emit a check that \p Base points into an array object, which
2976  /// we can access at index \p Index. \p Accessed should be \c false if we
2977  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2978  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2979  QualType IndexType, bool Accessed);
2980 
2982  bool isInc, bool isPre);
2984  bool isInc, bool isPre);
2985 
2986  /// Converts Location to a DebugLoc, if debug information is enabled.
2987  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2988 
2989  /// Get the record field index as represented in debug info.
2990  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2991 
2992 
2993  //===--------------------------------------------------------------------===//
2994  // Declaration Emission
2995  //===--------------------------------------------------------------------===//
2996 
2997  /// EmitDecl - Emit a declaration.
2998  ///
2999  /// This function can be called with a null (unreachable) insert point.
3000  void EmitDecl(const Decl &D);
3001 
3002  /// EmitVarDecl - Emit a local variable declaration.
3003  ///
3004  /// This function can be called with a null (unreachable) insert point.
3005  void EmitVarDecl(const VarDecl &D);
3006 
3007  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3008  bool capturedByInit);
3009 
3010  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3011  llvm::Value *Address);
3012 
3013  /// Determine whether the given initializer is trivial in the sense
3014  /// that it requires no code to be generated.
3015  bool isTrivialInitializer(const Expr *Init);
3016 
3017  /// EmitAutoVarDecl - Emit an auto variable declaration.
3018  ///
3019  /// This function can be called with a null (unreachable) insert point.
3020  void EmitAutoVarDecl(const VarDecl &D);
3021 
3023  friend class CodeGenFunction;
3024 
3025  const VarDecl *Variable;
3026 
3027  /// The address of the alloca for languages with explicit address space
3028  /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3029  /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3030  /// as a global constant.
3031  Address Addr;
3032 
3033  llvm::Value *NRVOFlag;
3034 
3035  /// True if the variable is a __block variable that is captured by an
3036  /// escaping block.
3037  bool IsEscapingByRef;
3038 
3039  /// True if the variable is of aggregate type and has a constant
3040  /// initializer.
3041  bool IsConstantAggregate;
3042 
3043  /// Non-null if we should use lifetime annotations.
3044  llvm::Value *SizeForLifetimeMarkers;
3045 
3046  /// Address with original alloca instruction. Invalid if the variable was
3047  /// emitted as a global constant.
3048  Address AllocaAddr;
3049 
3050  struct Invalid {};
3051  AutoVarEmission(Invalid)
3052  : Variable(nullptr), Addr(Address::invalid()),
3053  AllocaAddr(Address::invalid()) {}
3054 
3055  AutoVarEmission(const VarDecl &variable)
3056  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3057  IsEscapingByRef(false), IsConstantAggregate(false),
3058  SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3059 
3060  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3061 
3062  public:
3063  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3064 
3065  bool useLifetimeMarkers() const {
3066  return SizeForLifetimeMarkers != nullptr;
3067  }
3069  assert(useLifetimeMarkers());
3070  return SizeForLifetimeMarkers;
3071  }
3072 
3073  /// Returns the raw, allocated address, which is not necessarily
3074  /// the address of the object itself. It is casted to default
3075  /// address space for address space agnostic languages.
3077  return Addr;
3078  }
3079 
3080  /// Returns the address for the original alloca instruction.
3081  Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3082 
3083  /// Returns the address of the object within this declaration.
3084  /// Note that this does not chase the forwarding pointer for
3085  /// __block decls.
3087  if (!IsEscapingByRef) return Addr;
3088 
3089  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3090  }
3091  };
3092  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3093  void EmitAutoVarInit(const AutoVarEmission &emission);
3094  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3095  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3096  QualType::DestructionKind dtorKind);
3097 
3098  /// Emits the alloca and debug information for the size expressions for each
3099  /// dimension of an array. It registers the association of its (1-dimensional)
3100  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3101  /// reference this node when creating the DISubrange object to describe the
3102  /// array types.
3104  const VarDecl &D,
3105  bool EmitDebugInfo);
3106 
3107  void EmitStaticVarDecl(const VarDecl &D,
3108  llvm::GlobalValue::LinkageTypes Linkage);
3109 
3110  class ParamValue {
3111  llvm::Value *Value;
3112  unsigned Alignment;
3113  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3114  public:
3116  return ParamValue(value, 0);
3117  }
3119  assert(!addr.getAlignment().isZero());
3120  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3121  }
3122 
3123  bool isIndirect() const { return Alignment != 0; }
3124  llvm::Value *getAnyValue() const { return Value; }
3125 
3127  assert(!isIndirect());
3128  return Value;
3129  }
3130 
3132  assert(isIndirect());
3133  return Address(Value, CharUnits::fromQuantity(Alignment));
3134  }
3135  };
3136 
3137  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3138  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3139 
3140  /// protectFromPeepholes - Protect a value that we're intending to
3141  /// store to the side, but which will probably be used later, from
3142  /// aggressive peepholing optimizations that might delete it.
3143  ///
3144  /// Pass the result to unprotectFromPeepholes to declare that
3145  /// protection is no longer required.
3146  ///
3147  /// There's no particular reason why this shouldn't apply to
3148  /// l-values, it's just that no existing peepholes work on pointers.
3149  PeepholeProtection protectFromPeepholes(RValue rvalue);
3150  void unprotectFromPeepholes(PeepholeProtection protection);
3151 
3153  SourceLocation Loc,
3154  SourceLocation AssumptionLoc,
3155  llvm::Value *Alignment,
3156  llvm::Value *OffsetValue,
3157  llvm::Value *TheCheck,
3158  llvm::Instruction *Assumption);
3159 
3160  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3161  SourceLocation Loc, SourceLocation AssumptionLoc,
3162  llvm::Value *Alignment,
3163  llvm::Value *OffsetValue = nullptr);
3164 
3165  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3166  SourceLocation AssumptionLoc,
3167  llvm::Value *Alignment,
3168  llvm::Value *OffsetValue = nullptr);
3169 
3170  //===--------------------------------------------------------------------===//
3171  // Statement Emission
3172  //===--------------------------------------------------------------------===//
3173 
3174  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3175  void EmitStopPoint(const Stmt *S);
3176 
3177  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3178  /// this function even if there is no current insertion point.
3179  ///
3180  /// This function may clear the current insertion point; callers should use
3181  /// EnsureInsertPoint if they wish to subsequently generate code without first
3182  /// calling EmitBlock, EmitBranch, or EmitStmt.
3183  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3184 
3185  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3186  /// necessarily require an insertion point or debug information; typically
3187  /// because the statement amounts to a jump or a container of other
3188  /// statements.
3189  ///
3190  /// \return True if the statement was handled.
3191  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3192 
3193  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3196  bool GetLast = false,
3197  AggValueSlot AVS =
3199 
3200  /// EmitLabel - Emit the block for the given label. It is legal to call this
3201  /// function even if there is no current insertion point.
3202  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3203 
3204  void EmitLabelStmt(const LabelStmt &S);
3205  void EmitAttributedStmt(const AttributedStmt &S);
3206  void EmitGotoStmt(const GotoStmt &S);
3207  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3208  void EmitIfStmt(const IfStmt &S);
3209 
3210  void EmitWhileStmt(const WhileStmt &S,
3211  ArrayRef<const Attr *> Attrs = None);
3212  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3213  void EmitForStmt(const ForStmt &S,
3214  ArrayRef<const Attr *> Attrs = None);
3215  void EmitReturnStmt(const ReturnStmt &S);
3216  void EmitDeclStmt(const DeclStmt &S);
3217  void EmitBreakStmt(const BreakStmt &S);
3218  void EmitContinueStmt(const ContinueStmt &S);
3219  void EmitSwitchStmt(const SwitchStmt &S);
3220  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3221  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3222  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3223  void EmitAsmStmt(const AsmStmt &S);
3224 
3226  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3227  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3230 
3231  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3232  void EmitCoreturnStmt(const CoreturnStmt &S);
3234  AggValueSlot aggSlot = AggValueSlot::ignored(),
3235  bool ignoreResult = false);
3238  AggValueSlot aggSlot = AggValueSlot::ignored(),
3239  bool ignoreResult = false);
3241  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3242 
3243  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3244  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3245 
3246  void EmitCXXTryStmt(const CXXTryStmt &S);
3247  void EmitSEHTryStmt(const SEHTryStmt &S);
3248  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3249  void EnterSEHTryStmt(const SEHTryStmt &S);
3250  void ExitSEHTryStmt(const SEHTryStmt &S);
3251  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3253 
3255  llvm::Function *FinallyFunc);
3256  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3257  const Stmt *OutlinedStmt);
3258 
3260  const SEHExceptStmt &Except);
3261 
3263  const SEHFinallyStmt &Finally);
3264 
3266  llvm::Value *ParentFP,
3267  llvm::Value *EntryEBP);
3271 
3272  /// Emit simple code for OpenMP directives in Simd-only mode.
3274 
3275  /// Scan the outlined statement for captures from the parent function. For
3276  /// each capture, mark the capture as escaped and emit a call to
3277  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3278  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3279  bool IsFilter);
3280 
3281  /// Recovers the address of a local in a parent function. ParentVar is the
3282  /// address of the variable used in the immediate parent function. It can
3283  /// either be an alloca or a call to llvm.localrecover if there are nested
3284  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3285  /// frame.
3287  Address ParentVar,
3288  llvm::Value *ParentFP);
3289 
3290  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3291  ArrayRef<const Attr *> Attrs = None);
3292 
3293  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3295  CodeGenFunction &CGF;
3296 
3297  public:
3299  bool HasCancel)
3300  : CGF(CGF) {
3301  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3302  }
3303  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3304  };
3305 
3306  /// Returns calculated size of the specified type.
3309  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3310  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3312  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3313  SourceLocation Loc);
3315  SmallVectorImpl<llvm::Value *> &CapturedVars);
3316  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3317  SourceLocation Loc);
3318  /// Perform element by element copying of arrays with type \a
3319  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3320  /// generated by \a CopyGen.
3321  ///
3322  /// \param DestAddr Address of the destination array.
3323  /// \param SrcAddr Address of the source array.
3324  /// \param OriginalType Type of destination and source arrays.
3325  /// \param CopyGen Copying procedure that copies value of single array element
3326  /// to another single array element.
3328  Address DestAddr, Address SrcAddr, QualType OriginalType,
3329  const llvm::function_ref<void(Address, Address)> CopyGen);
3330  /// Emit proper copying of data from one variable to another.
3331  ///
3332  /// \param OriginalType Original type of the copied variables.
3333  /// \param DestAddr Destination address.
3334  /// \param SrcAddr Source address.
3335  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3336  /// type of the base array element).
3337  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3338  /// the base array element).
3339  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3340  /// DestVD.
3341  void EmitOMPCopy(QualType OriginalType,
3342  Address DestAddr, Address SrcAddr,
3343  const VarDecl *DestVD, const VarDecl *SrcVD,
3344  const Expr *Copy);
3345  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3346  /// \a X = \a E \a BO \a E.
3347  ///
3348  /// \param X Value to be updated.
3349  /// \param E Update value.
3350  /// \param BO Binary operation for update operation.
3351  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3352  /// expression, false otherwise.
3353  /// \param AO Atomic ordering of the generated atomic instructions.
3354  /// \param CommonGen Code generator for complex expressions that cannot be
3355  /// expressed through atomicrmw instruction.
3356  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3357  /// generated, <false, RValue::get(nullptr)> otherwise.
3358  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3359  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3360  llvm::AtomicOrdering AO, SourceLocation Loc,
3361  const llvm::function_ref<RValue(RValue)> CommonGen);
3363  OMPPrivateScope &PrivateScope);
3365  OMPPrivateScope &PrivateScope);
3367  const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3368  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3370  const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3371  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3372  /// Emit code for copyin clause in \a D directive. The next code is
3373  /// generated at the start of outlined functions for directives:
3374  /// \code
3375  /// threadprivate_var1 = master_threadprivate_var1;
3376  /// operator=(threadprivate_var2, master_threadprivate_var2);
3377  /// ...
3378  /// __kmpc_barrier(&loc, global_tid);
3379  /// \endcode
3380  ///
3381  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3382  /// \returns true if at least one copyin variable is found, false otherwise.
3384  /// Emit initial code for lastprivate variables. If some variable is
3385  /// not also firstprivate, then the default initialization is used. Otherwise
3386  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3387  /// method.
3388  ///
3389  /// \param D Directive that may have 'lastprivate' directives.
3390  /// \param PrivateScope Private scope for capturing lastprivate variables for
3391  /// proper codegen in internal captured statement.
3392  ///
3393  /// \returns true if there is at least one lastprivate variable, false
3394  /// otherwise.
3396  OMPPrivateScope &PrivateScope);
3397  /// Emit final copying of lastprivate values to original variables at
3398  /// the end of the worksharing or simd directive.
3399  ///
3400  /// \param D Directive that has at least one 'lastprivate' directives.
3401  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3402  /// it is the last iteration of the loop code in associated directive, or to
3403  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3405  bool NoFinals,
3406  llvm::Value *IsLastIterCond = nullptr);
3407  /// Emit initial code for linear clauses.
3408  void EmitOMPLinearClause(const OMPLoopDirective &D,
3409  CodeGenFunction::OMPPrivateScope &PrivateScope);
3410  /// Emit final code for linear clauses.
3411  /// \param CondGen Optional conditional code for final part of codegen for
3412  /// linear clause.
3414  const OMPLoopDirective &D,
3415  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3416  /// Emit initial code for reduction variables. Creates reduction copies
3417  /// and initializes them with the values according to OpenMP standard.
3418  ///
3419  /// \param D Directive (possibly) with the 'reduction' clause.
3420  /// \param PrivateScope Private scope for capturing reduction variables for
3421  /// proper codegen in internal captured statement.
3422  ///
3424  OMPPrivateScope &PrivateScope,
3425  bool ForInscan = false);
3426  /// Emit final update of reduction values to original variables at
3427  /// the end of the directive.
3428  ///
3429  /// \param D Directive that has at least one 'reduction' directives.
3430  /// \param ReductionKind The kind of reduction to perform.
3432  const OpenMPDirectiveKind ReductionKind);
3433  /// Emit initial code for linear variables. Creates private copies
3434  /// and initializes them with the values according to OpenMP standard.
3435  ///
3436  /// \param D Directive (possibly) with the 'linear' clause.
3437  /// \return true if at least one linear variable is found that should be
3438  /// initialized with the value of the original variable, false otherwise.
3440 
3441  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3442  llvm::Function * /*OutlinedFn*/,
3443  const OMPTaskDataTy & /*Data*/)>
3446  const OpenMPDirectiveKind CapturedRegion,
3447  const RegionCodeGenTy &BodyGen,
3448  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3454  unsigned NumberOfTargetItems = 0;
3455  explicit OMPTargetDataInfo() = default;
3458  unsigned NumberOfTargetItems)
3462  };
3464  const RegionCodeGenTy &BodyGen,
3465  OMPTargetDataInfo &InputInfo);
3466 
3467  void EmitOMPMetaDirective(const OMPMetaDirective &S);
3469  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3470  void EmitOMPTileDirective(const OMPTileDirective &S);
3472  void EmitOMPForDirective(const OMPForDirective &S);
3484  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3491  void EmitOMPScanDirective(const OMPScanDirective &S);
3500  void
3503  void
3510  void
3526  void
3541 
3542  /// Emit device code for the target directive.
3544  StringRef ParentName,
3545  const OMPTargetDirective &S);
3546  static void
3547  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3548  const OMPTargetParallelDirective &S);
3549  /// Emit device code for the target parallel for directive.
3551  CodeGenModule &CGM, StringRef ParentName,
3553  /// Emit device code for the target parallel for simd directive.
3555  CodeGenModule &CGM, StringRef ParentName,
3557  /// Emit device code for the target teams directive.
3558  static void
3559  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3560  const OMPTargetTeamsDirective &S);
3561  /// Emit device code for the target teams distribute directive.
3563  CodeGenModule &CGM, StringRef ParentName,
3565  /// Emit device code for the target teams distribute simd directive.
3567  CodeGenModule &CGM, StringRef ParentName,
3569  /// Emit device code for the target simd directive.
3571  StringRef ParentName,
3572  const OMPTargetSimdDirective &S);
3573  /// Emit device code for the target teams distribute parallel for simd
3574  /// directive.
3576  CodeGenModule &CGM, StringRef ParentName,
3578 
3580  CodeGenModule &CGM, StringRef ParentName,
3582 
3583  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3584  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3585  /// future it is meant to be the number of loops expected in the loop nests
3586  /// (usually specified by the "collapse" clause) that are collapsed to a
3587  /// single loop by this function.
3588  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3589  int Depth);
3590 
3591  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3592  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3593 
3594  /// Emit inner loop of the worksharing/simd construct.
3595  ///
3596  /// \param S Directive, for which the inner loop must be emitted.
3597  /// \param RequiresCleanup true, if directive has some associated private
3598  /// variables.
3599  /// \param LoopCond Bollean condition for loop continuation.
3600  /// \param IncExpr Increment expression for loop control variable.
3601  /// \param BodyGen Generator for the inner body of the inner loop.
3602  /// \param PostIncGen Genrator for post-increment code (required for ordered
3603  /// loop directvies).
3604  void EmitOMPInnerLoop(
3605  const OMPExecutableDirective &S, bool RequiresCleanup,
3606  const Expr *LoopCond, const Expr *IncExpr,
3607  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3608  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3609 
3611  /// Emit initial code for loop counters of loop-based directives.
3613  OMPPrivateScope &LoopScope);
3614 
3615  /// Helper for the OpenMP loop directives.
3616  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3617 
3618  /// Emit code for the worksharing loop-based directive.
3619  /// \return true, if this construct has any lastprivate clause, false -
3620  /// otherwise.
3621  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3622  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3623  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3624 
3625  /// Emit code for the distribute loop-based directive.
3627  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3628 
3629  /// Helpers for the OpenMP loop directives.
3630  void EmitOMPSimdInit(const OMPLoopDirective &D);
3631  void EmitOMPSimdFinal(
3632  const OMPLoopDirective &D,
3633  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3634 
3635  /// Emits the lvalue for the expression with possibly captured variable.
3636  LValue EmitOMPSharedLValue(const Expr *E);
3637 
3638 private:
3639  /// Helpers for blocks.
3641 
3642  /// struct with the values to be passed to the OpenMP loop-related functions
3643  struct OMPLoopArguments {
3644  /// loop lower bound
3645  Address LB = Address::invalid();
3646  /// loop upper bound
3647  Address UB = Address::invalid();
3648  /// loop stride
3649  Address ST = Address::invalid();
3650  /// isLastIteration argument for runtime functions
3651  Address IL = Address::invalid();
3652  /// Chunk value generated by sema
3653  llvm::Value *Chunk = nullptr;
3654  /// EnsureUpperBound
3655  Expr *EUB = nullptr;
3656  /// IncrementExpression
3657  Expr *IncExpr = nullptr;
3658  /// Loop initialization
3659  Expr *Init = nullptr;
3660  /// Loop exit condition
3661  Expr *Cond = nullptr;
3662  /// Update of LB after a whole chunk has been executed
3663  Expr *NextLB = nullptr;
3664  /// Update of UB after a whole chunk has been executed
3665  Expr *NextUB = nullptr;
3666  OMPLoopArguments() = default;
3667  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3668  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3669  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3670  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3671  Expr *NextUB = nullptr)
3672  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3673  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3674  NextUB(NextUB) {}
3675  };
3676  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3677  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3678  const OMPLoopArguments &LoopArgs,
3679  const CodeGenLoopTy &CodeGenLoop,
3680  const CodeGenOrderedTy &CodeGenOrdered);
3681  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3682  bool IsMonotonic, const OMPLoopDirective &S,
3683  OMPPrivateScope &LoopScope, bool Ordered,
3684  const OMPLoopArguments &LoopArgs,
3685  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3686  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3687  const OMPLoopDirective &S,
3688  OMPPrivateScope &LoopScope,
3689  const OMPLoopArguments &LoopArgs,
3690  const CodeGenLoopTy &CodeGenLoopContent);
3691  /// Emit code for sections directive.
3692  void EmitSections(const OMPExecutableDirective &S);
3693 
3694 public:
3695 
3696  //===--------------------------------------------------------------------===//
3697  // LValue Expression Emission
3698  //===--------------------------------------------------------------------===//
3699 
3700  /// Create a check that a scalar RValue is non-null.
3701  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3702 
3703  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3704  RValue GetUndefRValue(QualType Ty);
3705 
3706  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3707  /// and issue an ErrorUnsupported style diagnostic (using the
3708  /// provided Name).
3709  RValue EmitUnsupportedRValue(const Expr *E,
3710  const char *Name);
3711 
3712  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3713  /// an ErrorUnsupported style diagnostic (using the provided Name).
3714  LValue EmitUnsupportedLValue(const Expr *E,
3715  const char *Name);
3716 
3717  /// EmitLValue - Emit code to compute a designator that specifies the location
3718  /// of the expression.
3719  ///
3720  /// This can return one of two things: a simple address or a bitfield
3721  /// reference. In either case, the LLVM Value* in the LValue structure is
3722  /// guaranteed to be an LLVM pointer type.
3723  ///
3724  /// If this returns a bitfield reference, nothing about the pointee type of
3725  /// the LLVM value is known: For example, it may not be a pointer to an
3726  /// integer.
3727  ///
3728  /// If this returns a normal address, and if the lvalue's C type is fixed
3729  /// size, this method guarantees that the returned pointer type will point to
3730  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3731  /// variable length type, this is not possible.
3732  ///
3733  LValue EmitLValue(const Expr *E);
3734 
3735  /// Same as EmitLValue but additionally we generate checking code to
3736  /// guard against undefined behavior. This is only suitable when we know
3737  /// that the address will be used to access the object.
3738  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3739 
3740  RValue convertTempToRValue(Address addr, QualType type,
3741  SourceLocation Loc);
3742 
3743  void EmitAtomicInit(Expr *E, LValue lvalue);
3744 
3745  bool LValueIsSuitableForInlineAtomic(LValue Src);
3746 
3747  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3748  AggValueSlot Slot = AggValueSlot::ignored());
3749 
3750  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3751  llvm::AtomicOrdering AO, bool IsVolatile = false,
3752  AggValueSlot slot = AggValueSlot::ignored());
3753 
3754  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3755 
3756  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3757  bool IsVolatile, bool isInit);
3758 
3759  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3760  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3761  llvm::AtomicOrdering Success =
3762  llvm::AtomicOrdering::SequentiallyConsistent,
3763  llvm::AtomicOrdering Failure =
3764  llvm::AtomicOrdering::SequentiallyConsistent,
3765  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3766 
3767  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3768  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3769  bool IsVolatile);
3770 
3771  /// EmitToMemory - Change a scalar value from its value
3772  /// representation to its in-memory representation.
3773  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3774 
3775  /// EmitFromMemory - Change a scalar value from its memory
3776  /// representation to its value representation.
3777  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3778 
3779  /// Check if the scalar \p Value is within the valid range for the given
3780  /// type \p Ty.
3781  ///
3782  /// Returns true if a check is needed (even if the range is unknown).
3783  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3784  SourceLocation Loc);
3785 
3786  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3787  /// care to appropriately convert from the memory representation to
3788  /// the LLVM value representation.
3789  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3790  SourceLocation Loc,
3792  bool isNontemporal = false) {
3793  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3794  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3795  }
3796 
3797  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3798  SourceLocation Loc, LValueBaseInfo BaseInfo,
3799  TBAAAccessInfo TBAAInfo,
3800  bool isNontemporal = false);
3801 
3802  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3803  /// care to appropriately convert from the memory representation to
3804  /// the LLVM value representation. The l-value must be a simple
3805  /// l-value.
3807 
3808  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3809  /// care to appropriately convert from the memory representation to
3810  /// the LLVM value representation.
3812  bool Volatile, QualType Ty,
3814  bool isInit = false, bool isNontemporal = false) {
3815  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3816  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3817  }
3818 
3820  bool Volatile, QualType Ty,
3821  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3822  bool isInit = false, bool isNontemporal = false);
3823 
3824  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3825  /// care to appropriately convert from the memory representation to
3826  /// the LLVM value representation. The l-value must be a simple
3827  /// l-value. The isInit flag indicates whether this is an initialization.
3828  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3829  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3830 
3831  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3832  /// this method emits the address of the lvalue, then loads the result as an
3833  /// rvalue, returning the rvalue.
3838 
3839  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3840  /// lvalue, where both are guaranteed to the have the same type, and that type
3841  /// is 'Ty'.
3842  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3845 
3846  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3847  /// as EmitStoreThroughLValue.
3848  ///
3849  /// \param Result [out] - If non-null, this will be set to a Value* for the
3850  /// bit-field contents after the store, appropriate for use as the result of
3851  /// an assignment to the bit-field.
3853  llvm::Value **Result=nullptr);
3854 
3855  /// Emit an l-value for an assignment (simple or compound) of complex type.
3859  llvm::Value *&Result);
3860 
3861  // Note: only available for agg return types
3864  // Note: only available for agg return types
3866  // Note: only available for agg return types
3874  bool Accessed = false);
3877  bool IsLowerBound = true);
3879  LValue EmitMemberExpr(const MemberExpr *E);
3884  LValue EmitCastLValue(const CastExpr *E);
3887 
3889 
3891 
3892  Address EmitArrayToPointerDecay(const Expr *Array,
3893  LValueBaseInfo *BaseInfo = nullptr,
3894  TBAAAccessInfo *TBAAInfo = nullptr);
3895 
3897  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3898  ConstantEmission(llvm::Constant *C, bool isReference)
3899  : ValueAndIsReference(C, isReference) {}
3900  public:
3902  static ConstantEmission forReference(llvm::Constant *C) {
3903  return ConstantEmission(C, true);
3904  }
3905  static ConstantEmission forValue(llvm::Constant *C) {
3906  return ConstantEmission(C, false);
3907  }
3908 
3909  explicit operator bool() const {
3910  return ValueAndIsReference.getOpaqueValue() != nullptr;
3911  }
3912 
3913  bool isReference() const { return ValueAndIsReference.getInt(); }
3915  assert(isReference());
3916  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3917  refExpr->getType());
3918  }
3919 
3920  llvm::Constant *getValue() const {
3921  assert(!isReference());
3922  return ValueAndIsReference.getPointer();
3923  }
3924  };
3925 
3926  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3927  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3928  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3929 
3933 
3934  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3935  const ObjCIvarDecl *Ivar);
3938 
3939  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3940  /// if the Field is a reference, this will return the address of the reference
3941  /// and not the address of the value stored in the reference.
3943  const FieldDecl* Field);
3944 
3946  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3947  unsigned CVRQualifiers);
3948 
3953 
3959  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3960 
3961  //===--------------------------------------------------------------------===//
3962  // Scalar Expression Emission
3963  //===--------------------------------------------------------------------===//
3964 
3965  /// EmitCall - Generate a call of the given function, expecting the given
3966  /// result type, and using the given argument list which specifies both the
3967  /// LLVM arguments and the types they were derived from.
3968  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3970  llvm::CallBase **callOrInvoke, bool IsMustTail,
3971  SourceLocation Loc);
3972  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3974  llvm::CallBase **callOrInvoke = nullptr,
3975  bool IsMustTail = false) {
3976  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3977  IsMustTail, SourceLocation());
3978  }
3979  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3980  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3981  RValue EmitCallExpr(const CallExpr *E,
3984  CGCallee EmitCallee(const Expr *E);
3985 
3986  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3987  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3988 
3989  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3990  const Twine &name = "");
3991  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3993  const Twine &name = "");
3994  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3995  const Twine &name = "");
3996  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3998  const Twine &name = "");
3999 
4002 
4003  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4005  const Twine &Name = "");
4006  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4008  const Twine &name = "");
4009  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4010  const Twine &name = "");
4011  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4013 
4015  NestedNameSpecifier *Qual,
4016  llvm::Type *Ty);
4017 
4019  CXXDtorType Type,
4020  const CXXRecordDecl *RD);
4021 
4022  // Return the copy constructor name with the prefix "__copy_constructor_"
4023  // removed.
4025  CharUnits Alignment,
4026  bool IsVolatile,
4027  ASTContext &Ctx);
4028 
4029  // Return the destructor name with the prefix "__destructor_" removed.
4031  CharUnits Alignment,
4032  bool IsVolatile,
4033  ASTContext &Ctx);
4034 
4035  // These functions emit calls to the special functions of non-trivial C
4036  // structs.
4039  void callCStructDestructor(LValue Dst);
4040  void callCStructCopyConstructor(LValue Dst, LValue Src);
4041  void callCStructMoveConstructor(LValue Dst, LValue Src);
4044 
4045  RValue
4047  const CGCallee &Callee,
4049  llvm::Value *ImplicitParam,
4050  QualType ImplicitParamTy, const CallExpr *E,
4051  CallArgList *RtlArgs);
4052  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4053  llvm::Value *This, QualType ThisTy,
4054  llvm::Value *ImplicitParam,
4055  QualType ImplicitParamTy, const CallExpr *E);
4059  const CXXMethodDecl *MD,
4061  bool HasQualifier,
4062  NestedNameSpecifier *Qualifier,
4063  bool IsArrow, const Expr *Base);
4064  // Compute the object pointer.
4066  llvm::Value *memberPtr,
4067  const MemberPointerType *memberPtrType,
4068  LValueBaseInfo *BaseInfo = nullptr,
4069  TBAAAccessInfo *TBAAInfo = nullptr);
4072 
4074  const CXXMethodDecl *MD,
4077 
4080 
4085 
4086  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4088 
4089  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4090 
4091  /// Emit IR for __builtin_os_log_format.
4093 
4094  /// Emit IR for __builtin_is_aligned.
4096  /// Emit IR for __builtin_align_up/__builtin_align_down.
4097  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4098 
4099  llvm::Function *generateBuiltinOSLogHelperFunction(
4100  const analyze_os_log::OSLogBufferLayout &Layout,
4101  CharUnits BufferAlignment);
4102 
4104 
4105  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4106  /// is unhandled by the current target.
4107  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4109 
4111  const llvm::CmpInst::Predicate Fp,
4112  const llvm::CmpInst::Predicate Ip,
4113  const llvm::Twine &Name = "");
4114  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4116  llvm::Triple::ArchType Arch);
4117  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4119  llvm::Triple::ArchType Arch);
4120  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4122  llvm::Triple::ArchType Arch);
4123  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4124  QualType RTy);
4125  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4126  QualType RTy);
4127 
4128  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4129  unsigned LLVMIntrinsic,
4130  unsigned AltLLVMIntrinsic,
4131  const char *NameHint,
4132  unsigned Modifier,
4133  const CallExpr *E,
4135  Address PtrOp0, Address PtrOp1,
4136  llvm::Triple::ArchType Arch);
4137 
4138  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4139  unsigned Modifier, llvm::Type *ArgTy,
4140  const CallExpr *E);
4141  llvm::Value *EmitNeonCall(llvm::Function *F,
4143  const char *name,
4144  unsigned shift = 0, bool rightshift = false);
4145  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4146  const llvm::ElementCount &Count);
4147  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4148  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4149  bool negateForRightShift);
4151  llvm::Type *Ty, bool usgn, const char *name);
4153  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4154  /// access builtin. Only required if it can't be inferred from the base
4155  /// pointer operand.
4156  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4157 
4159  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4161  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4162  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4163  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4164  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4166  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4167  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4168  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4170  unsigned BuiltinID);
4171  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4173  unsigned BuiltinID);
4175  llvm::ScalableVectorType *VTy);
4176  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4178  unsigned IntID);
4179  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4181  unsigned IntID);
4182  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4184  unsigned BuiltinID, bool IsZExtReturn);
4187  unsigned BuiltinID);
4188  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4190  unsigned BuiltinID);
4193  unsigned IntID);
4194  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4196  unsigned IntID);
4197  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4199  unsigned IntID);
4200  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4201 
4202  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4203  llvm::Triple::ArchType Arch);
4204  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4205 
4207  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4208  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4209  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4210  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4211  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4212  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4213  const CallExpr *E);
4214  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4215  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4218  llvm::AtomicOrdering &AO,
4219  llvm::SyncScope::ID &SSID);
4220 
4221  enum class MSVCIntrin;
4222  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4223 
4224  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4225 
4232  const ObjCMethodDecl *MethodWithObjects);
4235  ReturnValueSlot Return = ReturnValueSlot());
4236 
4237  /// Retrieves the default cleanup kind for an ARC cleanup.
4238  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4240  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4242  }
4243 
4244  // ARC primitives.
4245  void EmitARCInitWeak(Address addr, llvm::Value *value);
4246  void EmitARCDestroyWeak(Address addr);
4249  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4250  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4251  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4252  void EmitARCCopyWeak(Address dst, Address src);
4253  void EmitARCMoveWeak(Address dst, Address src);
4257  bool resultIgnored);
4259  bool resultIgnored);
4262  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4264  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4270 
4271  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4273  llvm::Type *returnType);
4274  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4275 
4276  std::pair<LValue,llvm::Value*>
4278  std::pair<LValue,llvm::Value*>
4279  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4280  std::pair<LValue,llvm::Value*>
4281  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4282 
4284  llvm::Type *returnType);
4286  llvm::Type *returnType);
4287  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4288 
4292 
4295  bool allowUnsafeClaim);
4299 
4301 
4303 
4309 
4315 
4316  /// Emits a reference binding to the passed in expression.
4318 
4319  //===--------------------------------------------------------------------===//
4320  // Expression Emission
4321  //===--------------------------------------------------------------------===//
4322 
4323  // Expressions are broken into three classes: scalar, complex, aggregate.
4324 
4325  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4326  /// scalar type, returning the result.
4327  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4328 
4329  /// Emit a conversion from the specified type to the specified destination
4330  /// type, both of which are LLVM scalar types.
4332  QualType DstTy, SourceLocation Loc);
4333 
4334  /// Emit a conversion from the specified complex type to the specified
4335  /// destination type, where the destination type is an LLVM scalar type.
4337  QualType DstTy,
4338  SourceLocation Loc);
4339 
4340  /// EmitAggExpr - Emit the computation of the specified expression
4341  /// of aggregate type. The result is computed into the given slot,
4342  /// which may be null to indicate that the value is not needed.
4343  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4344 
4345  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4346  /// aggregate type into a temporary LValue.
4347  LValue EmitAggExprToLValue(const Expr *E);
4348 
4349  /// Build all the stores needed to initialize an aggregate at Dest with the
4350  /// value Val.
4351  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4352 
4353  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4354  /// make sure it survives garbage collection until this point.
4355  void EmitExtendGCLifetime(llvm::Value *object);
4356 
4357  /// EmitComplexExpr - Emit the computation of the specified expression of
4358  /// complex type, returning the result.
4360  bool IgnoreReal = false,
4361  bool IgnoreImag = false);
4362 
4363  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4364  /// type and place its result into the specified l-value.
4365  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4366 
4367  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4368  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4369 
4370  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4372 
4375 
4376  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4377  /// global variable that has already been created for it. If the initializer
4378  /// has a different type than GV does, this may free GV and return a different
4379  /// one. Otherwise it just returns GV.
4380  llvm::GlobalVariable *
4382  llvm::GlobalVariable *GV);
4383 
4384  // Emit an @llvm.invariant.start call for the given memory region.
4385  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4386 
4387  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4388  /// variable with global storage.
4389  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4390  bool PerformInit);
4391 
4392  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4393  llvm::Constant *Addr);
4394 
4395  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4396  llvm::FunctionCallee Dtor,
4397  llvm::Constant *Addr,
4398  llvm::FunctionCallee &AtExit);
4399 
4400  /// Call atexit() with a function that passes the given argument to
4401  /// the given function.
4402  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4403  llvm::Constant *addr);
4404 
4405  /// Call atexit() with function dtorStub.
4406  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4407 
4408  /// Call unatexit() with function dtorStub.
4409  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4410 
4411  /// Emit code in this function to perform a guarded variable
4412  /// initialization. Guarded initializations are used when it's not
4413  /// possible to prove that an initialization will be done exactly
4414  /// once, e.g. with a static local variable or a static data member
4415  /// of a class template.
4416  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4417  bool PerformInit);
4418 
4420 
4421  /// Emit a branch to select whether or not to perform guarded initialization.
4422  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4423  llvm::BasicBlock *InitBlock,
4424  llvm::BasicBlock *NoInitBlock,
4425  GuardKind Kind, const VarDecl *D);
4426 
4427  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4428  /// variables.
4429  void
4430  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4431  ArrayRef<llvm::Function *> CXXThreadLocals,
4433 
4434  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4435  /// variables.
4437  llvm::Function *Fn,
4438  ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4439  llvm::Constant *>>
4440  DtorsOrStermFinalizers);
4441 
4442  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4443  const VarDecl *D,
4444  llvm::GlobalVariable *Addr,
4445  bool PerformInit);
4446 
4447  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4448 
4449  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4450 
4451  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4452 
4454 
4455  //===--------------------------------------------------------------------===//
4456  // Annotations Emission
4457  //===--------------------------------------------------------------------===//
4458 
4459  /// Emit an annotation call (intrinsic).
4460  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4461  llvm::Value *AnnotatedVal,
4462  StringRef AnnotationStr,
4463  SourceLocation Location,
4464  const AnnotateAttr *Attr);
4465 
4466  /// Emit local annotations for the local variable V, declared by D.
4467  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4468 
4469  /// Emit field annotations for the given field & value. Returns the
4470  /// annotation result.
4472 
4473  //===--------------------------------------------------------------------===//
4474  // Internal Helpers
4475  //===--------------------------------------------------------------------===//
4476 
4477  /// ContainsLabel - Return true if the statement contains a label in it. If
4478  /// this statement is not executed normally, it not containing a label means
4479  /// that we can just remove the code.
4480