clang 22.0.0git
CGAtomic.cpp
Go to the documentation of this file.
1//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the code for emitting atomic operations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCall.h"
14#include "CGRecordLayout.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Intrinsics.h"
24
25using namespace clang;
26using namespace CodeGen;
27
28namespace {
29 class AtomicInfo {
30 CodeGenFunction &CGF;
31 QualType AtomicTy;
32 QualType ValueTy;
33 uint64_t AtomicSizeInBits;
34 uint64_t ValueSizeInBits;
35 CharUnits AtomicAlign;
36 CharUnits ValueAlign;
37 TypeEvaluationKind EvaluationKind;
38 bool UseLibcall;
39 LValue LVal;
40 CGBitFieldInfo BFI;
41 public:
42 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
43 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
44 EvaluationKind(TEK_Scalar), UseLibcall(true) {
45 assert(!lvalue.isGlobalReg());
46 ASTContext &C = CGF.getContext();
47 if (lvalue.isSimple()) {
48 AtomicTy = lvalue.getType();
49 if (auto *ATy = AtomicTy->getAs<AtomicType>())
50 ValueTy = ATy->getValueType();
51 else
52 ValueTy = AtomicTy;
53 EvaluationKind = CGF.getEvaluationKind(ValueTy);
54
55 uint64_t ValueAlignInBits;
56 uint64_t AtomicAlignInBits;
57 TypeInfo ValueTI = C.getTypeInfo(ValueTy);
58 ValueSizeInBits = ValueTI.Width;
59 ValueAlignInBits = ValueTI.Align;
60
61 TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
62 AtomicSizeInBits = AtomicTI.Width;
63 AtomicAlignInBits = AtomicTI.Align;
64
65 assert(ValueSizeInBits <= AtomicSizeInBits);
66 assert(ValueAlignInBits <= AtomicAlignInBits);
67
68 AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
69 ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
70 if (lvalue.getAlignment().isZero())
71 lvalue.setAlignment(AtomicAlign);
72
73 LVal = lvalue;
74 } else if (lvalue.isBitField()) {
75 ValueTy = lvalue.getType();
76 ValueSizeInBits = C.getTypeSize(ValueTy);
77 auto &OrigBFI = lvalue.getBitFieldInfo();
78 auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
79 AtomicSizeInBits = C.toBits(
80 C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
81 .alignTo(lvalue.getAlignment()));
82 llvm::Value *BitFieldPtr = lvalue.getRawBitFieldPointer(CGF);
83 auto OffsetInChars =
84 (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
85 lvalue.getAlignment();
86 llvm::Value *StoragePtr = CGF.Builder.CreateConstGEP1_64(
87 CGF.Int8Ty, BitFieldPtr, OffsetInChars.getQuantity());
88 StoragePtr = CGF.Builder.CreateAddrSpaceCast(
89 StoragePtr, CGF.DefaultPtrTy, "atomic_bitfield_base");
90 BFI = OrigBFI;
91 BFI.Offset = Offset;
92 BFI.StorageSize = AtomicSizeInBits;
93 BFI.StorageOffset += OffsetInChars;
94 llvm::Type *StorageTy = CGF.Builder.getIntNTy(AtomicSizeInBits);
95 LVal = LValue::MakeBitfield(
96 Address(StoragePtr, StorageTy, lvalue.getAlignment()), BFI,
97 lvalue.getType(), lvalue.getBaseInfo(), lvalue.getTBAAInfo());
98 AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
99 if (AtomicTy.isNull()) {
100 llvm::APInt Size(
101 /*numBits=*/32,
102 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
103 AtomicTy = C.getConstantArrayType(C.CharTy, Size, nullptr,
104 ArraySizeModifier::Normal,
105 /*IndexTypeQuals=*/0);
106 }
107 AtomicAlign = ValueAlign = lvalue.getAlignment();
108 } else if (lvalue.isVectorElt()) {
109 ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType();
110 ValueSizeInBits = C.getTypeSize(ValueTy);
111 AtomicTy = lvalue.getType();
112 AtomicSizeInBits = C.getTypeSize(AtomicTy);
113 AtomicAlign = ValueAlign = lvalue.getAlignment();
114 LVal = lvalue;
115 } else {
116 assert(lvalue.isExtVectorElt());
117 ValueTy = lvalue.getType();
118 ValueSizeInBits = C.getTypeSize(ValueTy);
119 AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
120 lvalue.getType(), cast<llvm::FixedVectorType>(
121 lvalue.getExtVectorAddress().getElementType())
122 ->getNumElements());
123 AtomicSizeInBits = C.getTypeSize(AtomicTy);
124 AtomicAlign = ValueAlign = lvalue.getAlignment();
125 LVal = lvalue;
126 }
127 UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
128 AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
129 }
130
131 QualType getAtomicType() const { return AtomicTy; }
132 QualType getValueType() const { return ValueTy; }
133 CharUnits getAtomicAlignment() const { return AtomicAlign; }
134 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
135 uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
136 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
137 bool shouldUseLibcall() const { return UseLibcall; }
138 const LValue &getAtomicLValue() const { return LVal; }
139 llvm::Value *getAtomicPointer() const {
140 if (LVal.isSimple())
141 return LVal.emitRawPointer(CGF);
142 else if (LVal.isBitField())
143 return LVal.getRawBitFieldPointer(CGF);
144 else if (LVal.isVectorElt())
145 return LVal.getRawVectorPointer(CGF);
146 assert(LVal.isExtVectorElt());
147 return LVal.getRawExtVectorPointer(CGF);
148 }
149 Address getAtomicAddress() const {
150 llvm::Type *ElTy;
151 if (LVal.isSimple())
152 ElTy = LVal.getAddress().getElementType();
153 else if (LVal.isBitField())
154 ElTy = LVal.getBitFieldAddress().getElementType();
155 else if (LVal.isVectorElt())
156 ElTy = LVal.getVectorAddress().getElementType();
157 else
158 ElTy = LVal.getExtVectorAddress().getElementType();
159 return Address(getAtomicPointer(), ElTy, getAtomicAlignment());
160 }
161
162 Address getAtomicAddressAsAtomicIntPointer() const {
163 return castToAtomicIntPointer(getAtomicAddress());
164 }
165
166 /// Is the atomic size larger than the underlying value type?
167 ///
168 /// Note that the absence of padding does not mean that atomic
169 /// objects are completely interchangeable with non-atomic
170 /// objects: we might have promoted the alignment of a type
171 /// without making it bigger.
172 bool hasPadding() const {
173 return (ValueSizeInBits != AtomicSizeInBits);
174 }
175
176 bool emitMemSetZeroIfNecessary() const;
177
178 llvm::Value *getAtomicSizeValue() const {
179 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
180 return CGF.CGM.getSize(size);
181 }
182
183 /// Cast the given pointer to an integer pointer suitable for atomic
184 /// operations if the source.
185 Address castToAtomicIntPointer(Address Addr) const;
186
187 /// If Addr is compatible with the iN that will be used for an atomic
188 /// operation, bitcast it. Otherwise, create a temporary that is suitable
189 /// and copy the value across.
190 Address convertToAtomicIntPointer(Address Addr) const;
191
192 /// Turn an atomic-layout object into an r-value.
193 RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot,
194 SourceLocation loc, bool AsValue) const;
195
196 llvm::Value *getScalarRValValueOrNull(RValue RVal) const;
197
198 /// Converts an rvalue to integer value if needed.
199 llvm::Value *convertRValueToInt(RValue RVal, bool CmpXchg = false) const;
200
201 RValue ConvertToValueOrAtomic(llvm::Value *IntVal, AggValueSlot ResultSlot,
202 SourceLocation Loc, bool AsValue,
203 bool CmpXchg = false) const;
204
205 /// Copy an atomic r-value into atomic-layout memory.
206 void emitCopyIntoMemory(RValue rvalue) const;
207
208 /// Project an l-value down to the value field.
209 LValue projectValue() const {
210 assert(LVal.isSimple());
211 Address addr = getAtomicAddress();
212 if (hasPadding())
213 addr = CGF.Builder.CreateStructGEP(addr, 0);
214
215 return LValue::MakeAddr(addr, getValueType(), CGF.getContext(),
216 LVal.getBaseInfo(), LVal.getTBAAInfo());
217 }
218
219 /// Emits atomic load.
220 /// \returns Loaded value.
221 RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
222 bool AsValue, llvm::AtomicOrdering AO,
223 bool IsVolatile);
224
225 /// Emits atomic compare-and-exchange sequence.
226 /// \param Expected Expected value.
227 /// \param Desired Desired value.
228 /// \param Success Atomic ordering for success operation.
229 /// \param Failure Atomic ordering for failed operation.
230 /// \param IsWeak true if atomic operation is weak, false otherwise.
231 /// \returns Pair of values: previous value from storage (value type) and
232 /// boolean flag (i1 type) with true if success and false otherwise.
233 std::pair<RValue, llvm::Value *>
234 EmitAtomicCompareExchange(RValue Expected, RValue Desired,
235 llvm::AtomicOrdering Success =
236 llvm::AtomicOrdering::SequentiallyConsistent,
237 llvm::AtomicOrdering Failure =
238 llvm::AtomicOrdering::SequentiallyConsistent,
239 bool IsWeak = false);
240
241 /// Emits atomic update.
242 /// \param AO Atomic ordering.
243 /// \param UpdateOp Update operation for the current lvalue.
244 void EmitAtomicUpdate(llvm::AtomicOrdering AO,
245 const llvm::function_ref<RValue(RValue)> &UpdateOp,
246 bool IsVolatile);
247 /// Emits atomic update.
248 /// \param AO Atomic ordering.
249 void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
250 bool IsVolatile);
251
252 /// Materialize an atomic r-value in atomic-layout memory.
253 Address materializeRValue(RValue rvalue) const;
254
255 /// Creates temp alloca for intermediate operations on atomic value.
256 Address CreateTempAlloca() const;
257 private:
258 bool requiresMemSetZero(llvm::Type *type) const;
259
260
261 /// Emits atomic load as a libcall.
262 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
263 llvm::AtomicOrdering AO, bool IsVolatile);
264 /// Emits atomic load as LLVM instruction.
265 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile,
266 bool CmpXchg = false);
267 /// Emits atomic compare-and-exchange op as a libcall.
268 llvm::Value *EmitAtomicCompareExchangeLibcall(
269 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
270 llvm::AtomicOrdering Success =
271 llvm::AtomicOrdering::SequentiallyConsistent,
272 llvm::AtomicOrdering Failure =
273 llvm::AtomicOrdering::SequentiallyConsistent);
274 /// Emits atomic compare-and-exchange op as LLVM instruction.
275 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
276 llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
277 llvm::AtomicOrdering Success =
278 llvm::AtomicOrdering::SequentiallyConsistent,
279 llvm::AtomicOrdering Failure =
280 llvm::AtomicOrdering::SequentiallyConsistent,
281 bool IsWeak = false);
282 /// Emit atomic update as libcalls.
283 void
284 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
285 const llvm::function_ref<RValue(RValue)> &UpdateOp,
286 bool IsVolatile);
287 /// Emit atomic update as LLVM instructions.
288 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
289 const llvm::function_ref<RValue(RValue)> &UpdateOp,
290 bool IsVolatile);
291 /// Emit atomic update as libcalls.
292 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
293 bool IsVolatile);
294 /// Emit atomic update as LLVM instructions.
295 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
296 bool IsVolatile);
297 };
298}
299
300Address AtomicInfo::CreateTempAlloca() const {
301 Address TempAlloca = CGF.CreateMemTemp(
302 (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
303 : AtomicTy,
304 getAtomicAlignment(),
305 "atomic-temp");
306 // Cast to pointer to value type for bitfields.
307 if (LVal.isBitField())
309 TempAlloca, getAtomicAddress().getType(),
310 getAtomicAddress().getElementType());
311 return TempAlloca;
312}
313
315 StringRef fnName,
316 QualType resultType,
317 CallArgList &args) {
318 const CGFunctionInfo &fnInfo =
319 CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args);
320 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
321 llvm::AttrBuilder fnAttrB(CGF.getLLVMContext());
322 fnAttrB.addAttribute(llvm::Attribute::NoUnwind);
323 fnAttrB.addAttribute(llvm::Attribute::WillReturn);
324 llvm::AttributeList fnAttrs = llvm::AttributeList::get(
325 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, fnAttrB);
326
327 llvm::FunctionCallee fn =
328 CGF.CGM.CreateRuntimeFunction(fnTy, fnName, fnAttrs);
329 auto callee = CGCallee::forDirect(fn);
330 return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args);
331}
332
333/// Does a store of the given IR type modify the full expected width?
334static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
335 uint64_t expectedSize) {
336 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
337}
338
339/// Does the atomic type require memsetting to zero before initialization?
340///
341/// The IR type is provided as a way of making certain queries faster.
342bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
343 // If the atomic type has size padding, we definitely need a memset.
344 if (hasPadding()) return true;
345
346 // Otherwise, do some simple heuristics to try to avoid it:
347 switch (getEvaluationKind()) {
348 // For scalars and complexes, check whether the store size of the
349 // type uses the full size.
350 case TEK_Scalar:
351 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
352 case TEK_Complex:
353 return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
354 AtomicSizeInBits / 2);
355
356 // Padding in structs has an undefined bit pattern. User beware.
357 case TEK_Aggregate:
358 return false;
359 }
360 llvm_unreachable("bad evaluation kind");
361}
362
363bool AtomicInfo::emitMemSetZeroIfNecessary() const {
364 assert(LVal.isSimple());
365 Address addr = LVal.getAddress();
366 if (!requiresMemSetZero(addr.getElementType()))
367 return false;
368
370 addr.emitRawPointer(CGF), llvm::ConstantInt::get(CGF.Int8Ty, 0),
371 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
372 LVal.getAlignment().getAsAlign());
373 return true;
374}
375
376static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
377 Address Dest, Address Ptr, Address Val1,
378 Address Val2, Address ExpectedResult,
379 uint64_t Size, llvm::AtomicOrdering SuccessOrder,
380 llvm::AtomicOrdering FailureOrder,
381 llvm::SyncScope::ID Scope) {
382 // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
383 llvm::Value *Expected = CGF.Builder.CreateLoad(Val1);
384 llvm::Value *Desired = CGF.Builder.CreateLoad(Val2);
385
386 llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
387 Ptr, Expected, Desired, SuccessOrder, FailureOrder, Scope);
388 Pair->setVolatile(E->isVolatile());
389 Pair->setWeak(IsWeak);
390 CGF.getTargetHooks().setTargetAtomicMetadata(CGF, *Pair, E);
391
392 // Cmp holds the result of the compare-exchange operation: true on success,
393 // false on failure.
394 llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
395 llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
396
397 // This basic block is used to hold the store instruction if the operation
398 // failed.
399 llvm::BasicBlock *StoreExpectedBB =
400 CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
401
402 // This basic block is the exit point of the operation, we should end up
403 // here regardless of whether or not the operation succeeded.
404 llvm::BasicBlock *ContinueBB =
405 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
406
407 // Update Expected if Expected isn't equal to Old, otherwise branch to the
408 // exit point.
409 CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
410
411 CGF.Builder.SetInsertPoint(StoreExpectedBB);
412 // Update the memory at Expected with Old's value.
413 llvm::Type *ExpectedType = ExpectedResult.getElementType();
414 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
415 uint64_t ExpectedSizeInBytes = DL.getTypeStoreSize(ExpectedType);
416
417 if (ExpectedSizeInBytes == Size) {
418 // Sizes match: store directly
419 auto *I = CGF.Builder.CreateStore(Old, ExpectedResult);
420 CGF.addInstToCurrentSourceAtom(I, Old);
421 } else {
422 // store only the first ExpectedSizeInBytes bytes of Old
423 llvm::Type *OldType = Old->getType();
424
425 // Allocate temporary storage for Old value
426 Address OldTmp =
427 CGF.CreateTempAlloca(OldType, Ptr.getAlignment(), "old.tmp");
428
429 // Store Old into this temporary
430 auto *I = CGF.Builder.CreateStore(Old, OldTmp);
431 CGF.addInstToCurrentSourceAtom(I, Old);
432
433 // Perform memcpy for first ExpectedSizeInBytes bytes
434 CGF.Builder.CreateMemCpy(ExpectedResult, OldTmp, ExpectedSizeInBytes,
435 /*isVolatile=*/false);
436 }
437
438 // Finally, branch to the exit point.
439 CGF.Builder.CreateBr(ContinueBB);
440
441 CGF.Builder.SetInsertPoint(ContinueBB);
442 // Update the memory at Dest with Cmp's value.
443 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
444}
445
446/// Given an ordering required on success, emit all possible cmpxchg
447/// instructions to cope with the provided (but possibly only dynamically known)
448/// FailureOrder.
450 CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, Address Dest, Address Ptr,
451 Address Val1, Address Val2, Address ExpectedResult,
452 llvm::Value *FailureOrderVal, uint64_t Size,
453 llvm::AtomicOrdering SuccessOrder, llvm::SyncScope::ID Scope) {
454 llvm::AtomicOrdering FailureOrder;
455 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
456 auto FOS = FO->getSExtValue();
457 if (!llvm::isValidAtomicOrderingCABI(FOS))
458 FailureOrder = llvm::AtomicOrdering::Monotonic;
459 else
460 switch ((llvm::AtomicOrderingCABI)FOS) {
461 case llvm::AtomicOrderingCABI::relaxed:
462 // 31.7.2.18: "The failure argument shall not be memory_order_release
463 // nor memory_order_acq_rel". Fallback to monotonic.
464 case llvm::AtomicOrderingCABI::release:
465 case llvm::AtomicOrderingCABI::acq_rel:
466 FailureOrder = llvm::AtomicOrdering::Monotonic;
467 break;
468 case llvm::AtomicOrderingCABI::consume:
469 case llvm::AtomicOrderingCABI::acquire:
470 FailureOrder = llvm::AtomicOrdering::Acquire;
471 break;
472 case llvm::AtomicOrderingCABI::seq_cst:
473 FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent;
474 break;
475 }
476 // Prior to c++17, "the failure argument shall be no stronger than the
477 // success argument". This condition has been lifted and the only
478 // precondition is 31.7.2.18. Effectively treat this as a DR and skip
479 // language version checks.
480 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, ExpectedResult,
481 Size, SuccessOrder, FailureOrder, Scope);
482 return;
483 }
484
485 // Create all the relevant BB's
486 auto *MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
487 auto *AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
488 auto *SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
489 auto *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
490
491 // MonotonicBB is arbitrarily chosen as the default case; in practice, this
492 // doesn't matter unless someone is crazy enough to use something that
493 // doesn't fold to a constant for the ordering.
494 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
495 // Implemented as acquire, since it's the closest in LLVM.
496 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
497 AcquireBB);
498 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
499 AcquireBB);
500 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
501 SeqCstBB);
502
503 // Emit all the different atomics
504 CGF.Builder.SetInsertPoint(MonotonicBB);
505 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, ExpectedResult, Size,
506 SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope);
507 CGF.Builder.CreateBr(ContBB);
508
509 CGF.Builder.SetInsertPoint(AcquireBB);
510 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, ExpectedResult, Size,
511 SuccessOrder, llvm::AtomicOrdering::Acquire, Scope);
512 CGF.Builder.CreateBr(ContBB);
513
514 CGF.Builder.SetInsertPoint(SeqCstBB);
515 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, ExpectedResult, Size,
516 SuccessOrder, llvm::AtomicOrdering::SequentiallyConsistent,
517 Scope);
518 CGF.Builder.CreateBr(ContBB);
519
520 CGF.Builder.SetInsertPoint(ContBB);
521}
522
523/// Duplicate the atomic min/max operation in conventional IR for the builtin
524/// variants that return the new rather than the original value.
525static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder,
527 bool IsSigned,
528 llvm::Value *OldVal,
529 llvm::Value *RHS) {
530 const bool IsFP = OldVal->getType()->isFloatingPointTy();
531
532 if (IsFP) {
533 llvm::Intrinsic::ID IID = (Op == AtomicExpr::AO__atomic_max_fetch ||
534 Op == AtomicExpr::AO__scoped_atomic_max_fetch)
535 ? llvm::Intrinsic::maxnum
536 : llvm::Intrinsic::minnum;
537
538 return Builder.CreateBinaryIntrinsic(IID, OldVal, RHS, llvm::FMFSource(),
539 "newval");
540 }
541
542 llvm::CmpInst::Predicate Pred;
543 switch (Op) {
544 default:
545 llvm_unreachable("Unexpected min/max operation");
546 case AtomicExpr::AO__atomic_max_fetch:
547 case AtomicExpr::AO__scoped_atomic_max_fetch:
548 Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT;
549 break;
550 case AtomicExpr::AO__atomic_min_fetch:
551 case AtomicExpr::AO__scoped_atomic_min_fetch:
552 Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT;
553 break;
554 }
555 llvm::Value *Cmp = Builder.CreateICmp(Pred, OldVal, RHS, "tst");
556 return Builder.CreateSelect(Cmp, OldVal, RHS, "newval");
557}
558
560 Address Ptr, Address Val1, Address Val2,
561 Address ExpectedResult, llvm::Value *IsWeak,
562 llvm::Value *FailureOrder, uint64_t Size,
563 llvm::AtomicOrdering Order,
564 llvm::SyncScope::ID Scope) {
565 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
566 bool PostOpMinMax = false;
567 unsigned PostOp = 0;
568
569 switch (E->getOp()) {
570 case AtomicExpr::AO__c11_atomic_init:
571 case AtomicExpr::AO__opencl_atomic_init:
572 llvm_unreachable("Already handled!");
573
574 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
575 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
576 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
577 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
578 ExpectedResult, FailureOrder, Size, Order,
579 Scope);
580 return;
581 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
582 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
583 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
584 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
585 ExpectedResult, FailureOrder, Size, Order,
586 Scope);
587 return;
588 case AtomicExpr::AO__atomic_compare_exchange:
589 case AtomicExpr::AO__atomic_compare_exchange_n:
590 case AtomicExpr::AO__scoped_atomic_compare_exchange:
591 case AtomicExpr::AO__scoped_atomic_compare_exchange_n: {
592 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
593 emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
594 Val1, Val2, ExpectedResult, FailureOrder,
595 Size, Order, Scope);
596 } else {
597 // Create all the relevant BB's
598 llvm::BasicBlock *StrongBB =
599 CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
600 llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
601 llvm::BasicBlock *ContBB =
602 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
603
604 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
605 SI->addCase(CGF.Builder.getInt1(false), StrongBB);
606
607 CGF.Builder.SetInsertPoint(StrongBB);
608 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
609 ExpectedResult, FailureOrder, Size, Order,
610 Scope);
611 CGF.Builder.CreateBr(ContBB);
612
613 CGF.Builder.SetInsertPoint(WeakBB);
614 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
615 ExpectedResult, FailureOrder, Size, Order,
616 Scope);
617 CGF.Builder.CreateBr(ContBB);
618
619 CGF.Builder.SetInsertPoint(ContBB);
620 }
621 return;
622 }
623 case AtomicExpr::AO__c11_atomic_load:
624 case AtomicExpr::AO__opencl_atomic_load:
625 case AtomicExpr::AO__hip_atomic_load:
626 case AtomicExpr::AO__atomic_load_n:
627 case AtomicExpr::AO__atomic_load:
628 case AtomicExpr::AO__scoped_atomic_load_n:
629 case AtomicExpr::AO__scoped_atomic_load: {
630 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
631 Load->setAtomic(Order, Scope);
632 Load->setVolatile(E->isVolatile());
633 CGF.maybeAttachRangeForLoad(Load, E->getValueType(), E->getExprLoc());
634 auto *I = CGF.Builder.CreateStore(Load, Dest);
635 CGF.addInstToCurrentSourceAtom(I, Load);
636 return;
637 }
638
639 case AtomicExpr::AO__c11_atomic_store:
640 case AtomicExpr::AO__opencl_atomic_store:
641 case AtomicExpr::AO__hip_atomic_store:
642 case AtomicExpr::AO__atomic_store:
643 case AtomicExpr::AO__atomic_store_n:
644 case AtomicExpr::AO__scoped_atomic_store:
645 case AtomicExpr::AO__scoped_atomic_store_n: {
646 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
647 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
648 Store->setAtomic(Order, Scope);
649 Store->setVolatile(E->isVolatile());
650 CGF.addInstToCurrentSourceAtom(Store, LoadVal1);
651 return;
652 }
653
654 case AtomicExpr::AO__c11_atomic_exchange:
655 case AtomicExpr::AO__hip_atomic_exchange:
656 case AtomicExpr::AO__opencl_atomic_exchange:
657 case AtomicExpr::AO__atomic_exchange_n:
658 case AtomicExpr::AO__atomic_exchange:
659 case AtomicExpr::AO__scoped_atomic_exchange_n:
660 case AtomicExpr::AO__scoped_atomic_exchange:
661 Op = llvm::AtomicRMWInst::Xchg;
662 break;
663
664 case AtomicExpr::AO__atomic_add_fetch:
665 case AtomicExpr::AO__scoped_atomic_add_fetch:
666 PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd
667 : llvm::Instruction::Add;
668 [[fallthrough]];
669 case AtomicExpr::AO__c11_atomic_fetch_add:
670 case AtomicExpr::AO__hip_atomic_fetch_add:
671 case AtomicExpr::AO__opencl_atomic_fetch_add:
672 case AtomicExpr::AO__atomic_fetch_add:
673 case AtomicExpr::AO__scoped_atomic_fetch_add:
674 Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd
675 : llvm::AtomicRMWInst::Add;
676 break;
677
678 case AtomicExpr::AO__atomic_sub_fetch:
679 case AtomicExpr::AO__scoped_atomic_sub_fetch:
680 PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FSub
681 : llvm::Instruction::Sub;
682 [[fallthrough]];
683 case AtomicExpr::AO__c11_atomic_fetch_sub:
684 case AtomicExpr::AO__hip_atomic_fetch_sub:
685 case AtomicExpr::AO__opencl_atomic_fetch_sub:
686 case AtomicExpr::AO__atomic_fetch_sub:
687 case AtomicExpr::AO__scoped_atomic_fetch_sub:
688 Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub
689 : llvm::AtomicRMWInst::Sub;
690 break;
691
692 case AtomicExpr::AO__atomic_min_fetch:
693 case AtomicExpr::AO__scoped_atomic_min_fetch:
694 PostOpMinMax = true;
695 [[fallthrough]];
696 case AtomicExpr::AO__c11_atomic_fetch_min:
697 case AtomicExpr::AO__hip_atomic_fetch_min:
698 case AtomicExpr::AO__opencl_atomic_fetch_min:
699 case AtomicExpr::AO__atomic_fetch_min:
700 case AtomicExpr::AO__scoped_atomic_fetch_min:
701 Op = E->getValueType()->isFloatingType()
702 ? llvm::AtomicRMWInst::FMin
703 : (E->getValueType()->isSignedIntegerType()
704 ? llvm::AtomicRMWInst::Min
705 : llvm::AtomicRMWInst::UMin);
706 break;
707
708 case AtomicExpr::AO__atomic_max_fetch:
709 case AtomicExpr::AO__scoped_atomic_max_fetch:
710 PostOpMinMax = true;
711 [[fallthrough]];
712 case AtomicExpr::AO__c11_atomic_fetch_max:
713 case AtomicExpr::AO__hip_atomic_fetch_max:
714 case AtomicExpr::AO__opencl_atomic_fetch_max:
715 case AtomicExpr::AO__atomic_fetch_max:
716 case AtomicExpr::AO__scoped_atomic_fetch_max:
717 Op = E->getValueType()->isFloatingType()
718 ? llvm::AtomicRMWInst::FMax
719 : (E->getValueType()->isSignedIntegerType()
720 ? llvm::AtomicRMWInst::Max
721 : llvm::AtomicRMWInst::UMax);
722 break;
723
724 case AtomicExpr::AO__atomic_and_fetch:
725 case AtomicExpr::AO__scoped_atomic_and_fetch:
726 PostOp = llvm::Instruction::And;
727 [[fallthrough]];
728 case AtomicExpr::AO__c11_atomic_fetch_and:
729 case AtomicExpr::AO__hip_atomic_fetch_and:
730 case AtomicExpr::AO__opencl_atomic_fetch_and:
731 case AtomicExpr::AO__atomic_fetch_and:
732 case AtomicExpr::AO__scoped_atomic_fetch_and:
733 Op = llvm::AtomicRMWInst::And;
734 break;
735
736 case AtomicExpr::AO__atomic_or_fetch:
737 case AtomicExpr::AO__scoped_atomic_or_fetch:
738 PostOp = llvm::Instruction::Or;
739 [[fallthrough]];
740 case AtomicExpr::AO__c11_atomic_fetch_or:
741 case AtomicExpr::AO__hip_atomic_fetch_or:
742 case AtomicExpr::AO__opencl_atomic_fetch_or:
743 case AtomicExpr::AO__atomic_fetch_or:
744 case AtomicExpr::AO__scoped_atomic_fetch_or:
745 Op = llvm::AtomicRMWInst::Or;
746 break;
747
748 case AtomicExpr::AO__atomic_xor_fetch:
749 case AtomicExpr::AO__scoped_atomic_xor_fetch:
750 PostOp = llvm::Instruction::Xor;
751 [[fallthrough]];
752 case AtomicExpr::AO__c11_atomic_fetch_xor:
753 case AtomicExpr::AO__hip_atomic_fetch_xor:
754 case AtomicExpr::AO__opencl_atomic_fetch_xor:
755 case AtomicExpr::AO__atomic_fetch_xor:
756 case AtomicExpr::AO__scoped_atomic_fetch_xor:
757 Op = llvm::AtomicRMWInst::Xor;
758 break;
759
760 case AtomicExpr::AO__atomic_nand_fetch:
761 case AtomicExpr::AO__scoped_atomic_nand_fetch:
762 PostOp = llvm::Instruction::And; // the NOT is special cased below
763 [[fallthrough]];
764 case AtomicExpr::AO__c11_atomic_fetch_nand:
765 case AtomicExpr::AO__atomic_fetch_nand:
766 case AtomicExpr::AO__scoped_atomic_fetch_nand:
767 Op = llvm::AtomicRMWInst::Nand;
768 break;
769
770 case AtomicExpr::AO__atomic_test_and_set: {
771 llvm::AtomicRMWInst *RMWI =
772 CGF.emitAtomicRMWInst(llvm::AtomicRMWInst::Xchg, Ptr,
773 CGF.Builder.getInt8(1), Order, Scope, E);
774 RMWI->setVolatile(E->isVolatile());
775 llvm::Value *Result = CGF.EmitToMemory(
776 CGF.Builder.CreateIsNotNull(RMWI, "tobool"), E->getType());
777 auto *I = CGF.Builder.CreateStore(Result, Dest);
778 CGF.addInstToCurrentSourceAtom(I, Result);
779 return;
780 }
781
782 case AtomicExpr::AO__atomic_clear: {
783 llvm::StoreInst *Store =
784 CGF.Builder.CreateStore(CGF.Builder.getInt8(0), Ptr);
785 Store->setAtomic(Order, Scope);
786 Store->setVolatile(E->isVolatile());
787 CGF.addInstToCurrentSourceAtom(Store, nullptr);
788 return;
789 }
790 }
791
792 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
793 llvm::AtomicRMWInst *RMWI =
794 CGF.emitAtomicRMWInst(Op, Ptr, LoadVal1, Order, Scope, E);
795 RMWI->setVolatile(E->isVolatile());
796
797 // For __atomic_*_fetch operations, perform the operation again to
798 // determine the value which was written.
799 llvm::Value *Result = RMWI;
800 if (PostOpMinMax)
801 Result = EmitPostAtomicMinMax(CGF.Builder, E->getOp(),
803 RMWI, LoadVal1);
804 else if (PostOp)
805 Result = CGF.Builder.CreateBinOp((llvm::Instruction::BinaryOps)PostOp, RMWI,
806 LoadVal1);
807 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch ||
808 E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch)
809 Result = CGF.Builder.CreateNot(Result);
810 auto *I = CGF.Builder.CreateStore(Result, Dest);
811 CGF.addInstToCurrentSourceAtom(I, Result);
812}
813
814// This function emits any expression (scalar, complex, or aggregate)
815// into a temporary alloca.
816static Address
818 Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
819 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
820 /*Init*/ true);
821 return DeclPtr;
822}
823
825 Address Ptr, Address Val1, Address Val2,
826 Address OriginalVal1, llvm::Value *IsWeak,
827 llvm::Value *FailureOrder, uint64_t Size,
828 llvm::AtomicOrdering Order, llvm::Value *Scope) {
829 auto ScopeModel = Expr->getScopeModel();
830
831 // LLVM atomic instructions always have sync scope. If clang atomic
832 // expression has no scope operand, use default LLVM sync scope.
833 if (!ScopeModel) {
834 llvm::SyncScope::ID SS;
835 if (CGF.getLangOpts().OpenCL)
836 // OpenCL approach is: "The functions that do not have memory_scope
837 // argument have the same semantics as the corresponding functions with
838 // the memory_scope argument set to memory_scope_device." See ref.:
839 // https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html#atomic-functions
842 Order, CGF.getLLVMContext());
843 else
844 SS = llvm::SyncScope::System;
845 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
846 FailureOrder, Size, Order, SS);
847 return;
848 }
849
850 // Handle constant scope.
851 if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) {
852 auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID(
853 CGF.CGM.getLangOpts(), ScopeModel->map(SC->getZExtValue()),
854 Order, CGF.CGM.getLLVMContext());
855 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
856 FailureOrder, Size, Order, SCID);
857 return;
858 }
859
860 // Handle non-constant scope.
861 auto &Builder = CGF.Builder;
862 auto Scopes = ScopeModel->getRuntimeValues();
863 llvm::DenseMap<unsigned, llvm::BasicBlock *> BB;
864 for (auto S : Scopes)
865 BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn);
866
867 llvm::BasicBlock *ContBB =
868 CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn);
869
870 auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false);
871 // If unsupported sync scope is encountered at run time, assume a fallback
872 // sync scope value.
873 auto FallBack = ScopeModel->getFallBackValue();
874 llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]);
875 for (auto S : Scopes) {
876 auto *B = BB[S];
877 if (S != FallBack)
878 SI->addCase(Builder.getInt32(S), B);
879
880 Builder.SetInsertPoint(B);
881 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
882 FailureOrder, Size, Order,
884 CGF.CGM.getLangOpts(), ScopeModel->map(S), Order,
885 CGF.getLLVMContext()));
886 Builder.CreateBr(ContBB);
887 }
888
889 Builder.SetInsertPoint(ContBB);
890}
891
894
895 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
896 QualType MemTy = AtomicTy;
897 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
898 MemTy = AT->getValueType();
899 llvm::Value *IsWeak = nullptr, *OrderFail = nullptr;
900
901 Address Val1 = Address::invalid();
902 Address Val2 = Address::invalid();
903 Address Dest = Address::invalid();
905
906 if (E->getOp() == AtomicExpr::AO__c11_atomic_init ||
907 E->getOp() == AtomicExpr::AO__opencl_atomic_init) {
908 LValue lvalue = MakeAddrLValue(Ptr, AtomicTy);
909 EmitAtomicInit(E->getVal1(), lvalue);
910 return RValue::get(nullptr);
911 }
912
913 auto TInfo = getContext().getTypeInfoInChars(AtomicTy);
914 uint64_t Size = TInfo.Width.getQuantity();
915 unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth();
916
917 CharUnits MaxInlineWidth =
918 getContext().toCharUnitsFromBits(MaxInlineWidthInBits);
919 DiagnosticsEngine &Diags = CGM.getDiags();
920 bool Misaligned = !Ptr.getAlignment().isMultipleOf(TInfo.Width);
921 bool Oversized = getContext().toBits(TInfo.Width) > MaxInlineWidthInBits;
922 if (Misaligned) {
923 Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned)
924 << (int)TInfo.Width.getQuantity()
925 << (int)Ptr.getAlignment().getQuantity();
926 }
927 if (Oversized) {
928 Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_oversized)
929 << (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity();
930 }
931
932 llvm::Value *Order = EmitScalarExpr(E->getOrder());
933 llvm::Value *Scope =
934 E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr;
935 bool ShouldCastToIntPtrTy = true;
936
937 switch (E->getOp()) {
938 case AtomicExpr::AO__c11_atomic_init:
939 case AtomicExpr::AO__opencl_atomic_init:
940 llvm_unreachable("Already handled above with EmitAtomicInit!");
941
942 case AtomicExpr::AO__atomic_load_n:
943 case AtomicExpr::AO__scoped_atomic_load_n:
944 case AtomicExpr::AO__c11_atomic_load:
945 case AtomicExpr::AO__opencl_atomic_load:
946 case AtomicExpr::AO__hip_atomic_load:
947 case AtomicExpr::AO__atomic_test_and_set:
948 case AtomicExpr::AO__atomic_clear:
949 break;
950
951 case AtomicExpr::AO__atomic_load:
952 case AtomicExpr::AO__scoped_atomic_load:
954 break;
955
956 case AtomicExpr::AO__atomic_store:
957 case AtomicExpr::AO__scoped_atomic_store:
959 break;
960
961 case AtomicExpr::AO__atomic_exchange:
962 case AtomicExpr::AO__scoped_atomic_exchange:
965 break;
966
967 case AtomicExpr::AO__atomic_compare_exchange:
968 case AtomicExpr::AO__atomic_compare_exchange_n:
969 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
970 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
971 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
972 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
973 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
974 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
975 case AtomicExpr::AO__scoped_atomic_compare_exchange:
976 case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
978 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange ||
979 E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange)
981 else
982 Val2 = EmitValToTemp(*this, E->getVal2());
983 OrderFail = EmitScalarExpr(E->getOrderFail());
984 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n ||
985 E->getOp() == AtomicExpr::AO__atomic_compare_exchange ||
986 E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange_n ||
987 E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange)
988 IsWeak = EmitScalarExpr(E->getWeak());
989 break;
990
991 case AtomicExpr::AO__c11_atomic_fetch_add:
992 case AtomicExpr::AO__c11_atomic_fetch_sub:
993 case AtomicExpr::AO__hip_atomic_fetch_add:
994 case AtomicExpr::AO__hip_atomic_fetch_sub:
995 case AtomicExpr::AO__opencl_atomic_fetch_add:
996 case AtomicExpr::AO__opencl_atomic_fetch_sub:
997 if (MemTy->isPointerType()) {
998 // For pointer arithmetic, we're required to do a bit of math:
999 // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
1000 // ... but only for the C11 builtins. The GNU builtins expect the
1001 // user to multiply by sizeof(T).
1002 QualType Val1Ty = E->getVal1()->getType();
1003 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
1004 CharUnits PointeeIncAmt =
1005 getContext().getTypeSizeInChars(MemTy->getPointeeType());
1006 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
1007 auto Temp = CreateMemTemp(Val1Ty, ".atomictmp");
1008 Val1 = Temp;
1009 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty));
1010 break;
1011 }
1012 [[fallthrough]];
1013 case AtomicExpr::AO__atomic_fetch_add:
1014 case AtomicExpr::AO__atomic_fetch_max:
1015 case AtomicExpr::AO__atomic_fetch_min:
1016 case AtomicExpr::AO__atomic_fetch_sub:
1017 case AtomicExpr::AO__atomic_add_fetch:
1018 case AtomicExpr::AO__atomic_max_fetch:
1019 case AtomicExpr::AO__atomic_min_fetch:
1020 case AtomicExpr::AO__atomic_sub_fetch:
1021 case AtomicExpr::AO__c11_atomic_fetch_max:
1022 case AtomicExpr::AO__c11_atomic_fetch_min:
1023 case AtomicExpr::AO__opencl_atomic_fetch_max:
1024 case AtomicExpr::AO__opencl_atomic_fetch_min:
1025 case AtomicExpr::AO__hip_atomic_fetch_max:
1026 case AtomicExpr::AO__hip_atomic_fetch_min:
1027 case AtomicExpr::AO__scoped_atomic_fetch_add:
1028 case AtomicExpr::AO__scoped_atomic_fetch_max:
1029 case AtomicExpr::AO__scoped_atomic_fetch_min:
1030 case AtomicExpr::AO__scoped_atomic_fetch_sub:
1031 case AtomicExpr::AO__scoped_atomic_add_fetch:
1032 case AtomicExpr::AO__scoped_atomic_max_fetch:
1033 case AtomicExpr::AO__scoped_atomic_min_fetch:
1034 case AtomicExpr::AO__scoped_atomic_sub_fetch:
1035 ShouldCastToIntPtrTy = !MemTy->isFloatingType();
1036 [[fallthrough]];
1037
1038 case AtomicExpr::AO__atomic_fetch_and:
1039 case AtomicExpr::AO__atomic_fetch_nand:
1040 case AtomicExpr::AO__atomic_fetch_or:
1041 case AtomicExpr::AO__atomic_fetch_xor:
1042 case AtomicExpr::AO__atomic_and_fetch:
1043 case AtomicExpr::AO__atomic_nand_fetch:
1044 case AtomicExpr::AO__atomic_or_fetch:
1045 case AtomicExpr::AO__atomic_xor_fetch:
1046 case AtomicExpr::AO__atomic_store_n:
1047 case AtomicExpr::AO__atomic_exchange_n:
1048 case AtomicExpr::AO__c11_atomic_fetch_and:
1049 case AtomicExpr::AO__c11_atomic_fetch_nand:
1050 case AtomicExpr::AO__c11_atomic_fetch_or:
1051 case AtomicExpr::AO__c11_atomic_fetch_xor:
1052 case AtomicExpr::AO__c11_atomic_store:
1053 case AtomicExpr::AO__c11_atomic_exchange:
1054 case AtomicExpr::AO__hip_atomic_fetch_and:
1055 case AtomicExpr::AO__hip_atomic_fetch_or:
1056 case AtomicExpr::AO__hip_atomic_fetch_xor:
1057 case AtomicExpr::AO__hip_atomic_store:
1058 case AtomicExpr::AO__hip_atomic_exchange:
1059 case AtomicExpr::AO__opencl_atomic_fetch_and:
1060 case AtomicExpr::AO__opencl_atomic_fetch_or:
1061 case AtomicExpr::AO__opencl_atomic_fetch_xor:
1062 case AtomicExpr::AO__opencl_atomic_store:
1063 case AtomicExpr::AO__opencl_atomic_exchange:
1064 case AtomicExpr::AO__scoped_atomic_fetch_and:
1065 case AtomicExpr::AO__scoped_atomic_fetch_nand:
1066 case AtomicExpr::AO__scoped_atomic_fetch_or:
1067 case AtomicExpr::AO__scoped_atomic_fetch_xor:
1068 case AtomicExpr::AO__scoped_atomic_and_fetch:
1069 case AtomicExpr::AO__scoped_atomic_nand_fetch:
1070 case AtomicExpr::AO__scoped_atomic_or_fetch:
1071 case AtomicExpr::AO__scoped_atomic_xor_fetch:
1072 case AtomicExpr::AO__scoped_atomic_store_n:
1073 case AtomicExpr::AO__scoped_atomic_exchange_n:
1074 Val1 = EmitValToTemp(*this, E->getVal1());
1075 break;
1076 }
1077
1078 QualType RValTy = E->getType().getUnqualifiedType();
1079
1080 // The inlined atomics only function on iN types, where N is a power of 2. We
1081 // need to make sure (via temporaries if necessary) that all incoming values
1082 // are compatible.
1083 LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy);
1084 AtomicInfo Atomics(*this, AtomicVal);
1085
1086 Address OriginalVal1 = Val1;
1087 if (ShouldCastToIntPtrTy) {
1088 Ptr = Atomics.castToAtomicIntPointer(Ptr);
1089 if (Val1.isValid())
1090 Val1 = Atomics.convertToAtomicIntPointer(Val1);
1091 if (Val2.isValid())
1092 Val2 = Atomics.convertToAtomicIntPointer(Val2);
1093 }
1094 if (Dest.isValid()) {
1095 if (ShouldCastToIntPtrTy)
1096 Dest = Atomics.castToAtomicIntPointer(Dest);
1097 } else if (E->isCmpXChg())
1098 Dest = CreateMemTemp(RValTy, "cmpxchg.bool");
1099 else if (!RValTy->isVoidType()) {
1100 Dest = Atomics.CreateTempAlloca();
1101 if (ShouldCastToIntPtrTy)
1102 Dest = Atomics.castToAtomicIntPointer(Dest);
1103 }
1104
1105 bool PowerOf2Size = (Size & (Size - 1)) == 0;
1106 bool UseLibcall = !PowerOf2Size || (Size > 16);
1107
1108 // For atomics larger than 16 bytes, emit a libcall from the frontend. This
1109 // avoids the overhead of dealing with excessively-large value types in IR.
1110 // Non-power-of-2 values also lower to libcall here, as they are not currently
1111 // permitted in IR instructions (although that constraint could be relaxed in
1112 // the future). For other cases where a libcall is required on a given
1113 // platform, we let the backend handle it (this includes handling for all of
1114 // the size-optimized libcall variants, which are only valid up to 16 bytes.)
1115 //
1116 // See: https://llvm.org/docs/Atomics.html#libcalls-atomic
1117 if (UseLibcall) {
1118 CallArgList Args;
1119 // For non-optimized library calls, the size is the first parameter.
1120 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
1121 getContext().getSizeType());
1122
1123 // The atomic address is the second parameter.
1124 // The OpenCL atomic library functions only accept pointer arguments to
1125 // generic address space.
1126 auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) {
1127 if (!E->isOpenCL())
1128 return V;
1129 auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace();
1130 if (AS == LangAS::opencl_generic)
1131 return V;
1132 auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic);
1133 auto *DestType = llvm::PointerType::get(getLLVMContext(), DestAS);
1134
1135 return getTargetHooks().performAddrSpaceCast(*this, V, AS, DestType,
1136 false);
1137 };
1138
1139 Args.add(RValue::get(CastToGenericAddrSpace(Ptr.emitRawPointer(*this),
1140 E->getPtr()->getType())),
1142
1143 // The next 1-3 parameters are op-dependent.
1144 std::string LibCallName;
1145 QualType RetTy;
1146 bool HaveRetTy = false;
1147 switch (E->getOp()) {
1148 case AtomicExpr::AO__c11_atomic_init:
1149 case AtomicExpr::AO__opencl_atomic_init:
1150 llvm_unreachable("Already handled!");
1151
1152 // There is only one libcall for compare an exchange, because there is no
1153 // optimisation benefit possible from a libcall version of a weak compare
1154 // and exchange.
1155 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
1156 // void *desired, int success, int failure)
1157 case AtomicExpr::AO__atomic_compare_exchange:
1158 case AtomicExpr::AO__atomic_compare_exchange_n:
1159 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1160 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1161 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
1162 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
1163 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
1164 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
1165 case AtomicExpr::AO__scoped_atomic_compare_exchange:
1166 case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
1167 LibCallName = "__atomic_compare_exchange";
1168 RetTy = getContext().BoolTy;
1169 HaveRetTy = true;
1170 Args.add(RValue::get(CastToGenericAddrSpace(Val1.emitRawPointer(*this),
1171 E->getVal1()->getType())),
1173 Args.add(RValue::get(CastToGenericAddrSpace(Val2.emitRawPointer(*this),
1174 E->getVal2()->getType())),
1176 Args.add(RValue::get(Order), getContext().IntTy);
1177 Order = OrderFail;
1178 break;
1179 // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
1180 // int order)
1181 case AtomicExpr::AO__atomic_exchange:
1182 case AtomicExpr::AO__atomic_exchange_n:
1183 case AtomicExpr::AO__c11_atomic_exchange:
1184 case AtomicExpr::AO__hip_atomic_exchange:
1185 case AtomicExpr::AO__opencl_atomic_exchange:
1186 case AtomicExpr::AO__scoped_atomic_exchange:
1187 case AtomicExpr::AO__scoped_atomic_exchange_n:
1188 LibCallName = "__atomic_exchange";
1189 Args.add(RValue::get(CastToGenericAddrSpace(Val1.emitRawPointer(*this),
1190 E->getVal1()->getType())),
1192 break;
1193 // void __atomic_store(size_t size, void *mem, void *val, int order)
1194 case AtomicExpr::AO__atomic_store:
1195 case AtomicExpr::AO__atomic_store_n:
1196 case AtomicExpr::AO__c11_atomic_store:
1197 case AtomicExpr::AO__hip_atomic_store:
1198 case AtomicExpr::AO__opencl_atomic_store:
1199 case AtomicExpr::AO__scoped_atomic_store:
1200 case AtomicExpr::AO__scoped_atomic_store_n:
1201 LibCallName = "__atomic_store";
1202 RetTy = getContext().VoidTy;
1203 HaveRetTy = true;
1204 Args.add(RValue::get(CastToGenericAddrSpace(Val1.emitRawPointer(*this),
1205 E->getVal1()->getType())),
1207 break;
1208 // void __atomic_load(size_t size, void *mem, void *return, int order)
1209 case AtomicExpr::AO__atomic_load:
1210 case AtomicExpr::AO__atomic_load_n:
1211 case AtomicExpr::AO__c11_atomic_load:
1212 case AtomicExpr::AO__hip_atomic_load:
1213 case AtomicExpr::AO__opencl_atomic_load:
1214 case AtomicExpr::AO__scoped_atomic_load:
1215 case AtomicExpr::AO__scoped_atomic_load_n:
1216 LibCallName = "__atomic_load";
1217 break;
1218 case AtomicExpr::AO__atomic_add_fetch:
1219 case AtomicExpr::AO__scoped_atomic_add_fetch:
1220 case AtomicExpr::AO__atomic_fetch_add:
1221 case AtomicExpr::AO__c11_atomic_fetch_add:
1222 case AtomicExpr::AO__hip_atomic_fetch_add:
1223 case AtomicExpr::AO__opencl_atomic_fetch_add:
1224 case AtomicExpr::AO__scoped_atomic_fetch_add:
1225 case AtomicExpr::AO__atomic_and_fetch:
1226 case AtomicExpr::AO__scoped_atomic_and_fetch:
1227 case AtomicExpr::AO__atomic_fetch_and:
1228 case AtomicExpr::AO__c11_atomic_fetch_and:
1229 case AtomicExpr::AO__hip_atomic_fetch_and:
1230 case AtomicExpr::AO__opencl_atomic_fetch_and:
1231 case AtomicExpr::AO__scoped_atomic_fetch_and:
1232 case AtomicExpr::AO__atomic_or_fetch:
1233 case AtomicExpr::AO__scoped_atomic_or_fetch:
1234 case AtomicExpr::AO__atomic_fetch_or:
1235 case AtomicExpr::AO__c11_atomic_fetch_or:
1236 case AtomicExpr::AO__hip_atomic_fetch_or:
1237 case AtomicExpr::AO__opencl_atomic_fetch_or:
1238 case AtomicExpr::AO__scoped_atomic_fetch_or:
1239 case AtomicExpr::AO__atomic_sub_fetch:
1240 case AtomicExpr::AO__scoped_atomic_sub_fetch:
1241 case AtomicExpr::AO__atomic_fetch_sub:
1242 case AtomicExpr::AO__c11_atomic_fetch_sub:
1243 case AtomicExpr::AO__hip_atomic_fetch_sub:
1244 case AtomicExpr::AO__opencl_atomic_fetch_sub:
1245 case AtomicExpr::AO__scoped_atomic_fetch_sub:
1246 case AtomicExpr::AO__atomic_xor_fetch:
1247 case AtomicExpr::AO__scoped_atomic_xor_fetch:
1248 case AtomicExpr::AO__atomic_fetch_xor:
1249 case AtomicExpr::AO__c11_atomic_fetch_xor:
1250 case AtomicExpr::AO__hip_atomic_fetch_xor:
1251 case AtomicExpr::AO__opencl_atomic_fetch_xor:
1252 case AtomicExpr::AO__scoped_atomic_fetch_xor:
1253 case AtomicExpr::AO__atomic_nand_fetch:
1254 case AtomicExpr::AO__atomic_fetch_nand:
1255 case AtomicExpr::AO__c11_atomic_fetch_nand:
1256 case AtomicExpr::AO__scoped_atomic_fetch_nand:
1257 case AtomicExpr::AO__scoped_atomic_nand_fetch:
1258 case AtomicExpr::AO__atomic_min_fetch:
1259 case AtomicExpr::AO__atomic_fetch_min:
1260 case AtomicExpr::AO__c11_atomic_fetch_min:
1261 case AtomicExpr::AO__hip_atomic_fetch_min:
1262 case AtomicExpr::AO__opencl_atomic_fetch_min:
1263 case AtomicExpr::AO__scoped_atomic_fetch_min:
1264 case AtomicExpr::AO__scoped_atomic_min_fetch:
1265 case AtomicExpr::AO__atomic_max_fetch:
1266 case AtomicExpr::AO__atomic_fetch_max:
1267 case AtomicExpr::AO__c11_atomic_fetch_max:
1268 case AtomicExpr::AO__hip_atomic_fetch_max:
1269 case AtomicExpr::AO__opencl_atomic_fetch_max:
1270 case AtomicExpr::AO__scoped_atomic_fetch_max:
1271 case AtomicExpr::AO__scoped_atomic_max_fetch:
1272 case AtomicExpr::AO__atomic_test_and_set:
1273 case AtomicExpr::AO__atomic_clear:
1274 llvm_unreachable("Integral atomic operations always become atomicrmw!");
1275 }
1276
1277 if (E->isOpenCL()) {
1278 LibCallName =
1279 std::string("__opencl") + StringRef(LibCallName).drop_front(1).str();
1280 }
1281 // By default, assume we return a value of the atomic type.
1282 if (!HaveRetTy) {
1283 // Value is returned through parameter before the order.
1284 RetTy = getContext().VoidTy;
1285 Args.add(RValue::get(
1286 CastToGenericAddrSpace(Dest.emitRawPointer(*this), RetTy)),
1288 }
1289 // Order is always the last parameter.
1290 Args.add(RValue::get(Order),
1291 getContext().IntTy);
1292 if (E->isOpenCL())
1294
1295 RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
1296 // The value is returned directly from the libcall.
1297 if (E->isCmpXChg())
1298 return Res;
1299
1300 if (RValTy->isVoidType())
1301 return RValue::get(nullptr);
1302
1304 RValTy, E->getExprLoc());
1305 }
1306
1307 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
1308 E->getOp() == AtomicExpr::AO__opencl_atomic_store ||
1309 E->getOp() == AtomicExpr::AO__hip_atomic_store ||
1310 E->getOp() == AtomicExpr::AO__atomic_store ||
1311 E->getOp() == AtomicExpr::AO__atomic_store_n ||
1312 E->getOp() == AtomicExpr::AO__scoped_atomic_store ||
1313 E->getOp() == AtomicExpr::AO__scoped_atomic_store_n ||
1314 E->getOp() == AtomicExpr::AO__atomic_clear;
1315 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
1316 E->getOp() == AtomicExpr::AO__opencl_atomic_load ||
1317 E->getOp() == AtomicExpr::AO__hip_atomic_load ||
1318 E->getOp() == AtomicExpr::AO__atomic_load ||
1319 E->getOp() == AtomicExpr::AO__atomic_load_n ||
1320 E->getOp() == AtomicExpr::AO__scoped_atomic_load ||
1321 E->getOp() == AtomicExpr::AO__scoped_atomic_load_n;
1322
1323 if (isa<llvm::ConstantInt>(Order)) {
1324 auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1325 // We should not ever get to a case where the ordering isn't a valid C ABI
1326 // value, but it's hard to enforce that in general.
1327 if (llvm::isValidAtomicOrderingCABI(ord))
1328 switch ((llvm::AtomicOrderingCABI)ord) {
1329 case llvm::AtomicOrderingCABI::relaxed:
1330 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1331 OrderFail, Size, llvm::AtomicOrdering::Monotonic, Scope);
1332 break;
1333 case llvm::AtomicOrderingCABI::consume:
1334 case llvm::AtomicOrderingCABI::acquire:
1335 if (IsStore)
1336 break; // Avoid crashing on code with undefined behavior
1337 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1338 OrderFail, Size, llvm::AtomicOrdering::Acquire, Scope);
1339 break;
1340 case llvm::AtomicOrderingCABI::release:
1341 if (IsLoad)
1342 break; // Avoid crashing on code with undefined behavior
1343 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1344 OrderFail, Size, llvm::AtomicOrdering::Release, Scope);
1345 break;
1346 case llvm::AtomicOrderingCABI::acq_rel:
1347 if (IsLoad || IsStore)
1348 break; // Avoid crashing on code with undefined behavior
1349 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1350 OrderFail, Size, llvm::AtomicOrdering::AcquireRelease,
1351 Scope);
1352 break;
1353 case llvm::AtomicOrderingCABI::seq_cst:
1354 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1355 OrderFail, Size,
1356 llvm::AtomicOrdering::SequentiallyConsistent, Scope);
1357 break;
1358 }
1359 if (RValTy->isVoidType())
1360 return RValue::get(nullptr);
1361
1363 RValTy, E->getExprLoc());
1364 }
1365
1366 // Long case, when Order isn't obviously constant.
1367
1368 // Create all the relevant BB's
1369 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
1370 *ReleaseBB = nullptr, *AcqRelBB = nullptr,
1371 *SeqCstBB = nullptr;
1372 MonotonicBB = createBasicBlock("monotonic", CurFn);
1373 if (!IsStore)
1374 AcquireBB = createBasicBlock("acquire", CurFn);
1375 if (!IsLoad)
1376 ReleaseBB = createBasicBlock("release", CurFn);
1377 if (!IsLoad && !IsStore)
1378 AcqRelBB = createBasicBlock("acqrel", CurFn);
1379 SeqCstBB = createBasicBlock("seqcst", CurFn);
1380 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1381
1382 // Create the switch for the split
1383 // MonotonicBB is arbitrarily chosen as the default case; in practice, this
1384 // doesn't matter unless someone is crazy enough to use something that
1385 // doesn't fold to a constant for the ordering.
1386 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1387 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
1388
1389 // Emit all the different atomics
1390 Builder.SetInsertPoint(MonotonicBB);
1391 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak, OrderFail,
1392 Size, llvm::AtomicOrdering::Monotonic, Scope);
1393 Builder.CreateBr(ContBB);
1394 if (!IsStore) {
1395 Builder.SetInsertPoint(AcquireBB);
1396 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1397 OrderFail, Size, llvm::AtomicOrdering::Acquire, Scope);
1398 Builder.CreateBr(ContBB);
1399 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
1400 AcquireBB);
1401 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
1402 AcquireBB);
1403 }
1404 if (!IsLoad) {
1405 Builder.SetInsertPoint(ReleaseBB);
1406 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1407 OrderFail, Size, llvm::AtomicOrdering::Release, Scope);
1408 Builder.CreateBr(ContBB);
1409 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release),
1410 ReleaseBB);
1411 }
1412 if (!IsLoad && !IsStore) {
1413 Builder.SetInsertPoint(AcqRelBB);
1414 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak,
1415 OrderFail, Size, llvm::AtomicOrdering::AcquireRelease, Scope);
1416 Builder.CreateBr(ContBB);
1417 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel),
1418 AcqRelBB);
1419 }
1420 Builder.SetInsertPoint(SeqCstBB);
1421 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, OriginalVal1, IsWeak, OrderFail,
1422 Size, llvm::AtomicOrdering::SequentiallyConsistent, Scope);
1423 Builder.CreateBr(ContBB);
1424 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
1425 SeqCstBB);
1426
1427 // Cleanup and return
1428 Builder.SetInsertPoint(ContBB);
1429 if (RValTy->isVoidType())
1430 return RValue::get(nullptr);
1431
1432 assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits());
1434 RValTy, E->getExprLoc());
1435}
1436
1437Address AtomicInfo::castToAtomicIntPointer(Address addr) const {
1438 llvm::IntegerType *ty =
1439 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
1440 return addr.withElementType(ty);
1441}
1442
1443Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const {
1444 llvm::Type *Ty = Addr.getElementType();
1445 uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty);
1446 if (SourceSizeInBits != AtomicSizeInBits) {
1447 Address Tmp = CreateTempAlloca();
1449 Tmp.emitRawPointer(CGF), llvm::ConstantInt::get(CGF.Int8Ty, 0),
1450 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
1451 Tmp.getAlignment().getAsAlign());
1452
1453 CGF.Builder.CreateMemCpy(Tmp, Addr,
1454 std::min(AtomicSizeInBits, SourceSizeInBits) / 8);
1455 Addr = Tmp;
1456 }
1457
1458 return castToAtomicIntPointer(Addr);
1459}
1460
1461RValue AtomicInfo::convertAtomicTempToRValue(Address addr,
1462 AggValueSlot resultSlot,
1463 SourceLocation loc,
1464 bool asValue) const {
1465 if (LVal.isSimple()) {
1466 if (EvaluationKind == TEK_Aggregate)
1467 return resultSlot.asRValue();
1468
1469 // Drill into the padding structure if we have one.
1470 if (hasPadding())
1471 addr = CGF.Builder.CreateStructGEP(addr, 0);
1472
1473 // Otherwise, just convert the temporary to an r-value using the
1474 // normal conversion routine.
1475 return CGF.convertTempToRValue(addr, getValueType(), loc);
1476 }
1477 if (!asValue)
1478 // Get RValue from temp memory as atomic for non-simple lvalues
1479 return RValue::get(CGF.Builder.CreateLoad(addr));
1480 if (LVal.isBitField())
1481 return CGF.EmitLoadOfBitfieldLValue(
1482 LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(),
1483 LVal.getBaseInfo(), TBAAAccessInfo()), loc);
1484 if (LVal.isVectorElt())
1485 return CGF.EmitLoadOfLValue(
1486 LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(),
1487 LVal.getBaseInfo(), TBAAAccessInfo()), loc);
1488 assert(LVal.isExtVectorElt());
1489 return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
1490 addr, LVal.getExtVectorElts(), LVal.getType(),
1491 LVal.getBaseInfo(), TBAAAccessInfo()));
1492}
1493
1494/// Return true if \param ValTy is a type that should be casted to integer
1495/// around the atomic memory operation. If \param CmpXchg is true, then the
1496/// cast of a floating point type is made as that instruction can not have
1497/// floating point operands. TODO: Allow compare-and-exchange and FP - see
1498/// comment in AtomicExpandPass.cpp.
1499static bool shouldCastToInt(llvm::Type *ValTy, bool CmpXchg) {
1500 if (ValTy->isFloatingPointTy())
1501 return ValTy->isX86_FP80Ty() || CmpXchg;
1502 return !ValTy->isIntegerTy() && !ValTy->isPointerTy();
1503}
1504
1505RValue AtomicInfo::ConvertToValueOrAtomic(llvm::Value *Val,
1506 AggValueSlot ResultSlot,
1507 SourceLocation Loc, bool AsValue,
1508 bool CmpXchg) const {
1509 // Try not to in some easy cases.
1510 assert((Val->getType()->isIntegerTy() || Val->getType()->isPointerTy() ||
1511 Val->getType()->isIEEELikeFPTy()) &&
1512 "Expected integer, pointer or floating point value when converting "
1513 "result.");
1514 if (getEvaluationKind() == TEK_Scalar &&
1515 (((!LVal.isBitField() ||
1516 LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
1517 !hasPadding()) ||
1518 !AsValue)) {
1519 auto *ValTy = AsValue
1520 ? CGF.ConvertTypeForMem(ValueTy)
1521 : getAtomicAddress().getElementType();
1522 if (!shouldCastToInt(ValTy, CmpXchg)) {
1523 assert((!ValTy->isIntegerTy() || Val->getType() == ValTy) &&
1524 "Different integer types.");
1525 return RValue::get(CGF.EmitFromMemory(Val, ValueTy));
1526 }
1527 if (llvm::CastInst::isBitCastable(Val->getType(), ValTy))
1528 return RValue::get(CGF.Builder.CreateBitCast(Val, ValTy));
1529 }
1530
1531 // Create a temporary. This needs to be big enough to hold the
1532 // atomic integer.
1533 Address Temp = Address::invalid();
1534 bool TempIsVolatile = false;
1535 if (AsValue && getEvaluationKind() == TEK_Aggregate) {
1536 assert(!ResultSlot.isIgnored());
1537 Temp = ResultSlot.getAddress();
1538 TempIsVolatile = ResultSlot.isVolatile();
1539 } else {
1540 Temp = CreateTempAlloca();
1541 }
1542
1543 // Slam the integer into the temporary.
1544 Address CastTemp = castToAtomicIntPointer(Temp);
1545 CGF.Builder.CreateStore(Val, CastTemp)->setVolatile(TempIsVolatile);
1546
1547 return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue);
1548}
1549
1550void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1551 llvm::AtomicOrdering AO, bool) {
1552 // void __atomic_load(size_t size, void *mem, void *return, int order);
1553 CallArgList Args;
1554 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1555 Args.add(RValue::get(getAtomicPointer()), CGF.getContext().VoidPtrTy);
1556 Args.add(RValue::get(AddForLoaded), CGF.getContext().VoidPtrTy);
1557 Args.add(
1558 RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))),
1559 CGF.getContext().IntTy);
1560 emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
1561}
1562
1563llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1564 bool IsVolatile, bool CmpXchg) {
1565 // Okay, we're doing this natively.
1566 Address Addr = getAtomicAddress();
1567 if (shouldCastToInt(Addr.getElementType(), CmpXchg))
1568 Addr = castToAtomicIntPointer(Addr);
1569 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
1570 Load->setAtomic(AO);
1571
1572 // Other decoration.
1573 if (IsVolatile)
1574 Load->setVolatile(true);
1575 CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo());
1576 return Load;
1577}
1578
1579/// An LValue is a candidate for having its loads and stores be made atomic if
1580/// we are operating under /volatile:ms *and* the LValue itself is volatile and
1581/// performing such an operation can be performed without a libcall.
1583 if (!CGM.getLangOpts().MSVolatile) return false;
1584 AtomicInfo AI(*this, LV);
1585 bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
1586 // An atomic is inline if we don't need to use a libcall.
1587 bool AtomicIsInline = !AI.shouldUseLibcall();
1588 // MSVC doesn't seem to do this for types wider than a pointer.
1589 if (getContext().getTypeSize(LV.getType()) >
1590 getContext().getTypeSize(getContext().getIntPtrType()))
1591 return false;
1592 return IsVolatile && AtomicIsInline;
1593}
1594
1596 AggValueSlot Slot) {
1597 llvm::AtomicOrdering AO;
1598 bool IsVolatile = LV.isVolatileQualified();
1599 if (LV.getType()->isAtomicType()) {
1600 AO = llvm::AtomicOrdering::SequentiallyConsistent;
1601 } else {
1602 AO = llvm::AtomicOrdering::Acquire;
1603 IsVolatile = true;
1604 }
1605 return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
1606}
1607
1608RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
1609 bool AsValue, llvm::AtomicOrdering AO,
1610 bool IsVolatile) {
1611 // Check whether we should use a library call.
1612 if (shouldUseLibcall()) {
1613 Address TempAddr = Address::invalid();
1614 if (LVal.isSimple() && !ResultSlot.isIgnored()) {
1615 assert(getEvaluationKind() == TEK_Aggregate);
1616 TempAddr = ResultSlot.getAddress();
1617 } else
1618 TempAddr = CreateTempAlloca();
1619
1620 EmitAtomicLoadLibcall(TempAddr.emitRawPointer(CGF), AO, IsVolatile);
1621
1622 // Okay, turn that back into the original value or whole atomic (for
1623 // non-simple lvalues) type.
1624 return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
1625 }
1626
1627 // Okay, we're doing this natively.
1628 auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
1629
1630 // If we're ignoring an aggregate return, don't do anything.
1631 if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
1632 return RValue::getAggregate(Address::invalid(), false);
1633
1634 // Okay, turn that back into the original value or atomic (for non-simple
1635 // lvalues) type.
1636 return ConvertToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
1637}
1638
1639/// Emit a load from an l-value of atomic type. Note that the r-value
1640/// we produce is an r-value of the atomic *value* type.
1642 llvm::AtomicOrdering AO, bool IsVolatile,
1643 AggValueSlot resultSlot) {
1644 AtomicInfo Atomics(*this, src);
1645 return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
1646 IsVolatile);
1647}
1648
1649/// Copy an r-value into memory as part of storing to an atomic type.
1650/// This needs to create a bit-pattern suitable for atomic operations.
1651void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
1652 assert(LVal.isSimple());
1653 // If we have an r-value, the rvalue should be of the atomic type,
1654 // which means that the caller is responsible for having zeroed
1655 // any padding. Just do an aggregate copy of that type.
1656 if (rvalue.isAggregate()) {
1657 LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType());
1658 LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(),
1659 getAtomicType());
1660 bool IsVolatile = rvalue.isVolatileQualified() ||
1661 LVal.isVolatileQualified();
1662 CGF.EmitAggregateCopy(Dest, Src, getAtomicType(),
1663 AggValueSlot::DoesNotOverlap, IsVolatile);
1664 return;
1665 }
1666
1667 // Okay, otherwise we're copying stuff.
1668
1669 // Zero out the buffer if necessary.
1670 emitMemSetZeroIfNecessary();
1671
1672 // Drill past the padding if present.
1673 LValue TempLVal = projectValue();
1674
1675 // Okay, store the rvalue in.
1676 if (rvalue.isScalar()) {
1677 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
1678 } else {
1679 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
1680 }
1681}
1682
1683
1684/// Materialize an r-value into memory for the purposes of storing it
1685/// to an atomic type.
1686Address AtomicInfo::materializeRValue(RValue rvalue) const {
1687 // Aggregate r-values are already in memory, and EmitAtomicStore
1688 // requires them to be values of the atomic type.
1689 if (rvalue.isAggregate())
1690 return rvalue.getAggregateAddress();
1691
1692 // Otherwise, make a temporary and materialize into it.
1693 LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType());
1694 AtomicInfo Atomics(CGF, TempLV);
1695 Atomics.emitCopyIntoMemory(rvalue);
1696 return TempLV.getAddress();
1697}
1698
1699llvm::Value *AtomicInfo::getScalarRValValueOrNull(RValue RVal) const {
1700 if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple()))
1701 return RVal.getScalarVal();
1702 return nullptr;
1703}
1704
1705llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal, bool CmpXchg) const {
1706 // If we've got a scalar value of the right size, try to avoid going
1707 // through memory. Floats get casted if needed by AtomicExpandPass.
1708 if (llvm::Value *Value = getScalarRValValueOrNull(RVal)) {
1709 if (!shouldCastToInt(Value->getType(), CmpXchg))
1710 return CGF.EmitToMemory(Value, ValueTy);
1711 else {
1712 llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1713 CGF.getLLVMContext(),
1714 LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1715 if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
1716 return CGF.Builder.CreateBitCast(Value, InputIntTy);
1717 }
1718 }
1719 // Otherwise, we need to go through memory.
1720 // Put the r-value in memory.
1721 Address Addr = materializeRValue(RVal);
1722
1723 // Cast the temporary to the atomic int type and pull a value out.
1724 Addr = castToAtomicIntPointer(Addr);
1725 return CGF.Builder.CreateLoad(Addr);
1726}
1727
1728std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1729 llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1730 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
1731 // Do the atomic store.
1732 Address Addr = getAtomicAddressAsAtomicIntPointer();
1733 auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, ExpectedVal, DesiredVal,
1734 Success, Failure);
1735 // Other decoration.
1736 Inst->setVolatile(LVal.isVolatileQualified());
1737 Inst->setWeak(IsWeak);
1738
1739 // Okay, turn that back into the original value type.
1740 auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
1741 auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
1742 return std::make_pair(PreviousVal, SuccessFailureVal);
1743}
1744
1745llvm::Value *
1746AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1747 llvm::Value *DesiredAddr,
1748 llvm::AtomicOrdering Success,
1749 llvm::AtomicOrdering Failure) {
1750 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
1751 // void *desired, int success, int failure);
1752 CallArgList Args;
1753 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1754 Args.add(RValue::get(getAtomicPointer()), CGF.getContext().VoidPtrTy);
1755 Args.add(RValue::get(ExpectedAddr), CGF.getContext().VoidPtrTy);
1756 Args.add(RValue::get(DesiredAddr), CGF.getContext().VoidPtrTy);
1757 Args.add(RValue::get(
1758 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))),
1759 CGF.getContext().IntTy);
1760 Args.add(RValue::get(
1761 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))),
1762 CGF.getContext().IntTy);
1763 auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
1764 CGF.getContext().BoolTy, Args);
1765
1766 return SuccessFailureRVal.getScalarVal();
1767}
1768
1769std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1770 RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
1771 llvm::AtomicOrdering Failure, bool IsWeak) {
1772 // Check whether we should use a library call.
1773 if (shouldUseLibcall()) {
1774 // Produce a source address.
1775 Address ExpectedAddr = materializeRValue(Expected);
1776 llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF);
1777 llvm::Value *DesiredPtr = materializeRValue(Desired).emitRawPointer(CGF);
1778 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedPtr, DesiredPtr,
1779 Success, Failure);
1780 return std::make_pair(
1781 convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1782 SourceLocation(), /*AsValue=*/false),
1783 Res);
1784 }
1785
1786 // If we've got a scalar value of the right size, try to avoid going
1787 // through memory.
1788 auto *ExpectedVal = convertRValueToInt(Expected, /*CmpXchg=*/true);
1789 auto *DesiredVal = convertRValueToInt(Desired, /*CmpXchg=*/true);
1790 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
1791 Failure, IsWeak);
1792 return std::make_pair(
1793 ConvertToValueOrAtomic(Res.first, AggValueSlot::ignored(),
1794 SourceLocation(), /*AsValue=*/false,
1795 /*CmpXchg=*/true),
1796 Res.second);
1797}
1798
1799static void
1800EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
1801 const llvm::function_ref<RValue(RValue)> &UpdateOp,
1802 Address DesiredAddr) {
1803 RValue UpRVal;
1804 LValue AtomicLVal = Atomics.getAtomicLValue();
1805 LValue DesiredLVal;
1806 if (AtomicLVal.isSimple()) {
1807 UpRVal = OldRVal;
1808 DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType());
1809 } else {
1810 // Build new lvalue for temp address.
1811 Address Ptr = Atomics.materializeRValue(OldRVal);
1812 LValue UpdateLVal;
1813 if (AtomicLVal.isBitField()) {
1814 UpdateLVal =
1815 LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
1816 AtomicLVal.getType(),
1817 AtomicLVal.getBaseInfo(),
1818 AtomicLVal.getTBAAInfo());
1819 DesiredLVal =
1820 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1821 AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1822 AtomicLVal.getTBAAInfo());
1823 } else if (AtomicLVal.isVectorElt()) {
1824 UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
1825 AtomicLVal.getType(),
1826 AtomicLVal.getBaseInfo(),
1827 AtomicLVal.getTBAAInfo());
1828 DesiredLVal = LValue::MakeVectorElt(
1829 DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
1830 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1831 } else {
1832 assert(AtomicLVal.isExtVectorElt());
1833 UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
1834 AtomicLVal.getType(),
1835 AtomicLVal.getBaseInfo(),
1836 AtomicLVal.getTBAAInfo());
1837 DesiredLVal = LValue::MakeExtVectorElt(
1838 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1839 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1840 }
1841 UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
1842 }
1843 // Store new value in the corresponding memory area.
1844 RValue NewRVal = UpdateOp(UpRVal);
1845 if (NewRVal.isScalar()) {
1846 CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
1847 } else {
1848 assert(NewRVal.isComplex());
1849 CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
1850 /*isInit=*/false);
1851 }
1852}
1853
1854void AtomicInfo::EmitAtomicUpdateLibcall(
1855 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1856 bool IsVolatile) {
1857 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1858
1859 Address ExpectedAddr = CreateTempAlloca();
1860
1861 EmitAtomicLoadLibcall(ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile);
1862 auto *ContBB = CGF.createBasicBlock("atomic_cont");
1863 auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1864 CGF.EmitBlock(ContBB);
1865 Address DesiredAddr = CreateTempAlloca();
1866 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1867 requiresMemSetZero(getAtomicAddress().getElementType())) {
1868 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1869 CGF.Builder.CreateStore(OldVal, DesiredAddr);
1870 }
1871 auto OldRVal = convertAtomicTempToRValue(ExpectedAddr,
1873 SourceLocation(), /*AsValue=*/false);
1874 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
1875 llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF);
1876 llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF);
1877 auto *Res =
1878 EmitAtomicCompareExchangeLibcall(ExpectedPtr, DesiredPtr, AO, Failure);
1879 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1880 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1881}
1882
1883void AtomicInfo::EmitAtomicUpdateOp(
1884 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1885 bool IsVolatile) {
1886 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1887
1888 // Do the atomic load.
1889 auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile, /*CmpXchg=*/true);
1890 // For non-simple lvalues perform compare-and-swap procedure.
1891 auto *ContBB = CGF.createBasicBlock("atomic_cont");
1892 auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1893 auto *CurBB = CGF.Builder.GetInsertBlock();
1894 CGF.EmitBlock(ContBB);
1895 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1896 /*NumReservedValues=*/2);
1897 PHI->addIncoming(OldVal, CurBB);
1898 Address NewAtomicAddr = CreateTempAlloca();
1899 Address NewAtomicIntAddr =
1900 shouldCastToInt(NewAtomicAddr.getElementType(), /*CmpXchg=*/true)
1901 ? castToAtomicIntPointer(NewAtomicAddr)
1902 : NewAtomicAddr;
1903
1904 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1905 requiresMemSetZero(getAtomicAddress().getElementType())) {
1906 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1907 }
1908 auto OldRVal = ConvertToValueOrAtomic(PHI, AggValueSlot::ignored(),
1909 SourceLocation(), /*AsValue=*/false,
1910 /*CmpXchg=*/true);
1911 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
1912 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1913 // Try to write new value using cmpxchg operation.
1914 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1915 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1916 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1917 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1918}
1919
1920static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
1921 RValue UpdateRVal, Address DesiredAddr) {
1922 LValue AtomicLVal = Atomics.getAtomicLValue();
1923 LValue DesiredLVal;
1924 // Build new lvalue for temp address.
1925 if (AtomicLVal.isBitField()) {
1926 DesiredLVal =
1927 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1928 AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1929 AtomicLVal.getTBAAInfo());
1930 } else if (AtomicLVal.isVectorElt()) {
1931 DesiredLVal =
1932 LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
1933 AtomicLVal.getType(), AtomicLVal.getBaseInfo(),
1934 AtomicLVal.getTBAAInfo());
1935 } else {
1936 assert(AtomicLVal.isExtVectorElt());
1937 DesiredLVal = LValue::MakeExtVectorElt(
1938 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1939 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo());
1940 }
1941 // Store new value in the corresponding memory area.
1942 assert(UpdateRVal.isScalar());
1943 CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
1944}
1945
1946void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1947 RValue UpdateRVal, bool IsVolatile) {
1948 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1949
1950 Address ExpectedAddr = CreateTempAlloca();
1951
1952 EmitAtomicLoadLibcall(ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile);
1953 auto *ContBB = CGF.createBasicBlock("atomic_cont");
1954 auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1955 CGF.EmitBlock(ContBB);
1956 Address DesiredAddr = CreateTempAlloca();
1957 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1958 requiresMemSetZero(getAtomicAddress().getElementType())) {
1959 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1960 CGF.Builder.CreateStore(OldVal, DesiredAddr);
1961 }
1962 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
1963 llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF);
1964 llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF);
1965 auto *Res =
1966 EmitAtomicCompareExchangeLibcall(ExpectedPtr, DesiredPtr, AO, Failure);
1967 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1968 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1969}
1970
1971void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
1972 bool IsVolatile) {
1973 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1974
1975 // Do the atomic load.
1976 auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile, /*CmpXchg=*/true);
1977 // For non-simple lvalues perform compare-and-swap procedure.
1978 auto *ContBB = CGF.createBasicBlock("atomic_cont");
1979 auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1980 auto *CurBB = CGF.Builder.GetInsertBlock();
1981 CGF.EmitBlock(ContBB);
1982 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1983 /*NumReservedValues=*/2);
1984 PHI->addIncoming(OldVal, CurBB);
1985 Address NewAtomicAddr = CreateTempAlloca();
1986 Address NewAtomicIntAddr = castToAtomicIntPointer(NewAtomicAddr);
1987 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1988 requiresMemSetZero(getAtomicAddress().getElementType())) {
1989 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1990 }
1991 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
1992 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1993 // Try to write new value using cmpxchg operation.
1994 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1995 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1996 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1997 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1998}
1999
2000void AtomicInfo::EmitAtomicUpdate(
2001 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
2002 bool IsVolatile) {
2003 if (shouldUseLibcall()) {
2004 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
2005 } else {
2006 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
2007 }
2008}
2009
2010void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
2011 bool IsVolatile) {
2012 if (shouldUseLibcall()) {
2013 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
2014 } else {
2015 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
2016 }
2017}
2018
2020 bool isInit) {
2021 bool IsVolatile = lvalue.isVolatileQualified();
2022 llvm::AtomicOrdering AO;
2023 if (lvalue.getType()->isAtomicType()) {
2024 AO = llvm::AtomicOrdering::SequentiallyConsistent;
2025 } else {
2026 AO = llvm::AtomicOrdering::Release;
2027 IsVolatile = true;
2028 }
2029 return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
2030}
2031
2032/// Emit a store to an l-value of atomic type.
2033///
2034/// Note that the r-value is expected to be an r-value *of the atomic
2035/// type*; this means that for aggregate r-values, it should include
2036/// storage for any padding that was necessary.
2038 llvm::AtomicOrdering AO, bool IsVolatile,
2039 bool isInit) {
2040 // If this is an aggregate r-value, it should agree in type except
2041 // maybe for address-space qualification.
2042 assert(!rvalue.isAggregate() ||
2044 dest.getAddress().getElementType());
2045
2046 AtomicInfo atomics(*this, dest);
2047 LValue LVal = atomics.getAtomicLValue();
2048
2049 // If this is an initialization, just put the value there normally.
2050 if (LVal.isSimple()) {
2051 if (isInit) {
2052 atomics.emitCopyIntoMemory(rvalue);
2053 return;
2054 }
2055
2056 // Check whether we should use a library call.
2057 if (atomics.shouldUseLibcall()) {
2058 // Produce a source address.
2059 Address srcAddr = atomics.materializeRValue(rvalue);
2060
2061 // void __atomic_store(size_t size, void *mem, void *val, int order)
2062 CallArgList args;
2063 args.add(RValue::get(atomics.getAtomicSizeValue()),
2064 getContext().getSizeType());
2065 args.add(RValue::get(atomics.getAtomicPointer()), getContext().VoidPtrTy);
2066 args.add(RValue::get(srcAddr.emitRawPointer(*this)),
2068 args.add(
2069 RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))),
2070 getContext().IntTy);
2071 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
2072 return;
2073 }
2074
2075 // Okay, we're doing this natively.
2076 llvm::Value *ValToStore = atomics.convertRValueToInt(rvalue);
2077
2078 // Do the atomic store.
2079 Address Addr = atomics.getAtomicAddress();
2080 if (llvm::Value *Value = atomics.getScalarRValValueOrNull(rvalue))
2081 if (shouldCastToInt(Value->getType(), /*CmpXchg=*/false)) {
2082 Addr = atomics.castToAtomicIntPointer(Addr);
2083 ValToStore = Builder.CreateIntCast(ValToStore, Addr.getElementType(),
2084 /*isSigned=*/false);
2085 }
2086 llvm::StoreInst *store = Builder.CreateStore(ValToStore, Addr);
2087
2088 if (AO == llvm::AtomicOrdering::Acquire)
2089 AO = llvm::AtomicOrdering::Monotonic;
2090 else if (AO == llvm::AtomicOrdering::AcquireRelease)
2091 AO = llvm::AtomicOrdering::Release;
2092 // Initializations don't need to be atomic.
2093 if (!isInit)
2094 store->setAtomic(AO);
2095
2096 // Other decoration.
2097 if (IsVolatile)
2098 store->setVolatile(true);
2099 CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo());
2100 return;
2101 }
2102
2103 // Emit simple atomic update operation.
2104 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
2105}
2106
2107/// Emit a compare-and-exchange op for atomic type.
2108///
2109std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
2110 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2111 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
2112 AggValueSlot Slot) {
2113 // If this is an aggregate r-value, it should agree in type except
2114 // maybe for address-space qualification.
2115 assert(!Expected.isAggregate() ||
2116 Expected.getAggregateAddress().getElementType() ==
2117 Obj.getAddress().getElementType());
2118 assert(!Desired.isAggregate() ||
2119 Desired.getAggregateAddress().getElementType() ==
2120 Obj.getAddress().getElementType());
2121 AtomicInfo Atomics(*this, Obj);
2122
2123 return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
2124 IsWeak);
2125}
2126
2127llvm::AtomicRMWInst *
2128CodeGenFunction::emitAtomicRMWInst(llvm::AtomicRMWInst::BinOp Op, Address Addr,
2129 llvm::Value *Val, llvm::AtomicOrdering Order,
2130 llvm::SyncScope::ID SSID,
2131 const AtomicExpr *AE) {
2132 llvm::AtomicRMWInst *RMW =
2133 Builder.CreateAtomicRMW(Op, Addr, Val, Order, SSID);
2134 getTargetHooks().setTargetAtomicMetadata(*this, *RMW, AE);
2135 return RMW;
2136}
2137
2139 LValue LVal, llvm::AtomicOrdering AO,
2140 const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
2141 AtomicInfo Atomics(*this, LVal);
2142 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
2143}
2144
2146 AtomicInfo atomics(*this, dest);
2147
2148 switch (atomics.getEvaluationKind()) {
2149 case TEK_Scalar: {
2150 llvm::Value *value = EmitScalarExpr(init);
2151 atomics.emitCopyIntoMemory(RValue::get(value));
2152 return;
2153 }
2154
2155 case TEK_Complex: {
2156 ComplexPairTy value = EmitComplexExpr(init);
2157 atomics.emitCopyIntoMemory(RValue::getComplex(value));
2158 return;
2159 }
2160
2161 case TEK_Aggregate: {
2162 // Fix up the destination if the initializer isn't an expression
2163 // of atomic type.
2164 bool Zeroed = false;
2165 if (!init->getType()->isAtomicType()) {
2166 Zeroed = atomics.emitMemSetZeroIfNecessary();
2167 dest = atomics.projectValue();
2168 }
2169
2170 // Evaluate the expression directly into the destination.
2176
2177 EmitAggExpr(init, slot);
2178 return;
2179 }
2180 }
2181 llvm_unreachable("bad evaluation kind");
2182}
Defines the clang::ASTContext interface.
#define V(N, I)
static llvm::Value * EmitPostAtomicMinMax(CGBuilderTy &Builder, AtomicExpr::AtomicOp Op, bool IsSigned, llvm::Value *OldVal, llvm::Value *RHS)
Duplicate the atomic min/max operation in conventional IR for the builtin variants that return the ne...
Definition CGAtomic.cpp:525
static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, const llvm::function_ref< RValue(RValue)> &UpdateOp, Address DesiredAddr)
static Address EmitValToTemp(CodeGenFunction &CGF, Expr *E)
Definition CGAtomic.cpp:817
static RValue emitAtomicLibcall(CodeGenFunction &CGF, StringRef fnName, QualType resultType, CallArgList &args)
Definition CGAtomic.cpp:314
static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, Address Ptr, Address Val1, Address Val2, Address ExpectedResult, llvm::Value *IsWeak, llvm::Value *FailureOrder, uint64_t Size, llvm::AtomicOrdering Order, llvm::SyncScope::ID Scope)
Definition CGAtomic.cpp:559
static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo, KnownNonNull_t IsKnownNonNull, CodeGenFunction &CGF)
Definition CGExpr.cpp:1413
static bool shouldCastToInt(mlir::Type valueTy, bool cmpxchg)
Return true if.
static void emitAtomicCmpXchg(CIRGenFunction &cgf, AtomicExpr *e, bool isWeak, Address dest, Address ptr, Address val1, Address val2, uint64_t size, cir::MemOrder successOrder, cir::MemOrder failureOrder)
static void emitAtomicCmpXchgFailureSet(CIRGenFunction &cgf, AtomicExpr *e, bool isWeak, Address dest, Address ptr, Address val1, Address val2, Expr *failureOrderExpr, uint64_t size, cir::MemOrder successOrder)
static bool isFullSizeType(CIRGenModule &cgm, mlir::Type ty, uint64_t expectedSize)
Does a store of the given IR type modify the full expected width?
TokenType getType() const
Returns the token's type, e.g.
static QualType getPointeeType(const MemRegion *R)
CanQualType VoidPtrTy
CanQualType BoolTy
CanQualType IntTy
CanQualType VoidTy
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const
Return the unique reference to an extended vector type of the specified element type and size.
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load,...
Definition Expr.h:6814
static std::unique_ptr< AtomicScopeModel > getScopeModel(AtomicOp Op)
Get atomic scope model for the atomic op code.
Definition Expr.h:6963
Expr * getVal2() const
Definition Expr.h:6865
Expr * getOrder() const
Definition Expr.h:6848
QualType getValueType() const
Definition Expr.cpp:5256
Expr * getScope() const
Definition Expr.h:6851
bool isCmpXChg() const
Definition Expr.h:6898
AtomicOp getOp() const
Definition Expr.h:6877
bool isOpenCL() const
Definition Expr.h:6926
Expr * getVal1() const
Definition Expr.h:6855
Expr * getPtr() const
Definition Expr.h:6845
Expr * getWeak() const
Definition Expr.h:6871
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Expr.h:6945
Expr * getOrderFail() const
Definition Expr.h:6861
bool isVolatile() const
Definition Expr.h:6894
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
bool isMultipleOf(CharUnits N) const
Test whether this is a multiple of the other value.
Definition CharUnits.h:143
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition Address.h:128
static Address invalid()
Definition Address.h:176
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition Address.h:253
CharUnits getAlignment() const
Definition Address.h:194
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition Address.h:209
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition Address.h:276
bool isValid() const
Definition Address.h:177
An aggregate value slot.
Definition CGValue.h:504
static AggValueSlot ignored()
ignored - Returns an aggregate value slot indicating that the aggregate value is being ignored.
Definition CGValue.h:572
Address getAddress() const
Definition CGValue.h:644
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition CGValue.h:602
RValue asRValue() const
Definition CGValue.h:666
A scoped helper to set the current source atom group for CGDebugInfo::addInstToCurrentSourceAtom.
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition CGBuilder.h:140
Address CreatePointerBitCastOrAddrSpaceCast(Address Addr, llvm::Type *Ty, llvm::Type *ElementTy, const llvm::Twine &Name="")
Definition CGBuilder.h:207
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition CGBuilder.h:402
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition CGBuilder.h:223
llvm::AtomicCmpXchgInst * CreateAtomicCmpXchg(Address Addr, llvm::Value *Cmp, llvm::Value *New, llvm::AtomicOrdering SuccessOrdering, llvm::AtomicOrdering FailureOrdering, llvm::SyncScope::ID SSID=llvm::SyncScope::System)
Definition CGBuilder.h:173
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition CGBuilder.h:112
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition CGBuilder.h:369
Address CreateAddrSpaceCast(Address Addr, llvm::Type *Ty, llvm::Type *ElementTy, const llvm::Twine &Name="")
Definition CGBuilder.h:193
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition CGCall.h:137
CGFunctionInfo - Class to encapsulate the information about a function definition.
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
void add(RValue rvalue, QualType type)
Definition CGCall.h:302
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitAtomicInit(Expr *E, LValue lvalue)
RValue convertTempToRValue(Address addr, QualType type, SourceLocation Loc)
Given the address of a temporary variable, produce an r-value of its type.
Definition CGExpr.cpp:6683
bool hasVolatileMember(QualType T)
hasVolatileMember - returns true if aggregate type has a volatile member.
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup)
See CGDebugInfo::addInstToCurrentSourceAtom.
const LangOptions & getLangOpts() const
void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, const llvm::function_ref< RValue(RValue)> &UpdateOp, bool IsVolatile)
std::pair< RValue, llvm::Value * > EmitAtomicCompareExchange(LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success=llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure=llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak=false, AggValueSlot Slot=AggValueSlot::ignored())
Emit a compare-and-exchange op for atomic type.
void maybeAttachRangeForLoad(llvm::LoadInst *Load, QualType Ty, SourceLocation Loc)
Definition CGExpr.cpp:2049
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
const TargetInfo & getTarget() const
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition CGExpr.cpp:2377
RValue EmitAtomicLoad(LValue LV, SourceLocation SL, AggValueSlot Slot=AggValueSlot::ignored())
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
llvm::Value * EmitToMemory(llvm::Value *Value, QualType Ty)
EmitToMemory - Change a scalar value from its value representation to its in-memory representation.
Definition CGExpr.cpp:2190
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition CGExpr.cpp:153
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
Definition CGCall.cpp:5233
const TargetCodeGenInfo & getTargetHooks() const
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition CGExpr.cpp:2574
llvm::AtomicRMWInst * emitAtomicRMWInst(llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, llvm::AtomicOrdering Order=llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::ID SSID=llvm::SyncScope::System, const AtomicExpr *AE=nullptr)
Emit an atomicrmw instruction, and applying relevant metadata when applicable.
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition CGExpr.cpp:295
llvm::Type * ConvertTypeForMem(QualType T)
RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc)
Definition CGExpr.cpp:2448
RValue EmitAtomicExpr(AtomicExpr *E)
Definition CGAtomic.cpp:892
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
bool LValueIsSuitableForInlineAtomic(LValue Src)
An LValue is a candidate for having its loads and stores be made atomic if we are operating under /vo...
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition CGExpr.cpp:188
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
RValue EmitLoadOfExtVectorElementLValue(LValue V)
Definition CGExpr.cpp:2485
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit)
llvm::Value * EmitFromMemory(llvm::Value *Value, QualType Ty)
EmitFromMemory - Change a scalar value from its memory representation to its value representation.
Definition CGExpr.cpp:2220
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
llvm::LLVMContext & getLLVMContext()
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition CGStmt.cpp:652
This class organizes the cross-function state that is used while generating LLVM code.
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
const LangOptions & getLangOpts() const
const llvm::DataLayout & getDataLayout() const
void DecorateInstructionWithTBAA(llvm::Instruction *Inst, TBAAAccessInfo TBAAInfo)
DecorateInstructionWithTBAA - Decorate the instruction with a TBAA tag.
llvm::LLVMContext & getLLVMContext()
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition CGCall.cpp:1701
const CGFunctionInfo & arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args)
Definition CGCall.cpp:728
LValue - This represents an lvalue references.
Definition CGValue.h:182
bool isSimple() const
Definition CGValue.h:278
bool isVolatileQualified() const
Definition CGValue.h:285
bool isVolatile() const
Definition CGValue.h:328
Address getAddress() const
Definition CGValue.h:361
QualType getType() const
Definition CGValue.h:291
TBAAAccessInfo getTBAAInfo() const
Definition CGValue.h:335
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
bool isScalar() const
Definition CGValue.h:64
static RValue get(llvm::Value *V)
Definition CGValue.h:98
static RValue getAggregate(Address addr, bool isVolatile=false)
Convert an Address to an RValue.
Definition CGValue.h:125
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition CGValue.h:108
bool isAggregate() const
Definition CGValue.h:66
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition CGValue.h:83
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:71
bool isComplex() const
Definition CGValue.h:65
bool isVolatileQualified() const
Definition CGValue.h:68
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition CGValue.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
virtual llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, SyncScope Scope, llvm::AtomicOrdering Ordering, llvm::LLVMContext &Ctx) const
Get the syncscope used in LLVM IR.
virtual void setTargetAtomicMetadata(CodeGenFunction &CGF, llvm::Instruction &AtomicInst, const AtomicExpr *Expr=nullptr) const
Allow the target to apply other metadata to an atomic instruction.
Definition TargetInfo.h:359
Concrete class used by the front-end to report problems and issues.
Definition Diagnostic.h:232
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
This represents one expression.
Definition Expr.h:112
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
QualType getType() const
Definition Expr.h:144
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
LangAS getAddressSpace() const
Return the address space of this type.
Definition TypeBase.h:8404
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition TypeBase.h:8318
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition TypeBase.h:8372
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
Encodes a location in the source.
bool isVoidType() const
Definition TypeBase.h:8871
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
bool isPointerType() const
Definition TypeBase.h:8515
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
bool isAtomicType() const
Definition TypeBase.h:8697
bool isFloatingType() const
Definition Type.cpp:2304
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
QualType getType() const
Definition Value.cpp:237
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
bool Load(InterpState &S, CodePtr OpPC)
Definition Interp.h:1913
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ Success
Annotation was successful.
Definition Parser.h:65
llvm::Expected< QualType > ExpectedType
llvm::StringRef getAsString(SyncScope S)
Definition SyncScope.h:62
U cast(CodeGen::Address addr)
Definition Address.h:327
unsigned long uint64_t
#define true
Definition stdbool.h:25
CharUnits StorageOffset
The offset of the bitfield storage from the start of the struct.
unsigned Offset
The offset within a contiguous run of bitfields that are represented as a single "field" within the L...
unsigned Size
The total size of the bit-field, in bits.
unsigned StorageSize
The storage size in bits which should be used when accessing this bitfield.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64