clang  15.0.0git
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 class CanonicalLoopInfo;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 class OMPUseDevicePtrClause;
79 class OMPUseDeviceAddrClause;
80 class SVETypeFlags;
81 class OMPExecutableDirective;
82 
83 namespace analyze_os_log {
84 class OSLogBufferLayout;
85 }
86 
87 namespace CodeGen {
88 class CodeGenTypes;
89 class CGCallee;
90 class CGFunctionInfo;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFieldFlags;
96 class RegionCodeGenTy;
97 class TargetCodeGenInfo;
98 struct OMPTaskDataTy;
99 struct CGCoroData;
100 
101 /// The kind of evaluation to perform on values of a particular
102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
103 /// CGExprAgg?
104 ///
105 /// TODO: should vectors maybe be split out into their own thing?
110 };
111 
112 #define LIST_SANITIZER_CHECKS \
113  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
114  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
115  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
116  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
117  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
118  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
119  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \
120  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \
121  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
122  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \
123  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
124  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
125  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
126  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
127  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
128  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
129  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
130  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
131  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
132  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
133  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
134  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
135  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
136  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \
137  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
148  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150  /// Answer whether the given value needs extra work to be saved.
151  static bool needsSaving(llvm::Value *value) {
152  // If it's not an instruction, we don't need to save.
153  if (!isa<llvm::Instruction>(value)) return false;
154 
155  // If it's an instruction in the entry block, we don't need to save.
156  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157  return (block != &block->getParent()->getEntryBlock());
158  }
159 
160  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167  typedef T *type;
168  static type restore(CodeGenFunction &CGF, saved_type value) {
169  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170  }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175  typedef Address type;
176 
177  struct saved_type {
179  llvm::Type *ElementType;
181  };
182 
183  static bool needsSaving(type value) {
185  }
186  static saved_type save(CodeGenFunction &CGF, type value) {
187  return { DominatingLLVMValue::save(CGF, value.getPointer()),
188  value.getElementType(), value.getAlignment() };
189  }
190  static type restore(CodeGenFunction &CGF, saved_type value) {
191  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192  value.ElementType, value.Alignment);
193  }
194 };
195 
196 /// A specialization of DominatingValue for RValue.
197 template <> struct DominatingValue<RValue> {
198  typedef RValue type;
199  class saved_type {
200  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201  AggregateAddress, ComplexAddress };
202 
203  llvm::Value *Value;
204  llvm::Type *ElementType;
205  unsigned K : 3;
206  unsigned Align : 29;
207  saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
208  : Value(v), ElementType(e), K(k), Align(a) {}
209 
210  public:
211  static bool needsSaving(RValue value);
212  static saved_type save(CodeGenFunction &CGF, RValue value);
214 
215  // implementations in CGCleanup.cpp
216  };
217 
218  static bool needsSaving(type value) {
219  return saved_type::needsSaving(value);
220  }
221  static saved_type save(CodeGenFunction &CGF, type value) {
222  return saved_type::save(CGF, value);
223  }
224  static type restore(CodeGenFunction &CGF, saved_type value) {
225  return value.restore(CGF);
226  }
227 };
228 
229 /// CodeGenFunction - This class organizes the per-function state that is used
230 /// while generating LLVM code.
232  CodeGenFunction(const CodeGenFunction &) = delete;
233  void operator=(const CodeGenFunction &) = delete;
234 
235  friend class CGCXXABI;
236 public:
237  /// A jump destination is an abstract label, branching to which may
238  /// require a jump out through normal cleanups.
239  struct JumpDest {
240  JumpDest() : Block(nullptr), Index(0) {}
241  JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
242  unsigned Index)
243  : Block(Block), ScopeDepth(Depth), Index(Index) {}
244 
245  bool isValid() const { return Block != nullptr; }
246  llvm::BasicBlock *getBlock() const { return Block; }
247  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
248  unsigned getDestIndex() const { return Index; }
249 
250  // This should be used cautiously.
252  ScopeDepth = depth;
253  }
254 
255  private:
256  llvm::BasicBlock *Block;
258  unsigned Index;
259  };
260 
261  CodeGenModule &CGM; // Per-module state.
263 
264  // For EH/SEH outlined funclets, this field points to parent's CGF
266 
267  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
270 
271  // Stores variables for which we can't generate correct lifetime markers
272  // because of jumps.
274 
275  /// List of recently emitted OMPCanonicalLoops.
276  ///
277  /// Since OMPCanonicalLoops are nested inside other statements (in particular
278  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
279  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
280  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
281  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
282  /// this stack when done. Entering a new loop requires clearing this list; it
283  /// either means we start parsing a new loop nest (in which case the previous
284  /// loop nest goes out of scope) or a second loop in the same level in which
285  /// case it would be ambiguous into which of the two (or more) loops the loop
286  /// nest would extend.
288 
289  /// Number of nested loop to be consumed by the last surrounding
290  /// loop-associated directive.
292 
293  // CodeGen lambda for loops and support for ordered clause
294  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
295  JumpDest)>
297  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
298  const unsigned, const bool)>
300 
301  // Codegen lambda for loop bounds in worksharing loop constructs
302  typedef llvm::function_ref<std::pair<LValue, LValue>(
305 
306  // Codegen lambda for loop bounds in dispatch-based loop implementation
307  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
309  Address UB)>
311 
312  /// CGBuilder insert helper. This function is called after an
313  /// instruction is created using Builder.
314  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
315  llvm::BasicBlock *BB,
316  llvm::BasicBlock::iterator InsertPt) const;
317 
318  /// CurFuncDecl - Holds the Decl for the current outermost
319  /// non-closure context.
321  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
325  llvm::Function *CurFn = nullptr;
326 
327  /// Save Parameter Decl for coroutine.
329 
330  // Holds coroutine data if the current function is a coroutine. We use a
331  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
332  // in this header.
333  struct CGCoroInfo {
334  std::unique_ptr<CGCoroData> Data;
335  CGCoroInfo();
336  ~CGCoroInfo();
337  };
339 
340  bool isCoroutine() const {
341  return CurCoro.Data != nullptr;
342  }
343 
344  /// CurGD - The GlobalDecl for the current function being compiled.
346 
347  /// PrologueCleanupDepth - The cleanup depth enclosing all the
348  /// cleanups associated with the parameters.
350 
351  /// ReturnBlock - Unified return block.
353 
354  /// ReturnValue - The temporary alloca to hold the return
355  /// value. This is invalid iff the function has no return value.
357 
358  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
359  /// This is invalid if sret is not in use.
361 
362  /// If a return statement is being visited, this holds the return statment's
363  /// result expression.
364  const Expr *RetExpr = nullptr;
365 
366  /// Return true if a label was seen in the current scope.
368  if (CurLexicalScope)
369  return CurLexicalScope->hasLabels();
370  return !LabelMap.empty();
371  }
372 
373  /// AllocaInsertPoint - This is an instruction in the entry block before which
374  /// we prefer to insert allocas.
375  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
376 
377 private:
378  /// PostAllocaInsertPt - This is a place in the prologue where code can be
379  /// inserted that will be dominated by all the static allocas. This helps
380  /// achieve two things:
381  /// 1. Contiguity of all static allocas (within the prologue) is maintained.
382  /// 2. All other prologue code (which are dominated by static allocas) do
383  /// appear in the source order immediately after all static allocas.
384  ///
385  /// PostAllocaInsertPt will be lazily created when it is *really* required.
386  llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
387 
388 public:
389  /// Return PostAllocaInsertPt. If it is not yet created, then insert it
390  /// immediately after AllocaInsertPt.
391  llvm::Instruction *getPostAllocaInsertPoint() {
392  if (!PostAllocaInsertPt) {
393  assert(AllocaInsertPt &&
394  "Expected static alloca insertion point at function prologue");
395  assert(AllocaInsertPt->getParent()->isEntryBlock() &&
396  "EBB should be entry block of the current code gen function");
397  PostAllocaInsertPt = AllocaInsertPt->clone();
398  PostAllocaInsertPt->setName("postallocapt");
399  PostAllocaInsertPt->insertAfter(AllocaInsertPt);
400  }
401 
402  return PostAllocaInsertPt;
403  }
404 
405  /// API for captured statement code generation.
407  public:
409  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
410  explicit CGCapturedStmtInfo(const CapturedStmt &S,
412  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
413 
415  S.getCapturedRecordDecl()->field_begin();
416  for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
417  E = S.capture_end();
418  I != E; ++I, ++Field) {
419  if (I->capturesThis())
420  CXXThisFieldDecl = *Field;
421  else if (I->capturesVariable())
422  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
423  else if (I->capturesVariableByCopy())
424  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
425  }
426  }
427 
428  virtual ~CGCapturedStmtInfo();
429 
430  CapturedRegionKind getKind() const { return Kind; }
431 
432  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
433  // Retrieve the value of the context parameter.
434  virtual llvm::Value *getContextValue() const { return ThisValue; }
435 
436  /// Lookup the captured field decl for a variable.
437  virtual const FieldDecl *lookup(const VarDecl *VD) const {
438  return CaptureFields.lookup(VD->getCanonicalDecl());
439  }
440 
441  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
442  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
443 
444  static bool classof(const CGCapturedStmtInfo *) {
445  return true;
446  }
447 
448  /// Emit the captured statement body.
449  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
451  CGF.EmitStmt(S);
452  }
453 
454  /// Get the name of the capture helper.
455  virtual StringRef getHelperName() const { return "__captured_stmt"; }
456 
457  /// Get the CaptureFields
458  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
459  return CaptureFields;
460  }
461 
462  private:
463  /// The kind of captured statement being generated.
464  CapturedRegionKind Kind;
465 
466  /// Keep the map between VarDecl and FieldDecl.
467  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
468 
469  /// The base address of the captured record, passed in as the first
470  /// argument of the parallel region function.
471  llvm::Value *ThisValue;
472 
473  /// Captured 'this' type.
474  FieldDecl *CXXThisFieldDecl;
475  };
477 
478  /// RAII for correct setting/restoring of CapturedStmtInfo.
480  private:
481  CodeGenFunction &CGF;
482  CGCapturedStmtInfo *PrevCapturedStmtInfo;
483  public:
485  CGCapturedStmtInfo *NewCapturedStmtInfo)
486  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
487  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
488  }
489  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
490  };
491 
492  /// An abstract representation of regular/ObjC call/message targets.
494  /// The function declaration of the callee.
495  const Decl *CalleeDecl;
496 
497  public:
498  AbstractCallee() : CalleeDecl(nullptr) {}
499  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
500  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
501  bool hasFunctionDecl() const {
502  return isa_and_nonnull<FunctionDecl>(CalleeDecl);
503  }
504  const Decl *getDecl() const { return CalleeDecl; }
505  unsigned getNumParams() const {
506  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
507  return FD->getNumParams();
508  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
509  }
510  const ParmVarDecl *getParamDecl(unsigned I) const {
511  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512  return FD->getParamDecl(I);
513  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
514  }
515  };
516 
517  /// Sanitizers enabled for this function.
519 
520  /// True if CodeGen currently emits code implementing sanitizer checks.
521  bool IsSanitizerScope = false;
522 
523  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
525  CodeGenFunction *CGF;
526  public:
528  ~SanitizerScope();
529  };
530 
531  /// In C++, whether we are code generating a thunk. This controls whether we
532  /// should emit cleanups.
533  bool CurFuncIsThunk = false;
534 
535  /// In ARC, whether we should autorelease the return value.
536  bool AutoreleaseResult = false;
537 
538  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
539  /// potentially set the return value.
540  bool SawAsmBlock = false;
541 
542  const NamedDecl *CurSEHParent = nullptr;
543 
544  /// True if the current function is an outlined SEH helper. This can be a
545  /// finally block or filter expression.
546  bool IsOutlinedSEHHelper = false;
547 
548  /// True if CodeGen currently emits code inside presereved access index
549  /// region.
550  bool IsInPreservedAIRegion = false;
551 
552  /// True if the current statement has nomerge attribute.
554 
555  /// True if the current statement has noinline attribute.
557 
558  /// True if the current statement has always_inline attribute.
560 
561  // The CallExpr within the current statement that the musttail attribute
562  // applies to. nullptr if there is no 'musttail' on the current statement.
563  const CallExpr *MustTailCall = nullptr;
564 
565  /// Returns true if a function must make progress, which means the
566  /// mustprogress attribute can be added.
568  if (CGM.getCodeGenOpts().getFiniteLoops() ==
569  CodeGenOptions::FiniteLoopsKind::Never)
570  return false;
571 
572  // C++11 and later guarantees that a thread eventually will do one of the
573  // following (6.9.2.3.1 in C++11):
574  // - terminate,
575  // - make a call to a library I/O function,
576  // - perform an access through a volatile glvalue, or
577  // - perform a synchronization operation or an atomic operation.
578  //
579  // Hence each function is 'mustprogress' in C++11 or later.
580  return getLangOpts().CPlusPlus11;
581  }
582 
583  /// Returns true if a loop must make progress, which means the mustprogress
584  /// attribute can be added. \p HasConstantCond indicates whether the branch
585  /// condition is a known constant.
586  bool checkIfLoopMustProgress(bool HasConstantCond) {
587  if (CGM.getCodeGenOpts().getFiniteLoops() ==
588  CodeGenOptions::FiniteLoopsKind::Always)
589  return true;
590  if (CGM.getCodeGenOpts().getFiniteLoops() ==
591  CodeGenOptions::FiniteLoopsKind::Never)
592  return false;
593 
594  // If the containing function must make progress, loops also must make
595  // progress (as in C++11 and later).
597  return true;
598 
599  // Now apply rules for plain C (see 6.8.5.6 in C11).
600  // Loops with constant conditions do not have to make progress in any C
601  // version.
602  if (HasConstantCond)
603  return false;
604 
605  // Loops with non-constant conditions must make progress in C11 and later.
606  return getLangOpts().C11;
607  }
608 
609  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
610  llvm::Value *BlockPointer = nullptr;
611 
612  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
614 
615  /// A mapping from NRVO variables to the flags used to indicate
616  /// when the NRVO has been applied to this variable.
617  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
618 
622 
623  llvm::Instruction *CurrentFuncletPad = nullptr;
624 
625  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
626  bool isRedundantBeforeReturn() override { return true; }
627 
628  llvm::Value *Addr;
629  llvm::Value *Size;
630 
631  public:
632  CallLifetimeEnd(Address addr, llvm::Value *size)
633  : Addr(addr.getPointer()), Size(size) {}
634 
635  void Emit(CodeGenFunction &CGF, Flags flags) override {
636  CGF.EmitLifetimeEnd(Size, Addr);
637  }
638  };
639 
640  /// Header for data within LifetimeExtendedCleanupStack.
642  /// The size of the following cleanup object.
643  unsigned Size;
644  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
645  unsigned Kind : 31;
646  /// Whether this is a conditional cleanup.
647  unsigned IsConditional : 1;
648 
649  size_t getSize() const { return Size; }
650  CleanupKind getKind() const { return (CleanupKind)Kind; }
651  bool isConditional() const { return IsConditional; }
652  };
653 
654  /// i32s containing the indexes of the cleanup destinations.
656 
657  unsigned NextCleanupDestIndex = 1;
658 
659  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
660  llvm::BasicBlock *EHResumeBlock = nullptr;
661 
662  /// The exception slot. All landing pads write the current exception pointer
663  /// into this alloca.
664  llvm::Value *ExceptionSlot = nullptr;
665 
666  /// The selector slot. Under the MandatoryCleanup model, all landing pads
667  /// write the current selector value into this alloca.
668  llvm::AllocaInst *EHSelectorSlot = nullptr;
669 
670  /// A stack of exception code slots. Entering an __except block pushes a slot
671  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
672  /// a value from the top of the stack.
674 
675  /// Value returned by __exception_info intrinsic.
676  llvm::Value *SEHInfo = nullptr;
677 
678  /// Emits a landing pad for the current EH stack.
679  llvm::BasicBlock *EmitLandingPad();
680 
681  llvm::BasicBlock *getInvokeDestImpl();
682 
683  /// Parent loop-based directive for scan directive.
685  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
686  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
687  llvm::BasicBlock *OMPScanExitBlock = nullptr;
688  llvm::BasicBlock *OMPScanDispatch = nullptr;
689  bool OMPFirstScanLoop = false;
690 
691  /// Manages parent directive for scan directives.
693  CodeGenFunction &CGF;
694  const OMPExecutableDirective *ParentLoopDirectiveForScan;
695 
696  public:
698  CodeGenFunction &CGF,
699  const OMPExecutableDirective &ParentLoopDirectiveForScan)
700  : CGF(CGF),
701  ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
702  CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
703  }
705  CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
706  }
707  };
708 
709  template <class T>
711  return DominatingValue<T>::save(*this, value);
712  }
713 
715  public:
716  CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
717  CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
719 
720  private:
721  void ConstructorHelper(FPOptions FPFeatures);
722  CodeGenFunction &CGF;
723  FPOptions OldFPFeatures;
724  llvm::fp::ExceptionBehavior OldExcept;
725  llvm::RoundingMode OldRounding;
727  };
729 
730 public:
731  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
732  /// rethrows.
734 
735  /// A class controlling the emission of a finally block.
736  class FinallyInfo {
737  /// Where the catchall's edge through the cleanup should go.
738  JumpDest RethrowDest;
739 
740  /// A function to call to enter the catch.
741  llvm::FunctionCallee BeginCatchFn;
742 
743  /// An i1 variable indicating whether or not the @finally is
744  /// running for an exception.
745  llvm::AllocaInst *ForEHVar;
746 
747  /// An i8* variable into which the exception pointer to rethrow
748  /// has been saved.
749  llvm::AllocaInst *SavedExnVar;
750 
751  public:
752  void enter(CodeGenFunction &CGF, const Stmt *Finally,
753  llvm::FunctionCallee beginCatchFn,
754  llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
755  void exit(CodeGenFunction &CGF);
756  };
757 
758  /// Returns true inside SEH __try blocks.
759  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
760 
761  /// Returns true while emitting a cleanuppad.
762  bool isCleanupPadScope() const {
763  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
764  }
765 
766  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
767  /// current full-expression. Safe against the possibility that
768  /// we're currently inside a conditionally-evaluated expression.
769  template <class T, class... As>
771  // If we're not in a conditional branch, or if none of the
772  // arguments requires saving, then use the unconditional cleanup.
773  if (!isInConditionalBranch())
774  return EHStack.pushCleanup<T>(kind, A...);
775 
776  // Stash values in a tuple so we can guarantee the order of saves.
777  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778  SavedTuple Saved{saveValueInCond(A)...};
779 
780  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
783  }
784 
785  /// Queue a cleanup to be pushed after finishing the current full-expression,
786  /// potentially with an active flag.
787  template <class T, class... As>
789  if (!isInConditionalBranch())
790  return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791  A...);
792 
793  Address ActiveFlag = createCleanupActiveFlag();
794  assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795  "cleanup active flag should never need saving");
796 
797  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798  SavedTuple Saved{saveValueInCond(A)...};
799 
800  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801  pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802  }
803 
804  template <class T, class... As>
806  Address ActiveFlag, As... A) {
807  LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808  ActiveFlag.isValid()};
809 
810  size_t OldSize = LifetimeExtendedCleanupStack.size();
812  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813  (Header.IsConditional ? sizeof(ActiveFlag) : 0));
814 
815  static_assert(sizeof(Header) % alignof(T) == 0,
816  "Cleanup will be allocated on misaligned address");
817  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818  new (Buffer) LifetimeExtendedCleanupHeader(Header);
819  new (Buffer + sizeof(Header)) T(A...);
820  if (Header.IsConditional)
821  new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822  }
823 
824  /// Set up the last cleanup that was pushed as a conditional
825  /// full-expression cleanup.
828  }
829 
830  void initFullExprCleanupWithFlag(Address ActiveFlag);
832 
833  /// PushDestructorCleanup - Push a cleanup to call the
834  /// complete-object destructor of an object of the given type at the
835  /// given address. Does nothing if T is not a C++ class type with a
836  /// non-trivial destructor.
837  void PushDestructorCleanup(QualType T, Address Addr);
838 
839  /// PushDestructorCleanup - Push a cleanup to call the
840  /// complete-object variant of the given destructor on the object at
841  /// the given address.
843  Address Addr);
844 
845  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
846  /// process all branch fixups.
847  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
848 
849  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
850  /// The block cannot be reactivated. Pops it if it's the top of the
851  /// stack.
852  ///
853  /// \param DominatingIP - An instruction which is known to
854  /// dominate the current IP (if set) and which lies along
855  /// all paths of execution between the current IP and the
856  /// the point at which the cleanup comes into scope.
858  llvm::Instruction *DominatingIP);
859 
860  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
861  /// Cannot be used to resurrect a deactivated cleanup.
862  ///
863  /// \param DominatingIP - An instruction which is known to
864  /// dominate the current IP (if set) and which lies along
865  /// all paths of execution between the current IP and the
866  /// the point at which the cleanup comes into scope.
868  llvm::Instruction *DominatingIP);
869 
870  /// Enters a new scope for capturing cleanups, all of which
871  /// will be executed once the scope is exited.
873  EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
874  size_t LifetimeExtendedCleanupStackSize;
875  bool OldDidCallStackSave;
876  protected:
878  private:
879 
880  RunCleanupsScope(const RunCleanupsScope &) = delete;
881  void operator=(const RunCleanupsScope &) = delete;
882 
883  protected:
885 
886  public:
887  /// Enter a new cleanup scope.
890  {
891  CleanupStackDepth = CGF.EHStack.stable_begin();
892  LifetimeExtendedCleanupStackSize =
894  OldDidCallStackSave = CGF.DidCallStackSave;
895  CGF.DidCallStackSave = false;
896  OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
897  CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
898  }
899 
900  /// Exit this cleanup scope, emitting any accumulated cleanups.
902  if (PerformCleanup)
903  ForceCleanup();
904  }
905 
906  /// Determine whether this scope requires any cleanups.
907  bool requiresCleanups() const {
908  return CGF.EHStack.stable_begin() != CleanupStackDepth;
909  }
910 
911  /// Force the emission of cleanups now, instead of waiting
912  /// until this object is destroyed.
913  /// \param ValuesToReload - A list of values that need to be available at
914  /// the insertion point after cleanup emission. If cleanup emission created
915  /// a shared cleanup block, these value pointers will be rewritten.
916  /// Otherwise, they not will be modified.
917  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
918  assert(PerformCleanup && "Already forced cleanup");
919  CGF.DidCallStackSave = OldDidCallStackSave;
920  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
921  ValuesToReload);
922  PerformCleanup = false;
923  CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
924  }
925  };
926 
927  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
930 
932  SourceRange Range;
934  LexicalScope *ParentScope;
935 
936  LexicalScope(const LexicalScope &) = delete;
937  void operator=(const LexicalScope &) = delete;
938 
939  public:
940  /// Enter a new cleanup scope.
942  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
943  CGF.CurLexicalScope = this;
944  if (CGDebugInfo *DI = CGF.getDebugInfo())
945  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
946  }
947 
948  void addLabel(const LabelDecl *label) {
949  assert(PerformCleanup && "adding label to dead scope?");
950  Labels.push_back(label);
951  }
952 
953  /// Exit this cleanup scope, emitting any accumulated
954  /// cleanups.
956  if (CGDebugInfo *DI = CGF.getDebugInfo())
957  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
958 
959  // If we should perform a cleanup, force them now. Note that
960  // this ends the cleanup scope before rescoping any labels.
961  if (PerformCleanup) {
962  ApplyDebugLocation DL(CGF, Range.getEnd());
963  ForceCleanup();
964  }
965  }
966 
967  /// Force the emission of cleanups now, instead of waiting
968  /// until this object is destroyed.
969  void ForceCleanup() {
970  CGF.CurLexicalScope = ParentScope;
972 
973  if (!Labels.empty())
974  rescopeLabels();
975  }
976 
977  bool hasLabels() const {
978  return !Labels.empty();
979  }
980 
981  void rescopeLabels();
982  };
983 
984  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
985 
986  /// The class used to assign some variables some temporarily addresses.
987  class OMPMapVars {
988  DeclMapTy SavedLocals;
989  DeclMapTy SavedTempAddresses;
990  OMPMapVars(const OMPMapVars &) = delete;
991  void operator=(const OMPMapVars &) = delete;
992 
993  public:
994  explicit OMPMapVars() = default;
996  assert(SavedLocals.empty() && "Did not restored original addresses.");
997  };
998 
999  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1000  /// function \p CGF.
1001  /// \return true if at least one variable was set already, false otherwise.
1002  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1003  Address TempAddr) {
1004  LocalVD = LocalVD->getCanonicalDecl();
1005  // Only save it once.
1006  if (SavedLocals.count(LocalVD)) return false;
1007 
1008  // Copy the existing local entry to SavedLocals.
1009  auto it = CGF.LocalDeclMap.find(LocalVD);
1010  if (it != CGF.LocalDeclMap.end())
1011  SavedLocals.try_emplace(LocalVD, it->second);
1012  else
1013  SavedLocals.try_emplace(LocalVD, Address::invalid());
1014 
1015  // Generate the private entry.
1016  QualType VarTy = LocalVD->getType();
1017  if (VarTy->isReferenceType()) {
1018  Address Temp = CGF.CreateMemTemp(VarTy);
1019  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1020  TempAddr = Temp;
1021  }
1022  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1023 
1024  return true;
1025  }
1026 
1027  /// Applies new addresses to the list of the variables.
1028  /// \return true if at least one variable is using new address, false
1029  /// otherwise.
1030  bool apply(CodeGenFunction &CGF) {
1031  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1032  SavedTempAddresses.clear();
1033  return !SavedLocals.empty();
1034  }
1035 
1036  /// Restores original addresses of the variables.
1038  if (!SavedLocals.empty()) {
1039  copyInto(SavedLocals, CGF.LocalDeclMap);
1040  SavedLocals.clear();
1041  }
1042  }
1043 
1044  private:
1045  /// Copy all the entries in the source map over the corresponding
1046  /// entries in the destination, which must exist.
1047  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1048  for (auto &Pair : Src) {
1049  if (!Pair.second.isValid()) {
1050  Dest.erase(Pair.first);
1051  continue;
1052  }
1053 
1054  auto I = Dest.find(Pair.first);
1055  if (I != Dest.end())
1056  I->second = Pair.second;
1057  else
1058  Dest.insert(Pair);
1059  }
1060  }
1061  };
1062 
1063  /// The scope used to remap some variables as private in the OpenMP loop body
1064  /// (or other captured region emitted without outlining), and to restore old
1065  /// vars back on exit.
1067  OMPMapVars MappedVars;
1068  OMPPrivateScope(const OMPPrivateScope &) = delete;
1069  void operator=(const OMPPrivateScope &) = delete;
1070 
1071  public:
1072  /// Enter a new OpenMP private scope.
1074 
1075  /// Registers \p LocalVD variable as a private with \p Addr as the address
1076  /// of the corresponding private variable. \p
1077  /// PrivateGen is the address of the generated private variable.
1078  /// \return true if the variable is registered as private, false if it has
1079  /// been privatized already.
1080  bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1081  assert(PerformCleanup && "adding private to dead scope");
1082  return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1083  }
1084 
1085  /// Privatizes local variables previously registered as private.
1086  /// Registration is separate from the actual privatization to allow
1087  /// initializers use values of the original variables, not the private one.
1088  /// This is important, for example, if the private variable is a class
1089  /// variable initialized by a constructor that references other private
1090  /// variables. But at initialization original variables must be used, not
1091  /// private copies.
1092  /// \return true if at least one variable was privatized, false otherwise.
1093  bool Privatize() { return MappedVars.apply(CGF); }
1094 
1095  void ForceCleanup() {
1097  MappedVars.restore(CGF);
1098  }
1099 
1100  /// Exit scope - all the mapped variables are restored.
1102  if (PerformCleanup)
1103  ForceCleanup();
1104  }
1105 
1106  /// Checks if the global variable is captured in current function.
1107  bool isGlobalVarCaptured(const VarDecl *VD) const {
1108  VD = VD->getCanonicalDecl();
1109  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1110  }
1111  };
1112 
1113  /// Save/restore original map of previously emitted local vars in case when we
1114  /// need to duplicate emission of the same code several times in the same
1115  /// function for OpenMP code.
1117  CodeGenFunction &CGF;
1118  DeclMapTy SavedMap;
1119 
1120  public:
1122  : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123  ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124  };
1125 
1126  /// Takes the old cleanup stack size and emits the cleanup blocks
1127  /// that have been added.
1128  void
1129  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130  std::initializer_list<llvm::Value **> ValuesToReload = {});
1131 
1132  /// Takes the old cleanup stack size and emits the cleanup blocks
1133  /// that have been added, then adds all lifetime-extended cleanups from
1134  /// the given position to the stack.
1135  void
1136  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137  size_t OldLifetimeExtendedStackSize,
1138  std::initializer_list<llvm::Value **> ValuesToReload = {});
1139 
1140  void ResolveBranchFixups(llvm::BasicBlock *Target);
1141 
1142  /// The given basic block lies in the current EH scope, but may be a
1143  /// target of a potentially scope-crossing jump; get a stable handle
1144  /// to which we can perform this jump later.
1146  return JumpDest(Target,
1149  }
1150 
1151  /// The given basic block lies in the current EH scope, but may be a
1152  /// target of a potentially scope-crossing jump; get a stable handle
1153  /// to which we can perform this jump later.
1154  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1156  }
1157 
1158  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159  /// block through the normal cleanup handling code (if any) and then
1160  /// on to \arg Dest.
1161  void EmitBranchThroughCleanup(JumpDest Dest);
1162 
1163  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164  /// specified destination obviously has no cleanups to run. 'false' is always
1165  /// a conservatively correct answer for this method.
1166  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167 
1168  /// popCatchScope - Pops the catch scope at the top of the EHScope
1169  /// stack, emitting any required code (other than the catch handlers
1170  /// themselves).
1171  void popCatchScope();
1172 
1173  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175  llvm::BasicBlock *
1177 
1178  /// An object to manage conditionally-evaluated expressions.
1180  llvm::BasicBlock *StartBB;
1181 
1182  public:
1184  : StartBB(CGF.Builder.GetInsertBlock()) {}
1185 
1186  void begin(CodeGenFunction &CGF) {
1187  assert(CGF.OutermostConditional != this);
1188  if (!CGF.OutermostConditional)
1189  CGF.OutermostConditional = this;
1190  }
1191 
1192  void end(CodeGenFunction &CGF) {
1193  assert(CGF.OutermostConditional != nullptr);
1194  if (CGF.OutermostConditional == this)
1195  CGF.OutermostConditional = nullptr;
1196  }
1197 
1198  /// Returns a block which will be executed prior to each
1199  /// evaluation of the conditional code.
1200  llvm::BasicBlock *getStartingBlock() const {
1201  return StartBB;
1202  }
1203  };
1204 
1205  /// isInConditionalBranch - Return true if we're currently emitting
1206  /// one branch or the other of a conditional expression.
1207  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208 
1209  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210  assert(isInConditionalBranch());
1211  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213  store->setAlignment(addr.getAlignment().getAsAlign());
1214  }
1215 
1216  /// An RAII object to record that we're evaluating a statement
1217  /// expression.
1219  CodeGenFunction &CGF;
1220 
1221  /// We have to save the outermost conditional: cleanups in a
1222  /// statement expression aren't conditional just because the
1223  /// StmtExpr is.
1224  ConditionalEvaluation *SavedOutermostConditional;
1225 
1226  public:
1228  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229  CGF.OutermostConditional = nullptr;
1230  }
1231 
1233  CGF.OutermostConditional = SavedOutermostConditional;
1234  CGF.EnsureInsertPoint();
1235  }
1236  };
1237 
1238  /// An object which temporarily prevents a value from being
1239  /// destroyed by aggressive peephole optimizations that assume that
1240  /// all uses of a value have been realized in the IR.
1242  llvm::Instruction *Inst;
1243  friend class CodeGenFunction;
1244 
1245  public:
1246  PeepholeProtection() : Inst(nullptr) {}
1247  };
1248 
1249  /// A non-RAII class containing all the information about a bound
1250  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
1251  /// this which makes individual mappings very simple; using this
1252  /// class directly is useful when you have a variable number of
1253  /// opaque values or don't want the RAII functionality for some
1254  /// reason.
1256  const OpaqueValueExpr *OpaqueValue;
1257  bool BoundLValue;
1259 
1261  bool boundLValue)
1262  : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263  public:
1264  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265 
1266  static bool shouldBindAsLValue(const Expr *expr) {
1267  // gl-values should be bound as l-values for obvious reasons.
1268  // Records should be bound as l-values because IR generation
1269  // always keeps them in memory. Expressions of function type
1270  // act exactly like l-values but are formally required to be
1271  // r-values in C.
1272  return expr->isGLValue() ||
1273  expr->getType()->isFunctionType() ||
1274  hasAggregateEvaluationKind(expr->getType());
1275  }
1276 
1278  const OpaqueValueExpr *ov,
1279  const Expr *e) {
1280  if (shouldBindAsLValue(ov))
1281  return bind(CGF, ov, CGF.EmitLValue(e));
1282  return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283  }
1284 
1286  const OpaqueValueExpr *ov,
1287  const LValue &lv) {
1288  assert(shouldBindAsLValue(ov));
1289  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290  return OpaqueValueMappingData(ov, true);
1291  }
1292 
1294  const OpaqueValueExpr *ov,
1295  const RValue &rv) {
1296  assert(!shouldBindAsLValue(ov));
1297  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298 
1299  OpaqueValueMappingData data(ov, false);
1300 
1301  // Work around an extremely aggressive peephole optimization in
1302  // EmitScalarConversion which assumes that all other uses of a
1303  // value are extant.
1304  data.Protection = CGF.protectFromPeepholes(rv);
1305 
1306  return data;
1307  }
1308 
1309  bool isValid() const { return OpaqueValue != nullptr; }
1310  void clear() { OpaqueValue = nullptr; }
1311 
1313  assert(OpaqueValue && "no data to unbind!");
1314 
1315  if (BoundLValue) {
1316  CGF.OpaqueLValues.erase(OpaqueValue);
1317  } else {
1318  CGF.OpaqueRValues.erase(OpaqueValue);
1319  CGF.unprotectFromPeepholes(Protection);
1320  }
1321  }
1322  };
1323 
1324  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1326  CodeGenFunction &CGF;
1328 
1329  public:
1330  static bool shouldBindAsLValue(const Expr *expr) {
1332  }
1333 
1334  /// Build the opaque value mapping for the given conditional
1335  /// operator if it's the GNU ?: extension. This is a common
1336  /// enough pattern that the convenience operator is really
1337  /// helpful.
1338  ///
1340  const AbstractConditionalOperator *op) : CGF(CGF) {
1341  if (isa<ConditionalOperator>(op))
1342  // Leave Data empty.
1343  return;
1344 
1345  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1347  e->getCommon());
1348  }
1349 
1350  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351  /// expression is set to the expression the OVE represents.
1353  : CGF(CGF) {
1354  if (OV) {
1355  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356  "for OVE with no source expression");
1357  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358  }
1359  }
1360 
1362  const OpaqueValueExpr *opaqueValue,
1363  LValue lvalue)
1364  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365  }
1366 
1368  const OpaqueValueExpr *opaqueValue,
1369  RValue rvalue)
1370  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371  }
1372 
1373  void pop() {
1374  Data.unbind(CGF);
1375  Data.clear();
1376  }
1377 
1379  if (Data.isValid()) Data.unbind(CGF);
1380  }
1381  };
1382 
1383 private:
1384  CGDebugInfo *DebugInfo;
1385  /// Used to create unique names for artificial VLA size debug info variables.
1386  unsigned VLAExprCounter = 0;
1387  bool DisableDebugInfo = false;
1388 
1389  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390  /// calling llvm.stacksave for multiple VLAs in the same scope.
1391  bool DidCallStackSave = false;
1392 
1393  /// IndirectBranch - The first time an indirect goto is seen we create a block
1394  /// with an indirect branch. Every time we see the address of a label taken,
1395  /// we add the label to the indirect goto. Every subsequent indirect goto is
1396  /// codegen'd as a jump to the IndirectBranch's basic block.
1397  llvm::IndirectBrInst *IndirectBranch = nullptr;
1398 
1399  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400  /// decls.
1401  DeclMapTy LocalDeclMap;
1402 
1403  // Keep track of the cleanups for callee-destructed parameters pushed to the
1404  // cleanup stack so that they can be deactivated later.
1405  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406  CalleeDestructedParamCleanups;
1407 
1408  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410  /// parameter.
1411  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412  SizeArguments;
1413 
1414  /// Track escaped local variables with auto storage. Used during SEH
1415  /// outlining to produce a call to llvm.localescape.
1416  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417 
1418  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420 
1421  // BreakContinueStack - This keeps track of where break and continue
1422  // statements should jump to.
1423  struct BreakContinue {
1424  BreakContinue(JumpDest Break, JumpDest Continue)
1425  : BreakBlock(Break), ContinueBlock(Continue) {}
1426 
1427  JumpDest BreakBlock;
1428  JumpDest ContinueBlock;
1429  };
1430  SmallVector<BreakContinue, 8> BreakContinueStack;
1431 
1432  /// Handles cancellation exit points in OpenMP-related constructs.
1433  class OpenMPCancelExitStack {
1434  /// Tracks cancellation exit point and join point for cancel-related exit
1435  /// and normal exit.
1436  struct CancelExit {
1437  CancelExit() = default;
1438  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439  JumpDest ContBlock)
1440  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441  OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442  /// true if the exit block has been emitted already by the special
1443  /// emitExit() call, false if the default codegen is used.
1444  bool HasBeenEmitted = false;
1445  JumpDest ExitBlock;
1446  JumpDest ContBlock;
1447  };
1448 
1449  SmallVector<CancelExit, 8> Stack;
1450 
1451  public:
1452  OpenMPCancelExitStack() : Stack(1) {}
1453  ~OpenMPCancelExitStack() = default;
1454  /// Fetches the exit block for the current OpenMP construct.
1455  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456  /// Emits exit block with special codegen procedure specific for the related
1457  /// OpenMP construct + emits code for normal construct cleanup.
1458  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1461  assert(CGF.getOMPCancelDestination(Kind).isValid());
1462  assert(CGF.HaveInsertPoint());
1463  assert(!Stack.back().HasBeenEmitted);
1464  auto IP = CGF.Builder.saveAndClearIP();
1465  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466  CodeGen(CGF);
1467  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468  CGF.Builder.restoreIP(IP);
1469  Stack.back().HasBeenEmitted = true;
1470  }
1471  CodeGen(CGF);
1472  }
1473  /// Enter the cancel supporting \a Kind construct.
1474  /// \param Kind OpenMP directive that supports cancel constructs.
1475  /// \param HasCancel true, if the construct has inner cancel directive,
1476  /// false otherwise.
1477  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478  Stack.push_back({Kind,
1479  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1480  : JumpDest(),
1481  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1482  : JumpDest()});
1483  }
1484  /// Emits default exit point for the cancel construct (if the special one
1485  /// has not be used) + join point for cancel/normal exits.
1486  void exit(CodeGenFunction &CGF) {
1487  if (getExitBlock().isValid()) {
1488  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489  bool HaveIP = CGF.HaveInsertPoint();
1490  if (!Stack.back().HasBeenEmitted) {
1491  if (HaveIP)
1492  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495  }
1496  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497  if (!HaveIP) {
1498  CGF.Builder.CreateUnreachable();
1499  CGF.Builder.ClearInsertionPoint();
1500  }
1501  }
1502  Stack.pop_back();
1503  }
1504  };
1505  OpenMPCancelExitStack OMPCancelStack;
1506 
1507  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509  Stmt::Likelihood LH);
1510 
1511  CodeGenPGO PGO;
1512 
1513  /// Calculate branch weights appropriate for PGO data
1514  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515  uint64_t FalseCount) const;
1516  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518  uint64_t LoopCount) const;
1519 
1520 public:
1521  /// Increment the profiler's counter for the given statement by \p StepV.
1522  /// If \p StepV is null, the default increment is 1.
1523  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1525  !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1526  PGO.emitCounterIncrement(Builder, S, StepV);
1527  PGO.setCurrentStmt(S);
1528  }
1529 
1530  /// Get the profiler's count for the given statement.
1532  return PGO.getStmtCount(S).value_or(0);
1533  }
1534 
1535  /// Set the profiler's current count.
1537  PGO.setCurrentRegionCount(Count);
1538  }
1539 
1540  /// Get the profiler's current count. This is generally the count for the most
1541  /// recently incremented counter.
1543  return PGO.getCurrentRegionCount();
1544  }
1545 
1546 private:
1547 
1548  /// SwitchInsn - This is nearest current switch instruction. It is null if
1549  /// current context is not in a switch.
1550  llvm::SwitchInst *SwitchInsn = nullptr;
1551  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1552  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1553 
1554  /// The likelihood attributes of the SwitchCase.
1555  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1556 
1557  /// CaseRangeBlock - This block holds if condition check for last case
1558  /// statement range in current switch instruction.
1559  llvm::BasicBlock *CaseRangeBlock = nullptr;
1560 
1561  /// OpaqueLValues - Keeps track of the current set of opaque value
1562  /// expressions.
1563  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1564  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1565 
1566  // VLASizeMap - This keeps track of the associated size for each VLA type.
1567  // We track this by the size expression rather than the type itself because
1568  // in certain situations, like a const qualifier applied to an VLA typedef,
1569  // multiple VLA types can share the same size expression.
1570  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1571  // enter/leave scopes.
1572  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1573 
1574  /// A block containing a single 'unreachable' instruction. Created
1575  /// lazily by getUnreachableBlock().
1576  llvm::BasicBlock *UnreachableBlock = nullptr;
1577 
1578  /// Counts of the number return expressions in the function.
1579  unsigned NumReturnExprs = 0;
1580 
1581  /// Count the number of simple (constant) return expressions in the function.
1582  unsigned NumSimpleReturnExprs = 0;
1583 
1584  /// The last regular (non-return) debug location (breakpoint) in the function.
1585  SourceLocation LastStopPoint;
1586 
1587 public:
1588  /// Source location information about the default argument or member
1589  /// initializer expression we're evaluating, if any.
1591  using SourceLocExprScopeGuard =
1593 
1594  /// A scope within which we are constructing the fields of an object which
1595  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1596  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1598  public:
1600  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1601  CGF.CXXDefaultInitExprThis = This;
1602  }
1604  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1605  }
1606 
1607  private:
1608  CodeGenFunction &CGF;
1609  Address OldCXXDefaultInitExprThis;
1610  };
1611 
1612  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1613  /// is overridden to be the object under construction.
1615  public:
1617  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1618  OldCXXThisAlignment(CGF.CXXThisAlignment),
1620  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1621  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1622  }
1624  CGF.CXXThisValue = OldCXXThisValue;
1625  CGF.CXXThisAlignment = OldCXXThisAlignment;
1626  }
1627 
1628  public:
1630  llvm::Value *OldCXXThisValue;
1633  };
1634 
1638  };
1639 
1640  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1641  /// current loop index is overridden.
1643  public:
1644  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1645  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1646  CGF.ArrayInitIndex = Index;
1647  }
1649  CGF.ArrayInitIndex = OldArrayInitIndex;
1650  }
1651 
1652  private:
1653  CodeGenFunction &CGF;
1654  llvm::Value *OldArrayInitIndex;
1655  };
1656 
1658  public:
1660  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1661  OldCurCodeDecl(CGF.CurCodeDecl),
1662  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1663  OldCXXABIThisValue(CGF.CXXABIThisValue),
1664  OldCXXThisValue(CGF.CXXThisValue),
1665  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1666  OldCXXThisAlignment(CGF.CXXThisAlignment),
1667  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1668  OldCXXInheritedCtorInitExprArgs(
1669  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1670  CGF.CurGD = GD;
1671  CGF.CurFuncDecl = CGF.CurCodeDecl =
1672  cast<CXXConstructorDecl>(GD.getDecl());
1673  CGF.CXXABIThisDecl = nullptr;
1674  CGF.CXXABIThisValue = nullptr;
1675  CGF.CXXThisValue = nullptr;
1676  CGF.CXXABIThisAlignment = CharUnits();
1677  CGF.CXXThisAlignment = CharUnits();
1678  CGF.ReturnValue = Address::invalid();
1679  CGF.FnRetTy = QualType();
1680  CGF.CXXInheritedCtorInitExprArgs.clear();
1681  }
1683  CGF.CurGD = OldCurGD;
1684  CGF.CurFuncDecl = OldCurFuncDecl;
1685  CGF.CurCodeDecl = OldCurCodeDecl;
1686  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1687  CGF.CXXABIThisValue = OldCXXABIThisValue;
1688  CGF.CXXThisValue = OldCXXThisValue;
1689  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1690  CGF.CXXThisAlignment = OldCXXThisAlignment;
1691  CGF.ReturnValue = OldReturnValue;
1692  CGF.FnRetTy = OldFnRetTy;
1693  CGF.CXXInheritedCtorInitExprArgs =
1694  std::move(OldCXXInheritedCtorInitExprArgs);
1695  }
1696 
1697  private:
1698  CodeGenFunction &CGF;
1699  GlobalDecl OldCurGD;
1700  const Decl *OldCurFuncDecl;
1701  const Decl *OldCurCodeDecl;
1702  ImplicitParamDecl *OldCXXABIThisDecl;
1703  llvm::Value *OldCXXABIThisValue;
1704  llvm::Value *OldCXXThisValue;
1705  CharUnits OldCXXABIThisAlignment;
1706  CharUnits OldCXXThisAlignment;
1707  Address OldReturnValue;
1708  QualType OldFnRetTy;
1709  CallArgList OldCXXInheritedCtorInitExprArgs;
1710  };
1711 
1712  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1713  // region body, and finalization codegen callbacks. This will class will also
1714  // contain privatization functions used by the privatization call backs
1715  //
1716  // TODO: this is temporary class for things that are being moved out of
1717  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1718  // utility function for use with the OMPBuilder. Once that move to use the
1719  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1720  // directly, or a new helper class that will contain functions used by both
1721  // this and the OMPBuilder
1722 
1724 
1725  OMPBuilderCBHelpers() = delete;
1726  OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1728 
1729  using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1730 
1731  /// Cleanup action for allocate support.
1733 
1734  private:
1735  llvm::CallInst *RTLFnCI;
1736 
1737  public:
1738  OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1739  RLFnCI->removeFromParent();
1740  }
1741 
1742  void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1743  if (!CGF.HaveInsertPoint())
1744  return;
1745  CGF.Builder.Insert(RTLFnCI);
1746  }
1747  };
1748 
1749  /// Returns address of the threadprivate variable for the current
1750  /// thread. This Also create any necessary OMP runtime calls.
1751  ///
1752  /// \param VD VarDecl for Threadprivate variable.
1753  /// \param VDAddr Address of the Vardecl
1754  /// \param Loc The location where the barrier directive was encountered
1756  const VarDecl *VD, Address VDAddr,
1757  SourceLocation Loc);
1758 
1759  /// Gets the OpenMP-specific address of the local variable /p VD.
1761  const VarDecl *VD);
1762  /// Get the platform-specific name separator.
1763  /// \param Parts different parts of the final name that needs separation
1764  /// \param FirstSeparator First separator used between the initial two
1765  /// parts of the name.
1766  /// \param Separator separator used between all of the rest consecutinve
1767  /// parts of the name
1769  StringRef FirstSeparator = ".",
1770  StringRef Separator = ".");
1771  /// Emit the Finalization for an OMP region
1772  /// \param CGF The Codegen function this belongs to
1773  /// \param IP Insertion point for generating the finalization code.
1775  CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1776  assert(IP.getBlock()->end() != IP.getPoint() &&
1777  "OpenMP IR Builder should cause terminated block!");
1778 
1779  llvm::BasicBlock *IPBB = IP.getBlock();
1780  llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1781  assert(DestBB && "Finalization block should have one successor!");
1782 
1783  // erase and replace with cleanup branch.
1784  IPBB->getTerminator()->eraseFromParent();
1785  CGF.Builder.SetInsertPoint(IPBB);
1787  CGF.EmitBranchThroughCleanup(Dest);
1788  }
1789 
1790  /// Emit the body of an OMP region
1791  /// \param CGF The Codegen function this belongs to
1792  /// \param RegionBodyStmt The body statement for the OpenMP region being
1793  /// generated
1794  /// \param AllocaIP Where to insert alloca instructions
1795  /// \param CodeGenIP Where to insert the region code
1796  /// \param RegionName Name to be used for new blocks
1797  static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1798  const Stmt *RegionBodyStmt,
1799  InsertPointTy AllocaIP,
1800  InsertPointTy CodeGenIP,
1801  Twine RegionName);
1802 
1803  static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1804  llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1805  ArrayRef<llvm::Value *> Args) {
1806  llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1807  if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1808  CodeGenIPBBTI->eraseFromParent();
1809 
1810  CGF.Builder.SetInsertPoint(CodeGenIPBB);
1811 
1812  if (Fn->doesNotThrow())
1813  CGF.EmitNounwindRuntimeCall(Fn, Args);
1814  else
1815  CGF.EmitRuntimeCall(Fn, Args);
1816 
1817  if (CGF.Builder.saveIP().isSet())
1818  CGF.Builder.CreateBr(&FiniBB);
1819  }
1820 
1821  /// Emit the body of an OMP region that will be outlined in
1822  /// OpenMPIRBuilder::finalize().
1823  /// \param CGF The Codegen function this belongs to
1824  /// \param RegionBodyStmt The body statement for the OpenMP region being
1825  /// generated
1826  /// \param AllocaIP Where to insert alloca instructions
1827  /// \param CodeGenIP Where to insert the region code
1828  /// \param RegionName Name to be used for new blocks
1829  static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1830  const Stmt *RegionBodyStmt,
1831  InsertPointTy AllocaIP,
1832  InsertPointTy CodeGenIP,
1833  Twine RegionName);
1834 
1835  /// RAII for preserving necessary info during Outlined region body codegen.
1837 
1838  llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1839  CodeGenFunction::JumpDest OldReturnBlock;
1840  CodeGenFunction &CGF;
1841 
1842  public:
1844  llvm::BasicBlock &RetBB)
1845  : CGF(cgf) {
1846  assert(AllocaIP.isSet() &&
1847  "Must specify Insertion point for allocas of outlined function");
1848  OldAllocaIP = CGF.AllocaInsertPt;
1849  CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1850 
1851  OldReturnBlock = CGF.ReturnBlock;
1852  CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1853  }
1854 
1856  CGF.AllocaInsertPt = OldAllocaIP;
1857  CGF.ReturnBlock = OldReturnBlock;
1858  }
1859  };
1860 
1861  /// RAII for preserving necessary info during inlined region body codegen.
1863 
1864  llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1865  CodeGenFunction &CGF;
1866 
1867  public:
1869  llvm::BasicBlock &FiniBB)
1870  : CGF(cgf) {
1871  // Alloca insertion block should be in the entry block of the containing
1872  // function so it expects an empty AllocaIP in which case will reuse the
1873  // old alloca insertion point, or a new AllocaIP in the same block as
1874  // the old one
1875  assert((!AllocaIP.isSet() ||
1876  CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1877  "Insertion point should be in the entry block of containing "
1878  "function!");
1879  OldAllocaIP = CGF.AllocaInsertPt;
1880  if (AllocaIP.isSet())
1881  CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1882 
1883  // TODO: Remove the call, after making sure the counter is not used by
1884  // the EHStack.
1885  // Since this is an inlined region, it should not modify the
1886  // ReturnBlock, and should reuse the one for the enclosing outlined
1887  // region. So, the JumpDest being return by the function is discarded
1888  (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1889  }
1890 
1891  ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1892  };
1893  };
1894 
1895 private:
1896  /// CXXThisDecl - When generating code for a C++ member function,
1897  /// this will hold the implicit 'this' declaration.
1898  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1899  llvm::Value *CXXABIThisValue = nullptr;
1900  llvm::Value *CXXThisValue = nullptr;
1901  CharUnits CXXABIThisAlignment;
1902  CharUnits CXXThisAlignment;
1903 
1904  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1905  /// this expression.
1906  Address CXXDefaultInitExprThis = Address::invalid();
1907 
1908  /// The current array initialization index when evaluating an
1909  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1910  llvm::Value *ArrayInitIndex = nullptr;
1911 
1912  /// The values of function arguments to use when evaluating
1913  /// CXXInheritedCtorInitExprs within this context.
1914  CallArgList CXXInheritedCtorInitExprArgs;
1915 
1916  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1917  /// destructor, this will hold the implicit argument (e.g. VTT).
1918  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1919  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1920 
1921  /// OutermostConditional - Points to the outermost active
1922  /// conditional control. This is used so that we know if a
1923  /// temporary should be destroyed conditionally.
1924  ConditionalEvaluation *OutermostConditional = nullptr;
1925 
1926  /// The current lexical scope.
1927  LexicalScope *CurLexicalScope = nullptr;
1928 
1929  /// The current source location that should be used for exception
1930  /// handling code.
1931  SourceLocation CurEHLocation;
1932 
1933  /// BlockByrefInfos - For each __block variable, contains
1934  /// information about the layout of the variable.
1935  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1936 
1937  /// Used by -fsanitize=nullability-return to determine whether the return
1938  /// value can be checked.
1939  llvm::Value *RetValNullabilityPrecondition = nullptr;
1940 
1941  /// Check if -fsanitize=nullability-return instrumentation is required for
1942  /// this function.
1943  bool requiresReturnValueNullabilityCheck() const {
1944  return RetValNullabilityPrecondition;
1945  }
1946 
1947  /// Used to store precise source locations for return statements by the
1948  /// runtime return value checks.
1949  Address ReturnLocation = Address::invalid();
1950 
1951  /// Check if the return value of this function requires sanitization.
1952  bool requiresReturnValueCheck() const;
1953 
1954  llvm::BasicBlock *TerminateLandingPad = nullptr;
1955  llvm::BasicBlock *TerminateHandler = nullptr;
1957 
1958  /// Terminate funclets keyed by parent funclet pad.
1959  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1960 
1961  /// Largest vector width used in ths function. Will be used to create a
1962  /// function attribute.
1963  unsigned LargestVectorWidth = 0;
1964 
1965  /// True if we need emit the life-time markers. This is initially set in
1966  /// the constructor, but could be overwritten to true if this is a coroutine.
1967  bool ShouldEmitLifetimeMarkers;
1968 
1969  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1970  /// the function metadata.
1971  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1972  llvm::Function *Fn);
1973 
1974 public:
1975  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1976  ~CodeGenFunction();
1977 
1978  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1979  ASTContext &getContext() const { return CGM.getContext(); }
1981  if (DisableDebugInfo)
1982  return nullptr;
1983  return DebugInfo;
1984  }
1985  void disableDebugInfo() { DisableDebugInfo = true; }
1986  void enableDebugInfo() { DisableDebugInfo = false; }
1987 
1989  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1990  }
1991 
1992  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1993 
1994  /// Returns a pointer to the function's exception object and selector slot,
1995  /// which is assigned in every landing pad.
1998 
1999  /// Returns the contents of the function's exception object and selector
2000  /// slots.
2001  llvm::Value *getExceptionFromSlot();
2002  llvm::Value *getSelectorFromSlot();
2003 
2005 
2006  llvm::BasicBlock *getUnreachableBlock() {
2007  if (!UnreachableBlock) {
2008  UnreachableBlock = createBasicBlock("unreachable");
2009  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2010  }
2011  return UnreachableBlock;
2012  }
2013 
2014  llvm::BasicBlock *getInvokeDest() {
2015  if (!EHStack.requiresLandingPad()) return nullptr;
2016  return getInvokeDestImpl();
2017  }
2018 
2019  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2020 
2021  const TargetInfo &getTarget() const { return Target; }
2022  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2024  return CGM.getTargetCodeGenInfo();
2025  }
2026 
2027  //===--------------------------------------------------------------------===//
2028  // Cleanups
2029  //===--------------------------------------------------------------------===//
2030 
2031  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2032 
2033  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2034  Address arrayEndPointer,
2035  QualType elementType,
2036  CharUnits elementAlignment,
2037  Destroyer *destroyer);
2038  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2039  llvm::Value *arrayEnd,
2040  QualType elementType,
2041  CharUnits elementAlignment,
2042  Destroyer *destroyer);
2043 
2044  void pushDestroy(QualType::DestructionKind dtorKind,
2045  Address addr, QualType type);
2047  Address addr, QualType type);
2049  Destroyer *destroyer, bool useEHCleanupForArray);
2051  QualType type, Destroyer *destroyer,
2052  bool useEHCleanupForArray);
2053  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2054  llvm::Value *CompletePtr,
2055  QualType ElementType);
2057  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2058  bool useEHCleanupForArray);
2059  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2060  Destroyer *destroyer,
2061  bool useEHCleanupForArray,
2062  const VarDecl *VD);
2063  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2064  QualType elementType, CharUnits elementAlign,
2065  Destroyer *destroyer,
2066  bool checkZeroLength, bool useEHCleanup);
2067 
2069 
2070  /// Determines whether an EH cleanup is required to destroy a type
2071  /// with the given destruction kind.
2073  switch (kind) {
2074  case QualType::DK_none:
2075  return false;
2079  return getLangOpts().Exceptions;
2081  return getLangOpts().Exceptions &&
2082  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2083  }
2084  llvm_unreachable("bad destruction kind");
2085  }
2086 
2089  }
2090 
2091  //===--------------------------------------------------------------------===//
2092  // Objective-C
2093  //===--------------------------------------------------------------------===//
2094 
2095  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2096 
2097  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2098 
2099  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2101  const ObjCPropertyImplDecl *PID);
2102  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2103  const ObjCPropertyImplDecl *propImpl,
2104  const ObjCMethodDecl *GetterMothodDecl,
2105  llvm::Constant *AtomicHelperFn);
2106 
2108  ObjCMethodDecl *MD, bool ctor);
2109 
2110  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2111  /// for the given property.
2113  const ObjCPropertyImplDecl *PID);
2114  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2115  const ObjCPropertyImplDecl *propImpl,
2116  llvm::Constant *AtomicHelperFn);
2117 
2118  //===--------------------------------------------------------------------===//
2119  // Block Bits
2120  //===--------------------------------------------------------------------===//
2121 
2122  /// Emit block literal.
2123  /// \return an LLVM value which is a pointer to a struct which contains
2124  /// information about the block, including the block invoke function, the
2125  /// captured variables, etc.
2126  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2127 
2128  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2129  const CGBlockInfo &Info,
2130  const DeclMapTy &ldm,
2131  bool IsLambdaConversionToBlock,
2132  bool BuildGlobalBlock);
2133 
2134  /// Check if \p T is a C++ class that has a destructor that can throw.
2135  static bool cxxDestructorCanThrow(QualType T);
2136 
2137  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2138  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2140  const ObjCPropertyImplDecl *PID);
2142  const ObjCPropertyImplDecl *PID);
2143  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2144 
2145  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2146  bool CanThrow);
2147 
2148  class AutoVarEmission;
2149 
2150  void emitByrefStructureInit(const AutoVarEmission &emission);
2151 
2152  /// Enter a cleanup to destroy a __block variable. Note that this
2153  /// cleanup should be a no-op if the variable hasn't left the stack
2154  /// yet; if a cleanup is required for the variable itself, that needs
2155  /// to be done externally.
2156  ///
2157  /// \param Kind Cleanup kind.
2158  ///
2159  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2160  /// structure that will be passed to _Block_object_dispose. When
2161  /// \p LoadBlockVarAddr is true, the address of the field of the block
2162  /// structure that holds the address of the __block structure.
2163  ///
2164  /// \param Flags The flag that will be passed to _Block_object_dispose.
2165  ///
2166  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2167  /// \p Addr to get the address of the __block structure.
2169  bool LoadBlockVarAddr, bool CanThrow);
2170 
2171  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2172  llvm::Value *ptr);
2173 
2176 
2177  /// BuildBlockByrefAddress - Computes the location of the
2178  /// data in a variable which is declared as __block.
2179  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2180  bool followForward = true);
2182  const BlockByrefInfo &info,
2183  bool followForward,
2184  const llvm::Twine &name);
2185 
2187 
2189 
2190  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2191  const CGFunctionInfo &FnInfo);
2192 
2193  /// Annotate the function with an attribute that disables TSan checking at
2194  /// runtime.
2195  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2196 
2197  /// Emit code for the start of a function.
2198  /// \param Loc The location to be associated with the function.
2199  /// \param StartLoc The location of the function body.
2200  void StartFunction(GlobalDecl GD,
2201  QualType RetTy,
2202  llvm::Function *Fn,
2203  const CGFunctionInfo &FnInfo,
2204  const FunctionArgList &Args,
2206  SourceLocation StartLoc = SourceLocation());
2207 
2208  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2209 
2211  void EmitDestructorBody(FunctionArgList &Args);
2213  void EmitFunctionBody(const Stmt *Body);
2214  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2215 
2216  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2217  CallArgList &CallArgs);
2220  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2222  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2223  }
2224  void EmitAsanPrologueOrEpilogue(bool Prologue);
2225 
2226  /// Emit the unified return block, trying to avoid its emission when
2227  /// possible.
2228  /// \return The debug location of the user written return statement if the
2229  /// return block is is avoided.
2230  llvm::DebugLoc EmitReturnBlock();
2231 
2232  /// FinishFunction - Complete IR generation of the current function. It is
2233  /// legal to call this function even if there is no current insertion point.
2235 
2236  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2237  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2238 
2239  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2240  const ThunkInfo *Thunk, bool IsUnprototyped);
2241 
2242  void FinishThunk();
2243 
2244  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2245  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2246  llvm::FunctionCallee Callee);
2247 
2248  /// Generate a thunk for the given method.
2249  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2250  GlobalDecl GD, const ThunkInfo &Thunk,
2251  bool IsUnprototyped);
2252 
2253  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2254  const CGFunctionInfo &FnInfo,
2255  GlobalDecl GD, const ThunkInfo &Thunk);
2256 
2258  FunctionArgList &Args);
2259 
2260  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2261 
2262  /// Struct with all information about dynamic [sub]class needed to set vptr.
2263  struct VPtr {
2268  };
2269 
2270  /// Initialize the vtable pointer of the given subobject.
2271  void InitializeVTablePointer(const VPtr &vptr);
2272 
2274 
2276  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2277 
2278  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2279  CharUnits OffsetFromNearestVBase,
2280  bool BaseIsNonVirtualPrimaryBase,
2281  const CXXRecordDecl *VTableClass,
2282  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2283 
2284  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2285 
2286  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2287  /// to by This.
2288  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2289  const CXXRecordDecl *VTableClass);
2290 
2299  };
2300 
2301  /// Derived is the presumed address of an object of type T after a
2302  /// cast. If T is a polymorphic class type, emit a check that the virtual
2303  /// table for Derived belongs to a class derived from T.
2304  void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2305  CFITypeCheckKind TCK, SourceLocation Loc);
2306 
2307  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2308  /// If vptr CFI is enabled, emit a check that VTable is valid.
2309  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2310  CFITypeCheckKind TCK, SourceLocation Loc);
2311 
2312  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2313  /// RD using llvm.type.test.
2314  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2315  CFITypeCheckKind TCK, SourceLocation Loc);
2316 
2317  /// If whole-program virtual table optimization is enabled, emit an assumption
2318  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2319  /// enabled, emit a check that VTable is a member of RD's type identifier.
2321  llvm::Value *VTable, SourceLocation Loc);
2322 
2323  /// Returns whether we should perform a type checked load when loading a
2324  /// virtual function for virtual calls to members of RD. This is generally
2325  /// true when both vcall CFI and whole-program-vtables are enabled.
2327 
2328  /// Emit a type checked load from the given vtable.
2329  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2330  llvm::Value *VTable,
2331  llvm::Type *VTableTy,
2332  uint64_t VTableByteOffset);
2333 
2334  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2335  /// given phase of destruction for a destructor. The end result
2336  /// should call destructors on members and base classes in reverse
2337  /// order of their construction.
2339 
2340  /// ShouldInstrumentFunction - Return true if the current function should be
2341  /// instrumented with __cyg_profile_func_* calls
2342  bool ShouldInstrumentFunction();
2343 
2344  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2345  /// should not be instrumented with sanitizers.
2347 
2348  /// ShouldXRayInstrument - Return true if the current function should be
2349  /// instrumented with XRay nop sleds.
2350  bool ShouldXRayInstrumentFunction() const;
2351 
2352  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2353  /// XRay custom event handling calls.
2354  bool AlwaysEmitXRayCustomEvents() const;
2355 
2356  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2357  /// XRay typed event handling calls.
2358  bool AlwaysEmitXRayTypedEvents() const;
2359 
2360  /// Encode an address into a form suitable for use in a function prologue.
2361  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2362  llvm::Constant *Addr);
2363 
2364  /// Decode an address used in a function prologue, encoded by \c
2365  /// EncodeAddrForUseInPrologue.
2366  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2367  llvm::Value *EncodedAddr);
2368 
2369  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2370  /// arguments for the given function. This is also responsible for naming the
2371  /// LLVM function arguments.
2372  void EmitFunctionProlog(const CGFunctionInfo &FI,
2373  llvm::Function *Fn,
2374  const FunctionArgList &Args);
2375 
2376  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2377  /// given temporary.
2378  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2379  SourceLocation EndLoc);
2380 
2381  /// Emit a test that checks if the return value \p RV is nonnull.
2382  void EmitReturnValueCheck(llvm::Value *RV);
2383 
2384  /// EmitStartEHSpec - Emit the start of the exception spec.
2385  void EmitStartEHSpec(const Decl *D);
2386 
2387  /// EmitEndEHSpec - Emit the end of the exception spec.
2388  void EmitEndEHSpec(const Decl *D);
2389 
2390  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2391  llvm::BasicBlock *getTerminateLandingPad();
2392 
2393  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2394  /// terminate.
2395  llvm::BasicBlock *getTerminateFunclet();
2396 
2397  /// getTerminateHandler - Return a handler (not a landing pad, just
2398  /// a catch handler) that just calls terminate. This is used when
2399  /// a terminate scope encloses a try.
2400  llvm::BasicBlock *getTerminateHandler();
2401 
2402  llvm::Type *ConvertTypeForMem(QualType T);
2403  llvm::Type *ConvertType(QualType T);
2404  llvm::Type *ConvertType(const TypeDecl *T) {
2405  return ConvertType(getContext().getTypeDeclType(T));
2406  }
2407 
2408  /// LoadObjCSelf - Load the value of self. This function is only valid while
2409  /// generating code for an Objective-C method.
2410  llvm::Value *LoadObjCSelf();
2411 
2412  /// TypeOfSelfObject - Return type of object that this self represents.
2414 
2415  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2417 
2419  return getEvaluationKind(T) == TEK_Scalar;
2420  }
2421 
2423  return getEvaluationKind(T) == TEK_Aggregate;
2424  }
2425 
2426  /// createBasicBlock - Create an LLVM basic block.
2427  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2428  llvm::Function *parent = nullptr,
2429  llvm::BasicBlock *before = nullptr) {
2430  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2431  }
2432 
2433  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2434  /// label maps to.
2435  JumpDest getJumpDestForLabel(const LabelDecl *S);
2436 
2437  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2438  /// another basic block, simplify it. This assumes that no other code could
2439  /// potentially reference the basic block.
2440  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2441 
2442  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2443  /// adding a fall-through branch from the current insert block if
2444  /// necessary. It is legal to call this function even if there is no current
2445  /// insertion point.
2446  ///
2447  /// IsFinished - If true, indicates that the caller has finished emitting
2448  /// branches to the given block and does not expect to emit code into it. This
2449  /// means the block can be ignored if it is unreachable.
2450  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2451 
2452  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2453  /// near its uses, and leave the insertion point in it.
2454  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2455 
2456  /// EmitBranch - Emit a branch to the specified basic block from the current
2457  /// insert block, taking care to avoid creation of branches from dummy
2458  /// blocks. It is legal to call this function even if there is no current
2459  /// insertion point.
2460  ///
2461  /// This function clears the current insertion point. The caller should follow
2462  /// calls to this function with calls to Emit*Block prior to generation new
2463  /// code.
2464  void EmitBranch(llvm::BasicBlock *Block);
2465 
2466  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2467  /// indicates that the current code being emitted is unreachable.
2468  bool HaveInsertPoint() const {
2469  return Builder.GetInsertBlock() != nullptr;
2470  }
2471 
2472  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2473  /// emitted IR has a place to go. Note that by definition, if this function
2474  /// creates a block then that block is unreachable; callers may do better to
2475  /// detect when no insertion point is defined and simply skip IR generation.
2477  if (!HaveInsertPoint())
2479  }
2480 
2481  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2482  /// specified stmt yet.
2483  void ErrorUnsupported(const Stmt *S, const char *Type);
2484 
2485  //===--------------------------------------------------------------------===//
2486  // Helpers
2487  //===--------------------------------------------------------------------===//
2488 
2491  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2492  CGM.getTBAAAccessInfo(T));
2493  }
2494 
2496  TBAAAccessInfo TBAAInfo) {
2497  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2498  }
2499 
2500  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2502  Address Addr(V, ConvertTypeForMem(T), Alignment);
2503  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2504  CGM.getTBAAAccessInfo(T));
2505  }
2506 
2507  LValue
2510  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2511  TBAAAccessInfo());
2512  }
2513 
2515  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2516 
2518  LValueBaseInfo *PointeeBaseInfo = nullptr,
2519  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2522  AlignmentSource Source =
2524  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2525  CGM.getTBAAAccessInfo(RefTy));
2526  return EmitLoadOfReferenceLValue(RefLVal);
2527  }
2528 
2529  /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2530  /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2531  /// it is loaded from.
2532  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2533  LValueBaseInfo *BaseInfo = nullptr,
2534  TBAAAccessInfo *TBAAInfo = nullptr);
2536 
2537  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2538  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2539  /// insertion point of the builder. The caller is responsible for setting an
2540  /// appropriate alignment on
2541  /// the alloca.
2542  ///
2543  /// \p ArraySize is the number of array elements to be allocated if it
2544  /// is not nullptr.
2545  ///
2546  /// LangAS::Default is the address space of pointers to local variables and
2547  /// temporaries, as exposed in the source language. In certain
2548  /// configurations, this is not the same as the alloca address space, and a
2549  /// cast is needed to lift the pointer from the alloca AS into
2550  /// LangAS::Default. This can happen when the target uses a restricted
2551  /// address space for the stack but the source language requires
2552  /// LangAS::Default to be a generic address space. The latter condition is
2553  /// common for most programming languages; OpenCL is an exception in that
2554  /// LangAS::Default is the private address space, which naturally maps
2555  /// to the stack.
2556  ///
2557  /// Because the address of a temporary is often exposed to the program in
2558  /// various ways, this function will perform the cast. The original alloca
2559  /// instruction is returned through \p Alloca if it is not nullptr.
2560  ///
2561  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2562  /// more efficient if the caller knows that the address will not be exposed.
2563  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2564  llvm::Value *ArraySize = nullptr);
2565  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2566  const Twine &Name = "tmp",
2567  llvm::Value *ArraySize = nullptr,
2568  Address *Alloca = nullptr);
2570  const Twine &Name = "tmp",
2571  llvm::Value *ArraySize = nullptr);
2572 
2573  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2574  /// default ABI alignment of the given LLVM type.
2575  ///
2576  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2577  /// any given AST type that happens to have been lowered to the
2578  /// given IR type. This should only ever be used for function-local,
2579  /// IR-driven manipulations like saving and restoring a value. Do
2580  /// not hand this address off to arbitrary IRGen routines, and especially
2581  /// do not pass it as an argument to a function that might expect a
2582  /// properly ABI-aligned value.
2583  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2584  const Twine &Name = "tmp");
2585 
2586  /// CreateIRTemp - Create a temporary IR object of the given type, with
2587  /// appropriate alignment. This routine should only be used when an temporary
2588  /// value needs to be stored into an alloca (for example, to avoid explicit
2589  /// PHI construction), but the type is the IR type, not the type appropriate
2590  /// for storing in memory.
2591  ///
2592  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2593  /// ConvertType instead of ConvertTypeForMem.
2594  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2595 
2596  /// CreateMemTemp - Create a temporary memory object of the given type, with
2597  /// appropriate alignmen and cast it to the default address space. Returns
2598  /// the original alloca instruction by \p Alloca if it is not nullptr.
2599  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2600  Address *Alloca = nullptr);
2601  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2602  Address *Alloca = nullptr);
2603 
2604  /// CreateMemTemp - Create a temporary memory object of the given type, with
2605  /// appropriate alignmen without casting it to the default address space.
2606  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2608  const Twine &Name = "tmp");
2609 
2610  /// CreateAggTemp - Create a temporary memory object for the given
2611  /// aggregate type.
2612  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2613  Address *Alloca = nullptr) {
2614  return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2615  T.getQualifiers(),
2620  }
2621 
2622  /// Emit a cast to void* in the appropriate address space.
2623  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2624 
2625  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2626  /// expression and compare the result against zero, returning an Int1Ty value.
2627  llvm::Value *EvaluateExprAsBool(const Expr *E);
2628 
2629  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2630  void EmitIgnoredExpr(const Expr *E);
2631 
2632  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2633  /// any type. The result is returned as an RValue struct. If this is an
2634  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2635  /// the result should be returned.
2636  ///
2637  /// \param ignoreResult True if the resulting value isn't used.
2638  RValue EmitAnyExpr(const Expr *E,
2639  AggValueSlot aggSlot = AggValueSlot::ignored(),
2640  bool ignoreResult = false);
2641 
2642  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2643  // or the value of the expression, depending on how va_list is defined.
2644  Address EmitVAListRef(const Expr *E);
2645 
2646  /// Emit a "reference" to a __builtin_ms_va_list; this is
2647  /// always the value of the expression, because a __builtin_ms_va_list is a
2648  /// pointer to a char.
2649  Address EmitMSVAListRef(const Expr *E);
2650 
2651  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2652  /// always be accessible even if no aggregate location is provided.
2653  RValue EmitAnyExprToTemp(const Expr *E);
2654 
2655  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2656  /// arbitrary expression into the given memory location.
2657  void EmitAnyExprToMem(const Expr *E, Address Location,
2658  Qualifiers Quals, bool IsInitializer);
2659 
2660  void EmitAnyExprToExn(const Expr *E, Address Addr);
2661 
2662  /// EmitExprAsInit - Emits the code necessary to initialize a
2663  /// location in memory with the given initializer.
2664  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2665  bool capturedByInit);
2666 
2667  /// hasVolatileMember - returns true if aggregate type has a volatile
2668  /// member.
2670  if (const RecordType *RT = T->getAs<RecordType>()) {
2671  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2672  return RD->hasVolatileMember();
2673  }
2674  return false;
2675  }
2676 
2677  /// Determine whether a return value slot may overlap some other object.
2679  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2680  // class subobjects. These cases may need to be revisited depending on the
2681  // resolution of the relevant core issue.
2683  }
2684 
2685  /// Determine whether a field initialization may overlap some other object.
2687 
2688  /// Determine whether a base class initialization may overlap some other
2689  /// object.
2691  const CXXRecordDecl *BaseRD,
2692  bool IsVirtual);
2693 
2694  /// Emit an aggregate assignment.
2695  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2696  bool IsVolatile = hasVolatileMember(EltTy);
2697  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2698  }
2699 
2701  AggValueSlot::Overlap_t MayOverlap) {
2702  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2703  }
2704 
2705  /// EmitAggregateCopy - Emit an aggregate copy.
2706  ///
2707  /// \param isVolatile \c true iff either the source or the destination is
2708  /// volatile.
2709  /// \param MayOverlap Whether the tail padding of the destination might be
2710  /// occupied by some other object. More efficient code can often be
2711  /// generated if not.
2712  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2713  AggValueSlot::Overlap_t MayOverlap,
2714  bool isVolatile = false);
2715 
2716  /// GetAddrOfLocalVar - Return the address of a local variable.
2718  auto it = LocalDeclMap.find(VD);
2719  assert(it != LocalDeclMap.end() &&
2720  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2721  return it->second;
2722  }
2723 
2724  /// Given an opaque value expression, return its LValue mapping if it exists,
2725  /// otherwise create one.
2727 
2728  /// Given an opaque value expression, return its RValue mapping if it exists,
2729  /// otherwise create one.
2731 
2732  /// Get the index of the current ArrayInitLoopExpr, if any.
2733  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2734 
2735  /// getAccessedFieldNo - Given an encoded value and a result number, return
2736  /// the input field number being accessed.
2737  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2738 
2739  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2740  llvm::BasicBlock *GetIndirectGotoBlock();
2741 
2742  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2743  static bool IsWrappedCXXThis(const Expr *E);
2744 
2745  /// EmitNullInitialization - Generate code to set a value of the given type to
2746  /// null, If the type contains data member pointers, they will be initialized
2747  /// to -1 in accordance with the Itanium C++ ABI.
2748  void EmitNullInitialization(Address DestPtr, QualType Ty);
2749 
2750  /// Emits a call to an LLVM variable-argument intrinsic, either
2751  /// \c llvm.va_start or \c llvm.va_end.
2752  /// \param ArgValue A reference to the \c va_list as emitted by either
2753  /// \c EmitVAListRef or \c EmitMSVAListRef.
2754  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2755  /// calls \c llvm.va_end.
2756  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2757 
2758  /// Generate code to get an argument from the passed in pointer
2759  /// and update it accordingly.
2760  /// \param VE The \c VAArgExpr for which to generate code.
2761  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2762  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2763  /// \returns A pointer to the argument.
2764  // FIXME: We should be able to get rid of this method and use the va_arg
2765  // instruction in LLVM instead once it works well enough.
2766  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2767 
2768  /// emitArrayLength - Compute the length of an array, even if it's a
2769  /// VLA, and drill down to the base element type.
2770  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2771  QualType &baseType,
2772  Address &addr);
2773 
2774  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2775  /// the given variably-modified type and store them in the VLASizeMap.
2776  ///
2777  /// This function can be called with a null (unreachable) insert point.
2779 
2780  struct VlaSizePair {
2781  llvm::Value *NumElts;
2783 
2784  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2785  };
2786 
2787  /// Return the number of elements for a single dimension
2788  /// for the given array type.
2789  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2790  VlaSizePair getVLAElements1D(QualType vla);
2791 
2792  /// Returns an LLVM value that corresponds to the size,
2793  /// in non-variably-sized elements, of a variable length array type,
2794  /// plus that largest non-variably-sized element type. Assumes that
2795  /// the type has already been emitted with EmitVariablyModifiedType.
2796  VlaSizePair getVLASize(const VariableArrayType *vla);
2797  VlaSizePair getVLASize(QualType vla);
2798 
2799  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2800  /// generating code for an C++ member function.
2801  llvm::Value *LoadCXXThis() {
2802  assert(CXXThisValue && "no 'this' value for this function");
2803  return CXXThisValue;
2804  }
2806 
2807  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2808  /// virtual bases.
2809  // FIXME: Every place that calls LoadCXXVTT is something
2810  // that needs to be abstracted properly.
2811  llvm::Value *LoadCXXVTT() {
2812  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2813  return CXXStructorImplicitParamValue;
2814  }
2815 
2816  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2817  /// complete class to the given direct base.
2818  Address
2820  const CXXRecordDecl *Derived,
2821  const CXXRecordDecl *Base,
2822  bool BaseIsVirtual);
2823 
2824  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2825 
2826  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2827  /// load of 'this' and returns address of the base class.
2829  const CXXRecordDecl *Derived,
2832  bool NullCheckValue, SourceLocation Loc);
2833 
2835  const CXXRecordDecl *Derived,
2838  bool NullCheckValue);
2839 
2840  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2841  /// base constructor/destructor with virtual bases.
2842  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2843  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2844  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2845  bool Delegating);
2846 
2848  CXXCtorType CtorType,
2849  const FunctionArgList &Args,
2850  SourceLocation Loc);
2851  // It's important not to confuse this and the previous function. Delegating
2852  // constructors are the C++0x feature. The constructor delegate optimization
2853  // is used to reduce duplication in the base and complete consturctors where
2854  // they are substantially the same.
2856  const FunctionArgList &Args);
2857 
2858  /// Emit a call to an inheriting constructor (that is, one that invokes a
2859  /// constructor inherited from a base class) by inlining its definition. This
2860  /// is necessary if the ABI does not support forwarding the arguments to the
2861  /// base class constructor (because they're variadic or similar).
2863  CXXCtorType CtorType,
2864  bool ForVirtualBase,
2865  bool Delegating,
2866  CallArgList &Args);
2867 
2868  /// Emit a call to a constructor inherited from a base class, passing the
2869  /// current constructor's arguments along unmodified (without even making
2870  /// a copy).
2872  bool ForVirtualBase, Address This,
2873  bool InheritedFromVBase,
2874  const CXXInheritedCtorInitExpr *E);
2875 
2877  bool ForVirtualBase, bool Delegating,
2878  AggValueSlot ThisAVS, const CXXConstructExpr *E);
2879 
2881  bool ForVirtualBase, bool Delegating,
2882  Address This, CallArgList &Args,
2883  AggValueSlot::Overlap_t Overlap,
2884  SourceLocation Loc, bool NewPointerIsChecked);
2885 
2886  /// Emit assumption load for all bases. Requires to be be called only on
2887  /// most-derived class and not under construction of the object.
2888  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2889 
2890  /// Emit assumption that vptr load == global vtable.
2891  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2892 
2894  Address This, Address Src,
2895  const CXXConstructExpr *E);
2896 
2898  const ArrayType *ArrayTy,
2899  Address ArrayPtr,
2900  const CXXConstructExpr *E,
2901  bool NewPointerIsChecked,
2902  bool ZeroInitialization = false);
2903 
2905  llvm::Value *NumElements,
2906  Address ArrayPtr,
2907  const CXXConstructExpr *E,
2908  bool NewPointerIsChecked,
2909  bool ZeroInitialization = false);
2910 
2912 
2914  bool ForVirtualBase, bool Delegating, Address This,
2915  QualType ThisTy);
2916 
2917  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2918  llvm::Type *ElementTy, Address NewPtr,
2919  llvm::Value *NumElements,
2920  llvm::Value *AllocSizeWithoutCookie);
2921 
2922  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2923  Address Ptr);
2924 
2925  void EmitSehCppScopeBegin();
2926  void EmitSehCppScopeEnd();
2927  void EmitSehTryScopeBegin();
2928  void EmitSehTryScopeEnd();
2929 
2930  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2931  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2932 
2933  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2934  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2935 
2936  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2937  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2938  CharUnits CookieSize = CharUnits());
2939 
2941  const CallExpr *TheCallExpr, bool IsDelete);
2942 
2943  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2944  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2946 
2947  /// Situations in which we might emit a check for the suitability of a
2948  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2949  /// compiler-rt.
2951  /// Checking the operand of a load. Must be suitably sized and aligned.
2953  /// Checking the destination of a store. Must be suitably sized and aligned.
2955  /// Checking the bound value in a reference binding. Must be suitably sized
2956  /// and aligned, but is not required to refer to an object (until the
2957  /// reference is used), per core issue 453.
2959  /// Checking the object expression in a non-static data member access. Must
2960  /// be an object within its lifetime.
2962  /// Checking the 'this' pointer for a call to a non-static member function.
2963  /// Must be an object within its lifetime.
2965  /// Checking the 'this' pointer for a constructor call.
2967  /// Checking the operand of a static_cast to a derived pointer type. Must be
2968  /// null or an object within its lifetime.
2970  /// Checking the operand of a static_cast to a derived reference type. Must
2971  /// be an object within its lifetime.
2973  /// Checking the operand of a cast to a base object. Must be suitably sized
2974  /// and aligned.
2976  /// Checking the operand of a cast to a virtual base object. Must be an
2977  /// object within its lifetime.
2979  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2981  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2982  /// null or an object within its lifetime.
2984  };
2985 
2986  /// Determine whether the pointer type check \p TCK permits null pointers.
2987  static bool isNullPointerAllowed(TypeCheckKind TCK);
2988 
2989  /// Determine whether the pointer type check \p TCK requires a vptr check.
2990  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2991 
2992  /// Whether any type-checking sanitizers are enabled. If \c false,
2993  /// calls to EmitTypeCheck can be skipped.
2994  bool sanitizePerformTypeCheck() const;
2995 
2996  /// Emit a check that \p V is the address of storage of the
2997  /// appropriate size and alignment for an object of type \p Type
2998  /// (or if ArraySize is provided, for an array of that bound).
2999  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3000  QualType Type, CharUnits Alignment = CharUnits::Zero(),
3001  SanitizerSet SkippedChecks = SanitizerSet(),
3002  llvm::Value *ArraySize = nullptr);
3003 
3004  /// Emit a check that \p Base points into an array object, which
3005  /// we can access at index \p Index. \p Accessed should be \c false if we
3006  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3007  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3008  QualType IndexType, bool Accessed);
3009 
3010  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3011  bool isInc, bool isPre);
3013  bool isInc, bool isPre);
3014 
3015  /// Converts Location to a DebugLoc, if debug information is enabled.
3016  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3017 
3018  /// Get the record field index as represented in debug info.
3019  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3020 
3021 
3022  //===--------------------------------------------------------------------===//
3023  // Declaration Emission
3024  //===--------------------------------------------------------------------===//
3025 
3026  /// EmitDecl - Emit a declaration.
3027  ///
3028  /// This function can be called with a null (unreachable) insert point.
3029  void EmitDecl(const Decl &D);
3030 
3031  /// EmitVarDecl - Emit a local variable declaration.
3032  ///
3033  /// This function can be called with a null (unreachable) insert point.
3034  void EmitVarDecl(const VarDecl &D);
3035 
3036  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3037  bool capturedByInit);
3038 
3039  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3040  llvm::Value *Address);
3041 
3042  /// Determine whether the given initializer is trivial in the sense
3043  /// that it requires no code to be generated.
3044  bool isTrivialInitializer(const Expr *Init);
3045 
3046  /// EmitAutoVarDecl - Emit an auto variable declaration.
3047  ///
3048  /// This function can be called with a null (unreachable) insert point.
3049  void EmitAutoVarDecl(const VarDecl &D);
3050 
3052  friend class CodeGenFunction;
3053 
3054  const VarDecl *Variable;
3055 
3056  /// The address of the alloca for languages with explicit address space
3057  /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3058  /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3059  /// as a global constant.
3060  Address Addr;
3061 
3062  llvm::Value *NRVOFlag;
3063 
3064  /// True if the variable is a __block variable that is captured by an
3065  /// escaping block.
3066  bool IsEscapingByRef;
3067 
3068  /// True if the variable is of aggregate type and has a constant
3069  /// initializer.
3070  bool IsConstantAggregate;
3071 
3072  /// Non-null if we should use lifetime annotations.
3073  llvm::Value *SizeForLifetimeMarkers;
3074 
3075  /// Address with original alloca instruction. Invalid if the variable was
3076  /// emitted as a global constant.
3077  Address AllocaAddr;
3078 
3079  struct Invalid {};
3080  AutoVarEmission(Invalid)
3081  : Variable(nullptr), Addr(Address::invalid()),
3082  AllocaAddr(Address::invalid()) {}
3083 
3084  AutoVarEmission(const VarDecl &variable)
3085  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3086  IsEscapingByRef(false), IsConstantAggregate(false),
3087  SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3088 
3089  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3090 
3091  public:
3092  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3093 
3094  bool useLifetimeMarkers() const {
3095  return SizeForLifetimeMarkers != nullptr;
3096  }
3097  llvm::Value *getSizeForLifetimeMarkers() const {
3098  assert(useLifetimeMarkers());
3099  return SizeForLifetimeMarkers;
3100  }
3101 
3102  /// Returns the raw, allocated address, which is not necessarily
3103  /// the address of the object itself. It is casted to default
3104  /// address space for address space agnostic languages.
3106  return Addr;
3107  }
3108 
3109  /// Returns the address for the original alloca instruction.
3110  Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3111 
3112  /// Returns the address of the object within this declaration.
3113  /// Note that this does not chase the forwarding pointer for
3114  /// __block decls.
3116  if (!IsEscapingByRef) return Addr;
3117 
3118  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3119  }
3120  };
3121  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3122  void EmitAutoVarInit(const AutoVarEmission &emission);
3123  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3124  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3125  QualType::DestructionKind dtorKind);
3126 
3127  /// Emits the alloca and debug information for the size expressions for each
3128  /// dimension of an array. It registers the association of its (1-dimensional)
3129  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3130  /// reference this node when creating the DISubrange object to describe the
3131  /// array types.
3133  const VarDecl &D,
3134  bool EmitDebugInfo);
3135 
3136  void EmitStaticVarDecl(const VarDecl &D,
3137  llvm::GlobalValue::LinkageTypes Linkage);
3138 
3139  class ParamValue {
3140  llvm::Value *Value;
3141  llvm::Type *ElementType;
3142  unsigned Alignment;
3143  ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3144  : Value(V), ElementType(T), Alignment(A) {}
3145  public:
3146  static ParamValue forDirect(llvm::Value *value) {
3147  return ParamValue(value, nullptr, 0);
3148  }
3150  assert(!addr.getAlignment().isZero());
3151  return ParamValue(addr.getPointer(), addr.getElementType(),
3152  addr.getAlignment().getQuantity());
3153  }
3154 
3155  bool isIndirect() const { return Alignment != 0; }
3156  llvm::Value *getAnyValue() const { return Value; }
3157 
3158  llvm::Value *getDirectValue() const {
3159  assert(!isIndirect());
3160  return Value;
3161  }
3162 
3164  assert(isIndirect());
3165  return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3166  }
3167  };
3168 
3169  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3170  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3171 
3172  /// protectFromPeepholes - Protect a value that we're intending to
3173  /// store to the side, but which will probably be used later, from
3174  /// aggressive peepholing optimizations that might delete it.
3175  ///
3176  /// Pass the result to unprotectFromPeepholes to declare that
3177  /// protection is no longer required.
3178  ///
3179  /// There's no particular reason why this shouldn't apply to
3180  /// l-values, it's just that no existing peepholes work on pointers.
3181  PeepholeProtection protectFromPeepholes(RValue rvalue);
3182  void unprotectFromPeepholes(PeepholeProtection protection);
3183 
3184  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3185  SourceLocation Loc,
3186  SourceLocation AssumptionLoc,
3187  llvm::Value *Alignment,
3188  llvm::Value *OffsetValue,
3189  llvm::Value *TheCheck,
3190  llvm::Instruction *Assumption);
3191 
3192  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3193  SourceLocation Loc, SourceLocation AssumptionLoc,
3194  llvm::Value *Alignment,
3195  llvm::Value *OffsetValue = nullptr);
3196 
3197  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3198  SourceLocation AssumptionLoc,
3199  llvm::Value *Alignment,
3200  llvm::Value *OffsetValue = nullptr);
3201 
3202  //===--------------------------------------------------------------------===//
3203  // Statement Emission
3204  //===--------------------------------------------------------------------===//
3205 
3206  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3207  void EmitStopPoint(const Stmt *S);
3208 
3209  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3210  /// this function even if there is no current insertion point.
3211  ///
3212  /// This function may clear the current insertion point; callers should use
3213  /// EnsureInsertPoint if they wish to subsequently generate code without first
3214  /// calling EmitBlock, EmitBranch, or EmitStmt.
3215  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3216 
3217  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3218  /// necessarily require an insertion point or debug information; typically
3219  /// because the statement amounts to a jump or a container of other
3220  /// statements.
3221  ///
3222  /// \return True if the statement was handled.
3223  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3224 
3225  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3228  bool GetLast = false,
3229  AggValueSlot AVS =
3231 
3232  /// EmitLabel - Emit the block for the given label. It is legal to call this
3233  /// function even if there is no current insertion point.
3234  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3235 
3236  void EmitLabelStmt(const LabelStmt &S);
3237  void EmitAttributedStmt(const AttributedStmt &S);
3238  void EmitGotoStmt(const GotoStmt &S);
3239  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3240  void EmitIfStmt(const IfStmt &S);
3241 
3242  void EmitWhileStmt(const WhileStmt &S,
3243  ArrayRef<const Attr *> Attrs = None);
3244  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3245  void EmitForStmt(const ForStmt &S,
3246  ArrayRef<const Attr *> Attrs = None);
3247  void EmitReturnStmt(const ReturnStmt &S);
3248  void EmitDeclStmt(const DeclStmt &S);
3249  void EmitBreakStmt(const BreakStmt &S);
3250  void EmitContinueStmt(const ContinueStmt &S);
3251  void EmitSwitchStmt(const SwitchStmt &S);
3252  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3253  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3254  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3255  void EmitAsmStmt(const AsmStmt &S);
3256 
3258  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3259  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3262 
3263  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3264  void EmitCoreturnStmt(const CoreturnStmt &S);
3266  AggValueSlot aggSlot = AggValueSlot::ignored(),
3267  bool ignoreResult = false);
3270  AggValueSlot aggSlot = AggValueSlot::ignored(),
3271  bool ignoreResult = false);
3273  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3274 
3275  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3276  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3277 
3278  void EmitCXXTryStmt(const CXXTryStmt &S);
3279  void EmitSEHTryStmt(const SEHTryStmt &S);
3280  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3281  void EnterSEHTryStmt(const SEHTryStmt &S);
3282  void ExitSEHTryStmt(const SEHTryStmt &S);
3283  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3285 
3287  llvm::Function *FinallyFunc);
3288  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3289  const Stmt *OutlinedStmt);
3290 
3292  const SEHExceptStmt &Except);
3293 
3295  const SEHFinallyStmt &Finally);
3296 
3298  llvm::Value *ParentFP,
3299  llvm::Value *EntryEBP);
3300  llvm::Value *EmitSEHExceptionCode();
3301  llvm::Value *EmitSEHExceptionInfo();
3302  llvm::Value *EmitSEHAbnormalTermination();
3303 
3304  /// Emit simple code for OpenMP directives in Simd-only mode.
3306 
3307  /// Scan the outlined statement for captures from the parent function. For
3308  /// each capture, mark the capture as escaped and emit a call to
3309  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3310  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3311  bool IsFilter);
3312 
3313  /// Recovers the address of a local in a parent function. ParentVar is the
3314  /// address of the variable used in the immediate parent function. It can
3315  /// either be an alloca or a call to llvm.localrecover if there are nested
3316  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3317  /// frame.
3319  Address ParentVar,
3320  llvm::Value *ParentFP);
3321 
3322  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3323  ArrayRef<const Attr *> Attrs = None);
3324 
3325  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3327  CodeGenFunction &CGF;
3328 
3329  public:
3331  bool HasCancel)
3332  : CGF(CGF) {
3333  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3334  }
3335  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3336  };
3337 
3338  /// Returns calculated size of the specified type.
3339  llvm::Value *getTypeSize(QualType Ty);
3341  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3342  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3344  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3345  SourceLocation Loc);
3347  SmallVectorImpl<llvm::Value *> &CapturedVars);
3348  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3349  SourceLocation Loc);
3350  /// Perform element by element copying of arrays with type \a
3351  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3352  /// generated by \a CopyGen.
3353  ///
3354  /// \param DestAddr Address of the destination array.
3355  /// \param SrcAddr Address of the source array.
3356  /// \param OriginalType Type of destination and source arrays.
3357  /// \param CopyGen Copying procedure that copies value of single array element
3358  /// to another single array element.
3360  Address DestAddr, Address SrcAddr, QualType OriginalType,
3361  const llvm::function_ref<void(Address, Address)> CopyGen);
3362  /// Emit proper copying of data from one variable to another.
3363  ///
3364  /// \param OriginalType Original type of the copied variables.
3365  /// \param DestAddr Destination address.
3366  /// \param SrcAddr Source address.
3367  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3368  /// type of the base array element).
3369  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3370  /// the base array element).
3371  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3372  /// DestVD.
3373  void EmitOMPCopy(QualType OriginalType,
3374  Address DestAddr, Address SrcAddr,
3375  const VarDecl *DestVD, const VarDecl *SrcVD,
3376  const Expr *Copy);
3377  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3378  /// \a X = \a E \a BO \a E.
3379  ///
3380  /// \param X Value to be updated.
3381  /// \param E Update value.
3382  /// \param BO Binary operation for update operation.
3383  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3384  /// expression, false otherwise.
3385  /// \param AO Atomic ordering of the generated atomic instructions.
3386  /// \param CommonGen Code generator for complex expressions that cannot be
3387  /// expressed through atomicrmw instruction.
3388  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3389  /// generated, <false, RValue::get(nullptr)> otherwise.
3390  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3391  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3392  llvm::AtomicOrdering AO, SourceLocation Loc,
3393  const llvm::function_ref<RValue(RValue)> CommonGen);
3395  OMPPrivateScope &PrivateScope);
3397  OMPPrivateScope &PrivateScope);
3399  const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3400  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3402  const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3403  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3404  /// Emit code for copyin clause in \a D directive. The next code is
3405  /// generated at the start of outlined functions for directives:
3406  /// \code
3407  /// threadprivate_var1 = master_threadprivate_var1;
3408  /// operator=(threadprivate_var2, master_threadprivate_var2);
3409  /// ...
3410  /// __kmpc_barrier(&loc, global_tid);
3411  /// \endcode
3412  ///
3413  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3414  /// \returns true if at least one copyin variable is found, false otherwise.
3416  /// Emit initial code for lastprivate variables. If some variable is
3417  /// not also firstprivate, then the default initialization is used. Otherwise
3418  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3419  /// method.
3420  ///
3421  /// \param D Directive that may have 'lastprivate' directives.
3422  /// \param PrivateScope Private scope for capturing lastprivate variables for
3423  /// proper codegen in internal captured statement.
3424  ///
3425  /// \returns true if there is at least one lastprivate variable, false
3426  /// otherwise.
3428  OMPPrivateScope &PrivateScope);
3429  /// Emit final copying of lastprivate values to original variables at
3430  /// the end of the worksharing or simd directive.
3431  ///
3432  /// \param D Directive that has at least one 'lastprivate' directives.
3433  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3434  /// it is the last iteration of the loop code in associated directive, or to
3435  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3437  bool NoFinals,
3438  llvm::Value *IsLastIterCond = nullptr);
3439  /// Emit initial code for linear clauses.
3440  void EmitOMPLinearClause(const OMPLoopDirective &D,
3441  CodeGenFunction::OMPPrivateScope &PrivateScope);
3442  /// Emit final code for linear clauses.
3443  /// \param CondGen Optional conditional code for final part of codegen for
3444  /// linear clause.
3446  const OMPLoopDirective &D,
3447  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3448  /// Emit initial code for reduction variables. Creates reduction copies
3449  /// and initializes them with the values according to OpenMP standard.
3450  ///
3451  /// \param D Directive (possibly) with the 'reduction' clause.
3452  /// \param PrivateScope Private scope for capturing reduction variables for
3453  /// proper codegen in internal captured statement.
3454  ///
3456  OMPPrivateScope &PrivateScope,
3457  bool ForInscan = false);
3458  /// Emit final update of reduction values to original variables at
3459  /// the end of the directive.
3460  ///
3461  /// \param D Directive that has at least one 'reduction' directives.
3462  /// \param ReductionKind The kind of reduction to perform.
3464  const OpenMPDirectiveKind ReductionKind);
3465  /// Emit initial code for linear variables. Creates private copies
3466  /// and initializes them with the values according to OpenMP standard.
3467  ///
3468  /// \param D Directive (possibly) with the 'linear' clause.
3469  /// \return true if at least one linear variable is found that should be
3470  /// initialized with the value of the original variable, false otherwise.
3472 
3473  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3474  llvm::Function * /*OutlinedFn*/,
3475  const OMPTaskDataTy & /*Data*/)>
3478  const OpenMPDirectiveKind CapturedRegion,
3479  const RegionCodeGenTy &BodyGen,
3480  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3486  unsigned NumberOfTargetItems = 0;
3487  explicit OMPTargetDataInfo() = default;
3490  unsigned NumberOfTargetItems)
3494  };
3496  const RegionCodeGenTy &BodyGen,
3497  OMPTargetDataInfo &InputInfo);
3498 
3499  void EmitOMPMetaDirective(const OMPMetaDirective &S);
3501  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3502  void EmitOMPTileDirective(const OMPTileDirective &S);
3504  void EmitOMPForDirective(const OMPForDirective &S);
3516  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3523  void EmitOMPScanDirective(const OMPScanDirective &S);
3532  void
3535  void
3542  void
3558  void
3575 
3576  /// Emit device code for the target directive.
3578  StringRef ParentName,
3579  const OMPTargetDirective &S);
3580  static void
3581  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3582  const OMPTargetParallelDirective &S);
3583  /// Emit device code for the target parallel for directive.
3585  CodeGenModule &CGM, StringRef ParentName,
3587  /// Emit device code for the target parallel for simd directive.
3589  CodeGenModule &CGM, StringRef ParentName,
3591  /// Emit device code for the target teams directive.
3592  static void
3593  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3594  const OMPTargetTeamsDirective &S);
3595  /// Emit device code for the target teams distribute directive.
3597  CodeGenModule &CGM, StringRef ParentName,
3599  /// Emit device code for the target teams distribute simd directive.
3601  CodeGenModule &CGM, StringRef ParentName,
3603  /// Emit device code for the target simd directive.
3605  StringRef ParentName,
3606  const OMPTargetSimdDirective &S);
3607  /// Emit device code for the target teams distribute parallel for simd
3608  /// directive.
3610  CodeGenModule &CGM, StringRef ParentName,
3612 
3614  CodeGenModule &CGM, StringRef ParentName,
3616 
3617  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3618  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3619  /// future it is meant to be the number of loops expected in the loop nests
3620  /// (usually specified by the "collapse" clause) that are collapsed to a
3621  /// single loop by this function.
3622  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3623  int Depth);
3624 
3625  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3626  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3627 
3628  /// Emit inner loop of the worksharing/simd construct.
3629  ///
3630  /// \param S Directive, for which the inner loop must be emitted.
3631  /// \param RequiresCleanup true, if directive has some associated private
3632  /// variables.
3633  /// \param LoopCond Bollean condition for loop continuation.
3634  /// \param IncExpr Increment expression for loop control variable.
3635  /// \param BodyGen Generator for the inner body of the inner loop.
3636  /// \param PostIncGen Genrator for post-increment code (required for ordered
3637  /// loop directvies).
3638  void EmitOMPInnerLoop(
3639  const OMPExecutableDirective &S, bool RequiresCleanup,
3640  const Expr *LoopCond, const Expr *IncExpr,
3641  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3642  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3643 
3645  /// Emit initial code for loop counters of loop-based directives.
3647  OMPPrivateScope &LoopScope);
3648 
3649  /// Helper for the OpenMP loop directives.
3650  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3651 
3652  /// Emit code for the worksharing loop-based directive.
3653  /// \return true, if this construct has any lastprivate clause, false -
3654  /// otherwise.
3655  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3656  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3657  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3658 
3659  /// Emit code for the distribute loop-based directive.
3661  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3662 
3663  /// Helpers for the OpenMP loop directives.
3664  void EmitOMPSimdInit(const OMPLoopDirective &D);
3665  void EmitOMPSimdFinal(
3666  const OMPLoopDirective &D,
3667  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3668 
3669  /// Emits the lvalue for the expression with possibly captured variable.
3670  LValue EmitOMPSharedLValue(const Expr *E);
3671 
3672 private:
3673  /// Helpers for blocks.
3674  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3675 
3676  /// struct with the values to be passed to the OpenMP loop-related functions
3677  struct OMPLoopArguments {
3678  /// loop lower bound
3679  Address LB = Address::invalid();
3680  /// loop upper bound
3681  Address UB = Address::invalid();
3682  /// loop stride
3683  Address ST = Address::invalid();
3684  /// isLastIteration argument for runtime functions
3685  Address IL = Address::invalid();
3686  /// Chunk value generated by sema
3687  llvm::Value *Chunk = nullptr;
3688  /// EnsureUpperBound
3689  Expr *EUB = nullptr;
3690  /// IncrementExpression
3691  Expr *IncExpr = nullptr;
3692  /// Loop initialization
3693  Expr *Init = nullptr;
3694  /// Loop exit condition
3695  Expr *Cond = nullptr;
3696  /// Update of LB after a whole chunk has been executed
3697  Expr *NextLB = nullptr;
3698  /// Update of UB after a whole chunk has been executed
3699  Expr *NextUB = nullptr;
3700  OMPLoopArguments() = default;
3701  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3702  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3703  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3704  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3705  Expr *NextUB = nullptr)
3706  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3707  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3708  NextUB(NextUB) {}
3709  };
3710  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3711  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3712  const OMPLoopArguments &LoopArgs,
3713  const CodeGenLoopTy &CodeGenLoop,
3714  const CodeGenOrderedTy &CodeGenOrdered);
3715  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3716  bool IsMonotonic, const OMPLoopDirective &S,
3717  OMPPrivateScope &LoopScope, bool Ordered,
3718  const OMPLoopArguments &LoopArgs,
3719  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3720  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3721  const OMPLoopDirective &S,
3722  OMPPrivateScope &LoopScope,
3723  const OMPLoopArguments &LoopArgs,
3724  const CodeGenLoopTy &CodeGenLoopContent);
3725  /// Emit code for sections directive.
3726  void EmitSections(const OMPExecutableDirective &S);
3727 
3728 public:
3729 
3730  //===--------------------------------------------------------------------===//
3731  // LValue Expression Emission
3732  //===--------------------------------------------------------------------===//
3733 
3734  /// Create a check that a scalar RValue is non-null.
3735  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3736 
3737  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3738  RValue GetUndefRValue(QualType Ty);
3739 
3740  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3741  /// and issue an ErrorUnsupported style diagnostic (using the
3742  /// provided Name).
3743  RValue EmitUnsupportedRValue(const Expr *E,
3744  const char *Name);
3745 
3746  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3747  /// an ErrorUnsupported style diagnostic (using the provided Name).
3748  LValue EmitUnsupportedLValue(const Expr *E,
3749  const char *Name);
3750 
3751  /// EmitLValue - Emit code to compute a designator that specifies the location
3752  /// of the expression.
3753  ///
3754  /// This can return one of two things: a simple address or a bitfield
3755  /// reference. In either case, the LLVM Value* in the LValue structure is
3756  /// guaranteed to be an LLVM pointer type.
3757  ///
3758  /// If this returns a bitfield reference, nothing about the pointee type of
3759  /// the LLVM value is known: For example, it may not be a pointer to an
3760  /// integer.
3761  ///
3762  /// If this returns a normal address, and if the lvalue's C type is fixed
3763  /// size, this method guarantees that the returned pointer type will point to
3764  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3765  /// variable length type, this is not possible.
3766  ///
3767  LValue EmitLValue(const Expr *E);
3768 
3769  /// Same as EmitLValue but additionally we generate checking code to
3770  /// guard against undefined behavior. This is only suitable when we know
3771  /// that the address will be used to access the object.
3772  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3773 
3774  RValue convertTempToRValue(Address addr, QualType type,
3775  SourceLocation Loc);
3776 
3777  void EmitAtomicInit(Expr *E, LValue lvalue);
3778 
3779  bool LValueIsSuitableForInlineAtomic(LValue Src);
3780 
3781  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3782  AggValueSlot Slot = AggValueSlot::ignored());
3783 
3784  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3785  llvm::AtomicOrdering AO, bool IsVolatile = false,
3786  AggValueSlot slot = AggValueSlot::ignored());
3787 
3788  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3789 
3790  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3791  bool IsVolatile, bool isInit);
3792 
3793  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3794  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3795  llvm::AtomicOrdering Success =
3796  llvm::AtomicOrdering::SequentiallyConsistent,
3797  llvm::AtomicOrdering Failure =
3798  llvm::AtomicOrdering::SequentiallyConsistent,
3799  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3800 
3801  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3802  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3803  bool IsVolatile);
3804 
3805  /// EmitToMemory - Change a scalar value from its value
3806  /// representation to its in-memory representation.
3807  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3808 
3809  /// EmitFromMemory - Change a scalar value from its memory
3810  /// representation to its value representation.
3811  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3812 
3813  /// Check if the scalar \p Value is within the valid range for the given
3814  /// type \p Ty.
3815  ///
3816  /// Returns true if a check is needed (even if the range is unknown).
3817  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3818  SourceLocation Loc);
3819 
3820  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3821  /// care to appropriately convert from the memory representation to
3822  /// the LLVM value representation.
3823  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3824  SourceLocation Loc,
3826  bool isNontemporal = false) {
3827  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3828  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3829  }
3830 
3831  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3832  SourceLocation Loc, LValueBaseInfo BaseInfo,
3833  TBAAAccessInfo TBAAInfo,
3834  bool isNontemporal = false);
3835 
3836  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3837  /// care to appropriately convert from the memory representation to
3838  /// the LLVM value representation. The l-value must be a simple
3839  /// l-value.
3840  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3841 
3842  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3843  /// care to appropriately convert from the memory representation to
3844  /// the LLVM value representation.
3845  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3846  bool Volatile, QualType Ty,
3848  bool isInit = false, bool isNontemporal = false) {
3849  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3850  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3851  }
3852 
3853  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3854  bool Volatile, QualType Ty,
3855  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3856  bool isInit = false, bool isNontemporal = false);
3857 
3858  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3859  /// care to appropriately convert from the memory representation to
3860  /// the LLVM value representation. The l-value must be a simple
3861  /// l-value. The isInit flag indicates whether this is an initialization.
3862  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3863  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3864 
3865  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3866  /// this method emits the address of the lvalue, then loads the result as an
3867  /// rvalue, returning the rvalue.
3872 
3873  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3874  /// lvalue, where both are guaranteed to the have the same type, and that type
3875  /// is 'Ty'.
3876  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3879 
3880  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3881  /// as EmitStoreThroughLValue.
3882  ///
3883  /// \param Result [out] - If non-null, this will be set to a Value* for the
3884  /// bit-field contents after the store, appropriate for use as the result of
3885  /// an assignment to the bit-field.
3887  llvm::Value **Result=nullptr);
3888 
3889  /// Emit an l-value for an assignment (simple or compound) of complex type.
3893  llvm::Value *&Result);
3894 
3895  // Note: only available for agg return types
3898  // Note: only available for agg return types
3900  // Note: only available for agg return types
3908  bool Accessed = false);
3911  bool IsLowerBound = true);
3913  LValue EmitMemberExpr(const MemberExpr *E);
3919  LValue EmitCastLValue(const CastExpr *E);
3922 
3924 
3926 
3927  Address EmitArrayToPointerDecay(const Expr *Array,
3928  LValueBaseInfo *BaseInfo = nullptr,
3929  TBAAAccessInfo *TBAAInfo = nullptr);
3930 
3932  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3933  ConstantEmission(llvm::Constant *C, bool isReference)
3934  : ValueAndIsReference(C, isReference) {}
3935  public:
3937  static ConstantEmission forReference(llvm::Constant *C) {
3938  return ConstantEmission(C, true);
3939  }
3940  static ConstantEmission forValue(llvm::Constant *C) {
3941  return ConstantEmission(C, false);
3942  }
3943 
3944  explicit operator bool() const {
3945  return ValueAndIsReference.getOpaqueValue() != nullptr;
3946  }
3947 
3948  bool isReference() const { return ValueAndIsReference.getInt(); }
3950  assert(isReference());
3951  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3952  refExpr->getType());
3953  }
3954 
3955  llvm::Constant *getValue() const {
3956  assert(!isReference());
3957  return ValueAndIsReference.getPointer();
3958  }
3959  };
3960 
3961  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3962  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3963  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3964 
3968 
3969  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3970  const ObjCIvarDecl *Ivar);
3973 
3974  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3975  /// if the Field is a reference, this will return the address of the reference
3976  /// and not the address of the value stored in the reference.
3978  const FieldDecl* Field);
3979 
3981  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3982  unsigned CVRQualifiers);
3983 
3988 
3994  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3995 
3996  //===--------------------------------------------------------------------===//
3997  // Scalar Expression Emission
3998  //===--------------------------------------------------------------------===//
3999 
4000  /// EmitCall - Generate a call of the given function, expecting the given
4001  /// result type, and using the given argument list which specifies both the
4002  /// LLVM arguments and the types they were derived from.
4003  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4005  llvm::CallBase **callOrInvoke, bool IsMustTail,
4006  SourceLocation Loc);
4007  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4009  llvm::CallBase **callOrInvoke = nullptr,
4010  bool IsMustTail = false) {
4011  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4012  IsMustTail, SourceLocation());
4013  }
4014  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4015  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4016  RValue EmitCallExpr(const CallExpr *E,
4019  CGCallee EmitCallee(const Expr *E);
4020 
4021  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4022  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4023 
4024  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4025  const Twine &name = "");
4026  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4028  const Twine &name = "");
4029  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4030  const Twine &name = "");
4031  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4033  const Twine &name = "");
4034 
4036  getBundlesForFunclet(llvm::Value *Callee);
4037 
4038  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4040  const Twine &Name = "");
4041  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4043  const Twine &name = "");
4044  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4045  const Twine &name = "");
4046  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4048 
4050  NestedNameSpecifier *Qual,
4051  llvm::Type *Ty);
4052 
4054  CXXDtorType Type,
4055  const CXXRecordDecl *RD);
4056 
4057  // Return the copy constructor name with the prefix "__copy_constructor_"
4058  // removed.
4060  CharUnits Alignment,
4061  bool IsVolatile,
4062  ASTContext &Ctx);
4063 
4064  // Return the destructor name with the prefix "__destructor_" removed.
4066  CharUnits Alignment,
4067  bool IsVolatile,
4068  ASTContext &Ctx);
4069 
4070  // These functions emit calls to the special functions of non-trivial C
4071  // structs.
4074  void callCStructDestructor(LValue Dst);
4075  void callCStructCopyConstructor(LValue Dst, LValue Src);
4076  void callCStructMoveConstructor(LValue Dst, LValue Src);
4079 
4080  RValue
4082  const CGCallee &Callee,
4083  ReturnValueSlot ReturnValue, llvm::Value *This,
4084  llvm::Value *ImplicitParam,
4085  QualType ImplicitParamTy, const CallExpr *E,
4086  CallArgList *RtlArgs);
4087  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4088  llvm::Value *This, QualType ThisTy,
4089  llvm::Value *ImplicitParam,
4090  QualType ImplicitParamTy, const CallExpr *E);
4094  const CXXMethodDecl *MD,
4096  bool HasQualifier,
4097  NestedNameSpecifier *Qualifier,
4098  bool IsArrow, const Expr *Base);
4099  // Compute the object pointer.
4101  llvm::Value *memberPtr,
4102  const MemberPointerType *memberPtrType,
4103  LValueBaseInfo *BaseInfo = nullptr,
4104  TBAAAccessInfo *TBAAInfo = nullptr);
4107 
4109  const CXXMethodDecl *MD,
4112 
4115 
4119 
4120  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4122 
4123  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4124 
4125  /// Emit IR for __builtin_os_log_format.
4127 
4128  /// Emit IR for __builtin_is_aligned.
4130  /// Emit IR for __builtin_align_up/__builtin_align_down.
4131  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4132 
4133  llvm::Function *generateBuiltinOSLogHelperFunction(
4134  const analyze_os_log::OSLogBufferLayout &Layout,
4135  CharUnits BufferAlignment);
4136 
4138 
4139  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4140  /// is unhandled by the current target.
4141  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4143 
4144  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4145  const llvm::CmpInst::Predicate Fp,
4146  const llvm::CmpInst::Predicate Ip,
4147  const llvm::Twine &Name = "");
4148  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4150  llvm::Triple::ArchType Arch);
4151  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4153  llvm::Triple::ArchType Arch);
4154  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4156  llvm::Triple::ArchType Arch);
4157  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4158  QualType RTy);
4159  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4160  QualType RTy);
4161 
4162  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4163  unsigned LLVMIntrinsic,
4164  unsigned AltLLVMIntrinsic,
4165  const char *NameHint,
4166  unsigned Modifier,
4167  const CallExpr *E,
4169  Address PtrOp0, Address PtrOp1,
4170  llvm::Triple::ArchType Arch);
4171 
4172  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4173  unsigned Modifier, llvm::Type *ArgTy,
4174  const CallExpr *E);
4175  llvm::Value *EmitNeonCall(llvm::Function *F,
4177  const char *name,
4178  unsigned shift = 0, bool rightshift = false);
4179  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4180  const llvm::ElementCount &Count);
4181  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4182  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4183  bool negateForRightShift);
4184  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4185  llvm::Type *Ty, bool usgn, const char *name);
4186  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4187  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4188  /// access builtin. Only required if it can't be inferred from the base
4189  /// pointer operand.
4190  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4191 
4193  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4195  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4196  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4197  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4198  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4199  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4200  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4201  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4202  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4204  unsigned BuiltinID);
4205  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4207  unsigned BuiltinID);
4208  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4209  llvm::ScalableVectorType *VTy);
4210  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4212  unsigned IntID);
4213  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4215  unsigned IntID);
4216  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4218  unsigned BuiltinID, bool IsZExtReturn);
4219  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4221  unsigned BuiltinID);
4222  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4224  unsigned BuiltinID);
4225  llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4227  unsigned IntID);
4228  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4230  unsigned IntID);
4231  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4233  unsigned IntID);
4234  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4235 
4236  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4237  llvm::Triple::ArchType Arch);
4238  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4239 
4240  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4241  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4243  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4244  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4245  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4246  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4247  const CallExpr *E);
4248  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4249  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4251  bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4252  llvm::AtomicOrdering &AO,
4253  llvm::SyncScope::ID &SSID);
4254 
4255  enum class MSVCIntrin;
4256  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4257 
4258  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4259 
4260  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4261  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4262  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4263  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4264  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4265  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4266  const ObjCMethodDecl *MethodWithObjects);
4267  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4269  ReturnValueSlot Return = ReturnValueSlot());
4270 
4271  /// Retrieves the default cleanup kind for an ARC cleanup.
4272  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4274  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4276  }
4277 
4278  // ARC primitives.
4279  void EmitARCInitWeak(Address addr, llvm::Value *value);
4280  void EmitARCDestroyWeak(Address addr);
4281  llvm::Value *EmitARCLoadWeak(Address addr);
4282  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4283  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4284  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4285  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4286  void EmitARCCopyWeak(Address dst, Address src);
4287  void EmitARCMoveWeak(Address dst, Address src);
4288  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4289  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4290  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4291  bool resultIgnored);
4292  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4293  bool resultIgnored);
4294  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4295  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4296  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4298  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4299  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4300  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4301  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4302  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4303  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4304 
4305  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4306  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4307  llvm::Type *returnType);
4308  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4309 
4310  std::pair<LValue,llvm::Value*>
4312  std::pair<LValue,llvm::Value*>
4313  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4314  std::pair<LValue,llvm::Value*>
4315  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4316 
4317  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4318  llvm::Type *returnType);
4319  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4320  llvm::Type *returnType);
4321  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4322 
4323  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4324  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4325  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4326 
4327  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4328  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4329  bool allowUnsafeClaim);
4330  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4331  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4332  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4333 
4335 
4337 
4343 
4344  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4345  llvm::Value *EmitObjCAutoreleasePoolPush();
4346  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4347  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4348  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4349 
4350  /// Emits a reference binding to the passed in expression.
4352 
4353  //===--------------------------------------------------------------------===//
4354  // Expression Emission
4355  //===--------------------------------------------------------------------===//
4356 
4357  // Expressions are broken into three classes: scalar, complex, aggregate.
4358 
4359  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4360  /// scalar type, returning the result.
4361  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4362 
4363  /// Emit a conversion from the specified type to the specified destination
4364  /// type, both of which are LLVM scalar types.
4365  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4366  QualType DstTy, SourceLocation Loc);
4367 
4368  /// Emit a conversion from the specified complex type to the specified
4369  /// destination type, where the destination type is an LLVM scalar type.
4370  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4371  QualType DstTy,
4372  SourceLocation Loc);
4373 
4374  /// EmitAggExpr - Emit the computation of the specified expression
4375  /// of aggregate type. The result is computed into the given slot,
4376  /// which may be null to indicate that the value is not needed.
4377  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4378 
4379  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4380  /// aggregate type into a temporary LValue.
4381  LValue EmitAggExprToLValue(const Expr *E);
4382 
4383  /// Build all the stores needed to initialize an aggregate at Dest with the
4384  /// value Val.
4385  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4386 
4387  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4388  /// make sure it survives garbage collection until this point.
4389  void EmitExtendGCLifetime(llvm::Value *object);
4390 
4391  /// EmitComplexExpr - Emit the computation of the specified expression of
4392  /// complex type, returning the result.
4394  bool IgnoreReal = false,
4395  bool IgnoreImag = false);
4396 
4397  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4398  /// type and place its result into the specified l-value.
4399  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4400 
4401  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4402  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4403 
4404  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4406 
4409 
4410  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4411  /// global variable that has already been created for it. If the initializer
4412  /// has a different type than GV does, this may free GV and return a different
4413  /// one. Otherwise it just returns GV.
4414  llvm::GlobalVariable *
4416  llvm::GlobalVariable *GV);
4417 
4418  // Emit an @llvm.invariant.start call for the given memory region.
4419  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4420 
4421  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4422  /// variable with global storage.
4423  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4424  bool PerformInit);
4425 
4426  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4427  llvm::Constant *Addr);
4428 
4429  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4430  llvm::FunctionCallee Dtor,
4431  llvm::Constant *Addr,
4432  llvm::FunctionCallee &AtExit);
4433 
4434  /// Call atexit() with a function that passes the given argument to
4435  /// the given function.
4436  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4437  llvm::Constant *addr);
4438 
4439  /// Call atexit() with function dtorStub.
4440  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4441 
4442  /// Call unatexit() with function dtorStub.
4443  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4444 
4445  /// Emit code in this function to perform a guarded variable
4446  /// initialization. Guarded initializations are used when it's not
4447  /// possible to prove that an initialization will be done exactly
4448  /// once, e.g. with a static local variable or a static data member
4449  /// of a class template.
4450  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4451  bool PerformInit);
4452 
4454 
4455  /// Emit a branch to select whether or not to perform guarded initialization.
4456  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4457  llvm::BasicBlock *InitBlock,
4458  llvm::BasicBlock *NoInitBlock,
4459  GuardKind Kind, const VarDecl *D);
4460 
4461  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4462  /// variables.
4463  void
4464  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4465  ArrayRef<llvm::Function *> CXXThreadLocals,
4467 
4468  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4469  /// variables.
4471  llvm::Function *Fn,
4472  ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4473  llvm::Constant *>>
4474  DtorsOrStermFinalizers);
4475 
4476  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4477  const VarDecl *D,
4478  llvm::GlobalVariable *Addr,
4479  bool PerformInit);
4480 
4481  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4482 
4483  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4484 
4485  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4486 
4488 
4489  //===--------------------------------------------------------------------===//
4490  // Annotations Emission
4491  //===--------------------------------------------------------------------===//
4492 
4493  /// Emit an annotation call (intrinsic).
4494  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4495  llvm::Value *AnnotatedVal,
4496  StringRef AnnotationStr,
4497  SourceLocation Location,
4498  const AnnotateAttr *Attr);
4499 
4500  /// Emit local annotations for the local variable V, declared by D.
4501  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4502 
4503  /// Emit field annotations for the given field & value. Returns the
4504  /// annotation result.
4506 
4507  //===--------------------------------------------------------------------===//
4508  // Internal Helpers
4509  //===--------------------------------------------------------------------===//
4510 
4511  /// ContainsLabel - Return true if the statement contains a label in it. If
4512  /// this statement is not executed normally, it not containing a label means
4513  /// that we can just remove the code.
4514  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4515 
4516  /// containsBreak - Return true if the statement contains a break out of it.
4517  /// If the statement (recursively) contains a switch or loop with a break
4518  /// inside of it, this is fine.
4519  static bool containsBreak(const Stmt *S);
4520 
4521  /// Determine if the given statement might introduce a declaration into the
4522  /// current scope, by being a (possibly-labelled) DeclStmt.
4523  static bool mightAddDeclToScope(const Stmt *S);
4524 
4525  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4526  /// to a constant, or if it does but contains a label, return false. If it
4527  /// constant folds return true and set the boolean result in Result.
4528  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4529  bool AllowLabels = false);
4530 
4531  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4532  /// to a constant, or if it does but contains a label, return false. If it
4533  /// constant folds return true and set the folded value.
4534  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4535  bool AllowLabels = false);
4536 
4537  /// isInstrumentedCondition - Determine whether the given condition is an
4538  /// instrumentable condition (i.e. no "&&" or "||").
4539  static bool isInstrumentedCondition(const Expr *C);
4540 
4541  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4542  /// increments a profile counter based on the semantics of the given logical
4543  /// operator opcode. This is used to instrument branch condition coverage
4544  /// for logical operators.
4546  llvm::BasicBlock *TrueBlock,
4547  llvm::BasicBlock *FalseBlock,
4548  uint64_t TrueCount = 0,
4550  const Expr *CntrIdx = nullptr);
4551 
4552  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4553  /// if statement) to the specified blocks. Based on the condition, this might
4554  /// try to simplify the codegen of the conditional based on the branch.
4555  /// TrueCount should be the number of times we expect the condition to
4556  /// evaluate to true based on PGO data.
4557  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4558  llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4560 
4561  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4562  /// nonnull, if \p LHS is marked _Nonnull.
4563  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4564 
4565  /// An enumeration which makes it easier to specify whether or not an
4566  /// operation is a subtraction.
4567  enum { NotSubtraction = false, IsSubtraction = true };
4568 
4569  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4570  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4571  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4572  /// \p IsSubtraction indicates whether the expression used to form the GEP
4573  /// is a subtraction.
4574  llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4575  ArrayRef<llvm::Value *> IdxList,
4576  bool SignedIndices,
4577  bool IsSubtraction,
4578  SourceLocation Loc,
4579  const Twine &Name = "");
4580 
4581  /// Specifies which type of sanitizer check to apply when handling a
4582  /// particular builtin.