clang  6.0.0svn
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
108 };
109 
110 #define LIST_SANITIZER_CHECKS \
111  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
112  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
113  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
114  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
115  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
116  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
117  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
118  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
119  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
120  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
121  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
122  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
123  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
124  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
125  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
126  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
127  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
128  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
129  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
130  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
131  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
132  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
133 
135 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137 #undef SANITIZER_CHECK
138 };
139 
140 /// CodeGenFunction - This class organizes the per-function state that is used
141 /// while generating LLVM code.
143  CodeGenFunction(const CodeGenFunction &) = delete;
144  void operator=(const CodeGenFunction &) = delete;
145 
146  friend class CGCXXABI;
147 public:
148  /// A jump destination is an abstract label, branching to which may
149  /// require a jump out through normal cleanups.
150  struct JumpDest {
151  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
152  JumpDest(llvm::BasicBlock *Block,
154  unsigned Index)
155  : Block(Block), ScopeDepth(Depth), Index(Index) {}
156 
157  bool isValid() const { return Block != nullptr; }
158  llvm::BasicBlock *getBlock() const { return Block; }
159  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
160  unsigned getDestIndex() const { return Index; }
161 
162  // This should be used cautiously.
164  ScopeDepth = depth;
165  }
166 
167  private:
168  llvm::BasicBlock *Block;
170  unsigned Index;
171  };
172 
173  CodeGenModule &CGM; // Per-module state.
175 
176  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
179 
180  // Stores variables for which we can't generate correct lifetime markers
181  // because of jumps.
183 
184  // CodeGen lambda for loops and support for ordered clause
185  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
186  JumpDest)>
188  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
189  const unsigned, const bool)>
191 
192  // Codegen lambda for loop bounds in worksharing loop constructs
193  typedef llvm::function_ref<std::pair<LValue, LValue>(
196 
197  // Codegen lambda for loop bounds in dispatch-based loop implementation
198  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
199  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
200  Address UB)>
202 
203  /// \brief CGBuilder insert helper. This function is called after an
204  /// instruction is created using Builder.
205  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
206  llvm::BasicBlock *BB,
207  llvm::BasicBlock::iterator InsertPt) const;
208 
209  /// CurFuncDecl - Holds the Decl for the current outermost
210  /// non-closure context.
212  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
216  llvm::Function *CurFn;
217 
218  // Holds coroutine data if the current function is a coroutine. We use a
219  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
220  // in this header.
221  struct CGCoroInfo {
222  std::unique_ptr<CGCoroData> Data;
223  CGCoroInfo();
224  ~CGCoroInfo();
225  };
227 
228  bool isCoroutine() const {
229  return CurCoro.Data != nullptr;
230  }
231 
232  /// CurGD - The GlobalDecl for the current function being compiled.
234 
235  /// PrologueCleanupDepth - The cleanup depth enclosing all the
236  /// cleanups associated with the parameters.
238 
239  /// ReturnBlock - Unified return block.
241 
242  /// ReturnValue - The temporary alloca to hold the return
243  /// value. This is invalid iff the function has no return value.
245 
246  /// Return true if a label was seen in the current scope.
248  if (CurLexicalScope)
249  return CurLexicalScope->hasLabels();
250  return !LabelMap.empty();
251  }
252 
253  /// AllocaInsertPoint - This is an instruction in the entry block before which
254  /// we prefer to insert allocas.
255  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
256 
257  /// \brief API for captured statement code generation.
259  public:
261  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
262  explicit CGCapturedStmtInfo(const CapturedStmt &S,
264  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
265 
269  E = S.capture_end();
270  I != E; ++I, ++Field) {
271  if (I->capturesThis())
272  CXXThisFieldDecl = *Field;
273  else if (I->capturesVariable())
274  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
275  else if (I->capturesVariableByCopy())
276  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
277  }
278  }
279 
280  virtual ~CGCapturedStmtInfo();
281 
282  CapturedRegionKind getKind() const { return Kind; }
283 
284  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
285  // \brief Retrieve the value of the context parameter.
286  virtual llvm::Value *getContextValue() const { return ThisValue; }
287 
288  /// \brief Lookup the captured field decl for a variable.
289  virtual const FieldDecl *lookup(const VarDecl *VD) const {
290  return CaptureFields.lookup(VD->getCanonicalDecl());
291  }
292 
293  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
294  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
295 
296  static bool classof(const CGCapturedStmtInfo *) {
297  return true;
298  }
299 
300  /// \brief Emit the captured statement body.
301  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
303  CGF.EmitStmt(S);
304  }
305 
306  /// \brief Get the name of the capture helper.
307  virtual StringRef getHelperName() const { return "__captured_stmt"; }
308 
309  private:
310  /// \brief The kind of captured statement being generated.
312 
313  /// \brief Keep the map between VarDecl and FieldDecl.
314  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
315 
316  /// \brief The base address of the captured record, passed in as the first
317  /// argument of the parallel region function.
318  llvm::Value *ThisValue;
319 
320  /// \brief Captured 'this' type.
321  FieldDecl *CXXThisFieldDecl;
322  };
324 
325  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
327  private:
328  CodeGenFunction &CGF;
329  CGCapturedStmtInfo *PrevCapturedStmtInfo;
330  public:
331  CGCapturedStmtRAII(CodeGenFunction &CGF,
332  CGCapturedStmtInfo *NewCapturedStmtInfo)
333  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
334  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
335  }
336  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
337  };
338 
339  /// An abstract representation of regular/ObjC call/message targets.
341  /// The function declaration of the callee.
342  const Decl *CalleeDecl;
343 
344  public:
345  AbstractCallee() : CalleeDecl(nullptr) {}
346  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
347  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
348  bool hasFunctionDecl() const {
349  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
350  }
351  const Decl *getDecl() const { return CalleeDecl; }
352  unsigned getNumParams() const {
353  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
354  return FD->getNumParams();
355  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
356  }
357  const ParmVarDecl *getParamDecl(unsigned I) const {
358  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
359  return FD->getParamDecl(I);
360  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
361  }
362  };
363 
364  /// \brief Sanitizers enabled for this function.
366 
367  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
369 
370  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
372  CodeGenFunction *CGF;
373  public:
374  SanitizerScope(CodeGenFunction *CGF);
375  ~SanitizerScope();
376  };
377 
378  /// In C++, whether we are code generating a thunk. This controls whether we
379  /// should emit cleanups.
381 
382  /// In ARC, whether we should autorelease the return value.
384 
385  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
386  /// potentially set the return value.
388 
389  const FunctionDecl *CurSEHParent = nullptr;
390 
391  /// True if the current function is an outlined SEH helper. This can be a
392  /// finally block or filter expression.
394 
397 
398  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400 
401  /// \brief A mapping from NRVO variables to the flags used to indicate
402  /// when the NRVO has been applied to this variable.
403  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
404 
408 
409  llvm::Instruction *CurrentFuncletPad = nullptr;
410 
411  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
412  llvm::Value *Addr;
413  llvm::Value *Size;
414 
415  public:
417  : Addr(addr.getPointer()), Size(size) {}
418 
419  void Emit(CodeGenFunction &CGF, Flags flags) override {
420  CGF.EmitLifetimeEnd(Size, Addr);
421  }
422  };
423 
424  /// Header for data within LifetimeExtendedCleanupStack.
426  /// The size of the following cleanup object.
427  unsigned Size;
428  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
430 
431  size_t getSize() const { return Size; }
432  CleanupKind getKind() const { return Kind; }
433  };
434 
435  /// i32s containing the indexes of the cleanup destinations.
436  llvm::AllocaInst *NormalCleanupDest;
437 
439 
440  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
442 
443  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
444  llvm::BasicBlock *EHResumeBlock;
445 
446  /// The exception slot. All landing pads write the current exception pointer
447  /// into this alloca.
449 
450  /// The selector slot. Under the MandatoryCleanup model, all landing pads
451  /// write the current selector value into this alloca.
452  llvm::AllocaInst *EHSelectorSlot;
453 
454  /// A stack of exception code slots. Entering an __except block pushes a slot
455  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
456  /// a value from the top of the stack.
458 
459  /// Value returned by __exception_info intrinsic.
460  llvm::Value *SEHInfo = nullptr;
461 
462  /// Emits a landing pad for the current EH stack.
463  llvm::BasicBlock *EmitLandingPad();
464 
465  llvm::BasicBlock *getInvokeDestImpl();
466 
467  template <class T>
469  return DominatingValue<T>::save(*this, value);
470  }
471 
472 public:
473  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
474  /// rethrows.
476 
477  /// A class controlling the emission of a finally block.
478  class FinallyInfo {
479  /// Where the catchall's edge through the cleanup should go.
480  JumpDest RethrowDest;
481 
482  /// A function to call to enter the catch.
483  llvm::Constant *BeginCatchFn;
484 
485  /// An i1 variable indicating whether or not the @finally is
486  /// running for an exception.
487  llvm::AllocaInst *ForEHVar;
488 
489  /// An i8* variable into which the exception pointer to rethrow
490  /// has been saved.
491  llvm::AllocaInst *SavedExnVar;
492 
493  public:
494  void enter(CodeGenFunction &CGF, const Stmt *Finally,
495  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
496  llvm::Constant *rethrowFn);
497  void exit(CodeGenFunction &CGF);
498  };
499 
500  /// Returns true inside SEH __try blocks.
501  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
502 
503  /// Returns true while emitting a cleanuppad.
504  bool isCleanupPadScope() const {
505  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
506  }
507 
508  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
509  /// current full-expression. Safe against the possibility that
510  /// we're currently inside a conditionally-evaluated expression.
511  template <class T, class... As>
513  // If we're not in a conditional branch, or if none of the
514  // arguments requires saving, then use the unconditional cleanup.
515  if (!isInConditionalBranch())
516  return EHStack.pushCleanup<T>(kind, A...);
517 
518  // Stash values in a tuple so we can guarantee the order of saves.
519  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
520  SavedTuple Saved{saveValueInCond(A)...};
521 
522  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
523  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
524  initFullExprCleanup();
525  }
526 
527  /// \brief Queue a cleanup to be pushed after finishing the current
528  /// full-expression.
529  template <class T, class... As>
531  assert(!isInConditionalBranch() && "can't defer conditional cleanup");
532 
533  LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
534 
535  size_t OldSize = LifetimeExtendedCleanupStack.size();
536  LifetimeExtendedCleanupStack.resize(
537  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
538 
539  static_assert(sizeof(Header) % alignof(T) == 0,
540  "Cleanup will be allocated on misaligned address");
541  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
542  new (Buffer) LifetimeExtendedCleanupHeader(Header);
543  new (Buffer + sizeof(Header)) T(A...);
544  }
545 
546  /// Set up the last cleaup that was pushed as a conditional
547  /// full-expression cleanup.
548  void initFullExprCleanup();
549 
550  /// PushDestructorCleanup - Push a cleanup to call the
551  /// complete-object destructor of an object of the given type at the
552  /// given address. Does nothing if T is not a C++ class type with a
553  /// non-trivial destructor.
554  void PushDestructorCleanup(QualType T, Address Addr);
555 
556  /// PushDestructorCleanup - Push a cleanup to call the
557  /// complete-object variant of the given destructor on the object at
558  /// the given address.
559  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
560 
561  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
562  /// process all branch fixups.
563  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
564 
565  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
566  /// The block cannot be reactivated. Pops it if it's the top of the
567  /// stack.
568  ///
569  /// \param DominatingIP - An instruction which is known to
570  /// dominate the current IP (if set) and which lies along
571  /// all paths of execution between the current IP and the
572  /// the point at which the cleanup comes into scope.
573  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
574  llvm::Instruction *DominatingIP);
575 
576  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
577  /// Cannot be used to resurrect a deactivated cleanup.
578  ///
579  /// \param DominatingIP - An instruction which is known to
580  /// dominate the current IP (if set) and which lies along
581  /// all paths of execution between the current IP and the
582  /// the point at which the cleanup comes into scope.
583  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
584  llvm::Instruction *DominatingIP);
585 
586  /// \brief Enters a new scope for capturing cleanups, all of which
587  /// will be executed once the scope is exited.
589  EHScopeStack::stable_iterator CleanupStackDepth;
590  size_t LifetimeExtendedCleanupStackSize;
591  bool OldDidCallStackSave;
592  protected:
594  private:
595 
596  RunCleanupsScope(const RunCleanupsScope &) = delete;
597  void operator=(const RunCleanupsScope &) = delete;
598 
599  protected:
600  CodeGenFunction& CGF;
601 
602  public:
603  /// \brief Enter a new cleanup scope.
604  explicit RunCleanupsScope(CodeGenFunction &CGF)
605  : PerformCleanup(true), CGF(CGF)
606  {
607  CleanupStackDepth = CGF.EHStack.stable_begin();
608  LifetimeExtendedCleanupStackSize =
609  CGF.LifetimeExtendedCleanupStack.size();
610  OldDidCallStackSave = CGF.DidCallStackSave;
611  CGF.DidCallStackSave = false;
612  }
613 
614  /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
616  if (PerformCleanup)
617  ForceCleanup();
618  }
619 
620  /// \brief Determine whether this scope requires any cleanups.
621  bool requiresCleanups() const {
622  return CGF.EHStack.stable_begin() != CleanupStackDepth;
623  }
624 
625  /// \brief Force the emission of cleanups now, instead of waiting
626  /// until this object is destroyed.
627  /// \param ValuesToReload - A list of values that need to be available at
628  /// the insertion point after cleanup emission. If cleanup emission created
629  /// a shared cleanup block, these value pointers will be rewritten.
630  /// Otherwise, they not will be modified.
631  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
632  assert(PerformCleanup && "Already forced cleanup");
633  CGF.DidCallStackSave = OldDidCallStackSave;
634  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
635  ValuesToReload);
636  PerformCleanup = false;
637  }
638  };
639 
641  SourceRange Range;
643  LexicalScope *ParentScope;
644 
645  LexicalScope(const LexicalScope &) = delete;
646  void operator=(const LexicalScope &) = delete;
647 
648  public:
649  /// \brief Enter a new cleanup scope.
650  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
651  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
652  CGF.CurLexicalScope = this;
653  if (CGDebugInfo *DI = CGF.getDebugInfo())
654  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
655  }
656 
657  void addLabel(const LabelDecl *label) {
658  assert(PerformCleanup && "adding label to dead scope?");
659  Labels.push_back(label);
660  }
661 
662  /// \brief Exit this cleanup scope, emitting any accumulated
663  /// cleanups.
665  if (CGDebugInfo *DI = CGF.getDebugInfo())
666  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
667 
668  // If we should perform a cleanup, force them now. Note that
669  // this ends the cleanup scope before rescoping any labels.
670  if (PerformCleanup) {
671  ApplyDebugLocation DL(CGF, Range.getEnd());
672  ForceCleanup();
673  }
674  }
675 
676  /// \brief Force the emission of cleanups now, instead of waiting
677  /// until this object is destroyed.
678  void ForceCleanup() {
679  CGF.CurLexicalScope = ParentScope;
680  RunCleanupsScope::ForceCleanup();
681 
682  if (!Labels.empty())
683  rescopeLabels();
684  }
685 
686  bool hasLabels() const {
687  return !Labels.empty();
688  }
689 
690  void rescopeLabels();
691  };
692 
693  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
694 
695  /// \brief The scope used to remap some variables as private in the OpenMP
696  /// loop body (or other captured region emitted without outlining), and to
697  /// restore old vars back on exit.
699  DeclMapTy SavedLocals;
700  DeclMapTy SavedPrivates;
701 
702  private:
703  OMPPrivateScope(const OMPPrivateScope &) = delete;
704  void operator=(const OMPPrivateScope &) = delete;
705 
706  public:
707  /// \brief Enter a new OpenMP private scope.
708  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
709 
710  /// \brief Registers \a LocalVD variable as a private and apply \a
711  /// PrivateGen function for it to generate corresponding private variable.
712  /// \a PrivateGen returns an address of the generated private variable.
713  /// \return true if the variable is registered as private, false if it has
714  /// been privatized already.
715  bool
716  addPrivate(const VarDecl *LocalVD,
717  llvm::function_ref<Address()> PrivateGen) {
718  assert(PerformCleanup && "adding private to dead scope");
719 
720  LocalVD = LocalVD->getCanonicalDecl();
721  // Only save it once.
722  if (SavedLocals.count(LocalVD)) return false;
723 
724  // Copy the existing local entry to SavedLocals.
725  auto it = CGF.LocalDeclMap.find(LocalVD);
726  if (it != CGF.LocalDeclMap.end()) {
727  SavedLocals.insert({LocalVD, it->second});
728  } else {
729  SavedLocals.insert({LocalVD, Address::invalid()});
730  }
731 
732  // Generate the private entry.
733  Address Addr = PrivateGen();
734  QualType VarTy = LocalVD->getType();
735  if (VarTy->isReferenceType()) {
736  Address Temp = CGF.CreateMemTemp(VarTy);
737  CGF.Builder.CreateStore(Addr.getPointer(), Temp);
738  Addr = Temp;
739  }
740  SavedPrivates.insert({LocalVD, Addr});
741 
742  return true;
743  }
744 
745  /// \brief Privatizes local variables previously registered as private.
746  /// Registration is separate from the actual privatization to allow
747  /// initializers use values of the original variables, not the private one.
748  /// This is important, for example, if the private variable is a class
749  /// variable initialized by a constructor that references other private
750  /// variables. But at initialization original variables must be used, not
751  /// private copies.
752  /// \return true if at least one variable was privatized, false otherwise.
753  bool Privatize() {
754  copyInto(SavedPrivates, CGF.LocalDeclMap);
755  SavedPrivates.clear();
756  return !SavedLocals.empty();
757  }
758 
759  void ForceCleanup() {
760  RunCleanupsScope::ForceCleanup();
761  copyInto(SavedLocals, CGF.LocalDeclMap);
762  SavedLocals.clear();
763  }
764 
765  /// \brief Exit scope - all the mapped variables are restored.
767  if (PerformCleanup)
768  ForceCleanup();
769  }
770 
771  /// Checks if the global variable is captured in current function.
772  bool isGlobalVarCaptured(const VarDecl *VD) const {
773  VD = VD->getCanonicalDecl();
774  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
775  }
776 
777  private:
778  /// Copy all the entries in the source map over the corresponding
779  /// entries in the destination, which must exist.
780  static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
781  for (auto &pair : src) {
782  if (!pair.second.isValid()) {
783  dest.erase(pair.first);
784  continue;
785  }
786 
787  auto it = dest.find(pair.first);
788  if (it != dest.end()) {
789  it->second = pair.second;
790  } else {
791  dest.insert(pair);
792  }
793  }
794  }
795  };
796 
797  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
798  /// that have been added.
799  void
800  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
801  std::initializer_list<llvm::Value **> ValuesToReload = {});
802 
803  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
804  /// that have been added, then adds all lifetime-extended cleanups from
805  /// the given position to the stack.
806  void
807  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
808  size_t OldLifetimeExtendedStackSize,
809  std::initializer_list<llvm::Value **> ValuesToReload = {});
810 
811  void ResolveBranchFixups(llvm::BasicBlock *Target);
812 
813  /// The given basic block lies in the current EH scope, but may be a
814  /// target of a potentially scope-crossing jump; get a stable handle
815  /// to which we can perform this jump later.
816  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
817  return JumpDest(Target,
818  EHStack.getInnermostNormalCleanup(),
819  NextCleanupDestIndex++);
820  }
821 
822  /// The given basic block lies in the current EH scope, but may be a
823  /// target of a potentially scope-crossing jump; get a stable handle
824  /// to which we can perform this jump later.
825  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
826  return getJumpDestInCurrentScope(createBasicBlock(Name));
827  }
828 
829  /// EmitBranchThroughCleanup - Emit a branch from the current insert
830  /// block through the normal cleanup handling code (if any) and then
831  /// on to \arg Dest.
832  void EmitBranchThroughCleanup(JumpDest Dest);
833 
834  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
835  /// specified destination obviously has no cleanups to run. 'false' is always
836  /// a conservatively correct answer for this method.
837  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
838 
839  /// popCatchScope - Pops the catch scope at the top of the EHScope
840  /// stack, emitting any required code (other than the catch handlers
841  /// themselves).
842  void popCatchScope();
843 
844  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
845  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
846  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
847 
848  /// An object to manage conditionally-evaluated expressions.
850  llvm::BasicBlock *StartBB;
851 
852  public:
853  ConditionalEvaluation(CodeGenFunction &CGF)
854  : StartBB(CGF.Builder.GetInsertBlock()) {}
855 
856  void begin(CodeGenFunction &CGF) {
857  assert(CGF.OutermostConditional != this);
858  if (!CGF.OutermostConditional)
859  CGF.OutermostConditional = this;
860  }
861 
862  void end(CodeGenFunction &CGF) {
863  assert(CGF.OutermostConditional != nullptr);
864  if (CGF.OutermostConditional == this)
865  CGF.OutermostConditional = nullptr;
866  }
867 
868  /// Returns a block which will be executed prior to each
869  /// evaluation of the conditional code.
870  llvm::BasicBlock *getStartingBlock() const {
871  return StartBB;
872  }
873  };
874 
875  /// isInConditionalBranch - Return true if we're currently emitting
876  /// one branch or the other of a conditional expression.
877  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
878 
880  assert(isInConditionalBranch());
881  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
882  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
883  store->setAlignment(addr.getAlignment().getQuantity());
884  }
885 
886  /// An RAII object to record that we're evaluating a statement
887  /// expression.
889  CodeGenFunction &CGF;
890 
891  /// We have to save the outermost conditional: cleanups in a
892  /// statement expression aren't conditional just because the
893  /// StmtExpr is.
894  ConditionalEvaluation *SavedOutermostConditional;
895 
896  public:
897  StmtExprEvaluation(CodeGenFunction &CGF)
898  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
899  CGF.OutermostConditional = nullptr;
900  }
901 
903  CGF.OutermostConditional = SavedOutermostConditional;
904  CGF.EnsureInsertPoint();
905  }
906  };
907 
908  /// An object which temporarily prevents a value from being
909  /// destroyed by aggressive peephole optimizations that assume that
910  /// all uses of a value have been realized in the IR.
912  llvm::Instruction *Inst;
913  friend class CodeGenFunction;
914 
915  public:
916  PeepholeProtection() : Inst(nullptr) {}
917  };
918 
919  /// A non-RAII class containing all the information about a bound
920  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
921  /// this which makes individual mappings very simple; using this
922  /// class directly is useful when you have a variable number of
923  /// opaque values or don't want the RAII functionality for some
924  /// reason.
926  const OpaqueValueExpr *OpaqueValue;
927  bool BoundLValue;
929 
931  bool boundLValue)
932  : OpaqueValue(ov), BoundLValue(boundLValue) {}
933  public:
934  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
935 
936  static bool shouldBindAsLValue(const Expr *expr) {
937  // gl-values should be bound as l-values for obvious reasons.
938  // Records should be bound as l-values because IR generation
939  // always keeps them in memory. Expressions of function type
940  // act exactly like l-values but are formally required to be
941  // r-values in C.
942  return expr->isGLValue() ||
943  expr->getType()->isFunctionType() ||
944  hasAggregateEvaluationKind(expr->getType());
945  }
946 
947  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
948  const OpaqueValueExpr *ov,
949  const Expr *e) {
950  if (shouldBindAsLValue(ov))
951  return bind(CGF, ov, CGF.EmitLValue(e));
952  return bind(CGF, ov, CGF.EmitAnyExpr(e));
953  }
954 
955  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
956  const OpaqueValueExpr *ov,
957  const LValue &lv) {
958  assert(shouldBindAsLValue(ov));
959  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
960  return OpaqueValueMappingData(ov, true);
961  }
962 
963  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
964  const OpaqueValueExpr *ov,
965  const RValue &rv) {
966  assert(!shouldBindAsLValue(ov));
967  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
968 
969  OpaqueValueMappingData data(ov, false);
970 
971  // Work around an extremely aggressive peephole optimization in
972  // EmitScalarConversion which assumes that all other uses of a
973  // value are extant.
974  data.Protection = CGF.protectFromPeepholes(rv);
975 
976  return data;
977  }
978 
979  bool isValid() const { return OpaqueValue != nullptr; }
980  void clear() { OpaqueValue = nullptr; }
981 
982  void unbind(CodeGenFunction &CGF) {
983  assert(OpaqueValue && "no data to unbind!");
984 
985  if (BoundLValue) {
986  CGF.OpaqueLValues.erase(OpaqueValue);
987  } else {
988  CGF.OpaqueRValues.erase(OpaqueValue);
989  CGF.unprotectFromPeepholes(Protection);
990  }
991  }
992  };
993 
994  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
996  CodeGenFunction &CGF;
998 
999  public:
1000  static bool shouldBindAsLValue(const Expr *expr) {
1001  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1002  }
1003 
1004  /// Build the opaque value mapping for the given conditional
1005  /// operator if it's the GNU ?: extension. This is a common
1006  /// enough pattern that the convenience operator is really
1007  /// helpful.
1008  ///
1009  OpaqueValueMapping(CodeGenFunction &CGF,
1010  const AbstractConditionalOperator *op) : CGF(CGF) {
1011  if (isa<ConditionalOperator>(op))
1012  // Leave Data empty.
1013  return;
1014 
1015  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1016  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1017  e->getCommon());
1018  }
1019 
1020  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1021  /// expression is set to the expression the OVE represents.
1022  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1023  : CGF(CGF) {
1024  if (OV) {
1025  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1026  "for OVE with no source expression");
1027  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1028  }
1029  }
1030 
1031  OpaqueValueMapping(CodeGenFunction &CGF,
1032  const OpaqueValueExpr *opaqueValue,
1033  LValue lvalue)
1034  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1035  }
1036 
1037  OpaqueValueMapping(CodeGenFunction &CGF,
1038  const OpaqueValueExpr *opaqueValue,
1039  RValue rvalue)
1040  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1041  }
1042 
1043  void pop() {
1044  Data.unbind(CGF);
1045  Data.clear();
1046  }
1047 
1049  if (Data.isValid()) Data.unbind(CGF);
1050  }
1051  };
1052 
1053 private:
1054  CGDebugInfo *DebugInfo;
1055  bool DisableDebugInfo;
1056 
1057  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1058  /// calling llvm.stacksave for multiple VLAs in the same scope.
1059  bool DidCallStackSave;
1060 
1061  /// IndirectBranch - The first time an indirect goto is seen we create a block
1062  /// with an indirect branch. Every time we see the address of a label taken,
1063  /// we add the label to the indirect goto. Every subsequent indirect goto is
1064  /// codegen'd as a jump to the IndirectBranch's basic block.
1065  llvm::IndirectBrInst *IndirectBranch;
1066 
1067  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1068  /// decls.
1069  DeclMapTy LocalDeclMap;
1070 
1071  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1072  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1073  /// parameter.
1074  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1075  SizeArguments;
1076 
1077  /// Track escaped local variables with auto storage. Used during SEH
1078  /// outlining to produce a call to llvm.localescape.
1079  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1080 
1081  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1082  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1083 
1084  // BreakContinueStack - This keeps track of where break and continue
1085  // statements should jump to.
1086  struct BreakContinue {
1087  BreakContinue(JumpDest Break, JumpDest Continue)
1088  : BreakBlock(Break), ContinueBlock(Continue) {}
1089 
1090  JumpDest BreakBlock;
1091  JumpDest ContinueBlock;
1092  };
1093  SmallVector<BreakContinue, 8> BreakContinueStack;
1094 
1095  /// Handles cancellation exit points in OpenMP-related constructs.
1096  class OpenMPCancelExitStack {
1097  /// Tracks cancellation exit point and join point for cancel-related exit
1098  /// and normal exit.
1099  struct CancelExit {
1100  CancelExit() = default;
1101  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1102  JumpDest ContBlock)
1103  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1105  /// true if the exit block has been emitted already by the special
1106  /// emitExit() call, false if the default codegen is used.
1107  bool HasBeenEmitted = false;
1108  JumpDest ExitBlock;
1109  JumpDest ContBlock;
1110  };
1111 
1113 
1114  public:
1115  OpenMPCancelExitStack() : Stack(1) {}
1116  ~OpenMPCancelExitStack() = default;
1117  /// Fetches the exit block for the current OpenMP construct.
1118  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1119  /// Emits exit block with special codegen procedure specific for the related
1120  /// OpenMP construct + emits code for normal construct cleanup.
1121  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1122  const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1123  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1124  assert(CGF.getOMPCancelDestination(Kind).isValid());
1125  assert(CGF.HaveInsertPoint());
1126  assert(!Stack.back().HasBeenEmitted);
1127  auto IP = CGF.Builder.saveAndClearIP();
1128  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1129  CodeGen(CGF);
1130  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1131  CGF.Builder.restoreIP(IP);
1132  Stack.back().HasBeenEmitted = true;
1133  }
1134  CodeGen(CGF);
1135  }
1136  /// Enter the cancel supporting \a Kind construct.
1137  /// \param Kind OpenMP directive that supports cancel constructs.
1138  /// \param HasCancel true, if the construct has inner cancel directive,
1139  /// false otherwise.
1140  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1141  Stack.push_back({Kind,
1142  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1143  : JumpDest(),
1144  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1145  : JumpDest()});
1146  }
1147  /// Emits default exit point for the cancel construct (if the special one
1148  /// has not be used) + join point for cancel/normal exits.
1149  void exit(CodeGenFunction &CGF) {
1150  if (getExitBlock().isValid()) {
1151  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1152  bool HaveIP = CGF.HaveInsertPoint();
1153  if (!Stack.back().HasBeenEmitted) {
1154  if (HaveIP)
1155  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1156  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1157  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1158  }
1159  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1160  if (!HaveIP) {
1161  CGF.Builder.CreateUnreachable();
1162  CGF.Builder.ClearInsertionPoint();
1163  }
1164  }
1165  Stack.pop_back();
1166  }
1167  };
1168  OpenMPCancelExitStack OMPCancelStack;
1169 
1170  CodeGenPGO PGO;
1171 
1172  /// Calculate branch weights appropriate for PGO data
1173  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1174  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1175  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1176  uint64_t LoopCount);
1177 
1178 public:
1179  /// Increment the profiler's counter for the given statement by \p StepV.
1180  /// If \p StepV is null, the default increment is 1.
1181  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1183  PGO.emitCounterIncrement(Builder, S, StepV);
1184  PGO.setCurrentStmt(S);
1185  }
1186 
1187  /// Get the profiler's count for the given statement.
1188  uint64_t getProfileCount(const Stmt *S) {
1189  Optional<uint64_t> Count = PGO.getStmtCount(S);
1190  if (!Count.hasValue())
1191  return 0;
1192  return *Count;
1193  }
1194 
1195  /// Set the profiler's current count.
1196  void setCurrentProfileCount(uint64_t Count) {
1197  PGO.setCurrentRegionCount(Count);
1198  }
1199 
1200  /// Get the profiler's current count. This is generally the count for the most
1201  /// recently incremented counter.
1203  return PGO.getCurrentRegionCount();
1204  }
1205 
1206 private:
1207 
1208  /// SwitchInsn - This is nearest current switch instruction. It is null if
1209  /// current context is not in a switch.
1210  llvm::SwitchInst *SwitchInsn;
1211  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1212  SmallVector<uint64_t, 16> *SwitchWeights;
1213 
1214  /// CaseRangeBlock - This block holds if condition check for last case
1215  /// statement range in current switch instruction.
1216  llvm::BasicBlock *CaseRangeBlock;
1217 
1218  /// OpaqueLValues - Keeps track of the current set of opaque value
1219  /// expressions.
1220  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1221  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1222 
1223  // VLASizeMap - This keeps track of the associated size for each VLA type.
1224  // We track this by the size expression rather than the type itself because
1225  // in certain situations, like a const qualifier applied to an VLA typedef,
1226  // multiple VLA types can share the same size expression.
1227  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1228  // enter/leave scopes.
1229  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1230 
1231  /// A block containing a single 'unreachable' instruction. Created
1232  /// lazily by getUnreachableBlock().
1233  llvm::BasicBlock *UnreachableBlock;
1234 
1235  /// Counts of the number return expressions in the function.
1236  unsigned NumReturnExprs;
1237 
1238  /// Count the number of simple (constant) return expressions in the function.
1239  unsigned NumSimpleReturnExprs;
1240 
1241  /// The last regular (non-return) debug location (breakpoint) in the function.
1242  SourceLocation LastStopPoint;
1243 
1244 public:
1245  /// A scope within which we are constructing the fields of an object which
1246  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1247  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1249  public:
1250  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1251  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1252  CGF.CXXDefaultInitExprThis = This;
1253  }
1255  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1256  }
1257 
1258  private:
1259  CodeGenFunction &CGF;
1260  Address OldCXXDefaultInitExprThis;
1261  };
1262 
1263  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1264  /// is overridden to be the object under construction.
1266  public:
1267  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1268  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1269  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1270  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1271  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1272  }
1274  CGF.CXXThisValue = OldCXXThisValue;
1275  CGF.CXXThisAlignment = OldCXXThisAlignment;
1276  }
1277 
1278  public:
1279  CodeGenFunction &CGF;
1282  };
1283 
1284  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1285  /// current loop index is overridden.
1287  public:
1288  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1289  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1290  CGF.ArrayInitIndex = Index;
1291  }
1293  CGF.ArrayInitIndex = OldArrayInitIndex;
1294  }
1295 
1296  private:
1297  CodeGenFunction &CGF;
1298  llvm::Value *OldArrayInitIndex;
1299  };
1300 
1302  public:
1304  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1305  OldCurCodeDecl(CGF.CurCodeDecl),
1306  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1307  OldCXXABIThisValue(CGF.CXXABIThisValue),
1308  OldCXXThisValue(CGF.CXXThisValue),
1309  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1310  OldCXXThisAlignment(CGF.CXXThisAlignment),
1311  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1312  OldCXXInheritedCtorInitExprArgs(
1313  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1314  CGF.CurGD = GD;
1315  CGF.CurFuncDecl = CGF.CurCodeDecl =
1316  cast<CXXConstructorDecl>(GD.getDecl());
1317  CGF.CXXABIThisDecl = nullptr;
1318  CGF.CXXABIThisValue = nullptr;
1319  CGF.CXXThisValue = nullptr;
1320  CGF.CXXABIThisAlignment = CharUnits();
1321  CGF.CXXThisAlignment = CharUnits();
1322  CGF.ReturnValue = Address::invalid();
1323  CGF.FnRetTy = QualType();
1324  CGF.CXXInheritedCtorInitExprArgs.clear();
1325  }
1327  CGF.CurGD = OldCurGD;
1328  CGF.CurFuncDecl = OldCurFuncDecl;
1329  CGF.CurCodeDecl = OldCurCodeDecl;
1330  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1331  CGF.CXXABIThisValue = OldCXXABIThisValue;
1332  CGF.CXXThisValue = OldCXXThisValue;
1333  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1334  CGF.CXXThisAlignment = OldCXXThisAlignment;
1335  CGF.ReturnValue = OldReturnValue;
1336  CGF.FnRetTy = OldFnRetTy;
1337  CGF.CXXInheritedCtorInitExprArgs =
1338  std::move(OldCXXInheritedCtorInitExprArgs);
1339  }
1340 
1341  private:
1342  CodeGenFunction &CGF;
1343  GlobalDecl OldCurGD;
1344  const Decl *OldCurFuncDecl;
1345  const Decl *OldCurCodeDecl;
1346  ImplicitParamDecl *OldCXXABIThisDecl;
1347  llvm::Value *OldCXXABIThisValue;
1348  llvm::Value *OldCXXThisValue;
1349  CharUnits OldCXXABIThisAlignment;
1350  CharUnits OldCXXThisAlignment;
1351  Address OldReturnValue;
1352  QualType OldFnRetTy;
1353  CallArgList OldCXXInheritedCtorInitExprArgs;
1354  };
1355 
1356 private:
1357  /// CXXThisDecl - When generating code for a C++ member function,
1358  /// this will hold the implicit 'this' declaration.
1359  ImplicitParamDecl *CXXABIThisDecl;
1360  llvm::Value *CXXABIThisValue;
1361  llvm::Value *CXXThisValue;
1362  CharUnits CXXABIThisAlignment;
1363  CharUnits CXXThisAlignment;
1364 
1365  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1366  /// this expression.
1367  Address CXXDefaultInitExprThis = Address::invalid();
1368 
1369  /// The current array initialization index when evaluating an
1370  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1371  llvm::Value *ArrayInitIndex = nullptr;
1372 
1373  /// The values of function arguments to use when evaluating
1374  /// CXXInheritedCtorInitExprs within this context.
1375  CallArgList CXXInheritedCtorInitExprArgs;
1376 
1377  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1378  /// destructor, this will hold the implicit argument (e.g. VTT).
1379  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1380  llvm::Value *CXXStructorImplicitParamValue;
1381 
1382  /// OutermostConditional - Points to the outermost active
1383  /// conditional control. This is used so that we know if a
1384  /// temporary should be destroyed conditionally.
1385  ConditionalEvaluation *OutermostConditional;
1386 
1387  /// The current lexical scope.
1388  LexicalScope *CurLexicalScope;
1389 
1390  /// The current source location that should be used for exception
1391  /// handling code.
1392  SourceLocation CurEHLocation;
1393 
1394  /// BlockByrefInfos - For each __block variable, contains
1395  /// information about the layout of the variable.
1396  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1397 
1398  /// Used by -fsanitize=nullability-return to determine whether the return
1399  /// value can be checked.
1400  llvm::Value *RetValNullabilityPrecondition = nullptr;
1401 
1402  /// Check if -fsanitize=nullability-return instrumentation is required for
1403  /// this function.
1404  bool requiresReturnValueNullabilityCheck() const {
1405  return RetValNullabilityPrecondition;
1406  }
1407 
1408  /// Used to store precise source locations for return statements by the
1409  /// runtime return value checks.
1410  Address ReturnLocation = Address::invalid();
1411 
1412  /// Check if the return value of this function requires sanitization.
1413  bool requiresReturnValueCheck() const {
1414  return requiresReturnValueNullabilityCheck() ||
1415  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1416  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1417  }
1418 
1419  llvm::BasicBlock *TerminateLandingPad;
1420  llvm::BasicBlock *TerminateHandler;
1421  llvm::BasicBlock *TrapBB;
1422 
1423  /// True if we need emit the life-time markers.
1424  const bool ShouldEmitLifetimeMarkers;
1425 
1426  /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1427  /// the function metadata.
1428  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1429  llvm::Function *Fn);
1430 
1431 public:
1432  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1433  ~CodeGenFunction();
1434 
1435  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1436  ASTContext &getContext() const { return CGM.getContext(); }
1438  if (DisableDebugInfo)
1439  return nullptr;
1440  return DebugInfo;
1441  }
1442  void disableDebugInfo() { DisableDebugInfo = true; }
1443  void enableDebugInfo() { DisableDebugInfo = false; }
1444 
1446  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1447  }
1448 
1449  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1450 
1451  /// Returns a pointer to the function's exception object and selector slot,
1452  /// which is assigned in every landing pad.
1453  Address getExceptionSlot();
1454  Address getEHSelectorSlot();
1455 
1456  /// Returns the contents of the function's exception object and selector
1457  /// slots.
1458  llvm::Value *getExceptionFromSlot();
1459  llvm::Value *getSelectorFromSlot();
1460 
1461  Address getNormalCleanupDestSlot();
1462 
1463  llvm::BasicBlock *getUnreachableBlock() {
1464  if (!UnreachableBlock) {
1465  UnreachableBlock = createBasicBlock("unreachable");
1466  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1467  }
1468  return UnreachableBlock;
1469  }
1470 
1471  llvm::BasicBlock *getInvokeDest() {
1472  if (!EHStack.requiresLandingPad()) return nullptr;
1473  return getInvokeDestImpl();
1474  }
1475 
1476  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1477 
1478  const TargetInfo &getTarget() const { return Target; }
1479  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1481  return CGM.getTargetCodeGenInfo();
1482  }
1483 
1484  //===--------------------------------------------------------------------===//
1485  // Cleanups
1486  //===--------------------------------------------------------------------===//
1487 
1488  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1489 
1490  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1491  Address arrayEndPointer,
1492  QualType elementType,
1493  CharUnits elementAlignment,
1494  Destroyer *destroyer);
1495  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1496  llvm::Value *arrayEnd,
1497  QualType elementType,
1498  CharUnits elementAlignment,
1499  Destroyer *destroyer);
1500 
1501  void pushDestroy(QualType::DestructionKind dtorKind,
1502  Address addr, QualType type);
1503  void pushEHDestroy(QualType::DestructionKind dtorKind,
1504  Address addr, QualType type);
1505  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1506  Destroyer *destroyer, bool useEHCleanupForArray);
1507  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1508  QualType type, Destroyer *destroyer,
1509  bool useEHCleanupForArray);
1510  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1511  llvm::Value *CompletePtr,
1512  QualType ElementType);
1513  void pushStackRestore(CleanupKind kind, Address SPMem);
1514  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1515  bool useEHCleanupForArray);
1516  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1517  Destroyer *destroyer,
1518  bool useEHCleanupForArray,
1519  const VarDecl *VD);
1520  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1521  QualType elementType, CharUnits elementAlign,
1522  Destroyer *destroyer,
1523  bool checkZeroLength, bool useEHCleanup);
1524 
1525  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1526 
1527  /// Determines whether an EH cleanup is required to destroy a type
1528  /// with the given destruction kind.
1530  switch (kind) {
1531  case QualType::DK_none:
1532  return false;
1533  case QualType::DK_cxx_destructor:
1534  case QualType::DK_objc_weak_lifetime:
1535  return getLangOpts().Exceptions;
1536  case QualType::DK_objc_strong_lifetime:
1537  return getLangOpts().Exceptions &&
1538  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1539  }
1540  llvm_unreachable("bad destruction kind");
1541  }
1542 
1544  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1545  }
1546 
1547  //===--------------------------------------------------------------------===//
1548  // Objective-C
1549  //===--------------------------------------------------------------------===//
1550 
1551  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1552 
1553  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1554 
1555  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1556  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1557  const ObjCPropertyImplDecl *PID);
1558  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1559  const ObjCPropertyImplDecl *propImpl,
1560  const ObjCMethodDecl *GetterMothodDecl,
1561  llvm::Constant *AtomicHelperFn);
1562 
1563  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1564  ObjCMethodDecl *MD, bool ctor);
1565 
1566  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1567  /// for the given property.
1568  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1569  const ObjCPropertyImplDecl *PID);
1570  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1571  const ObjCPropertyImplDecl *propImpl,
1572  llvm::Constant *AtomicHelperFn);
1573 
1574  //===--------------------------------------------------------------------===//
1575  // Block Bits
1576  //===--------------------------------------------------------------------===//
1577 
1578  /// Emit block literal.
1579  /// \return an LLVM value which is a pointer to a struct which contains
1580  /// information about the block, including the block invoke function, the
1581  /// captured variables, etc.
1582  /// \param InvokeF will contain the block invoke function if it is not
1583  /// nullptr.
1584  llvm::Value *EmitBlockLiteral(const BlockExpr *,
1585  llvm::Function **InvokeF = nullptr);
1586  static void destroyBlockInfos(CGBlockInfo *info);
1587 
1588  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1589  const CGBlockInfo &Info,
1590  const DeclMapTy &ldm,
1591  bool IsLambdaConversionToBlock,
1592  bool BuildGlobalBlock);
1593 
1594  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1595  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1596  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1597  const ObjCPropertyImplDecl *PID);
1598  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1599  const ObjCPropertyImplDecl *PID);
1600  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1601 
1602  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1603 
1604  class AutoVarEmission;
1605 
1606  void emitByrefStructureInit(const AutoVarEmission &emission);
1607  void enterByrefCleanup(const AutoVarEmission &emission);
1608 
1609  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1610  llvm::Value *ptr);
1611 
1612  Address LoadBlockStruct();
1613  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1614 
1615  /// BuildBlockByrefAddress - Computes the location of the
1616  /// data in a variable which is declared as __block.
1617  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1618  bool followForward = true);
1619  Address emitBlockByrefAddress(Address baseAddr,
1620  const BlockByrefInfo &info,
1621  bool followForward,
1622  const llvm::Twine &name);
1623 
1624  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1625 
1626  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1627 
1628  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1629  const CGFunctionInfo &FnInfo);
1630  /// \brief Emit code for the start of a function.
1631  /// \param Loc The location to be associated with the function.
1632  /// \param StartLoc The location of the function body.
1633  void StartFunction(GlobalDecl GD,
1634  QualType RetTy,
1635  llvm::Function *Fn,
1636  const CGFunctionInfo &FnInfo,
1637  const FunctionArgList &Args,
1639  SourceLocation StartLoc = SourceLocation());
1640 
1641  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1642 
1643  void EmitConstructorBody(FunctionArgList &Args);
1644  void EmitDestructorBody(FunctionArgList &Args);
1645  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1646  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1647  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1648 
1649  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1650  CallArgList &CallArgs);
1651  void EmitLambdaBlockInvokeBody();
1652  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1653  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1654  void EmitAsanPrologueOrEpilogue(bool Prologue);
1655 
1656  /// \brief Emit the unified return block, trying to avoid its emission when
1657  /// possible.
1658  /// \return The debug location of the user written return statement if the
1659  /// return block is is avoided.
1660  llvm::DebugLoc EmitReturnBlock();
1661 
1662  /// FinishFunction - Complete IR generation of the current function. It is
1663  /// legal to call this function even if there is no current insertion point.
1664  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1665 
1666  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1667  const CGFunctionInfo &FnInfo);
1668 
1669  void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1670  const ThunkInfo *Thunk);
1671 
1672  void FinishThunk();
1673 
1674  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1675  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1676  llvm::Value *Callee);
1677 
1678  /// Generate a thunk for the given method.
1679  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1680  GlobalDecl GD, const ThunkInfo &Thunk);
1681 
1682  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1683  const CGFunctionInfo &FnInfo,
1684  GlobalDecl GD, const ThunkInfo &Thunk);
1685 
1686  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1687  FunctionArgList &Args);
1688 
1689  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1690 
1691  /// Struct with all informations about dynamic [sub]class needed to set vptr.
1692  struct VPtr {
1697  };
1698 
1699  /// Initialize the vtable pointer of the given subobject.
1700  void InitializeVTablePointer(const VPtr &vptr);
1701 
1703 
1704  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1705  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1706 
1707  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1708  CharUnits OffsetFromNearestVBase,
1709  bool BaseIsNonVirtualPrimaryBase,
1710  const CXXRecordDecl *VTableClass,
1711  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1712 
1713  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1714 
1715  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1716  /// to by This.
1717  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1718  const CXXRecordDecl *VTableClass);
1719 
1726  };
1727 
1728  /// \brief Derived is the presumed address of an object of type T after a
1729  /// cast. If T is a polymorphic class type, emit a check that the virtual
1730  /// table for Derived belongs to a class derived from T.
1731  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1732  bool MayBeNull, CFITypeCheckKind TCK,
1733  SourceLocation Loc);
1734 
1735  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1736  /// If vptr CFI is enabled, emit a check that VTable is valid.
1737  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1738  CFITypeCheckKind TCK, SourceLocation Loc);
1739 
1740  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1741  /// RD using llvm.type.test.
1742  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1743  CFITypeCheckKind TCK, SourceLocation Loc);
1744 
1745  /// If whole-program virtual table optimization is enabled, emit an assumption
1746  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1747  /// enabled, emit a check that VTable is a member of RD's type identifier.
1748  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1749  llvm::Value *VTable, SourceLocation Loc);
1750 
1751  /// Returns whether we should perform a type checked load when loading a
1752  /// virtual function for virtual calls to members of RD. This is generally
1753  /// true when both vcall CFI and whole-program-vtables are enabled.
1754  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1755 
1756  /// Emit a type checked load from the given vtable.
1757  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1758  uint64_t VTableByteOffset);
1759 
1760  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1761  /// given phase of destruction for a destructor. The end result
1762  /// should call destructors on members and base classes in reverse
1763  /// order of their construction.
1764  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1765 
1766  /// ShouldInstrumentFunction - Return true if the current function should be
1767  /// instrumented with __cyg_profile_func_* calls
1768  bool ShouldInstrumentFunction();
1769 
1770  /// ShouldXRayInstrument - Return true if the current function should be
1771  /// instrumented with XRay nop sleds.
1772  bool ShouldXRayInstrumentFunction() const;
1773 
1774  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1775  /// XRay custom event handling calls.
1776  bool AlwaysEmitXRayCustomEvents() const;
1777 
1778  /// Encode an address into a form suitable for use in a function prologue.
1779  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1780  llvm::Constant *Addr);
1781 
1782  /// Decode an address used in a function prologue, encoded by \c
1783  /// EncodeAddrForUseInPrologue.
1784  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1785  llvm::Value *EncodedAddr);
1786 
1787  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1788  /// arguments for the given function. This is also responsible for naming the
1789  /// LLVM function arguments.
1790  void EmitFunctionProlog(const CGFunctionInfo &FI,
1791  llvm::Function *Fn,
1792  const FunctionArgList &Args);
1793 
1794  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1795  /// given temporary.
1796  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1797  SourceLocation EndLoc);
1798 
1799  /// Emit a test that checks if the return value \p RV is nonnull.
1800  void EmitReturnValueCheck(llvm::Value *RV);
1801 
1802  /// EmitStartEHSpec - Emit the start of the exception spec.
1803  void EmitStartEHSpec(const Decl *D);
1804 
1805  /// EmitEndEHSpec - Emit the end of the exception spec.
1806  void EmitEndEHSpec(const Decl *D);
1807 
1808  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1809  llvm::BasicBlock *getTerminateLandingPad();
1810 
1811  /// getTerminateHandler - Return a handler (not a landing pad, just
1812  /// a catch handler) that just calls terminate. This is used when
1813  /// a terminate scope encloses a try.
1814  llvm::BasicBlock *getTerminateHandler();
1815 
1816  llvm::Type *ConvertTypeForMem(QualType T);
1817  llvm::Type *ConvertType(QualType T);
1818  llvm::Type *ConvertType(const TypeDecl *T) {
1819  return ConvertType(getContext().getTypeDeclType(T));
1820  }
1821 
1822  /// LoadObjCSelf - Load the value of self. This function is only valid while
1823  /// generating code for an Objective-C method.
1824  llvm::Value *LoadObjCSelf();
1825 
1826  /// TypeOfSelfObject - Return type of object that this self represents.
1827  QualType TypeOfSelfObject();
1828 
1829  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1830  static TypeEvaluationKind getEvaluationKind(QualType T);
1831 
1833  return getEvaluationKind(T) == TEK_Scalar;
1834  }
1835 
1837  return getEvaluationKind(T) == TEK_Aggregate;
1838  }
1839 
1840  /// createBasicBlock - Create an LLVM basic block.
1841  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1842  llvm::Function *parent = nullptr,
1843  llvm::BasicBlock *before = nullptr) {
1844 #ifdef NDEBUG
1845  return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1846 #else
1847  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1848 #endif
1849  }
1850 
1851  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1852  /// label maps to.
1853  JumpDest getJumpDestForLabel(const LabelDecl *S);
1854 
1855  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1856  /// another basic block, simplify it. This assumes that no other code could
1857  /// potentially reference the basic block.
1858  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1859 
1860  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1861  /// adding a fall-through branch from the current insert block if
1862  /// necessary. It is legal to call this function even if there is no current
1863  /// insertion point.
1864  ///
1865  /// IsFinished - If true, indicates that the caller has finished emitting
1866  /// branches to the given block and does not expect to emit code into it. This
1867  /// means the block can be ignored if it is unreachable.
1868  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1869 
1870  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1871  /// near its uses, and leave the insertion point in it.
1872  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1873 
1874  /// EmitBranch - Emit a branch to the specified basic block from the current
1875  /// insert block, taking care to avoid creation of branches from dummy
1876  /// blocks. It is legal to call this function even if there is no current
1877  /// insertion point.
1878  ///
1879  /// This function clears the current insertion point. The caller should follow
1880  /// calls to this function with calls to Emit*Block prior to generation new
1881  /// code.
1882  void EmitBranch(llvm::BasicBlock *Block);
1883 
1884  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1885  /// indicates that the current code being emitted is unreachable.
1886  bool HaveInsertPoint() const {
1887  return Builder.GetInsertBlock() != nullptr;
1888  }
1889 
1890  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1891  /// emitted IR has a place to go. Note that by definition, if this function
1892  /// creates a block then that block is unreachable; callers may do better to
1893  /// detect when no insertion point is defined and simply skip IR generation.
1895  if (!HaveInsertPoint())
1896  EmitBlock(createBasicBlock());
1897  }
1898 
1899  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1900  /// specified stmt yet.
1901  void ErrorUnsupported(const Stmt *S, const char *Type);
1902 
1903  //===--------------------------------------------------------------------===//
1904  // Helpers
1905  //===--------------------------------------------------------------------===//
1906 
1908  AlignmentSource Source = AlignmentSource::Type) {
1909  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1910  CGM.getTBAAAccessInfo(T));
1911  }
1912 
1914  TBAAAccessInfo TBAAInfo) {
1915  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1916  }
1917 
1919  AlignmentSource Source = AlignmentSource::Type) {
1920  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1921  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1922  }
1923 
1925  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1926  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1927  BaseInfo, TBAAInfo);
1928  }
1929 
1930  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1931  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1932  CharUnits getNaturalTypeAlignment(QualType T,
1933  LValueBaseInfo *BaseInfo = nullptr,
1934  TBAAAccessInfo *TBAAInfo = nullptr,
1935  bool forPointeeType = false);
1936  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1937  LValueBaseInfo *BaseInfo = nullptr,
1938  TBAAAccessInfo *TBAAInfo = nullptr);
1939 
1940  Address EmitLoadOfReference(LValue RefLVal,
1941  LValueBaseInfo *PointeeBaseInfo = nullptr,
1942  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1943  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1945  AlignmentSource Source =
1946  AlignmentSource::Type) {
1947  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1948  CGM.getTBAAAccessInfo(RefTy));
1949  return EmitLoadOfReferenceLValue(RefLVal);
1950  }
1951 
1952  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1953  LValueBaseInfo *BaseInfo = nullptr,
1954  TBAAAccessInfo *TBAAInfo = nullptr);
1955  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1956 
1957  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1958  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1959  /// insertion point of the builder. The caller is responsible for setting an
1960  /// appropriate alignment on
1961  /// the alloca.
1962  ///
1963  /// \p ArraySize is the number of array elements to be allocated if it
1964  /// is not nullptr.
1965  ///
1966  /// LangAS::Default is the address space of pointers to local variables and
1967  /// temporaries, as exposed in the source language. In certain
1968  /// configurations, this is not the same as the alloca address space, and a
1969  /// cast is needed to lift the pointer from the alloca AS into
1970  /// LangAS::Default. This can happen when the target uses a restricted
1971  /// address space for the stack but the source language requires
1972  /// LangAS::Default to be a generic address space. The latter condition is
1973  /// common for most programming languages; OpenCL is an exception in that
1974  /// LangAS::Default is the private address space, which naturally maps
1975  /// to the stack.
1976  ///
1977  /// Because the address of a temporary is often exposed to the program in
1978  /// various ways, this function will perform the cast by default. The cast
1979  /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1980  /// more efficient if the caller knows that the address will not be exposed.
1981  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1982  llvm::Value *ArraySize = nullptr);
1983  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1984  const Twine &Name = "tmp",
1985  llvm::Value *ArraySize = nullptr,
1986  bool CastToDefaultAddrSpace = true);
1987 
1988  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1989  /// default ABI alignment of the given LLVM type.
1990  ///
1991  /// IMPORTANT NOTE: This is *not* generally the right alignment for
1992  /// any given AST type that happens to have been lowered to the
1993  /// given IR type. This should only ever be used for function-local,
1994  /// IR-driven manipulations like saving and restoring a value. Do
1995  /// not hand this address off to arbitrary IRGen routines, and especially
1996  /// do not pass it as an argument to a function that might expect a
1997  /// properly ABI-aligned value.
1998  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1999  const Twine &Name = "tmp");
2000 
2001  /// InitTempAlloca - Provide an initial value for the given alloca which
2002  /// will be observable at all locations in the function.
2003  ///
2004  /// The address should be something that was returned from one of
2005  /// the CreateTempAlloca or CreateMemTemp routines, and the
2006  /// initializer must be valid in the entry block (i.e. it must
2007  /// either be a constant or an argument value).
2008  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2009 
2010  /// CreateIRTemp - Create a temporary IR object of the given type, with
2011  /// appropriate alignment. This routine should only be used when an temporary
2012  /// value needs to be stored into an alloca (for example, to avoid explicit
2013  /// PHI construction), but the type is the IR type, not the type appropriate
2014  /// for storing in memory.
2015  ///
2016  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2017  /// ConvertType instead of ConvertTypeForMem.
2018  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2019 
2020  /// CreateMemTemp - Create a temporary memory object of the given type, with
2021  /// appropriate alignment. Cast it to the default address space if
2022  /// \p CastToDefaultAddrSpace is true.
2023  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2024  bool CastToDefaultAddrSpace = true);
2025  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2026  bool CastToDefaultAddrSpace = true);
2027 
2028  /// CreateAggTemp - Create a temporary memory object for the given
2029  /// aggregate type.
2030  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2031  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2032  T.getQualifiers(),
2033  AggValueSlot::IsNotDestructed,
2034  AggValueSlot::DoesNotNeedGCBarriers,
2035  AggValueSlot::IsNotAliased);
2036  }
2037 
2038  /// Emit a cast to void* in the appropriate address space.
2039  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2040 
2041  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2042  /// expression and compare the result against zero, returning an Int1Ty value.
2043  llvm::Value *EvaluateExprAsBool(const Expr *E);
2044 
2045  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2046  void EmitIgnoredExpr(const Expr *E);
2047 
2048  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2049  /// any type. The result is returned as an RValue struct. If this is an
2050  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2051  /// the result should be returned.
2052  ///
2053  /// \param ignoreResult True if the resulting value isn't used.
2054  RValue EmitAnyExpr(const Expr *E,
2055  AggValueSlot aggSlot = AggValueSlot::ignored(),
2056  bool ignoreResult = false);
2057 
2058  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2059  // or the value of the expression, depending on how va_list is defined.
2060  Address EmitVAListRef(const Expr *E);
2061 
2062  /// Emit a "reference" to a __builtin_ms_va_list; this is
2063  /// always the value of the expression, because a __builtin_ms_va_list is a
2064  /// pointer to a char.
2065  Address EmitMSVAListRef(const Expr *E);
2066 
2067  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2068  /// always be accessible even if no aggregate location is provided.
2069  RValue EmitAnyExprToTemp(const Expr *E);
2070 
2071  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2072  /// arbitrary expression into the given memory location.
2073  void EmitAnyExprToMem(const Expr *E, Address Location,
2074  Qualifiers Quals, bool IsInitializer);
2075 
2076  void EmitAnyExprToExn(const Expr *E, Address Addr);
2077 
2078  /// EmitExprAsInit - Emits the code necessary to initialize a
2079  /// location in memory with the given initializer.
2080  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2081  bool capturedByInit);
2082 
2083  /// hasVolatileMember - returns true if aggregate type has a volatile
2084  /// member.
2086  if (const RecordType *RT = T->getAs<RecordType>()) {
2087  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2088  return RD->hasVolatileMember();
2089  }
2090  return false;
2091  }
2092  /// EmitAggregateCopy - Emit an aggregate assignment.
2093  ///
2094  /// The difference to EmitAggregateCopy is that tail padding is not copied.
2095  /// This is required for correctness when assigning non-POD structures in C++.
2096  void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2097  QualType EltTy) {
2098  bool IsVolatile = hasVolatileMember(EltTy);
2099  EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2100  }
2101 
2102  void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2103  QualType DestTy, QualType SrcTy) {
2104  EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2105  /*IsAssignment=*/false);
2106  }
2107 
2108  /// EmitAggregateCopy - Emit an aggregate copy.
2109  ///
2110  /// \param isVolatile - True iff either the source or the destination is
2111  /// volatile.
2112  /// \param isAssignment - If false, allow padding to be copied. This often
2113  /// yields more efficient.
2114  void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2115  QualType EltTy, bool isVolatile=false,
2116  bool isAssignment = false);
2117 
2118  /// GetAddrOfLocalVar - Return the address of a local variable.
2120  auto it = LocalDeclMap.find(VD);
2121  assert(it != LocalDeclMap.end() &&
2122  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2123  return it->second;
2124  }
2125 
2126  /// getOpaqueLValueMapping - Given an opaque value expression (which
2127  /// must be mapped to an l-value), return its mapping.
2129  assert(OpaqueValueMapping::shouldBindAsLValue(e));
2130 
2131  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2132  it = OpaqueLValues.find(e);
2133  assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2134  return it->second;
2135  }
2136 
2137  /// getOpaqueRValueMapping - Given an opaque value expression (which
2138  /// must be mapped to an r-value), return its mapping.
2140  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2141 
2142  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2143  it = OpaqueRValues.find(e);
2144  assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2145  return it->second;
2146  }
2147 
2148  /// Get the index of the current ArrayInitLoopExpr, if any.
2149  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2150 
2151  /// getAccessedFieldNo - Given an encoded value and a result number, return
2152  /// the input field number being accessed.
2153  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2154 
2155  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2156  llvm::BasicBlock *GetIndirectGotoBlock();
2157 
2158  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2159  static bool IsWrappedCXXThis(const Expr *E);
2160 
2161  /// EmitNullInitialization - Generate code to set a value of the given type to
2162  /// null, If the type contains data member pointers, they will be initialized
2163  /// to -1 in accordance with the Itanium C++ ABI.
2164  void EmitNullInitialization(Address DestPtr, QualType Ty);
2165 
2166  /// Emits a call to an LLVM variable-argument intrinsic, either
2167  /// \c llvm.va_start or \c llvm.va_end.
2168  /// \param ArgValue A reference to the \c va_list as emitted by either
2169  /// \c EmitVAListRef or \c EmitMSVAListRef.
2170  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2171  /// calls \c llvm.va_end.
2172  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2173 
2174  /// Generate code to get an argument from the passed in pointer
2175  /// and update it accordingly.
2176  /// \param VE The \c VAArgExpr for which to generate code.
2177  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2178  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2179  /// \returns A pointer to the argument.
2180  // FIXME: We should be able to get rid of this method and use the va_arg
2181  // instruction in LLVM instead once it works well enough.
2182  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2183 
2184  /// emitArrayLength - Compute the length of an array, even if it's a
2185  /// VLA, and drill down to the base element type.
2186  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2187  QualType &baseType,
2188  Address &addr);
2189 
2190  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2191  /// the given variably-modified type and store them in the VLASizeMap.
2192  ///
2193  /// This function can be called with a null (unreachable) insert point.
2194  void EmitVariablyModifiedType(QualType Ty);
2195 
2196  /// getVLASize - Returns an LLVM value that corresponds to the size,
2197  /// in non-variably-sized elements, of a variable length array type,
2198  /// plus that largest non-variably-sized element type. Assumes that
2199  /// the type has already been emitted with EmitVariablyModifiedType.
2200  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2201  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2202 
2203  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2204  /// generating code for an C++ member function.
2206  assert(CXXThisValue && "no 'this' value for this function");
2207  return CXXThisValue;
2208  }
2209  Address LoadCXXThisAddress();
2210 
2211  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2212  /// virtual bases.
2213  // FIXME: Every place that calls LoadCXXVTT is something
2214  // that needs to be abstracted properly.
2216  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2217  return CXXStructorImplicitParamValue;
2218  }
2219 
2220  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2221  /// complete class to the given direct base.
2222  Address
2223  GetAddressOfDirectBaseInCompleteClass(Address Value,
2224  const CXXRecordDecl *Derived,
2225  const CXXRecordDecl *Base,
2226  bool BaseIsVirtual);
2227 
2228  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2229 
2230  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2231  /// load of 'this' and returns address of the base class.
2232  Address GetAddressOfBaseClass(Address Value,
2233  const CXXRecordDecl *Derived,
2236  bool NullCheckValue, SourceLocation Loc);
2237 
2238  Address GetAddressOfDerivedClass(Address Value,
2239  const CXXRecordDecl *Derived,
2242  bool NullCheckValue);
2243 
2244  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2245  /// base constructor/destructor with virtual bases.
2246  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2247  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2248  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2249  bool Delegating);
2250 
2251  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2252  CXXCtorType CtorType,
2253  const FunctionArgList &Args,
2254  SourceLocation Loc);
2255  // It's important not to confuse this and the previous function. Delegating
2256  // constructors are the C++0x feature. The constructor delegate optimization
2257  // is used to reduce duplication in the base and complete consturctors where
2258  // they are substantially the same.
2259  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2260  const FunctionArgList &Args);
2261 
2262  /// Emit a call to an inheriting constructor (that is, one that invokes a
2263  /// constructor inherited from a base class) by inlining its definition. This
2264  /// is necessary if the ABI does not support forwarding the arguments to the
2265  /// base class constructor (because they're variadic or similar).
2266  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2267  CXXCtorType CtorType,
2268  bool ForVirtualBase,
2269  bool Delegating,
2270  CallArgList &Args);
2271 
2272  /// Emit a call to a constructor inherited from a base class, passing the
2273  /// current constructor's arguments along unmodified (without even making
2274  /// a copy).
2275  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2276  bool ForVirtualBase, Address This,
2277  bool InheritedFromVBase,
2278  const CXXInheritedCtorInitExpr *E);
2279 
2280  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2281  bool ForVirtualBase, bool Delegating,
2282  Address This, const CXXConstructExpr *E);
2283 
2284  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2285  bool ForVirtualBase, bool Delegating,
2286  Address This, CallArgList &Args);
2287 
2288  /// Emit assumption load for all bases. Requires to be be called only on
2289  /// most-derived class and not under construction of the object.
2290  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2291 
2292  /// Emit assumption that vptr load == global vtable.
2293  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2294 
2295  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2296  Address This, Address Src,
2297  const CXXConstructExpr *E);
2298 
2299  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2300  const ArrayType *ArrayTy,
2301  Address ArrayPtr,
2302  const CXXConstructExpr *E,
2303  bool ZeroInitialization = false);
2304 
2305  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2306  llvm::Value *NumElements,
2307  Address ArrayPtr,
2308  const CXXConstructExpr *E,
2309  bool ZeroInitialization = false);
2310 
2311  static Destroyer destroyCXXObject;
2312 
2313  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2314  bool ForVirtualBase, bool Delegating,
2315  Address This);
2316 
2317  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2318  llvm::Type *ElementTy, Address NewPtr,
2319  llvm::Value *NumElements,
2320  llvm::Value *AllocSizeWithoutCookie);
2321 
2322  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2323  Address Ptr);
2324 
2325  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2326  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2327 
2328  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2329  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2330 
2331  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2332  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2333  CharUnits CookieSize = CharUnits());
2334 
2335  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2336  const Expr *Arg, bool IsDelete);
2337 
2338  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2339  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2340  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2341 
2342  /// \brief Situations in which we might emit a check for the suitability of a
2343  /// pointer or glvalue.
2345  /// Checking the operand of a load. Must be suitably sized and aligned.
2347  /// Checking the destination of a store. Must be suitably sized and aligned.
2349  /// Checking the bound value in a reference binding. Must be suitably sized
2350  /// and aligned, but is not required to refer to an object (until the
2351  /// reference is used), per core issue 453.
2353  /// Checking the object expression in a non-static data member access. Must
2354  /// be an object within its lifetime.
2356  /// Checking the 'this' pointer for a call to a non-static member function.
2357  /// Must be an object within its lifetime.
2359  /// Checking the 'this' pointer for a constructor call.
2361  /// Checking the operand of a static_cast to a derived pointer type. Must be
2362  /// null or an object within its lifetime.
2364  /// Checking the operand of a static_cast to a derived reference type. Must
2365  /// be an object within its lifetime.
2367  /// Checking the operand of a cast to a base object. Must be suitably sized
2368  /// and aligned.
2370  /// Checking the operand of a cast to a virtual base object. Must be an
2371  /// object within its lifetime.
2373  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2374  TCK_NonnullAssign
2375  };
2376 
2377  /// Determine whether the pointer type check \p TCK permits null pointers.
2378  static bool isNullPointerAllowed(TypeCheckKind TCK);
2379 
2380  /// Determine whether the pointer type check \p TCK requires a vptr check.
2381  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2382 
2383  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2384  /// calls to EmitTypeCheck can be skipped.
2385  bool sanitizePerformTypeCheck() const;
2386 
2387  /// \brief Emit a check that \p V is the address of storage of the
2388  /// appropriate size and alignment for an object of type \p Type.
2389  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2390  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2391  SanitizerSet SkippedChecks = SanitizerSet());
2392 
2393  /// \brief Emit a check that \p Base points into an array object, which
2394  /// we can access at index \p Index. \p Accessed should be \c false if we
2395  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2396  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2397  QualType IndexType, bool Accessed);
2398 
2399  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2400  bool isInc, bool isPre);
2401  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2402  bool isInc, bool isPre);
2403 
2404  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2405  llvm::Value *OffsetValue = nullptr) {
2406  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2407  OffsetValue);
2408  }
2409 
2410  /// Converts Location to a DebugLoc, if debug information is enabled.
2411  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2412 
2413 
2414  //===--------------------------------------------------------------------===//
2415  // Declaration Emission
2416  //===--------------------------------------------------------------------===//
2417 
2418  /// EmitDecl - Emit a declaration.
2419  ///
2420  /// This function can be called with a null (unreachable) insert point.
2421  void EmitDecl(const Decl &D);
2422 
2423  /// EmitVarDecl - Emit a local variable declaration.
2424  ///
2425  /// This function can be called with a null (unreachable) insert point.
2426  void EmitVarDecl(const VarDecl &D);
2427 
2428  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2429  bool capturedByInit);
2430 
2431  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2432  llvm::Value *Address);
2433 
2434  /// \brief Determine whether the given initializer is trivial in the sense
2435  /// that it requires no code to be generated.
2436  bool isTrivialInitializer(const Expr *Init);
2437 
2438  /// EmitAutoVarDecl - Emit an auto variable declaration.
2439  ///
2440  /// This function can be called with a null (unreachable) insert point.
2441  void EmitAutoVarDecl(const VarDecl &D);
2442 
2444  friend class CodeGenFunction;
2445 
2446  const VarDecl *Variable;
2447 
2448  /// The address of the alloca. Invalid if the variable was emitted
2449  /// as a global constant.
2450  Address Addr;
2451 
2452  llvm::Value *NRVOFlag;
2453 
2454  /// True if the variable is a __block variable.
2455  bool IsByRef;
2456 
2457  /// True if the variable is of aggregate type and has a constant
2458  /// initializer.
2459  bool IsConstantAggregate;
2460 
2461  /// Non-null if we should use lifetime annotations.
2462  llvm::Value *SizeForLifetimeMarkers;
2463 
2464  struct Invalid {};
2465  AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2466 
2467  AutoVarEmission(const VarDecl &variable)
2468  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2469  IsByRef(false), IsConstantAggregate(false),
2470  SizeForLifetimeMarkers(nullptr) {}
2471 
2472  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2473 
2474  public:
2475  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2476 
2477  bool useLifetimeMarkers() const {
2478  return SizeForLifetimeMarkers != nullptr;
2479  }
2481  assert(useLifetimeMarkers());
2482  return SizeForLifetimeMarkers;
2483  }
2484 
2485  /// Returns the raw, allocated address, which is not necessarily
2486  /// the address of the object itself.
2488  return Addr;
2489  }
2490 
2491  /// Returns the address of the object within this declaration.
2492  /// Note that this does not chase the forwarding pointer for
2493  /// __block decls.
2494  Address getObjectAddress(CodeGenFunction &CGF) const {
2495  if (!IsByRef) return Addr;
2496 
2497  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2498  }
2499  };
2500  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2501  void EmitAutoVarInit(const AutoVarEmission &emission);
2502  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2503  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2504  QualType::DestructionKind dtorKind);
2505 
2506  void EmitStaticVarDecl(const VarDecl &D,
2507  llvm::GlobalValue::LinkageTypes Linkage);
2508 
2509  class ParamValue {
2510  llvm::Value *Value;
2511  unsigned Alignment;
2512  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2513  public:
2515  return ParamValue(value, 0);
2516  }
2518  assert(!addr.getAlignment().isZero());
2519  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2520  }
2521 
2522  bool isIndirect() const { return Alignment != 0; }
2523  llvm::Value *getAnyValue() const { return Value; }
2524 
2526  assert(!isIndirect());
2527  return Value;
2528  }
2529 
2531  assert(isIndirect());
2532  return Address(Value, CharUnits::fromQuantity(Alignment));
2533  }
2534  };
2535 
2536  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2537  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2538 
2539  /// protectFromPeepholes - Protect a value that we're intending to
2540  /// store to the side, but which will probably be used later, from
2541  /// aggressive peepholing optimizations that might delete it.
2542  ///
2543  /// Pass the result to unprotectFromPeepholes to declare that
2544  /// protection is no longer required.
2545  ///
2546  /// There's no particular reason why this shouldn't apply to
2547  /// l-values, it's just that no existing peepholes work on pointers.
2548  PeepholeProtection protectFromPeepholes(RValue rvalue);
2549  void unprotectFromPeepholes(PeepholeProtection protection);
2550 
2552  llvm::Value *OffsetValue = nullptr) {
2553  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2554  OffsetValue);
2555  }
2556 
2557  //===--------------------------------------------------------------------===//
2558  // Statement Emission
2559  //===--------------------------------------------------------------------===//
2560 
2561  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2562  void EmitStopPoint(const Stmt *S);
2563 
2564  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2565  /// this function even if there is no current insertion point.
2566  ///
2567  /// This function may clear the current insertion point; callers should use
2568  /// EnsureInsertPoint if they wish to subsequently generate code without first
2569  /// calling EmitBlock, EmitBranch, or EmitStmt.
2570  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2571 
2572  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2573  /// necessarily require an insertion point or debug information; typically
2574  /// because the statement amounts to a jump or a container of other
2575  /// statements.
2576  ///
2577  /// \return True if the statement was handled.
2578  bool EmitSimpleStmt(const Stmt *S);
2579 
2580  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2581  AggValueSlot AVS = AggValueSlot::ignored());
2582  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2583  bool GetLast = false,
2584  AggValueSlot AVS =
2585  AggValueSlot::ignored());
2586 
2587  /// EmitLabel - Emit the block for the given label. It is legal to call this
2588  /// function even if there is no current insertion point.
2589  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2590 
2591  void EmitLabelStmt(const LabelStmt &S);
2592  void EmitAttributedStmt(const AttributedStmt &S);
2593  void EmitGotoStmt(const GotoStmt &S);
2594  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2595  void EmitIfStmt(const IfStmt &S);
2596 
2597  void EmitWhileStmt(const WhileStmt &S,
2598  ArrayRef<const Attr *> Attrs = None);
2599  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2600  void EmitForStmt(const ForStmt &S,
2601  ArrayRef<const Attr *> Attrs = None);
2602  void EmitReturnStmt(const ReturnStmt &S);
2603  void EmitDeclStmt(const DeclStmt &S);
2604  void EmitBreakStmt(const BreakStmt &S);
2605  void EmitContinueStmt(const ContinueStmt &S);
2606  void EmitSwitchStmt(const SwitchStmt &S);
2607  void EmitDefaultStmt(const DefaultStmt &S);
2608  void EmitCaseStmt(const CaseStmt &S);
2609  void EmitCaseStmtRange(const CaseStmt &S);
2610  void EmitAsmStmt(const AsmStmt &S);
2611 
2612  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2613  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2614  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2615  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2616  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2617 
2618  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2619  void EmitCoreturnStmt(const CoreturnStmt &S);
2620  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2621  AggValueSlot aggSlot = AggValueSlot::ignored(),
2622  bool ignoreResult = false);
2623  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2624  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2625  AggValueSlot aggSlot = AggValueSlot::ignored(),
2626  bool ignoreResult = false);
2627  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2628  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2629 
2630  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2631  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2632 
2633  void EmitCXXTryStmt(const CXXTryStmt &S);
2634  void EmitSEHTryStmt(const SEHTryStmt &S);
2635  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2636  void EnterSEHTryStmt(const SEHTryStmt &S);
2637  void ExitSEHTryStmt(const SEHTryStmt &S);
2638 
2639  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2640  const Stmt *OutlinedStmt);
2641 
2642  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2643  const SEHExceptStmt &Except);
2644 
2645  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2646  const SEHFinallyStmt &Finally);
2647 
2648  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2649  llvm::Value *ParentFP,
2650  llvm::Value *EntryEBP);
2651  llvm::Value *EmitSEHExceptionCode();
2652  llvm::Value *EmitSEHExceptionInfo();
2653  llvm::Value *EmitSEHAbnormalTermination();
2654 
2655  /// Scan the outlined statement for captures from the parent function. For
2656  /// each capture, mark the capture as escaped and emit a call to
2657  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2658  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2659  bool IsFilter);
2660 
2661  /// Recovers the address of a local in a parent function. ParentVar is the
2662  /// address of the variable used in the immediate parent function. It can
2663  /// either be an alloca or a call to llvm.localrecover if there are nested
2664  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2665  /// frame.
2666  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2667  Address ParentVar,
2668  llvm::Value *ParentFP);
2669 
2670  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2671  ArrayRef<const Attr *> Attrs = None);
2672 
2673  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2675  CodeGenFunction &CGF;
2676 
2677  public:
2679  bool HasCancel)
2680  : CGF(CGF) {
2681  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2682  }
2683  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2684  };
2685 
2686  /// Returns calculated size of the specified type.
2687  llvm::Value *getTypeSize(QualType Ty);
2688  LValue InitCapturedStruct(const CapturedStmt &S);
2689  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2690  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2691  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2692  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2693  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2694  SmallVectorImpl<llvm::Value *> &CapturedVars);
2695  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2696  SourceLocation Loc);
2697  /// \brief Perform element by element copying of arrays with type \a
2698  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2699  /// generated by \a CopyGen.
2700  ///
2701  /// \param DestAddr Address of the destination array.
2702  /// \param SrcAddr Address of the source array.
2703  /// \param OriginalType Type of destination and source arrays.
2704  /// \param CopyGen Copying procedure that copies value of single array element
2705  /// to another single array element.
2706  void EmitOMPAggregateAssign(
2707  Address DestAddr, Address SrcAddr, QualType OriginalType,
2708  const llvm::function_ref<void(Address, Address)> &CopyGen);
2709  /// \brief Emit proper copying of data from one variable to another.
2710  ///
2711  /// \param OriginalType Original type of the copied variables.
2712  /// \param DestAddr Destination address.
2713  /// \param SrcAddr Source address.
2714  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2715  /// type of the base array element).
2716  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2717  /// the base array element).
2718  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2719  /// DestVD.
2720  void EmitOMPCopy(QualType OriginalType,
2721  Address DestAddr, Address SrcAddr,
2722  const VarDecl *DestVD, const VarDecl *SrcVD,
2723  const Expr *Copy);
2724  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2725  /// \a X = \a E \a BO \a E.
2726  ///
2727  /// \param X Value to be updated.
2728  /// \param E Update value.
2729  /// \param BO Binary operation for update operation.
2730  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2731  /// expression, false otherwise.
2732  /// \param AO Atomic ordering of the generated atomic instructions.
2733  /// \param CommonGen Code generator for complex expressions that cannot be
2734  /// expressed through atomicrmw instruction.
2735  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2736  /// generated, <false, RValue::get(nullptr)> otherwise.
2737  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2738  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2739  llvm::AtomicOrdering AO, SourceLocation Loc,
2740  const llvm::function_ref<RValue(RValue)> &CommonGen);
2741  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2742  OMPPrivateScope &PrivateScope);
2743  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2744  OMPPrivateScope &PrivateScope);
2745  void EmitOMPUseDevicePtrClause(
2746  const OMPClause &C, OMPPrivateScope &PrivateScope,
2747  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2748  /// \brief Emit code for copyin clause in \a D directive. The next code is
2749  /// generated at the start of outlined functions for directives:
2750  /// \code
2751  /// threadprivate_var1 = master_threadprivate_var1;
2752  /// operator=(threadprivate_var2, master_threadprivate_var2);
2753  /// ...
2754  /// __kmpc_barrier(&loc, global_tid);
2755  /// \endcode
2756  ///
2757  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2758  /// \returns true if at least one copyin variable is found, false otherwise.
2759  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2760  /// \brief Emit initial code for lastprivate variables. If some variable is
2761  /// not also firstprivate, then the default initialization is used. Otherwise
2762  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2763  /// method.
2764  ///
2765  /// \param D Directive that may have 'lastprivate' directives.
2766  /// \param PrivateScope Private scope for capturing lastprivate variables for
2767  /// proper codegen in internal captured statement.
2768  ///
2769  /// \returns true if there is at least one lastprivate variable, false
2770  /// otherwise.
2771  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2772  OMPPrivateScope &PrivateScope);
2773  /// \brief Emit final copying of lastprivate values to original variables at
2774  /// the end of the worksharing or simd directive.
2775  ///
2776  /// \param D Directive that has at least one 'lastprivate' directives.
2777  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2778  /// it is the last iteration of the loop code in associated directive, or to
2779  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2780  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2781  bool NoFinals,
2782  llvm::Value *IsLastIterCond = nullptr);
2783  /// Emit initial code for linear clauses.
2784  void EmitOMPLinearClause(const OMPLoopDirective &D,
2785  CodeGenFunction::OMPPrivateScope &PrivateScope);
2786  /// Emit final code for linear clauses.
2787  /// \param CondGen Optional conditional code for final part of codegen for
2788  /// linear clause.
2789  void EmitOMPLinearClauseFinal(
2790  const OMPLoopDirective &D,
2791  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2792  /// \brief Emit initial code for reduction variables. Creates reduction copies
2793  /// and initializes them with the values according to OpenMP standard.
2794  ///
2795  /// \param D Directive (possibly) with the 'reduction' clause.
2796  /// \param PrivateScope Private scope for capturing reduction variables for
2797  /// proper codegen in internal captured statement.
2798  ///
2799  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2800  OMPPrivateScope &PrivateScope);
2801  /// \brief Emit final update of reduction values to original variables at
2802  /// the end of the directive.
2803  ///
2804  /// \param D Directive that has at least one 'reduction' directives.
2805  /// \param ReductionKind The kind of reduction to perform.
2806  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2807  const OpenMPDirectiveKind ReductionKind);
2808  /// \brief Emit initial code for linear variables. Creates private copies
2809  /// and initializes them with the values according to OpenMP standard.
2810  ///
2811  /// \param D Directive (possibly) with the 'linear' clause.
2812  /// \return true if at least one linear variable is found that should be
2813  /// initialized with the value of the original variable, false otherwise.
2814  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2815 
2816  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2817  llvm::Value * /*OutlinedFn*/,
2818  const OMPTaskDataTy & /*Data*/)>
2820  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2821  const RegionCodeGenTy &BodyGen,
2822  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2823 
2824  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2825  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2826  void EmitOMPForDirective(const OMPForDirective &S);
2827  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2828  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2829  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2830  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2831  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2832  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2833  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2834  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2835  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2836  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2837  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2838  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2839  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2840  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2841  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2842  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2843  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2844  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2845  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2846  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2847  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2848  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2849  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2850  void
2851  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2852  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2853  void
2854  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2855  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2856  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2857  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2858  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2859  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2860  void EmitOMPDistributeParallelForDirective(
2862  void EmitOMPDistributeParallelForSimdDirective(
2864  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2865  void EmitOMPTargetParallelForSimdDirective(
2867  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2868  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2869  void
2870  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2871  void EmitOMPTeamsDistributeParallelForSimdDirective(
2873  void EmitOMPTeamsDistributeParallelForDirective(
2875  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2876  void EmitOMPTargetTeamsDistributeDirective(
2878  void EmitOMPTargetTeamsDistributeParallelForDirective(
2880  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2882  void EmitOMPTargetTeamsDistributeSimdDirective(
2884 
2885  /// Emit device code for the target directive.
2886  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2887  StringRef ParentName,
2888  const OMPTargetDirective &S);
2889  static void
2890  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2891  const OMPTargetParallelDirective &S);
2892  /// Emit device code for the target parallel for directive.
2893  static void EmitOMPTargetParallelForDeviceFunction(
2894  CodeGenModule &CGM, StringRef ParentName,
2896  /// Emit device code for the target parallel for simd directive.
2897  static void EmitOMPTargetParallelForSimdDeviceFunction(
2898  CodeGenModule &CGM, StringRef ParentName,
2900  /// Emit device code for the target teams directive.
2901  static void
2902  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2903  const OMPTargetTeamsDirective &S);
2904  /// Emit device code for the target teams distribute directive.
2905  static void EmitOMPTargetTeamsDistributeDeviceFunction(
2906  CodeGenModule &CGM, StringRef ParentName,
2908  /// Emit device code for the target teams distribute simd directive.
2909  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2910  CodeGenModule &CGM, StringRef ParentName,
2912  /// Emit device code for the target simd directive.
2913  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2914  StringRef ParentName,
2915  const OMPTargetSimdDirective &S);
2916  /// \brief Emit inner loop of the worksharing/simd construct.
2917  ///
2918  /// \param S Directive, for which the inner loop must be emitted.
2919  /// \param RequiresCleanup true, if directive has some associated private
2920  /// variables.
2921  /// \param LoopCond Bollean condition for loop continuation.
2922  /// \param IncExpr Increment expression for loop control variable.
2923  /// \param BodyGen Generator for the inner body of the inner loop.
2924  /// \param PostIncGen Genrator for post-increment code (required for ordered
2925  /// loop directvies).
2926  void EmitOMPInnerLoop(
2927  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2928  const Expr *IncExpr,
2929  const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2930  const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2931 
2932  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2933  /// Emit initial code for loop counters of loop-based directives.
2934  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2935  OMPPrivateScope &LoopScope);
2936 
2937  /// Helper for the OpenMP loop directives.
2938  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2939 
2940  /// \brief Emit code for the worksharing loop-based directive.
2941  /// \return true, if this construct has any lastprivate clause, false -
2942  /// otherwise.
2943  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2944  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2945  const CodeGenDispatchBoundsTy &CGDispatchBounds);
2946 
2947  /// Emit code for the distribute loop-based directive.
2948  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2949  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2950 
2951  /// Helpers for the OpenMP loop directives.
2952  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2953  void EmitOMPSimdFinal(
2954  const OMPLoopDirective &D,
2955  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2956 
2957  /// Emits the lvalue for the expression with possibly captured variable.
2958  LValue EmitOMPSharedLValue(const Expr *E);
2959 
2960 private:
2961  /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not
2962  /// nullptr. It should be called without \p InvokeF if the caller does not
2963  /// need invoke function to be returned.
2964  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info,
2965  llvm::Function **InvokeF = nullptr);
2966 
2967  /// struct with the values to be passed to the OpenMP loop-related functions
2968  struct OMPLoopArguments {
2969  /// loop lower bound
2970  Address LB = Address::invalid();
2971  /// loop upper bound
2972  Address UB = Address::invalid();
2973  /// loop stride
2974  Address ST = Address::invalid();
2975  /// isLastIteration argument for runtime functions
2976  Address IL = Address::invalid();
2977  /// Chunk value generated by sema
2978  llvm::Value *Chunk = nullptr;
2979  /// EnsureUpperBound
2980  Expr *EUB = nullptr;
2981  /// IncrementExpression
2982  Expr *IncExpr = nullptr;
2983  /// Loop initialization
2984  Expr *Init = nullptr;
2985  /// Loop exit condition
2986  Expr *Cond = nullptr;
2987  /// Update of LB after a whole chunk has been executed
2988  Expr *NextLB = nullptr;
2989  /// Update of UB after a whole chunk has been executed
2990  Expr *NextUB = nullptr;
2991  OMPLoopArguments() = default;
2992  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2993  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2994  Expr *IncExpr = nullptr, Expr *Init = nullptr,
2995  Expr *Cond = nullptr, Expr *NextLB = nullptr,
2996  Expr *NextUB = nullptr)
2997  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2998  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2999  NextUB(NextUB) {}
3000  };
3001  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3002  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3003  const OMPLoopArguments &LoopArgs,
3004  const CodeGenLoopTy &CodeGenLoop,
3005  const CodeGenOrderedTy &CodeGenOrdered);
3006  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3007  bool IsMonotonic, const OMPLoopDirective &S,
3008  OMPPrivateScope &LoopScope, bool Ordered,
3009  const OMPLoopArguments &LoopArgs,
3010  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3011  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3012  const OMPLoopDirective &S,
3013  OMPPrivateScope &LoopScope,
3014  const OMPLoopArguments &LoopArgs,
3015  const CodeGenLoopTy &CodeGenLoopContent);
3016  /// \brief Emit code for sections directive.
3017  void EmitSections(const OMPExecutableDirective &S);
3018 
3019 public:
3020 
3021  //===--------------------------------------------------------------------===//
3022  // LValue Expression Emission
3023  //===--------------------------------------------------------------------===//
3024 
3025  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3026  RValue GetUndefRValue(QualType Ty);
3027 
3028  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3029  /// and issue an ErrorUnsupported style diagnostic (using the
3030  /// provided Name).
3031  RValue EmitUnsupportedRValue(const Expr *E,
3032  const char *Name);
3033 
3034  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3035  /// an ErrorUnsupported style diagnostic (using the provided Name).
3036  LValue EmitUnsupportedLValue(const Expr *E,
3037  const char *Name);
3038 
3039  /// EmitLValue - Emit code to compute a designator that specifies the location
3040  /// of the expression.
3041  ///
3042  /// This can return one of two things: a simple address or a bitfield
3043  /// reference. In either case, the LLVM Value* in the LValue structure is
3044  /// guaranteed to be an LLVM pointer type.
3045  ///
3046  /// If this returns a bitfield reference, nothing about the pointee type of
3047  /// the LLVM value is known: For example, it may not be a pointer to an
3048  /// integer.
3049  ///
3050  /// If this returns a normal address, and if the lvalue's C type is fixed
3051  /// size, this method guarantees that the returned pointer type will point to
3052  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3053  /// variable length type, this is not possible.
3054  ///
3055  LValue EmitLValue(const Expr *E);
3056 
3057  /// \brief Same as EmitLValue but additionally we generate checking code to
3058  /// guard against undefined behavior. This is only suitable when we know
3059  /// that the address will be used to access the object.
3060  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3061 
3062  RValue convertTempToRValue(Address addr, QualType type,
3063  SourceLocation Loc);
3064 
3065  void EmitAtomicInit(Expr *E, LValue lvalue);
3066 
3067  bool LValueIsSuitableForInlineAtomic(LValue Src);
3068 
3069  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3070  AggValueSlot Slot = AggValueSlot::ignored());
3071 
3072  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3073  llvm::AtomicOrdering AO, bool IsVolatile = false,
3074  AggValueSlot slot = AggValueSlot::ignored());
3075 
3076  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3077 
3078  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3079  bool IsVolatile, bool isInit);
3080 
3081  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3082  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3083  llvm::AtomicOrdering Success =
3084  llvm::AtomicOrdering::SequentiallyConsistent,
3085  llvm::AtomicOrdering Failure =
3086  llvm::AtomicOrdering::SequentiallyConsistent,
3087  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3088 
3089  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3090  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3091  bool IsVolatile);
3092 
3093  /// EmitToMemory - Change a scalar value from its value
3094  /// representation to its in-memory representation.
3095  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3096 
3097  /// EmitFromMemory - Change a scalar value from its memory
3098  /// representation to its value representation.
3099  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3100 
3101  /// Check if the scalar \p Value is within the valid range for the given
3102  /// type \p Ty.
3103  ///
3104  /// Returns true if a check is needed (even if the range is unknown).
3105  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3106  SourceLocation Loc);
3107 
3108  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3109  /// care to appropriately convert from the memory representation to
3110  /// the LLVM value representation.
3111  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3112  SourceLocation Loc,
3113  AlignmentSource Source = AlignmentSource::Type,
3114  bool isNontemporal = false) {
3115  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3116  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3117  }
3118 
3119  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3120  SourceLocation Loc, LValueBaseInfo BaseInfo,
3121  TBAAAccessInfo TBAAInfo,
3122  bool isNontemporal = false);
3123 
3124  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3125  /// care to appropriately convert from the memory representation to
3126  /// the LLVM value representation. The l-value must be a simple
3127  /// l-value.
3128  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3129 
3130  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3131  /// care to appropriately convert from the memory representation to
3132  /// the LLVM value representation.
3134  bool Volatile, QualType Ty,
3135  AlignmentSource Source = AlignmentSource::Type,
3136  bool isInit = false, bool isNontemporal = false) {
3137  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3138  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3139  }
3140 
3141  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3142  bool Volatile, QualType Ty,
3143  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3144  bool isInit = false, bool isNontemporal = false);
3145 
3146  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3147  /// care to appropriately convert from the memory representation to
3148  /// the LLVM value representation. The l-value must be a simple
3149  /// l-value. The isInit flag indicates whether this is an initialization.
3150  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3151  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3152 
3153  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3154  /// this method emits the address of the lvalue, then loads the result as an
3155  /// rvalue, returning the rvalue.
3156  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3157  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3158  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3159  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3160 
3161  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3162  /// lvalue, where both are guaranteed to the have the same type, and that type
3163  /// is 'Ty'.
3164  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3165  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3166  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3167 
3168  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3169  /// as EmitStoreThroughLValue.
3170  ///
3171  /// \param Result [out] - If non-null, this will be set to a Value* for the
3172  /// bit-field contents after the store, appropriate for use as the result of
3173  /// an assignment to the bit-field.
3174  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3175  llvm::Value **Result=nullptr);
3176 
3177  /// Emit an l-value for an assignment (simple or compound) of complex type.
3178  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3179  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3180  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3181  llvm::Value *&Result);
3182 
3183  // Note: only available for agg return types
3184  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3185  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3186  // Note: only available for agg return types
3187  LValue EmitCallExprLValue(const CallExpr *E);
3188  // Note: only available for agg return types
3189  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3190  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3191  LValue EmitStringLiteralLValue(const StringLiteral *E);
3192  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3193  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3194  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3195  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3196  bool Accessed = false);
3197  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3198  bool IsLowerBound = true);
3199  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3200  LValue EmitMemberExpr(const MemberExpr *E);
3201  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3202  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3203  LValue EmitInitListLValue(const InitListExpr *E);
3204  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3205  LValue EmitCastLValue(const CastExpr *E);
3206  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3207  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3208 
3209  Address EmitExtVectorElementLValue(LValue V);
3210 
3211  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3212 
3213  Address EmitArrayToPointerDecay(const Expr *Array,
3214  LValueBaseInfo *BaseInfo = nullptr,
3215  TBAAAccessInfo *TBAAInfo = nullptr);
3216 
3218  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3219  ConstantEmission(llvm::Constant *C, bool isReference)
3220  : ValueAndIsReference(C, isReference) {}
3221  public:
3223  static ConstantEmission forReference(llvm::Constant *C) {
3224  return ConstantEmission(C, true);
3225  }
3226  static ConstantEmission forValue(llvm::Constant *C) {
3227  return ConstantEmission(C, false);
3228  }
3229 
3230  explicit operator bool() const {
3231  return ValueAndIsReference.getOpaqueValue() != nullptr;
3232  }
3233 
3234  bool isReference() const { return ValueAndIsReference.getInt(); }
3235  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3236  assert(isReference());
3237  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3238  refExpr->getType());
3239  }
3240 
3241  llvm::Constant *getValue() const {
3242  assert(!isReference());
3243  return ValueAndIsReference.getPointer();
3244  }
3245  };
3246 
3247  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3248  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3249 
3250  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3251  AggValueSlot slot = AggValueSlot::ignored());
3252  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3253 
3254  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3255  const ObjCIvarDecl *Ivar);
3256  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3257  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3258 
3259  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3260  /// if the Field is a reference, this will return the address of the reference
3261  /// and not the address of the value stored in the reference.
3262  LValue EmitLValueForFieldInitialization(LValue Base,
3263  const FieldDecl* Field);
3264 
3265  LValue EmitLValueForIvar(QualType ObjectTy,
3266  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3267  unsigned CVRQualifiers);
3268 
3269  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3270  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3271  LValue EmitLambdaLValue(const LambdaExpr *E);
3272  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3273  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3274 
3275  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3276  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3277  LValue EmitStmtExprLValue(const StmtExpr *E);
3278  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3279  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3280  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3281 
3282  //===--------------------------------------------------------------------===//
3283  // Scalar Expression Emission
3284  //===--------------------------------------------------------------------===//
3285 
3286  /// EmitCall - Generate a call of the given function, expecting the given
3287  /// result type, and using the given argument list which specifies both the
3288  /// LLVM arguments and the types they were derived from.
3289  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3290  ReturnValueSlot ReturnValue, const CallArgList &Args,
3291  llvm::Instruction **callOrInvoke = nullptr);
3292 
3293  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3294  ReturnValueSlot ReturnValue,
3295  llvm::Value *Chain = nullptr);
3296  RValue EmitCallExpr(const CallExpr *E,
3297  ReturnValueSlot ReturnValue = ReturnValueSlot());
3298  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3299  CGCallee EmitCallee(const Expr *E);
3300 
3301  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3302 
3303  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3304  const Twine &name = "");
3305  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3307  const Twine &name = "");
3308  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3309  const Twine &name = "");
3310  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3312  const Twine &name = "");
3313 
3314  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3316  const Twine &Name = "");
3317  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3319  const Twine &name = "");
3320  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3321  const Twine &name = "");
3322  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3323  ArrayRef<llvm::Value*> args);
3324 
3326  NestedNameSpecifier *Qual,
3327  llvm::Type *Ty);
3328 
3329  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3330  CXXDtorType Type,
3331  const CXXRecordDecl *RD);
3332 
3333  RValue
3334  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3335  const CGCallee &Callee,
3336  ReturnValueSlot ReturnValue, llvm::Value *This,
3337  llvm::Value *ImplicitParam,
3338  QualType ImplicitParamTy, const CallExpr *E,
3339  CallArgList *RtlArgs);
3340  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3341  const CGCallee &Callee,
3342  llvm::Value *This, llvm::Value *ImplicitParam,
3343  QualType ImplicitParamTy, const CallExpr *E,
3344  StructorType Type);
3345  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3346  ReturnValueSlot ReturnValue);
3347  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3348  const CXXMethodDecl *MD,
3349  ReturnValueSlot ReturnValue,
3350  bool HasQualifier,
3351  NestedNameSpecifier *Qualifier,
3352  bool IsArrow, const Expr *Base);
3353  // Compute the object pointer.
3354  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3355  llvm::Value *memberPtr,
3356  const MemberPointerType *memberPtrType,
3357  LValueBaseInfo *BaseInfo = nullptr,
3358  TBAAAccessInfo *TBAAInfo = nullptr);
3359  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3360  ReturnValueSlot ReturnValue);
3361 
3362  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3363  const CXXMethodDecl *MD,
3364  ReturnValueSlot ReturnValue);
3365  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3366 
3367  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3368  ReturnValueSlot ReturnValue);
3369 
3370  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3371  ReturnValueSlot ReturnValue);
3372 
3373  RValue EmitBuiltinExpr(const FunctionDecl *FD,
3374  unsigned BuiltinID, const CallExpr *E,
3375  ReturnValueSlot ReturnValue);
3376 
3377  /// Emit IR for __builtin_os_log_format.
3378  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3379 
3380  llvm::Function *generateBuiltinOSLogHelperFunction(
3381  const analyze_os_log::OSLogBufferLayout &Layout,
3382  CharUnits BufferAlignment);
3383 
3384  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3385 
3386  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3387  /// is unhandled by the current target.
3388  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3389 
3390  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3391  const llvm::CmpInst::Predicate Fp,
3392  const llvm::CmpInst::Predicate Ip,
3393  const llvm::Twine &Name = "");
3394  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3395 
3396  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3397  unsigned LLVMIntrinsic,
3398  unsigned AltLLVMIntrinsic,
3399  const char *NameHint,
3400  unsigned Modifier,
3401  const CallExpr *E,
3403  Address PtrOp0, Address PtrOp1);
3404  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3405  unsigned Modifier, llvm::Type *ArgTy,
3406  const CallExpr *E);
3407  llvm::Value *EmitNeonCall(llvm::Function *F,
3409  const char *name,
3410  unsigned shift = 0, bool rightshift = false);
3411  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3412  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3413  bool negateForRightShift);
3414  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3415  llvm::Type *Ty, bool usgn, const char *name);
3416  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3417  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3418 
3419  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3420  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3421  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3422  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3423  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3424  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3425  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3426  const CallExpr *E);
3427  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3428 
3429 private:
3430  enum class MSVCIntrin;
3431 
3432 public:
3433  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3434 
3435  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3436 
3437  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3438  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3439  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3440  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3441  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3442  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3443  const ObjCMethodDecl *MethodWithObjects);
3444  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3445  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3446  ReturnValueSlot Return = ReturnValueSlot());
3447 
3448  /// Retrieves the default cleanup kind for an ARC cleanup.
3449  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3451  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3453  }
3454 
3455  // ARC primitives.
3456  void EmitARCInitWeak(Address addr, llvm::Value *value);
3457  void EmitARCDestroyWeak(Address addr);
3458  llvm::Value *EmitARCLoadWeak(Address addr);
3459  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3460  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3461  void EmitARCCopyWeak(Address dst, Address src);
3462  void EmitARCMoveWeak(Address dst, Address src);
3463  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3464  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3465  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3466  bool resultIgnored);
3467  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3468  bool resultIgnored);
3469  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3470  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3471  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3472  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3473  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3474  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3475  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3476  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3477  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3478  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3479 
3480  std::pair<LValue,llvm::Value*>
3481  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3482  std::pair<LValue,llvm::Value*>
3483  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3484  std::pair<LValue,llvm::Value*>
3485  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3486 
3487  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3488  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3489  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3490 
3491  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3492  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3493  bool allowUnsafeClaim);
3494  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3495  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3496  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3497 
3498  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3499 
3500  static Destroyer destroyARCStrongImprecise;
3501  static Destroyer destroyARCStrongPrecise;
3502  static Destroyer destroyARCWeak;
3503  static Destroyer emitARCIntrinsicUse;
3504 
3505  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3506  llvm::Value *EmitObjCAutoreleasePoolPush();
3507  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3508  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3509  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3510 
3511  /// \brief Emits a reference binding to the passed in expression.
3512  RValue EmitReferenceBindingToExpr(const Expr *E);
3513 
3514  //===--------------------------------------------------------------------===//
3515  // Expression Emission
3516  //===--------------------------------------------------------------------===//
3517 
3518  // Expressions are broken into three classes: scalar, complex, aggregate.
3519 
3520  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3521  /// scalar type, returning the result.
3522  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3523 
3524  /// Emit a conversion from the specified type to the specified destination
3525  /// type, both of which are LLVM scalar types.
3526  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3527  QualType DstTy, SourceLocation Loc);
3528 
3529  /// Emit a conversion from the specified complex type to the specified
3530  /// destination type, where the destination type is an LLVM scalar type.
3531  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3532  QualType DstTy,
3533  SourceLocation Loc);
3534 
3535  /// EmitAggExpr - Emit the computation of the specified expression
3536  /// of aggregate type. The result is computed into the given slot,
3537  /// which may be null to indicate that the value is not needed.
3538  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3539 
3540  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3541  /// aggregate type into a temporary LValue.
3542  LValue EmitAggExprToLValue(const Expr *E);
3543 
3544  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3545  /// make sure it survives garbage collection until this point.
3546  void EmitExtendGCLifetime(llvm::Value *object);
3547 
3548  /// EmitComplexExpr - Emit the computation of the specified expression of
3549  /// complex type, returning the result.
3550  ComplexPairTy EmitComplexExpr(const Expr *E,
3551  bool IgnoreReal = false,
3552  bool IgnoreImag = false);
3553 
3554  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3555  /// type and place its result into the specified l-value.
3556  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3557 
3558  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3559  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3560 
3561  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3562  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3563 
3564  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3565  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3566 
3567  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3568  /// global variable that has already been created for it. If the initializer
3569  /// has a different type than GV does, this may free GV and return a different
3570  /// one. Otherwise it just returns GV.
3571  llvm::GlobalVariable *
3572  AddInitializerToStaticVarDecl(const VarDecl &D,
3573  llvm::GlobalVariable *GV);
3574 
3575 
3576  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3577  /// variable with global storage.
3578  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3579  bool PerformInit);
3580 
3581  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3582  llvm::Constant *Addr);
3583 
3584  /// Call atexit() with a function that passes the given argument to
3585  /// the given function.
3586  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3587  llvm::Constant *addr);
3588 
3589  /// Emit code in this function to perform a guarded variable
3590  /// initialization. Guarded initializations are used when it's not
3591  /// possible to prove that an initialization will be done exactly
3592  /// once, e.g. with a static local variable or a static data member
3593  /// of a class template.
3594  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3595  bool PerformInit);
3596 
3597  enum class GuardKind { VariableGuard, TlsGuard };
3598 
3599  /// Emit a branch to select whether or not to perform guarded initialization.
3600  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3601  llvm::BasicBlock *InitBlock,
3602  llvm::BasicBlock *NoInitBlock,
3603  GuardKind Kind, const VarDecl *D);
3604 
3605  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3606  /// variables.
3607  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3608  ArrayRef<llvm::Function *> CXXThreadLocals,
3609  Address Guard = Address::invalid());
3610 
3611  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3612  /// variables.
3613  void GenerateCXXGlobalDtorsFunc(
3614  llvm::Function *Fn,
3615  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3616  &DtorsAndObjects);
3617 
3618  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3619  const VarDecl *D,
3620  llvm::GlobalVariable *Addr,
3621  bool PerformInit);
3622 
3623  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3624 
3625  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3626 
3628  if (E->getNumObjects() == 0) return;
3629  enterNonTrivialFullExpression(E);
3630  }
3631  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3632 
3633  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3634 
3635  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3636 
3637  RValue EmitAtomicExpr(AtomicExpr *E);
3638 
3639  //===--------------------------------------------------------------------===//
3640  // Annotations Emission
3641  //===--------------------------------------------------------------------===//
3642 
3643  /// Emit an annotation call (intrinsic or builtin).
3644  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3645  llvm::Value *AnnotatedVal,
3646  StringRef AnnotationStr,
3647  SourceLocation Location);
3648 
3649  /// Emit local annotations for the local variable V, declared by D.
3650  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3651 
3652  /// Emit field annotations for the given field & value. Returns the
3653  /// annotation result.
3654  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3655 
3656  //===--------------------------------------------------------------------===//
3657  // Internal Helpers
3658  //===--------------------------------------------------------------------===//
3659 
3660  /// ContainsLabel - Return true if the statement contains a label in it. If
3661  /// this statement is not executed normally, it not containing a label means
3662  /// that we can just remove the code.
3663  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3664 
3665  /// containsBreak - Return true if the statement contains a break out of it.
3666  /// If the statement (recursively) contains a switch or loop with a break
3667  /// inside of it, this is fine.
3668  static bool containsBreak(const Stmt *S);
3669 
3670  /// Determine if the given statement might introduce a declaration into the
3671  /// current scope, by being a (possibly-labelled) DeclStmt.
3672  static bool mightAddDeclToScope(const Stmt *S);
3673 
3674  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3675  /// to a constant, or if it does but contains a label, return false. If it
3676  /// constant folds return true and set the boolean result in Result.
3677  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3678  bool AllowLabels = false);
3679 
3680  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3681  /// to a constant, or if it does but contains a label, return false. If it
3682  /// constant folds return true and set the folded value.
3683  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3684  bool AllowLabels = false);
3685 
3686  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3687  /// if statement) to the specified blocks. Based on the condition, this might
3688  /// try to simplify the codegen of the conditional based on the branch.
3689  /// TrueCount should be the number of times we expect the condition to
3690  /// evaluate to true based on PGO data.
3691  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3692  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3693 
3694  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3695  /// nonnull, if \p LHS is marked _Nonnull.
3696  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3697 
3698  /// An enumeration which makes it easier to specify whether or not an
3699  /// operation is a subtraction.
3700  enum { NotSubtraction = false, IsSubtraction = true };
3701 
3702  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3703  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3704  /// \p SignedIndices indicates whether any of the GEP indices are signed.
3705  /// \p IsSubtraction indicates whether the expression used to form the GEP
3706  /// is a subtraction.
3707  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3708  ArrayRef<llvm::Value *> IdxList,
3709  bool SignedIndices,
3710  bool IsSubtraction,
3711  SourceLocation Loc,
3712  const Twine &Name = "");
3713 
3714  /// Specifies which type of sanitizer check to apply when handling a
3715  /// particular builtin.
3719  };
3720 
3721  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3722  /// enabled, a runtime check specified by \p Kind is also emitted.
3723  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3724 
3725  /// \brief Emit a description of a type in a format suitable for passing to
3726  /// a runtime sanitizer handler.
3727  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3728 
3729  /// \brief Convert a value into a format suitable for passing to a runtime
3730  /// sanitizer handler.
3731  llvm::Value *EmitCheckValue(llvm::Value *V);
3732 
3733  /// \brief Emit a description of a source location in a format suitable for
3734  /// passing to a runtime sanitizer handler.
3735  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3736 
3737  /// \brief Create a basic block that will call a handler function in a
3738  /// sanitizer runtime with the provided arguments, and create a conditional
3739  /// branch to it.
3740  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3741  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3742  ArrayRef<llvm::Value *> DynamicArgs);
3743 
3744  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3745  /// if Cond if false.
3746  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3747  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3748  ArrayRef<llvm::Constant *> StaticArgs);
3749 
3750  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3751  /// conditional branch to it, for the -ftrapv checks.
3752  void EmitTrapCheck(llvm::Value *Checked);
3753 
3754  /// \brief Emit a call to trap or debugtrap and attach function attribute
3755  /// "trap-func-name" if specified.
3756  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3757 
3758  /// \brief Emit a stub for the cross-DSO CFI check function.
3759  void EmitCfiCheckStub();
3760 
3761  /// \brief Emit a cross-DSO CFI failure handling function.
3762  void EmitCfiCheckFail();
3763 
3764  /// \brief Create a check for a function parameter that may potentially be
3765  /// declared as non-null.
3766  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3767  AbstractCallee AC, unsigned ParmNum);
3768 
3769  /// EmitCallArg - Emit a single call argument.
3770  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3771 
3772  /// EmitDelegateCallArg - We are performing a delegate call; that
3773  /// is, the current function is delegating to another one. Produce
3774  /// a r-value suitable for passing the given parameter.
3775  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3776  SourceLocation loc);
3777 
3778  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3779  /// point operation, expressed as the maximum relative error in ulp.
3780  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3781 
3782 private:
3783  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3784  void EmitReturnOfRValue(RValue RV, QualType Ty);
3785 
3786  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3787 
3789  DeferredReplacements;
3790 
3791  /// Set the address of a local variable.
3792  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3793  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3794  LocalDeclMap.insert({VD, Addr});
3795  }
3796 
3797  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3798  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3799  ///
3800  /// \param AI - The first function argument of the expansion.
3801  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3803 
3804  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3805  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3806  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3807  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3808  SmallVectorImpl<llvm::Value *> &IRCallArgs,
3809  unsigned &IRCallArgPos);
3810 
3811  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3812  const Expr *InputExpr, std::string &ConstraintStr);
3813 
3814  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3815  LValue InputValue, QualType InputType,
3816  std::string &ConstraintStr,
3817  SourceLocation Loc);
3818 
3819  /// \brief Attempts to statically evaluate the object size of E. If that
3820  /// fails, emits code to figure the size of E out for us. This is
3821  /// pass_object_size aware.
3822  ///
3823  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3824  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3825  llvm::IntegerType *ResType,
3826  llvm::Value *EmittedE);
3827 
3828  /// \brief Emits the size of E, as required by __builtin_object_size. This
3829  /// function is aware of pass_object_size parameters, and will act accordingly
3830  /// if E is a parameter with the pass_object_size attribute.
3831  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3832  llvm::IntegerType *ResType,
3833  llvm::Value *EmittedE);
3834 
3835 public:
3836 #ifndef NDEBUG
3837  // Determine whether the given argument is an Objective-C method
3838  // that may have type parameters in its signature.
3839  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3840  const DeclContext *dc = method->getDeclContext();
3841  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3842  return classDecl->getTypeParamListAsWritten();
3843  }
3844 
3845  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3846  return catDecl->getTypeParamList();
3847  }
3848 
3849  return false;
3850  }
3851 
3852  template<typename T>
3853  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3854 #endif
3855 
3856  enum class EvaluationOrder {
3857  ///! No language constraints on evaluation order.
3858  Default,
3859  ///! Language semantics require left-to-right evaluation.
3860  ForceLeftToRight,
3861  ///! Language semantics require right-to-left evaluation.
3862  ForceRightToLeft
3863  };
3864 
3865  /// EmitCallArgs - Emit call arguments for a function.
3866  template <typename T>
3867  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3868  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3870  unsigned ParamsToSkip = 0,
3871  EvaluationOrder Order = EvaluationOrder::Default) {
3872  SmallVector<QualType, 16> ArgTypes;
3873  CallExpr::const_arg_iterator Arg = ArgRange.begin();
3874 
3875  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3876  "Can't skip parameters if type info is not provided");
3877  if (CallArgTypeInfo) {
3878 #ifndef NDEBUG
3879  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3880 #endif
3881 
3882  // First, use the argument types that the type info knows about
3883  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3884  E = CallArgTypeInfo->param_type_end();
3885  I != E; ++I, ++Arg) {
3886  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3887  assert((isGenericMethod ||
3888  ((*I)->isVariablyModifiedType() ||
3889  (*I).getNonReferenceType()->isObjCRetainableType() ||
3890  getContext()
3891  .getCanonicalType((*I).getNonReferenceType())
3892  .getTypePtr() ==
3893  getContext()
3894  .getCanonicalType((*Arg)->getType())
3895  .getTypePtr())) &&
3896  "type mismatch in call argument!");
3897  ArgTypes.push_back(*I);
3898  }
3899  }
3900 
3901  // Either we've emitted all the call args, or we have a call to variadic
3902  // function.
3903  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3904  CallArgTypeInfo->isVariadic()) &&
3905  "Extra arguments in non-variadic function!");
3906 
3907  // If we still have any arguments, emit them using the type of the argument.
3908  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3909  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3910 
3911  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3912  }
3913 
3914  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3915  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3917  unsigned ParamsToSkip = 0,
3918  EvaluationOrder Order = EvaluationOrder::Default);
3919 
3920  /// EmitPointerWithAlignment - Given an expression with a pointer type,
3921  /// emit the value and compute our best estimate of the alignment of the
3922  /// pointee.
3923  ///
3924  /// \param BaseInfo - If non-null, this will be initialized with
3925  /// information about the source of the alignment and the may-alias
3926  /// attribute. Note that this function will conservatively fall back on
3927  /// the type when it doesn't recognize the expression and may-alias will
3928  /// be set to false.
3929  ///
3930  /// One reasonable way to use this information is when there's a language
3931  /// guarantee that the pointer must be aligned to some stricter value, and
3932  /// we're simply trying to ensure that sufficiently obvious uses of under-
3933  /// aligned objects don't get miscompiled; for example, a placement new
3934  /// into the address of a local variable. In such a case, it's quite
3935  /// reasonable to just ignore the returned alignment when it isn't from an
3936  /// explicit source.
3937  Address EmitPointerWithAlignment(const Expr *Addr,
3938  LValueBaseInfo *BaseInfo = nullptr,
3939  TBAAAccessInfo *TBAAInfo = nullptr);
3940 
3941  /// If \p E references a parameter with pass_object_size info or a constant
3942  /// array size modifier, emit the object size divided by the size of \p EltTy.
3943  /// Otherwise return null.
3944  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
3945 
3946  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3947 
3948 private:
3949  QualType getVarArgType(const Expr *Arg);
3950 
3951  void EmitDeclMetadata();
3952 
3953  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3954  const AutoVarEmission &emission);
3955 
3956  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3957 
3958  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3959  llvm::Value *EmitX86CpuIs(const CallExpr *E);
3960  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3961  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3962  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3963  llvm::Value *EmitX86CpuInit();
3964 };
3965 
3966 /// Helper class with most of the code for saving a value for a
3967 /// conditional expression cleanup.
3969  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3970 
3971  /// Answer whether the given value needs extra work to be saved.
3972  static bool needsSaving(llvm::Value *value) {
3973  // If it's not an instruction, we don't need to save.
3974  if (!isa<llvm::Instruction>(value)) return false;
3975 
3976  // If it's an instruction in the entry block, we don't need to save.
3977  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3978  return (block != &block->getParent()->getEntryBlock());
3979  }
3980 
3981  /// Try to save the given value.
3982  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3983  if (!needsSaving(value)) return saved_type(value, false);
3984 
3985  // Otherwise, we need an alloca.
3986  auto align = CharUnits::fromQuantity(
3987  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3988  Address alloca =
3989  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3990  CGF.Builder.CreateStore(value, alloca);
3991 
3992  return saved_type(alloca.getPointer(), true);
3993  }
3994 
3995  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3996  // If the value says it wasn't saved, trust that it's still dominating.
3997  if (!value.getInt()) return value.getPointer();
3998 
3999  // Otherwise, it should be an alloca instruction, as set up in save().
4000  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4001  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4002  }
4003 };
4004 
4005 /// A partial specialization of DominatingValue for llvm::Values that
4006 /// might be llvm::Instructions.
4007 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4008  typedef T *type;
4009  static type restore(CodeGenFunction &CGF, saved_type value) {
4010  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4011  }
4012 };
4013 
4014 /// A specialization of DominatingValue for Address.
4015 template <> struct DominatingValue<Address> {
4016  typedef Address type;
4017 
4018  struct saved_type {
4021  };
4022 
4023  static bool needsSaving(type value) {
4024  return DominatingLLVMValue::needsSaving(value.getPointer());
4025  }
4026  static saved_type save(CodeGenFunction &CGF, type value) {
4027  return { DominatingLLVMValue::save(CGF, value.getPointer()),
4028  value.getAlignment() };
4029  }
4030  static type restore(CodeGenFunction &CGF, saved_type value) {
4031  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4032  value.Alignment);
4033  }
4034 };
4035 
4036 /// A specialization of DominatingValue for RValue.
4037 template <> struct DominatingValue<RValue> {
4038  typedef RValue type;
4039  class saved_type {
4040  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4041  AggregateAddress, ComplexAddress };
4042 
4043  llvm::Value *Value;
4044  unsigned K : 3;
4045  unsigned Align : 29;
4046  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4047  : Value(v), K(k), Align(a) {}
4048 
4049  public:
4050  static bool needsSaving(RValue value);
4051  static saved_type save(CodeGenFunction &CGF, RValue value);
4052  RValue restore(CodeGenFunction &CGF);
4053 
4054  // implementations in CGCleanup.cpp
4055  };
4056 
4057  static bool needsSaving(type value) {
4058  return saved_type::needsSaving(value);
4059  }
4060  static saved_type save(CodeGenFunction &CGF, type value) {
4061  return saved_type::save(CGF, value);
4062  }
4063  static type restore(CodeGenFunction &CGF, saved_type value) {
4064  return value.restore(CGF);
4065  }
4066 };
4067 
4068 } // end namespace CodeGen
4069 } // end namespace clang
4070 
4071 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:281
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:64
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3190
Information about the layout of a __block variable.
Definition: CGBlocks.h:140
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1373
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1713
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1698
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2285
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:124
A (possibly-)qualified type.
Definition: Type.h:653
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:26
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:432
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:929
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2166
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1123
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3558
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3601
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value)
Try to save the given value.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:878
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1353
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3738
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2172
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2560
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1494
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:886
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3806
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4035
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:664
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:2774
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2405
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1436
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2637
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6307
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:53
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:2197
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1514
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:25
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:152
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:839
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
CGBlockInfo * FirstBlockInfo
FirstBlockInfo - The head of a singly-linked-list of block layouts.
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:251
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2461
Definition: Format.h:1900
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:5956
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3326
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:926
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:4790
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1825
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:313
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1420
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:173
const RValue & getOpaqueRValueMapping(const OpaqueValueExpr *e)
getOpaqueRValueMapping - Given an opaque value expression (which must be mapped to an r-value)...
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:100
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1308
Describes an C or C++ initializer list.
Definition: Expr.h:3872
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3041
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:60
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3530
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1203
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
TypeDecl - Represents a declaration of a type.
Definition: Decl.h:2754
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2985
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2660
void EmitAggregateAssign(Address DestPtr, Address SrcPtr, QualType EltTy)
EmitAggregateCopy - Emit an aggregate assignment.
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
field_iterator field_begin() const
Definition: Decl.cpp:3937
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2603
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2710
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3460
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1196
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1580
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:94
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
llvm::AllocaInst * EHSelectorSlot
The selector slot.
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2778
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3258
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:346
bool isValid() const
Definition: Address.h:36
CleanupKind Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2197
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:595
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3270
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2067
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
const CodeGen::CGBlockInfo * BlockInfo
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1913
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:149
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
bool addPrivate(const VarDecl *LocalVD, llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3778
llvm::Value * ExceptionSlot
The exception slot.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2914
Exposes information about the current target.
Definition: TargetInfo.h:54
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
EHScopeStack::stable_iterator getScopeDepth() const
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:628
Expr - This represents one expression.
Definition: Expr.h:106
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4851
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3890
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
llvm::AllocaInst * NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
#define bool
Definition: stdbool.h:31
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
DeclContext * getDeclContext()
Definition: DeclBase.h:425
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:65
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3963
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1046
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1413
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3679
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, QualType DestTy, QualType SrcTy)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2718
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:1973
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:1986
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1574
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1154
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1461
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:420
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2346
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:488
Kind
This captures a statement into a function.
Definition: Stmt.h:2054
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1400
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4969
This represents &#39;#pragma omp single&#39; directive.
Definition: StmtOpenMP.h:1318
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
Represents a C++ temporary.
Definition: ExprCXX.h:1164
~RunCleanupsScope()
Exit this cleanup scope, emitting any accumulated cleanups.
llvm::BasicBlock * getUnreachableBlock()
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:33
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1842
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
const Decl * getDecl() const
Definition: GlobalDecl.h:64
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
Checking the operand of a cast to a base object.
OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:23
LabelDecl - Represents the declaration of a label.
Definition: Decl.h:460
An aggregate value slot.
Definition: CGValue.h:434
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
Per-function PGO state.
Definition: CodeGenPGO.h:29
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1964
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
static type restore(CodeGenFunction &CGF, saved_type value)
OpenMPLinearClauseKind Modifier
Modifier of &#39;linear&#39; clause.
Definition: OpenMPClause.h:87
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
This represents &#39;#pragma omp taskwait&#39; directive.
Definition: StmtOpenMP.h:1869
SanitizerSet SanOpts
Sanitizers enabled for this function.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2299
This is a basic class for representing single OpenMP clause.
Definition: OpenMPClause.h:51
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5103
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:474
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
This represents &#39;#pragma omp target&#39; directive.
Definition: StmtOpenMP.h:2230
All available information about a concrete callee.
Definition: CGCall.h:66
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, AlignmentSource Source=AlignmentSource::Type)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues, like target-specific attributes, builtins and so on.
Definition: TargetInfo.h:46
Checking the object expression in a non-static data member access.
This represents &#39;#pragma omp ordered&#39; directive.
Definition: StmtOpenMP.h:2041
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3488
static ParamValue forDirect(llvm::Value *value)
static llvm::Value * restore(CodeGenFunction &CGF, saved_type value)
This represents &#39;#pragma omp target update&#39; directive.
Definition: StmtOpenMP.h:2982
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:117
uint64_t getCurrentRegionCount() const
Return the counter value of the current region.
Definition: CodeGenPGO.h:55
const CGFunctionInfo * CurFnInfo
void Emit(CodeGenFunction &CGF, Flags flags) override
Emit the cleanup.
static ConstantEmission forReference(llvm::Constant *C)
void enterFullExpression(const ExprWithCleanups *E)
const TargetCodeGenInfo & getTargetHooks() const
static Destroyer destroyARCStrongImprecise
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3191
JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind)
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:276
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3385
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
Dataflow Directional Tag Classes.
Class provides a way to call simple version of codegen for OpenMP region, or an advanced with possibl...
uint64_t SanitizerMask
Definition: Sanitizers.h:24
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1188
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1252
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2071
This represents &#39;#pragma omp section&#39; directive.
Definition: StmtOpenMP.h:1256
This represents &#39;#pragma omp teams distribute&#39; directive.
Definition: StmtOpenMP.h:3392