clang  10.0.0svn
CGObjC.cpp
Go to the documentation of this file.
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
31 static TryEmitResult
34  QualType ET,
35  RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(Address addr) {
40  llvm::Type *type = addr.getElementType();
41  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
42 }
43 
44 /// Emits an instance of NSConstantString representing the object.
46 {
47  llvm::Constant *C =
49  // FIXME: This bitcast should just be made an invariant on the Runtime.
50  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
51 }
52 
53 /// EmitObjCBoxedExpr - This routine generates code to call
54 /// the appropriate expression boxing method. This will either be
55 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
56 /// or [NSValue valueWithBytes:objCType:].
57 ///
60  // Generate the correct selector for this literal's concrete type.
61  // Get the method.
62  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
63  const Expr *SubExpr = E->getSubExpr();
64 
66  ConstantEmitter ConstEmitter(CGM);
67  return ConstEmitter.tryEmitAbstract(E, E->getType());
68  }
69 
70  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
71  Selector Sel = BoxingMethod->getSelector();
72 
73  // Generate a reference to the class pointer, which will be the receiver.
74  // Assumes that the method was introduced in the class that should be
75  // messaged (avoids pulling it out of the result type).
76  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
77  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
78  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
79 
80  CallArgList Args;
81  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
82  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
83 
84  // ObjCBoxedExpr supports boxing of structs and unions
85  // via [NSValue valueWithBytes:objCType:]
86  const QualType ValueType(SubExpr->getType().getCanonicalType());
87  if (ValueType->isObjCBoxableRecordType()) {
88  // Emit CodeGen for first parameter
89  // and cast value to correct type
90  Address Temporary = CreateMemTemp(SubExpr->getType());
91  EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
92  Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
93  Args.add(RValue::get(BitCast.getPointer()), ArgQT);
94 
95  // Create char array to store type encoding
96  std::string Str;
97  getContext().getObjCEncodingForType(ValueType, Str);
98  llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
99 
100  // Cast type encoding to correct type
101  const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
102  QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
103  llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
104 
105  Args.add(RValue::get(Cast), EncodingQT);
106  } else {
107  Args.add(EmitAnyExpr(SubExpr), ArgQT);
108  }
109 
110  RValue result = Runtime.GenerateMessageSend(
111  *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
112  Args, ClassDecl, BoxingMethod);
113  return Builder.CreateBitCast(result.getScalarVal(),
114  ConvertType(E->getType()));
115 }
116 
118  const ObjCMethodDecl *MethodWithObjects) {
119  ASTContext &Context = CGM.getContext();
120  const ObjCDictionaryLiteral *DLE = nullptr;
121  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
122  if (!ALE)
123  DLE = cast<ObjCDictionaryLiteral>(E);
124 
125  // Optimize empty collections by referencing constants, when available.
126  uint64_t NumElements =
127  ALE ? ALE->getNumElements() : DLE->getNumElements();
128  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
129  StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131  llvm::Constant *Constant =
132  CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
133  LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
134  llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
135  cast<llvm::LoadInst>(Ptr)->setMetadata(
136  CGM.getModule().getMDKindID("invariant.load"),
137  llvm::MDNode::get(getLLVMContext(), None));
138  return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
139  }
140 
141  // Compute the type of the array we're initializing.
142  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
143  NumElements);
144  QualType ElementType = Context.getObjCIdType().withConst();
145  QualType ElementArrayType
146  = Context.getConstantArrayType(ElementType, APNumElements,
147  ArrayType::Normal, /*IndexTypeQuals=*/0);
148 
149  // Allocate the temporary array(s).
150  Address Objects = CreateMemTemp(ElementArrayType, "objects");
151  Address Keys = Address::invalid();
152  if (DLE)
153  Keys = CreateMemTemp(ElementArrayType, "keys");
154 
155  // In ARC, we may need to do extra work to keep all the keys and
156  // values alive until after the call.
157  SmallVector<llvm::Value *, 16> NeededObjects;
158  bool TrackNeededObjects =
159  (getLangOpts().ObjCAutoRefCount &&
160  CGM.getCodeGenOpts().OptimizationLevel != 0);
161 
162  // Perform the actual initialialization of the array(s).
163  for (uint64_t i = 0; i < NumElements; i++) {
164  if (ALE) {
165  // Emit the element and store it to the appropriate array slot.
166  const Expr *Rhs = ALE->getElement(i);
168  ElementType, AlignmentSource::Decl);
169 
170  llvm::Value *value = EmitScalarExpr(Rhs);
171  EmitStoreThroughLValue(RValue::get(value), LV, true);
172  if (TrackNeededObjects) {
173  NeededObjects.push_back(value);
174  }
175  } else {
176  // Emit the key and store it to the appropriate array slot.
177  const Expr *Key = DLE->getKeyValueElement(i).Key;
179  ElementType, AlignmentSource::Decl);
180  llvm::Value *keyValue = EmitScalarExpr(Key);
181  EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
182 
183  // Emit the value and store it to the appropriate array slot.
184  const Expr *Value = DLE->getKeyValueElement(i).Value;
185  LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
186  ElementType, AlignmentSource::Decl);
187  llvm::Value *valueValue = EmitScalarExpr(Value);
188  EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
189  if (TrackNeededObjects) {
190  NeededObjects.push_back(keyValue);
191  NeededObjects.push_back(valueValue);
192  }
193  }
194  }
195 
196  // Generate the argument list.
197  CallArgList Args;
198  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
199  const ParmVarDecl *argDecl = *PI++;
200  QualType ArgQT = argDecl->getType().getUnqualifiedType();
201  Args.add(RValue::get(Objects.getPointer()), ArgQT);
202  if (DLE) {
203  argDecl = *PI++;
204  ArgQT = argDecl->getType().getUnqualifiedType();
205  Args.add(RValue::get(Keys.getPointer()), ArgQT);
206  }
207  argDecl = *PI;
208  ArgQT = argDecl->getType().getUnqualifiedType();
209  llvm::Value *Count =
210  llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
211  Args.add(RValue::get(Count), ArgQT);
212 
213  // Generate a reference to the class pointer, which will be the receiver.
214  Selector Sel = MethodWithObjects->getSelector();
215  QualType ResultType = E->getType();
216  const ObjCObjectPointerType *InterfacePointerType
217  = ResultType->getAsObjCInterfacePointerType();
218  ObjCInterfaceDecl *Class
219  = InterfacePointerType->getObjectType()->getInterface();
220  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
221  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
222 
223  // Generate the message send.
224  RValue result = Runtime.GenerateMessageSend(
225  *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
226  Receiver, Args, Class, MethodWithObjects);
227 
228  // The above message send needs these objects, but in ARC they are
229  // passed in a buffer that is essentially __unsafe_unretained.
230  // Therefore we must prevent the optimizer from releasing them until
231  // after the call.
232  if (TrackNeededObjects) {
233  EmitARCIntrinsicUse(NeededObjects);
234  }
235 
236  return Builder.CreateBitCast(result.getScalarVal(),
237  ConvertType(E->getType()));
238 }
239 
242 }
243 
245  const ObjCDictionaryLiteral *E) {
247 }
248 
249 /// Emit a selector.
251  // Untyped selector.
252  // Note that this implementation allows for non-constant strings to be passed
253  // as arguments to @selector(). Currently, the only thing preventing this
254  // behaviour is the type checking in the front end.
255  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
256 }
257 
259  // FIXME: This should pass the Decl not the name.
260  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
261 }
262 
263 /// Adjust the type of an Objective-C object that doesn't match up due
264 /// to type erasure at various points, e.g., related result types or the use
265 /// of parameterized classes.
267  RValue Result) {
268  if (!ExpT->isObjCRetainableType())
269  return Result;
270 
271  // If the converted types are the same, we're done.
272  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
273  if (ExpLLVMTy == Result.getScalarVal()->getType())
274  return Result;
275 
276  // We have applied a substitution. Cast the rvalue appropriately.
277  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
278  ExpLLVMTy));
279 }
280 
281 /// Decide whether to extend the lifetime of the receiver of a
282 /// returns-inner-pointer message.
283 static bool
285  switch (message->getReceiverKind()) {
286 
287  // For a normal instance message, we should extend unless the
288  // receiver is loaded from a variable with precise lifetime.
290  const Expr *receiver = message->getInstanceReceiver();
291 
292  // Look through OVEs.
293  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
294  if (opaque->getSourceExpr())
295  receiver = opaque->getSourceExpr()->IgnoreParens();
296  }
297 
298  const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
299  if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
300  receiver = ice->getSubExpr()->IgnoreParens();
301 
302  // Look through OVEs.
303  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
304  if (opaque->getSourceExpr())
305  receiver = opaque->getSourceExpr()->IgnoreParens();
306  }
307 
308  // Only __strong variables.
309  if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
310  return true;
311 
312  // All ivars and fields have precise lifetime.
313  if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
314  return false;
315 
316  // Otherwise, check for variables.
317  const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
318  if (!declRef) return true;
319  const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
320  if (!var) return true;
321 
322  // All variables have precise lifetime except local variables with
323  // automatic storage duration that aren't specially marked.
324  return (var->hasLocalStorage() &&
325  !var->hasAttr<ObjCPreciseLifetimeAttr>());
326  }
327 
330  // It's never necessary for class objects.
331  return false;
332 
334  // We generally assume that 'self' lives throughout a method call.
335  return false;
336  }
337 
338  llvm_unreachable("invalid receiver kind");
339 }
340 
341 /// Given an expression of ObjC pointer type, check whether it was
342 /// immediately loaded from an ARC __weak l-value.
343 static const Expr *findWeakLValue(const Expr *E) {
344  assert(E->getType()->isObjCRetainableType());
345  E = E->IgnoreParens();
346  if (auto CE = dyn_cast<CastExpr>(E)) {
347  if (CE->getCastKind() == CK_LValueToRValue) {
348  if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
349  return CE->getSubExpr();
350  }
351  }
352 
353  return nullptr;
354 }
355 
356 /// The ObjC runtime may provide entrypoints that are likely to be faster
357 /// than an ordinary message send of the appropriate selector.
358 ///
359 /// The entrypoints are guaranteed to be equivalent to just sending the
360 /// corresponding message. If the entrypoint is implemented naively as just a
361 /// message send, using it is a trade-off: it sacrifices a few cycles of
362 /// overhead to save a small amount of code. However, it's possible for
363 /// runtimes to detect and special-case classes that use "standard"
364 /// behavior; if that's dynamically a large proportion of all objects, using
365 /// the entrypoint will also be faster than using a message send.
366 ///
367 /// If the runtime does support a required entrypoint, then this method will
368 /// generate a call and return the resulting value. Otherwise it will return
369 /// None and the caller can generate a msgSend instead.
372  llvm::Value *Receiver,
373  const CallArgList& Args, Selector Sel,
374  const ObjCMethodDecl *method,
375  bool isClassMessage) {
376  auto &CGM = CGF.CGM;
377  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
378  return None;
379 
380  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
381  switch (Sel.getMethodFamily()) {
382  case OMF_alloc:
383  if (isClassMessage &&
384  Runtime.shouldUseRuntimeFunctionsForAlloc() &&
385  ResultType->isObjCObjectPointerType()) {
386  // [Foo alloc] -> objc_alloc(Foo) or
387  // [self alloc] -> objc_alloc(self)
388  if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
389  return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
390  // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
391  // [self allocWithZone:nil] -> objc_allocWithZone(self)
392  if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
393  Args.size() == 1 && Args.front().getType()->isPointerType() &&
394  Sel.getNameForSlot(0) == "allocWithZone") {
395  const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
396  if (isa<llvm::ConstantPointerNull>(arg))
397  return CGF.EmitObjCAllocWithZone(Receiver,
398  CGF.ConvertType(ResultType));
399  return None;
400  }
401  }
402  break;
403 
404  case OMF_autorelease:
405  if (ResultType->isObjCObjectPointerType() &&
406  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
407  Runtime.shouldUseARCFunctionsForRetainRelease())
408  return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
409  break;
410 
411  case OMF_retain:
412  if (ResultType->isObjCObjectPointerType() &&
413  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
414  Runtime.shouldUseARCFunctionsForRetainRelease())
415  return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
416  break;
417 
418  case OMF_release:
419  if (ResultType->isVoidType() &&
420  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
421  Runtime.shouldUseARCFunctionsForRetainRelease()) {
422  CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
423  return nullptr;
424  }
425  break;
426 
427  default:
428  break;
429  }
430  return None;
431 }
432 
433 /// Instead of '[[MyClass alloc] init]', try to generate
434 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
435 /// caller side, as well as the optimized objc_alloc.
438  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
439  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
440  return None;
441 
442  // Match the exact pattern '[[MyClass alloc] init]'.
443  Selector Sel = OME->getSelector();
445  !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
446  Sel.getNameForSlot(0) != "init")
447  return None;
448 
449  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or
450  // we are in an ObjC class method and 'receiver' is '[self alloc]'.
451  auto *SubOME =
453  if (!SubOME)
454  return None;
455  Selector SubSel = SubOME->getSelector();
456 
457  // Check if we are in an ObjC class method and the receiver expression is
458  // 'self'.
459  const Expr *SelfInClassMethod = nullptr;
460  if (const auto *CurMD = dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
461  if (CurMD->isClassMethod())
462  if ((SelfInClassMethod = SubOME->getInstanceReceiver()))
463  if (!SelfInClassMethod->isObjCSelfExpr())
464  SelfInClassMethod = nullptr;
465 
466  if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class &&
467  !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() ||
468  !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
469  return None;
470 
471  llvm::Value *Receiver;
472  if (SelfInClassMethod) {
473  Receiver = CGF.EmitScalarExpr(SelfInClassMethod);
474  } else {
475  QualType ReceiverType = SubOME->getClassReceiver();
476  const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
477  const ObjCInterfaceDecl *ID = ObjTy->getInterface();
478  assert(ID && "null interface should be impossible here");
479  Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
480  }
481  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
482 }
483 
485  ReturnValueSlot Return) {
486  // Only the lookup mechanism and first two arguments of the method
487  // implementation vary between runtimes. We can get the receiver and
488  // arguments in generic code.
489 
490  bool isDelegateInit = E->isDelegateInitCall();
491 
492  const ObjCMethodDecl *method = E->getMethodDecl();
493 
494  // If the method is -retain, and the receiver's being loaded from
495  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
496  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
497  method->getMethodFamily() == OMF_retain) {
498  if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
499  LValue lvalue = EmitLValue(lvalueExpr);
500  llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
501  return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
502  }
503  }
504 
506  return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
507 
508  // We don't retain the receiver in delegate init calls, and this is
509  // safe because the receiver value is always loaded from 'self',
510  // which we zero out. We don't want to Block_copy block receivers,
511  // though.
512  bool retainSelf =
513  (!isDelegateInit &&
514  CGM.getLangOpts().ObjCAutoRefCount &&
515  method &&
516  method->hasAttr<NSConsumesSelfAttr>());
517 
518  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
519  bool isSuperMessage = false;
520  bool isClassMessage = false;
521  ObjCInterfaceDecl *OID = nullptr;
522  // Find the receiver
523  QualType ReceiverType;
524  llvm::Value *Receiver = nullptr;
525  switch (E->getReceiverKind()) {
527  ReceiverType = E->getInstanceReceiver()->getType();
528  if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl))
529  if (OMD->isClassMethod())
531  isClassMessage = true;
532  if (retainSelf) {
534  E->getInstanceReceiver());
535  Receiver = ter.getPointer();
536  if (ter.getInt()) retainSelf = false;
537  } else
538  Receiver = EmitScalarExpr(E->getInstanceReceiver());
539  break;
540 
541  case ObjCMessageExpr::Class: {
542  ReceiverType = E->getClassReceiver();
543  const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
544  assert(ObjTy && "Invalid Objective-C class message send");
545  OID = ObjTy->getInterface();
546  assert(OID && "Invalid Objective-C class message send");
547  Receiver = Runtime.GetClass(*this, OID);
548  isClassMessage = true;
549  break;
550  }
551 
553  ReceiverType = E->getSuperType();
554  Receiver = LoadObjCSelf();
555  isSuperMessage = true;
556  break;
557 
559  ReceiverType = E->getSuperType();
560  Receiver = LoadObjCSelf();
561  isSuperMessage = true;
562  isClassMessage = true;
563  break;
564  }
565 
566  if (retainSelf)
567  Receiver = EmitARCRetainNonBlock(Receiver);
568 
569  // In ARC, we sometimes want to "extend the lifetime"
570  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
571  // messages.
572  if (getLangOpts().ObjCAutoRefCount && method &&
573  method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
575  Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
576 
577  QualType ResultType = method ? method->getReturnType() : E->getType();
578 
579  CallArgList Args;
580  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
581 
582  // For delegate init calls in ARC, do an unsafe store of null into
583  // self. This represents the call taking direct ownership of that
584  // value. We have to do this after emitting the other call
585  // arguments because they might also reference self, but we don't
586  // have to worry about any of them modifying self because that would
587  // be an undefined read and write of an object in unordered
588  // expressions.
589  if (isDelegateInit) {
590  assert(getLangOpts().ObjCAutoRefCount &&
591  "delegate init calls should only be marked in ARC");
592 
593  // Do an unsafe store of null into self.
594  Address selfAddr =
595  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
596  Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
597  }
598 
599  RValue result;
600  if (isSuperMessage) {
601  // super is only valid in an Objective-C method
602  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
603  bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
604  result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
605  E->getSelector(),
606  OMD->getClassInterface(),
607  isCategoryImpl,
608  Receiver,
609  isClassMessage,
610  Args,
611  method);
612  } else {
613  // Call runtime methods directly if we can.
614  if (Optional<llvm::Value *> SpecializedResult =
615  tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args,
616  E->getSelector(), method,
617  isClassMessage)) {
618  result = RValue::get(SpecializedResult.getValue());
619  } else {
620  result = Runtime.GenerateMessageSend(*this, Return, ResultType,
621  E->getSelector(), Receiver, Args,
622  OID, method);
623  }
624  }
625 
626  // For delegate init calls in ARC, implicitly store the result of
627  // the call back into self. This takes ownership of the value.
628  if (isDelegateInit) {
629  Address selfAddr =
630  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
631  llvm::Value *newSelf = result.getScalarVal();
632 
633  // The delegate return type isn't necessarily a matching type; in
634  // fact, it's quite likely to be 'id'.
635  llvm::Type *selfTy = selfAddr.getElementType();
636  newSelf = Builder.CreateBitCast(newSelf, selfTy);
637 
638  Builder.CreateStore(newSelf, selfAddr);
639  }
640 
641  return AdjustObjCObjectType(*this, E->getType(), result);
642 }
643 
644 namespace {
645 struct FinishARCDealloc final : EHScopeStack::Cleanup {
646  void Emit(CodeGenFunction &CGF, Flags flags) override {
647  const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
648 
649  const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
650  const ObjCInterfaceDecl *iface = impl->getClassInterface();
651  if (!iface->getSuperClass()) return;
652 
653  bool isCategory = isa<ObjCCategoryImplDecl>(impl);
654 
655  // Call [super dealloc] if we have a superclass.
656  llvm::Value *self = CGF.LoadObjCSelf();
657 
658  CallArgList args;
660  CGF.getContext().VoidTy,
661  method->getSelector(),
662  iface,
663  isCategory,
664  self,
665  /*is class msg*/ false,
666  args,
667  method);
668  }
669 };
670 }
671 
672 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
673 /// the LLVM function and sets the other context used by
674 /// CodeGenFunction.
676  const ObjCContainerDecl *CD) {
677  SourceLocation StartLoc = OMD->getBeginLoc();
678  FunctionArgList args;
679  // Check if we should generate debug info for this method.
680  if (OMD->hasAttr<NoDebugAttr>())
681  DebugInfo = nullptr; // disable debug info indefinitely for this function
682 
683  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
684 
686  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
687 
688  args.push_back(OMD->getSelfDecl());
689  args.push_back(OMD->getCmdDecl());
690 
691  args.append(OMD->param_begin(), OMD->param_end());
692 
693  CurGD = OMD;
694  CurEHLocation = OMD->getEndLoc();
695 
696  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
697  OMD->getLocation(), StartLoc);
698 
699  // In ARC, certain methods get an extra cleanup.
700  if (CGM.getLangOpts().ObjCAutoRefCount &&
701  OMD->isInstanceMethod() &&
702  OMD->getSelector().isUnarySelector()) {
703  const IdentifierInfo *ident =
705  if (ident->isStr("dealloc"))
706  EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
707  }
708 }
709 
711  LValue lvalue, QualType type);
712 
713 /// Generate an Objective-C method. An Objective-C method is a C function with
714 /// its pointer, name, and types registered in the class structure.
716  StartObjCMethod(OMD, OMD->getClassInterface());
717  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
718  assert(isa<CompoundStmt>(OMD->getBody()));
720  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
722 }
723 
724 /// emitStructGetterCall - Call the runtime function to load a property
725 /// into the return value slot.
727  bool isAtomic, bool hasStrong) {
728  ASTContext &Context = CGF.getContext();
729 
730  Address src =
731  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
732  .getAddress();
733 
734  // objc_copyStruct (ReturnValue, &structIvar,
735  // sizeof (Type of Ivar), isAtomic, false);
736  CallArgList args;
737 
738  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
739  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
740 
741  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
742  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
743 
744  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
745  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
746  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
747  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
748 
749  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
750  CGCallee callee = CGCallee::forDirect(fn);
751  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
752  callee, ReturnValueSlot(), args);
753 }
754 
755 /// Determine whether the given architecture supports unaligned atomic
756 /// accesses. They don't have to be fast, just faster than a function
757 /// call and a mutex.
758 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
759  // FIXME: Allow unaligned atomic load/store on x86. (It is not
760  // currently supported by the backend.)
761  return 0;
762 }
763 
764 /// Return the maximum size that permits atomic accesses for the given
765 /// architecture.
767  llvm::Triple::ArchType arch) {
768  // ARM has 8-byte atomic accesses, but it's not clear whether we
769  // want to rely on them here.
770 
771  // In the default case, just assume that any size up to a pointer is
772  // fine given adequate alignment.
774 }
775 
776 namespace {
777  class PropertyImplStrategy {
778  public:
779  enum StrategyKind {
780  /// The 'native' strategy is to use the architecture's provided
781  /// reads and writes.
782  Native,
783 
784  /// Use objc_setProperty and objc_getProperty.
785  GetSetProperty,
786 
787  /// Use objc_setProperty for the setter, but use expression
788  /// evaluation for the getter.
789  SetPropertyAndExpressionGet,
790 
791  /// Use objc_copyStruct.
792  CopyStruct,
793 
794  /// The 'expression' strategy is to emit normal assignment or
795  /// lvalue-to-rvalue expressions.
796  Expression
797  };
798 
799  StrategyKind getKind() const { return StrategyKind(Kind); }
800 
801  bool hasStrongMember() const { return HasStrong; }
802  bool isAtomic() const { return IsAtomic; }
803  bool isCopy() const { return IsCopy; }
804 
805  CharUnits getIvarSize() const { return IvarSize; }
806  CharUnits getIvarAlignment() const { return IvarAlignment; }
807 
808  PropertyImplStrategy(CodeGenModule &CGM,
809  const ObjCPropertyImplDecl *propImpl);
810 
811  private:
812  unsigned Kind : 8;
813  unsigned IsAtomic : 1;
814  unsigned IsCopy : 1;
815  unsigned HasStrong : 1;
816 
817  CharUnits IvarSize;
818  CharUnits IvarAlignment;
819  };
820 }
821 
822 /// Pick an implementation strategy for the given property synthesis.
823 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
824  const ObjCPropertyImplDecl *propImpl) {
825  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
826  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
827 
828  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
829  IsAtomic = prop->isAtomic();
830  HasStrong = false; // doesn't matter here.
831 
832  // Evaluate the ivar's size and alignment.
833  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
834  QualType ivarType = ivar->getType();
835  std::tie(IvarSize, IvarAlignment) =
836  CGM.getContext().getTypeInfoInChars(ivarType);
837 
838  // If we have a copy property, we always have to use getProperty/setProperty.
839  // TODO: we could actually use setProperty and an expression for non-atomics.
840  if (IsCopy) {
841  Kind = GetSetProperty;
842  return;
843  }
844 
845  // Handle retain.
846  if (setterKind == ObjCPropertyDecl::Retain) {
847  // In GC-only, there's nothing special that needs to be done.
848  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
849  // fallthrough
850 
851  // In ARC, if the property is non-atomic, use expression emission,
852  // which translates to objc_storeStrong. This isn't required, but
853  // it's slightly nicer.
854  } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
855  // Using standard expression emission for the setter is only
856  // acceptable if the ivar is __strong, which won't be true if
857  // the property is annotated with __attribute__((NSObject)).
858  // TODO: falling all the way back to objc_setProperty here is
859  // just laziness, though; we could still use objc_storeStrong
860  // if we hacked it right.
861  if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
862  Kind = Expression;
863  else
864  Kind = SetPropertyAndExpressionGet;
865  return;
866 
867  // Otherwise, we need to at least use setProperty. However, if
868  // the property isn't atomic, we can use normal expression
869  // emission for the getter.
870  } else if (!IsAtomic) {
871  Kind = SetPropertyAndExpressionGet;
872  return;
873 
874  // Otherwise, we have to use both setProperty and getProperty.
875  } else {
876  Kind = GetSetProperty;
877  return;
878  }
879  }
880 
881  // If we're not atomic, just use expression accesses.
882  if (!IsAtomic) {
883  Kind = Expression;
884  return;
885  }
886 
887  // Properties on bitfield ivars need to be emitted using expression
888  // accesses even if they're nominally atomic.
889  if (ivar->isBitField()) {
890  Kind = Expression;
891  return;
892  }
893 
894  // GC-qualified or ARC-qualified ivars need to be emitted as
895  // expressions. This actually works out to being atomic anyway,
896  // except for ARC __strong, but that should trigger the above code.
897  if (ivarType.hasNonTrivialObjCLifetime() ||
898  (CGM.getLangOpts().getGC() &&
899  CGM.getContext().getObjCGCAttrKind(ivarType))) {
900  Kind = Expression;
901  return;
902  }
903 
904  // Compute whether the ivar has strong members.
905  if (CGM.getLangOpts().getGC())
906  if (const RecordType *recordType = ivarType->getAs<RecordType>())
907  HasStrong = recordType->getDecl()->hasObjectMember();
908 
909  // We can never access structs with object members with a native
910  // access, because we need to use write barriers. This is what
911  // objc_copyStruct is for.
912  if (HasStrong) {
913  Kind = CopyStruct;
914  return;
915  }
916 
917  // Otherwise, this is target-dependent and based on the size and
918  // alignment of the ivar.
919 
920  // If the size of the ivar is not a power of two, give up. We don't
921  // want to get into the business of doing compare-and-swaps.
922  if (!IvarSize.isPowerOfTwo()) {
923  Kind = CopyStruct;
924  return;
925  }
926 
927  llvm::Triple::ArchType arch =
928  CGM.getTarget().getTriple().getArch();
929 
930  // Most architectures require memory to fit within a single cache
931  // line, so the alignment has to be at least the size of the access.
932  // Otherwise we have to grab a lock.
933  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
934  Kind = CopyStruct;
935  return;
936  }
937 
938  // If the ivar's size exceeds the architecture's maximum atomic
939  // access size, we have to use CopyStruct.
940  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
941  Kind = CopyStruct;
942  return;
943  }
944 
945  // Otherwise, we can use native loads and stores.
946  Kind = Native;
947 }
948 
949 /// Generate an Objective-C property getter function.
950 ///
951 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
952 /// is illegal within a category.
954  const ObjCPropertyImplDecl *PID) {
955  llvm::Constant *AtomicHelperFn =
957  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
958  ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
959  assert(OMD && "Invalid call to generate getter (empty method)");
960  StartObjCMethod(OMD, IMP->getClassInterface());
961 
962  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
963 
964  FinishFunction();
965 }
966 
967 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
968  const Expr *getter = propImpl->getGetterCXXConstructor();
969  if (!getter) return true;
970 
971  // Sema only makes only of these when the ivar has a C++ class type,
972  // so the form is pretty constrained.
973 
974  // If the property has a reference type, we might just be binding a
975  // reference, in which case the result will be a gl-value. We should
976  // treat this as a non-trivial operation.
977  if (getter->isGLValue())
978  return false;
979 
980  // If we selected a trivial copy-constructor, we're okay.
981  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
982  return (construct->getConstructor()->isTrivial());
983 
984  // The constructor might require cleanups (in which case it's never
985  // trivial).
986  assert(isa<ExprWithCleanups>(getter));
987  return false;
988 }
989 
990 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
991 /// copy the ivar into the resturn slot.
993  llvm::Value *returnAddr,
994  ObjCIvarDecl *ivar,
995  llvm::Constant *AtomicHelperFn) {
996  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
997  // AtomicHelperFn);
998  CallArgList args;
999 
1000  // The 1st argument is the return Slot.
1001  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1002 
1003  // The 2nd argument is the address of the ivar.
1004  llvm::Value *ivarAddr =
1006  CGF.LoadObjCSelf(), ivar, 0).getPointer();
1007  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1008  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1009 
1010  // Third argument is the helper function.
1011  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1012 
1013  llvm::FunctionCallee copyCppAtomicObjectFn =
1015  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1016  CGF.EmitCall(
1018  callee, ReturnValueSlot(), args);
1019 }
1020 
1021 void
1023  const ObjCPropertyImplDecl *propImpl,
1024  const ObjCMethodDecl *GetterMethodDecl,
1025  llvm::Constant *AtomicHelperFn) {
1026  // If there's a non-trivial 'get' expression, we just have to emit that.
1027  if (!hasTrivialGetExpr(propImpl)) {
1028  if (!AtomicHelperFn) {
1029  auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1030  propImpl->getGetterCXXConstructor(),
1031  /* NRVOCandidate=*/nullptr);
1032  EmitReturnStmt(*ret);
1033  }
1034  else {
1035  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1037  ivar, AtomicHelperFn);
1038  }
1039  return;
1040  }
1041 
1042  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1043  QualType propType = prop->getType();
1044  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
1045 
1046  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1047 
1048  // Pick an implementation strategy.
1049  PropertyImplStrategy strategy(CGM, propImpl);
1050  switch (strategy.getKind()) {
1051  case PropertyImplStrategy::Native: {
1052  // We don't need to do anything for a zero-size struct.
1053  if (strategy.getIvarSize().isZero())
1054  return;
1055 
1057 
1058  // Currently, all atomic accesses have to be through integer
1059  // types, so there's no point in trying to pick a prettier type.
1060  uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1061  llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1062  bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1063 
1064  // Perform an atomic load. This does not impose ordering constraints.
1065  Address ivarAddr = LV.getAddress();
1066  ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1067  llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1068  load->setAtomic(llvm::AtomicOrdering::Unordered);
1069 
1070  // Store that value into the return address. Doing this with a
1071  // bitcast is likely to produce some pretty ugly IR, but it's not
1072  // the *most* terrible thing in the world.
1073  llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1074  uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1075  llvm::Value *ivarVal = load;
1076  if (ivarSize > retTySize) {
1077  llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1078  ivarVal = Builder.CreateTrunc(load, newTy);
1079  bitcastType = newTy->getPointerTo();
1080  }
1081  Builder.CreateStore(ivarVal,
1082  Builder.CreateBitCast(ReturnValue, bitcastType));
1083 
1084  // Make sure we don't do an autorelease.
1085  AutoreleaseResult = false;
1086  return;
1087  }
1088 
1089  case PropertyImplStrategy::GetSetProperty: {
1090  llvm::FunctionCallee getPropertyFn =
1092  if (!getPropertyFn) {
1093  CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1094  return;
1095  }
1096  CGCallee callee = CGCallee::forDirect(getPropertyFn);
1097 
1098  // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1099  // FIXME: Can't this be simpler? This might even be worse than the
1100  // corresponding gcc code.
1101  llvm::Value *cmd =
1102  Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1104  llvm::Value *ivarOffset =
1105  EmitIvarOffset(classImpl->getClassInterface(), ivar);
1106 
1107  CallArgList args;
1108  args.add(RValue::get(self), getContext().getObjCIdType());
1109  args.add(RValue::get(cmd), getContext().getObjCSelType());
1110  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1111  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1112  getContext().BoolTy);
1113 
1114  // FIXME: We shouldn't need to get the function info here, the
1115  // runtime already should have computed it to build the function.
1116  llvm::CallBase *CallInstruction;
1117  RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1118  getContext().getObjCIdType(), args),
1119  callee, ReturnValueSlot(), args, &CallInstruction);
1120  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1121  call->setTailCall();
1122 
1123  // We need to fix the type here. Ivars with copy & retain are
1124  // always objects so we don't need to worry about complex or
1125  // aggregates.
1127  RV.getScalarVal(),
1128  getTypes().ConvertType(getterMethod->getReturnType())));
1129 
1130  EmitReturnOfRValue(RV, propType);
1131 
1132  // objc_getProperty does an autorelease, so we should suppress ours.
1133  AutoreleaseResult = false;
1134 
1135  return;
1136  }
1137 
1138  case PropertyImplStrategy::CopyStruct:
1139  emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1140  strategy.hasStrongMember());
1141  return;
1142 
1143  case PropertyImplStrategy::Expression:
1144  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1146 
1147  QualType ivarType = ivar->getType();
1148  switch (getEvaluationKind(ivarType)) {
1149  case TEK_Complex: {
1152  /*init*/ true);
1153  return;
1154  }
1155  case TEK_Aggregate: {
1156  // The return value slot is guaranteed to not be aliased, but
1157  // that's not necessarily the same as "on the stack", so
1158  // we still potentially need objc_memmove_collectable.
1159  EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1160  /* Src= */ LV, ivarType, getOverlapForReturnValue());
1161  return;
1162  }
1163  case TEK_Scalar: {
1164  llvm::Value *value;
1165  if (propType->isReferenceType()) {
1166  value = LV.getAddress().getPointer();
1167  } else {
1168  // We want to load and autoreleaseReturnValue ARC __weak ivars.
1170  if (getLangOpts().ObjCAutoRefCount) {
1171  value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1172  } else {
1173  value = EmitARCLoadWeak(LV.getAddress());
1174  }
1175 
1176  // Otherwise we want to do a simple load, suppressing the
1177  // final autorelease.
1178  } else {
1179  value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1180  AutoreleaseResult = false;
1181  }
1182 
1183  value = Builder.CreateBitCast(
1184  value, ConvertType(GetterMethodDecl->getReturnType()));
1185  }
1186 
1187  EmitReturnOfRValue(RValue::get(value), propType);
1188  return;
1189  }
1190  }
1191  llvm_unreachable("bad evaluation kind");
1192  }
1193 
1194  }
1195  llvm_unreachable("bad @property implementation strategy!");
1196 }
1197 
1198 /// emitStructSetterCall - Call the runtime function to store the value
1199 /// from the first formal parameter into the given ivar.
1201  ObjCIvarDecl *ivar) {
1202  // objc_copyStruct (&structIvar, &Arg,
1203  // sizeof (struct something), true, false);
1204  CallArgList args;
1205 
1206  // The first argument is the address of the ivar.
1207  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1208  CGF.LoadObjCSelf(), ivar, 0)
1209  .getPointer();
1210  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1211  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1212 
1213  // The second argument is the address of the parameter variable.
1214  ParmVarDecl *argVar = *OMD->param_begin();
1215  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1216  argVar->getType().getNonReferenceType(), VK_LValue,
1217  SourceLocation());
1218  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1219  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1220  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1221 
1222  // The third argument is the sizeof the type.
1223  llvm::Value *size =
1224  CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1225  args.add(RValue::get(size), CGF.getContext().getSizeType());
1226 
1227  // The fourth argument is the 'isAtomic' flag.
1228  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1229 
1230  // The fifth argument is the 'hasStrong' flag.
1231  // FIXME: should this really always be false?
1232  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1233 
1234  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1235  CGCallee callee = CGCallee::forDirect(fn);
1236  CGF.EmitCall(
1238  callee, ReturnValueSlot(), args);
1239 }
1240 
1241 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1242 /// the value from the first formal parameter into the given ivar, using
1243 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1245  ObjCMethodDecl *OMD,
1246  ObjCIvarDecl *ivar,
1247  llvm::Constant *AtomicHelperFn) {
1248  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1249  // AtomicHelperFn);
1250  CallArgList args;
1251 
1252  // The first argument is the address of the ivar.
1253  llvm::Value *ivarAddr =
1255  CGF.LoadObjCSelf(), ivar, 0).getPointer();
1256  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1257  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1258 
1259  // The second argument is the address of the parameter variable.
1260  ParmVarDecl *argVar = *OMD->param_begin();
1261  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1262  argVar->getType().getNonReferenceType(), VK_LValue,
1263  SourceLocation());
1264  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1265  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1266  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1267 
1268  // Third argument is the helper function.
1269  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1270 
1271  llvm::FunctionCallee fn =
1273  CGCallee callee = CGCallee::forDirect(fn);
1274  CGF.EmitCall(
1276  callee, ReturnValueSlot(), args);
1277 }
1278 
1279 
1280 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1281  Expr *setter = PID->getSetterCXXAssignment();
1282  if (!setter) return true;
1283 
1284  // Sema only makes only of these when the ivar has a C++ class type,
1285  // so the form is pretty constrained.
1286 
1287  // An operator call is trivial if the function it calls is trivial.
1288  // This also implies that there's nothing non-trivial going on with
1289  // the arguments, because operator= can only be trivial if it's a
1290  // synthesized assignment operator and therefore both parameters are
1291  // references.
1292  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1293  if (const FunctionDecl *callee
1294  = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1295  if (callee->isTrivial())
1296  return true;
1297  return false;
1298  }
1299 
1300  assert(isa<ExprWithCleanups>(setter));
1301  return false;
1302 }
1303 
1305  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1306  return false;
1308 }
1309 
1310 void
1312  const ObjCPropertyImplDecl *propImpl,
1313  llvm::Constant *AtomicHelperFn) {
1314  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1315  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1316  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1317 
1318  // Just use the setter expression if Sema gave us one and it's
1319  // non-trivial.
1320  if (!hasTrivialSetExpr(propImpl)) {
1321  if (!AtomicHelperFn)
1322  // If non-atomic, assignment is called directly.
1323  EmitStmt(propImpl->getSetterCXXAssignment());
1324  else
1325  // If atomic, assignment is called via a locking api.
1326  emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1327  AtomicHelperFn);
1328  return;
1329  }
1330 
1331  PropertyImplStrategy strategy(CGM, propImpl);
1332  switch (strategy.getKind()) {
1333  case PropertyImplStrategy::Native: {
1334  // We don't need to do anything for a zero-size struct.
1335  if (strategy.getIvarSize().isZero())
1336  return;
1337 
1338  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1339 
1340  LValue ivarLValue =
1341  EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1342  Address ivarAddr = ivarLValue.getAddress();
1343 
1344  // Currently, all atomic accesses have to be through integer
1345  // types, so there's no point in trying to pick a prettier type.
1346  llvm::Type *bitcastType =
1347  llvm::Type::getIntNTy(getLLVMContext(),
1348  getContext().toBits(strategy.getIvarSize()));
1349 
1350  // Cast both arguments to the chosen operation type.
1351  argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1352  ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1353 
1354  // This bitcast load is likely to cause some nasty IR.
1355  llvm::Value *load = Builder.CreateLoad(argAddr);
1356 
1357  // Perform an atomic store. There are no memory ordering requirements.
1358  llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1359  store->setAtomic(llvm::AtomicOrdering::Unordered);
1360  return;
1361  }
1362 
1363  case PropertyImplStrategy::GetSetProperty:
1364  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1365 
1366  llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1367  llvm::FunctionCallee setPropertyFn = nullptr;
1368  if (UseOptimizedSetter(CGM)) {
1369  // 10.8 and iOS 6.0 code and GC is off
1370  setOptimizedPropertyFn =
1372  strategy.isAtomic(), strategy.isCopy());
1373  if (!setOptimizedPropertyFn) {
1374  CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1375  return;
1376  }
1377  }
1378  else {
1379  setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1380  if (!setPropertyFn) {
1381  CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1382  return;
1383  }
1384  }
1385 
1386  // Emit objc_setProperty((id) self, _cmd, offset, arg,
1387  // <is-atomic>, <is-copy>).
1388  llvm::Value *cmd =
1389  Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1390  llvm::Value *self =
1392  llvm::Value *ivarOffset =
1393  EmitIvarOffset(classImpl->getClassInterface(), ivar);
1394  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1395  llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1396  arg = Builder.CreateBitCast(arg, VoidPtrTy);
1397 
1398  CallArgList args;
1399  args.add(RValue::get(self), getContext().getObjCIdType());
1400  args.add(RValue::get(cmd), getContext().getObjCSelType());
1401  if (setOptimizedPropertyFn) {
1402  args.add(RValue::get(arg), getContext().getObjCIdType());
1403  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1404  CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1405  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1406  callee, ReturnValueSlot(), args);
1407  } else {
1408  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1409  args.add(RValue::get(arg), getContext().getObjCIdType());
1410  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1411  getContext().BoolTy);
1412  args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1413  getContext().BoolTy);
1414  // FIXME: We shouldn't need to get the function info here, the runtime
1415  // already should have computed it to build the function.
1416  CGCallee callee = CGCallee::forDirect(setPropertyFn);
1417  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1418  callee, ReturnValueSlot(), args);
1419  }
1420 
1421  return;
1422  }
1423 
1424  case PropertyImplStrategy::CopyStruct:
1425  emitStructSetterCall(*this, setterMethod, ivar);
1426  return;
1427 
1428  case PropertyImplStrategy::Expression:
1429  break;
1430  }
1431 
1432  // Otherwise, fake up some ASTs and emit a normal assignment.
1433  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1434  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1437  selfDecl->getType(), CK_LValueToRValue, &self,
1438  VK_RValue);
1439  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1441  &selfLoad, true, true);
1442 
1443  ParmVarDecl *argDecl = *setterMethod->param_begin();
1444  QualType argType = argDecl->getType().getNonReferenceType();
1445  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1446  SourceLocation());
1448  argType.getUnqualifiedType(), CK_LValueToRValue,
1449  &arg, VK_RValue);
1450 
1451  // The property type can differ from the ivar type in some situations with
1452  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1453  // The following absurdity is just to ensure well-formed IR.
1454  CastKind argCK = CK_NoOp;
1455  if (ivarRef.getType()->isObjCObjectPointerType()) {
1456  if (argLoad.getType()->isObjCObjectPointerType())
1457  argCK = CK_BitCast;
1458  else if (argLoad.getType()->isBlockPointerType())
1459  argCK = CK_BlockPointerToObjCPointerCast;
1460  else
1461  argCK = CK_CPointerToObjCPointerCast;
1462  } else if (ivarRef.getType()->isBlockPointerType()) {
1463  if (argLoad.getType()->isBlockPointerType())
1464  argCK = CK_BitCast;
1465  else
1466  argCK = CK_AnyPointerToBlockPointerCast;
1467  } else if (ivarRef.getType()->isPointerType()) {
1468  argCK = CK_BitCast;
1469  }
1471  ivarRef.getType(), argCK, &argLoad,
1472  VK_RValue);
1473  Expr *finalArg = &argLoad;
1474  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1475  argLoad.getType()))
1476  finalArg = &argCast;
1477 
1478 
1479  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1480  ivarRef.getType(), VK_RValue, OK_Ordinary,
1481  SourceLocation(), FPOptions());
1482  EmitStmt(&assign);
1483 }
1484 
1485 /// Generate an Objective-C property setter function.
1486 ///
1487 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1488 /// is illegal within a category.
1490  const ObjCPropertyImplDecl *PID) {
1491  llvm::Constant *AtomicHelperFn =
1493  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1494  ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1495  assert(OMD && "Invalid call to generate setter (empty method)");
1496  StartObjCMethod(OMD, IMP->getClassInterface());
1497 
1498  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1499 
1500  FinishFunction();
1501 }
1502 
1503 namespace {
1504  struct DestroyIvar final : EHScopeStack::Cleanup {
1505  private:
1506  llvm::Value *addr;
1507  const ObjCIvarDecl *ivar;
1508  CodeGenFunction::Destroyer *destroyer;
1509  bool useEHCleanupForArray;
1510  public:
1511  DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1512  CodeGenFunction::Destroyer *destroyer,
1513  bool useEHCleanupForArray)
1514  : addr(addr), ivar(ivar), destroyer(destroyer),
1515  useEHCleanupForArray(useEHCleanupForArray) {}
1516 
1517  void Emit(CodeGenFunction &CGF, Flags flags) override {
1518  LValue lvalue
1519  = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1520  CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1521  flags.isForNormalCleanup() && useEHCleanupForArray);
1522  }
1523  };
1524 }
1525 
1526 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1528  Address addr,
1529  QualType type) {
1530  llvm::Value *null = getNullForVariable(addr);
1531  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1532 }
1533 
1535  ObjCImplementationDecl *impl) {
1537 
1538  llvm::Value *self = CGF.LoadObjCSelf();
1539 
1540  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1541  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1542  ivar; ivar = ivar->getNextIvar()) {
1543  QualType type = ivar->getType();
1544 
1545  // Check whether the ivar is a destructible type.
1546  QualType::DestructionKind dtorKind = type.isDestructedType();
1547  if (!dtorKind) continue;
1548 
1549  CodeGenFunction::Destroyer *destroyer = nullptr;
1550 
1551  // Use a call to objc_storeStrong to destroy strong ivars, for the
1552  // general benefit of the tools.
1553  if (dtorKind == QualType::DK_objc_strong_lifetime) {
1554  destroyer = destroyARCStrongWithStore;
1555 
1556  // Otherwise use the default for the destruction kind.
1557  } else {
1558  destroyer = CGF.getDestroyer(dtorKind);
1559  }
1560 
1561  CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1562 
1563  CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1564  cleanupKind & EHCleanup);
1565  }
1566 
1567  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1568 }
1569 
1571  ObjCMethodDecl *MD,
1572  bool ctor) {
1574  StartObjCMethod(MD, IMP->getClassInterface());
1575 
1576  // Emit .cxx_construct.
1577  if (ctor) {
1578  // Suppress the final autorelease in ARC.
1579  AutoreleaseResult = false;
1580 
1581  for (const auto *IvarInit : IMP->inits()) {
1582  FieldDecl *Field = IvarInit->getAnyMember();
1583  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1585  LoadObjCSelf(), Ivar, 0);
1586  EmitAggExpr(IvarInit->getInit(),
1591  }
1592  // constructor returns 'self'.
1593  CodeGenTypes &Types = CGM.getTypes();
1594  QualType IdTy(CGM.getContext().getObjCIdType());
1595  llvm::Value *SelfAsId =
1596  Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1597  EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1598 
1599  // Emit .cxx_destruct.
1600  } else {
1601  emitCXXDestructMethod(*this, IMP);
1602  }
1603  FinishFunction();
1604 }
1605 
1607  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1608  DeclRefExpr DRE(getContext(), Self,
1609  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1610  Self->getType(), VK_LValue, SourceLocation());
1612 }
1613 
1615  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1616  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1617  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1618  getContext().getCanonicalType(selfDecl->getType()));
1619  return PTy->getPointeeType();
1620 }
1621 
1623  llvm::FunctionCallee EnumerationMutationFnPtr =
1625  if (!EnumerationMutationFnPtr) {
1626  CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1627  return;
1628  }
1629  CGCallee EnumerationMutationFn =
1630  CGCallee::forDirect(EnumerationMutationFnPtr);
1631 
1632  CGDebugInfo *DI = getDebugInfo();
1633  if (DI)
1635 
1636  RunCleanupsScope ForScope(*this);
1637 
1638  // The local variable comes into scope immediately.
1640  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1641  variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1642 
1643  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1644 
1645  // Fast enumeration state.
1646  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1647  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1648  EmitNullInitialization(StatePtr, StateTy);
1649 
1650  // Number of elements in the items array.
1651  static const unsigned NumItems = 16;
1652 
1653  // Fetch the countByEnumeratingWithState:objects:count: selector.
1654  IdentifierInfo *II[] = {
1655  &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1656  &CGM.getContext().Idents.get("objects"),
1657  &CGM.getContext().Idents.get("count")
1658  };
1659  Selector FastEnumSel =
1660  CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1661 
1662  QualType ItemsTy =
1663  getContext().getConstantArrayType(getContext().getObjCIdType(),
1664  llvm::APInt(32, NumItems),
1665  ArrayType::Normal, 0);
1666  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1667 
1668  // Emit the collection pointer. In ARC, we do a retain.
1669  llvm::Value *Collection;
1670  if (getLangOpts().ObjCAutoRefCount) {
1671  Collection = EmitARCRetainScalarExpr(S.getCollection());
1672 
1673  // Enter a cleanup to do the release.
1674  EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1675  } else {
1676  Collection = EmitScalarExpr(S.getCollection());
1677  }
1678 
1679  // The 'continue' label needs to appear within the cleanup for the
1680  // collection object.
1681  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1682 
1683  // Send it our message:
1684  CallArgList Args;
1685 
1686  // The first argument is a temporary of the enumeration-state type.
1687  Args.add(RValue::get(StatePtr.getPointer()),
1688  getContext().getPointerType(StateTy));
1689 
1690  // The second argument is a temporary array with space for NumItems
1691  // pointers. We'll actually be loading elements from the array
1692  // pointer written into the control state; this buffer is so that
1693  // collections that *aren't* backed by arrays can still queue up
1694  // batches of elements.
1695  Args.add(RValue::get(ItemsPtr.getPointer()),
1696  getContext().getPointerType(ItemsTy));
1697 
1698  // The third argument is the capacity of that temporary array.
1699  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1700  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1701  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1702 
1703  // Start the enumeration.
1704  RValue CountRV =
1706  getContext().getNSUIntegerType(),
1707  FastEnumSel, Collection, Args);
1708 
1709  // The initial number of objects that were returned in the buffer.
1710  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1711 
1712  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1713  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1714 
1715  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1716 
1717  // If the limit pointer was zero to begin with, the collection is
1718  // empty; skip all this. Set the branch weight assuming this has the same
1719  // probability of exiting the loop as any other loop exit.
1720  uint64_t EntryCount = getCurrentProfileCount();
1721  Builder.CreateCondBr(
1722  Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1723  LoopInitBB,
1724  createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1725 
1726  // Otherwise, initialize the loop.
1727  EmitBlock(LoopInitBB);
1728 
1729  // Save the initial mutations value. This is the value at an
1730  // address that was written into the state object by
1731  // countByEnumeratingWithState:objects:count:.
1732  Address StateMutationsPtrPtr =
1733  Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1734  llvm::Value *StateMutationsPtr
1735  = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1736 
1737  llvm::Value *initialMutations =
1738  Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1739  "forcoll.initial-mutations");
1740 
1741  // Start looping. This is the point we return to whenever we have a
1742  // fresh, non-empty batch of objects.
1743  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1744  EmitBlock(LoopBodyBB);
1745 
1746  // The current index into the buffer.
1747  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1748  index->addIncoming(zero, LoopInitBB);
1749 
1750  // The current buffer size.
1751  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1752  count->addIncoming(initialBufferLimit, LoopInitBB);
1753 
1755 
1756  // Check whether the mutations value has changed from where it was
1757  // at start. StateMutationsPtr should actually be invariant between
1758  // refreshes.
1759  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1760  llvm::Value *currentMutations
1761  = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1762  "statemutations");
1763 
1764  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1765  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1766 
1767  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1768  WasNotMutatedBB, WasMutatedBB);
1769 
1770  // If so, call the enumeration-mutation function.
1771  EmitBlock(WasMutatedBB);
1772  llvm::Value *V =
1773  Builder.CreateBitCast(Collection,
1774  ConvertType(getContext().getObjCIdType()));
1775  CallArgList Args2;
1776  Args2.add(RValue::get(V), getContext().getObjCIdType());
1777  // FIXME: We shouldn't need to get the function info here, the runtime already
1778  // should have computed it to build the function.
1779  EmitCall(
1781  EnumerationMutationFn, ReturnValueSlot(), Args2);
1782 
1783  // Otherwise, or if the mutation function returns, just continue.
1784  EmitBlock(WasNotMutatedBB);
1785 
1786  // Initialize the element variable.
1787  RunCleanupsScope elementVariableScope(*this);
1788  bool elementIsVariable;
1789  LValue elementLValue;
1790  QualType elementType;
1791  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1792  // Initialize the variable, in case it's a __block variable or something.
1793  EmitAutoVarInit(variable);
1794 
1795  const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1796  DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1797  D->getType(), VK_LValue, SourceLocation());
1798  elementLValue = EmitLValue(&tempDRE);
1799  elementType = D->getType();
1800  elementIsVariable = true;
1801 
1802  if (D->isARCPseudoStrong())
1803  elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1804  } else {
1805  elementLValue = LValue(); // suppress warning
1806  elementType = cast<Expr>(S.getElement())->getType();
1807  elementIsVariable = false;
1808  }
1809  llvm::Type *convertedElementType = ConvertType(elementType);
1810 
1811  // Fetch the buffer out of the enumeration state.
1812  // TODO: this pointer should actually be invariant between
1813  // refreshes, which would help us do certain loop optimizations.
1814  Address StateItemsPtr =
1815  Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1816  llvm::Value *EnumStateItems =
1817  Builder.CreateLoad(StateItemsPtr, "stateitems");
1818 
1819  // Fetch the value at the current index from the buffer.
1820  llvm::Value *CurrentItemPtr =
1821  Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1822  llvm::Value *CurrentItem =
1823  Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1824 
1825  // Cast that value to the right type.
1826  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1827  "currentitem");
1828 
1829  // Make sure we have an l-value. Yes, this gets evaluated every
1830  // time through the loop.
1831  if (!elementIsVariable) {
1832  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1833  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1834  } else {
1835  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1836  /*isInit*/ true);
1837  }
1838 
1839  // If we do have an element variable, this assignment is the end of
1840  // its initialization.
1841  if (elementIsVariable)
1842  EmitAutoVarCleanups(variable);
1843 
1844  // Perform the loop body, setting up break and continue labels.
1845  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1846  {
1847  RunCleanupsScope Scope(*this);
1848  EmitStmt(S.getBody());
1849  }
1850  BreakContinueStack.pop_back();
1851 
1852  // Destroy the element variable now.
1853  elementVariableScope.ForceCleanup();
1854 
1855  // Check whether there are more elements.
1856  EmitBlock(AfterBody.getBlock());
1857 
1858  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1859 
1860  // First we check in the local buffer.
1861  llvm::Value *indexPlusOne =
1862  Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1863 
1864  // If we haven't overrun the buffer yet, we can continue.
1865  // Set the branch weights based on the simplifying assumption that this is
1866  // like a while-loop, i.e., ignoring that the false branch fetches more
1867  // elements and then returns to the loop.
1868  Builder.CreateCondBr(
1869  Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1870  createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1871 
1872  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1873  count->addIncoming(count, AfterBody.getBlock());
1874 
1875  // Otherwise, we have to fetch more elements.
1876  EmitBlock(FetchMoreBB);
1877 
1878  CountRV =
1880  getContext().getNSUIntegerType(),
1881  FastEnumSel, Collection, Args);
1882 
1883  // If we got a zero count, we're done.
1884  llvm::Value *refetchCount = CountRV.getScalarVal();
1885 
1886  // (note that the message send might split FetchMoreBB)
1887  index->addIncoming(zero, Builder.GetInsertBlock());
1888  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1889 
1890  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1891  EmptyBB, LoopBodyBB);
1892 
1893  // No more elements.
1894  EmitBlock(EmptyBB);
1895 
1896  if (!elementIsVariable) {
1897  // If the element was not a declaration, set it to be null.
1898 
1899  llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1900  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1901  EmitStoreThroughLValue(RValue::get(null), elementLValue);
1902  }
1903 
1904  if (DI)
1906 
1907  ForScope.ForceCleanup();
1908  EmitBlock(LoopEnd.getBlock());
1909 }
1910 
1912  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1913 }
1914 
1916  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1917 }
1918 
1920  const ObjCAtSynchronizedStmt &S) {
1921  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1922 }
1923 
1924 namespace {
1925  struct CallObjCRelease final : EHScopeStack::Cleanup {
1926  CallObjCRelease(llvm::Value *object) : object(object) {}
1927  llvm::Value *object;
1928 
1929  void Emit(CodeGenFunction &CGF, Flags flags) override {
1930  // Releases at the end of the full-expression are imprecise.
1931  CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1932  }
1933  };
1934 }
1935 
1936 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1937 /// release at the end of the full-expression.
1939  llvm::Value *object) {
1940  // If we're in a conditional branch, we need to make the cleanup
1941  // conditional.
1942  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1943  return object;
1944 }
1945 
1947  llvm::Value *value) {
1948  return EmitARCRetainAutorelease(type, value);
1949 }
1950 
1951 /// Given a number of pointers, inform the optimizer that they're
1952 /// being intrinsically used up until this point in the program.
1954  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1955  if (!fn)
1956  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1957 
1958  // This isn't really a "runtime" function, but as an intrinsic it
1959  // doesn't really matter as long as we align things up.
1960  EmitNounwindRuntimeCall(fn, values);
1961 }
1962 
1964  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1965  // If the target runtime doesn't naturally support ARC, emit weak
1966  // references to the runtime support library. We don't really
1967  // permit this to fail, but we need a particular relocation style.
1968  if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1969  !CGM.getTriple().isOSBinFormatCOFF()) {
1970  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1971  }
1972  }
1973 }
1974 
1976  llvm::FunctionCallee RTF) {
1977  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1978 }
1979 
1980 /// Perform an operation having the signature
1981 /// i8* (i8*)
1982 /// where a null input causes a no-op and returns null.
1984  CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
1985  llvm::Function *&fn, llvm::Intrinsic::ID IntID,
1986  llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
1987  if (isa<llvm::ConstantPointerNull>(value))
1988  return value;
1989 
1990  if (!fn) {
1991  fn = CGF.CGM.getIntrinsic(IntID);
1993  }
1994 
1995  // Cast the argument to 'id'.
1996  llvm::Type *origType = returnType ? returnType : value->getType();
1997  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1998 
1999  // Call the function.
2000  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2001  call->setTailCallKind(tailKind);
2002 
2003  // Cast the result back to the original type.
2004  return CGF.Builder.CreateBitCast(call, origType);
2005 }
2006 
2007 /// Perform an operation having the following signature:
2008 /// i8* (i8**)
2010  llvm::Function *&fn,
2011  llvm::Intrinsic::ID IntID) {
2012  if (!fn) {
2013  fn = CGF.CGM.getIntrinsic(IntID);
2015  }
2016 
2017  // Cast the argument to 'id*'.
2018  llvm::Type *origType = addr.getElementType();
2019  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2020 
2021  // Call the function.
2022  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2023 
2024  // Cast the result back to a dereference of the original type.
2025  if (origType != CGF.Int8PtrTy)
2026  result = CGF.Builder.CreateBitCast(result, origType);
2027 
2028  return result;
2029 }
2030 
2031 /// Perform an operation having the following signature:
2032 /// i8* (i8**, i8*)
2034  llvm::Value *value,
2035  llvm::Function *&fn,
2036  llvm::Intrinsic::ID IntID,
2037  bool ignored) {
2038  assert(addr.getElementType() == value->getType());
2039 
2040  if (!fn) {
2041  fn = CGF.CGM.getIntrinsic(IntID);
2043  }
2044 
2045  llvm::Type *origType = value->getType();
2046 
2047  llvm::Value *args[] = {
2048  CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2049  CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2050  };
2051  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2052 
2053  if (ignored) return nullptr;
2054 
2055  return CGF.Builder.CreateBitCast(result, origType);
2056 }
2057 
2058 /// Perform an operation having the following signature:
2059 /// void (i8**, i8**)
2061  llvm::Function *&fn,
2062  llvm::Intrinsic::ID IntID) {
2063  assert(dst.getType() == src.getType());
2064 
2065  if (!fn) {
2066  fn = CGF.CGM.getIntrinsic(IntID);
2068  }
2069 
2070  llvm::Value *args[] = {
2071  CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2073  };
2074  CGF.EmitNounwindRuntimeCall(fn, args);
2075 }
2076 
2077 /// Perform an operation having the signature
2078 /// i8* (i8*)
2079 /// where a null input causes a no-op and returns null.
2081  llvm::Value *value,
2082  llvm::Type *returnType,
2083  llvm::FunctionCallee &fn,
2084  StringRef fnName) {
2085  if (isa<llvm::ConstantPointerNull>(value))
2086  return value;
2087 
2088  if (!fn) {
2089  llvm::FunctionType *fnType =
2090  llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2091  fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2092 
2093  // We have Native ARC, so set nonlazybind attribute for performance
2094  if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2095  if (fnName == "objc_retain")
2096  f->addFnAttr(llvm::Attribute::NonLazyBind);
2097  }
2098 
2099  // Cast the argument to 'id'.
2100  llvm::Type *origType = returnType ? returnType : value->getType();
2101  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2102 
2103  // Call the function.
2104  llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2105 
2106  // Cast the result back to the original type.
2107  return CGF.Builder.CreateBitCast(Inst, origType);
2108 }
2109 
2110 /// Produce the code to do a retain. Based on the type, calls one of:
2111 /// call i8* \@objc_retain(i8* %value)
2112 /// call i8* \@objc_retainBlock(i8* %value)
2114  if (type->isBlockPointerType())
2115  return EmitARCRetainBlock(value, /*mandatory*/ false);
2116  else
2117  return EmitARCRetainNonBlock(value);
2118 }
2119 
2120 /// Retain the given object, with normal retain semantics.
2121 /// call i8* \@objc_retain(i8* %value)
2123  return emitARCValueOperation(*this, value, nullptr,
2125  llvm::Intrinsic::objc_retain);
2126 }
2127 
2128 /// Retain the given block, with _Block_copy semantics.
2129 /// call i8* \@objc_retainBlock(i8* %value)
2130 ///
2131 /// \param mandatory - If false, emit the call with metadata
2132 /// indicating that it's okay for the optimizer to eliminate this call
2133 /// if it can prove that the block never escapes except down the stack.
2135  bool mandatory) {
2136  llvm::Value *result
2137  = emitARCValueOperation(*this, value, nullptr,
2139  llvm::Intrinsic::objc_retainBlock);
2140 
2141  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2142  // tell the optimizer that it doesn't need to do this copy if the
2143  // block doesn't escape, where being passed as an argument doesn't
2144  // count as escaping.
2145  if (!mandatory && isa<llvm::Instruction>(result)) {
2146  llvm::CallInst *call
2147  = cast<llvm::CallInst>(result->stripPointerCasts());
2148  assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2149 
2150  call->setMetadata("clang.arc.copy_on_escape",
2151  llvm::MDNode::get(Builder.getContext(), None));
2152  }
2153 
2154  return result;
2155 }
2156 
2158  // Fetch the void(void) inline asm which marks that we're going to
2159  // do something with the autoreleased return value.
2160  llvm::InlineAsm *&marker
2162  if (!marker) {
2163  StringRef assembly
2164  = CGF.CGM.getTargetCodeGenInfo()
2166 
2167  // If we have an empty assembly string, there's nothing to do.
2168  if (assembly.empty()) {
2169 
2170  // Otherwise, at -O0, build an inline asm that we're going to call
2171  // in a moment.
2172  } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2173  llvm::FunctionType *type =
2174  llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2175 
2176  marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2177 
2178  // If we're at -O1 and above, we don't want to litter the code
2179  // with this marker yet, so leave a breadcrumb for the ARC
2180  // optimizer to pick up.
2181  } else {
2182  const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2183  if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2184  auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2185  CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2186  }
2187  }
2188  }
2189 
2190  // Call the marker asm if we made one, which we do only at -O0.
2191  if (marker)
2192  CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2193 }
2194 
2195 /// Retain the given object which is the result of a function call.
2196 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2197 ///
2198 /// Yes, this function name is one character away from a different
2199 /// call with completely different semantics.
2200 llvm::Value *
2203  llvm::CallInst::TailCallKind tailKind =
2204  CGM.getTargetCodeGenInfo()
2206  ? llvm::CallInst::TCK_NoTail
2207  : llvm::CallInst::TCK_None;
2208  return emitARCValueOperation(
2209  *this, value, nullptr,
2211  llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2212 }
2213 
2214 /// Claim a possibly-autoreleased return value at +0. This is only
2215 /// valid to do in contexts which do not rely on the retain to keep
2216 /// the object valid for all of its uses; for example, when
2217 /// the value is ignored, or when it is being assigned to an
2218 /// __unsafe_unretained variable.
2219 ///
2220 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2221 llvm::Value *
2224  return emitARCValueOperation(*this, value, nullptr,
2226  llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2227 }
2228 
2229 /// Release the given object.
2230 /// call void \@objc_release(i8* %value)
2232  ARCPreciseLifetime_t precise) {
2233  if (isa<llvm::ConstantPointerNull>(value)) return;
2234 
2235  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2236  if (!fn) {
2237  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2239  }
2240 
2241  // Cast the argument to 'id'.
2242  value = Builder.CreateBitCast(value, Int8PtrTy);
2243 
2244  // Call objc_release.
2245  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2246 
2247  if (precise == ARCImpreciseLifetime) {
2248  call->setMetadata("clang.imprecise_release",
2249  llvm::MDNode::get(Builder.getContext(), None));
2250  }
2251 }
2252 
2253 /// Destroy a __strong variable.
2254 ///
2255 /// At -O0, emit a call to store 'null' into the address;
2256 /// instrumenting tools prefer this because the address is exposed,
2257 /// but it's relatively cumbersome to optimize.
2258 ///
2259 /// At -O1 and above, just load and call objc_release.
2260 ///
2261 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2263  ARCPreciseLifetime_t precise) {
2264  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2265  llvm::Value *null = getNullForVariable(addr);
2266  EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2267  return;
2268  }
2269 
2270  llvm::Value *value = Builder.CreateLoad(addr);
2271  EmitARCRelease(value, precise);
2272 }
2273 
2274 /// Store into a strong object. Always calls this:
2275 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2277  llvm::Value *value,
2278  bool ignored) {
2279  assert(addr.getElementType() == value->getType());
2280 
2281  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2282  if (!fn) {
2283  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2285  }
2286 
2287  llvm::Value *args[] = {
2290  };
2291  EmitNounwindRuntimeCall(fn, args);
2292 
2293  if (ignored) return nullptr;
2294  return value;
2295 }
2296 
2297 /// Store into a strong object. Sometimes calls this:
2298 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2299 /// Other times, breaks it down into components.
2301  llvm::Value *newValue,
2302  bool ignored) {
2303  QualType type = dst.getType();
2304  bool isBlock = type->isBlockPointerType();
2305 
2306  // Use a store barrier at -O0 unless this is a block type or the
2307  // lvalue is inadequately aligned.
2308  if (shouldUseFusedARCCalls() &&
2309  !isBlock &&
2310  (dst.getAlignment().isZero() ||
2312  return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2313  }
2314 
2315  // Otherwise, split it out.
2316 
2317  // Retain the new value.
2318  newValue = EmitARCRetain(type, newValue);
2319 
2320  // Read the old value.
2321  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2322 
2323  // Store. We do this before the release so that any deallocs won't
2324  // see the old value.
2325  EmitStoreOfScalar(newValue, dst);
2326 
2327  // Finally, release the old value.
2328  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2329 
2330  return newValue;
2331 }
2332 
2333 /// Autorelease the given object.
2334 /// call i8* \@objc_autorelease(i8* %value)
2336  return emitARCValueOperation(*this, value, nullptr,
2338  llvm::Intrinsic::objc_autorelease);
2339 }
2340 
2341 /// Autorelease the given object.
2342 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2343 llvm::Value *
2345  return emitARCValueOperation(*this, value, nullptr,
2347  llvm::Intrinsic::objc_autoreleaseReturnValue,
2348  llvm::CallInst::TCK_Tail);
2349 }
2350 
2351 /// Do a fused retain/autorelease of the given object.
2352 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2353 llvm::Value *
2355  return emitARCValueOperation(*this, value, nullptr,
2357  llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2358  llvm::CallInst::TCK_Tail);
2359 }
2360 
2361 /// Do a fused retain/autorelease of the given object.
2362 /// call i8* \@objc_retainAutorelease(i8* %value)
2363 /// or
2364 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2365 /// call i8* \@objc_autorelease(i8* %retain)
2367  llvm::Value *value) {
2368  if (!type->isBlockPointerType())
2369  return EmitARCRetainAutoreleaseNonBlock(value);
2370 
2371  if (isa<llvm::ConstantPointerNull>(value)) return value;
2372 
2373  llvm::Type *origType = value->getType();
2374  value = Builder.CreateBitCast(value, Int8PtrTy);
2375  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2376  value = EmitARCAutorelease(value);
2377  return Builder.CreateBitCast(value, origType);
2378 }
2379 
2380 /// Do a fused retain/autorelease of the given object.
2381 /// call i8* \@objc_retainAutorelease(i8* %value)
2382 llvm::Value *
2384  return emitARCValueOperation(*this, value, nullptr,
2386  llvm::Intrinsic::objc_retainAutorelease);
2387 }
2388 
2389 /// i8* \@objc_loadWeak(i8** %addr)
2390 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2392  return emitARCLoadOperation(*this, addr,
2394  llvm::Intrinsic::objc_loadWeak);
2395 }
2396 
2397 /// i8* \@objc_loadWeakRetained(i8** %addr)
2399  return emitARCLoadOperation(*this, addr,
2401  llvm::Intrinsic::objc_loadWeakRetained);
2402 }
2403 
2404 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2405 /// Returns %value.
2407  llvm::Value *value,
2408  bool ignored) {
2409  return emitARCStoreOperation(*this, addr, value,
2411  llvm::Intrinsic::objc_storeWeak, ignored);
2412 }
2413 
2414 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2415 /// Returns %value. %addr is known to not have a current weak entry.
2416 /// Essentially equivalent to:
2417 /// *addr = nil; objc_storeWeak(addr, value);
2419  // If we're initializing to null, just write null to memory; no need
2420  // to get the runtime involved. But don't do this if optimization
2421  // is enabled, because accounting for this would make the optimizer
2422  // much more complicated.
2423  if (isa<llvm::ConstantPointerNull>(value) &&
2424  CGM.getCodeGenOpts().OptimizationLevel == 0) {
2425  Builder.CreateStore(value, addr);
2426  return;
2427  }
2428 
2429  emitARCStoreOperation(*this, addr, value,
2431  llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2432 }
2433 
2434 /// void \@objc_destroyWeak(i8** %addr)
2435 /// Essentially objc_storeWeak(addr, nil).
2437  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2438  if (!fn) {
2439  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2441  }
2442 
2443  // Cast the argument to 'id*'.
2444  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2445 
2446  EmitNounwindRuntimeCall(fn, addr.getPointer());
2447 }
2448 
2449 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2450 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2451 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2453  emitARCCopyOperation(*this, dst, src,
2455  llvm::Intrinsic::objc_moveWeak);
2456 }
2457 
2458 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2459 /// Disregards the current value in %dest. Essentially
2460 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2462  emitARCCopyOperation(*this, dst, src,
2464  llvm::Intrinsic::objc_copyWeak);
2465 }
2466 
2468  Address SrcAddr) {
2469  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2470  Object = EmitObjCConsumeObject(Ty, Object);
2471  EmitARCStoreWeak(DstAddr, Object, false);
2472 }
2473 
2475  Address SrcAddr) {
2476  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2477  Object = EmitObjCConsumeObject(Ty, Object);
2478  EmitARCStoreWeak(DstAddr, Object, false);
2479  EmitARCDestroyWeak(SrcAddr);
2480 }
2481 
2482 /// Produce the code to do a objc_autoreleasepool_push.
2483 /// call i8* \@objc_autoreleasePoolPush(void)
2485  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2486  if (!fn) {
2487  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2489  }
2490 
2491  return EmitNounwindRuntimeCall(fn);
2492 }
2493 
2494 /// Produce the code to do a primitive release.
2495 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2497  assert(value->getType() == Int8PtrTy);
2498 
2499  if (getInvokeDest()) {
2500  // Call the runtime method not the intrinsic if we are handling exceptions
2501  llvm::FunctionCallee &fn =
2503  if (!fn) {
2504  llvm::FunctionType *fnType =
2505  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2506  fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2508  }
2509 
2510  // objc_autoreleasePoolPop can throw.
2511  EmitRuntimeCallOrInvoke(fn, value);
2512  } else {
2513  llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2514  if (!fn) {
2515  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2517  }
2518 
2519  EmitRuntimeCall(fn, value);
2520  }
2521 }
2522 
2523 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2524 /// Which is: [[NSAutoreleasePool alloc] init];
2525 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2526 /// init is declared as: - (id) init; in its NSObject super class.
2527 ///
2529  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2530  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2531  // [NSAutoreleasePool alloc]
2532  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2533  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2534  CallArgList Args;
2535  RValue AllocRV =
2536  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2537  getContext().getObjCIdType(),
2538  AllocSel, Receiver, Args);
2539 
2540  // [Receiver init]
2541  Receiver = AllocRV.getScalarVal();
2542  II = &CGM.getContext().Idents.get("init");
2543  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2544  RValue InitRV =
2545  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2546  getContext().getObjCIdType(),
2547  InitSel, Receiver, Args);
2548  return InitRV.getScalarVal();
2549 }
2550 
2551 /// Allocate the given objc object.
2552 /// call i8* \@objc_alloc(i8* %value)
2554  llvm::Type *resultType) {
2555  return emitObjCValueOperation(*this, value, resultType,
2557  "objc_alloc");
2558 }
2559 
2560 /// Allocate the given objc object.
2561 /// call i8* \@objc_allocWithZone(i8* %value)
2563  llvm::Type *resultType) {
2564  return emitObjCValueOperation(*this, value, resultType,
2566  "objc_allocWithZone");
2567 }
2568 
2570  llvm::Type *resultType) {
2571  return emitObjCValueOperation(*this, value, resultType,
2573  "objc_alloc_init");
2574 }
2575 
2576 /// Produce the code to do a primitive release.
2577 /// [tmp drain];
2579  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2580  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2581  CallArgList Args;
2583  getContext().VoidTy, DrainSel, Arg, Args);
2584 }
2585 
2587  Address addr,
2588  QualType type) {
2590 }
2591 
2593  Address addr,
2594  QualType type) {
2596 }
2597 
2599  Address addr,
2600  QualType type) {
2601  CGF.EmitARCDestroyWeak(addr);
2602 }
2603 
2605  QualType type) {
2606  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2607  CGF.EmitARCIntrinsicUse(value);
2608 }
2609 
2610 /// Autorelease the given object.
2611 /// call i8* \@objc_autorelease(i8* %value)
2613  llvm::Type *returnType) {
2614  return emitObjCValueOperation(
2615  *this, value, returnType,
2617  "objc_autorelease");
2618 }
2619 
2620 /// Retain the given object, with normal retain semantics.
2621 /// call i8* \@objc_retain(i8* %value)
2623  llvm::Type *returnType) {
2624  return emitObjCValueOperation(
2625  *this, value, returnType,
2626  CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2627 }
2628 
2629 /// Release the given object.
2630 /// call void \@objc_release(i8* %value)
2632  ARCPreciseLifetime_t precise) {
2633  if (isa<llvm::ConstantPointerNull>(value)) return;
2634 
2635  llvm::FunctionCallee &fn =
2637  if (!fn) {
2638  llvm::FunctionType *fnType =
2639  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2640  fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2642  // We have Native ARC, so set nonlazybind attribute for performance
2643  if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2644  f->addFnAttr(llvm::Attribute::NonLazyBind);
2645  }
2646 
2647  // Cast the argument to 'id'.
2648  value = Builder.CreateBitCast(value, Int8PtrTy);
2649 
2650  // Call objc_release.
2651  llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2652 
2653  if (precise == ARCImpreciseLifetime) {
2654  call->setMetadata("clang.imprecise_release",
2655  llvm::MDNode::get(Builder.getContext(), None));
2656  }
2657 }
2658 
2659 namespace {
2660  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2661  llvm::Value *Token;
2662 
2663  CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2664 
2665  void Emit(CodeGenFunction &CGF, Flags flags) override {
2666  CGF.EmitObjCAutoreleasePoolPop(Token);
2667  }
2668  };
2669  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2670  llvm::Value *Token;
2671 
2672  CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2673 
2674  void Emit(CodeGenFunction &CGF, Flags flags) override {
2675  CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2676  }
2677  };
2678 }
2679 
2681  if (CGM.getLangOpts().ObjCAutoRefCount)
2682  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2683  else
2684  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2685 }
2686 
2688  switch (lifetime) {
2689  case Qualifiers::OCL_None:
2693  return true;
2694 
2695  case Qualifiers::OCL_Weak:
2696  return false;
2697  }
2698 
2699  llvm_unreachable("impossible lifetime!");
2700 }
2701 
2703  LValue lvalue,
2704  QualType type) {
2705  llvm::Value *result;
2706  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2707  if (shouldRetain) {
2708  result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2709  } else {
2710  assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2711  result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2712  }
2713  return TryEmitResult(result, !shouldRetain);
2714 }
2715 
2717  const Expr *e) {
2718  e = e->IgnoreParens();
2719  QualType type = e->getType();
2720 
2721  // If we're loading retained from a __strong xvalue, we can avoid
2722  // an extra retain/release pair by zeroing out the source of this
2723  // "move" operation.
2724  if (e->isXValue() &&
2725  !type.isConstQualified() &&
2727  // Emit the lvalue.
2728  LValue lv = CGF.EmitLValue(e);
2729 
2730  // Load the object pointer.
2731  llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2733 
2734  // Set the source pointer to NULL.
2736 
2737  return TryEmitResult(result, true);
2738  }
2739 
2740  // As a very special optimization, in ARC++, if the l-value is the
2741  // result of a non-volatile assignment, do a simple retain of the
2742  // result of the call to objc_storeWeak instead of reloading.
2743  if (CGF.getLangOpts().CPlusPlus &&
2744  !type.isVolatileQualified() &&
2746  isa<BinaryOperator>(e) &&
2747  cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2748  return TryEmitResult(CGF.EmitScalarExpr(e), false);
2749 
2750  // Try to emit code for scalar constant instead of emitting LValue and
2751  // loading it because we are not guaranteed to have an l-value. One of such
2752  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2753  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2754  auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2755  if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2756  return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2758  }
2759 
2760  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2761 }
2762 
2763 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2764  llvm::Value *value)>
2766 
2767 /// Insert code immediately after a call.
2769  llvm::Value *value,
2770  ValueTransform doAfterCall,
2771  ValueTransform doFallback) {
2772  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2773  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2774 
2775  // Place the retain immediately following the call.
2776  CGF.Builder.SetInsertPoint(call->getParent(),
2777  ++llvm::BasicBlock::iterator(call));
2778  value = doAfterCall(CGF, value);
2779 
2780  CGF.Builder.restoreIP(ip);
2781  return value;
2782  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2783  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2784 
2785  // Place the retain at the beginning of the normal destination block.
2786  llvm::BasicBlock *BB = invoke->getNormalDest();
2787  CGF.Builder.SetInsertPoint(BB, BB->begin());
2788  value = doAfterCall(CGF, value);
2789 
2790  CGF.Builder.restoreIP(ip);
2791  return value;
2792 
2793  // Bitcasts can arise because of related-result returns. Rewrite
2794  // the operand.
2795  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2796  llvm::Value *operand = bitcast->getOperand(0);
2797  operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2798  bitcast->setOperand(0, operand);
2799  return bitcast;
2800 
2801  // Generic fall-back case.
2802  } else {
2803  // Retain using the non-block variant: we never need to do a copy
2804  // of a block that's been returned to us.
2805  return doFallback(CGF, value);
2806  }
2807 }
2808 
2809 /// Given that the given expression is some sort of call (which does
2810 /// not return retained), emit a retain following it.
2812  const Expr *e) {
2813  llvm::Value *value = CGF.EmitScalarExpr(e);
2814  return emitARCOperationAfterCall(CGF, value,
2815  [](CodeGenFunction &CGF, llvm::Value *value) {
2816  return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2817  },
2818  [](CodeGenFunction &CGF, llvm::Value *value) {
2819  return CGF.EmitARCRetainNonBlock(value);
2820  });
2821 }
2822 
2823 /// Given that the given expression is some sort of call (which does
2824 /// not return retained), perform an unsafeClaim following it.
2826  const Expr *e) {
2827  llvm::Value *value = CGF.EmitScalarExpr(e);
2828  return emitARCOperationAfterCall(CGF, value,
2829  [](CodeGenFunction &CGF, llvm::Value *value) {
2831  },
2832  [](CodeGenFunction &CGF, llvm::Value *value) {
2833  return value;
2834  });
2835 }
2836 
2838  bool allowUnsafeClaim) {
2839  if (allowUnsafeClaim &&
2841  return emitARCUnsafeClaimCallResult(*this, E);
2842  } else {
2843  llvm::Value *value = emitARCRetainCallResult(*this, E);
2844  return EmitObjCConsumeObject(E->getType(), value);
2845  }
2846 }
2847 
2848 /// Determine whether it might be important to emit a separate
2849 /// objc_retain_block on the result of the given expression, or
2850 /// whether it's okay to just emit it in a +1 context.
2851 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2852  assert(e->getType()->isBlockPointerType());
2853  e = e->IgnoreParens();
2854 
2855  // For future goodness, emit block expressions directly in +1
2856  // contexts if we can.
2857  if (isa<BlockExpr>(e))
2858  return false;
2859 
2860  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2861  switch (cast->getCastKind()) {
2862  // Emitting these operations in +1 contexts is goodness.
2863  case CK_LValueToRValue:
2864  case CK_ARCReclaimReturnedObject:
2865  case CK_ARCConsumeObject:
2866  case CK_ARCProduceObject:
2867  return false;
2868 
2869  // These operations preserve a block type.
2870  case CK_NoOp:
2871  case CK_BitCast:
2872  return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2873 
2874  // These operations are known to be bad (or haven't been considered).
2875  case CK_AnyPointerToBlockPointerCast:
2876  default:
2877  return true;
2878  }
2879  }
2880 
2881  return true;
2882 }
2883 
2884 namespace {
2885 /// A CRTP base class for emitting expressions of retainable object
2886 /// pointer type in ARC.
2887 template <typename Impl, typename Result> class ARCExprEmitter {
2888 protected:
2889  CodeGenFunction &CGF;
2890  Impl &asImpl() { return *static_cast<Impl*>(this); }
2891 
2892  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2893 
2894 public:
2895  Result visit(const Expr *e);
2896  Result visitCastExpr(const CastExpr *e);
2897  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2898  Result visitBlockExpr(const BlockExpr *e);
2899  Result visitBinaryOperator(const BinaryOperator *e);
2900  Result visitBinAssign(const BinaryOperator *e);
2901  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2902  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2903  Result visitBinAssignWeak(const BinaryOperator *e);
2904  Result visitBinAssignStrong(const BinaryOperator *e);
2905 
2906  // Minimal implementation:
2907  // Result visitLValueToRValue(const Expr *e)
2908  // Result visitConsumeObject(const Expr *e)
2909  // Result visitExtendBlockObject(const Expr *e)
2910  // Result visitReclaimReturnedObject(const Expr *e)
2911  // Result visitCall(const Expr *e)
2912  // Result visitExpr(const Expr *e)
2913  //
2914  // Result emitBitCast(Result result, llvm::Type *resultType)
2915  // llvm::Value *getValueOfResult(Result result)
2916 };
2917 }
2918 
2919 /// Try to emit a PseudoObjectExpr under special ARC rules.
2920 ///
2921 /// This massively duplicates emitPseudoObjectRValue.
2922 template <typename Impl, typename Result>
2923 Result
2924 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2926 
2927  // Find the result expression.
2928  const Expr *resultExpr = E->getResultExpr();
2929  assert(resultExpr);
2930  Result result;
2931 
2933  i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2934  const Expr *semantic = *i;
2935 
2936  // If this semantic expression is an opaque value, bind it
2937  // to the result of its source expression.
2938  if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2940  OVMA opaqueData;
2941 
2942  // If this semantic is the result of the pseudo-object
2943  // expression, try to evaluate the source as +1.
2944  if (ov == resultExpr) {
2945  assert(!OVMA::shouldBindAsLValue(ov));
2946  result = asImpl().visit(ov->getSourceExpr());
2947  opaqueData = OVMA::bind(CGF, ov,
2948  RValue::get(asImpl().getValueOfResult(result)));
2949 
2950  // Otherwise, just bind it.
2951  } else {
2952  opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2953  }
2954  opaques.push_back(opaqueData);
2955 
2956  // Otherwise, if the expression is the result, evaluate it
2957  // and remember the result.
2958  } else if (semantic == resultExpr) {
2959  result = asImpl().visit(semantic);
2960 
2961  // Otherwise, evaluate the expression in an ignored context.
2962  } else {
2963  CGF.EmitIgnoredExpr(semantic);
2964  }
2965  }
2966 
2967  // Unbind all the opaques now.
2968  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2969  opaques[i].unbind(CGF);
2970 
2971  return result;
2972 }
2973 
2974 template <typename Impl, typename Result>
2975 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2976  // The default implementation just forwards the expression to visitExpr.
2977  return asImpl().visitExpr(e);
2978 }
2979 
2980 template <typename Impl, typename Result>
2981 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2982  switch (e->getCastKind()) {
2983 
2984  // No-op casts don't change the type, so we just ignore them.
2985  case CK_NoOp:
2986  return asImpl().visit(e->getSubExpr());
2987 
2988  // These casts can change the type.
2989  case CK_CPointerToObjCPointerCast:
2990  case CK_BlockPointerToObjCPointerCast:
2991  case CK_AnyPointerToBlockPointerCast:
2992  case CK_BitCast: {
2993  llvm::Type *resultType = CGF.ConvertType(e->getType());
2994  assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2995  Result result = asImpl().visit(e->getSubExpr());
2996  return asImpl().emitBitCast(result, resultType);
2997  }
2998 
2999  // Handle some casts specially.
3000  case CK_LValueToRValue:
3001  return asImpl().visitLValueToRValue(e->getSubExpr());
3002  case CK_ARCConsumeObject:
3003  return asImpl().visitConsumeObject(e->getSubExpr());
3004  case CK_ARCExtendBlockObject:
3005  return asImpl().visitExtendBlockObject(e->getSubExpr());
3006  case CK_ARCReclaimReturnedObject:
3007  return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3008 
3009  // Otherwise, use the default logic.
3010  default:
3011  return asImpl().visitExpr(e);
3012  }
3013 }
3014 
3015 template <typename Impl, typename Result>
3016 Result
3017 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3018  switch (e->getOpcode()) {
3019  case BO_Comma:
3020  CGF.EmitIgnoredExpr(e->getLHS());
3021  CGF.EnsureInsertPoint();
3022  return asImpl().visit(e->getRHS());
3023 
3024  case BO_Assign:
3025  return asImpl().visitBinAssign(e);
3026 
3027  default:
3028  return asImpl().visitExpr(e);
3029  }
3030 }
3031 
3032 template <typename Impl, typename Result>
3033 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3034  switch (e->getLHS()->getType().getObjCLifetime()) {
3036  return asImpl().visitBinAssignUnsafeUnretained(e);
3037 
3038  case Qualifiers::OCL_Weak:
3039  return asImpl().visitBinAssignWeak(e);
3040 
3042  return asImpl().visitBinAssignAutoreleasing(e);
3043 
3045  return asImpl().visitBinAssignStrong(e);
3046 
3047  case Qualifiers::OCL_None:
3048  return asImpl().visitExpr(e);
3049  }
3050  llvm_unreachable("bad ObjC ownership qualifier");
3051 }
3052 
3053 /// The default rule for __unsafe_unretained emits the RHS recursively,
3054 /// stores into the unsafe variable, and propagates the result outward.
3055 template <typename Impl, typename Result>
3056 Result ARCExprEmitter<Impl,Result>::
3057  visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3058  // Recursively emit the RHS.
3059  // For __block safety, do this before emitting the LHS.
3060  Result result = asImpl().visit(e->getRHS());
3061 
3062  // Perform the store.
3063  LValue lvalue =
3065  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3066  lvalue);
3067 
3068  return result;
3069 }
3070 
3071 template <typename Impl, typename Result>
3072 Result
3073 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3074  return asImpl().visitExpr(e);
3075 }
3076 
3077 template <typename Impl, typename Result>
3078 Result
3079 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3080  return asImpl().visitExpr(e);
3081 }
3082 
3083 template <typename Impl, typename Result>
3084 Result
3085 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3086  return asImpl().visitExpr(e);
3087 }
3088 
3089 /// The general expression-emission logic.
3090 template <typename Impl, typename Result>
3091 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3092  // We should *never* see a nested full-expression here, because if
3093  // we fail to emit at +1, our caller must not retain after we close
3094  // out the full-expression. This isn't as important in the unsafe
3095  // emitter.
3096  assert(!isa<ExprWithCleanups>(e));
3097 
3098  // Look through parens, __extension__, generic selection, etc.
3099  e = e->IgnoreParens();
3100 
3101  // Handle certain kinds of casts.
3102  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3103  return asImpl().visitCastExpr(ce);
3104 
3105  // Handle the comma operator.
3106  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3107  return asImpl().visitBinaryOperator(op);
3108 
3109  // TODO: handle conditional operators here
3110 
3111  // For calls and message sends, use the retained-call logic.
3112  // Delegate inits are a special case in that they're the only
3113  // returns-retained expression that *isn't* surrounded by
3114  // a consume.
3115  } else if (isa<CallExpr>(e) ||
3116  (isa<ObjCMessageExpr>(e) &&
3117  !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3118  return asImpl().visitCall(e);
3119 
3120  // Look through pseudo-object expressions.
3121  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3122  return asImpl().visitPseudoObjectExpr(pseudo);
3123  } else if (auto *be = dyn_cast<BlockExpr>(e))
3124  return asImpl().visitBlockExpr(be);
3125 
3126  return asImpl().visitExpr(e);
3127 }
3128 
3129 namespace {
3130 
3131 /// An emitter for +1 results.
3132 struct ARCRetainExprEmitter :
3133  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3134 
3135  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3136 
3137  llvm::Value *getValueOfResult(TryEmitResult result) {
3138  return result.getPointer();
3139  }
3140 
3141  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3142  llvm::Value *value = result.getPointer();
3143  value = CGF.Builder.CreateBitCast(value, resultType);
3144  result.setPointer(value);
3145  return result;
3146  }
3147 
3148  TryEmitResult visitLValueToRValue(const Expr *e) {
3149  return tryEmitARCRetainLoadOfScalar(CGF, e);
3150  }
3151 
3152  /// For consumptions, just emit the subexpression and thus elide
3153  /// the retain/release pair.
3154  TryEmitResult visitConsumeObject(const Expr *e) {
3155  llvm::Value *result = CGF.EmitScalarExpr(e);
3156  return TryEmitResult(result, true);
3157  }
3158 
3159  TryEmitResult visitBlockExpr(const BlockExpr *e) {
3160  TryEmitResult result = visitExpr(e);
3161  // Avoid the block-retain if this is a block literal that doesn't need to be
3162  // copied to the heap.
3163  if (e->getBlockDecl()->canAvoidCopyToHeap())
3164  result.setInt(true);
3165  return result;
3166  }
3167 
3168  /// Block extends are net +0. Naively, we could just recurse on
3169  /// the subexpression, but actually we need to ensure that the
3170  /// value is copied as a block, so there's a little filter here.
3171  TryEmitResult visitExtendBlockObject(const Expr *e) {
3172  llvm::Value *result; // will be a +0 value
3173 
3174  // If we can't safely assume the sub-expression will produce a
3175  // block-copied value, emit the sub-expression at +0.
3177  result = CGF.EmitScalarExpr(e);
3178 
3179  // Otherwise, try to emit the sub-expression at +1 recursively.
3180  } else {
3181  TryEmitResult subresult = asImpl().visit(e);
3182 
3183  // If that produced a retained value, just use that.
3184  if (subresult.getInt()) {
3185  return subresult;
3186  }
3187 
3188  // Otherwise it's +0.
3189  result = subresult.getPointer();
3190  }
3191 
3192  // Retain the object as a block.
3193  result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3194  return TryEmitResult(result, true);
3195  }
3196 
3197  /// For reclaims, emit the subexpression as a retained call and
3198  /// skip the consumption.
3199  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3200  llvm::Value *result = emitARCRetainCallResult(CGF, e);
3201  return TryEmitResult(result, true);
3202  }
3203 
3204  /// When we have an undecorated call, retroactively do a claim.
3205  TryEmitResult visitCall(const Expr *e) {
3206  llvm::Value *result = emitARCRetainCallResult(CGF, e);
3207  return TryEmitResult(result, true);
3208  }
3209 
3210  // TODO: maybe special-case visitBinAssignWeak?
3211 
3212  TryEmitResult visitExpr(const Expr *e) {
3213  // We didn't find an obvious production, so emit what we've got and
3214  // tell the caller that we didn't manage to retain.
3215  llvm::Value *result = CGF.EmitScalarExpr(e);
3216  return TryEmitResult(result, false);
3217  }
3218 };
3219 }
3220 
3221 static TryEmitResult
3223  return ARCRetainExprEmitter(CGF).visit(e);
3224 }
3225 
3227  LValue lvalue,
3228  QualType type) {
3229  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3230  llvm::Value *value = result.getPointer();
3231  if (!result.getInt())
3232  value = CGF.EmitARCRetain(type, value);
3233  return value;
3234 }
3235 
3236 /// EmitARCRetainScalarExpr - Semantically equivalent to
3237 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3238 /// best-effort attempt to peephole expressions that naturally produce
3239 /// retained objects.
3241  // The retain needs to happen within the full-expression.
3242  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3243  enterFullExpression(cleanups);
3244  RunCleanupsScope scope(*this);
3245  return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3246  }
3247 
3248  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3249  llvm::Value *value = result.getPointer();
3250  if (!result.getInt())
3251  value = EmitARCRetain(e->getType(), value);
3252  return value;
3253 }
3254 
3255 llvm::Value *
3257  // The retain needs to happen within the full-expression.
3258  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3259  enterFullExpression(cleanups);
3260  RunCleanupsScope scope(*this);
3261  return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3262  }
3263 
3264  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3265  llvm::Value *value = result.getPointer();
3266  if (result.getInt())
3267  value = EmitARCAutorelease(value);
3268  else
3269  value = EmitARCRetainAutorelease(e->getType(), value);
3270  return value;
3271 }
3272 
3274  llvm::Value *result;
3275  bool doRetain;
3276 
3278  result = EmitScalarExpr(e);
3279  doRetain = true;
3280  } else {
3281  TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3282  result = subresult.getPointer();
3283  doRetain = !subresult.getInt();
3284  }
3285 
3286  if (doRetain)
3287  result = EmitARCRetainBlock(result, /*mandatory*/ true);
3288  return EmitObjCConsumeObject(e->getType(), result);
3289 }
3290 
3292  // In ARC, retain and autorelease the expression.
3293  if (getLangOpts().ObjCAutoRefCount) {
3294  // Do so before running any cleanups for the full-expression.
3295  // EmitARCRetainAutoreleaseScalarExpr does this for us.
3297  }
3298 
3299  // Otherwise, use the normal scalar-expression emission. The
3300  // exception machinery doesn't do anything special with the
3301  // exception like retaining it, so there's no safety associated with
3302  // only running cleanups after the throw has started, and when it
3303  // matters it tends to be substantially inferior code.
3304  return EmitScalarExpr(expr);
3305 }
3306 
3307 namespace {
3308 
3309 /// An emitter for assigning into an __unsafe_unretained context.
3310 struct ARCUnsafeUnretainedExprEmitter :
3311  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3312 
3313  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3314 
3315  llvm::Value *getValueOfResult(llvm::Value *value) {
3316  return value;
3317  }
3318 
3319  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3320  return CGF.Builder.CreateBitCast(value, resultType);
3321  }
3322 
3323  llvm::Value *visitLValueToRValue(const Expr *e) {
3324  return CGF.EmitScalarExpr(e);
3325  }
3326 
3327  /// For consumptions, just emit the subexpression and perform the
3328  /// consumption like normal.
3329  llvm::Value *visitConsumeObject(const Expr *e) {
3330  llvm::Value *value = CGF.EmitScalarExpr(e);
3331  return CGF.EmitObjCConsumeObject(e->getType(), value);
3332  }
3333 
3334  /// No special logic for block extensions. (This probably can't
3335  /// actually happen in this emitter, though.)
3336  llvm::Value *visitExtendBlockObject(const Expr *e) {
3337  return CGF.EmitARCExtendBlockObject(e);
3338  }
3339 
3340  /// For reclaims, perform an unsafeClaim if that's enabled.
3341  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3342  return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3343  }
3344 
3345  /// When we have an undecorated call, just emit it without adding
3346  /// the unsafeClaim.
3347  llvm::Value *visitCall(const Expr *e) {
3348  return CGF.EmitScalarExpr(e);
3349  }
3350 
3351  /// Just do normal scalar emission in the default case.
3352  llvm::Value *visitExpr(const Expr *e) {
3353  return CGF.EmitScalarExpr(e);
3354  }
3355 };
3356 }
3357 
3359  const Expr *e) {
3360  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3361 }
3362 
3363 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3364 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3365 /// avoiding any spurious retains, including by performing reclaims
3366 /// with objc_unsafeClaimAutoreleasedReturnValue.
3368  // Look through full-expressions.
3369  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3370  enterFullExpression(cleanups);
3371  RunCleanupsScope scope(*this);
3372  return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3373  }
3374 
3375  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3376 }
3377 
3378 std::pair<LValue,llvm::Value*>
3380  bool ignored) {
3381  // Evaluate the RHS first. If we're ignoring the result, assume
3382  // that we can emit at an unsafe +0.
3383  llvm::Value *value;
3384  if (ignored) {
3386  } else {
3387  value = EmitScalarExpr(e->getRHS());
3388  }
3389 
3390  // Emit the LHS and perform the store.
3391  LValue lvalue = EmitLValue(e->getLHS());
3392  EmitStoreOfScalar(value, lvalue);
3393 
3394  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3395 }
3396 
3397 std::pair<LValue,llvm::Value*>
3399  bool ignored) {
3400  // Evaluate the RHS first.
3401  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3402  llvm::Value *value = result.getPointer();
3403 
3404  bool hasImmediateRetain = result.getInt();
3405 
3406  // If we didn't emit a retained object, and the l-value is of block
3407  // type, then we need to emit the block-retain immediately in case
3408  // it invalidates the l-value.
3409  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3410  value = EmitARCRetainBlock(value, /*mandatory*/ false);
3411  hasImmediateRetain = true;
3412  }
3413 
3414  LValue lvalue = EmitLValue(e->getLHS());
3415 
3416  // If the RHS was emitted retained, expand this.
3417  if (hasImmediateRetain) {
3418  llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3419  EmitStoreOfScalar(value, lvalue);
3420  EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3421  } else {
3422  value = EmitARCStoreStrong(lvalue, value, ignored);
3423  }
3424 
3425  return std::pair<LValue,llvm::Value*>(lvalue, value);
3426 }
3427 
3428 std::pair<LValue,llvm::Value*>
3431  LValue lvalue = EmitLValue(e->getLHS());
3432 
3433  EmitStoreOfScalar(value, lvalue);
3434 
3435  return std::pair<LValue,llvm::Value*>(lvalue, value);
3436 }
3437 
3439  const ObjCAutoreleasePoolStmt &ARPS) {
3440  const Stmt *subStmt = ARPS.getSubStmt();
3441  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3442 
3443  CGDebugInfo *DI = getDebugInfo();
3444  if (DI)
3446 
3447  // Keep track of the current cleanup stack depth.
3448  RunCleanupsScope Scope(*this);
3449  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3451  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3452  } else {
3454  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3455  }
3456 
3457  for (const auto *I : S.body())
3458  EmitStmt(I);
3459 
3460  if (DI)
3462 }
3463 
3464 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3465 /// make sure it survives garbage collection until this point.
3467  // We just use an inline assembly.
3468  llvm::FunctionType *extenderType
3469  = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3470  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3471  /* assembly */ "",
3472  /* constraints */ "r",
3473  /* side effects */ true);
3474 
3475  object = Builder.CreateBitCast(object, VoidPtrTy);
3476  EmitNounwindRuntimeCall(extender, object);
3477 }
3478 
3479 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3480 /// non-trivial copy assignment function, produce following helper function.
3481 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3482 ///
3483 llvm::Constant *
3485  const ObjCPropertyImplDecl *PID) {
3486  if (!getLangOpts().CPlusPlus ||
3488  return nullptr;
3489  QualType Ty = PID->getPropertyIvarDecl()->getType();
3490  if (!Ty->isRecordType())
3491  return nullptr;
3492  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3494  return nullptr;
3495  llvm::Constant *HelperFn = nullptr;
3496  if (hasTrivialSetExpr(PID))
3497  return nullptr;
3498  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3499  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3500  return HelperFn;
3501 
3502  ASTContext &C = getContext();
3503  IdentifierInfo *II
3504  = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3505 
3506  QualType ReturnTy = C.VoidTy;
3507  QualType DestTy = C.getPointerType(Ty);
3508  QualType SrcTy = Ty;
3509  SrcTy.addConst();
3510  SrcTy = C.getPointerType(SrcTy);
3511 
3512  SmallVector<QualType, 2> ArgTys;
3513  ArgTys.push_back(DestTy);
3514  ArgTys.push_back(SrcTy);
3515  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3516 
3519  FunctionTy, nullptr, SC_Static, false, false);
3520 
3521  FunctionArgList args;
3522  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3524  args.push_back(&DstDecl);
3525  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3527  args.push_back(&SrcDecl);
3528 
3529  const CGFunctionInfo &FI =
3530  CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3531 
3532  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3533 
3534  llvm::Function *Fn =
3536  "__assign_helper_atomic_property_",
3537  &CGM.getModule());
3538 
3540 
3541  StartFunction(FD, ReturnTy, Fn, FI, args);
3542 
3543  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3544  SourceLocation());
3545  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3546  VK_LValue, OK_Ordinary, SourceLocation(), false);
3547 
3548  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3549  SourceLocation());
3550  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3551  VK_LValue, OK_Ordinary, SourceLocation(), false);
3552 
3553  Expr *Args[2] = { &DST, &SRC };
3554  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3556  C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3558 
3559  EmitStmt(TheCall);
3560 
3561  FinishFunction();
3562  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3563  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3564  return HelperFn;
3565 }
3566 
3567 llvm::Constant *
3569  const ObjCPropertyImplDecl *PID) {
3570  if (!getLangOpts().CPlusPlus ||
3572  return nullptr;
3573  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3574  QualType Ty = PD->getType();
3575  if (!Ty->isRecordType())
3576  return nullptr;
3578  return nullptr;
3579  llvm::Constant *HelperFn = nullptr;
3580  if (hasTrivialGetExpr(PID))
3581  return nullptr;
3582  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3583  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3584  return HelperFn;
3585 
3586  ASTContext &C = getContext();
3587  IdentifierInfo *II =
3588  &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3589 
3590  QualType ReturnTy = C.VoidTy;
3591  QualType DestTy = C.getPointerType(Ty);
3592  QualType SrcTy = Ty;
3593  SrcTy.addConst();
3594  SrcTy = C.getPointerType(SrcTy);
3595 
3596  SmallVector<QualType, 2> ArgTys;
3597  ArgTys.push_back(DestTy);
3598  ArgTys.push_back(SrcTy);
3599  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3600 
3603  FunctionTy, nullptr, SC_Static, false, false);
3604 
3605  FunctionArgList args;
3606  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3608  args.push_back(&DstDecl);
3609  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3611  args.push_back(&SrcDecl);
3612 
3613  const CGFunctionInfo &FI =
3614  CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3615 
3616  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3617 
3618  llvm::Function *Fn = llvm::Function::Create(
3619  LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3620  &CGM.getModule());
3621 
3623 
3624  StartFunction(FD, ReturnTy, Fn, FI, args);
3625 
3626  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3627  SourceLocation());
3628 
3629  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3630  VK_LValue, OK_Ordinary, SourceLocation(), false);
3631 
3632  CXXConstructExpr *CXXConstExpr =
3633  cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3634 
3635  SmallVector<Expr*, 4> ConstructorArgs;
3636  ConstructorArgs.push_back(&SRC);
3637  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3638  CXXConstExpr->arg_end());
3639 
3640  CXXConstructExpr *TheCXXConstructExpr =
3642  CXXConstExpr->getConstructor(),
3643  CXXConstExpr->isElidable(),
3644  ConstructorArgs,
3645  CXXConstExpr->hadMultipleCandidates(),
3646  CXXConstExpr->isListInitialization(),
3647  CXXConstExpr->isStdInitListInitialization(),
3648  CXXConstExpr->requiresZeroInitialization(),
3649  CXXConstExpr->getConstructionKind(),
3650  SourceRange());
3651 
3652  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3653  SourceLocation());
3654 
3655  RValue DV = EmitAnyExpr(&DstExpr);
3656  CharUnits Alignment
3657  = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3658  EmitAggExpr(TheCXXConstructExpr,
3659  AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3660  Qualifiers(),
3665 
3666  FinishFunction();
3667  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3668  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3669  return HelperFn;
3670 }
3671 
3672 llvm::Value *
3674  // Get selectors for retain/autorelease.
3675  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3676  Selector CopySelector =
3678  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3679  Selector AutoreleaseSelector =
3680  getContext().Selectors.getNullarySelector(AutoreleaseID);
3681 
3682  // Emit calls to retain/autorelease.
3683  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3684  llvm::Value *Val = Block;
3685  RValue Result;
3686  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3687  Ty, CopySelector,
3688  Val, CallArgList(), nullptr, nullptr);
3689  Val = Result.getScalarVal();
3690  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3691  Ty, AutoreleaseSelector,
3692  Val, CallArgList(), nullptr, nullptr);
3693  Val = Result.getScalarVal();
3694  return Val;
3695 }
3696 
3697 llvm::Value *
3699  assert(Args.size() == 3 && "Expected 3 argument here!");
3700 
3701  if (!CGM.IsOSVersionAtLeastFn) {
3702  llvm::FunctionType *FTy =
3703  llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3704  CGM.IsOSVersionAtLeastFn =
3705  CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3706  }
3707 
3708  llvm::Value *CallRes =
3710 
3711  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3712 }
3713 
3714 void CodeGenModule::emitAtAvailableLinkGuard() {
3715  if (!IsOSVersionAtLeastFn)
3716  return;
3717  // @available requires CoreFoundation only on Darwin.
3718  if (!Target.getTriple().isOSDarwin())
3719  return;
3720  // Add -framework CoreFoundation to the linker commands. We still want to
3721  // emit the core foundation reference down below because otherwise if
3722  // CoreFoundation is not used in the code, the linker won't link the
3723  // framework.
3724  auto &Context = getLLVMContext();
3725  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3726  llvm::MDString::get(Context, "CoreFoundation")};
3727  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3728  // Emit a reference to a symbol from CoreFoundation to ensure that
3729  // CoreFoundation is linked into the final binary.
3730  llvm::FunctionType *FTy =
3731  llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3732  llvm::FunctionCallee CFFunc =
3733  CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3734 
3735  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3736  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3737  CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3738  llvm::AttributeList(), /*Local=*/true);
3739  llvm::Function *CFLinkCheckFunc =
3740  cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3741  if (CFLinkCheckFunc->empty()) {
3742  CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3743  CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3744  CodeGenFunction CGF(*this);
3745  CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3746  CGF.EmitNounwindRuntimeCall(CFFunc,
3747  llvm::Constant::getNullValue(VoidPtrTy));
3748  CGF.Builder.CreateUnreachable();
3749  addCompilerUsedGlobal(CFLinkCheckFunc);
3750  }
3751 }
3752 
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:652
const llvm::DataLayout & getDataLayout() const
static Optional< llvm::Value * > tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver, const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method, bool isClassMessage)
The ObjC runtime may provide entrypoints that are likely to be faster than an ordinary message send o...
Definition: CGObjC.cpp:371
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
The receiver is the instance of the superclass object.
Definition: ExprObjC.h:1107
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
static bool UseOptimizedSetter(CodeGenModule &CGM)
Definition: CGObjC.cpp:1304
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:178
SourceLocation getRBracLoc() const
Definition: Stmt.h:1418
Defines the clang::ASTContext interface.
const BlockDecl * getBlockDecl() const
Definition: Expr.h:5554
llvm::Function * objc_retainAutoreleaseReturnValue
id objc_retainAutoreleaseReturnValue(id);
bool isClassMethod() const
Definition: DeclObjC.h:429
llvm::FunctionCallee objc_releaseRuntimeFunction
void objc_release(id); Note this is the runtime method not the intrinsic.
Represents a function declaration or definition.
Definition: Decl.h:1748
llvm::Value * EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2300
void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
Release the given object.
Definition: CGObjC.cpp:2631
The receiver is an object instance.
Definition: ExprObjC.h:1101
llvm::Value * EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim)
Definition: CGObjC.cpp:2837
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=CSK_unspecified)
Definition: Decl.h:1895
Other implicit parameter.
Definition: Decl.h:1524
static llvm::Value * emitARCRetainCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained), emit a retain following it.
Definition: CGObjC.cpp:2811
ObjCDictionaryElement getKeyValueElement(unsigned Index) const
Definition: ExprObjC.h:360
Smart pointer class that efficiently represents Objective-C method names.
llvm::Function * objc_copyWeak
void objc_copyWeak(id *dest, id *src);
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1845
llvm::Value * EmitARCRetainAutoreleaseScalarExpr(const Expr *expr)
Definition: CGObjC.cpp:3256
static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl)
Definition: CGObjC.cpp:967
CanQualType VoidPtrTy
Definition: ASTContext.h:1030
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:2032
A (possibly-)qualified type.
Definition: Type.h:643
bool isBlockPointerType() const
Definition: Type.h:6362
static bool hasUnalignedAtomics(llvm::Triple::ArchType arch)
Determine whether the given architecture supports unaligned atomic accesses.
Definition: CGObjC.cpp:758
void EmitExtendGCLifetime(llvm::Value *object)
EmitExtendGCLifetime - Given a pointer to an Objective-C object, make sure it survives garbage collec...
Definition: CGObjC.cpp:3466
const CodeGenOptions & getCodeGenOpts() const
Selector getSelector() const
Definition: ExprObjC.cpp:337
llvm::Value * EmitARCExtendBlockObject(const Expr *expr)
Definition: CGObjC.cpp:3273
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1143
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
void enterFullExpression(const FullExpr *E)
ObjCIvarDecl * getPropertyIvarDecl() const
Definition: DeclObjC.h:2826
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2436
ObjCProtocolDecl * getProtocol() const
Definition: ExprObjC.h:519
Stmt - This represents one statement.
Definition: Stmt.h:66
static llvm::Value * emitARCLoadOperation(CodeGenFunction &CGF, Address addr, llvm::Function *&fn, llvm::Intrinsic::ID IntID)
Perform an operation having the following signature: i8* (i8**)
Definition: CGObjC.cpp:2009
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
void EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the end of a new lexical block and pop the current block.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:991
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
Implements runtime-specific code generation functions.
Definition: CGObjCRuntime.h:63
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:812
static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF)
Definition: CGObjC.cpp:1963
bool isRecordType() const
Definition: Type.h:6434
static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ET, RValue Result)
Adjust the type of an Objective-C object that doesn&#39;t match up due to type erasure at various points...
Definition: CGObjC.cpp:266
virtual llvm::FunctionCallee GetGetStructFunction()=0
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
Opcode getOpcode() const
Definition: Expr.h:3439
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6303
Expr * getSetterCXXAssignment() const
Definition: DeclObjC.h:2856
static Destroyer destroyARCStrongPrecise
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:332
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1926
void GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCSetter - Synthesize an Objective-C property setter function for the given property...
Definition: CGObjC.cpp:1489
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1331
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1613
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
static llvm::Value * emitARCStoreOperation(CodeGenFunction &CGF, Address addr, llvm::Value *value, llvm::Function *&fn, llvm::Intrinsic::ID IntID, bool ignored)
Perform an operation having the following signature: i8* (i8**, i8*)
Definition: CGObjC.cpp:2033
QualType withConst() const
Definition: Type.h:815
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
void EmitARCCopyWeak(Address dst, Address src)
void @objc_copyWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2461
llvm::Value * EmitObjCMRRAutoreleasePoolPush()
Produce the code to do an MRR version objc_autoreleasepool_push.
Definition: CGObjC.cpp:2528
Floating point control options.
Definition: LangOptions.h:307
llvm::Constant * GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with non-trivial copy assignment...
Definition: CGObjC.cpp:3484
llvm::Value * EmitARCRetainNonBlock(llvm::Value *value)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:2122
static llvm::Value * emitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:3226
param_const_iterator param_end() const
Definition: DeclObjC.h:351
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1122
static llvm::Value * emitObjCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, llvm::FunctionCallee &fn, StringRef fnName)
Perform an operation having the signature i8* (i8*) where a null input causes a no-op and returns nul...
Definition: CGObjC.cpp:2080
llvm::function_ref< llvm::Value *(CodeGenFunction &CGF, llvm::Value *value)> ValueTransform
Definition: CGObjC.cpp:2765
static CXXOperatorCallExpr * Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef< Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptions FPFeatures, ADLCallKind UsesADL=NotADL)
Definition: ExprCXX.cpp:559
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
static CXXConstructExpr * Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef< Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, ConstructionKind ConstructKind, SourceRange ParenOrBraceRange)
Create a C++ construction expression.
Definition: ExprCXX.cpp:994
Represents a variable declaration or definition.
Definition: Decl.h:812
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6821
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:6752
virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const
Retrieve the address of a function to call immediately before calling objc_retainAutoreleasedReturnVa...
Definition: TargetInfo.h:155
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
llvm::Value * EmitObjCAutoreleasePoolPush()
Produce the code to do a objc_autoreleasepool_push.
Definition: CGObjC.cpp:2484
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3673
llvm::Value * getPointer() const
Definition: Address.h:37
llvm::Constant * getAtomicSetterHelperFnMap(QualType Ty)
Defines the Objective-C statement AST node classes.
static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)
Definition: CGObjC.cpp:2687
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3212
Represents a parameter to a function.
Definition: Decl.h:1564
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
Definition: CGObjC.cpp:244
The collection of all-type qualifiers we support.
Definition: Type.h:137
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
bool isARCPseudoStrong() const
Determine whether this variable is an ARC pseudo-__strong variable.
Definition: Decl.h:1364
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
Definition: CGObjC.cpp:3291
bool isXValue() const
Definition: Expr.h:260
const Stmt * getSubStmt() const
Definition: StmtObjC.h:379
llvm::Function * objc_retainAutorelease
id objc_retainAutorelease(id);
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
llvm::Constant * getAtomicGetterHelperFnMap(QualType Ty)
One of these records is kept for each identifier that is lexed.
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
emitDestroy - Immediately perform the destruction of the given object.
Definition: CGDecl.cpp:2107
Address getAddress() const
Definition: CGValue.h:326
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Expr * getGetterCXXConstructor() const
Definition: DeclObjC.h:2848
static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, bool isAtomic, bool hasStrong)
emitStructGetterCall - Call the runtime function to load a property into the return value slot...
Definition: CGObjC.cpp:726
Represents a class type in Objective C.
Definition: Type.h:5596
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:342
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3429
llvm::Value * EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr)
Definition: CGObjC.cpp:1946
bool hasOptimizedSetter() const
Does this runtime supports optimized setter entrypoints?
Definition: ObjCRuntime.h:266
llvm::Function * objc_initWeak
id objc_initWeak(id*, id);
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
SetterKind getSetterKind() const
getSetterKind - Return the method used for doing assignment in the property setter.
Definition: DeclObjC.h:893
llvm::Value * EmitARCRetainAutoreleaseReturnValue(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2354
Represents a member of a struct/union/class.
Definition: Decl.h:2607
CharUnits getAlignment() const
Definition: CGValue.h:315
llvm::FunctionCallee objc_autoreleaseRuntimeFunction
id objc_autorelease(id); Note this is the runtime method not the intrinsic.
StringLiteral * getString()
Definition: ExprObjC.h:62
bool isReferenceType() const
Definition: Type.h:6366
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:924
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
llvm::Value * EmitARCAutoreleaseReturnValue(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2344
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:513
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor)
Definition: CGObjC.cpp:1570
Expr * getSubExpr()
Definition: Expr.h:3172
CleanupKind getCleanupKind(QualType::DestructionKind kind)
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:188
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
EmitObjCBoxedExpr - This routine generates code to call the appropriate expression boxing method...
Definition: CGObjC.cpp:59
IdentifierTable & Idents
Definition: ASTContext.h:569
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:124
Selector getSelector() const
Definition: ExprObjC.h:467
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
const Expr *const * const_semantics_iterator
Definition: Expr.h:5729
bool isUnarySelector() const
llvm::FunctionCallee objc_alloc_init
void objc_alloc_init(id);
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
bool isGLValue() const
Definition: Expr.h:261
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:985
llvm::Value * EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2276
ARCPreciseLifetime_t isARCPreciseLifetime() const
Definition: CGValue.h:284
llvm::Function * objc_release
void objc_release(id);
llvm::Value * EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType)
Autorelease the given object.
Definition: CGObjC.cpp:2612
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
Emits an instance of NSConstantString representing the object.
Definition: CGObjC.cpp:45
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2685
Selector getNullarySelector(IdentifierInfo *ID)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:968
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:156
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2262
static llvm::Value * emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained), perform an unsafeClaim following it.
Definition: CGObjC.cpp:2825
static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, llvm::Function *&fn, llvm::Intrinsic::ID IntID)
Perform an operation having the following signature: void (i8**, i8**)
Definition: CGObjC.cpp:2060
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
static Optional< llvm::Value * > tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME)
Instead of &#39;[[MyClass alloc] init]&#39;, try to generate &#39;objc_alloc_init(MyClass)&#39;.
Definition: CGObjC.cpp:437
SourceLocation getLBracLoc() const
Definition: Stmt.h:1417
PropertyAttributeKind getPropertyAttributes() const
Definition: DeclObjC.h:839
semantics_iterator semantics_end()
Definition: Expr.h:5736
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3404
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6200
llvm::Value * EmitARCUnsafeUnretainedScalarExpr(const Expr *expr)
EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to immediately releasing the resut of Emi...
Definition: CGObjC.cpp:3367
void setAtomicGetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
Defines the Diagnostic-related interfaces.
virtual bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const
Determine whether a call to objc_retainAutoreleasedReturnValue should be marked as &#39;notail&#39;...
Definition: TargetInfo.h:161
llvm::Value * EmitARCLoadWeak(Address addr)
i8* @objc_loadWeak(i8** addr) Essentially objc_autorelease(objc_loadWeakRetained(addr)).
Definition: CGObjC.cpp:2391
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2965
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:50
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
llvm::Value * EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType)
Definition: CGObjC.cpp:2569
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
EmitARCRetainScalarExpr - Semantically equivalent to EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a best-effort attempt to peephole expressions that naturally produce retained objects.
Definition: CGObjC.cpp:3240
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:182
static bool shouldEmitSeparateBlockRetain(const Expr *e)
Determine whether it might be important to emit a separate objc_retain_block on the result of the giv...
Definition: CGObjC.cpp:2851
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3120
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
llvm::Constant * CreateRuntimeVariable(llvm::Type *Ty, StringRef Name)
Create a new runtime global variable with the specified type and name.
Expr * Key
The key for the dictionary element.
Definition: ExprObjC.h:263
ObjCMethodDecl * getArrayWithObjectsMethod() const
Definition: ExprObjC.h:239
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
An ordinary object is located at an address in memory.
Definition: Specifiers.h:140
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
llvm::Value * EmitObjCRetainNonBlock(llvm::Value *value, llvm::Type *returnType)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:2622
llvm::Function * objc_moveWeak
void objc_moveWeak(id *dest, id *src);
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
QualType getReturnType() const
Definition: DeclObjC.h:322
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5831
static TryEmitResult tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:3222
bool isAtomic() const
isAtomic - Return true if the property is atomic.
Definition: DeclObjC.h:867
llvm::Value * EmitARCRetainAutoreleasedReturnValue(llvm::Value *value)
Retain the given object which is the result of a function call.
Definition: CGObjC.cpp:2201
llvm::Value * EmitARCRetainAutoreleaseNonBlock(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2383
bool isObjCSelfExpr() const
Check if this expression is the ObjC &#39;self&#39; implicit parameter.
Definition: Expr.cpp:3815
This object can be modified without requiring retains or releases.
Definition: Type.h:158
ObjCMethodDecl * getDictWithObjectsMethod() const
Definition: ExprObjC.h:374
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2758
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
Definition: CGObjC.cpp:484
bool hasAttr() const
Definition: DeclBase.h:542
static llvm::Value * emitARCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, llvm::Function *&fn, llvm::Intrinsic::ID IntID, llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)
Perform an operation having the signature i8* (i8*) where a null input causes a no-op and returns nul...
Definition: CGObjC.cpp:1983
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1310
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var)
EmitAutoVarAlloca - Emit the alloca and debug information for a local variable.
Definition: CGDecl.cpp:1381
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
llvm::Function * objc_unsafeClaimAutoreleasedReturnValue
id objc_unsafeClaimAutoreleasedReturnValue(id);
const TargetCodeGenInfo & getTargetCodeGenInfo()
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:223
llvm::Function * objc_retainAutoreleasedReturnValue
id objc_retainAutoreleasedReturnValue(id);
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
AggValueSlot::Overlap_t getOverlapForReturnValue()
Determine whether a return value slot may overlap some other object.
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclObjC.cpp:979
bool canAvoidCopyToHeap() const
Definition: Decl.h:4045
llvm::Value * emitScalarConstant(const ConstantEmission &Constant, Expr *E)
Definition: CGExpr.cpp:1513
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
i8* @objc_storeWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2406
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
ObjCMethodDecl * getBoxingMethod() const
Definition: ExprObjC.h:145
static bool shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message)
Decide whether to extend the lifetime of the receiver of a returns-inner-pointer message.
Definition: CGObjC.cpp:284
virtual llvm::FunctionCallee GetPropertyGetFunction()=0
Return the runtime function for getting properties.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
bool hasAtomicCopyHelper() const
Definition: ObjCRuntime.h:388
void EmitARCMoveWeak(Address dst, Address src)
void @objc_moveWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2452
void EmitAutoVarInit(const AutoVarEmission &emission)
Definition: CGDecl.cpp:1748
static Address invalid()
Definition: Address.h:34
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1035
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
virtual llvm::FunctionCallee GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter...
void GenerateObjCMethod(const ObjCMethodDecl *OMD)
Generate an Objective-C method.
Definition: CGObjC.cpp:715
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, ObjCIvarDecl *ivar)
emitStructSetterCall - Call the runtime function to store the value from the first formal parameter i...
Definition: CGObjC.cpp:1200
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
bool isObjCRetainableType() const
Definition: Type.cpp:4035
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
#define V(N, I)
Definition: ASTContext.h:2898
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5540
Expr * getCallee()
Definition: Expr.h:2633
llvm::FunctionCallee objc_alloc
void objc_alloc(id);
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
StringRef getNameForSlot(unsigned argIndex) const
Retrieve the name at a given position in the selector.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:304
DeclContext * getDeclContext()
Definition: DeclBase.h:438
virtual llvm::FunctionCallee GetPropertySetFunction()=0
Return the runtime function for setting properties.
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:277
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:454
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:62
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:1311
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
llvm::Value * EmitARCAutorelease(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2335
llvm::LLVMContext & getLLVMContext()
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
Definition: CGCall.cpp:3681
const CGFunctionInfo & arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args)
Definition: CGCall.cpp:639
QualType getType() const
Definition: Expr.h:137
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
Expr * getElement(unsigned Index)
getElement - Return the Element at the specified index.
Definition: ExprObjC.h:230
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:207
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:950
SourceLocation getEnd() const
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2016
bool isInstanceMethod() const
Definition: DeclObjC.h:421
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1373
ReceiverKind getReceiverKind() const
Determine the kind of receiver that this message is being sent to.
Definition: ExprObjC.h:1234
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr)
Try to emit a reference to the given value without producing it as an l-value.
Definition: CGExpr.cpp:1432
unsigned getNumArgs() const
const TargetInfo & getTarget() const
ValueDecl * getDecl()
Definition: Expr.h:1217
const Qualifiers & getQuals() const
Definition: CGValue.h:310
Selector getSelector() const
Definition: DeclObjC.h:320
const LangOptions & getLangOpts() const
ASTContext & getContext() const
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:413
bool hasEmptyCollections() const
Are the empty collection symbols available?
Definition: ObjCRuntime.h:419
QualType getType() const
Definition: DeclObjC.h:828
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:40
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6189
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
The l-value was considered opaque, so the alignment was determined from a type.
There is no lifetime qualification on this type.
Definition: Type.h:154
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:1045
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:141
llvm::Function * objc_loadWeakRetained
id objc_loadWeakRetained(id*);
SelectorTable & Selectors
Definition: ASTContext.h:570
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
QualType getCanonicalType() const
Definition: Type.h:6169
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5662
IdentifierInfo * getIdentifierInfoForSlot(unsigned argIndex) const
Retrieve the identifier at a given position in the selector.
llvm::FunctionCallee objc_autoreleasePoolPop
void objc_autoreleasePoolPop(void*);
bool isExpressibleAsConstantInitializer() const
Definition: ExprObjC.h:151
ObjCMethodFamily getMethodFamily() const
Derive the conventional family of this method.
static llvm::Value * emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:3358
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
Definition: CGObjC.cpp:240
body_range body()
Definition: Stmt.h:1343
llvm::Function * clang_arc_use
void clang.arc.use(...);
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, llvm::Value *returnAddr, ObjCIvarDecl *ivar, llvm::Constant *AtomicHelperFn)
emitCPPObjectAtomicGetterCall - Call the runtime function to copy the ivar into the resturn slot...
Definition: CGObjC.cpp:992
virtual llvm::FunctionCallee GetSetStructFunction()=0
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
Release the given object.
Definition: CGObjC.cpp:2231
LValue EmitDeclRefLValue(const DeclRefExpr *E)
Definition: CGExpr.cpp:2513
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Definition: CGObjC.cpp:3379
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior...
Definition: CGExpr.cpp:1208
CastKind getCastKind() const
Definition: Expr.h:3166
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3779
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c dictionary literal.
Definition: ExprObjC.h:358
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1622
llvm::Value * EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value)
Claim a possibly-autoreleased return value at +0.
Definition: CGObjC.cpp:2222
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1203
Address CreateConstArrayGEP(Address Addr, uint64_t Index, const llvm::Twine &Name="")
Given addr = [n x T]* ...
Definition: CGBuilder.h:198
Stmt * getBody() const override
Retrieve the body of this method, if it has one.
Definition: DeclObjC.cpp:851
virtual llvm::FunctionCallee EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that&#39;s called by the compiler when a mutation is de...
static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:2702
const CGFunctionInfo & arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD)
Objective-C methods are C functions with some implicit parameters.
Definition: CGCall.cpp:457
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:44
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
llvm::Function * objc_destroyWeak
void objc_destroyWeak(id*);
ObjCEntrypoints & getObjCEntrypoints() const
llvm::Function * objc_storeWeak
id objc_storeWeak(id*, id);
llvm::FunctionCallee objc_retainRuntimeFunction
id objc_retain(id); Note this is the runtime method not the intrinsic.
CanQualType VoidTy
Definition: ASTContext.h:1002
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:503
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
llvm::InlineAsm * retainAutoreleasedReturnValueMarker
A void(void) inline asm to use to mark that the return value of a call will be immediately retain...
bool isObjCObjectPointerType() const
Definition: Type.h:6458
An aligned address.
Definition: Address.h:24
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:728
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3244
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1163
All available information about a concrete callee.
Definition: CGCall.h:66
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Expr * getSubExpr()
Definition: ExprObjC.h:142
llvm::Value * EmitObjCAlloc(llvm::Value *value, llvm::Type *returnType)
Allocate the given objc object.
Definition: CGObjC.cpp:2553
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1356
static void destroyARCStrongWithStore(CodeGenFunction &CGF, Address addr, QualType type)
Like CodeGenFunction::destroyARCStrong, but do it with a call.
Definition: CGObjC.cpp:1527
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
QualType getType() const
Definition: CGValue.h:263
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:124
llvm::Value * EmitARCRetain(QualType type, llvm::Value *value)
Produce the code to do a retain.
Definition: CGObjC.cpp:2113
void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr)
Definition: CGObjC.cpp:2474
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2311
static Destroyer destroyARCStrongImprecise
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
Expr * Value
The value of the dictionary element.
Definition: ExprObjC.h:266
std::pair< CharUnits, CharUnits > getTypeInfoInChars(const Type *T) const
ConstantAddress GetAddrOfConstantCString(const std::string &Str, const char *GlobalName=nullptr)
Returns a pointer to a character array containing the literal and a terminating &#39;\0&#39; character...
Expr * getLHS() const
Definition: Expr.h:3444
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr)
Produce the code to do a primitive release.
Definition: CGObjC.cpp:2578
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
Expr * getInstanceReceiver()
Returns the object expression (receiver) for an instance message, or null for a message that is not a...
Definition: ExprObjC.h:1260
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:358
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1977
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:58
Expr * getResultExpr()
Return the result-bearing expression, or null if there is none.
Definition: Expr.h:5717
llvm::CallBase * EmitCallOrInvoke(llvm::FunctionCallee Callee, ArrayRef< llvm::Value *> Args, const Twine &Name="")
Emits a call or invoke instruction to the given function, depending on the current state of the EH st...
Definition: CGCall.cpp:3749
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S)
Definition: CGObjC.cpp:1919
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn&#39;t support the specified stmt yet.
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2439
Dataflow Directional Tag Classes.
llvm::Value * EmitObjCAllocWithZone(llvm::Value *value, llvm::Type *returnType)
Allocate the given objc object.
Definition: CGObjC.cpp:2562
void GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCGetter - Synthesize an Objective-C property getter function.
Definition: CGObjC.cpp:953
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr)
Produce the code to do a primitive release.
Definition: CGObjC.cpp:2496
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:27
llvm::Value * EmitARCLoadWeakRetained(Address addr)
i8* @objc_loadWeakRetained(i8** addr)
Definition: CGObjC.cpp:2398
static ReturnStmt * Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
Create a return statement.
Definition: Stmt.cpp:1075
QualType getSuperType() const
Retrieve the type referred to by &#39;super&#39;.
Definition: ExprObjC.h:1336
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:90
void EmitARCIntrinsicUse(ArrayRef< llvm::Value *> values)
Given a number of pointers, inform the optimizer that they&#39;re being intrinsically used up until this ...
Definition: CGObjC.cpp:1953
llvm::Constant * getPointer() const
Definition: Address.h:83
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:69
bool isKeywordSelector() const
U cast(CodeGen::Address addr)
Definition: Address.h:108
virtual llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5893
QualType TypeOfSelfObject()
TypeOfSelfObject - Return type of object that this self represents.
Definition: CGObjC.cpp:1614
Checking the destination of a store. Must be suitably sized and aligned.
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:107
semantics_iterator semantics_begin()
Definition: Expr.h:5730
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition: CGValue.h:539
llvm::Constant * GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:3568
llvm::Module & getModule() const
static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:1280
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S)
Definition: CGObjC.cpp:1915
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, llvm::Triple::ArchType arch)
Return the maximum size that permits atomic accesses for the given architecture.
Definition: CGObjC.cpp:766
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1848
QualType getClassReceiver() const
Returns the type of a class message send, or NULL if the message is not a class message.
Definition: ExprObjC.h:1279
Represents a pointer to an Objective C object.
Definition: Type.h:5852
void EmitAutoVarCleanups(const AutoVarEmission &emission)
Definition: CGDecl.cpp:1984
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2551
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4426
static llvm::Value * emitARCOperationAfterCall(CodeGenFunction &CGF, llvm::Value *value, ValueTransform doAfterCall, ValueTransform doFallback)
Insert code immediately after a call.
Definition: CGObjC.cpp:2768
llvm::FunctionCallee objc_autoreleasePoolPopInvoke
void objc_autoreleasePoolPop(void*); Note this method is used when we are using exception handling ...
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c array literal.
Definition: ExprObjC.h:227
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:23
CodeGenTypes & getTypes() const
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
bool hasNonTrivialObjCLifetime() const
Definition: Type.h:1067
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:51
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:59
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
bool isDelegateInitCall() const
isDelegateInitCall - Answers whether this message send has been tagged as a "delegate init call"...
Definition: ExprObjC.h:1413
LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value *Base, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers)
Definition: CGExpr.cpp:4715
param_const_iterator param_begin() const
Definition: DeclObjC.h:347
llvm::Value * EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar)
Definition: CGExpr.cpp:4710
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
llvm::Value * EmitARCRetainAutorelease(QualType type, llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2366
llvm::Function * objc_autoreleaseReturnValue
id objc_autoreleaseReturnValue(id);
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false)
Create or return a runtime function declaration with the specified type and name. ...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:454
void setAtomicSetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
llvm::Function * objc_autorelease
id objc_autorelease(id);
void EmitARCInitWeak(Address addr, llvm::Value *value)
i8* @objc_initWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2418
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:119
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2070
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:546
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2271
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
llvm::FunctionCallee objc_allocWithZone
void objc_allocWithZone(id);
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
void EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the beginning of a new lexical block and push the block onto the stack...
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:995
llvm::iterator_range< arg_iterator > arguments()
Definition: ExprObjC.h:1463
A non-RAII class containing all the information about a bound opaque value.
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6210
llvm::Value * EmitObjCCollectionLiteral(const Expr *E, const ObjCMethodDecl *MethodWithObjects)
Definition: CGObjC.cpp:117
llvm::BasicBlock * getInvokeDest()
bool isVoidType() const
Definition: Type.h:6613
void EmitReturnStmt(const ReturnStmt &S)
EmitReturnStmt - Note that due to GCC extensions, this can have an operand if the function returns vo...
Definition: CGStmt.cpp:1042
llvm::Function * objc_storeStrong
void objc_storeStrong(id*, id);
llvm::Type * ConvertType(QualType T)
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1944
static llvm::Constant * getNullForVariable(Address addr)
Given the address of a variable of pointer type, find the correct null to store into it...
Definition: CGObjC.cpp:39
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1244
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:415
llvm::Function * objc_loadWeak
id objc_loadWeak(id*);
The receiver is a class.
Definition: ExprObjC.h:1098
Represents Objective-C&#39;s @try ... @catch ... @finally statement.
Definition: StmtObjC.h:165
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:251
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1773
llvm::Value * EmitARCRetainBlock(llvm::Value *value, bool mandatory)
Retain the given block, with _Block_copy semantics.
Definition: CGObjC.cpp:2134
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, const ObjCMethodDecl *GetterMothodDecl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:1022
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2516
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclObjC.h:282
void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD)
StartObjCMethod - Begin emission of an ObjCMethod.
Definition: CGObjC.cpp:675
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
bool hasARCUnsafeClaimAutoreleasedReturnValue() const
Is objc_unsafeClaimAutoreleasedReturnValue available?
Definition: ObjCRuntime.h:402
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:944
QualType getObjCFastEnumerationStateType()
Retrieve the record type that describes the state of an Objective-C fast enumeration loop (for...
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr)
Definition: CGObjC.cpp:2680
bool hasNativeARC() const
Does this runtime natively provide the ARC entrypoints?
Definition: ObjCRuntime.h:161
llvm::Function * objc_retain
id objc_retain(id);
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
Definition: CGExprAgg.cpp:1911
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1141
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
Expr * getRHS() const
Definition: Expr.h:3446
ObjCPropertyDecl * getPropertyDecl() const
Definition: DeclObjC.h:2817
llvm::Function * objc_autoreleasePoolPush
void *objc_autoreleasePoolPush(void);
static const Expr * findWeakLValue(const Expr *E)
Given an expression of ObjC pointer type, check whether it was immediately loaded from an ARC __weak ...
Definition: CGObjC.cpp:343
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF)
Definition: CGObjC.cpp:2157
Address EmitCompoundStmtWithoutScope(const