clang 20.0.0git
CodeGenFunction.cpp
Go to the documentation of this file.
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-function state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGDebugInfo.h"
19#include "CGHLSLRuntime.h"
20#include "CGOpenMPRuntime.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "TargetInfo.h"
25#include "clang/AST/ASTLambda.h"
26#include "clang/AST/Attr.h"
27#include "clang/AST/Decl.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/Expr.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/StmtObjC.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/Dominators.h"
42#include "llvm/IR/FPEnv.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/MDBuilder.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/Support/CRC.h"
48#include "llvm/Support/xxhash.h"
49#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50#include "llvm/Transforms/Utils/PromoteMemToReg.h"
51#include <optional>
52
53using namespace clang;
54using namespace CodeGen;
55
56namespace llvm {
57extern cl::opt<bool> EnableSingleByteCoverage;
58} // namespace llvm
59
60/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61/// markers.
62static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63 const LangOptions &LangOpts) {
64 if (CGOpts.DisableLifetimeMarkers)
65 return false;
66
67 // Sanitizers may use markers.
68 if (CGOpts.SanitizeAddressUseAfterScope ||
69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70 LangOpts.Sanitize.has(SanitizerKind::Memory))
71 return true;
72
73 // For now, only in optimized builds.
74 return CGOpts.OptimizationLevel != 0;
75}
76
77CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83 ShouldEmitLifetimeMarkers(
84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85 if (!suppressNewContext)
86 CGM.getCXXABI().getMangleContext().startNewFunction();
87 EHStack.setCGF(this);
88
89 SetFastMathFlags(CurFPFeatures);
90}
91
92CodeGenFunction::~CodeGenFunction() {
93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94 assert(DeferredDeactivationCleanupStack.empty() &&
95 "missed to deactivate a cleanup");
96
97 if (getLangOpts().OpenMP && CurFn)
99
100 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101 // outlining etc) at some point. Doing it once the function codegen is done
102 // seems to be a reasonable spot. We do it here, as opposed to the deletion
103 // time of the CodeGenModule, because we have to ensure the IR has not yet
104 // been "emitted" to the outside, thus, modifications are still sensible.
105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
107}
108
109// Map the LangOption for exception behavior into
110// the corresponding enum in the IR.
111llvm::fp::ExceptionBehavior
113
114 switch (Kind) {
115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
118 default:
119 llvm_unreachable("Unsupported FP Exception Behavior");
120 }
121}
122
124 llvm::FastMathFlags FMF;
125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132 Builder.setFastMathFlags(FMF);
133}
134
136 const Expr *E)
137 : CGF(CGF) {
138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139}
140
142 FPOptions FPFeatures)
143 : CGF(CGF) {
144 ConstructorHelper(FPFeatures);
145}
146
147void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148 OldFPFeatures = CGF.CurFPFeatures;
149 CGF.CurFPFeatures = FPFeatures;
150
151 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153
154 if (OldFPFeatures == FPFeatures)
155 return;
156
157 FMFGuard.emplace(CGF.Builder);
158
159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161 auto NewExceptionBehavior =
163 FPFeatures.getExceptionMode()));
164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165
166 CGF.SetFastMathFlags(FPFeatures);
167
168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171 (NewExceptionBehavior == llvm::fp::ebIgnore &&
172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173 "FPConstrained should be enabled on entire function");
174
175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176 auto OldValue =
177 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178 auto NewValue = OldValue & Value;
179 if (OldValue != NewValue)
180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181 };
182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185 mergeFnAttrValue(
186 "unsafe-fp-math",
187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189 FPFeatures.allowFPContractAcrossStatement());
190}
191
193 CGF.CurFPFeatures = OldFPFeatures;
194 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196}
197
198static LValue
199makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200 bool MightBeSigned, CodeGenFunction &CGF,
201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202 LValueBaseInfo BaseInfo;
203 TBAAAccessInfo TBAAInfo;
204 CharUnits Alignment =
205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206 Address Addr =
207 MightBeSigned
208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209 nullptr, IsKnownNonNull)
210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212}
213
214LValue
216 KnownNonNull_t IsKnownNonNull) {
217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218 /*MightBeSigned*/ true, *this,
219 IsKnownNonNull);
220}
221
222LValue
224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225 /*MightBeSigned*/ true, *this);
226}
227
229 QualType T) {
230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231 /*MightBeSigned*/ false, *this);
232}
233
235 QualType T) {
236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237 /*MightBeSigned*/ false, *this);
238}
239
242}
243
245 return CGM.getTypes().ConvertType(T);
246}
247
249 llvm::Type *LLVMTy) {
250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251}
252
254 type = type.getCanonicalType();
255 while (true) {
256 switch (type->getTypeClass()) {
257#define TYPE(name, parent)
258#define ABSTRACT_TYPE(name, parent)
259#define NON_CANONICAL_TYPE(name, parent) case Type::name:
260#define DEPENDENT_TYPE(name, parent) case Type::name:
261#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262#include "clang/AST/TypeNodes.inc"
263 llvm_unreachable("non-canonical or dependent type in IR-generation");
264
265 case Type::Auto:
266 case Type::DeducedTemplateSpecialization:
267 llvm_unreachable("undeduced type in IR-generation");
268
269 // Various scalar types.
270 case Type::Builtin:
271 case Type::Pointer:
272 case Type::BlockPointer:
273 case Type::LValueReference:
274 case Type::RValueReference:
275 case Type::MemberPointer:
276 case Type::Vector:
277 case Type::ExtVector:
278 case Type::ConstantMatrix:
279 case Type::FunctionProto:
280 case Type::FunctionNoProto:
281 case Type::Enum:
282 case Type::ObjCObjectPointer:
283 case Type::Pipe:
284 case Type::BitInt:
285 return TEK_Scalar;
286
287 // Complexes.
288 case Type::Complex:
289 return TEK_Complex;
290
291 // Arrays, records, and Objective-C objects.
292 case Type::ConstantArray:
293 case Type::IncompleteArray:
294 case Type::VariableArray:
295 case Type::Record:
296 case Type::ObjCObject:
297 case Type::ObjCInterface:
298 case Type::ArrayParameter:
299 return TEK_Aggregate;
300
301 // We operate on atomic values according to their underlying type.
302 case Type::Atomic:
303 type = cast<AtomicType>(type)->getValueType();
304 continue;
305 }
306 llvm_unreachable("unknown type kind!");
307 }
308}
309
310llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311 // For cleanliness, we try to avoid emitting the return block for
312 // simple cases.
313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314
315 if (CurBB) {
316 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317
318 // We have a valid insert point, reuse it if it is empty or there are no
319 // explicit jumps to the return block.
320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322 delete ReturnBlock.getBlock();
323 ReturnBlock = JumpDest();
324 } else
326 return llvm::DebugLoc();
327 }
328
329 // Otherwise, if the return block is the target of a single direct
330 // branch then we can just put the code in that block instead. This
331 // cleans up functions which started with a unified return block.
332 if (ReturnBlock.getBlock()->hasOneUse()) {
333 llvm::BranchInst *BI =
334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335 if (BI && BI->isUnconditional() &&
336 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337 // Record/return the DebugLoc of the simple 'return' expression to be used
338 // later by the actual 'ret' instruction.
339 llvm::DebugLoc Loc = BI->getDebugLoc();
340 Builder.SetInsertPoint(BI->getParent());
341 BI->eraseFromParent();
342 delete ReturnBlock.getBlock();
343 ReturnBlock = JumpDest();
344 return Loc;
345 }
346 }
347
348 // FIXME: We are at an unreachable point, there is no reason to emit the block
349 // unless it has uses. However, we still need a place to put the debug
350 // region.end for now.
351
353 return llvm::DebugLoc();
354}
355
356static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357 if (!BB) return;
358 if (!BB->use_empty()) {
359 CGF.CurFn->insert(CGF.CurFn->end(), BB);
360 return;
361 }
362 delete BB;
363}
364
366 assert(BreakContinueStack.empty() &&
367 "mismatched push/pop in break/continue stack!");
368 assert(LifetimeExtendedCleanupStack.empty() &&
369 "mismatched push/pop of cleanups in EHStack!");
370 assert(DeferredDeactivationCleanupStack.empty() &&
371 "mismatched activate/deactivate of cleanups!");
372
374 ConvergenceTokenStack.pop_back();
375 assert(ConvergenceTokenStack.empty() &&
376 "mismatched push/pop in convergence stack!");
377 }
378
379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380 && NumSimpleReturnExprs == NumReturnExprs
381 && ReturnBlock.getBlock()->use_empty();
382 // Usually the return expression is evaluated before the cleanup
383 // code. If the function contains only a simple return statement,
384 // such as a constant, the location before the cleanup code becomes
385 // the last useful breakpoint in the function, because the simple
386 // return expression will be evaluated after the cleanup code. To be
387 // safe, set the debug location for cleanup code to the location of
388 // the return statement. Otherwise the cleanup code should be at the
389 // end of the function's lexical scope.
390 //
391 // If there are multiple branches to the return block, the branch
392 // instructions will get the location of the return statements and
393 // all will be fine.
394 if (CGDebugInfo *DI = getDebugInfo()) {
395 if (OnlySimpleReturnStmts)
396 DI->EmitLocation(Builder, LastStopPoint);
397 else
398 DI->EmitLocation(Builder, EndLoc);
399 }
400
401 // Pop any cleanups that might have been associated with the
402 // parameters. Do this in whatever block we're currently in; it's
403 // important to do this before we enter the return block or return
404 // edges will be *really* confused.
405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406 bool HasOnlyLifetimeMarkers =
408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409
410 std::optional<ApplyDebugLocation> OAL;
411 if (HasCleanups) {
412 // Make sure the line table doesn't jump back into the body for
413 // the ret after it's been at EndLoc.
414 if (CGDebugInfo *DI = getDebugInfo()) {
415 if (OnlySimpleReturnStmts)
416 DI->EmitLocation(Builder, EndLoc);
417 else
418 // We may not have a valid end location. Try to apply it anyway, and
419 // fall back to an artificial location if needed.
421 }
422
424 }
425
426 // Emit function epilog (to return).
427 llvm::DebugLoc Loc = EmitReturnBlock();
428
430 if (CGM.getCodeGenOpts().InstrumentFunctions)
431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433 CurFn->addFnAttr("instrument-function-exit-inlined",
434 "__cyg_profile_func_exit");
435 }
436
437 // Emit debug descriptor for function end.
438 if (CGDebugInfo *DI = getDebugInfo())
439 DI->EmitFunctionEnd(Builder, CurFn);
440
441 // Reset the debug location to that of the simple 'return' expression, if any
442 // rather than that of the end of the function's scope '}'.
443 ApplyDebugLocation AL(*this, Loc);
444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
446
447 assert(EHStack.empty() &&
448 "did not remove all scopes from cleanup stack!");
449
450 // If someone did an indirect goto, emit the indirect goto block at the end of
451 // the function.
452 if (IndirectBranch) {
453 EmitBlock(IndirectBranch->getParent());
454 Builder.ClearInsertionPoint();
455 }
456
457 // If some of our locals escaped, insert a call to llvm.localescape in the
458 // entry block.
459 if (!EscapedLocals.empty()) {
460 // Invert the map from local to index into a simple vector. There should be
461 // no holes.
463 EscapeArgs.resize(EscapedLocals.size());
464 for (auto &Pair : EscapedLocals)
465 EscapeArgs[Pair.second] = Pair.first;
466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467 &CGM.getModule(), llvm::Intrinsic::localescape);
468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469 }
470
471 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472 llvm::Instruction *Ptr = AllocaInsertPt;
473 AllocaInsertPt = nullptr;
474 Ptr->eraseFromParent();
475
476 // PostAllocaInsertPt, if created, was lazily created when it was required,
477 // remove it now since it was just created for our own convenience.
478 if (PostAllocaInsertPt) {
479 llvm::Instruction *PostPtr = PostAllocaInsertPt;
480 PostAllocaInsertPt = nullptr;
481 PostPtr->eraseFromParent();
482 }
483
484 // If someone took the address of a label but never did an indirect goto, we
485 // made a zero entry PHI node, which is illegal, zap it now.
486 if (IndirectBranch) {
487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488 if (PN->getNumIncomingValues() == 0) {
489 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490 PN->eraseFromParent();
491 }
492 }
493
495 EmitIfUsed(*this, TerminateLandingPad);
496 EmitIfUsed(*this, TerminateHandler);
497 EmitIfUsed(*this, UnreachableBlock);
498
499 for (const auto &FuncletAndParent : TerminateFunclets)
500 EmitIfUsed(*this, FuncletAndParent.second);
501
502 if (CGM.getCodeGenOpts().EmitDeclMetadata)
503 EmitDeclMetadata();
504
505 for (const auto &R : DeferredReplacements) {
506 if (llvm::Value *Old = R.first) {
507 Old->replaceAllUsesWith(R.second);
508 cast<llvm::Instruction>(Old)->eraseFromParent();
509 }
510 }
511 DeferredReplacements.clear();
512
513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514 // PHIs if the current function is a coroutine. We don't do it for all
515 // functions as it may result in slight increase in numbers of instructions
516 // if compiled with no optimizations. We do it for coroutine as the lifetime
517 // of CleanupDestSlot alloca make correct coroutine frame building very
518 // difficult.
520 llvm::DominatorTree DT(*CurFn);
521 llvm::PromoteMemToReg(
522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
524 }
525
526 // Scan function arguments for vector width.
527 for (llvm::Argument &A : CurFn->args())
528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529 LargestVectorWidth =
530 std::max((uint64_t)LargestVectorWidth,
531 VT->getPrimitiveSizeInBits().getKnownMinValue());
532
533 // Update vector width based on return type.
534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535 LargestVectorWidth =
536 std::max((uint64_t)LargestVectorWidth,
537 VT->getPrimitiveSizeInBits().getKnownMinValue());
538
539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541
542 // Add the min-legal-vector-width attribute. This contains the max width from:
543 // 1. min-vector-width attribute used in the source program.
544 // 2. Any builtins used that have a vector width specified.
545 // 3. Values passed in and out of inline assembly.
546 // 4. Width of vector arguments and return types for this function.
547 // 5. Width of vector arguments and return types for functions called by this
548 // function.
549 if (getContext().getTargetInfo().getTriple().isX86())
550 CurFn->addFnAttr("min-legal-vector-width",
551 llvm::utostr(LargestVectorWidth));
552
553 // Add vscale_range attribute if appropriate.
554 std::optional<std::pair<unsigned, unsigned>> VScaleRange =
556 if (VScaleRange) {
557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558 getLLVMContext(), VScaleRange->first, VScaleRange->second));
559 }
560
561 // If we generated an unreachable return block, delete it now.
562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563 Builder.ClearInsertionPoint();
564 ReturnBlock.getBlock()->eraseFromParent();
565 }
566 if (ReturnValue.isValid()) {
567 auto *RetAlloca =
568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569 if (RetAlloca && RetAlloca->use_empty()) {
570 RetAlloca->eraseFromParent();
572 }
573 }
574}
575
576/// ShouldInstrumentFunction - Return true if the current function should be
577/// instrumented with __cyg_profile_func_* calls
579 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582 return false;
583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584 return false;
585 return true;
586}
587
589 if (!CurFuncDecl)
590 return false;
591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592}
593
594/// ShouldXRayInstrument - Return true if the current function should be
595/// instrumented with XRay nop sleds.
597 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598}
599
600/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
603 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
607}
608
610 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
614}
615
616llvm::ConstantInt *
618 // Remove any (C++17) exception specifications, to allow calling e.g. a
619 // noexcept function through a non-noexcept pointer.
620 if (!Ty->isFunctionNoProtoType())
622 std::string Mangled;
623 llvm::raw_string_ostream Out(Mangled);
625 return llvm::ConstantInt::get(
626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627}
628
629void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630 llvm::Function *Fn) {
631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632 return;
633
634 llvm::LLVMContext &Context = getLLVMContext();
635
636 CGM.GenKernelArgMetadata(Fn, FD, this);
637
638 if (!getLangOpts().OpenCL)
639 return;
640
641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642 QualType HintQTy = A->getTypeHint();
643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644 bool IsSignedInteger =
645 HintQTy->isSignedIntegerType() ||
646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647 llvm::Metadata *AttrMDArgs[] = {
648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649 CGM.getTypes().ConvertType(A->getTypeHint()))),
650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651 llvm::IntegerType::get(Context, 32),
652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654 }
655
656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657 llvm::Metadata *AttrMDArgs[] = {
658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662 }
663
664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665 llvm::Metadata *AttrMDArgs[] = {
666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670 }
671
672 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674 llvm::Metadata *AttrMDArgs[] = {
675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676 Fn->setMetadata("intel_reqd_sub_group_size",
677 llvm::MDNode::get(Context, AttrMDArgs));
678 }
679}
680
681/// Determine whether the function F ends with a return stmt.
682static bool endsWithReturn(const Decl* F) {
683 const Stmt *Body = nullptr;
684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685 Body = FD->getBody();
686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687 Body = OMD->getBody();
688
689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690 auto LastStmt = CS->body_rbegin();
691 if (LastStmt != CS->body_rend())
692 return isa<ReturnStmt>(*LastStmt);
693 }
694 return false;
695}
696
698 if (SanOpts.has(SanitizerKind::Thread)) {
699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701 }
702}
703
704/// Check if the return value of this function requires sanitization.
705bool CodeGenFunction::requiresReturnValueCheck() const {
706 return requiresReturnValueNullabilityCheck() ||
707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709}
710
711static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716 return false;
717
718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719 return false;
720
721 if (MD->getNumParams() == 2) {
722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723 if (!PT || !PT->isVoidPointerType() ||
724 !PT->getPointeeType().isConstQualified())
725 return false;
726 }
727
728 return true;
729}
730
731bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734}
735
736bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737 return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740 return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741 });
742}
743
744/// Return the UBSan prologue signature for \p FD if one is available.
745static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746 const FunctionDecl *FD) {
747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748 if (!MD->isStatic())
749 return nullptr;
751}
752
754 llvm::Function *Fn,
755 const CGFunctionInfo &FnInfo,
756 const FunctionArgList &Args,
758 SourceLocation StartLoc) {
759 assert(!CurFn &&
760 "Do not use a CodeGenFunction object for more than one function");
761
762 const Decl *D = GD.getDecl();
763
764 DidCallStackSave = false;
765 CurCodeDecl = D;
766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767 if (FD && FD->usesSEHTry())
768 CurSEHParent = GD;
769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770 FnRetTy = RetTy;
771 CurFn = Fn;
772 CurFnInfo = &FnInfo;
773 assert(CurFn->isDeclaration() && "Function already has body?");
774
775 // If this function is ignored for any of the enabled sanitizers,
776 // disable the sanitizer for the function.
777 do {
778#define SANITIZER(NAME, ID) \
779 if (SanOpts.empty()) \
780 break; \
781 if (SanOpts.has(SanitizerKind::ID)) \
782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
783 SanOpts.set(SanitizerKind::ID, false);
784
785#include "clang/Basic/Sanitizers.def"
786#undef SANITIZER
787 } while (false);
788
789 if (D) {
790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791 SanitizerMask no_sanitize_mask;
792 bool NoSanitizeCoverage = false;
793
794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795 no_sanitize_mask |= Attr->getMask();
796 // SanitizeCoverage is not handled by SanOpts.
797 if (Attr->hasCoverage())
798 NoSanitizeCoverage = true;
799 }
800
801 // Apply the no_sanitize* attributes to SanOpts.
802 SanOpts.Mask &= ~no_sanitize_mask;
803 if (no_sanitize_mask & SanitizerKind::Address)
804 SanOpts.set(SanitizerKind::KernelAddress, false);
805 if (no_sanitize_mask & SanitizerKind::KernelAddress)
806 SanOpts.set(SanitizerKind::Address, false);
807 if (no_sanitize_mask & SanitizerKind::HWAddress)
808 SanOpts.set(SanitizerKind::KernelHWAddress, false);
809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810 SanOpts.set(SanitizerKind::HWAddress, false);
811
812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814
815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817
818 // Some passes need the non-negated no_sanitize attribute. Pass them on.
820 if (no_sanitize_mask & SanitizerKind::Thread)
821 Fn->addFnAttr("no_sanitize_thread");
822 }
823 }
824
826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827 } else {
828 // Apply sanitizer attributes to the function.
829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832 SanitizerKind::KernelHWAddress))
833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834 if (SanOpts.has(SanitizerKind::MemtagStack))
835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836 if (SanOpts.has(SanitizerKind::Thread))
837 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838 if (SanOpts.has(SanitizerKind::NumericalStability))
839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842 }
843 if (SanOpts.has(SanitizerKind::SafeStack))
844 Fn->addFnAttr(llvm::Attribute::SafeStack);
845 if (SanOpts.has(SanitizerKind::ShadowCallStack))
846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847
848 // Apply fuzzing attribute to the function.
849 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851
852 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854 if (SanOpts.has(SanitizerKind::Thread)) {
855 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857 if (OMD->getMethodFamily() == OMF_dealloc ||
858 OMD->getMethodFamily() == OMF_initialize ||
859 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
861 }
862 }
863 }
864
865 // Ignore unrelated casts in STL allocate() since the allocator must cast
866 // from void* to T* before object initialization completes. Don't match on the
867 // namespace because not all allocators are in std::
868 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
870 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871 }
872
873 // Ignore null checks in coroutine functions since the coroutines passes
874 // are not aware of how to move the extra UBSan instructions across the split
875 // coroutine boundaries.
876 if (D && SanOpts.has(SanitizerKind::Null))
877 if (FD && FD->getBody() &&
878 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879 SanOpts.Mask &= ~SanitizerKind::Null;
880
881 // Add pointer authentication attributes.
882 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883 if (CodeGenOpts.PointerAuth.ReturnAddresses)
884 Fn->addFnAttr("ptrauth-returns");
885 if (CodeGenOpts.PointerAuth.FunctionPointers)
886 Fn->addFnAttr("ptrauth-calls");
887 if (CodeGenOpts.PointerAuth.AuthTraps)
888 Fn->addFnAttr("ptrauth-auth-traps");
889 if (CodeGenOpts.PointerAuth.IndirectGotos)
890 Fn->addFnAttr("ptrauth-indirect-gotos");
891
892 // Apply xray attributes to the function (as a string, for now)
893 bool AlwaysXRayAttr = false;
894 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
899 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
900 Fn->addFnAttr("function-instrument", "xray-always");
901 AlwaysXRayAttr = true;
902 }
903 if (XRayAttr->neverXRayInstrument())
904 Fn->addFnAttr("function-instrument", "xray-never");
905 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
907 Fn->addFnAttr("xray-log-args",
908 llvm::utostr(LogArgs->getArgumentCount()));
909 }
910 } else {
912 Fn->addFnAttr(
913 "xray-instruction-threshold",
914 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
915 }
916
918 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
919 Fn->addFnAttr("xray-ignore-loops");
920
923 Fn->addFnAttr("xray-skip-exit");
924
927 Fn->addFnAttr("xray-skip-entry");
928
929 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
930 if (FuncGroups > 1) {
931 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
932 CurFn->getName().bytes_end());
933 auto Group = crc32(FuncName) % FuncGroups;
934 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
935 !AlwaysXRayAttr)
936 Fn->addFnAttr("function-instrument", "xray-never");
937 }
938 }
939
940 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
943 Fn->addFnAttr(llvm::Attribute::SkipProfile);
944 break;
946 Fn->addFnAttr(llvm::Attribute::NoProfile);
947 break;
949 break;
950 }
951 }
952
953 unsigned Count, Offset;
954 if (const auto *Attr =
955 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
956 Count = Attr->getCount();
957 Offset = Attr->getOffset();
958 } else {
959 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
960 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
961 }
962 if (Count && Offset <= Count) {
963 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
964 if (Offset)
965 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
966 }
967 // Instruct that functions for COFF/CodeView targets should start with a
968 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
969 // backends as they don't need it -- instructions on these architectures are
970 // always atomically patchable at runtime.
971 if (CGM.getCodeGenOpts().HotPatch &&
972 getContext().getTargetInfo().getTriple().isX86() &&
973 getContext().getTargetInfo().getTriple().getEnvironment() !=
974 llvm::Triple::CODE16)
975 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
976
977 // Add no-jump-tables value.
978 if (CGM.getCodeGenOpts().NoUseJumpTables)
979 Fn->addFnAttr("no-jump-tables", "true");
980
981 // Add no-inline-line-tables value.
982 if (CGM.getCodeGenOpts().NoInlineLineTables)
983 Fn->addFnAttr("no-inline-line-tables");
984
985 // Add profile-sample-accurate value.
986 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
987 Fn->addFnAttr("profile-sample-accurate");
988
989 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
990 Fn->addFnAttr("use-sample-profile");
991
992 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
993 Fn->addFnAttr("cfi-canonical-jump-table");
994
995 if (D && D->hasAttr<NoProfileFunctionAttr>())
996 Fn->addFnAttr(llvm::Attribute::NoProfile);
997
998 if (D && D->hasAttr<HybridPatchableAttr>())
999 Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1000
1001 if (D) {
1002 // Function attributes take precedence over command line flags.
1003 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1004 switch (A->getThunkType()) {
1005 case FunctionReturnThunksAttr::Kind::Keep:
1006 break;
1007 case FunctionReturnThunksAttr::Kind::Extern:
1008 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1009 break;
1010 }
1011 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1012 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1013 }
1014
1015 if (FD && (getLangOpts().OpenCL ||
1016 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
1017 // Add metadata for a kernel function.
1018 EmitKernelMetadata(FD, Fn);
1019 }
1020
1021 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1022 Fn->setMetadata("clspv_libclc_builtin",
1023 llvm::MDNode::get(getLLVMContext(), {}));
1024 }
1025
1026 // If we are checking function types, emit a function type signature as
1027 // prologue data.
1028 if (FD && SanOpts.has(SanitizerKind::Function)) {
1029 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1030 llvm::LLVMContext &Ctx = Fn->getContext();
1031 llvm::MDBuilder MDB(Ctx);
1032 Fn->setMetadata(
1033 llvm::LLVMContext::MD_func_sanitize,
1034 MDB.createRTTIPointerPrologue(
1035 PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1036 }
1037 }
1038
1039 // If we're checking nullability, we need to know whether we can check the
1040 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1041 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1043 if (Nullability && *Nullability == NullabilityKind::NonNull &&
1044 !FnRetTy->isRecordType()) {
1045 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1046 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1047 RetValNullabilityPrecondition =
1048 llvm::ConstantInt::getTrue(getLLVMContext());
1049 }
1050 }
1051
1052 // If we're in C++ mode and the function name is "main", it is guaranteed
1053 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1054 // used within a program").
1055 //
1056 // OpenCL C 2.0 v2.2-11 s6.9.i:
1057 // Recursion is not supported.
1058 //
1059 // SYCL v1.2.1 s3.10:
1060 // kernels cannot include RTTI information, exception classes,
1061 // recursive code, virtual functions or make use of C++ libraries that
1062 // are not compiled for the device.
1063 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1064 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1065 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1066 Fn->addFnAttr(llvm::Attribute::NoRecurse);
1067
1068 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1069 llvm::fp::ExceptionBehavior FPExceptionBehavior =
1070 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1071 Builder.setDefaultConstrainedRounding(RM);
1072 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1073 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1074 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1075 RM != llvm::RoundingMode::NearestTiesToEven))) {
1076 Builder.setIsFPConstrained(true);
1077 Fn->addFnAttr(llvm::Attribute::StrictFP);
1078 }
1079
1080 // If a custom alignment is used, force realigning to this alignment on
1081 // any main function which certainly will need it.
1082 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1083 CGM.getCodeGenOpts().StackAlignment))
1084 Fn->addFnAttr("stackrealign");
1085
1086 // "main" doesn't need to zero out call-used registers.
1087 if (FD && FD->isMain())
1088 Fn->removeFnAttr("zero-call-used-regs");
1089
1090 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1091
1092 // Create a marker to make it easy to insert allocas into the entryblock
1093 // later. Don't create this with the builder, because we don't want it
1094 // folded.
1095 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1096 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1097
1099
1100 Builder.SetInsertPoint(EntryBB);
1101
1102 // If we're checking the return value, allocate space for a pointer to a
1103 // precise source location of the checked return statement.
1104 if (requiresReturnValueCheck()) {
1105 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1106 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1107 ReturnLocation);
1108 }
1109
1110 // Emit subprogram debug descriptor.
1111 if (CGDebugInfo *DI = getDebugInfo()) {
1112 // Reconstruct the type from the argument list so that implicit parameters,
1113 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1114 // convention.
1115 DI->emitFunctionStart(GD, Loc, StartLoc,
1116 DI->getFunctionType(FD, RetTy, Args), CurFn,
1118 }
1119
1121 if (CGM.getCodeGenOpts().InstrumentFunctions)
1122 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1123 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1124 CurFn->addFnAttr("instrument-function-entry-inlined",
1125 "__cyg_profile_func_enter");
1126 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1127 CurFn->addFnAttr("instrument-function-entry-inlined",
1128 "__cyg_profile_func_enter_bare");
1129 }
1130
1131 // Since emitting the mcount call here impacts optimizations such as function
1132 // inlining, we just add an attribute to insert a mcount call in backend.
1133 // The attribute "counting-function" is set to mcount function name which is
1134 // architecture dependent.
1135 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1136 // Calls to fentry/mcount should not be generated if function has
1137 // the no_instrument_function attribute.
1138 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1139 if (CGM.getCodeGenOpts().CallFEntry)
1140 Fn->addFnAttr("fentry-call", "true");
1141 else {
1142 Fn->addFnAttr("instrument-function-entry-inlined",
1143 getTarget().getMCountName());
1144 }
1145 if (CGM.getCodeGenOpts().MNopMCount) {
1146 if (!CGM.getCodeGenOpts().CallFEntry)
1147 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1148 << "-mnop-mcount" << "-mfentry";
1149 Fn->addFnAttr("mnop-mcount");
1150 }
1151
1152 if (CGM.getCodeGenOpts().RecordMCount) {
1153 if (!CGM.getCodeGenOpts().CallFEntry)
1154 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1155 << "-mrecord-mcount" << "-mfentry";
1156 Fn->addFnAttr("mrecord-mcount");
1157 }
1158 }
1159 }
1160
1161 if (CGM.getCodeGenOpts().PackedStack) {
1162 if (getContext().getTargetInfo().getTriple().getArch() !=
1163 llvm::Triple::systemz)
1164 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1165 << "-mpacked-stack";
1166 Fn->addFnAttr("packed-stack");
1167 }
1168
1169 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1170 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1171 Fn->addFnAttr("warn-stack-size",
1172 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1173
1174 if (RetTy->isVoidType()) {
1175 // Void type; nothing to return.
1177
1178 // Count the implicit return.
1179 if (!endsWithReturn(D))
1180 ++NumReturnExprs;
1182 // Indirect return; emit returned value directly into sret slot.
1183 // This reduces code size, and affects correctness in C++.
1184 auto AI = CurFn->arg_begin();
1186 ++AI;
1188 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1189 nullptr, nullptr, KnownNonNull);
1195 }
1198 // Load the sret pointer from the argument struct and return into that.
1199 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1200 llvm::Function::arg_iterator EI = CurFn->arg_end();
1201 --EI;
1202 llvm::Value *Addr = Builder.CreateStructGEP(
1203 CurFnInfo->getArgStruct(), &*EI, Idx);
1204 llvm::Type *Ty =
1205 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1207 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1208 ReturnValue = Address(Addr, ConvertType(RetTy),
1210 } else {
1211 ReturnValue = CreateIRTemp(RetTy, "retval");
1212
1213 // Tell the epilog emitter to autorelease the result. We do this
1214 // now so that various specialized functions can suppress it
1215 // during their IR-generation.
1216 if (getLangOpts().ObjCAutoRefCount &&
1218 RetTy->isObjCRetainableType())
1219 AutoreleaseResult = true;
1220 }
1221
1223
1225
1226 // Emit OpenMP specific initialization of the device functions.
1227 if (getLangOpts().OpenMP && CurCodeDecl)
1229
1230 // Handle emitting HLSL entry functions.
1231 if (D && D->hasAttr<HLSLShaderAttr>())
1233
1235
1236 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1237 MD && !MD->isStatic()) {
1238 bool IsInLambda =
1239 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1242 if (IsInLambda) {
1243 // We're in a lambda; figure out the captures.
1247 // If the lambda captures the object referred to by '*this' - either by
1248 // value or by reference, make sure CXXThisValue points to the correct
1249 // object.
1250
1251 // Get the lvalue for the field (which is a copy of the enclosing object
1252 // or contains the address of the enclosing object).
1255 // If the enclosing object was captured by value, just use its
1256 // address. Sign this pointer.
1257 CXXThisValue = ThisFieldLValue.getPointer(*this);
1258 } else {
1259 // Load the lvalue pointed to by the field, since '*this' was captured
1260 // by reference.
1261 CXXThisValue =
1262 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1263 }
1264 }
1265 for (auto *FD : MD->getParent()->fields()) {
1266 if (FD->hasCapturedVLAType()) {
1267 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1269 auto VAT = FD->getCapturedVLAType();
1270 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1271 }
1272 }
1273 } else if (MD->isImplicitObjectMemberFunction()) {
1274 // Not in a lambda; just use 'this' from the method.
1275 // FIXME: Should we generate a new load for each use of 'this'? The
1276 // fast register allocator would be happier...
1277 CXXThisValue = CXXABIThisValue;
1278 }
1279
1280 // Check the 'this' pointer once per function, if it's available.
1281 if (CXXABIThisValue) {
1282 SanitizerSet SkippedChecks;
1283 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1284 QualType ThisTy = MD->getThisType();
1285
1286 // If this is the call operator of a lambda with no captures, it
1287 // may have a static invoker function, which may call this operator with
1288 // a null 'this' pointer.
1290 SkippedChecks.set(SanitizerKind::Null, true);
1291
1293 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1294 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1295 }
1296 }
1297
1298 // If any of the arguments have a variably modified type, make sure to
1299 // emit the type size, but only if the function is not naked. Naked functions
1300 // have no prolog to run this evaluation.
1301 if (!FD || !FD->hasAttr<NakedAttr>()) {
1302 for (const VarDecl *VD : Args) {
1303 // Dig out the type as written from ParmVarDecls; it's unclear whether
1304 // the standard (C99 6.9.1p10) requires this, but we're following the
1305 // precedent set by gcc.
1306 QualType Ty;
1307 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1308 Ty = PVD->getOriginalType();
1309 else
1310 Ty = VD->getType();
1311
1312 if (Ty->isVariablyModifiedType())
1314 }
1315 }
1316 // Emit a location at the end of the prologue.
1317 if (CGDebugInfo *DI = getDebugInfo())
1318 DI->EmitLocation(Builder, StartLoc);
1319 // TODO: Do we need to handle this in two places like we do with
1320 // target-features/target-cpu?
1321 if (CurFuncDecl)
1322 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1323 LargestVectorWidth = VecWidth->getVectorWidth();
1324
1326 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1327}
1328
1329void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1332 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1334 else
1335 EmitStmt(Body);
1336}
1337
1338/// When instrumenting to collect profile data, the counts for some blocks
1339/// such as switch cases need to not include the fall-through counts, so
1340/// emit a branch around the instrumentation code. When not instrumenting,
1341/// this just calls EmitBlock().
1342void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1343 const Stmt *S) {
1344 llvm::BasicBlock *SkipCountBB = nullptr;
1345 // Do not skip over the instrumentation when single byte coverage mode is
1346 // enabled.
1349 // When instrumenting for profiling, the fallthrough to certain
1350 // statements needs to skip over the instrumentation code so that we
1351 // get an accurate count.
1352 SkipCountBB = createBasicBlock("skipcount");
1353 EmitBranch(SkipCountBB);
1354 }
1355 EmitBlock(BB);
1356 uint64_t CurrentCount = getCurrentProfileCount();
1359 if (SkipCountBB)
1360 EmitBlock(SkipCountBB);
1361}
1362
1363/// Tries to mark the given function nounwind based on the
1364/// non-existence of any throwing calls within it. We believe this is
1365/// lightweight enough to do at -O0.
1366static void TryMarkNoThrow(llvm::Function *F) {
1367 // LLVM treats 'nounwind' on a function as part of the type, so we
1368 // can't do this on functions that can be overwritten.
1369 if (F->isInterposable()) return;
1370
1371 for (llvm::BasicBlock &BB : *F)
1372 for (llvm::Instruction &I : BB)
1373 if (I.mayThrow())
1374 return;
1375
1376 F->setDoesNotThrow();
1377}
1378
1380 FunctionArgList &Args) {
1381 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1382 QualType ResTy = FD->getReturnType();
1383
1384 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1385 if (MD && MD->isImplicitObjectMemberFunction()) {
1386 if (CGM.getCXXABI().HasThisReturn(GD))
1387 ResTy = MD->getThisType();
1388 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1389 ResTy = CGM.getContext().VoidPtrTy;
1390 CGM.getCXXABI().buildThisParam(*this, Args);
1391 }
1392
1393 // The base version of an inheriting constructor whose constructed base is a
1394 // virtual base is not passed any arguments (because it doesn't actually call
1395 // the inherited constructor).
1396 bool PassedParams = true;
1397 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1398 if (auto Inherited = CD->getInheritedConstructor())
1399 PassedParams =
1400 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1401
1402 if (PassedParams) {
1403 for (auto *Param : FD->parameters()) {
1404 Args.push_back(Param);
1405 if (!Param->hasAttr<PassObjectSizeAttr>())
1406 continue;
1407
1409 getContext(), Param->getDeclContext(), Param->getLocation(),
1410 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1411 SizeArguments[Param] = Implicit;
1412 Args.push_back(Implicit);
1413 }
1414 }
1415
1416 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1417 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1418
1419 return ResTy;
1420}
1421
1422void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1423 const CGFunctionInfo &FnInfo) {
1424 assert(Fn && "generating code for null Function");
1425 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1426 CurGD = GD;
1427
1428 FunctionArgList Args;
1429 QualType ResTy = BuildFunctionArgList(GD, Args);
1430
1432
1433 if (FD->isInlineBuiltinDeclaration()) {
1434 // When generating code for a builtin with an inline declaration, use a
1435 // mangled name to hold the actual body, while keeping an external
1436 // definition in case the function pointer is referenced somewhere.
1437 std::string FDInlineName = (Fn->getName() + ".inline").str();
1438 llvm::Module *M = Fn->getParent();
1439 llvm::Function *Clone = M->getFunction(FDInlineName);
1440 if (!Clone) {
1441 Clone = llvm::Function::Create(Fn->getFunctionType(),
1442 llvm::GlobalValue::InternalLinkage,
1443 Fn->getAddressSpace(), FDInlineName, M);
1444 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1445 }
1446 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1447 Fn = Clone;
1448 } else {
1449 // Detect the unusual situation where an inline version is shadowed by a
1450 // non-inline version. In that case we should pick the external one
1451 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1452 // to detect that situation before we reach codegen, so do some late
1453 // replacement.
1454 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1455 PD = PD->getPreviousDecl()) {
1456 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1457 std::string FDInlineName = (Fn->getName() + ".inline").str();
1458 llvm::Module *M = Fn->getParent();
1459 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1460 Clone->replaceAllUsesWith(Fn);
1461 Clone->eraseFromParent();
1462 }
1463 break;
1464 }
1465 }
1466 }
1467
1468 // Check if we should generate debug info for this function.
1469 if (FD->hasAttr<NoDebugAttr>()) {
1470 // Clear non-distinct debug info that was possibly attached to the function
1471 // due to an earlier declaration without the nodebug attribute
1472 Fn->setSubprogram(nullptr);
1473 // Disable debug info indefinitely for this function
1474 DebugInfo = nullptr;
1475 }
1476
1477 // The function might not have a body if we're generating thunks for a
1478 // function declaration.
1479 SourceRange BodyRange;
1480 if (Stmt *Body = FD->getBody())
1481 BodyRange = Body->getSourceRange();
1482 else
1483 BodyRange = FD->getLocation();
1484 CurEHLocation = BodyRange.getEnd();
1485
1486 // Use the location of the start of the function to determine where
1487 // the function definition is located. By default use the location
1488 // of the declaration as the location for the subprogram. A function
1489 // may lack a declaration in the source code if it is created by code
1490 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1492
1493 // If this is a function specialization then use the pattern body
1494 // as the location for the function.
1495 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1496 if (SpecDecl->hasBody(SpecDecl))
1497 Loc = SpecDecl->getLocation();
1498
1499 Stmt *Body = FD->getBody();
1500
1501 if (Body) {
1502 // Coroutines always emit lifetime markers.
1503 if (isa<CoroutineBodyStmt>(Body))
1504 ShouldEmitLifetimeMarkers = true;
1505
1506 // Initialize helper which will detect jumps which can cause invalid
1507 // lifetime markers.
1508 if (ShouldEmitLifetimeMarkers)
1509 Bypasses.Init(Body);
1510 }
1511
1512 // Emit the standard function prologue.
1513 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1514
1515 // Save parameters for coroutine function.
1516 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1517 llvm::append_range(FnArgs, FD->parameters());
1518
1519 // Ensure that the function adheres to the forward progress guarantee, which
1520 // is required by certain optimizations.
1521 // In C++11 and up, the attribute will be removed if the body contains a
1522 // trivial empty loop.
1524 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1525
1526 // Generate the body of the function.
1527 PGO.assignRegionCounters(GD, CurFn);
1528 if (isa<CXXDestructorDecl>(FD))
1529 EmitDestructorBody(Args);
1530 else if (isa<CXXConstructorDecl>(FD))
1531 EmitConstructorBody(Args);
1532 else if (getLangOpts().CUDA &&
1533 !getLangOpts().CUDAIsDevice &&
1534 FD->hasAttr<CUDAGlobalAttr>())
1535 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1536 else if (isa<CXXMethodDecl>(FD) &&
1537 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1538 // The lambda static invoker function is special, because it forwards or
1539 // clones the body of the function call operator (but is actually static).
1540 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1541 } else if (isa<CXXMethodDecl>(FD) &&
1542 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1543 !FnInfo.isDelegateCall() &&
1544 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1545 hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1546 // If emitting a lambda with static invoker on X86 Windows, change
1547 // the call operator body.
1548 // Make sure that this is a call operator with an inalloca arg and check
1549 // for delegate call to make sure this is the original call op and not the
1550 // new forwarding function for the static invoker.
1551 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1552 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1553 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1554 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1555 // Implicit copy-assignment gets the same special treatment as implicit
1556 // copy-constructors.
1558 } else if (Body) {
1559 EmitFunctionBody(Body);
1560 } else
1561 llvm_unreachable("no definition for emitted function");
1562
1563 // C++11 [stmt.return]p2:
1564 // Flowing off the end of a function [...] results in undefined behavior in
1565 // a value-returning function.
1566 // C11 6.9.1p12:
1567 // If the '}' that terminates a function is reached, and the value of the
1568 // function call is used by the caller, the behavior is undefined.
1570 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1571 bool ShouldEmitUnreachable =
1572 CGM.getCodeGenOpts().StrictReturn ||
1574 if (SanOpts.has(SanitizerKind::Return)) {
1575 SanitizerScope SanScope(this);
1576 llvm::Value *IsFalse = Builder.getFalse();
1577 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1578 SanitizerHandler::MissingReturn,
1579 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1580 } else if (ShouldEmitUnreachable) {
1581 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1582 EmitTrapCall(llvm::Intrinsic::trap);
1583 }
1584 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1585 Builder.CreateUnreachable();
1586 Builder.ClearInsertionPoint();
1587 }
1588 }
1589
1590 // Emit the standard function epilogue.
1591 FinishFunction(BodyRange.getEnd());
1592
1593 // If we haven't marked the function nothrow through other means, do
1594 // a quick pass now to see if we can.
1595 if (!CurFn->doesNotThrow())
1597}
1598
1599/// ContainsLabel - Return true if the statement contains a label in it. If
1600/// this statement is not executed normally, it not containing a label means
1601/// that we can just remove the code.
1602bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1603 // Null statement, not a label!
1604 if (!S) return false;
1605
1606 // If this is a label, we have to emit the code, consider something like:
1607 // if (0) { ... foo: bar(); } goto foo;
1608 //
1609 // TODO: If anyone cared, we could track __label__'s, since we know that you
1610 // can't jump to one from outside their declared region.
1611 if (isa<LabelStmt>(S))
1612 return true;
1613
1614 // If this is a case/default statement, and we haven't seen a switch, we have
1615 // to emit the code.
1616 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1617 return true;
1618
1619 // If this is a switch statement, we want to ignore cases below it.
1620 if (isa<SwitchStmt>(S))
1621 IgnoreCaseStmts = true;
1622
1623 // Scan subexpressions for verboten labels.
1624 for (const Stmt *SubStmt : S->children())
1625 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1626 return true;
1627
1628 return false;
1629}
1630
1631/// containsBreak - Return true if the statement contains a break out of it.
1632/// If the statement (recursively) contains a switch or loop with a break
1633/// inside of it, this is fine.
1634bool CodeGenFunction::containsBreak(const Stmt *S) {
1635 // Null statement, not a label!
1636 if (!S) return false;
1637
1638 // If this is a switch or loop that defines its own break scope, then we can
1639 // include it and anything inside of it.
1640 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1641 isa<ForStmt>(S))
1642 return false;
1643
1644 if (isa<BreakStmt>(S))
1645 return true;
1646
1647 // Scan subexpressions for verboten breaks.
1648 for (const Stmt *SubStmt : S->children())
1649 if (containsBreak(SubStmt))
1650 return true;
1651
1652 return false;
1653}
1654
1656 if (!S) return false;
1657
1658 // Some statement kinds add a scope and thus never add a decl to the current
1659 // scope. Note, this list is longer than the list of statements that might
1660 // have an unscoped decl nested within them, but this way is conservatively
1661 // correct even if more statement kinds are added.
1662 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1663 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1664 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1665 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1666 return false;
1667
1668 if (isa<DeclStmt>(S))
1669 return true;
1670
1671 for (const Stmt *SubStmt : S->children())
1672 if (mightAddDeclToScope(SubStmt))
1673 return true;
1674
1675 return false;
1676}
1677
1678/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1679/// to a constant, or if it does but contains a label, return false. If it
1680/// constant folds return true and set the boolean result in Result.
1682 bool &ResultBool,
1683 bool AllowLabels) {
1684 // If MC/DC is enabled, disable folding so that we can instrument all
1685 // conditions to yield complete test vectors. We still keep track of
1686 // folded conditions during region mapping and visualization.
1687 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1688 CGM.getCodeGenOpts().MCDCCoverage)
1689 return false;
1690
1691 llvm::APSInt ResultInt;
1692 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1693 return false;
1694
1695 ResultBool = ResultInt.getBoolValue();
1696 return true;
1697}
1698
1699/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1700/// to a constant, or if it does but contains a label, return false. If it
1701/// constant folds return true and set the folded value.
1703 llvm::APSInt &ResultInt,
1704 bool AllowLabels) {
1705 // FIXME: Rename and handle conversion of other evaluatable things
1706 // to bool.
1708 if (!Cond->EvaluateAsInt(Result, getContext()))
1709 return false; // Not foldable, not integer or not fully evaluatable.
1710
1711 llvm::APSInt Int = Result.Val.getInt();
1712 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1713 return false; // Contains a label.
1714
1715 ResultInt = Int;
1716 return true;
1717}
1718
1719/// Strip parentheses and simplistic logical-NOT operators.
1720const Expr *CodeGenFunction::stripCond(const Expr *C) {
1721 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1722 if (Op->getOpcode() != UO_LNot)
1723 break;
1724 C = Op->getSubExpr();
1725 }
1726 return C->IgnoreParens();
1727}
1728
1729/// Determine whether the given condition is an instrumentable condition
1730/// (i.e. no "&&" or "||").
1732 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1733 return (!BOp || !BOp->isLogicalOp());
1734}
1735
1736/// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1737/// increments a profile counter based on the semantics of the given logical
1738/// operator opcode. This is used to instrument branch condition coverage for
1739/// logical operators.
1741 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1742 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1743 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1744 // If not instrumenting, just emit a branch.
1745 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1746 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1747 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1748
1749 llvm::BasicBlock *ThenBlock = nullptr;
1750 llvm::BasicBlock *ElseBlock = nullptr;
1751 llvm::BasicBlock *NextBlock = nullptr;
1752
1753 // Create the block we'll use to increment the appropriate counter.
1754 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1755
1756 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1757 // means we need to evaluate the condition and increment the counter on TRUE:
1758 //
1759 // if (Cond)
1760 // goto CounterIncrBlock;
1761 // else
1762 // goto FalseBlock;
1763 //
1764 // CounterIncrBlock:
1765 // Counter++;
1766 // goto TrueBlock;
1767
1768 if (LOp == BO_LAnd) {
1769 ThenBlock = CounterIncrBlock;
1770 ElseBlock = FalseBlock;
1771 NextBlock = TrueBlock;
1772 }
1773
1774 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1775 // we need to evaluate the condition and increment the counter on FALSE:
1776 //
1777 // if (Cond)
1778 // goto TrueBlock;
1779 // else
1780 // goto CounterIncrBlock;
1781 //
1782 // CounterIncrBlock:
1783 // Counter++;
1784 // goto FalseBlock;
1785
1786 else if (LOp == BO_LOr) {
1787 ThenBlock = TrueBlock;
1788 ElseBlock = CounterIncrBlock;
1789 NextBlock = FalseBlock;
1790 } else {
1791 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1792 }
1793
1794 // Emit Branch based on condition.
1795 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1796
1797 // Emit the block containing the counter increment(s).
1798 EmitBlock(CounterIncrBlock);
1799
1800 // Increment corresponding counter; if index not provided, use Cond as index.
1801 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1802
1803 // Go to the next block.
1804 EmitBranch(NextBlock);
1805}
1806
1807/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1808/// statement) to the specified blocks. Based on the condition, this might try
1809/// to simplify the codegen of the conditional based on the branch.
1810/// \param LH The value of the likelihood attribute on the True branch.
1811/// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1812/// ConditionalOperator (ternary) through a recursive call for the operator's
1813/// LHS and RHS nodes.
1815 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1816 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1817 Cond = Cond->IgnoreParens();
1818
1819 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1820 // Handle X && Y in a condition.
1821 if (CondBOp->getOpcode() == BO_LAnd) {
1822 MCDCLogOpStack.push_back(CondBOp);
1823
1824 // If we have "1 && X", simplify the code. "0 && X" would have constant
1825 // folded if the case was simple enough.
1826 bool ConstantBool = false;
1827 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1828 ConstantBool) {
1829 // br(1 && X) -> br(X).
1830 incrementProfileCounter(CondBOp);
1831 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1832 FalseBlock, TrueCount, LH);
1833 MCDCLogOpStack.pop_back();
1834 return;
1835 }
1836
1837 // If we have "X && 1", simplify the code to use an uncond branch.
1838 // "X && 0" would have been constant folded to 0.
1839 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1840 ConstantBool) {
1841 // br(X && 1) -> br(X).
1842 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1843 FalseBlock, TrueCount, LH, CondBOp);
1844 MCDCLogOpStack.pop_back();
1845 return;
1846 }
1847
1848 // Emit the LHS as a conditional. If the LHS conditional is false, we
1849 // want to jump to the FalseBlock.
1850 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1851 // The counter tells us how often we evaluate RHS, and all of TrueCount
1852 // can be propagated to that branch.
1853 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1854
1855 ConditionalEvaluation eval(*this);
1856 {
1857 ApplyDebugLocation DL(*this, Cond);
1858 // Propagate the likelihood attribute like __builtin_expect
1859 // __builtin_expect(X && Y, 1) -> X and Y are likely
1860 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1861 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1862 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1863 EmitBlock(LHSTrue);
1864 }
1865
1866 incrementProfileCounter(CondBOp);
1867 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1868
1869 // Any temporaries created here are conditional.
1870 eval.begin(*this);
1871 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1872 FalseBlock, TrueCount, LH);
1873 eval.end(*this);
1874 MCDCLogOpStack.pop_back();
1875 return;
1876 }
1877
1878 if (CondBOp->getOpcode() == BO_LOr) {
1879 MCDCLogOpStack.push_back(CondBOp);
1880
1881 // If we have "0 || X", simplify the code. "1 || X" would have constant
1882 // folded if the case was simple enough.
1883 bool ConstantBool = false;
1884 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1885 !ConstantBool) {
1886 // br(0 || X) -> br(X).
1887 incrementProfileCounter(CondBOp);
1888 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1889 FalseBlock, TrueCount, LH);
1890 MCDCLogOpStack.pop_back();
1891 return;
1892 }
1893
1894 // If we have "X || 0", simplify the code to use an uncond branch.
1895 // "X || 1" would have been constant folded to 1.
1896 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1897 !ConstantBool) {
1898 // br(X || 0) -> br(X).
1899 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1900 FalseBlock, TrueCount, LH, CondBOp);
1901 MCDCLogOpStack.pop_back();
1902 return;
1903 }
1904 // Emit the LHS as a conditional. If the LHS conditional is true, we
1905 // want to jump to the TrueBlock.
1906 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1907 // We have the count for entry to the RHS and for the whole expression
1908 // being true, so we can divy up True count between the short circuit and
1909 // the RHS.
1910 uint64_t LHSCount =
1911 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1912 uint64_t RHSCount = TrueCount - LHSCount;
1913
1914 ConditionalEvaluation eval(*this);
1915 {
1916 // Propagate the likelihood attribute like __builtin_expect
1917 // __builtin_expect(X || Y, 1) -> only Y is likely
1918 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1919 ApplyDebugLocation DL(*this, Cond);
1920 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1921 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1922 EmitBlock(LHSFalse);
1923 }
1924
1925 incrementProfileCounter(CondBOp);
1926 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1927
1928 // Any temporaries created here are conditional.
1929 eval.begin(*this);
1930 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1931 RHSCount, LH);
1932
1933 eval.end(*this);
1934 MCDCLogOpStack.pop_back();
1935 return;
1936 }
1937 }
1938
1939 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1940 // br(!x, t, f) -> br(x, f, t)
1941 // Avoid doing this optimization when instrumenting a condition for MC/DC.
1942 // LNot is taken as part of the condition for simplicity, and changing its
1943 // sense negatively impacts test vector tracking.
1944 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1945 CGM.getCodeGenOpts().MCDCCoverage &&
1947 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1948 // Negate the count.
1949 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1950 // The values of the enum are chosen to make this negation possible.
1951 LH = static_cast<Stmt::Likelihood>(-LH);
1952 // Negate the condition and swap the destination blocks.
1953 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1954 FalseCount, LH);
1955 }
1956 }
1957
1958 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1959 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1960 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1961 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1962
1963 // The ConditionalOperator itself has no likelihood information for its
1964 // true and false branches. This matches the behavior of __builtin_expect.
1965 ConditionalEvaluation cond(*this);
1966 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1968
1969 // When computing PGO branch weights, we only know the overall count for
1970 // the true block. This code is essentially doing tail duplication of the
1971 // naive code-gen, introducing new edges for which counts are not
1972 // available. Divide the counts proportionally between the LHS and RHS of
1973 // the conditional operator.
1974 uint64_t LHSScaledTrueCount = 0;
1975 if (TrueCount) {
1976 double LHSRatio =
1978 LHSScaledTrueCount = TrueCount * LHSRatio;
1979 }
1980
1981 cond.begin(*this);
1982 EmitBlock(LHSBlock);
1984 {
1985 ApplyDebugLocation DL(*this, Cond);
1986 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1987 LHSScaledTrueCount, LH, CondOp);
1988 }
1989 cond.end(*this);
1990
1991 cond.begin(*this);
1992 EmitBlock(RHSBlock);
1993 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1994 TrueCount - LHSScaledTrueCount, LH, CondOp);
1995 cond.end(*this);
1996
1997 return;
1998 }
1999
2000 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2001 // Conditional operator handling can give us a throw expression as a
2002 // condition for a case like:
2003 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2004 // Fold this to:
2005 // br(c, throw x, br(y, t, f))
2006 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2007 return;
2008 }
2009
2010 // Emit the code with the fully general case.
2011 llvm::Value *CondV;
2012 {
2013 ApplyDebugLocation DL(*this, Cond);
2014 CondV = EvaluateExprAsBool(Cond);
2015 }
2016
2017 // If not at the top of the logical operator nest, update MCDC temp with the
2018 // boolean result of the evaluated condition.
2019 if (!MCDCLogOpStack.empty()) {
2020 const Expr *MCDCBaseExpr = Cond;
2021 // When a nested ConditionalOperator (ternary) is encountered in a boolean
2022 // expression, MC/DC tracks the result of the ternary, and this is tied to
2023 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2024 // this is the case, the ConditionalOperator expression is passed through
2025 // the ConditionalOp parameter and then used as the MCDC base expression.
2026 if (ConditionalOp)
2027 MCDCBaseExpr = ConditionalOp;
2028
2029 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2030 }
2031
2032 llvm::MDNode *Weights = nullptr;
2033 llvm::MDNode *Unpredictable = nullptr;
2034
2035 // If the branch has a condition wrapped by __builtin_unpredictable,
2036 // create metadata that specifies that the branch is unpredictable.
2037 // Don't bother if not optimizing because that metadata would not be used.
2038 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2039 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2040 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2041 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2042 llvm::MDBuilder MDHelper(getLLVMContext());
2043 Unpredictable = MDHelper.createUnpredictable();
2044 }
2045 }
2046
2047 // If there is a Likelihood knowledge for the cond, lower it.
2048 // Note that if not optimizing this won't emit anything.
2049 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2050 if (CondV != NewCondV)
2051 CondV = NewCondV;
2052 else {
2053 // Otherwise, lower profile counts. Note that we do this even at -O0.
2054 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2055 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2056 }
2057
2058 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2059}
2060
2061/// ErrorUnsupported - Print out an error that codegen doesn't support the
2062/// specified stmt yet.
2063void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2065}
2066
2067/// emitNonZeroVLAInit - Emit the "zero" initialization of a
2068/// variable-length array whose elements have a non-zero bit-pattern.
2069///
2070/// \param baseType the inner-most element type of the array
2071/// \param src - a char* pointing to the bit-pattern for a single
2072/// base element of the array
2073/// \param sizeInChars - the total size of the VLA, in chars
2075 Address dest, Address src,
2076 llvm::Value *sizeInChars) {
2078
2079 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2080 llvm::Value *baseSizeInChars
2081 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2082
2083 Address begin = dest.withElementType(CGF.Int8Ty);
2084 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2085 begin.emitRawPointer(CGF),
2086 sizeInChars, "vla.end");
2087
2088 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2089 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2090 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2091
2092 // Make a loop over the VLA. C99 guarantees that the VLA element
2093 // count must be nonzero.
2094 CGF.EmitBlock(loopBB);
2095
2096 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2097 cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2098
2099 CharUnits curAlign =
2100 dest.getAlignment().alignmentOfArrayElement(baseSize);
2101
2102 // memcpy the individual element bit-pattern.
2103 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2104 /*volatile*/ false);
2105
2106 // Go to the next element.
2107 llvm::Value *next =
2108 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2109
2110 // Leave if that's the end of the VLA.
2111 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2112 Builder.CreateCondBr(done, contBB, loopBB);
2113 cur->addIncoming(next, loopBB);
2114
2115 CGF.EmitBlock(contBB);
2116}
2117
2118void
2120 // Ignore empty classes in C++.
2121 if (getLangOpts().CPlusPlus) {
2122 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2123 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2124 return;
2125 }
2126 }
2127
2128 if (DestPtr.getElementType() != Int8Ty)
2129 DestPtr = DestPtr.withElementType(Int8Ty);
2130
2131 // Get size and alignment info for this aggregate.
2133
2134 llvm::Value *SizeVal;
2135 const VariableArrayType *vla;
2136
2137 // Don't bother emitting a zero-byte memset.
2138 if (size.isZero()) {
2139 // But note that getTypeInfo returns 0 for a VLA.
2140 if (const VariableArrayType *vlaType =
2141 dyn_cast_or_null<VariableArrayType>(
2142 getContext().getAsArrayType(Ty))) {
2143 auto VlaSize = getVLASize(vlaType);
2144 SizeVal = VlaSize.NumElts;
2145 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2146 if (!eltSize.isOne())
2147 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2148 vla = vlaType;
2149 } else {
2150 return;
2151 }
2152 } else {
2153 SizeVal = CGM.getSize(size);
2154 vla = nullptr;
2155 }
2156
2157 // If the type contains a pointer to data member we can't memset it to zero.
2158 // Instead, create a null constant and copy it to the destination.
2159 // TODO: there are other patterns besides zero that we can usefully memset,
2160 // like -1, which happens to be the pattern used by member-pointers.
2161 if (!CGM.getTypes().isZeroInitializable(Ty)) {
2162 // For a VLA, emit a single element, then splat that over the VLA.
2163 if (vla) Ty = getContext().getBaseElementType(vla);
2164
2165 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2166
2167 llvm::GlobalVariable *NullVariable =
2168 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2169 /*isConstant=*/true,
2170 llvm::GlobalVariable::PrivateLinkage,
2171 NullConstant, Twine());
2172 CharUnits NullAlign = DestPtr.getAlignment();
2173 NullVariable->setAlignment(NullAlign.getAsAlign());
2174 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2175
2176 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2177
2178 // Get and call the appropriate llvm.memcpy overload.
2179 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2180 return;
2181 }
2182
2183 // Otherwise, just memset the whole thing to zero. This is legal
2184 // because in LLVM, all default initializers (other than the ones we just
2185 // handled above) are guaranteed to have a bit pattern of all zeros.
2186 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2187}
2188
2189llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2190 // Make sure that there is a block for the indirect goto.
2191 if (!IndirectBranch)
2193
2194 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2195
2196 // Make sure the indirect branch includes all of the address-taken blocks.
2197 IndirectBranch->addDestination(BB);
2198 return llvm::BlockAddress::get(CurFn, BB);
2199}
2200
2201llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2202 // If we already made the indirect branch for indirect goto, return its block.
2203 if (IndirectBranch) return IndirectBranch->getParent();
2204
2205 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2206
2207 // Create the PHI node that indirect gotos will add entries to.
2208 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2209 "indirect.goto.dest");
2210
2211 // Create the indirect branch instruction.
2212 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2213 return IndirectBranch->getParent();
2214}
2215
2216/// Computes the length of an array in elements, as well as the base
2217/// element type and a properly-typed first element pointer.
2218llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2219 QualType &baseType,
2220 Address &addr) {
2221 const ArrayType *arrayType = origArrayType;
2222
2223 // If it's a VLA, we have to load the stored size. Note that
2224 // this is the size of the VLA in bytes, not its size in elements.
2225 llvm::Value *numVLAElements = nullptr;
2226 if (isa<VariableArrayType>(arrayType)) {
2227 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2228
2229 // Walk into all VLAs. This doesn't require changes to addr,
2230 // which has type T* where T is the first non-VLA element type.
2231 do {
2232 QualType elementType = arrayType->getElementType();
2233 arrayType = getContext().getAsArrayType(elementType);
2234
2235 // If we only have VLA components, 'addr' requires no adjustment.
2236 if (!arrayType) {
2237 baseType = elementType;
2238 return numVLAElements;
2239 }
2240 } while (isa<VariableArrayType>(arrayType));
2241
2242 // We get out here only if we find a constant array type
2243 // inside the VLA.
2244 }
2245
2246 // We have some number of constant-length arrays, so addr should
2247 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2248 // down to the first element of addr.
2250
2251 // GEP down to the array type.
2252 llvm::ConstantInt *zero = Builder.getInt32(0);
2253 gepIndices.push_back(zero);
2254
2255 uint64_t countFromCLAs = 1;
2256 QualType eltType;
2257
2258 llvm::ArrayType *llvmArrayType =
2259 dyn_cast<llvm::ArrayType>(addr.getElementType());
2260 while (llvmArrayType) {
2261 assert(isa<ConstantArrayType>(arrayType));
2262 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2263 llvmArrayType->getNumElements());
2264
2265 gepIndices.push_back(zero);
2266 countFromCLAs *= llvmArrayType->getNumElements();
2267 eltType = arrayType->getElementType();
2268
2269 llvmArrayType =
2270 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2271 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2272 assert((!llvmArrayType || arrayType) &&
2273 "LLVM and Clang types are out-of-synch");
2274 }
2275
2276 if (arrayType) {
2277 // From this point onwards, the Clang array type has been emitted
2278 // as some other type (probably a packed struct). Compute the array
2279 // size, and just emit the 'begin' expression as a bitcast.
2280 while (arrayType) {
2281 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2282 eltType = arrayType->getElementType();
2283 arrayType = getContext().getAsArrayType(eltType);
2284 }
2285
2286 llvm::Type *baseType = ConvertType(eltType);
2287 addr = addr.withElementType(baseType);
2288 } else {
2289 // Create the actual GEP.
2291 addr.emitRawPointer(*this),
2292 gepIndices, "array.begin"),
2293 ConvertTypeForMem(eltType), addr.getAlignment());
2294 }
2295
2296 baseType = eltType;
2297
2298 llvm::Value *numElements
2299 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2300
2301 // If we had any VLA dimensions, factor them in.
2302 if (numVLAElements)
2303 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2304
2305 return numElements;
2306}
2307
2308CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2310 assert(vla && "type was not a variable array type!");
2311 return getVLASize(vla);
2312}
2313
2314CodeGenFunction::VlaSizePair
2316 // The number of elements so far; always size_t.
2317 llvm::Value *numElements = nullptr;
2318
2319 QualType elementType;
2320 do {
2321 elementType = type->getElementType();
2322 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2323 assert(vlaSize && "no size for VLA!");
2324 assert(vlaSize->getType() == SizeTy);
2325
2326 if (!numElements) {
2327 numElements = vlaSize;
2328 } else {
2329 // It's undefined behavior if this wraps around, so mark it that way.
2330 // FIXME: Teach -fsanitize=undefined to trap this.
2331 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2332 }
2333 } while ((type = getContext().getAsVariableArrayType(elementType)));
2334
2335 return { numElements, elementType };
2336}
2337
2338CodeGenFunction::VlaSizePair
2341 assert(vla && "type was not a variable array type!");
2342 return getVLAElements1D(vla);
2343}
2344
2345CodeGenFunction::VlaSizePair
2347 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2348 assert(VlaSize && "no size for VLA!");
2349 assert(VlaSize->getType() == SizeTy);
2350 return { VlaSize, Vla->getElementType() };
2351}
2352
2354 assert(type->isVariablyModifiedType() &&
2355 "Must pass variably modified type to EmitVLASizes!");
2356
2358
2359 // We're going to walk down into the type and look for VLA
2360 // expressions.
2361 do {
2362 assert(type->isVariablyModifiedType());
2363
2364 const Type *ty = type.getTypePtr();
2365 switch (ty->getTypeClass()) {
2366
2367#define TYPE(Class, Base)
2368#define ABSTRACT_TYPE(Class, Base)
2369#define NON_CANONICAL_TYPE(Class, Base)
2370#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2371#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2372#include "clang/AST/TypeNodes.inc"
2373 llvm_unreachable("unexpected dependent type!");
2374
2375 // These types are never variably-modified.
2376 case Type::Builtin:
2377 case Type::Complex:
2378 case Type::Vector:
2379 case Type::ExtVector:
2380 case Type::ConstantMatrix:
2381 case Type::Record:
2382 case Type::Enum:
2383 case Type::Using:
2384 case Type::TemplateSpecialization:
2385 case Type::ObjCTypeParam:
2386 case Type::ObjCObject:
2387 case Type::ObjCInterface:
2388 case Type::ObjCObjectPointer:
2389 case Type::BitInt:
2390 llvm_unreachable("type class is never variably-modified!");
2391
2392 case Type::Elaborated:
2393 type = cast<ElaboratedType>(ty)->getNamedType();
2394 break;
2395
2396 case Type::Adjusted:
2397 type = cast<AdjustedType>(ty)->getAdjustedType();
2398 break;
2399
2400 case Type::Decayed:
2401 type = cast<DecayedType>(ty)->getPointeeType();
2402 break;
2403
2404 case Type::Pointer:
2405 type = cast<PointerType>(ty)->getPointeeType();
2406 break;
2407
2408 case Type::BlockPointer:
2409 type = cast<BlockPointerType>(ty)->getPointeeType();
2410 break;
2411
2412 case Type::LValueReference:
2413 case Type::RValueReference:
2414 type = cast<ReferenceType>(ty)->getPointeeType();
2415 break;
2416
2417 case Type::MemberPointer:
2418 type = cast<MemberPointerType>(ty)->getPointeeType();
2419 break;
2420
2421 case Type::ArrayParameter:
2422 case Type::ConstantArray:
2423 case Type::IncompleteArray:
2424 // Losing element qualification here is fine.
2425 type = cast<ArrayType>(ty)->getElementType();
2426 break;
2427
2428 case Type::VariableArray: {
2429 // Losing element qualification here is fine.
2430 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2431
2432 // Unknown size indication requires no size computation.
2433 // Otherwise, evaluate and record it.
2434 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2435 // It's possible that we might have emitted this already,
2436 // e.g. with a typedef and a pointer to it.
2437 llvm::Value *&entry = VLASizeMap[sizeExpr];
2438 if (!entry) {
2439 llvm::Value *size = EmitScalarExpr(sizeExpr);
2440
2441 // C11 6.7.6.2p5:
2442 // If the size is an expression that is not an integer constant
2443 // expression [...] each time it is evaluated it shall have a value
2444 // greater than zero.
2445 if (SanOpts.has(SanitizerKind::VLABound)) {
2446 SanitizerScope SanScope(this);
2447 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2448 clang::QualType SEType = sizeExpr->getType();
2449 llvm::Value *CheckCondition =
2450 SEType->isSignedIntegerType()
2451 ? Builder.CreateICmpSGT(size, Zero)
2452 : Builder.CreateICmpUGT(size, Zero);
2453 llvm::Constant *StaticArgs[] = {
2454 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2455 EmitCheckTypeDescriptor(SEType)};
2456 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2457 SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2458 }
2459
2460 // Always zexting here would be wrong if it weren't
2461 // undefined behavior to have a negative bound.
2462 // FIXME: What about when size's type is larger than size_t?
2463 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2464 }
2465 }
2466 type = vat->getElementType();
2467 break;
2468 }
2469
2470 case Type::FunctionProto:
2471 case Type::FunctionNoProto:
2472 type = cast<FunctionType>(ty)->getReturnType();
2473 break;
2474
2475 case Type::Paren:
2476 case Type::TypeOf:
2477 case Type::UnaryTransform:
2478 case Type::Attributed:
2479 case Type::BTFTagAttributed:
2480 case Type::SubstTemplateTypeParm:
2481 case Type::MacroQualified:
2482 case Type::CountAttributed:
2483 // Keep walking after single level desugaring.
2484 type = type.getSingleStepDesugaredType(getContext());
2485 break;
2486
2487 case Type::Typedef:
2488 case Type::Decltype:
2489 case Type::Auto:
2490 case Type::DeducedTemplateSpecialization:
2491 case Type::PackIndexing:
2492 // Stop walking: nothing to do.
2493 return;
2494
2495 case Type::TypeOfExpr:
2496 // Stop walking: emit typeof expression.
2497 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2498 return;
2499
2500 case Type::Atomic:
2501 type = cast<AtomicType>(ty)->getValueType();
2502 break;
2503
2504 case Type::Pipe:
2505 type = cast<PipeType>(ty)->getElementType();
2506 break;
2507 }
2508 } while (type->isVariablyModifiedType());
2509}
2510
2512 if (getContext().getBuiltinVaListType()->isArrayType())
2514 return EmitLValue(E).getAddress();
2515}
2516
2518 return EmitLValue(E).getAddress();
2519}
2520
2522 const APValue &Init) {
2523 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2524 if (CGDebugInfo *Dbg = getDebugInfo())
2526 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2527}
2528
2529CodeGenFunction::PeepholeProtection
2531 // At the moment, the only aggressive peephole we do in IR gen
2532 // is trunc(zext) folding, but if we add more, we can easily
2533 // extend this protection.
2534
2535 if (!rvalue.isScalar()) return PeepholeProtection();
2536 llvm::Value *value = rvalue.getScalarVal();
2537 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2538
2539 // Just make an extra bitcast.
2540 assert(HaveInsertPoint());
2541 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2542 Builder.GetInsertBlock());
2543
2544 PeepholeProtection protection;
2545 protection.Inst = inst;
2546 return protection;
2547}
2548
2549void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2550 if (!protection.Inst) return;
2551
2552 // In theory, we could try to duplicate the peepholes now, but whatever.
2553 protection.Inst->eraseFromParent();
2554}
2555
2556void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2558 SourceLocation AssumptionLoc,
2559 llvm::Value *Alignment,
2560 llvm::Value *OffsetValue) {
2561 if (Alignment->getType() != IntPtrTy)
2562 Alignment =
2563 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2564 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2565 OffsetValue =
2566 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2567 llvm::Value *TheCheck = nullptr;
2568 if (SanOpts.has(SanitizerKind::Alignment)) {
2569 llvm::Value *PtrIntValue =
2570 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2571
2572 if (OffsetValue) {
2573 bool IsOffsetZero = false;
2574 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2575 IsOffsetZero = CI->isZero();
2576
2577 if (!IsOffsetZero)
2578 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2579 }
2580
2581 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2582 llvm::Value *Mask =
2583 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2584 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2585 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2586 }
2587 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2588 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2589
2590 if (!SanOpts.has(SanitizerKind::Alignment))
2591 return;
2592 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2593 OffsetValue, TheCheck, Assumption);
2594}
2595
2596void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2597 const Expr *E,
2598 SourceLocation AssumptionLoc,
2599 llvm::Value *Alignment,
2600 llvm::Value *OffsetValue) {
2601 QualType Ty = E->getType();
2603
2604 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2605 OffsetValue);
2606}
2607
2608llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2609 llvm::Value *AnnotatedVal,
2610 StringRef AnnotationStr,
2611 SourceLocation Location,
2612 const AnnotateAttr *Attr) {
2614 AnnotatedVal,
2615 CGM.EmitAnnotationString(AnnotationStr),
2616 CGM.EmitAnnotationUnit(Location),
2617 CGM.EmitAnnotationLineNo(Location),
2618 };
2619 if (Attr)
2620 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2621 return Builder.CreateCall(AnnotationFn, Args);
2622}
2623
2624void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2625 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2626 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2627 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2628 {V->getType(), CGM.ConstGlobalsPtrTy}),
2629 V, I->getAnnotation(), D->getLocation(), I);
2630}
2631
2633 Address Addr) {
2634 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2635 llvm::Value *V = Addr.emitRawPointer(*this);
2636 llvm::Type *VTy = V->getType();
2637 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2638 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2639 llvm::PointerType *IntrinTy =
2640 llvm::PointerType::get(CGM.getLLVMContext(), AS);
2641 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2642 {IntrinTy, CGM.ConstGlobalsPtrTy});
2643
2644 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2645 // FIXME Always emit the cast inst so we can differentiate between
2646 // annotation on the first field of a struct and annotation on the struct
2647 // itself.
2648 if (VTy != IntrinTy)
2649 V = Builder.CreateBitCast(V, IntrinTy);
2650 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2651 V = Builder.CreateBitCast(V, VTy);
2652 }
2653
2654 return Address(V, Addr.getElementType(), Addr.getAlignment());
2655}
2656
2658
2660 : CGF(CGF) {
2661 assert(!CGF->IsSanitizerScope);
2662 CGF->IsSanitizerScope = true;
2663}
2664
2666 CGF->IsSanitizerScope = false;
2667}
2668
2669void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2670 const llvm::Twine &Name,
2671 llvm::BasicBlock::iterator InsertPt) const {
2673 if (IsSanitizerScope)
2674 I->setNoSanitizeMetadata();
2675}
2676
2678 llvm::Instruction *I, const llvm::Twine &Name,
2679 llvm::BasicBlock::iterator InsertPt) const {
2680 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2681 if (CGF)
2682 CGF->InsertHelper(I, Name, InsertPt);
2683}
2684
2685// Emits an error if we don't have a valid set of target features for the
2686// called function.
2688 const FunctionDecl *TargetDecl) {
2689 // SemaChecking cannot handle below x86 builtins because they have different
2690 // parameter ranges with different TargetAttribute of caller.
2691 if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2692 unsigned BuiltinID = TargetDecl->getBuiltinID();
2693 if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2694 BuiltinID == X86::BI__builtin_ia32_cmpss ||
2695 BuiltinID == X86::BI__builtin_ia32_cmppd ||
2696 BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2697 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2698 llvm::StringMap<bool> TargetFetureMap;
2699 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2700 llvm::APSInt Result =
2701 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2702 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2703 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2704 << TargetDecl->getDeclName() << "avx";
2705 }
2706 }
2707 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2708}
2709
2710// Emits an error if we don't have a valid set of target features for the
2711// called function.
2713 const FunctionDecl *TargetDecl) {
2714 // Early exit if this is an indirect call.
2715 if (!TargetDecl)
2716 return;
2717
2718 // Get the current enclosing function if it exists. If it doesn't
2719 // we can't check the target features anyhow.
2720 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2721 if (!FD)
2722 return;
2723
2724 // Grab the required features for the call. For a builtin this is listed in
2725 // the td file with the default cpu, for an always_inline function this is any
2726 // listed cpu and any listed features.
2727 unsigned BuiltinID = TargetDecl->getBuiltinID();
2728 std::string MissingFeature;
2729 llvm::StringMap<bool> CallerFeatureMap;
2730 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2731 // When compiling in HipStdPar mode we have to be conservative in rejecting
2732 // target specific features in the FE, and defer the possible error to the
2733 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2734 // referenced by an accelerator executable function, we emit an error.
2735 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2736 if (BuiltinID) {
2737 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2739 FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2740 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2741 << TargetDecl->getDeclName()
2742 << FeatureList;
2743 }
2744 } else if (!TargetDecl->isMultiVersion() &&
2745 TargetDecl->hasAttr<TargetAttr>()) {
2746 // Get the required features for the callee.
2747
2748 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2751
2752 SmallVector<StringRef, 1> ReqFeatures;
2753 llvm::StringMap<bool> CalleeFeatureMap;
2754 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2755
2756 for (const auto &F : ParsedAttr.Features) {
2757 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2758 ReqFeatures.push_back(StringRef(F).substr(1));
2759 }
2760
2761 for (const auto &F : CalleeFeatureMap) {
2762 // Only positive features are "required".
2763 if (F.getValue())
2764 ReqFeatures.push_back(F.getKey());
2765 }
2766 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2767 if (!CallerFeatureMap.lookup(Feature)) {
2768 MissingFeature = Feature.str();
2769 return false;
2770 }
2771 return true;
2772 }) && !IsHipStdPar)
2773 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2774 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2775 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2776 llvm::StringMap<bool> CalleeFeatureMap;
2777 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2778
2779 for (const auto &F : CalleeFeatureMap) {
2780 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2781 !CallerFeatureMap.find(F.getKey())->getValue()) &&
2782 !IsHipStdPar)
2783 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2784 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2785 }
2786 }
2787}
2788
2789void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2790 if (!CGM.getCodeGenOpts().SanitizeStats)
2791 return;
2792
2793 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2794 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2795 CGM.getSanStats().create(IRB, SSK);
2796}
2797
2799 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2800 const FunctionProtoType *FP =
2801 Callee.getAbstractInfo().getCalleeFunctionProtoType();
2802 if (FP)
2803 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2804}
2805
2806llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2807 const MultiVersionResolverOption &RO) {
2809 for (const StringRef &Feature : RO.Conditions.Features)
2810 CondFeatures.push_back(Feature);
2811 if (!CondFeatures.empty()) {
2812 return EmitAArch64CpuSupports(CondFeatures);
2813 }
2814 return nullptr;
2815}
2816
2817llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2818 const MultiVersionResolverOption &RO) {
2819 llvm::Value *Condition = nullptr;
2820
2821 if (!RO.Conditions.Architecture.empty()) {
2822 StringRef Arch = RO.Conditions.Architecture;
2823 // If arch= specifies an x86-64 micro-architecture level, test the feature
2824 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2825 if (Arch.starts_with("x86-64"))
2826 Condition = EmitX86CpuSupports({Arch});
2827 else
2828 Condition = EmitX86CpuIs(Arch);
2829 }
2830
2831 if (!RO.Conditions.Features.empty()) {
2832 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2833 Condition =
2834 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2835 }
2836 return Condition;
2837}
2838
2840 llvm::Function *Resolver,
2842 llvm::Function *FuncToReturn,
2843 bool SupportsIFunc) {
2844 if (SupportsIFunc) {
2845 Builder.CreateRet(FuncToReturn);
2846 return;
2847 }
2848
2850 llvm::make_pointer_range(Resolver->args()));
2851
2852 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2853 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2854
2855 if (Resolver->getReturnType()->isVoidTy())
2856 Builder.CreateRetVoid();
2857 else
2858 Builder.CreateRet(Result);
2859}
2860
2862 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2863
2864 llvm::Triple::ArchType ArchType =
2865 getContext().getTargetInfo().getTriple().getArch();
2866
2867 switch (ArchType) {
2868 case llvm::Triple::x86:
2869 case llvm::Triple::x86_64:
2870 EmitX86MultiVersionResolver(Resolver, Options);
2871 return;
2872 case llvm::Triple::aarch64:
2873 EmitAArch64MultiVersionResolver(Resolver, Options);
2874 return;
2875
2876 default:
2877 assert(false && "Only implemented for x86 and AArch64 targets");
2878 }
2879}
2880
2882 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2883 assert(!Options.empty() && "No multiversion resolver options found");
2884 assert(Options.back().Conditions.Features.size() == 0 &&
2885 "Default case must be last");
2886 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2887 assert(SupportsIFunc &&
2888 "Multiversion resolver requires target IFUNC support");
2889 bool AArch64CpuInitialized = false;
2890 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2891
2892 for (const MultiVersionResolverOption &RO : Options) {
2893 Builder.SetInsertPoint(CurBlock);
2894 llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2895
2896 // The 'default' or 'all features enabled' case.
2897 if (!Condition) {
2898 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2899 SupportsIFunc);
2900 return;
2901 }
2902
2903 if (!AArch64CpuInitialized) {
2904 Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2905 EmitAArch64CpuInit();
2906 AArch64CpuInitialized = true;
2907 Builder.SetInsertPoint(CurBlock);
2908 }
2909
2910 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2911 CGBuilderTy RetBuilder(*this, RetBlock);
2912 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2913 SupportsIFunc);
2914 CurBlock = createBasicBlock("resolver_else", Resolver);
2915 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2916 }
2917
2918 // If no default, emit an unreachable.
2919 Builder.SetInsertPoint(CurBlock);
2920 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2921 TrapCall->setDoesNotReturn();
2922 TrapCall->setDoesNotThrow();
2923 Builder.CreateUnreachable();
2924 Builder.ClearInsertionPoint();
2925}
2926
2928 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2929
2930 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2931
2932 // Main function's basic block.
2933 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2934 Builder.SetInsertPoint(CurBlock);
2935 EmitX86CpuInit();
2936
2937 for (const MultiVersionResolverOption &RO : Options) {
2938 Builder.SetInsertPoint(CurBlock);
2939 llvm::Value *Condition = FormX86ResolverCondition(RO);
2940
2941 // The 'default' or 'generic' case.
2942 if (!Condition) {
2943 assert(&RO == Options.end() - 1 &&
2944 "Default or Generic case must be last");
2945 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2946 SupportsIFunc);
2947 return;
2948 }
2949
2950 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2951 CGBuilderTy RetBuilder(*this, RetBlock);
2952 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2953 SupportsIFunc);
2954 CurBlock = createBasicBlock("resolver_else", Resolver);
2955 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2956 }
2957
2958 // If no generic/default, emit an unreachable.
2959 Builder.SetInsertPoint(CurBlock);
2960 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2961 TrapCall->setDoesNotReturn();
2962 TrapCall->setDoesNotThrow();
2963 Builder.CreateUnreachable();
2964 Builder.ClearInsertionPoint();
2965}
2966
2967// Loc - where the diagnostic will point, where in the source code this
2968// alignment has failed.
2969// SecondaryLoc - if present (will be present if sufficiently different from
2970// Loc), the diagnostic will additionally point a "Note:" to this location.
2971// It should be the location where the __attribute__((assume_aligned))
2972// was written e.g.
2974 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2975 SourceLocation SecondaryLoc, llvm::Value *Alignment,
2976 llvm::Value *OffsetValue, llvm::Value *TheCheck,
2977 llvm::Instruction *Assumption) {
2978 assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2979 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2980 llvm::Intrinsic::getDeclaration(
2981 Builder.GetInsertBlock()->getParent()->getParent(),
2982 llvm::Intrinsic::assume) &&
2983 "Assumption should be a call to llvm.assume().");
2984 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2985 "Assumption should be the last instruction of the basic block, "
2986 "since the basic block is still being generated.");
2987
2988 if (!SanOpts.has(SanitizerKind::Alignment))
2989 return;
2990
2991 // Don't check pointers to volatile data. The behavior here is implementation-
2992 // defined.
2994 return;
2995
2996 // We need to temorairly remove the assumption so we can insert the
2997 // sanitizer check before it, else the check will be dropped by optimizations.
2998 Assumption->removeFromParent();
2999
3000 {
3001 SanitizerScope SanScope(this);
3002
3003 if (!OffsetValue)
3004 OffsetValue = Builder.getInt1(false); // no offset.
3005
3006 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3007 EmitCheckSourceLocation(SecondaryLoc),
3009 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3010 EmitCheckValue(Alignment),
3011 EmitCheckValue(OffsetValue)};
3012 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3013 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3014 }
3015
3016 // We are now in the (new, empty) "cont" basic block.
3017 // Reintroduce the assumption.
3018 Builder.Insert(Assumption);
3019 // FIXME: Assumption still has it's original basic block as it's Parent.
3020}
3021
3023 if (CGDebugInfo *DI = getDebugInfo())
3024 return DI->SourceLocToDebugLoc(Location);
3025
3026 return llvm::DebugLoc();
3027}
3028
3029llvm::Value *
3030CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3031 Stmt::Likelihood LH) {
3032 switch (LH) {
3033 case Stmt::LH_None:
3034 return Cond;
3035 case Stmt::LH_Likely:
3036 case Stmt::LH_Unlikely:
3037 // Don't generate llvm.expect on -O0 as the backend won't use it for
3038 // anything.
3039 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3040 return Cond;
3041 llvm::Type *CondTy = Cond->getType();
3042 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3043 llvm::Function *FnExpect =
3044 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3045 llvm::Value *ExpectedValueOfCond =
3046 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3047 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3048 Cond->getName() + ".expval");
3049 }
3050 llvm_unreachable("Unknown Likelihood");
3051}
3052
3053llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3054 unsigned NumElementsDst,
3055 const llvm::Twine &Name) {
3056 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3057 unsigned NumElementsSrc = SrcTy->getNumElements();
3058 if (NumElementsSrc == NumElementsDst)
3059 return SrcVec;
3060
3061 std::vector<int> ShuffleMask(NumElementsDst, -1);
3062 for (unsigned MaskIdx = 0;
3063 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3064 ShuffleMask[MaskIdx] = MaskIdx;
3065
3066 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3067}
3068
3070 const CGPointerAuthInfo &PointerAuth,
3072 if (!PointerAuth.isSigned())
3073 return;
3074
3075 auto *Key = Builder.getInt32(PointerAuth.getKey());
3076
3077 llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3078 if (!Discriminator)
3079 Discriminator = Builder.getSize(0);
3080
3081 llvm::Value *Args[] = {Key, Discriminator};
3082 Bundles.emplace_back("ptrauth", Args);
3083}
3084
3086 const CGPointerAuthInfo &PointerAuth,
3087 llvm::Value *Pointer,
3088 unsigned IntrinsicID) {
3089 if (!PointerAuth)
3090 return Pointer;
3091
3092 auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3093
3094 llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3095 if (!Discriminator) {
3096 Discriminator = CGF.Builder.getSize(0);
3097 }
3098
3099 // Convert the pointer to intptr_t before signing it.
3100 auto OrigType = Pointer->getType();
3101 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3102
3103 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3104 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3105 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3106
3107 // Convert back to the original type.
3108 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3109 return Pointer;
3110}
3111
3112llvm::Value *
3114 llvm::Value *Pointer) {
3115 if (!PointerAuth.shouldSign())
3116 return Pointer;
3117 return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3118 llvm::Intrinsic::ptrauth_sign);
3119}
3120
3121static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3122 const CGPointerAuthInfo &PointerAuth,
3123 llvm::Value *Pointer) {
3124 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3125
3126 auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3127 // Convert the pointer to intptr_t before signing it.
3128 auto OrigType = Pointer->getType();
3130 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3131 return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3132}
3133
3134llvm::Value *
3136 llvm::Value *Pointer) {
3137 if (PointerAuth.shouldStrip()) {
3138 return EmitStrip(*this, PointerAuth, Pointer);
3139 }
3140 if (!PointerAuth.shouldAuth()) {
3141 return Pointer;
3142 }
3143
3144 return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3145 llvm::Intrinsic::ptrauth_auth);
3146}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3341
This file provides some common utility functions for processing Lambda related AST Constructs.
StringRef P
Defines enum values for all the target-independent builtin functions.
const Decl * D
Expr * E
static llvm::Value * EmitPointerAuthCommon(CodeGenFunction &CGF, const CGPointerAuthInfo &PointerAuth, llvm::Value *Pointer, unsigned IntrinsicID)
static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, llvm::Function *Resolver, CGBuilderTy &Builder, llvm::Function *FuncToReturn, bool SupportsIFunc)
static llvm::Value * EmitStrip(CodeGenFunction &CGF, const CGPointerAuthInfo &PointerAuth, llvm::Value *Pointer)
static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, Address dest, Address src, llvm::Value *sizeInChars)
emitNonZeroVLAInit - Emit the "zero" initialization of a variable-length array whose elements have a ...
static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB)
static LValue makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, bool MightBeSigned, CodeGenFunction &CGF, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
static void TryMarkNoThrow(llvm::Function *F)
Tries to mark the given function nounwind based on the non-existence of any throwing calls within it.
static llvm::Constant * getPrologueSignature(CodeGenModule &CGM, const FunctionDecl *FD)
Return the UBSan prologue signature for FD if one is available.
static bool endsWithReturn(const Decl *F)
Determine whether the function F ends with a return stmt.
static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, const LangOptions &LangOpts)
shouldEmitLifetimeMarkers - Decide whether we need emit the life-time markers.
static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
llvm::MachO::Target Target
Definition: MachO.h:51
SourceLocation Loc
Definition: SemaObjC.cpp:758
Defines the Objective-C statement AST node classes.
Enumerates target-specific builtins in their own namespaces within namespace clang.
__device__ double
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition: APValue.h:122
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:187
ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const
Parses the target attributes passed in, and returns only the ones that are valid feature names.
CanQualType VoidPtrTy
Definition: ASTContext.h:1146
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:662
QualType getFunctionTypeWithExceptionSpec(QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const
Get a function type and produce the equivalent function type with the specified exception specificati...
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2828
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:779
void getFunctionFeatureMap(llvm::StringMap< bool > &FeatureMap, const FunctionDecl *) const
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3566
QualType getElementType() const
Definition: Type.h:3578
Attr - This represents one attribute.
Definition: Attr.h:42
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3860
static bool isLogicalOp(Opcode Opc)
Definition: Expr.h:3992
const char * getRequiredFeatures(unsigned ID) const
Definition: Builtins.h:255
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2538
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2063
bool isImplicitObjectMemberFunction() const
[C++2b][dcl.fct]/p7 An implicit object member function is a non-static member function without an exp...
Definition: DeclCXX.cpp:2500
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition: DeclCXX.h:2189
QualType getThisType() const
Return the type of the this pointer.
Definition: DeclCXX.cpp:2603
bool isStatic() const
Definition: DeclCXX.cpp:2224
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1022
void getCaptureFields(llvm::DenseMap< const ValueDecl *, FieldDecl * > &Captures, FieldDecl *&ThisCapture) const
For a closure type, retrieve the mapping from captured variables and this to the non-static data memb...
Definition: DeclCXX.cpp:1680
bool isCapturelessLambda() const
Definition: DeclCXX.h:1068
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1206
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2830
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:122
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:214
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:125
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
XRayInstrSet XRayInstrumentationBundle
Set of XRay instrumentation kinds to emit.
bool hasSanitizeCoverage() const
PointerAuthOptions PointerAuth
Configuration for pointer-signing.
bool hasReducedDebugInfo() const
Check if type and variable info should be emitted.
bool hasSanitizeBinaryMetadata() const
unsigned getInAllocaFieldIndex() const
@ InAlloca
InAlloca - Pass the argument directly using the LLVM inalloca attribute.
@ Indirect
Indirect - Pass the argument indirectly via a hidden pointer with the specified alignment (0 indicate...
CharUnits getIndirectAlign() const
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
static Address invalid()
Definition: Address.h:176
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:251
CharUnits getAlignment() const
Definition: Address.h:189
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:207
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:274
bool isValid() const
Definition: Address.h:177
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:199
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:855
static ApplyDebugLocation CreateDefaultArtificial(CodeGenFunction &CGF, SourceLocation TemporaryLocation)
Apply TemporaryLocation if it is valid.
Definition: CGDebugInfo.h:902
This is an IRBuilder insertion helper that forwards to CodeGenFunction::InsertHelper,...
Definition: CGBuilder.h:29
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock::iterator InsertPt) const override
This forwards to CodeGenFunction::InsertHelper.
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:135
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:396
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:218
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:363
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:127
llvm::ConstantInt * getSize(CharUnits N)
Definition: CGBuilder.h:98
Address CreateInBoundsGEP(Address Addr, ArrayRef< llvm::Value * > IdxList, llvm::Type *ElementType, CharUnits Align, const Twine &Name="")
Definition: CGBuilder.h:344
virtual void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args)=0
Emits a kernel launch stub.
Implements C++ ABI-specific code generation functions.
Definition: CGCXXABI.h:43
virtual bool hasMostDerivedReturn(GlobalDecl GD) const
Definition: CGCXXABI.h:131
virtual bool HasThisReturn(GlobalDecl GD) const
Returns true if the given constructor or destructor is one of the kinds that the ABI says returns 'th...
Definition: CGCXXABI.h:123
virtual void EmitInstanceFunctionProlog(CodeGenFunction &CGF)=0
Emit the ABI-specific prolog for the function.
@ RAA_DirectInMemory
Pass it on the stack using its defined layout.
Definition: CGCXXABI.h:158
void buildThisParam(CodeGenFunction &CGF, FunctionArgList &Params)
Build a parameter variable suitable for 'this'.
Definition: CGCXXABI.cpp:128
virtual void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params)=0
Insert any ABI-specific implicit parameters into the parameter list for a function.
virtual RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const =0
Returns how an argument of the given record type should be passed.
MangleContext & getMangleContext()
Gets the mangle context.
Definition: CGCXXABI.h:113
All available information about a concrete callee.
Definition: CGCall.h:63
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:58
CGFunctionInfo - Class to encapsulate the information about a function definition.
bool isReturnsRetained() const
In ARC, whether this function retains its return value.
CanQualType getReturnType() const
unsigned getMaxVectorWidth() const
Return the maximum vector width in the arguments.
llvm::StructType * getArgStruct() const
Get the struct type used to represent all the arguments in memory.
void emitEntryFunction(const FunctionDecl *FD, llvm::Function *Fn)
virtual void functionFinished(CodeGenFunction &CGF)
Cleans up references to the objects in finished function.
llvm::OpenMPIRBuilder & getOMPBuilder()
virtual void emitFunctionProlog(CodeGenFunction &CGF, const Decl *D)
Emits OpenMP-specific function prolog.
llvm::Value * getDiscriminator() const
CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures)
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Value * EmitPointerAuthAuth(const CGPointerAuthInfo &Info, llvm::Value *Pointer)
void EmitDestructorBody(FunctionArgList &Args)
void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount=0, Stmt::Likelihood LH=Stmt::LH_None, const Expr *CntrIdx=nullptr)
EmitBranchToCounterBlock - Emit a conditional branch to a new block that increments a profile counter...
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
void EmitPointerAuthOperandBundle(const CGPointerAuthInfo &Info, SmallVectorImpl< llvm::OperandBundleDef > &Bundles)
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH=Stmt::LH_None, const Expr *ConditionalOp=nullptr)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
llvm::CallInst * EmitTrapCall(llvm::Intrinsic::ID IntrID)
Emit a call to trap or debugtrap and attach function attribute "trap-func-name" if specified.
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)
SanitizerSet SanOpts
Sanitizers enabled for this function.
void unprotectFromPeepholes(PeepholeProtection protection)
void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD)
bool ShouldInstrumentFunction()
ShouldInstrumentFunction - Return true if the current function should be instrumented with __cyg_prof...
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
static bool hasScalarEvaluationKind(QualType T)
LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T)
Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known to be unsigned.
void EmitKCFIOperandBundle(const CGCallee &Callee, SmallVectorImpl< llvm::OperandBundleDef > &Bundles)
void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, SourceLocation Loc, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue, llvm::Value *TheCheck, llvm::Instruction *Assumption)
llvm::BlockAddress * GetAddrOfLabel(const LabelDecl *L)
RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
llvm::Value * emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr)
emitArrayLength - Compute the length of an array, even if it's a VLA, and drill down to the base elem...
VlaSizePair getVLASize(const VariableArrayType *vla)
Returns an LLVM value that corresponds to the size, in non-variably-sized elements,...
void EmitEndEHSpec(const Decl *D)
EmitEndEHSpec - Emit the end of the exception spec.
bool CurFuncIsThunk
In C++, whether we are code generating a thunk.
void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, ArrayRef< MultiVersionResolverOption > Options)
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
llvm::SmallVector< DeferredDeactivateCleanup > DeferredDeactivationCleanupStack
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, SourceLocation EndLoc)
EmitFunctionEpilog - Emit the target specific LLVM code to return the given temporary.
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler.
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
static bool isInstrumentedCondition(const Expr *C)
isInstrumentedCondition - Determine whether the given condition is an instrumentable condition (i....
void EmitX86MultiVersionResolver(llvm::Function *Resolver, ArrayRef< MultiVersionResolverOption > Options)
void EmitFunctionBody(const Stmt *Body)
Address makeNaturalAddressForPointer(llvm::Value *Ptr, QualType T, CharUnits Alignment=CharUnits::Zero(), bool ForPointeeType=false, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
Construct an address with the natural alignment of T.
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
@ TCK_ConstructorCall
Checking the 'this' pointer for a constructor call.
@ TCK_MemberCall
Checking the 'this' pointer for a call to a non-static member function.
void setCurrentProfileCount(uint64_t Count)
Set the profiler's current count.
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value ** > ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
llvm::Type * ConvertTypeForMem(QualType T)
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
llvm::AssertingVH< llvm::Instruction > AllocaInsertPt
AllocaInsertPoint - This is an instruction in the entry block before which we prefer to insert alloca...
bool AlwaysEmitXRayCustomEvents() const
AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit XRay custom event handling c...
JumpDest ReturnBlock
ReturnBlock - Unified return block.
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V)
Emit local annotations for the local variable V, declared by D.
llvm::Value * EmitPointerAuthSign(const CGPointerAuthInfo &Info, llvm::Value *Pointer)
static const Expr * stripCond(const Expr *C)
Ignore parentheses and logical-NOT to track conditions consistently.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we're intending to store to the side, but which will prob...
const TargetInfo & getTarget() const
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location)
Converts Location to a DebugLoc, if debug information is enabled.
void EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, const FunctionArgList &Args)
EmitFunctionProlog - Emit the target specific LLVM code to load the arguments for the given function.
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask > > Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S)
bool ShouldSkipSanitizerInstrumentation()
ShouldSkipSanitizerInstrumentation - Return true if the current function should not be instrumented w...
uint64_t getCurrentProfileCount()
Get the profiler's current count.
SmallVector< const BinaryOperator *, 16 > MCDCLogOpStack
Stack to track the Logical Operator recursion nest for MC/DC.
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn)
Annotate the function with an attribute that disables TSan checking at runtime.
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn't support the specified stmt yet.
Address EmitVAListRef(const Expr *E)
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
void maybeCreateMCDCCondBitmap()
Allocate a temp value on the stack that MCDC can use to track condition results.
SmallVector< llvm::IntrinsicInst *, 4 > ConvergenceTokenStack
Stack to track the controlled convergence tokens.
void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, SourceLocation Loc, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
llvm::Value * emitBoolVecConversion(llvm::Value *SrcVec, unsigned NumElementsDst, const llvm::Twine &Name="")
LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T)
bool ShouldXRayInstrumentFunction() const
ShouldXRayInstrument - Return true if the current function should be instrumented with XRay nop sleds...
void EmitStartEHSpec(const Decl *D)
EmitStartEHSpec - Emit the start of the exception spec.
void EmitMultiVersionResolver(llvm::Function *Resolver, ArrayRef< MultiVersionResolverOption > Options)
llvm::Value * EmitCheckValue(llvm::Value *V)
Convert a value into a format suitable for passing to a runtime sanitizer handler.
VlaSizePair getVLAElements1D(const VariableArrayType *vla)
Return the number of elements for a single dimension for the given array type.
bool AlwaysEmitXRayTypedEvents() const
AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit XRay typed event handling ...
void EmitConstructorBody(FunctionArgList &Args)
void SetFastMathFlags(FPOptions FPFeatures)
Set the codegen fast-math flags.
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val)
Update the MCDC temp value with the condition's evaluated result.
void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl)
void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD)
llvm::SmallVector< char, 256 > LifetimeExtendedCleanupStack
void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init)
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint=true)
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant,...
Address ReturnValuePointer
ReturnValuePointer - The temporary alloca to hold a pointer to sret.
llvm::ConstantInt * getUBSanFunctionTypeHash(QualType T) const
Return a type hash constant for a function instrumented by -fsanitize=function.
JumpDest getJumpDestForLabel(const LabelDecl *S)
getBasicBlockForLabel - Return the LLVM basicblock that the specified label maps to.
llvm::DenseMap< const ValueDecl *, FieldDecl * > LambdaCaptureFields
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::Type * ConvertType(QualType T)
CodeGenTypes & getTypes() const
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, QualType Type, SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
llvm::SmallVector< const ParmVarDecl *, 4 > FnArgs
Save Parameter Decl for coroutine.
QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args)
RawAddress NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Address EmitMSVAListRef(const Expr *E)
Emit a "reference" to a __builtin_ms_va_list; this is always the value of the expression,...
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters.
static bool mightAddDeclToScope(const Stmt *S)
Determine if the given statement might introduce a declaration into the current scope,...
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
RawAddress CreateIRTemp(QualType T, const Twine &Name="tmp")
CreateIRTemp - Create a temporary IR object of the given type, with appropriate alignment.
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
const CGFunctionInfo * CurFnInfo
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock::iterator InsertPt) const
CGBuilder insert helper.
Address EmitFieldAnnotations(const FieldDecl *D, Address V)
Emit field annotations for the given field & value.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
void EmitStmt(const Stmt *S, ArrayRef< const Attr * > Attrs=std::nullopt)
EmitStmt - Emit the code for the statement.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go.
LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T)
Given a value of type T* that may not be to a complete object, construct an l-value with the natural ...
llvm::LLVMContext & getLLVMContext()
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
bool checkIfFunctionMustProgress()
Returns true if a function must make progress, which means the mustprogress attribute can be added.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
llvm::Value * EmitAnnotationCall(llvm::Function *AnnotationFn, llvm::Value *AnnotatedVal, StringRef AnnotationStr, SourceLocation Location, const AnnotateAttr *Attr)
Emit an annotation call (intrinsic).
llvm::BasicBlock * GetIndirectGotoBlock()
llvm::Type * convertTypeForLoadStore(QualType ASTTy, llvm::Type *LLVMTy=nullptr)
llvm::DebugLoc EmitReturnBlock()
Emit the unified return block, trying to avoid its emission when possible.
void GenerateCode(GlobalDecl GD, llvm::Function *Fn, const CGFunctionInfo &FnInfo)
LValue EmitLValueForLambdaField(const FieldDecl *Field)
static bool containsBreak(const Stmt *S)
containsBreak - Return true if the statement contains a break out of it.
This class organizes the cross-function state that is used while generating LLVM code.
CGHLSLRuntime & getHLSLRuntime()
Return a reference to the configured HLSL runtime.
llvm::Constant * EmitAnnotationArgs(const AnnotateAttr *Attr)
Emit additional args of the annotation.
llvm::Module & getModule() const
DiagnosticsEngine & getDiags() const
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn't support the specified stmt yet.
const LangOptions & getLangOpts() const
CGCUDARuntime & getCUDARuntime()
Return a reference to the configured CUDA runtime.
llvm::Constant * EmitAnnotationLineNo(SourceLocation L)
Emit the annotation line number.
CharUnits getNaturalTypeAlignment(QualType T, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, bool forPointeeType=false)
const llvm::DataLayout & getDataLayout() const
bool shouldEmitConvergenceTokens() const
CGCXXABI & getCXXABI() const
CGOpenMPRuntime & getOpenMPRuntime()
Return a reference to the configured OpenMP runtime.
bool imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, StringRef Category=StringRef()) const
Imbue XRay attributes to a function, applying the always/never attribute lists in the process.
ProfileList::ExclusionType isFunctionBlockedFromProfileInstr(llvm::Function *Fn, SourceLocation Loc) const
ASTContext & getContext() const
llvm::SanitizerStatReport & getSanStats()
llvm::Constant * EmitAnnotationString(StringRef Str)
Emit an annotation string.
const TargetCodeGenInfo & getTargetCodeGenInfo()
const CodeGenOptions & getCodeGenOpts() const
llvm::LLVMContext & getLLVMContext()
void GenKernelArgMetadata(llvm::Function *FN, const FunctionDecl *FD=nullptr, CodeGenFunction *CGF=nullptr)
OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument information in the program executab...
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
llvm::ConstantInt * CreateKCFITypeId(QualType T)
Generate a KCFI type identifier for T.
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys=std::nullopt)
bool MayDropFunctionReturn(const ASTContext &Context, QualType ReturnType) const
Whether this function's return type has no side effects, and thus may be trivially discarded if it is...
Definition: CGCall.cpp:1796
llvm::Constant * EmitAnnotationUnit(SourceLocation Loc)
Emit the annotation's translation unit.
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
void assignRegionCounters(GlobalDecl GD, llvm::Function *Fn)
Assign counters to regions and configure them for PGO of a given function.
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
bool inheritingCtorHasParams(const InheritedConstructor &Inherited, CXXCtorType Type)
Determine if a C++ inheriting constructor should have parameters matching those of its inherited cons...
Definition: CGCall.cpp:324
llvm::Type * convertTypeForLoadStore(QualType T, llvm::Type *LLVMTy=nullptr)
Given that T is a scalar type, return the IR type that should be used for load and store operations.
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
bool isZeroInitializable(QualType T)
IsZeroInitializable - Return whether a type can be zero-initialized (in the C++ sense) with an LLVM z...
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:393
bool containsOnlyLifetimeMarkers(stable_iterator Old) const
Definition: CGCleanup.cpp:115
bool empty() const
Determines whether the exception-scopes stack is empty.
Definition: EHScopeStack.h:359
FunctionArgList - Type for representing both the decl and type of parameters to a function.
Definition: CGCall.h:368
LValue - This represents an lvalue references.
Definition: CGValue.h:182
llvm::Value * getPointer(CodeGenFunction &CGF) const
Address getAddress() const
Definition: CGValue.h:361
void InsertHelper(llvm::Instruction *I) const
Function called by the CodeGenFunction when an instruction is created.
Definition: CGLoopInfo.cpp:840
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:42
bool isScalar() const
Definition: CGValue.h:64
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:71
llvm::Value * getPointer() const
Definition: Address.h:66
bool isValid() const
Definition: Address.h:62
virtual void checkFunctionABI(CodeGenModule &CGM, const FunctionDecl *Decl) const
Any further codegen related checks that need to be done on a function signature in a target specific ...
Definition: TargetInfo.h:90
virtual llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const
Return a constant used by UBSan as a signature to identify functions possessing type information,...
Definition: TargetInfo.h:219
void Init(const Stmt *Body)
Clear the object and pre-process for the given statement, usually function body statement.
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1606
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:4203
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
T * getAttr() const
Definition: DeclBase.h:579
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:523
Decl * getNonClosureContext()
Find the innermost non-closure ancestor of this declaration, walking up through blocks,...
Definition: DeclBase.cpp:1242
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:565
SourceLocation getLocation() const
Definition: DeclBase.h:445
bool hasAttr() const
Definition: DeclBase.h:583
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1547
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:916
This represents one expression.
Definition: Expr.h:110
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer,...
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition: Expr.cpp:3864
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3066
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3050
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc=nullptr) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
QualType getType() const
Definition: Expr.h:142
ExtVectorType - Extended vector type.
Definition: Type.h:4113
LangOptions::FPExceptionModeKind getExceptionMode() const
Definition: LangOptions.h:865
bool allowFPContractAcrossStatement() const
Definition: LangOptions.h:840
RoundingMode getRoundingMode() const
Definition: LangOptions.h:853
Represents a member of a struct/union/class.
Definition: Decl.h:3030
Represents a function declaration or definition.
Definition: Decl.h:1932
bool isMultiVersion() const
True if this function is considered a multiversioned function.
Definition: Decl.h:2562
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition: Decl.cpp:3224
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:3618
bool UsesFPIntrin() const
Determine whether the function was declared in source context that requires constrained FP intrinsics...
Definition: Decl.h:2781
bool usesSEHTry() const
Indicates the function uses __try.
Definition: Decl.h:2443
QualType getReturnType() const
Definition: Decl.h:2717
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2646
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:4099
bool isMSVCRTEntryPoint() const
Determines whether this function is a MSVCRT user defined entry point.
Definition: Decl.cpp:3300
bool isInlineBuiltinDeclaration() const
Determine if this function provides an inline implementation of a builtin.
Definition: Decl.cpp:3435
bool hasImplicitReturnZero() const
Whether falling off this function implicitly returns null/zero.
Definition: Decl.h:2353
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program.
Definition: Decl.cpp:3294
bool isDefaulted() const
Whether this function is defaulted.
Definition: Decl.h:2310
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any.
Definition: Decl.cpp:3965
Represents a prototype with parameter type info, e.g.
Definition: Type.h:5002
QualType desugar() const
Definition: Type.h:5546
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:56
CXXCtorType getCtorType() const
Definition: GlobalDecl.h:105
const Decl * getDecl() const
Definition: GlobalDecl.h:103
One of these records is kept for each identifier that is lexed.
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:5365
Represents the declaration of a label.
Definition: Decl.h:499
FPExceptionModeKind
Possible floating point exception behavior.
Definition: LangOptions.h:276
@ FPE_Strict
Strictly preserve the floating-point exception semantics.
Definition: LangOptions.h:282
@ FPE_MayTrap
Transformations do not cause new exceptions but may hide some.
Definition: LangOptions.h:280
@ FPE_Ignore
Assume that floating-point exceptions are masked.
Definition: LangOptions.h:278
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:461
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:467
RoundingMode getDefaultRoundingMode() const
Definition: LangOptions.h:752
virtual void mangleCanonicalTypeName(QualType T, raw_ostream &, bool NormalizeIntegers=false)=0
Generates a unique string for an externally visible type for use with TBAA or type uniquing.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:315
Represents a parameter to a function.
Definition: Decl.h:1722
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:129
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3187
@ Forbid
Profiling is forbidden using the noprofile attribute.
Definition: ProfileList.h:37
@ Skip
Profiling is skipped using the skipprofile attribute.
Definition: ProfileList.h:35
@ Allow
Profiling is allowed.
Definition: ProfileList.h:33
A (possibly-)qualified type.
Definition: Type.h:941
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:7834
field_range fields() const
Definition: Decl.h:4347
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5965
decl_type * getPreviousDecl()
Return the previous declaration of this declaration or NULL if this is the first declaration.
Definition: Redeclarable.h:204
Encodes a location in the source.
A trivial tuple used to represent a source range.
SourceLocation getEnd() const
SourceLocation getBegin() const
Stmt - This represents one statement.
Definition: Stmt.h:84
StmtClass getStmtClass() const
Definition: Stmt.h:1358
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:326
Likelihood
The likelihood of a branch being taken.
Definition: Stmt.h:1301
@ LH_Unlikely
Branch has the [[unlikely]] attribute.
Definition: Stmt.h:1302
@ LH_None
No attribute set or branches of the IfStmt have the same attribute.
Definition: Stmt.h:1303
@ LH_Likely
Branch has the [[likely]] attribute.
Definition: Stmt.h:1305
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:338
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:136
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1256
bool supportsIFunc() const
Identify whether this target supports IFuncs.
Definition: TargetInfo.h:1503
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1327
virtual std::optional< std::pair< unsigned, unsigned > > getVScaleRange(const LangOptions &LangOpts) const
Returns target-specific min and max values VScale_Range.
Definition: TargetInfo.h:1017
The base class of the type hierarchy.
Definition: Type.h:1829
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1882
bool isVoidType() const
Definition: Type.h:8319
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition: Type.cpp:2146
bool isPointerType() const
Definition: Type.h:8003
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:705
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2713
TypeClass getTypeClass() const
Definition: Type.h:2334
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8540
bool isRecordType() const
Definition: Type.h:8103
bool isObjCRetainableType() const
Definition: Type.cpp:4950
std::optional< NullabilityKind > getNullability() const
Determine the nullability of the given type.
Definition: Type.cpp:4693
bool isFunctionNoProtoType() const
Definition: Type.h:2527
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2188
QualType getType() const
Definition: Decl.h:678
Represents a variable declaration or definition.
Definition: Decl.h:879
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3795
Expr * getSizeExpr() const
Definition: Type.h:3814
QualType getElementType() const
Definition: Type.h:4035
Defines the clang::TargetInfo interface.
#define UINT_MAX
Definition: limits.h:64
bool evaluateRequiredTargetFeatures(llvm::StringRef RequiredFatures, const llvm::StringMap< bool > &TargetFetureMap)
Returns true if the required target features of a builtin function are enabled.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
@ NotKnownNonNull
Definition: Address.h:33
constexpr XRayInstrMask Typed
Definition: XRayInstr.h:42
constexpr XRayInstrMask FunctionExit
Definition: XRayInstr.h:40
constexpr XRayInstrMask FunctionEntry
Definition: XRayInstr.h:39
constexpr XRayInstrMask Custom
Definition: XRayInstr.h:41
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:2221
The JSON file list parser is used to communicate input to InstallAPI.
@ OpenCL
Definition: LangStandard.h:66
@ CPlusPlus
Definition: LangStandard.h:56
@ NonNull
Values of this type can never be null.
BinaryOperatorKind
@ OMF_initialize
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
@ Result
The result type of a method or function.
const FunctionProtoType * T
llvm::fp::ExceptionBehavior ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind)
@ Other
Other implicit parameter.
@ EST_None
no exception specification
@ Implicit
An implicit conversion.
unsigned long uint64_t
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
cl::opt< bool > EnableSingleByteCoverage
This structure provides a set of types that are commonly used during IR emission.
llvm::PointerType * ConstGlobalsPtrTy
void* in the address space for constant globals
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:642
Contains information gathered from parsing the contents of TargetAttr.
Definition: TargetInfo.h:57
bool ReturnAddresses
Should return addresses be authenticated?
PointerAuthSchema FunctionPointers
The ABI for C function pointers.
bool AuthTraps
Do authentication failures cause a trap?
bool IndirectGotos
Do indirect goto label addresses need to be authenticated?
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:168
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:159
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:182
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:165
XRayInstrMask Mask
Definition: XRayInstr.h:65
bool has(XRayInstrMask K) const
Definition: XRayInstr.h:48