clang  17.0.0git
CGObjC.cpp
Go to the documentation of this file.
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include <optional>
33 using namespace clang;
34 using namespace CodeGen;
35 
36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37 static TryEmitResult
40  QualType ET,
41  RValue Result);
42 
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant *getNullForVariable(Address addr) {
46  llvm::Type *type = addr.getElementType();
47  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48 }
49 
50 /// Emits an instance of NSConstantString representing the object.
52 {
53  llvm::Constant *C =
55  // FIXME: This bitcast should just be made an invariant on the Runtime.
56  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
57 }
58 
59 /// EmitObjCBoxedExpr - This routine generates code to call
60 /// the appropriate expression boxing method. This will either be
61 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
62 /// or [NSValue valueWithBytes:objCType:].
63 ///
64 llvm::Value *
66  // Generate the correct selector for this literal's concrete type.
67  // Get the method.
68  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
69  const Expr *SubExpr = E->getSubExpr();
70 
72  ConstantEmitter ConstEmitter(CGM);
73  return ConstEmitter.tryEmitAbstract(E, E->getType());
74  }
75 
76  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
77  Selector Sel = BoxingMethod->getSelector();
78 
79  // Generate a reference to the class pointer, which will be the receiver.
80  // Assumes that the method was introduced in the class that should be
81  // messaged (avoids pulling it out of the result type).
82  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
83  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
84  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
85 
86  CallArgList Args;
87  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
88  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
89 
90  // ObjCBoxedExpr supports boxing of structs and unions
91  // via [NSValue valueWithBytes:objCType:]
92  const QualType ValueType(SubExpr->getType().getCanonicalType());
93  if (ValueType->isObjCBoxableRecordType()) {
94  // Emit CodeGen for first parameter
95  // and cast value to correct type
96  Address Temporary = CreateMemTemp(SubExpr->getType());
97  EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
98  llvm::Value *BitCast =
99  Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT));
100  Args.add(RValue::get(BitCast), ArgQT);
101 
102  // Create char array to store type encoding
103  std::string Str;
104  getContext().getObjCEncodingForType(ValueType, Str);
105  llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
106 
107  // Cast type encoding to correct type
108  const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
109  QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
110  llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
111 
112  Args.add(RValue::get(Cast), EncodingQT);
113  } else {
114  Args.add(EmitAnyExpr(SubExpr), ArgQT);
115  }
116 
117  RValue result = Runtime.GenerateMessageSend(
118  *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
119  Args, ClassDecl, BoxingMethod);
120  return Builder.CreateBitCast(result.getScalarVal(),
121  ConvertType(E->getType()));
122 }
123 
125  const ObjCMethodDecl *MethodWithObjects) {
126  ASTContext &Context = CGM.getContext();
127  const ObjCDictionaryLiteral *DLE = nullptr;
128  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
129  if (!ALE)
130  DLE = cast<ObjCDictionaryLiteral>(E);
131 
132  // Optimize empty collections by referencing constants, when available.
133  uint64_t NumElements =
134  ALE ? ALE->getNumElements() : DLE->getNumElements();
135  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
136  StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
138  llvm::Constant *Constant =
139  CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
140  LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
141  llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
142  cast<llvm::LoadInst>(Ptr)->setMetadata(
143  CGM.getModule().getMDKindID("invariant.load"),
144  llvm::MDNode::get(getLLVMContext(), std::nullopt));
145  return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
146  }
147 
148  // Compute the type of the array we're initializing.
149  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
150  NumElements);
151  QualType ElementType = Context.getObjCIdType().withConst();
152  QualType ElementArrayType
153  = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
154  ArrayType::Normal, /*IndexTypeQuals=*/0);
155 
156  // Allocate the temporary array(s).
157  Address Objects = CreateMemTemp(ElementArrayType, "objects");
158  Address Keys = Address::invalid();
159  if (DLE)
160  Keys = CreateMemTemp(ElementArrayType, "keys");
161 
162  // In ARC, we may need to do extra work to keep all the keys and
163  // values alive until after the call.
164  SmallVector<llvm::Value *, 16> NeededObjects;
165  bool TrackNeededObjects =
166  (getLangOpts().ObjCAutoRefCount &&
167  CGM.getCodeGenOpts().OptimizationLevel != 0);
168 
169  // Perform the actual initialialization of the array(s).
170  for (uint64_t i = 0; i < NumElements; i++) {
171  if (ALE) {
172  // Emit the element and store it to the appropriate array slot.
173  const Expr *Rhs = ALE->getElement(i);
175  ElementType, AlignmentSource::Decl);
176 
177  llvm::Value *value = EmitScalarExpr(Rhs);
178  EmitStoreThroughLValue(RValue::get(value), LV, true);
179  if (TrackNeededObjects) {
180  NeededObjects.push_back(value);
181  }
182  } else {
183  // Emit the key and store it to the appropriate array slot.
184  const Expr *Key = DLE->getKeyValueElement(i).Key;
186  ElementType, AlignmentSource::Decl);
187  llvm::Value *keyValue = EmitScalarExpr(Key);
188  EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
189 
190  // Emit the value and store it to the appropriate array slot.
191  const Expr *Value = DLE->getKeyValueElement(i).Value;
192  LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
193  ElementType, AlignmentSource::Decl);
194  llvm::Value *valueValue = EmitScalarExpr(Value);
195  EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
196  if (TrackNeededObjects) {
197  NeededObjects.push_back(keyValue);
198  NeededObjects.push_back(valueValue);
199  }
200  }
201  }
202 
203  // Generate the argument list.
204  CallArgList Args;
205  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
206  const ParmVarDecl *argDecl = *PI++;
207  QualType ArgQT = argDecl->getType().getUnqualifiedType();
208  Args.add(RValue::get(Objects.getPointer()), ArgQT);
209  if (DLE) {
210  argDecl = *PI++;
211  ArgQT = argDecl->getType().getUnqualifiedType();
212  Args.add(RValue::get(Keys.getPointer()), ArgQT);
213  }
214  argDecl = *PI;
215  ArgQT = argDecl->getType().getUnqualifiedType();
216  llvm::Value *Count =
217  llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
218  Args.add(RValue::get(Count), ArgQT);
219 
220  // Generate a reference to the class pointer, which will be the receiver.
221  Selector Sel = MethodWithObjects->getSelector();
222  QualType ResultType = E->getType();
223  const ObjCObjectPointerType *InterfacePointerType
224  = ResultType->getAsObjCInterfacePointerType();
225  ObjCInterfaceDecl *Class
226  = InterfacePointerType->getObjectType()->getInterface();
227  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229 
230  // Generate the message send.
231  RValue result = Runtime.GenerateMessageSend(
232  *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233  Receiver, Args, Class, MethodWithObjects);
234 
235  // The above message send needs these objects, but in ARC they are
236  // passed in a buffer that is essentially __unsafe_unretained.
237  // Therefore we must prevent the optimizer from releasing them until
238  // after the call.
239  if (TrackNeededObjects) {
240  EmitARCIntrinsicUse(NeededObjects);
241  }
242 
243  return Builder.CreateBitCast(result.getScalarVal(),
244  ConvertType(E->getType()));
245 }
246 
249 }
250 
252  const ObjCDictionaryLiteral *E) {
254 }
255 
256 /// Emit a selector.
258  // Untyped selector.
259  // Note that this implementation allows for non-constant strings to be passed
260  // as arguments to @selector(). Currently, the only thing preventing this
261  // behaviour is the type checking in the front end.
262  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263 }
264 
266  // FIXME: This should pass the Decl not the name.
267  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268 }
269 
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
274  RValue Result) {
275  if (!ExpT->isObjCRetainableType())
276  return Result;
277 
278  // If the converted types are the same, we're done.
279  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280  if (ExpLLVMTy == Result.getScalarVal()->getType())
281  return Result;
282 
283  // We have applied a substitution. Cast the rvalue appropriately.
284  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285  ExpLLVMTy));
286 }
287 
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
290 static bool
292  switch (message->getReceiverKind()) {
293 
294  // For a normal instance message, we should extend unless the
295  // receiver is loaded from a variable with precise lifetime.
297  const Expr *receiver = message->getInstanceReceiver();
298 
299  // Look through OVEs.
300  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301  if (opaque->getSourceExpr())
302  receiver = opaque->getSourceExpr()->IgnoreParens();
303  }
304 
305  const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306  if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307  receiver = ice->getSubExpr()->IgnoreParens();
308 
309  // Look through OVEs.
310  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311  if (opaque->getSourceExpr())
312  receiver = opaque->getSourceExpr()->IgnoreParens();
313  }
314 
315  // Only __strong variables.
316  if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317  return true;
318 
319  // All ivars and fields have precise lifetime.
320  if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321  return false;
322 
323  // Otherwise, check for variables.
324  const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325  if (!declRef) return true;
326  const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327  if (!var) return true;
328 
329  // All variables have precise lifetime except local variables with
330  // automatic storage duration that aren't specially marked.
331  return (var->hasLocalStorage() &&
332  !var->hasAttr<ObjCPreciseLifetimeAttr>());
333  }
334 
337  // It's never necessary for class objects.
338  return false;
339 
341  // We generally assume that 'self' lives throughout a method call.
342  return false;
343  }
344 
345  llvm_unreachable("invalid receiver kind");
346 }
347 
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr *findWeakLValue(const Expr *E) {
351  assert(E->getType()->isObjCRetainableType());
352  E = E->IgnoreParens();
353  if (auto CE = dyn_cast<CastExpr>(E)) {
354  if (CE->getCastKind() == CK_LValueToRValue) {
355  if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356  return CE->getSubExpr();
357  }
358  }
359 
360  return nullptr;
361 }
362 
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
365 ///
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message. If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code. However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
373 ///
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value. Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378  CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379  const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380  bool isClassMessage) {
381  auto &CGM = CGF.CGM;
382  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383  return std::nullopt;
384 
385  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386  switch (Sel.getMethodFamily()) {
387  case OMF_alloc:
388  if (isClassMessage &&
389  Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390  ResultType->isObjCObjectPointerType()) {
391  // [Foo alloc] -> objc_alloc(Foo) or
392  // [self alloc] -> objc_alloc(self)
393  if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394  return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395  // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396  // [self allocWithZone:nil] -> objc_allocWithZone(self)
397  if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398  Args.size() == 1 && Args.front().getType()->isPointerType() &&
399  Sel.getNameForSlot(0) == "allocWithZone") {
400  const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401  if (isa<llvm::ConstantPointerNull>(arg))
402  return CGF.EmitObjCAllocWithZone(Receiver,
403  CGF.ConvertType(ResultType));
404  return std::nullopt;
405  }
406  }
407  break;
408 
409  case OMF_autorelease:
410  if (ResultType->isObjCObjectPointerType() &&
411  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412  Runtime.shouldUseARCFunctionsForRetainRelease())
413  return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414  break;
415 
416  case OMF_retain:
417  if (ResultType->isObjCObjectPointerType() &&
418  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419  Runtime.shouldUseARCFunctionsForRetainRelease())
420  return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421  break;
422 
423  case OMF_release:
424  if (ResultType->isVoidType() &&
425  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426  Runtime.shouldUseARCFunctionsForRetainRelease()) {
427  CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428  return nullptr;
429  }
430  break;
431 
432  default:
433  break;
434  }
435  return std::nullopt;
436 }
437 
439  CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440  Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441  const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442  bool isClassMessage) {
443  if (std::optional<llvm::Value *> SpecializedResult =
444  tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445  Sel, Method, isClassMessage)) {
446  return RValue::get(*SpecializedResult);
447  }
448  return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449  Method);
450 }
451 
453  const ObjCProtocolDecl *PD,
454  llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455  if (!PD->isNonRuntimeProtocol()) {
456  const auto *Can = PD->getCanonicalDecl();
457  PDs.insert(Can);
458  return;
459  }
460 
461  for (const auto *ParentPD : PD->protocols())
462  AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463 }
464 
465 std::vector<const ObjCProtocolDecl *>
468  std::vector<const ObjCProtocolDecl *> RuntimePds;
470 
471  for (; begin != end; ++begin) {
472  const auto *It = *begin;
473  const auto *Can = It->getCanonicalDecl();
474  if (Can->isNonRuntimeProtocol())
475  NonRuntimePDs.insert(Can);
476  else
477  RuntimePds.push_back(Can);
478  }
479 
480  // If there are no non-runtime protocols then we can just stop now.
481  if (NonRuntimePDs.empty())
482  return RuntimePds;
483 
484  // Else we have to search through the non-runtime protocol's inheritancy
485  // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486  // a non-runtime protocol without any parents. These are the "first-implied"
487  // protocols from a non-runtime protocol.
488  llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489  for (const auto *PD : NonRuntimePDs)
490  AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491 
492  // Walk the Runtime list to get all protocols implied via the inclusion of
493  // this protocol, e.g. all protocols it inherits from including itself.
494  llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495  for (const auto *PD : RuntimePds) {
496  const auto *Can = PD->getCanonicalDecl();
497  AllImpliedProtocols.insert(Can);
498  Can->getImpliedProtocols(AllImpliedProtocols);
499  }
500 
501  // Similar to above, walk the list of first-implied protocols to find the set
502  // all the protocols implied excluding the listed protocols themselves since
503  // they are not yet a part of the `RuntimePds` list.
504  for (const auto *PD : FirstImpliedProtos) {
505  PD->getImpliedProtocols(AllImpliedProtocols);
506  }
507 
508  // From the first-implied list we have to finish building the final protocol
509  // list. If a protocol in the first-implied list was already implied via some
510  // inheritance path through some other protocols then it would be redundant to
511  // add it here and so we skip over it.
512  for (const auto *PD : FirstImpliedProtos) {
513  if (!AllImpliedProtocols.contains(PD)) {
514  RuntimePds.push_back(PD);
515  }
516  }
517 
518  return RuntimePds;
519 }
520 
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional<llvm::Value *>
526  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528  return std::nullopt;
529 
530  // Match the exact pattern '[[MyClass alloc] init]'.
531  Selector Sel = OME->getSelector();
533  !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534  Sel.getNameForSlot(0) != "init")
535  return std::nullopt;
536 
537  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538  // with 'cls' a Class.
539  auto *SubOME =
540  dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541  if (!SubOME)
542  return std::nullopt;
543  Selector SubSel = SubOME->getSelector();
544 
545  if (!SubOME->getType()->isObjCObjectPointerType() ||
546  !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547  return std::nullopt;
548 
549  llvm::Value *Receiver = nullptr;
550  switch (SubOME->getReceiverKind()) {
552  if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553  return std::nullopt;
554  Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555  break;
556 
557  case ObjCMessageExpr::Class: {
558  QualType ReceiverType = SubOME->getClassReceiver();
559  const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560  const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561  assert(ID && "null interface should be impossible here");
562  Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563  break;
564  }
567  return std::nullopt;
568  }
569 
570  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571 }
572 
574  ReturnValueSlot Return) {
575  // Only the lookup mechanism and first two arguments of the method
576  // implementation vary between runtimes. We can get the receiver and
577  // arguments in generic code.
578 
579  bool isDelegateInit = E->isDelegateInitCall();
580 
581  const ObjCMethodDecl *method = E->getMethodDecl();
582 
583  // If the method is -retain, and the receiver's being loaded from
584  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586  method->getMethodFamily() == OMF_retain) {
587  if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588  LValue lvalue = EmitLValue(lvalueExpr);
589  llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
590  return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591  }
592  }
593 
594  if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595  return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596 
597  // We don't retain the receiver in delegate init calls, and this is
598  // safe because the receiver value is always loaded from 'self',
599  // which we zero out. We don't want to Block_copy block receivers,
600  // though.
601  bool retainSelf =
602  (!isDelegateInit &&
603  CGM.getLangOpts().ObjCAutoRefCount &&
604  method &&
605  method->hasAttr<NSConsumesSelfAttr>());
606 
607  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608  bool isSuperMessage = false;
609  bool isClassMessage = false;
610  ObjCInterfaceDecl *OID = nullptr;
611  // Find the receiver
612  QualType ReceiverType;
613  llvm::Value *Receiver = nullptr;
614  switch (E->getReceiverKind()) {
616  ReceiverType = E->getInstanceReceiver()->getType();
617  isClassMessage = ReceiverType->isObjCClassType();
618  if (retainSelf) {
620  E->getInstanceReceiver());
621  Receiver = ter.getPointer();
622  if (ter.getInt()) retainSelf = false;
623  } else
624  Receiver = EmitScalarExpr(E->getInstanceReceiver());
625  break;
626 
627  case ObjCMessageExpr::Class: {
628  ReceiverType = E->getClassReceiver();
629  OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630  assert(OID && "Invalid Objective-C class message send");
631  Receiver = Runtime.GetClass(*this, OID);
632  isClassMessage = true;
633  break;
634  }
635 
637  ReceiverType = E->getSuperType();
638  Receiver = LoadObjCSelf();
639  isSuperMessage = true;
640  break;
641 
643  ReceiverType = E->getSuperType();
644  Receiver = LoadObjCSelf();
645  isSuperMessage = true;
646  isClassMessage = true;
647  break;
648  }
649 
650  if (retainSelf)
651  Receiver = EmitARCRetainNonBlock(Receiver);
652 
653  // In ARC, we sometimes want to "extend the lifetime"
654  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655  // messages.
656  if (getLangOpts().ObjCAutoRefCount && method &&
657  method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
659  Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660 
661  QualType ResultType = method ? method->getReturnType() : E->getType();
662 
663  CallArgList Args;
664  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665 
666  // For delegate init calls in ARC, do an unsafe store of null into
667  // self. This represents the call taking direct ownership of that
668  // value. We have to do this after emitting the other call
669  // arguments because they might also reference self, but we don't
670  // have to worry about any of them modifying self because that would
671  // be an undefined read and write of an object in unordered
672  // expressions.
673  if (isDelegateInit) {
674  assert(getLangOpts().ObjCAutoRefCount &&
675  "delegate init calls should only be marked in ARC");
676 
677  // Do an unsafe store of null into self.
678  Address selfAddr =
679  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680  Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681  }
682 
683  RValue result;
684  if (isSuperMessage) {
685  // super is only valid in an Objective-C method
686  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687  bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688  result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689  E->getSelector(),
690  OMD->getClassInterface(),
691  isCategoryImpl,
692  Receiver,
693  isClassMessage,
694  Args,
695  method);
696  } else {
697  // Call runtime methods directly if we can.
699  *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700  method, isClassMessage);
701  }
702 
703  // For delegate init calls in ARC, implicitly store the result of
704  // the call back into self. This takes ownership of the value.
705  if (isDelegateInit) {
706  Address selfAddr =
707  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708  llvm::Value *newSelf = result.getScalarVal();
709 
710  // The delegate return type isn't necessarily a matching type; in
711  // fact, it's quite likely to be 'id'.
712  llvm::Type *selfTy = selfAddr.getElementType();
713  newSelf = Builder.CreateBitCast(newSelf, selfTy);
714 
715  Builder.CreateStore(newSelf, selfAddr);
716  }
717 
718  return AdjustObjCObjectType(*this, E->getType(), result);
719 }
720 
721 namespace {
722 struct FinishARCDealloc final : EHScopeStack::Cleanup {
723  void Emit(CodeGenFunction &CGF, Flags flags) override {
724  const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725 
726  const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727  const ObjCInterfaceDecl *iface = impl->getClassInterface();
728  if (!iface->getSuperClass()) return;
729 
730  bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731 
732  // Call [super dealloc] if we have a superclass.
733  llvm::Value *self = CGF.LoadObjCSelf();
734 
735  CallArgList args;
737  CGF.getContext().VoidTy,
738  method->getSelector(),
739  iface,
740  isCategory,
741  self,
742  /*is class msg*/ false,
743  args,
744  method);
745  }
746 };
747 }
748 
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
751 /// CodeGenFunction.
753  const ObjCContainerDecl *CD) {
754  SourceLocation StartLoc = OMD->getBeginLoc();
755  FunctionArgList args;
756  // Check if we should generate debug info for this method.
757  if (OMD->hasAttr<NoDebugAttr>())
758  DebugInfo = nullptr; // disable debug info indefinitely for this function
759 
760  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761 
763  if (OMD->isDirectMethod()) {
764  Fn->setVisibility(llvm::Function::HiddenVisibility);
765  CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
767  } else {
768  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769  }
770 
771  args.push_back(OMD->getSelfDecl());
772  if (!OMD->isDirectMethod())
773  args.push_back(OMD->getCmdDecl());
774 
775  args.append(OMD->param_begin(), OMD->param_end());
776 
777  CurGD = OMD;
778  CurEHLocation = OMD->getEndLoc();
779 
780  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781  OMD->getLocation(), StartLoc);
782 
783  if (OMD->isDirectMethod()) {
784  // This function is a direct call, it has to implement a nil check
785  // on entry.
786  //
787  // TODO: possibly have several entry points to elide the check
788  CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789  }
790 
791  // In ARC, certain methods get an extra cleanup.
792  if (CGM.getLangOpts().ObjCAutoRefCount &&
793  OMD->isInstanceMethod() &&
794  OMD->getSelector().isUnarySelector()) {
795  const IdentifierInfo *ident =
797  if (ident->isStr("dealloc"))
798  EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799  }
800 }
801 
802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803  LValue lvalue, QualType type);
804 
805 /// Generate an Objective-C method. An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
808  StartObjCMethod(OMD, OMD->getClassInterface());
810  assert(isa<CompoundStmt>(OMD->getBody()));
812  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
814 }
815 
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
819  bool isAtomic, bool hasStrong) {
820  ASTContext &Context = CGF.getContext();
821 
822  llvm::Value *src =
823  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824  .getPointer(CGF);
825 
826  // objc_copyStruct (ReturnValue, &structIvar,
827  // sizeof (Type of Ivar), isAtomic, false);
828  CallArgList args;
829 
830  llvm::Value *dest =
831  CGF.Builder.CreateBitCast(CGF.ReturnValue.getPointer(), CGF.VoidPtrTy);
832  args.add(RValue::get(dest), Context.VoidPtrTy);
833 
834  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
835  args.add(RValue::get(src), Context.VoidPtrTy);
836 
837  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
838  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
839  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
840  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
841 
842  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
843  CGCallee callee = CGCallee::forDirect(fn);
844  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
845  callee, ReturnValueSlot(), args);
846 }
847 
848 /// Determine whether the given architecture supports unaligned atomic
849 /// accesses. They don't have to be fast, just faster than a function
850 /// call and a mutex.
851 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
852  // FIXME: Allow unaligned atomic load/store on x86. (It is not
853  // currently supported by the backend.)
854  return false;
855 }
856 
857 /// Return the maximum size that permits atomic accesses for the given
858 /// architecture.
860  llvm::Triple::ArchType arch) {
861  // ARM has 8-byte atomic accesses, but it's not clear whether we
862  // want to rely on them here.
863 
864  // In the default case, just assume that any size up to a pointer is
865  // fine given adequate alignment.
867 }
868 
869 namespace {
870  class PropertyImplStrategy {
871  public:
872  enum StrategyKind {
873  /// The 'native' strategy is to use the architecture's provided
874  /// reads and writes.
875  Native,
876 
877  /// Use objc_setProperty and objc_getProperty.
878  GetSetProperty,
879 
880  /// Use objc_setProperty for the setter, but use expression
881  /// evaluation for the getter.
882  SetPropertyAndExpressionGet,
883 
884  /// Use objc_copyStruct.
885  CopyStruct,
886 
887  /// The 'expression' strategy is to emit normal assignment or
888  /// lvalue-to-rvalue expressions.
889  Expression
890  };
891 
892  StrategyKind getKind() const { return StrategyKind(Kind); }
893 
894  bool hasStrongMember() const { return HasStrong; }
895  bool isAtomic() const { return IsAtomic; }
896  bool isCopy() const { return IsCopy; }
897 
898  CharUnits getIvarSize() const { return IvarSize; }
899  CharUnits getIvarAlignment() const { return IvarAlignment; }
900 
901  PropertyImplStrategy(CodeGenModule &CGM,
902  const ObjCPropertyImplDecl *propImpl);
903 
904  private:
905  unsigned Kind : 8;
906  unsigned IsAtomic : 1;
907  unsigned IsCopy : 1;
908  unsigned HasStrong : 1;
909 
910  CharUnits IvarSize;
911  CharUnits IvarAlignment;
912  };
913 }
914 
915 /// Pick an implementation strategy for the given property synthesis.
916 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
917  const ObjCPropertyImplDecl *propImpl) {
918  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
919  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
920 
921  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
922  IsAtomic = prop->isAtomic();
923  HasStrong = false; // doesn't matter here.
924 
925  // Evaluate the ivar's size and alignment.
926  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
927  QualType ivarType = ivar->getType();
928  auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
929  IvarSize = TInfo.Width;
930  IvarAlignment = TInfo.Align;
931 
932  // If we have a copy property, we always have to use setProperty.
933  // If the property is atomic we need to use getProperty, but in
934  // the nonatomic case we can just use expression.
935  if (IsCopy) {
936  Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
937  return;
938  }
939 
940  // Handle retain.
941  if (setterKind == ObjCPropertyDecl::Retain) {
942  // In GC-only, there's nothing special that needs to be done.
943  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
944  // fallthrough
945 
946  // In ARC, if the property is non-atomic, use expression emission,
947  // which translates to objc_storeStrong. This isn't required, but
948  // it's slightly nicer.
949  } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
950  // Using standard expression emission for the setter is only
951  // acceptable if the ivar is __strong, which won't be true if
952  // the property is annotated with __attribute__((NSObject)).
953  // TODO: falling all the way back to objc_setProperty here is
954  // just laziness, though; we could still use objc_storeStrong
955  // if we hacked it right.
956  if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
957  Kind = Expression;
958  else
959  Kind = SetPropertyAndExpressionGet;
960  return;
961 
962  // Otherwise, we need to at least use setProperty. However, if
963  // the property isn't atomic, we can use normal expression
964  // emission for the getter.
965  } else if (!IsAtomic) {
966  Kind = SetPropertyAndExpressionGet;
967  return;
968 
969  // Otherwise, we have to use both setProperty and getProperty.
970  } else {
971  Kind = GetSetProperty;
972  return;
973  }
974  }
975 
976  // If we're not atomic, just use expression accesses.
977  if (!IsAtomic) {
978  Kind = Expression;
979  return;
980  }
981 
982  // Properties on bitfield ivars need to be emitted using expression
983  // accesses even if they're nominally atomic.
984  if (ivar->isBitField()) {
985  Kind = Expression;
986  return;
987  }
988 
989  // GC-qualified or ARC-qualified ivars need to be emitted as
990  // expressions. This actually works out to being atomic anyway,
991  // except for ARC __strong, but that should trigger the above code.
992  if (ivarType.hasNonTrivialObjCLifetime() ||
993  (CGM.getLangOpts().getGC() &&
994  CGM.getContext().getObjCGCAttrKind(ivarType))) {
995  Kind = Expression;
996  return;
997  }
998 
999  // Compute whether the ivar has strong members.
1000  if (CGM.getLangOpts().getGC())
1001  if (const RecordType *recordType = ivarType->getAs<RecordType>())
1002  HasStrong = recordType->getDecl()->hasObjectMember();
1003 
1004  // We can never access structs with object members with a native
1005  // access, because we need to use write barriers. This is what
1006  // objc_copyStruct is for.
1007  if (HasStrong) {
1008  Kind = CopyStruct;
1009  return;
1010  }
1011 
1012  // Otherwise, this is target-dependent and based on the size and
1013  // alignment of the ivar.
1014 
1015  // If the size of the ivar is not a power of two, give up. We don't
1016  // want to get into the business of doing compare-and-swaps.
1017  if (!IvarSize.isPowerOfTwo()) {
1018  Kind = CopyStruct;
1019  return;
1020  }
1021 
1022  llvm::Triple::ArchType arch =
1023  CGM.getTarget().getTriple().getArch();
1024 
1025  // Most architectures require memory to fit within a single cache
1026  // line, so the alignment has to be at least the size of the access.
1027  // Otherwise we have to grab a lock.
1028  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1029  Kind = CopyStruct;
1030  return;
1031  }
1032 
1033  // If the ivar's size exceeds the architecture's maximum atomic
1034  // access size, we have to use CopyStruct.
1035  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1036  Kind = CopyStruct;
1037  return;
1038  }
1039 
1040  // Otherwise, we can use native loads and stores.
1041  Kind = Native;
1042 }
1043 
1044 /// Generate an Objective-C property getter function.
1045 ///
1046 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1047 /// is illegal within a category.
1049  const ObjCPropertyImplDecl *PID) {
1050  llvm::Constant *AtomicHelperFn =
1052  ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1053  assert(OMD && "Invalid call to generate getter (empty method)");
1054  StartObjCMethod(OMD, IMP->getClassInterface());
1055 
1056  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1057 
1058  FinishFunction(OMD->getEndLoc());
1059 }
1060 
1061 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1062  const Expr *getter = propImpl->getGetterCXXConstructor();
1063  if (!getter) return true;
1064 
1065  // Sema only makes only of these when the ivar has a C++ class type,
1066  // so the form is pretty constrained.
1067 
1068  // If the property has a reference type, we might just be binding a
1069  // reference, in which case the result will be a gl-value. We should
1070  // treat this as a non-trivial operation.
1071  if (getter->isGLValue())
1072  return false;
1073 
1074  // If we selected a trivial copy-constructor, we're okay.
1075  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1076  return (construct->getConstructor()->isTrivial());
1077 
1078  // The constructor might require cleanups (in which case it's never
1079  // trivial).
1080  assert(isa<ExprWithCleanups>(getter));
1081  return false;
1082 }
1083 
1084 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1085 /// copy the ivar into the resturn slot.
1087  llvm::Value *returnAddr,
1088  ObjCIvarDecl *ivar,
1089  llvm::Constant *AtomicHelperFn) {
1090  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1091  // AtomicHelperFn);
1092  CallArgList args;
1093 
1094  // The 1st argument is the return Slot.
1095  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1096 
1097  // The 2nd argument is the address of the ivar.
1098  llvm::Value *ivarAddr =
1099  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1100  .getPointer(CGF);
1101  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1102  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1103 
1104  // Third argument is the helper function.
1105  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1106 
1107  llvm::FunctionCallee copyCppAtomicObjectFn =
1109  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110  CGF.EmitCall(
1112  callee, ReturnValueSlot(), args);
1113 }
1114 
1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118 // being removed from the direct method ABI as the getter/setter caller would
1119 // never load one. For non-direct methods, this emits a load of the implicit
1120 // `_cmd` storage.
1122  ObjCMethodDecl *MD) {
1123  if (MD->isDirectMethod()) {
1124  // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125  // value. This will be passed to objc_getProperty/objc_setProperty, which
1126  // has not appeared bothered by the `_cmd` argument being undefined before.
1127  llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128  return llvm::PoisonValue::get(selType);
1129  }
1130 
1131  return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1132 }
1133 
1134 void
1136  const ObjCPropertyImplDecl *propImpl,
1137  const ObjCMethodDecl *GetterMethodDecl,
1138  llvm::Constant *AtomicHelperFn) {
1139 
1140  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1141 
1143  if (!AtomicHelperFn) {
1144  LValue Src =
1146  LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147  callCStructCopyConstructor(Dst, Src);
1148  } else {
1149  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1151  AtomicHelperFn);
1152  }
1153  return;
1154  }
1155 
1156  // If there's a non-trivial 'get' expression, we just have to emit that.
1157  if (!hasTrivialGetExpr(propImpl)) {
1158  if (!AtomicHelperFn) {
1159  auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160  propImpl->getGetterCXXConstructor(),
1161  /* NRVOCandidate=*/nullptr);
1162  EmitReturnStmt(*ret);
1163  }
1164  else {
1165  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1167  ivar, AtomicHelperFn);
1168  }
1169  return;
1170  }
1171 
1172  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173  QualType propType = prop->getType();
1174  ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1175 
1176  // Pick an implementation strategy.
1177  PropertyImplStrategy strategy(CGM, propImpl);
1178  switch (strategy.getKind()) {
1179  case PropertyImplStrategy::Native: {
1180  // We don't need to do anything for a zero-size struct.
1181  if (strategy.getIvarSize().isZero())
1182  return;
1183 
1185 
1186  // Currently, all atomic accesses have to be through integer
1187  // types, so there's no point in trying to pick a prettier type.
1188  uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189  llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1190 
1191  // Perform an atomic load. This does not impose ordering constraints.
1192  Address ivarAddr = LV.getAddress(*this);
1193  ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1194  llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195  load->setAtomic(llvm::AtomicOrdering::Unordered);
1196 
1197  // Store that value into the return address. Doing this with a
1198  // bitcast is likely to produce some pretty ugly IR, but it's not
1199  // the *most* terrible thing in the world.
1200  llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201  uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202  llvm::Value *ivarVal = load;
1203  if (ivarSize > retTySize) {
1204  bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205  ivarVal = Builder.CreateTrunc(load, bitcastType);
1206  }
1207  Builder.CreateStore(ivarVal,
1208  Builder.CreateElementBitCast(ReturnValue, bitcastType));
1209 
1210  // Make sure we don't do an autorelease.
1211  AutoreleaseResult = false;
1212  return;
1213  }
1214 
1215  case PropertyImplStrategy::GetSetProperty: {
1216  llvm::FunctionCallee getPropertyFn =
1218  if (!getPropertyFn) {
1219  CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1220  return;
1221  }
1222  CGCallee callee = CGCallee::forDirect(getPropertyFn);
1223 
1224  // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1225  // FIXME: Can't this be simpler? This might even be worse than the
1226  // corresponding gcc code.
1227  llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1228  llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1229  llvm::Value *ivarOffset =
1230  EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1231 
1232  CallArgList args;
1233  args.add(RValue::get(self), getContext().getObjCIdType());
1234  args.add(RValue::get(cmd), getContext().getObjCSelType());
1235  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1236  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1237  getContext().BoolTy);
1238 
1239  // FIXME: We shouldn't need to get the function info here, the
1240  // runtime already should have computed it to build the function.
1241  llvm::CallBase *CallInstruction;
1242  RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1243  getContext().getObjCIdType(), args),
1244  callee, ReturnValueSlot(), args, &CallInstruction);
1245  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1246  call->setTailCall();
1247 
1248  // We need to fix the type here. Ivars with copy & retain are
1249  // always objects so we don't need to worry about complex or
1250  // aggregates.
1251  RV = RValue::get(Builder.CreateBitCast(
1252  RV.getScalarVal(),
1253  getTypes().ConvertType(getterMethod->getReturnType())));
1254 
1255  EmitReturnOfRValue(RV, propType);
1256 
1257  // objc_getProperty does an autorelease, so we should suppress ours.
1258  AutoreleaseResult = false;
1259 
1260  return;
1261  }
1262 
1263  case PropertyImplStrategy::CopyStruct:
1264  emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1265  strategy.hasStrongMember());
1266  return;
1267 
1268  case PropertyImplStrategy::Expression:
1269  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1271 
1272  QualType ivarType = ivar->getType();
1273  switch (getEvaluationKind(ivarType)) {
1274  case TEK_Complex: {
1277  /*init*/ true);
1278  return;
1279  }
1280  case TEK_Aggregate: {
1281  // The return value slot is guaranteed to not be aliased, but
1282  // that's not necessarily the same as "on the stack", so
1283  // we still potentially need objc_memmove_collectable.
1284  EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1285  /* Src= */ LV, ivarType, getOverlapForReturnValue());
1286  return;
1287  }
1288  case TEK_Scalar: {
1289  llvm::Value *value;
1290  if (propType->isReferenceType()) {
1291  value = LV.getAddress(*this).getPointer();
1292  } else {
1293  // We want to load and autoreleaseReturnValue ARC __weak ivars.
1295  if (getLangOpts().ObjCAutoRefCount) {
1296  value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1297  } else {
1298  value = EmitARCLoadWeak(LV.getAddress(*this));
1299  }
1300 
1301  // Otherwise we want to do a simple load, suppressing the
1302  // final autorelease.
1303  } else {
1304  value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1305  AutoreleaseResult = false;
1306  }
1307 
1308  value = Builder.CreateBitCast(
1309  value, ConvertType(GetterMethodDecl->getReturnType()));
1310  }
1311 
1312  EmitReturnOfRValue(RValue::get(value), propType);
1313  return;
1314  }
1315  }
1316  llvm_unreachable("bad evaluation kind");
1317  }
1318 
1319  }
1320  llvm_unreachable("bad @property implementation strategy!");
1321 }
1322 
1323 /// emitStructSetterCall - Call the runtime function to store the value
1324 /// from the first formal parameter into the given ivar.
1326  ObjCIvarDecl *ivar) {
1327  // objc_copyStruct (&structIvar, &Arg,
1328  // sizeof (struct something), true, false);
1329  CallArgList args;
1330 
1331  // The first argument is the address of the ivar.
1332  llvm::Value *ivarAddr =
1333  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1334  .getPointer(CGF);
1335  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1336  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1337 
1338  // The second argument is the address of the parameter variable.
1339  ParmVarDecl *argVar = *OMD->param_begin();
1340  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1341  argVar->getType().getNonReferenceType(), VK_LValue,
1342  SourceLocation());
1343  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1344  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1345  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1346 
1347  // The third argument is the sizeof the type.
1348  llvm::Value *size =
1349  CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1350  args.add(RValue::get(size), CGF.getContext().getSizeType());
1351 
1352  // The fourth argument is the 'isAtomic' flag.
1353  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1354 
1355  // The fifth argument is the 'hasStrong' flag.
1356  // FIXME: should this really always be false?
1357  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1358 
1359  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1360  CGCallee callee = CGCallee::forDirect(fn);
1361  CGF.EmitCall(
1363  callee, ReturnValueSlot(), args);
1364 }
1365 
1366 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1367 /// the value from the first formal parameter into the given ivar, using
1368 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1370  ObjCMethodDecl *OMD,
1371  ObjCIvarDecl *ivar,
1372  llvm::Constant *AtomicHelperFn) {
1373  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1374  // AtomicHelperFn);
1375  CallArgList args;
1376 
1377  // The first argument is the address of the ivar.
1378  llvm::Value *ivarAddr =
1379  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1380  .getPointer(CGF);
1381  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1382  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1383 
1384  // The second argument is the address of the parameter variable.
1385  ParmVarDecl *argVar = *OMD->param_begin();
1386  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1387  argVar->getType().getNonReferenceType(), VK_LValue,
1388  SourceLocation());
1389  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1390  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1391  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1392 
1393  // Third argument is the helper function.
1394  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1395 
1396  llvm::FunctionCallee fn =
1398  CGCallee callee = CGCallee::forDirect(fn);
1399  CGF.EmitCall(
1401  callee, ReturnValueSlot(), args);
1402 }
1403 
1404 
1405 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1406  Expr *setter = PID->getSetterCXXAssignment();
1407  if (!setter) return true;
1408 
1409  // Sema only makes only of these when the ivar has a C++ class type,
1410  // so the form is pretty constrained.
1411 
1412  // An operator call is trivial if the function it calls is trivial.
1413  // This also implies that there's nothing non-trivial going on with
1414  // the arguments, because operator= can only be trivial if it's a
1415  // synthesized assignment operator and therefore both parameters are
1416  // references.
1417  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1418  if (const FunctionDecl *callee
1419  = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1420  if (callee->isTrivial())
1421  return true;
1422  return false;
1423  }
1424 
1425  assert(isa<ExprWithCleanups>(setter));
1426  return false;
1427 }
1428 
1430  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1431  return false;
1433 }
1434 
1435 void
1437  const ObjCPropertyImplDecl *propImpl,
1438  llvm::Constant *AtomicHelperFn) {
1439  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1440  ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1441 
1443  ParmVarDecl *PVD = *setterMethod->param_begin();
1444  if (!AtomicHelperFn) {
1445  // Call the move assignment operator instead of calling the copy
1446  // assignment operator and destructor.
1448  /*quals*/ 0);
1449  LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1451  } else {
1452  // If atomic, assignment is called via a locking api.
1453  emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1454  }
1455  // Decativate the destructor for the setter parameter.
1456  DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1457  return;
1458  }
1459 
1460  // Just use the setter expression if Sema gave us one and it's
1461  // non-trivial.
1462  if (!hasTrivialSetExpr(propImpl)) {
1463  if (!AtomicHelperFn)
1464  // If non-atomic, assignment is called directly.
1465  EmitStmt(propImpl->getSetterCXXAssignment());
1466  else
1467  // If atomic, assignment is called via a locking api.
1468  emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1469  AtomicHelperFn);
1470  return;
1471  }
1472 
1473  PropertyImplStrategy strategy(CGM, propImpl);
1474  switch (strategy.getKind()) {
1475  case PropertyImplStrategy::Native: {
1476  // We don't need to do anything for a zero-size struct.
1477  if (strategy.getIvarSize().isZero())
1478  return;
1479 
1480  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1481 
1482  LValue ivarLValue =
1483  EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1484  Address ivarAddr = ivarLValue.getAddress(*this);
1485 
1486  // Currently, all atomic accesses have to be through integer
1487  // types, so there's no point in trying to pick a prettier type.
1488  llvm::Type *bitcastType =
1489  llvm::Type::getIntNTy(getLLVMContext(),
1490  getContext().toBits(strategy.getIvarSize()));
1491 
1492  // Cast both arguments to the chosen operation type.
1493  argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1494  ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1495 
1496  // This bitcast load is likely to cause some nasty IR.
1497  llvm::Value *load = Builder.CreateLoad(argAddr);
1498 
1499  // Perform an atomic store. There are no memory ordering requirements.
1500  llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1501  store->setAtomic(llvm::AtomicOrdering::Unordered);
1502  return;
1503  }
1504 
1505  case PropertyImplStrategy::GetSetProperty:
1506  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1507 
1508  llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1509  llvm::FunctionCallee setPropertyFn = nullptr;
1510  if (UseOptimizedSetter(CGM)) {
1511  // 10.8 and iOS 6.0 code and GC is off
1512  setOptimizedPropertyFn =
1514  strategy.isAtomic(), strategy.isCopy());
1515  if (!setOptimizedPropertyFn) {
1516  CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1517  return;
1518  }
1519  }
1520  else {
1521  setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1522  if (!setPropertyFn) {
1523  CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1524  return;
1525  }
1526  }
1527 
1528  // Emit objc_setProperty((id) self, _cmd, offset, arg,
1529  // <is-atomic>, <is-copy>).
1530  llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1531  llvm::Value *self =
1532  Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1533  llvm::Value *ivarOffset =
1534  EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1535  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1536  llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1537  arg = Builder.CreateBitCast(arg, VoidPtrTy);
1538 
1539  CallArgList args;
1540  args.add(RValue::get(self), getContext().getObjCIdType());
1541  args.add(RValue::get(cmd), getContext().getObjCSelType());
1542  if (setOptimizedPropertyFn) {
1543  args.add(RValue::get(arg), getContext().getObjCIdType());
1544  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1545  CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1546  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1547  callee, ReturnValueSlot(), args);
1548  } else {
1549  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1550  args.add(RValue::get(arg), getContext().getObjCIdType());
1551  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1552  getContext().BoolTy);
1553  args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1554  getContext().BoolTy);
1555  // FIXME: We shouldn't need to get the function info here, the runtime
1556  // already should have computed it to build the function.
1557  CGCallee callee = CGCallee::forDirect(setPropertyFn);
1558  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1559  callee, ReturnValueSlot(), args);
1560  }
1561 
1562  return;
1563  }
1564 
1565  case PropertyImplStrategy::CopyStruct:
1566  emitStructSetterCall(*this, setterMethod, ivar);
1567  return;
1568 
1569  case PropertyImplStrategy::Expression:
1570  break;
1571  }
1572 
1573  // Otherwise, fake up some ASTs and emit a normal assignment.
1574  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1575  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1577  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1578  CK_LValueToRValue, &self, VK_PRValue,
1579  FPOptionsOverride());
1580  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1582  &selfLoad, true, true);
1583 
1584  ParmVarDecl *argDecl = *setterMethod->param_begin();
1585  QualType argType = argDecl->getType().getNonReferenceType();
1586  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1587  SourceLocation());
1589  argType.getUnqualifiedType(), CK_LValueToRValue,
1591 
1592  // The property type can differ from the ivar type in some situations with
1593  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1594  // The following absurdity is just to ensure well-formed IR.
1595  CastKind argCK = CK_NoOp;
1596  if (ivarRef.getType()->isObjCObjectPointerType()) {
1597  if (argLoad.getType()->isObjCObjectPointerType())
1598  argCK = CK_BitCast;
1599  else if (argLoad.getType()->isBlockPointerType())
1600  argCK = CK_BlockPointerToObjCPointerCast;
1601  else
1602  argCK = CK_CPointerToObjCPointerCast;
1603  } else if (ivarRef.getType()->isBlockPointerType()) {
1604  if (argLoad.getType()->isBlockPointerType())
1605  argCK = CK_BitCast;
1606  else
1607  argCK = CK_AnyPointerToBlockPointerCast;
1608  } else if (ivarRef.getType()->isPointerType()) {
1609  argCK = CK_BitCast;
1610  } else if (argLoad.getType()->isAtomicType() &&
1611  !ivarRef.getType()->isAtomicType()) {
1612  argCK = CK_AtomicToNonAtomic;
1613  } else if (!argLoad.getType()->isAtomicType() &&
1614  ivarRef.getType()->isAtomicType()) {
1615  argCK = CK_NonAtomicToAtomic;
1616  }
1617  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1618  &argLoad, VK_PRValue, FPOptionsOverride());
1619  Expr *finalArg = &argLoad;
1620  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1621  argLoad.getType()))
1622  finalArg = &argCast;
1623 
1625  getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1627  EmitStmt(assign);
1628 }
1629 
1630 /// Generate an Objective-C property setter function.
1631 ///
1632 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1633 /// is illegal within a category.
1635  const ObjCPropertyImplDecl *PID) {
1636  llvm::Constant *AtomicHelperFn =
1638  ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1639  assert(OMD && "Invalid call to generate setter (empty method)");
1640  StartObjCMethod(OMD, IMP->getClassInterface());
1641 
1642  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1643 
1644  FinishFunction(OMD->getEndLoc());
1645 }
1646 
1647 namespace {
1648  struct DestroyIvar final : EHScopeStack::Cleanup {
1649  private:
1650  llvm::Value *addr;
1651  const ObjCIvarDecl *ivar;
1652  CodeGenFunction::Destroyer *destroyer;
1653  bool useEHCleanupForArray;
1654  public:
1655  DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1656  CodeGenFunction::Destroyer *destroyer,
1657  bool useEHCleanupForArray)
1658  : addr(addr), ivar(ivar), destroyer(destroyer),
1659  useEHCleanupForArray(useEHCleanupForArray) {}
1660 
1661  void Emit(CodeGenFunction &CGF, Flags flags) override {
1662  LValue lvalue
1663  = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1664  CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1665  flags.isForNormalCleanup() && useEHCleanupForArray);
1666  }
1667  };
1668 }
1669 
1670 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1672  Address addr,
1673  QualType type) {
1674  llvm::Value *null = getNullForVariable(addr);
1675  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1676 }
1677 
1679  ObjCImplementationDecl *impl) {
1681 
1682  llvm::Value *self = CGF.LoadObjCSelf();
1683 
1684  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1685  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1686  ivar; ivar = ivar->getNextIvar()) {
1687  QualType type = ivar->getType();
1688 
1689  // Check whether the ivar is a destructible type.
1690  QualType::DestructionKind dtorKind = type.isDestructedType();
1691  if (!dtorKind) continue;
1692 
1693  CodeGenFunction::Destroyer *destroyer = nullptr;
1694 
1695  // Use a call to objc_storeStrong to destroy strong ivars, for the
1696  // general benefit of the tools.
1697  if (dtorKind == QualType::DK_objc_strong_lifetime) {
1698  destroyer = destroyARCStrongWithStore;
1699 
1700  // Otherwise use the default for the destruction kind.
1701  } else {
1702  destroyer = CGF.getDestroyer(dtorKind);
1703  }
1704 
1705  CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1706 
1707  CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1708  cleanupKind & EHCleanup);
1709  }
1710 
1711  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1712 }
1713 
1715  ObjCMethodDecl *MD,
1716  bool ctor) {
1718  StartObjCMethod(MD, IMP->getClassInterface());
1719 
1720  // Emit .cxx_construct.
1721  if (ctor) {
1722  // Suppress the final autorelease in ARC.
1723  AutoreleaseResult = false;
1724 
1725  for (const auto *IvarInit : IMP->inits()) {
1726  FieldDecl *Field = IvarInit->getAnyMember();
1727  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1729  LoadObjCSelf(), Ivar, 0);
1730  EmitAggExpr(IvarInit->getInit(),
1735  }
1736  // constructor returns 'self'.
1737  CodeGenTypes &Types = CGM.getTypes();
1739  llvm::Value *SelfAsId =
1740  Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1741  EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1742 
1743  // Emit .cxx_destruct.
1744  } else {
1745  emitCXXDestructMethod(*this, IMP);
1746  }
1747  FinishFunction();
1748 }
1749 
1751  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1752  DeclRefExpr DRE(getContext(), Self,
1753  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1754  Self->getType(), VK_LValue, SourceLocation());
1756 }
1757 
1759  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1760  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1761  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1762  getContext().getCanonicalType(selfDecl->getType()));
1763  return PTy->getPointeeType();
1764 }
1765 
1767  llvm::FunctionCallee EnumerationMutationFnPtr =
1769  if (!EnumerationMutationFnPtr) {
1770  CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1771  return;
1772  }
1773  CGCallee EnumerationMutationFn =
1774  CGCallee::forDirect(EnumerationMutationFnPtr);
1775 
1776  CGDebugInfo *DI = getDebugInfo();
1777  if (DI)
1778  DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1779 
1780  RunCleanupsScope ForScope(*this);
1781 
1782  // The local variable comes into scope immediately.
1784  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1785  variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1786 
1787  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1788 
1789  // Fast enumeration state.
1791  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1792  EmitNullInitialization(StatePtr, StateTy);
1793 
1794  // Number of elements in the items array.
1795  static const unsigned NumItems = 16;
1796 
1797  // Fetch the countByEnumeratingWithState:objects:count: selector.
1798  IdentifierInfo *II[] = {
1799  &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1800  &CGM.getContext().Idents.get("objects"),
1801  &CGM.getContext().Idents.get("count")
1802  };
1803  Selector FastEnumSel =
1804  CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1805 
1806  QualType ItemsTy =
1807  getContext().getConstantArrayType(getContext().getObjCIdType(),
1808  llvm::APInt(32, NumItems), nullptr,
1809  ArrayType::Normal, 0);
1810  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1811 
1812  // Emit the collection pointer. In ARC, we do a retain.
1813  llvm::Value *Collection;
1814  if (getLangOpts().ObjCAutoRefCount) {
1815  Collection = EmitARCRetainScalarExpr(S.getCollection());
1816 
1817  // Enter a cleanup to do the release.
1818  EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1819  } else {
1820  Collection = EmitScalarExpr(S.getCollection());
1821  }
1822 
1823  // The 'continue' label needs to appear within the cleanup for the
1824  // collection object.
1825  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1826 
1827  // Send it our message:
1828  CallArgList Args;
1829 
1830  // The first argument is a temporary of the enumeration-state type.
1831  Args.add(RValue::get(StatePtr.getPointer()),
1832  getContext().getPointerType(StateTy));
1833 
1834  // The second argument is a temporary array with space for NumItems
1835  // pointers. We'll actually be loading elements from the array
1836  // pointer written into the control state; this buffer is so that
1837  // collections that *aren't* backed by arrays can still queue up
1838  // batches of elements.
1839  Args.add(RValue::get(ItemsPtr.getPointer()),
1840  getContext().getPointerType(ItemsTy));
1841 
1842  // The third argument is the capacity of that temporary array.
1843  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1844  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1845  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1846 
1847  // Start the enumeration.
1848  RValue CountRV =
1850  getContext().getNSUIntegerType(),
1851  FastEnumSel, Collection, Args);
1852 
1853  // The initial number of objects that were returned in the buffer.
1854  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1855 
1856  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1857  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1858 
1859  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1860 
1861  // If the limit pointer was zero to begin with, the collection is
1862  // empty; skip all this. Set the branch weight assuming this has the same
1863  // probability of exiting the loop as any other loop exit.
1864  uint64_t EntryCount = getCurrentProfileCount();
1865  Builder.CreateCondBr(
1866  Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1867  LoopInitBB,
1868  createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1869 
1870  // Otherwise, initialize the loop.
1871  EmitBlock(LoopInitBB);
1872 
1873  // Save the initial mutations value. This is the value at an
1874  // address that was written into the state object by
1875  // countByEnumeratingWithState:objects:count:.
1876  Address StateMutationsPtrPtr =
1877  Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1878  llvm::Value *StateMutationsPtr
1879  = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1880 
1881  llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1882  llvm::Value *initialMutations =
1883  Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1884  getPointerAlign(), "forcoll.initial-mutations");
1885 
1886  // Start looping. This is the point we return to whenever we have a
1887  // fresh, non-empty batch of objects.
1888  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1889  EmitBlock(LoopBodyBB);
1890 
1891  // The current index into the buffer.
1892  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1893  index->addIncoming(zero, LoopInitBB);
1894 
1895  // The current buffer size.
1896  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1897  count->addIncoming(initialBufferLimit, LoopInitBB);
1898 
1900 
1901  // Check whether the mutations value has changed from where it was
1902  // at start. StateMutationsPtr should actually be invariant between
1903  // refreshes.
1904  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1905  llvm::Value *currentMutations
1906  = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1907  getPointerAlign(), "statemutations");
1908 
1909  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1910  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1911 
1912  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1913  WasNotMutatedBB, WasMutatedBB);
1914 
1915  // If so, call the enumeration-mutation function.
1916  EmitBlock(WasMutatedBB);
1917  llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1918  llvm::Value *V =
1919  Builder.CreateBitCast(Collection, ObjCIdType);
1920  CallArgList Args2;
1921  Args2.add(RValue::get(V), getContext().getObjCIdType());
1922  // FIXME: We shouldn't need to get the function info here, the runtime already
1923  // should have computed it to build the function.
1924  EmitCall(
1926  EnumerationMutationFn, ReturnValueSlot(), Args2);
1927 
1928  // Otherwise, or if the mutation function returns, just continue.
1929  EmitBlock(WasNotMutatedBB);
1930 
1931  // Initialize the element variable.
1932  RunCleanupsScope elementVariableScope(*this);
1933  bool elementIsVariable;
1934  LValue elementLValue;
1935  QualType elementType;
1936  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1937  // Initialize the variable, in case it's a __block variable or something.
1938  EmitAutoVarInit(variable);
1939 
1940  const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1941  DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1942  D->getType(), VK_LValue, SourceLocation());
1943  elementLValue = EmitLValue(&tempDRE);
1944  elementType = D->getType();
1945  elementIsVariable = true;
1946 
1947  if (D->isARCPseudoStrong())
1949  } else {
1950  elementLValue = LValue(); // suppress warning
1951  elementType = cast<Expr>(S.getElement())->getType();
1952  elementIsVariable = false;
1953  }
1954  llvm::Type *convertedElementType = ConvertType(elementType);
1955 
1956  // Fetch the buffer out of the enumeration state.
1957  // TODO: this pointer should actually be invariant between
1958  // refreshes, which would help us do certain loop optimizations.
1959  Address StateItemsPtr =
1960  Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1961  llvm::Value *EnumStateItems =
1962  Builder.CreateLoad(StateItemsPtr, "stateitems");
1963 
1964  // Fetch the value at the current index from the buffer.
1965  llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1966  ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1967  llvm::Value *CurrentItem =
1968  Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1969 
1970  if (SanOpts.has(SanitizerKind::ObjCCast)) {
1971  // Before using an item from the collection, check that the implicit cast
1972  // from id to the element type is valid. This is done with instrumentation
1973  // roughly corresponding to:
1974  //
1975  // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1976  const ObjCObjectPointerType *ObjPtrTy =
1977  elementType->getAsObjCInterfacePointerType();
1978  const ObjCInterfaceType *InterfaceTy =
1979  ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1980  if (InterfaceTy) {
1981  SanitizerScope SanScope(this);
1982  auto &C = CGM.getContext();
1983  assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1984  Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1985  CallArgList IsKindOfClassArgs;
1986  llvm::Value *Cls =
1987  CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1988  IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1989  llvm::Value *IsClass =
1991  .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1992  IsKindOfClassSel, CurrentItem,
1993  IsKindOfClassArgs)
1994  .getScalarVal();
1995  llvm::Constant *StaticData[] = {
1996  EmitCheckSourceLocation(S.getBeginLoc()),
1997  EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1998  EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1999  SanitizerHandler::InvalidObjCCast,
2000  ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
2001  }
2002  }
2003 
2004  // Cast that value to the right type.
2005  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
2006  "currentitem");
2007 
2008  // Make sure we have an l-value. Yes, this gets evaluated every
2009  // time through the loop.
2010  if (!elementIsVariable) {
2011  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2012  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2013  } else {
2014  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2015  /*isInit*/ true);
2016  }
2017 
2018  // If we do have an element variable, this assignment is the end of
2019  // its initialization.
2020  if (elementIsVariable)
2021  EmitAutoVarCleanups(variable);
2022 
2023  // Perform the loop body, setting up break and continue labels.
2024  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2025  {
2026  RunCleanupsScope Scope(*this);
2027  EmitStmt(S.getBody());
2028  }
2029  BreakContinueStack.pop_back();
2030 
2031  // Destroy the element variable now.
2032  elementVariableScope.ForceCleanup();
2033 
2034  // Check whether there are more elements.
2035  EmitBlock(AfterBody.getBlock());
2036 
2037  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2038 
2039  // First we check in the local buffer.
2040  llvm::Value *indexPlusOne =
2041  Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2042 
2043  // If we haven't overrun the buffer yet, we can continue.
2044  // Set the branch weights based on the simplifying assumption that this is
2045  // like a while-loop, i.e., ignoring that the false branch fetches more
2046  // elements and then returns to the loop.
2047  Builder.CreateCondBr(
2048  Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2049  createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2050 
2051  index->addIncoming(indexPlusOne, AfterBody.getBlock());
2052  count->addIncoming(count, AfterBody.getBlock());
2053 
2054  // Otherwise, we have to fetch more elements.
2055  EmitBlock(FetchMoreBB);
2056 
2057  CountRV =
2059  getContext().getNSUIntegerType(),
2060  FastEnumSel, Collection, Args);
2061 
2062  // If we got a zero count, we're done.
2063  llvm::Value *refetchCount = CountRV.getScalarVal();
2064 
2065  // (note that the message send might split FetchMoreBB)
2066  index->addIncoming(zero, Builder.GetInsertBlock());
2067  count->addIncoming(refetchCount, Builder.GetInsertBlock());
2068 
2069  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2070  EmptyBB, LoopBodyBB);
2071 
2072  // No more elements.
2073  EmitBlock(EmptyBB);
2074 
2075  if (!elementIsVariable) {
2076  // If the element was not a declaration, set it to be null.
2077 
2078  llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2079  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2080  EmitStoreThroughLValue(RValue::get(null), elementLValue);
2081  }
2082 
2083  if (DI)
2084  DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2085 
2086  ForScope.ForceCleanup();
2087  EmitBlock(LoopEnd.getBlock());
2088 }
2089 
2091  CGM.getObjCRuntime().EmitTryStmt(*this, S);
2092 }
2093 
2095  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2096 }
2097 
2099  const ObjCAtSynchronizedStmt &S) {
2101 }
2102 
2103 namespace {
2104  struct CallObjCRelease final : EHScopeStack::Cleanup {
2105  CallObjCRelease(llvm::Value *object) : object(object) {}
2106  llvm::Value *object;
2107 
2108  void Emit(CodeGenFunction &CGF, Flags flags) override {
2109  // Releases at the end of the full-expression are imprecise.
2110  CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2111  }
2112  };
2113 }
2114 
2115 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2116 /// release at the end of the full-expression.
2118  llvm::Value *object) {
2119  // If we're in a conditional branch, we need to make the cleanup
2120  // conditional.
2121  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2122  return object;
2123 }
2124 
2126  llvm::Value *value) {
2127  return EmitARCRetainAutorelease(type, value);
2128 }
2129 
2130 /// Given a number of pointers, inform the optimizer that they're
2131 /// being intrinsically used up until this point in the program.
2133  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2134  if (!fn)
2135  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2136 
2137  // This isn't really a "runtime" function, but as an intrinsic it
2138  // doesn't really matter as long as we align things up.
2139  EmitNounwindRuntimeCall(fn, values);
2140 }
2141 
2142 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2143 /// that has operand bundle "clang.arc.attachedcall".
2145  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2146  if (!fn)
2147  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2148  EmitNounwindRuntimeCall(fn, values);
2149 }
2150 
2151 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2152  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2153  // If the target runtime doesn't naturally support ARC, emit weak
2154  // references to the runtime support library. We don't really
2155  // permit this to fail, but we need a particular relocation style.
2156  if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2157  !CGM.getTriple().isOSBinFormatCOFF()) {
2158  F->setLinkage(llvm::Function::ExternalWeakLinkage);
2159  }
2160  }
2161 }
2162 
2164  llvm::FunctionCallee RTF) {
2165  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2166 }
2167 
2168 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2169  CodeGenModule &CGM) {
2170  llvm::Function *fn = CGM.getIntrinsic(IntID);
2172  return fn;
2173 }
2174 
2175 /// Perform an operation having the signature
2176 /// i8* (i8*)
2177 /// where a null input causes a no-op and returns null.
2178 static llvm::Value *emitARCValueOperation(
2179  CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2180  llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2181  llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2182  if (isa<llvm::ConstantPointerNull>(value))
2183  return value;
2184 
2185  if (!fn)
2186  fn = getARCIntrinsic(IntID, CGF.CGM);
2187 
2188  // Cast the argument to 'id'.
2189  llvm::Type *origType = returnType ? returnType : value->getType();
2190  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2191 
2192  // Call the function.
2193  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2194  call->setTailCallKind(tailKind);
2195 
2196  // Cast the result back to the original type.
2197  return CGF.Builder.CreateBitCast(call, origType);
2198 }
2199 
2200 /// Perform an operation having the following signature:
2201 /// i8* (i8**)
2202 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2203  llvm::Function *&fn,
2204  llvm::Intrinsic::ID IntID) {
2205  if (!fn)
2206  fn = getARCIntrinsic(IntID, CGF.CGM);
2207 
2208  // Cast the argument to 'id*'.
2209  llvm::Type *origType = addr.getElementType();
2210  addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8PtrTy);
2211 
2212  // Call the function.
2213  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2214 
2215  // Cast the result back to a dereference of the original type.
2216  if (origType != CGF.Int8PtrTy)
2217  result = CGF.Builder.CreateBitCast(result, origType);
2218 
2219  return result;
2220 }
2221 
2222 /// Perform an operation having the following signature:
2223 /// i8* (i8**, i8*)
2224 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2225  llvm::Value *value,
2226  llvm::Function *&fn,
2227  llvm::Intrinsic::ID IntID,
2228  bool ignored) {
2229  assert(addr.getElementType() == value->getType());
2230 
2231  if (!fn)
2232  fn = getARCIntrinsic(IntID, CGF.CGM);
2233 
2234  llvm::Type *origType = value->getType();
2235 
2236  llvm::Value *args[] = {
2237  CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2238  CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2239  };
2240  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2241 
2242  if (ignored) return nullptr;
2243 
2244  return CGF.Builder.CreateBitCast(result, origType);
2245 }
2246 
2247 /// Perform an operation having the following signature:
2248 /// void (i8**, i8**)
2250  llvm::Function *&fn,
2251  llvm::Intrinsic::ID IntID) {
2252  assert(dst.getType() == src.getType());
2253 
2254  if (!fn)
2255  fn = getARCIntrinsic(IntID, CGF.CGM);
2256 
2257  llvm::Value *args[] = {
2258  CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2259  CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2260  };
2261  CGF.EmitNounwindRuntimeCall(fn, args);
2262 }
2263 
2264 /// Perform an operation having the signature
2265 /// i8* (i8*)
2266 /// where a null input causes a no-op and returns null.
2267 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2268  llvm::Value *value,
2269  llvm::Type *returnType,
2270  llvm::FunctionCallee &fn,
2271  StringRef fnName) {
2272  if (isa<llvm::ConstantPointerNull>(value))
2273  return value;
2274 
2275  if (!fn) {
2276  llvm::FunctionType *fnType =
2277  llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2278  fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2279 
2280  // We have Native ARC, so set nonlazybind attribute for performance
2281  if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2282  if (fnName == "objc_retain")
2283  f->addFnAttr(llvm::Attribute::NonLazyBind);
2284  }
2285 
2286  // Cast the argument to 'id'.
2287  llvm::Type *origType = returnType ? returnType : value->getType();
2288  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2289 
2290  // Call the function.
2291  llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2292 
2293  // Mark calls to objc_autorelease as tail on the assumption that methods
2294  // overriding autorelease do not touch anything on the stack.
2295  if (fnName == "objc_autorelease")
2296  if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2297  Call->setTailCall();
2298 
2299  // Cast the result back to the original type.
2300  return CGF.Builder.CreateBitCast(Inst, origType);
2301 }
2302 
2303 /// Produce the code to do a retain. Based on the type, calls one of:
2304 /// call i8* \@objc_retain(i8* %value)
2305 /// call i8* \@objc_retainBlock(i8* %value)
2306 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2307  if (type->isBlockPointerType())
2308  return EmitARCRetainBlock(value, /*mandatory*/ false);
2309  else
2310  return EmitARCRetainNonBlock(value);
2311 }
2312 
2313 /// Retain the given object, with normal retain semantics.
2314 /// call i8* \@objc_retain(i8* %value)
2315 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2316  return emitARCValueOperation(*this, value, nullptr,
2318  llvm::Intrinsic::objc_retain);
2319 }
2320 
2321 /// Retain the given block, with _Block_copy semantics.
2322 /// call i8* \@objc_retainBlock(i8* %value)
2323 ///
2324 /// \param mandatory - If false, emit the call with metadata
2325 /// indicating that it's okay for the optimizer to eliminate this call
2326 /// if it can prove that the block never escapes except down the stack.
2327 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2328  bool mandatory) {
2329  llvm::Value *result
2330  = emitARCValueOperation(*this, value, nullptr,
2332  llvm::Intrinsic::objc_retainBlock);
2333 
2334  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2335  // tell the optimizer that it doesn't need to do this copy if the
2336  // block doesn't escape, where being passed as an argument doesn't
2337  // count as escaping.
2338  if (!mandatory && isa<llvm::Instruction>(result)) {
2339  llvm::CallInst *call
2340  = cast<llvm::CallInst>(result->stripPointerCasts());
2341  assert(call->getCalledOperand() ==
2343 
2344  call->setMetadata("clang.arc.copy_on_escape",
2345  llvm::MDNode::get(Builder.getContext(), std::nullopt));
2346  }
2347 
2348  return result;
2349 }
2350 
2352  // Fetch the void(void) inline asm which marks that we're going to
2353  // do something with the autoreleased return value.
2354  llvm::InlineAsm *&marker
2356  if (!marker) {
2357  StringRef assembly
2358  = CGF.CGM.getTargetCodeGenInfo()
2360 
2361  // If we have an empty assembly string, there's nothing to do.
2362  if (assembly.empty()) {
2363 
2364  // Otherwise, at -O0, build an inline asm that we're going to call
2365  // in a moment.
2366  } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2367  llvm::FunctionType *type =
2368  llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2369 
2370  marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2371 
2372  // If we're at -O1 and above, we don't want to litter the code
2373  // with this marker yet, so leave a breadcrumb for the ARC
2374  // optimizer to pick up.
2375  } else {
2376  const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2377  if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2378  auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2379  CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2380  retainRVMarkerKey, str);
2381  }
2382  }
2383  }
2384 
2385  // Call the marker asm if we made one, which we do only at -O0.
2386  if (marker)
2387  CGF.Builder.CreateCall(marker, std::nullopt,
2388  CGF.getBundlesForFunclet(marker));
2389 }
2390 
2391 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2392  bool IsRetainRV,
2393  CodeGenFunction &CGF) {
2395 
2396  // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2397  // retainRV or claimRV calls in the IR. We currently do this only when the
2398  // optimization level isn't -O0 since global-isel, which is currently run at
2399  // -O0, doesn't know about the operand bundle.
2400  ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2401  llvm::Function *&EP = IsRetainRV
2404  llvm::Intrinsic::ID IID =
2405  IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2406  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2407  EP = getARCIntrinsic(IID, CGF.CGM);
2408 
2409  llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2410 
2411  // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2412  // the target backend knows how to handle the operand bundle.
2413  if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2414  (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2415  llvm::Value *bundleArgs[] = {EP};
2416  llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2417  auto *oldCall = cast<llvm::CallBase>(value);
2418  llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2419  oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2420  newCall->copyMetadata(*oldCall);
2421  oldCall->replaceAllUsesWith(newCall);
2422  oldCall->eraseFromParent();
2423  CGF.EmitARCNoopIntrinsicUse(newCall);
2424  return newCall;
2425  }
2426 
2427  bool isNoTail =
2429  llvm::CallInst::TailCallKind tailKind =
2430  isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2431  return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2432 }
2433 
2434 /// Retain the given object which is the result of a function call.
2435 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2436 ///
2437 /// Yes, this function name is one character away from a different
2438 /// call with completely different semantics.
2439 llvm::Value *
2441  return emitOptimizedARCReturnCall(value, true, *this);
2442 }
2443 
2444 /// Claim a possibly-autoreleased return value at +0. This is only
2445 /// valid to do in contexts which do not rely on the retain to keep
2446 /// the object valid for all of its uses; for example, when
2447 /// the value is ignored, or when it is being assigned to an
2448 /// __unsafe_unretained variable.
2449 ///
2450 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2451 llvm::Value *
2453  return emitOptimizedARCReturnCall(value, false, *this);
2454 }
2455 
2456 /// Release the given object.
2457 /// call void \@objc_release(i8* %value)
2458 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2459  ARCPreciseLifetime_t precise) {
2460  if (isa<llvm::ConstantPointerNull>(value)) return;
2461 
2462  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2463  if (!fn)
2464  fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2465 
2466  // Cast the argument to 'id'.
2467  value = Builder.CreateBitCast(value, Int8PtrTy);
2468 
2469  // Call objc_release.
2470  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2471 
2472  if (precise == ARCImpreciseLifetime) {
2473  call->setMetadata("clang.imprecise_release",
2474  llvm::MDNode::get(Builder.getContext(), std::nullopt));
2475  }
2476 }
2477 
2478 /// Destroy a __strong variable.
2479 ///
2480 /// At -O0, emit a call to store 'null' into the address;
2481 /// instrumenting tools prefer this because the address is exposed,
2482 /// but it's relatively cumbersome to optimize.
2483 ///
2484 /// At -O1 and above, just load and call objc_release.
2485 ///
2486 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2488  ARCPreciseLifetime_t precise) {
2489  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2490  llvm::Value *null = getNullForVariable(addr);
2491  EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2492  return;
2493  }
2494 
2495  llvm::Value *value = Builder.CreateLoad(addr);
2496  EmitARCRelease(value, precise);
2497 }
2498 
2499 /// Store into a strong object. Always calls this:
2500 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2502  llvm::Value *value,
2503  bool ignored) {
2504  assert(addr.getElementType() == value->getType());
2505 
2506  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2507  if (!fn)
2508  fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2509 
2510  llvm::Value *args[] = {
2511  Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2512  Builder.CreateBitCast(value, Int8PtrTy)
2513  };
2514  EmitNounwindRuntimeCall(fn, args);
2515 
2516  if (ignored) return nullptr;
2517  return value;
2518 }
2519 
2520 /// Store into a strong object. Sometimes calls this:
2521 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2522 /// Other times, breaks it down into components.
2524  llvm::Value *newValue,
2525  bool ignored) {
2526  QualType type = dst.getType();
2527  bool isBlock = type->isBlockPointerType();
2528 
2529  // Use a store barrier at -O0 unless this is a block type or the
2530  // lvalue is inadequately aligned.
2531  if (shouldUseFusedARCCalls() &&
2532  !isBlock &&
2533  (dst.getAlignment().isZero() ||
2535  return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2536  }
2537 
2538  // Otherwise, split it out.
2539 
2540  // Retain the new value.
2541  newValue = EmitARCRetain(type, newValue);
2542 
2543  // Read the old value.
2544  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2545 
2546  // Store. We do this before the release so that any deallocs won't
2547  // see the old value.
2548  EmitStoreOfScalar(newValue, dst);
2549 
2550  // Finally, release the old value.
2551  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2552 
2553  return newValue;
2554 }
2555 
2556 /// Autorelease the given object.
2557 /// call i8* \@objc_autorelease(i8* %value)
2558 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2559  return emitARCValueOperation(*this, value, nullptr,
2561  llvm::Intrinsic::objc_autorelease);
2562 }
2563 
2564 /// Autorelease the given object.
2565 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2566 llvm::Value *
2568  return emitARCValueOperation(*this, value, nullptr,
2570  llvm::Intrinsic::objc_autoreleaseReturnValue,
2571  llvm::CallInst::TCK_Tail);
2572 }
2573 
2574 /// Do a fused retain/autorelease of the given object.
2575 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2576 llvm::Value *
2578  return emitARCValueOperation(*this, value, nullptr,
2580  llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2581  llvm::CallInst::TCK_Tail);
2582 }
2583 
2584 /// Do a fused retain/autorelease of the given object.
2585 /// call i8* \@objc_retainAutorelease(i8* %value)
2586 /// or
2587 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2588 /// call i8* \@objc_autorelease(i8* %retain)
2590  llvm::Value *value) {
2591  if (!type->isBlockPointerType())
2592  return EmitARCRetainAutoreleaseNonBlock(value);
2593 
2594  if (isa<llvm::ConstantPointerNull>(value)) return value;
2595 
2596  llvm::Type *origType = value->getType();
2597  value = Builder.CreateBitCast(value, Int8PtrTy);
2598  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2599  value = EmitARCAutorelease(value);
2600  return Builder.CreateBitCast(value, origType);
2601 }
2602 
2603 /// Do a fused retain/autorelease of the given object.
2604 /// call i8* \@objc_retainAutorelease(i8* %value)
2605 llvm::Value *
2607  return emitARCValueOperation(*this, value, nullptr,
2609  llvm::Intrinsic::objc_retainAutorelease);
2610 }
2611 
2612 /// i8* \@objc_loadWeak(i8** %addr)
2613 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2615  return emitARCLoadOperation(*this, addr,
2617  llvm::Intrinsic::objc_loadWeak);
2618 }
2619 
2620 /// i8* \@objc_loadWeakRetained(i8** %addr)
2622  return emitARCLoadOperation(*this, addr,
2624  llvm::Intrinsic::objc_loadWeakRetained);
2625 }
2626 
2627 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2628 /// Returns %value.
2630  llvm::Value *value,
2631  bool ignored) {
2632  return emitARCStoreOperation(*this, addr, value,
2634  llvm::Intrinsic::objc_storeWeak, ignored);
2635 }
2636 
2637 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2638 /// Returns %value. %addr is known to not have a current weak entry.
2639 /// Essentially equivalent to:
2640 /// *addr = nil; objc_storeWeak(addr, value);
2641 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2642  // If we're initializing to null, just write null to memory; no need
2643  // to get the runtime involved. But don't do this if optimization
2644  // is enabled, because accounting for this would make the optimizer
2645  // much more complicated.
2646  if (isa<llvm::ConstantPointerNull>(value) &&
2647  CGM.getCodeGenOpts().OptimizationLevel == 0) {
2648  Builder.CreateStore(value, addr);
2649  return;
2650  }
2651 
2652  emitARCStoreOperation(*this, addr, value,
2654  llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2655 }
2656 
2657 /// void \@objc_destroyWeak(i8** %addr)
2658 /// Essentially objc_storeWeak(addr, nil).
2660  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2661  if (!fn)
2662  fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2663 
2664  // Cast the argument to 'id*'.
2665  addr = Builder.CreateElementBitCast(addr, Int8PtrTy);
2666 
2667  EmitNounwindRuntimeCall(fn, addr.getPointer());
2668 }
2669 
2670 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2671 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2672 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2674  emitARCCopyOperation(*this, dst, src,
2676  llvm::Intrinsic::objc_moveWeak);
2677 }
2678 
2679 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2680 /// Disregards the current value in %dest. Essentially
2681 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2683  emitARCCopyOperation(*this, dst, src,
2685  llvm::Intrinsic::objc_copyWeak);
2686 }
2687 
2689  Address SrcAddr) {
2690  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2691  Object = EmitObjCConsumeObject(Ty, Object);
2692  EmitARCStoreWeak(DstAddr, Object, false);
2693 }
2694 
2696  Address SrcAddr) {
2697  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2698  Object = EmitObjCConsumeObject(Ty, Object);
2699  EmitARCStoreWeak(DstAddr, Object, false);
2700  EmitARCDestroyWeak(SrcAddr);
2701 }
2702 
2703 /// Produce the code to do a objc_autoreleasepool_push.
2704 /// call i8* \@objc_autoreleasePoolPush(void)
2706  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2707  if (!fn)
2708  fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2709 
2710  return EmitNounwindRuntimeCall(fn);
2711 }
2712 
2713 /// Produce the code to do a primitive release.
2714 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2716  assert(value->getType() == Int8PtrTy);
2717 
2718  if (getInvokeDest()) {
2719  // Call the runtime method not the intrinsic if we are handling exceptions
2720  llvm::FunctionCallee &fn =
2722  if (!fn) {
2723  llvm::FunctionType *fnType =
2724  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2725  fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2727  }
2728 
2729  // objc_autoreleasePoolPop can throw.
2730  EmitRuntimeCallOrInvoke(fn, value);
2731  } else {
2732  llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2733  if (!fn)
2734  fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2735 
2736  EmitRuntimeCall(fn, value);
2737  }
2738 }
2739 
2740 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2741 /// Which is: [[NSAutoreleasePool alloc] init];
2742 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2743 /// init is declared as: - (id) init; in its NSObject super class.
2744 ///
2746  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2747  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2748  // [NSAutoreleasePool alloc]
2749  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2750  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2751  CallArgList Args;
2752  RValue AllocRV =
2753  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2754  getContext().getObjCIdType(),
2755  AllocSel, Receiver, Args);
2756 
2757  // [Receiver init]
2758  Receiver = AllocRV.getScalarVal();
2759  II = &CGM.getContext().Idents.get("init");
2760  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2761  RValue InitRV =
2762  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2763  getContext().getObjCIdType(),
2764  InitSel, Receiver, Args);
2765  return InitRV.getScalarVal();
2766 }
2767 
2768 /// Allocate the given objc object.
2769 /// call i8* \@objc_alloc(i8* %value)
2770 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2771  llvm::Type *resultType) {
2772  return emitObjCValueOperation(*this, value, resultType,
2774  "objc_alloc");
2775 }
2776 
2777 /// Allocate the given objc object.
2778 /// call i8* \@objc_allocWithZone(i8* %value)
2779 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2780  llvm::Type *resultType) {
2781  return emitObjCValueOperation(*this, value, resultType,
2783  "objc_allocWithZone");
2784 }
2785 
2786 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2787  llvm::Type *resultType) {
2788  return emitObjCValueOperation(*this, value, resultType,
2790  "objc_alloc_init");
2791 }
2792 
2793 /// Produce the code to do a primitive release.
2794 /// [tmp drain];
2796  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2797  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2798  CallArgList Args;
2800  getContext().VoidTy, DrainSel, Arg, Args);
2801 }
2802 
2804  Address addr,
2805  QualType type) {
2807 }
2808 
2810  Address addr,
2811  QualType type) {
2813 }
2814 
2816  Address addr,
2817  QualType type) {
2818  CGF.EmitARCDestroyWeak(addr);
2819 }
2820 
2822  QualType type) {
2823  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2824  CGF.EmitARCIntrinsicUse(value);
2825 }
2826 
2827 /// Autorelease the given object.
2828 /// call i8* \@objc_autorelease(i8* %value)
2829 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2830  llvm::Type *returnType) {
2831  return emitObjCValueOperation(
2832  *this, value, returnType,
2834  "objc_autorelease");
2835 }
2836 
2837 /// Retain the given object, with normal retain semantics.
2838 /// call i8* \@objc_retain(i8* %value)
2839 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2840  llvm::Type *returnType) {
2841  return emitObjCValueOperation(
2842  *this, value, returnType,
2844 }
2845 
2846 /// Release the given object.
2847 /// call void \@objc_release(i8* %value)
2848 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2849  ARCPreciseLifetime_t precise) {
2850  if (isa<llvm::ConstantPointerNull>(value)) return;
2851 
2852  llvm::FunctionCallee &fn =
2854  if (!fn) {
2855  llvm::FunctionType *fnType =
2856  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2857  fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2859  // We have Native ARC, so set nonlazybind attribute for performance
2860  if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2861  f->addFnAttr(llvm::Attribute::NonLazyBind);
2862  }
2863 
2864  // Cast the argument to 'id'.
2865  value = Builder.CreateBitCast(value, Int8PtrTy);
2866 
2867  // Call objc_release.
2868  llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2869 
2870  if (precise == ARCImpreciseLifetime) {
2871  call->setMetadata("clang.imprecise_release",
2872  llvm::MDNode::get(Builder.getContext(), std::nullopt));
2873  }
2874 }
2875 
2876 namespace {
2877  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2878  llvm::Value *Token;
2879 
2880  CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2881 
2882  void Emit(CodeGenFunction &CGF, Flags flags) override {
2884  }
2885  };
2886  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2887  llvm::Value *Token;
2888 
2889  CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2890 
2891  void Emit(CodeGenFunction &CGF, Flags flags) override {
2893  }
2894  };
2895 }
2896 
2898  if (CGM.getLangOpts().ObjCAutoRefCount)
2899  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2900  else
2901  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2902 }
2903 
2905  switch (lifetime) {
2906  case Qualifiers::OCL_None:
2910  return true;
2911 
2912  case Qualifiers::OCL_Weak:
2913  return false;
2914  }
2915 
2916  llvm_unreachable("impossible lifetime!");
2917 }
2918 
2920  LValue lvalue,
2921  QualType type) {
2922  llvm::Value *result;
2923  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2924  if (shouldRetain) {
2925  result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2926  } else {
2927  assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2928  result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2929  }
2930  return TryEmitResult(result, !shouldRetain);
2931 }
2932 
2934  const Expr *e) {
2935  e = e->IgnoreParens();
2936  QualType type = e->getType();
2937 
2938  // If we're loading retained from a __strong xvalue, we can avoid
2939  // an extra retain/release pair by zeroing out the source of this
2940  // "move" operation.
2941  if (e->isXValue() &&
2942  !type.isConstQualified() &&
2943  type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2944  // Emit the lvalue.
2945  LValue lv = CGF.EmitLValue(e);
2946 
2947  // Load the object pointer.
2948  llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2950 
2951  // Set the source pointer to NULL.
2953 
2954  return TryEmitResult(result, true);
2955  }
2956 
2957  // As a very special optimization, in ARC++, if the l-value is the
2958  // result of a non-volatile assignment, do a simple retain of the
2959  // result of the call to objc_storeWeak instead of reloading.
2960  if (CGF.getLangOpts().CPlusPlus &&
2961  !type.isVolatileQualified() &&
2962  type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2963  isa<BinaryOperator>(e) &&
2964  cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2965  return TryEmitResult(CGF.EmitScalarExpr(e), false);
2966 
2967  // Try to emit code for scalar constant instead of emitting LValue and
2968  // loading it because we are not guaranteed to have an l-value. One of such
2969  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2970  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2971  auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2972  if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2973  return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2974  !shouldRetainObjCLifetime(type.getObjCLifetime()));
2975  }
2976 
2977  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2978 }
2979 
2980 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2981  llvm::Value *value)>
2983 
2984 /// Insert code immediately after a call.
2985 
2986 // FIXME: We should find a way to emit the runtime call immediately
2987 // after the call is emitted to eliminate the need for this function.
2989  llvm::Value *value,
2990  ValueTransform doAfterCall,
2991  ValueTransform doFallback) {
2992  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2993  auto *callBase = dyn_cast<llvm::CallBase>(value);
2994 
2995  if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2996  // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2997  value = doFallback(CGF, value);
2998  } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2999  // Place the retain immediately following the call.
3000  CGF.Builder.SetInsertPoint(call->getParent(),
3001  ++llvm::BasicBlock::iterator(call));
3002  value = doAfterCall(CGF, value);
3003  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
3004  // Place the retain at the beginning of the normal destination block.
3005  llvm::BasicBlock *BB = invoke->getNormalDest();
3006  CGF.Builder.SetInsertPoint(BB, BB->begin());
3007  value = doAfterCall(CGF, value);
3008 
3009  // Bitcasts can arise because of related-result returns. Rewrite
3010  // the operand.
3011  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
3012  // Change the insert point to avoid emitting the fall-back call after the
3013  // bitcast.
3014  CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
3015  llvm::Value *operand = bitcast->getOperand(0);
3016  operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
3017  bitcast->setOperand(0, operand);
3018  value = bitcast;
3019  } else {
3020  auto *phi = dyn_cast<llvm::PHINode>(value);
3021  if (phi && phi->getNumIncomingValues() == 2 &&
3022  isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
3023  isa<llvm::CallBase>(phi->getIncomingValue(0))) {
3024  // Handle phi instructions that are generated when it's necessary to check
3025  // whether the receiver of a message is null.
3026  llvm::Value *inVal = phi->getIncomingValue(0);
3027  inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3028  phi->setIncomingValue(0, inVal);
3029  value = phi;
3030  } else {
3031  // Generic fall-back case.
3032  // Retain using the non-block variant: we never need to do a copy
3033  // of a block that's been returned to us.
3034  value = doFallback(CGF, value);
3035  }
3036  }
3037 
3038  CGF.Builder.restoreIP(ip);
3039  return value;
3040 }
3041 
3042 /// Given that the given expression is some sort of call (which does
3043 /// not return retained), emit a retain following it.
3044 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3045  const Expr *e) {
3046  llvm::Value *value = CGF.EmitScalarExpr(e);
3047  return emitARCOperationAfterCall(CGF, value,
3048  [](CodeGenFunction &CGF, llvm::Value *value) {
3049  return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3050  },
3051  [](CodeGenFunction &CGF, llvm::Value *value) {
3052  return CGF.EmitARCRetainNonBlock(value);
3053  });
3054 }
3055 
3056 /// Given that the given expression is some sort of call (which does
3057 /// not return retained), perform an unsafeClaim following it.
3059  const Expr *e) {
3060  llvm::Value *value = CGF.EmitScalarExpr(e);
3061  return emitARCOperationAfterCall(CGF, value,
3062  [](CodeGenFunction &CGF, llvm::Value *value) {
3064  },
3065  [](CodeGenFunction &CGF, llvm::Value *value) {
3066  return value;
3067  });
3068 }
3069 
3071  bool allowUnsafeClaim) {
3072  if (allowUnsafeClaim &&
3074  return emitARCUnsafeClaimCallResult(*this, E);
3075  } else {
3076  llvm::Value *value = emitARCRetainCallResult(*this, E);
3077  return EmitObjCConsumeObject(E->getType(), value);
3078  }
3079 }
3080 
3081 /// Determine whether it might be important to emit a separate
3082 /// objc_retain_block on the result of the given expression, or
3083 /// whether it's okay to just emit it in a +1 context.
3084 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3085  assert(e->getType()->isBlockPointerType());
3086  e = e->IgnoreParens();
3087 
3088  // For future goodness, emit block expressions directly in +1
3089  // contexts if we can.
3090  if (isa<BlockExpr>(e))
3091  return false;
3092 
3093  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3094  switch (cast->getCastKind()) {
3095  // Emitting these operations in +1 contexts is goodness.
3096  case CK_LValueToRValue:
3097  case CK_ARCReclaimReturnedObject:
3098  case CK_ARCConsumeObject:
3099  case CK_ARCProduceObject:
3100  return false;
3101 
3102  // These operations preserve a block type.
3103  case CK_NoOp:
3104  case CK_BitCast:
3105  return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3106 
3107  // These operations are known to be bad (or haven't been considered).
3108  case CK_AnyPointerToBlockPointerCast:
3109  default:
3110  return true;
3111  }
3112  }
3113 
3114  return true;
3115 }
3116 
3117 namespace {
3118 /// A CRTP base class for emitting expressions of retainable object
3119 /// pointer type in ARC.
3120 template <typename Impl, typename Result> class ARCExprEmitter {
3121 protected:
3122  CodeGenFunction &CGF;
3123  Impl &asImpl() { return *static_cast<Impl*>(this); }
3124 
3125  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3126 
3127 public:
3128  Result visit(const Expr *e);
3129  Result visitCastExpr(const CastExpr *e);
3130  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3131  Result visitBlockExpr(const BlockExpr *e);
3132  Result visitBinaryOperator(const BinaryOperator *e);
3133  Result visitBinAssign(const BinaryOperator *e);
3134  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3135  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3136  Result visitBinAssignWeak(const BinaryOperator *e);
3137  Result visitBinAssignStrong(const BinaryOperator *e);
3138 
3139  // Minimal implementation:
3140  // Result visitLValueToRValue(const Expr *e)
3141  // Result visitConsumeObject(const Expr *e)
3142  // Result visitExtendBlockObject(const Expr *e)
3143  // Result visitReclaimReturnedObject(const Expr *e)
3144  // Result visitCall(const Expr *e)
3145  // Result visitExpr(const Expr *e)
3146  //
3147  // Result emitBitCast(Result result, llvm::Type *resultType)
3148  // llvm::Value *getValueOfResult(Result result)
3149 };
3150 }
3151 
3152 /// Try to emit a PseudoObjectExpr under special ARC rules.
3153 ///
3154 /// This massively duplicates emitPseudoObjectRValue.
3155 template <typename Impl, typename Result>
3156 Result
3157 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3159 
3160  // Find the result expression.
3161  const Expr *resultExpr = E->getResultExpr();
3162  assert(resultExpr);
3163  Result result;
3164 
3166  i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3167  const Expr *semantic = *i;
3168 
3169  // If this semantic expression is an opaque value, bind it
3170  // to the result of its source expression.
3171  if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3173  OVMA opaqueData;
3174 
3175  // If this semantic is the result of the pseudo-object
3176  // expression, try to evaluate the source as +1.
3177  if (ov == resultExpr) {
3178  assert(!OVMA::shouldBindAsLValue(ov));
3179  result = asImpl().visit(ov->getSourceExpr());
3180  opaqueData = OVMA::bind(CGF, ov,
3181  RValue::get(asImpl().getValueOfResult(result)));
3182 
3183  // Otherwise, just bind it.
3184  } else {
3185  opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3186  }
3187  opaques.push_back(opaqueData);
3188 
3189  // Otherwise, if the expression is the result, evaluate it
3190  // and remember the result.
3191  } else if (semantic == resultExpr) {
3192  result = asImpl().visit(semantic);
3193 
3194  // Otherwise, evaluate the expression in an ignored context.
3195  } else {
3196  CGF.EmitIgnoredExpr(semantic);
3197  }
3198  }
3199 
3200  // Unbind all the opaques now.
3201  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3202  opaques[i].unbind(CGF);
3203 
3204  return result;
3205 }
3206 
3207 template <typename Impl, typename Result>
3208 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3209  // The default implementation just forwards the expression to visitExpr.
3210  return asImpl().visitExpr(e);
3211 }
3212 
3213 template <typename Impl, typename Result>
3214 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3215  switch (e->getCastKind()) {
3216 
3217  // No-op casts don't change the type, so we just ignore them.
3218  case CK_NoOp:
3219  return asImpl().visit(e->getSubExpr());
3220 
3221  // These casts can change the type.
3222  case CK_CPointerToObjCPointerCast:
3223  case CK_BlockPointerToObjCPointerCast:
3224  case CK_AnyPointerToBlockPointerCast:
3225  case CK_BitCast: {
3226  llvm::Type *resultType = CGF.ConvertType(e->getType());
3227  assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3228  Result result = asImpl().visit(e->getSubExpr());
3229  return asImpl().emitBitCast(result, resultType);
3230  }
3231 
3232  // Handle some casts specially.
3233  case CK_LValueToRValue:
3234  return asImpl().visitLValueToRValue(e->getSubExpr());
3235  case CK_ARCConsumeObject:
3236  return asImpl().visitConsumeObject(e->getSubExpr());
3237  case CK_ARCExtendBlockObject:
3238  return asImpl().visitExtendBlockObject(e->getSubExpr());
3239  case CK_ARCReclaimReturnedObject:
3240  return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3241 
3242  // Otherwise, use the default logic.
3243  default:
3244  return asImpl().visitExpr(e);
3245  }
3246 }
3247 
3248 template <typename Impl, typename Result>
3249 Result
3250 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3251  switch (e->getOpcode()) {
3252  case BO_Comma:
3253  CGF.EmitIgnoredExpr(e->getLHS());
3254  CGF.EnsureInsertPoint();
3255  return asImpl().visit(e->getRHS());
3256 
3257  case BO_Assign:
3258  return asImpl().visitBinAssign(e);
3259 
3260  default:
3261  return asImpl().visitExpr(e);
3262  }
3263 }
3264 
3265 template <typename Impl, typename Result>
3266 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3267  switch (e->getLHS()->getType().getObjCLifetime()) {
3269  return asImpl().visitBinAssignUnsafeUnretained(e);
3270 
3271  case Qualifiers::OCL_Weak:
3272  return asImpl().visitBinAssignWeak(e);
3273 
3275  return asImpl().visitBinAssignAutoreleasing(e);
3276 
3278  return asImpl().visitBinAssignStrong(e);
3279 
3280  case Qualifiers::OCL_None:
3281  return asImpl().visitExpr(e);
3282  }
3283  llvm_unreachable("bad ObjC ownership qualifier");
3284 }
3285 
3286 /// The default rule for __unsafe_unretained emits the RHS recursively,
3287 /// stores into the unsafe variable, and propagates the result outward.
3288 template <typename Impl, typename Result>
3289 Result ARCExprEmitter<Impl,Result>::
3290  visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3291  // Recursively emit the RHS.
3292  // For __block safety, do this before emitting the LHS.
3293  Result result = asImpl().visit(e->getRHS());
3294 
3295  // Perform the store.
3296  LValue lvalue =
3297  CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3298  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3299  lvalue);
3300 
3301  return result;
3302 }
3303 
3304 template <typename Impl, typename Result>
3305 Result
3306 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3307  return asImpl().visitExpr(e);
3308 }
3309 
3310 template <typename Impl, typename Result>
3311 Result
3312 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3313  return asImpl().visitExpr(e);
3314 }
3315 
3316 template <typename Impl, typename Result>
3317 Result
3318 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3319  return asImpl().visitExpr(e);
3320 }
3321 
3322 /// The general expression-emission logic.
3323 template <typename Impl, typename Result>
3324 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3325  // We should *never* see a nested full-expression here, because if
3326  // we fail to emit at +1, our caller must not retain after we close
3327  // out the full-expression. This isn't as important in the unsafe
3328  // emitter.
3329  assert(!isa<ExprWithCleanups>(e));
3330 
3331  // Look through parens, __extension__, generic selection, etc.
3332  e = e->IgnoreParens();
3333 
3334  // Handle certain kinds of casts.
3335  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3336  return asImpl().visitCastExpr(ce);
3337 
3338  // Handle the comma operator.
3339  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3340  return asImpl().visitBinaryOperator(op);
3341 
3342  // TODO: handle conditional operators here
3343 
3344  // For calls and message sends, use the retained-call logic.
3345  // Delegate inits are a special case in that they're the only
3346  // returns-retained expression that *isn't* surrounded by
3347  // a consume.
3348  } else if (isa<CallExpr>(e) ||
3349  (isa<ObjCMessageExpr>(e) &&
3350  !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3351  return asImpl().visitCall(e);
3352 
3353  // Look through pseudo-object expressions.
3354  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3355  return asImpl().visitPseudoObjectExpr(pseudo);
3356  } else if (auto *be = dyn_cast<BlockExpr>(e))
3357  return asImpl().visitBlockExpr(be);
3358 
3359  return asImpl().visitExpr(e);
3360 }
3361 
3362 namespace {
3363 
3364 /// An emitter for +1 results.
3365 struct ARCRetainExprEmitter :
3366  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3367 
3368  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3369 
3370  llvm::Value *getValueOfResult(TryEmitResult result) {
3371  return result.getPointer();
3372  }
3373 
3374  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3375  llvm::Value *value = result.getPointer();
3376  value = CGF.Builder.CreateBitCast(value, resultType);
3377  result.setPointer(value);
3378  return result;
3379  }
3380 
3381  TryEmitResult visitLValueToRValue(const Expr *e) {
3382  return tryEmitARCRetainLoadOfScalar(CGF, e);
3383  }
3384 
3385  /// For consumptions, just emit the subexpression and thus elide
3386  /// the retain/release pair.
3387  TryEmitResult visitConsumeObject(const Expr *e) {
3388  llvm::Value *result = CGF.EmitScalarExpr(e);
3389  return TryEmitResult(result, true);
3390  }
3391 
3392  TryEmitResult visitBlockExpr(const BlockExpr *e) {
3393  TryEmitResult result = visitExpr(e);
3394  // Avoid the block-retain if this is a block literal that doesn't need to be
3395  // copied to the heap.
3396  if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3398  result.setInt(true);
3399  return result;
3400  }
3401 
3402  /// Block extends are net +0. Naively, we could just recurse on
3403  /// the subexpression, but actually we need to ensure that the
3404  /// value is copied as a block, so there's a little filter here.
3405  TryEmitResult visitExtendBlockObject(const Expr *e) {
3406  llvm::Value *result; // will be a +0 value
3407 
3408  // If we can't safely assume the sub-expression will produce a
3409  // block-copied value, emit the sub-expression at +0.
3411  result = CGF.EmitScalarExpr(e);
3412 
3413  // Otherwise, try to emit the sub-expression at +1 recursively.
3414  } else {
3415  TryEmitResult subresult = asImpl().visit(e);
3416 
3417  // If that produced a retained value, just use that.
3418  if (subresult.getInt()) {
3419  return subresult;
3420  }
3421 
3422  // Otherwise it's +0.
3423  result = subresult.getPointer();
3424  }
3425 
3426  // Retain the object as a block.
3427  result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3428  return TryEmitResult(result, true);
3429  }
3430 
3431  /// For reclaims, emit the subexpression as a retained call and
3432  /// skip the consumption.
3433  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3434  llvm::Value *result = emitARCRetainCallResult(CGF, e);
3435  return TryEmitResult(result, true);
3436  }
3437 
3438  /// When we have an undecorated call, retroactively do a claim.
3439  TryEmitResult visitCall(const Expr *e) {
3440  llvm::Value *result = emitARCRetainCallResult(CGF, e);
3441  return TryEmitResult(result, true);
3442  }
3443 
3444  // TODO: maybe special-case visitBinAssignWeak?
3445 
3446  TryEmitResult visitExpr(const Expr *e) {
3447  // We didn't find an obvious production, so emit what we've got and
3448  // tell the caller that we didn't manage to retain.
3449  llvm::Value *result = CGF.EmitScalarExpr(e);
3450  return TryEmitResult(result, false);
3451  }
3452 };
3453 }
3454 
3455 static TryEmitResult
3457  return ARCRetainExprEmitter(CGF).visit(e);
3458 }
3459 
3461  LValue lvalue,
3462  QualType type) {
3463  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3464  llvm::Value *value = result.getPointer();
3465  if (!result.getInt())
3466  value = CGF.EmitARCRetain(type, value);
3467  return value;
3468 }
3469 
3470 /// EmitARCRetainScalarExpr - Semantically equivalent to
3471 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3472 /// best-effort attempt to peephole expressions that naturally produce
3473 /// retained objects.
3475  // The retain needs to happen within the full-expression.
3476  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3477  RunCleanupsScope scope(*this);
3478  return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3479  }
3480 
3481  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3482  llvm::Value *value = result.getPointer();
3483  if (!result.getInt())
3484  value = EmitARCRetain(e->getType(), value);
3485  return value;
3486 }
3487 
3488 llvm::Value *
3490  // The retain needs to happen within the full-expression.
3491  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3492  RunCleanupsScope scope(*this);
3493  return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3494  }
3495 
3496  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3497  llvm::Value *value = result.getPointer();
3498  if (result.getInt())
3499  value = EmitARCAutorelease(value);
3500  else
3501  value = EmitARCRetainAutorelease(e->getType(), value);
3502  return value;
3503 }
3504 
3506  llvm::Value *result;
3507  bool doRetain;
3508 
3510  result = EmitScalarExpr(e);
3511  doRetain = true;
3512  } else {
3513  TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3514  result = subresult.getPointer();
3515  doRetain = !subresult.getInt();
3516  }
3517 
3518  if (doRetain)
3519  result = EmitARCRetainBlock(result, /*mandatory*/ true);
3520  return EmitObjCConsumeObject(e->getType(), result);
3521 }
3522 
3524  // In ARC, retain and autorelease the expression.
3525  if (getLangOpts().ObjCAutoRefCount) {
3526  // Do so before running any cleanups for the full-expression.
3527  // EmitARCRetainAutoreleaseScalarExpr does this for us.
3529  }
3530 
3531  // Otherwise, use the normal scalar-expression emission. The
3532  // exception machinery doesn't do anything special with the
3533  // exception like retaining it, so there's no safety associated with
3534  // only running cleanups after the throw has started, and when it
3535  // matters it tends to be substantially inferior code.
3536  return EmitScalarExpr(expr);
3537 }
3538 
3539 namespace {
3540 
3541 /// An emitter for assigning into an __unsafe_unretained context.
3542 struct ARCUnsafeUnretainedExprEmitter :
3543  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3544 
3545  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3546 
3547  llvm::Value *getValueOfResult(llvm::Value *value) {
3548  return value;
3549  }
3550 
3551  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3552  return CGF.Builder.CreateBitCast(value, resultType);
3553  }
3554 
3555  llvm::Value *visitLValueToRValue(const Expr *e) {
3556  return CGF.EmitScalarExpr(e);
3557  }
3558 
3559  /// For consumptions, just emit the subexpression and perform the
3560  /// consumption like normal.
3561  llvm::Value *visitConsumeObject(const Expr *e) {
3562  llvm::Value *value = CGF.EmitScalarExpr(e);
3563  return CGF.EmitObjCConsumeObject(e->getType(), value);
3564  }
3565 
3566  /// No special logic for block extensions. (This probably can't
3567  /// actually happen in this emitter, though.)
3568  llvm::Value *visitExtendBlockObject(const Expr *e) {
3569  return CGF.EmitARCExtendBlockObject(e);
3570  }
3571 
3572  /// For reclaims, perform an unsafeClaim if that's enabled.
3573  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3574  return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3575  }
3576 
3577  /// When we have an undecorated call, just emit it without adding
3578  /// the unsafeClaim.
3579  llvm::Value *visitCall(const Expr *e) {
3580  return CGF.EmitScalarExpr(e);
3581  }
3582 
3583  /// Just do normal scalar emission in the default case.
3584  llvm::Value *visitExpr(const Expr *e) {
3585  return CGF.EmitScalarExpr(e);
3586  }
3587 };
3588 }
3589 
3591  const Expr *e) {
3592  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3593 }
3594 
3595 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3596 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3597 /// avoiding any spurious retains, including by performing reclaims
3598 /// with objc_unsafeClaimAutoreleasedReturnValue.
3600  // Look through full-expressions.
3601  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3602  RunCleanupsScope scope(*this);
3603  return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3604  }
3605 
3606  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3607 }
3608 
3609 std::pair<LValue,llvm::Value*>
3611  bool ignored) {
3612  // Evaluate the RHS first. If we're ignoring the result, assume
3613  // that we can emit at an unsafe +0.
3614  llvm::Value *value;
3615  if (ignored) {
3617  } else {
3618  value = EmitScalarExpr(e->getRHS());
3619  }
3620 
3621  // Emit the LHS and perform the store.
3622  LValue lvalue = EmitLValue(e->getLHS());
3623  EmitStoreOfScalar(value, lvalue);
3624 
3625  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3626 }
3627 
3628 std::pair<LValue,llvm::Value*>
3630  bool ignored) {
3631  // Evaluate the RHS first.
3632  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3633  llvm::Value *value = result.getPointer();
3634 
3635  bool hasImmediateRetain = result.getInt();
3636 
3637  // If we didn't emit a retained object, and the l-value is of block
3638  // type, then we need to emit the block-retain immediately in case
3639  // it invalidates the l-value.
3640  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3641  value = EmitARCRetainBlock(value, /*mandatory*/ false);
3642  hasImmediateRetain = true;
3643  }
3644 
3645  LValue lvalue = EmitLValue(e->getLHS());
3646 
3647  // If the RHS was emitted retained, expand this.
3648  if (hasImmediateRetain) {
3649  llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3650  EmitStoreOfScalar(value, lvalue);
3651  EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3652  } else {
3653  value = EmitARCStoreStrong(lvalue, value, ignored);
3654  }
3655 
3656  return std::pair<LValue,llvm::Value*>(lvalue, value);
3657 }
3658 
3659 std::pair<LValue,llvm::Value*>
3661  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3662  LValue lvalue = EmitLValue(e->getLHS());
3663 
3664  EmitStoreOfScalar(value, lvalue);
3665 
3666  return std::pair<LValue,llvm::Value*>(lvalue, value);
3667 }
3668 
3670  const ObjCAutoreleasePoolStmt &ARPS) {
3671  const Stmt *subStmt = ARPS.getSubStmt();
3672  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3673 
3674  CGDebugInfo *DI = getDebugInfo();
3675  if (DI)
3676  DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3677 
3678  // Keep track of the current cleanup stack depth.
3679  RunCleanupsScope Scope(*this);
3681  llvm::Value *token = EmitObjCAutoreleasePoolPush();
3682  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3683  } else {
3684  llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3685  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3686  }
3687 
3688  for (const auto *I : S.body())
3689  EmitStmt(I);
3690 
3691  if (DI)
3692  DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3693 }
3694 
3695 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3696 /// make sure it survives garbage collection until this point.
3697 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3698  // We just use an inline assembly.
3699  llvm::FunctionType *extenderType
3700  = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3701  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3702  /* assembly */ "",
3703  /* constraints */ "r",
3704  /* side effects */ true);
3705 
3706  object = Builder.CreateBitCast(object, VoidPtrTy);
3707  EmitNounwindRuntimeCall(extender, object);
3708 }
3709 
3710 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3711 /// non-trivial copy assignment function, produce following helper function.
3712 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3713 ///
3714 llvm::Constant *
3716  const ObjCPropertyImplDecl *PID) {
3717  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3719  return nullptr;
3720 
3721  QualType Ty = PID->getPropertyIvarDecl()->getType();
3722  ASTContext &C = getContext();
3723 
3725  // Call the move assignment operator instead of calling the copy assignment
3726  // operator and destructor.
3727  CharUnits Alignment = C.getTypeAlignInChars(Ty);
3728  llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3729  CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3730  return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3731  }
3732 
3733  if (!getLangOpts().CPlusPlus ||
3735  return nullptr;
3736  if (!Ty->isRecordType())
3737  return nullptr;
3738  llvm::Constant *HelperFn = nullptr;
3739  if (hasTrivialSetExpr(PID))
3740  return nullptr;
3741  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3742  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3743  return HelperFn;
3744 
3745  IdentifierInfo *II
3746  = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3747 
3748  QualType ReturnTy = C.VoidTy;
3749  QualType DestTy = C.getPointerType(Ty);
3750  QualType SrcTy = Ty;
3751  SrcTy.addConst();
3752  SrcTy = C.getPointerType(SrcTy);
3753 
3754  SmallVector<QualType, 2> ArgTys;
3755  ArgTys.push_back(DestTy);
3756  ArgTys.push_back(SrcTy);
3757  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3758 
3760  C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3761  FunctionTy, nullptr, SC_Static, false, false, false);
3762 
3763  FunctionArgList args;
3764  ParmVarDecl *Params[2];
3765  ParmVarDecl *DstDecl = ParmVarDecl::Create(
3766  C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3767  C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3768  /*DefArg=*/nullptr);
3769  args.push_back(Params[0] = DstDecl);
3770  ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3771  C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3772  C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3773  /*DefArg=*/nullptr);
3774  args.push_back(Params[1] = SrcDecl);
3775  FD->setParams(Params);
3776 
3777  const CGFunctionInfo &FI =
3779 
3780  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3781 
3782  llvm::Function *Fn =
3783  llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3784  "__assign_helper_atomic_property_",
3785  &CGM.getModule());
3786 
3788 
3789  StartFunction(FD, ReturnTy, Fn, FI, args);
3790 
3791  DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3793  C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3794  SourceLocation(), false, FPOptionsOverride());
3795 
3796  DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3798  C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3799  SourceLocation(), false, FPOptionsOverride());
3800 
3801  Expr *Args[2] = {DST, SRC};
3802  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3804  C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3806 
3807  EmitStmt(TheCall);
3808 
3809  FinishFunction();
3810  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3811  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3812  return HelperFn;
3813 }
3814 
3816  const ObjCPropertyImplDecl *PID) {
3817  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3819  return nullptr;
3820 
3821  QualType Ty = PD->getType();
3822  ASTContext &C = getContext();
3823 
3825  CharUnits Alignment = C.getTypeAlignInChars(Ty);
3826  llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3827  CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3828  return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3829  }
3830 
3831  if (!getLangOpts().CPlusPlus ||
3833  return nullptr;
3834  if (!Ty->isRecordType())
3835  return nullptr;
3836  llvm::Constant *HelperFn = nullptr;
3837  if (hasTrivialGetExpr(PID))
3838  return nullptr;
3839  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3840  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3841  return HelperFn;
3842 
3843  IdentifierInfo *II =
3844  &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3845 
3846  QualType ReturnTy = C.VoidTy;
3847  QualType DestTy = C.getPointerType(Ty);
3848  QualType SrcTy = Ty;
3849  SrcTy.addConst();
3850  SrcTy = C.getPointerType(SrcTy);
3851 
3852  SmallVector<QualType, 2> ArgTys;
3853  ArgTys.push_back(DestTy);
3854  ArgTys.push_back(SrcTy);
3855  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3856 
3858  C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3859  FunctionTy, nullptr, SC_Static, false, false, false);
3860 
3861  FunctionArgList args;
3862  ParmVarDecl *Params[2];
3863  ParmVarDecl *DstDecl = ParmVarDecl::Create(
3864  C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3865  C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3866  /*DefArg=*/nullptr);
3867  args.push_back(Params[0] = DstDecl);
3868  ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3869  C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3870  C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3871  /*DefArg=*/nullptr);
3872  args.push_back(Params[1] = SrcDecl);
3873  FD->setParams(Params);
3874 
3875  const CGFunctionInfo &FI =
3877 
3878  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3879 
3880  llvm::Function *Fn = llvm::Function::Create(
3881  LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3882  &CGM.getModule());
3883 
3885 
3886  StartFunction(FD, ReturnTy, Fn, FI, args);
3887 
3888  DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3889  SourceLocation());
3890 
3892  C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3893  SourceLocation(), false, FPOptionsOverride());
3894 
3895  CXXConstructExpr *CXXConstExpr =
3896  cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3897 
3898  SmallVector<Expr*, 4> ConstructorArgs;
3899  ConstructorArgs.push_back(SRC);
3900  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3901  CXXConstExpr->arg_end());
3902 
3903  CXXConstructExpr *TheCXXConstructExpr =
3905  CXXConstExpr->getConstructor(),
3906  CXXConstExpr->isElidable(),
3907  ConstructorArgs,
3908  CXXConstExpr->hadMultipleCandidates(),
3909  CXXConstExpr->isListInitialization(),
3910  CXXConstExpr->isStdInitListInitialization(),
3911  CXXConstExpr->requiresZeroInitialization(),
3912  CXXConstExpr->getConstructionKind(),
3913  SourceRange());
3914 
3915  DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3916  SourceLocation());
3917 
3918  RValue DV = EmitAnyExpr(&DstExpr);
3919  CharUnits Alignment =
3920  getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3921  EmitAggExpr(TheCXXConstructExpr,
3923  Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3927 
3928  FinishFunction();
3929  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3930  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3931  return HelperFn;
3932 }
3933 
3934 llvm::Value *
3936  // Get selectors for retain/autorelease.
3937  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3938  Selector CopySelector =
3940  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3941  Selector AutoreleaseSelector =
3942  getContext().Selectors.getNullarySelector(AutoreleaseID);
3943 
3944  // Emit calls to retain/autorelease.
3945  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3946  llvm::Value *Val = Block;
3947  RValue Result;
3948  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3949  Ty, CopySelector,
3950  Val, CallArgList(), nullptr, nullptr);
3951  Val = Result.getScalarVal();
3952  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3953  Ty, AutoreleaseSelector,
3954  Val, CallArgList(), nullptr, nullptr);
3955  Val = Result.getScalarVal();
3956  return Val;
3957 }
3958 
3959 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3960  switch (TT.getOS()) {
3961  case llvm::Triple::Darwin:
3962  case llvm::Triple::MacOSX:
3963  return llvm::MachO::PLATFORM_MACOS;
3964  case llvm::Triple::IOS:
3965  return llvm::MachO::PLATFORM_IOS;
3966  case llvm::Triple::TvOS:
3967  return llvm::MachO::PLATFORM_TVOS;
3968  case llvm::Triple::WatchOS:
3969  return llvm::MachO::PLATFORM_WATCHOS;
3970  case llvm::Triple::DriverKit:
3971  return llvm::MachO::PLATFORM_DRIVERKIT;
3972  default:
3973  return /*Unknown platform*/ 0;
3974  }
3975 }
3976 
3978  const VersionTuple &Version) {
3979  CodeGenModule &CGM = CGF.CGM;
3980  // Note: we intend to support multi-platform version checks, so reserve
3981  // the room for a dual platform checking invocation that will be
3982  // implemented in the future.
3984 
3985  auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3986  std::optional<unsigned> Min = Version.getMinor(),
3987  SMin = Version.getSubminor();
3988  Args.push_back(
3989  llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3990  Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3991  Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3992  Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3993  };
3994 
3995  assert(!Version.empty() && "unexpected empty version");
3996  EmitArgs(Version, CGM.getTarget().getTriple());
3997 
3998  if (!CGM.IsPlatformVersionAtLeastFn) {
3999  llvm::FunctionType *FTy = llvm::FunctionType::get(
4000  CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
4001  false);
4003  CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
4004  }
4005 
4006  llvm::Value *Check =
4008  return CGF.Builder.CreateICmpNE(Check,
4009  llvm::Constant::getNullValue(CGM.Int32Ty));
4010 }
4011 
4012 llvm::Value *
4013 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
4014  // Darwin uses the new __isPlatformVersionAtLeast family of routines.
4015  if (CGM.getTarget().getTriple().isOSDarwin())
4016  return emitIsPlatformVersionAtLeast(*this, Version);
4017 
4018  if (!CGM.IsOSVersionAtLeastFn) {
4019  llvm::FunctionType *FTy =
4020  llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
4022  CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
4023  }
4024 
4025  std::optional<unsigned> Min = Version.getMinor(),
4026  SMin = Version.getSubminor();
4027  llvm::Value *Args[] = {
4028  llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4029  llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4030  llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4031 
4032  llvm::Value *CallRes =
4034 
4035  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4036 }
4037 
4039  const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4040  VersionTuple FoundationDroppedInVersion;
4041  switch (TT.getOS()) {
4042  case llvm::Triple::IOS:
4043  case llvm::Triple::TvOS:
4044  FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4045  break;
4046  case llvm::Triple::WatchOS:
4047  FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4048  break;
4049  case llvm::Triple::Darwin:
4050  case llvm::Triple::MacOSX:
4051  FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4052  break;
4053  case llvm::Triple::DriverKit:
4054  // DriverKit doesn't need Foundation.
4055  return false;
4056  default:
4057  llvm_unreachable("Unexpected OS");
4058  }
4059  return TargetVersion < FoundationDroppedInVersion;
4060 }
4061 
4062 void CodeGenModule::emitAtAvailableLinkGuard() {
4064  return;
4065  // @available requires CoreFoundation only on Darwin.
4066  if (!Target.getTriple().isOSDarwin())
4067  return;
4068  // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4069  // watchOS 6+.
4071  Target.getTriple(), Target.getPlatformMinVersion()))
4072  return;
4073  // Add -framework CoreFoundation to the linker commands. We still want to
4074  // emit the core foundation reference down below because otherwise if
4075  // CoreFoundation is not used in the code, the linker won't link the
4076  // framework.
4077  auto &Context = getLLVMContext();
4078  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4079  llvm::MDString::get(Context, "CoreFoundation")};
4080  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4081  // Emit a reference to a symbol from CoreFoundation to ensure that
4082  // CoreFoundation is linked into the final binary.
4083  llvm::FunctionType *FTy =
4084  llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4085  llvm::FunctionCallee CFFunc =
4086  CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4087 
4088  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4089  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4090  CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4091  llvm::AttributeList(), /*Local=*/true);
4092  llvm::Function *CFLinkCheckFunc =
4093  cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4094  if (CFLinkCheckFunc->empty()) {
4095  CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4096  CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4097  CodeGenFunction CGF(*this);
4098  CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4099  CGF.EmitNounwindRuntimeCall(CFFunc,
4100  llvm::Constant::getNullValue(VoidPtrTy));
4101  CGF.Builder.CreateUnreachable();
4102  addCompilerUsedGlobal(CFLinkCheckFunc);
4103  }
4104 }
4105 
clang::QualType::PCK_Struct
@ PCK_Struct
The type is a struct containing a field whose type is neither PCK_Trivial nor PCK_VolatileTrivial.
Definition: Type.h:1260
clang::InternalLinkage
@ InternalLinkage
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
clang::CodeGen::ObjCEntrypoints::objc_autoreleasePoolPop
llvm::FunctionCallee objc_autoreleasePoolPop
void objc_autoreleasePoolPop(void*);
Definition: CodeGenModule.h:131
clang::ObjCMessageExpr::SuperInstance
@ SuperInstance
The receiver is the instance of the superclass object.
Definition: ExprObjC.h:1097
clang::CodeGen::CodeGenFunction::EmitBuiltinAvailable
llvm::Value * EmitBuiltinAvailable(const VersionTuple &Version)
Definition: CGObjC.cpp:4013
clang::CodeGen::CodeGenFunction::SanitizerScope
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
Definition: CodeGenFunction.h:525
clang::ObjCInterfaceDecl
Represents an ObjC class declaration.
Definition: DeclObjC.h:1146
clang::CodeGen::CodeGenFunction::ConvertTypeForMem
llvm::Type * ConvertTypeForMem(QualType T)
Definition: CodeGenFunction.cpp:211
clang::CodeGen::CodeGenFunction::EmitObjCAutoreleasePoolStmt
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S)
Definition: CGObjC.cpp:3669
clang::ASTContext::getTypeSizeInChars
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
Definition: ASTContext.cpp:2563
clang::CodeGen::CGObjCRuntime::GetClass
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
clang::CodeGen::CodeGenFunction::EmitARCRetainNonBlock
llvm::Value * EmitARCRetainNonBlock(llvm::Value *value)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:2315
emitStructGetterCall
static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, bool isAtomic, bool hasStrong)
emitStructGetterCall - Call the runtime function to load a property into the return value slot.
Definition: CGObjC.cpp:818
clang::CodeGen::CGDebugInfo::EmitLexicalBlockStart
void EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the beginning of a new lexical block and push the block onto the stack.
Definition: CGDebugInfo.cpp:4325
emitARCStoreOperation
static llvm::Value * emitARCStoreOperation(CodeGenFunction &CGF, Address addr, llvm::Value *value, llvm::Function *&fn, llvm::Intrinsic::ID IntID, bool ignored)
Perform an operation having the following signature: i8* (i8**, i8*)
Definition: CGObjC.cpp:2224
clang::CodeGen::CodeGenFunction::callCStructCopyConstructor
void callCStructCopyConstructor(LValue Dst, LValue Src)
Definition: CGNonTrivialStruct.cpp:886
clang::ObjCPropertyImplDecl::getPropertyIvarDecl
ObjCIvarDecl * getPropertyIvarDecl() const
Definition: DeclObjC.h:2862
clang::Type::isRecordType
bool isRecordType() const
Definition: Type.h:6984
clang::CodeGen::CodeGenFunction::EmitObjCAutoreleasePoolCleanup
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr)
Definition: CGObjC.cpp:2897
clang::CodeGen::ObjCEntrypoints::objc_allocWithZone
llvm::FunctionCallee objc_allocWithZone
void objc_allocWithZone(id);
Definition: CodeGenModule.h:125
clang::QualType::getObjCLifetime
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1194
clang::CodeGen::CodeGenFunction::getProfileCount
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
Definition: CodeGenFunction.h:1538
hasTrivialSetExpr
static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:1405
clang::HiddenVisibility
@ HiddenVisibility
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
findWeakLValue
static const Expr * findWeakLValue(const Expr *E)
Given an expression of ObjC pointer type, check whether it was immediately loaded from an ARC __weak ...
Definition: CGObjC.cpp:350
clang::CodeGen::CodeGenFunction::RunCleanupsScope::requiresCleanups
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
Definition: CodeGenFunction.h:908
getNullForVariable
static llvm::Constant * getNullForVariable(Address addr)
Given the address of a variable of pointer type, find the correct null to store into it.
Definition: CGObjC.cpp:45
clang::CodeGen::CodeGenTypeCache::Int8PtrTy
llvm::PointerType * Int8PtrTy
Definition: CodeGenTypeCache.h:57
clang::CodeGen::CodeGenFunction::EmitNullInitialization
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
Definition: CodeGenFunction.cpp:1973
clang::ObjCProtocolExpr::getProtocol
ObjCProtocolDecl * getProtocol() const
Definition: ExprObjC.h:521
clang::ObjCBoxedExpr
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:127
clang::CodeGen::CodeGenFunction::EmitObjCCollectionLiteral
llvm::Value * EmitObjCCollectionLiteral(const Expr *E, const ObjCMethodDecl *MethodWithObjects)
Definition: CGObjC.cpp:124
clang::OMF_autorelease
@ OMF_autorelease
Definition: IdentifierTable.h:713
clang::ObjCProtocolDecl::protocols
protocol_range protocols() const
Definition: DeclObjC.h:2144
clang::Type::isBlockPointerType
bool isBlockPointerType() const
Definition: Type.h:6902
clang::CodeGen::ObjCEntrypoints::objc_retainAutoreleasedReturnValue
llvm::Function * objc_retainAutoreleasedReturnValue
id objc_retainAutoreleasedReturnValue(id);
Definition: CodeGenModule.h:182
clang::interp::APInt
llvm::APInt APInt
Definition: Integral.h:29
emitARCUnsafeClaimCallResult
static llvm::Value * emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained),...
Definition: CGObjC.cpp:3058
clang::ObjCObjectPointerType::getInterfaceType
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1700
clang::CodeGen::CodeGenFunction::EmitBlockCopyAndAutorelease
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3935
clang::CodeGen::CodeGenFunction::emitARCCopyAssignWeak
void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr)
Definition: CGObjC.cpp:2688
clang::OK_Ordinary
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition: Specifiers.h:139
clang::CodeGen::TEK_Aggregate
@ TEK_Aggregate
Definition: CodeGenFunction.h:110
clang::CodeGen::RValue
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:39
clang::CodeGen::CodeGenModule::CreateRuntimeFunction
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
Definition: CodeGenModule.cpp:4277
emitARCOperationAfterCall
static llvm::Value * emitARCOperationAfterCall(CodeGenFunction &CGF, llvm::Value *value, ValueTransform doAfterCall, ValueTransform doFallback)
Insert code immediately after a call.
Definition: CGObjC.cpp:2988
clang::CodeGen::CGObjCRuntime::GetPropertyGetFunction
virtual llvm::FunctionCallee GetPropertyGetFunction()=0
Return the runtime function for getting properties.
clang::CodeGen::CodeGenFunction::EmitObjCConsumeObject
llvm::Value * EmitObjCConsumeObject(QualType T, llvm::Value *Ptr)
Produce the code for a CK_ARCConsumeObject.
Definition: CGObjC.cpp:2117
clang::CodeGen::CodeGenFunction::EmitARCDestroyWeak
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2659
clang::CodeGen::CGObjCRuntime::GenerateMessageSend
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
clang::CodeGen::CodeGenFunction::EmitARCRetainAutoreleaseReturnValue
llvm::Value * EmitARCRetainAutoreleaseReturnValue(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2577
clang::CodeGen::CodeGenFunction::EmitObjCAtTryStmt
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S)
Definition: CGObjC.cpp:2090
clang::PseudoObjectExpr::semantics_begin
semantics_iterator semantics_begin()
Definition: Expr.h:6171
clang::ObjCDictionaryLiteral::getNumElements
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c dictionary literal.
Definition: ExprObjC.h:359
clang::CodeGen::CodeGenFunction::EmitCheckSourceLocation
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:3125
clang::CodeGen::CodeGenFunction::AutoreleaseResult
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
Definition: CodeGenFunction.h:537
clang::Type::isObjCRetainableType
bool isObjCRetainableType() const
Definition: Type.cpp:4421
Error
llvm::Error Error
Definition: ByteCodeEmitter.cpp:21
CodeGenFunction.h
clang::SourceRange
A trivial tuple used to represent a source range.
Definition: SourceLocation.h:210
shouldRetainObjCLifetime
static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)
Definition: CGObjC.cpp:2904
string
string(SUBSTRING ${CMAKE_CURRENT_BINARY_DIR} 0 ${PATH_LIB_START} PATH_HEAD) string(SUBSTRING $
Definition: CMakeLists.txt:23
clang::CodeGen::CodeGenFunction::EmitCall
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, bool IsMustTail, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type,...
Definition: CGCall.cpp:4739
clang::CodeGen::CodeGenFunction::EmitObjCMRRAutoreleasePoolPush
llvm::Value * EmitObjCMRRAutoreleasePoolPush()
Produce the code to do an MRR version objc_autoreleasepool_push.
Definition: CGObjC.cpp:2745
clang::ObjCIvarDecl::getNextIvar
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1975
clang::ObjCAutoreleasePoolStmt::getSubStmt
const Stmt * getSubStmt() const
Definition: StmtObjC.h:404
clang::ObjCArrayLiteral::getNumElements
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c array literal.
Definition: ExprObjC.h:228
clang::Decl::hasAttr
bool hasAttr() const
Definition: DeclBase.h:560
clang::CodeGen::CodeGenFunction::EmitCompoundStmtWithoutScope
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition: CGStmt.cpp:490
clang::ObjCPropertyImplDecl::getSetterCXXAssignment
Expr * getSetterCXXAssignment() const
Definition: DeclObjC.h:2898
clang::CodeGen::CodeGenFunction::CurCodeDecl
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
Definition: CodeGenFunction.h:323
clang::ObjCImplementationDecl
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2584
clang::CXXConstructExpr::arg_end
arg_iterator arg_end()
Definition: ExprCXX.h:1656
clang::CodeGen::AggValueSlot::DoesNotNeedGCBarriers
@ DoesNotNeedGCBarriers
Definition: CGValue.h:554
clang::CodeGen::getNonTrivialCStructCopyConstructor
llvm::Function * getNonTrivialCStructCopyConstructor(CodeGenModule &CGM, CharUnits DstAlignment, CharUnits SrcAlignment, bool IsVolatile, QualType QT)
Returns the copy constructor for a C struct with non-trivially copyable fields, generating it if nece...
Definition: CGNonTrivialStruct.cpp:945
clang::CodeGen::CodeGenFunction::EmitNounwindRuntimeCall
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
clang::ObjCMessageExpr::getSelector
Selector getSelector() const
Definition: ExprObjC.cpp:293
clang::CodeGen::CGObjCRuntime::GetOptimizedPropertySetFunction
virtual llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
clang::CodeGen::CodeGenFunction::destroyARCStrongPrecise
static Destroyer destroyARCStrongPrecise
Definition: CodeGenFunction.h:4355
clang::CodeGen::ObjCEntrypoints::clang_arc_noop_use
llvm::Function * clang_arc_noop_use
void clang.arc.noop.use(...);
Definition: CodeGenModule.h:211
clang::CodeGen::TargetCodeGenInfo::markARCOptimizedReturnCallsAsNoTail
virtual bool markARCOptimizedReturnCallsAsNoTail() const
Determine whether a call to objc_retainAutoreleasedReturnValue or objc_unsafeClaimAutoreleasedReturnV...
Definition: TargetInfo.h:198
clang::UnaryOperator::Create
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4686
clang::ImplicitCastExpr::OnStack
@ OnStack
Definition: Expr.h:3651
clang::Qualifiers::OCL_Weak
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:177
clang::CodeGen::ObjCEntrypoints::objc_retainAutoreleaseReturnValue
llvm::Function * objc_retainAutoreleaseReturnValue
id objc_retainAutoreleaseReturnValue(id);
Definition: CodeGenModule.h:179
clang::CodeGen::CodeGenModule::setAtomicSetterHelperFnMap
void setAtomicSetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
Definition: CodeGenModule.h:700
clang::ASTContext::VoidTy
CanQualType VoidTy
Definition: ASTContext.h:1077
llvm::SmallVector
Definition: LLVM.h:38
clang::IdentifierTable::get
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Definition: IdentifierTable.h:597
clang::SourceLocation
Encodes a location in the source.
Definition: SourceLocation.h:86
clang::CodeGen::CodeGenModule::SetInternalFunctionAttributes
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
Definition: CodeGenModule.cpp:2311
clang::OMF_release
@ OMF_release
Definition: IdentifierTable.h:716
clang::CodeGen::CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction
llvm::Constant * GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with non-trivial copy assignment...
Definition: CGObjC.cpp:3715
clang::CodeGen::LValue::getAddress
Address getAddress(CodeGenFunction &CGF) const
Definition: CGValue.h:341
clang::CodeGen::CGObjCRuntime::GetRuntimeProtocolList
std::vector< const ObjCProtocolDecl * > GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, ObjCProtocolDecl::protocol_iterator end)
Walk the list of protocol references from a class, category or protocol to traverse the DAG formed fr...
Definition: CGObjC.cpp:466
clang::ObjCRuntime::hasNativeARC
bool hasNativeARC() const
Does this runtime natively provide the ARC entrypoints?
Definition: ObjCRuntime.h:162
clang::CodeGen::CodeGenFunction::EmitLoadOfComplex
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
Definition: CGExprComplex.cpp:1318
clang::QualType::getNonReferenceType
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6842
clang::CastExpr::getSubExpr
Expr * getSubExpr()
Definition: Expr.h:3532
clang::CodeGen::CodeGenModule::getSize
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
Definition: CodeGenModule.cpp:1106
clang::CodeGen::CodeGenFunction::EmitAnyExpr
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:213
emitAutoreleasedReturnValueMarker
static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF)
Definition: CGObjC.cpp:2351
clang::CodeGen::ObjCEntrypoints::objc_autoreleaseReturnValue
llvm::Function * objc_autoreleaseReturnValue
id objc_autoreleaseReturnValue(id);
Definition: CodeGenModule.h:148
clang::CXXConstructExpr::requiresZeroInitialization
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called.
Definition: ExprCXX.h:1629
clang::CodeGen::CodeGenTypeCache::getPointerAlign
CharUnits getPointerAlign() const
Definition: CodeGenTypeCache.h:120
clang::QualType
A (possibly-)qualified type.
Definition: Type.h:736
Attr.h
emitCPPObjectAtomicSetterCall
static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, ObjCIvarDecl *ivar, llvm::Constant *AtomicHelperFn)
emitCPPObjectAtomicSetterCall - Call the runtime function to store the value from the first formal pa...
Definition: CGObjC.cpp:1369
clang::Selector::isUnarySelector
bool isUnarySelector() const
Definition: IdentifierTable.h:836
clang::CodeGen::CodeGenTypeCache::PointerAlignInBytes
unsigned char PointerAlignInBytes
Definition: CodeGenTypeCache.h:99
clang::CodeGen::LValue::getQuals
const Qualifiers & getQuals() const
Definition: CGValue.h:325
clang::cast
U cast(CodeGen::Address addr)
Definition: Address.h:174
clang::CodeGen::CodeGenModule::setAtomicGetterHelperFnMap
void setAtomicGetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
Definition: CodeGenModule.h:708
clang::SanitizerSet::has
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:155
clang::CodeGen::CodeGenModule::getContext
ASTContext & getContext() const
Definition: CodeGenModule.h:729
clang::CodeGen::RequiredArgs::All
@ All
Definition: CGFunctionInfo.h:485
clang::QualType::getCanonicalType
QualType getCanonicalType() const
Definition: Type.h:6685
clang::FieldDecl
Represents a member of a struct/union/class.
Definition: Decl.h:2943
clang::CodeGen::CodeGenFunction::EmitARCDestroyStrong
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2487
clang::Qualifiers
The collection of all-type qualifiers we support.
Definition: Type.h:146
clang::ast_matchers::type
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchersInternal.cpp:774
clang::ParmVarDecl
Represents a parameter to a function.
Definition: Decl.h:1724
clang::ObjCProtocolDecl::getCanonicalDecl
ObjCProtocolDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this Objective-C protocol.
Definition: DeclObjC.h:2280
clang::ObjCPropertyImplDecl::getGetterMethodDecl
ObjCMethodDecl * getGetterMethodDecl() const
Definition: DeclObjC.h:2884
clang::ObjCObjectPointerType::getPointeeType
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:6293
clang::ObjCMethodDecl::getClassInterface
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1211
clang::ObjCMessageExpr::arguments
llvm::iterator_range< arg_iterator > arguments()
Definition: ExprObjC.h:1452
clang::CodeGen::CodeGenFunction::createBasicBlock
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
Definition: CodeGenFunction.h:2429
clang::CodeGen::CodeGenFunction::EmitARCCopyWeak
void EmitARCCopyWeak(Address dst, Address src)
void @objc_copyWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2682
clang::ObjCAtTryStmt
Represents Objective-C's @try ... @catch ... @finally statement.
Definition: StmtObjC.h:165
clang::MultiVersionKind::TargetVersion
@ TargetVersion
clang::CodeGen::CGBuilderTy::CreateStore
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:99
CGObjCRuntime.h
hasUnalignedAtomics
static bool hasUnalignedAtomics(llvm::Triple::ArchType arch)
Determine whether the given architecture supports unaligned atomic accesses.
Definition: CGObjC.cpp:851
clang::ObjCPropertyImplDecl
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2789
clang::CodeGen::ARCPreciseLifetime_t
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:124
TargetInfo.h
clang::ObjCMessageExpr::getInstanceReceiver
Expr * getInstanceReceiver()
Returns the object expression (receiver) for an instance message, or null for a message that is not a...
Definition: ExprObjC.h:1250
clang::Qualifiers::OCL_ExplicitNone
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:167
clang::CodeGen::CodeGenTypes::arrangeBuiltinFunctionDeclaration
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:670
clang::ObjCMethodDecl::param_end
param_const_iterator param_end() const
Definition: DeclObjC.h:360
clang::UnaryOperator
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2174
clang::CodeGen::CodeGenModule::SetLLVMFunctionAttributes
void SetLLVMFunctionAttributes(GlobalDecl GD, const CGFunctionInfo &Info, llvm::Function *F, bool IsThunk)
Set the LLVM function attributes (sext, zext, etc).
Definition: CodeGenModule.cpp:1735
clang::CodeGen::CodeGenModule::getLangOpts
const LangOptions & getLangOpts() const
Definition: CodeGenModule.h:730
clang::Type::isVoidType
bool isVoidType() const
Definition: Type.h:7191
clang::CodeGen::CodeGenFunction::EmitARCStoreAutoreleasing
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3660
clang::QualType::isVolatileQualified
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6716
clang::CodeGen::LValue::isARCPreciseLifetime
ARCPreciseLifetime_t isARCPreciseLifetime() const
Definition: CGValue.h:299
clang::CodeGen::CodeGenFunction::shouldUseFusedARCCalls
bool shouldUseFusedARCCalls()
Definition: CodeGenFunction.h:1994
emitStructSetterCall
static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, ObjCIvarDecl *ivar)
emitStructSetterCall - Call the runtime function to store the value from the first formal parameter i...
Definition: CGObjC.cpp:1325
Expression
clang::CodeGen::CodeGenModule::getAtomicGetterHelperFnMap
llvm::Constant * getAtomicGetterHelperFnMap(QualType Ty)
Definition: CodeGenModule.h:705
clang::LangOptions::GCOnly
@ GCOnly
Definition: LangOptions.h:87
clang::CodeGen::CodeGenFunction::EmitObjCThrowOperand
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
Definition: CGObjC.cpp:3523
clang::CodeGen::CodeGenFunction::getDestroyer
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:2095
clang::CodeGen::EHCleanup
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
clang::ObjCForCollectionStmt
Represents Objective-C's collection statement.
Definition: StmtObjC.h:23
clang::CodeGen::CodeGenFunction::EmitStoreOfScalar
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
Definition: CodeGenFunction.h:3852
clang::PseudoObjectExpr::semantics_end
semantics_iterator semantics_end()
Definition: Expr.h:6177
clang::BinaryOperator::getOpcode
Opcode getOpcode() const
Definition: Expr.h:3858
clang::ObjCInterfaceType::getDecl
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.cpp:827
clang::CodeGen::CodeGenModule::getTargetCodeGenInfo
const TargetCodeGenInfo & getTargetCodeGenInfo()
Definition: TargetInfo.cpp:12192
clang::CodeGen::CodeGenFunction::EmitARCRetainAutoreleasedReturnValue
llvm::Value * EmitARCRetainAutoreleasedReturnValue(llvm::Value *value)
Retain the given object which is the result of a function call.
Definition: CGObjC.cpp:2440
clang::CodeGen::CodeGenFunction::GenerateObjCSetter
void GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCSetter - Synthesize an Objective-C property setter function for the given property.
Definition: CGObjC.cpp:1634
clang::CodeGen::CodeGenFunction::TCK_Store
@ TCK_Store
Checking the destination of a store. Must be suitably sized and aligned.
Definition: CodeGenFunction.h:2956
clang::CodeGen::CodeGenFunction::EmitObjCMessageExpr
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
Definition: CGObjC.cpp:573
clang::CodeGen::ObjCEntrypoints::objc_autoreleasePoolPush
llvm::Function * objc_autoreleasePoolPush
void *objc_autoreleasePoolPush(void);
Definition: CodeGenModule.h:138
clang::CodeGen::CGDebugInfo::EmitLexicalBlockEnd
void EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the end of a new lexical block and pop the current block.
Definition: CGDebugInfo.cpp:4342
setARCRuntimeFunctionLinkage
static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF)
Definition: CGObjC.cpp:2151
clang::Token
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
clang::CodeGen::CGBuilderTy::CreateStructGEP
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:192
clang::ObjCMessageExpr::SuperClass
@ SuperClass
The receiver is a superclass.
Definition: ExprObjC.h:1094
clang::ObjCObjectType::getInterface
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface.
Definition: Type.h:6260
ConstantEmitter.h
clang::ASTContext::toBits
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
Definition: ASTContext.cpp:2557
clang::CodeGen::CodeGenFunction::JumpDest::getBlock
llvm::BasicBlock * getBlock() const
Definition: CodeGenFunction.h:247
emitARCValueOperation
static llvm::Value * emitARCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, llvm::Function *&fn, llvm::Intrinsic::ID IntID, llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)
Perform an operation having the signature i8* (i8*) where a null input causes a no-op and returns nul...
Definition: CGObjC.cpp:2178
clang::ArrayType::Normal
@ Normal
Definition: Type.h:3024
clang::Expr::isXValue
bool isXValue() const
Definition: Expr.h:273
clang::ObjCObjectPointerType::getObjectType
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:6318
clang::Expr::isGLValue
bool isGLValue() const
Definition: Expr.h:274
clang::CodeGen::CallArgList::add
void add(RValue rvalue, QualType type)
Definition: CGCall.h:283
clang::CodeGen::CodeGenFunction::EmitStoreThroughLValue
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:2085
clang::CodeGen::CodeGenFunction::Builder
CGBuilderTy Builder
Definition: CodeGenFunction.h:270
CodeGenABITypes.h
CGDebugInfo.h
clang::ObjCImplDecl::getClassInterface
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2472
clang::CodeGen::CodeGenTypes::ConvertType
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Definition: CodeGenTypes.cpp:401
clang::ObjCArrayLiteral::getArrayWithObjectsMethod
ObjCMethodDecl * getArrayWithObjectsMethod() const
Definition: ExprObjC.h:240
clang::OpaqueValueExpr
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition: Expr.h:1146
tryEmitARCRetainScalarExpr
static TryEmitResult tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:3456
clang::CodeGen::CodeGenTypeCache::VoidPtrTy
llvm::PointerType * VoidPtrTy
Definition: CodeGenTypeCache.h:56
clang::ObjCMethodDecl::createImplicitParams
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implicit parameters.
Definition: DeclObjC.cpp:1190
emitARCLoadOperation
static llvm::Value * emitARCLoadOperation(CodeGenFunction &CGF, Address addr, llvm::Function *&fn, llvm::Intrinsic::ID IntID)
Perform an operation having the following signature: i8* (i8**)
Definition: CGObjC.cpp:2202
clang::CodeGen::CodeGenFunction::GetAddrOfLocalVar
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Definition: CodeGenFunction.h:2719
clang::CodeGen::CodeGenFunction::EmitObjCStringLiteral
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
Emits an instance of NSConstantString representing the object.
Definition: CGObjC.cpp:51
clang::ObjCObjectType
Represents a class type in Objective C.
Definition: Type.h:6026
clang::ObjCArrayLiteral
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp,...
Definition: ExprObjC.h:189
clang::CodeGen::CodeGenFunction::destroyARCWeak
static Destroyer destroyARCWeak
Definition: CodeGenFunction.h:4356
DeclObjC.h
clang::ObjCMessageExpr::isDelegateInitCall
bool isDelegateInitCall() const
isDelegateInitCall - Answers whether this message send has been tagged as a "delegate init call",...
Definition: ExprObjC.h:1403
clang::CodeGen::ARCImpreciseLifetime
@ ARCImpreciseLifetime
Definition: CGValue.h:125
clang::CodeGen::CodeGenFunction::EmitARCLoadWeak
llvm::Value * EmitARCLoadWeak(Address addr)
i8* @objc_loadWeak(i8** addr) Essentially objc_autorelease(objc_loadWeakRetained(addr)).
Definition: CGObjC.cpp:2614
clang::CodeGen::CGObjCRuntime::GetCppAtomicObjectGetFunction
virtual llvm::FunctionCallee GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter.
clang::GlobalDecl
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:56
clang::CodeGen::ObjCEntrypoints::clang_arc_use
llvm::Function * clang_arc_use
void clang.arc.use(...);
Definition: CodeGenModule.h:208
clang::CodeGen::AlignmentSource::Decl
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
clang::ASTContext::getTypeAlignInChars
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
Definition: ASTContext.cpp:2572
clang::ObjCMethodDecl::param_const_iterator
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:351
clang::CodeGen::CodeGenFunction::EmitLoadOfScalar
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
Definition: CodeGenFunction.h:3830
clang::CodeGen::getNonTrivialCStructMoveAssignmentOperator
llvm::Function * getNonTrivialCStructMoveAssignmentOperator(CodeGenModule &CGM, CharUnits DstAlignment, CharUnits SrcAlignment, bool IsVolatile, QualType QT)
Return the move assignment operator for a C struct with non-trivially copyable fields,...
Definition: CGNonTrivialStruct.cpp:981
clang::CodeGen::CodeGenFunction::ComplexPairTy
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Definition: CodeGenFunction.h:268
clang::CodeGen::ReturnValueSlot
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:357
clang::CodeGen::CodeGenFunction::EmitObjCDictionaryLiteral
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
Definition: CGObjC.cpp:251
arch
CudaArch arch
Definition: Cuda.cpp:70
clang::CodeGen::CodeGenFunction::EmitObjCAutoreleasePoolPush
llvm::Value * EmitObjCAutoreleasePoolPush()
Produce the code to do a objc_autoreleasepool_push.
Definition: CGObjC.cpp:2705
clang::CXXConstructExpr::arg_begin
arg_iterator arg_begin()
Definition: ExprCXX.h:1655
clang::CodeGen::ObjCEntrypoints::objc_copyWeak
llvm::Function * objc_copyWeak
void objc_copyWeak(id *dest, id *src);
Definition: CodeGenModule.h:151
clang::IdentifierInfo::isStr
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Definition: IdentifierTable.h:177
clang::ObjCPropertyAttribute::kind_atomic
@ kind_atomic
Definition: DeclObjCCommon.h:32
clang::ASTContext::getObjCIdType
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:2017
clang::CodeGen::CGObjCRuntime::EmitThrowStmt
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
clang::ObjCPropertyImplDecl::getSetterMethodDecl
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:2887
clang::Type::isReferenceType
bool isReferenceType() const
Definition: Type.h:6906
clang::CallExpr::getCallee
Expr * getCallee()
Definition: Expr.h:2962
clang::Type::isObjCClassType
bool isObjCClassType() const
Definition: Type.h:7061
V
#define V(N, I)
Definition: ASTContext.h:3211
clang::CodeGen::CodeGenTypes::arrangeObjCMethodDeclaration
const CGFunctionInfo & arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD)
Objective-C methods are C functions with some implicit parameters.
Definition: CGCall.cpp:473
clang::CodeGen::CodeGenFunction::emitScalarConstant
llvm::Value * emitScalarConstant(const ConstantEmission &Constant, Expr *E)
Definition: CGExpr.cpp:1580
clang::QualType::hasNonTrivialObjCLifetime
bool hasNonTrivialObjCLifetime() const
Definition: Type.h:1198
clang::CodeGen::CodeGenFunction::GenerateObjCCtorDtorMethod
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor)
Definition: CGObjC.cpp:1714
clang::ReturnStmt::Create
static ReturnStmt * Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
Create a return statement.
Definition: Stmt.cpp:1202
clang::ast_matchers::expr
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
Definition: ASTMatchersInternal.cpp:891
clang::CodeGen::CodeGenFunction::RunCleanupsScope
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited.
Definition: CodeGenFunction.h:873
clang::CodeGen::CodeGenModule::SetLLVMFunctionAttributesForDefinition
void SetLLVMFunctionAttributesForDefinition(const Decl *D, llvm::Function *F)
Set the LLVM function attributes which only apply to a function definition.
Definition: CodeGenModule.cpp:2000
clang::RecordType
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4821
clang::CodeGen::ObjCEntrypoints::retainAutoreleasedReturnValueMarker
llvm::InlineAsm * retainAutoreleasedReturnValueMarker
A void(void) inline asm to use to mark that the return value of a call will be immediately retain.
Definition: CodeGenModule.h:205
clang::CodeGen::CodeGenFunction::GenerateObjCMethod
void GenerateObjCMethod(const ObjCMethodDecl *OMD)
Generate an Objective-C method.
Definition: CGObjC.cpp:807
clang::CompoundStmt
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1418
clang::CodeGen::CGObjCRuntime::GetSelector
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
clang::CodeGen::CodeGenFunction::getCurrentProfileCount
uint64_t getCurrentProfileCount()
Get the profiler's current count.
Definition: CodeGenFunction.h:1549
clang::ObjCSelectorExpr
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:454
clang::Type::hasPointerRepresentation
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:7338
clang::ObjCPropertyDecl::isAtomic
bool isAtomic() const
isAtomic - Return true if the property is atomic.
Definition: DeclObjC.h:836
clang::CodeGen::CodeGenFunction::EmitStmt
void EmitStmt(const Stmt *S, ArrayRef< const Attr * > Attrs=std::nullopt)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:54
emitARCRetainLoadOfScalar
static llvm::Value * emitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:3460
clang::CodeGen::CodeGenFunction::EmitARCAutorelease
llvm::Value * EmitARCAutorelease(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2558
clang::Selector::getNameForSlot
StringRef getNameForSlot(unsigned argIndex) const
Retrieve the name at a given position in the selector.
Definition: IdentifierTable.cpp:585
clang::CodeGen::EHScopeStack::Cleanup
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:141
clang::CodeGen::ObjCEntrypoints::objc_release
llvm::Function * objc_release
void objc_release(id);
Definition: CodeGenModule.h:188
clang::LangOptions::ObjCRuntime
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:417
clang::OMF_retain
@ OMF_retain
Definition: IdentifierTable.h:717
clang::CodeGen::ARCPreciseLifetime
@ ARCPreciseLifetime
Definition: CGValue.h:125
clang::CodeGen::CodeGenFunction::emitDestroy
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
emitDestroy - Immediately perform the destruction of the given object.
Definition: CGDecl.cpp:2196
clang::CodeGen::CodeGenModule::getObjCRuntime
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
Definition: CodeGenModule.h:619
clang::CodeGen::CodeGenFunction::EmitObjCRetainNonBlock
llvm::Value * EmitObjCRetainNonBlock(llvm::Value *value, llvm::Type *returnType)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:2839
clang::CodeGen::CodeGenFunction::generateObjCSetterBody
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:1436
clang::BinaryOperator
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3814
emitOptimizedARCReturnCall
static llvm::Value * emitOptimizedARCReturnCall(llvm::Value *value, bool IsRetainRV, CodeGenFunction &CGF)
Definition: CGObjC.cpp:2391
clang::CodeGen::CGObjCRuntime::EmitNSAutoreleasePoolClassRef
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
Definition: CGObjCRuntime.h:276
clang::Qualifiers::OCL_Strong
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:174
hlsl::uint64_t
unsigned long uint64_t
Definition: hlsl_basic_types.h:25
clang::Scope
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
clang::ObjCAtThrowStmt
Represents Objective-C's @throw statement.
Definition: StmtObjC.h:357
clang::CodeGen::CodeGenFunction::AutoVarEmission
Definition: CodeGenFunction.h:3053
clang::SelectorTable::getSelector
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
Definition: IdentifierTable.cpp:784
clang::CodeGen::CodeGenFunction::EmitObjCBoxedExpr
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
EmitObjCBoxedExpr - This routine generates code to call the appropriate expression boxing method.
Definition: CGObjC.cpp:65
clang::CodeGen::CodeGenFunction::EmitCheck
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask >> Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
Definition: CGExpr.cpp:3260
clang::ASTContext::Selectors
SelectorTable & Selectors
Definition: ASTContext.h:631
clang::CharUnits::fromQuantity
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
object
clang::ObjCStringLiteral
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
clang::BlockExpr::getBlockDecl
const BlockDecl * getBlockDecl() const
Definition: Expr.h:5985
clang::CodeGen::CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr
llvm::Value * EmitARCUnsafeUnretainedScalarExpr(const Expr *expr)
EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to immediately releasing the resut of Emi...
Definition: CGObjC.cpp:3599
clang::CodeGen::CodeGenModule::getCodeGenOpts
const CodeGenOptions & getCodeGenOpts() const
Definition: CodeGenModule.h:738
clang::ObjCDictionaryElement::Key
Expr * Key
The key for the dictionary element.
Definition: ExprObjC.h:264
clang::CodeGen::CodeGenFunction::EmitARCAutoreleaseReturnValue
llvm::Value * EmitARCAutoreleaseReturnValue(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2567
clang::ObjCMethodDecl::getMethodFamily
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:1053
clang::CodeGen::Address::getType
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:99
clang::Decl::getBodyRBrace
SourceLocation getBodyRBrace() const
getBodyRBrace - Gets the right brace of the body, if a body exists.
Definition: DeclBase.cpp:969
clang::FPOptionsOverride
Represents difference between two FPOptions values.
Definition: LangOptions.h:806
clang::CodeGen::CodeGenFunction::AutoVarEmission::invalid
static AutoVarEmission invalid()
Definition: CodeGenFunction.h:3094
clang::ASTContext
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:182
clang::GetUnarySelector
Selector GetUnarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing an unary selector.
Definition: ASTContext.h:3357
clang::ASTContext::getSizeType
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Definition: ASTContext.cpp:5980
CGFunctionInfo.h
clang::CodeGen::CodeGenFunction::EmitObjCExtendObjectLifetime
llvm::Value * EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr)
Definition: CGObjC.cpp:2125
clang::CodeGen::CodeGenFunction::EmitObjCAllocInit
llvm::Value * EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType)
Definition: CGObjC.cpp:2786
clang::CPlusPlus
@ CPlusPlus
Definition: LangStandard.h:53
clang::CodeGen::CodeGenFunction::EmitARCStoreWeak
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
i8* @objc_storeWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2629
clang::ObjCDictionaryLiteral
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:305
Diagnostic.h
clang::CodeGen::CodeGenFunction::EmitRuntimeCall
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
clang::Selector::getNumArgs
unsigned getNumArgs() const
Definition: IdentifierTable.cpp:563
clang::CodeGen::TEK_Complex
@ TEK_Complex
Definition: CodeGenFunction.h:109
ValueTransform
llvm::function_ref< llvm::Value *(CodeGenFunction &CGF, llvm::Value *value)> ValueTransform
Definition: CGObjC.cpp:2982
clang::PseudoObjectExpr::const_semantics_iterator
const typedef Expr *const * const_semantics_iterator
Definition: Expr.h:6170
clang::Type::getAs
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:7397
clang::CodeGen::CodeGenFunction::getDebugInfo
CGDebugInfo * getDebugInfo()
Definition: CodeGenFunction.h:1986
clang::CodeGen::ObjCEntrypoints::objc_storeStrong
llvm::Function * objc_storeStrong
void objc_storeStrong(id*, id);
Definition: CodeGenModule.h:195
clang::CodeGen::CodeGenFunction::ConstantEmission
Definition: CodeGenFunction.h:3938
clang::ObjCMethodDecl::getSelector
Selector getSelector() const
Definition: DeclObjC.h:329
emitARCCopyOperation
static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, llvm::Function *&fn, llvm::Intrinsic::ID IntID)
Perform an operation having the following signature: void (i8**, i8**)
Definition: CGObjC.cpp:2249
clang::CodeGen::CodeGenTypeCache::VoidTy
llvm::Type * VoidTy
void
Definition: CodeGenTypeCache.h:34
clang::ObjCRuntime::hasARCUnsafeClaimAutoreleasedReturnValue
bool hasARCUnsafeClaimAutoreleasedReturnValue() const
Is objc_unsafeClaimAutoreleasedReturnValue available?
Definition: ObjCRuntime.h:403
clang::ObjCPropertyImplDecl::getGetterCXXConstructor
Expr * getGetterCXXConstructor() const
Definition: DeclObjC.h:2890
clang::ObjCMethodDecl::isDirectMethod
bool isDirectMethod() const
True if the method is tagged as objc_direct.
Definition: DeclObjC.cpp:871
clang::TargetInfo::getPlatformMinVersion
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled.
Definition: TargetInfo.h:1538
clang::ObjCMethodDecl::getSelfDecl
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:420
clang::PseudoObjectExpr
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:6103
clang::ObjCAtSynchronizedStmt
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:302
clang::ObjCMessageExpr::getReceiverKind
ReceiverKind getReceiverKind() const
Determine the kind of receiver that this message is being sent to.
Definition: ExprObjC.h:1224
clang::CodeGen::CodeGenModule::getModule
llvm::Module & getModule() const
Definition: CodeGenModule.h:739
clang::CodeGen::CGObjCRuntime::EmitTryStmt
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
clang::CodeGen::CodeGenFunction::EmitARCStoreStrongCall
llvm::Value * EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2501
clang::ASTContext::getTypeSize
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2273
clang::CodeGen::CodeGenFunction::callCStructMoveAssignmentOperator
void callCStructMoveAssignmentOperator(LValue Dst, LValue Src)
Definition: CGNonTrivialStruct.cpp:923
emitIsPlatformVersionAtLeast
static llvm::Value * emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, const VersionTuple &Version)
Definition: CGObjC.cpp:3977
clang::CodeGen::CGDebugInfo
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:55
clang::DeclRefExpr::getDecl
ValueDecl * getDecl()
Definition: Expr.h:1306
clang::CodeGen::CodeGenFunction::getCleanupKind
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Definition: CodeGenFunction.h:2093
clang::ImplicitParamDecl
Definition: Decl.h:1657
clang::ObjCMessageExpr::Class
@ Class
The receiver is a class.
Definition: ExprObjC.h:1088
clang::CodeGen::LValue::getType
QualType getType() const
Definition: CGValue.h:278
clang::CodeGen::CGObjCRuntime::EnumerationMutationFunction
virtual llvm::FunctionCallee EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that's called by the compiler when a mutation is de...
clang::TypeInfoChars::Width
CharUnits Width
Definition: ASTContext.h:167
clang::interp::Cast
bool Cast(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1283
ASTContext.h
clang::VarDecl
Represents a variable declaration or definition.
Definition: Decl.h:915
clang::ObjCMethodDecl::getReturnType
QualType getReturnType() const
Definition: DeclObjC.h:331
clang::CodeGen::CGObjCRuntime::GetGetStructFunction
virtual llvm::FunctionCallee GetGetStructFunction()=0
clang::Type::getPointeeType
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:629
clang::CodeGen::CodeGenModule::getTypes
CodeGenTypes & getTypes()
Definition: CodeGenModule.h:756
clang::dataflow::var
static constexpr Variable var(Literal L)
Returns the variable of L.
Definition: WatchedLiteralsSolver.cpp:71
clang::CXXConstructExpr::getConstructor
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1590
clang::CodeGen::CGObjCRuntime::GenerateProtocolRef
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
clang::ExprWithCleanups
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3416
clang::CodeGen::CodeGenFunction::EmitAutoVarInit
void EmitAutoVarInit(const AutoVarEmission &emission)
Definition: CGDecl.cpp:1815
clang::ObjCDictionaryLiteral::getDictWithObjectsMethod
ObjCMethodDecl * getDictWithObjectsMethod() const
Definition: ExprObjC.h:376
llvm::DenseSet
Definition: Sema.h:77
clang::CodeGen::AggValueSlot::IsDestructed
@ IsDestructed
Definition: CGValue.h:551
getBaseMachOPlatformID
static unsigned getBaseMachOPlatformID(const llvm::Triple &TT)
Definition: CGObjC.cpp:3959
clang::CodeGen::CodeGenFunction::EmitAutoVarAlloca
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var)
EmitAutoVarAlloca - Emit the alloca and debug information for a local variable.
Definition: CGDecl.cpp:1428
clang::CodeGen::CodeGenFunction::getLLVMContext
llvm::LLVMContext & getLLVMContext()
Definition: CodeGenFunction.h:2028
clang::CodeGen::CodeGenFunction::EmitObjCAutorelease
llvm::Value * EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType)
Autorelease the given object.
Definition: CGObjC.cpp:2829
clang::Type::isAtomicType
bool isAtomicType() const
Definition: Type.h:7035
clang::CodeGen::CodeGenFunction::getContext
ASTContext & getContext() const
Definition: CodeGenFunction.h:1985
clang::ObjCMethodDecl::getEndLoc
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclObjC.cpp:1047
clang::CodeGen::NormalCleanup
@ NormalCleanup
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
clang::CodeGen::CodeGenFunction::incrementProfileCounter
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
Definition: CodeGenFunction.h:1529
clang::CodeGen::CodeGenFunction::DeactivateCleanupBlock
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
DeactivateCleanupBlock - Deactivates the given cleanup block.
Definition: CGCleanup.cpp:1282
clang::CodeGen::CodeGenFunction::FinishFunction
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
Definition: CodeGenFunction.cpp:330
clang::CodeGen::Address
An aligned address.
Definition: Address.h:74
AppendFirstImpliedRuntimeProtocols
static void AppendFirstImpliedRuntimeProtocols(const ObjCProtocolDecl *PD, llvm::UniqueVector< const ObjCProtocolDecl * > &PDs)
Definition: CGObjC.cpp:452
clang::CodeGen::CodeGenFunction::getJumpDestInCurrentScope
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Definition: CodeGenFunction.h:1151
clang::CodeGen::CodeGenFunction::EmitARCRetainAutoreleaseNonBlock
llvm::Value * EmitARCRetainAutoreleaseNonBlock(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2606
CodeGenModule.h
clang::ObjCPropertyDecl::getType
QualType getType() const
Definition: DeclObjC.h:797
clang::CodeGen::CodeGenFunction::EmitObjCForCollectionStmt
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1766
clang::CodeGen::CodeGenFunction::getARCCleanupKind
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
Definition: CodeGenFunction.h:4289
clang::FunctionDecl::Create
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, Expr *TrailingRequiresClause=nullptr)
Definition: Decl.h:2095
clang::CodeGen::CodeGenFunction::SanOpts
SanitizerSet SanOpts
Sanitizers enabled for this function.
Definition: CodeGenFunction.h:519
clang::CodeGen::CGBuilderTy::CreateGEP
Address CreateGEP(Address Addr, llvm::Value *Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:264
clang::CodeGen::CodeGenFunction::getEvaluationKind
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
Definition: CodeGenFunction.cpp:219
clang::CodeGen::CGObjCRuntime::GetPropertySetFunction
virtual llvm::FunctionCallee GetPropertySetFunction()=0
Return the runtime function for setting properties.
clang::Selector::getMethodFamily
ObjCMethodFamily getMethodFamily() const
Derive the conventional family of this method.
Definition: IdentifierTable.h:883
clang::CXXConstructExpr::hadMultipleCandidates
bool hadMultipleCandidates() const
Whether the referred constructor was resolved from an overloaded set having size greater than 1.
Definition: ExprCXX.h:1601
clang::CodeGen::CodeGenModule::getAtomicSetterHelperFnMap
llvm::Constant * getAtomicSetterHelperFnMap(QualType Ty)
Definition: CodeGenModule.h:697
clang::CodeGen::CodeGenFunction::EmitObjCArrayLiteral
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
Definition: CGObjC.cpp:247
getKind
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1025
clang::CodeGen::ObjCEntrypoints::objc_autorelease
llvm::Function * objc_autorelease
id objc_autorelease(id);
Definition: CodeGenModule.h:141
clang::CodeGen::CodeGenFunction::emitARCIntrinsicUse
static Destroyer emitARCIntrinsicUse
Definition: CodeGenFunction.h:4357
clang::ObjCMessageExpr
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:940
tryEmitARCRetainLoadOfScalar
static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:2919
clang::CodeGen::CodeGenFunction::EmitObjCAllocWithZone
llvm::Value * EmitObjCAllocWithZone(llvm::Value *value, llvm::Type *returnType)
Allocate the given objc object.
Definition: CGObjC.cpp:2779
clang::CodeGen::ObjCEntrypoints::objc_retainAutorelease
llvm::Function * objc_retainAutorelease
id objc_retainAutorelease(id);
Definition: CodeGenModule.h:176
clang::CastExpr::getCastKind
CastKind getCastKind() const
Definition: Expr.h:3526
clang::Qualifiers::OCL_Autoreleasing
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:180
StmtObjC.h
getARCIntrinsic
static llvm::Function * getARCIntrinsic(llvm::Intrinsic::ID IntID, CodeGenModule &CGM)
Definition: CGObjC.cpp:2168
clang::CodeGen::CodeGenFunction::EmitAnyExprToMem
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:242
clang::Qualifiers::setObjCLifetime
void setObjCLifetime(ObjCLifetime type)
Definition: Type.h:354
clang::CodeGen::CGCallee::forDirect
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:130
clang::CXXOperatorCallExpr::Create
static CXXOperatorCallExpr * Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptionsOverride FPFeatures, ADLCallKind UsesADL=NotADL)
Definition: ExprCXX.cpp:559
clang::Qualifiers::ObjCLifetime
ObjCLifetime
Definition: Type.h:161
clang::CodeGen::CodeGenFunction::EmitARCRetainScalarExpr
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
EmitARCRetainScalarExpr - Semantically equivalent to EmitARCRetainObject(e->getType(),...
Definition: CGObjC.cpp:3474
clang::SC_Static
@ SC_Static
Definition: Specifiers.h:240
clang::CodeGen::CodeGenModule::getTarget
const TargetInfo & getTarget() const
Definition: CodeGenModule.h:744
clang::QualType::getUnqualifiedType
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6726
clang::CodeGen::ObjCEntrypoints::objc_alloc_init
llvm::FunctionCallee objc_alloc_init
void objc_alloc_init(id);
Definition: CodeGenModule.h:128
clang::CodeGen::CodeGenFunction::CurGD
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Definition: CodeGenFunction.h:346
clang::CodeGen::CodeGenTypeCache::Int32Ty
llvm::IntegerType * Int32Ty
Definition: CodeGenTypeCache.h:37
clang::CodeGen::CodeGenFunction::destroyARCStrongImprecise
static Destroyer destroyARCStrongImprecise
Definition: CodeGenFunction.h:4354
clang::Type::isObjCObjectPointerType
bool isObjCObjectPointerType() const
Definition: Type.h:7022
clang::CodeGen::ObjCEntrypoints::objc_retain
llvm::Function * objc_retain
id objc_retain(id);
Definition: CodeGenModule.h:169
clang::ObjCPropertyDecl::getSetterKind
SetterKind getSetterKind() const
getSetterKind - Return the method used for doing assignment in the property setter.
Definition: DeclObjC.h:866
shouldEmitSeparateBlockRetain
static bool shouldEmitSeparateBlockRetain(const Expr *e)
Determine whether it might be important to emit a separate objc_retain_block on the result of the giv...
Definition: CGObjC.cpp:3084
clang::CodeGen::ObjCEntrypoints::objc_initWeak
llvm::Function * objc_initWeak
id objc_initWeak(id*, id);
Definition: CodeGenModule.h:157
clang::CodeGen::CodeGenModule::IsPlatformVersionAtLeastFn
llvm::FunctionCallee IsPlatformVersionAtLeastFn
Definition: CodeGenModule.h:662
clang::CodeGen::CGObjCRuntime::GenerateMessageSendSuper
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
clang::CodeGen::CGObjCRuntime::EmitSynchronizedStmt
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
clang::VK_LValue
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:127
clang::ObjCPropertyDecl::Copy
@ Copy
Definition: DeclObjC.h:733
clang::CodeGen::CodeGenTypes::GetFunctionType
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition: CGCall.cpp:1617
clang::CodeGen::CodeGenModule::getDataLayout
const llvm::DataLayout & getDataLayout() const
Definition: CodeGenModule.h:741
clang::Type::castAs
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7464
clang::ObjCDictionaryLiteral::getKeyValueElement
ObjCDictionaryElement getKeyValueElement(unsigned Index) const
Definition: ExprObjC.h:361
clang::CodeGen::CodeGenFunction::EmitObjCAlloc
llvm::Value * EmitObjCAlloc(llvm::Value *value, llvm::Type *returnType)
Allocate the given objc object.
Definition: CGObjC.cpp:2770
clang::ObjCRuntime::hasAtomicCopyHelper
bool hasAtomicCopyHelper() const
Definition: ObjCRuntime.h:389
clang::Expr::IgnoreParenCasts
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3041
clang::TargetInfo::getTriple
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1190
clang::CodeGen::CodeGenFunction::OpaqueValueMappingData
A non-RAII class containing all the information about a bound opaque value.
Definition: CodeGenFunction.h:1261
clang::ObjCObjectPointerType
Represents a pointer to an Objective C object.
Definition: Type.h:6281
clang::CodeGen::ObjCEntrypoints::objc_autoreleasePoolPopInvoke
llvm::FunctionCallee objc_autoreleasePoolPopInvoke
void objc_autoreleasePoolPop(void*); Note this method is used when we are using exception handling
Definition: CodeGenModule.h:135
clang::CodeGen::CodeGenFunction::StartFunction
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
Definition: CodeGenFunction.cpp:695
clang::ObjCImplementationDecl::inits
init_range inits()
Definition: DeclObjC.h:2646
clang::CodeGen::CGObjCRuntime::GeneratePossiblySpecializedMessageSend
CodeGen::RValue GeneratePossiblySpecializedMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &Args, const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, bool isClassMessage)
Generate an Objective-C message send operation.
Definition: CGObjC.cpp:438
clang::BinaryOperator::Create
static BinaryOperator * Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4629
clang::CodeGen::LValue
LValue - This represents an lvalue references.
Definition: CGValue.h:171
clang::CodeGen::CodeGenFunction::EHStack
EHScopeStack EHStack
Definition: CodeGenFunction.h:620
clang::CodeGen::CodeGenFunction::getOverlapForReturnValue
AggValueSlot::Overlap_t getOverlapForReturnValue()
Determine whether a return value slot may overlap some other object.
Definition: CodeGenFunction.h:2680
clang::CodeGen::CGObjCRuntime::GenerateMethod
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
clang::VK_PRValue
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:123
clang::CodeGen::CodeGenFunction::MakeNaturalAlignAddrLValue
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
Definition: CodeGenFunction.cpp:190
clang::CodeGen::AggValueSlot::forAddr
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:574
clang::CodeGen::CodeGenFunction::EmitDeclRefLValue
LValue EmitDeclRefLValue(const DeclRefExpr *E)
Definition: CGExpr.cpp:2719
clang::ASTContext::VoidPtrTy
CanQualType VoidPtrTy
Definition: ASTContext.h:1104
clang::FieldDecl::isBitField
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:3021
clang::Type::isPointerType
bool isPointerType() const
Definition: Type.h:6894
clang::CodeGen::CodeGenFunction::EmitARCStoreUnsafeUnretained
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Definition: CGObjC.cpp:3610
clang::CodeGen::CodeGenFunction::EmitCallOrInvoke
llvm::CallBase * EmitCallOrInvoke(llvm::FunctionCallee Callee, ArrayRef< llvm::Value * > Args, const Twine &Name="")
Emits a call or invoke instruction to the given function, depending on the current state of the EH st...
Definition: CGCall.cpp:4593
clang::CodeGen::Address::getPointer
llvm::Value * getPointer() const
Definition: Address.h:93