clang 23.0.0git
CGClass.cpp
Go to the documentation of this file.
1//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with C++ code generation of classes
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfoImpl.h"
14#include "CGBlocks.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "TargetInfo.h"
20#include "clang/AST/Attr.h"
22#include "clang/AST/CharUnits.h"
26#include "clang/AST/StmtCXX.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/Support/SaveAndRestore.h"
32#include "llvm/Transforms/Utils/SanitizerStats.h"
33#include <optional>
34
35using namespace clang;
36using namespace CodeGen;
37
38/// Return the best known alignment for an unknown pointer to a
39/// particular class.
41 if (!RD->hasDefinition())
42 return CharUnits::One(); // Hopefully won't be used anywhere.
43
44 auto &layout = getContext().getASTRecordLayout(RD);
45
46 // If the class is final, then we know that the pointer points to an
47 // object of that type and can use the full alignment.
48 if (RD->isEffectivelyFinal())
49 return layout.getAlignment();
50
51 // Otherwise, we have to assume it could be a subclass.
52 return layout.getNonVirtualAlignment();
53}
54
55/// Return the smallest possible amount of storage that might be allocated
56/// starting from the beginning of an object of a particular class.
57///
58/// This may be smaller than sizeof(RD) if RD has virtual base classes.
60 if (!RD->hasDefinition())
61 return CharUnits::One();
62
63 auto &layout = getContext().getASTRecordLayout(RD);
64
65 // If the class is final, then we know that the pointer points to an
66 // object of that type and can use the full alignment.
67 if (RD->isEffectivelyFinal())
68 return layout.getSize();
69
70 // Otherwise, we have to assume it could be a subclass.
71 return std::max(layout.getNonVirtualSize(), CharUnits::One());
72}
73
74/// Return the best known alignment for a pointer to a virtual base,
75/// given the alignment of a pointer to the derived class.
77 const CXXRecordDecl *derivedClass,
78 const CXXRecordDecl *vbaseClass) {
79 // The basic idea here is that an underaligned derived pointer might
80 // indicate an underaligned base pointer.
81
82 assert(vbaseClass->isCompleteDefinition());
83 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85
86 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
87 expectedVBaseAlign);
88}
89
92 const CXXRecordDecl *baseDecl,
93 CharUnits expectedTargetAlign) {
94 // If the base is an incomplete type (which is, alas, possible with
95 // member pointers), be pessimistic.
96 if (!baseDecl->isCompleteDefinition())
97 return std::min(actualBaseAlign, expectedTargetAlign);
98
99 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101
102 // If the class is properly aligned, assume the target offset is, too.
103 //
104 // This actually isn't necessarily the right thing to do --- if the
105 // class is a complete object, but it's only properly aligned for a
106 // base subobject, then the alignments of things relative to it are
107 // probably off as well. (Note that this requires the alignment of
108 // the target to be greater than the NV alignment of the derived
109 // class.)
110 //
111 // However, our approach to this kind of under-alignment can only
112 // ever be best effort; after all, we're never going to propagate
113 // alignments through variables or parameters. Note, in particular,
114 // that constructing a polymorphic type in an address that's less
115 // than pointer-aligned will generally trap in the constructor,
116 // unless we someday add some sort of attribute to change the
117 // assumed alignment of 'this'. So our goal here is pretty much
118 // just to allow the user to explicitly say that a pointer is
119 // under-aligned and then safely access its fields and vtables.
120 if (actualBaseAlign >= expectedBaseAlign) {
121 return expectedTargetAlign;
122 }
123
124 // Otherwise, we might be offset by an arbitrary multiple of the
125 // actual alignment. The correct adjustment is to take the min of
126 // the two alignments.
127 return std::min(actualBaseAlign, expectedTargetAlign);
128}
129
131 assert(CurFuncDecl && "loading 'this' without a func declaration?");
133
134 // Lazily compute CXXThisAlignment.
135 if (CXXThisAlignment.isZero()) {
136 // Just use the best known alignment for the parent.
137 // TODO: if we're currently emitting a complete-object ctor/dtor,
138 // we can always use the complete-object alignment.
139 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
140 }
141
143 LoadCXXThis(), MD->getFunctionObjectParameterType(), CXXThisAlignment,
144 false, nullptr, nullptr, KnownNonNull);
145}
146
147/// Emit the address of a field using a member data pointer.
148///
149/// \param E Only used for emergency diagnostics
151 const Expr *E, Address base, llvm::Value *memberPtr,
152 const MemberPointerType *memberPtrType, bool IsInBounds,
153 LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
154 // Ask the ABI to compute the actual address.
155 llvm::Value *ptr = CGM.getCXXABI().EmitMemberDataPointerAddress(
156 *this, E, base, memberPtr, memberPtrType, IsInBounds);
157
158 QualType memberType = memberPtrType->getPointeeType();
159 CharUnits memberAlign =
160 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
161 memberAlign = CGM.getDynamicOffsetAlignment(
162 base.getAlignment(), memberPtrType->getMostRecentCXXRecordDecl(),
163 memberAlign);
164 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
165 memberAlign);
166}
167
169 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
171 CharUnits Offset = CharUnits::Zero();
172
173 const ASTContext &Context = getContext();
174 const CXXRecordDecl *RD = DerivedClass;
175
176 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
177 const CXXBaseSpecifier *Base = *I;
178 assert(!Base->isVirtual() && "Should not see virtual bases here!");
179
180 // Get the layout.
181 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
182
183 const auto *BaseDecl = Base->getType()->castAsCXXRecordDecl();
184 // Add the offset.
185 Offset += Layout.getBaseClassOffset(BaseDecl);
186
187 RD = BaseDecl;
188 }
189
190 return Offset;
191}
192
194 const CXXRecordDecl *ClassDecl, CastExpr::path_const_iterator PathBegin,
196 assert(PathBegin != PathEnd && "Base path should not be empty!");
197
198 CharUnits Offset =
199 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
200 if (Offset.isZero())
201 return nullptr;
202
203 llvm::Type *PtrDiffTy =
204 getTypes().ConvertType(getContext().getPointerDiffType());
205
206 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
207}
208
209/// Gets the address of a direct base class within a complete object.
210/// This should only be used for (1) non-virtual bases or (2) virtual bases
211/// when the type is known to be complete (e.g. in complete destructors).
212///
213/// The object pointed to by 'This' is assumed to be non-null.
215 Address This, const CXXRecordDecl *Derived, const CXXRecordDecl *Base,
216 bool BaseIsVirtual) {
217 // 'this' must be a pointer (in some address space) to Derived.
218 assert(This.getElementType() == ConvertType(Derived));
219
220 // Compute the offset of the virtual base.
221 CharUnits Offset;
222 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
223 if (BaseIsVirtual)
224 Offset = Layout.getVBaseClassOffset(Base);
225 else
226 Offset = Layout.getBaseClassOffset(Base);
227
228 // Shift and cast down to the base type.
229 // TODO: for complete types, this should be possible with a GEP.
230 Address V = This;
231 if (!Offset.isZero()) {
232 V = V.withElementType(Int8Ty);
233 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
234 }
235 return V.withElementType(ConvertType(Base));
236}
237
239 CodeGenFunction &CGF, Address addr, CharUnits nonVirtualOffset,
240 llvm::Value *virtualOffset, const CXXRecordDecl *derivedClass,
241 const CXXRecordDecl *nearestVBase) {
242 // Assert that we have something to do.
243 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
244
245 // Compute the offset from the static and dynamic components.
246 llvm::Value *baseOffset;
247 if (!nonVirtualOffset.isZero()) {
248 llvm::Type *OffsetType =
249 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
251 ? CGF.Int32Ty
252 : CGF.PtrDiffTy;
253 baseOffset =
254 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
255 if (virtualOffset) {
256 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
257 }
258 } else {
259 baseOffset = virtualOffset;
260 }
261
262 // Apply the base offset.
263 llvm::Value *ptr = addr.emitRawPointer(CGF);
264 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
265
266 // If we have a virtual component, the alignment of the result will
267 // be relative only to the known alignment of that vbase.
268 CharUnits alignment;
269 if (virtualOffset) {
270 assert(nearestVBase && "virtual offset without vbase?");
271 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), derivedClass,
272 nearestVBase);
273 } else {
274 alignment = addr.getAlignment();
275 }
276 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
277
278 return Address(ptr, CGF.Int8Ty, alignment);
279}
280
282 Address Value, const CXXRecordDecl *Derived,
284 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
285 SourceLocation Loc) {
286 assert(PathBegin != PathEnd && "Base path should not be empty!");
287
288 CastExpr::path_const_iterator Start = PathBegin;
289 const CXXRecordDecl *VBase = nullptr;
290
291 // Sema has done some convenient canonicalization here: if the
292 // access path involved any virtual steps, the conversion path will
293 // *start* with a step down to the correct virtual base subobject,
294 // and hence will not require any further steps.
295 if ((*Start)->isVirtual()) {
296 VBase = (*Start)->getType()->castAsCXXRecordDecl();
297 ++Start;
298 }
299
300 // Compute the static offset of the ultimate destination within its
301 // allocating subobject (the virtual base, if there is one, or else
302 // the "complete" object that we see).
303 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
304 VBase ? VBase : Derived, Start, PathEnd);
305
306 // If there's a virtual step, we can sometimes "devirtualize" it.
307 // For now, that's limited to when the derived type is final.
308 // TODO: "devirtualize" this for accesses to known-complete objects.
309 if (VBase && Derived->hasAttr<FinalAttr>()) {
310 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
311 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
312 NonVirtualOffset += vBaseOffset;
313 VBase = nullptr; // we no longer have a virtual step
314 }
315
316 // Get the base pointer type.
317 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
318 llvm::Type *PtrTy = llvm::PointerType::get(
319 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
320
321 CanQualType DerivedTy = getContext().getCanonicalTagType(Derived);
322 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
323
324 // If the static offset is zero and we don't have a virtual step,
325 // just do a bitcast; null checks are unnecessary.
326 if (NonVirtualOffset.isZero() && !VBase) {
328 SanitizerSet SkippedChecks;
329 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
330 EmitTypeCheck(TCK_Upcast, Loc, Value.emitRawPointer(*this), DerivedTy,
331 DerivedAlign, SkippedChecks);
332 }
333 return Value.withElementType(BaseValueTy);
334 }
335
336 llvm::BasicBlock *origBB = nullptr;
337 llvm::BasicBlock *endBB = nullptr;
338
339 // Skip over the offset (and the vtable load) if we're supposed to
340 // null-check the pointer.
341 if (NullCheckValue) {
342 origBB = Builder.GetInsertBlock();
343 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
344 endBB = createBasicBlock("cast.end");
345
346 llvm::Value *isNull = Builder.CreateIsNull(Value);
347 Builder.CreateCondBr(isNull, endBB, notNullBB);
348 EmitBlock(notNullBB);
349 }
350
352 SanitizerSet SkippedChecks;
353 SkippedChecks.set(SanitizerKind::Null, true);
355 Value.emitRawPointer(*this), DerivedTy, DerivedAlign,
356 SkippedChecks);
357 }
358
359 // Compute the virtual offset.
360 llvm::Value *VirtualOffset = nullptr;
361 if (VBase) {
362 VirtualOffset =
363 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
364 }
365
366 // Apply both offsets.
367 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
368 VirtualOffset, Derived, VBase);
369
370 // Cast to the destination type.
371 Value = Value.withElementType(BaseValueTy);
372
373 // Build a phi if we needed a null check.
374 if (NullCheckValue) {
375 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
376 Builder.CreateBr(endBB);
377 EmitBlock(endBB);
378
379 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
380 PHI->addIncoming(Value.emitRawPointer(*this), notNullBB);
381 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
382 Value = Value.withPointer(PHI, NotKnownNonNull);
383 }
384
385 return Value;
386}
387
389 Address BaseAddr, const CXXRecordDecl *Derived,
391 CastExpr::path_const_iterator PathEnd, bool NullCheckValue) {
392 assert(PathBegin != PathEnd && "Base path should not be empty!");
393
394 CanQualType DerivedTy = getContext().getCanonicalTagType(Derived);
395 llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
396
397 llvm::Value *NonVirtualOffset =
398 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
399
400 if (!NonVirtualOffset) {
401 // No offset, we can just cast back.
402 return BaseAddr.withElementType(DerivedValueTy);
403 }
404
405 llvm::BasicBlock *CastNull = nullptr;
406 llvm::BasicBlock *CastNotNull = nullptr;
407 llvm::BasicBlock *CastEnd = nullptr;
408
409 if (NullCheckValue) {
410 CastNull = createBasicBlock("cast.null");
411 CastNotNull = createBasicBlock("cast.notnull");
412 CastEnd = createBasicBlock("cast.end");
413
414 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr);
415 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
416 EmitBlock(CastNotNull);
417 }
418
419 // Apply the offset.
421 Addr = Builder.CreateInBoundsGEP(
422 Addr, Builder.CreateNeg(NonVirtualOffset), Int8Ty,
423 CGM.getClassPointerAlignment(Derived), "sub.ptr");
424
425 // Just cast.
426 Addr = Addr.withElementType(DerivedValueTy);
427
428 // Produce a PHI if we had a null-check.
429 if (NullCheckValue) {
430 Builder.CreateBr(CastEnd);
431 EmitBlock(CastNull);
432 Builder.CreateBr(CastEnd);
433 EmitBlock(CastEnd);
434
435 llvm::Value *Value = Addr.emitRawPointer(*this);
436 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
437 PHI->addIncoming(Value, CastNotNull);
438 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
439 return Address(PHI, Addr.getElementType(),
440 CGM.getClassPointerAlignment(Derived));
441 }
442
443 return Addr;
444}
445
447 bool ForVirtualBase,
448 bool Delegating) {
449 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
450 // This constructor/destructor does not need a VTT parameter.
451 return nullptr;
452 }
453
454 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
455 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
456
457 uint64_t SubVTTIndex;
458
459 if (Delegating) {
460 // If this is a delegating constructor call, just load the VTT.
461 return LoadCXXVTT();
462 } else if (RD == Base) {
463 // If the record matches the base, this is the complete ctor/dtor
464 // variant calling the base variant in a class with virtual bases.
465 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
466 "doing no-op VTT offset in base dtor/ctor?");
467 assert(!ForVirtualBase && "Can't have same class as virtual base!");
468 SubVTTIndex = 0;
469 } else {
470 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
471 CharUnits BaseOffset = ForVirtualBase ? Layout.getVBaseClassOffset(Base)
472 : Layout.getBaseClassOffset(Base);
473
474 SubVTTIndex =
475 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
476 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
477 }
478
479 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
480 // A VTT parameter was passed to the constructor, use it.
481 llvm::Value *VTT = LoadCXXVTT();
482 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
483 } else {
484 // We're the complete constructor, so get the VTT by name.
485 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
486 return Builder.CreateConstInBoundsGEP2_64(VTT->getValueType(), VTT, 0,
487 SubVTTIndex);
488 }
489}
490
491namespace {
492/// Call the destructor for a direct base class.
493struct CallBaseDtor final : EHScopeStack::Cleanup {
494 const CXXRecordDecl *BaseClass;
495 bool BaseIsVirtual;
496 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
497 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
498
499 void Emit(CodeGenFunction &CGF, Flags flags) override {
500 const CXXRecordDecl *DerivedClass =
501 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
502
503 const CXXDestructorDecl *D = BaseClass->getDestructor();
504 // We are already inside a destructor, so presumably the object being
505 // destroyed should have the expected type.
508 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
509 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
510 /*Delegating=*/false, Addr, ThisTy);
511 }
512};
513
514/// A visitor which checks whether an initializer uses 'this' in a
515/// way which requires the vtable to be properly set.
516struct DynamicThisUseChecker
517 : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
518 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
519
520 bool UsesThis;
521
522 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
523
524 // Black-list all explicit and implicit references to 'this'.
525 //
526 // Do we need to worry about external references to 'this' derived
527 // from arbitrary code? If so, then anything which runs arbitrary
528 // external code might potentially access the vtable.
529 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
530};
531} // end anonymous namespace
532
534 DynamicThisUseChecker Checker(C);
535 Checker.Visit(Init);
536 return Checker.UsesThis;
537}
538
540 const CXXRecordDecl *ClassDecl,
541 CXXCtorInitializer *BaseInit) {
542 assert(BaseInit->isBaseInitializer() && "Must have base initializer!");
543
544 Address ThisPtr = CGF.LoadCXXThisAddress();
545
546 const auto *BaseClassDecl = BaseInit->getBaseClass()->castAsCXXRecordDecl();
547
548 bool isBaseVirtual = BaseInit->isBaseVirtual();
549
550 // If the initializer for the base (other than the constructor
551 // itself) accesses 'this' in any way, we need to initialize the
552 // vtables.
553 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
554 CGF.InitializeVTablePointers(ClassDecl);
555
556 // We can pretend to be a complete class because it only matters for
557 // virtual bases, and we only do virtual bases for complete ctors.
559 ThisPtr, ClassDecl, BaseClassDecl, isBaseVirtual);
563 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
564
565 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
566
567 if (CGF.CGM.getLangOpts().Exceptions &&
568 !BaseClassDecl->hasTrivialDestructor())
569 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
570 isBaseVirtual);
571}
572
574 auto *CD = dyn_cast<CXXConstructorDecl>(D);
575 if (!(CD && CD->isCopyOrMoveConstructor()) &&
577 return false;
578
579 // We can emit a memcpy for a trivial copy or move constructor/assignment.
580 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
581 return true;
582
583 // We *must* emit a memcpy for a defaulted union copy or move op.
584 if (D->getParent()->isUnion() && D->isDefaulted())
585 return true;
586
587 return false;
588}
589
591 CXXCtorInitializer *MemberInit,
592 LValue &LHS) {
593 FieldDecl *Field = MemberInit->getAnyMember();
594 if (MemberInit->isIndirectMemberInitializer()) {
595 // If we are initializing an anonymous union field, drill down to the field.
596 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
597 for (const auto *I : IndirectField->chain())
599 } else {
600 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
601 }
602}
603
605 const CXXRecordDecl *ClassDecl,
606 CXXCtorInitializer *MemberInit,
608 FunctionArgList &Args) {
609 ApplyAtomGroup Grp(CGF.getDebugInfo());
610 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
611 assert(MemberInit->isAnyMemberInitializer() &&
612 "Must have member initializer!");
613 assert(MemberInit->getInit() && "Must have initializer!");
614
615 // non-static data member initializers.
616 FieldDecl *Field = MemberInit->getAnyMember();
617 QualType FieldType = Field->getType();
618
619 llvm::Value *ThisPtr = CGF.LoadCXXThis();
620 CanQualType RecordTy = CGF.getContext().getCanonicalTagType(ClassDecl);
621 LValue LHS;
622
623 // If a base constructor is being emitted, create an LValue that has the
624 // non-virtual alignment.
625 if (CGF.CurGD.getCtorType() == Ctor_Base)
626 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
627 else
628 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
629
630 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
631
632 // Special case: if we are in a copy or move constructor, and we are copying
633 // an array of PODs or classes with trivial copy constructors, ignore the
634 // AST and perform the copy we know is equivalent.
635 // FIXME: This is hacky at best... if we had a bit more explicit information
636 // in the AST, we could generalize it more easily.
637 const ConstantArrayType *Array =
638 CGF.getContext().getAsConstantArrayType(FieldType);
639 if (Array && Constructor->isDefaulted() &&
640 Constructor->isCopyOrMoveConstructor()) {
641 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
642 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
643 if (BaseElementTy.isPODType(CGF.getContext()) ||
645 unsigned SrcArgIndex =
647 llvm::Value *SrcPtr =
648 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
649 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
650 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
651
652 // Copy the aggregate.
653 CGF.EmitAggregateCopy(LHS, Src, FieldType,
654 CGF.getOverlapForFieldInit(Field),
655 LHS.isVolatileQualified());
656 // Ensure that we destroy the objects if an exception is thrown later in
657 // the constructor.
658 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
659 if (CGF.needsEHCleanup(dtorKind))
660 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
661 return;
662 }
663 }
664
665 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
666}
667
669 Expr *Init) {
670 QualType FieldType = Field->getType();
671 switch (getEvaluationKind(FieldType)) {
672 case TEK_Scalar:
673 if (LHS.isSimple()) {
674 EmitExprAsInit(Init, Field, LHS, false);
675 } else {
677 EmitStoreThroughLValue(RHS, LHS);
678 }
679 break;
680 case TEK_Complex:
681 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
682 break;
683 case TEK_Aggregate: {
688 // Checks are made by the code that calls constructor.
690 EmitAggExpr(Init, Slot);
691 break;
692 }
693 }
694
695 // Ensure that we destroy this object if an exception is thrown
696 // later in the constructor.
697 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
698 if (needsEHCleanup(dtorKind))
699 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
700}
701
702/// Checks whether the given constructor is a valid subject for the
703/// complete-to-base constructor delegation optimization, i.e.
704/// emitting the complete constructor as a simple call to the base
705/// constructor.
707 const CXXConstructorDecl *Ctor) {
708
709 // Currently we disable the optimization for classes with virtual
710 // bases because (1) the addresses of parameter variables need to be
711 // consistent across all initializers but (2) the delegate function
712 // call necessarily creates a second copy of the parameter variable.
713 //
714 // The limiting example (purely theoretical AFAIK):
715 // struct A { A(int &c) { c++; } };
716 // struct B : virtual A {
717 // B(int count) : A(count) { printf("%d\n", count); }
718 // };
719 // ...although even this example could in principle be emitted as a
720 // delegation since the address of the parameter doesn't escape.
721 if (Ctor->getParent()->getNumVBases()) {
722 // TODO: white-list trivial vbase initializers. This case wouldn't
723 // be subject to the restrictions below.
724
725 // TODO: white-list cases where:
726 // - there are no non-reference parameters to the constructor
727 // - the initializers don't access any non-reference parameters
728 // - the initializers don't take the address of non-reference
729 // parameters
730 // - etc.
731 // If we ever add any of the above cases, remember that:
732 // - function-try-blocks will always exclude this optimization
733 // - we need to perform the constructor prologue and cleanup in
734 // EmitConstructorBody.
735
736 return false;
737 }
738
739 // We also disable the optimization for variadic functions because
740 // it's impossible to "re-pass" varargs.
741 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
742 return false;
743
744 // FIXME: Decide if we can do a delegation of a delegating constructor.
745 if (Ctor->isDelegatingConstructor())
746 return false;
747
748 return true;
749}
750
751// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
752// to poison the extra field paddings inserted under
753// -fsanitize-address-field-padding=1|2.
755 ASTContext &Context = getContext();
756 const CXXRecordDecl *ClassDecl =
757 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
758 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
759 if (!ClassDecl->mayInsertExtraPadding())
760 return;
761
762 struct SizeAndOffset {
763 uint64_t Size;
764 uint64_t Offset;
765 };
766
767 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
768 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
769
770 // Populate sizes and offsets of fields.
772 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
773 SSV[i].Offset =
774 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
775
776 size_t NumFields = 0;
777 for (const auto *Field : ClassDecl->fields()) {
778 const FieldDecl *D = Field;
779 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
780 CharUnits FieldSize = FieldInfo.Width;
781 assert(NumFields < SSV.size());
782 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
783 NumFields++;
784 }
785 assert(NumFields == SSV.size());
786 if (SSV.size() <= 1)
787 return;
788
789 // We will insert calls to __asan_* run-time functions.
790 // LLVM AddressSanitizer pass may decide to inline them later.
791 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
792 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, Args, false);
793 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
794 FTy, Prologue ? "__asan_poison_intra_object_redzone"
795 : "__asan_unpoison_intra_object_redzone");
796
797 llvm::Value *ThisPtr = LoadCXXThis();
798 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
799 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
800 // For each field check if it has sufficient padding,
801 // if so (un)poison it with a call.
802 for (size_t i = 0; i < SSV.size(); i++) {
803 uint64_t AsanAlignment = 8;
804 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
805 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
806 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
807 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
808 (NextField % AsanAlignment) != 0)
809 continue;
810 Builder.CreateCall(
811 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
812 Builder.getIntN(PtrSize, PoisonSize)});
813 }
814}
815
816/// EmitConstructorBody - Emits the body of the current constructor.
819 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
820 CXXCtorType CtorType = CurGD.getCtorType();
821
822 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
823 CtorType == Ctor_Complete) &&
824 "can only generate complete ctor for this ABI");
825
826 // Before we go any further, try the complete->base constructor
827 // delegation optimization.
828 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
829 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
831 return;
832 }
833
834 const FunctionDecl *Definition = nullptr;
835 Stmt *Body = Ctor->getBody(Definition);
836 assert(Definition == Ctor && "emitting wrong constructor body");
837
838 // Enter the function-try-block before the constructor prologue if
839 // applicable.
840 bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Body);
841 if (IsTryBody)
842 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
843
846
847 RunCleanupsScope RunCleanups(*this);
848
849 // TODO: in restricted cases, we can emit the vbase initializers of
850 // a complete ctor and then delegate to the base ctor.
851
852 // Emit the constructor prologue, i.e. the base and member
853 // initializers.
854 EmitCtorPrologue(Ctor, CtorType, Args);
855
856 // Emit the body of the statement.
857 if (IsTryBody)
858 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
859 else if (Body)
860 EmitStmt(Body);
861
862 // Emit any cleanup blocks associated with the member or base
863 // initializers, which includes (along the exceptional path) the
864 // destructors for those members and bases that were fully
865 // constructed.
866 RunCleanups.ForceCleanup();
867
868 if (IsTryBody)
869 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
870}
871
872namespace {
873/// RAII object to indicate that codegen is copying the value representation
874/// instead of the object representation. Useful when copying a struct or
875/// class which has uninitialized members and we're only performing
876/// lvalue-to-rvalue conversion on the object but not its members.
877class CopyingValueRepresentation {
878public:
879 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
880 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
881 CGF.SanOpts.set(SanitizerKind::Bool, false);
882 CGF.SanOpts.set(SanitizerKind::Enum, false);
883 }
884 ~CopyingValueRepresentation() { CGF.SanOpts = OldSanOpts; }
885
886private:
887 CodeGenFunction &CGF;
888 SanitizerSet OldSanOpts;
889};
890} // end anonymous namespace
891
892namespace {
893class FieldMemcpyizer {
894public:
895 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
896 const VarDecl *SrcRec)
897 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
898 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
899 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
900 LastFieldOffset(0), LastAddedFieldIndex(0) {}
901
902 bool isMemcpyableField(FieldDecl *F) const {
903 // Never memcpy fields when we are adding poisoned paddings.
904 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
905 return false;
906 Qualifiers Qual = F->getType().getQualifiers();
907 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
908 return false;
909 if (PointerAuthQualifier Q = F->getType().getPointerAuth();
910 Q && Q.isAddressDiscriminated())
911 return false;
912 return true;
913 }
914
915 void addMemcpyableField(FieldDecl *F) {
916 if (isEmptyFieldForLayout(CGF.getContext(), F))
917 return;
918 if (!FirstField)
919 addInitialField(F);
920 else
921 addNextField(F);
922 }
923
924 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
925 ASTContext &Ctx = CGF.getContext();
926 unsigned LastFieldSize =
927 LastField->isBitField()
928 ? LastField->getBitWidthValue()
929 : Ctx.toBits(
930 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
931 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
932 FirstByteOffset + Ctx.getCharWidth() - 1;
933 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
934 return MemcpySize;
935 }
936
937 void emitMemcpy() {
938 // Give the subclass a chance to bail out if it feels the memcpy isn't
939 // worth it (e.g. Hasn't aggregated enough data).
940 if (!FirstField) {
941 return;
942 }
943
944 uint64_t FirstByteOffset;
945 if (FirstField->isBitField()) {
946 const CGRecordLayout &RL =
947 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
948 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
949 // FirstFieldOffset is not appropriate for bitfields,
950 // we need to use the storage offset instead.
951 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
952 } else {
953 FirstByteOffset = FirstFieldOffset;
954 }
955
956 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
957 CanQualType RecordTy = CGF.getContext().getCanonicalTagType(ClassDecl);
958 Address ThisPtr = CGF.LoadCXXThisAddress();
959 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
960 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
961 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
962 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
963 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
964
965 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress()
966 : Dest.getAddress(),
967 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
968 MemcpySize);
969 reset();
970 }
971
972 void reset() { FirstField = nullptr; }
973
974protected:
975 CodeGenFunction &CGF;
976 const CXXRecordDecl *ClassDecl;
977
978private:
979 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
980 DestPtr = DestPtr.withElementType(CGF.Int8Ty);
981 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
982 auto *I = CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
983 CGF.addInstToCurrentSourceAtom(I, nullptr);
984 }
985
986 void addInitialField(FieldDecl *F) {
987 FirstField = F;
988 LastField = F;
989 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
990 LastFieldOffset = FirstFieldOffset;
991 LastAddedFieldIndex = F->getFieldIndex();
992 }
993
994 void addNextField(FieldDecl *F) {
995 // For the most part, the following invariant will hold:
996 // F->getFieldIndex() == LastAddedFieldIndex + 1
997 // The one exception is that Sema won't add a copy-initializer for an
998 // unnamed bitfield, which will show up here as a gap in the sequence.
999 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1000 "Cannot aggregate fields out of order.");
1001 LastAddedFieldIndex = F->getFieldIndex();
1002
1003 // The 'first' and 'last' fields are chosen by offset, rather than field
1004 // index. This allows the code to support bitfields, as well as regular
1005 // fields.
1006 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1007 if (FOffset < FirstFieldOffset) {
1008 FirstField = F;
1009 FirstFieldOffset = FOffset;
1010 } else if (FOffset >= LastFieldOffset) {
1011 LastField = F;
1012 LastFieldOffset = FOffset;
1013 }
1014 }
1015
1016 const VarDecl *SrcRec;
1017 const ASTRecordLayout &RecLayout;
1018 FieldDecl *FirstField;
1019 FieldDecl *LastField;
1020 uint64_t FirstFieldOffset, LastFieldOffset;
1021 unsigned LastAddedFieldIndex;
1022};
1023
1024class ConstructorMemcpyizer : public FieldMemcpyizer {
1025private:
1026 /// Get source argument for copy constructor. Returns null if not a copy
1027 /// constructor.
1028 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1029 const CXXConstructorDecl *CD,
1030 FunctionArgList &Args) {
1031 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1032 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1033 return nullptr;
1034 }
1035
1036 // Returns true if a CXXCtorInitializer represents a member initialization
1037 // that can be rolled into a memcpy.
1038 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1039 if (!MemcpyableCtor)
1040 return false;
1041 FieldDecl *Field = MemberInit->getMember();
1042 assert(Field && "No field for member init.");
1043 QualType FieldType = Field->getType();
1044 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1045
1046 // Bail out on non-memcpyable, not-trivially-copyable members.
1047 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1048 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1049 FieldType->isReferenceType()))
1050 return false;
1051
1052 // Bail out on volatile fields.
1053 if (!isMemcpyableField(Field))
1054 return false;
1055
1056 // Otherwise we're good.
1057 return true;
1058 }
1059
1060public:
1061 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1062 FunctionArgList &Args)
1063 : FieldMemcpyizer(CGF, CD->getParent(),
1064 getTrivialCopySource(CGF, CD, Args)),
1065 ConstructorDecl(CD),
1066 MemcpyableCtor(CD->isDefaulted() && CD->isCopyOrMoveConstructor() &&
1067 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1068 Args(Args) {}
1069
1070 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1071 if (isMemberInitMemcpyable(MemberInit)) {
1072 AggregatedInits.push_back(MemberInit);
1073 addMemcpyableField(MemberInit->getMember());
1074 } else {
1075 emitAggregatedInits();
1076 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1077 ConstructorDecl, Args);
1078 }
1079 }
1080
1081 void emitAggregatedInits() {
1082 if (AggregatedInits.size() <= 1) {
1083 // This memcpy is too small to be worthwhile. Fall back on default
1084 // codegen.
1085 if (!AggregatedInits.empty()) {
1086 CopyingValueRepresentation CVR(CGF);
1087 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1088 AggregatedInits[0], ConstructorDecl, Args);
1089 AggregatedInits.clear();
1090 }
1091 reset();
1092 return;
1093 }
1094
1095 pushEHDestructors();
1096 ApplyAtomGroup Grp(CGF.getDebugInfo());
1097 emitMemcpy();
1098 AggregatedInits.clear();
1099 }
1100
1101 void pushEHDestructors() {
1102 Address ThisPtr = CGF.LoadCXXThisAddress();
1103 CanQualType RecordTy = CGF.getContext().getCanonicalTagType(ClassDecl);
1104 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1105
1106 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1107 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1108 QualType FieldType = MemberInit->getAnyMember()->getType();
1109 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1110 if (!CGF.needsEHCleanup(dtorKind))
1111 continue;
1112 LValue FieldLHS = LHS;
1113 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1114 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1115 }
1116 }
1117
1118 void finish() { emitAggregatedInits(); }
1119
1120private:
1121 const CXXConstructorDecl *ConstructorDecl;
1122 bool MemcpyableCtor;
1123 FunctionArgList &Args;
1124 SmallVector<CXXCtorInitializer *, 16> AggregatedInits;
1125};
1126
1127class AssignmentMemcpyizer : public FieldMemcpyizer {
1128private:
1129 // Returns the memcpyable field copied by the given statement, if one
1130 // exists. Otherwise returns null.
1131 FieldDecl *getMemcpyableField(Stmt *S) {
1132 if (!AssignmentsMemcpyable)
1133 return nullptr;
1134 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1135 // Recognise trivial assignments.
1136 if (BO->getOpcode() != BO_Assign)
1137 return nullptr;
1138 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1139 if (!ME)
1140 return nullptr;
1141 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1142 if (!Field || !isMemcpyableField(Field))
1143 return nullptr;
1144 Stmt *RHS = BO->getRHS();
1145 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1146 RHS = EC->getSubExpr();
1147 if (!RHS)
1148 return nullptr;
1149 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1150 if (ME2->getMemberDecl() == Field)
1151 return Field;
1152 }
1153 return nullptr;
1154 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1155 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1156 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1157 return nullptr;
1158 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1159 if (!IOA)
1160 return nullptr;
1161 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1162 if (!Field || !isMemcpyableField(Field))
1163 return nullptr;
1164 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1165 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1166 return nullptr;
1167 return Field;
1168 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1169 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1170 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1171 return nullptr;
1172 Expr *DstPtr = CE->getArg(0);
1173 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1174 DstPtr = DC->getSubExpr();
1175 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1176 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1177 return nullptr;
1178 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1179 if (!ME)
1180 return nullptr;
1181 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1182 if (!Field || !isMemcpyableField(Field))
1183 return nullptr;
1184 Expr *SrcPtr = CE->getArg(1);
1185 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1186 SrcPtr = SC->getSubExpr();
1187 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1188 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1189 return nullptr;
1190 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1191 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1192 return nullptr;
1193 return Field;
1194 }
1195
1196 return nullptr;
1197 }
1198
1199 bool AssignmentsMemcpyable;
1200 SmallVector<Stmt *, 16> AggregatedStmts;
1201
1202public:
1203 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1204 FunctionArgList &Args)
1205 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1206 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1207 assert(Args.size() == 2);
1208 }
1209
1210 void emitAssignment(Stmt *S) {
1211 FieldDecl *F = getMemcpyableField(S);
1212 if (F) {
1213 addMemcpyableField(F);
1214 AggregatedStmts.push_back(S);
1215 } else {
1216 emitAggregatedStmts();
1217 CGF.EmitStmt(S);
1218 }
1219 }
1220
1221 void emitAggregatedStmts() {
1222 if (AggregatedStmts.size() <= 1) {
1223 if (!AggregatedStmts.empty()) {
1224 CopyingValueRepresentation CVR(CGF);
1225 CGF.EmitStmt(AggregatedStmts[0]);
1226 }
1227 reset();
1228 }
1229
1230 ApplyAtomGroup Grp(CGF.getDebugInfo());
1231 emitMemcpy();
1232 AggregatedStmts.clear();
1233 }
1234
1235 void finish() { emitAggregatedStmts(); }
1236};
1237} // end anonymous namespace
1238
1240 const Type *BaseType = BaseInit->getBaseClass();
1241 return BaseType->castAsCXXRecordDecl()->isDynamicClass();
1242}
1243
1244/// EmitCtorPrologue - This routine generates necessary code to initialize
1245/// base classes and non-static data members belonging to this constructor.
1247 CXXCtorType CtorType,
1248 FunctionArgList &Args) {
1249 if (CD->isDelegatingConstructor())
1250 return EmitDelegatingCXXConstructorCall(CD, Args);
1251
1252 const CXXRecordDecl *ClassDecl = CD->getParent();
1253
1254 // Virtual base initializers aren't needed if:
1255 // - This is a base ctor variant
1256 // - There are no vbases
1257 // - The class is abstract, so a complete object of it cannot be constructed
1258 //
1259 // The check for an abstract class is necessary because sema may not have
1260 // marked virtual base destructors referenced.
1261 bool ConstructVBases = CtorType != Ctor_Base &&
1262 ClassDecl->getNumVBases() != 0 &&
1263 !ClassDecl->isAbstract();
1264
1265 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1266 // constructor of a class with virtual bases takes an additional parameter to
1267 // conditionally construct the virtual bases. Emit that check here.
1268 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1269 if (ConstructVBases &&
1270 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1271 BaseCtorContinueBB =
1272 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1273 assert(BaseCtorContinueBB);
1274 }
1275
1276 // Create three separate ranges for the different types of initializers.
1277 auto AllInits = CD->inits();
1278
1279 // Find the boundaries between the three groups.
1280 auto VirtualBaseEnd = std::find_if(
1281 AllInits.begin(), AllInits.end(), [](const CXXCtorInitializer *Init) {
1282 return !(Init->isBaseInitializer() && Init->isBaseVirtual());
1283 });
1284
1285 auto NonVirtualBaseEnd = std::find_if(VirtualBaseEnd, AllInits.end(),
1286 [](const CXXCtorInitializer *Init) {
1287 return !Init->isBaseInitializer();
1288 });
1289
1290 // Create the three ranges.
1291 auto VirtualBaseInits = llvm::make_range(AllInits.begin(), VirtualBaseEnd);
1292 auto NonVirtualBaseInits =
1293 llvm::make_range(VirtualBaseEnd, NonVirtualBaseEnd);
1294 auto MemberInits = llvm::make_range(NonVirtualBaseEnd, AllInits.end());
1295
1296 // Process virtual base initializers, if necessary.
1297 if (ConstructVBases) {
1298 for (CXXCtorInitializer *Initializer : VirtualBaseInits) {
1299 SaveAndRestore ThisRAII(CXXThisValue);
1300 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1301 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1303 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1304 EmitBaseInitializer(*this, ClassDecl, Initializer);
1305 }
1306 }
1307
1308 if (BaseCtorContinueBB) {
1309 // Complete object handler should continue to the remaining initializers.
1310 Builder.CreateBr(BaseCtorContinueBB);
1311 EmitBlock(BaseCtorContinueBB);
1312 }
1313
1314 // Then, non-virtual base initializers.
1315 for (CXXCtorInitializer *Initializer : NonVirtualBaseInits) {
1316 assert(!Initializer->isBaseVirtual());
1317 SaveAndRestore ThisRAII(CXXThisValue);
1318 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1319 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1321 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1322 EmitBaseInitializer(*this, ClassDecl, Initializer);
1323 }
1324
1325 InitializeVTablePointers(ClassDecl);
1326
1327 // And finally, initialize class members.
1329 ConstructorMemcpyizer CM(*this, CD, Args);
1330 for (CXXCtorInitializer *Member : MemberInits) {
1331 assert(!Member->isBaseInitializer());
1332 assert(Member->isAnyMemberInitializer() &&
1333 "Delegating initializer on non-delegating constructor");
1334 CM.addMemberInitializer(Member);
1335 }
1336
1337 CM.finish();
1338}
1339
1340static bool FieldHasTrivialDestructorBody(ASTContext &Context,
1341 const FieldDecl *Field);
1342
1343static bool
1345 const CXXRecordDecl *BaseClassDecl,
1346 const CXXRecordDecl *MostDerivedClassDecl) {
1347 // If the destructor is trivial we don't have to check anything else.
1348 if (BaseClassDecl->hasTrivialDestructor())
1349 return true;
1350
1351 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1352 return false;
1353
1354 // Check fields.
1355 for (const auto *Field : BaseClassDecl->fields())
1356 if (!FieldHasTrivialDestructorBody(Context, Field))
1357 return false;
1358
1359 // Check non-virtual bases.
1360 for (const auto &I : BaseClassDecl->bases()) {
1361 if (I.isVirtual())
1362 continue;
1363
1364 const auto *NonVirtualBase = I.getType()->castAsCXXRecordDecl();
1366 MostDerivedClassDecl))
1367 return false;
1368 }
1369
1370 if (BaseClassDecl == MostDerivedClassDecl) {
1371 // Check virtual bases.
1372 for (const auto &I : BaseClassDecl->vbases()) {
1373 const auto *VirtualBase = I.getType()->castAsCXXRecordDecl();
1374 if (!HasTrivialDestructorBody(Context, VirtualBase, MostDerivedClassDecl))
1375 return false;
1376 }
1377 }
1378
1379 return true;
1380}
1381
1383 const FieldDecl *Field) {
1384 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1385
1386 auto *FieldClassDecl = FieldBaseElementType->getAsCXXRecordDecl();
1387 if (!FieldClassDecl)
1388 return true;
1389
1390 // The destructor for an implicit anonymous union member is never invoked.
1391 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1392 return true;
1393
1394 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1395}
1396
1397/// CanSkipVTablePointerInitialization - Check whether we need to initialize
1398/// any vtable pointers before calling this destructor.
1400 const CXXDestructorDecl *Dtor) {
1401 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1402 if (!ClassDecl->isDynamicClass())
1403 return true;
1404
1405 // For a final class, the vtable pointer is known to already point to the
1406 // class's vtable.
1407 if (ClassDecl->isEffectivelyFinal())
1408 return true;
1409
1410 if (!Dtor->hasTrivialBody())
1411 return false;
1412
1413 // Check the fields.
1414 for (const auto *Field : ClassDecl->fields())
1415 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1416 return false;
1417
1418 return true;
1419}
1420
1422 CodeGenFunction &CGF,
1423 llvm::Value *ShouldDeleteCondition) {
1424 Address ThisPtr = CGF.LoadCXXThisAddress();
1425 llvm::BasicBlock *ScalarBB = CGF.createBasicBlock("dtor.scalar");
1426 llvm::BasicBlock *callDeleteBB =
1427 CGF.createBasicBlock("dtor.call_delete_after_array_destroy");
1428 llvm::BasicBlock *VectorBB = CGF.createBasicBlock("dtor.vector");
1429 auto *CondTy = cast<llvm::IntegerType>(ShouldDeleteCondition->getType());
1430 llvm::Value *CheckTheBitForArrayDestroy = CGF.Builder.CreateAnd(
1431 ShouldDeleteCondition, llvm::ConstantInt::get(CondTy, 2));
1432 llvm::Value *ShouldDestroyArray =
1433 CGF.Builder.CreateIsNull(CheckTheBitForArrayDestroy);
1434 CGF.Builder.CreateCondBr(ShouldDestroyArray, ScalarBB, VectorBB);
1435
1436 CGF.EmitBlock(VectorBB);
1437
1438 llvm::Value *numElements = nullptr;
1439 llvm::Value *allocatedPtr = nullptr;
1440 CharUnits cookieSize;
1441 QualType EltTy = DD->getThisType()->getPointeeType();
1442 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, ThisPtr, EltTy, numElements,
1443 allocatedPtr, cookieSize);
1444
1445 // Destroy the elements.
1447
1448 assert(dtorKind);
1449 assert(numElements && "no element count for a type with a destructor!");
1450
1451 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(EltTy);
1452 CharUnits elementAlign =
1453 ThisPtr.getAlignment().alignmentOfArrayElement(elementSize);
1454
1455 llvm::Value *arrayBegin = ThisPtr.emitRawPointer(CGF);
1456 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
1457 ThisPtr.getElementType(), arrayBegin, numElements, "delete.end");
1458
1459 // We already checked that the array is not 0-length before entering vector
1460 // deleting dtor.
1461 CGF.emitArrayDestroy(arrayBegin, arrayEnd, EltTy, elementAlign,
1462 CGF.getDestroyer(dtorKind),
1463 /*checkZeroLength*/ false, CGF.needsEHCleanup(dtorKind));
1464
1465 llvm::BasicBlock *VectorBBCont = CGF.createBasicBlock("dtor.vector.cont");
1466 CGF.EmitBlock(VectorBBCont);
1467
1468 llvm::Value *CheckTheBitForDeleteCall = CGF.Builder.CreateAnd(
1469 ShouldDeleteCondition, llvm::ConstantInt::get(CondTy, 1));
1470
1471 llvm::Value *ShouldCallDelete =
1472 CGF.Builder.CreateIsNull(CheckTheBitForDeleteCall);
1473 CGF.Builder.CreateCondBr(ShouldCallDelete, CGF.ReturnBlock.getBlock(),
1474 callDeleteBB);
1475 CGF.EmitBlock(callDeleteBB);
1477 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1478 if (Dtor->getArrayOperatorDelete()) {
1479 if (!Dtor->getGlobalArrayOperatorDelete()) {
1480 CGF.EmitDeleteCall(Dtor->getArrayOperatorDelete(), allocatedPtr,
1481 CGF.getContext().getCanonicalTagType(ClassDecl),
1482 numElements, cookieSize);
1483 } else {
1484 // If global operator[] is set, the class had its own operator delete[].
1485 // In that case, check the 4th bit. If it is set, we need to call
1486 // ::delete[].
1487 llvm::Value *CheckTheBitForGlobDeleteCall = CGF.Builder.CreateAnd(
1488 ShouldDeleteCondition, llvm::ConstantInt::get(CondTy, 4));
1489
1490 llvm::Value *ShouldCallGlobDelete =
1491 CGF.Builder.CreateIsNull(CheckTheBitForGlobDeleteCall);
1492 llvm::BasicBlock *GlobDelete =
1493 CGF.createBasicBlock("dtor.call_glob_delete_after_array_destroy");
1494 llvm::BasicBlock *ClassDelete =
1495 CGF.createBasicBlock("dtor.call_class_delete_after_array_destroy");
1496 CGF.Builder.CreateCondBr(ShouldCallGlobDelete, ClassDelete, GlobDelete);
1497 CGF.EmitBlock(ClassDelete);
1498 CGF.EmitDeleteCall(Dtor->getArrayOperatorDelete(), allocatedPtr,
1499 CGF.getContext().getCanonicalTagType(ClassDecl),
1500 numElements, cookieSize);
1502
1503 CGF.EmitBlock(GlobDelete);
1504 CGF.EmitDeleteCall(Dtor->getGlobalArrayOperatorDelete(), allocatedPtr,
1505 CGF.getContext().getCanonicalTagType(ClassDecl),
1506 numElements, cookieSize);
1507 }
1508 } else {
1509 // No operators delete[] were found, so emit a trap.
1510 llvm::CallInst *TrapCall = CGF.EmitTrapCall(llvm::Intrinsic::trap);
1511 TrapCall->setDoesNotReturn();
1512 TrapCall->setDoesNotThrow();
1513 CGF.Builder.CreateUnreachable();
1514 CGF.Builder.ClearInsertionPoint();
1515 }
1516
1518 CGF.EmitBlock(ScalarBB);
1519}
1520
1521/// EmitDestructorBody - Emits the body of the current destructor.
1523 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1524 CXXDtorType DtorType = CurGD.getDtorType();
1525
1526 // For an abstract class, non-base destructors are never used (and can't
1527 // be emitted in general, because vbase dtors may not have been validated
1528 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1529 // in fact emit references to them from other compilations, so emit them
1530 // as functions containing a trap instruction.
1531 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1532 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1533 TrapCall->setDoesNotReturn();
1534 TrapCall->setDoesNotThrow();
1535 Builder.CreateUnreachable();
1536 Builder.ClearInsertionPoint();
1537 return;
1538 }
1539
1540 Stmt *Body = Dtor->getBody();
1541 if (Body) {
1544 }
1545
1546 // The call to operator delete in a deleting destructor happens
1547 // outside of the function-try-block, which means it's always
1548 // possible to delegate the destructor body to the complete
1549 // destructor. Do so.
1550 if (DtorType == Dtor_Deleting || DtorType == Dtor_VectorDeleting) {
1551 if (CXXStructorImplicitParamValue && DtorType == Dtor_VectorDeleting)
1552 EmitConditionalArrayDtorCall(Dtor, *this, CXXStructorImplicitParamValue);
1553 RunCleanupsScope DtorEpilogue(*this);
1555 if (HaveInsertPoint()) {
1557 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1558 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1559 }
1560 return;
1561 }
1562
1563 // If the body is a function-try-block, enter the try before
1564 // anything else.
1565 bool isTryBody = isa_and_nonnull<CXXTryStmt>(Body);
1566 if (isTryBody)
1567 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1569
1570 // Enter the epilogue cleanups.
1571 RunCleanupsScope DtorEpilogue(*this);
1572
1573 // If this is the complete variant, just invoke the base variant;
1574 // the epilogue will destruct the virtual bases. But we can't do
1575 // this optimization if the body is a function-try-block, because
1576 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1577 // always delegate because we might not have a definition in this TU.
1578 switch (DtorType) {
1579 case Dtor_Unified:
1580 llvm_unreachable("not expecting a unified dtor");
1581 case Dtor_Comdat:
1582 llvm_unreachable("not expecting a COMDAT");
1583 case Dtor_Deleting:
1584 llvm_unreachable("already handled deleting case");
1586 llvm_unreachable("already handled vector deleting case");
1587
1588 case Dtor_Complete:
1589 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1590 "can't emit a dtor without a body for non-Microsoft ABIs");
1591
1592 // Enter the cleanup scopes for virtual bases.
1594
1595 if (!isTryBody) {
1597 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1598 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1599 break;
1600 }
1601
1602 // Fallthrough: act like we're in the base variant.
1603 [[fallthrough]];
1604
1605 case Dtor_Base:
1606 assert(Body);
1607
1608 // Enter the cleanup scopes for fields and non-virtual bases.
1610
1611 // Initialize the vtable pointers before entering the body.
1612 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1613 // Insert the llvm.launder.invariant.group intrinsic before initializing
1614 // the vptrs to cancel any previous assumptions we might have made.
1615 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1616 CGM.getCodeGenOpts().OptimizationLevel > 0)
1617 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1619 }
1620
1621 if (isTryBody)
1622 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1623 else if (Body)
1624 EmitStmt(Body);
1625 else {
1626 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1627 // nothing to do besides what's in the epilogue
1628 }
1629 // -fapple-kext must inline any call to this dtor into
1630 // the caller's body.
1631 if (getLangOpts().AppleKext)
1632 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1633
1634 break;
1635 }
1636
1637 // Jump out through the epilogue cleanups.
1638 DtorEpilogue.ForceCleanup();
1639
1640 // Exit the try if applicable.
1641 if (isTryBody)
1642 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1643}
1644
1646 FunctionArgList &Args) {
1647 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1648 const Stmt *RootS = AssignOp->getBody();
1649 assert(isa<CompoundStmt>(RootS) &&
1650 "Body of an implicit assignment operator should be compound stmt.");
1651 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1652
1653 LexicalScope Scope(*this, RootCS->getSourceRange());
1654
1657 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1658 for (auto *I : RootCS->body())
1659 AM.emitAssignment(I);
1660
1661 AM.finish();
1662}
1663
1664namespace {
1665llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1666 const CXXDestructorDecl *DD) {
1667 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1668 return CGF.EmitScalarExpr(ThisArg);
1669 return CGF.LoadCXXThis();
1670}
1671
1672/// Call the operator delete associated with the current destructor.
1673struct CallDtorDelete final : EHScopeStack::Cleanup {
1674 CallDtorDelete() {}
1675
1676 void Emit(CodeGenFunction &CGF, Flags flags) override {
1678 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1680 LoadThisForDtorDelete(CGF, Dtor),
1681 CGF.getContext().getCanonicalTagType(ClassDecl));
1682 }
1683};
1684
1685// This function implements generation of scalar deleting destructor body for
1686// the case when the destructor also accepts an implicit flag. Right now only
1687// Microsoft ABI requires deleting destructors to accept implicit flags.
1688// The flag indicates whether an operator delete should be called and whether
1689// it should be a class-specific operator delete or a global one.
1690void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1691 llvm::Value *ShouldDeleteCondition,
1692 bool ReturnAfterDelete) {
1693 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1694 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1695 const FunctionDecl *OD = Dtor->getOperatorDelete();
1696 assert(OD->isDestroyingOperatorDelete() == ReturnAfterDelete &&
1697 "unexpected value for ReturnAfterDelete");
1698 auto *CondTy = cast<llvm::IntegerType>(ShouldDeleteCondition->getType());
1699 // MSVC calls global operator delete inside of the dtor body, but clang
1700 // aligned with this behavior only after a particular version. This is not
1701 // ABI-compatible with previous versions.
1702 ASTContext &Context = CGF.getContext();
1703 bool CallGlobDelete = Context.getTargetInfo().callGlobalDeleteInDeletingDtor(
1704 Context.getLangOpts());
1705 if (CallGlobDelete && OD->isDestroyingOperatorDelete()) {
1706 llvm::BasicBlock *CallDtor = CGF.createBasicBlock("dtor.call_dtor");
1707 llvm::BasicBlock *DontCallDtor = CGF.createBasicBlock("dtor.entry_cont");
1708 // Third bit set signals that global operator delete is called. That means
1709 // despite class having destroying operator delete which is responsible
1710 // for calling dtor, we need to call dtor because global operator delete
1711 // won't do that.
1712 llvm::Value *Check3rdBit = CGF.Builder.CreateAnd(
1713 ShouldDeleteCondition, llvm::ConstantInt::get(CondTy, 4));
1714 llvm::Value *ShouldCallDtor = CGF.Builder.CreateIsNull(Check3rdBit);
1715 CGF.Builder.CreateCondBr(ShouldCallDtor, DontCallDtor, CallDtor);
1716 CGF.EmitBlock(CallDtor);
1717 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1718 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1719 /*Delegating=*/false, CGF.LoadCXXThisAddress(),
1720 ThisTy);
1721 CGF.Builder.CreateBr(DontCallDtor);
1722 CGF.EmitBlock(DontCallDtor);
1723 }
1724 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1725 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1726 // First bit set signals that operator delete must be called.
1727 llvm::Value *Check1stBit = CGF.Builder.CreateAnd(
1728 ShouldDeleteCondition, llvm::ConstantInt::get(CondTy, 1));
1729 llvm::Value *ShouldCallDelete = CGF.Builder.CreateIsNull(Check1stBit);
1730 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1731
1732 CGF.EmitBlock(callDeleteBB);
1733 auto EmitDeleteAndGoToEnd = [&](const FunctionDecl *DeleteOp) {
1734 CGF.EmitDeleteCall(DeleteOp, LoadThisForDtorDelete(CGF, Dtor),
1735 Context.getCanonicalTagType(ClassDecl));
1736 if (ReturnAfterDelete)
1738 else
1739 CGF.Builder.CreateBr(continueBB);
1740 };
1741 // If Sema only found a global operator delete previously, the dtor can
1742 // always call it. Otherwise we need to check the third bit and call the
1743 // appropriate operator delete, i.e. global or class-specific.
1744 if (const FunctionDecl *GlobOD = Dtor->getOperatorGlobalDelete();
1745 isa<CXXMethodDecl>(OD) && GlobOD && CallGlobDelete) {
1746 // Third bit set signals that global operator delete is called, i.e.
1747 // ::delete appears on the callsite.
1748 llvm::Value *CheckTheBitForGlobDeleteCall = CGF.Builder.CreateAnd(
1749 ShouldDeleteCondition, llvm::ConstantInt::get(CondTy, 4));
1750 llvm::Value *ShouldCallGlobDelete =
1751 CGF.Builder.CreateIsNull(CheckTheBitForGlobDeleteCall);
1752 llvm::BasicBlock *GlobDelete =
1753 CGF.createBasicBlock("dtor.call_glob_delete");
1754 llvm::BasicBlock *ClassDelete =
1755 CGF.createBasicBlock("dtor.call_class_delete");
1756 CGF.Builder.CreateCondBr(ShouldCallGlobDelete, ClassDelete, GlobDelete);
1757 CGF.EmitBlock(GlobDelete);
1758
1759 EmitDeleteAndGoToEnd(GlobOD);
1760 CGF.EmitBlock(ClassDelete);
1761 }
1762 EmitDeleteAndGoToEnd(OD);
1763 CGF.EmitBlock(continueBB);
1764}
1765
1766struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1767 llvm::Value *ShouldDeleteCondition;
1768
1769public:
1770 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1771 : ShouldDeleteCondition(ShouldDeleteCondition) {
1772 assert(ShouldDeleteCondition != nullptr);
1773 }
1774
1775 void Emit(CodeGenFunction &CGF, Flags flags) override {
1776 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1777 /*ReturnAfterDelete*/ false);
1778 }
1779};
1780
1781class DestroyField final : public EHScopeStack::Cleanup {
1782 const FieldDecl *field;
1783 CodeGenFunction::Destroyer *destroyer;
1784 bool useEHCleanupForArray;
1785
1786public:
1787 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1788 bool useEHCleanupForArray)
1789 : field(field), destroyer(destroyer),
1790 useEHCleanupForArray(useEHCleanupForArray) {}
1791
1792 void Emit(CodeGenFunction &CGF, Flags flags) override {
1793 // Find the address of the field.
1794 Address thisValue = CGF.LoadCXXThisAddress();
1795 CanQualType RecordTy =
1796 CGF.getContext().getCanonicalTagType(field->getParent());
1797 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1798 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1799 assert(LV.isSimple());
1800
1801 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1802 flags.isForNormalCleanup() && useEHCleanupForArray);
1803 }
1804};
1805
1806class DeclAsInlineDebugLocation {
1807 CGDebugInfo *DI;
1808 llvm::MDNode *InlinedAt;
1809 std::optional<ApplyDebugLocation> Location;
1810
1811public:
1812 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1813 : DI(CGF.getDebugInfo()) {
1814 if (!DI)
1815 return;
1816 InlinedAt = DI->getInlinedAt();
1817 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1818 Location.emplace(CGF, Decl.getLocation());
1819 }
1820
1821 ~DeclAsInlineDebugLocation() {
1822 if (!DI)
1823 return;
1824 Location.reset();
1825 DI->setInlinedAt(InlinedAt);
1826 }
1827};
1828
1829static void EmitSanitizerDtorCallback(
1830 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1831 std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1832 CodeGenFunction::SanitizerScope SanScope(&CGF);
1833 // Pass in void pointer and size of region as arguments to runtime
1834 // function
1835 SmallVector<llvm::Value *, 2> Args = {Ptr};
1836 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1837
1838 if (PoisonSize.has_value()) {
1839 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1840 ArgTypes.emplace_back(CGF.SizeTy);
1841 }
1842
1843 llvm::FunctionType *FnType =
1844 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1845 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1846
1847 CGF.EmitNounwindRuntimeCall(Fn, Args);
1848}
1849
1850static void
1851EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1852 CharUnits::QuantityType PoisonSize) {
1853 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1854 PoisonSize);
1855}
1856
1857/// Poison base class with a trivial destructor.
1858struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1859 const CXXRecordDecl *BaseClass;
1860 bool BaseIsVirtual;
1861 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1862 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1863
1864 void Emit(CodeGenFunction &CGF, Flags flags) override {
1865 const CXXRecordDecl *DerivedClass =
1866 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1867
1869 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1870
1871 const ASTRecordLayout &BaseLayout =
1872 CGF.getContext().getASTRecordLayout(BaseClass);
1873 CharUnits BaseSize = BaseLayout.getSize();
1874
1875 if (!BaseSize.isPositive())
1876 return;
1877
1878 // Use the base class declaration location as inline DebugLocation. All
1879 // fields of the class are destroyed.
1880 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1881 EmitSanitizerDtorFieldsCallback(CGF, Addr.emitRawPointer(CGF),
1882 BaseSize.getQuantity());
1883
1884 // Prevent the current stack frame from disappearing from the stack trace.
1885 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1886 }
1887};
1888
1889class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1890 const CXXDestructorDecl *Dtor;
1891 unsigned StartIndex;
1892 unsigned EndIndex;
1893
1894public:
1895 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1896 unsigned EndIndex)
1897 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1898
1899 // Generate function call for handling object poisoning.
1900 // Disables tail call elimination, to prevent the current stack frame
1901 // from disappearing from the stack trace.
1902 void Emit(CodeGenFunction &CGF, Flags flags) override {
1903 const ASTContext &Context = CGF.getContext();
1904 const ASTRecordLayout &Layout =
1905 Context.getASTRecordLayout(Dtor->getParent());
1906
1907 // It's a first trivial field so it should be at the begining of a char,
1908 // still round up start offset just in case.
1909 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1910 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1911 llvm::ConstantInt *OffsetSizePtr =
1912 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1913
1914 llvm::Value *OffsetPtr =
1915 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1916
1917 CharUnits PoisonEnd;
1918 if (EndIndex >= Layout.getFieldCount()) {
1919 PoisonEnd = Layout.getNonVirtualSize();
1920 } else {
1921 PoisonEnd = Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1922 }
1923 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1924 if (!PoisonSize.isPositive())
1925 return;
1926
1927 // Use the top field declaration location as inline DebugLocation.
1928 DeclAsInlineDebugLocation InlineHere(
1929 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1930 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1931
1932 // Prevent the current stack frame from disappearing from the stack trace.
1933 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1934 }
1935};
1936
1937class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1938 const CXXDestructorDecl *Dtor;
1939
1940public:
1941 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1942
1943 // Generate function call for handling vtable pointer poisoning.
1944 void Emit(CodeGenFunction &CGF, Flags flags) override {
1945 assert(Dtor->getParent()->isDynamicClass());
1946 (void)Dtor;
1947 // Poison vtable and vtable ptr if they exist for this class.
1948 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1949
1950 // Pass in void pointer and size of region as arguments to runtime
1951 // function
1952 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", VTablePtr);
1953 }
1954};
1955
1956class SanitizeDtorCleanupBuilder {
1957 ASTContext &Context;
1958 EHScopeStack &EHStack;
1959 const CXXDestructorDecl *DD;
1960 std::optional<unsigned> StartIndex;
1961
1962public:
1963 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1964 const CXXDestructorDecl *DD)
1965 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1966 void PushCleanupForField(const FieldDecl *Field) {
1967 if (isEmptyFieldForLayout(Context, Field))
1968 return;
1969 unsigned FieldIndex = Field->getFieldIndex();
1970 if (FieldHasTrivialDestructorBody(Context, Field)) {
1971 if (!StartIndex)
1972 StartIndex = FieldIndex;
1973 } else if (StartIndex) {
1974 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1975 *StartIndex, FieldIndex);
1976 StartIndex = std::nullopt;
1977 }
1978 }
1979 void End() {
1980 if (StartIndex)
1981 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1982 *StartIndex, -1);
1983 }
1984};
1985} // end anonymous namespace
1986
1987/// Emit all code that comes at the end of class's
1988/// destructor. This is to call destructors on members and base classes
1989/// in reverse order of their construction.
1990///
1991/// For a deleting destructor, this also handles the case where a destroying
1992/// operator delete completely overrides the definition.
1994 CXXDtorType DtorType) {
1995 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1996 "Should not emit dtor epilogue for non-exported trivial dtor!");
1997
1998 // The deleting-destructor phase just needs to call the appropriate
1999 // operator delete that Sema picked up.
2000 if (DtorType == Dtor_Deleting) {
2001 assert(DD->getOperatorDelete() &&
2002 "operator delete missing - EnterDtorCleanups");
2003 if (CXXStructorImplicitParamValue) {
2004 // If there is an implicit param to the deleting dtor, it's a boolean
2005 // telling whether this is a deleting destructor.
2007 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
2008 /*ReturnAfterDelete*/ true);
2009 else
2010 EHStack.pushCleanup<CallDtorDeleteConditional>(
2011 NormalAndEHCleanup, CXXStructorImplicitParamValue);
2012 } else {
2014 const CXXRecordDecl *ClassDecl = DD->getParent();
2016 LoadThisForDtorDelete(*this, DD),
2017 getContext().getCanonicalTagType(ClassDecl));
2019 } else {
2020 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
2021 }
2022 }
2023 return;
2024 }
2025
2026 const CXXRecordDecl *ClassDecl = DD->getParent();
2027
2028 // Unions have no bases and do not call field destructors.
2029 if (ClassDecl->isUnion())
2030 return;
2031
2032 // The complete-destructor phase just destructs all the virtual bases.
2033 if (DtorType == Dtor_Complete) {
2034 // Poison the vtable pointer such that access after the base
2035 // and member destructors are invoked is invalid.
2036 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
2037 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
2038 ClassDecl->isPolymorphic())
2039 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
2040
2041 // We push them in the forward order so that they'll be popped in
2042 // the reverse order.
2043 for (const auto &Base : ClassDecl->vbases()) {
2044 auto *BaseClassDecl = Base.getType()->castAsCXXRecordDecl();
2045 if (BaseClassDecl->hasTrivialDestructor()) {
2046 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
2047 // memory. For non-trival base classes the same is done in the class
2048 // destructor.
2049 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
2050 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
2051 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
2052 BaseClassDecl,
2053 /*BaseIsVirtual*/ true);
2054 } else {
2055 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
2056 /*BaseIsVirtual*/ true);
2057 }
2058 }
2059
2060 return;
2061 }
2062
2063 assert(DtorType == Dtor_Base);
2064 // Poison the vtable pointer if it has no virtual bases, but inherits
2065 // virtual functions.
2066 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
2067 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
2068 ClassDecl->isPolymorphic())
2069 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
2070
2071 // Destroy non-virtual bases.
2072 for (const auto &Base : ClassDecl->bases()) {
2073 // Ignore virtual bases.
2074 if (Base.isVirtual())
2075 continue;
2076
2077 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
2078
2079 if (BaseClassDecl->hasTrivialDestructor()) {
2080 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
2081 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
2082 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
2083 BaseClassDecl,
2084 /*BaseIsVirtual*/ false);
2085 } else {
2086 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
2087 /*BaseIsVirtual*/ false);
2088 }
2089 }
2090
2091 // Poison fields such that access after their destructors are
2092 // invoked, and before the base class destructor runs, is invalid.
2093 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
2094 SanOpts.has(SanitizerKind::Memory);
2095 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
2096
2097 // Destroy direct fields.
2098 for (const auto *Field : ClassDecl->fields()) {
2099 if (SanitizeFields)
2100 SanitizeBuilder.PushCleanupForField(Field);
2101
2102 QualType type = Field->getType();
2103 QualType::DestructionKind dtorKind = type.isDestructedType();
2104 if (!dtorKind)
2105 continue;
2106
2107 // Anonymous union members do not have their destructors called.
2108 const RecordType *RT = type->getAsUnionType();
2109 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
2110 continue;
2111
2112 CleanupKind cleanupKind = getCleanupKind(dtorKind);
2113 EHStack.pushCleanup<DestroyField>(
2114 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
2115 }
2116
2117 if (SanitizeFields)
2118 SanitizeBuilder.End();
2119}
2120
2121/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
2122/// constructor for each of several members of an array.
2123///
2124/// \param ctor the constructor to call for each element
2125/// \param arrayType the type of the array to initialize
2126/// \param arrayBegin an arrayType*
2127/// \param zeroInitialize true if each element should be
2128/// zero-initialized before it is constructed
2130 const ArrayType *arrayType,
2131 Address arrayBegin,
2132 const CXXConstructExpr *E,
2133 bool NewPointerIsChecked,
2134 bool zeroInitialize) {
2135 QualType elementType;
2136 llvm::Value *numElements =
2137 emitArrayLength(arrayType, elementType, arrayBegin);
2138
2139 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
2140 NewPointerIsChecked, zeroInitialize);
2141}
2142
2143/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
2144/// constructor for each of several members of an array.
2145///
2146/// \param ctor the constructor to call for each element
2147/// \param numElements the number of elements in the array;
2148/// may be zero
2149/// \param arrayBase a T*, where T is the type constructed by ctor
2150/// \param zeroInitialize true if each element should be
2151/// zero-initialized before it is constructed
2153 const CXXConstructorDecl *ctor, llvm::Value *numElements, Address arrayBase,
2154 const CXXConstructExpr *E, bool NewPointerIsChecked, bool zeroInitialize) {
2155 // It's legal for numElements to be zero. This can happen both
2156 // dynamically, because x can be zero in 'new A[x]', and statically,
2157 // because of GCC extensions that permit zero-length arrays. There
2158 // are probably legitimate places where we could assume that this
2159 // doesn't happen, but it's not clear that it's worth it.
2160 llvm::BranchInst *zeroCheckBranch = nullptr;
2161
2162 // Optimize for a constant count.
2163 llvm::ConstantInt *constantCount = dyn_cast<llvm::ConstantInt>(numElements);
2164 if (constantCount) {
2165 // Just skip out if the constant count is zero.
2166 if (constantCount->isZero())
2167 return;
2168
2169 // Otherwise, emit the check.
2170 } else {
2171 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2172 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2173 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2174 EmitBlock(loopBB);
2175 }
2176
2177 // Find the end of the array.
2178 llvm::Type *elementType = arrayBase.getElementType();
2179 llvm::Value *arrayBegin = arrayBase.emitRawPointer(*this);
2180 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2181 elementType, arrayBegin, numElements, "arrayctor.end");
2182
2183 // Enter the loop, setting up a phi for the current location to initialize.
2184 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2185 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2186 EmitBlock(loopBB);
2187 llvm::PHINode *cur =
2188 Builder.CreatePHI(arrayBegin->getType(), 2, "arrayctor.cur");
2189 cur->addIncoming(arrayBegin, entryBB);
2190
2191 // Inside the loop body, emit the constructor call on the array element.
2192 if (CGM.shouldEmitConvergenceTokens())
2193 ConvergenceTokenStack.push_back(emitConvergenceLoopToken(loopBB));
2194
2195 // The alignment of the base, adjusted by the size of a single element,
2196 // provides a conservative estimate of the alignment of every element.
2197 // (This assumes we never start tracking offsetted alignments.)
2198 //
2199 // Note that these are complete objects and so we don't need to
2200 // use the non-virtual size or alignment.
2202 CharUnits eltAlignment = arrayBase.getAlignment().alignmentOfArrayElement(
2203 getContext().getTypeSizeInChars(type));
2204 Address curAddr = Address(cur, elementType, eltAlignment);
2205
2206 // Zero initialize the storage, if requested.
2207 if (zeroInitialize)
2208 EmitNullInitialization(curAddr, type);
2209
2210 // C++ [class.temporary]p4:
2211 // There are two contexts in which temporaries are destroyed at a different
2212 // point than the end of the full-expression. The first context is when a
2213 // default constructor is called to initialize an element of an array.
2214 // If the constructor has one or more default arguments, the destruction of
2215 // every temporary created in a default argument expression is sequenced
2216 // before the construction of the next array element, if any.
2217
2218 {
2219 RunCleanupsScope Scope(*this);
2220
2221 // Evaluate the constructor and its arguments in a regular
2222 // partial-destroy cleanup.
2223 if (getLangOpts().Exceptions &&
2224 !ctor->getParent()->hasTrivialDestructor()) {
2225 Destroyer *destroyer = destroyCXXObject;
2226 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2227 *destroyer);
2228 }
2229 auto currAVS = AggValueSlot::forAddr(
2230 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2233 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2235 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2236 /*Delegating=*/false, currAVS, E);
2237 }
2238
2239 // Go to the next element.
2240 llvm::Value *next = Builder.CreateInBoundsGEP(
2241 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2242 cur->addIncoming(next, Builder.GetInsertBlock());
2243
2244 // Check whether that's the end of the loop.
2245 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2246 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2247 Builder.CreateCondBr(done, contBB, loopBB);
2248
2249 // Patch the earlier check to skip over the loop.
2250 if (zeroCheckBranch)
2251 zeroCheckBranch->setSuccessor(0, contBB);
2252
2253 if (CGM.shouldEmitConvergenceTokens())
2254 ConvergenceTokenStack.pop_back();
2255
2256 EmitBlock(contBB);
2257}
2258
2260 QualType type) {
2261 const CXXDestructorDecl *dtor = type->castAsCXXRecordDecl()->getDestructor();
2262 assert(!dtor->isTrivial());
2263 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2264 /*Delegating=*/false, addr, type);
2265}
2266
2268 const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase,
2269 bool Delegating, AggValueSlot ThisAVS, const CXXConstructExpr *E) {
2270 CallArgList Args;
2271 Address This = ThisAVS.getAddress();
2272 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2274 llvm::Value *ThisPtr =
2276
2277 if (SlotAS != ThisAS) {
2278 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2279 llvm::Type *NewType =
2280 llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2281 ThisPtr =
2282 getTargetHooks().performAddrSpaceCast(*this, ThisPtr, ThisAS, NewType);
2283 }
2284
2285 // Push the this ptr.
2286 Args.add(RValue::get(ThisPtr), D->getThisType());
2287
2288 // If this is a trivial constructor, emit a memcpy now before we lose
2289 // the alignment information on the argument.
2290 // FIXME: It would be better to preserve alignment information into CallArg.
2292 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2293
2294 const Expr *Arg = E->getArg(0);
2295 LValue Src = EmitLValue(Arg);
2297 LValue Dest = MakeAddrLValue(This, DestTy);
2298 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2299 return;
2300 }
2301
2302 // Add the rest of the user-supplied arguments.
2303 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2307 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2308 /*ParamsToSkip*/ 0, Order);
2309
2310 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2311 ThisAVS.mayOverlap(), E->getExprLoc(),
2312 ThisAVS.isSanitizerChecked());
2313}
2314
2316 const CXXConstructorDecl *Ctor,
2317 CXXCtorType Type, CallArgList &Args) {
2318 // We can't forward a variadic call.
2319 if (Ctor->isVariadic())
2320 return false;
2321
2323 // If the parameters are callee-cleanup, it's not safe to forward.
2324 for (auto *P : Ctor->parameters())
2325 if (P->needsDestruction(CGF.getContext()))
2326 return false;
2327
2328 // Likewise if they're inalloca.
2329 const CGFunctionInfo &Info =
2330 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2331 if (Info.usesInAlloca())
2332 return false;
2333 }
2334
2335 // Anything else should be OK.
2336 return true;
2337}
2338
2340 const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase,
2341 bool Delegating, Address This, CallArgList &Args,
2343 bool NewPointerIsChecked, llvm::CallBase **CallOrInvoke) {
2344 const CXXRecordDecl *ClassDecl = D->getParent();
2345
2346 if (!NewPointerIsChecked)
2348 getContext().getCanonicalTagType(ClassDecl),
2349 CharUnits::Zero());
2350
2351 if (D->isTrivial() && D->isDefaultConstructor()) {
2352 assert(Args.size() == 1 && "trivial default ctor with args");
2353 return;
2354 }
2355
2356 // If this is a trivial constructor, just emit what's needed. If this is a
2357 // union copy constructor, we must emit a memcpy, because the AST does not
2358 // model that copy.
2360 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2363 Args[1].getRValue(*this).getScalarVal(), SrcTy);
2364 LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2365 CanQualType DestTy = getContext().getCanonicalTagType(ClassDecl);
2366 LValue DestLVal = MakeAddrLValue(This, DestTy);
2367 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2368 return;
2369 }
2370
2371 bool PassPrototypeArgs = true;
2372 // Check whether we can actually emit the constructor before trying to do so.
2373 if (auto Inherited = D->getInheritedConstructor()) {
2374 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2375 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2377 Delegating, Args);
2378 return;
2379 }
2380 }
2381
2382 // Insert any ABI-specific implicit constructor arguments.
2384 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2385 Delegating, Args);
2386
2387 // Emit the call.
2388 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2389 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2390 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2391 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2392 EmitCall(Info, Callee, ReturnValueSlot(), Args, CallOrInvoke, false, Loc);
2393
2394 // Generate vtable assumptions if we're constructing a complete object
2395 // with a vtable. We don't do this for base subobjects for two reasons:
2396 // first, it's incorrect for classes with virtual bases, and second, we're
2397 // about to overwrite the vptrs anyway.
2398 // We also have to make sure if we can refer to vtable:
2399 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2400 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2401 // sure that definition of vtable is not hidden,
2402 // then we are always safe to refer to it.
2403 // FIXME: It looks like InstCombine is very inefficient on dealing with
2404 // assumes. Make assumption loads require -fstrict-vtable-pointers
2405 // temporarily.
2406 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2407 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2408 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2409 CGM.getCodeGenOpts().StrictVTablePointers)
2410 EmitVTableAssumptionLoads(ClassDecl, This);
2411}
2412
2414 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2415 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2416 CallArgList Args;
2418 This, D->getThisType()->getPointeeType())),
2419 D->getThisType());
2420
2421 // Forward the parameters.
2422 if (InheritedFromVBase &&
2423 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2424 // Nothing to do; this construction is not responsible for constructing
2425 // the base class containing the inherited constructor.
2426 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2427 // have constructor variants?
2428 Args.push_back(ThisArg);
2429 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2430 // The inheriting constructor was inlined; just inject its arguments.
2431 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2432 "wrong number of parameters for inherited constructor call");
2433 Args = CXXInheritedCtorInitExprArgs;
2434 Args[0] = ThisArg;
2435 } else {
2436 // The inheriting constructor was not inlined. Emit delegating arguments.
2437 Args.push_back(ThisArg);
2438 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2439 assert(OuterCtor->getNumParams() == D->getNumParams());
2440 assert(!OuterCtor->isVariadic() && "should have been inlined");
2441
2442 for (const auto *Param : OuterCtor->parameters()) {
2443 assert(getContext().hasSameUnqualifiedType(
2444 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2445 Param->getType()));
2446 EmitDelegateCallArg(Args, Param, E->getLocation());
2447
2448 // Forward __attribute__(pass_object_size).
2449 if (Param->hasAttr<PassObjectSizeAttr>()) {
2450 auto *POSParam = SizeArguments[Param];
2451 assert(POSParam && "missing pass_object_size value for forwarding");
2452 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2453 }
2454 }
2455 }
2456
2457 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/ false,
2459 /*NewPointerIsChecked*/ true);
2460}
2461
2463 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2464 bool Delegating, CallArgList &Args) {
2465 GlobalDecl GD(Ctor, CtorType);
2467 ApplyInlineDebugLocation DebugScope(*this, GD);
2468 RunCleanupsScope RunCleanups(*this);
2469
2470 // Save the arguments to be passed to the inherited constructor.
2471 CXXInheritedCtorInitExprArgs = Args;
2472
2473 FunctionArgList Params;
2474 QualType RetType = BuildFunctionArgList(CurGD, Params);
2475 FnRetTy = RetType;
2476
2477 // Insert any ABI-specific implicit constructor arguments.
2478 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2479 ForVirtualBase, Delegating, Args);
2480
2481 // Emit a simplified prolog. We only need to emit the implicit params.
2482 assert(Args.size() >= Params.size() && "too few arguments for call");
2483 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2484 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2485 const RValue &RV = Args[I].getRValue(*this);
2486 assert(!RV.isComplex() && "complex indirect params not supported");
2487 ParamValue Val = RV.isScalar()
2490 EmitParmDecl(*Params[I], Val, I + 1);
2491 }
2492 }
2493
2494 // Create a return value slot if the ABI implementation wants one.
2495 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2496 // value instead.
2497 if (!RetType->isVoidType())
2498 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2499
2500 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2501 CXXThisValue = CXXABIThisValue;
2502
2503 // Directly emit the constructor initializers.
2504 EmitCtorPrologue(Ctor, CtorType, Params);
2505}
2506
2508 llvm::Value *VTableGlobal =
2509 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2510 if (!VTableGlobal)
2511 return;
2512
2513 // We can just use the base offset in the complete class.
2514 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2515
2516 if (!NonVirtualOffset.isZero())
2517 This =
2518 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2519 Vptr.VTableClass, Vptr.NearestVBase);
2520
2521 llvm::Value *VPtrValue =
2522 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2523 llvm::Value *Cmp =
2524 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2525 Builder.CreateAssumption(Cmp);
2526}
2527
2529 Address This) {
2530 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2531 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2533}
2534
2536 const CXXConstructorDecl *D, Address This, Address Src,
2537 const CXXConstructExpr *E) {
2538 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2539
2540 CallArgList Args;
2541
2542 // Push the this ptr.
2544 D->getThisType());
2545
2546 // Push the src ptr.
2547 QualType QT = *(FPT->param_type_begin());
2548 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2549 llvm::Value *Val = getAsNaturalPointerTo(Src, D->getThisType());
2550 llvm::Value *SrcVal = Builder.CreateBitCast(Val, t);
2551 Args.add(RValue::get(SrcVal), QT);
2552
2553 // Skip over first argument (Src).
2554 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2555 /*ParamsToSkip*/ 1);
2556
2557 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/ false,
2558 /*Delegating*/ false, This, Args,
2560 /*NewPointerIsChecked*/ false);
2561}
2562
2564 const CXXConstructorDecl *Ctor, CXXCtorType CtorType,
2565 const FunctionArgList &Args, SourceLocation Loc) {
2566 CallArgList DelegateArgs;
2567
2568 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2569 assert(I != E && "no parameters to constructor");
2570
2571 // this
2574 This, (*I)->getType()->getPointeeType())),
2575 (*I)->getType());
2576 ++I;
2577
2578 // FIXME: The location of the VTT parameter in the parameter list is
2579 // specific to the Itanium ABI and shouldn't be hardcoded here.
2580 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2581 assert(I != E && "cannot skip vtt parameter, already done with args");
2582 assert((*I)->getType()->isPointerType() &&
2583 "skipping parameter not of vtt type");
2584 ++I;
2585 }
2586
2587 // Explicit arguments.
2588 for (; I != E; ++I) {
2589 const VarDecl *param = *I;
2590 // FIXME: per-argument source location
2591 EmitDelegateCallArg(DelegateArgs, param, Loc);
2592 }
2593
2594 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2595 /*Delegating=*/true, This, DelegateArgs,
2597 /*NewPointerIsChecked=*/true);
2598}
2599
2600namespace {
2601struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2602 const CXXDestructorDecl *Dtor;
2603 Address Addr;
2605
2606 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2608 : Dtor(D), Addr(Addr), Type(Type) {}
2609
2610 void Emit(CodeGenFunction &CGF, Flags flags) override {
2611 // We are calling the destructor from within the constructor.
2612 // Therefore, "this" should have the expected type.
2613 QualType ThisTy = Dtor->getFunctionObjectParameterType();
2614 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2615 /*Delegating=*/true, Addr, ThisTy);
2616 }
2617};
2618} // end anonymous namespace
2619
2621 const CXXConstructorDecl *Ctor, const FunctionArgList &Args) {
2622 assert(Ctor->isDelegatingConstructor());
2623
2624 Address ThisPtr = LoadCXXThisAddress();
2625
2630 // Checks are made by the code that calls constructor.
2632
2633 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2634
2635 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2636 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2638 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2639
2640 EHStack.pushCleanup<CallDelegatingCtorDtor>(
2641 EHCleanup, ClassDecl->getDestructor(), ThisPtr, Type);
2642 }
2643}
2644
2647 bool ForVirtualBase,
2648 bool Delegating, Address This,
2649 QualType ThisTy) {
2650 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2651 Delegating, This, ThisTy);
2652}
2653
2654namespace {
2655struct CallLocalDtor final : EHScopeStack::Cleanup {
2656 const CXXDestructorDecl *Dtor;
2657 Address Addr;
2658 QualType Ty;
2659
2660 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2661 : Dtor(D), Addr(Addr), Ty(Ty) {}
2662
2663 void Emit(CodeGenFunction &CGF, Flags flags) override {
2665 /*ForVirtualBase=*/false,
2666 /*Delegating=*/false, Addr, Ty);
2667 }
2668};
2669} // end anonymous namespace
2670
2673 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2674}
2675
2677 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2678 if (!ClassDecl)
2679 return;
2680 if (ClassDecl->hasTrivialDestructor())
2681 return;
2682
2683 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2684 assert(D && D->isUsed() && "destructor not marked as used!");
2686}
2687
2689 // Compute the address point.
2690 llvm::Value *VTableAddressPoint =
2691 CGM.getCXXABI().getVTableAddressPointInStructor(
2692 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2693
2694 if (!VTableAddressPoint)
2695 return;
2696
2697 // Compute where to store the address point.
2698 llvm::Value *VirtualOffset = nullptr;
2699 CharUnits NonVirtualOffset = CharUnits::Zero();
2700
2701 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2702 // We need to use the virtual base offset offset because the virtual base
2703 // might have a different offset in the most derived class.
2704
2705 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2706 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2707 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2708 } else {
2709 // We can just use the base offset in the complete class.
2710 NonVirtualOffset = Vptr.Base.getBaseOffset();
2711 }
2712
2713 // Apply the offsets.
2714 Address VTableField = LoadCXXThisAddress();
2715 if (!NonVirtualOffset.isZero() || VirtualOffset)
2716 VTableField = ApplyNonVirtualAndVirtualOffset(
2717 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2718 Vptr.NearestVBase);
2719
2720 // Finally, store the address point. Use the same LLVM types as the field to
2721 // support optimization.
2722 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2723 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2724 // vtable field is derived from `this` pointer, therefore they should be in
2725 // the same addr space. Note that this might not be LLVM address space 0.
2726 VTableField = VTableField.withElementType(PtrTy);
2727
2728 if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo(
2729 this, Vptr.Base.getBase(), VTableField.emitRawPointer(*this)))
2730 VTableAddressPoint =
2731 EmitPointerAuthSign(*AuthenticationInfo, VTableAddressPoint);
2732
2733 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2734 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2735 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2736 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2737 CGM.getCodeGenOpts().StrictVTablePointers)
2738 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2739}
2740
2743 CodeGenFunction::VPtrsVector VPtrsResult;
2746 /*NearestVBase=*/nullptr,
2747 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2748 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2749 VPtrsResult);
2750 return VPtrsResult;
2751}
2752
2754 const CXXRecordDecl *NearestVBase,
2755 CharUnits OffsetFromNearestVBase,
2756 bool BaseIsNonVirtualPrimaryBase,
2757 const CXXRecordDecl *VTableClass,
2759 VPtrsVector &Vptrs) {
2760 // If this base is a non-virtual primary base the address point has already
2761 // been set.
2762 if (!BaseIsNonVirtualPrimaryBase) {
2763 // Initialize the vtable pointer for this base.
2764 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2765 Vptrs.push_back(Vptr);
2766 }
2767
2768 const CXXRecordDecl *RD = Base.getBase();
2769
2770 // Traverse bases.
2771 for (const auto &I : RD->bases()) {
2772 auto *BaseDecl = I.getType()->castAsCXXRecordDecl();
2773 // Ignore classes without a vtable.
2774 if (!BaseDecl->isDynamicClass())
2775 continue;
2776
2777 CharUnits BaseOffset;
2778 CharUnits BaseOffsetFromNearestVBase;
2779 bool BaseDeclIsNonVirtualPrimaryBase;
2780
2781 if (I.isVirtual()) {
2782 // Check if we've visited this virtual base before.
2783 if (!VBases.insert(BaseDecl).second)
2784 continue;
2785
2786 const ASTRecordLayout &Layout =
2787 getContext().getASTRecordLayout(VTableClass);
2788
2789 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2790 BaseOffsetFromNearestVBase = CharUnits::Zero();
2791 BaseDeclIsNonVirtualPrimaryBase = false;
2792 } else {
2793 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2794
2795 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2796 BaseOffsetFromNearestVBase =
2797 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2798 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2799 }
2800
2802 BaseSubobject(BaseDecl, BaseOffset),
2803 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2804 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2805 }
2806}
2807
2809 // Ignore classes without a vtable.
2810 if (!RD->isDynamicClass())
2811 return;
2812
2813 // Initialize the vtable pointers for this class and all of its bases.
2814 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2815 for (const VPtr &Vptr : getVTablePointers(RD))
2817
2818 if (RD->getNumVBases())
2819 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2820}
2821
2822llvm::Value *CodeGenFunction::GetVTablePtr(Address This, llvm::Type *VTableTy,
2823 const CXXRecordDecl *RD,
2824 VTableAuthMode AuthMode) {
2825 Address VTablePtrSrc = This.withElementType(VTableTy);
2826 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2827 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2828 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2829
2830 if (auto AuthenticationInfo =
2831 CGM.getVTablePointerAuthInfo(this, RD, This.emitRawPointer(*this))) {
2832 if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) {
2833 VTable = cast<llvm::Instruction>(
2834 EmitPointerAuthAuth(*AuthenticationInfo, VTable));
2835 if (AuthMode == VTableAuthMode::MustTrap) {
2836 // This is clearly suboptimal but until we have an ability
2837 // to rely on the authentication intrinsic trapping and force
2838 // an authentication to occur we don't really have a choice.
2839 VTable =
2840 cast<llvm::Instruction>(Builder.CreateBitCast(VTable, Int8PtrTy));
2841 Builder.CreateLoad(RawAddress(VTable, Int8Ty, CGM.getPointerAlign()),
2842 /* IsVolatile */ true);
2843 }
2844 } else {
2847 nullptr),
2848 VTable));
2849 }
2850 }
2851
2852 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2853 CGM.getCodeGenOpts().StrictVTablePointers)
2854 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2855
2856 return VTable;
2857}
2858
2859// If a class has a single non-virtual base and does not introduce or override
2860// virtual member functions or fields, it will have the same layout as its base.
2861// This function returns the least derived such class.
2862//
2863// Casting an instance of a base class to such a derived class is technically
2864// undefined behavior, but it is a relatively common hack for introducing member
2865// functions on class instances with specific properties (e.g. llvm::Operator)
2866// that works under most compilers and should not have security implications, so
2867// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2868static const CXXRecordDecl *
2870 if (!RD->field_empty())
2871 return RD;
2872
2873 if (RD->getNumVBases() != 0)
2874 return RD;
2875
2876 if (RD->getNumBases() != 1)
2877 return RD;
2878
2879 for (const CXXMethodDecl *MD : RD->methods()) {
2880 if (MD->isVirtual()) {
2881 // Virtual member functions are only ok if they are implicit destructors
2882 // because the implicit destructor will have the same semantics as the
2883 // base class's destructor if no fields are added.
2884 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2885 continue;
2886 return RD;
2887 }
2888 }
2889
2892}
2893
2895 llvm::Value *VTable,
2896 SourceLocation Loc) {
2897 if (SanOpts.has(SanitizerKind::CFIVCall))
2899 // Emit the intrinsics of (type_test and assume) for the features of WPD and
2900 // speculative devirtualization. For WPD, emit the intrinsics only for the
2901 // case of non_public LTO visibility.
2902 // TODO: refactor this condition and similar ones into a function (e.g.,
2903 // ShouldEmitDevirtualizationMD) to encapsulate the details of the different
2904 // types of devirtualization.
2905 else if ((CGM.getCodeGenOpts().WholeProgramVTables &&
2906 !CGM.AlwaysHasLTOVisibilityPublic(RD)) ||
2907 CGM.getCodeGenOpts().DevirtualizeSpeculatively) {
2908 CanQualType Ty = CGM.getContext().getCanonicalTagType(RD);
2909 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2910 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2911
2912 // If we already know that the call has hidden LTO visibility, emit
2913 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2914 // will convert to @llvm.type.test() if we assert at link time that we have
2915 // whole program visibility.
2916 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2917 ? llvm::Intrinsic::type_test
2918 : llvm::Intrinsic::public_type_test;
2919 llvm::Value *TypeTest =
2920 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2921 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2922 }
2923}
2924
2925/// Converts the CFITypeCheckKind into SanitizerKind::SanitizerOrdinal and
2926/// llvm::SanitizerStatKind.
2927static std::pair<SanitizerKind::SanitizerOrdinal, llvm::SanitizerStatKind>
2929 switch (TCK) {
2931 return std::make_pair(SanitizerKind::SO_CFIVCall, llvm::SanStat_CFI_VCall);
2933 return std::make_pair(SanitizerKind::SO_CFINVCall,
2934 llvm::SanStat_CFI_NVCall);
2936 return std::make_pair(SanitizerKind::SO_CFIDerivedCast,
2937 llvm::SanStat_CFI_DerivedCast);
2939 return std::make_pair(SanitizerKind::SO_CFIUnrelatedCast,
2940 llvm::SanStat_CFI_UnrelatedCast);
2944 llvm_unreachable("unexpected sanitizer kind");
2945 }
2946 llvm_unreachable("Unknown CFITypeCheckKind enum");
2947}
2948
2950 llvm::Value *VTable,
2951 CFITypeCheckKind TCK,
2952 SourceLocation Loc) {
2953 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2955
2956 auto [Ordinal, _] = SanitizerInfoFromCFICheckKind(TCK);
2957 SanitizerDebugLocation SanScope(this, {Ordinal},
2958 SanitizerHandler::CFICheckFail);
2959
2960 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2961}
2962
2964 bool MayBeNull,
2965 CFITypeCheckKind TCK,
2966 SourceLocation Loc) {
2967 if (!getLangOpts().CPlusPlus)
2968 return;
2969
2970 const auto *ClassDecl = T->getAsCXXRecordDecl();
2971 if (!ClassDecl)
2972 return;
2973
2974 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2975 return;
2976
2977 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2978 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2979
2980 auto [Ordinal, _] = SanitizerInfoFromCFICheckKind(TCK);
2981 SanitizerDebugLocation SanScope(this, {Ordinal},
2982 SanitizerHandler::CFICheckFail);
2983
2984 llvm::BasicBlock *ContBlock = nullptr;
2985
2986 if (MayBeNull) {
2987 llvm::Value *DerivedNotNull =
2988 Builder.CreateIsNotNull(Derived.emitRawPointer(*this), "cast.nonnull");
2989
2990 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2991 ContBlock = createBasicBlock("cast.cont");
2992
2993 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2994
2995 EmitBlock(CheckBlock);
2996 }
2997
2998 llvm::Value *VTable;
2999 std::tie(VTable, ClassDecl) =
3000 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
3001
3002 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
3003
3004 if (MayBeNull) {
3005 Builder.CreateBr(ContBlock);
3006 EmitBlock(ContBlock);
3007 }
3008}
3009
3011 llvm::Value *VTable,
3012 CFITypeCheckKind TCK,
3013 SourceLocation Loc) {
3014 assert(IsSanitizerScope);
3015
3016 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
3017 !CGM.HasHiddenLTOVisibility(RD))
3018 return;
3019
3020 auto [M, SSK] = SanitizerInfoFromCFICheckKind(TCK);
3021
3022 std::string TypeName = RD->getQualifiedNameAsString();
3023 if (getContext().getNoSanitizeList().containsType(
3025 return;
3026
3028
3029 CanQualType T = CGM.getContext().getCanonicalTagType(RD);
3030 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(T);
3031 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
3032
3033 llvm::Value *TypeTest = Builder.CreateCall(
3034 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
3035
3036 llvm::Constant *StaticData[] = {
3037 llvm::ConstantInt::get(Int8Ty, TCK),
3040 };
3041
3042 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
3043 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
3044 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
3045 return;
3046 }
3047
3048 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
3049 bool NoMerge = !CGM.getCodeGenOpts().SanitizeMergeHandlers.has(M);
3050 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail, NoMerge);
3051 return;
3052 }
3053
3054 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3055 CGM.getLLVMContext(),
3056 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3057 llvm::Value *ValidVtable = Builder.CreateCall(
3058 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
3059 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
3060 StaticData, {VTable, ValidVtable});
3061}
3062
3064 if ((!CGM.getCodeGenOpts().WholeProgramVTables ||
3065 !CGM.HasHiddenLTOVisibility(RD)) &&
3066 !CGM.getCodeGenOpts().DevirtualizeSpeculatively)
3067 return false;
3068
3069 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
3070 return true;
3071
3072 if (!SanOpts.has(SanitizerKind::CFIVCall) ||
3073 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
3074 return false;
3075
3076 std::string TypeName = RD->getQualifiedNameAsString();
3077 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
3078 TypeName);
3079}
3080
3082 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
3083 uint64_t VTableByteOffset) {
3084 auto CheckOrdinal = SanitizerKind::SO_CFIVCall;
3085 auto CheckHandler = SanitizerHandler::CFICheckFail;
3086 SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler);
3087
3088 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
3089
3090 CanQualType T = CGM.getContext().getCanonicalTagType(RD);
3091 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(T);
3092 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
3093
3094 auto CheckedLoadIntrinsic = CGM.getVTables().useRelativeLayout()
3095 ? llvm::Intrinsic::type_checked_load_relative
3096 : llvm::Intrinsic::type_checked_load;
3097 llvm::Value *CheckedLoad = Builder.CreateCall(
3098 CGM.getIntrinsic(CheckedLoadIntrinsic),
3099 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
3100
3101 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
3102
3103 std::string TypeName = RD->getQualifiedNameAsString();
3104 if (SanOpts.has(SanitizerKind::CFIVCall) &&
3105 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
3106 TypeName)) {
3107 EmitCheck(std::make_pair(CheckResult, CheckOrdinal), CheckHandler, {}, {});
3108 }
3109
3110 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
3111 VTableTy);
3112}
3113
3115 const CXXMethodDecl *callOperator, CallArgList &callArgs,
3116 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
3117 // Get the address of the call operator.
3118 if (!calleeFnInfo)
3119 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
3120
3121 if (!calleePtr)
3122 calleePtr =
3123 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
3124 CGM.getTypes().GetFunctionType(*calleeFnInfo));
3125
3126 // Prepare the return slot.
3127 const FunctionProtoType *FPT =
3128 callOperator->getType()->castAs<FunctionProtoType>();
3129 QualType resultType = FPT->getReturnType();
3130 ReturnValueSlot returnSlot;
3131 if (!resultType->isVoidType() &&
3132 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
3133 !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
3134 returnSlot =
3135 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
3136 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
3137
3138 // We don't need to separately arrange the call arguments because
3139 // the call can't be variadic anyway --- it's impossible to forward
3140 // variadic arguments.
3141
3142 // Now emit our call.
3143 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
3144 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
3145
3146 // If necessary, copy the returned value into the slot.
3147 if (!resultType->isVoidType() && returnSlot.isNull()) {
3148 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
3150 }
3151 EmitReturnOfRValue(RV, resultType);
3152 } else
3154}
3155
3157 const BlockDecl *BD = BlockInfo->getBlockDecl();
3158 const VarDecl *variable = BD->capture_begin()->getVariable();
3159 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
3160 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3161
3162 if (CallOp->isVariadic()) {
3163 // FIXME: Making this work correctly is nasty because it requires either
3164 // cloning the body of the call operator or making the call operator
3165 // forward.
3166 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
3167 return;
3168 }
3169
3170 // Start building arguments for forwarding call
3171 CallArgList CallArgs;
3172
3173 CanQualType ThisType =
3174 getContext().getPointerType(getContext().getCanonicalTagType(Lambda));
3175 Address ThisPtr = GetAddrOfBlockDecl(variable);
3176 CallArgs.add(RValue::get(getAsNaturalPointerTo(ThisPtr, ThisType)), ThisType);
3177
3178 // Add the rest of the parameters.
3179 for (auto *param : BD->parameters())
3180 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
3181
3182 assert(!Lambda->isGenericLambda() &&
3183 "generic lambda interconversion to block not implemented");
3184 EmitForwardingCallToLambda(CallOp, CallArgs);
3185}
3186
3188 if (MD->isVariadic()) {
3189 // FIXME: Making this work correctly is nasty because it requires either
3190 // cloning the body of the call operator or making the call operator
3191 // forward.
3192 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3193 return;
3194 }
3195
3196 const CXXRecordDecl *Lambda = MD->getParent();
3197
3198 // Start building arguments for forwarding call
3199 CallArgList CallArgs;
3200
3201 CanQualType LambdaType = getContext().getCanonicalTagType(Lambda);
3202 CanQualType ThisType = getContext().getPointerType(LambdaType);
3203 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3204 CallArgs.add(RValue::get(ThisPtr.emitRawPointer(*this)), ThisType);
3205
3206 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3207}
3208
3210 CallArgList &CallArgs) {
3211 // Add the rest of the forwarded parameters.
3212 for (auto *Param : MD->parameters())
3213 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3214
3215 const CXXRecordDecl *Lambda = MD->getParent();
3216 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3217 // For a generic lambda, find the corresponding call operator specialization
3218 // to which the call to the static-invoker shall be forwarded.
3219 if (Lambda->isGenericLambda()) {
3222 FunctionTemplateDecl *CallOpTemplate =
3223 CallOp->getDescribedFunctionTemplate();
3224 void *InsertPos = nullptr;
3225 FunctionDecl *CorrespondingCallOpSpecialization =
3226 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3227 assert(CorrespondingCallOpSpecialization);
3228 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3229 }
3230
3231 // Special lambda forwarding when there are inalloca parameters.
3232 if (hasInAllocaArg(MD)) {
3233 const CGFunctionInfo *ImplFnInfo = nullptr;
3234 llvm::Function *ImplFn = nullptr;
3235 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3236
3237 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3238 return;
3239 }
3240
3241 EmitForwardingCallToLambda(CallOp, CallArgs);
3242}
3243
3245 if (MD->isVariadic()) {
3246 // FIXME: Making this work correctly is nasty because it requires either
3247 // cloning the body of the call operator or making the call operator
3248 // forward.
3249 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3250 return;
3251 }
3252
3253 // Forward %this argument.
3254 CallArgList CallArgs;
3256 CanQualType ThisType = getContext().getPointerType(LambdaType);
3257 llvm::Value *ThisArg = CurFn->getArg(0);
3258 CallArgs.add(RValue::get(ThisArg), ThisType);
3259
3260 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3261}
3262
3264 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3265 llvm::Function **ImplFn) {
3266 const CGFunctionInfo &FnInfo =
3267 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3268 llvm::Function *CallOpFn =
3269 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3270
3271 // Emit function containing the original call op body. __invoke will delegate
3272 // to this function.
3274 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3275 ArgTypes.push_back(I->type);
3276 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3277 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3278 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3279
3280 // Create mangled name as if this was a method named __impl. If for some
3281 // reason the name doesn't look as expected then just tack __impl to the
3282 // front.
3283 // TODO: Use the name mangler to produce the right name instead of using
3284 // string replacement.
3285 StringRef CallOpName = CallOpFn->getName();
3286 std::string ImplName;
3287 if (size_t Pos = CallOpName.find_first_of("<lambda"))
3288 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3289 else
3290 ImplName = ("__impl" + CallOpName).str();
3291
3292 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3293 if (!Fn) {
3294 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3295 llvm::GlobalValue::InternalLinkage, ImplName,
3296 CGM.getModule());
3297 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3298
3299 const GlobalDecl &GD = GlobalDecl(CallOp);
3300 const auto *D = cast<FunctionDecl>(GD.getDecl());
3301 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3302 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3303 }
3304 *ImplFn = Fn;
3305}
#define V(N, I)
static Address ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, CharUnits nonVirtualOffset, llvm::Value *virtualOffset, const CXXRecordDecl *derivedClass, const CXXRecordDecl *nearestVBase)
Definition CGClass.cpp:238
static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, const CXXConstructorDecl *Ctor, CXXCtorType Type, CallArgList &Args)
Definition CGClass.cpp:2315
static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor)
CanSkipVTablePointerInitialization - Check whether we need to initialize any vtable pointers before c...
Definition CGClass.cpp:1399
static const CXXRecordDecl * LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD)
Definition CGClass.cpp:2869
static void EmitBaseInitializer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, CXXCtorInitializer *BaseInit)
Definition CGClass.cpp:539
static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D)
Definition CGClass.cpp:573
static std::pair< SanitizerKind::SanitizerOrdinal, llvm::SanitizerStatKind > SanitizerInfoFromCFICheckKind(CodeGenFunction::CFITypeCheckKind TCK)
Converts the CFITypeCheckKind into SanitizerKind::SanitizerOrdinal and llvm::SanitizerStatKind.
Definition CGClass.cpp:2928
static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init)
Definition CGClass.cpp:533
static bool FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field)
Definition CGClass.cpp:1382
static void EmitConditionalArrayDtorCall(const CXXDestructorDecl *DD, CodeGenFunction &CGF, llvm::Value *ShouldDeleteCondition)
Definition CGClass.cpp:1421
static bool HasTrivialDestructorBody(ASTContext &Context, const CXXRecordDecl *BaseClassDecl, const CXXRecordDecl *MostDerivedClassDecl)
Definition CGClass.cpp:1344
static void EmitMemberInitializer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, CXXCtorInitializer *MemberInit, const CXXConstructorDecl *Constructor, FunctionArgList &Args)
Definition CGClass.cpp:604
static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, CXXCtorInitializer *MemberInit, LValue &LHS)
Definition CGClass.cpp:590
static bool isInitializerOfDynamicClass(const CXXCtorInitializer *baseInit)
Defines the C++ template declaration subclasses.
TokenType getType() const
Returns the token's type, e.g.
a trap message and trap category.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
const ConstantArrayType * getAsConstantArrayType(QualType T) const
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
const LangOptions & getLangOpts() const
Definition ASTContext.h:944
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
const NoSanitizeList & getNoSanitizeList() const
Definition ASTContext.h:954
TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:909
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
CanQualType getCanonicalTagType(const TagDecl *TD) const
unsigned getTargetAddressSpace(LangAS AS) const
uint64_t getCharWidth() const
Return the size of the character type, in bits.
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
CharUnits getAlignment() const
getAlignment - Get the record alignment in characters.
CharUnits getSize() const
getSize - Get the record size in characters.
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
CharUnits getVBaseClassOffset(const CXXRecordDecl *VBase) const
getVBaseClassOffset - Get the offset, in chars, for the given base class.
const CXXRecordDecl * getPrimaryBase() const
getPrimaryBase - Get the primary base for this record.
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition TypeBase.h:3723
const CXXRecordDecl * getBase() const
getBase - Returns the base class declaration.
CharUnits getBaseOffset() const
getBaseOffset - Returns the base class offset.
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition Decl.h:4671
capture_const_iterator capture_begin() const
Definition Decl.h:4800
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:4757
Represents a base class of a C++ class.
Definition DeclCXX.h:146
QualType getType() const
Retrieves the type of the base class.
Definition DeclCXX.h:249
Represents a call to a C++ constructor.
Definition ExprCXX.h:1548
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition ExprCXX.h:1691
arg_range arguments()
Definition ExprCXX.h:1672
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition ExprCXX.h:1611
bool isListInitialization() const
Whether this constructor call was written as list-initialization.
Definition ExprCXX.h:1630
unsigned getNumArgs() const
Return the number of arguments to the constructor call.
Definition ExprCXX.h:1688
Represents a C++ constructor within a class.
Definition DeclCXX.h:2604
init_iterator init_begin()
Retrieve an iterator to the first initializer.
Definition DeclCXX.h:2701
bool isDefaultConstructor() const
Whether this constructor is a default constructor (C++ [class.ctor]p5), which can be used to default-...
Definition DeclCXX.cpp:2999
bool isDelegatingConstructor() const
Determine whether this constructor is a delegating constructor.
Definition DeclCXX.h:2757
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const
Determine whether this is a copy or move constructor.
Definition DeclCXX.cpp:3019
InheritedConstructor getInheritedConstructor() const
Get the constructor that this inheriting constructor is based on.
Definition DeclCXX.h:2842
Represents a C++ base or member initializer.
Definition DeclCXX.h:2369
FieldDecl * getMember() const
If this is a member initializer, returns the declaration of the non-static data member being initiali...
Definition DeclCXX.h:2509
Expr * getInit() const
Get the initializer.
Definition DeclCXX.h:2571
SourceLocation getSourceLocation() const
Determine the source location of the initializer.
Definition DeclCXX.cpp:2903
bool isAnyMemberInitializer() const
Definition DeclCXX.h:2449
bool isBaseInitializer() const
Determine whether this initializer is initializing a base class.
Definition DeclCXX.h:2441
bool isIndirectMemberInitializer() const
Definition DeclCXX.h:2453
const Type * getBaseClass() const
If this is a base class initializer, returns the type of the base class.
Definition DeclCXX.cpp:2896
FieldDecl * getAnyMember() const
Definition DeclCXX.h:2515
IndirectFieldDecl * getIndirectMember() const
Definition DeclCXX.h:2523
bool isBaseVirtual() const
Returns whether the base is virtual or not.
Definition DeclCXX.h:2495
Represents a C++ destructor within a class.
Definition DeclCXX.h:2869
const FunctionDecl * getOperatorGlobalDelete() const
Definition DeclCXX.cpp:3175
const FunctionDecl * getGlobalArrayOperatorDelete() const
Definition DeclCXX.cpp:3185
const FunctionDecl * getOperatorDelete() const
Definition DeclCXX.cpp:3170
Expr * getOperatorDeleteThisArg() const
Definition DeclCXX.h:2908
const FunctionDecl * getArrayOperatorDelete() const
Definition DeclCXX.cpp:3180
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition ExprCXX.h:1751
SourceLocation getLocation() const LLVM_READONLY
Definition ExprCXX.h:1804
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
bool isVirtual() const
Definition DeclCXX.h:2184
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition DeclCXX.h:2255
QualType getThisType() const
Return the type of the this pointer.
Definition DeclCXX.cpp:2809
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition DeclCXX.cpp:2735
QualType getFunctionObjectParameterType() const
Definition DeclCXX.h:2279
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition DeclCXX.cpp:2714
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
bool isEffectivelyFinal() const
Determine whether it's impossible for a class to be derived from this class.
Definition DeclCXX.cpp:2325
bool isGenericLambda() const
Determine whether this class describes a generic lambda function object (i.e.
Definition DeclCXX.cpp:1673
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition DeclCXX.h:1366
base_class_range bases()
Definition DeclCXX.h:608
method_range methods() const
Definition DeclCXX.h:650
bool isPolymorphic() const
Whether this class is polymorphic (C++ [class.virtual]), which means that the class contains or inher...
Definition DeclCXX.h:1214
unsigned getNumBases() const
Retrieves the number of base classes of this class.
Definition DeclCXX.h:602
base_class_iterator bases_begin()
Definition DeclCXX.h:615
base_class_range vbases()
Definition DeclCXX.h:625
bool isAbstract() const
Determine whether this class has a pure virtual function.
Definition DeclCXX.h:1221
bool isDynamicClass() const
Definition DeclCXX.h:574
bool hasDefinition() const
Definition DeclCXX.h:561
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition DeclCXX.h:1186
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition DeclCXX.cpp:2121
CXXMethodDecl * getLambdaCallOperator() const
Retrieve the lambda call operator of the closure type if this is a closure type.
Definition DeclCXX.cpp:1736
unsigned getNumVBases() const
Retrieves the number of virtual base classes of this class.
Definition DeclCXX.h:623
const CXXBaseSpecifier *const * path_const_iterator
Definition Expr.h:3743
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset?
Definition CharUnits.h:207
int64_t QuantityType
Definition CharUnits.h:40
bool isPositive() const
isPositive - Test whether the quantity is greater than zero.
Definition CharUnits.h:128
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition CharUnits.h:122
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition CharUnits.h:58
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition CharUnits.h:214
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition CharUnits.h:53
@ Indirect
Indirect - Pass the argument indirectly via a hidden pointer with the specified alignment (0 indicate...
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition Address.h:128
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition Address.h:253
CharUnits getAlignment() const
Definition Address.h:194
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition Address.h:209
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition Address.h:276
An aggregate value slot.
Definition CGValue.h:551
bool isSanitizerChecked() const
Definition CGValue.h:709
Address getAddress() const
Definition CGValue.h:691
Qualifiers getQualifiers() const
Definition CGValue.h:664
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition CGValue.h:649
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition CGValue.h:634
Overlap_t mayOverlap() const
Definition CGValue.h:705
A scoped helper to set the current source atom group for CGDebugInfo::addInstToCurrentSourceAtom.
A scoped helper to set the current debug location to the specified location or preferred location of ...
A scoped helper to set the current debug location to an inlined location.
llvm::Value * CreateIsNull(Address Addr, const Twine &Name="")
Definition CGBuilder.h:360
Address CreateGEP(CodeGenFunction &CGF, Address Addr, llvm::Value *Index, const llvm::Twine &Name="")
Definition CGBuilder.h:296
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition CGBuilder.h:112
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition CGBuilder.h:369
Address CreateInBoundsGEP(Address Addr, ArrayRef< llvm::Value * > IdxList, llvm::Type *ElementType, CharUnits Align, const Twine &Name="")
Definition CGBuilder.h:350
virtual size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, FunctionArgList &Args) const =0
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition CGCXXABI.cpp:249
All available information about a concrete callee.
Definition CGCall.h:63
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition CGCall.h:137
llvm::MDNode * getInlinedAt() const
void setInlinedAt(llvm::MDNode *InlinedAt)
Update the current inline scope.
CGFunctionInfo - Class to encapsulate the information about a function definition.
bool usesInAlloca() const
Return true if this function uses inalloca arguments.
FunctionType::ExtInfo getExtInfo() const
const_arg_iterator arg_begin() const
CanQualType getReturnType() const
const_arg_iterator arg_end() const
RequiredArgs getRequiredArgs() const
const CGBitFieldInfo & getBitFieldInfo(const FieldDecl *FD) const
Return the BitFieldInfo that corresponds to the field FD.
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
void add(RValue rvalue, QualType type)
Definition CGCall.h:302
A scope within which we are constructing the fields of an object which might use a CXXDefaultInitExpr...
static ParamValue forIndirect(Address addr)
static ParamValue forDirect(llvm::Value *value)
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited.
void ForceCleanup(std::initializer_list< llvm::Value ** > ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first.
Definition CGDecl.cpp:2434
llvm::Value * GetVTablePtr(Address This, llvm::Type *VTableTy, const CXXRecordDecl *VTableClass, VTableAuthMode AuthMode=VTableAuthMode::Authenticate)
GetVTablePtr - Return the Value of the vtable pointer member pointed to by This.
Definition CGClass.cpp:2822
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, const FunctionArgList &Args)
Definition CGClass.cpp:2620
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
emitDestroy - Immediately perform the destruction of the given object.
Definition CGDecl.cpp:2394
AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, CXXCtorType CtorType, const FunctionArgList &Args, SourceLocation Loc)
Definition CGClass.cpp:2563
SanitizerSet SanOpts
Sanitizers enabled for this function.
void EmitAsanPrologueOrEpilogue(bool Prologue)
Definition CGClass.cpp:754
void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, bool Delegating, CallArgList &Args)
Emit a call to an inheriting constructor (that is, one that invokes a constructor inherited from a ba...
Definition CGClass.cpp:2462
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
RawAddress CreateIRTemp(QualType T, const Twine &Name="tmp")
CreateIRTemp - Create a temporary IR object of the given type, with appropriate alignment.
Definition CGExpr.cpp:184
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
static bool hasScalarEvaluationKind(QualType T)
llvm::Type * ConvertType(QualType T)
void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)
void pushEHDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type)
pushEHDestroy - Push the standard destructor for the given type as an EH-only cleanup.
Definition CGDecl.cpp:2268
void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc)
EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
Definition CGClass.cpp:2949
void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD)
Definition CGClass.cpp:3187
void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, CallArgList &CallArgs)
Definition CGClass.cpp:3209
Address GetAddressOfBaseClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue, SourceLocation Loc)
GetAddressOfBaseClass - This function will add the necessary delta to the load of 'this' and returns ...
Definition CGClass.cpp:281
LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T)
Given a value of type T* that may not be to a complete object, construct an l-value with the natural ...
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
pushRegularPartialArrayCleanup - Push an EH cleanup to destroy already-constructed elements of the gi...
Definition CGDecl.cpp:2594
SmallVector< llvm::ConvergenceControlInst *, 4 > ConvergenceTokenStack
Stack to track the controlled convergence tokens.
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition CGExpr.cpp:3902
void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, CallArgList &CallArgs, const CGFunctionInfo *CallOpFnInfo=nullptr, llvm::Constant *CallOpFn=nullptr)
Definition CGClass.cpp:3114
llvm::Value * getAsNaturalPointerTo(Address Addr, QualType PointeeType)
void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, SourceLocation loc)
EmitDelegateCallArg - We are performing a delegate call; that is, the current function is delegating ...
Definition CGCall.cpp:4301
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup)
See CGDebugInfo::addInstToCurrentSourceAtom.
AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual)
Determine whether a base class initialization may overlap some other object.
const LangOptions & getLangOpts() const
llvm::Value * EmitARCRetainAutoreleasedReturnValue(llvm::Value *value)
Retain the given object which is the result of a function call.
Definition CGObjC.cpp:2463
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor)
Checks whether the given constructor is a valid subject for the complete-to-base constructor delegati...
Definition CGClass.cpp:706
Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue)
Definition CGClass.cpp:388
void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc)
EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for RD using llvm....
Definition CGClass.cpp:3010
void EmitConstructorBody(FunctionArgList &Args)
EmitConstructorBody - Emits the body of the current constructor.
Definition CGClass.cpp:817
const CodeGen::CGBlockInfo * BlockInfo
void EmitAggregateCopyCtor(LValue Dest, LValue Src, AggValueSlot::Overlap_t MayOverlap)
Address makeNaturalAddressForPointer(llvm::Value *Ptr, QualType T, CharUnits Alignment=CharUnits::Zero(), bool ForPointeeType=false, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
Construct an address with the natural alignment of T.
void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, llvm::Function **ImplFn)
Definition CGClass.cpp:3263
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, const ArrayType *ArrayTy, Address ArrayPtr, const CXXConstructExpr *E, bool NewPointerIsChecked, bool ZeroInitialization=false)
EmitCXXAggrConstructorCall - Emit a loop to call a particular constructor for each of several members...
Definition CGClass.cpp:2129
VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass)
Definition CGClass.cpp:2742
void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, CFITypeCheckKind TCK, SourceLocation Loc)
Derived is the presumed address of an object of type T after a cast.
Definition CGClass.cpp:2963
@ TCK_ConstructorCall
Checking the 'this' pointer for a constructor call.
@ TCK_UpcastToVirtualBase
Checking the operand of a cast to a virtual base object.
@ TCK_Upcast
Checking the operand of a cast to a base object.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy)
Definition CGClass.cpp:2645
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition CGDecl.cpp:2251
void PushDestructorCleanup(QualType T, Address Addr)
PushDestructorCleanup - Push a cleanup to call the complete-object destructor of an object of the giv...
Definition CGClass.cpp:2676
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler.
Definition CGExpr.cpp:3792
@ ForceLeftToRight
! Language semantics require left-to-right evaluation.
@ Default
! No language constraints on evaluation order.
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
LValue EmitLValueForField(LValue Base, const FieldDecl *Field, bool IsInBounds=true)
Definition CGExpr.cpp:5563
const TargetInfo & getTarget() const
Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, llvm::Value *memberPtr, const MemberPointerType *memberPtrType, bool IsInBounds, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
Emit the address of a field using a member data pointer.
Definition CGClass.cpp:150
void maybeCreateMCDCCondBitmap()
Allocate a temp value on the stack that MCDC can use to track condition results.
Address GetAddrOfBlockDecl(const VarDecl *var)
void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type)
EnterDtorCleanups - Enter the cleanups necessary to complete the given phase of destruction for a des...
Definition CGClass.cpp:1993
llvm::Value * EmitPointerAuthSign(const CGPointerAuthInfo &Info, llvm::Value *Pointer)
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, AggValueSlot ThisAVS, const CXXConstructExpr *E)
Definition CGClass.cpp:2267
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs, const TrapReason *TR=nullptr)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
Definition CGExpr.cpp:4050
llvm::Value * emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr)
emitArrayLength - Compute the length of an array, even if it's a VLA, and drill down to the base elem...
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This)
Emit assumption load for all bases.
Definition CGClass.cpp:2528
void EmitDestructorBody(FunctionArgList &Args)
EmitDestructorBody - Emits the body of the current destructor.
Definition CGClass.cpp:1522
LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field)
EmitLValueForFieldInitialization - Like EmitLValueForField, except that if the Field is a reference,...
Definition CGExpr.cpp:5737
Address GetAddressOfDirectBaseInCompleteClass(Address Value, const CXXRecordDecl *Derived, const CXXRecordDecl *Base, bool BaseIsVirtual)
GetAddressOfBaseOfCompleteClass - Convert the given pointer to a complete class to the given direct b...
Definition CGClass.cpp:214
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
Definition CGCall.cpp:5248
const TargetCodeGenInfo & getTargetHooks() const
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, FunctionArgList &Args)
EmitCtorPrologue - This routine generates necessary code to initialize base classes and non-static da...
Definition CGClass.cpp:1246
void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, llvm::Value *VTable, SourceLocation Loc)
If whole-program virtual table optimization is enabled, emit an assumption that VTable is a member of...
Definition CGClass.cpp:2894
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition CGExpr.cpp:2642
llvm::Value * LoadCXXVTT()
LoadCXXVTT - Load the VTT parameter to base constructors/destructors have virtual bases.
void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo)
EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
Definition CGDecl.cpp:2653
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init)
Definition CGClass.cpp:668
void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD)
Definition CGClass.cpp:3244
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind.
void EmitStmt(const Stmt *S, ArrayRef< const Attr * > Attrs={})
EmitStmt - Emit the code for the statement.
Definition CGStmt.cpp:61
CleanupKind getCleanupKind(QualType::DestructionKind kind)
llvm::Type * ConvertTypeForMem(QualType T)
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, Address This, Address Src, const CXXConstructExpr *E)
Definition CGClass.cpp:2535
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
CodeGenTypes & getTypes() const
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock=false)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args)
Definition CGClass.cpp:1645
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, QualType Type, SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
void EmitCfiSlowPathCheck(SanitizerKind::SanitizerOrdinal Ordinal, llvm::Value *Cond, llvm::ConstantInt *TypeId, llvm::Value *Ptr, ArrayRef< llvm::Constant * > StaticArgs)
Emit a slow path cross-DSO CFI check which calls __cfi_slowpath if Cond if false.
Definition CGExpr.cpp:4184
void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, bool ForVirtualBase, Address This, bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E)
Emit a call to a constructor inherited from a base class, passing the current constructor's arguments...
Definition CGClass.cpp:2413
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition CGExpr.cpp:189
bool sanitizePerformTypeCheck() const
Whether any type-checking sanitizers are enabled.
Definition CGExpr.cpp:737
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
llvm::Value * GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, bool Delegating)
GetVTTParameter - Return the VTT parameter that should be passed to a base constructor/destructor wit...
Definition CGClass.cpp:446
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
Definition CGCall.cpp:4688
llvm::CallInst * EmitTrapCall(llvm::Intrinsic::ID IntrID)
Emit a call to trap or debugtrap and attach function attribute "trap-func-name" if specified.
Definition CGExpr.cpp:4465
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, bool NoMerge=false, const TrapReason *TR=nullptr)
Create a basic block that will call the trap intrinsic, and emit a conditional branch to it,...
Definition CGExpr.cpp:4392
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of 'this'.
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock=false)
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
void InitializeVTablePointer(const VPtr &vptr)
Initialize the vtable pointer of the given subobject.
Definition CGClass.cpp:2688
llvm::Value * EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, uint64_t VTableByteOffset)
Emit a type checked load from the given vtable.
Definition CGClass.cpp:3081
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
Definition CGExpr.cpp:1691
bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD)
Returns whether we should perform a type checked load when loading a virtual function for virtual cal...
Definition CGClass.cpp:3063
llvm::LLVMContext & getLLVMContext()
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
llvm::SmallVector< VPtr, 4 > VPtrsVector
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl)
Definition CGClass.cpp:2808
void EmitVTableAssumptionLoad(const VPtr &vptr, Address This)
Emit assumption that vptr load == global vtable.
Definition CGClass.cpp:2507
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition CGStmt.cpp:656
void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
EmitExprAsInit - Emits the code necessary to initialize a location in memory with the given initializ...
Definition CGDecl.cpp:2092
QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args)
llvm::Value * EmitPointerAuthAuth(const CGPointerAuthInfo &Info, llvm::Value *Pointer)
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
CharUnits getMinimumClassObjectSize(const CXXRecordDecl *CD)
Returns the minimum object size for an object of the given class type (or a class derived from it).
Definition CGClass.cpp:59
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
llvm::Constant * GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd)
Returns the offset from a derived class to a class.
Definition CGClass.cpp:193
CharUnits computeNonVirtualBaseClassOffset(const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, CastExpr::path_const_iterator End)
Definition CGClass.cpp:168
CharUnits getVBaseAlignment(CharUnits DerivedAlign, const CXXRecordDecl *Derived, const CXXRecordDecl *VBase)
Returns the assumed alignment of a virtual base of a class.
Definition CGClass.cpp:76
CharUnits getClassPointerAlignment(const CXXRecordDecl *CD)
Returns the assumed alignment of an opaque pointer to the given class.
Definition CGClass.cpp:40
CharUnits getDynamicOffsetAlignment(CharUnits ActualAlign, const CXXRecordDecl *Class, CharUnits ExpectedTargetAlign)
Given a class pointer with an actual known alignment, and the expected alignment of an object at a dy...
Definition CGClass.cpp:91
ItaniumVTableContext & getItaniumVTableContext()
ASTContext & getContext() const
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
bool inheritingCtorHasParams(const InheritedConstructor &Inherited, CXXCtorType Type)
Determine if a C++ inheriting constructor should have parameters matching those of its inherited cons...
Definition CGCall.cpp:392
const CGRecordLayout & getCGRecordLayout(const RecordDecl *)
getCGRecordLayout - Return record layout info for the given record decl.
const CGFunctionInfo & arrangeCXXConstructorCall(const CallArgList &Args, const CXXConstructorDecl *D, CXXCtorType CtorKind, unsigned ExtraPrefixArgs, unsigned ExtraSuffixArgs, bool PassProtoArgs=true)
Arrange a call to a C++ method, passing the given arguments.
Definition CGCall.cpp:485
FunctionArgList - Type for representing both the decl and type of parameters to a function.
Definition CGCall.h:375
LValue - This represents an lvalue references.
Definition CGValue.h:183
bool isSimple() const
Definition CGValue.h:286
Address getAddress() const
Definition CGValue.h:373
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
bool isScalar() const
Definition CGValue.h:64
static RValue get(llvm::Value *V)
Definition CGValue.h:99
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition CGValue.h:84
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:72
bool isComplex() const
Definition CGValue.h:65
An abstract representation of an aligned address.
Definition Address.h:42
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, llvm::Type *DestTy, bool IsNonNull=false) const
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition Stmt.h:1732
body_range body()
Definition Stmt.h:1795
Represents the canonical version of C arrays with a specified constant size.
Definition TypeBase.h:3761
SourceLocation getEndLoc() const LLVM_READONLY
Definition DeclBase.h:435
bool isImplicit() const
isImplicit - Indicates whether the declaration was implicitly generated by the implementation.
Definition DeclBase.h:593
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required.
Definition DeclBase.cpp:575
bool hasAttr() const
Definition DeclBase.h:577
This represents one expression.
Definition Expr.h:112
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:276
Represents a member of a struct/union/class.
Definition Decl.h:3160
bool isBitField() const
Determines whether this field is a bitfield.
Definition Decl.h:3263
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition Decl.h:3245
Represents a function declaration or definition.
Definition Decl.h:2000
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2797
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition Decl.cpp:3279
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen.
Definition Decl.cpp:3210
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition Decl.cpp:4205
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition Decl.cpp:3551
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition Decl.cpp:3762
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2774
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition Decl.h:2377
bool isVariadic() const
Whether this function is variadic.
Definition Decl.cpp:3133
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition Decl.cpp:4329
bool isDefaulted() const
Whether this function is defaulted.
Definition Decl.h:2385
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition Decl.cpp:3826
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5269
param_type_iterator param_type_begin() const
Definition TypeBase.h:5713
bool isVariadic() const
Whether this function prototype is variadic.
Definition TypeBase.h:5673
Declaration of a template function.
FunctionDecl * findSpecialization(ArrayRef< TemplateArgument > Args, void *&InsertPos)
Return the specialization with the provided arguments if it exists, otherwise return the insertion po...
QualType getReturnType() const
Definition TypeBase.h:4805
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
CXXCtorType getCtorType() const
Definition GlobalDecl.h:108
const Decl * getDecl() const
Definition GlobalDecl.h:106
Represents a field injected from an anonymous union/struct into the parent scope.
Definition Decl.h:3467
ArrayRef< NamedDecl * > chain() const
Definition Decl.h:3488
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition Expr.h:3447
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition TypeBase.h:3654
CXXRecordDecl * getMostRecentCXXRecordDecl() const
Note: this can trigger extra deserialization when external AST sources are used.
Definition Type.cpp:5450
QualType getPointeeType() const
Definition TypeBase.h:3672
std::string getQualifiedNameAsString() const
Definition Decl.cpp:1680
bool containsType(SanitizerMask Mask, StringRef MangledTypeName, StringRef Category=StringRef()) const
bool isAddressDiscriminated() const
Definition TypeBase.h:265
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition Type.cpp:2867
PointerAuthQualifier getPointerAuth() const
Definition TypeBase.h:1453
LangAS getAddressSpace() const
Return the address space of this type.
Definition TypeBase.h:8418
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition TypeBase.h:8332
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition TypeBase.h:8477
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after.
Definition TypeBase.h:1545
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition Type.cpp:2695
The collection of all-type qualifiers we support.
Definition TypeBase.h:331
bool hasVolatile() const
Definition TypeBase.h:467
bool hasObjCLifetime() const
Definition TypeBase.h:544
LangAS getAddressSpace() const
Definition TypeBase.h:571
field_range fields() const
Definition Decl.h:4527
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition Decl.cpp:5355
bool field_empty() const
Definition Decl.h:4535
static constexpr SanitizerMask bitPosToMask(const unsigned Pos)
Create a mask with a bit enabled at position Pos.
Definition Sanitizers.h:59
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
Encodes a location in the source.
Stmt - This represents one statement.
Definition Stmt.h:86
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:338
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition Decl.h:3815
bool isUnion() const
Definition Decl.h:3925
bool areArgsDestroyedLeftToRightInCallee() const
Are arguments to a call destroyed left to right in the callee?
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
virtual bool callGlobalDeleteInDeletingDtor(const LangOptions &) const
Controls whether global operator delete is called by the deleting destructor or at the point where de...
A template argument list.
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isVoidType() const
Definition TypeBase.h:8891
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
CXXRecordDecl * castAsCXXRecordDecl() const
Definition Type.h:36
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9178
bool isReferenceType() const
Definition TypeBase.h:8553
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:753
Expr * getSubExpr() const
Definition Expr.h:2285
Opcode getOpcode() const
Definition Expr.h:2280
QualType getType() const
Definition Decl.h:723
QualType getType() const
Definition Value.cpp:237
Represents a variable declaration or definition.
Definition Decl.h:926
@ Type
The l-value was considered opaque, so the alignment was determined from a type.
Definition CGValue.h:155
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
Definition CGValue.h:146
bool isEmptyFieldForLayout(const ASTContext &Context, const FieldDecl *FD)
isEmptyFieldForLayout - Return true iff the field is "empty", that is, either a zero-width bit-field ...
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
The JSON file list parser is used to communicate input to InstallAPI.
CanQual< Type > CanQualType
Represents a canonical, potentially-qualified type.
CXXCtorType
C++ constructor types.
Definition ABI.h:24
@ Ctor_Base
Base object ctor.
Definition ABI.h:26
@ Ctor_Complete
Complete object ctor.
Definition ABI.h:25
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus
nullptr
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
const FunctionProtoType * T
CXXDtorType
C++ destructor types.
Definition ABI.h:34
@ Dtor_VectorDeleting
Vector deleting dtor.
Definition ABI.h:40
@ Dtor_Comdat
The COMDAT used for dtors.
Definition ABI.h:38
@ Dtor_Unified
GCC-style unified dtor.
Definition ABI.h:39
@ Dtor_Base
Base object dtor.
Definition ABI.h:37
@ Dtor_Complete
Complete object dtor.
Definition ABI.h:36
@ Dtor_Deleting
Deleting dtor.
Definition ABI.h:35
LangAS
Defines the address space values used by the address space qualifier of QualType.
U cast(CodeGen::Address addr)
Definition Address.h:327
unsigned long uint64_t
#define false
Definition stdbool.h:26
CharUnits StorageOffset
The offset of the bitfield storage from the start of the struct.
Similar to AddedStructorArgs, but only notes the number of additional arguments.
Definition CGCXXABI.h:358
Struct with all information about dynamic [sub]class needed to set vptr.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition Sanitizers.h:187